Loading...
1/*
2 * Copyright (c) 2013-2014 Samsung Electronics Co., Ltd
3 * http://www.samsung.com
4 *
5 * Copyright (C) 2013 Google, Inc
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 */
17
18#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19
20#include <linux/module.h>
21#include <linux/i2c.h>
22#include <linux/bcd.h>
23#include <linux/regmap.h>
24#include <linux/rtc.h>
25#include <linux/platform_device.h>
26#include <linux/mfd/samsung/core.h>
27#include <linux/mfd/samsung/irq.h>
28#include <linux/mfd/samsung/rtc.h>
29#include <linux/mfd/samsung/s2mps14.h>
30
31/*
32 * Maximum number of retries for checking changes in UDR field
33 * of S5M_RTC_UDR_CON register (to limit possible endless loop).
34 *
35 * After writing to RTC registers (setting time or alarm) read the UDR field
36 * in S5M_RTC_UDR_CON register. UDR is auto-cleared when data have
37 * been transferred.
38 */
39#define UDR_READ_RETRY_CNT 5
40
41/*
42 * Registers used by the driver which are different between chipsets.
43 *
44 * Operations like read time and write alarm/time require updating
45 * specific fields in UDR register. These fields usually are auto-cleared
46 * (with some exceptions).
47 *
48 * Table of operations per device:
49 *
50 * Device | Write time | Read time | Write alarm
51 * =================================================
52 * S5M8767 | UDR + TIME | | UDR
53 * S2MPS11/14 | WUDR | RUDR | WUDR + RUDR
54 * S2MPS13 | WUDR | RUDR | WUDR + AUDR
55 * S2MPS15 | WUDR | RUDR | AUDR
56 */
57struct s5m_rtc_reg_config {
58 /* Number of registers used for setting time/alarm0/alarm1 */
59 unsigned int regs_count;
60 /* First register for time, seconds */
61 unsigned int time;
62 /* RTC control register */
63 unsigned int ctrl;
64 /* First register for alarm 0, seconds */
65 unsigned int alarm0;
66 /* First register for alarm 1, seconds */
67 unsigned int alarm1;
68 /*
69 * Register for update flag (UDR). Typically setting UDR field to 1
70 * will enable update of time or alarm register. Then it will be
71 * auto-cleared after successful update.
72 */
73 unsigned int udr_update;
74 /* Auto-cleared mask in UDR field for writing time and alarm */
75 unsigned int autoclear_udr_mask;
76 /*
77 * Masks in UDR field for time and alarm operations.
78 * The read time mask can be 0. Rest should not.
79 */
80 unsigned int read_time_udr_mask;
81 unsigned int write_time_udr_mask;
82 unsigned int write_alarm_udr_mask;
83};
84
85/* Register map for S5M8763 and S5M8767 */
86static const struct s5m_rtc_reg_config s5m_rtc_regs = {
87 .regs_count = 8,
88 .time = S5M_RTC_SEC,
89 .ctrl = S5M_ALARM1_CONF,
90 .alarm0 = S5M_ALARM0_SEC,
91 .alarm1 = S5M_ALARM1_SEC,
92 .udr_update = S5M_RTC_UDR_CON,
93 .autoclear_udr_mask = S5M_RTC_UDR_MASK,
94 .read_time_udr_mask = 0, /* Not needed */
95 .write_time_udr_mask = S5M_RTC_UDR_MASK | S5M_RTC_TIME_EN_MASK,
96 .write_alarm_udr_mask = S5M_RTC_UDR_MASK,
97};
98
99/* Register map for S2MPS13 */
100static const struct s5m_rtc_reg_config s2mps13_rtc_regs = {
101 .regs_count = 7,
102 .time = S2MPS_RTC_SEC,
103 .ctrl = S2MPS_RTC_CTRL,
104 .alarm0 = S2MPS_ALARM0_SEC,
105 .alarm1 = S2MPS_ALARM1_SEC,
106 .udr_update = S2MPS_RTC_UDR_CON,
107 .autoclear_udr_mask = S2MPS_RTC_WUDR_MASK,
108 .read_time_udr_mask = S2MPS_RTC_RUDR_MASK,
109 .write_time_udr_mask = S2MPS_RTC_WUDR_MASK,
110 .write_alarm_udr_mask = S2MPS_RTC_WUDR_MASK | S2MPS13_RTC_AUDR_MASK,
111};
112
113/* Register map for S2MPS11/14 */
114static const struct s5m_rtc_reg_config s2mps14_rtc_regs = {
115 .regs_count = 7,
116 .time = S2MPS_RTC_SEC,
117 .ctrl = S2MPS_RTC_CTRL,
118 .alarm0 = S2MPS_ALARM0_SEC,
119 .alarm1 = S2MPS_ALARM1_SEC,
120 .udr_update = S2MPS_RTC_UDR_CON,
121 .autoclear_udr_mask = S2MPS_RTC_WUDR_MASK,
122 .read_time_udr_mask = S2MPS_RTC_RUDR_MASK,
123 .write_time_udr_mask = S2MPS_RTC_WUDR_MASK,
124 .write_alarm_udr_mask = S2MPS_RTC_WUDR_MASK | S2MPS_RTC_RUDR_MASK,
125};
126
127/*
128 * Register map for S2MPS15 - in comparison to S2MPS14 the WUDR and AUDR bits
129 * are swapped.
130 */
131static const struct s5m_rtc_reg_config s2mps15_rtc_regs = {
132 .regs_count = 7,
133 .time = S2MPS_RTC_SEC,
134 .ctrl = S2MPS_RTC_CTRL,
135 .alarm0 = S2MPS_ALARM0_SEC,
136 .alarm1 = S2MPS_ALARM1_SEC,
137 .udr_update = S2MPS_RTC_UDR_CON,
138 .autoclear_udr_mask = S2MPS_RTC_WUDR_MASK,
139 .read_time_udr_mask = S2MPS_RTC_RUDR_MASK,
140 .write_time_udr_mask = S2MPS15_RTC_WUDR_MASK,
141 .write_alarm_udr_mask = S2MPS15_RTC_AUDR_MASK,
142};
143
144struct s5m_rtc_info {
145 struct device *dev;
146 struct i2c_client *i2c;
147 struct sec_pmic_dev *s5m87xx;
148 struct regmap *regmap;
149 struct rtc_device *rtc_dev;
150 int irq;
151 enum sec_device_type device_type;
152 int rtc_24hr_mode;
153 const struct s5m_rtc_reg_config *regs;
154};
155
156static const struct regmap_config s5m_rtc_regmap_config = {
157 .reg_bits = 8,
158 .val_bits = 8,
159
160 .max_register = S5M_RTC_REG_MAX,
161};
162
163static const struct regmap_config s2mps14_rtc_regmap_config = {
164 .reg_bits = 8,
165 .val_bits = 8,
166
167 .max_register = S2MPS_RTC_REG_MAX,
168};
169
170static void s5m8767_data_to_tm(u8 *data, struct rtc_time *tm,
171 int rtc_24hr_mode)
172{
173 tm->tm_sec = data[RTC_SEC] & 0x7f;
174 tm->tm_min = data[RTC_MIN] & 0x7f;
175 if (rtc_24hr_mode) {
176 tm->tm_hour = data[RTC_HOUR] & 0x1f;
177 } else {
178 tm->tm_hour = data[RTC_HOUR] & 0x0f;
179 if (data[RTC_HOUR] & HOUR_PM_MASK)
180 tm->tm_hour += 12;
181 }
182
183 tm->tm_wday = ffs(data[RTC_WEEKDAY] & 0x7f);
184 tm->tm_mday = data[RTC_DATE] & 0x1f;
185 tm->tm_mon = (data[RTC_MONTH] & 0x0f) - 1;
186 tm->tm_year = (data[RTC_YEAR1] & 0x7f) + 100;
187 tm->tm_yday = 0;
188 tm->tm_isdst = 0;
189}
190
191static int s5m8767_tm_to_data(struct rtc_time *tm, u8 *data)
192{
193 data[RTC_SEC] = tm->tm_sec;
194 data[RTC_MIN] = tm->tm_min;
195
196 if (tm->tm_hour >= 12)
197 data[RTC_HOUR] = tm->tm_hour | HOUR_PM_MASK;
198 else
199 data[RTC_HOUR] = tm->tm_hour & ~HOUR_PM_MASK;
200
201 data[RTC_WEEKDAY] = 1 << tm->tm_wday;
202 data[RTC_DATE] = tm->tm_mday;
203 data[RTC_MONTH] = tm->tm_mon + 1;
204 data[RTC_YEAR1] = tm->tm_year > 100 ? (tm->tm_year - 100) : 0;
205
206 if (tm->tm_year < 100) {
207 pr_err("RTC cannot handle the year %d\n",
208 1900 + tm->tm_year);
209 return -EINVAL;
210 } else {
211 return 0;
212 }
213}
214
215/*
216 * Read RTC_UDR_CON register and wait till UDR field is cleared.
217 * This indicates that time/alarm update ended.
218 */
219static int s5m8767_wait_for_udr_update(struct s5m_rtc_info *info)
220{
221 int ret, retry = UDR_READ_RETRY_CNT;
222 unsigned int data;
223
224 do {
225 ret = regmap_read(info->regmap, info->regs->udr_update, &data);
226 } while (--retry && (data & info->regs->autoclear_udr_mask) && !ret);
227
228 if (!retry)
229 dev_err(info->dev, "waiting for UDR update, reached max number of retries\n");
230
231 return ret;
232}
233
234static int s5m_check_peding_alarm_interrupt(struct s5m_rtc_info *info,
235 struct rtc_wkalrm *alarm)
236{
237 int ret;
238 unsigned int val;
239
240 switch (info->device_type) {
241 case S5M8767X:
242 case S5M8763X:
243 ret = regmap_read(info->regmap, S5M_RTC_STATUS, &val);
244 val &= S5M_ALARM0_STATUS;
245 break;
246 case S2MPS15X:
247 case S2MPS14X:
248 case S2MPS13X:
249 ret = regmap_read(info->s5m87xx->regmap_pmic, S2MPS14_REG_ST2,
250 &val);
251 val &= S2MPS_ALARM0_STATUS;
252 break;
253 default:
254 return -EINVAL;
255 }
256 if (ret < 0)
257 return ret;
258
259 if (val)
260 alarm->pending = 1;
261 else
262 alarm->pending = 0;
263
264 return 0;
265}
266
267static int s5m8767_rtc_set_time_reg(struct s5m_rtc_info *info)
268{
269 int ret;
270 unsigned int data;
271
272 ret = regmap_read(info->regmap, info->regs->udr_update, &data);
273 if (ret < 0) {
274 dev_err(info->dev, "failed to read update reg(%d)\n", ret);
275 return ret;
276 }
277
278 data |= info->regs->write_time_udr_mask;
279
280 ret = regmap_write(info->regmap, info->regs->udr_update, data);
281 if (ret < 0) {
282 dev_err(info->dev, "failed to write update reg(%d)\n", ret);
283 return ret;
284 }
285
286 ret = s5m8767_wait_for_udr_update(info);
287
288 return ret;
289}
290
291static int s5m8767_rtc_set_alarm_reg(struct s5m_rtc_info *info)
292{
293 int ret;
294 unsigned int data;
295
296 ret = regmap_read(info->regmap, info->regs->udr_update, &data);
297 if (ret < 0) {
298 dev_err(info->dev, "%s: fail to read update reg(%d)\n",
299 __func__, ret);
300 return ret;
301 }
302
303 data |= info->regs->write_alarm_udr_mask;
304 switch (info->device_type) {
305 case S5M8763X:
306 case S5M8767X:
307 data &= ~S5M_RTC_TIME_EN_MASK;
308 break;
309 case S2MPS15X:
310 case S2MPS14X:
311 case S2MPS13X:
312 /* No exceptions needed */
313 break;
314 default:
315 return -EINVAL;
316 }
317
318 ret = regmap_write(info->regmap, info->regs->udr_update, data);
319 if (ret < 0) {
320 dev_err(info->dev, "%s: fail to write update reg(%d)\n",
321 __func__, ret);
322 return ret;
323 }
324
325 ret = s5m8767_wait_for_udr_update(info);
326
327 /* On S2MPS13 the AUDR is not auto-cleared */
328 if (info->device_type == S2MPS13X)
329 regmap_update_bits(info->regmap, info->regs->udr_update,
330 S2MPS13_RTC_AUDR_MASK, 0);
331
332 return ret;
333}
334
335static void s5m8763_data_to_tm(u8 *data, struct rtc_time *tm)
336{
337 tm->tm_sec = bcd2bin(data[RTC_SEC]);
338 tm->tm_min = bcd2bin(data[RTC_MIN]);
339
340 if (data[RTC_HOUR] & HOUR_12) {
341 tm->tm_hour = bcd2bin(data[RTC_HOUR] & 0x1f);
342 if (data[RTC_HOUR] & HOUR_PM)
343 tm->tm_hour += 12;
344 } else {
345 tm->tm_hour = bcd2bin(data[RTC_HOUR] & 0x3f);
346 }
347
348 tm->tm_wday = data[RTC_WEEKDAY] & 0x07;
349 tm->tm_mday = bcd2bin(data[RTC_DATE]);
350 tm->tm_mon = bcd2bin(data[RTC_MONTH]);
351 tm->tm_year = bcd2bin(data[RTC_YEAR1]) + bcd2bin(data[RTC_YEAR2]) * 100;
352 tm->tm_year -= 1900;
353}
354
355static void s5m8763_tm_to_data(struct rtc_time *tm, u8 *data)
356{
357 data[RTC_SEC] = bin2bcd(tm->tm_sec);
358 data[RTC_MIN] = bin2bcd(tm->tm_min);
359 data[RTC_HOUR] = bin2bcd(tm->tm_hour);
360 data[RTC_WEEKDAY] = tm->tm_wday;
361 data[RTC_DATE] = bin2bcd(tm->tm_mday);
362 data[RTC_MONTH] = bin2bcd(tm->tm_mon);
363 data[RTC_YEAR1] = bin2bcd(tm->tm_year % 100);
364 data[RTC_YEAR2] = bin2bcd((tm->tm_year + 1900) / 100);
365}
366
367static int s5m_rtc_read_time(struct device *dev, struct rtc_time *tm)
368{
369 struct s5m_rtc_info *info = dev_get_drvdata(dev);
370 u8 data[info->regs->regs_count];
371 int ret;
372
373 if (info->regs->read_time_udr_mask) {
374 ret = regmap_update_bits(info->regmap,
375 info->regs->udr_update,
376 info->regs->read_time_udr_mask,
377 info->regs->read_time_udr_mask);
378 if (ret) {
379 dev_err(dev,
380 "Failed to prepare registers for time reading: %d\n",
381 ret);
382 return ret;
383 }
384 }
385 ret = regmap_bulk_read(info->regmap, info->regs->time, data,
386 info->regs->regs_count);
387 if (ret < 0)
388 return ret;
389
390 switch (info->device_type) {
391 case S5M8763X:
392 s5m8763_data_to_tm(data, tm);
393 break;
394
395 case S5M8767X:
396 case S2MPS15X:
397 case S2MPS14X:
398 case S2MPS13X:
399 s5m8767_data_to_tm(data, tm, info->rtc_24hr_mode);
400 break;
401
402 default:
403 return -EINVAL;
404 }
405
406 dev_dbg(dev, "%s: %d/%d/%d %d:%d:%d(%d)\n", __func__,
407 1900 + tm->tm_year, 1 + tm->tm_mon, tm->tm_mday,
408 tm->tm_hour, tm->tm_min, tm->tm_sec, tm->tm_wday);
409
410 return rtc_valid_tm(tm);
411}
412
413static int s5m_rtc_set_time(struct device *dev, struct rtc_time *tm)
414{
415 struct s5m_rtc_info *info = dev_get_drvdata(dev);
416 u8 data[info->regs->regs_count];
417 int ret = 0;
418
419 switch (info->device_type) {
420 case S5M8763X:
421 s5m8763_tm_to_data(tm, data);
422 break;
423 case S5M8767X:
424 case S2MPS15X:
425 case S2MPS14X:
426 case S2MPS13X:
427 ret = s5m8767_tm_to_data(tm, data);
428 break;
429 default:
430 return -EINVAL;
431 }
432
433 if (ret < 0)
434 return ret;
435
436 dev_dbg(dev, "%s: %d/%d/%d %d:%d:%d(%d)\n", __func__,
437 1900 + tm->tm_year, 1 + tm->tm_mon, tm->tm_mday,
438 tm->tm_hour, tm->tm_min, tm->tm_sec, tm->tm_wday);
439
440 ret = regmap_raw_write(info->regmap, info->regs->time, data,
441 info->regs->regs_count);
442 if (ret < 0)
443 return ret;
444
445 ret = s5m8767_rtc_set_time_reg(info);
446
447 return ret;
448}
449
450static int s5m_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
451{
452 struct s5m_rtc_info *info = dev_get_drvdata(dev);
453 u8 data[info->regs->regs_count];
454 unsigned int val;
455 int ret, i;
456
457 ret = regmap_bulk_read(info->regmap, info->regs->alarm0, data,
458 info->regs->regs_count);
459 if (ret < 0)
460 return ret;
461
462 switch (info->device_type) {
463 case S5M8763X:
464 s5m8763_data_to_tm(data, &alrm->time);
465 ret = regmap_read(info->regmap, S5M_ALARM0_CONF, &val);
466 if (ret < 0)
467 return ret;
468
469 alrm->enabled = !!val;
470 break;
471
472 case S5M8767X:
473 case S2MPS15X:
474 case S2MPS14X:
475 case S2MPS13X:
476 s5m8767_data_to_tm(data, &alrm->time, info->rtc_24hr_mode);
477 alrm->enabled = 0;
478 for (i = 0; i < info->regs->regs_count; i++) {
479 if (data[i] & ALARM_ENABLE_MASK) {
480 alrm->enabled = 1;
481 break;
482 }
483 }
484 break;
485
486 default:
487 return -EINVAL;
488 }
489
490 dev_dbg(dev, "%s: %d/%d/%d %d:%d:%d(%d)\n", __func__,
491 1900 + alrm->time.tm_year, 1 + alrm->time.tm_mon,
492 alrm->time.tm_mday, alrm->time.tm_hour,
493 alrm->time.tm_min, alrm->time.tm_sec,
494 alrm->time.tm_wday);
495
496 ret = s5m_check_peding_alarm_interrupt(info, alrm);
497
498 return 0;
499}
500
501static int s5m_rtc_stop_alarm(struct s5m_rtc_info *info)
502{
503 u8 data[info->regs->regs_count];
504 int ret, i;
505 struct rtc_time tm;
506
507 ret = regmap_bulk_read(info->regmap, info->regs->alarm0, data,
508 info->regs->regs_count);
509 if (ret < 0)
510 return ret;
511
512 s5m8767_data_to_tm(data, &tm, info->rtc_24hr_mode);
513 dev_dbg(info->dev, "%s: %d/%d/%d %d:%d:%d(%d)\n", __func__,
514 1900 + tm.tm_year, 1 + tm.tm_mon, tm.tm_mday,
515 tm.tm_hour, tm.tm_min, tm.tm_sec, tm.tm_wday);
516
517 switch (info->device_type) {
518 case S5M8763X:
519 ret = regmap_write(info->regmap, S5M_ALARM0_CONF, 0);
520 break;
521
522 case S5M8767X:
523 case S2MPS15X:
524 case S2MPS14X:
525 case S2MPS13X:
526 for (i = 0; i < info->regs->regs_count; i++)
527 data[i] &= ~ALARM_ENABLE_MASK;
528
529 ret = regmap_raw_write(info->regmap, info->regs->alarm0, data,
530 info->regs->regs_count);
531 if (ret < 0)
532 return ret;
533
534 ret = s5m8767_rtc_set_alarm_reg(info);
535
536 break;
537
538 default:
539 return -EINVAL;
540 }
541
542 return ret;
543}
544
545static int s5m_rtc_start_alarm(struct s5m_rtc_info *info)
546{
547 int ret;
548 u8 data[info->regs->regs_count];
549 u8 alarm0_conf;
550 struct rtc_time tm;
551
552 ret = regmap_bulk_read(info->regmap, info->regs->alarm0, data,
553 info->regs->regs_count);
554 if (ret < 0)
555 return ret;
556
557 s5m8767_data_to_tm(data, &tm, info->rtc_24hr_mode);
558 dev_dbg(info->dev, "%s: %d/%d/%d %d:%d:%d(%d)\n", __func__,
559 1900 + tm.tm_year, 1 + tm.tm_mon, tm.tm_mday,
560 tm.tm_hour, tm.tm_min, tm.tm_sec, tm.tm_wday);
561
562 switch (info->device_type) {
563 case S5M8763X:
564 alarm0_conf = 0x77;
565 ret = regmap_write(info->regmap, S5M_ALARM0_CONF, alarm0_conf);
566 break;
567
568 case S5M8767X:
569 case S2MPS15X:
570 case S2MPS14X:
571 case S2MPS13X:
572 data[RTC_SEC] |= ALARM_ENABLE_MASK;
573 data[RTC_MIN] |= ALARM_ENABLE_MASK;
574 data[RTC_HOUR] |= ALARM_ENABLE_MASK;
575 data[RTC_WEEKDAY] &= ~ALARM_ENABLE_MASK;
576 if (data[RTC_DATE] & 0x1f)
577 data[RTC_DATE] |= ALARM_ENABLE_MASK;
578 if (data[RTC_MONTH] & 0xf)
579 data[RTC_MONTH] |= ALARM_ENABLE_MASK;
580 if (data[RTC_YEAR1] & 0x7f)
581 data[RTC_YEAR1] |= ALARM_ENABLE_MASK;
582
583 ret = regmap_raw_write(info->regmap, info->regs->alarm0, data,
584 info->regs->regs_count);
585 if (ret < 0)
586 return ret;
587 ret = s5m8767_rtc_set_alarm_reg(info);
588
589 break;
590
591 default:
592 return -EINVAL;
593 }
594
595 return ret;
596}
597
598static int s5m_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
599{
600 struct s5m_rtc_info *info = dev_get_drvdata(dev);
601 u8 data[info->regs->regs_count];
602 int ret;
603
604 switch (info->device_type) {
605 case S5M8763X:
606 s5m8763_tm_to_data(&alrm->time, data);
607 break;
608
609 case S5M8767X:
610 case S2MPS15X:
611 case S2MPS14X:
612 case S2MPS13X:
613 s5m8767_tm_to_data(&alrm->time, data);
614 break;
615
616 default:
617 return -EINVAL;
618 }
619
620 dev_dbg(dev, "%s: %d/%d/%d %d:%d:%d(%d)\n", __func__,
621 1900 + alrm->time.tm_year, 1 + alrm->time.tm_mon,
622 alrm->time.tm_mday, alrm->time.tm_hour, alrm->time.tm_min,
623 alrm->time.tm_sec, alrm->time.tm_wday);
624
625 ret = s5m_rtc_stop_alarm(info);
626 if (ret < 0)
627 return ret;
628
629 ret = regmap_raw_write(info->regmap, info->regs->alarm0, data,
630 info->regs->regs_count);
631 if (ret < 0)
632 return ret;
633
634 ret = s5m8767_rtc_set_alarm_reg(info);
635 if (ret < 0)
636 return ret;
637
638 if (alrm->enabled)
639 ret = s5m_rtc_start_alarm(info);
640
641 return ret;
642}
643
644static int s5m_rtc_alarm_irq_enable(struct device *dev,
645 unsigned int enabled)
646{
647 struct s5m_rtc_info *info = dev_get_drvdata(dev);
648
649 if (enabled)
650 return s5m_rtc_start_alarm(info);
651 else
652 return s5m_rtc_stop_alarm(info);
653}
654
655static irqreturn_t s5m_rtc_alarm_irq(int irq, void *data)
656{
657 struct s5m_rtc_info *info = data;
658
659 rtc_update_irq(info->rtc_dev, 1, RTC_IRQF | RTC_AF);
660
661 return IRQ_HANDLED;
662}
663
664static const struct rtc_class_ops s5m_rtc_ops = {
665 .read_time = s5m_rtc_read_time,
666 .set_time = s5m_rtc_set_time,
667 .read_alarm = s5m_rtc_read_alarm,
668 .set_alarm = s5m_rtc_set_alarm,
669 .alarm_irq_enable = s5m_rtc_alarm_irq_enable,
670};
671
672static int s5m8767_rtc_init_reg(struct s5m_rtc_info *info)
673{
674 u8 data[2];
675 int ret;
676
677 switch (info->device_type) {
678 case S5M8763X:
679 case S5M8767X:
680 /* UDR update time. Default of 7.32 ms is too long. */
681 ret = regmap_update_bits(info->regmap, S5M_RTC_UDR_CON,
682 S5M_RTC_UDR_T_MASK, S5M_RTC_UDR_T_450_US);
683 if (ret < 0)
684 dev_err(info->dev, "%s: fail to change UDR time: %d\n",
685 __func__, ret);
686
687 /* Set RTC control register : Binary mode, 24hour mode */
688 data[0] = (1 << BCD_EN_SHIFT) | (1 << MODEL24_SHIFT);
689 data[1] = (0 << BCD_EN_SHIFT) | (1 << MODEL24_SHIFT);
690
691 ret = regmap_raw_write(info->regmap, S5M_ALARM0_CONF, data, 2);
692 break;
693
694 case S2MPS15X:
695 case S2MPS14X:
696 case S2MPS13X:
697 data[0] = (0 << BCD_EN_SHIFT) | (1 << MODEL24_SHIFT);
698 ret = regmap_write(info->regmap, info->regs->ctrl, data[0]);
699 if (ret < 0)
700 break;
701
702 /*
703 * Should set WUDR & (RUDR or AUDR) bits to high after writing
704 * RTC_CTRL register like writing Alarm registers. We can't find
705 * the description from datasheet but vendor code does that
706 * really.
707 */
708 ret = s5m8767_rtc_set_alarm_reg(info);
709 break;
710
711 default:
712 return -EINVAL;
713 }
714
715 info->rtc_24hr_mode = 1;
716 if (ret < 0) {
717 dev_err(info->dev, "%s: fail to write controlm reg(%d)\n",
718 __func__, ret);
719 return ret;
720 }
721
722 return ret;
723}
724
725static int s5m_rtc_probe(struct platform_device *pdev)
726{
727 struct sec_pmic_dev *s5m87xx = dev_get_drvdata(pdev->dev.parent);
728 struct sec_platform_data *pdata = s5m87xx->pdata;
729 struct s5m_rtc_info *info;
730 const struct regmap_config *regmap_cfg;
731 int ret, alarm_irq;
732
733 if (!pdata) {
734 dev_err(pdev->dev.parent, "Platform data not supplied\n");
735 return -ENODEV;
736 }
737
738 info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL);
739 if (!info)
740 return -ENOMEM;
741
742 switch (platform_get_device_id(pdev)->driver_data) {
743 case S2MPS15X:
744 regmap_cfg = &s2mps14_rtc_regmap_config;
745 info->regs = &s2mps15_rtc_regs;
746 alarm_irq = S2MPS14_IRQ_RTCA0;
747 break;
748 case S2MPS14X:
749 regmap_cfg = &s2mps14_rtc_regmap_config;
750 info->regs = &s2mps14_rtc_regs;
751 alarm_irq = S2MPS14_IRQ_RTCA0;
752 break;
753 case S2MPS13X:
754 regmap_cfg = &s2mps14_rtc_regmap_config;
755 info->regs = &s2mps13_rtc_regs;
756 alarm_irq = S2MPS14_IRQ_RTCA0;
757 break;
758 case S5M8763X:
759 regmap_cfg = &s5m_rtc_regmap_config;
760 info->regs = &s5m_rtc_regs;
761 alarm_irq = S5M8763_IRQ_ALARM0;
762 break;
763 case S5M8767X:
764 regmap_cfg = &s5m_rtc_regmap_config;
765 info->regs = &s5m_rtc_regs;
766 alarm_irq = S5M8767_IRQ_RTCA1;
767 break;
768 default:
769 dev_err(&pdev->dev,
770 "Device type %lu is not supported by RTC driver\n",
771 platform_get_device_id(pdev)->driver_data);
772 return -ENODEV;
773 }
774
775 info->i2c = i2c_new_dummy(s5m87xx->i2c->adapter, RTC_I2C_ADDR);
776 if (!info->i2c) {
777 dev_err(&pdev->dev, "Failed to allocate I2C for RTC\n");
778 return -ENODEV;
779 }
780
781 info->regmap = devm_regmap_init_i2c(info->i2c, regmap_cfg);
782 if (IS_ERR(info->regmap)) {
783 ret = PTR_ERR(info->regmap);
784 dev_err(&pdev->dev, "Failed to allocate RTC register map: %d\n",
785 ret);
786 goto err;
787 }
788
789 info->dev = &pdev->dev;
790 info->s5m87xx = s5m87xx;
791 info->device_type = platform_get_device_id(pdev)->driver_data;
792
793 if (s5m87xx->irq_data) {
794 info->irq = regmap_irq_get_virq(s5m87xx->irq_data, alarm_irq);
795 if (info->irq <= 0) {
796 ret = -EINVAL;
797 dev_err(&pdev->dev, "Failed to get virtual IRQ %d\n",
798 alarm_irq);
799 goto err;
800 }
801 }
802
803 platform_set_drvdata(pdev, info);
804
805 ret = s5m8767_rtc_init_reg(info);
806
807 device_init_wakeup(&pdev->dev, 1);
808
809 info->rtc_dev = devm_rtc_device_register(&pdev->dev, "s5m-rtc",
810 &s5m_rtc_ops, THIS_MODULE);
811
812 if (IS_ERR(info->rtc_dev)) {
813 ret = PTR_ERR(info->rtc_dev);
814 goto err;
815 }
816
817 if (!info->irq) {
818 dev_info(&pdev->dev, "Alarm IRQ not available\n");
819 return 0;
820 }
821
822 ret = devm_request_threaded_irq(&pdev->dev, info->irq, NULL,
823 s5m_rtc_alarm_irq, 0, "rtc-alarm0",
824 info);
825 if (ret < 0) {
826 dev_err(&pdev->dev, "Failed to request alarm IRQ: %d: %d\n",
827 info->irq, ret);
828 goto err;
829 }
830
831 return 0;
832
833err:
834 i2c_unregister_device(info->i2c);
835
836 return ret;
837}
838
839static int s5m_rtc_remove(struct platform_device *pdev)
840{
841 struct s5m_rtc_info *info = platform_get_drvdata(pdev);
842
843 i2c_unregister_device(info->i2c);
844
845 return 0;
846}
847
848#ifdef CONFIG_PM_SLEEP
849static int s5m_rtc_resume(struct device *dev)
850{
851 struct s5m_rtc_info *info = dev_get_drvdata(dev);
852 int ret = 0;
853
854 if (info->irq && device_may_wakeup(dev))
855 ret = disable_irq_wake(info->irq);
856
857 return ret;
858}
859
860static int s5m_rtc_suspend(struct device *dev)
861{
862 struct s5m_rtc_info *info = dev_get_drvdata(dev);
863 int ret = 0;
864
865 if (info->irq && device_may_wakeup(dev))
866 ret = enable_irq_wake(info->irq);
867
868 return ret;
869}
870#endif /* CONFIG_PM_SLEEP */
871
872static SIMPLE_DEV_PM_OPS(s5m_rtc_pm_ops, s5m_rtc_suspend, s5m_rtc_resume);
873
874static const struct platform_device_id s5m_rtc_id[] = {
875 { "s5m-rtc", S5M8767X },
876 { "s2mps13-rtc", S2MPS13X },
877 { "s2mps14-rtc", S2MPS14X },
878 { "s2mps15-rtc", S2MPS15X },
879 { },
880};
881MODULE_DEVICE_TABLE(platform, s5m_rtc_id);
882
883static struct platform_driver s5m_rtc_driver = {
884 .driver = {
885 .name = "s5m-rtc",
886 .pm = &s5m_rtc_pm_ops,
887 },
888 .probe = s5m_rtc_probe,
889 .remove = s5m_rtc_remove,
890 .id_table = s5m_rtc_id,
891};
892
893module_platform_driver(s5m_rtc_driver);
894
895/* Module information */
896MODULE_AUTHOR("Sangbeom Kim <sbkim73@samsung.com>");
897MODULE_DESCRIPTION("Samsung S5M/S2MPS14 RTC driver");
898MODULE_LICENSE("GPL");
899MODULE_ALIAS("platform:s5m-rtc");
1// SPDX-License-Identifier: GPL-2.0+
2//
3// Copyright (c) 2013-2014 Samsung Electronics Co., Ltd
4// http://www.samsung.com
5//
6// Copyright (C) 2013 Google, Inc
7
8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
10#include <linux/module.h>
11#include <linux/i2c.h>
12#include <linux/bcd.h>
13#include <linux/regmap.h>
14#include <linux/rtc.h>
15#include <linux/platform_device.h>
16#include <linux/mfd/samsung/core.h>
17#include <linux/mfd/samsung/irq.h>
18#include <linux/mfd/samsung/rtc.h>
19#include <linux/mfd/samsung/s2mps14.h>
20
21/*
22 * Maximum number of retries for checking changes in UDR field
23 * of S5M_RTC_UDR_CON register (to limit possible endless loop).
24 *
25 * After writing to RTC registers (setting time or alarm) read the UDR field
26 * in S5M_RTC_UDR_CON register. UDR is auto-cleared when data have
27 * been transferred.
28 */
29#define UDR_READ_RETRY_CNT 5
30
31enum {
32 RTC_SEC = 0,
33 RTC_MIN,
34 RTC_HOUR,
35 RTC_WEEKDAY,
36 RTC_DATE,
37 RTC_MONTH,
38 RTC_YEAR1,
39 RTC_YEAR2,
40 /* Make sure this is always the last enum name. */
41 RTC_MAX_NUM_TIME_REGS
42};
43
44/*
45 * Registers used by the driver which are different between chipsets.
46 *
47 * Operations like read time and write alarm/time require updating
48 * specific fields in UDR register. These fields usually are auto-cleared
49 * (with some exceptions).
50 *
51 * Table of operations per device:
52 *
53 * Device | Write time | Read time | Write alarm
54 * =================================================
55 * S5M8767 | UDR + TIME | | UDR
56 * S2MPS11/14 | WUDR | RUDR | WUDR + RUDR
57 * S2MPS13 | WUDR | RUDR | WUDR + AUDR
58 * S2MPS15 | WUDR | RUDR | AUDR
59 */
60struct s5m_rtc_reg_config {
61 /* Number of registers used for setting time/alarm0/alarm1 */
62 unsigned int regs_count;
63 /* First register for time, seconds */
64 unsigned int time;
65 /* RTC control register */
66 unsigned int ctrl;
67 /* First register for alarm 0, seconds */
68 unsigned int alarm0;
69 /* First register for alarm 1, seconds */
70 unsigned int alarm1;
71 /*
72 * Register for update flag (UDR). Typically setting UDR field to 1
73 * will enable update of time or alarm register. Then it will be
74 * auto-cleared after successful update.
75 */
76 unsigned int udr_update;
77 /* Auto-cleared mask in UDR field for writing time and alarm */
78 unsigned int autoclear_udr_mask;
79 /*
80 * Masks in UDR field for time and alarm operations.
81 * The read time mask can be 0. Rest should not.
82 */
83 unsigned int read_time_udr_mask;
84 unsigned int write_time_udr_mask;
85 unsigned int write_alarm_udr_mask;
86};
87
88/* Register map for S5M8763 and S5M8767 */
89static const struct s5m_rtc_reg_config s5m_rtc_regs = {
90 .regs_count = 8,
91 .time = S5M_RTC_SEC,
92 .ctrl = S5M_ALARM1_CONF,
93 .alarm0 = S5M_ALARM0_SEC,
94 .alarm1 = S5M_ALARM1_SEC,
95 .udr_update = S5M_RTC_UDR_CON,
96 .autoclear_udr_mask = S5M_RTC_UDR_MASK,
97 .read_time_udr_mask = 0, /* Not needed */
98 .write_time_udr_mask = S5M_RTC_UDR_MASK | S5M_RTC_TIME_EN_MASK,
99 .write_alarm_udr_mask = S5M_RTC_UDR_MASK,
100};
101
102/* Register map for S2MPS13 */
103static const struct s5m_rtc_reg_config s2mps13_rtc_regs = {
104 .regs_count = 7,
105 .time = S2MPS_RTC_SEC,
106 .ctrl = S2MPS_RTC_CTRL,
107 .alarm0 = S2MPS_ALARM0_SEC,
108 .alarm1 = S2MPS_ALARM1_SEC,
109 .udr_update = S2MPS_RTC_UDR_CON,
110 .autoclear_udr_mask = S2MPS_RTC_WUDR_MASK,
111 .read_time_udr_mask = S2MPS_RTC_RUDR_MASK,
112 .write_time_udr_mask = S2MPS_RTC_WUDR_MASK,
113 .write_alarm_udr_mask = S2MPS_RTC_WUDR_MASK | S2MPS13_RTC_AUDR_MASK,
114};
115
116/* Register map for S2MPS11/14 */
117static const struct s5m_rtc_reg_config s2mps14_rtc_regs = {
118 .regs_count = 7,
119 .time = S2MPS_RTC_SEC,
120 .ctrl = S2MPS_RTC_CTRL,
121 .alarm0 = S2MPS_ALARM0_SEC,
122 .alarm1 = S2MPS_ALARM1_SEC,
123 .udr_update = S2MPS_RTC_UDR_CON,
124 .autoclear_udr_mask = S2MPS_RTC_WUDR_MASK,
125 .read_time_udr_mask = S2MPS_RTC_RUDR_MASK,
126 .write_time_udr_mask = S2MPS_RTC_WUDR_MASK,
127 .write_alarm_udr_mask = S2MPS_RTC_WUDR_MASK | S2MPS_RTC_RUDR_MASK,
128};
129
130/*
131 * Register map for S2MPS15 - in comparison to S2MPS14 the WUDR and AUDR bits
132 * are swapped.
133 */
134static const struct s5m_rtc_reg_config s2mps15_rtc_regs = {
135 .regs_count = 7,
136 .time = S2MPS_RTC_SEC,
137 .ctrl = S2MPS_RTC_CTRL,
138 .alarm0 = S2MPS_ALARM0_SEC,
139 .alarm1 = S2MPS_ALARM1_SEC,
140 .udr_update = S2MPS_RTC_UDR_CON,
141 .autoclear_udr_mask = S2MPS_RTC_WUDR_MASK,
142 .read_time_udr_mask = S2MPS_RTC_RUDR_MASK,
143 .write_time_udr_mask = S2MPS15_RTC_WUDR_MASK,
144 .write_alarm_udr_mask = S2MPS15_RTC_AUDR_MASK,
145};
146
147struct s5m_rtc_info {
148 struct device *dev;
149 struct i2c_client *i2c;
150 struct sec_pmic_dev *s5m87xx;
151 struct regmap *regmap;
152 struct rtc_device *rtc_dev;
153 int irq;
154 enum sec_device_type device_type;
155 int rtc_24hr_mode;
156 const struct s5m_rtc_reg_config *regs;
157};
158
159static const struct regmap_config s5m_rtc_regmap_config = {
160 .reg_bits = 8,
161 .val_bits = 8,
162
163 .max_register = S5M_RTC_REG_MAX,
164};
165
166static const struct regmap_config s2mps14_rtc_regmap_config = {
167 .reg_bits = 8,
168 .val_bits = 8,
169
170 .max_register = S2MPS_RTC_REG_MAX,
171};
172
173static void s5m8767_data_to_tm(u8 *data, struct rtc_time *tm,
174 int rtc_24hr_mode)
175{
176 tm->tm_sec = data[RTC_SEC] & 0x7f;
177 tm->tm_min = data[RTC_MIN] & 0x7f;
178 if (rtc_24hr_mode) {
179 tm->tm_hour = data[RTC_HOUR] & 0x1f;
180 } else {
181 tm->tm_hour = data[RTC_HOUR] & 0x0f;
182 if (data[RTC_HOUR] & HOUR_PM_MASK)
183 tm->tm_hour += 12;
184 }
185
186 tm->tm_wday = ffs(data[RTC_WEEKDAY] & 0x7f);
187 tm->tm_mday = data[RTC_DATE] & 0x1f;
188 tm->tm_mon = (data[RTC_MONTH] & 0x0f) - 1;
189 tm->tm_year = (data[RTC_YEAR1] & 0x7f) + 100;
190 tm->tm_yday = 0;
191 tm->tm_isdst = 0;
192}
193
194static int s5m8767_tm_to_data(struct rtc_time *tm, u8 *data)
195{
196 data[RTC_SEC] = tm->tm_sec;
197 data[RTC_MIN] = tm->tm_min;
198
199 if (tm->tm_hour >= 12)
200 data[RTC_HOUR] = tm->tm_hour | HOUR_PM_MASK;
201 else
202 data[RTC_HOUR] = tm->tm_hour & ~HOUR_PM_MASK;
203
204 data[RTC_WEEKDAY] = 1 << tm->tm_wday;
205 data[RTC_DATE] = tm->tm_mday;
206 data[RTC_MONTH] = tm->tm_mon + 1;
207 data[RTC_YEAR1] = tm->tm_year - 100;
208
209 return 0;
210}
211
212/*
213 * Read RTC_UDR_CON register and wait till UDR field is cleared.
214 * This indicates that time/alarm update ended.
215 */
216static int s5m8767_wait_for_udr_update(struct s5m_rtc_info *info)
217{
218 int ret, retry = UDR_READ_RETRY_CNT;
219 unsigned int data;
220
221 do {
222 ret = regmap_read(info->regmap, info->regs->udr_update, &data);
223 } while (--retry && (data & info->regs->autoclear_udr_mask) && !ret);
224
225 if (!retry)
226 dev_err(info->dev, "waiting for UDR update, reached max number of retries\n");
227
228 return ret;
229}
230
231static int s5m_check_peding_alarm_interrupt(struct s5m_rtc_info *info,
232 struct rtc_wkalrm *alarm)
233{
234 int ret;
235 unsigned int val;
236
237 switch (info->device_type) {
238 case S5M8767X:
239 case S5M8763X:
240 ret = regmap_read(info->regmap, S5M_RTC_STATUS, &val);
241 val &= S5M_ALARM0_STATUS;
242 break;
243 case S2MPS15X:
244 case S2MPS14X:
245 case S2MPS13X:
246 ret = regmap_read(info->s5m87xx->regmap_pmic, S2MPS14_REG_ST2,
247 &val);
248 val &= S2MPS_ALARM0_STATUS;
249 break;
250 default:
251 return -EINVAL;
252 }
253 if (ret < 0)
254 return ret;
255
256 if (val)
257 alarm->pending = 1;
258 else
259 alarm->pending = 0;
260
261 return 0;
262}
263
264static int s5m8767_rtc_set_time_reg(struct s5m_rtc_info *info)
265{
266 int ret;
267 unsigned int data;
268
269 ret = regmap_read(info->regmap, info->regs->udr_update, &data);
270 if (ret < 0) {
271 dev_err(info->dev, "failed to read update reg(%d)\n", ret);
272 return ret;
273 }
274
275 data |= info->regs->write_time_udr_mask;
276
277 ret = regmap_write(info->regmap, info->regs->udr_update, data);
278 if (ret < 0) {
279 dev_err(info->dev, "failed to write update reg(%d)\n", ret);
280 return ret;
281 }
282
283 ret = s5m8767_wait_for_udr_update(info);
284
285 return ret;
286}
287
288static int s5m8767_rtc_set_alarm_reg(struct s5m_rtc_info *info)
289{
290 int ret;
291 unsigned int data;
292
293 ret = regmap_read(info->regmap, info->regs->udr_update, &data);
294 if (ret < 0) {
295 dev_err(info->dev, "%s: fail to read update reg(%d)\n",
296 __func__, ret);
297 return ret;
298 }
299
300 data |= info->regs->write_alarm_udr_mask;
301 switch (info->device_type) {
302 case S5M8763X:
303 case S5M8767X:
304 data &= ~S5M_RTC_TIME_EN_MASK;
305 break;
306 case S2MPS15X:
307 case S2MPS14X:
308 case S2MPS13X:
309 /* No exceptions needed */
310 break;
311 default:
312 return -EINVAL;
313 }
314
315 ret = regmap_write(info->regmap, info->regs->udr_update, data);
316 if (ret < 0) {
317 dev_err(info->dev, "%s: fail to write update reg(%d)\n",
318 __func__, ret);
319 return ret;
320 }
321
322 ret = s5m8767_wait_for_udr_update(info);
323
324 /* On S2MPS13 the AUDR is not auto-cleared */
325 if (info->device_type == S2MPS13X)
326 regmap_update_bits(info->regmap, info->regs->udr_update,
327 S2MPS13_RTC_AUDR_MASK, 0);
328
329 return ret;
330}
331
332static void s5m8763_data_to_tm(u8 *data, struct rtc_time *tm)
333{
334 tm->tm_sec = bcd2bin(data[RTC_SEC]);
335 tm->tm_min = bcd2bin(data[RTC_MIN]);
336
337 if (data[RTC_HOUR] & HOUR_12) {
338 tm->tm_hour = bcd2bin(data[RTC_HOUR] & 0x1f);
339 if (data[RTC_HOUR] & HOUR_PM)
340 tm->tm_hour += 12;
341 } else {
342 tm->tm_hour = bcd2bin(data[RTC_HOUR] & 0x3f);
343 }
344
345 tm->tm_wday = data[RTC_WEEKDAY] & 0x07;
346 tm->tm_mday = bcd2bin(data[RTC_DATE]);
347 tm->tm_mon = bcd2bin(data[RTC_MONTH]);
348 tm->tm_year = bcd2bin(data[RTC_YEAR1]) + bcd2bin(data[RTC_YEAR2]) * 100;
349 tm->tm_year -= 1900;
350}
351
352static void s5m8763_tm_to_data(struct rtc_time *tm, u8 *data)
353{
354 data[RTC_SEC] = bin2bcd(tm->tm_sec);
355 data[RTC_MIN] = bin2bcd(tm->tm_min);
356 data[RTC_HOUR] = bin2bcd(tm->tm_hour);
357 data[RTC_WEEKDAY] = tm->tm_wday;
358 data[RTC_DATE] = bin2bcd(tm->tm_mday);
359 data[RTC_MONTH] = bin2bcd(tm->tm_mon);
360 data[RTC_YEAR1] = bin2bcd(tm->tm_year % 100);
361 data[RTC_YEAR2] = bin2bcd((tm->tm_year + 1900) / 100);
362}
363
364static int s5m_rtc_read_time(struct device *dev, struct rtc_time *tm)
365{
366 struct s5m_rtc_info *info = dev_get_drvdata(dev);
367 u8 data[RTC_MAX_NUM_TIME_REGS];
368 int ret;
369
370 if (info->regs->read_time_udr_mask) {
371 ret = regmap_update_bits(info->regmap,
372 info->regs->udr_update,
373 info->regs->read_time_udr_mask,
374 info->regs->read_time_udr_mask);
375 if (ret) {
376 dev_err(dev,
377 "Failed to prepare registers for time reading: %d\n",
378 ret);
379 return ret;
380 }
381 }
382 ret = regmap_bulk_read(info->regmap, info->regs->time, data,
383 info->regs->regs_count);
384 if (ret < 0)
385 return ret;
386
387 switch (info->device_type) {
388 case S5M8763X:
389 s5m8763_data_to_tm(data, tm);
390 break;
391
392 case S5M8767X:
393 case S2MPS15X:
394 case S2MPS14X:
395 case S2MPS13X:
396 s5m8767_data_to_tm(data, tm, info->rtc_24hr_mode);
397 break;
398
399 default:
400 return -EINVAL;
401 }
402
403 dev_dbg(dev, "%s: %ptR(%d)\n", __func__, tm, tm->tm_wday);
404
405 return 0;
406}
407
408static int s5m_rtc_set_time(struct device *dev, struct rtc_time *tm)
409{
410 struct s5m_rtc_info *info = dev_get_drvdata(dev);
411 u8 data[RTC_MAX_NUM_TIME_REGS];
412 int ret = 0;
413
414 switch (info->device_type) {
415 case S5M8763X:
416 s5m8763_tm_to_data(tm, data);
417 break;
418 case S5M8767X:
419 case S2MPS15X:
420 case S2MPS14X:
421 case S2MPS13X:
422 ret = s5m8767_tm_to_data(tm, data);
423 break;
424 default:
425 return -EINVAL;
426 }
427
428 if (ret < 0)
429 return ret;
430
431 dev_dbg(dev, "%s: %ptR(%d)\n", __func__, tm, tm->tm_wday);
432
433 ret = regmap_raw_write(info->regmap, info->regs->time, data,
434 info->regs->regs_count);
435 if (ret < 0)
436 return ret;
437
438 ret = s5m8767_rtc_set_time_reg(info);
439
440 return ret;
441}
442
443static int s5m_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
444{
445 struct s5m_rtc_info *info = dev_get_drvdata(dev);
446 u8 data[RTC_MAX_NUM_TIME_REGS];
447 unsigned int val;
448 int ret, i;
449
450 ret = regmap_bulk_read(info->regmap, info->regs->alarm0, data,
451 info->regs->regs_count);
452 if (ret < 0)
453 return ret;
454
455 switch (info->device_type) {
456 case S5M8763X:
457 s5m8763_data_to_tm(data, &alrm->time);
458 ret = regmap_read(info->regmap, S5M_ALARM0_CONF, &val);
459 if (ret < 0)
460 return ret;
461
462 alrm->enabled = !!val;
463 break;
464
465 case S5M8767X:
466 case S2MPS15X:
467 case S2MPS14X:
468 case S2MPS13X:
469 s5m8767_data_to_tm(data, &alrm->time, info->rtc_24hr_mode);
470 alrm->enabled = 0;
471 for (i = 0; i < info->regs->regs_count; i++) {
472 if (data[i] & ALARM_ENABLE_MASK) {
473 alrm->enabled = 1;
474 break;
475 }
476 }
477 break;
478
479 default:
480 return -EINVAL;
481 }
482
483 dev_dbg(dev, "%s: %ptR(%d)\n", __func__, &alrm->time, alrm->time.tm_wday);
484
485 return s5m_check_peding_alarm_interrupt(info, alrm);
486}
487
488static int s5m_rtc_stop_alarm(struct s5m_rtc_info *info)
489{
490 u8 data[RTC_MAX_NUM_TIME_REGS];
491 int ret, i;
492 struct rtc_time tm;
493
494 ret = regmap_bulk_read(info->regmap, info->regs->alarm0, data,
495 info->regs->regs_count);
496 if (ret < 0)
497 return ret;
498
499 s5m8767_data_to_tm(data, &tm, info->rtc_24hr_mode);
500 dev_dbg(info->dev, "%s: %ptR(%d)\n", __func__, &tm, tm.tm_wday);
501
502 switch (info->device_type) {
503 case S5M8763X:
504 ret = regmap_write(info->regmap, S5M_ALARM0_CONF, 0);
505 break;
506
507 case S5M8767X:
508 case S2MPS15X:
509 case S2MPS14X:
510 case S2MPS13X:
511 for (i = 0; i < info->regs->regs_count; i++)
512 data[i] &= ~ALARM_ENABLE_MASK;
513
514 ret = regmap_raw_write(info->regmap, info->regs->alarm0, data,
515 info->regs->regs_count);
516 if (ret < 0)
517 return ret;
518
519 ret = s5m8767_rtc_set_alarm_reg(info);
520
521 break;
522
523 default:
524 return -EINVAL;
525 }
526
527 return ret;
528}
529
530static int s5m_rtc_start_alarm(struct s5m_rtc_info *info)
531{
532 int ret;
533 u8 data[RTC_MAX_NUM_TIME_REGS];
534 u8 alarm0_conf;
535 struct rtc_time tm;
536
537 ret = regmap_bulk_read(info->regmap, info->regs->alarm0, data,
538 info->regs->regs_count);
539 if (ret < 0)
540 return ret;
541
542 s5m8767_data_to_tm(data, &tm, info->rtc_24hr_mode);
543 dev_dbg(info->dev, "%s: %ptR(%d)\n", __func__, &tm, tm.tm_wday);
544
545 switch (info->device_type) {
546 case S5M8763X:
547 alarm0_conf = 0x77;
548 ret = regmap_write(info->regmap, S5M_ALARM0_CONF, alarm0_conf);
549 break;
550
551 case S5M8767X:
552 case S2MPS15X:
553 case S2MPS14X:
554 case S2MPS13X:
555 data[RTC_SEC] |= ALARM_ENABLE_MASK;
556 data[RTC_MIN] |= ALARM_ENABLE_MASK;
557 data[RTC_HOUR] |= ALARM_ENABLE_MASK;
558 data[RTC_WEEKDAY] &= ~ALARM_ENABLE_MASK;
559 if (data[RTC_DATE] & 0x1f)
560 data[RTC_DATE] |= ALARM_ENABLE_MASK;
561 if (data[RTC_MONTH] & 0xf)
562 data[RTC_MONTH] |= ALARM_ENABLE_MASK;
563 if (data[RTC_YEAR1] & 0x7f)
564 data[RTC_YEAR1] |= ALARM_ENABLE_MASK;
565
566 ret = regmap_raw_write(info->regmap, info->regs->alarm0, data,
567 info->regs->regs_count);
568 if (ret < 0)
569 return ret;
570 ret = s5m8767_rtc_set_alarm_reg(info);
571
572 break;
573
574 default:
575 return -EINVAL;
576 }
577
578 return ret;
579}
580
581static int s5m_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
582{
583 struct s5m_rtc_info *info = dev_get_drvdata(dev);
584 u8 data[RTC_MAX_NUM_TIME_REGS];
585 int ret;
586
587 switch (info->device_type) {
588 case S5M8763X:
589 s5m8763_tm_to_data(&alrm->time, data);
590 break;
591
592 case S5M8767X:
593 case S2MPS15X:
594 case S2MPS14X:
595 case S2MPS13X:
596 s5m8767_tm_to_data(&alrm->time, data);
597 break;
598
599 default:
600 return -EINVAL;
601 }
602
603 dev_dbg(dev, "%s: %ptR(%d)\n", __func__, &alrm->time, alrm->time.tm_wday);
604
605 ret = s5m_rtc_stop_alarm(info);
606 if (ret < 0)
607 return ret;
608
609 ret = regmap_raw_write(info->regmap, info->regs->alarm0, data,
610 info->regs->regs_count);
611 if (ret < 0)
612 return ret;
613
614 ret = s5m8767_rtc_set_alarm_reg(info);
615 if (ret < 0)
616 return ret;
617
618 if (alrm->enabled)
619 ret = s5m_rtc_start_alarm(info);
620
621 return ret;
622}
623
624static int s5m_rtc_alarm_irq_enable(struct device *dev,
625 unsigned int enabled)
626{
627 struct s5m_rtc_info *info = dev_get_drvdata(dev);
628
629 if (enabled)
630 return s5m_rtc_start_alarm(info);
631 else
632 return s5m_rtc_stop_alarm(info);
633}
634
635static irqreturn_t s5m_rtc_alarm_irq(int irq, void *data)
636{
637 struct s5m_rtc_info *info = data;
638
639 rtc_update_irq(info->rtc_dev, 1, RTC_IRQF | RTC_AF);
640
641 return IRQ_HANDLED;
642}
643
644static const struct rtc_class_ops s5m_rtc_ops = {
645 .read_time = s5m_rtc_read_time,
646 .set_time = s5m_rtc_set_time,
647 .read_alarm = s5m_rtc_read_alarm,
648 .set_alarm = s5m_rtc_set_alarm,
649 .alarm_irq_enable = s5m_rtc_alarm_irq_enable,
650};
651
652static int s5m8767_rtc_init_reg(struct s5m_rtc_info *info)
653{
654 u8 data[2];
655 int ret;
656
657 switch (info->device_type) {
658 case S5M8763X:
659 case S5M8767X:
660 /* UDR update time. Default of 7.32 ms is too long. */
661 ret = regmap_update_bits(info->regmap, S5M_RTC_UDR_CON,
662 S5M_RTC_UDR_T_MASK, S5M_RTC_UDR_T_450_US);
663 if (ret < 0)
664 dev_err(info->dev, "%s: fail to change UDR time: %d\n",
665 __func__, ret);
666
667 /* Set RTC control register : Binary mode, 24hour mode */
668 data[0] = (1 << BCD_EN_SHIFT) | (1 << MODEL24_SHIFT);
669 data[1] = (0 << BCD_EN_SHIFT) | (1 << MODEL24_SHIFT);
670
671 ret = regmap_raw_write(info->regmap, S5M_ALARM0_CONF, data, 2);
672 break;
673
674 case S2MPS15X:
675 case S2MPS14X:
676 case S2MPS13X:
677 data[0] = (0 << BCD_EN_SHIFT) | (1 << MODEL24_SHIFT);
678 ret = regmap_write(info->regmap, info->regs->ctrl, data[0]);
679 if (ret < 0)
680 break;
681
682 /*
683 * Should set WUDR & (RUDR or AUDR) bits to high after writing
684 * RTC_CTRL register like writing Alarm registers. We can't find
685 * the description from datasheet but vendor code does that
686 * really.
687 */
688 ret = s5m8767_rtc_set_alarm_reg(info);
689 break;
690
691 default:
692 return -EINVAL;
693 }
694
695 info->rtc_24hr_mode = 1;
696 if (ret < 0) {
697 dev_err(info->dev, "%s: fail to write controlm reg(%d)\n",
698 __func__, ret);
699 return ret;
700 }
701
702 return ret;
703}
704
705static int s5m_rtc_probe(struct platform_device *pdev)
706{
707 struct sec_pmic_dev *s5m87xx = dev_get_drvdata(pdev->dev.parent);
708 struct s5m_rtc_info *info;
709 const struct regmap_config *regmap_cfg;
710 int ret, alarm_irq;
711
712 info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL);
713 if (!info)
714 return -ENOMEM;
715
716 switch (platform_get_device_id(pdev)->driver_data) {
717 case S2MPS15X:
718 regmap_cfg = &s2mps14_rtc_regmap_config;
719 info->regs = &s2mps15_rtc_regs;
720 alarm_irq = S2MPS14_IRQ_RTCA0;
721 break;
722 case S2MPS14X:
723 regmap_cfg = &s2mps14_rtc_regmap_config;
724 info->regs = &s2mps14_rtc_regs;
725 alarm_irq = S2MPS14_IRQ_RTCA0;
726 break;
727 case S2MPS13X:
728 regmap_cfg = &s2mps14_rtc_regmap_config;
729 info->regs = &s2mps13_rtc_regs;
730 alarm_irq = S2MPS14_IRQ_RTCA0;
731 break;
732 case S5M8763X:
733 regmap_cfg = &s5m_rtc_regmap_config;
734 info->regs = &s5m_rtc_regs;
735 alarm_irq = S5M8763_IRQ_ALARM0;
736 break;
737 case S5M8767X:
738 regmap_cfg = &s5m_rtc_regmap_config;
739 info->regs = &s5m_rtc_regs;
740 alarm_irq = S5M8767_IRQ_RTCA1;
741 break;
742 default:
743 dev_err(&pdev->dev,
744 "Device type %lu is not supported by RTC driver\n",
745 platform_get_device_id(pdev)->driver_data);
746 return -ENODEV;
747 }
748
749 info->i2c = devm_i2c_new_dummy_device(&pdev->dev, s5m87xx->i2c->adapter,
750 RTC_I2C_ADDR);
751 if (IS_ERR(info->i2c)) {
752 dev_err(&pdev->dev, "Failed to allocate I2C for RTC\n");
753 return PTR_ERR(info->i2c);
754 }
755
756 info->regmap = devm_regmap_init_i2c(info->i2c, regmap_cfg);
757 if (IS_ERR(info->regmap)) {
758 ret = PTR_ERR(info->regmap);
759 dev_err(&pdev->dev, "Failed to allocate RTC register map: %d\n",
760 ret);
761 return ret;
762 }
763
764 info->dev = &pdev->dev;
765 info->s5m87xx = s5m87xx;
766 info->device_type = platform_get_device_id(pdev)->driver_data;
767
768 if (s5m87xx->irq_data) {
769 info->irq = regmap_irq_get_virq(s5m87xx->irq_data, alarm_irq);
770 if (info->irq <= 0) {
771 dev_err(&pdev->dev, "Failed to get virtual IRQ %d\n",
772 alarm_irq);
773 return -EINVAL;
774 }
775 }
776
777 platform_set_drvdata(pdev, info);
778
779 ret = s5m8767_rtc_init_reg(info);
780 if (ret)
781 return ret;
782
783 info->rtc_dev = devm_rtc_allocate_device(&pdev->dev);
784 if (IS_ERR(info->rtc_dev))
785 return PTR_ERR(info->rtc_dev);
786
787 info->rtc_dev->ops = &s5m_rtc_ops;
788
789 if (info->device_type == S5M8763X) {
790 info->rtc_dev->range_min = RTC_TIMESTAMP_BEGIN_0000;
791 info->rtc_dev->range_max = RTC_TIMESTAMP_END_9999;
792 } else {
793 info->rtc_dev->range_min = RTC_TIMESTAMP_BEGIN_2000;
794 info->rtc_dev->range_max = RTC_TIMESTAMP_END_2099;
795 }
796
797 if (!info->irq) {
798 clear_bit(RTC_FEATURE_ALARM, info->rtc_dev->features);
799 } else {
800 ret = devm_request_threaded_irq(&pdev->dev, info->irq, NULL,
801 s5m_rtc_alarm_irq, 0, "rtc-alarm0",
802 info);
803 if (ret < 0) {
804 dev_err(&pdev->dev, "Failed to request alarm IRQ: %d: %d\n",
805 info->irq, ret);
806 return ret;
807 }
808 device_init_wakeup(&pdev->dev, 1);
809 }
810
811 return devm_rtc_register_device(info->rtc_dev);
812}
813
814#ifdef CONFIG_PM_SLEEP
815static int s5m_rtc_resume(struct device *dev)
816{
817 struct s5m_rtc_info *info = dev_get_drvdata(dev);
818 int ret = 0;
819
820 if (info->irq && device_may_wakeup(dev))
821 ret = disable_irq_wake(info->irq);
822
823 return ret;
824}
825
826static int s5m_rtc_suspend(struct device *dev)
827{
828 struct s5m_rtc_info *info = dev_get_drvdata(dev);
829 int ret = 0;
830
831 if (info->irq && device_may_wakeup(dev))
832 ret = enable_irq_wake(info->irq);
833
834 return ret;
835}
836#endif /* CONFIG_PM_SLEEP */
837
838static SIMPLE_DEV_PM_OPS(s5m_rtc_pm_ops, s5m_rtc_suspend, s5m_rtc_resume);
839
840static const struct platform_device_id s5m_rtc_id[] = {
841 { "s5m-rtc", S5M8767X },
842 { "s2mps13-rtc", S2MPS13X },
843 { "s2mps14-rtc", S2MPS14X },
844 { "s2mps15-rtc", S2MPS15X },
845 { },
846};
847MODULE_DEVICE_TABLE(platform, s5m_rtc_id);
848
849static struct platform_driver s5m_rtc_driver = {
850 .driver = {
851 .name = "s5m-rtc",
852 .pm = &s5m_rtc_pm_ops,
853 },
854 .probe = s5m_rtc_probe,
855 .id_table = s5m_rtc_id,
856};
857
858module_platform_driver(s5m_rtc_driver);
859
860/* Module information */
861MODULE_AUTHOR("Sangbeom Kim <sbkim73@samsung.com>");
862MODULE_DESCRIPTION("Samsung S5M/S2MPS14 RTC driver");
863MODULE_LICENSE("GPL");