Linux Audio

Check our new training course

Loading...
v4.6
  1/*
  2 * Copyright (c) 2013-2014 Samsung Electronics Co., Ltd
  3 *	http://www.samsung.com
  4 *
  5 *  Copyright (C) 2013 Google, Inc
  6 *
  7 *  This program is free software; you can redistribute it and/or modify
  8 *  it under the terms of the GNU General Public License as published by
  9 *  the Free Software Foundation; either version 2 of the License, or
 10 *  (at your option) any later version.
 11 *
 12 *  This program is distributed in the hope that it will be useful,
 13 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 14 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 15 *  GNU General Public License for more details.
 16 */
 17
 18#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 19
 20#include <linux/module.h>
 21#include <linux/i2c.h>
 22#include <linux/bcd.h>
 23#include <linux/regmap.h>
 24#include <linux/rtc.h>
 25#include <linux/platform_device.h>
 26#include <linux/mfd/samsung/core.h>
 27#include <linux/mfd/samsung/irq.h>
 28#include <linux/mfd/samsung/rtc.h>
 29#include <linux/mfd/samsung/s2mps14.h>
 30
 31/*
 32 * Maximum number of retries for checking changes in UDR field
 33 * of S5M_RTC_UDR_CON register (to limit possible endless loop).
 34 *
 35 * After writing to RTC registers (setting time or alarm) read the UDR field
 36 * in S5M_RTC_UDR_CON register. UDR is auto-cleared when data have
 37 * been transferred.
 38 */
 39#define UDR_READ_RETRY_CNT	5
 40
 
 
 
 
 
 
 
 
 
 
 
 
 
 41/*
 42 * Registers used by the driver which are different between chipsets.
 43 *
 44 * Operations like read time and write alarm/time require updating
 45 * specific fields in UDR register. These fields usually are auto-cleared
 46 * (with some exceptions).
 47 *
 48 * Table of operations per device:
 49 *
 50 * Device     | Write time | Read time | Write alarm
 51 * =================================================
 52 * S5M8767    | UDR + TIME |           | UDR
 53 * S2MPS11/14 | WUDR       | RUDR      | WUDR + RUDR
 54 * S2MPS13    | WUDR       | RUDR      | WUDR + AUDR
 55 * S2MPS15    | WUDR       | RUDR      | AUDR
 56 */
 57struct s5m_rtc_reg_config {
 58	/* Number of registers used for setting time/alarm0/alarm1 */
 59	unsigned int regs_count;
 60	/* First register for time, seconds */
 61	unsigned int time;
 62	/* RTC control register */
 63	unsigned int ctrl;
 64	/* First register for alarm 0, seconds */
 65	unsigned int alarm0;
 66	/* First register for alarm 1, seconds */
 67	unsigned int alarm1;
 68	/*
 69	 * Register for update flag (UDR). Typically setting UDR field to 1
 70	 * will enable update of time or alarm register. Then it will be
 71	 * auto-cleared after successful update.
 72	 */
 73	unsigned int udr_update;
 74	/* Auto-cleared mask in UDR field for writing time and alarm */
 75	unsigned int autoclear_udr_mask;
 76	/*
 77	 * Masks in UDR field for time and alarm operations.
 78	 * The read time mask can be 0. Rest should not.
 79	 */
 80	unsigned int read_time_udr_mask;
 81	unsigned int write_time_udr_mask;
 82	unsigned int write_alarm_udr_mask;
 83};
 84
 85/* Register map for S5M8763 and S5M8767 */
 86static const struct s5m_rtc_reg_config s5m_rtc_regs = {
 87	.regs_count		= 8,
 88	.time			= S5M_RTC_SEC,
 89	.ctrl			= S5M_ALARM1_CONF,
 90	.alarm0			= S5M_ALARM0_SEC,
 91	.alarm1			= S5M_ALARM1_SEC,
 92	.udr_update		= S5M_RTC_UDR_CON,
 93	.autoclear_udr_mask	= S5M_RTC_UDR_MASK,
 94	.read_time_udr_mask	= 0, /* Not needed */
 95	.write_time_udr_mask	= S5M_RTC_UDR_MASK | S5M_RTC_TIME_EN_MASK,
 96	.write_alarm_udr_mask	= S5M_RTC_UDR_MASK,
 97};
 98
 99/* Register map for S2MPS13 */
100static const struct s5m_rtc_reg_config s2mps13_rtc_regs = {
101	.regs_count		= 7,
102	.time			= S2MPS_RTC_SEC,
103	.ctrl			= S2MPS_RTC_CTRL,
104	.alarm0			= S2MPS_ALARM0_SEC,
105	.alarm1			= S2MPS_ALARM1_SEC,
106	.udr_update		= S2MPS_RTC_UDR_CON,
107	.autoclear_udr_mask	= S2MPS_RTC_WUDR_MASK,
108	.read_time_udr_mask	= S2MPS_RTC_RUDR_MASK,
109	.write_time_udr_mask	= S2MPS_RTC_WUDR_MASK,
110	.write_alarm_udr_mask	= S2MPS_RTC_WUDR_MASK | S2MPS13_RTC_AUDR_MASK,
111};
112
113/* Register map for S2MPS11/14 */
114static const struct s5m_rtc_reg_config s2mps14_rtc_regs = {
115	.regs_count		= 7,
116	.time			= S2MPS_RTC_SEC,
117	.ctrl			= S2MPS_RTC_CTRL,
118	.alarm0			= S2MPS_ALARM0_SEC,
119	.alarm1			= S2MPS_ALARM1_SEC,
120	.udr_update		= S2MPS_RTC_UDR_CON,
121	.autoclear_udr_mask	= S2MPS_RTC_WUDR_MASK,
122	.read_time_udr_mask	= S2MPS_RTC_RUDR_MASK,
123	.write_time_udr_mask	= S2MPS_RTC_WUDR_MASK,
124	.write_alarm_udr_mask	= S2MPS_RTC_WUDR_MASK | S2MPS_RTC_RUDR_MASK,
125};
126
127/*
128 * Register map for S2MPS15 - in comparison to S2MPS14 the WUDR and AUDR bits
129 * are swapped.
130 */
131static const struct s5m_rtc_reg_config s2mps15_rtc_regs = {
132	.regs_count		= 7,
133	.time			= S2MPS_RTC_SEC,
134	.ctrl			= S2MPS_RTC_CTRL,
135	.alarm0			= S2MPS_ALARM0_SEC,
136	.alarm1			= S2MPS_ALARM1_SEC,
137	.udr_update		= S2MPS_RTC_UDR_CON,
138	.autoclear_udr_mask	= S2MPS_RTC_WUDR_MASK,
139	.read_time_udr_mask	= S2MPS_RTC_RUDR_MASK,
140	.write_time_udr_mask	= S2MPS15_RTC_WUDR_MASK,
141	.write_alarm_udr_mask	= S2MPS15_RTC_AUDR_MASK,
142};
143
144struct s5m_rtc_info {
145	struct device *dev;
146	struct i2c_client *i2c;
147	struct sec_pmic_dev *s5m87xx;
148	struct regmap *regmap;
149	struct rtc_device *rtc_dev;
150	int irq;
151	enum sec_device_type device_type;
152	int rtc_24hr_mode;
153	const struct s5m_rtc_reg_config	*regs;
154};
155
156static const struct regmap_config s5m_rtc_regmap_config = {
157	.reg_bits = 8,
158	.val_bits = 8,
159
160	.max_register = S5M_RTC_REG_MAX,
161};
162
163static const struct regmap_config s2mps14_rtc_regmap_config = {
164	.reg_bits = 8,
165	.val_bits = 8,
166
167	.max_register = S2MPS_RTC_REG_MAX,
168};
169
170static void s5m8767_data_to_tm(u8 *data, struct rtc_time *tm,
171			       int rtc_24hr_mode)
172{
173	tm->tm_sec = data[RTC_SEC] & 0x7f;
174	tm->tm_min = data[RTC_MIN] & 0x7f;
175	if (rtc_24hr_mode) {
176		tm->tm_hour = data[RTC_HOUR] & 0x1f;
177	} else {
178		tm->tm_hour = data[RTC_HOUR] & 0x0f;
179		if (data[RTC_HOUR] & HOUR_PM_MASK)
180			tm->tm_hour += 12;
181	}
182
183	tm->tm_wday = ffs(data[RTC_WEEKDAY] & 0x7f);
184	tm->tm_mday = data[RTC_DATE] & 0x1f;
185	tm->tm_mon = (data[RTC_MONTH] & 0x0f) - 1;
186	tm->tm_year = (data[RTC_YEAR1] & 0x7f) + 100;
187	tm->tm_yday = 0;
188	tm->tm_isdst = 0;
189}
190
191static int s5m8767_tm_to_data(struct rtc_time *tm, u8 *data)
192{
193	data[RTC_SEC] = tm->tm_sec;
194	data[RTC_MIN] = tm->tm_min;
195
196	if (tm->tm_hour >= 12)
197		data[RTC_HOUR] = tm->tm_hour | HOUR_PM_MASK;
198	else
199		data[RTC_HOUR] = tm->tm_hour & ~HOUR_PM_MASK;
200
201	data[RTC_WEEKDAY] = 1 << tm->tm_wday;
202	data[RTC_DATE] = tm->tm_mday;
203	data[RTC_MONTH] = tm->tm_mon + 1;
204	data[RTC_YEAR1] = tm->tm_year > 100 ? (tm->tm_year - 100) : 0;
205
206	if (tm->tm_year < 100) {
207		pr_err("RTC cannot handle the year %d\n",
208		       1900 + tm->tm_year);
209		return -EINVAL;
210	} else {
211		return 0;
212	}
213}
214
215/*
216 * Read RTC_UDR_CON register and wait till UDR field is cleared.
217 * This indicates that time/alarm update ended.
218 */
219static int s5m8767_wait_for_udr_update(struct s5m_rtc_info *info)
220{
221	int ret, retry = UDR_READ_RETRY_CNT;
222	unsigned int data;
223
224	do {
225		ret = regmap_read(info->regmap, info->regs->udr_update, &data);
226	} while (--retry && (data & info->regs->autoclear_udr_mask) && !ret);
227
228	if (!retry)
229		dev_err(info->dev, "waiting for UDR update, reached max number of retries\n");
230
231	return ret;
232}
233
234static int s5m_check_peding_alarm_interrupt(struct s5m_rtc_info *info,
235		struct rtc_wkalrm *alarm)
236{
237	int ret;
238	unsigned int val;
239
240	switch (info->device_type) {
241	case S5M8767X:
242	case S5M8763X:
243		ret = regmap_read(info->regmap, S5M_RTC_STATUS, &val);
244		val &= S5M_ALARM0_STATUS;
245		break;
246	case S2MPS15X:
247	case S2MPS14X:
248	case S2MPS13X:
249		ret = regmap_read(info->s5m87xx->regmap_pmic, S2MPS14_REG_ST2,
250				&val);
251		val &= S2MPS_ALARM0_STATUS;
252		break;
253	default:
254		return -EINVAL;
255	}
256	if (ret < 0)
257		return ret;
258
259	if (val)
260		alarm->pending = 1;
261	else
262		alarm->pending = 0;
263
264	return 0;
265}
266
267static int s5m8767_rtc_set_time_reg(struct s5m_rtc_info *info)
268{
269	int ret;
270	unsigned int data;
271
272	ret = regmap_read(info->regmap, info->regs->udr_update, &data);
273	if (ret < 0) {
274		dev_err(info->dev, "failed to read update reg(%d)\n", ret);
275		return ret;
276	}
277
278	data |= info->regs->write_time_udr_mask;
279
280	ret = regmap_write(info->regmap, info->regs->udr_update, data);
281	if (ret < 0) {
282		dev_err(info->dev, "failed to write update reg(%d)\n", ret);
283		return ret;
284	}
285
286	ret = s5m8767_wait_for_udr_update(info);
287
288	return ret;
289}
290
291static int s5m8767_rtc_set_alarm_reg(struct s5m_rtc_info *info)
292{
293	int ret;
294	unsigned int data;
295
296	ret = regmap_read(info->regmap, info->regs->udr_update, &data);
297	if (ret < 0) {
298		dev_err(info->dev, "%s: fail to read update reg(%d)\n",
299			__func__, ret);
300		return ret;
301	}
302
303	data |= info->regs->write_alarm_udr_mask;
304	switch (info->device_type) {
305	case S5M8763X:
306	case S5M8767X:
307		data &= ~S5M_RTC_TIME_EN_MASK;
308		break;
309	case S2MPS15X:
310	case S2MPS14X:
311	case S2MPS13X:
312		/* No exceptions needed */
313		break;
314	default:
315		return -EINVAL;
316	}
317
318	ret = regmap_write(info->regmap, info->regs->udr_update, data);
319	if (ret < 0) {
320		dev_err(info->dev, "%s: fail to write update reg(%d)\n",
321			__func__, ret);
322		return ret;
323	}
324
325	ret = s5m8767_wait_for_udr_update(info);
326
327	/* On S2MPS13 the AUDR is not auto-cleared */
328	if (info->device_type == S2MPS13X)
329		regmap_update_bits(info->regmap, info->regs->udr_update,
330				   S2MPS13_RTC_AUDR_MASK, 0);
331
332	return ret;
333}
334
335static void s5m8763_data_to_tm(u8 *data, struct rtc_time *tm)
336{
337	tm->tm_sec = bcd2bin(data[RTC_SEC]);
338	tm->tm_min = bcd2bin(data[RTC_MIN]);
339
340	if (data[RTC_HOUR] & HOUR_12) {
341		tm->tm_hour = bcd2bin(data[RTC_HOUR] & 0x1f);
342		if (data[RTC_HOUR] & HOUR_PM)
343			tm->tm_hour += 12;
344	} else {
345		tm->tm_hour = bcd2bin(data[RTC_HOUR] & 0x3f);
346	}
347
348	tm->tm_wday = data[RTC_WEEKDAY] & 0x07;
349	tm->tm_mday = bcd2bin(data[RTC_DATE]);
350	tm->tm_mon = bcd2bin(data[RTC_MONTH]);
351	tm->tm_year = bcd2bin(data[RTC_YEAR1]) + bcd2bin(data[RTC_YEAR2]) * 100;
352	tm->tm_year -= 1900;
353}
354
355static void s5m8763_tm_to_data(struct rtc_time *tm, u8 *data)
356{
357	data[RTC_SEC] = bin2bcd(tm->tm_sec);
358	data[RTC_MIN] = bin2bcd(tm->tm_min);
359	data[RTC_HOUR] = bin2bcd(tm->tm_hour);
360	data[RTC_WEEKDAY] = tm->tm_wday;
361	data[RTC_DATE] = bin2bcd(tm->tm_mday);
362	data[RTC_MONTH] = bin2bcd(tm->tm_mon);
363	data[RTC_YEAR1] = bin2bcd(tm->tm_year % 100);
364	data[RTC_YEAR2] = bin2bcd((tm->tm_year + 1900) / 100);
365}
366
367static int s5m_rtc_read_time(struct device *dev, struct rtc_time *tm)
368{
369	struct s5m_rtc_info *info = dev_get_drvdata(dev);
370	u8 data[info->regs->regs_count];
371	int ret;
372
373	if (info->regs->read_time_udr_mask) {
374		ret = regmap_update_bits(info->regmap,
375				info->regs->udr_update,
376				info->regs->read_time_udr_mask,
377				info->regs->read_time_udr_mask);
378		if (ret) {
379			dev_err(dev,
380				"Failed to prepare registers for time reading: %d\n",
381				ret);
382			return ret;
383		}
384	}
385	ret = regmap_bulk_read(info->regmap, info->regs->time, data,
386			info->regs->regs_count);
387	if (ret < 0)
388		return ret;
389
390	switch (info->device_type) {
391	case S5M8763X:
392		s5m8763_data_to_tm(data, tm);
393		break;
394
395	case S5M8767X:
396	case S2MPS15X:
397	case S2MPS14X:
398	case S2MPS13X:
399		s5m8767_data_to_tm(data, tm, info->rtc_24hr_mode);
400		break;
401
402	default:
403		return -EINVAL;
404	}
405
406	dev_dbg(dev, "%s: %d/%d/%d %d:%d:%d(%d)\n", __func__,
407		1900 + tm->tm_year, 1 + tm->tm_mon, tm->tm_mday,
408		tm->tm_hour, tm->tm_min, tm->tm_sec, tm->tm_wday);
409
410	return rtc_valid_tm(tm);
411}
412
413static int s5m_rtc_set_time(struct device *dev, struct rtc_time *tm)
414{
415	struct s5m_rtc_info *info = dev_get_drvdata(dev);
416	u8 data[info->regs->regs_count];
417	int ret = 0;
418
419	switch (info->device_type) {
420	case S5M8763X:
421		s5m8763_tm_to_data(tm, data);
422		break;
423	case S5M8767X:
424	case S2MPS15X:
425	case S2MPS14X:
426	case S2MPS13X:
427		ret = s5m8767_tm_to_data(tm, data);
428		break;
429	default:
430		return -EINVAL;
431	}
432
433	if (ret < 0)
434		return ret;
435
436	dev_dbg(dev, "%s: %d/%d/%d %d:%d:%d(%d)\n", __func__,
437		1900 + tm->tm_year, 1 + tm->tm_mon, tm->tm_mday,
438		tm->tm_hour, tm->tm_min, tm->tm_sec, tm->tm_wday);
439
440	ret = regmap_raw_write(info->regmap, info->regs->time, data,
441			info->regs->regs_count);
442	if (ret < 0)
443		return ret;
444
445	ret = s5m8767_rtc_set_time_reg(info);
446
447	return ret;
448}
449
450static int s5m_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
451{
452	struct s5m_rtc_info *info = dev_get_drvdata(dev);
453	u8 data[info->regs->regs_count];
454	unsigned int val;
455	int ret, i;
456
457	ret = regmap_bulk_read(info->regmap, info->regs->alarm0, data,
458			info->regs->regs_count);
459	if (ret < 0)
460		return ret;
461
462	switch (info->device_type) {
463	case S5M8763X:
464		s5m8763_data_to_tm(data, &alrm->time);
465		ret = regmap_read(info->regmap, S5M_ALARM0_CONF, &val);
466		if (ret < 0)
467			return ret;
468
469		alrm->enabled = !!val;
470		break;
471
472	case S5M8767X:
473	case S2MPS15X:
474	case S2MPS14X:
475	case S2MPS13X:
476		s5m8767_data_to_tm(data, &alrm->time, info->rtc_24hr_mode);
477		alrm->enabled = 0;
478		for (i = 0; i < info->regs->regs_count; i++) {
479			if (data[i] & ALARM_ENABLE_MASK) {
480				alrm->enabled = 1;
481				break;
482			}
483		}
484		break;
485
486	default:
487		return -EINVAL;
488	}
489
490	dev_dbg(dev, "%s: %d/%d/%d %d:%d:%d(%d)\n", __func__,
491		1900 + alrm->time.tm_year, 1 + alrm->time.tm_mon,
492		alrm->time.tm_mday, alrm->time.tm_hour,
493		alrm->time.tm_min, alrm->time.tm_sec,
494		alrm->time.tm_wday);
495
496	ret = s5m_check_peding_alarm_interrupt(info, alrm);
497
498	return 0;
499}
500
501static int s5m_rtc_stop_alarm(struct s5m_rtc_info *info)
502{
503	u8 data[info->regs->regs_count];
504	int ret, i;
505	struct rtc_time tm;
506
507	ret = regmap_bulk_read(info->regmap, info->regs->alarm0, data,
508			info->regs->regs_count);
509	if (ret < 0)
510		return ret;
511
512	s5m8767_data_to_tm(data, &tm, info->rtc_24hr_mode);
513	dev_dbg(info->dev, "%s: %d/%d/%d %d:%d:%d(%d)\n", __func__,
514		1900 + tm.tm_year, 1 + tm.tm_mon, tm.tm_mday,
515		tm.tm_hour, tm.tm_min, tm.tm_sec, tm.tm_wday);
516
517	switch (info->device_type) {
518	case S5M8763X:
519		ret = regmap_write(info->regmap, S5M_ALARM0_CONF, 0);
520		break;
521
522	case S5M8767X:
523	case S2MPS15X:
524	case S2MPS14X:
525	case S2MPS13X:
526		for (i = 0; i < info->regs->regs_count; i++)
527			data[i] &= ~ALARM_ENABLE_MASK;
528
529		ret = regmap_raw_write(info->regmap, info->regs->alarm0, data,
530				info->regs->regs_count);
531		if (ret < 0)
532			return ret;
533
534		ret = s5m8767_rtc_set_alarm_reg(info);
535
536		break;
537
538	default:
539		return -EINVAL;
540	}
541
542	return ret;
543}
544
545static int s5m_rtc_start_alarm(struct s5m_rtc_info *info)
546{
547	int ret;
548	u8 data[info->regs->regs_count];
549	u8 alarm0_conf;
550	struct rtc_time tm;
551
552	ret = regmap_bulk_read(info->regmap, info->regs->alarm0, data,
553			info->regs->regs_count);
554	if (ret < 0)
555		return ret;
556
557	s5m8767_data_to_tm(data, &tm, info->rtc_24hr_mode);
558	dev_dbg(info->dev, "%s: %d/%d/%d %d:%d:%d(%d)\n", __func__,
559		1900 + tm.tm_year, 1 + tm.tm_mon, tm.tm_mday,
560		tm.tm_hour, tm.tm_min, tm.tm_sec, tm.tm_wday);
561
562	switch (info->device_type) {
563	case S5M8763X:
564		alarm0_conf = 0x77;
565		ret = regmap_write(info->regmap, S5M_ALARM0_CONF, alarm0_conf);
566		break;
567
568	case S5M8767X:
569	case S2MPS15X:
570	case S2MPS14X:
571	case S2MPS13X:
572		data[RTC_SEC] |= ALARM_ENABLE_MASK;
573		data[RTC_MIN] |= ALARM_ENABLE_MASK;
574		data[RTC_HOUR] |= ALARM_ENABLE_MASK;
575		data[RTC_WEEKDAY] &= ~ALARM_ENABLE_MASK;
576		if (data[RTC_DATE] & 0x1f)
577			data[RTC_DATE] |= ALARM_ENABLE_MASK;
578		if (data[RTC_MONTH] & 0xf)
579			data[RTC_MONTH] |= ALARM_ENABLE_MASK;
580		if (data[RTC_YEAR1] & 0x7f)
581			data[RTC_YEAR1] |= ALARM_ENABLE_MASK;
582
583		ret = regmap_raw_write(info->regmap, info->regs->alarm0, data,
584				info->regs->regs_count);
585		if (ret < 0)
586			return ret;
587		ret = s5m8767_rtc_set_alarm_reg(info);
588
589		break;
590
591	default:
592		return -EINVAL;
593	}
594
595	return ret;
596}
597
598static int s5m_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
599{
600	struct s5m_rtc_info *info = dev_get_drvdata(dev);
601	u8 data[info->regs->regs_count];
602	int ret;
603
604	switch (info->device_type) {
605	case S5M8763X:
606		s5m8763_tm_to_data(&alrm->time, data);
607		break;
608
609	case S5M8767X:
610	case S2MPS15X:
611	case S2MPS14X:
612	case S2MPS13X:
613		s5m8767_tm_to_data(&alrm->time, data);
614		break;
615
616	default:
617		return -EINVAL;
618	}
619
620	dev_dbg(dev, "%s: %d/%d/%d %d:%d:%d(%d)\n", __func__,
621		1900 + alrm->time.tm_year, 1 + alrm->time.tm_mon,
622		alrm->time.tm_mday, alrm->time.tm_hour, alrm->time.tm_min,
623		alrm->time.tm_sec, alrm->time.tm_wday);
624
625	ret = s5m_rtc_stop_alarm(info);
626	if (ret < 0)
627		return ret;
628
629	ret = regmap_raw_write(info->regmap, info->regs->alarm0, data,
630			info->regs->regs_count);
631	if (ret < 0)
632		return ret;
633
634	ret = s5m8767_rtc_set_alarm_reg(info);
635	if (ret < 0)
636		return ret;
637
638	if (alrm->enabled)
639		ret = s5m_rtc_start_alarm(info);
640
641	return ret;
642}
643
644static int s5m_rtc_alarm_irq_enable(struct device *dev,
645				    unsigned int enabled)
646{
647	struct s5m_rtc_info *info = dev_get_drvdata(dev);
648
649	if (enabled)
650		return s5m_rtc_start_alarm(info);
651	else
652		return s5m_rtc_stop_alarm(info);
653}
654
655static irqreturn_t s5m_rtc_alarm_irq(int irq, void *data)
656{
657	struct s5m_rtc_info *info = data;
658
659	rtc_update_irq(info->rtc_dev, 1, RTC_IRQF | RTC_AF);
660
661	return IRQ_HANDLED;
662}
663
664static const struct rtc_class_ops s5m_rtc_ops = {
665	.read_time = s5m_rtc_read_time,
666	.set_time = s5m_rtc_set_time,
667	.read_alarm = s5m_rtc_read_alarm,
668	.set_alarm = s5m_rtc_set_alarm,
669	.alarm_irq_enable = s5m_rtc_alarm_irq_enable,
670};
671
672static int s5m8767_rtc_init_reg(struct s5m_rtc_info *info)
673{
674	u8 data[2];
675	int ret;
676
677	switch (info->device_type) {
678	case S5M8763X:
679	case S5M8767X:
680		/* UDR update time. Default of 7.32 ms is too long. */
681		ret = regmap_update_bits(info->regmap, S5M_RTC_UDR_CON,
682				S5M_RTC_UDR_T_MASK, S5M_RTC_UDR_T_450_US);
683		if (ret < 0)
684			dev_err(info->dev, "%s: fail to change UDR time: %d\n",
685					__func__, ret);
686
687		/* Set RTC control register : Binary mode, 24hour mode */
688		data[0] = (1 << BCD_EN_SHIFT) | (1 << MODEL24_SHIFT);
689		data[1] = (0 << BCD_EN_SHIFT) | (1 << MODEL24_SHIFT);
690
691		ret = regmap_raw_write(info->regmap, S5M_ALARM0_CONF, data, 2);
692		break;
693
694	case S2MPS15X:
695	case S2MPS14X:
696	case S2MPS13X:
697		data[0] = (0 << BCD_EN_SHIFT) | (1 << MODEL24_SHIFT);
698		ret = regmap_write(info->regmap, info->regs->ctrl, data[0]);
699		if (ret < 0)
700			break;
701
702		/*
703		 * Should set WUDR & (RUDR or AUDR) bits to high after writing
704		 * RTC_CTRL register like writing Alarm registers. We can't find
705		 * the description from datasheet but vendor code does that
706		 * really.
707		 */
708		ret = s5m8767_rtc_set_alarm_reg(info);
709		break;
710
711	default:
712		return -EINVAL;
713	}
714
715	info->rtc_24hr_mode = 1;
716	if (ret < 0) {
717		dev_err(info->dev, "%s: fail to write controlm reg(%d)\n",
718			__func__, ret);
719		return ret;
720	}
721
722	return ret;
723}
724
725static int s5m_rtc_probe(struct platform_device *pdev)
726{
727	struct sec_pmic_dev *s5m87xx = dev_get_drvdata(pdev->dev.parent);
728	struct sec_platform_data *pdata = s5m87xx->pdata;
729	struct s5m_rtc_info *info;
730	const struct regmap_config *regmap_cfg;
731	int ret, alarm_irq;
732
733	if (!pdata) {
734		dev_err(pdev->dev.parent, "Platform data not supplied\n");
735		return -ENODEV;
736	}
737
738	info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL);
739	if (!info)
740		return -ENOMEM;
741
742	switch (platform_get_device_id(pdev)->driver_data) {
743	case S2MPS15X:
744		regmap_cfg = &s2mps14_rtc_regmap_config;
745		info->regs = &s2mps15_rtc_regs;
746		alarm_irq = S2MPS14_IRQ_RTCA0;
747		break;
748	case S2MPS14X:
749		regmap_cfg = &s2mps14_rtc_regmap_config;
750		info->regs = &s2mps14_rtc_regs;
751		alarm_irq = S2MPS14_IRQ_RTCA0;
752		break;
753	case S2MPS13X:
754		regmap_cfg = &s2mps14_rtc_regmap_config;
755		info->regs = &s2mps13_rtc_regs;
756		alarm_irq = S2MPS14_IRQ_RTCA0;
757		break;
758	case S5M8763X:
759		regmap_cfg = &s5m_rtc_regmap_config;
760		info->regs = &s5m_rtc_regs;
761		alarm_irq = S5M8763_IRQ_ALARM0;
762		break;
763	case S5M8767X:
764		regmap_cfg = &s5m_rtc_regmap_config;
765		info->regs = &s5m_rtc_regs;
766		alarm_irq = S5M8767_IRQ_RTCA1;
767		break;
768	default:
769		dev_err(&pdev->dev,
770				"Device type %lu is not supported by RTC driver\n",
771				platform_get_device_id(pdev)->driver_data);
772		return -ENODEV;
773	}
774
775	info->i2c = i2c_new_dummy(s5m87xx->i2c->adapter, RTC_I2C_ADDR);
776	if (!info->i2c) {
 
777		dev_err(&pdev->dev, "Failed to allocate I2C for RTC\n");
778		return -ENODEV;
779	}
780
781	info->regmap = devm_regmap_init_i2c(info->i2c, regmap_cfg);
782	if (IS_ERR(info->regmap)) {
783		ret = PTR_ERR(info->regmap);
784		dev_err(&pdev->dev, "Failed to allocate RTC register map: %d\n",
785				ret);
786		goto err;
787	}
788
789	info->dev = &pdev->dev;
790	info->s5m87xx = s5m87xx;
791	info->device_type = platform_get_device_id(pdev)->driver_data;
792
793	if (s5m87xx->irq_data) {
794		info->irq = regmap_irq_get_virq(s5m87xx->irq_data, alarm_irq);
795		if (info->irq <= 0) {
796			ret = -EINVAL;
797			dev_err(&pdev->dev, "Failed to get virtual IRQ %d\n",
798				alarm_irq);
799			goto err;
800		}
801	}
802
803	platform_set_drvdata(pdev, info);
804
805	ret = s5m8767_rtc_init_reg(info);
 
 
806
807	device_init_wakeup(&pdev->dev, 1);
 
 
808
809	info->rtc_dev = devm_rtc_device_register(&pdev->dev, "s5m-rtc",
810						 &s5m_rtc_ops, THIS_MODULE);
811
812	if (IS_ERR(info->rtc_dev)) {
813		ret = PTR_ERR(info->rtc_dev);
814		goto err;
 
 
 
815	}
816
817	if (!info->irq) {
818		dev_info(&pdev->dev, "Alarm IRQ not available\n");
819		return 0;
820	}
821
822	ret = devm_request_threaded_irq(&pdev->dev, info->irq, NULL,
823					s5m_rtc_alarm_irq, 0, "rtc-alarm0",
824					info);
825	if (ret < 0) {
826		dev_err(&pdev->dev, "Failed to request alarm IRQ: %d: %d\n",
827			info->irq, ret);
828		goto err;
829	}
830
831	return 0;
832
833err:
834	i2c_unregister_device(info->i2c);
835
836	return ret;
837}
838
839static int s5m_rtc_remove(struct platform_device *pdev)
840{
841	struct s5m_rtc_info *info = platform_get_drvdata(pdev);
842
843	i2c_unregister_device(info->i2c);
844
845	return 0;
846}
847
848#ifdef CONFIG_PM_SLEEP
849static int s5m_rtc_resume(struct device *dev)
850{
851	struct s5m_rtc_info *info = dev_get_drvdata(dev);
852	int ret = 0;
853
854	if (info->irq && device_may_wakeup(dev))
855		ret = disable_irq_wake(info->irq);
856
857	return ret;
858}
859
860static int s5m_rtc_suspend(struct device *dev)
861{
862	struct s5m_rtc_info *info = dev_get_drvdata(dev);
863	int ret = 0;
864
865	if (info->irq && device_may_wakeup(dev))
866		ret = enable_irq_wake(info->irq);
867
868	return ret;
869}
870#endif /* CONFIG_PM_SLEEP */
871
872static SIMPLE_DEV_PM_OPS(s5m_rtc_pm_ops, s5m_rtc_suspend, s5m_rtc_resume);
873
874static const struct platform_device_id s5m_rtc_id[] = {
875	{ "s5m-rtc",		S5M8767X },
876	{ "s2mps13-rtc",	S2MPS13X },
877	{ "s2mps14-rtc",	S2MPS14X },
878	{ "s2mps15-rtc",	S2MPS15X },
879	{ },
880};
881MODULE_DEVICE_TABLE(platform, s5m_rtc_id);
882
883static struct platform_driver s5m_rtc_driver = {
884	.driver		= {
885		.name	= "s5m-rtc",
886		.pm	= &s5m_rtc_pm_ops,
887	},
888	.probe		= s5m_rtc_probe,
889	.remove		= s5m_rtc_remove,
890	.id_table	= s5m_rtc_id,
891};
892
893module_platform_driver(s5m_rtc_driver);
894
895/* Module information */
896MODULE_AUTHOR("Sangbeom Kim <sbkim73@samsung.com>");
897MODULE_DESCRIPTION("Samsung S5M/S2MPS14 RTC driver");
898MODULE_LICENSE("GPL");
899MODULE_ALIAS("platform:s5m-rtc");
v6.2
  1// SPDX-License-Identifier: GPL-2.0+
  2//
  3// Copyright (c) 2013-2014 Samsung Electronics Co., Ltd
  4//	http://www.samsung.com
  5//
  6//  Copyright (C) 2013 Google, Inc
 
 
 
 
 
 
 
 
 
 
  7
  8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  9
 10#include <linux/module.h>
 11#include <linux/i2c.h>
 12#include <linux/bcd.h>
 13#include <linux/regmap.h>
 14#include <linux/rtc.h>
 15#include <linux/platform_device.h>
 16#include <linux/mfd/samsung/core.h>
 17#include <linux/mfd/samsung/irq.h>
 18#include <linux/mfd/samsung/rtc.h>
 19#include <linux/mfd/samsung/s2mps14.h>
 20
 21/*
 22 * Maximum number of retries for checking changes in UDR field
 23 * of S5M_RTC_UDR_CON register (to limit possible endless loop).
 24 *
 25 * After writing to RTC registers (setting time or alarm) read the UDR field
 26 * in S5M_RTC_UDR_CON register. UDR is auto-cleared when data have
 27 * been transferred.
 28 */
 29#define UDR_READ_RETRY_CNT	5
 30
 31enum {
 32	RTC_SEC = 0,
 33	RTC_MIN,
 34	RTC_HOUR,
 35	RTC_WEEKDAY,
 36	RTC_DATE,
 37	RTC_MONTH,
 38	RTC_YEAR1,
 39	RTC_YEAR2,
 40	/* Make sure this is always the last enum name. */
 41	RTC_MAX_NUM_TIME_REGS
 42};
 43
 44/*
 45 * Registers used by the driver which are different between chipsets.
 46 *
 47 * Operations like read time and write alarm/time require updating
 48 * specific fields in UDR register. These fields usually are auto-cleared
 49 * (with some exceptions).
 50 *
 51 * Table of operations per device:
 52 *
 53 * Device     | Write time | Read time | Write alarm
 54 * =================================================
 55 * S5M8767    | UDR + TIME |           | UDR
 56 * S2MPS11/14 | WUDR       | RUDR      | WUDR + RUDR
 57 * S2MPS13    | WUDR       | RUDR      | WUDR + AUDR
 58 * S2MPS15    | WUDR       | RUDR      | AUDR
 59 */
 60struct s5m_rtc_reg_config {
 61	/* Number of registers used for setting time/alarm0/alarm1 */
 62	unsigned int regs_count;
 63	/* First register for time, seconds */
 64	unsigned int time;
 65	/* RTC control register */
 66	unsigned int ctrl;
 67	/* First register for alarm 0, seconds */
 68	unsigned int alarm0;
 69	/* First register for alarm 1, seconds */
 70	unsigned int alarm1;
 71	/*
 72	 * Register for update flag (UDR). Typically setting UDR field to 1
 73	 * will enable update of time or alarm register. Then it will be
 74	 * auto-cleared after successful update.
 75	 */
 76	unsigned int udr_update;
 77	/* Auto-cleared mask in UDR field for writing time and alarm */
 78	unsigned int autoclear_udr_mask;
 79	/*
 80	 * Masks in UDR field for time and alarm operations.
 81	 * The read time mask can be 0. Rest should not.
 82	 */
 83	unsigned int read_time_udr_mask;
 84	unsigned int write_time_udr_mask;
 85	unsigned int write_alarm_udr_mask;
 86};
 87
 88/* Register map for S5M8763 and S5M8767 */
 89static const struct s5m_rtc_reg_config s5m_rtc_regs = {
 90	.regs_count		= 8,
 91	.time			= S5M_RTC_SEC,
 92	.ctrl			= S5M_ALARM1_CONF,
 93	.alarm0			= S5M_ALARM0_SEC,
 94	.alarm1			= S5M_ALARM1_SEC,
 95	.udr_update		= S5M_RTC_UDR_CON,
 96	.autoclear_udr_mask	= S5M_RTC_UDR_MASK,
 97	.read_time_udr_mask	= 0, /* Not needed */
 98	.write_time_udr_mask	= S5M_RTC_UDR_MASK | S5M_RTC_TIME_EN_MASK,
 99	.write_alarm_udr_mask	= S5M_RTC_UDR_MASK,
100};
101
102/* Register map for S2MPS13 */
103static const struct s5m_rtc_reg_config s2mps13_rtc_regs = {
104	.regs_count		= 7,
105	.time			= S2MPS_RTC_SEC,
106	.ctrl			= S2MPS_RTC_CTRL,
107	.alarm0			= S2MPS_ALARM0_SEC,
108	.alarm1			= S2MPS_ALARM1_SEC,
109	.udr_update		= S2MPS_RTC_UDR_CON,
110	.autoclear_udr_mask	= S2MPS_RTC_WUDR_MASK,
111	.read_time_udr_mask	= S2MPS_RTC_RUDR_MASK,
112	.write_time_udr_mask	= S2MPS_RTC_WUDR_MASK,
113	.write_alarm_udr_mask	= S2MPS_RTC_WUDR_MASK | S2MPS13_RTC_AUDR_MASK,
114};
115
116/* Register map for S2MPS11/14 */
117static const struct s5m_rtc_reg_config s2mps14_rtc_regs = {
118	.regs_count		= 7,
119	.time			= S2MPS_RTC_SEC,
120	.ctrl			= S2MPS_RTC_CTRL,
121	.alarm0			= S2MPS_ALARM0_SEC,
122	.alarm1			= S2MPS_ALARM1_SEC,
123	.udr_update		= S2MPS_RTC_UDR_CON,
124	.autoclear_udr_mask	= S2MPS_RTC_WUDR_MASK,
125	.read_time_udr_mask	= S2MPS_RTC_RUDR_MASK,
126	.write_time_udr_mask	= S2MPS_RTC_WUDR_MASK,
127	.write_alarm_udr_mask	= S2MPS_RTC_WUDR_MASK | S2MPS_RTC_RUDR_MASK,
128};
129
130/*
131 * Register map for S2MPS15 - in comparison to S2MPS14 the WUDR and AUDR bits
132 * are swapped.
133 */
134static const struct s5m_rtc_reg_config s2mps15_rtc_regs = {
135	.regs_count		= 7,
136	.time			= S2MPS_RTC_SEC,
137	.ctrl			= S2MPS_RTC_CTRL,
138	.alarm0			= S2MPS_ALARM0_SEC,
139	.alarm1			= S2MPS_ALARM1_SEC,
140	.udr_update		= S2MPS_RTC_UDR_CON,
141	.autoclear_udr_mask	= S2MPS_RTC_WUDR_MASK,
142	.read_time_udr_mask	= S2MPS_RTC_RUDR_MASK,
143	.write_time_udr_mask	= S2MPS15_RTC_WUDR_MASK,
144	.write_alarm_udr_mask	= S2MPS15_RTC_AUDR_MASK,
145};
146
147struct s5m_rtc_info {
148	struct device *dev;
149	struct i2c_client *i2c;
150	struct sec_pmic_dev *s5m87xx;
151	struct regmap *regmap;
152	struct rtc_device *rtc_dev;
153	int irq;
154	enum sec_device_type device_type;
155	int rtc_24hr_mode;
156	const struct s5m_rtc_reg_config	*regs;
157};
158
159static const struct regmap_config s5m_rtc_regmap_config = {
160	.reg_bits = 8,
161	.val_bits = 8,
162
163	.max_register = S5M_RTC_REG_MAX,
164};
165
166static const struct regmap_config s2mps14_rtc_regmap_config = {
167	.reg_bits = 8,
168	.val_bits = 8,
169
170	.max_register = S2MPS_RTC_REG_MAX,
171};
172
173static void s5m8767_data_to_tm(u8 *data, struct rtc_time *tm,
174			       int rtc_24hr_mode)
175{
176	tm->tm_sec = data[RTC_SEC] & 0x7f;
177	tm->tm_min = data[RTC_MIN] & 0x7f;
178	if (rtc_24hr_mode) {
179		tm->tm_hour = data[RTC_HOUR] & 0x1f;
180	} else {
181		tm->tm_hour = data[RTC_HOUR] & 0x0f;
182		if (data[RTC_HOUR] & HOUR_PM_MASK)
183			tm->tm_hour += 12;
184	}
185
186	tm->tm_wday = ffs(data[RTC_WEEKDAY] & 0x7f);
187	tm->tm_mday = data[RTC_DATE] & 0x1f;
188	tm->tm_mon = (data[RTC_MONTH] & 0x0f) - 1;
189	tm->tm_year = (data[RTC_YEAR1] & 0x7f) + 100;
190	tm->tm_yday = 0;
191	tm->tm_isdst = 0;
192}
193
194static int s5m8767_tm_to_data(struct rtc_time *tm, u8 *data)
195{
196	data[RTC_SEC] = tm->tm_sec;
197	data[RTC_MIN] = tm->tm_min;
198
199	if (tm->tm_hour >= 12)
200		data[RTC_HOUR] = tm->tm_hour | HOUR_PM_MASK;
201	else
202		data[RTC_HOUR] = tm->tm_hour & ~HOUR_PM_MASK;
203
204	data[RTC_WEEKDAY] = 1 << tm->tm_wday;
205	data[RTC_DATE] = tm->tm_mday;
206	data[RTC_MONTH] = tm->tm_mon + 1;
207	data[RTC_YEAR1] = tm->tm_year - 100;
208
209	return 0;
 
 
 
 
 
 
210}
211
212/*
213 * Read RTC_UDR_CON register and wait till UDR field is cleared.
214 * This indicates that time/alarm update ended.
215 */
216static int s5m8767_wait_for_udr_update(struct s5m_rtc_info *info)
217{
218	int ret, retry = UDR_READ_RETRY_CNT;
219	unsigned int data;
220
221	do {
222		ret = regmap_read(info->regmap, info->regs->udr_update, &data);
223	} while (--retry && (data & info->regs->autoclear_udr_mask) && !ret);
224
225	if (!retry)
226		dev_err(info->dev, "waiting for UDR update, reached max number of retries\n");
227
228	return ret;
229}
230
231static int s5m_check_peding_alarm_interrupt(struct s5m_rtc_info *info,
232		struct rtc_wkalrm *alarm)
233{
234	int ret;
235	unsigned int val;
236
237	switch (info->device_type) {
238	case S5M8767X:
239	case S5M8763X:
240		ret = regmap_read(info->regmap, S5M_RTC_STATUS, &val);
241		val &= S5M_ALARM0_STATUS;
242		break;
243	case S2MPS15X:
244	case S2MPS14X:
245	case S2MPS13X:
246		ret = regmap_read(info->s5m87xx->regmap_pmic, S2MPS14_REG_ST2,
247				&val);
248		val &= S2MPS_ALARM0_STATUS;
249		break;
250	default:
251		return -EINVAL;
252	}
253	if (ret < 0)
254		return ret;
255
256	if (val)
257		alarm->pending = 1;
258	else
259		alarm->pending = 0;
260
261	return 0;
262}
263
264static int s5m8767_rtc_set_time_reg(struct s5m_rtc_info *info)
265{
266	int ret;
267	unsigned int data;
268
269	ret = regmap_read(info->regmap, info->regs->udr_update, &data);
270	if (ret < 0) {
271		dev_err(info->dev, "failed to read update reg(%d)\n", ret);
272		return ret;
273	}
274
275	data |= info->regs->write_time_udr_mask;
276
277	ret = regmap_write(info->regmap, info->regs->udr_update, data);
278	if (ret < 0) {
279		dev_err(info->dev, "failed to write update reg(%d)\n", ret);
280		return ret;
281	}
282
283	ret = s5m8767_wait_for_udr_update(info);
284
285	return ret;
286}
287
288static int s5m8767_rtc_set_alarm_reg(struct s5m_rtc_info *info)
289{
290	int ret;
291	unsigned int data;
292
293	ret = regmap_read(info->regmap, info->regs->udr_update, &data);
294	if (ret < 0) {
295		dev_err(info->dev, "%s: fail to read update reg(%d)\n",
296			__func__, ret);
297		return ret;
298	}
299
300	data |= info->regs->write_alarm_udr_mask;
301	switch (info->device_type) {
302	case S5M8763X:
303	case S5M8767X:
304		data &= ~S5M_RTC_TIME_EN_MASK;
305		break;
306	case S2MPS15X:
307	case S2MPS14X:
308	case S2MPS13X:
309		/* No exceptions needed */
310		break;
311	default:
312		return -EINVAL;
313	}
314
315	ret = regmap_write(info->regmap, info->regs->udr_update, data);
316	if (ret < 0) {
317		dev_err(info->dev, "%s: fail to write update reg(%d)\n",
318			__func__, ret);
319		return ret;
320	}
321
322	ret = s5m8767_wait_for_udr_update(info);
323
324	/* On S2MPS13 the AUDR is not auto-cleared */
325	if (info->device_type == S2MPS13X)
326		regmap_update_bits(info->regmap, info->regs->udr_update,
327				   S2MPS13_RTC_AUDR_MASK, 0);
328
329	return ret;
330}
331
332static void s5m8763_data_to_tm(u8 *data, struct rtc_time *tm)
333{
334	tm->tm_sec = bcd2bin(data[RTC_SEC]);
335	tm->tm_min = bcd2bin(data[RTC_MIN]);
336
337	if (data[RTC_HOUR] & HOUR_12) {
338		tm->tm_hour = bcd2bin(data[RTC_HOUR] & 0x1f);
339		if (data[RTC_HOUR] & HOUR_PM)
340			tm->tm_hour += 12;
341	} else {
342		tm->tm_hour = bcd2bin(data[RTC_HOUR] & 0x3f);
343	}
344
345	tm->tm_wday = data[RTC_WEEKDAY] & 0x07;
346	tm->tm_mday = bcd2bin(data[RTC_DATE]);
347	tm->tm_mon = bcd2bin(data[RTC_MONTH]);
348	tm->tm_year = bcd2bin(data[RTC_YEAR1]) + bcd2bin(data[RTC_YEAR2]) * 100;
349	tm->tm_year -= 1900;
350}
351
352static void s5m8763_tm_to_data(struct rtc_time *tm, u8 *data)
353{
354	data[RTC_SEC] = bin2bcd(tm->tm_sec);
355	data[RTC_MIN] = bin2bcd(tm->tm_min);
356	data[RTC_HOUR] = bin2bcd(tm->tm_hour);
357	data[RTC_WEEKDAY] = tm->tm_wday;
358	data[RTC_DATE] = bin2bcd(tm->tm_mday);
359	data[RTC_MONTH] = bin2bcd(tm->tm_mon);
360	data[RTC_YEAR1] = bin2bcd(tm->tm_year % 100);
361	data[RTC_YEAR2] = bin2bcd((tm->tm_year + 1900) / 100);
362}
363
364static int s5m_rtc_read_time(struct device *dev, struct rtc_time *tm)
365{
366	struct s5m_rtc_info *info = dev_get_drvdata(dev);
367	u8 data[RTC_MAX_NUM_TIME_REGS];
368	int ret;
369
370	if (info->regs->read_time_udr_mask) {
371		ret = regmap_update_bits(info->regmap,
372				info->regs->udr_update,
373				info->regs->read_time_udr_mask,
374				info->regs->read_time_udr_mask);
375		if (ret) {
376			dev_err(dev,
377				"Failed to prepare registers for time reading: %d\n",
378				ret);
379			return ret;
380		}
381	}
382	ret = regmap_bulk_read(info->regmap, info->regs->time, data,
383			info->regs->regs_count);
384	if (ret < 0)
385		return ret;
386
387	switch (info->device_type) {
388	case S5M8763X:
389		s5m8763_data_to_tm(data, tm);
390		break;
391
392	case S5M8767X:
393	case S2MPS15X:
394	case S2MPS14X:
395	case S2MPS13X:
396		s5m8767_data_to_tm(data, tm, info->rtc_24hr_mode);
397		break;
398
399	default:
400		return -EINVAL;
401	}
402
403	dev_dbg(dev, "%s: %ptR(%d)\n", __func__, tm, tm->tm_wday);
 
 
404
405	return 0;
406}
407
408static int s5m_rtc_set_time(struct device *dev, struct rtc_time *tm)
409{
410	struct s5m_rtc_info *info = dev_get_drvdata(dev);
411	u8 data[RTC_MAX_NUM_TIME_REGS];
412	int ret = 0;
413
414	switch (info->device_type) {
415	case S5M8763X:
416		s5m8763_tm_to_data(tm, data);
417		break;
418	case S5M8767X:
419	case S2MPS15X:
420	case S2MPS14X:
421	case S2MPS13X:
422		ret = s5m8767_tm_to_data(tm, data);
423		break;
424	default:
425		return -EINVAL;
426	}
427
428	if (ret < 0)
429		return ret;
430
431	dev_dbg(dev, "%s: %ptR(%d)\n", __func__, tm, tm->tm_wday);
 
 
432
433	ret = regmap_raw_write(info->regmap, info->regs->time, data,
434			info->regs->regs_count);
435	if (ret < 0)
436		return ret;
437
438	ret = s5m8767_rtc_set_time_reg(info);
439
440	return ret;
441}
442
443static int s5m_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
444{
445	struct s5m_rtc_info *info = dev_get_drvdata(dev);
446	u8 data[RTC_MAX_NUM_TIME_REGS];
447	unsigned int val;
448	int ret, i;
449
450	ret = regmap_bulk_read(info->regmap, info->regs->alarm0, data,
451			info->regs->regs_count);
452	if (ret < 0)
453		return ret;
454
455	switch (info->device_type) {
456	case S5M8763X:
457		s5m8763_data_to_tm(data, &alrm->time);
458		ret = regmap_read(info->regmap, S5M_ALARM0_CONF, &val);
459		if (ret < 0)
460			return ret;
461
462		alrm->enabled = !!val;
463		break;
464
465	case S5M8767X:
466	case S2MPS15X:
467	case S2MPS14X:
468	case S2MPS13X:
469		s5m8767_data_to_tm(data, &alrm->time, info->rtc_24hr_mode);
470		alrm->enabled = 0;
471		for (i = 0; i < info->regs->regs_count; i++) {
472			if (data[i] & ALARM_ENABLE_MASK) {
473				alrm->enabled = 1;
474				break;
475			}
476		}
477		break;
478
479	default:
480		return -EINVAL;
481	}
482
483	dev_dbg(dev, "%s: %ptR(%d)\n", __func__, &alrm->time, alrm->time.tm_wday);
 
 
 
 
 
 
484
485	return s5m_check_peding_alarm_interrupt(info, alrm);
486}
487
488static int s5m_rtc_stop_alarm(struct s5m_rtc_info *info)
489{
490	u8 data[RTC_MAX_NUM_TIME_REGS];
491	int ret, i;
492	struct rtc_time tm;
493
494	ret = regmap_bulk_read(info->regmap, info->regs->alarm0, data,
495			info->regs->regs_count);
496	if (ret < 0)
497		return ret;
498
499	s5m8767_data_to_tm(data, &tm, info->rtc_24hr_mode);
500	dev_dbg(info->dev, "%s: %ptR(%d)\n", __func__, &tm, tm.tm_wday);
 
 
501
502	switch (info->device_type) {
503	case S5M8763X:
504		ret = regmap_write(info->regmap, S5M_ALARM0_CONF, 0);
505		break;
506
507	case S5M8767X:
508	case S2MPS15X:
509	case S2MPS14X:
510	case S2MPS13X:
511		for (i = 0; i < info->regs->regs_count; i++)
512			data[i] &= ~ALARM_ENABLE_MASK;
513
514		ret = regmap_raw_write(info->regmap, info->regs->alarm0, data,
515				info->regs->regs_count);
516		if (ret < 0)
517			return ret;
518
519		ret = s5m8767_rtc_set_alarm_reg(info);
520
521		break;
522
523	default:
524		return -EINVAL;
525	}
526
527	return ret;
528}
529
530static int s5m_rtc_start_alarm(struct s5m_rtc_info *info)
531{
532	int ret;
533	u8 data[RTC_MAX_NUM_TIME_REGS];
534	u8 alarm0_conf;
535	struct rtc_time tm;
536
537	ret = regmap_bulk_read(info->regmap, info->regs->alarm0, data,
538			info->regs->regs_count);
539	if (ret < 0)
540		return ret;
541
542	s5m8767_data_to_tm(data, &tm, info->rtc_24hr_mode);
543	dev_dbg(info->dev, "%s: %ptR(%d)\n", __func__, &tm, tm.tm_wday);
 
 
544
545	switch (info->device_type) {
546	case S5M8763X:
547		alarm0_conf = 0x77;
548		ret = regmap_write(info->regmap, S5M_ALARM0_CONF, alarm0_conf);
549		break;
550
551	case S5M8767X:
552	case S2MPS15X:
553	case S2MPS14X:
554	case S2MPS13X:
555		data[RTC_SEC] |= ALARM_ENABLE_MASK;
556		data[RTC_MIN] |= ALARM_ENABLE_MASK;
557		data[RTC_HOUR] |= ALARM_ENABLE_MASK;
558		data[RTC_WEEKDAY] &= ~ALARM_ENABLE_MASK;
559		if (data[RTC_DATE] & 0x1f)
560			data[RTC_DATE] |= ALARM_ENABLE_MASK;
561		if (data[RTC_MONTH] & 0xf)
562			data[RTC_MONTH] |= ALARM_ENABLE_MASK;
563		if (data[RTC_YEAR1] & 0x7f)
564			data[RTC_YEAR1] |= ALARM_ENABLE_MASK;
565
566		ret = regmap_raw_write(info->regmap, info->regs->alarm0, data,
567				info->regs->regs_count);
568		if (ret < 0)
569			return ret;
570		ret = s5m8767_rtc_set_alarm_reg(info);
571
572		break;
573
574	default:
575		return -EINVAL;
576	}
577
578	return ret;
579}
580
581static int s5m_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
582{
583	struct s5m_rtc_info *info = dev_get_drvdata(dev);
584	u8 data[RTC_MAX_NUM_TIME_REGS];
585	int ret;
586
587	switch (info->device_type) {
588	case S5M8763X:
589		s5m8763_tm_to_data(&alrm->time, data);
590		break;
591
592	case S5M8767X:
593	case S2MPS15X:
594	case S2MPS14X:
595	case S2MPS13X:
596		s5m8767_tm_to_data(&alrm->time, data);
597		break;
598
599	default:
600		return -EINVAL;
601	}
602
603	dev_dbg(dev, "%s: %ptR(%d)\n", __func__, &alrm->time, alrm->time.tm_wday);
 
 
 
604
605	ret = s5m_rtc_stop_alarm(info);
606	if (ret < 0)
607		return ret;
608
609	ret = regmap_raw_write(info->regmap, info->regs->alarm0, data,
610			info->regs->regs_count);
611	if (ret < 0)
612		return ret;
613
614	ret = s5m8767_rtc_set_alarm_reg(info);
615	if (ret < 0)
616		return ret;
617
618	if (alrm->enabled)
619		ret = s5m_rtc_start_alarm(info);
620
621	return ret;
622}
623
624static int s5m_rtc_alarm_irq_enable(struct device *dev,
625				    unsigned int enabled)
626{
627	struct s5m_rtc_info *info = dev_get_drvdata(dev);
628
629	if (enabled)
630		return s5m_rtc_start_alarm(info);
631	else
632		return s5m_rtc_stop_alarm(info);
633}
634
635static irqreturn_t s5m_rtc_alarm_irq(int irq, void *data)
636{
637	struct s5m_rtc_info *info = data;
638
639	rtc_update_irq(info->rtc_dev, 1, RTC_IRQF | RTC_AF);
640
641	return IRQ_HANDLED;
642}
643
644static const struct rtc_class_ops s5m_rtc_ops = {
645	.read_time = s5m_rtc_read_time,
646	.set_time = s5m_rtc_set_time,
647	.read_alarm = s5m_rtc_read_alarm,
648	.set_alarm = s5m_rtc_set_alarm,
649	.alarm_irq_enable = s5m_rtc_alarm_irq_enable,
650};
651
652static int s5m8767_rtc_init_reg(struct s5m_rtc_info *info)
653{
654	u8 data[2];
655	int ret;
656
657	switch (info->device_type) {
658	case S5M8763X:
659	case S5M8767X:
660		/* UDR update time. Default of 7.32 ms is too long. */
661		ret = regmap_update_bits(info->regmap, S5M_RTC_UDR_CON,
662				S5M_RTC_UDR_T_MASK, S5M_RTC_UDR_T_450_US);
663		if (ret < 0)
664			dev_err(info->dev, "%s: fail to change UDR time: %d\n",
665					__func__, ret);
666
667		/* Set RTC control register : Binary mode, 24hour mode */
668		data[0] = (1 << BCD_EN_SHIFT) | (1 << MODEL24_SHIFT);
669		data[1] = (0 << BCD_EN_SHIFT) | (1 << MODEL24_SHIFT);
670
671		ret = regmap_raw_write(info->regmap, S5M_ALARM0_CONF, data, 2);
672		break;
673
674	case S2MPS15X:
675	case S2MPS14X:
676	case S2MPS13X:
677		data[0] = (0 << BCD_EN_SHIFT) | (1 << MODEL24_SHIFT);
678		ret = regmap_write(info->regmap, info->regs->ctrl, data[0]);
679		if (ret < 0)
680			break;
681
682		/*
683		 * Should set WUDR & (RUDR or AUDR) bits to high after writing
684		 * RTC_CTRL register like writing Alarm registers. We can't find
685		 * the description from datasheet but vendor code does that
686		 * really.
687		 */
688		ret = s5m8767_rtc_set_alarm_reg(info);
689		break;
690
691	default:
692		return -EINVAL;
693	}
694
695	info->rtc_24hr_mode = 1;
696	if (ret < 0) {
697		dev_err(info->dev, "%s: fail to write controlm reg(%d)\n",
698			__func__, ret);
699		return ret;
700	}
701
702	return ret;
703}
704
705static int s5m_rtc_probe(struct platform_device *pdev)
706{
707	struct sec_pmic_dev *s5m87xx = dev_get_drvdata(pdev->dev.parent);
 
708	struct s5m_rtc_info *info;
709	const struct regmap_config *regmap_cfg;
710	int ret, alarm_irq;
711
 
 
 
 
 
712	info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL);
713	if (!info)
714		return -ENOMEM;
715
716	switch (platform_get_device_id(pdev)->driver_data) {
717	case S2MPS15X:
718		regmap_cfg = &s2mps14_rtc_regmap_config;
719		info->regs = &s2mps15_rtc_regs;
720		alarm_irq = S2MPS14_IRQ_RTCA0;
721		break;
722	case S2MPS14X:
723		regmap_cfg = &s2mps14_rtc_regmap_config;
724		info->regs = &s2mps14_rtc_regs;
725		alarm_irq = S2MPS14_IRQ_RTCA0;
726		break;
727	case S2MPS13X:
728		regmap_cfg = &s2mps14_rtc_regmap_config;
729		info->regs = &s2mps13_rtc_regs;
730		alarm_irq = S2MPS14_IRQ_RTCA0;
731		break;
732	case S5M8763X:
733		regmap_cfg = &s5m_rtc_regmap_config;
734		info->regs = &s5m_rtc_regs;
735		alarm_irq = S5M8763_IRQ_ALARM0;
736		break;
737	case S5M8767X:
738		regmap_cfg = &s5m_rtc_regmap_config;
739		info->regs = &s5m_rtc_regs;
740		alarm_irq = S5M8767_IRQ_RTCA1;
741		break;
742	default:
743		dev_err(&pdev->dev,
744				"Device type %lu is not supported by RTC driver\n",
745				platform_get_device_id(pdev)->driver_data);
746		return -ENODEV;
747	}
748
749	info->i2c = devm_i2c_new_dummy_device(&pdev->dev, s5m87xx->i2c->adapter,
750					      RTC_I2C_ADDR);
751	if (IS_ERR(info->i2c)) {
752		dev_err(&pdev->dev, "Failed to allocate I2C for RTC\n");
753		return PTR_ERR(info->i2c);
754	}
755
756	info->regmap = devm_regmap_init_i2c(info->i2c, regmap_cfg);
757	if (IS_ERR(info->regmap)) {
758		ret = PTR_ERR(info->regmap);
759		dev_err(&pdev->dev, "Failed to allocate RTC register map: %d\n",
760				ret);
761		return ret;
762	}
763
764	info->dev = &pdev->dev;
765	info->s5m87xx = s5m87xx;
766	info->device_type = platform_get_device_id(pdev)->driver_data;
767
768	if (s5m87xx->irq_data) {
769		info->irq = regmap_irq_get_virq(s5m87xx->irq_data, alarm_irq);
770		if (info->irq <= 0) {
 
771			dev_err(&pdev->dev, "Failed to get virtual IRQ %d\n",
772				alarm_irq);
773			return -EINVAL;
774		}
775	}
776
777	platform_set_drvdata(pdev, info);
778
779	ret = s5m8767_rtc_init_reg(info);
780	if (ret)
781		return ret;
782
783	info->rtc_dev = devm_rtc_allocate_device(&pdev->dev);
784	if (IS_ERR(info->rtc_dev))
785		return PTR_ERR(info->rtc_dev);
786
787	info->rtc_dev->ops = &s5m_rtc_ops;
 
788
789	if (info->device_type == S5M8763X) {
790		info->rtc_dev->range_min = RTC_TIMESTAMP_BEGIN_0000;
791		info->rtc_dev->range_max = RTC_TIMESTAMP_END_9999;
792	} else {
793		info->rtc_dev->range_min = RTC_TIMESTAMP_BEGIN_2000;
794		info->rtc_dev->range_max = RTC_TIMESTAMP_END_2099;
795	}
796
797	if (!info->irq) {
798		clear_bit(RTC_FEATURE_ALARM, info->rtc_dev->features);
799	} else {
800		ret = devm_request_threaded_irq(&pdev->dev, info->irq, NULL,
801						s5m_rtc_alarm_irq, 0, "rtc-alarm0",
802						info);
803		if (ret < 0) {
804			dev_err(&pdev->dev, "Failed to request alarm IRQ: %d: %d\n",
805				info->irq, ret);
806			return ret;
807		}
808		device_init_wakeup(&pdev->dev, 1);
809	}
810
811	return devm_rtc_register_device(info->rtc_dev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
812}
813
814#ifdef CONFIG_PM_SLEEP
815static int s5m_rtc_resume(struct device *dev)
816{
817	struct s5m_rtc_info *info = dev_get_drvdata(dev);
818	int ret = 0;
819
820	if (info->irq && device_may_wakeup(dev))
821		ret = disable_irq_wake(info->irq);
822
823	return ret;
824}
825
826static int s5m_rtc_suspend(struct device *dev)
827{
828	struct s5m_rtc_info *info = dev_get_drvdata(dev);
829	int ret = 0;
830
831	if (info->irq && device_may_wakeup(dev))
832		ret = enable_irq_wake(info->irq);
833
834	return ret;
835}
836#endif /* CONFIG_PM_SLEEP */
837
838static SIMPLE_DEV_PM_OPS(s5m_rtc_pm_ops, s5m_rtc_suspend, s5m_rtc_resume);
839
840static const struct platform_device_id s5m_rtc_id[] = {
841	{ "s5m-rtc",		S5M8767X },
842	{ "s2mps13-rtc",	S2MPS13X },
843	{ "s2mps14-rtc",	S2MPS14X },
844	{ "s2mps15-rtc",	S2MPS15X },
845	{ },
846};
847MODULE_DEVICE_TABLE(platform, s5m_rtc_id);
848
849static struct platform_driver s5m_rtc_driver = {
850	.driver		= {
851		.name	= "s5m-rtc",
852		.pm	= &s5m_rtc_pm_ops,
853	},
854	.probe		= s5m_rtc_probe,
 
855	.id_table	= s5m_rtc_id,
856};
857
858module_platform_driver(s5m_rtc_driver);
859
860/* Module information */
861MODULE_AUTHOR("Sangbeom Kim <sbkim73@samsung.com>");
862MODULE_DESCRIPTION("Samsung S5M/S2MPS14 RTC driver");
863MODULE_LICENSE("GPL");