Linux Audio

Check our new training course

Loading...
v4.6
 
   1/*
   2 * Copyright (C) 2012 Avionic Design GmbH
   3 * Copyright (C) 2012 NVIDIA CORPORATION.  All rights reserved.
   4 *
   5 * This program is free software; you can redistribute it and/or modify
   6 * it under the terms of the GNU General Public License version 2 as
   7 * published by the Free Software Foundation.
   8 */
   9
  10#include <linux/clk.h>
  11#include <linux/debugfs.h>
 
 
  12#include <linux/iommu.h>
 
 
 
 
 
 
  13#include <linux/reset.h>
  14
 
  15#include <soc/tegra/pmc.h>
  16
  17#include "dc.h"
  18#include "drm.h"
  19#include "gem.h"
  20
  21#include <drm/drm_atomic.h>
  22#include <drm/drm_atomic_helper.h>
  23#include <drm/drm_plane_helper.h>
 
 
 
 
  24
  25struct tegra_dc_soc_info {
  26	bool supports_border_color;
  27	bool supports_interlacing;
  28	bool supports_cursor;
  29	bool supports_block_linear;
  30	unsigned int pitch_align;
  31	bool has_powergate;
  32};
  33
  34struct tegra_plane {
  35	struct drm_plane base;
  36	unsigned int index;
  37};
  38
  39static inline struct tegra_plane *to_tegra_plane(struct drm_plane *plane)
  40{
  41	return container_of(plane, struct tegra_plane, base);
 
 
 
  42}
  43
  44struct tegra_dc_state {
  45	struct drm_crtc_state base;
 
 
  46
  47	struct clk *clk;
  48	unsigned long pclk;
  49	unsigned int div;
  50
  51	u32 planes;
  52};
  53
  54static inline struct tegra_dc_state *to_dc_state(struct drm_crtc_state *state)
 
  55{
  56	if (state)
  57		return container_of(state, struct tegra_dc_state, base);
  58
  59	return NULL;
  60}
  61
  62struct tegra_plane_state {
  63	struct drm_plane_state base;
 
 
  64
  65	struct tegra_bo_tiling tiling;
  66	u32 format;
  67	u32 swap;
  68};
  69
  70static inline struct tegra_plane_state *
  71to_tegra_plane_state(struct drm_plane_state *state)
  72{
  73	if (state)
  74		return container_of(state, struct tegra_plane_state, base);
  75
  76	return NULL;
  77}
  78
  79static void tegra_dc_stats_reset(struct tegra_dc_stats *stats)
 
  80{
  81	stats->frames = 0;
  82	stats->vblank = 0;
  83	stats->underflow = 0;
  84	stats->overflow = 0;
  85}
  86
  87/*
  88 * Reads the active copy of a register. This takes the dc->lock spinlock to
  89 * prevent races with the VBLANK processing which also needs access to the
  90 * active copy of some registers.
  91 */
  92static u32 tegra_dc_readl_active(struct tegra_dc *dc, unsigned long offset)
  93{
  94	unsigned long flags;
  95	u32 value;
  96
  97	spin_lock_irqsave(&dc->lock, flags);
 
 
 
 
  98
  99	tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
 100	value = tegra_dc_readl(dc, offset);
 101	tegra_dc_writel(dc, 0, DC_CMD_STATE_ACCESS);
 102
 103	spin_unlock_irqrestore(&dc->lock, flags);
 104	return value;
 105}
 106
 107/*
 108 * Double-buffered registers have two copies: ASSEMBLY and ACTIVE. When the
 109 * *_ACT_REQ bits are set the ASSEMBLY copy is latched into the ACTIVE copy.
 110 * Latching happens mmediately if the display controller is in STOP mode or
 111 * on the next frame boundary otherwise.
 112 *
 113 * Triple-buffered registers have three copies: ASSEMBLY, ARM and ACTIVE. The
 114 * ASSEMBLY copy is latched into the ARM copy immediately after *_UPDATE bits
 115 * are written. When the *_ACT_REQ bits are written, the ARM copy is latched
 116 * into the ACTIVE copy, either immediately if the display controller is in
 117 * STOP mode, or at the next frame boundary otherwise.
 118 */
 119void tegra_dc_commit(struct tegra_dc *dc)
 120{
 121	tegra_dc_writel(dc, GENERAL_ACT_REQ << 8, DC_CMD_STATE_CONTROL);
 122	tegra_dc_writel(dc, GENERAL_ACT_REQ, DC_CMD_STATE_CONTROL);
 123}
 124
 125static int tegra_dc_format(u32 fourcc, u32 *format, u32 *swap)
 126{
 127	/* assume no swapping of fetched data */
 128	if (swap)
 129		*swap = BYTE_SWAP_NOSWAP;
 130
 131	switch (fourcc) {
 132	case DRM_FORMAT_XBGR8888:
 133		*format = WIN_COLOR_DEPTH_R8G8B8A8;
 134		break;
 135
 136	case DRM_FORMAT_XRGB8888:
 137		*format = WIN_COLOR_DEPTH_B8G8R8A8;
 138		break;
 139
 140	case DRM_FORMAT_RGB565:
 141		*format = WIN_COLOR_DEPTH_B5G6R5;
 142		break;
 143
 144	case DRM_FORMAT_UYVY:
 145		*format = WIN_COLOR_DEPTH_YCbCr422;
 146		break;
 147
 148	case DRM_FORMAT_YUYV:
 149		if (swap)
 150			*swap = BYTE_SWAP_SWAP2;
 151
 152		*format = WIN_COLOR_DEPTH_YCbCr422;
 153		break;
 154
 155	case DRM_FORMAT_YUV420:
 156		*format = WIN_COLOR_DEPTH_YCbCr420P;
 157		break;
 158
 159	case DRM_FORMAT_YUV422:
 160		*format = WIN_COLOR_DEPTH_YCbCr422P;
 161		break;
 162
 163	default:
 164		return -EINVAL;
 165	}
 166
 167	return 0;
 168}
 169
 170static bool tegra_dc_format_is_yuv(unsigned int format, bool *planar)
 171{
 172	switch (format) {
 173	case WIN_COLOR_DEPTH_YCbCr422:
 174	case WIN_COLOR_DEPTH_YUV422:
 175		if (planar)
 176			*planar = false;
 177
 178		return true;
 179
 180	case WIN_COLOR_DEPTH_YCbCr420P:
 181	case WIN_COLOR_DEPTH_YUV420P:
 182	case WIN_COLOR_DEPTH_YCbCr422P:
 183	case WIN_COLOR_DEPTH_YUV422P:
 184	case WIN_COLOR_DEPTH_YCbCr422R:
 185	case WIN_COLOR_DEPTH_YUV422R:
 186	case WIN_COLOR_DEPTH_YCbCr422RA:
 187	case WIN_COLOR_DEPTH_YUV422RA:
 188		if (planar)
 189			*planar = true;
 190
 191		return true;
 192	}
 193
 194	if (planar)
 195		*planar = false;
 196
 197	return false;
 198}
 199
 200static inline u32 compute_dda_inc(unsigned int in, unsigned int out, bool v,
 201				  unsigned int bpp)
 202{
 203	fixed20_12 outf = dfixed_init(out);
 204	fixed20_12 inf = dfixed_init(in);
 205	u32 dda_inc;
 206	int max;
 207
 208	if (v)
 209		max = 15;
 210	else {
 211		switch (bpp) {
 212		case 2:
 213			max = 8;
 214			break;
 215
 216		default:
 217			WARN_ON_ONCE(1);
 218			/* fallthrough */
 219		case 4:
 220			max = 4;
 221			break;
 222		}
 223	}
 224
 225	outf.full = max_t(u32, outf.full - dfixed_const(1), dfixed_const(1));
 226	inf.full -= dfixed_const(1);
 227
 228	dda_inc = dfixed_div(inf, outf);
 229	dda_inc = min_t(u32, dda_inc, dfixed_const(max));
 230
 231	return dda_inc;
 232}
 233
 234static inline u32 compute_initial_dda(unsigned int in)
 235{
 236	fixed20_12 inf = dfixed_init(in);
 237	return dfixed_frac(inf);
 238}
 239
 240static void tegra_dc_setup_window(struct tegra_dc *dc, unsigned int index,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 241				  const struct tegra_dc_window *window)
 242{
 243	unsigned h_offset, v_offset, h_size, v_size, h_dda, v_dda, bpp;
 244	unsigned long value, flags;
 245	bool yuv, planar;
 
 
 246
 247	/*
 248	 * For YUV planar modes, the number of bytes per pixel takes into
 249	 * account only the luma component and therefore is 1.
 250	 */
 251	yuv = tegra_dc_format_is_yuv(window->format, &planar);
 252	if (!yuv)
 253		bpp = window->bits_per_pixel / 8;
 254	else
 255		bpp = planar ? 1 : 2;
 256
 257	spin_lock_irqsave(&dc->lock, flags);
 258
 259	value = WINDOW_A_SELECT << index;
 260	tegra_dc_writel(dc, value, DC_CMD_DISPLAY_WINDOW_HEADER);
 261
 262	tegra_dc_writel(dc, window->format, DC_WIN_COLOR_DEPTH);
 263	tegra_dc_writel(dc, window->swap, DC_WIN_BYTE_SWAP);
 264
 265	value = V_POSITION(window->dst.y) | H_POSITION(window->dst.x);
 266	tegra_dc_writel(dc, value, DC_WIN_POSITION);
 267
 268	value = V_SIZE(window->dst.h) | H_SIZE(window->dst.w);
 269	tegra_dc_writel(dc, value, DC_WIN_SIZE);
 270
 271	h_offset = window->src.x * bpp;
 272	v_offset = window->src.y;
 273	h_size = window->src.w * bpp;
 274	v_size = window->src.h;
 275
 
 
 
 
 
 
 276	value = V_PRESCALED_SIZE(v_size) | H_PRESCALED_SIZE(h_size);
 277	tegra_dc_writel(dc, value, DC_WIN_PRESCALED_SIZE);
 278
 279	/*
 280	 * For DDA computations the number of bytes per pixel for YUV planar
 281	 * modes needs to take into account all Y, U and V components.
 282	 */
 283	if (yuv && planar)
 284		bpp = 2;
 285
 286	h_dda = compute_dda_inc(window->src.w, window->dst.w, false, bpp);
 287	v_dda = compute_dda_inc(window->src.h, window->dst.h, true, bpp);
 288
 289	value = V_DDA_INC(v_dda) | H_DDA_INC(h_dda);
 290	tegra_dc_writel(dc, value, DC_WIN_DDA_INC);
 291
 292	h_dda = compute_initial_dda(window->src.x);
 293	v_dda = compute_initial_dda(window->src.y);
 294
 295	tegra_dc_writel(dc, h_dda, DC_WIN_H_INITIAL_DDA);
 296	tegra_dc_writel(dc, v_dda, DC_WIN_V_INITIAL_DDA);
 297
 298	tegra_dc_writel(dc, 0, DC_WIN_UV_BUF_STRIDE);
 299	tegra_dc_writel(dc, 0, DC_WIN_BUF_STRIDE);
 300
 301	tegra_dc_writel(dc, window->base[0], DC_WINBUF_START_ADDR);
 
 
 
 
 
 
 302
 303	if (yuv && planar) {
 304		tegra_dc_writel(dc, window->base[1], DC_WINBUF_START_ADDR_U);
 305		tegra_dc_writel(dc, window->base[2], DC_WINBUF_START_ADDR_V);
 306		value = window->stride[1] << 16 | window->stride[0];
 307		tegra_dc_writel(dc, value, DC_WIN_LINE_STRIDE);
 308	} else {
 309		tegra_dc_writel(dc, window->stride[0], DC_WIN_LINE_STRIDE);
 310	}
 311
 312	if (window->bottom_up)
 313		v_offset += window->src.h - 1;
 314
 315	tegra_dc_writel(dc, h_offset, DC_WINBUF_ADDR_H_OFFSET);
 316	tegra_dc_writel(dc, v_offset, DC_WINBUF_ADDR_V_OFFSET);
 317
 318	if (dc->soc->supports_block_linear) {
 319		unsigned long height = window->tiling.value;
 320
 321		switch (window->tiling.mode) {
 322		case TEGRA_BO_TILING_MODE_PITCH:
 323			value = DC_WINBUF_SURFACE_KIND_PITCH;
 324			break;
 325
 326		case TEGRA_BO_TILING_MODE_TILED:
 327			value = DC_WINBUF_SURFACE_KIND_TILED;
 328			break;
 329
 330		case TEGRA_BO_TILING_MODE_BLOCK:
 331			value = DC_WINBUF_SURFACE_KIND_BLOCK_HEIGHT(height) |
 332				DC_WINBUF_SURFACE_KIND_BLOCK;
 333			break;
 334		}
 335
 336		tegra_dc_writel(dc, value, DC_WINBUF_SURFACE_KIND);
 337	} else {
 338		switch (window->tiling.mode) {
 339		case TEGRA_BO_TILING_MODE_PITCH:
 340			value = DC_WIN_BUFFER_ADDR_MODE_LINEAR_UV |
 341				DC_WIN_BUFFER_ADDR_MODE_LINEAR;
 342			break;
 343
 344		case TEGRA_BO_TILING_MODE_TILED:
 345			value = DC_WIN_BUFFER_ADDR_MODE_TILE_UV |
 346				DC_WIN_BUFFER_ADDR_MODE_TILE;
 347			break;
 348
 349		case TEGRA_BO_TILING_MODE_BLOCK:
 350			/*
 351			 * No need to handle this here because ->atomic_check
 352			 * will already have filtered it out.
 353			 */
 354			break;
 355		}
 356
 357		tegra_dc_writel(dc, value, DC_WIN_BUFFER_ADDR_MODE);
 358	}
 359
 360	value = WIN_ENABLE;
 361
 362	if (yuv) {
 363		/* setup default colorspace conversion coefficients */
 364		tegra_dc_writel(dc, 0x00f0, DC_WIN_CSC_YOF);
 365		tegra_dc_writel(dc, 0x012a, DC_WIN_CSC_KYRGB);
 366		tegra_dc_writel(dc, 0x0000, DC_WIN_CSC_KUR);
 367		tegra_dc_writel(dc, 0x0198, DC_WIN_CSC_KVR);
 368		tegra_dc_writel(dc, 0x039b, DC_WIN_CSC_KUG);
 369		tegra_dc_writel(dc, 0x032f, DC_WIN_CSC_KVG);
 370		tegra_dc_writel(dc, 0x0204, DC_WIN_CSC_KUB);
 371		tegra_dc_writel(dc, 0x0000, DC_WIN_CSC_KVB);
 372
 373		value |= CSC_ENABLE;
 374	} else if (window->bits_per_pixel < 24) {
 375		value |= COLOR_EXPAND;
 376	}
 377
 378	if (window->bottom_up)
 
 
 
 379		value |= V_DIRECTION;
 380
 381	tegra_dc_writel(dc, value, DC_WIN_WIN_OPTIONS);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 382
 383	/*
 384	 * Disable blending and assume Window A is the bottom-most window,
 385	 * Window C is the top-most window and Window B is in the middle.
 386	 */
 387	tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_NOKEY);
 388	tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_1WIN);
 389
 390	switch (index) {
 391	case 0:
 392		tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_2WIN_X);
 393		tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_2WIN_Y);
 394		tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_3WIN_XY);
 395		break;
 396
 397	case 1:
 398		tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_2WIN_X);
 399		tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_2WIN_Y);
 400		tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_3WIN_XY);
 401		break;
 
 402
 403	case 2:
 404		tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_2WIN_X);
 405		tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_2WIN_Y);
 406		tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_3WIN_XY);
 407		break;
 408	}
 409
 410	spin_unlock_irqrestore(&dc->lock, flags);
 411}
 412
 413static void tegra_plane_destroy(struct drm_plane *plane)
 414{
 415	struct tegra_plane *p = to_tegra_plane(plane);
 416
 417	drm_plane_cleanup(plane);
 418	kfree(p);
 
 
 419}
 420
 421static const u32 tegra_primary_plane_formats[] = {
 
 
 
 
 
 
 
 
 
 422	DRM_FORMAT_XBGR8888,
 423	DRM_FORMAT_XRGB8888,
 424	DRM_FORMAT_RGB565,
 425};
 426
 427static void tegra_primary_plane_destroy(struct drm_plane *plane)
 428{
 429	tegra_plane_destroy(plane);
 430}
 431
 432static void tegra_plane_reset(struct drm_plane *plane)
 433{
 434	struct tegra_plane_state *state;
 435
 436	if (plane->state)
 437		__drm_atomic_helper_plane_destroy_state(plane, plane->state);
 438
 439	kfree(plane->state);
 440	plane->state = NULL;
 441
 442	state = kzalloc(sizeof(*state), GFP_KERNEL);
 443	if (state) {
 444		plane->state = &state->base;
 445		plane->state->plane = plane;
 446	}
 447}
 448
 449static struct drm_plane_state *tegra_plane_atomic_duplicate_state(struct drm_plane *plane)
 450{
 451	struct tegra_plane_state *state = to_tegra_plane_state(plane->state);
 452	struct tegra_plane_state *copy;
 453
 454	copy = kmalloc(sizeof(*copy), GFP_KERNEL);
 455	if (!copy)
 456		return NULL;
 457
 458	__drm_atomic_helper_plane_duplicate_state(plane, &copy->base);
 459	copy->tiling = state->tiling;
 460	copy->format = state->format;
 461	copy->swap = state->swap;
 462
 463	return &copy->base;
 464}
 465
 466static void tegra_plane_atomic_destroy_state(struct drm_plane *plane,
 467					     struct drm_plane_state *state)
 468{
 469	__drm_atomic_helper_plane_destroy_state(plane, state);
 470	kfree(state);
 471}
 472
 473static const struct drm_plane_funcs tegra_primary_plane_funcs = {
 474	.update_plane = drm_atomic_helper_update_plane,
 475	.disable_plane = drm_atomic_helper_disable_plane,
 476	.destroy = tegra_primary_plane_destroy,
 477	.reset = tegra_plane_reset,
 478	.atomic_duplicate_state = tegra_plane_atomic_duplicate_state,
 479	.atomic_destroy_state = tegra_plane_atomic_destroy_state,
 480};
 481
 482static int tegra_plane_prepare_fb(struct drm_plane *plane,
 483				  const struct drm_plane_state *new_state)
 484{
 485	return 0;
 486}
 487
 488static void tegra_plane_cleanup_fb(struct drm_plane *plane,
 489				   const struct drm_plane_state *old_fb)
 490{
 491}
 492
 493static int tegra_plane_state_add(struct tegra_plane *plane,
 494				 struct drm_plane_state *state)
 495{
 496	struct drm_crtc_state *crtc_state;
 497	struct tegra_dc_state *tegra;
 498
 499	/* Propagate errors from allocation or locking failures. */
 500	crtc_state = drm_atomic_get_crtc_state(state->state, state->crtc);
 501	if (IS_ERR(crtc_state))
 502		return PTR_ERR(crtc_state);
 503
 504	tegra = to_dc_state(crtc_state);
 505
 506	tegra->planes |= WIN_A_ACT_REQ << plane->index;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 507
 508	return 0;
 509}
 
 
 
 
 
 
 
 
 510
 511static int tegra_plane_atomic_check(struct drm_plane *plane,
 512				    struct drm_plane_state *state)
 513{
 514	struct tegra_plane_state *plane_state = to_tegra_plane_state(state);
 
 
 
 
 
 
 515	struct tegra_bo_tiling *tiling = &plane_state->tiling;
 516	struct tegra_plane *tegra = to_tegra_plane(plane);
 517	struct tegra_dc *dc = to_tegra_dc(state->crtc);
 518	int err;
 519
 
 
 
 520	/* no need for further checks if the plane is being disabled */
 521	if (!state->crtc)
 
 522		return 0;
 
 523
 524	err = tegra_dc_format(state->fb->pixel_format, &plane_state->format,
 525			      &plane_state->swap);
 
 526	if (err < 0)
 527		return err;
 528
 529	err = tegra_fb_get_tiling(state->fb, tiling);
 
 
 
 
 
 
 
 
 
 
 
 
 530	if (err < 0)
 531		return err;
 532
 533	if (tiling->mode == TEGRA_BO_TILING_MODE_BLOCK &&
 534	    !dc->soc->supports_block_linear) {
 535		DRM_ERROR("hardware doesn't support block linear mode\n");
 536		return -EINVAL;
 537	}
 538
 539	/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 540	 * Tegra doesn't support different strides for U and V planes so we
 541	 * error out if the user tries to display a framebuffer with such a
 542	 * configuration.
 543	 */
 544	if (drm_format_num_planes(state->fb->pixel_format) > 2) {
 545		if (state->fb->pitches[2] != state->fb->pitches[1]) {
 546			DRM_ERROR("unsupported UV-plane configuration\n");
 547			return -EINVAL;
 548		}
 549	}
 550
 551	err = tegra_plane_state_add(tegra, state);
 552	if (err < 0)
 553		return err;
 554
 555	return 0;
 556}
 557
 558static void tegra_plane_atomic_update(struct drm_plane *plane,
 559				      struct drm_plane_state *old_state)
 560{
 561	struct tegra_plane_state *state = to_tegra_plane_state(plane->state);
 562	struct tegra_dc *dc = to_tegra_dc(plane->state->crtc);
 563	struct drm_framebuffer *fb = plane->state->fb;
 564	struct tegra_plane *p = to_tegra_plane(plane);
 565	struct tegra_dc_window window;
 566	unsigned int i;
 567
 568	/* rien ne va plus */
 569	if (!plane->state->crtc || !plane->state->fb)
 570		return;
 571
 572	memset(&window, 0, sizeof(window));
 573	window.src.x = plane->state->src_x >> 16;
 574	window.src.y = plane->state->src_y >> 16;
 575	window.src.w = plane->state->src_w >> 16;
 576	window.src.h = plane->state->src_h >> 16;
 577	window.dst.x = plane->state->crtc_x;
 578	window.dst.y = plane->state->crtc_y;
 579	window.dst.w = plane->state->crtc_w;
 580	window.dst.h = plane->state->crtc_h;
 581	window.bits_per_pixel = fb->bits_per_pixel;
 582	window.bottom_up = tegra_fb_is_bottom_up(fb);
 583
 584	/* copy from state */
 585	window.tiling = state->tiling;
 586	window.format = state->format;
 587	window.swap = state->swap;
 588
 589	for (i = 0; i < drm_format_num_planes(fb->pixel_format); i++) {
 590		struct tegra_bo *bo = tegra_fb_get_plane(fb, i);
 591
 592		window.base[i] = bo->paddr + fb->offsets[i];
 593		window.stride[i] = fb->pitches[i];
 594	}
 595
 596	tegra_dc_setup_window(dc, p->index, &window);
 597}
 598
 599static void tegra_plane_atomic_disable(struct drm_plane *plane,
 600				       struct drm_plane_state *old_state)
 601{
 
 
 
 
 602	struct tegra_plane *p = to_tegra_plane(plane);
 603	struct tegra_dc *dc;
 604	unsigned long flags;
 605	u32 value;
 606
 607	/* rien ne va plus */
 608	if (!old_state || !old_state->crtc)
 609		return;
 610
 611	dc = to_tegra_dc(old_state->crtc);
 
 612
 613	spin_lock_irqsave(&dc->lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 614
 615	value = WINDOW_A_SELECT << p->index;
 616	tegra_dc_writel(dc, value, DC_CMD_DISPLAY_WINDOW_HEADER);
 
 
 
 617
 618	value = tegra_dc_readl(dc, DC_WIN_WIN_OPTIONS);
 619	value &= ~WIN_ENABLE;
 620	tegra_dc_writel(dc, value, DC_WIN_WIN_OPTIONS);
 
 
 
 
 
 
 
 
 621
 622	spin_unlock_irqrestore(&dc->lock, flags);
 623}
 624
 625static const struct drm_plane_helper_funcs tegra_primary_plane_helper_funcs = {
 626	.prepare_fb = tegra_plane_prepare_fb,
 627	.cleanup_fb = tegra_plane_cleanup_fb,
 628	.atomic_check = tegra_plane_atomic_check,
 629	.atomic_update = tegra_plane_atomic_update,
 630	.atomic_disable = tegra_plane_atomic_disable,
 
 631};
 632
 633static struct drm_plane *tegra_dc_primary_plane_create(struct drm_device *drm,
 634						       struct tegra_dc *dc)
 635{
 636	/*
 637	 * Ideally this would use drm_crtc_mask(), but that would require the
 638	 * CRTC to already be in the mode_config's list of CRTCs. However, it
 639	 * will only be added to that list in the drm_crtc_init_with_planes()
 640	 * (in tegra_dc_init()), which in turn requires registration of these
 641	 * planes. So we have ourselves a nice little chicken and egg problem
 642	 * here.
 643	 *
 644	 * We work around this by manually creating the mask from the number
 645	 * of CRTCs that have been registered, and should therefore always be
 646	 * the same as drm_crtc_index() after registration.
 647	 */
 648	unsigned long possible_crtcs = 1 << drm->mode_config.num_crtc;
 
 
 
 
 
 
 
 649	struct tegra_plane *plane;
 650	unsigned int num_formats;
 
 651	const u32 *formats;
 652	int err;
 653
 654	plane = kzalloc(sizeof(*plane), GFP_KERNEL);
 655	if (!plane)
 656		return ERR_PTR(-ENOMEM);
 657
 658	num_formats = ARRAY_SIZE(tegra_primary_plane_formats);
 659	formats = tegra_primary_plane_formats;
 
 
 
 
 
 
 
 
 
 
 
 
 660
 661	err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
 662				       &tegra_primary_plane_funcs, formats,
 663				       num_formats, DRM_PLANE_TYPE_PRIMARY,
 664				       NULL);
 665	if (err < 0) {
 666		kfree(plane);
 667		return ERR_PTR(err);
 668	}
 669
 670	drm_plane_helper_add(&plane->base, &tegra_primary_plane_helper_funcs);
 
 
 
 
 
 
 
 
 
 
 
 671
 672	return &plane->base;
 673}
 674
 675static const u32 tegra_cursor_plane_formats[] = {
 676	DRM_FORMAT_RGBA8888,
 677};
 678
 
 
 
 
 679static int tegra_cursor_atomic_check(struct drm_plane *plane,
 680				     struct drm_plane_state *state)
 681{
 
 
 
 682	struct tegra_plane *tegra = to_tegra_plane(plane);
 683	int err;
 684
 
 
 
 685	/* no need for further checks if the plane is being disabled */
 686	if (!state->crtc)
 
 687		return 0;
 
 688
 689	/* scaling not supported for cursor */
 690	if ((state->src_w >> 16 != state->crtc_w) ||
 691	    (state->src_h >> 16 != state->crtc_h))
 692		return -EINVAL;
 693
 694	/* only square cursors supported */
 695	if (state->src_w != state->src_h)
 696		return -EINVAL;
 697
 698	if (state->crtc_w != 32 && state->crtc_w != 64 &&
 699	    state->crtc_w != 128 && state->crtc_w != 256)
 700		return -EINVAL;
 701
 702	err = tegra_plane_state_add(tegra, state);
 703	if (err < 0)
 704		return err;
 705
 706	return 0;
 707}
 708
 709static void tegra_cursor_atomic_update(struct drm_plane *plane,
 710				       struct drm_plane_state *old_state)
 711{
 712	struct tegra_bo *bo = tegra_fb_get_plane(plane->state->fb, 0);
 713	struct tegra_dc *dc = to_tegra_dc(plane->state->crtc);
 714	struct drm_plane_state *state = plane->state;
 715	u32 value = CURSOR_CLIP_DISPLAY;
 
 
 
 
 716
 717	/* rien ne va plus */
 718	if (!plane->state->crtc || !plane->state->fb)
 719		return;
 720
 721	switch (state->crtc_w) {
 
 
 
 
 
 
 
 722	case 32:
 723		value |= CURSOR_SIZE_32x32;
 724		break;
 725
 726	case 64:
 727		value |= CURSOR_SIZE_64x64;
 728		break;
 729
 730	case 128:
 731		value |= CURSOR_SIZE_128x128;
 732		break;
 733
 734	case 256:
 735		value |= CURSOR_SIZE_256x256;
 736		break;
 737
 738	default:
 739		WARN(1, "cursor size %ux%u not supported\n", state->crtc_w,
 740		     state->crtc_h);
 741		return;
 742	}
 743
 744	value |= (bo->paddr >> 10) & 0x3fffff;
 745	tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR);
 746
 747#ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
 748	value = (bo->paddr >> 32) & 0x3;
 749	tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR_HI);
 750#endif
 751
 752	/* enable cursor and set blend mode */
 753	value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
 754	value |= CURSOR_ENABLE;
 755	tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
 756
 757	value = tegra_dc_readl(dc, DC_DISP_BLEND_CURSOR_CONTROL);
 758	value &= ~CURSOR_DST_BLEND_MASK;
 759	value &= ~CURSOR_SRC_BLEND_MASK;
 760	value |= CURSOR_MODE_NORMAL;
 
 
 
 
 
 761	value |= CURSOR_DST_BLEND_NEG_K1_TIMES_SRC;
 762	value |= CURSOR_SRC_BLEND_K1_TIMES_SRC;
 763	value |= CURSOR_ALPHA;
 764	tegra_dc_writel(dc, value, DC_DISP_BLEND_CURSOR_CONTROL);
 765
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 766	/* position the cursor */
 767	value = (state->crtc_y & 0x3fff) << 16 | (state->crtc_x & 0x3fff);
 768	tegra_dc_writel(dc, value, DC_DISP_CURSOR_POSITION);
 769}
 770
 
 
 
 
 
 
 
 
 771static void tegra_cursor_atomic_disable(struct drm_plane *plane,
 772					struct drm_plane_state *old_state)
 773{
 
 
 774	struct tegra_dc *dc;
 775	u32 value;
 776
 777	/* rien ne va plus */
 778	if (!old_state || !old_state->crtc)
 779		return;
 780
 781	dc = to_tegra_dc(old_state->crtc);
 782
 783	value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
 784	value &= ~CURSOR_ENABLE;
 785	tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
 786}
 787
 788static const struct drm_plane_funcs tegra_cursor_plane_funcs = {
 789	.update_plane = drm_atomic_helper_update_plane,
 790	.disable_plane = drm_atomic_helper_disable_plane,
 791	.destroy = tegra_plane_destroy,
 792	.reset = tegra_plane_reset,
 793	.atomic_duplicate_state = tegra_plane_atomic_duplicate_state,
 794	.atomic_destroy_state = tegra_plane_atomic_destroy_state,
 795};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 796
 797static const struct drm_plane_helper_funcs tegra_cursor_plane_helper_funcs = {
 798	.prepare_fb = tegra_plane_prepare_fb,
 799	.cleanup_fb = tegra_plane_cleanup_fb,
 800	.atomic_check = tegra_cursor_atomic_check,
 801	.atomic_update = tegra_cursor_atomic_update,
 802	.atomic_disable = tegra_cursor_atomic_disable,
 
 
 
 
 
 
 
 803};
 804
 805static struct drm_plane *tegra_dc_cursor_plane_create(struct drm_device *drm,
 806						      struct tegra_dc *dc)
 807{
 
 808	struct tegra_plane *plane;
 809	unsigned int num_formats;
 810	const u32 *formats;
 811	int err;
 812
 813	plane = kzalloc(sizeof(*plane), GFP_KERNEL);
 814	if (!plane)
 815		return ERR_PTR(-ENOMEM);
 816
 817	/*
 818	 * This index is kind of fake. The cursor isn't a regular plane, but
 819	 * its update and activation request bits in DC_CMD_STATE_CONTROL do
 820	 * use the same programming. Setting this fake index here allows the
 821	 * code in tegra_add_plane_state() to do the right thing without the
 822	 * need to special-casing the cursor plane.
 823	 */
 824	plane->index = 6;
 
 825
 826	num_formats = ARRAY_SIZE(tegra_cursor_plane_formats);
 827	formats = tegra_cursor_plane_formats;
 
 
 
 
 
 
 
 
 
 
 
 828
 829	err = drm_universal_plane_init(drm, &plane->base, 1 << dc->pipe,
 830				       &tegra_cursor_plane_funcs, formats,
 831				       num_formats, DRM_PLANE_TYPE_CURSOR,
 832				       NULL);
 833	if (err < 0) {
 834		kfree(plane);
 835		return ERR_PTR(err);
 836	}
 837
 838	drm_plane_helper_add(&plane->base, &tegra_cursor_plane_helper_funcs);
 
 839
 840	return &plane->base;
 841}
 842
 843static void tegra_overlay_plane_destroy(struct drm_plane *plane)
 844{
 845	tegra_plane_destroy(plane);
 846}
 847
 848static const struct drm_plane_funcs tegra_overlay_plane_funcs = {
 849	.update_plane = drm_atomic_helper_update_plane,
 850	.disable_plane = drm_atomic_helper_disable_plane,
 851	.destroy = tegra_overlay_plane_destroy,
 852	.reset = tegra_plane_reset,
 853	.atomic_duplicate_state = tegra_plane_atomic_duplicate_state,
 854	.atomic_destroy_state = tegra_plane_atomic_destroy_state,
 855};
 856
 857static const uint32_t tegra_overlay_plane_formats[] = {
 858	DRM_FORMAT_XBGR8888,
 859	DRM_FORMAT_XRGB8888,
 
 
 
 
 
 
 
 
 
 
 860	DRM_FORMAT_RGB565,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 861	DRM_FORMAT_UYVY,
 862	DRM_FORMAT_YUYV,
 863	DRM_FORMAT_YUV420,
 864	DRM_FORMAT_YUV422,
 
 
 
 
 
 
 
 865};
 866
 867static const struct drm_plane_helper_funcs tegra_overlay_plane_helper_funcs = {
 868	.prepare_fb = tegra_plane_prepare_fb,
 869	.cleanup_fb = tegra_plane_cleanup_fb,
 870	.atomic_check = tegra_plane_atomic_check,
 871	.atomic_update = tegra_plane_atomic_update,
 872	.atomic_disable = tegra_plane_atomic_disable,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 873};
 874
 875static struct drm_plane *tegra_dc_overlay_plane_create(struct drm_device *drm,
 876						       struct tegra_dc *dc,
 877						       unsigned int index)
 
 878{
 
 879	struct tegra_plane *plane;
 880	unsigned int num_formats;
 
 881	const u32 *formats;
 882	int err;
 883
 884	plane = kzalloc(sizeof(*plane), GFP_KERNEL);
 885	if (!plane)
 886		return ERR_PTR(-ENOMEM);
 887
 
 888	plane->index = index;
 
 889
 890	num_formats = ARRAY_SIZE(tegra_overlay_plane_formats);
 891	formats = tegra_overlay_plane_formats;
 892
 893	err = drm_universal_plane_init(drm, &plane->base, 1 << dc->pipe,
 894				       &tegra_overlay_plane_funcs, formats,
 895				       num_formats, DRM_PLANE_TYPE_OVERLAY,
 896				       NULL);
 897	if (err < 0) {
 898		kfree(plane);
 899		return ERR_PTR(err);
 900	}
 901
 902	drm_plane_helper_add(&plane->base, &tegra_overlay_plane_helper_funcs);
 903
 904	return &plane->base;
 905}
 906
 907static int tegra_dc_add_planes(struct drm_device *drm, struct tegra_dc *dc)
 908{
 909	struct drm_plane *plane;
 910	unsigned int i;
 911
 912	for (i = 0; i < 2; i++) {
 913		plane = tegra_dc_overlay_plane_create(drm, dc, 1 + i);
 914		if (IS_ERR(plane))
 915			return PTR_ERR(plane);
 
 
 
 916	}
 917
 918	return 0;
 919}
 920
 921u32 tegra_dc_get_vblank_counter(struct tegra_dc *dc)
 922{
 923	if (dc->syncpt)
 924		return host1x_syncpt_read(dc->syncpt);
 925
 926	/* fallback to software emulated VBLANK counter */
 927	return drm_crtc_vblank_count(&dc->base);
 928}
 929
 930void tegra_dc_enable_vblank(struct tegra_dc *dc)
 931{
 932	unsigned long value, flags;
 933
 934	spin_lock_irqsave(&dc->lock, flags);
 935
 936	value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
 937	value |= VBLANK_INT;
 938	tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
 939
 940	spin_unlock_irqrestore(&dc->lock, flags);
 941}
 942
 943void tegra_dc_disable_vblank(struct tegra_dc *dc)
 
 944{
 945	unsigned long value, flags;
 
 946
 947	spin_lock_irqsave(&dc->lock, flags);
 
 948
 949	value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
 950	value &= ~VBLANK_INT;
 951	tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 952
 953	spin_unlock_irqrestore(&dc->lock, flags);
 954}
 955
 956static void tegra_dc_finish_page_flip(struct tegra_dc *dc)
 
 957{
 958	struct drm_device *drm = dc->base.dev;
 959	struct drm_crtc *crtc = &dc->base;
 960	unsigned long flags, base;
 961	struct tegra_bo *bo;
 962
 963	spin_lock_irqsave(&drm->event_lock, flags);
 964
 965	if (!dc->event) {
 966		spin_unlock_irqrestore(&drm->event_lock, flags);
 967		return;
 968	}
 969
 970	bo = tegra_fb_get_plane(crtc->primary->fb, 0);
 
 
 971
 972	spin_lock(&dc->lock);
 
 
 
 973
 974	/* check if new start address has been latched */
 975	tegra_dc_writel(dc, WINDOW_A_SELECT, DC_CMD_DISPLAY_WINDOW_HEADER);
 976	tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
 977	base = tegra_dc_readl(dc, DC_WINBUF_START_ADDR);
 978	tegra_dc_writel(dc, 0, DC_CMD_STATE_ACCESS);
 979
 980	spin_unlock(&dc->lock);
 
 981
 982	if (base == bo->paddr + crtc->primary->fb->offsets[0]) {
 983		drm_crtc_send_vblank_event(crtc, dc->event);
 984		drm_crtc_vblank_put(crtc);
 985		dc->event = NULL;
 986	}
 987
 988	spin_unlock_irqrestore(&drm->event_lock, flags);
 989}
 990
 991static void tegra_dc_destroy(struct drm_crtc *crtc)
 992{
 993	drm_crtc_cleanup(crtc);
 994}
 995
 996static void tegra_crtc_reset(struct drm_crtc *crtc)
 997{
 998	struct tegra_dc_state *state;
 999
1000	if (crtc->state)
1001		__drm_atomic_helper_crtc_destroy_state(crtc, crtc->state);
1002
1003	kfree(crtc->state);
1004	crtc->state = NULL;
1005
1006	state = kzalloc(sizeof(*state), GFP_KERNEL);
1007	if (state) {
1008		crtc->state = &state->base;
1009		crtc->state->crtc = crtc;
1010	}
1011
1012	drm_crtc_vblank_reset(crtc);
1013}
1014
1015static struct drm_crtc_state *
1016tegra_crtc_atomic_duplicate_state(struct drm_crtc *crtc)
1017{
1018	struct tegra_dc_state *state = to_dc_state(crtc->state);
1019	struct tegra_dc_state *copy;
1020
1021	copy = kmalloc(sizeof(*copy), GFP_KERNEL);
1022	if (!copy)
1023		return NULL;
1024
1025	__drm_atomic_helper_crtc_duplicate_state(crtc, &copy->base);
1026	copy->clk = state->clk;
1027	copy->pclk = state->pclk;
1028	copy->div = state->div;
1029	copy->planes = state->planes;
1030
1031	return &copy->base;
1032}
1033
1034static void tegra_crtc_atomic_destroy_state(struct drm_crtc *crtc,
1035					    struct drm_crtc_state *state)
1036{
1037	__drm_atomic_helper_crtc_destroy_state(crtc, state);
1038	kfree(state);
1039}
1040
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1041static const struct drm_crtc_funcs tegra_crtc_funcs = {
1042	.page_flip = drm_atomic_helper_page_flip,
1043	.set_config = drm_atomic_helper_set_config,
1044	.destroy = tegra_dc_destroy,
1045	.reset = tegra_crtc_reset,
1046	.atomic_duplicate_state = tegra_crtc_atomic_duplicate_state,
1047	.atomic_destroy_state = tegra_crtc_atomic_destroy_state,
 
 
 
 
 
1048};
1049
1050static int tegra_dc_set_timings(struct tegra_dc *dc,
1051				struct drm_display_mode *mode)
1052{
1053	unsigned int h_ref_to_sync = 1;
1054	unsigned int v_ref_to_sync = 1;
1055	unsigned long value;
1056
1057	tegra_dc_writel(dc, 0x0, DC_DISP_DISP_TIMING_OPTIONS);
 
1058
1059	value = (v_ref_to_sync << 16) | h_ref_to_sync;
1060	tegra_dc_writel(dc, value, DC_DISP_REF_TO_SYNC);
 
1061
1062	value = ((mode->vsync_end - mode->vsync_start) << 16) |
1063		((mode->hsync_end - mode->hsync_start) <<  0);
1064	tegra_dc_writel(dc, value, DC_DISP_SYNC_WIDTH);
1065
1066	value = ((mode->vtotal - mode->vsync_end) << 16) |
1067		((mode->htotal - mode->hsync_end) <<  0);
1068	tegra_dc_writel(dc, value, DC_DISP_BACK_PORCH);
1069
1070	value = ((mode->vsync_start - mode->vdisplay) << 16) |
1071		((mode->hsync_start - mode->hdisplay) <<  0);
1072	tegra_dc_writel(dc, value, DC_DISP_FRONT_PORCH);
1073
1074	value = (mode->vdisplay << 16) | mode->hdisplay;
1075	tegra_dc_writel(dc, value, DC_DISP_ACTIVE);
1076
1077	return 0;
1078}
1079
1080/**
1081 * tegra_dc_state_setup_clock - check clock settings and store them in atomic
1082 *     state
1083 * @dc: display controller
1084 * @crtc_state: CRTC atomic state
1085 * @clk: parent clock for display controller
1086 * @pclk: pixel clock
1087 * @div: shift clock divider
1088 *
1089 * Returns:
1090 * 0 on success or a negative error-code on failure.
1091 */
1092int tegra_dc_state_setup_clock(struct tegra_dc *dc,
1093			       struct drm_crtc_state *crtc_state,
1094			       struct clk *clk, unsigned long pclk,
1095			       unsigned int div)
1096{
1097	struct tegra_dc_state *state = to_dc_state(crtc_state);
1098
1099	if (!clk_has_parent(dc->clk, clk))
1100		return -EINVAL;
1101
1102	state->clk = clk;
1103	state->pclk = pclk;
1104	state->div = div;
1105
1106	return 0;
1107}
1108
1109static void tegra_dc_commit_state(struct tegra_dc *dc,
1110				  struct tegra_dc_state *state)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1111{
1112	u32 value;
1113	int err;
1114
1115	err = clk_set_parent(dc->clk, state->clk);
1116	if (err < 0)
1117		dev_err(dc->dev, "failed to set parent clock: %d\n", err);
1118
1119	/*
1120	 * Outputs may not want to change the parent clock rate. This is only
1121	 * relevant to Tegra20 where only a single display PLL is available.
1122	 * Since that PLL would typically be used for HDMI, an internal LVDS
1123	 * panel would need to be driven by some other clock such as PLL_P
1124	 * which is shared with other peripherals. Changing the clock rate
1125	 * should therefore be avoided.
1126	 */
1127	if (state->pclk > 0) {
1128		err = clk_set_rate(state->clk, state->pclk);
1129		if (err < 0)
1130			dev_err(dc->dev,
1131				"failed to set clock rate to %lu Hz\n",
1132				state->pclk);
 
 
 
 
 
1133	}
1134
1135	DRM_DEBUG_KMS("rate: %lu, div: %u\n", clk_get_rate(dc->clk),
1136		      state->div);
1137	DRM_DEBUG_KMS("pclk: %lu\n", state->pclk);
1138
1139	value = SHIFT_CLK_DIVIDER(state->div) | PIXEL_CLK_DIVIDER_PCD1;
1140	tegra_dc_writel(dc, value, DC_DISP_DISP_CLOCK_CONTROL);
1141}
1142
1143static void tegra_dc_stop(struct tegra_dc *dc)
1144{
1145	u32 value;
1146
1147	/* stop the display controller */
1148	value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
1149	value &= ~DISP_CTRL_MODE_MASK;
1150	tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
1151
1152	tegra_dc_commit(dc);
1153}
1154
1155static bool tegra_dc_idle(struct tegra_dc *dc)
1156{
1157	u32 value;
1158
1159	value = tegra_dc_readl_active(dc, DC_CMD_DISPLAY_COMMAND);
1160
1161	return (value & DISP_CTRL_MODE_MASK) == 0;
1162}
1163
1164static int tegra_dc_wait_idle(struct tegra_dc *dc, unsigned long timeout)
1165{
1166	timeout = jiffies + msecs_to_jiffies(timeout);
1167
1168	while (time_before(jiffies, timeout)) {
1169		if (tegra_dc_idle(dc))
1170			return 0;
1171
1172		usleep_range(1000, 2000);
1173	}
1174
1175	dev_dbg(dc->dev, "timeout waiting for DC to become idle\n");
1176	return -ETIMEDOUT;
1177}
1178
1179static void tegra_crtc_disable(struct drm_crtc *crtc)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1180{
1181	struct tegra_dc *dc = to_tegra_dc(crtc);
1182	u32 value;
 
1183
1184	if (!tegra_dc_idle(dc)) {
1185		tegra_dc_stop(dc);
1186
1187		/*
1188		 * Ignore the return value, there isn't anything useful to do
1189		 * in case this fails.
1190		 */
1191		tegra_dc_wait_idle(dc, 100);
1192	}
1193
1194	/*
1195	 * This should really be part of the RGB encoder driver, but clearing
1196	 * these bits has the side-effect of stopping the display controller.
1197	 * When that happens no VBLANK interrupts will be raised. At the same
1198	 * time the encoder is disabled before the display controller, so the
1199	 * above code is always going to timeout waiting for the controller
1200	 * to go idle.
1201	 *
1202	 * Given the close coupling between the RGB encoder and the display
1203	 * controller doing it here is still kind of okay. None of the other
1204	 * encoder drivers require these bits to be cleared.
1205	 *
1206	 * XXX: Perhaps given that the display controller is switched off at
1207	 * this point anyway maybe clearing these bits isn't even useful for
1208	 * the RGB encoder?
1209	 */
1210	if (dc->rgb) {
1211		value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
1212		value &= ~(PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
1213			   PW4_ENABLE | PM0_ENABLE | PM1_ENABLE);
1214		tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
1215	}
1216
1217	tegra_dc_stats_reset(&dc->stats);
1218	drm_crtc_vblank_off(crtc);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1219}
1220
1221static void tegra_crtc_enable(struct drm_crtc *crtc)
 
1222{
1223	struct drm_display_mode *mode = &crtc->state->adjusted_mode;
1224	struct tegra_dc_state *state = to_dc_state(crtc->state);
1225	struct tegra_dc *dc = to_tegra_dc(crtc);
1226	u32 value;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1227
1228	tegra_dc_commit_state(dc, state);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1229
1230	/* program display mode */
1231	tegra_dc_set_timings(dc, mode);
1232
1233	/* interlacing isn't supported yet, so disable it */
1234	if (dc->soc->supports_interlacing) {
1235		value = tegra_dc_readl(dc, DC_DISP_INTERLACE_CONTROL);
1236		value &= ~INTERLACE_ENABLE;
1237		tegra_dc_writel(dc, value, DC_DISP_INTERLACE_CONTROL);
1238	}
1239
1240	value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
1241	value &= ~DISP_CTRL_MODE_MASK;
1242	value |= DISP_CTRL_MODE_C_DISPLAY;
1243	tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
1244
1245	value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
1246	value |= PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
1247		 PW4_ENABLE | PM0_ENABLE | PM1_ENABLE;
1248	tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1249
1250	tegra_dc_commit(dc);
1251
1252	drm_crtc_vblank_on(crtc);
1253}
1254
1255static int tegra_crtc_atomic_check(struct drm_crtc *crtc,
1256				   struct drm_crtc_state *state)
1257{
1258	return 0;
1259}
1260
1261static void tegra_crtc_atomic_begin(struct drm_crtc *crtc,
1262				    struct drm_crtc_state *old_crtc_state)
1263{
1264	struct tegra_dc *dc = to_tegra_dc(crtc);
 
 
1265
1266	if (crtc->state->event) {
1267		crtc->state->event->pipe = drm_crtc_index(crtc);
 
 
 
 
 
1268
1269		WARN_ON(drm_crtc_vblank_get(crtc) != 0);
1270
1271		dc->event = crtc->state->event;
1272		crtc->state->event = NULL;
1273	}
1274}
1275
1276static void tegra_crtc_atomic_flush(struct drm_crtc *crtc,
1277				    struct drm_crtc_state *old_crtc_state)
1278{
1279	struct tegra_dc_state *state = to_dc_state(crtc->state);
 
 
1280	struct tegra_dc *dc = to_tegra_dc(crtc);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1281
1282	tegra_dc_writel(dc, state->planes << 8, DC_CMD_STATE_CONTROL);
1283	tegra_dc_writel(dc, state->planes, DC_CMD_STATE_CONTROL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1284}
1285
1286static const struct drm_crtc_helper_funcs tegra_crtc_helper_funcs = {
1287	.disable = tegra_crtc_disable,
1288	.enable = tegra_crtc_enable,
1289	.atomic_check = tegra_crtc_atomic_check,
1290	.atomic_begin = tegra_crtc_atomic_begin,
1291	.atomic_flush = tegra_crtc_atomic_flush,
 
 
1292};
1293
1294static irqreturn_t tegra_dc_irq(int irq, void *data)
1295{
1296	struct tegra_dc *dc = data;
1297	unsigned long status;
1298
1299	status = tegra_dc_readl(dc, DC_CMD_INT_STATUS);
1300	tegra_dc_writel(dc, status, DC_CMD_INT_STATUS);
1301
1302	if (status & FRAME_END_INT) {
1303		/*
1304		dev_dbg(dc->dev, "%s(): frame end\n", __func__);
1305		*/
 
1306		dc->stats.frames++;
1307	}
1308
1309	if (status & VBLANK_INT) {
1310		/*
1311		dev_dbg(dc->dev, "%s(): vertical blank\n", __func__);
1312		*/
1313		drm_crtc_handle_vblank(&dc->base);
1314		tegra_dc_finish_page_flip(dc);
1315		dc->stats.vblank++;
1316	}
1317
1318	if (status & (WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT)) {
1319		/*
1320		dev_dbg(dc->dev, "%s(): underflow\n", __func__);
1321		*/
 
1322		dc->stats.underflow++;
1323	}
1324
1325	if (status & (WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT)) {
1326		/*
1327		dev_dbg(dc->dev, "%s(): overflow\n", __func__);
1328		*/
 
1329		dc->stats.overflow++;
1330	}
1331
1332	return IRQ_HANDLED;
1333}
1334
1335static int tegra_dc_show_regs(struct seq_file *s, void *data)
1336{
1337	struct drm_info_node *node = s->private;
1338	struct tegra_dc *dc = node->info_ent->data;
1339	int err = 0;
1340
1341	drm_modeset_lock_crtc(&dc->base, NULL);
1342
1343	if (!dc->base.state->active) {
1344		err = -EBUSY;
1345		goto unlock;
1346	}
1347
1348#define DUMP_REG(name)						\
1349	seq_printf(s, "%-40s %#05x %08x\n", #name, name,	\
1350		   tegra_dc_readl(dc, name))
1351
1352	DUMP_REG(DC_CMD_GENERAL_INCR_SYNCPT);
1353	DUMP_REG(DC_CMD_GENERAL_INCR_SYNCPT_CNTRL);
1354	DUMP_REG(DC_CMD_GENERAL_INCR_SYNCPT_ERROR);
1355	DUMP_REG(DC_CMD_WIN_A_INCR_SYNCPT);
1356	DUMP_REG(DC_CMD_WIN_A_INCR_SYNCPT_CNTRL);
1357	DUMP_REG(DC_CMD_WIN_A_INCR_SYNCPT_ERROR);
1358	DUMP_REG(DC_CMD_WIN_B_INCR_SYNCPT);
1359	DUMP_REG(DC_CMD_WIN_B_INCR_SYNCPT_CNTRL);
1360	DUMP_REG(DC_CMD_WIN_B_INCR_SYNCPT_ERROR);
1361	DUMP_REG(DC_CMD_WIN_C_INCR_SYNCPT);
1362	DUMP_REG(DC_CMD_WIN_C_INCR_SYNCPT_CNTRL);
1363	DUMP_REG(DC_CMD_WIN_C_INCR_SYNCPT_ERROR);
1364	DUMP_REG(DC_CMD_CONT_SYNCPT_VSYNC);
1365	DUMP_REG(DC_CMD_DISPLAY_COMMAND_OPTION0);
1366	DUMP_REG(DC_CMD_DISPLAY_COMMAND);
1367	DUMP_REG(DC_CMD_SIGNAL_RAISE);
1368	DUMP_REG(DC_CMD_DISPLAY_POWER_CONTROL);
1369	DUMP_REG(DC_CMD_INT_STATUS);
1370	DUMP_REG(DC_CMD_INT_MASK);
1371	DUMP_REG(DC_CMD_INT_ENABLE);
1372	DUMP_REG(DC_CMD_INT_TYPE);
1373	DUMP_REG(DC_CMD_INT_POLARITY);
1374	DUMP_REG(DC_CMD_SIGNAL_RAISE1);
1375	DUMP_REG(DC_CMD_SIGNAL_RAISE2);
1376	DUMP_REG(DC_CMD_SIGNAL_RAISE3);
1377	DUMP_REG(DC_CMD_STATE_ACCESS);
1378	DUMP_REG(DC_CMD_STATE_CONTROL);
1379	DUMP_REG(DC_CMD_DISPLAY_WINDOW_HEADER);
1380	DUMP_REG(DC_CMD_REG_ACT_CONTROL);
1381	DUMP_REG(DC_COM_CRC_CONTROL);
1382	DUMP_REG(DC_COM_CRC_CHECKSUM);
1383	DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(0));
1384	DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(1));
1385	DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(2));
1386	DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(3));
1387	DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(0));
1388	DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(1));
1389	DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(2));
1390	DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(3));
1391	DUMP_REG(DC_COM_PIN_OUTPUT_DATA(0));
1392	DUMP_REG(DC_COM_PIN_OUTPUT_DATA(1));
1393	DUMP_REG(DC_COM_PIN_OUTPUT_DATA(2));
1394	DUMP_REG(DC_COM_PIN_OUTPUT_DATA(3));
1395	DUMP_REG(DC_COM_PIN_INPUT_ENABLE(0));
1396	DUMP_REG(DC_COM_PIN_INPUT_ENABLE(1));
1397	DUMP_REG(DC_COM_PIN_INPUT_ENABLE(2));
1398	DUMP_REG(DC_COM_PIN_INPUT_ENABLE(3));
1399	DUMP_REG(DC_COM_PIN_INPUT_DATA(0));
1400	DUMP_REG(DC_COM_PIN_INPUT_DATA(1));
1401	DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(0));
1402	DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(1));
1403	DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(2));
1404	DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(3));
1405	DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(4));
1406	DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(5));
1407	DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(6));
1408	DUMP_REG(DC_COM_PIN_MISC_CONTROL);
1409	DUMP_REG(DC_COM_PIN_PM0_CONTROL);
1410	DUMP_REG(DC_COM_PIN_PM0_DUTY_CYCLE);
1411	DUMP_REG(DC_COM_PIN_PM1_CONTROL);
1412	DUMP_REG(DC_COM_PIN_PM1_DUTY_CYCLE);
1413	DUMP_REG(DC_COM_SPI_CONTROL);
1414	DUMP_REG(DC_COM_SPI_START_BYTE);
1415	DUMP_REG(DC_COM_HSPI_WRITE_DATA_AB);
1416	DUMP_REG(DC_COM_HSPI_WRITE_DATA_CD);
1417	DUMP_REG(DC_COM_HSPI_CS_DC);
1418	DUMP_REG(DC_COM_SCRATCH_REGISTER_A);
1419	DUMP_REG(DC_COM_SCRATCH_REGISTER_B);
1420	DUMP_REG(DC_COM_GPIO_CTRL);
1421	DUMP_REG(DC_COM_GPIO_DEBOUNCE_COUNTER);
1422	DUMP_REG(DC_COM_CRC_CHECKSUM_LATCHED);
1423	DUMP_REG(DC_DISP_DISP_SIGNAL_OPTIONS0);
1424	DUMP_REG(DC_DISP_DISP_SIGNAL_OPTIONS1);
1425	DUMP_REG(DC_DISP_DISP_WIN_OPTIONS);
1426	DUMP_REG(DC_DISP_DISP_MEM_HIGH_PRIORITY);
1427	DUMP_REG(DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER);
1428	DUMP_REG(DC_DISP_DISP_TIMING_OPTIONS);
1429	DUMP_REG(DC_DISP_REF_TO_SYNC);
1430	DUMP_REG(DC_DISP_SYNC_WIDTH);
1431	DUMP_REG(DC_DISP_BACK_PORCH);
1432	DUMP_REG(DC_DISP_ACTIVE);
1433	DUMP_REG(DC_DISP_FRONT_PORCH);
1434	DUMP_REG(DC_DISP_H_PULSE0_CONTROL);
1435	DUMP_REG(DC_DISP_H_PULSE0_POSITION_A);
1436	DUMP_REG(DC_DISP_H_PULSE0_POSITION_B);
1437	DUMP_REG(DC_DISP_H_PULSE0_POSITION_C);
1438	DUMP_REG(DC_DISP_H_PULSE0_POSITION_D);
1439	DUMP_REG(DC_DISP_H_PULSE1_CONTROL);
1440	DUMP_REG(DC_DISP_H_PULSE1_POSITION_A);
1441	DUMP_REG(DC_DISP_H_PULSE1_POSITION_B);
1442	DUMP_REG(DC_DISP_H_PULSE1_POSITION_C);
1443	DUMP_REG(DC_DISP_H_PULSE1_POSITION_D);
1444	DUMP_REG(DC_DISP_H_PULSE2_CONTROL);
1445	DUMP_REG(DC_DISP_H_PULSE2_POSITION_A);
1446	DUMP_REG(DC_DISP_H_PULSE2_POSITION_B);
1447	DUMP_REG(DC_DISP_H_PULSE2_POSITION_C);
1448	DUMP_REG(DC_DISP_H_PULSE2_POSITION_D);
1449	DUMP_REG(DC_DISP_V_PULSE0_CONTROL);
1450	DUMP_REG(DC_DISP_V_PULSE0_POSITION_A);
1451	DUMP_REG(DC_DISP_V_PULSE0_POSITION_B);
1452	DUMP_REG(DC_DISP_V_PULSE0_POSITION_C);
1453	DUMP_REG(DC_DISP_V_PULSE1_CONTROL);
1454	DUMP_REG(DC_DISP_V_PULSE1_POSITION_A);
1455	DUMP_REG(DC_DISP_V_PULSE1_POSITION_B);
1456	DUMP_REG(DC_DISP_V_PULSE1_POSITION_C);
1457	DUMP_REG(DC_DISP_V_PULSE2_CONTROL);
1458	DUMP_REG(DC_DISP_V_PULSE2_POSITION_A);
1459	DUMP_REG(DC_DISP_V_PULSE3_CONTROL);
1460	DUMP_REG(DC_DISP_V_PULSE3_POSITION_A);
1461	DUMP_REG(DC_DISP_M0_CONTROL);
1462	DUMP_REG(DC_DISP_M1_CONTROL);
1463	DUMP_REG(DC_DISP_DI_CONTROL);
1464	DUMP_REG(DC_DISP_PP_CONTROL);
1465	DUMP_REG(DC_DISP_PP_SELECT_A);
1466	DUMP_REG(DC_DISP_PP_SELECT_B);
1467	DUMP_REG(DC_DISP_PP_SELECT_C);
1468	DUMP_REG(DC_DISP_PP_SELECT_D);
1469	DUMP_REG(DC_DISP_DISP_CLOCK_CONTROL);
1470	DUMP_REG(DC_DISP_DISP_INTERFACE_CONTROL);
1471	DUMP_REG(DC_DISP_DISP_COLOR_CONTROL);
1472	DUMP_REG(DC_DISP_SHIFT_CLOCK_OPTIONS);
1473	DUMP_REG(DC_DISP_DATA_ENABLE_OPTIONS);
1474	DUMP_REG(DC_DISP_SERIAL_INTERFACE_OPTIONS);
1475	DUMP_REG(DC_DISP_LCD_SPI_OPTIONS);
1476	DUMP_REG(DC_DISP_BORDER_COLOR);
1477	DUMP_REG(DC_DISP_COLOR_KEY0_LOWER);
1478	DUMP_REG(DC_DISP_COLOR_KEY0_UPPER);
1479	DUMP_REG(DC_DISP_COLOR_KEY1_LOWER);
1480	DUMP_REG(DC_DISP_COLOR_KEY1_UPPER);
1481	DUMP_REG(DC_DISP_CURSOR_FOREGROUND);
1482	DUMP_REG(DC_DISP_CURSOR_BACKGROUND);
1483	DUMP_REG(DC_DISP_CURSOR_START_ADDR);
1484	DUMP_REG(DC_DISP_CURSOR_START_ADDR_NS);
1485	DUMP_REG(DC_DISP_CURSOR_POSITION);
1486	DUMP_REG(DC_DISP_CURSOR_POSITION_NS);
1487	DUMP_REG(DC_DISP_INIT_SEQ_CONTROL);
1488	DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_A);
1489	DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_B);
1490	DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_C);
1491	DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_D);
1492	DUMP_REG(DC_DISP_DC_MCCIF_FIFOCTRL);
1493	DUMP_REG(DC_DISP_MCCIF_DISPLAY0A_HYST);
1494	DUMP_REG(DC_DISP_MCCIF_DISPLAY0B_HYST);
1495	DUMP_REG(DC_DISP_MCCIF_DISPLAY1A_HYST);
1496	DUMP_REG(DC_DISP_MCCIF_DISPLAY1B_HYST);
1497	DUMP_REG(DC_DISP_DAC_CRT_CTRL);
1498	DUMP_REG(DC_DISP_DISP_MISC_CONTROL);
1499	DUMP_REG(DC_DISP_SD_CONTROL);
1500	DUMP_REG(DC_DISP_SD_CSC_COEFF);
1501	DUMP_REG(DC_DISP_SD_LUT(0));
1502	DUMP_REG(DC_DISP_SD_LUT(1));
1503	DUMP_REG(DC_DISP_SD_LUT(2));
1504	DUMP_REG(DC_DISP_SD_LUT(3));
1505	DUMP_REG(DC_DISP_SD_LUT(4));
1506	DUMP_REG(DC_DISP_SD_LUT(5));
1507	DUMP_REG(DC_DISP_SD_LUT(6));
1508	DUMP_REG(DC_DISP_SD_LUT(7));
1509	DUMP_REG(DC_DISP_SD_LUT(8));
1510	DUMP_REG(DC_DISP_SD_FLICKER_CONTROL);
1511	DUMP_REG(DC_DISP_DC_PIXEL_COUNT);
1512	DUMP_REG(DC_DISP_SD_HISTOGRAM(0));
1513	DUMP_REG(DC_DISP_SD_HISTOGRAM(1));
1514	DUMP_REG(DC_DISP_SD_HISTOGRAM(2));
1515	DUMP_REG(DC_DISP_SD_HISTOGRAM(3));
1516	DUMP_REG(DC_DISP_SD_HISTOGRAM(4));
1517	DUMP_REG(DC_DISP_SD_HISTOGRAM(5));
1518	DUMP_REG(DC_DISP_SD_HISTOGRAM(6));
1519	DUMP_REG(DC_DISP_SD_HISTOGRAM(7));
1520	DUMP_REG(DC_DISP_SD_BL_TF(0));
1521	DUMP_REG(DC_DISP_SD_BL_TF(1));
1522	DUMP_REG(DC_DISP_SD_BL_TF(2));
1523	DUMP_REG(DC_DISP_SD_BL_TF(3));
1524	DUMP_REG(DC_DISP_SD_BL_CONTROL);
1525	DUMP_REG(DC_DISP_SD_HW_K_VALUES);
1526	DUMP_REG(DC_DISP_SD_MAN_K_VALUES);
1527	DUMP_REG(DC_DISP_CURSOR_START_ADDR_HI);
1528	DUMP_REG(DC_DISP_BLEND_CURSOR_CONTROL);
1529	DUMP_REG(DC_WIN_WIN_OPTIONS);
1530	DUMP_REG(DC_WIN_BYTE_SWAP);
1531	DUMP_REG(DC_WIN_BUFFER_CONTROL);
1532	DUMP_REG(DC_WIN_COLOR_DEPTH);
1533	DUMP_REG(DC_WIN_POSITION);
1534	DUMP_REG(DC_WIN_SIZE);
1535	DUMP_REG(DC_WIN_PRESCALED_SIZE);
1536	DUMP_REG(DC_WIN_H_INITIAL_DDA);
1537	DUMP_REG(DC_WIN_V_INITIAL_DDA);
1538	DUMP_REG(DC_WIN_DDA_INC);
1539	DUMP_REG(DC_WIN_LINE_STRIDE);
1540	DUMP_REG(DC_WIN_BUF_STRIDE);
1541	DUMP_REG(DC_WIN_UV_BUF_STRIDE);
1542	DUMP_REG(DC_WIN_BUFFER_ADDR_MODE);
1543	DUMP_REG(DC_WIN_DV_CONTROL);
1544	DUMP_REG(DC_WIN_BLEND_NOKEY);
1545	DUMP_REG(DC_WIN_BLEND_1WIN);
1546	DUMP_REG(DC_WIN_BLEND_2WIN_X);
1547	DUMP_REG(DC_WIN_BLEND_2WIN_Y);
1548	DUMP_REG(DC_WIN_BLEND_3WIN_XY);
1549	DUMP_REG(DC_WIN_HP_FETCH_CONTROL);
1550	DUMP_REG(DC_WINBUF_START_ADDR);
1551	DUMP_REG(DC_WINBUF_START_ADDR_NS);
1552	DUMP_REG(DC_WINBUF_START_ADDR_U);
1553	DUMP_REG(DC_WINBUF_START_ADDR_U_NS);
1554	DUMP_REG(DC_WINBUF_START_ADDR_V);
1555	DUMP_REG(DC_WINBUF_START_ADDR_V_NS);
1556	DUMP_REG(DC_WINBUF_ADDR_H_OFFSET);
1557	DUMP_REG(DC_WINBUF_ADDR_H_OFFSET_NS);
1558	DUMP_REG(DC_WINBUF_ADDR_V_OFFSET);
1559	DUMP_REG(DC_WINBUF_ADDR_V_OFFSET_NS);
1560	DUMP_REG(DC_WINBUF_UFLOW_STATUS);
1561	DUMP_REG(DC_WINBUF_AD_UFLOW_STATUS);
1562	DUMP_REG(DC_WINBUF_BD_UFLOW_STATUS);
1563	DUMP_REG(DC_WINBUF_CD_UFLOW_STATUS);
1564
1565#undef DUMP_REG
1566
1567unlock:
1568	drm_modeset_unlock_crtc(&dc->base);
1569	return err;
1570}
1571
1572static int tegra_dc_show_crc(struct seq_file *s, void *data)
1573{
1574	struct drm_info_node *node = s->private;
1575	struct tegra_dc *dc = node->info_ent->data;
1576	int err = 0;
1577	u32 value;
1578
1579	drm_modeset_lock_crtc(&dc->base, NULL);
1580
1581	if (!dc->base.state->active) {
1582		err = -EBUSY;
1583		goto unlock;
1584	}
1585
1586	value = DC_COM_CRC_CONTROL_ACTIVE_DATA | DC_COM_CRC_CONTROL_ENABLE;
1587	tegra_dc_writel(dc, value, DC_COM_CRC_CONTROL);
1588	tegra_dc_commit(dc);
1589
1590	drm_crtc_wait_one_vblank(&dc->base);
1591	drm_crtc_wait_one_vblank(&dc->base);
1592
1593	value = tegra_dc_readl(dc, DC_COM_CRC_CHECKSUM);
1594	seq_printf(s, "%08x\n", value);
1595
1596	tegra_dc_writel(dc, 0, DC_COM_CRC_CONTROL);
1597
1598unlock:
1599	drm_modeset_unlock_crtc(&dc->base);
1600	return err;
1601}
1602
1603static int tegra_dc_show_stats(struct seq_file *s, void *data)
1604{
1605	struct drm_info_node *node = s->private;
1606	struct tegra_dc *dc = node->info_ent->data;
1607
1608	seq_printf(s, "frames: %lu\n", dc->stats.frames);
1609	seq_printf(s, "vblank: %lu\n", dc->stats.vblank);
1610	seq_printf(s, "underflow: %lu\n", dc->stats.underflow);
1611	seq_printf(s, "overflow: %lu\n", dc->stats.overflow);
1612
1613	return 0;
1614}
1615
1616static struct drm_info_list debugfs_files[] = {
1617	{ "regs", tegra_dc_show_regs, 0, NULL },
1618	{ "crc", tegra_dc_show_crc, 0, NULL },
1619	{ "stats", tegra_dc_show_stats, 0, NULL },
1620};
1621
1622static int tegra_dc_debugfs_init(struct tegra_dc *dc, struct drm_minor *minor)
1623{
1624	unsigned int i;
1625	char *name;
1626	int err;
1627
1628	name = kasprintf(GFP_KERNEL, "dc.%d", dc->pipe);
1629	dc->debugfs = debugfs_create_dir(name, minor->debugfs_root);
1630	kfree(name);
1631
1632	if (!dc->debugfs)
1633		return -ENOMEM;
1634
1635	dc->debugfs_files = kmemdup(debugfs_files, sizeof(debugfs_files),
1636				    GFP_KERNEL);
1637	if (!dc->debugfs_files) {
1638		err = -ENOMEM;
1639		goto remove;
1640	}
1641
1642	for (i = 0; i < ARRAY_SIZE(debugfs_files); i++)
1643		dc->debugfs_files[i].data = dc;
1644
1645	err = drm_debugfs_create_files(dc->debugfs_files,
1646				       ARRAY_SIZE(debugfs_files),
1647				       dc->debugfs, minor);
1648	if (err < 0)
1649		goto free;
1650
1651	dc->minor = minor;
1652
1653	return 0;
1654
1655free:
1656	kfree(dc->debugfs_files);
1657	dc->debugfs_files = NULL;
1658remove:
1659	debugfs_remove(dc->debugfs);
1660	dc->debugfs = NULL;
1661
1662	return err;
1663}
1664
1665static int tegra_dc_debugfs_exit(struct tegra_dc *dc)
1666{
1667	drm_debugfs_remove_files(dc->debugfs_files, ARRAY_SIZE(debugfs_files),
1668				 dc->minor);
1669	dc->minor = NULL;
1670
1671	kfree(dc->debugfs_files);
1672	dc->debugfs_files = NULL;
1673
1674	debugfs_remove(dc->debugfs);
1675	dc->debugfs = NULL;
1676
1677	return 0;
1678}
1679
1680static int tegra_dc_init(struct host1x_client *client)
1681{
1682	struct drm_device *drm = dev_get_drvdata(client->parent);
1683	unsigned long flags = HOST1X_SYNCPT_CLIENT_MANAGED;
1684	struct tegra_dc *dc = host1x_client_to_dc(client);
1685	struct tegra_drm *tegra = drm->dev_private;
1686	struct drm_plane *primary = NULL;
1687	struct drm_plane *cursor = NULL;
1688	u32 value;
1689	int err;
1690
1691	dc->syncpt = host1x_syncpt_request(dc->dev, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1692	if (!dc->syncpt)
1693		dev_warn(dc->dev, "failed to allocate syncpoint\n");
1694
1695	if (tegra->domain) {
1696		err = iommu_attach_device(tegra->domain, dc->dev);
1697		if (err < 0) {
1698			dev_err(dc->dev, "failed to attach to domain: %d\n",
1699				err);
1700			return err;
1701		}
1702
1703		dc->domain = tegra->domain;
1704	}
1705
1706	primary = tegra_dc_primary_plane_create(drm, dc);
 
 
 
 
1707	if (IS_ERR(primary)) {
1708		err = PTR_ERR(primary);
1709		goto cleanup;
1710	}
1711
1712	if (dc->soc->supports_cursor) {
1713		cursor = tegra_dc_cursor_plane_create(drm, dc);
1714		if (IS_ERR(cursor)) {
1715			err = PTR_ERR(cursor);
1716			goto cleanup;
1717		}
 
 
 
 
 
 
 
1718	}
1719
1720	err = drm_crtc_init_with_planes(drm, &dc->base, primary, cursor,
1721					&tegra_crtc_funcs, NULL);
1722	if (err < 0)
1723		goto cleanup;
1724
1725	drm_mode_crtc_set_gamma_size(&dc->base, 256);
1726	drm_crtc_helper_add(&dc->base, &tegra_crtc_helper_funcs);
1727
1728	/*
1729	 * Keep track of the minimum pitch alignment across all display
1730	 * controllers.
1731	 */
1732	if (dc->soc->pitch_align > tegra->pitch_align)
1733		tegra->pitch_align = dc->soc->pitch_align;
1734
 
 
 
 
 
 
1735	err = tegra_dc_rgb_init(drm, dc);
1736	if (err < 0 && err != -ENODEV) {
1737		dev_err(dc->dev, "failed to initialize RGB output: %d\n", err);
1738		goto cleanup;
1739	}
1740
1741	err = tegra_dc_add_planes(drm, dc);
1742	if (err < 0)
1743		goto cleanup;
1744
1745	if (IS_ENABLED(CONFIG_DEBUG_FS)) {
1746		err = tegra_dc_debugfs_init(dc, drm->primary);
1747		if (err < 0)
1748			dev_err(dc->dev, "debugfs setup failed: %d\n", err);
1749	}
1750
1751	err = devm_request_irq(dc->dev, dc->irq, tegra_dc_irq, 0,
1752			       dev_name(dc->dev), dc);
1753	if (err < 0) {
1754		dev_err(dc->dev, "failed to request IRQ#%u: %d\n", dc->irq,
1755			err);
1756		goto cleanup;
1757	}
1758
1759	/* initialize display controller */
1760	if (dc->syncpt) {
1761		u32 syncpt = host1x_syncpt_id(dc->syncpt);
1762
1763		value = SYNCPT_CNTRL_NO_STALL;
1764		tegra_dc_writel(dc, value, DC_CMD_GENERAL_INCR_SYNCPT_CNTRL);
1765
1766		value = SYNCPT_VSYNC_ENABLE | syncpt;
1767		tegra_dc_writel(dc, value, DC_CMD_CONT_SYNCPT_VSYNC);
1768	}
1769
1770	value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1771		WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1772	tegra_dc_writel(dc, value, DC_CMD_INT_TYPE);
1773
1774	value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1775		WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1776	tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY);
1777
1778	/* initialize timer */
1779	value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(0x20) |
1780		WINDOW_B_THRESHOLD(0x20) | WINDOW_C_THRESHOLD(0x20);
1781	tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY);
1782
1783	value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(1) |
1784		WINDOW_B_THRESHOLD(1) | WINDOW_C_THRESHOLD(1);
1785	tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER);
1786
1787	value = VBLANK_INT | WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1788		WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1789	tegra_dc_writel(dc, value, DC_CMD_INT_ENABLE);
1790
1791	value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1792		WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1793	tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1794
1795	if (dc->soc->supports_border_color)
1796		tegra_dc_writel(dc, 0, DC_DISP_BORDER_COLOR);
1797
1798	tegra_dc_stats_reset(&dc->stats);
1799
1800	return 0;
1801
1802cleanup:
1803	if (cursor)
1804		drm_plane_cleanup(cursor);
1805
1806	if (primary)
1807		drm_plane_cleanup(primary);
1808
1809	if (tegra->domain) {
1810		iommu_detach_device(tegra->domain, dc->dev);
1811		dc->domain = NULL;
1812	}
1813
1814	return err;
1815}
1816
1817static int tegra_dc_exit(struct host1x_client *client)
1818{
1819	struct tegra_dc *dc = host1x_client_to_dc(client);
1820	int err;
1821
1822	devm_free_irq(dc->dev, dc->irq, dc);
 
1823
1824	if (IS_ENABLED(CONFIG_DEBUG_FS)) {
1825		err = tegra_dc_debugfs_exit(dc);
1826		if (err < 0)
1827			dev_err(dc->dev, "debugfs cleanup failed: %d\n", err);
1828	}
1829
1830	err = tegra_dc_rgb_exit(dc);
1831	if (err) {
1832		dev_err(dc->dev, "failed to shutdown RGB output: %d\n", err);
1833		return err;
1834	}
1835
1836	if (dc->domain) {
1837		iommu_detach_device(dc->domain, dc->dev);
1838		dc->domain = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1839	}
1840
1841	host1x_syncpt_free(dc->syncpt);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1842
1843	return 0;
 
 
 
 
 
 
1844}
1845
1846static const struct host1x_client_ops dc_client_ops = {
 
1847	.init = tegra_dc_init,
1848	.exit = tegra_dc_exit,
 
 
 
1849};
1850
1851static const struct tegra_dc_soc_info tegra20_dc_soc_info = {
1852	.supports_border_color = true,
1853	.supports_interlacing = false,
1854	.supports_cursor = false,
1855	.supports_block_linear = false,
 
 
1856	.pitch_align = 8,
1857	.has_powergate = false,
 
 
 
 
 
 
 
 
 
 
 
 
1858};
1859
1860static const struct tegra_dc_soc_info tegra30_dc_soc_info = {
1861	.supports_border_color = true,
1862	.supports_interlacing = false,
1863	.supports_cursor = false,
1864	.supports_block_linear = false,
 
 
1865	.pitch_align = 8,
1866	.has_powergate = false,
 
 
 
 
 
 
 
 
 
 
 
 
1867};
1868
1869static const struct tegra_dc_soc_info tegra114_dc_soc_info = {
1870	.supports_border_color = true,
1871	.supports_interlacing = false,
1872	.supports_cursor = false,
1873	.supports_block_linear = false,
 
 
1874	.pitch_align = 64,
1875	.has_powergate = true,
 
 
 
 
 
 
 
 
 
 
 
 
1876};
1877
1878static const struct tegra_dc_soc_info tegra124_dc_soc_info = {
1879	.supports_border_color = false,
1880	.supports_interlacing = true,
1881	.supports_cursor = true,
1882	.supports_block_linear = true,
 
 
1883	.pitch_align = 64,
1884	.has_powergate = true,
 
 
 
 
 
 
 
 
 
 
 
 
1885};
1886
1887static const struct tegra_dc_soc_info tegra210_dc_soc_info = {
1888	.supports_border_color = false,
1889	.supports_interlacing = true,
1890	.supports_cursor = true,
1891	.supports_block_linear = true,
 
 
1892	.pitch_align = 64,
1893	.has_powergate = true,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1894};
1895
1896static const struct of_device_id tegra_dc_of_match[] = {
1897	{
 
 
 
 
 
 
1898		.compatible = "nvidia,tegra210-dc",
1899		.data = &tegra210_dc_soc_info,
1900	}, {
1901		.compatible = "nvidia,tegra124-dc",
1902		.data = &tegra124_dc_soc_info,
1903	}, {
1904		.compatible = "nvidia,tegra114-dc",
1905		.data = &tegra114_dc_soc_info,
1906	}, {
1907		.compatible = "nvidia,tegra30-dc",
1908		.data = &tegra30_dc_soc_info,
1909	}, {
1910		.compatible = "nvidia,tegra20-dc",
1911		.data = &tegra20_dc_soc_info,
1912	}, {
1913		/* sentinel */
1914	}
1915};
1916MODULE_DEVICE_TABLE(of, tegra_dc_of_match);
1917
1918static int tegra_dc_parse_dt(struct tegra_dc *dc)
1919{
1920	struct device_node *np;
1921	u32 value = 0;
1922	int err;
1923
1924	err = of_property_read_u32(dc->dev->of_node, "nvidia,head", &value);
1925	if (err < 0) {
1926		dev_err(dc->dev, "missing \"nvidia,head\" property\n");
1927
1928		/*
1929		 * If the nvidia,head property isn't present, try to find the
1930		 * correct head number by looking up the position of this
1931		 * display controller's node within the device tree. Assuming
1932		 * that the nodes are ordered properly in the DTS file and
1933		 * that the translation into a flattened device tree blob
1934		 * preserves that ordering this will actually yield the right
1935		 * head number.
1936		 *
1937		 * If those assumptions don't hold, this will still work for
1938		 * cases where only a single display controller is used.
1939		 */
1940		for_each_matching_node(np, tegra_dc_of_match) {
1941			if (np == dc->dev->of_node) {
1942				of_node_put(np);
1943				break;
1944			}
1945
1946			value++;
1947		}
1948	}
1949
1950	dc->pipe = value;
1951
1952	return 0;
1953}
1954
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1955static int tegra_dc_probe(struct platform_device *pdev)
1956{
1957	const struct of_device_id *id;
1958	struct resource *regs;
1959	struct tegra_dc *dc;
1960	int err;
1961
 
 
 
 
 
 
1962	dc = devm_kzalloc(&pdev->dev, sizeof(*dc), GFP_KERNEL);
1963	if (!dc)
1964		return -ENOMEM;
1965
1966	id = of_match_node(tegra_dc_of_match, pdev->dev.of_node);
1967	if (!id)
1968		return -ENODEV;
1969
1970	spin_lock_init(&dc->lock);
1971	INIT_LIST_HEAD(&dc->list);
1972	dc->dev = &pdev->dev;
1973	dc->soc = id->data;
1974
1975	err = tegra_dc_parse_dt(dc);
1976	if (err < 0)
1977		return err;
1978
 
 
 
 
1979	dc->clk = devm_clk_get(&pdev->dev, NULL);
1980	if (IS_ERR(dc->clk)) {
1981		dev_err(&pdev->dev, "failed to get clock\n");
1982		return PTR_ERR(dc->clk);
1983	}
1984
1985	dc->rst = devm_reset_control_get(&pdev->dev, "dc");
1986	if (IS_ERR(dc->rst)) {
1987		dev_err(&pdev->dev, "failed to get reset\n");
1988		return PTR_ERR(dc->rst);
1989	}
1990
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1991	if (dc->soc->has_powergate) {
1992		if (dc->pipe == 0)
1993			dc->powergate = TEGRA_POWERGATE_DIS;
1994		else
1995			dc->powergate = TEGRA_POWERGATE_DISB;
1996
1997		err = tegra_powergate_sequence_power_up(dc->powergate, dc->clk,
1998							dc->rst);
1999		if (err < 0) {
2000			dev_err(&pdev->dev, "failed to power partition: %d\n",
2001				err);
2002			return err;
2003		}
2004	} else {
2005		err = clk_prepare_enable(dc->clk);
2006		if (err < 0) {
2007			dev_err(&pdev->dev, "failed to enable clock: %d\n",
2008				err);
2009			return err;
2010		}
2011
2012		err = reset_control_deassert(dc->rst);
2013		if (err < 0) {
2014			dev_err(&pdev->dev, "failed to deassert reset: %d\n",
2015				err);
2016			return err;
2017		}
2018	}
2019
2020	regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2021	dc->regs = devm_ioremap_resource(&pdev->dev, regs);
 
 
 
2022	if (IS_ERR(dc->regs))
2023		return PTR_ERR(dc->regs);
2024
2025	dc->irq = platform_get_irq(pdev, 0);
2026	if (dc->irq < 0) {
2027		dev_err(&pdev->dev, "failed to get IRQ\n");
2028		return -ENXIO;
2029	}
 
 
 
 
 
 
 
2030
2031	INIT_LIST_HEAD(&dc->client.list);
2032	dc->client.ops = &dc_client_ops;
2033	dc->client.dev = &pdev->dev;
2034
2035	err = tegra_dc_rgb_probe(dc);
2036	if (err < 0 && err != -ENODEV) {
2037		dev_err(&pdev->dev, "failed to probe RGB output: %d\n", err);
2038		return err;
2039	}
2040
2041	err = host1x_client_register(&dc->client);
2042	if (err < 0) {
2043		dev_err(&pdev->dev, "failed to register host1x client: %d\n",
2044			err);
2045		return err;
2046	}
2047
2048	platform_set_drvdata(pdev, dc);
2049
2050	return 0;
 
 
 
 
 
 
2051}
2052
2053static int tegra_dc_remove(struct platform_device *pdev)
2054{
2055	struct tegra_dc *dc = platform_get_drvdata(pdev);
2056	int err;
2057
2058	err = host1x_client_unregister(&dc->client);
2059	if (err < 0) {
2060		dev_err(&pdev->dev, "failed to unregister host1x client: %d\n",
2061			err);
2062		return err;
2063	}
2064
2065	err = tegra_dc_rgb_remove(dc);
2066	if (err < 0) {
2067		dev_err(&pdev->dev, "failed to remove RGB output: %d\n", err);
2068		return err;
2069	}
2070
2071	reset_control_assert(dc->rst);
2072
2073	if (dc->soc->has_powergate)
2074		tegra_powergate_power_off(dc->powergate);
2075
2076	clk_disable_unprepare(dc->clk);
2077
2078	return 0;
2079}
2080
2081struct platform_driver tegra_dc_driver = {
2082	.driver = {
2083		.name = "tegra-dc",
2084		.of_match_table = tegra_dc_of_match,
2085	},
2086	.probe = tegra_dc_probe,
2087	.remove = tegra_dc_remove,
2088};
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2012 Avionic Design GmbH
   4 * Copyright (C) 2012 NVIDIA CORPORATION.  All rights reserved.
 
 
 
 
   5 */
   6
   7#include <linux/clk.h>
   8#include <linux/debugfs.h>
   9#include <linux/delay.h>
  10#include <linux/dma-mapping.h>
  11#include <linux/iommu.h>
  12#include <linux/interconnect.h>
  13#include <linux/module.h>
  14#include <linux/of_device.h>
  15#include <linux/pm_domain.h>
  16#include <linux/pm_opp.h>
  17#include <linux/pm_runtime.h>
  18#include <linux/reset.h>
  19
  20#include <soc/tegra/common.h>
  21#include <soc/tegra/pmc.h>
  22
 
 
 
 
  23#include <drm/drm_atomic.h>
  24#include <drm/drm_atomic_helper.h>
  25#include <drm/drm_blend.h>
  26#include <drm/drm_debugfs.h>
  27#include <drm/drm_fourcc.h>
  28#include <drm/drm_framebuffer.h>
  29#include <drm/drm_vblank.h>
  30
  31#include "dc.h"
  32#include "drm.h"
  33#include "gem.h"
  34#include "hub.h"
  35#include "plane.h"
 
 
 
  36
  37static void tegra_crtc_atomic_destroy_state(struct drm_crtc *crtc,
  38					    struct drm_crtc_state *state);
 
 
  39
  40static void tegra_dc_stats_reset(struct tegra_dc_stats *stats)
  41{
  42	stats->frames = 0;
  43	stats->vblank = 0;
  44	stats->underflow = 0;
  45	stats->overflow = 0;
  46}
  47
  48/* Reads the active copy of a register. */
  49static u32 tegra_dc_readl_active(struct tegra_dc *dc, unsigned long offset)
  50{
  51	u32 value;
  52
  53	tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
  54	value = tegra_dc_readl(dc, offset);
  55	tegra_dc_writel(dc, 0, DC_CMD_STATE_ACCESS);
  56
  57	return value;
  58}
  59
  60static inline unsigned int tegra_plane_offset(struct tegra_plane *plane,
  61					      unsigned int offset)
  62{
  63	if (offset >= 0x500 && offset <= 0x638) {
  64		offset = 0x000 + (offset - 0x500);
  65		return plane->offset + offset;
  66	}
 
  67
  68	if (offset >= 0x700 && offset <= 0x719) {
  69		offset = 0x180 + (offset - 0x700);
  70		return plane->offset + offset;
  71	}
  72
  73	if (offset >= 0x800 && offset <= 0x839) {
  74		offset = 0x1c0 + (offset - 0x800);
  75		return plane->offset + offset;
  76	}
  77
  78	dev_WARN(plane->dc->dev, "invalid offset: %x\n", offset);
 
 
 
 
  79
  80	return plane->offset + offset;
  81}
  82
  83static inline u32 tegra_plane_readl(struct tegra_plane *plane,
  84				    unsigned int offset)
  85{
  86	return tegra_dc_readl(plane->dc, tegra_plane_offset(plane, offset));
 
 
 
  87}
  88
  89static inline void tegra_plane_writel(struct tegra_plane *plane, u32 value,
  90				      unsigned int offset)
 
 
 
 
  91{
  92	tegra_dc_writel(plane->dc, value, tegra_plane_offset(plane, offset));
  93}
  94
  95bool tegra_dc_has_output(struct tegra_dc *dc, struct device *dev)
  96{
  97	struct device_node *np = dc->dev->of_node;
  98	struct of_phandle_iterator it;
  99	int err;
 100
 101	of_for_each_phandle(&it, err, np, "nvidia,outputs", NULL, 0)
 102		if (it.node == dev->of_node)
 103			return true;
 104
 105	return false;
 
 106}
 107
 108/*
 109 * Double-buffered registers have two copies: ASSEMBLY and ACTIVE. When the
 110 * *_ACT_REQ bits are set the ASSEMBLY copy is latched into the ACTIVE copy.
 111 * Latching happens mmediately if the display controller is in STOP mode or
 112 * on the next frame boundary otherwise.
 113 *
 114 * Triple-buffered registers have three copies: ASSEMBLY, ARM and ACTIVE. The
 115 * ASSEMBLY copy is latched into the ARM copy immediately after *_UPDATE bits
 116 * are written. When the *_ACT_REQ bits are written, the ARM copy is latched
 117 * into the ACTIVE copy, either immediately if the display controller is in
 118 * STOP mode, or at the next frame boundary otherwise.
 119 */
 120void tegra_dc_commit(struct tegra_dc *dc)
 121{
 122	tegra_dc_writel(dc, GENERAL_ACT_REQ << 8, DC_CMD_STATE_CONTROL);
 123	tegra_dc_writel(dc, GENERAL_ACT_REQ, DC_CMD_STATE_CONTROL);
 124}
 125
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 126static inline u32 compute_dda_inc(unsigned int in, unsigned int out, bool v,
 127				  unsigned int bpp)
 128{
 129	fixed20_12 outf = dfixed_init(out);
 130	fixed20_12 inf = dfixed_init(in);
 131	u32 dda_inc;
 132	int max;
 133
 134	if (v)
 135		max = 15;
 136	else {
 137		switch (bpp) {
 138		case 2:
 139			max = 8;
 140			break;
 141
 142		default:
 143			WARN_ON_ONCE(1);
 144			fallthrough;
 145		case 4:
 146			max = 4;
 147			break;
 148		}
 149	}
 150
 151	outf.full = max_t(u32, outf.full - dfixed_const(1), dfixed_const(1));
 152	inf.full -= dfixed_const(1);
 153
 154	dda_inc = dfixed_div(inf, outf);
 155	dda_inc = min_t(u32, dda_inc, dfixed_const(max));
 156
 157	return dda_inc;
 158}
 159
 160static inline u32 compute_initial_dda(unsigned int in)
 161{
 162	fixed20_12 inf = dfixed_init(in);
 163	return dfixed_frac(inf);
 164}
 165
 166static void tegra_plane_setup_blending_legacy(struct tegra_plane *plane)
 167{
 168	u32 background[3] = {
 169		BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE,
 170		BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE,
 171		BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE,
 172	};
 173	u32 foreground = BLEND_WEIGHT1(255) | BLEND_WEIGHT0(255) |
 174			 BLEND_COLOR_KEY_NONE;
 175	u32 blendnokey = BLEND_WEIGHT1(255) | BLEND_WEIGHT0(255);
 176	struct tegra_plane_state *state;
 177	u32 blending[2];
 178	unsigned int i;
 179
 180	/* disable blending for non-overlapping case */
 181	tegra_plane_writel(plane, blendnokey, DC_WIN_BLEND_NOKEY);
 182	tegra_plane_writel(plane, foreground, DC_WIN_BLEND_1WIN);
 183
 184	state = to_tegra_plane_state(plane->base.state);
 185
 186	if (state->opaque) {
 187		/*
 188		 * Since custom fix-weight blending isn't utilized and weight
 189		 * of top window is set to max, we can enforce dependent
 190		 * blending which in this case results in transparent bottom
 191		 * window if top window is opaque and if top window enables
 192		 * alpha blending, then bottom window is getting alpha value
 193		 * of 1 minus the sum of alpha components of the overlapping
 194		 * plane.
 195		 */
 196		background[0] |= BLEND_CONTROL_DEPENDENT;
 197		background[1] |= BLEND_CONTROL_DEPENDENT;
 198
 199		/*
 200		 * The region where three windows overlap is the intersection
 201		 * of the two regions where two windows overlap. It contributes
 202		 * to the area if all of the windows on top of it have an alpha
 203		 * component.
 204		 */
 205		switch (state->base.normalized_zpos) {
 206		case 0:
 207			if (state->blending[0].alpha &&
 208			    state->blending[1].alpha)
 209				background[2] |= BLEND_CONTROL_DEPENDENT;
 210			break;
 211
 212		case 1:
 213			background[2] |= BLEND_CONTROL_DEPENDENT;
 214			break;
 215		}
 216	} else {
 217		/*
 218		 * Enable alpha blending if pixel format has an alpha
 219		 * component.
 220		 */
 221		foreground |= BLEND_CONTROL_ALPHA;
 222
 223		/*
 224		 * If any of the windows on top of this window is opaque, it
 225		 * will completely conceal this window within that area. If
 226		 * top window has an alpha component, it is blended over the
 227		 * bottom window.
 228		 */
 229		for (i = 0; i < 2; i++) {
 230			if (state->blending[i].alpha &&
 231			    state->blending[i].top)
 232				background[i] |= BLEND_CONTROL_DEPENDENT;
 233		}
 234
 235		switch (state->base.normalized_zpos) {
 236		case 0:
 237			if (state->blending[0].alpha &&
 238			    state->blending[1].alpha)
 239				background[2] |= BLEND_CONTROL_DEPENDENT;
 240			break;
 241
 242		case 1:
 243			/*
 244			 * When both middle and topmost windows have an alpha,
 245			 * these windows a mixed together and then the result
 246			 * is blended over the bottom window.
 247			 */
 248			if (state->blending[0].alpha &&
 249			    state->blending[0].top)
 250				background[2] |= BLEND_CONTROL_ALPHA;
 251
 252			if (state->blending[1].alpha &&
 253			    state->blending[1].top)
 254				background[2] |= BLEND_CONTROL_ALPHA;
 255			break;
 256		}
 257	}
 258
 259	switch (state->base.normalized_zpos) {
 260	case 0:
 261		tegra_plane_writel(plane, background[0], DC_WIN_BLEND_2WIN_X);
 262		tegra_plane_writel(plane, background[1], DC_WIN_BLEND_2WIN_Y);
 263		tegra_plane_writel(plane, background[2], DC_WIN_BLEND_3WIN_XY);
 264		break;
 265
 266	case 1:
 267		/*
 268		 * If window B / C is topmost, then X / Y registers are
 269		 * matching the order of blending[...] state indices,
 270		 * otherwise a swap is required.
 271		 */
 272		if (!state->blending[0].top && state->blending[1].top) {
 273			blending[0] = foreground;
 274			blending[1] = background[1];
 275		} else {
 276			blending[0] = background[0];
 277			blending[1] = foreground;
 278		}
 279
 280		tegra_plane_writel(plane, blending[0], DC_WIN_BLEND_2WIN_X);
 281		tegra_plane_writel(plane, blending[1], DC_WIN_BLEND_2WIN_Y);
 282		tegra_plane_writel(plane, background[2], DC_WIN_BLEND_3WIN_XY);
 283		break;
 284
 285	case 2:
 286		tegra_plane_writel(plane, foreground, DC_WIN_BLEND_2WIN_X);
 287		tegra_plane_writel(plane, foreground, DC_WIN_BLEND_2WIN_Y);
 288		tegra_plane_writel(plane, foreground, DC_WIN_BLEND_3WIN_XY);
 289		break;
 290	}
 291}
 292
 293static void tegra_plane_setup_blending(struct tegra_plane *plane,
 294				       const struct tegra_dc_window *window)
 295{
 296	u32 value;
 297
 298	value = BLEND_FACTOR_DST_ALPHA_ZERO | BLEND_FACTOR_SRC_ALPHA_K2 |
 299		BLEND_FACTOR_DST_COLOR_NEG_K1_TIMES_SRC |
 300		BLEND_FACTOR_SRC_COLOR_K1_TIMES_SRC;
 301	tegra_plane_writel(plane, value, DC_WIN_BLEND_MATCH_SELECT);
 302
 303	value = BLEND_FACTOR_DST_ALPHA_ZERO | BLEND_FACTOR_SRC_ALPHA_K2 |
 304		BLEND_FACTOR_DST_COLOR_NEG_K1_TIMES_SRC |
 305		BLEND_FACTOR_SRC_COLOR_K1_TIMES_SRC;
 306	tegra_plane_writel(plane, value, DC_WIN_BLEND_NOMATCH_SELECT);
 307
 308	value = K2(255) | K1(255) | WINDOW_LAYER_DEPTH(255 - window->zpos);
 309	tegra_plane_writel(plane, value, DC_WIN_BLEND_LAYER_CONTROL);
 310}
 311
 312static bool
 313tegra_plane_use_horizontal_filtering(struct tegra_plane *plane,
 314				     const struct tegra_dc_window *window)
 315{
 316	struct tegra_dc *dc = plane->dc;
 317
 318	if (window->src.w == window->dst.w)
 319		return false;
 320
 321	if (plane->index == 0 && dc->soc->has_win_a_without_filters)
 322		return false;
 323
 324	return true;
 325}
 326
 327static bool
 328tegra_plane_use_vertical_filtering(struct tegra_plane *plane,
 329				   const struct tegra_dc_window *window)
 330{
 331	struct tegra_dc *dc = plane->dc;
 332
 333	if (window->src.h == window->dst.h)
 334		return false;
 335
 336	if (plane->index == 0 && dc->soc->has_win_a_without_filters)
 337		return false;
 338
 339	if (plane->index == 2 && dc->soc->has_win_c_without_vert_filter)
 340		return false;
 341
 342	return true;
 343}
 344
 345static void tegra_dc_setup_window(struct tegra_plane *plane,
 346				  const struct tegra_dc_window *window)
 347{
 348	unsigned h_offset, v_offset, h_size, v_size, h_dda, v_dda, bpp;
 349	struct tegra_dc *dc = plane->dc;
 350	unsigned int planes;
 351	u32 value;
 352	bool yuv;
 353
 354	/*
 355	 * For YUV planar modes, the number of bytes per pixel takes into
 356	 * account only the luma component and therefore is 1.
 357	 */
 358	yuv = tegra_plane_format_is_yuv(window->format, &planes, NULL);
 359	if (!yuv)
 360		bpp = window->bits_per_pixel / 8;
 361	else
 362		bpp = (planes > 1) ? 1 : 2;
 
 
 363
 364	tegra_plane_writel(plane, window->format, DC_WIN_COLOR_DEPTH);
 365	tegra_plane_writel(plane, window->swap, DC_WIN_BYTE_SWAP);
 
 
 
 366
 367	value = V_POSITION(window->dst.y) | H_POSITION(window->dst.x);
 368	tegra_plane_writel(plane, value, DC_WIN_POSITION);
 369
 370	value = V_SIZE(window->dst.h) | H_SIZE(window->dst.w);
 371	tegra_plane_writel(plane, value, DC_WIN_SIZE);
 372
 373	h_offset = window->src.x * bpp;
 374	v_offset = window->src.y;
 375	h_size = window->src.w * bpp;
 376	v_size = window->src.h;
 377
 378	if (window->reflect_x)
 379		h_offset += (window->src.w - 1) * bpp;
 380
 381	if (window->reflect_y)
 382		v_offset += window->src.h - 1;
 383
 384	value = V_PRESCALED_SIZE(v_size) | H_PRESCALED_SIZE(h_size);
 385	tegra_plane_writel(plane, value, DC_WIN_PRESCALED_SIZE);
 386
 387	/*
 388	 * For DDA computations the number of bytes per pixel for YUV planar
 389	 * modes needs to take into account all Y, U and V components.
 390	 */
 391	if (yuv && planes > 1)
 392		bpp = 2;
 393
 394	h_dda = compute_dda_inc(window->src.w, window->dst.w, false, bpp);
 395	v_dda = compute_dda_inc(window->src.h, window->dst.h, true, bpp);
 396
 397	value = V_DDA_INC(v_dda) | H_DDA_INC(h_dda);
 398	tegra_plane_writel(plane, value, DC_WIN_DDA_INC);
 399
 400	h_dda = compute_initial_dda(window->src.x);
 401	v_dda = compute_initial_dda(window->src.y);
 402
 403	tegra_plane_writel(plane, h_dda, DC_WIN_H_INITIAL_DDA);
 404	tegra_plane_writel(plane, v_dda, DC_WIN_V_INITIAL_DDA);
 405
 406	tegra_plane_writel(plane, 0, DC_WIN_UV_BUF_STRIDE);
 407	tegra_plane_writel(plane, 0, DC_WIN_BUF_STRIDE);
 408
 409	tegra_plane_writel(plane, window->base[0], DC_WINBUF_START_ADDR);
 410
 411	if (yuv && planes > 1) {
 412		tegra_plane_writel(plane, window->base[1], DC_WINBUF_START_ADDR_U);
 413
 414		if (planes > 2)
 415			tegra_plane_writel(plane, window->base[2], DC_WINBUF_START_ADDR_V);
 416
 
 
 
 417		value = window->stride[1] << 16 | window->stride[0];
 418		tegra_plane_writel(plane, value, DC_WIN_LINE_STRIDE);
 419	} else {
 420		tegra_plane_writel(plane, window->stride[0], DC_WIN_LINE_STRIDE);
 421	}
 422
 423	tegra_plane_writel(plane, h_offset, DC_WINBUF_ADDR_H_OFFSET);
 424	tegra_plane_writel(plane, v_offset, DC_WINBUF_ADDR_V_OFFSET);
 
 
 
 425
 426	if (dc->soc->supports_block_linear) {
 427		unsigned long height = window->tiling.value;
 428
 429		switch (window->tiling.mode) {
 430		case TEGRA_BO_TILING_MODE_PITCH:
 431			value = DC_WINBUF_SURFACE_KIND_PITCH;
 432			break;
 433
 434		case TEGRA_BO_TILING_MODE_TILED:
 435			value = DC_WINBUF_SURFACE_KIND_TILED;
 436			break;
 437
 438		case TEGRA_BO_TILING_MODE_BLOCK:
 439			value = DC_WINBUF_SURFACE_KIND_BLOCK_HEIGHT(height) |
 440				DC_WINBUF_SURFACE_KIND_BLOCK;
 441			break;
 442		}
 443
 444		tegra_plane_writel(plane, value, DC_WINBUF_SURFACE_KIND);
 445	} else {
 446		switch (window->tiling.mode) {
 447		case TEGRA_BO_TILING_MODE_PITCH:
 448			value = DC_WIN_BUFFER_ADDR_MODE_LINEAR_UV |
 449				DC_WIN_BUFFER_ADDR_MODE_LINEAR;
 450			break;
 451
 452		case TEGRA_BO_TILING_MODE_TILED:
 453			value = DC_WIN_BUFFER_ADDR_MODE_TILE_UV |
 454				DC_WIN_BUFFER_ADDR_MODE_TILE;
 455			break;
 456
 457		case TEGRA_BO_TILING_MODE_BLOCK:
 458			/*
 459			 * No need to handle this here because ->atomic_check
 460			 * will already have filtered it out.
 461			 */
 462			break;
 463		}
 464
 465		tegra_plane_writel(plane, value, DC_WIN_BUFFER_ADDR_MODE);
 466	}
 467
 468	value = WIN_ENABLE;
 469
 470	if (yuv) {
 471		/* setup default colorspace conversion coefficients */
 472		tegra_plane_writel(plane, 0x00f0, DC_WIN_CSC_YOF);
 473		tegra_plane_writel(plane, 0x012a, DC_WIN_CSC_KYRGB);
 474		tegra_plane_writel(plane, 0x0000, DC_WIN_CSC_KUR);
 475		tegra_plane_writel(plane, 0x0198, DC_WIN_CSC_KVR);
 476		tegra_plane_writel(plane, 0x039b, DC_WIN_CSC_KUG);
 477		tegra_plane_writel(plane, 0x032f, DC_WIN_CSC_KVG);
 478		tegra_plane_writel(plane, 0x0204, DC_WIN_CSC_KUB);
 479		tegra_plane_writel(plane, 0x0000, DC_WIN_CSC_KVB);
 480
 481		value |= CSC_ENABLE;
 482	} else if (window->bits_per_pixel < 24) {
 483		value |= COLOR_EXPAND;
 484	}
 485
 486	if (window->reflect_x)
 487		value |= H_DIRECTION;
 488
 489	if (window->reflect_y)
 490		value |= V_DIRECTION;
 491
 492	if (tegra_plane_use_horizontal_filtering(plane, window)) {
 493		/*
 494		 * Enable horizontal 6-tap filter and set filtering
 495		 * coefficients to the default values defined in TRM.
 496		 */
 497		tegra_plane_writel(plane, 0x00008000, DC_WIN_H_FILTER_P(0));
 498		tegra_plane_writel(plane, 0x3e087ce1, DC_WIN_H_FILTER_P(1));
 499		tegra_plane_writel(plane, 0x3b117ac1, DC_WIN_H_FILTER_P(2));
 500		tegra_plane_writel(plane, 0x591b73aa, DC_WIN_H_FILTER_P(3));
 501		tegra_plane_writel(plane, 0x57256d9a, DC_WIN_H_FILTER_P(4));
 502		tegra_plane_writel(plane, 0x552f668b, DC_WIN_H_FILTER_P(5));
 503		tegra_plane_writel(plane, 0x73385e8b, DC_WIN_H_FILTER_P(6));
 504		tegra_plane_writel(plane, 0x72435583, DC_WIN_H_FILTER_P(7));
 505		tegra_plane_writel(plane, 0x714c4c8b, DC_WIN_H_FILTER_P(8));
 506		tegra_plane_writel(plane, 0x70554393, DC_WIN_H_FILTER_P(9));
 507		tegra_plane_writel(plane, 0x715e389b, DC_WIN_H_FILTER_P(10));
 508		tegra_plane_writel(plane, 0x71662faa, DC_WIN_H_FILTER_P(11));
 509		tegra_plane_writel(plane, 0x536d25ba, DC_WIN_H_FILTER_P(12));
 510		tegra_plane_writel(plane, 0x55731bca, DC_WIN_H_FILTER_P(13));
 511		tegra_plane_writel(plane, 0x387a11d9, DC_WIN_H_FILTER_P(14));
 512		tegra_plane_writel(plane, 0x3c7c08f1, DC_WIN_H_FILTER_P(15));
 513
 514		value |= H_FILTER;
 515	}
 
 
 
 
 516
 517	if (tegra_plane_use_vertical_filtering(plane, window)) {
 518		unsigned int i, k;
 
 
 
 
 519
 520		/*
 521		 * Enable vertical 2-tap filter and set filtering
 522		 * coefficients to the default values defined in TRM.
 523		 */
 524		for (i = 0, k = 128; i < 16; i++, k -= 8)
 525			tegra_plane_writel(plane, k, DC_WIN_V_FILTER_P(i));
 526
 527		value |= V_FILTER;
 
 
 
 
 528	}
 529
 530	tegra_plane_writel(plane, value, DC_WIN_WIN_OPTIONS);
 
 
 
 
 
 531
 532	if (dc->soc->has_legacy_blending)
 533		tegra_plane_setup_blending_legacy(plane);
 534	else
 535		tegra_plane_setup_blending(plane, window);
 536}
 537
 538static const u32 tegra20_primary_formats[] = {
 539	DRM_FORMAT_ARGB4444,
 540	DRM_FORMAT_ARGB1555,
 541	DRM_FORMAT_RGB565,
 542	DRM_FORMAT_RGBA5551,
 543	DRM_FORMAT_ABGR8888,
 544	DRM_FORMAT_ARGB8888,
 545	/* non-native formats */
 546	DRM_FORMAT_XRGB1555,
 547	DRM_FORMAT_RGBX5551,
 548	DRM_FORMAT_XBGR8888,
 549	DRM_FORMAT_XRGB8888,
 
 550};
 551
 552static const u64 tegra20_modifiers[] = {
 553	DRM_FORMAT_MOD_LINEAR,
 554	DRM_FORMAT_MOD_NVIDIA_TEGRA_TILED,
 555	DRM_FORMAT_MOD_INVALID
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 556};
 557
 558static const u32 tegra114_primary_formats[] = {
 559	DRM_FORMAT_ARGB4444,
 560	DRM_FORMAT_ARGB1555,
 561	DRM_FORMAT_RGB565,
 562	DRM_FORMAT_RGBA5551,
 563	DRM_FORMAT_ABGR8888,
 564	DRM_FORMAT_ARGB8888,
 565	/* new on Tegra114 */
 566	DRM_FORMAT_ABGR4444,
 567	DRM_FORMAT_ABGR1555,
 568	DRM_FORMAT_BGRA5551,
 569	DRM_FORMAT_XRGB1555,
 570	DRM_FORMAT_RGBX5551,
 571	DRM_FORMAT_XBGR1555,
 572	DRM_FORMAT_BGRX5551,
 573	DRM_FORMAT_BGR565,
 574	DRM_FORMAT_BGRA8888,
 575	DRM_FORMAT_RGBA8888,
 576	DRM_FORMAT_XRGB8888,
 577	DRM_FORMAT_XBGR8888,
 578};
 
 
 579
 580static const u32 tegra124_primary_formats[] = {
 581	DRM_FORMAT_ARGB4444,
 582	DRM_FORMAT_ARGB1555,
 583	DRM_FORMAT_RGB565,
 584	DRM_FORMAT_RGBA5551,
 585	DRM_FORMAT_ABGR8888,
 586	DRM_FORMAT_ARGB8888,
 587	/* new on Tegra114 */
 588	DRM_FORMAT_ABGR4444,
 589	DRM_FORMAT_ABGR1555,
 590	DRM_FORMAT_BGRA5551,
 591	DRM_FORMAT_XRGB1555,
 592	DRM_FORMAT_RGBX5551,
 593	DRM_FORMAT_XBGR1555,
 594	DRM_FORMAT_BGRX5551,
 595	DRM_FORMAT_BGR565,
 596	DRM_FORMAT_BGRA8888,
 597	DRM_FORMAT_RGBA8888,
 598	DRM_FORMAT_XRGB8888,
 599	DRM_FORMAT_XBGR8888,
 600	/* new on Tegra124 */
 601	DRM_FORMAT_RGBX8888,
 602	DRM_FORMAT_BGRX8888,
 603};
 604
 605static const u64 tegra124_modifiers[] = {
 606	DRM_FORMAT_MOD_LINEAR,
 607	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(0),
 608	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(1),
 609	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(2),
 610	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(3),
 611	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(4),
 612	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(5),
 613	DRM_FORMAT_MOD_INVALID
 614};
 615
 616static int tegra_plane_atomic_check(struct drm_plane *plane,
 617				    struct drm_atomic_state *state)
 618{
 619	struct drm_plane_state *new_plane_state = drm_atomic_get_new_plane_state(state,
 620										 plane);
 621	struct tegra_plane_state *plane_state = to_tegra_plane_state(new_plane_state);
 622	unsigned int supported_rotation = DRM_MODE_ROTATE_0 |
 623					  DRM_MODE_REFLECT_X |
 624					  DRM_MODE_REFLECT_Y;
 625	unsigned int rotation = new_plane_state->rotation;
 626	struct tegra_bo_tiling *tiling = &plane_state->tiling;
 627	struct tegra_plane *tegra = to_tegra_plane(plane);
 628	struct tegra_dc *dc = to_tegra_dc(new_plane_state->crtc);
 629	int err;
 630
 631	plane_state->peak_memory_bandwidth = 0;
 632	plane_state->avg_memory_bandwidth = 0;
 633
 634	/* no need for further checks if the plane is being disabled */
 635	if (!new_plane_state->crtc) {
 636		plane_state->total_peak_memory_bandwidth = 0;
 637		return 0;
 638	}
 639
 640	err = tegra_plane_format(new_plane_state->fb->format->format,
 641				 &plane_state->format,
 642				 &plane_state->swap);
 643	if (err < 0)
 644		return err;
 645
 646	/*
 647	 * Tegra20 and Tegra30 are special cases here because they support
 648	 * only variants of specific formats with an alpha component, but not
 649	 * the corresponding opaque formats. However, the opaque formats can
 650	 * be emulated by disabling alpha blending for the plane.
 651	 */
 652	if (dc->soc->has_legacy_blending) {
 653		err = tegra_plane_setup_legacy_state(tegra, plane_state);
 654		if (err < 0)
 655			return err;
 656	}
 657
 658	err = tegra_fb_get_tiling(new_plane_state->fb, tiling);
 659	if (err < 0)
 660		return err;
 661
 662	if (tiling->mode == TEGRA_BO_TILING_MODE_BLOCK &&
 663	    !dc->soc->supports_block_linear) {
 664		DRM_ERROR("hardware doesn't support block linear mode\n");
 665		return -EINVAL;
 666	}
 667
 668	/*
 669	 * Older userspace used custom BO flag in order to specify the Y
 670	 * reflection, while modern userspace uses the generic DRM rotation
 671	 * property in order to achieve the same result.  The legacy BO flag
 672	 * duplicates the DRM rotation property when both are set.
 673	 */
 674	if (tegra_fb_is_bottom_up(new_plane_state->fb))
 675		rotation |= DRM_MODE_REFLECT_Y;
 676
 677	rotation = drm_rotation_simplify(rotation, supported_rotation);
 678
 679	if (rotation & DRM_MODE_REFLECT_X)
 680		plane_state->reflect_x = true;
 681	else
 682		plane_state->reflect_x = false;
 683
 684	if (rotation & DRM_MODE_REFLECT_Y)
 685		plane_state->reflect_y = true;
 686	else
 687		plane_state->reflect_y = false;
 688
 689	/*
 690	 * Tegra doesn't support different strides for U and V planes so we
 691	 * error out if the user tries to display a framebuffer with such a
 692	 * configuration.
 693	 */
 694	if (new_plane_state->fb->format->num_planes > 2) {
 695		if (new_plane_state->fb->pitches[2] != new_plane_state->fb->pitches[1]) {
 696			DRM_ERROR("unsupported UV-plane configuration\n");
 697			return -EINVAL;
 698		}
 699	}
 700
 701	err = tegra_plane_state_add(tegra, new_plane_state);
 702	if (err < 0)
 703		return err;
 704
 705	return 0;
 706}
 707
 708static void tegra_plane_atomic_disable(struct drm_plane *plane,
 709				       struct drm_atomic_state *state)
 710{
 711	struct drm_plane_state *old_state = drm_atomic_get_old_plane_state(state,
 712									   plane);
 
 713	struct tegra_plane *p = to_tegra_plane(plane);
 714	u32 value;
 
 715
 716	/* rien ne va plus */
 717	if (!old_state || !old_state->crtc)
 718		return;
 719
 720	value = tegra_plane_readl(p, DC_WIN_WIN_OPTIONS);
 721	value &= ~WIN_ENABLE;
 722	tegra_plane_writel(p, value, DC_WIN_WIN_OPTIONS);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 723}
 724
 725static void tegra_plane_atomic_update(struct drm_plane *plane,
 726				      struct drm_atomic_state *state)
 727{
 728	struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state,
 729									   plane);
 730	struct tegra_plane_state *tegra_plane_state = to_tegra_plane_state(new_state);
 731	struct drm_framebuffer *fb = new_state->fb;
 732	struct tegra_plane *p = to_tegra_plane(plane);
 733	struct tegra_dc_window window;
 734	unsigned int i;
 
 735
 736	/* rien ne va plus */
 737	if (!new_state->crtc || !new_state->fb)
 738		return;
 739
 740	if (!new_state->visible)
 741		return tegra_plane_atomic_disable(plane, state);
 742
 743	memset(&window, 0, sizeof(window));
 744	window.src.x = new_state->src.x1 >> 16;
 745	window.src.y = new_state->src.y1 >> 16;
 746	window.src.w = drm_rect_width(&new_state->src) >> 16;
 747	window.src.h = drm_rect_height(&new_state->src) >> 16;
 748	window.dst.x = new_state->dst.x1;
 749	window.dst.y = new_state->dst.y1;
 750	window.dst.w = drm_rect_width(&new_state->dst);
 751	window.dst.h = drm_rect_height(&new_state->dst);
 752	window.bits_per_pixel = fb->format->cpp[0] * 8;
 753	window.reflect_x = tegra_plane_state->reflect_x;
 754	window.reflect_y = tegra_plane_state->reflect_y;
 755
 756	/* copy from state */
 757	window.zpos = new_state->normalized_zpos;
 758	window.tiling = tegra_plane_state->tiling;
 759	window.format = tegra_plane_state->format;
 760	window.swap = tegra_plane_state->swap;
 761
 762	for (i = 0; i < fb->format->num_planes; i++) {
 763		window.base[i] = tegra_plane_state->iova[i] + fb->offsets[i];
 764
 765		/*
 766		 * Tegra uses a shared stride for UV planes. Framebuffers are
 767		 * already checked for this in the tegra_plane_atomic_check()
 768		 * function, so it's safe to ignore the V-plane pitch here.
 769		 */
 770		if (i < 2)
 771			window.stride[i] = fb->pitches[i];
 772	}
 773
 774	tegra_dc_setup_window(p, &window);
 775}
 776
 777static const struct drm_plane_helper_funcs tegra_plane_helper_funcs = {
 778	.prepare_fb = tegra_plane_prepare_fb,
 779	.cleanup_fb = tegra_plane_cleanup_fb,
 780	.atomic_check = tegra_plane_atomic_check,
 
 781	.atomic_disable = tegra_plane_atomic_disable,
 782	.atomic_update = tegra_plane_atomic_update,
 783};
 784
 785static unsigned long tegra_plane_get_possible_crtcs(struct drm_device *drm)
 
 786{
 787	/*
 788	 * Ideally this would use drm_crtc_mask(), but that would require the
 789	 * CRTC to already be in the mode_config's list of CRTCs. However, it
 790	 * will only be added to that list in the drm_crtc_init_with_planes()
 791	 * (in tegra_dc_init()), which in turn requires registration of these
 792	 * planes. So we have ourselves a nice little chicken and egg problem
 793	 * here.
 794	 *
 795	 * We work around this by manually creating the mask from the number
 796	 * of CRTCs that have been registered, and should therefore always be
 797	 * the same as drm_crtc_index() after registration.
 798	 */
 799	return 1 << drm->mode_config.num_crtc;
 800}
 801
 802static struct drm_plane *tegra_primary_plane_create(struct drm_device *drm,
 803						    struct tegra_dc *dc)
 804{
 805	unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm);
 806	enum drm_plane_type type = DRM_PLANE_TYPE_PRIMARY;
 807	struct tegra_plane *plane;
 808	unsigned int num_formats;
 809	const u64 *modifiers;
 810	const u32 *formats;
 811	int err;
 812
 813	plane = kzalloc(sizeof(*plane), GFP_KERNEL);
 814	if (!plane)
 815		return ERR_PTR(-ENOMEM);
 816
 817	/* Always use window A as primary window */
 818	plane->offset = 0xa00;
 819	plane->index = 0;
 820	plane->dc = dc;
 821
 822	num_formats = dc->soc->num_primary_formats;
 823	formats = dc->soc->primary_formats;
 824	modifiers = dc->soc->modifiers;
 825
 826	err = tegra_plane_interconnect_init(plane);
 827	if (err) {
 828		kfree(plane);
 829		return ERR_PTR(err);
 830	}
 831
 832	err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
 833				       &tegra_plane_funcs, formats,
 834				       num_formats, modifiers, type, NULL);
 
 835	if (err < 0) {
 836		kfree(plane);
 837		return ERR_PTR(err);
 838	}
 839
 840	drm_plane_helper_add(&plane->base, &tegra_plane_helper_funcs);
 841	drm_plane_create_zpos_property(&plane->base, plane->index, 0, 255);
 842
 843	err = drm_plane_create_rotation_property(&plane->base,
 844						 DRM_MODE_ROTATE_0,
 845						 DRM_MODE_ROTATE_0 |
 846						 DRM_MODE_ROTATE_180 |
 847						 DRM_MODE_REFLECT_X |
 848						 DRM_MODE_REFLECT_Y);
 849	if (err < 0)
 850		dev_err(dc->dev, "failed to create rotation property: %d\n",
 851			err);
 852
 853	return &plane->base;
 854}
 855
 856static const u32 tegra_legacy_cursor_plane_formats[] = {
 857	DRM_FORMAT_RGBA8888,
 858};
 859
 860static const u32 tegra_cursor_plane_formats[] = {
 861	DRM_FORMAT_ARGB8888,
 862};
 863
 864static int tegra_cursor_atomic_check(struct drm_plane *plane,
 865				     struct drm_atomic_state *state)
 866{
 867	struct drm_plane_state *new_plane_state = drm_atomic_get_new_plane_state(state,
 868										 plane);
 869	struct tegra_plane_state *plane_state = to_tegra_plane_state(new_plane_state);
 870	struct tegra_plane *tegra = to_tegra_plane(plane);
 871	int err;
 872
 873	plane_state->peak_memory_bandwidth = 0;
 874	plane_state->avg_memory_bandwidth = 0;
 875
 876	/* no need for further checks if the plane is being disabled */
 877	if (!new_plane_state->crtc) {
 878		plane_state->total_peak_memory_bandwidth = 0;
 879		return 0;
 880	}
 881
 882	/* scaling not supported for cursor */
 883	if ((new_plane_state->src_w >> 16 != new_plane_state->crtc_w) ||
 884	    (new_plane_state->src_h >> 16 != new_plane_state->crtc_h))
 885		return -EINVAL;
 886
 887	/* only square cursors supported */
 888	if (new_plane_state->src_w != new_plane_state->src_h)
 889		return -EINVAL;
 890
 891	if (new_plane_state->crtc_w != 32 && new_plane_state->crtc_w != 64 &&
 892	    new_plane_state->crtc_w != 128 && new_plane_state->crtc_w != 256)
 893		return -EINVAL;
 894
 895	err = tegra_plane_state_add(tegra, new_plane_state);
 896	if (err < 0)
 897		return err;
 898
 899	return 0;
 900}
 901
 902static void __tegra_cursor_atomic_update(struct drm_plane *plane,
 903					 struct drm_plane_state *new_state)
 904{
 905	struct tegra_plane_state *tegra_plane_state = to_tegra_plane_state(new_state);
 906	struct tegra_dc *dc = to_tegra_dc(new_state->crtc);
 907	struct tegra_drm *tegra = plane->dev->dev_private;
 908#ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
 909	u64 dma_mask = *dc->dev->dma_mask;
 910#endif
 911	unsigned int x, y;
 912	u32 value = 0;
 913
 914	/* rien ne va plus */
 915	if (!new_state->crtc || !new_state->fb)
 916		return;
 917
 918	/*
 919	 * Legacy display supports hardware clipping of the cursor, but
 920	 * nvdisplay relies on software to clip the cursor to the screen.
 921	 */
 922	if (!dc->soc->has_nvdisplay)
 923		value |= CURSOR_CLIP_DISPLAY;
 924
 925	switch (new_state->crtc_w) {
 926	case 32:
 927		value |= CURSOR_SIZE_32x32;
 928		break;
 929
 930	case 64:
 931		value |= CURSOR_SIZE_64x64;
 932		break;
 933
 934	case 128:
 935		value |= CURSOR_SIZE_128x128;
 936		break;
 937
 938	case 256:
 939		value |= CURSOR_SIZE_256x256;
 940		break;
 941
 942	default:
 943		WARN(1, "cursor size %ux%u not supported\n",
 944		     new_state->crtc_w, new_state->crtc_h);
 945		return;
 946	}
 947
 948	value |= (tegra_plane_state->iova[0] >> 10) & 0x3fffff;
 949	tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR);
 950
 951#ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
 952	value = (tegra_plane_state->iova[0] >> 32) & (dma_mask >> 32);
 953	tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR_HI);
 954#endif
 955
 956	/* enable cursor and set blend mode */
 957	value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
 958	value |= CURSOR_ENABLE;
 959	tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
 960
 961	value = tegra_dc_readl(dc, DC_DISP_BLEND_CURSOR_CONTROL);
 962	value &= ~CURSOR_DST_BLEND_MASK;
 963	value &= ~CURSOR_SRC_BLEND_MASK;
 964
 965	if (dc->soc->has_nvdisplay)
 966		value &= ~CURSOR_COMPOSITION_MODE_XOR;
 967	else
 968		value |= CURSOR_MODE_NORMAL;
 969
 970	value |= CURSOR_DST_BLEND_NEG_K1_TIMES_SRC;
 971	value |= CURSOR_SRC_BLEND_K1_TIMES_SRC;
 972	value |= CURSOR_ALPHA;
 973	tegra_dc_writel(dc, value, DC_DISP_BLEND_CURSOR_CONTROL);
 974
 975	/* nvdisplay relies on software for clipping */
 976	if (dc->soc->has_nvdisplay) {
 977		struct drm_rect src;
 978
 979		x = new_state->dst.x1;
 980		y = new_state->dst.y1;
 981
 982		drm_rect_fp_to_int(&src, &new_state->src);
 983
 984		value = (src.y1 & tegra->vmask) << 16 | (src.x1 & tegra->hmask);
 985		tegra_dc_writel(dc, value, DC_DISP_PCALC_HEAD_SET_CROPPED_POINT_IN_CURSOR);
 986
 987		value = (drm_rect_height(&src) & tegra->vmask) << 16 |
 988			(drm_rect_width(&src) & tegra->hmask);
 989		tegra_dc_writel(dc, value, DC_DISP_PCALC_HEAD_SET_CROPPED_SIZE_IN_CURSOR);
 990	} else {
 991		x = new_state->crtc_x;
 992		y = new_state->crtc_y;
 993	}
 994
 995	/* position the cursor */
 996	value = ((y & tegra->vmask) << 16) | (x & tegra->hmask);
 997	tegra_dc_writel(dc, value, DC_DISP_CURSOR_POSITION);
 998}
 999
1000static void tegra_cursor_atomic_update(struct drm_plane *plane,
1001				       struct drm_atomic_state *state)
1002{
1003	struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state, plane);
1004
1005	__tegra_cursor_atomic_update(plane, new_state);
1006}
1007
1008static void tegra_cursor_atomic_disable(struct drm_plane *plane,
1009					struct drm_atomic_state *state)
1010{
1011	struct drm_plane_state *old_state = drm_atomic_get_old_plane_state(state,
1012									   plane);
1013	struct tegra_dc *dc;
1014	u32 value;
1015
1016	/* rien ne va plus */
1017	if (!old_state || !old_state->crtc)
1018		return;
1019
1020	dc = to_tegra_dc(old_state->crtc);
1021
1022	value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
1023	value &= ~CURSOR_ENABLE;
1024	tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
1025}
1026
1027static int tegra_cursor_atomic_async_check(struct drm_plane *plane, struct drm_atomic_state *state)
1028{
1029	struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state, plane);
1030	struct drm_crtc_state *crtc_state;
1031	int min_scale, max_scale;
1032	int err;
1033
1034	crtc_state = drm_atomic_get_existing_crtc_state(state, new_state->crtc);
1035	if (WARN_ON(!crtc_state))
1036		return -EINVAL;
1037
1038	if (!crtc_state->active)
1039		return -EINVAL;
1040
1041	if (plane->state->crtc != new_state->crtc ||
1042	    plane->state->src_w != new_state->src_w ||
1043	    plane->state->src_h != new_state->src_h ||
1044	    plane->state->crtc_w != new_state->crtc_w ||
1045	    plane->state->crtc_h != new_state->crtc_h ||
1046	    plane->state->fb != new_state->fb ||
1047	    plane->state->fb == NULL)
1048		return -EINVAL;
1049
1050	min_scale = (1 << 16) / 8;
1051	max_scale = (8 << 16) / 1;
1052
1053	err = drm_atomic_helper_check_plane_state(new_state, crtc_state, min_scale, max_scale,
1054						  true, true);
1055	if (err < 0)
1056		return err;
1057
1058	if (new_state->visible != plane->state->visible)
1059		return -EINVAL;
1060
1061	return 0;
1062}
1063
1064static void tegra_cursor_atomic_async_update(struct drm_plane *plane,
1065					     struct drm_atomic_state *state)
1066{
1067	struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state, plane);
1068	struct tegra_dc *dc = to_tegra_dc(new_state->crtc);
1069
1070	plane->state->src_x = new_state->src_x;
1071	plane->state->src_y = new_state->src_y;
1072	plane->state->crtc_x = new_state->crtc_x;
1073	plane->state->crtc_y = new_state->crtc_y;
1074
1075	if (new_state->visible) {
1076		struct tegra_plane *p = to_tegra_plane(plane);
1077		u32 value;
1078
1079		__tegra_cursor_atomic_update(plane, new_state);
1080
1081		value = (WIN_A_ACT_REQ << p->index) << 8 | GENERAL_UPDATE;
1082		tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL);
1083		(void)tegra_dc_readl(dc, DC_CMD_STATE_CONTROL);
1084
1085		value = (WIN_A_ACT_REQ << p->index) | GENERAL_ACT_REQ;
1086		tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL);
1087		(void)tegra_dc_readl(dc, DC_CMD_STATE_CONTROL);
1088	}
1089}
1090
1091static const struct drm_plane_helper_funcs tegra_cursor_plane_helper_funcs = {
1092	.prepare_fb = tegra_plane_prepare_fb,
1093	.cleanup_fb = tegra_plane_cleanup_fb,
1094	.atomic_check = tegra_cursor_atomic_check,
1095	.atomic_update = tegra_cursor_atomic_update,
1096	.atomic_disable = tegra_cursor_atomic_disable,
1097	.atomic_async_check = tegra_cursor_atomic_async_check,
1098	.atomic_async_update = tegra_cursor_atomic_async_update,
1099};
1100
1101static const uint64_t linear_modifiers[] = {
1102	DRM_FORMAT_MOD_LINEAR,
1103	DRM_FORMAT_MOD_INVALID
1104};
1105
1106static struct drm_plane *tegra_dc_cursor_plane_create(struct drm_device *drm,
1107						      struct tegra_dc *dc)
1108{
1109	unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm);
1110	struct tegra_plane *plane;
1111	unsigned int num_formats;
1112	const u32 *formats;
1113	int err;
1114
1115	plane = kzalloc(sizeof(*plane), GFP_KERNEL);
1116	if (!plane)
1117		return ERR_PTR(-ENOMEM);
1118
1119	/*
1120	 * This index is kind of fake. The cursor isn't a regular plane, but
1121	 * its update and activation request bits in DC_CMD_STATE_CONTROL do
1122	 * use the same programming. Setting this fake index here allows the
1123	 * code in tegra_add_plane_state() to do the right thing without the
1124	 * need to special-casing the cursor plane.
1125	 */
1126	plane->index = 6;
1127	plane->dc = dc;
1128
1129	if (!dc->soc->has_nvdisplay) {
1130		num_formats = ARRAY_SIZE(tegra_legacy_cursor_plane_formats);
1131		formats = tegra_legacy_cursor_plane_formats;
1132
1133		err = tegra_plane_interconnect_init(plane);
1134		if (err) {
1135			kfree(plane);
1136			return ERR_PTR(err);
1137		}
1138	} else {
1139		num_formats = ARRAY_SIZE(tegra_cursor_plane_formats);
1140		formats = tegra_cursor_plane_formats;
1141	}
1142
1143	err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
1144				       &tegra_plane_funcs, formats,
1145				       num_formats, linear_modifiers,
1146				       DRM_PLANE_TYPE_CURSOR, NULL);
1147	if (err < 0) {
1148		kfree(plane);
1149		return ERR_PTR(err);
1150	}
1151
1152	drm_plane_helper_add(&plane->base, &tegra_cursor_plane_helper_funcs);
1153	drm_plane_create_zpos_immutable_property(&plane->base, 255);
1154
1155	return &plane->base;
1156}
1157
1158static const u32 tegra20_overlay_formats[] = {
1159	DRM_FORMAT_ARGB4444,
1160	DRM_FORMAT_ARGB1555,
1161	DRM_FORMAT_RGB565,
1162	DRM_FORMAT_RGBA5551,
1163	DRM_FORMAT_ABGR8888,
1164	DRM_FORMAT_ARGB8888,
1165	/* non-native formats */
1166	DRM_FORMAT_XRGB1555,
1167	DRM_FORMAT_RGBX5551,
 
 
 
 
 
1168	DRM_FORMAT_XBGR8888,
1169	DRM_FORMAT_XRGB8888,
1170	/* planar formats */
1171	DRM_FORMAT_UYVY,
1172	DRM_FORMAT_YUYV,
1173	DRM_FORMAT_YUV420,
1174	DRM_FORMAT_YUV422,
1175};
1176
1177static const u32 tegra114_overlay_formats[] = {
1178	DRM_FORMAT_ARGB4444,
1179	DRM_FORMAT_ARGB1555,
1180	DRM_FORMAT_RGB565,
1181	DRM_FORMAT_RGBA5551,
1182	DRM_FORMAT_ABGR8888,
1183	DRM_FORMAT_ARGB8888,
1184	/* new on Tegra114 */
1185	DRM_FORMAT_ABGR4444,
1186	DRM_FORMAT_ABGR1555,
1187	DRM_FORMAT_BGRA5551,
1188	DRM_FORMAT_XRGB1555,
1189	DRM_FORMAT_RGBX5551,
1190	DRM_FORMAT_XBGR1555,
1191	DRM_FORMAT_BGRX5551,
1192	DRM_FORMAT_BGR565,
1193	DRM_FORMAT_BGRA8888,
1194	DRM_FORMAT_RGBA8888,
1195	DRM_FORMAT_XRGB8888,
1196	DRM_FORMAT_XBGR8888,
1197	/* planar formats */
1198	DRM_FORMAT_UYVY,
1199	DRM_FORMAT_YUYV,
1200	DRM_FORMAT_YUV420,
1201	DRM_FORMAT_YUV422,
1202	/* semi-planar formats */
1203	DRM_FORMAT_NV12,
1204	DRM_FORMAT_NV21,
1205	DRM_FORMAT_NV16,
1206	DRM_FORMAT_NV61,
1207	DRM_FORMAT_NV24,
1208	DRM_FORMAT_NV42,
1209};
1210
1211static const u32 tegra124_overlay_formats[] = {
1212	DRM_FORMAT_ARGB4444,
1213	DRM_FORMAT_ARGB1555,
1214	DRM_FORMAT_RGB565,
1215	DRM_FORMAT_RGBA5551,
1216	DRM_FORMAT_ABGR8888,
1217	DRM_FORMAT_ARGB8888,
1218	/* new on Tegra114 */
1219	DRM_FORMAT_ABGR4444,
1220	DRM_FORMAT_ABGR1555,
1221	DRM_FORMAT_BGRA5551,
1222	DRM_FORMAT_XRGB1555,
1223	DRM_FORMAT_RGBX5551,
1224	DRM_FORMAT_XBGR1555,
1225	DRM_FORMAT_BGRX5551,
1226	DRM_FORMAT_BGR565,
1227	DRM_FORMAT_BGRA8888,
1228	DRM_FORMAT_RGBA8888,
1229	DRM_FORMAT_XRGB8888,
1230	DRM_FORMAT_XBGR8888,
1231	/* new on Tegra124 */
1232	DRM_FORMAT_RGBX8888,
1233	DRM_FORMAT_BGRX8888,
1234	/* planar formats */
1235	DRM_FORMAT_UYVY,
1236	DRM_FORMAT_YUYV,
1237	DRM_FORMAT_YVYU,
1238	DRM_FORMAT_VYUY,
1239	DRM_FORMAT_YUV420, /* YU12 */
1240	DRM_FORMAT_YUV422, /* YU16 */
1241	DRM_FORMAT_YUV444, /* YU24 */
1242	/* semi-planar formats */
1243	DRM_FORMAT_NV12,
1244	DRM_FORMAT_NV21,
1245	DRM_FORMAT_NV16,
1246	DRM_FORMAT_NV61,
1247	DRM_FORMAT_NV24,
1248	DRM_FORMAT_NV42,
1249};
1250
1251static struct drm_plane *tegra_dc_overlay_plane_create(struct drm_device *drm,
1252						       struct tegra_dc *dc,
1253						       unsigned int index,
1254						       bool cursor)
1255{
1256	unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm);
1257	struct tegra_plane *plane;
1258	unsigned int num_formats;
1259	enum drm_plane_type type;
1260	const u32 *formats;
1261	int err;
1262
1263	plane = kzalloc(sizeof(*plane), GFP_KERNEL);
1264	if (!plane)
1265		return ERR_PTR(-ENOMEM);
1266
1267	plane->offset = 0xa00 + 0x200 * index;
1268	plane->index = index;
1269	plane->dc = dc;
1270
1271	num_formats = dc->soc->num_overlay_formats;
1272	formats = dc->soc->overlay_formats;
1273
1274	err = tegra_plane_interconnect_init(plane);
1275	if (err) {
 
 
 
1276		kfree(plane);
1277		return ERR_PTR(err);
1278	}
1279
1280	if (!cursor)
1281		type = DRM_PLANE_TYPE_OVERLAY;
1282	else
1283		type = DRM_PLANE_TYPE_CURSOR;
 
 
 
 
 
1284
1285	err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
1286				       &tegra_plane_funcs, formats,
1287				       num_formats, linear_modifiers,
1288				       type, NULL);
1289	if (err < 0) {
1290		kfree(plane);
1291		return ERR_PTR(err);
1292	}
1293
1294	drm_plane_helper_add(&plane->base, &tegra_plane_helper_funcs);
1295	drm_plane_create_zpos_property(&plane->base, plane->index, 0, 255);
 
 
 
 
 
1296
1297	err = drm_plane_create_rotation_property(&plane->base,
1298						 DRM_MODE_ROTATE_0,
1299						 DRM_MODE_ROTATE_0 |
1300						 DRM_MODE_ROTATE_180 |
1301						 DRM_MODE_REFLECT_X |
1302						 DRM_MODE_REFLECT_Y);
1303	if (err < 0)
1304		dev_err(dc->dev, "failed to create rotation property: %d\n",
1305			err);
 
 
 
 
1306
1307	return &plane->base;
1308}
1309
1310static struct drm_plane *tegra_dc_add_shared_planes(struct drm_device *drm,
1311						    struct tegra_dc *dc)
1312{
1313	struct drm_plane *plane, *primary = NULL;
1314	unsigned int i, j;
1315
1316	for (i = 0; i < dc->soc->num_wgrps; i++) {
1317		const struct tegra_windowgroup_soc *wgrp = &dc->soc->wgrps[i];
1318
1319		if (wgrp->dc == dc->pipe) {
1320			for (j = 0; j < wgrp->num_windows; j++) {
1321				unsigned int index = wgrp->windows[j];
1322
1323				plane = tegra_shared_plane_create(drm, dc,
1324								  wgrp->index,
1325								  index);
1326				if (IS_ERR(plane))
1327					return plane;
1328
1329				/*
1330				 * Choose the first shared plane owned by this
1331				 * head as the primary plane.
1332				 */
1333				if (!primary) {
1334					plane->type = DRM_PLANE_TYPE_PRIMARY;
1335					primary = plane;
1336				}
1337			}
1338		}
1339	}
1340
1341	return primary;
1342}
1343
1344static struct drm_plane *tegra_dc_add_planes(struct drm_device *drm,
1345					     struct tegra_dc *dc)
1346{
1347	struct drm_plane *planes[2], *primary;
1348	unsigned int planes_num;
1349	unsigned int i;
1350	int err;
 
 
 
 
 
 
 
1351
1352	primary = tegra_primary_plane_create(drm, dc);
1353	if (IS_ERR(primary))
1354		return primary;
1355
1356	if (dc->soc->supports_cursor)
1357		planes_num = 2;
1358	else
1359		planes_num = 1;
1360
1361	for (i = 0; i < planes_num; i++) {
1362		planes[i] = tegra_dc_overlay_plane_create(drm, dc, 1 + i,
1363							  false);
1364		if (IS_ERR(planes[i])) {
1365			err = PTR_ERR(planes[i]);
1366
1367			while (i--)
1368				planes[i]->funcs->destroy(planes[i]);
1369
1370			primary->funcs->destroy(primary);
1371			return ERR_PTR(err);
1372		}
 
1373	}
1374
1375	return primary;
1376}
1377
1378static void tegra_dc_destroy(struct drm_crtc *crtc)
1379{
1380	drm_crtc_cleanup(crtc);
1381}
1382
1383static void tegra_crtc_reset(struct drm_crtc *crtc)
1384{
1385	struct tegra_dc_state *state = kzalloc(sizeof(*state), GFP_KERNEL);
1386
1387	if (crtc->state)
1388		tegra_crtc_atomic_destroy_state(crtc, crtc->state);
 
 
 
 
 
 
 
 
 
1389
1390	__drm_atomic_helper_crtc_reset(crtc, &state->base);
1391}
1392
1393static struct drm_crtc_state *
1394tegra_crtc_atomic_duplicate_state(struct drm_crtc *crtc)
1395{
1396	struct tegra_dc_state *state = to_dc_state(crtc->state);
1397	struct tegra_dc_state *copy;
1398
1399	copy = kmalloc(sizeof(*copy), GFP_KERNEL);
1400	if (!copy)
1401		return NULL;
1402
1403	__drm_atomic_helper_crtc_duplicate_state(crtc, &copy->base);
1404	copy->clk = state->clk;
1405	copy->pclk = state->pclk;
1406	copy->div = state->div;
1407	copy->planes = state->planes;
1408
1409	return &copy->base;
1410}
1411
1412static void tegra_crtc_atomic_destroy_state(struct drm_crtc *crtc,
1413					    struct drm_crtc_state *state)
1414{
1415	__drm_atomic_helper_crtc_destroy_state(state);
1416	kfree(state);
1417}
1418
1419#define DEBUGFS_REG32(_name) { .name = #_name, .offset = _name }
1420
1421static const struct debugfs_reg32 tegra_dc_regs[] = {
1422	DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT),
1423	DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT_CNTRL),
1424	DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT_ERROR),
1425	DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT),
1426	DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT_CNTRL),
1427	DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT_ERROR),
1428	DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT),
1429	DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT_CNTRL),
1430	DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT_ERROR),
1431	DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT),
1432	DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT_CNTRL),
1433	DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT_ERROR),
1434	DEBUGFS_REG32(DC_CMD_CONT_SYNCPT_VSYNC),
1435	DEBUGFS_REG32(DC_CMD_DISPLAY_COMMAND_OPTION0),
1436	DEBUGFS_REG32(DC_CMD_DISPLAY_COMMAND),
1437	DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE),
1438	DEBUGFS_REG32(DC_CMD_DISPLAY_POWER_CONTROL),
1439	DEBUGFS_REG32(DC_CMD_INT_STATUS),
1440	DEBUGFS_REG32(DC_CMD_INT_MASK),
1441	DEBUGFS_REG32(DC_CMD_INT_ENABLE),
1442	DEBUGFS_REG32(DC_CMD_INT_TYPE),
1443	DEBUGFS_REG32(DC_CMD_INT_POLARITY),
1444	DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE1),
1445	DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE2),
1446	DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE3),
1447	DEBUGFS_REG32(DC_CMD_STATE_ACCESS),
1448	DEBUGFS_REG32(DC_CMD_STATE_CONTROL),
1449	DEBUGFS_REG32(DC_CMD_DISPLAY_WINDOW_HEADER),
1450	DEBUGFS_REG32(DC_CMD_REG_ACT_CONTROL),
1451	DEBUGFS_REG32(DC_COM_CRC_CONTROL),
1452	DEBUGFS_REG32(DC_COM_CRC_CHECKSUM),
1453	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(0)),
1454	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(1)),
1455	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(2)),
1456	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(3)),
1457	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(0)),
1458	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(1)),
1459	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(2)),
1460	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(3)),
1461	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(0)),
1462	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(1)),
1463	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(2)),
1464	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(3)),
1465	DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(0)),
1466	DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(1)),
1467	DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(2)),
1468	DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(3)),
1469	DEBUGFS_REG32(DC_COM_PIN_INPUT_DATA(0)),
1470	DEBUGFS_REG32(DC_COM_PIN_INPUT_DATA(1)),
1471	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(0)),
1472	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(1)),
1473	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(2)),
1474	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(3)),
1475	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(4)),
1476	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(5)),
1477	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(6)),
1478	DEBUGFS_REG32(DC_COM_PIN_MISC_CONTROL),
1479	DEBUGFS_REG32(DC_COM_PIN_PM0_CONTROL),
1480	DEBUGFS_REG32(DC_COM_PIN_PM0_DUTY_CYCLE),
1481	DEBUGFS_REG32(DC_COM_PIN_PM1_CONTROL),
1482	DEBUGFS_REG32(DC_COM_PIN_PM1_DUTY_CYCLE),
1483	DEBUGFS_REG32(DC_COM_SPI_CONTROL),
1484	DEBUGFS_REG32(DC_COM_SPI_START_BYTE),
1485	DEBUGFS_REG32(DC_COM_HSPI_WRITE_DATA_AB),
1486	DEBUGFS_REG32(DC_COM_HSPI_WRITE_DATA_CD),
1487	DEBUGFS_REG32(DC_COM_HSPI_CS_DC),
1488	DEBUGFS_REG32(DC_COM_SCRATCH_REGISTER_A),
1489	DEBUGFS_REG32(DC_COM_SCRATCH_REGISTER_B),
1490	DEBUGFS_REG32(DC_COM_GPIO_CTRL),
1491	DEBUGFS_REG32(DC_COM_GPIO_DEBOUNCE_COUNTER),
1492	DEBUGFS_REG32(DC_COM_CRC_CHECKSUM_LATCHED),
1493	DEBUGFS_REG32(DC_DISP_DISP_SIGNAL_OPTIONS0),
1494	DEBUGFS_REG32(DC_DISP_DISP_SIGNAL_OPTIONS1),
1495	DEBUGFS_REG32(DC_DISP_DISP_WIN_OPTIONS),
1496	DEBUGFS_REG32(DC_DISP_DISP_MEM_HIGH_PRIORITY),
1497	DEBUGFS_REG32(DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER),
1498	DEBUGFS_REG32(DC_DISP_DISP_TIMING_OPTIONS),
1499	DEBUGFS_REG32(DC_DISP_REF_TO_SYNC),
1500	DEBUGFS_REG32(DC_DISP_SYNC_WIDTH),
1501	DEBUGFS_REG32(DC_DISP_BACK_PORCH),
1502	DEBUGFS_REG32(DC_DISP_ACTIVE),
1503	DEBUGFS_REG32(DC_DISP_FRONT_PORCH),
1504	DEBUGFS_REG32(DC_DISP_H_PULSE0_CONTROL),
1505	DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_A),
1506	DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_B),
1507	DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_C),
1508	DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_D),
1509	DEBUGFS_REG32(DC_DISP_H_PULSE1_CONTROL),
1510	DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_A),
1511	DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_B),
1512	DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_C),
1513	DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_D),
1514	DEBUGFS_REG32(DC_DISP_H_PULSE2_CONTROL),
1515	DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_A),
1516	DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_B),
1517	DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_C),
1518	DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_D),
1519	DEBUGFS_REG32(DC_DISP_V_PULSE0_CONTROL),
1520	DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_A),
1521	DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_B),
1522	DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_C),
1523	DEBUGFS_REG32(DC_DISP_V_PULSE1_CONTROL),
1524	DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_A),
1525	DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_B),
1526	DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_C),
1527	DEBUGFS_REG32(DC_DISP_V_PULSE2_CONTROL),
1528	DEBUGFS_REG32(DC_DISP_V_PULSE2_POSITION_A),
1529	DEBUGFS_REG32(DC_DISP_V_PULSE3_CONTROL),
1530	DEBUGFS_REG32(DC_DISP_V_PULSE3_POSITION_A),
1531	DEBUGFS_REG32(DC_DISP_M0_CONTROL),
1532	DEBUGFS_REG32(DC_DISP_M1_CONTROL),
1533	DEBUGFS_REG32(DC_DISP_DI_CONTROL),
1534	DEBUGFS_REG32(DC_DISP_PP_CONTROL),
1535	DEBUGFS_REG32(DC_DISP_PP_SELECT_A),
1536	DEBUGFS_REG32(DC_DISP_PP_SELECT_B),
1537	DEBUGFS_REG32(DC_DISP_PP_SELECT_C),
1538	DEBUGFS_REG32(DC_DISP_PP_SELECT_D),
1539	DEBUGFS_REG32(DC_DISP_DISP_CLOCK_CONTROL),
1540	DEBUGFS_REG32(DC_DISP_DISP_INTERFACE_CONTROL),
1541	DEBUGFS_REG32(DC_DISP_DISP_COLOR_CONTROL),
1542	DEBUGFS_REG32(DC_DISP_SHIFT_CLOCK_OPTIONS),
1543	DEBUGFS_REG32(DC_DISP_DATA_ENABLE_OPTIONS),
1544	DEBUGFS_REG32(DC_DISP_SERIAL_INTERFACE_OPTIONS),
1545	DEBUGFS_REG32(DC_DISP_LCD_SPI_OPTIONS),
1546	DEBUGFS_REG32(DC_DISP_BORDER_COLOR),
1547	DEBUGFS_REG32(DC_DISP_COLOR_KEY0_LOWER),
1548	DEBUGFS_REG32(DC_DISP_COLOR_KEY0_UPPER),
1549	DEBUGFS_REG32(DC_DISP_COLOR_KEY1_LOWER),
1550	DEBUGFS_REG32(DC_DISP_COLOR_KEY1_UPPER),
1551	DEBUGFS_REG32(DC_DISP_CURSOR_FOREGROUND),
1552	DEBUGFS_REG32(DC_DISP_CURSOR_BACKGROUND),
1553	DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR),
1554	DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR_NS),
1555	DEBUGFS_REG32(DC_DISP_CURSOR_POSITION),
1556	DEBUGFS_REG32(DC_DISP_CURSOR_POSITION_NS),
1557	DEBUGFS_REG32(DC_DISP_INIT_SEQ_CONTROL),
1558	DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_A),
1559	DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_B),
1560	DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_C),
1561	DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_D),
1562	DEBUGFS_REG32(DC_DISP_DC_MCCIF_FIFOCTRL),
1563	DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY0A_HYST),
1564	DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY0B_HYST),
1565	DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY1A_HYST),
1566	DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY1B_HYST),
1567	DEBUGFS_REG32(DC_DISP_DAC_CRT_CTRL),
1568	DEBUGFS_REG32(DC_DISP_DISP_MISC_CONTROL),
1569	DEBUGFS_REG32(DC_DISP_SD_CONTROL),
1570	DEBUGFS_REG32(DC_DISP_SD_CSC_COEFF),
1571	DEBUGFS_REG32(DC_DISP_SD_LUT(0)),
1572	DEBUGFS_REG32(DC_DISP_SD_LUT(1)),
1573	DEBUGFS_REG32(DC_DISP_SD_LUT(2)),
1574	DEBUGFS_REG32(DC_DISP_SD_LUT(3)),
1575	DEBUGFS_REG32(DC_DISP_SD_LUT(4)),
1576	DEBUGFS_REG32(DC_DISP_SD_LUT(5)),
1577	DEBUGFS_REG32(DC_DISP_SD_LUT(6)),
1578	DEBUGFS_REG32(DC_DISP_SD_LUT(7)),
1579	DEBUGFS_REG32(DC_DISP_SD_LUT(8)),
1580	DEBUGFS_REG32(DC_DISP_SD_FLICKER_CONTROL),
1581	DEBUGFS_REG32(DC_DISP_DC_PIXEL_COUNT),
1582	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(0)),
1583	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(1)),
1584	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(2)),
1585	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(3)),
1586	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(4)),
1587	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(5)),
1588	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(6)),
1589	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(7)),
1590	DEBUGFS_REG32(DC_DISP_SD_BL_TF(0)),
1591	DEBUGFS_REG32(DC_DISP_SD_BL_TF(1)),
1592	DEBUGFS_REG32(DC_DISP_SD_BL_TF(2)),
1593	DEBUGFS_REG32(DC_DISP_SD_BL_TF(3)),
1594	DEBUGFS_REG32(DC_DISP_SD_BL_CONTROL),
1595	DEBUGFS_REG32(DC_DISP_SD_HW_K_VALUES),
1596	DEBUGFS_REG32(DC_DISP_SD_MAN_K_VALUES),
1597	DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR_HI),
1598	DEBUGFS_REG32(DC_DISP_BLEND_CURSOR_CONTROL),
1599	DEBUGFS_REG32(DC_WIN_WIN_OPTIONS),
1600	DEBUGFS_REG32(DC_WIN_BYTE_SWAP),
1601	DEBUGFS_REG32(DC_WIN_BUFFER_CONTROL),
1602	DEBUGFS_REG32(DC_WIN_COLOR_DEPTH),
1603	DEBUGFS_REG32(DC_WIN_POSITION),
1604	DEBUGFS_REG32(DC_WIN_SIZE),
1605	DEBUGFS_REG32(DC_WIN_PRESCALED_SIZE),
1606	DEBUGFS_REG32(DC_WIN_H_INITIAL_DDA),
1607	DEBUGFS_REG32(DC_WIN_V_INITIAL_DDA),
1608	DEBUGFS_REG32(DC_WIN_DDA_INC),
1609	DEBUGFS_REG32(DC_WIN_LINE_STRIDE),
1610	DEBUGFS_REG32(DC_WIN_BUF_STRIDE),
1611	DEBUGFS_REG32(DC_WIN_UV_BUF_STRIDE),
1612	DEBUGFS_REG32(DC_WIN_BUFFER_ADDR_MODE),
1613	DEBUGFS_REG32(DC_WIN_DV_CONTROL),
1614	DEBUGFS_REG32(DC_WIN_BLEND_NOKEY),
1615	DEBUGFS_REG32(DC_WIN_BLEND_1WIN),
1616	DEBUGFS_REG32(DC_WIN_BLEND_2WIN_X),
1617	DEBUGFS_REG32(DC_WIN_BLEND_2WIN_Y),
1618	DEBUGFS_REG32(DC_WIN_BLEND_3WIN_XY),
1619	DEBUGFS_REG32(DC_WIN_HP_FETCH_CONTROL),
1620	DEBUGFS_REG32(DC_WINBUF_START_ADDR),
1621	DEBUGFS_REG32(DC_WINBUF_START_ADDR_NS),
1622	DEBUGFS_REG32(DC_WINBUF_START_ADDR_U),
1623	DEBUGFS_REG32(DC_WINBUF_START_ADDR_U_NS),
1624	DEBUGFS_REG32(DC_WINBUF_START_ADDR_V),
1625	DEBUGFS_REG32(DC_WINBUF_START_ADDR_V_NS),
1626	DEBUGFS_REG32(DC_WINBUF_ADDR_H_OFFSET),
1627	DEBUGFS_REG32(DC_WINBUF_ADDR_H_OFFSET_NS),
1628	DEBUGFS_REG32(DC_WINBUF_ADDR_V_OFFSET),
1629	DEBUGFS_REG32(DC_WINBUF_ADDR_V_OFFSET_NS),
1630	DEBUGFS_REG32(DC_WINBUF_UFLOW_STATUS),
1631	DEBUGFS_REG32(DC_WINBUF_AD_UFLOW_STATUS),
1632	DEBUGFS_REG32(DC_WINBUF_BD_UFLOW_STATUS),
1633	DEBUGFS_REG32(DC_WINBUF_CD_UFLOW_STATUS),
1634};
1635
1636static int tegra_dc_show_regs(struct seq_file *s, void *data)
1637{
1638	struct drm_info_node *node = s->private;
1639	struct tegra_dc *dc = node->info_ent->data;
1640	unsigned int i;
1641	int err = 0;
1642
1643	drm_modeset_lock(&dc->base.mutex, NULL);
1644
1645	if (!dc->base.state->active) {
1646		err = -EBUSY;
1647		goto unlock;
1648	}
1649
1650	for (i = 0; i < ARRAY_SIZE(tegra_dc_regs); i++) {
1651		unsigned int offset = tegra_dc_regs[i].offset;
1652
1653		seq_printf(s, "%-40s %#05x %08x\n", tegra_dc_regs[i].name,
1654			   offset, tegra_dc_readl(dc, offset));
1655	}
1656
1657unlock:
1658	drm_modeset_unlock(&dc->base.mutex);
1659	return err;
1660}
1661
1662static int tegra_dc_show_crc(struct seq_file *s, void *data)
1663{
1664	struct drm_info_node *node = s->private;
1665	struct tegra_dc *dc = node->info_ent->data;
1666	int err = 0;
1667	u32 value;
1668
1669	drm_modeset_lock(&dc->base.mutex, NULL);
1670
1671	if (!dc->base.state->active) {
1672		err = -EBUSY;
1673		goto unlock;
1674	}
1675
1676	value = DC_COM_CRC_CONTROL_ACTIVE_DATA | DC_COM_CRC_CONTROL_ENABLE;
1677	tegra_dc_writel(dc, value, DC_COM_CRC_CONTROL);
1678	tegra_dc_commit(dc);
1679
1680	drm_crtc_wait_one_vblank(&dc->base);
1681	drm_crtc_wait_one_vblank(&dc->base);
1682
1683	value = tegra_dc_readl(dc, DC_COM_CRC_CHECKSUM);
1684	seq_printf(s, "%08x\n", value);
1685
1686	tegra_dc_writel(dc, 0, DC_COM_CRC_CONTROL);
1687
1688unlock:
1689	drm_modeset_unlock(&dc->base.mutex);
1690	return err;
1691}
1692
1693static int tegra_dc_show_stats(struct seq_file *s, void *data)
1694{
1695	struct drm_info_node *node = s->private;
1696	struct tegra_dc *dc = node->info_ent->data;
1697
1698	seq_printf(s, "frames: %lu\n", dc->stats.frames);
1699	seq_printf(s, "vblank: %lu\n", dc->stats.vblank);
1700	seq_printf(s, "underflow: %lu\n", dc->stats.underflow);
1701	seq_printf(s, "overflow: %lu\n", dc->stats.overflow);
1702
1703	seq_printf(s, "frames total: %lu\n", dc->stats.frames_total);
1704	seq_printf(s, "vblank total: %lu\n", dc->stats.vblank_total);
1705	seq_printf(s, "underflow total: %lu\n", dc->stats.underflow_total);
1706	seq_printf(s, "overflow total: %lu\n", dc->stats.overflow_total);
1707
1708	return 0;
1709}
1710
1711static struct drm_info_list debugfs_files[] = {
1712	{ "regs", tegra_dc_show_regs, 0, NULL },
1713	{ "crc", tegra_dc_show_crc, 0, NULL },
1714	{ "stats", tegra_dc_show_stats, 0, NULL },
1715};
1716
1717static int tegra_dc_late_register(struct drm_crtc *crtc)
1718{
1719	unsigned int i, count = ARRAY_SIZE(debugfs_files);
1720	struct drm_minor *minor = crtc->dev->primary;
1721	struct dentry *root;
1722	struct tegra_dc *dc = to_tegra_dc(crtc);
1723
1724#ifdef CONFIG_DEBUG_FS
1725	root = crtc->debugfs_entry;
1726#else
1727	root = NULL;
1728#endif
1729
1730	dc->debugfs_files = kmemdup(debugfs_files, sizeof(debugfs_files),
1731				    GFP_KERNEL);
1732	if (!dc->debugfs_files)
1733		return -ENOMEM;
1734
1735	for (i = 0; i < count; i++)
1736		dc->debugfs_files[i].data = dc;
1737
1738	drm_debugfs_create_files(dc->debugfs_files, count, root, minor);
1739
1740	return 0;
1741}
1742
1743static void tegra_dc_early_unregister(struct drm_crtc *crtc)
1744{
1745	unsigned int count = ARRAY_SIZE(debugfs_files);
1746	struct drm_minor *minor = crtc->dev->primary;
1747	struct tegra_dc *dc = to_tegra_dc(crtc);
1748
1749	drm_debugfs_remove_files(dc->debugfs_files, count, minor);
1750	kfree(dc->debugfs_files);
1751	dc->debugfs_files = NULL;
1752}
1753
1754static u32 tegra_dc_get_vblank_counter(struct drm_crtc *crtc)
1755{
1756	struct tegra_dc *dc = to_tegra_dc(crtc);
1757
1758	/* XXX vblank syncpoints don't work with nvdisplay yet */
1759	if (dc->syncpt && !dc->soc->has_nvdisplay)
1760		return host1x_syncpt_read(dc->syncpt);
1761
1762	/* fallback to software emulated VBLANK counter */
1763	return (u32)drm_crtc_vblank_count(&dc->base);
1764}
1765
1766static int tegra_dc_enable_vblank(struct drm_crtc *crtc)
1767{
1768	struct tegra_dc *dc = to_tegra_dc(crtc);
1769	u32 value;
1770
1771	value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
1772	value |= VBLANK_INT;
1773	tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1774
1775	return 0;
1776}
1777
1778static void tegra_dc_disable_vblank(struct drm_crtc *crtc)
1779{
1780	struct tegra_dc *dc = to_tegra_dc(crtc);
1781	u32 value;
1782
1783	value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
1784	value &= ~VBLANK_INT;
1785	tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1786}
1787
1788static const struct drm_crtc_funcs tegra_crtc_funcs = {
1789	.page_flip = drm_atomic_helper_page_flip,
1790	.set_config = drm_atomic_helper_set_config,
1791	.destroy = tegra_dc_destroy,
1792	.reset = tegra_crtc_reset,
1793	.atomic_duplicate_state = tegra_crtc_atomic_duplicate_state,
1794	.atomic_destroy_state = tegra_crtc_atomic_destroy_state,
1795	.late_register = tegra_dc_late_register,
1796	.early_unregister = tegra_dc_early_unregister,
1797	.get_vblank_counter = tegra_dc_get_vblank_counter,
1798	.enable_vblank = tegra_dc_enable_vblank,
1799	.disable_vblank = tegra_dc_disable_vblank,
1800};
1801
1802static int tegra_dc_set_timings(struct tegra_dc *dc,
1803				struct drm_display_mode *mode)
1804{
1805	unsigned int h_ref_to_sync = 1;
1806	unsigned int v_ref_to_sync = 1;
1807	unsigned long value;
1808
1809	if (!dc->soc->has_nvdisplay) {
1810		tegra_dc_writel(dc, 0x0, DC_DISP_DISP_TIMING_OPTIONS);
1811
1812		value = (v_ref_to_sync << 16) | h_ref_to_sync;
1813		tegra_dc_writel(dc, value, DC_DISP_REF_TO_SYNC);
1814	}
1815
1816	value = ((mode->vsync_end - mode->vsync_start) << 16) |
1817		((mode->hsync_end - mode->hsync_start) <<  0);
1818	tegra_dc_writel(dc, value, DC_DISP_SYNC_WIDTH);
1819
1820	value = ((mode->vtotal - mode->vsync_end) << 16) |
1821		((mode->htotal - mode->hsync_end) <<  0);
1822	tegra_dc_writel(dc, value, DC_DISP_BACK_PORCH);
1823
1824	value = ((mode->vsync_start - mode->vdisplay) << 16) |
1825		((mode->hsync_start - mode->hdisplay) <<  0);
1826	tegra_dc_writel(dc, value, DC_DISP_FRONT_PORCH);
1827
1828	value = (mode->vdisplay << 16) | mode->hdisplay;
1829	tegra_dc_writel(dc, value, DC_DISP_ACTIVE);
1830
1831	return 0;
1832}
1833
1834/**
1835 * tegra_dc_state_setup_clock - check clock settings and store them in atomic
1836 *     state
1837 * @dc: display controller
1838 * @crtc_state: CRTC atomic state
1839 * @clk: parent clock for display controller
1840 * @pclk: pixel clock
1841 * @div: shift clock divider
1842 *
1843 * Returns:
1844 * 0 on success or a negative error-code on failure.
1845 */
1846int tegra_dc_state_setup_clock(struct tegra_dc *dc,
1847			       struct drm_crtc_state *crtc_state,
1848			       struct clk *clk, unsigned long pclk,
1849			       unsigned int div)
1850{
1851	struct tegra_dc_state *state = to_dc_state(crtc_state);
1852
1853	if (!clk_has_parent(dc->clk, clk))
1854		return -EINVAL;
1855
1856	state->clk = clk;
1857	state->pclk = pclk;
1858	state->div = div;
1859
1860	return 0;
1861}
1862
1863static void tegra_dc_update_voltage_state(struct tegra_dc *dc,
1864					  struct tegra_dc_state *state)
1865{
1866	unsigned long rate, pstate;
1867	struct dev_pm_opp *opp;
1868	int err;
1869
1870	if (!dc->has_opp_table)
1871		return;
1872
1873	/* calculate actual pixel clock rate which depends on internal divider */
1874	rate = DIV_ROUND_UP(clk_get_rate(dc->clk) * 2, state->div + 2);
1875
1876	/* find suitable OPP for the rate */
1877	opp = dev_pm_opp_find_freq_ceil(dc->dev, &rate);
1878
1879	/*
1880	 * Very high resolution modes may results in a clock rate that is
1881	 * above the characterized maximum. In this case it's okay to fall
1882	 * back to the characterized maximum.
1883	 */
1884	if (opp == ERR_PTR(-ERANGE))
1885		opp = dev_pm_opp_find_freq_floor(dc->dev, &rate);
1886
1887	if (IS_ERR(opp)) {
1888		dev_err(dc->dev, "failed to find OPP for %luHz: %pe\n",
1889			rate, opp);
1890		return;
1891	}
1892
1893	pstate = dev_pm_opp_get_required_pstate(opp, 0);
1894	dev_pm_opp_put(opp);
1895
1896	/*
1897	 * The minimum core voltage depends on the pixel clock rate (which
1898	 * depends on internal clock divider of the CRTC) and not on the
1899	 * rate of the display controller clock. This is why we're not using
1900	 * dev_pm_opp_set_rate() API and instead controlling the power domain
1901	 * directly.
1902	 */
1903	err = dev_pm_genpd_set_performance_state(dc->dev, pstate);
1904	if (err)
1905		dev_err(dc->dev, "failed to set power domain state to %lu: %d\n",
1906			pstate, err);
1907}
1908
1909static void tegra_dc_set_clock_rate(struct tegra_dc *dc,
1910				    struct tegra_dc_state *state)
1911{
 
1912	int err;
1913
1914	err = clk_set_parent(dc->clk, state->clk);
1915	if (err < 0)
1916		dev_err(dc->dev, "failed to set parent clock: %d\n", err);
1917
1918	/*
1919	 * Outputs may not want to change the parent clock rate. This is only
1920	 * relevant to Tegra20 where only a single display PLL is available.
1921	 * Since that PLL would typically be used for HDMI, an internal LVDS
1922	 * panel would need to be driven by some other clock such as PLL_P
1923	 * which is shared with other peripherals. Changing the clock rate
1924	 * should therefore be avoided.
1925	 */
1926	if (state->pclk > 0) {
1927		err = clk_set_rate(state->clk, state->pclk);
1928		if (err < 0)
1929			dev_err(dc->dev,
1930				"failed to set clock rate to %lu Hz\n",
1931				state->pclk);
1932
1933		err = clk_set_rate(dc->clk, state->pclk);
1934		if (err < 0)
1935			dev_err(dc->dev, "failed to set clock %pC to %lu Hz: %d\n",
1936				dc->clk, state->pclk, err);
1937	}
1938
1939	DRM_DEBUG_KMS("rate: %lu, div: %u\n", clk_get_rate(dc->clk),
1940		      state->div);
1941	DRM_DEBUG_KMS("pclk: %lu\n", state->pclk);
1942
1943	tegra_dc_update_voltage_state(dc, state);
 
1944}
1945
1946static void tegra_dc_stop(struct tegra_dc *dc)
1947{
1948	u32 value;
1949
1950	/* stop the display controller */
1951	value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
1952	value &= ~DISP_CTRL_MODE_MASK;
1953	tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
1954
1955	tegra_dc_commit(dc);
1956}
1957
1958static bool tegra_dc_idle(struct tegra_dc *dc)
1959{
1960	u32 value;
1961
1962	value = tegra_dc_readl_active(dc, DC_CMD_DISPLAY_COMMAND);
1963
1964	return (value & DISP_CTRL_MODE_MASK) == 0;
1965}
1966
1967static int tegra_dc_wait_idle(struct tegra_dc *dc, unsigned long timeout)
1968{
1969	timeout = jiffies + msecs_to_jiffies(timeout);
1970
1971	while (time_before(jiffies, timeout)) {
1972		if (tegra_dc_idle(dc))
1973			return 0;
1974
1975		usleep_range(1000, 2000);
1976	}
1977
1978	dev_dbg(dc->dev, "timeout waiting for DC to become idle\n");
1979	return -ETIMEDOUT;
1980}
1981
1982static void
1983tegra_crtc_update_memory_bandwidth(struct drm_crtc *crtc,
1984				   struct drm_atomic_state *state,
1985				   bool prepare_bandwidth_transition)
1986{
1987	const struct tegra_plane_state *old_tegra_state, *new_tegra_state;
1988	u32 i, new_avg_bw, old_avg_bw, new_peak_bw, old_peak_bw;
1989	const struct drm_plane_state *old_plane_state;
1990	const struct drm_crtc_state *old_crtc_state;
1991	struct tegra_dc_window window, old_window;
1992	struct tegra_dc *dc = to_tegra_dc(crtc);
1993	struct tegra_plane *tegra;
1994	struct drm_plane *plane;
1995
1996	if (dc->soc->has_nvdisplay)
1997		return;
1998
1999	old_crtc_state = drm_atomic_get_old_crtc_state(state, crtc);
2000
2001	if (!crtc->state->active) {
2002		if (!old_crtc_state->active)
2003			return;
2004
2005		/*
2006		 * When CRTC is disabled on DPMS, the state of attached planes
2007		 * is kept unchanged. Hence we need to enforce removal of the
2008		 * bandwidths from the ICC paths.
2009		 */
2010		drm_atomic_crtc_for_each_plane(plane, crtc) {
2011			tegra = to_tegra_plane(plane);
2012
2013			icc_set_bw(tegra->icc_mem, 0, 0);
2014			icc_set_bw(tegra->icc_mem_vfilter, 0, 0);
2015		}
2016
2017		return;
2018	}
2019
2020	for_each_old_plane_in_state(old_crtc_state->state, plane,
2021				    old_plane_state, i) {
2022		old_tegra_state = to_const_tegra_plane_state(old_plane_state);
2023		new_tegra_state = to_const_tegra_plane_state(plane->state);
2024		tegra = to_tegra_plane(plane);
2025
2026		/*
2027		 * We're iterating over the global atomic state and it contains
2028		 * planes from another CRTC, hence we need to filter out the
2029		 * planes unrelated to this CRTC.
2030		 */
2031		if (tegra->dc != dc)
2032			continue;
2033
2034		new_avg_bw = new_tegra_state->avg_memory_bandwidth;
2035		old_avg_bw = old_tegra_state->avg_memory_bandwidth;
2036
2037		new_peak_bw = new_tegra_state->total_peak_memory_bandwidth;
2038		old_peak_bw = old_tegra_state->total_peak_memory_bandwidth;
2039
2040		/*
2041		 * See the comment related to !crtc->state->active above,
2042		 * which explains why bandwidths need to be updated when
2043		 * CRTC is turning ON.
2044		 */
2045		if (new_avg_bw == old_avg_bw && new_peak_bw == old_peak_bw &&
2046		    old_crtc_state->active)
2047			continue;
2048
2049		window.src.h = drm_rect_height(&plane->state->src) >> 16;
2050		window.dst.h = drm_rect_height(&plane->state->dst);
2051
2052		old_window.src.h = drm_rect_height(&old_plane_state->src) >> 16;
2053		old_window.dst.h = drm_rect_height(&old_plane_state->dst);
2054
2055		/*
2056		 * During the preparation phase (atomic_begin), the memory
2057		 * freq should go high before the DC changes are committed
2058		 * if bandwidth requirement goes up, otherwise memory freq
2059		 * should to stay high if BW requirement goes down.  The
2060		 * opposite applies to the completion phase (post_commit).
2061		 */
2062		if (prepare_bandwidth_transition) {
2063			new_avg_bw = max(old_avg_bw, new_avg_bw);
2064			new_peak_bw = max(old_peak_bw, new_peak_bw);
2065
2066			if (tegra_plane_use_vertical_filtering(tegra, &old_window))
2067				window = old_window;
2068		}
2069
2070		icc_set_bw(tegra->icc_mem, new_avg_bw, new_peak_bw);
2071
2072		if (tegra_plane_use_vertical_filtering(tegra, &window))
2073			icc_set_bw(tegra->icc_mem_vfilter, new_avg_bw, new_peak_bw);
2074		else
2075			icc_set_bw(tegra->icc_mem_vfilter, 0, 0);
2076	}
2077}
2078
2079static void tegra_crtc_atomic_disable(struct drm_crtc *crtc,
2080				      struct drm_atomic_state *state)
2081{
2082	struct tegra_dc *dc = to_tegra_dc(crtc);
2083	u32 value;
2084	int err;
2085
2086	if (!tegra_dc_idle(dc)) {
2087		tegra_dc_stop(dc);
2088
2089		/*
2090		 * Ignore the return value, there isn't anything useful to do
2091		 * in case this fails.
2092		 */
2093		tegra_dc_wait_idle(dc, 100);
2094	}
2095
2096	/*
2097	 * This should really be part of the RGB encoder driver, but clearing
2098	 * these bits has the side-effect of stopping the display controller.
2099	 * When that happens no VBLANK interrupts will be raised. At the same
2100	 * time the encoder is disabled before the display controller, so the
2101	 * above code is always going to timeout waiting for the controller
2102	 * to go idle.
2103	 *
2104	 * Given the close coupling between the RGB encoder and the display
2105	 * controller doing it here is still kind of okay. None of the other
2106	 * encoder drivers require these bits to be cleared.
2107	 *
2108	 * XXX: Perhaps given that the display controller is switched off at
2109	 * this point anyway maybe clearing these bits isn't even useful for
2110	 * the RGB encoder?
2111	 */
2112	if (dc->rgb) {
2113		value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
2114		value &= ~(PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
2115			   PW4_ENABLE | PM0_ENABLE | PM1_ENABLE);
2116		tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
2117	}
2118
2119	tegra_dc_stats_reset(&dc->stats);
2120	drm_crtc_vblank_off(crtc);
2121
2122	spin_lock_irq(&crtc->dev->event_lock);
2123
2124	if (crtc->state->event) {
2125		drm_crtc_send_vblank_event(crtc, crtc->state->event);
2126		crtc->state->event = NULL;
2127	}
2128
2129	spin_unlock_irq(&crtc->dev->event_lock);
2130
2131	err = host1x_client_suspend(&dc->client);
2132	if (err < 0)
2133		dev_err(dc->dev, "failed to suspend: %d\n", err);
2134
2135	if (dc->has_opp_table) {
2136		err = dev_pm_genpd_set_performance_state(dc->dev, 0);
2137		if (err)
2138			dev_err(dc->dev,
2139				"failed to clear power domain state: %d\n", err);
2140	}
2141}
2142
2143static void tegra_crtc_atomic_enable(struct drm_crtc *crtc,
2144				     struct drm_atomic_state *state)
2145{
2146	struct drm_display_mode *mode = &crtc->state->adjusted_mode;
2147	struct tegra_dc_state *crtc_state = to_dc_state(crtc->state);
2148	struct tegra_dc *dc = to_tegra_dc(crtc);
2149	u32 value;
2150	int err;
2151
2152	/* apply PLL changes */
2153	tegra_dc_set_clock_rate(dc, crtc_state);
2154
2155	err = host1x_client_resume(&dc->client);
2156	if (err < 0) {
2157		dev_err(dc->dev, "failed to resume: %d\n", err);
2158		return;
2159	}
2160
2161	/* initialize display controller */
2162	if (dc->syncpt) {
2163		u32 syncpt = host1x_syncpt_id(dc->syncpt), enable;
2164
2165		if (dc->soc->has_nvdisplay)
2166			enable = 1 << 31;
2167		else
2168			enable = 1 << 8;
2169
2170		value = SYNCPT_CNTRL_NO_STALL;
2171		tegra_dc_writel(dc, value, DC_CMD_GENERAL_INCR_SYNCPT_CNTRL);
2172
2173		value = enable | syncpt;
2174		tegra_dc_writel(dc, value, DC_CMD_CONT_SYNCPT_VSYNC);
2175	}
2176
2177	if (dc->soc->has_nvdisplay) {
2178		value = DSC_TO_UF_INT | DSC_BBUF_UF_INT | DSC_RBUF_UF_INT |
2179			DSC_OBUF_UF_INT;
2180		tegra_dc_writel(dc, value, DC_CMD_INT_TYPE);
2181
2182		value = DSC_TO_UF_INT | DSC_BBUF_UF_INT | DSC_RBUF_UF_INT |
2183			DSC_OBUF_UF_INT | SD3_BUCKET_WALK_DONE_INT |
2184			HEAD_UF_INT | MSF_INT | REG_TMOUT_INT |
2185			REGION_CRC_INT | V_PULSE2_INT | V_PULSE3_INT |
2186			VBLANK_INT | FRAME_END_INT;
2187		tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY);
2188
2189		value = SD3_BUCKET_WALK_DONE_INT | HEAD_UF_INT | VBLANK_INT |
2190			FRAME_END_INT;
2191		tegra_dc_writel(dc, value, DC_CMD_INT_ENABLE);
2192
2193		value = HEAD_UF_INT | REG_TMOUT_INT | FRAME_END_INT;
2194		tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
2195
2196		tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
2197	} else {
2198		value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
2199			WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
2200		tegra_dc_writel(dc, value, DC_CMD_INT_TYPE);
2201
2202		value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
2203			WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
2204		tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY);
2205
2206		/* initialize timer */
2207		value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(0x20) |
2208			WINDOW_B_THRESHOLD(0x20) | WINDOW_C_THRESHOLD(0x20);
2209		tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY);
2210
2211		value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(1) |
2212			WINDOW_B_THRESHOLD(1) | WINDOW_C_THRESHOLD(1);
2213		tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER);
2214
2215		value = VBLANK_INT | WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
2216			WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
2217		tegra_dc_writel(dc, value, DC_CMD_INT_ENABLE);
2218
2219		value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
2220			WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
2221		tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
2222	}
2223
2224	if (dc->soc->supports_background_color)
2225		tegra_dc_writel(dc, 0, DC_DISP_BLEND_BACKGROUND_COLOR);
2226	else
2227		tegra_dc_writel(dc, 0, DC_DISP_BORDER_COLOR);
2228
2229	/* apply pixel clock changes */
2230	if (!dc->soc->has_nvdisplay) {
2231		value = SHIFT_CLK_DIVIDER(crtc_state->div) | PIXEL_CLK_DIVIDER_PCD1;
2232		tegra_dc_writel(dc, value, DC_DISP_DISP_CLOCK_CONTROL);
2233	}
2234
2235	/* program display mode */
2236	tegra_dc_set_timings(dc, mode);
2237
2238	/* interlacing isn't supported yet, so disable it */
2239	if (dc->soc->supports_interlacing) {
2240		value = tegra_dc_readl(dc, DC_DISP_INTERLACE_CONTROL);
2241		value &= ~INTERLACE_ENABLE;
2242		tegra_dc_writel(dc, value, DC_DISP_INTERLACE_CONTROL);
2243	}
2244
2245	value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
2246	value &= ~DISP_CTRL_MODE_MASK;
2247	value |= DISP_CTRL_MODE_C_DISPLAY;
2248	tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
2249
2250	if (!dc->soc->has_nvdisplay) {
2251		value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
2252		value |= PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
2253			 PW4_ENABLE | PM0_ENABLE | PM1_ENABLE;
2254		tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
2255	}
2256
2257	/* enable underflow reporting and display red for missing pixels */
2258	if (dc->soc->has_nvdisplay) {
2259		value = UNDERFLOW_MODE_RED | UNDERFLOW_REPORT_ENABLE;
2260		tegra_dc_writel(dc, value, DC_COM_RG_UNDERFLOW);
2261	}
2262
2263	if (dc->rgb) {
2264		/* XXX: parameterize? */
2265		value = SC0_H_QUALIFIER_NONE | SC1_H_QUALIFIER_NONE;
2266		tegra_dc_writel(dc, value, DC_DISP_SHIFT_CLOCK_OPTIONS);
2267	}
2268
2269	tegra_dc_commit(dc);
2270
2271	drm_crtc_vblank_on(crtc);
2272}
2273
 
 
 
 
 
 
2274static void tegra_crtc_atomic_begin(struct drm_crtc *crtc,
2275				    struct drm_atomic_state *state)
2276{
2277	unsigned long flags;
2278
2279	tegra_crtc_update_memory_bandwidth(crtc, state, true);
2280
2281	if (crtc->state->event) {
2282		spin_lock_irqsave(&crtc->dev->event_lock, flags);
2283
2284		if (drm_crtc_vblank_get(crtc) != 0)
2285			drm_crtc_send_vblank_event(crtc, crtc->state->event);
2286		else
2287			drm_crtc_arm_vblank_event(crtc, crtc->state->event);
2288
2289		spin_unlock_irqrestore(&crtc->dev->event_lock, flags);
2290
 
2291		crtc->state->event = NULL;
2292	}
2293}
2294
2295static void tegra_crtc_atomic_flush(struct drm_crtc *crtc,
2296				    struct drm_atomic_state *state)
2297{
2298	struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state,
2299									  crtc);
2300	struct tegra_dc_state *dc_state = to_dc_state(crtc_state);
2301	struct tegra_dc *dc = to_tegra_dc(crtc);
2302	u32 value;
2303
2304	value = dc_state->planes << 8 | GENERAL_UPDATE;
2305	tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL);
2306	value = tegra_dc_readl(dc, DC_CMD_STATE_CONTROL);
2307
2308	value = dc_state->planes | GENERAL_ACT_REQ;
2309	tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL);
2310	value = tegra_dc_readl(dc, DC_CMD_STATE_CONTROL);
2311}
2312
2313static bool tegra_plane_is_cursor(const struct drm_plane_state *state)
2314{
2315	const struct tegra_dc_soc_info *soc = to_tegra_dc(state->crtc)->soc;
2316	const struct drm_format_info *fmt = state->fb->format;
2317	unsigned int src_w = drm_rect_width(&state->src) >> 16;
2318	unsigned int dst_w = drm_rect_width(&state->dst);
2319
2320	if (state->plane->type != DRM_PLANE_TYPE_CURSOR)
2321		return false;
2322
2323	if (soc->supports_cursor)
2324		return true;
2325
2326	if (src_w != dst_w || fmt->num_planes != 1 || src_w * fmt->cpp[0] > 256)
2327		return false;
2328
2329	return true;
2330}
2331
2332static unsigned long
2333tegra_plane_overlap_mask(struct drm_crtc_state *state,
2334			 const struct drm_plane_state *plane_state)
2335{
2336	const struct drm_plane_state *other_state;
2337	const struct tegra_plane *tegra;
2338	unsigned long overlap_mask = 0;
2339	struct drm_plane *plane;
2340	struct drm_rect rect;
2341
2342	if (!plane_state->visible || !plane_state->fb)
2343		return 0;
2344
2345	/*
2346	 * Data-prefetch FIFO will easily help to overcome temporal memory
2347	 * pressure if other plane overlaps with the cursor plane.
2348	 */
2349	if (tegra_plane_is_cursor(plane_state))
2350		return 0;
2351
2352	drm_atomic_crtc_state_for_each_plane_state(plane, other_state, state) {
2353		rect = plane_state->dst;
2354
2355		tegra = to_tegra_plane(other_state->plane);
2356
2357		if (!other_state->visible || !other_state->fb)
2358			continue;
2359
2360		/*
2361		 * Ignore cursor plane overlaps because it's not practical to
2362		 * assume that it contributes to the bandwidth in overlapping
2363		 * area if window width is small.
2364		 */
2365		if (tegra_plane_is_cursor(other_state))
2366			continue;
2367
2368		if (drm_rect_intersect(&rect, &other_state->dst))
2369			overlap_mask |= BIT(tegra->index);
2370	}
2371
2372	return overlap_mask;
2373}
2374
2375static int tegra_crtc_calculate_memory_bandwidth(struct drm_crtc *crtc,
2376						 struct drm_atomic_state *state)
2377{
2378	ulong overlap_mask[TEGRA_DC_LEGACY_PLANES_NUM] = {}, mask;
2379	u32 plane_peak_bw[TEGRA_DC_LEGACY_PLANES_NUM] = {};
2380	bool all_planes_overlap_simultaneously = true;
2381	const struct tegra_plane_state *tegra_state;
2382	const struct drm_plane_state *plane_state;
2383	struct tegra_dc *dc = to_tegra_dc(crtc);
2384	const struct drm_crtc_state *old_state;
2385	struct drm_crtc_state *new_state;
2386	struct tegra_plane *tegra;
2387	struct drm_plane *plane;
2388
2389	/*
2390	 * The nv-display uses shared planes.  The algorithm below assumes
2391	 * maximum 3 planes per-CRTC, this assumption isn't applicable to
2392	 * the nv-display.  Note that T124 support has additional windows,
2393	 * but currently they aren't supported by the driver.
2394	 */
2395	if (dc->soc->has_nvdisplay)
2396		return 0;
2397
2398	new_state = drm_atomic_get_new_crtc_state(state, crtc);
2399	old_state = drm_atomic_get_old_crtc_state(state, crtc);
2400
2401	/*
2402	 * For overlapping planes pixel's data is fetched for each plane at
2403	 * the same time, hence bandwidths are accumulated in this case.
2404	 * This needs to be taken into account for calculating total bandwidth
2405	 * consumed by all planes.
2406	 *
2407	 * Here we get the overlapping state of each plane, which is a
2408	 * bitmask of plane indices telling with what planes there is an
2409	 * overlap. Note that bitmask[plane] includes BIT(plane) in order
2410	 * to make further code nicer and simpler.
2411	 */
2412	drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, new_state) {
2413		tegra_state = to_const_tegra_plane_state(plane_state);
2414		tegra = to_tegra_plane(plane);
2415
2416		if (WARN_ON_ONCE(tegra->index >= TEGRA_DC_LEGACY_PLANES_NUM))
2417			return -EINVAL;
2418
2419		plane_peak_bw[tegra->index] = tegra_state->peak_memory_bandwidth;
2420		mask = tegra_plane_overlap_mask(new_state, plane_state);
2421		overlap_mask[tegra->index] = mask;
2422
2423		if (hweight_long(mask) != 3)
2424			all_planes_overlap_simultaneously = false;
2425	}
2426
2427	/*
2428	 * Then we calculate maximum bandwidth of each plane state.
2429	 * The bandwidth includes the plane BW + BW of the "simultaneously"
2430	 * overlapping planes, where "simultaneously" means areas where DC
2431	 * fetches from the planes simultaneously during of scan-out process.
2432	 *
2433	 * For example, if plane A overlaps with planes B and C, but B and C
2434	 * don't overlap, then the peak bandwidth will be either in area where
2435	 * A-and-B or A-and-C planes overlap.
2436	 *
2437	 * The plane_peak_bw[] contains peak memory bandwidth values of
2438	 * each plane, this information is needed by interconnect provider
2439	 * in order to set up latency allowance based on the peak BW, see
2440	 * tegra_crtc_update_memory_bandwidth().
2441	 */
2442	drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, new_state) {
2443		u32 i, old_peak_bw, new_peak_bw, overlap_bw = 0;
2444
2445		/*
2446		 * Note that plane's atomic check doesn't touch the
2447		 * total_peak_memory_bandwidth of enabled plane, hence the
2448		 * current state contains the old bandwidth state from the
2449		 * previous CRTC commit.
2450		 */
2451		tegra_state = to_const_tegra_plane_state(plane_state);
2452		tegra = to_tegra_plane(plane);
2453
2454		for_each_set_bit(i, &overlap_mask[tegra->index], 3) {
2455			if (i == tegra->index)
2456				continue;
2457
2458			if (all_planes_overlap_simultaneously)
2459				overlap_bw += plane_peak_bw[i];
2460			else
2461				overlap_bw = max(overlap_bw, plane_peak_bw[i]);
2462		}
2463
2464		new_peak_bw = plane_peak_bw[tegra->index] + overlap_bw;
2465		old_peak_bw = tegra_state->total_peak_memory_bandwidth;
2466
2467		/*
2468		 * If plane's peak bandwidth changed (for example plane isn't
2469		 * overlapped anymore) and plane isn't in the atomic state,
2470		 * then add plane to the state in order to have the bandwidth
2471		 * updated.
2472		 */
2473		if (old_peak_bw != new_peak_bw) {
2474			struct tegra_plane_state *new_tegra_state;
2475			struct drm_plane_state *new_plane_state;
2476
2477			new_plane_state = drm_atomic_get_plane_state(state, plane);
2478			if (IS_ERR(new_plane_state))
2479				return PTR_ERR(new_plane_state);
2480
2481			new_tegra_state = to_tegra_plane_state(new_plane_state);
2482			new_tegra_state->total_peak_memory_bandwidth = new_peak_bw;
2483		}
2484	}
2485
2486	return 0;
2487}
2488
2489static int tegra_crtc_atomic_check(struct drm_crtc *crtc,
2490				   struct drm_atomic_state *state)
2491{
2492	int err;
2493
2494	err = tegra_crtc_calculate_memory_bandwidth(crtc, state);
2495	if (err)
2496		return err;
2497
2498	return 0;
2499}
2500
2501void tegra_crtc_atomic_post_commit(struct drm_crtc *crtc,
2502				   struct drm_atomic_state *state)
2503{
2504	/*
2505	 * Display bandwidth is allowed to go down only once hardware state
2506	 * is known to be armed, i.e. state was committed and VBLANK event
2507	 * received.
2508	 */
2509	tegra_crtc_update_memory_bandwidth(crtc, state, false);
2510}
2511
2512static const struct drm_crtc_helper_funcs tegra_crtc_helper_funcs = {
 
 
2513	.atomic_check = tegra_crtc_atomic_check,
2514	.atomic_begin = tegra_crtc_atomic_begin,
2515	.atomic_flush = tegra_crtc_atomic_flush,
2516	.atomic_enable = tegra_crtc_atomic_enable,
2517	.atomic_disable = tegra_crtc_atomic_disable,
2518};
2519
2520static irqreturn_t tegra_dc_irq(int irq, void *data)
2521{
2522	struct tegra_dc *dc = data;
2523	unsigned long status;
2524
2525	status = tegra_dc_readl(dc, DC_CMD_INT_STATUS);
2526	tegra_dc_writel(dc, status, DC_CMD_INT_STATUS);
2527
2528	if (status & FRAME_END_INT) {
2529		/*
2530		dev_dbg(dc->dev, "%s(): frame end\n", __func__);
2531		*/
2532		dc->stats.frames_total++;
2533		dc->stats.frames++;
2534	}
2535
2536	if (status & VBLANK_INT) {
2537		/*
2538		dev_dbg(dc->dev, "%s(): vertical blank\n", __func__);
2539		*/
2540		drm_crtc_handle_vblank(&dc->base);
2541		dc->stats.vblank_total++;
2542		dc->stats.vblank++;
2543	}
2544
2545	if (status & (WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT)) {
2546		/*
2547		dev_dbg(dc->dev, "%s(): underflow\n", __func__);
2548		*/
2549		dc->stats.underflow_total++;
2550		dc->stats.underflow++;
2551	}
2552
2553	if (status & (WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT)) {
2554		/*
2555		dev_dbg(dc->dev, "%s(): overflow\n", __func__);
2556		*/
2557		dc->stats.overflow_total++;
2558		dc->stats.overflow++;
2559	}
2560
2561	if (status & HEAD_UF_INT) {
2562		dev_dbg_ratelimited(dc->dev, "%s(): head underflow\n", __func__);
2563		dc->stats.underflow_total++;
2564		dc->stats.underflow++;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2565	}
2566
2567	return IRQ_HANDLED;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2568}
2569
2570static bool tegra_dc_has_window_groups(struct tegra_dc *dc)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2571{
2572	unsigned int i;
 
 
2573
2574	if (!dc->soc->wgrps)
2575		return true;
 
2576
2577	for (i = 0; i < dc->soc->num_wgrps; i++) {
2578		const struct tegra_windowgroup_soc *wgrp = &dc->soc->wgrps[i];
2579
2580		if (wgrp->dc == dc->pipe && wgrp->num_windows > 0)
2581			return true;
 
 
 
2582	}
2583
2584	return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2585}
2586
2587static int tegra_dc_early_init(struct host1x_client *client)
2588{
2589	struct drm_device *drm = dev_get_drvdata(client->host);
2590	struct tegra_drm *tegra = drm->dev_private;
 
 
 
 
2591
2592	tegra->num_crtcs++;
 
2593
2594	return 0;
2595}
2596
2597static int tegra_dc_init(struct host1x_client *client)
2598{
2599	struct drm_device *drm = dev_get_drvdata(client->host);
2600	unsigned long flags = HOST1X_SYNCPT_CLIENT_MANAGED;
2601	struct tegra_dc *dc = host1x_client_to_dc(client);
2602	struct tegra_drm *tegra = drm->dev_private;
2603	struct drm_plane *primary = NULL;
2604	struct drm_plane *cursor = NULL;
 
2605	int err;
2606
2607	/*
2608	 * DC has been reset by now, so VBLANK syncpoint can be released
2609	 * for general use.
2610	 */
2611	host1x_syncpt_release_vblank_reservation(client, 26 + dc->pipe);
2612
2613	/*
2614	 * XXX do not register DCs with no window groups because we cannot
2615	 * assign a primary plane to them, which in turn will cause KMS to
2616	 * crash.
2617	 */
2618	if (!tegra_dc_has_window_groups(dc))
2619		return 0;
2620
2621	/*
2622	 * Set the display hub as the host1x client parent for the display
2623	 * controller. This is needed for the runtime reference counting that
2624	 * ensures the display hub is always powered when any of the display
2625	 * controllers are.
2626	 */
2627	if (dc->soc->has_nvdisplay)
2628		client->parent = &tegra->hub->client;
2629
2630	dc->syncpt = host1x_syncpt_request(client, flags);
2631	if (!dc->syncpt)
2632		dev_warn(dc->dev, "failed to allocate syncpoint\n");
2633
2634	err = host1x_client_iommu_attach(client);
2635	if (err < 0 && err != -ENODEV) {
2636		dev_err(client->dev, "failed to attach to domain: %d\n", err);
2637		return err;
 
 
 
 
 
2638	}
2639
2640	if (dc->soc->wgrps)
2641		primary = tegra_dc_add_shared_planes(drm, dc);
2642	else
2643		primary = tegra_dc_add_planes(drm, dc);
2644
2645	if (IS_ERR(primary)) {
2646		err = PTR_ERR(primary);
2647		goto cleanup;
2648	}
2649
2650	if (dc->soc->supports_cursor) {
2651		cursor = tegra_dc_cursor_plane_create(drm, dc);
2652		if (IS_ERR(cursor)) {
2653			err = PTR_ERR(cursor);
2654			goto cleanup;
2655		}
2656	} else {
2657		/* dedicate one overlay to mouse cursor */
2658		cursor = tegra_dc_overlay_plane_create(drm, dc, 2, true);
2659		if (IS_ERR(cursor)) {
2660			err = PTR_ERR(cursor);
2661			goto cleanup;
2662		}
2663	}
2664
2665	err = drm_crtc_init_with_planes(drm, &dc->base, primary, cursor,
2666					&tegra_crtc_funcs, NULL);
2667	if (err < 0)
2668		goto cleanup;
2669
 
2670	drm_crtc_helper_add(&dc->base, &tegra_crtc_helper_funcs);
2671
2672	/*
2673	 * Keep track of the minimum pitch alignment across all display
2674	 * controllers.
2675	 */
2676	if (dc->soc->pitch_align > tegra->pitch_align)
2677		tegra->pitch_align = dc->soc->pitch_align;
2678
2679	/* track maximum resolution */
2680	if (dc->soc->has_nvdisplay)
2681		drm->mode_config.max_width = drm->mode_config.max_height = 16384;
2682	else
2683		drm->mode_config.max_width = drm->mode_config.max_height = 4096;
2684
2685	err = tegra_dc_rgb_init(drm, dc);
2686	if (err < 0 && err != -ENODEV) {
2687		dev_err(dc->dev, "failed to initialize RGB output: %d\n", err);
2688		goto cleanup;
2689	}
2690
 
 
 
 
 
 
 
 
 
 
2691	err = devm_request_irq(dc->dev, dc->irq, tegra_dc_irq, 0,
2692			       dev_name(dc->dev), dc);
2693	if (err < 0) {
2694		dev_err(dc->dev, "failed to request IRQ#%u: %d\n", dc->irq,
2695			err);
2696		goto cleanup;
2697	}
2698
2699	/*
2700	 * Inherit the DMA parameters (such as maximum segment size) from the
2701	 * parent host1x device.
2702	 */
2703	client->dev->dma_parms = client->host->dma_parms;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2704
2705	return 0;
2706
2707cleanup:
2708	if (!IS_ERR_OR_NULL(cursor))
2709		drm_plane_cleanup(cursor);
2710
2711	if (!IS_ERR(primary))
2712		drm_plane_cleanup(primary);
2713
2714	host1x_client_iommu_detach(client);
2715	host1x_syncpt_put(dc->syncpt);
 
 
2716
2717	return err;
2718}
2719
2720static int tegra_dc_exit(struct host1x_client *client)
2721{
2722	struct tegra_dc *dc = host1x_client_to_dc(client);
2723	int err;
2724
2725	if (!tegra_dc_has_window_groups(dc))
2726		return 0;
2727
2728	/* avoid a dangling pointer just in case this disappears */
2729	client->dev->dma_parms = NULL;
2730
2731	devm_free_irq(dc->dev, dc->irq, dc);
 
2732
2733	err = tegra_dc_rgb_exit(dc);
2734	if (err) {
2735		dev_err(dc->dev, "failed to shutdown RGB output: %d\n", err);
2736		return err;
2737	}
2738
2739	host1x_client_iommu_detach(client);
2740	host1x_syncpt_put(dc->syncpt);
2741
2742	return 0;
2743}
2744
2745static int tegra_dc_late_exit(struct host1x_client *client)
2746{
2747	struct drm_device *drm = dev_get_drvdata(client->host);
2748	struct tegra_drm *tegra = drm->dev_private;
2749
2750	tegra->num_crtcs--;
2751
2752	return 0;
2753}
2754
2755static int tegra_dc_runtime_suspend(struct host1x_client *client)
2756{
2757	struct tegra_dc *dc = host1x_client_to_dc(client);
2758	struct device *dev = client->dev;
2759	int err;
2760
2761	err = reset_control_assert(dc->rst);
2762	if (err < 0) {
2763		dev_err(dev, "failed to assert reset: %d\n", err);
2764		return err;
2765	}
2766
2767	if (dc->soc->has_powergate)
2768		tegra_powergate_power_off(dc->powergate);
2769
2770	clk_disable_unprepare(dc->clk);
2771	pm_runtime_put_sync(dev);
2772
2773	return 0;
2774}
2775
2776static int tegra_dc_runtime_resume(struct host1x_client *client)
2777{
2778	struct tegra_dc *dc = host1x_client_to_dc(client);
2779	struct device *dev = client->dev;
2780	int err;
2781
2782	err = pm_runtime_resume_and_get(dev);
2783	if (err < 0) {
2784		dev_err(dev, "failed to get runtime PM: %d\n", err);
2785		return err;
2786	}
2787
2788	if (dc->soc->has_powergate) {
2789		err = tegra_powergate_sequence_power_up(dc->powergate, dc->clk,
2790							dc->rst);
2791		if (err < 0) {
2792			dev_err(dev, "failed to power partition: %d\n", err);
2793			goto put_rpm;
2794		}
2795	} else {
2796		err = clk_prepare_enable(dc->clk);
2797		if (err < 0) {
2798			dev_err(dev, "failed to enable clock: %d\n", err);
2799			goto put_rpm;
2800		}
2801
2802		err = reset_control_deassert(dc->rst);
2803		if (err < 0) {
2804			dev_err(dev, "failed to deassert reset: %d\n", err);
2805			goto disable_clk;
2806		}
2807	}
2808
2809	return 0;
2810
2811disable_clk:
2812	clk_disable_unprepare(dc->clk);
2813put_rpm:
2814	pm_runtime_put_sync(dev);
2815	return err;
2816}
2817
2818static const struct host1x_client_ops dc_client_ops = {
2819	.early_init = tegra_dc_early_init,
2820	.init = tegra_dc_init,
2821	.exit = tegra_dc_exit,
2822	.late_exit = tegra_dc_late_exit,
2823	.suspend = tegra_dc_runtime_suspend,
2824	.resume = tegra_dc_runtime_resume,
2825};
2826
2827static const struct tegra_dc_soc_info tegra20_dc_soc_info = {
2828	.supports_background_color = false,
2829	.supports_interlacing = false,
2830	.supports_cursor = false,
2831	.supports_block_linear = false,
2832	.supports_sector_layout = false,
2833	.has_legacy_blending = true,
2834	.pitch_align = 8,
2835	.has_powergate = false,
2836	.coupled_pm = true,
2837	.has_nvdisplay = false,
2838	.num_primary_formats = ARRAY_SIZE(tegra20_primary_formats),
2839	.primary_formats = tegra20_primary_formats,
2840	.num_overlay_formats = ARRAY_SIZE(tegra20_overlay_formats),
2841	.overlay_formats = tegra20_overlay_formats,
2842	.modifiers = tegra20_modifiers,
2843	.has_win_a_without_filters = true,
2844	.has_win_b_vfilter_mem_client = true,
2845	.has_win_c_without_vert_filter = true,
2846	.plane_tiled_memory_bandwidth_x2 = false,
2847	.has_pll_d2_out0 = false,
2848};
2849
2850static const struct tegra_dc_soc_info tegra30_dc_soc_info = {
2851	.supports_background_color = false,
2852	.supports_interlacing = false,
2853	.supports_cursor = false,
2854	.supports_block_linear = false,
2855	.supports_sector_layout = false,
2856	.has_legacy_blending = true,
2857	.pitch_align = 8,
2858	.has_powergate = false,
2859	.coupled_pm = false,
2860	.has_nvdisplay = false,
2861	.num_primary_formats = ARRAY_SIZE(tegra20_primary_formats),
2862	.primary_formats = tegra20_primary_formats,
2863	.num_overlay_formats = ARRAY_SIZE(tegra20_overlay_formats),
2864	.overlay_formats = tegra20_overlay_formats,
2865	.modifiers = tegra20_modifiers,
2866	.has_win_a_without_filters = false,
2867	.has_win_b_vfilter_mem_client = true,
2868	.has_win_c_without_vert_filter = false,
2869	.plane_tiled_memory_bandwidth_x2 = true,
2870	.has_pll_d2_out0 = true,
2871};
2872
2873static const struct tegra_dc_soc_info tegra114_dc_soc_info = {
2874	.supports_background_color = false,
2875	.supports_interlacing = false,
2876	.supports_cursor = false,
2877	.supports_block_linear = false,
2878	.supports_sector_layout = false,
2879	.has_legacy_blending = true,
2880	.pitch_align = 64,
2881	.has_powergate = true,
2882	.coupled_pm = false,
2883	.has_nvdisplay = false,
2884	.num_primary_formats = ARRAY_SIZE(tegra114_primary_formats),
2885	.primary_formats = tegra114_primary_formats,
2886	.num_overlay_formats = ARRAY_SIZE(tegra114_overlay_formats),
2887	.overlay_formats = tegra114_overlay_formats,
2888	.modifiers = tegra20_modifiers,
2889	.has_win_a_without_filters = false,
2890	.has_win_b_vfilter_mem_client = false,
2891	.has_win_c_without_vert_filter = false,
2892	.plane_tiled_memory_bandwidth_x2 = true,
2893	.has_pll_d2_out0 = true,
2894};
2895
2896static const struct tegra_dc_soc_info tegra124_dc_soc_info = {
2897	.supports_background_color = true,
2898	.supports_interlacing = true,
2899	.supports_cursor = true,
2900	.supports_block_linear = true,
2901	.supports_sector_layout = false,
2902	.has_legacy_blending = false,
2903	.pitch_align = 64,
2904	.has_powergate = true,
2905	.coupled_pm = false,
2906	.has_nvdisplay = false,
2907	.num_primary_formats = ARRAY_SIZE(tegra124_primary_formats),
2908	.primary_formats = tegra124_primary_formats,
2909	.num_overlay_formats = ARRAY_SIZE(tegra124_overlay_formats),
2910	.overlay_formats = tegra124_overlay_formats,
2911	.modifiers = tegra124_modifiers,
2912	.has_win_a_without_filters = false,
2913	.has_win_b_vfilter_mem_client = false,
2914	.has_win_c_without_vert_filter = false,
2915	.plane_tiled_memory_bandwidth_x2 = false,
2916	.has_pll_d2_out0 = true,
2917};
2918
2919static const struct tegra_dc_soc_info tegra210_dc_soc_info = {
2920	.supports_background_color = true,
2921	.supports_interlacing = true,
2922	.supports_cursor = true,
2923	.supports_block_linear = true,
2924	.supports_sector_layout = false,
2925	.has_legacy_blending = false,
2926	.pitch_align = 64,
2927	.has_powergate = true,
2928	.coupled_pm = false,
2929	.has_nvdisplay = false,
2930	.num_primary_formats = ARRAY_SIZE(tegra114_primary_formats),
2931	.primary_formats = tegra114_primary_formats,
2932	.num_overlay_formats = ARRAY_SIZE(tegra114_overlay_formats),
2933	.overlay_formats = tegra114_overlay_formats,
2934	.modifiers = tegra124_modifiers,
2935	.has_win_a_without_filters = false,
2936	.has_win_b_vfilter_mem_client = false,
2937	.has_win_c_without_vert_filter = false,
2938	.plane_tiled_memory_bandwidth_x2 = false,
2939	.has_pll_d2_out0 = true,
2940};
2941
2942static const struct tegra_windowgroup_soc tegra186_dc_wgrps[] = {
2943	{
2944		.index = 0,
2945		.dc = 0,
2946		.windows = (const unsigned int[]) { 0 },
2947		.num_windows = 1,
2948	}, {
2949		.index = 1,
2950		.dc = 1,
2951		.windows = (const unsigned int[]) { 1 },
2952		.num_windows = 1,
2953	}, {
2954		.index = 2,
2955		.dc = 1,
2956		.windows = (const unsigned int[]) { 2 },
2957		.num_windows = 1,
2958	}, {
2959		.index = 3,
2960		.dc = 2,
2961		.windows = (const unsigned int[]) { 3 },
2962		.num_windows = 1,
2963	}, {
2964		.index = 4,
2965		.dc = 2,
2966		.windows = (const unsigned int[]) { 4 },
2967		.num_windows = 1,
2968	}, {
2969		.index = 5,
2970		.dc = 2,
2971		.windows = (const unsigned int[]) { 5 },
2972		.num_windows = 1,
2973	},
2974};
2975
2976static const struct tegra_dc_soc_info tegra186_dc_soc_info = {
2977	.supports_background_color = true,
2978	.supports_interlacing = true,
2979	.supports_cursor = true,
2980	.supports_block_linear = true,
2981	.supports_sector_layout = false,
2982	.has_legacy_blending = false,
2983	.pitch_align = 64,
2984	.has_powergate = false,
2985	.coupled_pm = false,
2986	.has_nvdisplay = true,
2987	.wgrps = tegra186_dc_wgrps,
2988	.num_wgrps = ARRAY_SIZE(tegra186_dc_wgrps),
2989	.plane_tiled_memory_bandwidth_x2 = false,
2990	.has_pll_d2_out0 = false,
2991};
2992
2993static const struct tegra_windowgroup_soc tegra194_dc_wgrps[] = {
2994	{
2995		.index = 0,
2996		.dc = 0,
2997		.windows = (const unsigned int[]) { 0 },
2998		.num_windows = 1,
2999	}, {
3000		.index = 1,
3001		.dc = 1,
3002		.windows = (const unsigned int[]) { 1 },
3003		.num_windows = 1,
3004	}, {
3005		.index = 2,
3006		.dc = 1,
3007		.windows = (const unsigned int[]) { 2 },
3008		.num_windows = 1,
3009	}, {
3010		.index = 3,
3011		.dc = 2,
3012		.windows = (const unsigned int[]) { 3 },
3013		.num_windows = 1,
3014	}, {
3015		.index = 4,
3016		.dc = 2,
3017		.windows = (const unsigned int[]) { 4 },
3018		.num_windows = 1,
3019	}, {
3020		.index = 5,
3021		.dc = 2,
3022		.windows = (const unsigned int[]) { 5 },
3023		.num_windows = 1,
3024	},
3025};
3026
3027static const struct tegra_dc_soc_info tegra194_dc_soc_info = {
3028	.supports_background_color = true,
3029	.supports_interlacing = true,
3030	.supports_cursor = true,
3031	.supports_block_linear = true,
3032	.supports_sector_layout = true,
3033	.has_legacy_blending = false,
3034	.pitch_align = 64,
3035	.has_powergate = false,
3036	.coupled_pm = false,
3037	.has_nvdisplay = true,
3038	.wgrps = tegra194_dc_wgrps,
3039	.num_wgrps = ARRAY_SIZE(tegra194_dc_wgrps),
3040	.plane_tiled_memory_bandwidth_x2 = false,
3041	.has_pll_d2_out0 = false,
3042};
3043
3044static const struct of_device_id tegra_dc_of_match[] = {
3045	{
3046		.compatible = "nvidia,tegra194-dc",
3047		.data = &tegra194_dc_soc_info,
3048	}, {
3049		.compatible = "nvidia,tegra186-dc",
3050		.data = &tegra186_dc_soc_info,
3051	}, {
3052		.compatible = "nvidia,tegra210-dc",
3053		.data = &tegra210_dc_soc_info,
3054	}, {
3055		.compatible = "nvidia,tegra124-dc",
3056		.data = &tegra124_dc_soc_info,
3057	}, {
3058		.compatible = "nvidia,tegra114-dc",
3059		.data = &tegra114_dc_soc_info,
3060	}, {
3061		.compatible = "nvidia,tegra30-dc",
3062		.data = &tegra30_dc_soc_info,
3063	}, {
3064		.compatible = "nvidia,tegra20-dc",
3065		.data = &tegra20_dc_soc_info,
3066	}, {
3067		/* sentinel */
3068	}
3069};
3070MODULE_DEVICE_TABLE(of, tegra_dc_of_match);
3071
3072static int tegra_dc_parse_dt(struct tegra_dc *dc)
3073{
3074	struct device_node *np;
3075	u32 value = 0;
3076	int err;
3077
3078	err = of_property_read_u32(dc->dev->of_node, "nvidia,head", &value);
3079	if (err < 0) {
3080		dev_err(dc->dev, "missing \"nvidia,head\" property\n");
3081
3082		/*
3083		 * If the nvidia,head property isn't present, try to find the
3084		 * correct head number by looking up the position of this
3085		 * display controller's node within the device tree. Assuming
3086		 * that the nodes are ordered properly in the DTS file and
3087		 * that the translation into a flattened device tree blob
3088		 * preserves that ordering this will actually yield the right
3089		 * head number.
3090		 *
3091		 * If those assumptions don't hold, this will still work for
3092		 * cases where only a single display controller is used.
3093		 */
3094		for_each_matching_node(np, tegra_dc_of_match) {
3095			if (np == dc->dev->of_node) {
3096				of_node_put(np);
3097				break;
3098			}
3099
3100			value++;
3101		}
3102	}
3103
3104	dc->pipe = value;
3105
3106	return 0;
3107}
3108
3109static int tegra_dc_match_by_pipe(struct device *dev, const void *data)
3110{
3111	struct tegra_dc *dc = dev_get_drvdata(dev);
3112	unsigned int pipe = (unsigned long)(void *)data;
3113
3114	return dc->pipe == pipe;
3115}
3116
3117static int tegra_dc_couple(struct tegra_dc *dc)
3118{
3119	/*
3120	 * On Tegra20, DC1 requires DC0 to be taken out of reset in order to
3121	 * be enabled, otherwise CPU hangs on writing to CMD_DISPLAY_COMMAND /
3122	 * POWER_CONTROL registers during CRTC enabling.
3123	 */
3124	if (dc->soc->coupled_pm && dc->pipe == 1) {
3125		struct device *companion;
3126		struct tegra_dc *parent;
3127
3128		companion = driver_find_device(dc->dev->driver, NULL, (const void *)0,
3129					       tegra_dc_match_by_pipe);
3130		if (!companion)
3131			return -EPROBE_DEFER;
3132
3133		parent = dev_get_drvdata(companion);
3134		dc->client.parent = &parent->client;
3135
3136		dev_dbg(dc->dev, "coupled to %s\n", dev_name(companion));
3137	}
3138
3139	return 0;
3140}
3141
3142static int tegra_dc_init_opp_table(struct tegra_dc *dc)
3143{
3144	struct tegra_core_opp_params opp_params = {};
3145	int err;
3146
3147	err = devm_tegra_core_dev_init_opp_table(dc->dev, &opp_params);
3148	if (err && err != -ENODEV)
3149		return err;
3150
3151	if (err)
3152		dc->has_opp_table = false;
3153	else
3154		dc->has_opp_table = true;
3155
3156	return 0;
3157}
3158
3159static int tegra_dc_probe(struct platform_device *pdev)
3160{
3161	u64 dma_mask = dma_get_mask(pdev->dev.parent);
 
3162	struct tegra_dc *dc;
3163	int err;
3164
3165	err = dma_coerce_mask_and_coherent(&pdev->dev, dma_mask);
3166	if (err < 0) {
3167		dev_err(&pdev->dev, "failed to set DMA mask: %d\n", err);
3168		return err;
3169	}
3170
3171	dc = devm_kzalloc(&pdev->dev, sizeof(*dc), GFP_KERNEL);
3172	if (!dc)
3173		return -ENOMEM;
3174
3175	dc->soc = of_device_get_match_data(&pdev->dev);
 
 
3176
 
3177	INIT_LIST_HEAD(&dc->list);
3178	dc->dev = &pdev->dev;
 
3179
3180	err = tegra_dc_parse_dt(dc);
3181	if (err < 0)
3182		return err;
3183
3184	err = tegra_dc_couple(dc);
3185	if (err < 0)
3186		return err;
3187
3188	dc->clk = devm_clk_get(&pdev->dev, NULL);
3189	if (IS_ERR(dc->clk)) {
3190		dev_err(&pdev->dev, "failed to get clock\n");
3191		return PTR_ERR(dc->clk);
3192	}
3193
3194	dc->rst = devm_reset_control_get(&pdev->dev, "dc");
3195	if (IS_ERR(dc->rst)) {
3196		dev_err(&pdev->dev, "failed to get reset\n");
3197		return PTR_ERR(dc->rst);
3198	}
3199
3200	/* assert reset and disable clock */
3201	err = clk_prepare_enable(dc->clk);
3202	if (err < 0)
3203		return err;
3204
3205	usleep_range(2000, 4000);
3206
3207	err = reset_control_assert(dc->rst);
3208	if (err < 0) {
3209		clk_disable_unprepare(dc->clk);
3210		return err;
3211	}
3212
3213	usleep_range(2000, 4000);
3214
3215	clk_disable_unprepare(dc->clk);
3216
3217	if (dc->soc->has_powergate) {
3218		if (dc->pipe == 0)
3219			dc->powergate = TEGRA_POWERGATE_DIS;
3220		else
3221			dc->powergate = TEGRA_POWERGATE_DISB;
3222
3223		tegra_powergate_power_off(dc->powergate);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3224	}
3225
3226	err = tegra_dc_init_opp_table(dc);
3227	if (err < 0)
3228		return err;
3229
3230	dc->regs = devm_platform_ioremap_resource(pdev, 0);
3231	if (IS_ERR(dc->regs))
3232		return PTR_ERR(dc->regs);
3233
3234	dc->irq = platform_get_irq(pdev, 0);
3235	if (dc->irq < 0)
 
3236		return -ENXIO;
3237
3238	err = tegra_dc_rgb_probe(dc);
3239	if (err < 0 && err != -ENODEV)
3240		return dev_err_probe(&pdev->dev, err,
3241				     "failed to probe RGB output\n");
3242
3243	platform_set_drvdata(pdev, dc);
3244	pm_runtime_enable(&pdev->dev);
3245
3246	INIT_LIST_HEAD(&dc->client.list);
3247	dc->client.ops = &dc_client_ops;
3248	dc->client.dev = &pdev->dev;
3249
 
 
 
 
 
 
3250	err = host1x_client_register(&dc->client);
3251	if (err < 0) {
3252		dev_err(&pdev->dev, "failed to register host1x client: %d\n",
3253			err);
3254		goto disable_pm;
3255	}
3256
 
 
3257	return 0;
3258
3259disable_pm:
3260	pm_runtime_disable(&pdev->dev);
3261	tegra_dc_rgb_remove(dc);
3262
3263	return err;
3264}
3265
3266static int tegra_dc_remove(struct platform_device *pdev)
3267{
3268	struct tegra_dc *dc = platform_get_drvdata(pdev);
3269	int err;
3270
3271	err = host1x_client_unregister(&dc->client);
3272	if (err < 0) {
3273		dev_err(&pdev->dev, "failed to unregister host1x client: %d\n",
3274			err);
3275		return err;
3276	}
3277
3278	err = tegra_dc_rgb_remove(dc);
3279	if (err < 0) {
3280		dev_err(&pdev->dev, "failed to remove RGB output: %d\n", err);
3281		return err;
3282	}
3283
3284	pm_runtime_disable(&pdev->dev);
 
 
 
 
 
3285
3286	return 0;
3287}
3288
3289struct platform_driver tegra_dc_driver = {
3290	.driver = {
3291		.name = "tegra-dc",
3292		.of_match_table = tegra_dc_of_match,
3293	},
3294	.probe = tegra_dc_probe,
3295	.remove = tegra_dc_remove,
3296};