Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.6.
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * Sleepable Read-Copy Update mechanism for mutual exclusion.
   4 *
   5 * Copyright (C) IBM Corporation, 2006
   6 * Copyright (C) Fujitsu, 2012
   7 *
   8 * Authors: Paul McKenney <paulmck@linux.ibm.com>
   9 *	   Lai Jiangshan <laijs@cn.fujitsu.com>
  10 *
  11 * For detailed explanation of Read-Copy Update mechanism see -
  12 *		Documentation/RCU/ *.txt
  13 *
  14 */
  15
  16#define pr_fmt(fmt) "rcu: " fmt
  17
  18#include <linux/export.h>
  19#include <linux/mutex.h>
  20#include <linux/percpu.h>
  21#include <linux/preempt.h>
  22#include <linux/rcupdate_wait.h>
  23#include <linux/sched.h>
  24#include <linux/smp.h>
  25#include <linux/delay.h>
  26#include <linux/module.h>
  27#include <linux/srcu.h>
  28
  29#include "rcu.h"
  30#include "rcu_segcblist.h"
  31
  32#ifndef data_race
  33#define data_race(expr)							\
  34	({								\
  35		expr;							\
  36	})
  37#endif
  38#ifndef ASSERT_EXCLUSIVE_WRITER
  39#define ASSERT_EXCLUSIVE_WRITER(var) do { } while (0)
  40#endif
  41#ifndef ASSERT_EXCLUSIVE_ACCESS
  42#define ASSERT_EXCLUSIVE_ACCESS(var) do { } while (0)
  43#endif
  44
  45/* Holdoff in nanoseconds for auto-expediting. */
  46#define DEFAULT_SRCU_EXP_HOLDOFF (25 * 1000)
  47static ulong exp_holdoff = DEFAULT_SRCU_EXP_HOLDOFF;
  48module_param(exp_holdoff, ulong, 0444);
  49
  50/* Overflow-check frequency.  N bits roughly says every 2**N grace periods. */
  51static ulong counter_wrap_check = (ULONG_MAX >> 2);
  52module_param(counter_wrap_check, ulong, 0444);
  53
  54/* Early-boot callback-management, so early that no lock is required! */
  55static LIST_HEAD(srcu_boot_list);
  56static bool __read_mostly srcu_init_done;
  57
  58static void srcu_invoke_callbacks(struct work_struct *work);
  59static void srcu_reschedule(struct srcu_struct *ssp, unsigned long delay);
  60static void process_srcu(struct work_struct *work);
  61static void srcu_delay_timer(struct timer_list *t);
  62
  63/* Wrappers for lock acquisition and release, see raw_spin_lock_rcu_node(). */
  64#define spin_lock_rcu_node(p)					\
  65do {									\
  66	spin_lock(&ACCESS_PRIVATE(p, lock));			\
  67	smp_mb__after_unlock_lock();					\
  68} while (0)
  69
  70#define spin_unlock_rcu_node(p) spin_unlock(&ACCESS_PRIVATE(p, lock))
  71
  72#define spin_lock_irq_rcu_node(p)					\
  73do {									\
  74	spin_lock_irq(&ACCESS_PRIVATE(p, lock));			\
  75	smp_mb__after_unlock_lock();					\
  76} while (0)
  77
  78#define spin_unlock_irq_rcu_node(p)					\
  79	spin_unlock_irq(&ACCESS_PRIVATE(p, lock))
  80
  81#define spin_lock_irqsave_rcu_node(p, flags)			\
  82do {									\
  83	spin_lock_irqsave(&ACCESS_PRIVATE(p, lock), flags);	\
  84	smp_mb__after_unlock_lock();					\
  85} while (0)
  86
  87#define spin_unlock_irqrestore_rcu_node(p, flags)			\
  88	spin_unlock_irqrestore(&ACCESS_PRIVATE(p, lock), flags)	\
  89
  90/*
  91 * Initialize SRCU combining tree.  Note that statically allocated
  92 * srcu_struct structures might already have srcu_read_lock() and
  93 * srcu_read_unlock() running against them.  So if the is_static parameter
  94 * is set, don't initialize ->srcu_lock_count[] and ->srcu_unlock_count[].
  95 */
  96static void init_srcu_struct_nodes(struct srcu_struct *ssp, bool is_static)
  97{
  98	int cpu;
  99	int i;
 100	int level = 0;
 101	int levelspread[RCU_NUM_LVLS];
 102	struct srcu_data *sdp;
 103	struct srcu_node *snp;
 104	struct srcu_node *snp_first;
 105
 106	/* Work out the overall tree geometry. */
 107	ssp->level[0] = &ssp->node[0];
 108	for (i = 1; i < rcu_num_lvls; i++)
 109		ssp->level[i] = ssp->level[i - 1] + num_rcu_lvl[i - 1];
 110	rcu_init_levelspread(levelspread, num_rcu_lvl);
 111
 112	/* Each pass through this loop initializes one srcu_node structure. */
 113	srcu_for_each_node_breadth_first(ssp, snp) {
 114		spin_lock_init(&ACCESS_PRIVATE(snp, lock));
 115		WARN_ON_ONCE(ARRAY_SIZE(snp->srcu_have_cbs) !=
 116			     ARRAY_SIZE(snp->srcu_data_have_cbs));
 117		for (i = 0; i < ARRAY_SIZE(snp->srcu_have_cbs); i++) {
 118			snp->srcu_have_cbs[i] = 0;
 119			snp->srcu_data_have_cbs[i] = 0;
 120		}
 121		snp->srcu_gp_seq_needed_exp = 0;
 122		snp->grplo = -1;
 123		snp->grphi = -1;
 124		if (snp == &ssp->node[0]) {
 125			/* Root node, special case. */
 126			snp->srcu_parent = NULL;
 127			continue;
 128		}
 129
 130		/* Non-root node. */
 131		if (snp == ssp->level[level + 1])
 132			level++;
 133		snp->srcu_parent = ssp->level[level - 1] +
 134				   (snp - ssp->level[level]) /
 135				   levelspread[level - 1];
 136	}
 137
 138	/*
 139	 * Initialize the per-CPU srcu_data array, which feeds into the
 140	 * leaves of the srcu_node tree.
 141	 */
 142	WARN_ON_ONCE(ARRAY_SIZE(sdp->srcu_lock_count) !=
 143		     ARRAY_SIZE(sdp->srcu_unlock_count));
 144	level = rcu_num_lvls - 1;
 145	snp_first = ssp->level[level];
 146	for_each_possible_cpu(cpu) {
 147		sdp = per_cpu_ptr(ssp->sda, cpu);
 148		spin_lock_init(&ACCESS_PRIVATE(sdp, lock));
 149		rcu_segcblist_init(&sdp->srcu_cblist);
 150		sdp->srcu_cblist_invoking = false;
 151		sdp->srcu_gp_seq_needed = ssp->srcu_gp_seq;
 152		sdp->srcu_gp_seq_needed_exp = ssp->srcu_gp_seq;
 153		sdp->mynode = &snp_first[cpu / levelspread[level]];
 154		for (snp = sdp->mynode; snp != NULL; snp = snp->srcu_parent) {
 155			if (snp->grplo < 0)
 156				snp->grplo = cpu;
 157			snp->grphi = cpu;
 158		}
 159		sdp->cpu = cpu;
 160		INIT_WORK(&sdp->work, srcu_invoke_callbacks);
 161		timer_setup(&sdp->delay_work, srcu_delay_timer, 0);
 162		sdp->ssp = ssp;
 163		sdp->grpmask = 1 << (cpu - sdp->mynode->grplo);
 164		if (is_static)
 165			continue;
 166
 167		/* Dynamically allocated, better be no srcu_read_locks()! */
 168		for (i = 0; i < ARRAY_SIZE(sdp->srcu_lock_count); i++) {
 169			sdp->srcu_lock_count[i] = 0;
 170			sdp->srcu_unlock_count[i] = 0;
 171		}
 172	}
 173}
 174
 175/*
 176 * Initialize non-compile-time initialized fields, including the
 177 * associated srcu_node and srcu_data structures.  The is_static
 178 * parameter is passed through to init_srcu_struct_nodes(), and
 179 * also tells us that ->sda has already been wired up to srcu_data.
 180 */
 181static int init_srcu_struct_fields(struct srcu_struct *ssp, bool is_static)
 182{
 183	mutex_init(&ssp->srcu_cb_mutex);
 184	mutex_init(&ssp->srcu_gp_mutex);
 185	ssp->srcu_idx = 0;
 186	ssp->srcu_gp_seq = 0;
 187	ssp->srcu_barrier_seq = 0;
 188	mutex_init(&ssp->srcu_barrier_mutex);
 189	atomic_set(&ssp->srcu_barrier_cpu_cnt, 0);
 190	INIT_DELAYED_WORK(&ssp->work, process_srcu);
 191	if (!is_static)
 192		ssp->sda = alloc_percpu(struct srcu_data);
 193	init_srcu_struct_nodes(ssp, is_static);
 194	ssp->srcu_gp_seq_needed_exp = 0;
 195	ssp->srcu_last_gp_end = ktime_get_mono_fast_ns();
 196	smp_store_release(&ssp->srcu_gp_seq_needed, 0); /* Init done. */
 197	return ssp->sda ? 0 : -ENOMEM;
 198}
 199
 200#ifdef CONFIG_DEBUG_LOCK_ALLOC
 201
 202int __init_srcu_struct(struct srcu_struct *ssp, const char *name,
 203		       struct lock_class_key *key)
 204{
 205	/* Don't re-initialize a lock while it is held. */
 206	debug_check_no_locks_freed((void *)ssp, sizeof(*ssp));
 207	lockdep_init_map(&ssp->dep_map, name, key, 0);
 208	spin_lock_init(&ACCESS_PRIVATE(ssp, lock));
 209	return init_srcu_struct_fields(ssp, false);
 210}
 211EXPORT_SYMBOL_GPL(__init_srcu_struct);
 212
 213#else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
 214
 215/**
 216 * init_srcu_struct - initialize a sleep-RCU structure
 217 * @ssp: structure to initialize.
 218 *
 219 * Must invoke this on a given srcu_struct before passing that srcu_struct
 220 * to any other function.  Each srcu_struct represents a separate domain
 221 * of SRCU protection.
 222 */
 223int init_srcu_struct(struct srcu_struct *ssp)
 224{
 225	spin_lock_init(&ACCESS_PRIVATE(ssp, lock));
 226	return init_srcu_struct_fields(ssp, false);
 227}
 228EXPORT_SYMBOL_GPL(init_srcu_struct);
 229
 230#endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
 231
 232/*
 233 * First-use initialization of statically allocated srcu_struct
 234 * structure.  Wiring up the combining tree is more than can be
 235 * done with compile-time initialization, so this check is added
 236 * to each update-side SRCU primitive.  Use ssp->lock, which -is-
 237 * compile-time initialized, to resolve races involving multiple
 238 * CPUs trying to garner first-use privileges.
 239 */
 240static void check_init_srcu_struct(struct srcu_struct *ssp)
 241{
 242	unsigned long flags;
 243
 244	/* The smp_load_acquire() pairs with the smp_store_release(). */
 245	if (!rcu_seq_state(smp_load_acquire(&ssp->srcu_gp_seq_needed))) /*^^^*/
 246		return; /* Already initialized. */
 247	spin_lock_irqsave_rcu_node(ssp, flags);
 248	if (!rcu_seq_state(ssp->srcu_gp_seq_needed)) {
 249		spin_unlock_irqrestore_rcu_node(ssp, flags);
 250		return;
 251	}
 252	init_srcu_struct_fields(ssp, true);
 253	spin_unlock_irqrestore_rcu_node(ssp, flags);
 254}
 255
 256/*
 257 * Returns approximate total of the readers' ->srcu_lock_count[] values
 258 * for the rank of per-CPU counters specified by idx.
 259 */
 260static unsigned long srcu_readers_lock_idx(struct srcu_struct *ssp, int idx)
 261{
 262	int cpu;
 263	unsigned long sum = 0;
 264
 265	for_each_possible_cpu(cpu) {
 266		struct srcu_data *cpuc = per_cpu_ptr(ssp->sda, cpu);
 267
 268		sum += READ_ONCE(cpuc->srcu_lock_count[idx]);
 269	}
 270	return sum;
 271}
 272
 273/*
 274 * Returns approximate total of the readers' ->srcu_unlock_count[] values
 275 * for the rank of per-CPU counters specified by idx.
 276 */
 277static unsigned long srcu_readers_unlock_idx(struct srcu_struct *ssp, int idx)
 278{
 279	int cpu;
 280	unsigned long sum = 0;
 281
 282	for_each_possible_cpu(cpu) {
 283		struct srcu_data *cpuc = per_cpu_ptr(ssp->sda, cpu);
 284
 285		sum += READ_ONCE(cpuc->srcu_unlock_count[idx]);
 286	}
 287	return sum;
 288}
 289
 290/*
 291 * Return true if the number of pre-existing readers is determined to
 292 * be zero.
 293 */
 294static bool srcu_readers_active_idx_check(struct srcu_struct *ssp, int idx)
 295{
 296	unsigned long unlocks;
 297
 298	unlocks = srcu_readers_unlock_idx(ssp, idx);
 299
 300	/*
 301	 * Make sure that a lock is always counted if the corresponding
 302	 * unlock is counted. Needs to be a smp_mb() as the read side may
 303	 * contain a read from a variable that is written to before the
 304	 * synchronize_srcu() in the write side. In this case smp_mb()s
 305	 * A and B act like the store buffering pattern.
 306	 *
 307	 * This smp_mb() also pairs with smp_mb() C to prevent accesses
 308	 * after the synchronize_srcu() from being executed before the
 309	 * grace period ends.
 310	 */
 311	smp_mb(); /* A */
 312
 313	/*
 314	 * If the locks are the same as the unlocks, then there must have
 315	 * been no readers on this index at some time in between. This does
 316	 * not mean that there are no more readers, as one could have read
 317	 * the current index but not have incremented the lock counter yet.
 318	 *
 319	 * So suppose that the updater is preempted here for so long
 320	 * that more than ULONG_MAX non-nested readers come and go in
 321	 * the meantime.  It turns out that this cannot result in overflow
 322	 * because if a reader modifies its unlock count after we read it
 323	 * above, then that reader's next load of ->srcu_idx is guaranteed
 324	 * to get the new value, which will cause it to operate on the
 325	 * other bank of counters, where it cannot contribute to the
 326	 * overflow of these counters.  This means that there is a maximum
 327	 * of 2*NR_CPUS increments, which cannot overflow given current
 328	 * systems, especially not on 64-bit systems.
 329	 *
 330	 * OK, how about nesting?  This does impose a limit on nesting
 331	 * of floor(ULONG_MAX/NR_CPUS/2), which should be sufficient,
 332	 * especially on 64-bit systems.
 333	 */
 334	return srcu_readers_lock_idx(ssp, idx) == unlocks;
 335}
 336
 337/**
 338 * srcu_readers_active - returns true if there are readers. and false
 339 *                       otherwise
 340 * @ssp: which srcu_struct to count active readers (holding srcu_read_lock).
 341 *
 342 * Note that this is not an atomic primitive, and can therefore suffer
 343 * severe errors when invoked on an active srcu_struct.  That said, it
 344 * can be useful as an error check at cleanup time.
 345 */
 346static bool srcu_readers_active(struct srcu_struct *ssp)
 347{
 348	int cpu;
 349	unsigned long sum = 0;
 350
 351	for_each_possible_cpu(cpu) {
 352		struct srcu_data *cpuc = per_cpu_ptr(ssp->sda, cpu);
 353
 354		sum += READ_ONCE(cpuc->srcu_lock_count[0]);
 355		sum += READ_ONCE(cpuc->srcu_lock_count[1]);
 356		sum -= READ_ONCE(cpuc->srcu_unlock_count[0]);
 357		sum -= READ_ONCE(cpuc->srcu_unlock_count[1]);
 358	}
 359	return sum;
 360}
 361
 362#define SRCU_INTERVAL		1
 363
 364/*
 365 * Return grace-period delay, zero if there are expedited grace
 366 * periods pending, SRCU_INTERVAL otherwise.
 367 */
 368static unsigned long srcu_get_delay(struct srcu_struct *ssp)
 369{
 370	if (ULONG_CMP_LT(READ_ONCE(ssp->srcu_gp_seq),
 371			 READ_ONCE(ssp->srcu_gp_seq_needed_exp)))
 372		return 0;
 373	return SRCU_INTERVAL;
 374}
 375
 376/**
 377 * cleanup_srcu_struct - deconstruct a sleep-RCU structure
 378 * @ssp: structure to clean up.
 379 *
 380 * Must invoke this after you are finished using a given srcu_struct that
 381 * was initialized via init_srcu_struct(), else you leak memory.
 382 */
 383void cleanup_srcu_struct(struct srcu_struct *ssp)
 384{
 385	int cpu;
 386
 387	if (WARN_ON(!srcu_get_delay(ssp)))
 388		return; /* Just leak it! */
 389	if (WARN_ON(srcu_readers_active(ssp)))
 390		return; /* Just leak it! */
 391	flush_delayed_work(&ssp->work);
 392	for_each_possible_cpu(cpu) {
 393		struct srcu_data *sdp = per_cpu_ptr(ssp->sda, cpu);
 394
 395		del_timer_sync(&sdp->delay_work);
 396		flush_work(&sdp->work);
 397		if (WARN_ON(rcu_segcblist_n_cbs(&sdp->srcu_cblist)))
 398			return; /* Forgot srcu_barrier(), so just leak it! */
 399	}
 400	if (WARN_ON(rcu_seq_state(READ_ONCE(ssp->srcu_gp_seq)) != SRCU_STATE_IDLE) ||
 401	    WARN_ON(srcu_readers_active(ssp))) {
 402		pr_info("%s: Active srcu_struct %p state: %d\n",
 403			__func__, ssp, rcu_seq_state(READ_ONCE(ssp->srcu_gp_seq)));
 404		return; /* Caller forgot to stop doing call_srcu()? */
 405	}
 406	free_percpu(ssp->sda);
 407	ssp->sda = NULL;
 408}
 409EXPORT_SYMBOL_GPL(cleanup_srcu_struct);
 410
 411/*
 412 * Counts the new reader in the appropriate per-CPU element of the
 413 * srcu_struct.
 414 * Returns an index that must be passed to the matching srcu_read_unlock().
 415 */
 416int __srcu_read_lock(struct srcu_struct *ssp)
 417{
 418	int idx;
 419
 420	idx = READ_ONCE(ssp->srcu_idx) & 0x1;
 421	this_cpu_inc(ssp->sda->srcu_lock_count[idx]);
 422	smp_mb(); /* B */  /* Avoid leaking the critical section. */
 423	return idx;
 424}
 425EXPORT_SYMBOL_GPL(__srcu_read_lock);
 426
 427/*
 428 * Removes the count for the old reader from the appropriate per-CPU
 429 * element of the srcu_struct.  Note that this may well be a different
 430 * CPU than that which was incremented by the corresponding srcu_read_lock().
 431 */
 432void __srcu_read_unlock(struct srcu_struct *ssp, int idx)
 433{
 434	smp_mb(); /* C */  /* Avoid leaking the critical section. */
 435	this_cpu_inc(ssp->sda->srcu_unlock_count[idx]);
 436}
 437EXPORT_SYMBOL_GPL(__srcu_read_unlock);
 438
 439/*
 440 * We use an adaptive strategy for synchronize_srcu() and especially for
 441 * synchronize_srcu_expedited().  We spin for a fixed time period
 442 * (defined below) to allow SRCU readers to exit their read-side critical
 443 * sections.  If there are still some readers after a few microseconds,
 444 * we repeatedly block for 1-millisecond time periods.
 445 */
 446#define SRCU_RETRY_CHECK_DELAY		5
 447
 448/*
 449 * Start an SRCU grace period.
 450 */
 451static void srcu_gp_start(struct srcu_struct *ssp)
 452{
 453	struct srcu_data *sdp = this_cpu_ptr(ssp->sda);
 454	int state;
 455
 456	lockdep_assert_held(&ACCESS_PRIVATE(ssp, lock));
 457	WARN_ON_ONCE(ULONG_CMP_GE(ssp->srcu_gp_seq, ssp->srcu_gp_seq_needed));
 458	spin_lock_rcu_node(sdp);  /* Interrupts already disabled. */
 459	rcu_segcblist_advance(&sdp->srcu_cblist,
 460			      rcu_seq_current(&ssp->srcu_gp_seq));
 461	(void)rcu_segcblist_accelerate(&sdp->srcu_cblist,
 462				       rcu_seq_snap(&ssp->srcu_gp_seq));
 463	spin_unlock_rcu_node(sdp);  /* Interrupts remain disabled. */
 464	smp_mb(); /* Order prior store to ->srcu_gp_seq_needed vs. GP start. */
 465	rcu_seq_start(&ssp->srcu_gp_seq);
 466	state = rcu_seq_state(ssp->srcu_gp_seq);
 467	WARN_ON_ONCE(state != SRCU_STATE_SCAN1);
 468}
 469
 470
 471static void srcu_delay_timer(struct timer_list *t)
 472{
 473	struct srcu_data *sdp = container_of(t, struct srcu_data, delay_work);
 474
 475	queue_work_on(sdp->cpu, rcu_gp_wq, &sdp->work);
 476}
 477
 478static void srcu_queue_delayed_work_on(struct srcu_data *sdp,
 479				       unsigned long delay)
 480{
 481	if (!delay) {
 482		queue_work_on(sdp->cpu, rcu_gp_wq, &sdp->work);
 483		return;
 484	}
 485
 486	timer_reduce(&sdp->delay_work, jiffies + delay);
 487}
 488
 489/*
 490 * Schedule callback invocation for the specified srcu_data structure,
 491 * if possible, on the corresponding CPU.
 492 */
 493static void srcu_schedule_cbs_sdp(struct srcu_data *sdp, unsigned long delay)
 494{
 495	srcu_queue_delayed_work_on(sdp, delay);
 496}
 497
 498/*
 499 * Schedule callback invocation for all srcu_data structures associated
 500 * with the specified srcu_node structure that have callbacks for the
 501 * just-completed grace period, the one corresponding to idx.  If possible,
 502 * schedule this invocation on the corresponding CPUs.
 503 */
 504static void srcu_schedule_cbs_snp(struct srcu_struct *ssp, struct srcu_node *snp,
 505				  unsigned long mask, unsigned long delay)
 506{
 507	int cpu;
 508
 509	for (cpu = snp->grplo; cpu <= snp->grphi; cpu++) {
 510		if (!(mask & (1 << (cpu - snp->grplo))))
 511			continue;
 512		srcu_schedule_cbs_sdp(per_cpu_ptr(ssp->sda, cpu), delay);
 513	}
 514}
 515
 516/*
 517 * Note the end of an SRCU grace period.  Initiates callback invocation
 518 * and starts a new grace period if needed.
 519 *
 520 * The ->srcu_cb_mutex acquisition does not protect any data, but
 521 * instead prevents more than one grace period from starting while we
 522 * are initiating callback invocation.  This allows the ->srcu_have_cbs[]
 523 * array to have a finite number of elements.
 524 */
 525static void srcu_gp_end(struct srcu_struct *ssp)
 526{
 527	unsigned long cbdelay;
 528	bool cbs;
 529	bool last_lvl;
 530	int cpu;
 531	unsigned long flags;
 532	unsigned long gpseq;
 533	int idx;
 534	unsigned long mask;
 535	struct srcu_data *sdp;
 536	struct srcu_node *snp;
 537
 538	/* Prevent more than one additional grace period. */
 539	mutex_lock(&ssp->srcu_cb_mutex);
 540
 541	/* End the current grace period. */
 542	spin_lock_irq_rcu_node(ssp);
 543	idx = rcu_seq_state(ssp->srcu_gp_seq);
 544	WARN_ON_ONCE(idx != SRCU_STATE_SCAN2);
 545	cbdelay = srcu_get_delay(ssp);
 546	WRITE_ONCE(ssp->srcu_last_gp_end, ktime_get_mono_fast_ns());
 547	rcu_seq_end(&ssp->srcu_gp_seq);
 548	gpseq = rcu_seq_current(&ssp->srcu_gp_seq);
 549	if (ULONG_CMP_LT(ssp->srcu_gp_seq_needed_exp, gpseq))
 550		WRITE_ONCE(ssp->srcu_gp_seq_needed_exp, gpseq);
 551	spin_unlock_irq_rcu_node(ssp);
 552	mutex_unlock(&ssp->srcu_gp_mutex);
 553	/* A new grace period can start at this point.  But only one. */
 554
 555	/* Initiate callback invocation as needed. */
 556	idx = rcu_seq_ctr(gpseq) % ARRAY_SIZE(snp->srcu_have_cbs);
 557	srcu_for_each_node_breadth_first(ssp, snp) {
 558		spin_lock_irq_rcu_node(snp);
 559		cbs = false;
 560		last_lvl = snp >= ssp->level[rcu_num_lvls - 1];
 561		if (last_lvl)
 562			cbs = snp->srcu_have_cbs[idx] == gpseq;
 563		snp->srcu_have_cbs[idx] = gpseq;
 564		rcu_seq_set_state(&snp->srcu_have_cbs[idx], 1);
 565		if (ULONG_CMP_LT(snp->srcu_gp_seq_needed_exp, gpseq))
 566			WRITE_ONCE(snp->srcu_gp_seq_needed_exp, gpseq);
 567		mask = snp->srcu_data_have_cbs[idx];
 568		snp->srcu_data_have_cbs[idx] = 0;
 569		spin_unlock_irq_rcu_node(snp);
 570		if (cbs)
 571			srcu_schedule_cbs_snp(ssp, snp, mask, cbdelay);
 572
 573		/* Occasionally prevent srcu_data counter wrap. */
 574		if (!(gpseq & counter_wrap_check) && last_lvl)
 575			for (cpu = snp->grplo; cpu <= snp->grphi; cpu++) {
 576				sdp = per_cpu_ptr(ssp->sda, cpu);
 577				spin_lock_irqsave_rcu_node(sdp, flags);
 578				if (ULONG_CMP_GE(gpseq,
 579						 sdp->srcu_gp_seq_needed + 100))
 580					sdp->srcu_gp_seq_needed = gpseq;
 581				if (ULONG_CMP_GE(gpseq,
 582						 sdp->srcu_gp_seq_needed_exp + 100))
 583					sdp->srcu_gp_seq_needed_exp = gpseq;
 584				spin_unlock_irqrestore_rcu_node(sdp, flags);
 585			}
 586	}
 587
 588	/* Callback initiation done, allow grace periods after next. */
 589	mutex_unlock(&ssp->srcu_cb_mutex);
 590
 591	/* Start a new grace period if needed. */
 592	spin_lock_irq_rcu_node(ssp);
 593	gpseq = rcu_seq_current(&ssp->srcu_gp_seq);
 594	if (!rcu_seq_state(gpseq) &&
 595	    ULONG_CMP_LT(gpseq, ssp->srcu_gp_seq_needed)) {
 596		srcu_gp_start(ssp);
 597		spin_unlock_irq_rcu_node(ssp);
 598		srcu_reschedule(ssp, 0);
 599	} else {
 600		spin_unlock_irq_rcu_node(ssp);
 601	}
 602}
 603
 604/*
 605 * Funnel-locking scheme to scalably mediate many concurrent expedited
 606 * grace-period requests.  This function is invoked for the first known
 607 * expedited request for a grace period that has already been requested,
 608 * but without expediting.  To start a completely new grace period,
 609 * whether expedited or not, use srcu_funnel_gp_start() instead.
 610 */
 611static void srcu_funnel_exp_start(struct srcu_struct *ssp, struct srcu_node *snp,
 612				  unsigned long s)
 613{
 614	unsigned long flags;
 615
 616	for (; snp != NULL; snp = snp->srcu_parent) {
 617		if (rcu_seq_done(&ssp->srcu_gp_seq, s) ||
 618		    ULONG_CMP_GE(READ_ONCE(snp->srcu_gp_seq_needed_exp), s))
 619			return;
 620		spin_lock_irqsave_rcu_node(snp, flags);
 621		if (ULONG_CMP_GE(snp->srcu_gp_seq_needed_exp, s)) {
 622			spin_unlock_irqrestore_rcu_node(snp, flags);
 623			return;
 624		}
 625		WRITE_ONCE(snp->srcu_gp_seq_needed_exp, s);
 626		spin_unlock_irqrestore_rcu_node(snp, flags);
 627	}
 628	spin_lock_irqsave_rcu_node(ssp, flags);
 629	if (ULONG_CMP_LT(ssp->srcu_gp_seq_needed_exp, s))
 630		WRITE_ONCE(ssp->srcu_gp_seq_needed_exp, s);
 631	spin_unlock_irqrestore_rcu_node(ssp, flags);
 632}
 633
 634/*
 635 * Funnel-locking scheme to scalably mediate many concurrent grace-period
 636 * requests.  The winner has to do the work of actually starting grace
 637 * period s.  Losers must either ensure that their desired grace-period
 638 * number is recorded on at least their leaf srcu_node structure, or they
 639 * must take steps to invoke their own callbacks.
 640 *
 641 * Note that this function also does the work of srcu_funnel_exp_start(),
 642 * in some cases by directly invoking it.
 643 */
 644static void srcu_funnel_gp_start(struct srcu_struct *ssp, struct srcu_data *sdp,
 645				 unsigned long s, bool do_norm)
 646{
 647	unsigned long flags;
 648	int idx = rcu_seq_ctr(s) % ARRAY_SIZE(sdp->mynode->srcu_have_cbs);
 649	struct srcu_node *snp = sdp->mynode;
 650	unsigned long snp_seq;
 651
 652	/* Each pass through the loop does one level of the srcu_node tree. */
 653	for (; snp != NULL; snp = snp->srcu_parent) {
 654		if (rcu_seq_done(&ssp->srcu_gp_seq, s) && snp != sdp->mynode)
 655			return; /* GP already done and CBs recorded. */
 656		spin_lock_irqsave_rcu_node(snp, flags);
 657		if (ULONG_CMP_GE(snp->srcu_have_cbs[idx], s)) {
 658			snp_seq = snp->srcu_have_cbs[idx];
 659			if (snp == sdp->mynode && snp_seq == s)
 660				snp->srcu_data_have_cbs[idx] |= sdp->grpmask;
 661			spin_unlock_irqrestore_rcu_node(snp, flags);
 662			if (snp == sdp->mynode && snp_seq != s) {
 663				srcu_schedule_cbs_sdp(sdp, do_norm
 664							   ? SRCU_INTERVAL
 665							   : 0);
 666				return;
 667			}
 668			if (!do_norm)
 669				srcu_funnel_exp_start(ssp, snp, s);
 670			return;
 671		}
 672		snp->srcu_have_cbs[idx] = s;
 673		if (snp == sdp->mynode)
 674			snp->srcu_data_have_cbs[idx] |= sdp->grpmask;
 675		if (!do_norm && ULONG_CMP_LT(snp->srcu_gp_seq_needed_exp, s))
 676			WRITE_ONCE(snp->srcu_gp_seq_needed_exp, s);
 677		spin_unlock_irqrestore_rcu_node(snp, flags);
 678	}
 679
 680	/* Top of tree, must ensure the grace period will be started. */
 681	spin_lock_irqsave_rcu_node(ssp, flags);
 682	if (ULONG_CMP_LT(ssp->srcu_gp_seq_needed, s)) {
 683		/*
 684		 * Record need for grace period s.  Pair with load
 685		 * acquire setting up for initialization.
 686		 */
 687		smp_store_release(&ssp->srcu_gp_seq_needed, s); /*^^^*/
 688	}
 689	if (!do_norm && ULONG_CMP_LT(ssp->srcu_gp_seq_needed_exp, s))
 690		WRITE_ONCE(ssp->srcu_gp_seq_needed_exp, s);
 691
 692	/* If grace period not already done and none in progress, start it. */
 693	if (!rcu_seq_done(&ssp->srcu_gp_seq, s) &&
 694	    rcu_seq_state(ssp->srcu_gp_seq) == SRCU_STATE_IDLE) {
 695		WARN_ON_ONCE(ULONG_CMP_GE(ssp->srcu_gp_seq, ssp->srcu_gp_seq_needed));
 696		srcu_gp_start(ssp);
 697		if (likely(srcu_init_done))
 698			queue_delayed_work(rcu_gp_wq, &ssp->work,
 699					   srcu_get_delay(ssp));
 700		else if (list_empty(&ssp->work.work.entry))
 701			list_add(&ssp->work.work.entry, &srcu_boot_list);
 702	}
 703	spin_unlock_irqrestore_rcu_node(ssp, flags);
 704}
 705
 706/*
 707 * Wait until all readers counted by array index idx complete, but
 708 * loop an additional time if there is an expedited grace period pending.
 709 * The caller must ensure that ->srcu_idx is not changed while checking.
 710 */
 711static bool try_check_zero(struct srcu_struct *ssp, int idx, int trycount)
 712{
 713	for (;;) {
 714		if (srcu_readers_active_idx_check(ssp, idx))
 715			return true;
 716		if (--trycount + !srcu_get_delay(ssp) <= 0)
 717			return false;
 718		udelay(SRCU_RETRY_CHECK_DELAY);
 719	}
 720}
 721
 722/*
 723 * Increment the ->srcu_idx counter so that future SRCU readers will
 724 * use the other rank of the ->srcu_(un)lock_count[] arrays.  This allows
 725 * us to wait for pre-existing readers in a starvation-free manner.
 726 */
 727static void srcu_flip(struct srcu_struct *ssp)
 728{
 729	/*
 730	 * Ensure that if this updater saw a given reader's increment
 731	 * from __srcu_read_lock(), that reader was using an old value
 732	 * of ->srcu_idx.  Also ensure that if a given reader sees the
 733	 * new value of ->srcu_idx, this updater's earlier scans cannot
 734	 * have seen that reader's increments (which is OK, because this
 735	 * grace period need not wait on that reader).
 736	 */
 737	smp_mb(); /* E */  /* Pairs with B and C. */
 738
 739	WRITE_ONCE(ssp->srcu_idx, ssp->srcu_idx + 1);
 740
 741	/*
 742	 * Ensure that if the updater misses an __srcu_read_unlock()
 743	 * increment, that task's next __srcu_read_lock() will see the
 744	 * above counter update.  Note that both this memory barrier
 745	 * and the one in srcu_readers_active_idx_check() provide the
 746	 * guarantee for __srcu_read_lock().
 747	 */
 748	smp_mb(); /* D */  /* Pairs with C. */
 749}
 750
 751/*
 752 * If SRCU is likely idle, return true, otherwise return false.
 753 *
 754 * Note that it is OK for several current from-idle requests for a new
 755 * grace period from idle to specify expediting because they will all end
 756 * up requesting the same grace period anyhow.  So no loss.
 757 *
 758 * Note also that if any CPU (including the current one) is still invoking
 759 * callbacks, this function will nevertheless say "idle".  This is not
 760 * ideal, but the overhead of checking all CPUs' callback lists is even
 761 * less ideal, especially on large systems.  Furthermore, the wakeup
 762 * can happen before the callback is fully removed, so we have no choice
 763 * but to accept this type of error.
 764 *
 765 * This function is also subject to counter-wrap errors, but let's face
 766 * it, if this function was preempted for enough time for the counters
 767 * to wrap, it really doesn't matter whether or not we expedite the grace
 768 * period.  The extra overhead of a needlessly expedited grace period is
 769 * negligible when amortized over that time period, and the extra latency
 770 * of a needlessly non-expedited grace period is similarly negligible.
 771 */
 772static bool srcu_might_be_idle(struct srcu_struct *ssp)
 773{
 774	unsigned long curseq;
 775	unsigned long flags;
 776	struct srcu_data *sdp;
 777	unsigned long t;
 778	unsigned long tlast;
 779
 780	check_init_srcu_struct(ssp);
 781	/* If the local srcu_data structure has callbacks, not idle.  */
 782	sdp = raw_cpu_ptr(ssp->sda);
 783	spin_lock_irqsave_rcu_node(sdp, flags);
 784	if (rcu_segcblist_pend_cbs(&sdp->srcu_cblist)) {
 785		spin_unlock_irqrestore_rcu_node(sdp, flags);
 786		return false; /* Callbacks already present, so not idle. */
 787	}
 788	spin_unlock_irqrestore_rcu_node(sdp, flags);
 789
 790	/*
 791	 * No local callbacks, so probabalistically probe global state.
 792	 * Exact information would require acquiring locks, which would
 793	 * kill scalability, hence the probabalistic nature of the probe.
 794	 */
 795
 796	/* First, see if enough time has passed since the last GP. */
 797	t = ktime_get_mono_fast_ns();
 798	tlast = READ_ONCE(ssp->srcu_last_gp_end);
 799	if (exp_holdoff == 0 ||
 800	    time_in_range_open(t, tlast, tlast + exp_holdoff))
 801		return false; /* Too soon after last GP. */
 802
 803	/* Next, check for probable idleness. */
 804	curseq = rcu_seq_current(&ssp->srcu_gp_seq);
 805	smp_mb(); /* Order ->srcu_gp_seq with ->srcu_gp_seq_needed. */
 806	if (ULONG_CMP_LT(curseq, READ_ONCE(ssp->srcu_gp_seq_needed)))
 807		return false; /* Grace period in progress, so not idle. */
 808	smp_mb(); /* Order ->srcu_gp_seq with prior access. */
 809	if (curseq != rcu_seq_current(&ssp->srcu_gp_seq))
 810		return false; /* GP # changed, so not idle. */
 811	return true; /* With reasonable probability, idle! */
 812}
 813
 814/*
 815 * SRCU callback function to leak a callback.
 816 */
 817static void srcu_leak_callback(struct rcu_head *rhp)
 818{
 819}
 820
 821/*
 822 * Enqueue an SRCU callback on the srcu_data structure associated with
 823 * the current CPU and the specified srcu_struct structure, initiating
 824 * grace-period processing if it is not already running.
 825 *
 826 * Note that all CPUs must agree that the grace period extended beyond
 827 * all pre-existing SRCU read-side critical section.  On systems with
 828 * more than one CPU, this means that when "func()" is invoked, each CPU
 829 * is guaranteed to have executed a full memory barrier since the end of
 830 * its last corresponding SRCU read-side critical section whose beginning
 831 * preceded the call to call_srcu().  It also means that each CPU executing
 832 * an SRCU read-side critical section that continues beyond the start of
 833 * "func()" must have executed a memory barrier after the call_srcu()
 834 * but before the beginning of that SRCU read-side critical section.
 835 * Note that these guarantees include CPUs that are offline, idle, or
 836 * executing in user mode, as well as CPUs that are executing in the kernel.
 837 *
 838 * Furthermore, if CPU A invoked call_srcu() and CPU B invoked the
 839 * resulting SRCU callback function "func()", then both CPU A and CPU
 840 * B are guaranteed to execute a full memory barrier during the time
 841 * interval between the call to call_srcu() and the invocation of "func()".
 842 * This guarantee applies even if CPU A and CPU B are the same CPU (but
 843 * again only if the system has more than one CPU).
 844 *
 845 * Of course, these guarantees apply only for invocations of call_srcu(),
 846 * srcu_read_lock(), and srcu_read_unlock() that are all passed the same
 847 * srcu_struct structure.
 848 */
 849static void __call_srcu(struct srcu_struct *ssp, struct rcu_head *rhp,
 850			rcu_callback_t func, bool do_norm)
 851{
 852	unsigned long flags;
 853	int idx;
 854	bool needexp = false;
 855	bool needgp = false;
 856	unsigned long s;
 857	struct srcu_data *sdp;
 858
 859	check_init_srcu_struct(ssp);
 860	if (debug_rcu_head_queue(rhp)) {
 861		/* Probable double call_srcu(), so leak the callback. */
 862		WRITE_ONCE(rhp->func, srcu_leak_callback);
 863		WARN_ONCE(1, "call_srcu(): Leaked duplicate callback\n");
 864		return;
 865	}
 866	rhp->func = func;
 867	idx = srcu_read_lock(ssp);
 868	sdp = raw_cpu_ptr(ssp->sda);
 869	spin_lock_irqsave_rcu_node(sdp, flags);
 870	rcu_segcblist_enqueue(&sdp->srcu_cblist, rhp);
 871	rcu_segcblist_advance(&sdp->srcu_cblist,
 872			      rcu_seq_current(&ssp->srcu_gp_seq));
 873	s = rcu_seq_snap(&ssp->srcu_gp_seq);
 874	(void)rcu_segcblist_accelerate(&sdp->srcu_cblist, s);
 875	if (ULONG_CMP_LT(sdp->srcu_gp_seq_needed, s)) {
 876		sdp->srcu_gp_seq_needed = s;
 877		needgp = true;
 878	}
 879	if (!do_norm && ULONG_CMP_LT(sdp->srcu_gp_seq_needed_exp, s)) {
 880		sdp->srcu_gp_seq_needed_exp = s;
 881		needexp = true;
 882	}
 883	spin_unlock_irqrestore_rcu_node(sdp, flags);
 884	if (needgp)
 885		srcu_funnel_gp_start(ssp, sdp, s, do_norm);
 886	else if (needexp)
 887		srcu_funnel_exp_start(ssp, sdp->mynode, s);
 888	srcu_read_unlock(ssp, idx);
 889}
 890
 891/**
 892 * call_srcu() - Queue a callback for invocation after an SRCU grace period
 893 * @ssp: srcu_struct in queue the callback
 894 * @rhp: structure to be used for queueing the SRCU callback.
 895 * @func: function to be invoked after the SRCU grace period
 896 *
 897 * The callback function will be invoked some time after a full SRCU
 898 * grace period elapses, in other words after all pre-existing SRCU
 899 * read-side critical sections have completed.  However, the callback
 900 * function might well execute concurrently with other SRCU read-side
 901 * critical sections that started after call_srcu() was invoked.  SRCU
 902 * read-side critical sections are delimited by srcu_read_lock() and
 903 * srcu_read_unlock(), and may be nested.
 904 *
 905 * The callback will be invoked from process context, but must nevertheless
 906 * be fast and must not block.
 907 */
 908void call_srcu(struct srcu_struct *ssp, struct rcu_head *rhp,
 909	       rcu_callback_t func)
 910{
 911	__call_srcu(ssp, rhp, func, true);
 912}
 913EXPORT_SYMBOL_GPL(call_srcu);
 914
 915/*
 916 * Helper function for synchronize_srcu() and synchronize_srcu_expedited().
 917 */
 918static void __synchronize_srcu(struct srcu_struct *ssp, bool do_norm)
 919{
 920	struct rcu_synchronize rcu;
 921
 922	RCU_LOCKDEP_WARN(lock_is_held(&ssp->dep_map) ||
 923			 lock_is_held(&rcu_bh_lock_map) ||
 924			 lock_is_held(&rcu_lock_map) ||
 925			 lock_is_held(&rcu_sched_lock_map),
 926			 "Illegal synchronize_srcu() in same-type SRCU (or in RCU) read-side critical section");
 927
 928	if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
 929		return;
 930	might_sleep();
 931	check_init_srcu_struct(ssp);
 932	init_completion(&rcu.completion);
 933	init_rcu_head_on_stack(&rcu.head);
 934	__call_srcu(ssp, &rcu.head, wakeme_after_rcu, do_norm);
 935	wait_for_completion(&rcu.completion);
 936	destroy_rcu_head_on_stack(&rcu.head);
 937
 938	/*
 939	 * Make sure that later code is ordered after the SRCU grace
 940	 * period.  This pairs with the spin_lock_irq_rcu_node()
 941	 * in srcu_invoke_callbacks().  Unlike Tree RCU, this is needed
 942	 * because the current CPU might have been totally uninvolved with
 943	 * (and thus unordered against) that grace period.
 944	 */
 945	smp_mb();
 946}
 947
 948/**
 949 * synchronize_srcu_expedited - Brute-force SRCU grace period
 950 * @ssp: srcu_struct with which to synchronize.
 951 *
 952 * Wait for an SRCU grace period to elapse, but be more aggressive about
 953 * spinning rather than blocking when waiting.
 954 *
 955 * Note that synchronize_srcu_expedited() has the same deadlock and
 956 * memory-ordering properties as does synchronize_srcu().
 957 */
 958void synchronize_srcu_expedited(struct srcu_struct *ssp)
 959{
 960	__synchronize_srcu(ssp, rcu_gp_is_normal());
 961}
 962EXPORT_SYMBOL_GPL(synchronize_srcu_expedited);
 963
 964/**
 965 * synchronize_srcu - wait for prior SRCU read-side critical-section completion
 966 * @ssp: srcu_struct with which to synchronize.
 967 *
 968 * Wait for the count to drain to zero of both indexes. To avoid the
 969 * possible starvation of synchronize_srcu(), it waits for the count of
 970 * the index=((->srcu_idx & 1) ^ 1) to drain to zero at first,
 971 * and then flip the srcu_idx and wait for the count of the other index.
 972 *
 973 * Can block; must be called from process context.
 974 *
 975 * Note that it is illegal to call synchronize_srcu() from the corresponding
 976 * SRCU read-side critical section; doing so will result in deadlock.
 977 * However, it is perfectly legal to call synchronize_srcu() on one
 978 * srcu_struct from some other srcu_struct's read-side critical section,
 979 * as long as the resulting graph of srcu_structs is acyclic.
 980 *
 981 * There are memory-ordering constraints implied by synchronize_srcu().
 982 * On systems with more than one CPU, when synchronize_srcu() returns,
 983 * each CPU is guaranteed to have executed a full memory barrier since
 984 * the end of its last corresponding SRCU read-side critical section
 985 * whose beginning preceded the call to synchronize_srcu().  In addition,
 986 * each CPU having an SRCU read-side critical section that extends beyond
 987 * the return from synchronize_srcu() is guaranteed to have executed a
 988 * full memory barrier after the beginning of synchronize_srcu() and before
 989 * the beginning of that SRCU read-side critical section.  Note that these
 990 * guarantees include CPUs that are offline, idle, or executing in user mode,
 991 * as well as CPUs that are executing in the kernel.
 992 *
 993 * Furthermore, if CPU A invoked synchronize_srcu(), which returned
 994 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
 995 * to have executed a full memory barrier during the execution of
 996 * synchronize_srcu().  This guarantee applies even if CPU A and CPU B
 997 * are the same CPU, but again only if the system has more than one CPU.
 998 *
 999 * Of course, these memory-ordering guarantees apply only when
1000 * synchronize_srcu(), srcu_read_lock(), and srcu_read_unlock() are
1001 * passed the same srcu_struct structure.
1002 *
1003 * If SRCU is likely idle, expedite the first request.  This semantic
1004 * was provided by Classic SRCU, and is relied upon by its users, so TREE
1005 * SRCU must also provide it.  Note that detecting idleness is heuristic
1006 * and subject to both false positives and negatives.
1007 */
1008void synchronize_srcu(struct srcu_struct *ssp)
1009{
1010	if (srcu_might_be_idle(ssp) || rcu_gp_is_expedited())
1011		synchronize_srcu_expedited(ssp);
1012	else
1013		__synchronize_srcu(ssp, true);
1014}
1015EXPORT_SYMBOL_GPL(synchronize_srcu);
1016
1017/*
1018 * Callback function for srcu_barrier() use.
1019 */
1020static void srcu_barrier_cb(struct rcu_head *rhp)
1021{
1022	struct srcu_data *sdp;
1023	struct srcu_struct *ssp;
1024
1025	sdp = container_of(rhp, struct srcu_data, srcu_barrier_head);
1026	ssp = sdp->ssp;
1027	if (atomic_dec_and_test(&ssp->srcu_barrier_cpu_cnt))
1028		complete(&ssp->srcu_barrier_completion);
1029}
1030
1031/**
1032 * srcu_barrier - Wait until all in-flight call_srcu() callbacks complete.
1033 * @ssp: srcu_struct on which to wait for in-flight callbacks.
1034 */
1035void srcu_barrier(struct srcu_struct *ssp)
1036{
1037	int cpu;
1038	struct srcu_data *sdp;
1039	unsigned long s = rcu_seq_snap(&ssp->srcu_barrier_seq);
1040
1041	check_init_srcu_struct(ssp);
1042	mutex_lock(&ssp->srcu_barrier_mutex);
1043	if (rcu_seq_done(&ssp->srcu_barrier_seq, s)) {
1044		smp_mb(); /* Force ordering following return. */
1045		mutex_unlock(&ssp->srcu_barrier_mutex);
1046		return; /* Someone else did our work for us. */
1047	}
1048	rcu_seq_start(&ssp->srcu_barrier_seq);
1049	init_completion(&ssp->srcu_barrier_completion);
1050
1051	/* Initial count prevents reaching zero until all CBs are posted. */
1052	atomic_set(&ssp->srcu_barrier_cpu_cnt, 1);
1053
1054	/*
1055	 * Each pass through this loop enqueues a callback, but only
1056	 * on CPUs already having callbacks enqueued.  Note that if
1057	 * a CPU already has callbacks enqueue, it must have already
1058	 * registered the need for a future grace period, so all we
1059	 * need do is enqueue a callback that will use the same
1060	 * grace period as the last callback already in the queue.
1061	 */
1062	for_each_possible_cpu(cpu) {
1063		sdp = per_cpu_ptr(ssp->sda, cpu);
1064		spin_lock_irq_rcu_node(sdp);
1065		atomic_inc(&ssp->srcu_barrier_cpu_cnt);
1066		sdp->srcu_barrier_head.func = srcu_barrier_cb;
1067		debug_rcu_head_queue(&sdp->srcu_barrier_head);
1068		if (!rcu_segcblist_entrain(&sdp->srcu_cblist,
1069					   &sdp->srcu_barrier_head)) {
1070			debug_rcu_head_unqueue(&sdp->srcu_barrier_head);
1071			atomic_dec(&ssp->srcu_barrier_cpu_cnt);
1072		}
1073		spin_unlock_irq_rcu_node(sdp);
1074	}
1075
1076	/* Remove the initial count, at which point reaching zero can happen. */
1077	if (atomic_dec_and_test(&ssp->srcu_barrier_cpu_cnt))
1078		complete(&ssp->srcu_barrier_completion);
1079	wait_for_completion(&ssp->srcu_barrier_completion);
1080
1081	rcu_seq_end(&ssp->srcu_barrier_seq);
1082	mutex_unlock(&ssp->srcu_barrier_mutex);
1083}
1084EXPORT_SYMBOL_GPL(srcu_barrier);
1085
1086/**
1087 * srcu_batches_completed - return batches completed.
1088 * @ssp: srcu_struct on which to report batch completion.
1089 *
1090 * Report the number of batches, correlated with, but not necessarily
1091 * precisely the same as, the number of grace periods that have elapsed.
1092 */
1093unsigned long srcu_batches_completed(struct srcu_struct *ssp)
1094{
1095	return READ_ONCE(ssp->srcu_idx);
1096}
1097EXPORT_SYMBOL_GPL(srcu_batches_completed);
1098
1099/*
1100 * Core SRCU state machine.  Push state bits of ->srcu_gp_seq
1101 * to SRCU_STATE_SCAN2, and invoke srcu_gp_end() when scan has
1102 * completed in that state.
1103 */
1104static void srcu_advance_state(struct srcu_struct *ssp)
1105{
1106	int idx;
1107
1108	mutex_lock(&ssp->srcu_gp_mutex);
1109
1110	/*
1111	 * Because readers might be delayed for an extended period after
1112	 * fetching ->srcu_idx for their index, at any point in time there
1113	 * might well be readers using both idx=0 and idx=1.  We therefore
1114	 * need to wait for readers to clear from both index values before
1115	 * invoking a callback.
1116	 *
1117	 * The load-acquire ensures that we see the accesses performed
1118	 * by the prior grace period.
1119	 */
1120	idx = rcu_seq_state(smp_load_acquire(&ssp->srcu_gp_seq)); /* ^^^ */
1121	if (idx == SRCU_STATE_IDLE) {
1122		spin_lock_irq_rcu_node(ssp);
1123		if (ULONG_CMP_GE(ssp->srcu_gp_seq, ssp->srcu_gp_seq_needed)) {
1124			WARN_ON_ONCE(rcu_seq_state(ssp->srcu_gp_seq));
1125			spin_unlock_irq_rcu_node(ssp);
1126			mutex_unlock(&ssp->srcu_gp_mutex);
1127			return;
1128		}
1129		idx = rcu_seq_state(READ_ONCE(ssp->srcu_gp_seq));
1130		if (idx == SRCU_STATE_IDLE)
1131			srcu_gp_start(ssp);
1132		spin_unlock_irq_rcu_node(ssp);
1133		if (idx != SRCU_STATE_IDLE) {
1134			mutex_unlock(&ssp->srcu_gp_mutex);
1135			return; /* Someone else started the grace period. */
1136		}
1137	}
1138
1139	if (rcu_seq_state(READ_ONCE(ssp->srcu_gp_seq)) == SRCU_STATE_SCAN1) {
1140		idx = 1 ^ (ssp->srcu_idx & 1);
1141		if (!try_check_zero(ssp, idx, 1)) {
1142			mutex_unlock(&ssp->srcu_gp_mutex);
1143			return; /* readers present, retry later. */
1144		}
1145		srcu_flip(ssp);
1146		spin_lock_irq_rcu_node(ssp);
1147		rcu_seq_set_state(&ssp->srcu_gp_seq, SRCU_STATE_SCAN2);
1148		spin_unlock_irq_rcu_node(ssp);
1149	}
1150
1151	if (rcu_seq_state(READ_ONCE(ssp->srcu_gp_seq)) == SRCU_STATE_SCAN2) {
1152
1153		/*
1154		 * SRCU read-side critical sections are normally short,
1155		 * so check at least twice in quick succession after a flip.
1156		 */
1157		idx = 1 ^ (ssp->srcu_idx & 1);
1158		if (!try_check_zero(ssp, idx, 2)) {
1159			mutex_unlock(&ssp->srcu_gp_mutex);
1160			return; /* readers present, retry later. */
1161		}
1162		srcu_gp_end(ssp);  /* Releases ->srcu_gp_mutex. */
1163	}
1164}
1165
1166/*
1167 * Invoke a limited number of SRCU callbacks that have passed through
1168 * their grace period.  If there are more to do, SRCU will reschedule
1169 * the workqueue.  Note that needed memory barriers have been executed
1170 * in this task's context by srcu_readers_active_idx_check().
1171 */
1172static void srcu_invoke_callbacks(struct work_struct *work)
1173{
1174	bool more;
1175	struct rcu_cblist ready_cbs;
1176	struct rcu_head *rhp;
1177	struct srcu_data *sdp;
1178	struct srcu_struct *ssp;
1179
1180	sdp = container_of(work, struct srcu_data, work);
1181
1182	ssp = sdp->ssp;
1183	rcu_cblist_init(&ready_cbs);
1184	spin_lock_irq_rcu_node(sdp);
1185	rcu_segcblist_advance(&sdp->srcu_cblist,
1186			      rcu_seq_current(&ssp->srcu_gp_seq));
1187	if (sdp->srcu_cblist_invoking ||
1188	    !rcu_segcblist_ready_cbs(&sdp->srcu_cblist)) {
1189		spin_unlock_irq_rcu_node(sdp);
1190		return;  /* Someone else on the job or nothing to do. */
1191	}
1192
1193	/* We are on the job!  Extract and invoke ready callbacks. */
1194	sdp->srcu_cblist_invoking = true;
1195	rcu_segcblist_extract_done_cbs(&sdp->srcu_cblist, &ready_cbs);
1196	spin_unlock_irq_rcu_node(sdp);
1197	rhp = rcu_cblist_dequeue(&ready_cbs);
1198	for (; rhp != NULL; rhp = rcu_cblist_dequeue(&ready_cbs)) {
1199		debug_rcu_head_unqueue(rhp);
1200		local_bh_disable();
1201		rhp->func(rhp);
1202		local_bh_enable();
1203	}
1204
1205	/*
1206	 * Update counts, accelerate new callbacks, and if needed,
1207	 * schedule another round of callback invocation.
1208	 */
1209	spin_lock_irq_rcu_node(sdp);
1210	rcu_segcblist_insert_count(&sdp->srcu_cblist, &ready_cbs);
1211	(void)rcu_segcblist_accelerate(&sdp->srcu_cblist,
1212				       rcu_seq_snap(&ssp->srcu_gp_seq));
1213	sdp->srcu_cblist_invoking = false;
1214	more = rcu_segcblist_ready_cbs(&sdp->srcu_cblist);
1215	spin_unlock_irq_rcu_node(sdp);
1216	if (more)
1217		srcu_schedule_cbs_sdp(sdp, 0);
1218}
1219
1220/*
1221 * Finished one round of SRCU grace period.  Start another if there are
1222 * more SRCU callbacks queued, otherwise put SRCU into not-running state.
1223 */
1224static void srcu_reschedule(struct srcu_struct *ssp, unsigned long delay)
1225{
1226	bool pushgp = true;
1227
1228	spin_lock_irq_rcu_node(ssp);
1229	if (ULONG_CMP_GE(ssp->srcu_gp_seq, ssp->srcu_gp_seq_needed)) {
1230		if (!WARN_ON_ONCE(rcu_seq_state(ssp->srcu_gp_seq))) {
1231			/* All requests fulfilled, time to go idle. */
1232			pushgp = false;
1233		}
1234	} else if (!rcu_seq_state(ssp->srcu_gp_seq)) {
1235		/* Outstanding request and no GP.  Start one. */
1236		srcu_gp_start(ssp);
1237	}
1238	spin_unlock_irq_rcu_node(ssp);
1239
1240	if (pushgp)
1241		queue_delayed_work(rcu_gp_wq, &ssp->work, delay);
1242}
1243
1244/*
1245 * This is the work-queue function that handles SRCU grace periods.
1246 */
1247static void process_srcu(struct work_struct *work)
1248{
1249	struct srcu_struct *ssp;
1250
1251	ssp = container_of(work, struct srcu_struct, work.work);
1252
1253	srcu_advance_state(ssp);
1254	srcu_reschedule(ssp, srcu_get_delay(ssp));
1255}
1256
1257void srcutorture_get_gp_data(enum rcutorture_type test_type,
1258			     struct srcu_struct *ssp, int *flags,
1259			     unsigned long *gp_seq)
1260{
1261	if (test_type != SRCU_FLAVOR)
1262		return;
1263	*flags = 0;
1264	*gp_seq = rcu_seq_current(&ssp->srcu_gp_seq);
1265}
1266EXPORT_SYMBOL_GPL(srcutorture_get_gp_data);
1267
1268void srcu_torture_stats_print(struct srcu_struct *ssp, char *tt, char *tf)
1269{
1270	int cpu;
1271	int idx;
1272	unsigned long s0 = 0, s1 = 0;
1273
1274	idx = ssp->srcu_idx & 0x1;
1275	pr_alert("%s%s Tree SRCU g%ld per-CPU(idx=%d):",
1276		 tt, tf, rcu_seq_current(&ssp->srcu_gp_seq), idx);
1277	for_each_possible_cpu(cpu) {
1278		unsigned long l0, l1;
1279		unsigned long u0, u1;
1280		long c0, c1;
1281		struct srcu_data *sdp;
1282
1283		sdp = per_cpu_ptr(ssp->sda, cpu);
1284		u0 = data_race(sdp->srcu_unlock_count[!idx]);
1285		u1 = data_race(sdp->srcu_unlock_count[idx]);
1286
1287		/*
1288		 * Make sure that a lock is always counted if the corresponding
1289		 * unlock is counted.
1290		 */
1291		smp_rmb();
1292
1293		l0 = data_race(sdp->srcu_lock_count[!idx]);
1294		l1 = data_race(sdp->srcu_lock_count[idx]);
1295
1296		c0 = l0 - u0;
1297		c1 = l1 - u1;
1298		pr_cont(" %d(%ld,%ld %c)",
1299			cpu, c0, c1,
1300			"C."[rcu_segcblist_empty(&sdp->srcu_cblist)]);
1301		s0 += c0;
1302		s1 += c1;
1303	}
1304	pr_cont(" T(%ld,%ld)\n", s0, s1);
1305}
1306EXPORT_SYMBOL_GPL(srcu_torture_stats_print);
1307
1308static int __init srcu_bootup_announce(void)
1309{
1310	pr_info("Hierarchical SRCU implementation.\n");
1311	if (exp_holdoff != DEFAULT_SRCU_EXP_HOLDOFF)
1312		pr_info("\tNon-default auto-expedite holdoff of %lu ns.\n", exp_holdoff);
1313	return 0;
1314}
1315early_initcall(srcu_bootup_announce);
1316
1317void __init srcu_init(void)
1318{
1319	struct srcu_struct *ssp;
1320
1321	srcu_init_done = true;
1322	while (!list_empty(&srcu_boot_list)) {
1323		ssp = list_first_entry(&srcu_boot_list, struct srcu_struct,
1324				      work.work.entry);
1325		check_init_srcu_struct(ssp);
1326		list_del_init(&ssp->work.work.entry);
1327		queue_work(rcu_gp_wq, &ssp->work.work);
1328	}
1329}
1330
1331#ifdef CONFIG_MODULES
1332
1333/* Initialize any global-scope srcu_struct structures used by this module. */
1334static int srcu_module_coming(struct module *mod)
1335{
1336	int i;
1337	struct srcu_struct **sspp = mod->srcu_struct_ptrs;
1338	int ret;
1339
1340	for (i = 0; i < mod->num_srcu_structs; i++) {
1341		ret = init_srcu_struct(*(sspp++));
1342		if (WARN_ON_ONCE(ret))
1343			return ret;
1344	}
1345	return 0;
1346}
1347
1348/* Clean up any global-scope srcu_struct structures used by this module. */
1349static void srcu_module_going(struct module *mod)
1350{
1351	int i;
1352	struct srcu_struct **sspp = mod->srcu_struct_ptrs;
1353
1354	for (i = 0; i < mod->num_srcu_structs; i++)
1355		cleanup_srcu_struct(*(sspp++));
1356}
1357
1358/* Handle one module, either coming or going. */
1359static int srcu_module_notify(struct notifier_block *self,
1360			      unsigned long val, void *data)
1361{
1362	struct module *mod = data;
1363	int ret = 0;
1364
1365	switch (val) {
1366	case MODULE_STATE_COMING:
1367		ret = srcu_module_coming(mod);
1368		break;
1369	case MODULE_STATE_GOING:
1370		srcu_module_going(mod);
1371		break;
1372	default:
1373		break;
1374	}
1375	return ret;
1376}
1377
1378static struct notifier_block srcu_module_nb = {
1379	.notifier_call = srcu_module_notify,
1380	.priority = 0,
1381};
1382
1383static __init int init_srcu_module_notifier(void)
1384{
1385	int ret;
1386
1387	ret = register_module_notifier(&srcu_module_nb);
1388	if (ret)
1389		pr_warn("Failed to register srcu module notifier\n");
1390	return ret;
1391}
1392late_initcall(init_srcu_module_notifier);
1393
1394#endif /* #ifdef CONFIG_MODULES */