Linux Audio

Check our new training course

Loading...
v4.6
  1/*
  2 * Copyright (c) 2013-2014 Samsung Electronics Co., Ltd
  3 *	http://www.samsung.com
  4 *
  5 *  Copyright (C) 2013 Google, Inc
  6 *
  7 *  This program is free software; you can redistribute it and/or modify
  8 *  it under the terms of the GNU General Public License as published by
  9 *  the Free Software Foundation; either version 2 of the License, or
 10 *  (at your option) any later version.
 11 *
 12 *  This program is distributed in the hope that it will be useful,
 13 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 14 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 15 *  GNU General Public License for more details.
 16 */
 17
 18#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 19
 20#include <linux/module.h>
 21#include <linux/i2c.h>
 
 22#include <linux/bcd.h>
 
 23#include <linux/regmap.h>
 24#include <linux/rtc.h>
 
 25#include <linux/platform_device.h>
 26#include <linux/mfd/samsung/core.h>
 27#include <linux/mfd/samsung/irq.h>
 28#include <linux/mfd/samsung/rtc.h>
 29#include <linux/mfd/samsung/s2mps14.h>
 30
 31/*
 32 * Maximum number of retries for checking changes in UDR field
 33 * of S5M_RTC_UDR_CON register (to limit possible endless loop).
 34 *
 35 * After writing to RTC registers (setting time or alarm) read the UDR field
 36 * in S5M_RTC_UDR_CON register. UDR is auto-cleared when data have
 37 * been transferred.
 38 */
 39#define UDR_READ_RETRY_CNT	5
 40
 41/*
 42 * Registers used by the driver which are different between chipsets.
 43 *
 44 * Operations like read time and write alarm/time require updating
 45 * specific fields in UDR register. These fields usually are auto-cleared
 46 * (with some exceptions).
 47 *
 48 * Table of operations per device:
 49 *
 50 * Device     | Write time | Read time | Write alarm
 51 * =================================================
 52 * S5M8767    | UDR + TIME |           | UDR
 53 * S2MPS11/14 | WUDR       | RUDR      | WUDR + RUDR
 54 * S2MPS13    | WUDR       | RUDR      | WUDR + AUDR
 55 * S2MPS15    | WUDR       | RUDR      | AUDR
 56 */
 57struct s5m_rtc_reg_config {
 58	/* Number of registers used for setting time/alarm0/alarm1 */
 59	unsigned int regs_count;
 60	/* First register for time, seconds */
 61	unsigned int time;
 62	/* RTC control register */
 63	unsigned int ctrl;
 64	/* First register for alarm 0, seconds */
 65	unsigned int alarm0;
 66	/* First register for alarm 1, seconds */
 67	unsigned int alarm1;
 68	/*
 69	 * Register for update flag (UDR). Typically setting UDR field to 1
 70	 * will enable update of time or alarm register. Then it will be
 71	 * auto-cleared after successful update.
 72	 */
 73	unsigned int udr_update;
 74	/* Auto-cleared mask in UDR field for writing time and alarm */
 75	unsigned int autoclear_udr_mask;
 76	/*
 77	 * Masks in UDR field for time and alarm operations.
 78	 * The read time mask can be 0. Rest should not.
 79	 */
 80	unsigned int read_time_udr_mask;
 81	unsigned int write_time_udr_mask;
 82	unsigned int write_alarm_udr_mask;
 83};
 84
 85/* Register map for S5M8763 and S5M8767 */
 86static const struct s5m_rtc_reg_config s5m_rtc_regs = {
 87	.regs_count		= 8,
 88	.time			= S5M_RTC_SEC,
 89	.ctrl			= S5M_ALARM1_CONF,
 90	.alarm0			= S5M_ALARM0_SEC,
 91	.alarm1			= S5M_ALARM1_SEC,
 92	.udr_update		= S5M_RTC_UDR_CON,
 93	.autoclear_udr_mask	= S5M_RTC_UDR_MASK,
 94	.read_time_udr_mask	= 0, /* Not needed */
 95	.write_time_udr_mask	= S5M_RTC_UDR_MASK | S5M_RTC_TIME_EN_MASK,
 96	.write_alarm_udr_mask	= S5M_RTC_UDR_MASK,
 97};
 98
 99/* Register map for S2MPS13 */
100static const struct s5m_rtc_reg_config s2mps13_rtc_regs = {
101	.regs_count		= 7,
102	.time			= S2MPS_RTC_SEC,
103	.ctrl			= S2MPS_RTC_CTRL,
104	.alarm0			= S2MPS_ALARM0_SEC,
105	.alarm1			= S2MPS_ALARM1_SEC,
106	.udr_update		= S2MPS_RTC_UDR_CON,
107	.autoclear_udr_mask	= S2MPS_RTC_WUDR_MASK,
108	.read_time_udr_mask	= S2MPS_RTC_RUDR_MASK,
109	.write_time_udr_mask	= S2MPS_RTC_WUDR_MASK,
110	.write_alarm_udr_mask	= S2MPS_RTC_WUDR_MASK | S2MPS13_RTC_AUDR_MASK,
111};
112
113/* Register map for S2MPS11/14 */
114static const struct s5m_rtc_reg_config s2mps14_rtc_regs = {
115	.regs_count		= 7,
116	.time			= S2MPS_RTC_SEC,
117	.ctrl			= S2MPS_RTC_CTRL,
118	.alarm0			= S2MPS_ALARM0_SEC,
119	.alarm1			= S2MPS_ALARM1_SEC,
120	.udr_update		= S2MPS_RTC_UDR_CON,
121	.autoclear_udr_mask	= S2MPS_RTC_WUDR_MASK,
122	.read_time_udr_mask	= S2MPS_RTC_RUDR_MASK,
123	.write_time_udr_mask	= S2MPS_RTC_WUDR_MASK,
124	.write_alarm_udr_mask	= S2MPS_RTC_WUDR_MASK | S2MPS_RTC_RUDR_MASK,
125};
126
127/*
128 * Register map for S2MPS15 - in comparison to S2MPS14 the WUDR and AUDR bits
129 * are swapped.
130 */
131static const struct s5m_rtc_reg_config s2mps15_rtc_regs = {
132	.regs_count		= 7,
133	.time			= S2MPS_RTC_SEC,
134	.ctrl			= S2MPS_RTC_CTRL,
135	.alarm0			= S2MPS_ALARM0_SEC,
136	.alarm1			= S2MPS_ALARM1_SEC,
137	.udr_update		= S2MPS_RTC_UDR_CON,
138	.autoclear_udr_mask	= S2MPS_RTC_WUDR_MASK,
139	.read_time_udr_mask	= S2MPS_RTC_RUDR_MASK,
140	.write_time_udr_mask	= S2MPS15_RTC_WUDR_MASK,
141	.write_alarm_udr_mask	= S2MPS15_RTC_AUDR_MASK,
142};
143
144struct s5m_rtc_info {
145	struct device *dev;
146	struct i2c_client *i2c;
147	struct sec_pmic_dev *s5m87xx;
148	struct regmap *regmap;
149	struct rtc_device *rtc_dev;
150	int irq;
151	enum sec_device_type device_type;
152	int rtc_24hr_mode;
153	const struct s5m_rtc_reg_config	*regs;
154};
155
156static const struct regmap_config s5m_rtc_regmap_config = {
157	.reg_bits = 8,
158	.val_bits = 8,
159
160	.max_register = S5M_RTC_REG_MAX,
161};
162
163static const struct regmap_config s2mps14_rtc_regmap_config = {
164	.reg_bits = 8,
165	.val_bits = 8,
166
167	.max_register = S2MPS_RTC_REG_MAX,
168};
169
170static void s5m8767_data_to_tm(u8 *data, struct rtc_time *tm,
171			       int rtc_24hr_mode)
172{
173	tm->tm_sec = data[RTC_SEC] & 0x7f;
174	tm->tm_min = data[RTC_MIN] & 0x7f;
175	if (rtc_24hr_mode) {
176		tm->tm_hour = data[RTC_HOUR] & 0x1f;
177	} else {
178		tm->tm_hour = data[RTC_HOUR] & 0x0f;
179		if (data[RTC_HOUR] & HOUR_PM_MASK)
180			tm->tm_hour += 12;
181	}
182
183	tm->tm_wday = ffs(data[RTC_WEEKDAY] & 0x7f);
184	tm->tm_mday = data[RTC_DATE] & 0x1f;
185	tm->tm_mon = (data[RTC_MONTH] & 0x0f) - 1;
186	tm->tm_year = (data[RTC_YEAR1] & 0x7f) + 100;
187	tm->tm_yday = 0;
188	tm->tm_isdst = 0;
189}
190
191static int s5m8767_tm_to_data(struct rtc_time *tm, u8 *data)
192{
193	data[RTC_SEC] = tm->tm_sec;
194	data[RTC_MIN] = tm->tm_min;
195
196	if (tm->tm_hour >= 12)
197		data[RTC_HOUR] = tm->tm_hour | HOUR_PM_MASK;
198	else
199		data[RTC_HOUR] = tm->tm_hour & ~HOUR_PM_MASK;
200
201	data[RTC_WEEKDAY] = 1 << tm->tm_wday;
202	data[RTC_DATE] = tm->tm_mday;
203	data[RTC_MONTH] = tm->tm_mon + 1;
204	data[RTC_YEAR1] = tm->tm_year > 100 ? (tm->tm_year - 100) : 0;
205
206	if (tm->tm_year < 100) {
207		pr_err("RTC cannot handle the year %d\n",
208		       1900 + tm->tm_year);
209		return -EINVAL;
210	} else {
211		return 0;
212	}
213}
214
215/*
216 * Read RTC_UDR_CON register and wait till UDR field is cleared.
217 * This indicates that time/alarm update ended.
218 */
219static int s5m8767_wait_for_udr_update(struct s5m_rtc_info *info)
220{
221	int ret, retry = UDR_READ_RETRY_CNT;
222	unsigned int data;
223
224	do {
225		ret = regmap_read(info->regmap, info->regs->udr_update, &data);
226	} while (--retry && (data & info->regs->autoclear_udr_mask) && !ret);
227
228	if (!retry)
229		dev_err(info->dev, "waiting for UDR update, reached max number of retries\n");
230
231	return ret;
232}
233
234static int s5m_check_peding_alarm_interrupt(struct s5m_rtc_info *info,
235		struct rtc_wkalrm *alarm)
236{
237	int ret;
238	unsigned int val;
239
240	switch (info->device_type) {
241	case S5M8767X:
242	case S5M8763X:
243		ret = regmap_read(info->regmap, S5M_RTC_STATUS, &val);
244		val &= S5M_ALARM0_STATUS;
245		break;
246	case S2MPS15X:
247	case S2MPS14X:
248	case S2MPS13X:
249		ret = regmap_read(info->s5m87xx->regmap_pmic, S2MPS14_REG_ST2,
250				&val);
251		val &= S2MPS_ALARM0_STATUS;
252		break;
253	default:
254		return -EINVAL;
255	}
256	if (ret < 0)
257		return ret;
258
259	if (val)
260		alarm->pending = 1;
261	else
262		alarm->pending = 0;
263
264	return 0;
265}
266
267static int s5m8767_rtc_set_time_reg(struct s5m_rtc_info *info)
268{
269	int ret;
270	unsigned int data;
271
272	ret = regmap_read(info->regmap, info->regs->udr_update, &data);
273	if (ret < 0) {
274		dev_err(info->dev, "failed to read update reg(%d)\n", ret);
275		return ret;
276	}
277
278	data |= info->regs->write_time_udr_mask;
 
279
280	ret = regmap_write(info->regmap, info->regs->udr_update, data);
281	if (ret < 0) {
282		dev_err(info->dev, "failed to write update reg(%d)\n", ret);
283		return ret;
284	}
285
286	ret = s5m8767_wait_for_udr_update(info);
287
288	return ret;
289}
290
291static int s5m8767_rtc_set_alarm_reg(struct s5m_rtc_info *info)
292{
293	int ret;
294	unsigned int data;
295
296	ret = regmap_read(info->regmap, info->regs->udr_update, &data);
297	if (ret < 0) {
298		dev_err(info->dev, "%s: fail to read update reg(%d)\n",
299			__func__, ret);
300		return ret;
301	}
302
303	data |= info->regs->write_alarm_udr_mask;
304	switch (info->device_type) {
305	case S5M8763X:
306	case S5M8767X:
307		data &= ~S5M_RTC_TIME_EN_MASK;
308		break;
309	case S2MPS15X:
310	case S2MPS14X:
311	case S2MPS13X:
312		/* No exceptions needed */
313		break;
314	default:
315		return -EINVAL;
316	}
317
318	ret = regmap_write(info->regmap, info->regs->udr_update, data);
319	if (ret < 0) {
320		dev_err(info->dev, "%s: fail to write update reg(%d)\n",
321			__func__, ret);
322		return ret;
323	}
324
325	ret = s5m8767_wait_for_udr_update(info);
326
327	/* On S2MPS13 the AUDR is not auto-cleared */
328	if (info->device_type == S2MPS13X)
329		regmap_update_bits(info->regmap, info->regs->udr_update,
330				   S2MPS13_RTC_AUDR_MASK, 0);
331
332	return ret;
333}
334
335static void s5m8763_data_to_tm(u8 *data, struct rtc_time *tm)
336{
337	tm->tm_sec = bcd2bin(data[RTC_SEC]);
338	tm->tm_min = bcd2bin(data[RTC_MIN]);
339
340	if (data[RTC_HOUR] & HOUR_12) {
341		tm->tm_hour = bcd2bin(data[RTC_HOUR] & 0x1f);
342		if (data[RTC_HOUR] & HOUR_PM)
343			tm->tm_hour += 12;
344	} else {
345		tm->tm_hour = bcd2bin(data[RTC_HOUR] & 0x3f);
346	}
347
348	tm->tm_wday = data[RTC_WEEKDAY] & 0x07;
349	tm->tm_mday = bcd2bin(data[RTC_DATE]);
350	tm->tm_mon = bcd2bin(data[RTC_MONTH]);
351	tm->tm_year = bcd2bin(data[RTC_YEAR1]) + bcd2bin(data[RTC_YEAR2]) * 100;
352	tm->tm_year -= 1900;
353}
354
355static void s5m8763_tm_to_data(struct rtc_time *tm, u8 *data)
356{
357	data[RTC_SEC] = bin2bcd(tm->tm_sec);
358	data[RTC_MIN] = bin2bcd(tm->tm_min);
359	data[RTC_HOUR] = bin2bcd(tm->tm_hour);
360	data[RTC_WEEKDAY] = tm->tm_wday;
361	data[RTC_DATE] = bin2bcd(tm->tm_mday);
362	data[RTC_MONTH] = bin2bcd(tm->tm_mon);
363	data[RTC_YEAR1] = bin2bcd(tm->tm_year % 100);
364	data[RTC_YEAR2] = bin2bcd((tm->tm_year + 1900) / 100);
365}
366
367static int s5m_rtc_read_time(struct device *dev, struct rtc_time *tm)
368{
369	struct s5m_rtc_info *info = dev_get_drvdata(dev);
370	u8 data[info->regs->regs_count];
371	int ret;
372
373	if (info->regs->read_time_udr_mask) {
374		ret = regmap_update_bits(info->regmap,
375				info->regs->udr_update,
376				info->regs->read_time_udr_mask,
377				info->regs->read_time_udr_mask);
378		if (ret) {
379			dev_err(dev,
380				"Failed to prepare registers for time reading: %d\n",
381				ret);
382			return ret;
383		}
384	}
385	ret = regmap_bulk_read(info->regmap, info->regs->time, data,
386			info->regs->regs_count);
387	if (ret < 0)
388		return ret;
389
390	switch (info->device_type) {
391	case S5M8763X:
392		s5m8763_data_to_tm(data, tm);
393		break;
394
395	case S5M8767X:
396	case S2MPS15X:
397	case S2MPS14X:
398	case S2MPS13X:
399		s5m8767_data_to_tm(data, tm, info->rtc_24hr_mode);
400		break;
401
402	default:
403		return -EINVAL;
404	}
405
406	dev_dbg(dev, "%s: %d/%d/%d %d:%d:%d(%d)\n", __func__,
407		1900 + tm->tm_year, 1 + tm->tm_mon, tm->tm_mday,
408		tm->tm_hour, tm->tm_min, tm->tm_sec, tm->tm_wday);
409
410	return rtc_valid_tm(tm);
411}
412
413static int s5m_rtc_set_time(struct device *dev, struct rtc_time *tm)
414{
415	struct s5m_rtc_info *info = dev_get_drvdata(dev);
416	u8 data[info->regs->regs_count];
417	int ret = 0;
418
419	switch (info->device_type) {
420	case S5M8763X:
421		s5m8763_tm_to_data(tm, data);
422		break;
423	case S5M8767X:
424	case S2MPS15X:
425	case S2MPS14X:
426	case S2MPS13X:
427		ret = s5m8767_tm_to_data(tm, data);
428		break;
429	default:
430		return -EINVAL;
431	}
432
433	if (ret < 0)
434		return ret;
435
436	dev_dbg(dev, "%s: %d/%d/%d %d:%d:%d(%d)\n", __func__,
437		1900 + tm->tm_year, 1 + tm->tm_mon, tm->tm_mday,
438		tm->tm_hour, tm->tm_min, tm->tm_sec, tm->tm_wday);
439
440	ret = regmap_raw_write(info->regmap, info->regs->time, data,
441			info->regs->regs_count);
442	if (ret < 0)
443		return ret;
444
445	ret = s5m8767_rtc_set_time_reg(info);
446
447	return ret;
448}
449
450static int s5m_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
451{
452	struct s5m_rtc_info *info = dev_get_drvdata(dev);
453	u8 data[info->regs->regs_count];
454	unsigned int val;
455	int ret, i;
456
457	ret = regmap_bulk_read(info->regmap, info->regs->alarm0, data,
458			info->regs->regs_count);
459	if (ret < 0)
460		return ret;
461
462	switch (info->device_type) {
463	case S5M8763X:
464		s5m8763_data_to_tm(data, &alrm->time);
465		ret = regmap_read(info->regmap, S5M_ALARM0_CONF, &val);
466		if (ret < 0)
467			return ret;
468
469		alrm->enabled = !!val;
 
 
 
 
 
470		break;
471
472	case S5M8767X:
473	case S2MPS15X:
474	case S2MPS14X:
475	case S2MPS13X:
476		s5m8767_data_to_tm(data, &alrm->time, info->rtc_24hr_mode);
 
 
 
 
 
 
477		alrm->enabled = 0;
478		for (i = 0; i < info->regs->regs_count; i++) {
479			if (data[i] & ALARM_ENABLE_MASK) {
480				alrm->enabled = 1;
481				break;
482			}
483		}
 
 
 
 
 
484		break;
485
486	default:
487		return -EINVAL;
488	}
489
490	dev_dbg(dev, "%s: %d/%d/%d %d:%d:%d(%d)\n", __func__,
491		1900 + alrm->time.tm_year, 1 + alrm->time.tm_mon,
492		alrm->time.tm_mday, alrm->time.tm_hour,
493		alrm->time.tm_min, alrm->time.tm_sec,
494		alrm->time.tm_wday);
495
496	ret = s5m_check_peding_alarm_interrupt(info, alrm);
497
498	return 0;
499}
500
501static int s5m_rtc_stop_alarm(struct s5m_rtc_info *info)
502{
503	u8 data[info->regs->regs_count];
504	int ret, i;
505	struct rtc_time tm;
506
507	ret = regmap_bulk_read(info->regmap, info->regs->alarm0, data,
508			info->regs->regs_count);
509	if (ret < 0)
510		return ret;
511
512	s5m8767_data_to_tm(data, &tm, info->rtc_24hr_mode);
513	dev_dbg(info->dev, "%s: %d/%d/%d %d:%d:%d(%d)\n", __func__,
514		1900 + tm.tm_year, 1 + tm.tm_mon, tm.tm_mday,
515		tm.tm_hour, tm.tm_min, tm.tm_sec, tm.tm_wday);
516
517	switch (info->device_type) {
518	case S5M8763X:
519		ret = regmap_write(info->regmap, S5M_ALARM0_CONF, 0);
520		break;
521
522	case S5M8767X:
523	case S2MPS15X:
524	case S2MPS14X:
525	case S2MPS13X:
526		for (i = 0; i < info->regs->regs_count; i++)
527			data[i] &= ~ALARM_ENABLE_MASK;
528
529		ret = regmap_raw_write(info->regmap, info->regs->alarm0, data,
530				info->regs->regs_count);
531		if (ret < 0)
532			return ret;
533
534		ret = s5m8767_rtc_set_alarm_reg(info);
535
536		break;
537
538	default:
539		return -EINVAL;
540	}
541
542	return ret;
543}
544
545static int s5m_rtc_start_alarm(struct s5m_rtc_info *info)
546{
547	int ret;
548	u8 data[info->regs->regs_count];
549	u8 alarm0_conf;
550	struct rtc_time tm;
551
552	ret = regmap_bulk_read(info->regmap, info->regs->alarm0, data,
553			info->regs->regs_count);
554	if (ret < 0)
555		return ret;
556
557	s5m8767_data_to_tm(data, &tm, info->rtc_24hr_mode);
558	dev_dbg(info->dev, "%s: %d/%d/%d %d:%d:%d(%d)\n", __func__,
559		1900 + tm.tm_year, 1 + tm.tm_mon, tm.tm_mday,
560		tm.tm_hour, tm.tm_min, tm.tm_sec, tm.tm_wday);
561
562	switch (info->device_type) {
563	case S5M8763X:
564		alarm0_conf = 0x77;
565		ret = regmap_write(info->regmap, S5M_ALARM0_CONF, alarm0_conf);
566		break;
567
568	case S5M8767X:
569	case S2MPS15X:
570	case S2MPS14X:
571	case S2MPS13X:
572		data[RTC_SEC] |= ALARM_ENABLE_MASK;
573		data[RTC_MIN] |= ALARM_ENABLE_MASK;
574		data[RTC_HOUR] |= ALARM_ENABLE_MASK;
575		data[RTC_WEEKDAY] &= ~ALARM_ENABLE_MASK;
576		if (data[RTC_DATE] & 0x1f)
577			data[RTC_DATE] |= ALARM_ENABLE_MASK;
578		if (data[RTC_MONTH] & 0xf)
579			data[RTC_MONTH] |= ALARM_ENABLE_MASK;
580		if (data[RTC_YEAR1] & 0x7f)
581			data[RTC_YEAR1] |= ALARM_ENABLE_MASK;
582
583		ret = regmap_raw_write(info->regmap, info->regs->alarm0, data,
584				info->regs->regs_count);
585		if (ret < 0)
586			return ret;
587		ret = s5m8767_rtc_set_alarm_reg(info);
588
589		break;
590
591	default:
592		return -EINVAL;
593	}
594
595	return ret;
596}
597
598static int s5m_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
599{
600	struct s5m_rtc_info *info = dev_get_drvdata(dev);
601	u8 data[info->regs->regs_count];
602	int ret;
603
604	switch (info->device_type) {
605	case S5M8763X:
606		s5m8763_tm_to_data(&alrm->time, data);
607		break;
608
609	case S5M8767X:
610	case S2MPS15X:
611	case S2MPS14X:
612	case S2MPS13X:
613		s5m8767_tm_to_data(&alrm->time, data);
614		break;
615
616	default:
617		return -EINVAL;
618	}
619
620	dev_dbg(dev, "%s: %d/%d/%d %d:%d:%d(%d)\n", __func__,
621		1900 + alrm->time.tm_year, 1 + alrm->time.tm_mon,
622		alrm->time.tm_mday, alrm->time.tm_hour, alrm->time.tm_min,
623		alrm->time.tm_sec, alrm->time.tm_wday);
624
625	ret = s5m_rtc_stop_alarm(info);
626	if (ret < 0)
627		return ret;
628
629	ret = regmap_raw_write(info->regmap, info->regs->alarm0, data,
630			info->regs->regs_count);
631	if (ret < 0)
632		return ret;
633
634	ret = s5m8767_rtc_set_alarm_reg(info);
635	if (ret < 0)
636		return ret;
637
638	if (alrm->enabled)
639		ret = s5m_rtc_start_alarm(info);
640
641	return ret;
642}
643
644static int s5m_rtc_alarm_irq_enable(struct device *dev,
645				    unsigned int enabled)
646{
647	struct s5m_rtc_info *info = dev_get_drvdata(dev);
648
649	if (enabled)
650		return s5m_rtc_start_alarm(info);
651	else
652		return s5m_rtc_stop_alarm(info);
653}
654
655static irqreturn_t s5m_rtc_alarm_irq(int irq, void *data)
656{
657	struct s5m_rtc_info *info = data;
658
659	rtc_update_irq(info->rtc_dev, 1, RTC_IRQF | RTC_AF);
660
661	return IRQ_HANDLED;
662}
663
664static const struct rtc_class_ops s5m_rtc_ops = {
665	.read_time = s5m_rtc_read_time,
666	.set_time = s5m_rtc_set_time,
667	.read_alarm = s5m_rtc_read_alarm,
668	.set_alarm = s5m_rtc_set_alarm,
669	.alarm_irq_enable = s5m_rtc_alarm_irq_enable,
670};
671
672static int s5m8767_rtc_init_reg(struct s5m_rtc_info *info)
673{
674	u8 data[2];
675	int ret;
 
 
 
 
 
 
 
676
677	switch (info->device_type) {
678	case S5M8763X:
679	case S5M8767X:
680		/* UDR update time. Default of 7.32 ms is too long. */
681		ret = regmap_update_bits(info->regmap, S5M_RTC_UDR_CON,
682				S5M_RTC_UDR_T_MASK, S5M_RTC_UDR_T_450_US);
683		if (ret < 0)
684			dev_err(info->dev, "%s: fail to change UDR time: %d\n",
685					__func__, ret);
686
687		/* Set RTC control register : Binary mode, 24hour mode */
688		data[0] = (1 << BCD_EN_SHIFT) | (1 << MODEL24_SHIFT);
689		data[1] = (0 << BCD_EN_SHIFT) | (1 << MODEL24_SHIFT);
690
691		ret = regmap_raw_write(info->regmap, S5M_ALARM0_CONF, data, 2);
692		break;
693
694	case S2MPS15X:
695	case S2MPS14X:
696	case S2MPS13X:
697		data[0] = (0 << BCD_EN_SHIFT) | (1 << MODEL24_SHIFT);
698		ret = regmap_write(info->regmap, info->regs->ctrl, data[0]);
699		if (ret < 0)
700			break;
701
702		/*
703		 * Should set WUDR & (RUDR or AUDR) bits to high after writing
704		 * RTC_CTRL register like writing Alarm registers. We can't find
705		 * the description from datasheet but vendor code does that
706		 * really.
707		 */
708		ret = s5m8767_rtc_set_alarm_reg(info);
709		break;
710
711	default:
712		return -EINVAL;
 
 
 
713	}
714
 
 
 
 
715	info->rtc_24hr_mode = 1;
 
716	if (ret < 0) {
717		dev_err(info->dev, "%s: fail to write controlm reg(%d)\n",
718			__func__, ret);
719		return ret;
720	}
721
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
722	return ret;
723}
724
725static int s5m_rtc_probe(struct platform_device *pdev)
726{
727	struct sec_pmic_dev *s5m87xx = dev_get_drvdata(pdev->dev.parent);
728	struct sec_platform_data *pdata = s5m87xx->pdata;
729	struct s5m_rtc_info *info;
730	const struct regmap_config *regmap_cfg;
731	int ret, alarm_irq;
732
733	if (!pdata) {
734		dev_err(pdev->dev.parent, "Platform data not supplied\n");
735		return -ENODEV;
736	}
737
738	info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL);
739	if (!info)
740		return -ENOMEM;
741
742	switch (platform_get_device_id(pdev)->driver_data) {
743	case S2MPS15X:
744		regmap_cfg = &s2mps14_rtc_regmap_config;
745		info->regs = &s2mps15_rtc_regs;
746		alarm_irq = S2MPS14_IRQ_RTCA0;
747		break;
748	case S2MPS14X:
749		regmap_cfg = &s2mps14_rtc_regmap_config;
750		info->regs = &s2mps14_rtc_regs;
751		alarm_irq = S2MPS14_IRQ_RTCA0;
752		break;
753	case S2MPS13X:
754		regmap_cfg = &s2mps14_rtc_regmap_config;
755		info->regs = &s2mps13_rtc_regs;
756		alarm_irq = S2MPS14_IRQ_RTCA0;
757		break;
758	case S5M8763X:
759		regmap_cfg = &s5m_rtc_regmap_config;
760		info->regs = &s5m_rtc_regs;
761		alarm_irq = S5M8763_IRQ_ALARM0;
762		break;
 
763	case S5M8767X:
764		regmap_cfg = &s5m_rtc_regmap_config;
765		info->regs = &s5m_rtc_regs;
766		alarm_irq = S5M8767_IRQ_RTCA1;
767		break;
768	default:
769		dev_err(&pdev->dev,
770				"Device type %lu is not supported by RTC driver\n",
771				platform_get_device_id(pdev)->driver_data);
772		return -ENODEV;
773	}
774
775	info->i2c = i2c_new_dummy(s5m87xx->i2c->adapter, RTC_I2C_ADDR);
776	if (!info->i2c) {
777		dev_err(&pdev->dev, "Failed to allocate I2C for RTC\n");
778		return -ENODEV;
779	}
780
781	info->regmap = devm_regmap_init_i2c(info->i2c, regmap_cfg);
782	if (IS_ERR(info->regmap)) {
783		ret = PTR_ERR(info->regmap);
784		dev_err(&pdev->dev, "Failed to allocate RTC register map: %d\n",
785				ret);
786		goto err;
787	}
788
789	info->dev = &pdev->dev;
790	info->s5m87xx = s5m87xx;
791	info->device_type = platform_get_device_id(pdev)->driver_data;
792
793	if (s5m87xx->irq_data) {
794		info->irq = regmap_irq_get_virq(s5m87xx->irq_data, alarm_irq);
795		if (info->irq <= 0) {
796			ret = -EINVAL;
797			dev_err(&pdev->dev, "Failed to get virtual IRQ %d\n",
798				alarm_irq);
799			goto err;
800		}
801	}
802
803	platform_set_drvdata(pdev, info);
804
805	ret = s5m8767_rtc_init_reg(info);
806
 
 
 
 
 
807	device_init_wakeup(&pdev->dev, 1);
808
809	info->rtc_dev = devm_rtc_device_register(&pdev->dev, "s5m-rtc",
810						 &s5m_rtc_ops, THIS_MODULE);
811
812	if (IS_ERR(info->rtc_dev)) {
813		ret = PTR_ERR(info->rtc_dev);
814		goto err;
815	}
816
817	if (!info->irq) {
818		dev_info(&pdev->dev, "Alarm IRQ not available\n");
819		return 0;
820	}
821
822	ret = devm_request_threaded_irq(&pdev->dev, info->irq, NULL,
823					s5m_rtc_alarm_irq, 0, "rtc-alarm0",
824					info);
825	if (ret < 0) {
826		dev_err(&pdev->dev, "Failed to request alarm IRQ: %d: %d\n",
827			info->irq, ret);
828		goto err;
829	}
830
831	return 0;
832
833err:
834	i2c_unregister_device(info->i2c);
835
836	return ret;
837}
838
839static int s5m_rtc_remove(struct platform_device *pdev)
840{
841	struct s5m_rtc_info *info = platform_get_drvdata(pdev);
842
843	i2c_unregister_device(info->i2c);
844
845	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
846}
847
848#ifdef CONFIG_PM_SLEEP
849static int s5m_rtc_resume(struct device *dev)
850{
851	struct s5m_rtc_info *info = dev_get_drvdata(dev);
852	int ret = 0;
853
854	if (info->irq && device_may_wakeup(dev))
855		ret = disable_irq_wake(info->irq);
856
857	return ret;
858}
859
860static int s5m_rtc_suspend(struct device *dev)
861{
862	struct s5m_rtc_info *info = dev_get_drvdata(dev);
863	int ret = 0;
864
865	if (info->irq && device_may_wakeup(dev))
866		ret = enable_irq_wake(info->irq);
867
868	return ret;
869}
870#endif /* CONFIG_PM_SLEEP */
871
872static SIMPLE_DEV_PM_OPS(s5m_rtc_pm_ops, s5m_rtc_suspend, s5m_rtc_resume);
873
874static const struct platform_device_id s5m_rtc_id[] = {
875	{ "s5m-rtc",		S5M8767X },
876	{ "s2mps13-rtc",	S2MPS13X },
877	{ "s2mps14-rtc",	S2MPS14X },
878	{ "s2mps15-rtc",	S2MPS15X },
879	{ },
880};
881MODULE_DEVICE_TABLE(platform, s5m_rtc_id);
882
883static struct platform_driver s5m_rtc_driver = {
884	.driver		= {
885		.name	= "s5m-rtc",
 
886		.pm	= &s5m_rtc_pm_ops,
887	},
888	.probe		= s5m_rtc_probe,
889	.remove		= s5m_rtc_remove,
890	.id_table	= s5m_rtc_id,
891};
892
893module_platform_driver(s5m_rtc_driver);
894
895/* Module information */
896MODULE_AUTHOR("Sangbeom Kim <sbkim73@samsung.com>");
897MODULE_DESCRIPTION("Samsung S5M/S2MPS14 RTC driver");
898MODULE_LICENSE("GPL");
899MODULE_ALIAS("platform:s5m-rtc");
v3.15
  1/*
  2 * Copyright (c) 2013 Samsung Electronics Co., Ltd
  3 *	http://www.samsung.com
  4 *
  5 *  Copyright (C) 2013 Google, Inc
  6 *
  7 *  This program is free software; you can redistribute it and/or modify
  8 *  it under the terms of the GNU General Public License as published by
  9 *  the Free Software Foundation; either version 2 of the License, or
 10 *  (at your option) any later version.
 11 *
 12 *  This program is distributed in the hope that it will be useful,
 13 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 14 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 15 *  GNU General Public License for more details.
 16 */
 17
 
 
 18#include <linux/module.h>
 19#include <linux/i2c.h>
 20#include <linux/slab.h>
 21#include <linux/bcd.h>
 22#include <linux/bitops.h>
 23#include <linux/regmap.h>
 24#include <linux/rtc.h>
 25#include <linux/delay.h>
 26#include <linux/platform_device.h>
 27#include <linux/mfd/samsung/core.h>
 28#include <linux/mfd/samsung/irq.h>
 29#include <linux/mfd/samsung/rtc.h>
 
 30
 31/*
 32 * Maximum number of retries for checking changes in UDR field
 33 * of SEC_RTC_UDR_CON register (to limit possible endless loop).
 34 *
 35 * After writing to RTC registers (setting time or alarm) read the UDR field
 36 * in SEC_RTC_UDR_CON register. UDR is auto-cleared when data have
 37 * been transferred.
 38 */
 39#define UDR_READ_RETRY_CNT	5
 40
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 41struct s5m_rtc_info {
 42	struct device *dev;
 
 43	struct sec_pmic_dev *s5m87xx;
 44	struct regmap *regmap;
 45	struct rtc_device *rtc_dev;
 46	int irq;
 47	int device_type;
 48	int rtc_24hr_mode;
 49	bool wtsr_smpl;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 50};
 51
 52static void s5m8767_data_to_tm(u8 *data, struct rtc_time *tm,
 53			       int rtc_24hr_mode)
 54{
 55	tm->tm_sec = data[RTC_SEC] & 0x7f;
 56	tm->tm_min = data[RTC_MIN] & 0x7f;
 57	if (rtc_24hr_mode) {
 58		tm->tm_hour = data[RTC_HOUR] & 0x1f;
 59	} else {
 60		tm->tm_hour = data[RTC_HOUR] & 0x0f;
 61		if (data[RTC_HOUR] & HOUR_PM_MASK)
 62			tm->tm_hour += 12;
 63	}
 64
 65	tm->tm_wday = ffs(data[RTC_WEEKDAY] & 0x7f);
 66	tm->tm_mday = data[RTC_DATE] & 0x1f;
 67	tm->tm_mon = (data[RTC_MONTH] & 0x0f) - 1;
 68	tm->tm_year = (data[RTC_YEAR1] & 0x7f) + 100;
 69	tm->tm_yday = 0;
 70	tm->tm_isdst = 0;
 71}
 72
 73static int s5m8767_tm_to_data(struct rtc_time *tm, u8 *data)
 74{
 75	data[RTC_SEC] = tm->tm_sec;
 76	data[RTC_MIN] = tm->tm_min;
 77
 78	if (tm->tm_hour >= 12)
 79		data[RTC_HOUR] = tm->tm_hour | HOUR_PM_MASK;
 80	else
 81		data[RTC_HOUR] = tm->tm_hour & ~HOUR_PM_MASK;
 82
 83	data[RTC_WEEKDAY] = 1 << tm->tm_wday;
 84	data[RTC_DATE] = tm->tm_mday;
 85	data[RTC_MONTH] = tm->tm_mon + 1;
 86	data[RTC_YEAR1] = tm->tm_year > 100 ? (tm->tm_year - 100) : 0;
 87
 88	if (tm->tm_year < 100) {
 89		pr_err("s5m8767 RTC cannot handle the year %d.\n",
 90		       1900 + tm->tm_year);
 91		return -EINVAL;
 92	} else {
 93		return 0;
 94	}
 95}
 96
 97/*
 98 * Read RTC_UDR_CON register and wait till UDR field is cleared.
 99 * This indicates that time/alarm update ended.
100 */
101static inline int s5m8767_wait_for_udr_update(struct s5m_rtc_info *info)
102{
103	int ret, retry = UDR_READ_RETRY_CNT;
104	unsigned int data;
105
106	do {
107		ret = regmap_read(info->regmap, SEC_RTC_UDR_CON, &data);
108	} while (--retry && (data & RTC_UDR_MASK) && !ret);
109
110	if (!retry)
111		dev_err(info->dev, "waiting for UDR update, reached max number of retries\n");
112
113	return ret;
114}
115
116static inline int s5m8767_rtc_set_time_reg(struct s5m_rtc_info *info)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
117{
118	int ret;
119	unsigned int data;
120
121	ret = regmap_read(info->regmap, SEC_RTC_UDR_CON, &data);
122	if (ret < 0) {
123		dev_err(info->dev, "failed to read update reg(%d)\n", ret);
124		return ret;
125	}
126
127	data |= RTC_TIME_EN_MASK;
128	data |= RTC_UDR_MASK;
129
130	ret = regmap_write(info->regmap, SEC_RTC_UDR_CON, data);
131	if (ret < 0) {
132		dev_err(info->dev, "failed to write update reg(%d)\n", ret);
133		return ret;
134	}
135
136	ret = s5m8767_wait_for_udr_update(info);
137
138	return ret;
139}
140
141static inline int s5m8767_rtc_set_alarm_reg(struct s5m_rtc_info *info)
142{
143	int ret;
144	unsigned int data;
145
146	ret = regmap_read(info->regmap, SEC_RTC_UDR_CON, &data);
147	if (ret < 0) {
148		dev_err(info->dev, "%s: fail to read update reg(%d)\n",
149			__func__, ret);
150		return ret;
151	}
152
153	data &= ~RTC_TIME_EN_MASK;
154	data |= RTC_UDR_MASK;
 
 
 
 
 
 
 
 
 
 
 
 
155
156	ret = regmap_write(info->regmap, SEC_RTC_UDR_CON, data);
157	if (ret < 0) {
158		dev_err(info->dev, "%s: fail to write update reg(%d)\n",
159			__func__, ret);
160		return ret;
161	}
162
163	ret = s5m8767_wait_for_udr_update(info);
164
 
 
 
 
 
165	return ret;
166}
167
168static void s5m8763_data_to_tm(u8 *data, struct rtc_time *tm)
169{
170	tm->tm_sec = bcd2bin(data[RTC_SEC]);
171	tm->tm_min = bcd2bin(data[RTC_MIN]);
172
173	if (data[RTC_HOUR] & HOUR_12) {
174		tm->tm_hour = bcd2bin(data[RTC_HOUR] & 0x1f);
175		if (data[RTC_HOUR] & HOUR_PM)
176			tm->tm_hour += 12;
177	} else {
178		tm->tm_hour = bcd2bin(data[RTC_HOUR] & 0x3f);
179	}
180
181	tm->tm_wday = data[RTC_WEEKDAY] & 0x07;
182	tm->tm_mday = bcd2bin(data[RTC_DATE]);
183	tm->tm_mon = bcd2bin(data[RTC_MONTH]);
184	tm->tm_year = bcd2bin(data[RTC_YEAR1]) + bcd2bin(data[RTC_YEAR2]) * 100;
185	tm->tm_year -= 1900;
186}
187
188static void s5m8763_tm_to_data(struct rtc_time *tm, u8 *data)
189{
190	data[RTC_SEC] = bin2bcd(tm->tm_sec);
191	data[RTC_MIN] = bin2bcd(tm->tm_min);
192	data[RTC_HOUR] = bin2bcd(tm->tm_hour);
193	data[RTC_WEEKDAY] = tm->tm_wday;
194	data[RTC_DATE] = bin2bcd(tm->tm_mday);
195	data[RTC_MONTH] = bin2bcd(tm->tm_mon);
196	data[RTC_YEAR1] = bin2bcd(tm->tm_year % 100);
197	data[RTC_YEAR2] = bin2bcd((tm->tm_year + 1900) / 100);
198}
199
200static int s5m_rtc_read_time(struct device *dev, struct rtc_time *tm)
201{
202	struct s5m_rtc_info *info = dev_get_drvdata(dev);
203	u8 data[8];
204	int ret;
205
206	ret = regmap_bulk_read(info->regmap, SEC_RTC_SEC, data, 8);
 
 
 
 
 
 
 
 
 
 
 
 
 
207	if (ret < 0)
208		return ret;
209
210	switch (info->device_type) {
211	case S5M8763X:
212		s5m8763_data_to_tm(data, tm);
213		break;
214
215	case S5M8767X:
 
 
 
216		s5m8767_data_to_tm(data, tm, info->rtc_24hr_mode);
217		break;
218
219	default:
220		return -EINVAL;
221	}
222
223	dev_dbg(dev, "%s: %d/%d/%d %d:%d:%d(%d)\n", __func__,
224		1900 + tm->tm_year, 1 + tm->tm_mon, tm->tm_mday,
225		tm->tm_hour, tm->tm_min, tm->tm_sec, tm->tm_wday);
226
227	return rtc_valid_tm(tm);
228}
229
230static int s5m_rtc_set_time(struct device *dev, struct rtc_time *tm)
231{
232	struct s5m_rtc_info *info = dev_get_drvdata(dev);
233	u8 data[8];
234	int ret = 0;
235
236	switch (info->device_type) {
237	case S5M8763X:
238		s5m8763_tm_to_data(tm, data);
239		break;
240	case S5M8767X:
 
 
 
241		ret = s5m8767_tm_to_data(tm, data);
242		break;
243	default:
244		return -EINVAL;
245	}
246
247	if (ret < 0)
248		return ret;
249
250	dev_dbg(dev, "%s: %d/%d/%d %d:%d:%d(%d)\n", __func__,
251		1900 + tm->tm_year, 1 + tm->tm_mon, tm->tm_mday,
252		tm->tm_hour, tm->tm_min, tm->tm_sec, tm->tm_wday);
253
254	ret = regmap_raw_write(info->regmap, SEC_RTC_SEC, data, 8);
 
255	if (ret < 0)
256		return ret;
257
258	ret = s5m8767_rtc_set_time_reg(info);
259
260	return ret;
261}
262
263static int s5m_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
264{
265	struct s5m_rtc_info *info = dev_get_drvdata(dev);
266	u8 data[8];
267	unsigned int val;
268	int ret, i;
269
270	ret = regmap_bulk_read(info->regmap, SEC_ALARM0_SEC, data, 8);
 
271	if (ret < 0)
272		return ret;
273
274	switch (info->device_type) {
275	case S5M8763X:
276		s5m8763_data_to_tm(data, &alrm->time);
277		ret = regmap_read(info->regmap, SEC_ALARM0_CONF, &val);
278		if (ret < 0)
279			return ret;
280
281		alrm->enabled = !!val;
282
283		ret = regmap_read(info->regmap, SEC_RTC_STATUS, &val);
284		if (ret < 0)
285			return ret;
286
287		break;
288
289	case S5M8767X:
 
 
 
290		s5m8767_data_to_tm(data, &alrm->time, info->rtc_24hr_mode);
291		dev_dbg(dev, "%s: %d/%d/%d %d:%d:%d(%d)\n", __func__,
292			1900 + alrm->time.tm_year, 1 + alrm->time.tm_mon,
293			alrm->time.tm_mday, alrm->time.tm_hour,
294			alrm->time.tm_min, alrm->time.tm_sec,
295			alrm->time.tm_wday);
296
297		alrm->enabled = 0;
298		for (i = 0; i < 7; i++) {
299			if (data[i] & ALARM_ENABLE_MASK) {
300				alrm->enabled = 1;
301				break;
302			}
303		}
304
305		alrm->pending = 0;
306		ret = regmap_read(info->regmap, SEC_RTC_STATUS, &val);
307		if (ret < 0)
308			return ret;
309		break;
310
311	default:
312		return -EINVAL;
313	}
314
315	if (val & ALARM0_STATUS)
316		alrm->pending = 1;
317	else
318		alrm->pending = 0;
 
 
 
319
320	return 0;
321}
322
323static int s5m_rtc_stop_alarm(struct s5m_rtc_info *info)
324{
325	u8 data[8];
326	int ret, i;
327	struct rtc_time tm;
328
329	ret = regmap_bulk_read(info->regmap, SEC_ALARM0_SEC, data, 8);
 
330	if (ret < 0)
331		return ret;
332
333	s5m8767_data_to_tm(data, &tm, info->rtc_24hr_mode);
334	dev_dbg(info->dev, "%s: %d/%d/%d %d:%d:%d(%d)\n", __func__,
335		1900 + tm.tm_year, 1 + tm.tm_mon, tm.tm_mday,
336		tm.tm_hour, tm.tm_min, tm.tm_sec, tm.tm_wday);
337
338	switch (info->device_type) {
339	case S5M8763X:
340		ret = regmap_write(info->regmap, SEC_ALARM0_CONF, 0);
341		break;
342
343	case S5M8767X:
344		for (i = 0; i < 7; i++)
 
 
 
345			data[i] &= ~ALARM_ENABLE_MASK;
346
347		ret = regmap_raw_write(info->regmap, SEC_ALARM0_SEC, data, 8);
 
348		if (ret < 0)
349			return ret;
350
351		ret = s5m8767_rtc_set_alarm_reg(info);
352
353		break;
354
355	default:
356		return -EINVAL;
357	}
358
359	return ret;
360}
361
362static int s5m_rtc_start_alarm(struct s5m_rtc_info *info)
363{
364	int ret;
365	u8 data[8];
366	u8 alarm0_conf;
367	struct rtc_time tm;
368
369	ret = regmap_bulk_read(info->regmap, SEC_ALARM0_SEC, data, 8);
 
370	if (ret < 0)
371		return ret;
372
373	s5m8767_data_to_tm(data, &tm, info->rtc_24hr_mode);
374	dev_dbg(info->dev, "%s: %d/%d/%d %d:%d:%d(%d)\n", __func__,
375		1900 + tm.tm_year, 1 + tm.tm_mon, tm.tm_mday,
376		tm.tm_hour, tm.tm_min, tm.tm_sec, tm.tm_wday);
377
378	switch (info->device_type) {
379	case S5M8763X:
380		alarm0_conf = 0x77;
381		ret = regmap_write(info->regmap, SEC_ALARM0_CONF, alarm0_conf);
382		break;
383
384	case S5M8767X:
 
 
 
385		data[RTC_SEC] |= ALARM_ENABLE_MASK;
386		data[RTC_MIN] |= ALARM_ENABLE_MASK;
387		data[RTC_HOUR] |= ALARM_ENABLE_MASK;
388		data[RTC_WEEKDAY] &= ~ALARM_ENABLE_MASK;
389		if (data[RTC_DATE] & 0x1f)
390			data[RTC_DATE] |= ALARM_ENABLE_MASK;
391		if (data[RTC_MONTH] & 0xf)
392			data[RTC_MONTH] |= ALARM_ENABLE_MASK;
393		if (data[RTC_YEAR1] & 0x7f)
394			data[RTC_YEAR1] |= ALARM_ENABLE_MASK;
395
396		ret = regmap_raw_write(info->regmap, SEC_ALARM0_SEC, data, 8);
 
397		if (ret < 0)
398			return ret;
399		ret = s5m8767_rtc_set_alarm_reg(info);
400
401		break;
402
403	default:
404		return -EINVAL;
405	}
406
407	return ret;
408}
409
410static int s5m_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
411{
412	struct s5m_rtc_info *info = dev_get_drvdata(dev);
413	u8 data[8];
414	int ret;
415
416	switch (info->device_type) {
417	case S5M8763X:
418		s5m8763_tm_to_data(&alrm->time, data);
419		break;
420
421	case S5M8767X:
 
 
 
422		s5m8767_tm_to_data(&alrm->time, data);
423		break;
424
425	default:
426		return -EINVAL;
427	}
428
429	dev_dbg(dev, "%s: %d/%d/%d %d:%d:%d(%d)\n", __func__,
430		1900 + alrm->time.tm_year, 1 + alrm->time.tm_mon,
431		alrm->time.tm_mday, alrm->time.tm_hour, alrm->time.tm_min,
432		alrm->time.tm_sec, alrm->time.tm_wday);
433
434	ret = s5m_rtc_stop_alarm(info);
435	if (ret < 0)
436		return ret;
437
438	ret = regmap_raw_write(info->regmap, SEC_ALARM0_SEC, data, 8);
 
439	if (ret < 0)
440		return ret;
441
442	ret = s5m8767_rtc_set_alarm_reg(info);
443	if (ret < 0)
444		return ret;
445
446	if (alrm->enabled)
447		ret = s5m_rtc_start_alarm(info);
448
449	return ret;
450}
451
452static int s5m_rtc_alarm_irq_enable(struct device *dev,
453				    unsigned int enabled)
454{
455	struct s5m_rtc_info *info = dev_get_drvdata(dev);
456
457	if (enabled)
458		return s5m_rtc_start_alarm(info);
459	else
460		return s5m_rtc_stop_alarm(info);
461}
462
463static irqreturn_t s5m_rtc_alarm_irq(int irq, void *data)
464{
465	struct s5m_rtc_info *info = data;
466
467	rtc_update_irq(info->rtc_dev, 1, RTC_IRQF | RTC_AF);
468
469	return IRQ_HANDLED;
470}
471
472static const struct rtc_class_ops s5m_rtc_ops = {
473	.read_time = s5m_rtc_read_time,
474	.set_time = s5m_rtc_set_time,
475	.read_alarm = s5m_rtc_read_alarm,
476	.set_alarm = s5m_rtc_set_alarm,
477	.alarm_irq_enable = s5m_rtc_alarm_irq_enable,
478};
479
480static void s5m_rtc_enable_wtsr(struct s5m_rtc_info *info, bool enable)
481{
 
482	int ret;
483	ret = regmap_update_bits(info->regmap, SEC_WTSR_SMPL_CNTL,
484				 WTSR_ENABLE_MASK,
485				 enable ? WTSR_ENABLE_MASK : 0);
486	if (ret < 0)
487		dev_err(info->dev, "%s: fail to update WTSR reg(%d)\n",
488			__func__, ret);
489}
490
491static void s5m_rtc_enable_smpl(struct s5m_rtc_info *info, bool enable)
492{
493	int ret;
494	ret = regmap_update_bits(info->regmap, SEC_WTSR_SMPL_CNTL,
495				 SMPL_ENABLE_MASK,
496				 enable ? SMPL_ENABLE_MASK : 0);
497	if (ret < 0)
498		dev_err(info->dev, "%s: fail to update SMPL reg(%d)\n",
499			__func__, ret);
500}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
501
502static int s5m8767_rtc_init_reg(struct s5m_rtc_info *info)
503{
504	u8 data[2];
505	unsigned int tp_read;
506	int ret;
507	struct rtc_time tm;
 
 
508
509	ret = regmap_read(info->regmap, SEC_RTC_UDR_CON, &tp_read);
510	if (ret < 0) {
511		dev_err(info->dev, "%s: fail to read control reg(%d)\n",
512			__func__, ret);
513		return ret;
514	}
515
516	/* Set RTC control register : Binary mode, 24hour mode */
517	data[0] = (1 << BCD_EN_SHIFT) | (1 << MODEL24_SHIFT);
518	data[1] = (0 << BCD_EN_SHIFT) | (1 << MODEL24_SHIFT);
519
520	info->rtc_24hr_mode = 1;
521	ret = regmap_raw_write(info->regmap, SEC_ALARM0_CONF, data, 2);
522	if (ret < 0) {
523		dev_err(info->dev, "%s: fail to write controlm reg(%d)\n",
524			__func__, ret);
525		return ret;
526	}
527
528	/* In first boot time, Set rtc time to 1/1/2012 00:00:00(SUN) */
529	if ((tp_read & RTC_TCON_MASK) == 0) {
530		dev_dbg(info->dev, "rtc init\n");
531		tm.tm_sec = 0;
532		tm.tm_min = 0;
533		tm.tm_hour = 0;
534		tm.tm_wday = 0;
535		tm.tm_mday = 1;
536		tm.tm_mon = 0;
537		tm.tm_year = 112;
538		tm.tm_yday = 0;
539		tm.tm_isdst = 0;
540		ret = s5m_rtc_set_time(info->dev, &tm);
541	}
542
543	ret = regmap_update_bits(info->regmap, SEC_RTC_UDR_CON,
544				 RTC_TCON_MASK, tp_read | RTC_TCON_MASK);
545	if (ret < 0)
546		dev_err(info->dev, "%s: fail to update TCON reg(%d)\n",
547			__func__, ret);
548
549	return ret;
550}
551
552static int s5m_rtc_probe(struct platform_device *pdev)
553{
554	struct sec_pmic_dev *s5m87xx = dev_get_drvdata(pdev->dev.parent);
555	struct sec_platform_data *pdata = s5m87xx->pdata;
556	struct s5m_rtc_info *info;
557	int ret;
 
558
559	if (!pdata) {
560		dev_err(pdev->dev.parent, "Platform data not supplied\n");
561		return -ENODEV;
562	}
563
564	info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL);
565	if (!info)
566		return -ENOMEM;
567
568	info->dev = &pdev->dev;
569	info->s5m87xx = s5m87xx;
570	info->regmap = s5m87xx->regmap_rtc;
571	info->device_type = s5m87xx->device_type;
572	info->wtsr_smpl = s5m87xx->wtsr_smpl;
573
574	switch (pdata->device_type) {
 
 
 
 
 
 
 
 
 
575	case S5M8763X:
576		info->irq = regmap_irq_get_virq(s5m87xx->irq_data,
577				S5M8763_IRQ_ALARM0);
 
578		break;
579
580	case S5M8767X:
581		info->irq = regmap_irq_get_virq(s5m87xx->irq_data,
582				S5M8767_IRQ_RTCA1);
 
583		break;
 
 
 
 
 
 
 
 
 
 
 
 
584
585	default:
586		ret = -EINVAL;
587		dev_err(&pdev->dev, "Unsupported device type: %d\n", ret);
588		return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
589	}
590
591	platform_set_drvdata(pdev, info);
592
593	ret = s5m8767_rtc_init_reg(info);
594
595	if (info->wtsr_smpl) {
596		s5m_rtc_enable_wtsr(info, true);
597		s5m_rtc_enable_smpl(info, true);
598	}
599
600	device_init_wakeup(&pdev->dev, 1);
601
602	info->rtc_dev = devm_rtc_device_register(&pdev->dev, "s5m-rtc",
603						 &s5m_rtc_ops, THIS_MODULE);
604
605	if (IS_ERR(info->rtc_dev))
606		return PTR_ERR(info->rtc_dev);
 
 
 
 
 
 
 
607
608	ret = devm_request_threaded_irq(&pdev->dev, info->irq, NULL,
609					s5m_rtc_alarm_irq, 0, "rtc-alarm0",
610					info);
611	if (ret < 0)
612		dev_err(&pdev->dev, "Failed to request alarm IRQ: %d: %d\n",
613			info->irq, ret);
 
 
 
 
 
 
 
614
615	return ret;
616}
617
618static void s5m_rtc_shutdown(struct platform_device *pdev)
619{
620	struct s5m_rtc_info *info = platform_get_drvdata(pdev);
621	int i;
622	unsigned int val = 0;
623	if (info->wtsr_smpl) {
624		for (i = 0; i < 3; i++) {
625			s5m_rtc_enable_wtsr(info, false);
626			regmap_read(info->regmap, SEC_WTSR_SMPL_CNTL, &val);
627			pr_debug("%s: WTSR_SMPL reg(0x%02x)\n", __func__, val);
628			if (val & WTSR_ENABLE_MASK)
629				pr_emerg("%s: fail to disable WTSR\n",
630					 __func__);
631			else {
632				pr_info("%s: success to disable WTSR\n",
633					__func__);
634				break;
635			}
636		}
637	}
638	/* Disable SMPL when power off */
639	s5m_rtc_enable_smpl(info, false);
640}
641
642#ifdef CONFIG_PM_SLEEP
643static int s5m_rtc_resume(struct device *dev)
644{
645	struct s5m_rtc_info *info = dev_get_drvdata(dev);
646	int ret = 0;
647
648	if (device_may_wakeup(dev))
649		ret = disable_irq_wake(info->irq);
650
651	return ret;
652}
653
654static int s5m_rtc_suspend(struct device *dev)
655{
656	struct s5m_rtc_info *info = dev_get_drvdata(dev);
657	int ret = 0;
658
659	if (device_may_wakeup(dev))
660		ret = enable_irq_wake(info->irq);
661
662	return ret;
663}
664#endif /* CONFIG_PM_SLEEP */
665
666static SIMPLE_DEV_PM_OPS(s5m_rtc_pm_ops, s5m_rtc_suspend, s5m_rtc_resume);
667
668static const struct platform_device_id s5m_rtc_id[] = {
669	{ "s5m-rtc", 0 },
 
 
 
 
670};
 
671
672static struct platform_driver s5m_rtc_driver = {
673	.driver		= {
674		.name	= "s5m-rtc",
675		.owner	= THIS_MODULE,
676		.pm	= &s5m_rtc_pm_ops,
677	},
678	.probe		= s5m_rtc_probe,
679	.shutdown	= s5m_rtc_shutdown,
680	.id_table	= s5m_rtc_id,
681};
682
683module_platform_driver(s5m_rtc_driver);
684
685/* Module information */
686MODULE_AUTHOR("Sangbeom Kim <sbkim73@samsung.com>");
687MODULE_DESCRIPTION("Samsung S5M RTC driver");
688MODULE_LICENSE("GPL");
689MODULE_ALIAS("platform:s5m-rtc");