Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.6.
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * Sleepable Read-Copy Update mechanism for mutual exclusion.
   4 *
   5 * Copyright (C) IBM Corporation, 2006
   6 * Copyright (C) Fujitsu, 2012
   7 *
   8 * Authors: Paul McKenney <paulmck@linux.ibm.com>
   9 *	   Lai Jiangshan <laijs@cn.fujitsu.com>
  10 *
  11 * For detailed explanation of Read-Copy Update mechanism see -
  12 *		Documentation/RCU/ *.txt
  13 *
  14 */
  15
  16#define pr_fmt(fmt) "rcu: " fmt
  17
  18#include <linux/export.h>
  19#include <linux/mutex.h>
  20#include <linux/percpu.h>
  21#include <linux/preempt.h>
  22#include <linux/rcupdate_wait.h>
  23#include <linux/sched.h>
  24#include <linux/smp.h>
  25#include <linux/delay.h>
  26#include <linux/module.h>
  27#include <linux/slab.h>
  28#include <linux/srcu.h>
  29
  30#include "rcu.h"
  31#include "rcu_segcblist.h"
  32
  33/* Holdoff in nanoseconds for auto-expediting. */
  34#define DEFAULT_SRCU_EXP_HOLDOFF (25 * 1000)
  35static ulong exp_holdoff = DEFAULT_SRCU_EXP_HOLDOFF;
  36module_param(exp_holdoff, ulong, 0444);
  37
  38/* Overflow-check frequency.  N bits roughly says every 2**N grace periods. */
  39static ulong counter_wrap_check = (ULONG_MAX >> 2);
  40module_param(counter_wrap_check, ulong, 0444);
  41
  42/*
  43 * Control conversion to SRCU_SIZE_BIG:
  44 *    0: Don't convert at all.
  45 *    1: Convert at init_srcu_struct() time.
  46 *    2: Convert when rcutorture invokes srcu_torture_stats_print().
  47 *    3: Decide at boot time based on system shape (default).
  48 * 0x1x: Convert when excessive contention encountered.
  49 */
  50#define SRCU_SIZING_NONE	0
  51#define SRCU_SIZING_INIT	1
  52#define SRCU_SIZING_TORTURE	2
  53#define SRCU_SIZING_AUTO	3
  54#define SRCU_SIZING_CONTEND	0x10
  55#define SRCU_SIZING_IS(x) ((convert_to_big & ~SRCU_SIZING_CONTEND) == x)
  56#define SRCU_SIZING_IS_NONE() (SRCU_SIZING_IS(SRCU_SIZING_NONE))
  57#define SRCU_SIZING_IS_INIT() (SRCU_SIZING_IS(SRCU_SIZING_INIT))
  58#define SRCU_SIZING_IS_TORTURE() (SRCU_SIZING_IS(SRCU_SIZING_TORTURE))
  59#define SRCU_SIZING_IS_CONTEND() (convert_to_big & SRCU_SIZING_CONTEND)
  60static int convert_to_big = SRCU_SIZING_AUTO;
  61module_param(convert_to_big, int, 0444);
  62
  63/* Number of CPUs to trigger init_srcu_struct()-time transition to big. */
  64static int big_cpu_lim __read_mostly = 128;
  65module_param(big_cpu_lim, int, 0444);
  66
  67/* Contention events per jiffy to initiate transition to big. */
  68static int small_contention_lim __read_mostly = 100;
  69module_param(small_contention_lim, int, 0444);
  70
  71/* Early-boot callback-management, so early that no lock is required! */
  72static LIST_HEAD(srcu_boot_list);
  73static bool __read_mostly srcu_init_done;
  74
  75static void srcu_invoke_callbacks(struct work_struct *work);
  76static void srcu_reschedule(struct srcu_struct *ssp, unsigned long delay);
  77static void process_srcu(struct work_struct *work);
  78static void srcu_delay_timer(struct timer_list *t);
  79
  80/* Wrappers for lock acquisition and release, see raw_spin_lock_rcu_node(). */
  81#define spin_lock_rcu_node(p)							\
  82do {										\
  83	spin_lock(&ACCESS_PRIVATE(p, lock));					\
  84	smp_mb__after_unlock_lock();						\
  85} while (0)
  86
  87#define spin_unlock_rcu_node(p) spin_unlock(&ACCESS_PRIVATE(p, lock))
  88
  89#define spin_lock_irq_rcu_node(p)						\
  90do {										\
  91	spin_lock_irq(&ACCESS_PRIVATE(p, lock));				\
  92	smp_mb__after_unlock_lock();						\
  93} while (0)
  94
  95#define spin_unlock_irq_rcu_node(p)						\
  96	spin_unlock_irq(&ACCESS_PRIVATE(p, lock))
  97
  98#define spin_lock_irqsave_rcu_node(p, flags)					\
  99do {										\
 100	spin_lock_irqsave(&ACCESS_PRIVATE(p, lock), flags);			\
 101	smp_mb__after_unlock_lock();						\
 102} while (0)
 103
 104#define spin_trylock_irqsave_rcu_node(p, flags)					\
 105({										\
 106	bool ___locked = spin_trylock_irqsave(&ACCESS_PRIVATE(p, lock), flags);	\
 107										\
 108	if (___locked)								\
 109		smp_mb__after_unlock_lock();					\
 110	___locked;								\
 111})
 112
 113#define spin_unlock_irqrestore_rcu_node(p, flags)				\
 114	spin_unlock_irqrestore(&ACCESS_PRIVATE(p, lock), flags)			\
 115
 116/*
 117 * Initialize SRCU per-CPU data.  Note that statically allocated
 118 * srcu_struct structures might already have srcu_read_lock() and
 119 * srcu_read_unlock() running against them.  So if the is_static parameter
 120 * is set, don't initialize ->srcu_lock_count[] and ->srcu_unlock_count[].
 121 */
 122static void init_srcu_struct_data(struct srcu_struct *ssp)
 123{
 124	int cpu;
 125	struct srcu_data *sdp;
 126
 127	/*
 128	 * Initialize the per-CPU srcu_data array, which feeds into the
 129	 * leaves of the srcu_node tree.
 130	 */
 131	WARN_ON_ONCE(ARRAY_SIZE(sdp->srcu_lock_count) !=
 132		     ARRAY_SIZE(sdp->srcu_unlock_count));
 133	for_each_possible_cpu(cpu) {
 134		sdp = per_cpu_ptr(ssp->sda, cpu);
 135		spin_lock_init(&ACCESS_PRIVATE(sdp, lock));
 136		rcu_segcblist_init(&sdp->srcu_cblist);
 137		sdp->srcu_cblist_invoking = false;
 138		sdp->srcu_gp_seq_needed = ssp->srcu_gp_seq;
 139		sdp->srcu_gp_seq_needed_exp = ssp->srcu_gp_seq;
 140		sdp->mynode = NULL;
 141		sdp->cpu = cpu;
 142		INIT_WORK(&sdp->work, srcu_invoke_callbacks);
 143		timer_setup(&sdp->delay_work, srcu_delay_timer, 0);
 144		sdp->ssp = ssp;
 145	}
 146}
 147
 148/* Invalid seq state, used during snp node initialization */
 149#define SRCU_SNP_INIT_SEQ		0x2
 150
 151/*
 152 * Check whether sequence number corresponding to snp node,
 153 * is invalid.
 154 */
 155static inline bool srcu_invl_snp_seq(unsigned long s)
 156{
 157	return rcu_seq_state(s) == SRCU_SNP_INIT_SEQ;
 158}
 159
 160/*
 161 * Allocated and initialize SRCU combining tree.  Returns @true if
 162 * allocation succeeded and @false otherwise.
 163 */
 164static bool init_srcu_struct_nodes(struct srcu_struct *ssp, gfp_t gfp_flags)
 165{
 166	int cpu;
 167	int i;
 168	int level = 0;
 169	int levelspread[RCU_NUM_LVLS];
 170	struct srcu_data *sdp;
 171	struct srcu_node *snp;
 172	struct srcu_node *snp_first;
 173
 174	/* Initialize geometry if it has not already been initialized. */
 175	rcu_init_geometry();
 176	ssp->node = kcalloc(rcu_num_nodes, sizeof(*ssp->node), gfp_flags);
 177	if (!ssp->node)
 178		return false;
 179
 180	/* Work out the overall tree geometry. */
 181	ssp->level[0] = &ssp->node[0];
 182	for (i = 1; i < rcu_num_lvls; i++)
 183		ssp->level[i] = ssp->level[i - 1] + num_rcu_lvl[i - 1];
 184	rcu_init_levelspread(levelspread, num_rcu_lvl);
 185
 186	/* Each pass through this loop initializes one srcu_node structure. */
 187	srcu_for_each_node_breadth_first(ssp, snp) {
 188		spin_lock_init(&ACCESS_PRIVATE(snp, lock));
 189		WARN_ON_ONCE(ARRAY_SIZE(snp->srcu_have_cbs) !=
 190			     ARRAY_SIZE(snp->srcu_data_have_cbs));
 191		for (i = 0; i < ARRAY_SIZE(snp->srcu_have_cbs); i++) {
 192			snp->srcu_have_cbs[i] = SRCU_SNP_INIT_SEQ;
 193			snp->srcu_data_have_cbs[i] = 0;
 194		}
 195		snp->srcu_gp_seq_needed_exp = SRCU_SNP_INIT_SEQ;
 196		snp->grplo = -1;
 197		snp->grphi = -1;
 198		if (snp == &ssp->node[0]) {
 199			/* Root node, special case. */
 200			snp->srcu_parent = NULL;
 201			continue;
 202		}
 203
 204		/* Non-root node. */
 205		if (snp == ssp->level[level + 1])
 206			level++;
 207		snp->srcu_parent = ssp->level[level - 1] +
 208				   (snp - ssp->level[level]) /
 209				   levelspread[level - 1];
 210	}
 211
 212	/*
 213	 * Initialize the per-CPU srcu_data array, which feeds into the
 214	 * leaves of the srcu_node tree.
 215	 */
 216	level = rcu_num_lvls - 1;
 217	snp_first = ssp->level[level];
 218	for_each_possible_cpu(cpu) {
 219		sdp = per_cpu_ptr(ssp->sda, cpu);
 220		sdp->mynode = &snp_first[cpu / levelspread[level]];
 221		for (snp = sdp->mynode; snp != NULL; snp = snp->srcu_parent) {
 222			if (snp->grplo < 0)
 223				snp->grplo = cpu;
 224			snp->grphi = cpu;
 225		}
 226		sdp->grpmask = 1 << (cpu - sdp->mynode->grplo);
 227	}
 228	smp_store_release(&ssp->srcu_size_state, SRCU_SIZE_WAIT_BARRIER);
 229	return true;
 230}
 231
 232/*
 233 * Initialize non-compile-time initialized fields, including the
 234 * associated srcu_node and srcu_data structures.  The is_static parameter
 235 * tells us that ->sda has already been wired up to srcu_data.
 236 */
 237static int init_srcu_struct_fields(struct srcu_struct *ssp, bool is_static)
 238{
 239	ssp->srcu_size_state = SRCU_SIZE_SMALL;
 240	ssp->node = NULL;
 241	mutex_init(&ssp->srcu_cb_mutex);
 242	mutex_init(&ssp->srcu_gp_mutex);
 243	ssp->srcu_idx = 0;
 244	ssp->srcu_gp_seq = 0;
 245	ssp->srcu_barrier_seq = 0;
 246	mutex_init(&ssp->srcu_barrier_mutex);
 247	atomic_set(&ssp->srcu_barrier_cpu_cnt, 0);
 248	INIT_DELAYED_WORK(&ssp->work, process_srcu);
 249	ssp->sda_is_static = is_static;
 250	if (!is_static)
 251		ssp->sda = alloc_percpu(struct srcu_data);
 252	if (!ssp->sda)
 253		return -ENOMEM;
 254	init_srcu_struct_data(ssp);
 255	ssp->srcu_gp_seq_needed_exp = 0;
 256	ssp->srcu_last_gp_end = ktime_get_mono_fast_ns();
 257	if (READ_ONCE(ssp->srcu_size_state) == SRCU_SIZE_SMALL && SRCU_SIZING_IS_INIT()) {
 258		if (!init_srcu_struct_nodes(ssp, GFP_ATOMIC)) {
 259			if (!ssp->sda_is_static) {
 260				free_percpu(ssp->sda);
 261				ssp->sda = NULL;
 262				return -ENOMEM;
 263			}
 264		} else {
 265			WRITE_ONCE(ssp->srcu_size_state, SRCU_SIZE_BIG);
 266		}
 267	}
 268	smp_store_release(&ssp->srcu_gp_seq_needed, 0); /* Init done. */
 269	return 0;
 270}
 271
 272#ifdef CONFIG_DEBUG_LOCK_ALLOC
 273
 274int __init_srcu_struct(struct srcu_struct *ssp, const char *name,
 275		       struct lock_class_key *key)
 276{
 277	/* Don't re-initialize a lock while it is held. */
 278	debug_check_no_locks_freed((void *)ssp, sizeof(*ssp));
 279	lockdep_init_map(&ssp->dep_map, name, key, 0);
 280	spin_lock_init(&ACCESS_PRIVATE(ssp, lock));
 281	return init_srcu_struct_fields(ssp, false);
 282}
 283EXPORT_SYMBOL_GPL(__init_srcu_struct);
 284
 285#else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
 286
 287/**
 288 * init_srcu_struct - initialize a sleep-RCU structure
 289 * @ssp: structure to initialize.
 290 *
 291 * Must invoke this on a given srcu_struct before passing that srcu_struct
 292 * to any other function.  Each srcu_struct represents a separate domain
 293 * of SRCU protection.
 294 */
 295int init_srcu_struct(struct srcu_struct *ssp)
 296{
 297	spin_lock_init(&ACCESS_PRIVATE(ssp, lock));
 298	return init_srcu_struct_fields(ssp, false);
 299}
 300EXPORT_SYMBOL_GPL(init_srcu_struct);
 301
 302#endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
 303
 304/*
 305 * Initiate a transition to SRCU_SIZE_BIG with lock held.
 306 */
 307static void __srcu_transition_to_big(struct srcu_struct *ssp)
 308{
 309	lockdep_assert_held(&ACCESS_PRIVATE(ssp, lock));
 310	smp_store_release(&ssp->srcu_size_state, SRCU_SIZE_ALLOC);
 311}
 312
 313/*
 314 * Initiate an idempotent transition to SRCU_SIZE_BIG.
 315 */
 316static void srcu_transition_to_big(struct srcu_struct *ssp)
 317{
 318	unsigned long flags;
 319
 320	/* Double-checked locking on ->srcu_size-state. */
 321	if (smp_load_acquire(&ssp->srcu_size_state) != SRCU_SIZE_SMALL)
 322		return;
 323	spin_lock_irqsave_rcu_node(ssp, flags);
 324	if (smp_load_acquire(&ssp->srcu_size_state) != SRCU_SIZE_SMALL) {
 325		spin_unlock_irqrestore_rcu_node(ssp, flags);
 326		return;
 327	}
 328	__srcu_transition_to_big(ssp);
 329	spin_unlock_irqrestore_rcu_node(ssp, flags);
 330}
 331
 332/*
 333 * Check to see if the just-encountered contention event justifies
 334 * a transition to SRCU_SIZE_BIG.
 335 */
 336static void spin_lock_irqsave_check_contention(struct srcu_struct *ssp)
 337{
 338	unsigned long j;
 339
 340	if (!SRCU_SIZING_IS_CONTEND() || ssp->srcu_size_state)
 341		return;
 342	j = jiffies;
 343	if (ssp->srcu_size_jiffies != j) {
 344		ssp->srcu_size_jiffies = j;
 345		ssp->srcu_n_lock_retries = 0;
 346	}
 347	if (++ssp->srcu_n_lock_retries <= small_contention_lim)
 348		return;
 349	__srcu_transition_to_big(ssp);
 350}
 351
 352/*
 353 * Acquire the specified srcu_data structure's ->lock, but check for
 354 * excessive contention, which results in initiation of a transition
 355 * to SRCU_SIZE_BIG.  But only if the srcutree.convert_to_big module
 356 * parameter permits this.
 357 */
 358static void spin_lock_irqsave_sdp_contention(struct srcu_data *sdp, unsigned long *flags)
 359{
 360	struct srcu_struct *ssp = sdp->ssp;
 361
 362	if (spin_trylock_irqsave_rcu_node(sdp, *flags))
 363		return;
 364	spin_lock_irqsave_rcu_node(ssp, *flags);
 365	spin_lock_irqsave_check_contention(ssp);
 366	spin_unlock_irqrestore_rcu_node(ssp, *flags);
 367	spin_lock_irqsave_rcu_node(sdp, *flags);
 368}
 369
 370/*
 371 * Acquire the specified srcu_struct structure's ->lock, but check for
 372 * excessive contention, which results in initiation of a transition
 373 * to SRCU_SIZE_BIG.  But only if the srcutree.convert_to_big module
 374 * parameter permits this.
 375 */
 376static void spin_lock_irqsave_ssp_contention(struct srcu_struct *ssp, unsigned long *flags)
 377{
 378	if (spin_trylock_irqsave_rcu_node(ssp, *flags))
 379		return;
 380	spin_lock_irqsave_rcu_node(ssp, *flags);
 381	spin_lock_irqsave_check_contention(ssp);
 382}
 383
 384/*
 385 * First-use initialization of statically allocated srcu_struct
 386 * structure.  Wiring up the combining tree is more than can be
 387 * done with compile-time initialization, so this check is added
 388 * to each update-side SRCU primitive.  Use ssp->lock, which -is-
 389 * compile-time initialized, to resolve races involving multiple
 390 * CPUs trying to garner first-use privileges.
 391 */
 392static void check_init_srcu_struct(struct srcu_struct *ssp)
 393{
 394	unsigned long flags;
 395
 396	/* The smp_load_acquire() pairs with the smp_store_release(). */
 397	if (!rcu_seq_state(smp_load_acquire(&ssp->srcu_gp_seq_needed))) /*^^^*/
 398		return; /* Already initialized. */
 399	spin_lock_irqsave_rcu_node(ssp, flags);
 400	if (!rcu_seq_state(ssp->srcu_gp_seq_needed)) {
 401		spin_unlock_irqrestore_rcu_node(ssp, flags);
 402		return;
 403	}
 404	init_srcu_struct_fields(ssp, true);
 405	spin_unlock_irqrestore_rcu_node(ssp, flags);
 406}
 407
 408/*
 409 * Returns approximate total of the readers' ->srcu_lock_count[] values
 410 * for the rank of per-CPU counters specified by idx.
 411 */
 412static unsigned long srcu_readers_lock_idx(struct srcu_struct *ssp, int idx)
 413{
 414	int cpu;
 415	unsigned long sum = 0;
 416
 417	for_each_possible_cpu(cpu) {
 418		struct srcu_data *cpuc = per_cpu_ptr(ssp->sda, cpu);
 419
 420		sum += atomic_long_read(&cpuc->srcu_lock_count[idx]);
 421	}
 422	return sum;
 423}
 424
 425/*
 426 * Returns approximate total of the readers' ->srcu_unlock_count[] values
 427 * for the rank of per-CPU counters specified by idx.
 428 */
 429static unsigned long srcu_readers_unlock_idx(struct srcu_struct *ssp, int idx)
 430{
 431	int cpu;
 432	unsigned long mask = 0;
 433	unsigned long sum = 0;
 434
 435	for_each_possible_cpu(cpu) {
 436		struct srcu_data *cpuc = per_cpu_ptr(ssp->sda, cpu);
 437
 438		sum += atomic_long_read(&cpuc->srcu_unlock_count[idx]);
 439		if (IS_ENABLED(CONFIG_PROVE_RCU))
 440			mask = mask | READ_ONCE(cpuc->srcu_nmi_safety);
 441	}
 442	WARN_ONCE(IS_ENABLED(CONFIG_PROVE_RCU) && (mask & (mask >> 1)),
 443		  "Mixed NMI-safe readers for srcu_struct at %ps.\n", ssp);
 444	return sum;
 445}
 446
 447/*
 448 * Return true if the number of pre-existing readers is determined to
 449 * be zero.
 450 */
 451static bool srcu_readers_active_idx_check(struct srcu_struct *ssp, int idx)
 452{
 453	unsigned long unlocks;
 454
 455	unlocks = srcu_readers_unlock_idx(ssp, idx);
 456
 457	/*
 458	 * Make sure that a lock is always counted if the corresponding
 459	 * unlock is counted. Needs to be a smp_mb() as the read side may
 460	 * contain a read from a variable that is written to before the
 461	 * synchronize_srcu() in the write side. In this case smp_mb()s
 462	 * A and B act like the store buffering pattern.
 463	 *
 464	 * This smp_mb() also pairs with smp_mb() C to prevent accesses
 465	 * after the synchronize_srcu() from being executed before the
 466	 * grace period ends.
 467	 */
 468	smp_mb(); /* A */
 469
 470	/*
 471	 * If the locks are the same as the unlocks, then there must have
 472	 * been no readers on this index at some time in between. This does
 473	 * not mean that there are no more readers, as one could have read
 474	 * the current index but not have incremented the lock counter yet.
 475	 *
 476	 * So suppose that the updater is preempted here for so long
 477	 * that more than ULONG_MAX non-nested readers come and go in
 478	 * the meantime.  It turns out that this cannot result in overflow
 479	 * because if a reader modifies its unlock count after we read it
 480	 * above, then that reader's next load of ->srcu_idx is guaranteed
 481	 * to get the new value, which will cause it to operate on the
 482	 * other bank of counters, where it cannot contribute to the
 483	 * overflow of these counters.  This means that there is a maximum
 484	 * of 2*NR_CPUS increments, which cannot overflow given current
 485	 * systems, especially not on 64-bit systems.
 486	 *
 487	 * OK, how about nesting?  This does impose a limit on nesting
 488	 * of floor(ULONG_MAX/NR_CPUS/2), which should be sufficient,
 489	 * especially on 64-bit systems.
 490	 */
 491	return srcu_readers_lock_idx(ssp, idx) == unlocks;
 492}
 493
 494/**
 495 * srcu_readers_active - returns true if there are readers. and false
 496 *                       otherwise
 497 * @ssp: which srcu_struct to count active readers (holding srcu_read_lock).
 498 *
 499 * Note that this is not an atomic primitive, and can therefore suffer
 500 * severe errors when invoked on an active srcu_struct.  That said, it
 501 * can be useful as an error check at cleanup time.
 502 */
 503static bool srcu_readers_active(struct srcu_struct *ssp)
 504{
 505	int cpu;
 506	unsigned long sum = 0;
 507
 508	for_each_possible_cpu(cpu) {
 509		struct srcu_data *cpuc = per_cpu_ptr(ssp->sda, cpu);
 510
 511		sum += atomic_long_read(&cpuc->srcu_lock_count[0]);
 512		sum += atomic_long_read(&cpuc->srcu_lock_count[1]);
 513		sum -= atomic_long_read(&cpuc->srcu_unlock_count[0]);
 514		sum -= atomic_long_read(&cpuc->srcu_unlock_count[1]);
 515	}
 516	return sum;
 517}
 518
 519/*
 520 * We use an adaptive strategy for synchronize_srcu() and especially for
 521 * synchronize_srcu_expedited().  We spin for a fixed time period
 522 * (defined below, boot time configurable) to allow SRCU readers to exit
 523 * their read-side critical sections.  If there are still some readers
 524 * after one jiffy, we repeatedly block for one jiffy time periods.
 525 * The blocking time is increased as the grace-period age increases,
 526 * with max blocking time capped at 10 jiffies.
 527 */
 528#define SRCU_DEFAULT_RETRY_CHECK_DELAY		5
 529
 530static ulong srcu_retry_check_delay = SRCU_DEFAULT_RETRY_CHECK_DELAY;
 531module_param(srcu_retry_check_delay, ulong, 0444);
 532
 533#define SRCU_INTERVAL		1		// Base delay if no expedited GPs pending.
 534#define SRCU_MAX_INTERVAL	10		// Maximum incremental delay from slow readers.
 535
 536#define SRCU_DEFAULT_MAX_NODELAY_PHASE_LO	3UL	// Lowmark on default per-GP-phase
 537							// no-delay instances.
 538#define SRCU_DEFAULT_MAX_NODELAY_PHASE_HI	1000UL	// Highmark on default per-GP-phase
 539							// no-delay instances.
 540
 541#define SRCU_UL_CLAMP_LO(val, low)	((val) > (low) ? (val) : (low))
 542#define SRCU_UL_CLAMP_HI(val, high)	((val) < (high) ? (val) : (high))
 543#define SRCU_UL_CLAMP(val, low, high)	SRCU_UL_CLAMP_HI(SRCU_UL_CLAMP_LO((val), (low)), (high))
 544// per-GP-phase no-delay instances adjusted to allow non-sleeping poll upto
 545// one jiffies time duration. Mult by 2 is done to factor in the srcu_get_delay()
 546// called from process_srcu().
 547#define SRCU_DEFAULT_MAX_NODELAY_PHASE_ADJUSTED	\
 548	(2UL * USEC_PER_SEC / HZ / SRCU_DEFAULT_RETRY_CHECK_DELAY)
 549
 550// Maximum per-GP-phase consecutive no-delay instances.
 551#define SRCU_DEFAULT_MAX_NODELAY_PHASE	\
 552	SRCU_UL_CLAMP(SRCU_DEFAULT_MAX_NODELAY_PHASE_ADJUSTED,	\
 553		      SRCU_DEFAULT_MAX_NODELAY_PHASE_LO,	\
 554		      SRCU_DEFAULT_MAX_NODELAY_PHASE_HI)
 555
 556static ulong srcu_max_nodelay_phase = SRCU_DEFAULT_MAX_NODELAY_PHASE;
 557module_param(srcu_max_nodelay_phase, ulong, 0444);
 558
 559// Maximum consecutive no-delay instances.
 560#define SRCU_DEFAULT_MAX_NODELAY	(SRCU_DEFAULT_MAX_NODELAY_PHASE > 100 ?	\
 561					 SRCU_DEFAULT_MAX_NODELAY_PHASE : 100)
 562
 563static ulong srcu_max_nodelay = SRCU_DEFAULT_MAX_NODELAY;
 564module_param(srcu_max_nodelay, ulong, 0444);
 565
 566/*
 567 * Return grace-period delay, zero if there are expedited grace
 568 * periods pending, SRCU_INTERVAL otherwise.
 569 */
 570static unsigned long srcu_get_delay(struct srcu_struct *ssp)
 571{
 572	unsigned long gpstart;
 573	unsigned long j;
 574	unsigned long jbase = SRCU_INTERVAL;
 575
 576	if (ULONG_CMP_LT(READ_ONCE(ssp->srcu_gp_seq), READ_ONCE(ssp->srcu_gp_seq_needed_exp)))
 577		jbase = 0;
 578	if (rcu_seq_state(READ_ONCE(ssp->srcu_gp_seq))) {
 579		j = jiffies - 1;
 580		gpstart = READ_ONCE(ssp->srcu_gp_start);
 581		if (time_after(j, gpstart))
 582			jbase += j - gpstart;
 583		if (!jbase) {
 584			WRITE_ONCE(ssp->srcu_n_exp_nodelay, READ_ONCE(ssp->srcu_n_exp_nodelay) + 1);
 585			if (READ_ONCE(ssp->srcu_n_exp_nodelay) > srcu_max_nodelay_phase)
 586				jbase = 1;
 587		}
 588	}
 589	return jbase > SRCU_MAX_INTERVAL ? SRCU_MAX_INTERVAL : jbase;
 590}
 591
 592/**
 593 * cleanup_srcu_struct - deconstruct a sleep-RCU structure
 594 * @ssp: structure to clean up.
 595 *
 596 * Must invoke this after you are finished using a given srcu_struct that
 597 * was initialized via init_srcu_struct(), else you leak memory.
 598 */
 599void cleanup_srcu_struct(struct srcu_struct *ssp)
 600{
 601	int cpu;
 602
 603	if (WARN_ON(!srcu_get_delay(ssp)))
 604		return; /* Just leak it! */
 605	if (WARN_ON(srcu_readers_active(ssp)))
 606		return; /* Just leak it! */
 607	flush_delayed_work(&ssp->work);
 608	for_each_possible_cpu(cpu) {
 609		struct srcu_data *sdp = per_cpu_ptr(ssp->sda, cpu);
 610
 611		del_timer_sync(&sdp->delay_work);
 612		flush_work(&sdp->work);
 613		if (WARN_ON(rcu_segcblist_n_cbs(&sdp->srcu_cblist)))
 614			return; /* Forgot srcu_barrier(), so just leak it! */
 615	}
 616	if (WARN_ON(rcu_seq_state(READ_ONCE(ssp->srcu_gp_seq)) != SRCU_STATE_IDLE) ||
 617	    WARN_ON(rcu_seq_current(&ssp->srcu_gp_seq) != ssp->srcu_gp_seq_needed) ||
 618	    WARN_ON(srcu_readers_active(ssp))) {
 619		pr_info("%s: Active srcu_struct %p read state: %d gp state: %lu/%lu\n",
 620			__func__, ssp, rcu_seq_state(READ_ONCE(ssp->srcu_gp_seq)),
 621			rcu_seq_current(&ssp->srcu_gp_seq), ssp->srcu_gp_seq_needed);
 622		return; /* Caller forgot to stop doing call_srcu()? */
 623	}
 624	if (!ssp->sda_is_static) {
 625		free_percpu(ssp->sda);
 626		ssp->sda = NULL;
 627	}
 628	kfree(ssp->node);
 629	ssp->node = NULL;
 630	ssp->srcu_size_state = SRCU_SIZE_SMALL;
 631}
 632EXPORT_SYMBOL_GPL(cleanup_srcu_struct);
 633
 634#ifdef CONFIG_PROVE_RCU
 635/*
 636 * Check for consistent NMI safety.
 637 */
 638void srcu_check_nmi_safety(struct srcu_struct *ssp, bool nmi_safe)
 639{
 640	int nmi_safe_mask = 1 << nmi_safe;
 641	int old_nmi_safe_mask;
 642	struct srcu_data *sdp;
 643
 644	/* NMI-unsafe use in NMI is a bad sign */
 645	WARN_ON_ONCE(!nmi_safe && in_nmi());
 646	sdp = raw_cpu_ptr(ssp->sda);
 647	old_nmi_safe_mask = READ_ONCE(sdp->srcu_nmi_safety);
 648	if (!old_nmi_safe_mask) {
 649		WRITE_ONCE(sdp->srcu_nmi_safety, nmi_safe_mask);
 650		return;
 651	}
 652	WARN_ONCE(old_nmi_safe_mask != nmi_safe_mask, "CPU %d old state %d new state %d\n", sdp->cpu, old_nmi_safe_mask, nmi_safe_mask);
 653}
 654EXPORT_SYMBOL_GPL(srcu_check_nmi_safety);
 655#endif /* CONFIG_PROVE_RCU */
 656
 657/*
 658 * Counts the new reader in the appropriate per-CPU element of the
 659 * srcu_struct.
 660 * Returns an index that must be passed to the matching srcu_read_unlock().
 661 */
 662int __srcu_read_lock(struct srcu_struct *ssp)
 663{
 664	int idx;
 665
 666	idx = READ_ONCE(ssp->srcu_idx) & 0x1;
 667	this_cpu_inc(ssp->sda->srcu_lock_count[idx].counter);
 668	smp_mb(); /* B */  /* Avoid leaking the critical section. */
 669	return idx;
 670}
 671EXPORT_SYMBOL_GPL(__srcu_read_lock);
 672
 673/*
 674 * Removes the count for the old reader from the appropriate per-CPU
 675 * element of the srcu_struct.  Note that this may well be a different
 676 * CPU than that which was incremented by the corresponding srcu_read_lock().
 677 */
 678void __srcu_read_unlock(struct srcu_struct *ssp, int idx)
 679{
 680	smp_mb(); /* C */  /* Avoid leaking the critical section. */
 681	this_cpu_inc(ssp->sda->srcu_unlock_count[idx].counter);
 682}
 683EXPORT_SYMBOL_GPL(__srcu_read_unlock);
 684
 685#ifdef CONFIG_NEED_SRCU_NMI_SAFE
 686
 687/*
 688 * Counts the new reader in the appropriate per-CPU element of the
 689 * srcu_struct, but in an NMI-safe manner using RMW atomics.
 690 * Returns an index that must be passed to the matching srcu_read_unlock().
 691 */
 692int __srcu_read_lock_nmisafe(struct srcu_struct *ssp)
 693{
 694	int idx;
 695	struct srcu_data *sdp = raw_cpu_ptr(ssp->sda);
 696
 697	idx = READ_ONCE(ssp->srcu_idx) & 0x1;
 698	atomic_long_inc(&sdp->srcu_lock_count[idx]);
 699	smp_mb__after_atomic(); /* B */  /* Avoid leaking the critical section. */
 700	return idx;
 701}
 702EXPORT_SYMBOL_GPL(__srcu_read_lock_nmisafe);
 703
 704/*
 705 * Removes the count for the old reader from the appropriate per-CPU
 706 * element of the srcu_struct.  Note that this may well be a different
 707 * CPU than that which was incremented by the corresponding srcu_read_lock().
 708 */
 709void __srcu_read_unlock_nmisafe(struct srcu_struct *ssp, int idx)
 710{
 711	struct srcu_data *sdp = raw_cpu_ptr(ssp->sda);
 712
 713	smp_mb__before_atomic(); /* C */  /* Avoid leaking the critical section. */
 714	atomic_long_inc(&sdp->srcu_unlock_count[idx]);
 715}
 716EXPORT_SYMBOL_GPL(__srcu_read_unlock_nmisafe);
 717
 718#endif // CONFIG_NEED_SRCU_NMI_SAFE
 719
 720/*
 721 * Start an SRCU grace period.
 722 */
 723static void srcu_gp_start(struct srcu_struct *ssp)
 724{
 725	struct srcu_data *sdp;
 726	int state;
 727
 728	if (smp_load_acquire(&ssp->srcu_size_state) < SRCU_SIZE_WAIT_BARRIER)
 729		sdp = per_cpu_ptr(ssp->sda, 0);
 730	else
 731		sdp = this_cpu_ptr(ssp->sda);
 732	lockdep_assert_held(&ACCESS_PRIVATE(ssp, lock));
 733	WARN_ON_ONCE(ULONG_CMP_GE(ssp->srcu_gp_seq, ssp->srcu_gp_seq_needed));
 734	spin_lock_rcu_node(sdp);  /* Interrupts already disabled. */
 735	rcu_segcblist_advance(&sdp->srcu_cblist,
 736			      rcu_seq_current(&ssp->srcu_gp_seq));
 737	(void)rcu_segcblist_accelerate(&sdp->srcu_cblist,
 738				       rcu_seq_snap(&ssp->srcu_gp_seq));
 739	spin_unlock_rcu_node(sdp);  /* Interrupts remain disabled. */
 740	WRITE_ONCE(ssp->srcu_gp_start, jiffies);
 741	WRITE_ONCE(ssp->srcu_n_exp_nodelay, 0);
 742	smp_mb(); /* Order prior store to ->srcu_gp_seq_needed vs. GP start. */
 743	rcu_seq_start(&ssp->srcu_gp_seq);
 744	state = rcu_seq_state(ssp->srcu_gp_seq);
 745	WARN_ON_ONCE(state != SRCU_STATE_SCAN1);
 746}
 747
 748
 749static void srcu_delay_timer(struct timer_list *t)
 750{
 751	struct srcu_data *sdp = container_of(t, struct srcu_data, delay_work);
 752
 753	queue_work_on(sdp->cpu, rcu_gp_wq, &sdp->work);
 754}
 755
 756static void srcu_queue_delayed_work_on(struct srcu_data *sdp,
 757				       unsigned long delay)
 758{
 759	if (!delay) {
 760		queue_work_on(sdp->cpu, rcu_gp_wq, &sdp->work);
 761		return;
 762	}
 763
 764	timer_reduce(&sdp->delay_work, jiffies + delay);
 765}
 766
 767/*
 768 * Schedule callback invocation for the specified srcu_data structure,
 769 * if possible, on the corresponding CPU.
 770 */
 771static void srcu_schedule_cbs_sdp(struct srcu_data *sdp, unsigned long delay)
 772{
 773	srcu_queue_delayed_work_on(sdp, delay);
 774}
 775
 776/*
 777 * Schedule callback invocation for all srcu_data structures associated
 778 * with the specified srcu_node structure that have callbacks for the
 779 * just-completed grace period, the one corresponding to idx.  If possible,
 780 * schedule this invocation on the corresponding CPUs.
 781 */
 782static void srcu_schedule_cbs_snp(struct srcu_struct *ssp, struct srcu_node *snp,
 783				  unsigned long mask, unsigned long delay)
 784{
 785	int cpu;
 786
 787	for (cpu = snp->grplo; cpu <= snp->grphi; cpu++) {
 788		if (!(mask & (1 << (cpu - snp->grplo))))
 789			continue;
 790		srcu_schedule_cbs_sdp(per_cpu_ptr(ssp->sda, cpu), delay);
 791	}
 792}
 793
 794/*
 795 * Note the end of an SRCU grace period.  Initiates callback invocation
 796 * and starts a new grace period if needed.
 797 *
 798 * The ->srcu_cb_mutex acquisition does not protect any data, but
 799 * instead prevents more than one grace period from starting while we
 800 * are initiating callback invocation.  This allows the ->srcu_have_cbs[]
 801 * array to have a finite number of elements.
 802 */
 803static void srcu_gp_end(struct srcu_struct *ssp)
 804{
 805	unsigned long cbdelay = 1;
 806	bool cbs;
 807	bool last_lvl;
 808	int cpu;
 809	unsigned long flags;
 810	unsigned long gpseq;
 811	int idx;
 812	unsigned long mask;
 813	struct srcu_data *sdp;
 814	unsigned long sgsne;
 815	struct srcu_node *snp;
 816	int ss_state;
 817
 818	/* Prevent more than one additional grace period. */
 819	mutex_lock(&ssp->srcu_cb_mutex);
 820
 821	/* End the current grace period. */
 822	spin_lock_irq_rcu_node(ssp);
 823	idx = rcu_seq_state(ssp->srcu_gp_seq);
 824	WARN_ON_ONCE(idx != SRCU_STATE_SCAN2);
 825	if (ULONG_CMP_LT(READ_ONCE(ssp->srcu_gp_seq), READ_ONCE(ssp->srcu_gp_seq_needed_exp)))
 826		cbdelay = 0;
 827
 828	WRITE_ONCE(ssp->srcu_last_gp_end, ktime_get_mono_fast_ns());
 829	rcu_seq_end(&ssp->srcu_gp_seq);
 830	gpseq = rcu_seq_current(&ssp->srcu_gp_seq);
 831	if (ULONG_CMP_LT(ssp->srcu_gp_seq_needed_exp, gpseq))
 832		WRITE_ONCE(ssp->srcu_gp_seq_needed_exp, gpseq);
 833	spin_unlock_irq_rcu_node(ssp);
 834	mutex_unlock(&ssp->srcu_gp_mutex);
 835	/* A new grace period can start at this point.  But only one. */
 836
 837	/* Initiate callback invocation as needed. */
 838	ss_state = smp_load_acquire(&ssp->srcu_size_state);
 839	if (ss_state < SRCU_SIZE_WAIT_BARRIER) {
 840		srcu_schedule_cbs_sdp(per_cpu_ptr(ssp->sda, 0), cbdelay);
 841	} else {
 842		idx = rcu_seq_ctr(gpseq) % ARRAY_SIZE(snp->srcu_have_cbs);
 843		srcu_for_each_node_breadth_first(ssp, snp) {
 844			spin_lock_irq_rcu_node(snp);
 845			cbs = false;
 846			last_lvl = snp >= ssp->level[rcu_num_lvls - 1];
 847			if (last_lvl)
 848				cbs = ss_state < SRCU_SIZE_BIG || snp->srcu_have_cbs[idx] == gpseq;
 849			snp->srcu_have_cbs[idx] = gpseq;
 850			rcu_seq_set_state(&snp->srcu_have_cbs[idx], 1);
 851			sgsne = snp->srcu_gp_seq_needed_exp;
 852			if (srcu_invl_snp_seq(sgsne) || ULONG_CMP_LT(sgsne, gpseq))
 853				WRITE_ONCE(snp->srcu_gp_seq_needed_exp, gpseq);
 854			if (ss_state < SRCU_SIZE_BIG)
 855				mask = ~0;
 856			else
 857				mask = snp->srcu_data_have_cbs[idx];
 858			snp->srcu_data_have_cbs[idx] = 0;
 859			spin_unlock_irq_rcu_node(snp);
 860			if (cbs)
 861				srcu_schedule_cbs_snp(ssp, snp, mask, cbdelay);
 862		}
 863	}
 864
 865	/* Occasionally prevent srcu_data counter wrap. */
 866	if (!(gpseq & counter_wrap_check))
 867		for_each_possible_cpu(cpu) {
 868			sdp = per_cpu_ptr(ssp->sda, cpu);
 869			spin_lock_irqsave_rcu_node(sdp, flags);
 870			if (ULONG_CMP_GE(gpseq, sdp->srcu_gp_seq_needed + 100))
 871				sdp->srcu_gp_seq_needed = gpseq;
 872			if (ULONG_CMP_GE(gpseq, sdp->srcu_gp_seq_needed_exp + 100))
 873				sdp->srcu_gp_seq_needed_exp = gpseq;
 874			spin_unlock_irqrestore_rcu_node(sdp, flags);
 875		}
 876
 877	/* Callback initiation done, allow grace periods after next. */
 878	mutex_unlock(&ssp->srcu_cb_mutex);
 879
 880	/* Start a new grace period if needed. */
 881	spin_lock_irq_rcu_node(ssp);
 882	gpseq = rcu_seq_current(&ssp->srcu_gp_seq);
 883	if (!rcu_seq_state(gpseq) &&
 884	    ULONG_CMP_LT(gpseq, ssp->srcu_gp_seq_needed)) {
 885		srcu_gp_start(ssp);
 886		spin_unlock_irq_rcu_node(ssp);
 887		srcu_reschedule(ssp, 0);
 888	} else {
 889		spin_unlock_irq_rcu_node(ssp);
 890	}
 891
 892	/* Transition to big if needed. */
 893	if (ss_state != SRCU_SIZE_SMALL && ss_state != SRCU_SIZE_BIG) {
 894		if (ss_state == SRCU_SIZE_ALLOC)
 895			init_srcu_struct_nodes(ssp, GFP_KERNEL);
 896		else
 897			smp_store_release(&ssp->srcu_size_state, ss_state + 1);
 898	}
 899}
 900
 901/*
 902 * Funnel-locking scheme to scalably mediate many concurrent expedited
 903 * grace-period requests.  This function is invoked for the first known
 904 * expedited request for a grace period that has already been requested,
 905 * but without expediting.  To start a completely new grace period,
 906 * whether expedited or not, use srcu_funnel_gp_start() instead.
 907 */
 908static void srcu_funnel_exp_start(struct srcu_struct *ssp, struct srcu_node *snp,
 909				  unsigned long s)
 910{
 911	unsigned long flags;
 912	unsigned long sgsne;
 913
 914	if (snp)
 915		for (; snp != NULL; snp = snp->srcu_parent) {
 916			sgsne = READ_ONCE(snp->srcu_gp_seq_needed_exp);
 917			if (rcu_seq_done(&ssp->srcu_gp_seq, s) ||
 918			    (!srcu_invl_snp_seq(sgsne) && ULONG_CMP_GE(sgsne, s)))
 919				return;
 920			spin_lock_irqsave_rcu_node(snp, flags);
 921			sgsne = snp->srcu_gp_seq_needed_exp;
 922			if (!srcu_invl_snp_seq(sgsne) && ULONG_CMP_GE(sgsne, s)) {
 923				spin_unlock_irqrestore_rcu_node(snp, flags);
 924				return;
 925			}
 926			WRITE_ONCE(snp->srcu_gp_seq_needed_exp, s);
 927			spin_unlock_irqrestore_rcu_node(snp, flags);
 928		}
 929	spin_lock_irqsave_ssp_contention(ssp, &flags);
 930	if (ULONG_CMP_LT(ssp->srcu_gp_seq_needed_exp, s))
 931		WRITE_ONCE(ssp->srcu_gp_seq_needed_exp, s);
 932	spin_unlock_irqrestore_rcu_node(ssp, flags);
 933}
 934
 935/*
 936 * Funnel-locking scheme to scalably mediate many concurrent grace-period
 937 * requests.  The winner has to do the work of actually starting grace
 938 * period s.  Losers must either ensure that their desired grace-period
 939 * number is recorded on at least their leaf srcu_node structure, or they
 940 * must take steps to invoke their own callbacks.
 941 *
 942 * Note that this function also does the work of srcu_funnel_exp_start(),
 943 * in some cases by directly invoking it.
 944 */
 945static void srcu_funnel_gp_start(struct srcu_struct *ssp, struct srcu_data *sdp,
 946				 unsigned long s, bool do_norm)
 947{
 948	unsigned long flags;
 949	int idx = rcu_seq_ctr(s) % ARRAY_SIZE(sdp->mynode->srcu_have_cbs);
 950	unsigned long sgsne;
 951	struct srcu_node *snp;
 952	struct srcu_node *snp_leaf;
 953	unsigned long snp_seq;
 954
 955	/* Ensure that snp node tree is fully initialized before traversing it */
 956	if (smp_load_acquire(&ssp->srcu_size_state) < SRCU_SIZE_WAIT_BARRIER)
 957		snp_leaf = NULL;
 958	else
 959		snp_leaf = sdp->mynode;
 960
 961	if (snp_leaf)
 962		/* Each pass through the loop does one level of the srcu_node tree. */
 963		for (snp = snp_leaf; snp != NULL; snp = snp->srcu_parent) {
 964			if (rcu_seq_done(&ssp->srcu_gp_seq, s) && snp != snp_leaf)
 965				return; /* GP already done and CBs recorded. */
 966			spin_lock_irqsave_rcu_node(snp, flags);
 967			snp_seq = snp->srcu_have_cbs[idx];
 968			if (!srcu_invl_snp_seq(snp_seq) && ULONG_CMP_GE(snp_seq, s)) {
 969				if (snp == snp_leaf && snp_seq == s)
 970					snp->srcu_data_have_cbs[idx] |= sdp->grpmask;
 971				spin_unlock_irqrestore_rcu_node(snp, flags);
 972				if (snp == snp_leaf && snp_seq != s) {
 973					srcu_schedule_cbs_sdp(sdp, do_norm ? SRCU_INTERVAL : 0);
 974					return;
 975				}
 976				if (!do_norm)
 977					srcu_funnel_exp_start(ssp, snp, s);
 978				return;
 979			}
 980			snp->srcu_have_cbs[idx] = s;
 981			if (snp == snp_leaf)
 982				snp->srcu_data_have_cbs[idx] |= sdp->grpmask;
 983			sgsne = snp->srcu_gp_seq_needed_exp;
 984			if (!do_norm && (srcu_invl_snp_seq(sgsne) || ULONG_CMP_LT(sgsne, s)))
 985				WRITE_ONCE(snp->srcu_gp_seq_needed_exp, s);
 986			spin_unlock_irqrestore_rcu_node(snp, flags);
 987		}
 988
 989	/* Top of tree, must ensure the grace period will be started. */
 990	spin_lock_irqsave_ssp_contention(ssp, &flags);
 991	if (ULONG_CMP_LT(ssp->srcu_gp_seq_needed, s)) {
 992		/*
 993		 * Record need for grace period s.  Pair with load
 994		 * acquire setting up for initialization.
 995		 */
 996		smp_store_release(&ssp->srcu_gp_seq_needed, s); /*^^^*/
 997	}
 998	if (!do_norm && ULONG_CMP_LT(ssp->srcu_gp_seq_needed_exp, s))
 999		WRITE_ONCE(ssp->srcu_gp_seq_needed_exp, s);
1000
1001	/* If grace period not already done and none in progress, start it. */
1002	if (!rcu_seq_done(&ssp->srcu_gp_seq, s) &&
1003	    rcu_seq_state(ssp->srcu_gp_seq) == SRCU_STATE_IDLE) {
1004		WARN_ON_ONCE(ULONG_CMP_GE(ssp->srcu_gp_seq, ssp->srcu_gp_seq_needed));
1005		srcu_gp_start(ssp);
1006
1007		// And how can that list_add() in the "else" clause
1008		// possibly be safe for concurrent execution?  Well,
1009		// it isn't.  And it does not have to be.  After all, it
1010		// can only be executed during early boot when there is only
1011		// the one boot CPU running with interrupts still disabled.
1012		if (likely(srcu_init_done))
1013			queue_delayed_work(rcu_gp_wq, &ssp->work,
1014					   !!srcu_get_delay(ssp));
1015		else if (list_empty(&ssp->work.work.entry))
1016			list_add(&ssp->work.work.entry, &srcu_boot_list);
1017	}
1018	spin_unlock_irqrestore_rcu_node(ssp, flags);
1019}
1020
1021/*
1022 * Wait until all readers counted by array index idx complete, but
1023 * loop an additional time if there is an expedited grace period pending.
1024 * The caller must ensure that ->srcu_idx is not changed while checking.
1025 */
1026static bool try_check_zero(struct srcu_struct *ssp, int idx, int trycount)
1027{
1028	unsigned long curdelay;
1029
1030	curdelay = !srcu_get_delay(ssp);
1031
1032	for (;;) {
1033		if (srcu_readers_active_idx_check(ssp, idx))
1034			return true;
1035		if ((--trycount + curdelay) <= 0)
1036			return false;
1037		udelay(srcu_retry_check_delay);
1038	}
1039}
1040
1041/*
1042 * Increment the ->srcu_idx counter so that future SRCU readers will
1043 * use the other rank of the ->srcu_(un)lock_count[] arrays.  This allows
1044 * us to wait for pre-existing readers in a starvation-free manner.
1045 */
1046static void srcu_flip(struct srcu_struct *ssp)
1047{
1048	/*
1049	 * Ensure that if this updater saw a given reader's increment
1050	 * from __srcu_read_lock(), that reader was using an old value
1051	 * of ->srcu_idx.  Also ensure that if a given reader sees the
1052	 * new value of ->srcu_idx, this updater's earlier scans cannot
1053	 * have seen that reader's increments (which is OK, because this
1054	 * grace period need not wait on that reader).
1055	 */
1056	smp_mb(); /* E */  /* Pairs with B and C. */
1057
1058	WRITE_ONCE(ssp->srcu_idx, ssp->srcu_idx + 1);
1059
1060	/*
1061	 * Ensure that if the updater misses an __srcu_read_unlock()
1062	 * increment, that task's next __srcu_read_lock() will see the
1063	 * above counter update.  Note that both this memory barrier
1064	 * and the one in srcu_readers_active_idx_check() provide the
1065	 * guarantee for __srcu_read_lock().
1066	 */
1067	smp_mb(); /* D */  /* Pairs with C. */
1068}
1069
1070/*
1071 * If SRCU is likely idle, return true, otherwise return false.
1072 *
1073 * Note that it is OK for several current from-idle requests for a new
1074 * grace period from idle to specify expediting because they will all end
1075 * up requesting the same grace period anyhow.  So no loss.
1076 *
1077 * Note also that if any CPU (including the current one) is still invoking
1078 * callbacks, this function will nevertheless say "idle".  This is not
1079 * ideal, but the overhead of checking all CPUs' callback lists is even
1080 * less ideal, especially on large systems.  Furthermore, the wakeup
1081 * can happen before the callback is fully removed, so we have no choice
1082 * but to accept this type of error.
1083 *
1084 * This function is also subject to counter-wrap errors, but let's face
1085 * it, if this function was preempted for enough time for the counters
1086 * to wrap, it really doesn't matter whether or not we expedite the grace
1087 * period.  The extra overhead of a needlessly expedited grace period is
1088 * negligible when amortized over that time period, and the extra latency
1089 * of a needlessly non-expedited grace period is similarly negligible.
1090 */
1091static bool srcu_might_be_idle(struct srcu_struct *ssp)
1092{
1093	unsigned long curseq;
1094	unsigned long flags;
1095	struct srcu_data *sdp;
1096	unsigned long t;
1097	unsigned long tlast;
1098
1099	check_init_srcu_struct(ssp);
1100	/* If the local srcu_data structure has callbacks, not idle.  */
1101	sdp = raw_cpu_ptr(ssp->sda);
1102	spin_lock_irqsave_rcu_node(sdp, flags);
1103	if (rcu_segcblist_pend_cbs(&sdp->srcu_cblist)) {
1104		spin_unlock_irqrestore_rcu_node(sdp, flags);
1105		return false; /* Callbacks already present, so not idle. */
1106	}
1107	spin_unlock_irqrestore_rcu_node(sdp, flags);
1108
1109	/*
1110	 * No local callbacks, so probabilistically probe global state.
1111	 * Exact information would require acquiring locks, which would
1112	 * kill scalability, hence the probabilistic nature of the probe.
1113	 */
1114
1115	/* First, see if enough time has passed since the last GP. */
1116	t = ktime_get_mono_fast_ns();
1117	tlast = READ_ONCE(ssp->srcu_last_gp_end);
1118	if (exp_holdoff == 0 ||
1119	    time_in_range_open(t, tlast, tlast + exp_holdoff))
1120		return false; /* Too soon after last GP. */
1121
1122	/* Next, check for probable idleness. */
1123	curseq = rcu_seq_current(&ssp->srcu_gp_seq);
1124	smp_mb(); /* Order ->srcu_gp_seq with ->srcu_gp_seq_needed. */
1125	if (ULONG_CMP_LT(curseq, READ_ONCE(ssp->srcu_gp_seq_needed)))
1126		return false; /* Grace period in progress, so not idle. */
1127	smp_mb(); /* Order ->srcu_gp_seq with prior access. */
1128	if (curseq != rcu_seq_current(&ssp->srcu_gp_seq))
1129		return false; /* GP # changed, so not idle. */
1130	return true; /* With reasonable probability, idle! */
1131}
1132
1133/*
1134 * SRCU callback function to leak a callback.
1135 */
1136static void srcu_leak_callback(struct rcu_head *rhp)
1137{
1138}
1139
1140/*
1141 * Start an SRCU grace period, and also queue the callback if non-NULL.
1142 */
1143static unsigned long srcu_gp_start_if_needed(struct srcu_struct *ssp,
1144					     struct rcu_head *rhp, bool do_norm)
1145{
1146	unsigned long flags;
1147	int idx;
1148	bool needexp = false;
1149	bool needgp = false;
1150	unsigned long s;
1151	struct srcu_data *sdp;
1152	struct srcu_node *sdp_mynode;
1153	int ss_state;
1154
1155	check_init_srcu_struct(ssp);
1156	/*
1157	 * While starting a new grace period, make sure we are in an
1158	 * SRCU read-side critical section so that the grace-period
1159	 * sequence number cannot wrap around in the meantime.
1160	 */
1161	idx = __srcu_read_lock_nmisafe(ssp);
1162	ss_state = smp_load_acquire(&ssp->srcu_size_state);
1163	if (ss_state < SRCU_SIZE_WAIT_CALL)
1164		sdp = per_cpu_ptr(ssp->sda, 0);
1165	else
1166		sdp = raw_cpu_ptr(ssp->sda);
1167	spin_lock_irqsave_sdp_contention(sdp, &flags);
1168	if (rhp)
1169		rcu_segcblist_enqueue(&sdp->srcu_cblist, rhp);
1170	rcu_segcblist_advance(&sdp->srcu_cblist,
1171			      rcu_seq_current(&ssp->srcu_gp_seq));
1172	s = rcu_seq_snap(&ssp->srcu_gp_seq);
1173	(void)rcu_segcblist_accelerate(&sdp->srcu_cblist, s);
1174	if (ULONG_CMP_LT(sdp->srcu_gp_seq_needed, s)) {
1175		sdp->srcu_gp_seq_needed = s;
1176		needgp = true;
1177	}
1178	if (!do_norm && ULONG_CMP_LT(sdp->srcu_gp_seq_needed_exp, s)) {
1179		sdp->srcu_gp_seq_needed_exp = s;
1180		needexp = true;
1181	}
1182	spin_unlock_irqrestore_rcu_node(sdp, flags);
1183
1184	/* Ensure that snp node tree is fully initialized before traversing it */
1185	if (ss_state < SRCU_SIZE_WAIT_BARRIER)
1186		sdp_mynode = NULL;
1187	else
1188		sdp_mynode = sdp->mynode;
1189
1190	if (needgp)
1191		srcu_funnel_gp_start(ssp, sdp, s, do_norm);
1192	else if (needexp)
1193		srcu_funnel_exp_start(ssp, sdp_mynode, s);
1194	__srcu_read_unlock_nmisafe(ssp, idx);
1195	return s;
1196}
1197
1198/*
1199 * Enqueue an SRCU callback on the srcu_data structure associated with
1200 * the current CPU and the specified srcu_struct structure, initiating
1201 * grace-period processing if it is not already running.
1202 *
1203 * Note that all CPUs must agree that the grace period extended beyond
1204 * all pre-existing SRCU read-side critical section.  On systems with
1205 * more than one CPU, this means that when "func()" is invoked, each CPU
1206 * is guaranteed to have executed a full memory barrier since the end of
1207 * its last corresponding SRCU read-side critical section whose beginning
1208 * preceded the call to call_srcu().  It also means that each CPU executing
1209 * an SRCU read-side critical section that continues beyond the start of
1210 * "func()" must have executed a memory barrier after the call_srcu()
1211 * but before the beginning of that SRCU read-side critical section.
1212 * Note that these guarantees include CPUs that are offline, idle, or
1213 * executing in user mode, as well as CPUs that are executing in the kernel.
1214 *
1215 * Furthermore, if CPU A invoked call_srcu() and CPU B invoked the
1216 * resulting SRCU callback function "func()", then both CPU A and CPU
1217 * B are guaranteed to execute a full memory barrier during the time
1218 * interval between the call to call_srcu() and the invocation of "func()".
1219 * This guarantee applies even if CPU A and CPU B are the same CPU (but
1220 * again only if the system has more than one CPU).
1221 *
1222 * Of course, these guarantees apply only for invocations of call_srcu(),
1223 * srcu_read_lock(), and srcu_read_unlock() that are all passed the same
1224 * srcu_struct structure.
1225 */
1226static void __call_srcu(struct srcu_struct *ssp, struct rcu_head *rhp,
1227			rcu_callback_t func, bool do_norm)
1228{
1229	if (debug_rcu_head_queue(rhp)) {
1230		/* Probable double call_srcu(), so leak the callback. */
1231		WRITE_ONCE(rhp->func, srcu_leak_callback);
1232		WARN_ONCE(1, "call_srcu(): Leaked duplicate callback\n");
1233		return;
1234	}
1235	rhp->func = func;
1236	(void)srcu_gp_start_if_needed(ssp, rhp, do_norm);
1237}
1238
1239/**
1240 * call_srcu() - Queue a callback for invocation after an SRCU grace period
1241 * @ssp: srcu_struct in queue the callback
1242 * @rhp: structure to be used for queueing the SRCU callback.
1243 * @func: function to be invoked after the SRCU grace period
1244 *
1245 * The callback function will be invoked some time after a full SRCU
1246 * grace period elapses, in other words after all pre-existing SRCU
1247 * read-side critical sections have completed.  However, the callback
1248 * function might well execute concurrently with other SRCU read-side
1249 * critical sections that started after call_srcu() was invoked.  SRCU
1250 * read-side critical sections are delimited by srcu_read_lock() and
1251 * srcu_read_unlock(), and may be nested.
1252 *
1253 * The callback will be invoked from process context, but must nevertheless
1254 * be fast and must not block.
1255 */
1256void call_srcu(struct srcu_struct *ssp, struct rcu_head *rhp,
1257	       rcu_callback_t func)
1258{
1259	__call_srcu(ssp, rhp, func, true);
1260}
1261EXPORT_SYMBOL_GPL(call_srcu);
1262
1263/*
1264 * Helper function for synchronize_srcu() and synchronize_srcu_expedited().
1265 */
1266static void __synchronize_srcu(struct srcu_struct *ssp, bool do_norm)
1267{
1268	struct rcu_synchronize rcu;
1269
1270	RCU_LOCKDEP_WARN(lockdep_is_held(ssp) ||
1271			 lock_is_held(&rcu_bh_lock_map) ||
1272			 lock_is_held(&rcu_lock_map) ||
1273			 lock_is_held(&rcu_sched_lock_map),
1274			 "Illegal synchronize_srcu() in same-type SRCU (or in RCU) read-side critical section");
1275
1276	if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
1277		return;
1278	might_sleep();
1279	check_init_srcu_struct(ssp);
1280	init_completion(&rcu.completion);
1281	init_rcu_head_on_stack(&rcu.head);
1282	__call_srcu(ssp, &rcu.head, wakeme_after_rcu, do_norm);
1283	wait_for_completion(&rcu.completion);
1284	destroy_rcu_head_on_stack(&rcu.head);
1285
1286	/*
1287	 * Make sure that later code is ordered after the SRCU grace
1288	 * period.  This pairs with the spin_lock_irq_rcu_node()
1289	 * in srcu_invoke_callbacks().  Unlike Tree RCU, this is needed
1290	 * because the current CPU might have been totally uninvolved with
1291	 * (and thus unordered against) that grace period.
1292	 */
1293	smp_mb();
1294}
1295
1296/**
1297 * synchronize_srcu_expedited - Brute-force SRCU grace period
1298 * @ssp: srcu_struct with which to synchronize.
1299 *
1300 * Wait for an SRCU grace period to elapse, but be more aggressive about
1301 * spinning rather than blocking when waiting.
1302 *
1303 * Note that synchronize_srcu_expedited() has the same deadlock and
1304 * memory-ordering properties as does synchronize_srcu().
1305 */
1306void synchronize_srcu_expedited(struct srcu_struct *ssp)
1307{
1308	__synchronize_srcu(ssp, rcu_gp_is_normal());
1309}
1310EXPORT_SYMBOL_GPL(synchronize_srcu_expedited);
1311
1312/**
1313 * synchronize_srcu - wait for prior SRCU read-side critical-section completion
1314 * @ssp: srcu_struct with which to synchronize.
1315 *
1316 * Wait for the count to drain to zero of both indexes. To avoid the
1317 * possible starvation of synchronize_srcu(), it waits for the count of
1318 * the index=((->srcu_idx & 1) ^ 1) to drain to zero at first,
1319 * and then flip the srcu_idx and wait for the count of the other index.
1320 *
1321 * Can block; must be called from process context.
1322 *
1323 * Note that it is illegal to call synchronize_srcu() from the corresponding
1324 * SRCU read-side critical section; doing so will result in deadlock.
1325 * However, it is perfectly legal to call synchronize_srcu() on one
1326 * srcu_struct from some other srcu_struct's read-side critical section,
1327 * as long as the resulting graph of srcu_structs is acyclic.
1328 *
1329 * There are memory-ordering constraints implied by synchronize_srcu().
1330 * On systems with more than one CPU, when synchronize_srcu() returns,
1331 * each CPU is guaranteed to have executed a full memory barrier since
1332 * the end of its last corresponding SRCU read-side critical section
1333 * whose beginning preceded the call to synchronize_srcu().  In addition,
1334 * each CPU having an SRCU read-side critical section that extends beyond
1335 * the return from synchronize_srcu() is guaranteed to have executed a
1336 * full memory barrier after the beginning of synchronize_srcu() and before
1337 * the beginning of that SRCU read-side critical section.  Note that these
1338 * guarantees include CPUs that are offline, idle, or executing in user mode,
1339 * as well as CPUs that are executing in the kernel.
1340 *
1341 * Furthermore, if CPU A invoked synchronize_srcu(), which returned
1342 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
1343 * to have executed a full memory barrier during the execution of
1344 * synchronize_srcu().  This guarantee applies even if CPU A and CPU B
1345 * are the same CPU, but again only if the system has more than one CPU.
1346 *
1347 * Of course, these memory-ordering guarantees apply only when
1348 * synchronize_srcu(), srcu_read_lock(), and srcu_read_unlock() are
1349 * passed the same srcu_struct structure.
1350 *
1351 * Implementation of these memory-ordering guarantees is similar to
1352 * that of synchronize_rcu().
1353 *
1354 * If SRCU is likely idle, expedite the first request.  This semantic
1355 * was provided by Classic SRCU, and is relied upon by its users, so TREE
1356 * SRCU must also provide it.  Note that detecting idleness is heuristic
1357 * and subject to both false positives and negatives.
1358 */
1359void synchronize_srcu(struct srcu_struct *ssp)
1360{
1361	if (srcu_might_be_idle(ssp) || rcu_gp_is_expedited())
1362		synchronize_srcu_expedited(ssp);
1363	else
1364		__synchronize_srcu(ssp, true);
1365}
1366EXPORT_SYMBOL_GPL(synchronize_srcu);
1367
1368/**
1369 * get_state_synchronize_srcu - Provide an end-of-grace-period cookie
1370 * @ssp: srcu_struct to provide cookie for.
1371 *
1372 * This function returns a cookie that can be passed to
1373 * poll_state_synchronize_srcu(), which will return true if a full grace
1374 * period has elapsed in the meantime.  It is the caller's responsibility
1375 * to make sure that grace period happens, for example, by invoking
1376 * call_srcu() after return from get_state_synchronize_srcu().
1377 */
1378unsigned long get_state_synchronize_srcu(struct srcu_struct *ssp)
1379{
1380	// Any prior manipulation of SRCU-protected data must happen
1381	// before the load from ->srcu_gp_seq.
1382	smp_mb();
1383	return rcu_seq_snap(&ssp->srcu_gp_seq);
1384}
1385EXPORT_SYMBOL_GPL(get_state_synchronize_srcu);
1386
1387/**
1388 * start_poll_synchronize_srcu - Provide cookie and start grace period
1389 * @ssp: srcu_struct to provide cookie for.
1390 *
1391 * This function returns a cookie that can be passed to
1392 * poll_state_synchronize_srcu(), which will return true if a full grace
1393 * period has elapsed in the meantime.  Unlike get_state_synchronize_srcu(),
1394 * this function also ensures that any needed SRCU grace period will be
1395 * started.  This convenience does come at a cost in terms of CPU overhead.
1396 */
1397unsigned long start_poll_synchronize_srcu(struct srcu_struct *ssp)
1398{
1399	return srcu_gp_start_if_needed(ssp, NULL, true);
1400}
1401EXPORT_SYMBOL_GPL(start_poll_synchronize_srcu);
1402
1403/**
1404 * poll_state_synchronize_srcu - Has cookie's grace period ended?
1405 * @ssp: srcu_struct to provide cookie for.
1406 * @cookie: Return value from get_state_synchronize_srcu() or start_poll_synchronize_srcu().
1407 *
1408 * This function takes the cookie that was returned from either
1409 * get_state_synchronize_srcu() or start_poll_synchronize_srcu(), and
1410 * returns @true if an SRCU grace period elapsed since the time that the
1411 * cookie was created.
1412 *
1413 * Because cookies are finite in size, wrapping/overflow is possible.
1414 * This is more pronounced on 32-bit systems where cookies are 32 bits,
1415 * where in theory wrapping could happen in about 14 hours assuming
1416 * 25-microsecond expedited SRCU grace periods.  However, a more likely
1417 * overflow lower bound is on the order of 24 days in the case of
1418 * one-millisecond SRCU grace periods.  Of course, wrapping in a 64-bit
1419 * system requires geologic timespans, as in more than seven million years
1420 * even for expedited SRCU grace periods.
1421 *
1422 * Wrapping/overflow is much more of an issue for CONFIG_SMP=n systems
1423 * that also have CONFIG_PREEMPTION=n, which selects Tiny SRCU.  This uses
1424 * a 16-bit cookie, which rcutorture routinely wraps in a matter of a
1425 * few minutes.  If this proves to be a problem, this counter will be
1426 * expanded to the same size as for Tree SRCU.
1427 */
1428bool poll_state_synchronize_srcu(struct srcu_struct *ssp, unsigned long cookie)
1429{
1430	if (!rcu_seq_done(&ssp->srcu_gp_seq, cookie))
1431		return false;
1432	// Ensure that the end of the SRCU grace period happens before
1433	// any subsequent code that the caller might execute.
1434	smp_mb(); // ^^^
1435	return true;
1436}
1437EXPORT_SYMBOL_GPL(poll_state_synchronize_srcu);
1438
1439/*
1440 * Callback function for srcu_barrier() use.
1441 */
1442static void srcu_barrier_cb(struct rcu_head *rhp)
1443{
1444	struct srcu_data *sdp;
1445	struct srcu_struct *ssp;
1446
1447	sdp = container_of(rhp, struct srcu_data, srcu_barrier_head);
1448	ssp = sdp->ssp;
1449	if (atomic_dec_and_test(&ssp->srcu_barrier_cpu_cnt))
1450		complete(&ssp->srcu_barrier_completion);
1451}
1452
1453/*
1454 * Enqueue an srcu_barrier() callback on the specified srcu_data
1455 * structure's ->cblist.  but only if that ->cblist already has at least one
1456 * callback enqueued.  Note that if a CPU already has callbacks enqueue,
1457 * it must have already registered the need for a future grace period,
1458 * so all we need do is enqueue a callback that will use the same grace
1459 * period as the last callback already in the queue.
1460 */
1461static void srcu_barrier_one_cpu(struct srcu_struct *ssp, struct srcu_data *sdp)
1462{
1463	spin_lock_irq_rcu_node(sdp);
1464	atomic_inc(&ssp->srcu_barrier_cpu_cnt);
1465	sdp->srcu_barrier_head.func = srcu_barrier_cb;
1466	debug_rcu_head_queue(&sdp->srcu_barrier_head);
1467	if (!rcu_segcblist_entrain(&sdp->srcu_cblist,
1468				   &sdp->srcu_barrier_head)) {
1469		debug_rcu_head_unqueue(&sdp->srcu_barrier_head);
1470		atomic_dec(&ssp->srcu_barrier_cpu_cnt);
1471	}
1472	spin_unlock_irq_rcu_node(sdp);
1473}
1474
1475/**
1476 * srcu_barrier - Wait until all in-flight call_srcu() callbacks complete.
1477 * @ssp: srcu_struct on which to wait for in-flight callbacks.
1478 */
1479void srcu_barrier(struct srcu_struct *ssp)
1480{
1481	int cpu;
1482	int idx;
1483	unsigned long s = rcu_seq_snap(&ssp->srcu_barrier_seq);
1484
1485	check_init_srcu_struct(ssp);
1486	mutex_lock(&ssp->srcu_barrier_mutex);
1487	if (rcu_seq_done(&ssp->srcu_barrier_seq, s)) {
1488		smp_mb(); /* Force ordering following return. */
1489		mutex_unlock(&ssp->srcu_barrier_mutex);
1490		return; /* Someone else did our work for us. */
1491	}
1492	rcu_seq_start(&ssp->srcu_barrier_seq);
1493	init_completion(&ssp->srcu_barrier_completion);
1494
1495	/* Initial count prevents reaching zero until all CBs are posted. */
1496	atomic_set(&ssp->srcu_barrier_cpu_cnt, 1);
1497
1498	idx = __srcu_read_lock_nmisafe(ssp);
1499	if (smp_load_acquire(&ssp->srcu_size_state) < SRCU_SIZE_WAIT_BARRIER)
1500		srcu_barrier_one_cpu(ssp, per_cpu_ptr(ssp->sda, 0));
1501	else
1502		for_each_possible_cpu(cpu)
1503			srcu_barrier_one_cpu(ssp, per_cpu_ptr(ssp->sda, cpu));
1504	__srcu_read_unlock_nmisafe(ssp, idx);
1505
1506	/* Remove the initial count, at which point reaching zero can happen. */
1507	if (atomic_dec_and_test(&ssp->srcu_barrier_cpu_cnt))
1508		complete(&ssp->srcu_barrier_completion);
1509	wait_for_completion(&ssp->srcu_barrier_completion);
1510
1511	rcu_seq_end(&ssp->srcu_barrier_seq);
1512	mutex_unlock(&ssp->srcu_barrier_mutex);
1513}
1514EXPORT_SYMBOL_GPL(srcu_barrier);
1515
1516/**
1517 * srcu_batches_completed - return batches completed.
1518 * @ssp: srcu_struct on which to report batch completion.
1519 *
1520 * Report the number of batches, correlated with, but not necessarily
1521 * precisely the same as, the number of grace periods that have elapsed.
1522 */
1523unsigned long srcu_batches_completed(struct srcu_struct *ssp)
1524{
1525	return READ_ONCE(ssp->srcu_idx);
1526}
1527EXPORT_SYMBOL_GPL(srcu_batches_completed);
1528
1529/*
1530 * Core SRCU state machine.  Push state bits of ->srcu_gp_seq
1531 * to SRCU_STATE_SCAN2, and invoke srcu_gp_end() when scan has
1532 * completed in that state.
1533 */
1534static void srcu_advance_state(struct srcu_struct *ssp)
1535{
1536	int idx;
1537
1538	mutex_lock(&ssp->srcu_gp_mutex);
1539
1540	/*
1541	 * Because readers might be delayed for an extended period after
1542	 * fetching ->srcu_idx for their index, at any point in time there
1543	 * might well be readers using both idx=0 and idx=1.  We therefore
1544	 * need to wait for readers to clear from both index values before
1545	 * invoking a callback.
1546	 *
1547	 * The load-acquire ensures that we see the accesses performed
1548	 * by the prior grace period.
1549	 */
1550	idx = rcu_seq_state(smp_load_acquire(&ssp->srcu_gp_seq)); /* ^^^ */
1551	if (idx == SRCU_STATE_IDLE) {
1552		spin_lock_irq_rcu_node(ssp);
1553		if (ULONG_CMP_GE(ssp->srcu_gp_seq, ssp->srcu_gp_seq_needed)) {
1554			WARN_ON_ONCE(rcu_seq_state(ssp->srcu_gp_seq));
1555			spin_unlock_irq_rcu_node(ssp);
1556			mutex_unlock(&ssp->srcu_gp_mutex);
1557			return;
1558		}
1559		idx = rcu_seq_state(READ_ONCE(ssp->srcu_gp_seq));
1560		if (idx == SRCU_STATE_IDLE)
1561			srcu_gp_start(ssp);
1562		spin_unlock_irq_rcu_node(ssp);
1563		if (idx != SRCU_STATE_IDLE) {
1564			mutex_unlock(&ssp->srcu_gp_mutex);
1565			return; /* Someone else started the grace period. */
1566		}
1567	}
1568
1569	if (rcu_seq_state(READ_ONCE(ssp->srcu_gp_seq)) == SRCU_STATE_SCAN1) {
1570		idx = 1 ^ (ssp->srcu_idx & 1);
1571		if (!try_check_zero(ssp, idx, 1)) {
1572			mutex_unlock(&ssp->srcu_gp_mutex);
1573			return; /* readers present, retry later. */
1574		}
1575		srcu_flip(ssp);
1576		spin_lock_irq_rcu_node(ssp);
1577		rcu_seq_set_state(&ssp->srcu_gp_seq, SRCU_STATE_SCAN2);
1578		ssp->srcu_n_exp_nodelay = 0;
1579		spin_unlock_irq_rcu_node(ssp);
1580	}
1581
1582	if (rcu_seq_state(READ_ONCE(ssp->srcu_gp_seq)) == SRCU_STATE_SCAN2) {
1583
1584		/*
1585		 * SRCU read-side critical sections are normally short,
1586		 * so check at least twice in quick succession after a flip.
1587		 */
1588		idx = 1 ^ (ssp->srcu_idx & 1);
1589		if (!try_check_zero(ssp, idx, 2)) {
1590			mutex_unlock(&ssp->srcu_gp_mutex);
1591			return; /* readers present, retry later. */
1592		}
1593		ssp->srcu_n_exp_nodelay = 0;
1594		srcu_gp_end(ssp);  /* Releases ->srcu_gp_mutex. */
1595	}
1596}
1597
1598/*
1599 * Invoke a limited number of SRCU callbacks that have passed through
1600 * their grace period.  If there are more to do, SRCU will reschedule
1601 * the workqueue.  Note that needed memory barriers have been executed
1602 * in this task's context by srcu_readers_active_idx_check().
1603 */
1604static void srcu_invoke_callbacks(struct work_struct *work)
1605{
1606	long len;
1607	bool more;
1608	struct rcu_cblist ready_cbs;
1609	struct rcu_head *rhp;
1610	struct srcu_data *sdp;
1611	struct srcu_struct *ssp;
1612
1613	sdp = container_of(work, struct srcu_data, work);
1614
1615	ssp = sdp->ssp;
1616	rcu_cblist_init(&ready_cbs);
1617	spin_lock_irq_rcu_node(sdp);
1618	rcu_segcblist_advance(&sdp->srcu_cblist,
1619			      rcu_seq_current(&ssp->srcu_gp_seq));
1620	if (sdp->srcu_cblist_invoking ||
1621	    !rcu_segcblist_ready_cbs(&sdp->srcu_cblist)) {
1622		spin_unlock_irq_rcu_node(sdp);
1623		return;  /* Someone else on the job or nothing to do. */
1624	}
1625
1626	/* We are on the job!  Extract and invoke ready callbacks. */
1627	sdp->srcu_cblist_invoking = true;
1628	rcu_segcblist_extract_done_cbs(&sdp->srcu_cblist, &ready_cbs);
1629	len = ready_cbs.len;
1630	spin_unlock_irq_rcu_node(sdp);
1631	rhp = rcu_cblist_dequeue(&ready_cbs);
1632	for (; rhp != NULL; rhp = rcu_cblist_dequeue(&ready_cbs)) {
1633		debug_rcu_head_unqueue(rhp);
1634		local_bh_disable();
1635		rhp->func(rhp);
1636		local_bh_enable();
1637	}
1638	WARN_ON_ONCE(ready_cbs.len);
1639
1640	/*
1641	 * Update counts, accelerate new callbacks, and if needed,
1642	 * schedule another round of callback invocation.
1643	 */
1644	spin_lock_irq_rcu_node(sdp);
1645	rcu_segcblist_add_len(&sdp->srcu_cblist, -len);
1646	(void)rcu_segcblist_accelerate(&sdp->srcu_cblist,
1647				       rcu_seq_snap(&ssp->srcu_gp_seq));
1648	sdp->srcu_cblist_invoking = false;
1649	more = rcu_segcblist_ready_cbs(&sdp->srcu_cblist);
1650	spin_unlock_irq_rcu_node(sdp);
1651	if (more)
1652		srcu_schedule_cbs_sdp(sdp, 0);
1653}
1654
1655/*
1656 * Finished one round of SRCU grace period.  Start another if there are
1657 * more SRCU callbacks queued, otherwise put SRCU into not-running state.
1658 */
1659static void srcu_reschedule(struct srcu_struct *ssp, unsigned long delay)
1660{
1661	bool pushgp = true;
1662
1663	spin_lock_irq_rcu_node(ssp);
1664	if (ULONG_CMP_GE(ssp->srcu_gp_seq, ssp->srcu_gp_seq_needed)) {
1665		if (!WARN_ON_ONCE(rcu_seq_state(ssp->srcu_gp_seq))) {
1666			/* All requests fulfilled, time to go idle. */
1667			pushgp = false;
1668		}
1669	} else if (!rcu_seq_state(ssp->srcu_gp_seq)) {
1670		/* Outstanding request and no GP.  Start one. */
1671		srcu_gp_start(ssp);
1672	}
1673	spin_unlock_irq_rcu_node(ssp);
1674
1675	if (pushgp)
1676		queue_delayed_work(rcu_gp_wq, &ssp->work, delay);
1677}
1678
1679/*
1680 * This is the work-queue function that handles SRCU grace periods.
1681 */
1682static void process_srcu(struct work_struct *work)
1683{
1684	unsigned long curdelay;
1685	unsigned long j;
1686	struct srcu_struct *ssp;
1687
1688	ssp = container_of(work, struct srcu_struct, work.work);
1689
1690	srcu_advance_state(ssp);
1691	curdelay = srcu_get_delay(ssp);
1692	if (curdelay) {
1693		WRITE_ONCE(ssp->reschedule_count, 0);
1694	} else {
1695		j = jiffies;
1696		if (READ_ONCE(ssp->reschedule_jiffies) == j) {
1697			WRITE_ONCE(ssp->reschedule_count, READ_ONCE(ssp->reschedule_count) + 1);
1698			if (READ_ONCE(ssp->reschedule_count) > srcu_max_nodelay)
1699				curdelay = 1;
1700		} else {
1701			WRITE_ONCE(ssp->reschedule_count, 1);
1702			WRITE_ONCE(ssp->reschedule_jiffies, j);
1703		}
1704	}
1705	srcu_reschedule(ssp, curdelay);
1706}
1707
1708void srcutorture_get_gp_data(enum rcutorture_type test_type,
1709			     struct srcu_struct *ssp, int *flags,
1710			     unsigned long *gp_seq)
1711{
1712	if (test_type != SRCU_FLAVOR)
1713		return;
1714	*flags = 0;
1715	*gp_seq = rcu_seq_current(&ssp->srcu_gp_seq);
1716}
1717EXPORT_SYMBOL_GPL(srcutorture_get_gp_data);
1718
1719static const char * const srcu_size_state_name[] = {
1720	"SRCU_SIZE_SMALL",
1721	"SRCU_SIZE_ALLOC",
1722	"SRCU_SIZE_WAIT_BARRIER",
1723	"SRCU_SIZE_WAIT_CALL",
1724	"SRCU_SIZE_WAIT_CBS1",
1725	"SRCU_SIZE_WAIT_CBS2",
1726	"SRCU_SIZE_WAIT_CBS3",
1727	"SRCU_SIZE_WAIT_CBS4",
1728	"SRCU_SIZE_BIG",
1729	"SRCU_SIZE_???",
1730};
1731
1732void srcu_torture_stats_print(struct srcu_struct *ssp, char *tt, char *tf)
1733{
1734	int cpu;
1735	int idx;
1736	unsigned long s0 = 0, s1 = 0;
1737	int ss_state = READ_ONCE(ssp->srcu_size_state);
1738	int ss_state_idx = ss_state;
1739
1740	idx = ssp->srcu_idx & 0x1;
1741	if (ss_state < 0 || ss_state >= ARRAY_SIZE(srcu_size_state_name))
1742		ss_state_idx = ARRAY_SIZE(srcu_size_state_name) - 1;
1743	pr_alert("%s%s Tree SRCU g%ld state %d (%s)",
1744		 tt, tf, rcu_seq_current(&ssp->srcu_gp_seq), ss_state,
1745		 srcu_size_state_name[ss_state_idx]);
1746	if (!ssp->sda) {
1747		// Called after cleanup_srcu_struct(), perhaps.
1748		pr_cont(" No per-CPU srcu_data structures (->sda == NULL).\n");
1749	} else {
1750		pr_cont(" per-CPU(idx=%d):", idx);
1751		for_each_possible_cpu(cpu) {
1752			unsigned long l0, l1;
1753			unsigned long u0, u1;
1754			long c0, c1;
1755			struct srcu_data *sdp;
1756
1757			sdp = per_cpu_ptr(ssp->sda, cpu);
1758			u0 = data_race(atomic_long_read(&sdp->srcu_unlock_count[!idx]));
1759			u1 = data_race(atomic_long_read(&sdp->srcu_unlock_count[idx]));
1760
1761			/*
1762			 * Make sure that a lock is always counted if the corresponding
1763			 * unlock is counted.
1764			 */
1765			smp_rmb();
1766
1767			l0 = data_race(atomic_long_read(&sdp->srcu_lock_count[!idx]));
1768			l1 = data_race(atomic_long_read(&sdp->srcu_lock_count[idx]));
1769
1770			c0 = l0 - u0;
1771			c1 = l1 - u1;
1772			pr_cont(" %d(%ld,%ld %c)",
1773				cpu, c0, c1,
1774				"C."[rcu_segcblist_empty(&sdp->srcu_cblist)]);
1775			s0 += c0;
1776			s1 += c1;
1777		}
1778		pr_cont(" T(%ld,%ld)\n", s0, s1);
1779	}
1780	if (SRCU_SIZING_IS_TORTURE())
1781		srcu_transition_to_big(ssp);
1782}
1783EXPORT_SYMBOL_GPL(srcu_torture_stats_print);
1784
1785static int __init srcu_bootup_announce(void)
1786{
1787	pr_info("Hierarchical SRCU implementation.\n");
1788	if (exp_holdoff != DEFAULT_SRCU_EXP_HOLDOFF)
1789		pr_info("\tNon-default auto-expedite holdoff of %lu ns.\n", exp_holdoff);
1790	if (srcu_retry_check_delay != SRCU_DEFAULT_RETRY_CHECK_DELAY)
1791		pr_info("\tNon-default retry check delay of %lu us.\n", srcu_retry_check_delay);
1792	if (srcu_max_nodelay != SRCU_DEFAULT_MAX_NODELAY)
1793		pr_info("\tNon-default max no-delay of %lu.\n", srcu_max_nodelay);
1794	pr_info("\tMax phase no-delay instances is %lu.\n", srcu_max_nodelay_phase);
1795	return 0;
1796}
1797early_initcall(srcu_bootup_announce);
1798
1799void __init srcu_init(void)
1800{
1801	struct srcu_struct *ssp;
1802
1803	/* Decide on srcu_struct-size strategy. */
1804	if (SRCU_SIZING_IS(SRCU_SIZING_AUTO)) {
1805		if (nr_cpu_ids >= big_cpu_lim) {
1806			convert_to_big = SRCU_SIZING_INIT; // Don't bother waiting for contention.
1807			pr_info("%s: Setting srcu_struct sizes to big.\n", __func__);
1808		} else {
1809			convert_to_big = SRCU_SIZING_NONE | SRCU_SIZING_CONTEND;
1810			pr_info("%s: Setting srcu_struct sizes based on contention.\n", __func__);
1811		}
1812	}
1813
1814	/*
1815	 * Once that is set, call_srcu() can follow the normal path and
1816	 * queue delayed work. This must follow RCU workqueues creation
1817	 * and timers initialization.
1818	 */
1819	srcu_init_done = true;
1820	while (!list_empty(&srcu_boot_list)) {
1821		ssp = list_first_entry(&srcu_boot_list, struct srcu_struct,
1822				      work.work.entry);
1823		list_del_init(&ssp->work.work.entry);
1824		if (SRCU_SIZING_IS(SRCU_SIZING_INIT) && ssp->srcu_size_state == SRCU_SIZE_SMALL)
1825			ssp->srcu_size_state = SRCU_SIZE_ALLOC;
1826		queue_work(rcu_gp_wq, &ssp->work.work);
1827	}
1828}
1829
1830#ifdef CONFIG_MODULES
1831
1832/* Initialize any global-scope srcu_struct structures used by this module. */
1833static int srcu_module_coming(struct module *mod)
1834{
1835	int i;
1836	struct srcu_struct **sspp = mod->srcu_struct_ptrs;
1837	int ret;
1838
1839	for (i = 0; i < mod->num_srcu_structs; i++) {
1840		ret = init_srcu_struct(*(sspp++));
1841		if (WARN_ON_ONCE(ret))
1842			return ret;
1843	}
1844	return 0;
1845}
1846
1847/* Clean up any global-scope srcu_struct structures used by this module. */
1848static void srcu_module_going(struct module *mod)
1849{
1850	int i;
1851	struct srcu_struct **sspp = mod->srcu_struct_ptrs;
1852
1853	for (i = 0; i < mod->num_srcu_structs; i++)
1854		cleanup_srcu_struct(*(sspp++));
1855}
1856
1857/* Handle one module, either coming or going. */
1858static int srcu_module_notify(struct notifier_block *self,
1859			      unsigned long val, void *data)
1860{
1861	struct module *mod = data;
1862	int ret = 0;
1863
1864	switch (val) {
1865	case MODULE_STATE_COMING:
1866		ret = srcu_module_coming(mod);
1867		break;
1868	case MODULE_STATE_GOING:
1869		srcu_module_going(mod);
1870		break;
1871	default:
1872		break;
1873	}
1874	return ret;
1875}
1876
1877static struct notifier_block srcu_module_nb = {
1878	.notifier_call = srcu_module_notify,
1879	.priority = 0,
1880};
1881
1882static __init int init_srcu_module_notifier(void)
1883{
1884	int ret;
1885
1886	ret = register_module_notifier(&srcu_module_nb);
1887	if (ret)
1888		pr_warn("Failed to register srcu module notifier\n");
1889	return ret;
1890}
1891late_initcall(init_srcu_module_notifier);
1892
1893#endif /* #ifdef CONFIG_MODULES */