Linux Audio

Check our new training course

Loading...
v4.6
 
   1/*
   2 * Copyright (C) 2012 Avionic Design GmbH
   3 * Copyright (C) 2012 NVIDIA CORPORATION.  All rights reserved.
   4 *
   5 * This program is free software; you can redistribute it and/or modify
   6 * it under the terms of the GNU General Public License version 2 as
   7 * published by the Free Software Foundation.
   8 */
   9
  10#include <linux/clk.h>
  11#include <linux/debugfs.h>
 
  12#include <linux/iommu.h>
 
 
 
  13#include <linux/reset.h>
  14
  15#include <soc/tegra/pmc.h>
  16
  17#include "dc.h"
  18#include "drm.h"
  19#include "gem.h"
  20
  21#include <drm/drm_atomic.h>
  22#include <drm/drm_atomic_helper.h>
 
 
  23#include <drm/drm_plane_helper.h>
 
  24
  25struct tegra_dc_soc_info {
  26	bool supports_border_color;
  27	bool supports_interlacing;
  28	bool supports_cursor;
  29	bool supports_block_linear;
  30	unsigned int pitch_align;
  31	bool has_powergate;
  32};
  33
  34struct tegra_plane {
  35	struct drm_plane base;
  36	unsigned int index;
  37};
  38
  39static inline struct tegra_plane *to_tegra_plane(struct drm_plane *plane)
  40{
  41	return container_of(plane, struct tegra_plane, base);
 
 
 
  42}
  43
  44struct tegra_dc_state {
  45	struct drm_crtc_state base;
 
 
  46
  47	struct clk *clk;
  48	unsigned long pclk;
  49	unsigned int div;
  50
  51	u32 planes;
  52};
  53
  54static inline struct tegra_dc_state *to_dc_state(struct drm_crtc_state *state)
 
  55{
  56	if (state)
  57		return container_of(state, struct tegra_dc_state, base);
  58
  59	return NULL;
  60}
  61
  62struct tegra_plane_state {
  63	struct drm_plane_state base;
 
 
  64
  65	struct tegra_bo_tiling tiling;
  66	u32 format;
  67	u32 swap;
  68};
  69
  70static inline struct tegra_plane_state *
  71to_tegra_plane_state(struct drm_plane_state *state)
  72{
  73	if (state)
  74		return container_of(state, struct tegra_plane_state, base);
  75
  76	return NULL;
  77}
  78
  79static void tegra_dc_stats_reset(struct tegra_dc_stats *stats)
 
  80{
  81	stats->frames = 0;
  82	stats->vblank = 0;
  83	stats->underflow = 0;
  84	stats->overflow = 0;
  85}
  86
  87/*
  88 * Reads the active copy of a register. This takes the dc->lock spinlock to
  89 * prevent races with the VBLANK processing which also needs access to the
  90 * active copy of some registers.
  91 */
  92static u32 tegra_dc_readl_active(struct tegra_dc *dc, unsigned long offset)
  93{
  94	unsigned long flags;
  95	u32 value;
  96
  97	spin_lock_irqsave(&dc->lock, flags);
 
 
 
 
  98
  99	tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
 100	value = tegra_dc_readl(dc, offset);
 101	tegra_dc_writel(dc, 0, DC_CMD_STATE_ACCESS);
 102
 103	spin_unlock_irqrestore(&dc->lock, flags);
 104	return value;
 105}
 106
 107/*
 108 * Double-buffered registers have two copies: ASSEMBLY and ACTIVE. When the
 109 * *_ACT_REQ bits are set the ASSEMBLY copy is latched into the ACTIVE copy.
 110 * Latching happens mmediately if the display controller is in STOP mode or
 111 * on the next frame boundary otherwise.
 112 *
 113 * Triple-buffered registers have three copies: ASSEMBLY, ARM and ACTIVE. The
 114 * ASSEMBLY copy is latched into the ARM copy immediately after *_UPDATE bits
 115 * are written. When the *_ACT_REQ bits are written, the ARM copy is latched
 116 * into the ACTIVE copy, either immediately if the display controller is in
 117 * STOP mode, or at the next frame boundary otherwise.
 118 */
 119void tegra_dc_commit(struct tegra_dc *dc)
 120{
 121	tegra_dc_writel(dc, GENERAL_ACT_REQ << 8, DC_CMD_STATE_CONTROL);
 122	tegra_dc_writel(dc, GENERAL_ACT_REQ, DC_CMD_STATE_CONTROL);
 123}
 124
 125static int tegra_dc_format(u32 fourcc, u32 *format, u32 *swap)
 126{
 127	/* assume no swapping of fetched data */
 128	if (swap)
 129		*swap = BYTE_SWAP_NOSWAP;
 130
 131	switch (fourcc) {
 132	case DRM_FORMAT_XBGR8888:
 133		*format = WIN_COLOR_DEPTH_R8G8B8A8;
 134		break;
 135
 136	case DRM_FORMAT_XRGB8888:
 137		*format = WIN_COLOR_DEPTH_B8G8R8A8;
 138		break;
 139
 140	case DRM_FORMAT_RGB565:
 141		*format = WIN_COLOR_DEPTH_B5G6R5;
 142		break;
 143
 144	case DRM_FORMAT_UYVY:
 145		*format = WIN_COLOR_DEPTH_YCbCr422;
 146		break;
 147
 148	case DRM_FORMAT_YUYV:
 149		if (swap)
 150			*swap = BYTE_SWAP_SWAP2;
 151
 152		*format = WIN_COLOR_DEPTH_YCbCr422;
 153		break;
 154
 155	case DRM_FORMAT_YUV420:
 156		*format = WIN_COLOR_DEPTH_YCbCr420P;
 157		break;
 158
 159	case DRM_FORMAT_YUV422:
 160		*format = WIN_COLOR_DEPTH_YCbCr422P;
 161		break;
 162
 163	default:
 164		return -EINVAL;
 165	}
 166
 167	return 0;
 168}
 169
 170static bool tegra_dc_format_is_yuv(unsigned int format, bool *planar)
 171{
 172	switch (format) {
 173	case WIN_COLOR_DEPTH_YCbCr422:
 174	case WIN_COLOR_DEPTH_YUV422:
 175		if (planar)
 176			*planar = false;
 177
 178		return true;
 179
 180	case WIN_COLOR_DEPTH_YCbCr420P:
 181	case WIN_COLOR_DEPTH_YUV420P:
 182	case WIN_COLOR_DEPTH_YCbCr422P:
 183	case WIN_COLOR_DEPTH_YUV422P:
 184	case WIN_COLOR_DEPTH_YCbCr422R:
 185	case WIN_COLOR_DEPTH_YUV422R:
 186	case WIN_COLOR_DEPTH_YCbCr422RA:
 187	case WIN_COLOR_DEPTH_YUV422RA:
 188		if (planar)
 189			*planar = true;
 190
 191		return true;
 192	}
 193
 194	if (planar)
 195		*planar = false;
 196
 197	return false;
 198}
 199
 200static inline u32 compute_dda_inc(unsigned int in, unsigned int out, bool v,
 201				  unsigned int bpp)
 202{
 203	fixed20_12 outf = dfixed_init(out);
 204	fixed20_12 inf = dfixed_init(in);
 205	u32 dda_inc;
 206	int max;
 207
 208	if (v)
 209		max = 15;
 210	else {
 211		switch (bpp) {
 212		case 2:
 213			max = 8;
 214			break;
 215
 216		default:
 217			WARN_ON_ONCE(1);
 218			/* fallthrough */
 219		case 4:
 220			max = 4;
 221			break;
 222		}
 223	}
 224
 225	outf.full = max_t(u32, outf.full - dfixed_const(1), dfixed_const(1));
 226	inf.full -= dfixed_const(1);
 227
 228	dda_inc = dfixed_div(inf, outf);
 229	dda_inc = min_t(u32, dda_inc, dfixed_const(max));
 230
 231	return dda_inc;
 232}
 233
 234static inline u32 compute_initial_dda(unsigned int in)
 235{
 236	fixed20_12 inf = dfixed_init(in);
 237	return dfixed_frac(inf);
 238}
 239
 240static void tegra_dc_setup_window(struct tegra_dc *dc, unsigned int index,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 241				  const struct tegra_dc_window *window)
 242{
 243	unsigned h_offset, v_offset, h_size, v_size, h_dda, v_dda, bpp;
 244	unsigned long value, flags;
 245	bool yuv, planar;
 
 246
 247	/*
 248	 * For YUV planar modes, the number of bytes per pixel takes into
 249	 * account only the luma component and therefore is 1.
 250	 */
 251	yuv = tegra_dc_format_is_yuv(window->format, &planar);
 252	if (!yuv)
 253		bpp = window->bits_per_pixel / 8;
 254	else
 255		bpp = planar ? 1 : 2;
 256
 257	spin_lock_irqsave(&dc->lock, flags);
 258
 259	value = WINDOW_A_SELECT << index;
 260	tegra_dc_writel(dc, value, DC_CMD_DISPLAY_WINDOW_HEADER);
 261
 262	tegra_dc_writel(dc, window->format, DC_WIN_COLOR_DEPTH);
 263	tegra_dc_writel(dc, window->swap, DC_WIN_BYTE_SWAP);
 264
 265	value = V_POSITION(window->dst.y) | H_POSITION(window->dst.x);
 266	tegra_dc_writel(dc, value, DC_WIN_POSITION);
 267
 268	value = V_SIZE(window->dst.h) | H_SIZE(window->dst.w);
 269	tegra_dc_writel(dc, value, DC_WIN_SIZE);
 270
 271	h_offset = window->src.x * bpp;
 272	v_offset = window->src.y;
 273	h_size = window->src.w * bpp;
 274	v_size = window->src.h;
 275
 276	value = V_PRESCALED_SIZE(v_size) | H_PRESCALED_SIZE(h_size);
 277	tegra_dc_writel(dc, value, DC_WIN_PRESCALED_SIZE);
 278
 279	/*
 280	 * For DDA computations the number of bytes per pixel for YUV planar
 281	 * modes needs to take into account all Y, U and V components.
 282	 */
 283	if (yuv && planar)
 284		bpp = 2;
 285
 286	h_dda = compute_dda_inc(window->src.w, window->dst.w, false, bpp);
 287	v_dda = compute_dda_inc(window->src.h, window->dst.h, true, bpp);
 288
 289	value = V_DDA_INC(v_dda) | H_DDA_INC(h_dda);
 290	tegra_dc_writel(dc, value, DC_WIN_DDA_INC);
 291
 292	h_dda = compute_initial_dda(window->src.x);
 293	v_dda = compute_initial_dda(window->src.y);
 294
 295	tegra_dc_writel(dc, h_dda, DC_WIN_H_INITIAL_DDA);
 296	tegra_dc_writel(dc, v_dda, DC_WIN_V_INITIAL_DDA);
 297
 298	tegra_dc_writel(dc, 0, DC_WIN_UV_BUF_STRIDE);
 299	tegra_dc_writel(dc, 0, DC_WIN_BUF_STRIDE);
 300
 301	tegra_dc_writel(dc, window->base[0], DC_WINBUF_START_ADDR);
 302
 303	if (yuv && planar) {
 304		tegra_dc_writel(dc, window->base[1], DC_WINBUF_START_ADDR_U);
 305		tegra_dc_writel(dc, window->base[2], DC_WINBUF_START_ADDR_V);
 306		value = window->stride[1] << 16 | window->stride[0];
 307		tegra_dc_writel(dc, value, DC_WIN_LINE_STRIDE);
 308	} else {
 309		tegra_dc_writel(dc, window->stride[0], DC_WIN_LINE_STRIDE);
 310	}
 311
 312	if (window->bottom_up)
 313		v_offset += window->src.h - 1;
 314
 315	tegra_dc_writel(dc, h_offset, DC_WINBUF_ADDR_H_OFFSET);
 316	tegra_dc_writel(dc, v_offset, DC_WINBUF_ADDR_V_OFFSET);
 317
 318	if (dc->soc->supports_block_linear) {
 319		unsigned long height = window->tiling.value;
 320
 321		switch (window->tiling.mode) {
 322		case TEGRA_BO_TILING_MODE_PITCH:
 323			value = DC_WINBUF_SURFACE_KIND_PITCH;
 324			break;
 325
 326		case TEGRA_BO_TILING_MODE_TILED:
 327			value = DC_WINBUF_SURFACE_KIND_TILED;
 328			break;
 329
 330		case TEGRA_BO_TILING_MODE_BLOCK:
 331			value = DC_WINBUF_SURFACE_KIND_BLOCK_HEIGHT(height) |
 332				DC_WINBUF_SURFACE_KIND_BLOCK;
 333			break;
 334		}
 335
 336		tegra_dc_writel(dc, value, DC_WINBUF_SURFACE_KIND);
 337	} else {
 338		switch (window->tiling.mode) {
 339		case TEGRA_BO_TILING_MODE_PITCH:
 340			value = DC_WIN_BUFFER_ADDR_MODE_LINEAR_UV |
 341				DC_WIN_BUFFER_ADDR_MODE_LINEAR;
 342			break;
 343
 344		case TEGRA_BO_TILING_MODE_TILED:
 345			value = DC_WIN_BUFFER_ADDR_MODE_TILE_UV |
 346				DC_WIN_BUFFER_ADDR_MODE_TILE;
 347			break;
 348
 349		case TEGRA_BO_TILING_MODE_BLOCK:
 350			/*
 351			 * No need to handle this here because ->atomic_check
 352			 * will already have filtered it out.
 353			 */
 354			break;
 355		}
 356
 357		tegra_dc_writel(dc, value, DC_WIN_BUFFER_ADDR_MODE);
 358	}
 359
 360	value = WIN_ENABLE;
 361
 362	if (yuv) {
 363		/* setup default colorspace conversion coefficients */
 364		tegra_dc_writel(dc, 0x00f0, DC_WIN_CSC_YOF);
 365		tegra_dc_writel(dc, 0x012a, DC_WIN_CSC_KYRGB);
 366		tegra_dc_writel(dc, 0x0000, DC_WIN_CSC_KUR);
 367		tegra_dc_writel(dc, 0x0198, DC_WIN_CSC_KVR);
 368		tegra_dc_writel(dc, 0x039b, DC_WIN_CSC_KUG);
 369		tegra_dc_writel(dc, 0x032f, DC_WIN_CSC_KVG);
 370		tegra_dc_writel(dc, 0x0204, DC_WIN_CSC_KUB);
 371		tegra_dc_writel(dc, 0x0000, DC_WIN_CSC_KVB);
 372
 373		value |= CSC_ENABLE;
 374	} else if (window->bits_per_pixel < 24) {
 375		value |= COLOR_EXPAND;
 376	}
 377
 378	if (window->bottom_up)
 379		value |= V_DIRECTION;
 380
 381	tegra_dc_writel(dc, value, DC_WIN_WIN_OPTIONS);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 382
 383	/*
 384	 * Disable blending and assume Window A is the bottom-most window,
 385	 * Window C is the top-most window and Window B is in the middle.
 386	 */
 387	tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_NOKEY);
 388	tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_1WIN);
 389
 390	switch (index) {
 391	case 0:
 392		tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_2WIN_X);
 393		tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_2WIN_Y);
 394		tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_3WIN_XY);
 395		break;
 396
 397	case 1:
 398		tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_2WIN_X);
 399		tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_2WIN_Y);
 400		tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_3WIN_XY);
 401		break;
 
 402
 403	case 2:
 404		tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_2WIN_X);
 405		tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_2WIN_Y);
 406		tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_3WIN_XY);
 407		break;
 408	}
 409
 410	spin_unlock_irqrestore(&dc->lock, flags);
 411}
 412
 413static void tegra_plane_destroy(struct drm_plane *plane)
 414{
 415	struct tegra_plane *p = to_tegra_plane(plane);
 416
 417	drm_plane_cleanup(plane);
 418	kfree(p);
 
 
 419}
 420
 421static const u32 tegra_primary_plane_formats[] = {
 
 
 
 
 
 
 
 
 
 422	DRM_FORMAT_XBGR8888,
 423	DRM_FORMAT_XRGB8888,
 424	DRM_FORMAT_RGB565,
 425};
 426
 427static void tegra_primary_plane_destroy(struct drm_plane *plane)
 428{
 429	tegra_plane_destroy(plane);
 430}
 431
 432static void tegra_plane_reset(struct drm_plane *plane)
 433{
 434	struct tegra_plane_state *state;
 435
 436	if (plane->state)
 437		__drm_atomic_helper_plane_destroy_state(plane, plane->state);
 438
 439	kfree(plane->state);
 440	plane->state = NULL;
 441
 442	state = kzalloc(sizeof(*state), GFP_KERNEL);
 443	if (state) {
 444		plane->state = &state->base;
 445		plane->state->plane = plane;
 446	}
 447}
 448
 449static struct drm_plane_state *tegra_plane_atomic_duplicate_state(struct drm_plane *plane)
 450{
 451	struct tegra_plane_state *state = to_tegra_plane_state(plane->state);
 452	struct tegra_plane_state *copy;
 453
 454	copy = kmalloc(sizeof(*copy), GFP_KERNEL);
 455	if (!copy)
 456		return NULL;
 457
 458	__drm_atomic_helper_plane_duplicate_state(plane, &copy->base);
 459	copy->tiling = state->tiling;
 460	copy->format = state->format;
 461	copy->swap = state->swap;
 462
 463	return &copy->base;
 464}
 465
 466static void tegra_plane_atomic_destroy_state(struct drm_plane *plane,
 467					     struct drm_plane_state *state)
 468{
 469	__drm_atomic_helper_plane_destroy_state(plane, state);
 470	kfree(state);
 471}
 472
 473static const struct drm_plane_funcs tegra_primary_plane_funcs = {
 474	.update_plane = drm_atomic_helper_update_plane,
 475	.disable_plane = drm_atomic_helper_disable_plane,
 476	.destroy = tegra_primary_plane_destroy,
 477	.reset = tegra_plane_reset,
 478	.atomic_duplicate_state = tegra_plane_atomic_duplicate_state,
 479	.atomic_destroy_state = tegra_plane_atomic_destroy_state,
 480};
 481
 482static int tegra_plane_prepare_fb(struct drm_plane *plane,
 483				  const struct drm_plane_state *new_state)
 484{
 485	return 0;
 486}
 487
 488static void tegra_plane_cleanup_fb(struct drm_plane *plane,
 489				   const struct drm_plane_state *old_fb)
 490{
 491}
 492
 493static int tegra_plane_state_add(struct tegra_plane *plane,
 494				 struct drm_plane_state *state)
 495{
 496	struct drm_crtc_state *crtc_state;
 497	struct tegra_dc_state *tegra;
 498
 499	/* Propagate errors from allocation or locking failures. */
 500	crtc_state = drm_atomic_get_crtc_state(state->state, state->crtc);
 501	if (IS_ERR(crtc_state))
 502		return PTR_ERR(crtc_state);
 503
 504	tegra = to_dc_state(crtc_state);
 505
 506	tegra->planes |= WIN_A_ACT_REQ << plane->index;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 507
 508	return 0;
 509}
 
 
 
 
 
 
 
 
 510
 511static int tegra_plane_atomic_check(struct drm_plane *plane,
 512				    struct drm_plane_state *state)
 513{
 514	struct tegra_plane_state *plane_state = to_tegra_plane_state(state);
 
 515	struct tegra_bo_tiling *tiling = &plane_state->tiling;
 516	struct tegra_plane *tegra = to_tegra_plane(plane);
 517	struct tegra_dc *dc = to_tegra_dc(state->crtc);
 518	int err;
 519
 520	/* no need for further checks if the plane is being disabled */
 521	if (!state->crtc)
 522		return 0;
 523
 524	err = tegra_dc_format(state->fb->pixel_format, &plane_state->format,
 525			      &plane_state->swap);
 
 526	if (err < 0)
 527		return err;
 528
 
 
 
 
 
 
 
 
 
 
 
 
 529	err = tegra_fb_get_tiling(state->fb, tiling);
 530	if (err < 0)
 531		return err;
 532
 533	if (tiling->mode == TEGRA_BO_TILING_MODE_BLOCK &&
 534	    !dc->soc->supports_block_linear) {
 535		DRM_ERROR("hardware doesn't support block linear mode\n");
 536		return -EINVAL;
 537	}
 538
 
 
 
 
 
 
 
 539	/*
 540	 * Tegra doesn't support different strides for U and V planes so we
 541	 * error out if the user tries to display a framebuffer with such a
 542	 * configuration.
 543	 */
 544	if (drm_format_num_planes(state->fb->pixel_format) > 2) {
 545		if (state->fb->pitches[2] != state->fb->pitches[1]) {
 546			DRM_ERROR("unsupported UV-plane configuration\n");
 547			return -EINVAL;
 548		}
 549	}
 550
 551	err = tegra_plane_state_add(tegra, state);
 552	if (err < 0)
 553		return err;
 554
 555	return 0;
 556}
 557
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 558static void tegra_plane_atomic_update(struct drm_plane *plane,
 559				      struct drm_plane_state *old_state)
 560{
 561	struct tegra_plane_state *state = to_tegra_plane_state(plane->state);
 562	struct tegra_dc *dc = to_tegra_dc(plane->state->crtc);
 563	struct drm_framebuffer *fb = plane->state->fb;
 564	struct tegra_plane *p = to_tegra_plane(plane);
 565	struct tegra_dc_window window;
 566	unsigned int i;
 567
 568	/* rien ne va plus */
 569	if (!plane->state->crtc || !plane->state->fb)
 570		return;
 571
 
 
 
 572	memset(&window, 0, sizeof(window));
 573	window.src.x = plane->state->src_x >> 16;
 574	window.src.y = plane->state->src_y >> 16;
 575	window.src.w = plane->state->src_w >> 16;
 576	window.src.h = plane->state->src_h >> 16;
 577	window.dst.x = plane->state->crtc_x;
 578	window.dst.y = plane->state->crtc_y;
 579	window.dst.w = plane->state->crtc_w;
 580	window.dst.h = plane->state->crtc_h;
 581	window.bits_per_pixel = fb->bits_per_pixel;
 582	window.bottom_up = tegra_fb_is_bottom_up(fb);
 583
 584	/* copy from state */
 
 585	window.tiling = state->tiling;
 586	window.format = state->format;
 587	window.swap = state->swap;
 588
 589	for (i = 0; i < drm_format_num_planes(fb->pixel_format); i++) {
 590		struct tegra_bo *bo = tegra_fb_get_plane(fb, i);
 591
 592		window.base[i] = bo->paddr + fb->offsets[i];
 593		window.stride[i] = fb->pitches[i];
 594	}
 595
 596	tegra_dc_setup_window(dc, p->index, &window);
 597}
 598
 599static void tegra_plane_atomic_disable(struct drm_plane *plane,
 600				       struct drm_plane_state *old_state)
 601{
 602	struct tegra_plane *p = to_tegra_plane(plane);
 603	struct tegra_dc *dc;
 604	unsigned long flags;
 605	u32 value;
 606
 607	/* rien ne va plus */
 608	if (!old_state || !old_state->crtc)
 609		return;
 610
 611	dc = to_tegra_dc(old_state->crtc);
 612
 613	spin_lock_irqsave(&dc->lock, flags);
 614
 615	value = WINDOW_A_SELECT << p->index;
 616	tegra_dc_writel(dc, value, DC_CMD_DISPLAY_WINDOW_HEADER);
 617
 618	value = tegra_dc_readl(dc, DC_WIN_WIN_OPTIONS);
 619	value &= ~WIN_ENABLE;
 620	tegra_dc_writel(dc, value, DC_WIN_WIN_OPTIONS);
 621
 622	spin_unlock_irqrestore(&dc->lock, flags);
 623}
 624
 625static const struct drm_plane_helper_funcs tegra_primary_plane_helper_funcs = {
 626	.prepare_fb = tegra_plane_prepare_fb,
 627	.cleanup_fb = tegra_plane_cleanup_fb,
 628	.atomic_check = tegra_plane_atomic_check,
 629	.atomic_update = tegra_plane_atomic_update,
 630	.atomic_disable = tegra_plane_atomic_disable,
 
 631};
 632
 633static struct drm_plane *tegra_dc_primary_plane_create(struct drm_device *drm,
 634						       struct tegra_dc *dc)
 635{
 636	/*
 637	 * Ideally this would use drm_crtc_mask(), but that would require the
 638	 * CRTC to already be in the mode_config's list of CRTCs. However, it
 639	 * will only be added to that list in the drm_crtc_init_with_planes()
 640	 * (in tegra_dc_init()), which in turn requires registration of these
 641	 * planes. So we have ourselves a nice little chicken and egg problem
 642	 * here.
 643	 *
 644	 * We work around this by manually creating the mask from the number
 645	 * of CRTCs that have been registered, and should therefore always be
 646	 * the same as drm_crtc_index() after registration.
 647	 */
 648	unsigned long possible_crtcs = 1 << drm->mode_config.num_crtc;
 
 
 
 
 
 
 
 649	struct tegra_plane *plane;
 650	unsigned int num_formats;
 
 651	const u32 *formats;
 652	int err;
 653
 654	plane = kzalloc(sizeof(*plane), GFP_KERNEL);
 655	if (!plane)
 656		return ERR_PTR(-ENOMEM);
 657
 658	num_formats = ARRAY_SIZE(tegra_primary_plane_formats);
 659	formats = tegra_primary_plane_formats;
 
 
 
 
 
 
 660
 661	err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
 662				       &tegra_primary_plane_funcs, formats,
 663				       num_formats, DRM_PLANE_TYPE_PRIMARY,
 664				       NULL);
 665	if (err < 0) {
 666		kfree(plane);
 667		return ERR_PTR(err);
 668	}
 669
 670	drm_plane_helper_add(&plane->base, &tegra_primary_plane_helper_funcs);
 
 
 
 
 
 
 
 
 
 671
 672	return &plane->base;
 673}
 674
 675static const u32 tegra_cursor_plane_formats[] = {
 676	DRM_FORMAT_RGBA8888,
 677};
 678
 679static int tegra_cursor_atomic_check(struct drm_plane *plane,
 680				     struct drm_plane_state *state)
 681{
 682	struct tegra_plane *tegra = to_tegra_plane(plane);
 683	int err;
 684
 685	/* no need for further checks if the plane is being disabled */
 686	if (!state->crtc)
 687		return 0;
 688
 689	/* scaling not supported for cursor */
 690	if ((state->src_w >> 16 != state->crtc_w) ||
 691	    (state->src_h >> 16 != state->crtc_h))
 692		return -EINVAL;
 693
 694	/* only square cursors supported */
 695	if (state->src_w != state->src_h)
 696		return -EINVAL;
 697
 698	if (state->crtc_w != 32 && state->crtc_w != 64 &&
 699	    state->crtc_w != 128 && state->crtc_w != 256)
 700		return -EINVAL;
 701
 702	err = tegra_plane_state_add(tegra, state);
 703	if (err < 0)
 704		return err;
 705
 706	return 0;
 707}
 708
 709static void tegra_cursor_atomic_update(struct drm_plane *plane,
 710				       struct drm_plane_state *old_state)
 711{
 712	struct tegra_bo *bo = tegra_fb_get_plane(plane->state->fb, 0);
 713	struct tegra_dc *dc = to_tegra_dc(plane->state->crtc);
 714	struct drm_plane_state *state = plane->state;
 715	u32 value = CURSOR_CLIP_DISPLAY;
 716
 717	/* rien ne va plus */
 718	if (!plane->state->crtc || !plane->state->fb)
 719		return;
 720
 721	switch (state->crtc_w) {
 722	case 32:
 723		value |= CURSOR_SIZE_32x32;
 724		break;
 725
 726	case 64:
 727		value |= CURSOR_SIZE_64x64;
 728		break;
 729
 730	case 128:
 731		value |= CURSOR_SIZE_128x128;
 732		break;
 733
 734	case 256:
 735		value |= CURSOR_SIZE_256x256;
 736		break;
 737
 738	default:
 739		WARN(1, "cursor size %ux%u not supported\n", state->crtc_w,
 740		     state->crtc_h);
 741		return;
 742	}
 743
 744	value |= (bo->paddr >> 10) & 0x3fffff;
 745	tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR);
 746
 747#ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
 748	value = (bo->paddr >> 32) & 0x3;
 749	tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR_HI);
 750#endif
 751
 752	/* enable cursor and set blend mode */
 753	value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
 754	value |= CURSOR_ENABLE;
 755	tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
 756
 757	value = tegra_dc_readl(dc, DC_DISP_BLEND_CURSOR_CONTROL);
 758	value &= ~CURSOR_DST_BLEND_MASK;
 759	value &= ~CURSOR_SRC_BLEND_MASK;
 760	value |= CURSOR_MODE_NORMAL;
 761	value |= CURSOR_DST_BLEND_NEG_K1_TIMES_SRC;
 762	value |= CURSOR_SRC_BLEND_K1_TIMES_SRC;
 763	value |= CURSOR_ALPHA;
 764	tegra_dc_writel(dc, value, DC_DISP_BLEND_CURSOR_CONTROL);
 765
 766	/* position the cursor */
 767	value = (state->crtc_y & 0x3fff) << 16 | (state->crtc_x & 0x3fff);
 768	tegra_dc_writel(dc, value, DC_DISP_CURSOR_POSITION);
 769}
 770
 771static void tegra_cursor_atomic_disable(struct drm_plane *plane,
 772					struct drm_plane_state *old_state)
 773{
 774	struct tegra_dc *dc;
 775	u32 value;
 776
 777	/* rien ne va plus */
 778	if (!old_state || !old_state->crtc)
 779		return;
 780
 781	dc = to_tegra_dc(old_state->crtc);
 782
 783	value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
 784	value &= ~CURSOR_ENABLE;
 785	tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
 786}
 787
 788static const struct drm_plane_funcs tegra_cursor_plane_funcs = {
 789	.update_plane = drm_atomic_helper_update_plane,
 790	.disable_plane = drm_atomic_helper_disable_plane,
 791	.destroy = tegra_plane_destroy,
 792	.reset = tegra_plane_reset,
 793	.atomic_duplicate_state = tegra_plane_atomic_duplicate_state,
 794	.atomic_destroy_state = tegra_plane_atomic_destroy_state,
 795};
 796
 797static const struct drm_plane_helper_funcs tegra_cursor_plane_helper_funcs = {
 798	.prepare_fb = tegra_plane_prepare_fb,
 799	.cleanup_fb = tegra_plane_cleanup_fb,
 800	.atomic_check = tegra_cursor_atomic_check,
 801	.atomic_update = tegra_cursor_atomic_update,
 802	.atomic_disable = tegra_cursor_atomic_disable,
 803};
 804
 805static struct drm_plane *tegra_dc_cursor_plane_create(struct drm_device *drm,
 806						      struct tegra_dc *dc)
 807{
 
 808	struct tegra_plane *plane;
 809	unsigned int num_formats;
 810	const u32 *formats;
 811	int err;
 812
 813	plane = kzalloc(sizeof(*plane), GFP_KERNEL);
 814	if (!plane)
 815		return ERR_PTR(-ENOMEM);
 816
 817	/*
 818	 * This index is kind of fake. The cursor isn't a regular plane, but
 819	 * its update and activation request bits in DC_CMD_STATE_CONTROL do
 820	 * use the same programming. Setting this fake index here allows the
 821	 * code in tegra_add_plane_state() to do the right thing without the
 822	 * need to special-casing the cursor plane.
 823	 */
 824	plane->index = 6;
 
 825
 826	num_formats = ARRAY_SIZE(tegra_cursor_plane_formats);
 827	formats = tegra_cursor_plane_formats;
 828
 829	err = drm_universal_plane_init(drm, &plane->base, 1 << dc->pipe,
 830				       &tegra_cursor_plane_funcs, formats,
 831				       num_formats, DRM_PLANE_TYPE_CURSOR,
 832				       NULL);
 833	if (err < 0) {
 834		kfree(plane);
 835		return ERR_PTR(err);
 836	}
 837
 838	drm_plane_helper_add(&plane->base, &tegra_cursor_plane_helper_funcs);
 839
 840	return &plane->base;
 841}
 842
 843static void tegra_overlay_plane_destroy(struct drm_plane *plane)
 844{
 845	tegra_plane_destroy(plane);
 846}
 847
 848static const struct drm_plane_funcs tegra_overlay_plane_funcs = {
 849	.update_plane = drm_atomic_helper_update_plane,
 850	.disable_plane = drm_atomic_helper_disable_plane,
 851	.destroy = tegra_overlay_plane_destroy,
 852	.reset = tegra_plane_reset,
 853	.atomic_duplicate_state = tegra_plane_atomic_duplicate_state,
 854	.atomic_destroy_state = tegra_plane_atomic_destroy_state,
 855};
 856
 857static const uint32_t tegra_overlay_plane_formats[] = {
 858	DRM_FORMAT_XBGR8888,
 859	DRM_FORMAT_XRGB8888,
 
 
 
 
 
 
 
 
 
 
 860	DRM_FORMAT_RGB565,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 861	DRM_FORMAT_UYVY,
 862	DRM_FORMAT_YUYV,
 863	DRM_FORMAT_YUV420,
 864	DRM_FORMAT_YUV422,
 865};
 866
 867static const struct drm_plane_helper_funcs tegra_overlay_plane_helper_funcs = {
 868	.prepare_fb = tegra_plane_prepare_fb,
 869	.cleanup_fb = tegra_plane_cleanup_fb,
 870	.atomic_check = tegra_plane_atomic_check,
 871	.atomic_update = tegra_plane_atomic_update,
 872	.atomic_disable = tegra_plane_atomic_disable,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 873};
 874
 875static struct drm_plane *tegra_dc_overlay_plane_create(struct drm_device *drm,
 876						       struct tegra_dc *dc,
 877						       unsigned int index)
 
 878{
 
 879	struct tegra_plane *plane;
 880	unsigned int num_formats;
 
 881	const u32 *formats;
 882	int err;
 883
 884	plane = kzalloc(sizeof(*plane), GFP_KERNEL);
 885	if (!plane)
 886		return ERR_PTR(-ENOMEM);
 887
 
 888	plane->index = index;
 
 889
 890	num_formats = ARRAY_SIZE(tegra_overlay_plane_formats);
 891	formats = tegra_overlay_plane_formats;
 892
 893	err = drm_universal_plane_init(drm, &plane->base, 1 << dc->pipe,
 894				       &tegra_overlay_plane_funcs, formats,
 895				       num_formats, DRM_PLANE_TYPE_OVERLAY,
 896				       NULL);
 
 
 
 
 897	if (err < 0) {
 898		kfree(plane);
 899		return ERR_PTR(err);
 900	}
 901
 902	drm_plane_helper_add(&plane->base, &tegra_overlay_plane_helper_funcs);
 903
 904	return &plane->base;
 905}
 906
 907static int tegra_dc_add_planes(struct drm_device *drm, struct tegra_dc *dc)
 908{
 909	struct drm_plane *plane;
 910	unsigned int i;
 911
 912	for (i = 0; i < 2; i++) {
 913		plane = tegra_dc_overlay_plane_create(drm, dc, 1 + i);
 914		if (IS_ERR(plane))
 915			return PTR_ERR(plane);
 916	}
 917
 918	return 0;
 919}
 920
 921u32 tegra_dc_get_vblank_counter(struct tegra_dc *dc)
 922{
 923	if (dc->syncpt)
 924		return host1x_syncpt_read(dc->syncpt);
 925
 926	/* fallback to software emulated VBLANK counter */
 927	return drm_crtc_vblank_count(&dc->base);
 928}
 929
 930void tegra_dc_enable_vblank(struct tegra_dc *dc)
 931{
 932	unsigned long value, flags;
 933
 934	spin_lock_irqsave(&dc->lock, flags);
 935
 936	value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
 937	value |= VBLANK_INT;
 938	tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
 
 
 939
 940	spin_unlock_irqrestore(&dc->lock, flags);
 941}
 942
 943void tegra_dc_disable_vblank(struct tegra_dc *dc)
 
 944{
 945	unsigned long value, flags;
 
 946
 947	spin_lock_irqsave(&dc->lock, flags);
 
 948
 949	value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
 950	value &= ~VBLANK_INT;
 951	tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 952
 953	spin_unlock_irqrestore(&dc->lock, flags);
 954}
 955
 956static void tegra_dc_finish_page_flip(struct tegra_dc *dc)
 
 957{
 958	struct drm_device *drm = dc->base.dev;
 959	struct drm_crtc *crtc = &dc->base;
 960	unsigned long flags, base;
 961	struct tegra_bo *bo;
 962
 963	spin_lock_irqsave(&drm->event_lock, flags);
 964
 965	if (!dc->event) {
 966		spin_unlock_irqrestore(&drm->event_lock, flags);
 967		return;
 968	}
 969
 970	bo = tegra_fb_get_plane(crtc->primary->fb, 0);
 
 
 
 971
 972	spin_lock(&dc->lock);
 
 
 
 
 973
 974	/* check if new start address has been latched */
 975	tegra_dc_writel(dc, WINDOW_A_SELECT, DC_CMD_DISPLAY_WINDOW_HEADER);
 976	tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
 977	base = tegra_dc_readl(dc, DC_WINBUF_START_ADDR);
 978	tegra_dc_writel(dc, 0, DC_CMD_STATE_ACCESS);
 979
 980	spin_unlock(&dc->lock);
 981
 982	if (base == bo->paddr + crtc->primary->fb->offsets[0]) {
 983		drm_crtc_send_vblank_event(crtc, dc->event);
 984		drm_crtc_vblank_put(crtc);
 985		dc->event = NULL;
 986	}
 987
 988	spin_unlock_irqrestore(&drm->event_lock, flags);
 989}
 990
 991static void tegra_dc_destroy(struct drm_crtc *crtc)
 992{
 993	drm_crtc_cleanup(crtc);
 994}
 995
 996static void tegra_crtc_reset(struct drm_crtc *crtc)
 997{
 998	struct tegra_dc_state *state;
 999
1000	if (crtc->state)
1001		__drm_atomic_helper_crtc_destroy_state(crtc, crtc->state);
1002
1003	kfree(crtc->state);
1004	crtc->state = NULL;
1005
1006	state = kzalloc(sizeof(*state), GFP_KERNEL);
1007	if (state) {
1008		crtc->state = &state->base;
1009		crtc->state->crtc = crtc;
1010	}
1011
 
1012	drm_crtc_vblank_reset(crtc);
1013}
1014
1015static struct drm_crtc_state *
1016tegra_crtc_atomic_duplicate_state(struct drm_crtc *crtc)
1017{
1018	struct tegra_dc_state *state = to_dc_state(crtc->state);
1019	struct tegra_dc_state *copy;
1020
1021	copy = kmalloc(sizeof(*copy), GFP_KERNEL);
1022	if (!copy)
1023		return NULL;
1024
1025	__drm_atomic_helper_crtc_duplicate_state(crtc, &copy->base);
1026	copy->clk = state->clk;
1027	copy->pclk = state->pclk;
1028	copy->div = state->div;
1029	copy->planes = state->planes;
1030
1031	return &copy->base;
1032}
1033
1034static void tegra_crtc_atomic_destroy_state(struct drm_crtc *crtc,
1035					    struct drm_crtc_state *state)
1036{
1037	__drm_atomic_helper_crtc_destroy_state(crtc, state);
1038	kfree(state);
1039}
1040
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1041static const struct drm_crtc_funcs tegra_crtc_funcs = {
1042	.page_flip = drm_atomic_helper_page_flip,
1043	.set_config = drm_atomic_helper_set_config,
1044	.destroy = tegra_dc_destroy,
1045	.reset = tegra_crtc_reset,
1046	.atomic_duplicate_state = tegra_crtc_atomic_duplicate_state,
1047	.atomic_destroy_state = tegra_crtc_atomic_destroy_state,
 
 
 
 
 
1048};
1049
1050static int tegra_dc_set_timings(struct tegra_dc *dc,
1051				struct drm_display_mode *mode)
1052{
1053	unsigned int h_ref_to_sync = 1;
1054	unsigned int v_ref_to_sync = 1;
1055	unsigned long value;
1056
1057	tegra_dc_writel(dc, 0x0, DC_DISP_DISP_TIMING_OPTIONS);
 
1058
1059	value = (v_ref_to_sync << 16) | h_ref_to_sync;
1060	tegra_dc_writel(dc, value, DC_DISP_REF_TO_SYNC);
 
1061
1062	value = ((mode->vsync_end - mode->vsync_start) << 16) |
1063		((mode->hsync_end - mode->hsync_start) <<  0);
1064	tegra_dc_writel(dc, value, DC_DISP_SYNC_WIDTH);
1065
1066	value = ((mode->vtotal - mode->vsync_end) << 16) |
1067		((mode->htotal - mode->hsync_end) <<  0);
1068	tegra_dc_writel(dc, value, DC_DISP_BACK_PORCH);
1069
1070	value = ((mode->vsync_start - mode->vdisplay) << 16) |
1071		((mode->hsync_start - mode->hdisplay) <<  0);
1072	tegra_dc_writel(dc, value, DC_DISP_FRONT_PORCH);
1073
1074	value = (mode->vdisplay << 16) | mode->hdisplay;
1075	tegra_dc_writel(dc, value, DC_DISP_ACTIVE);
1076
1077	return 0;
1078}
1079
1080/**
1081 * tegra_dc_state_setup_clock - check clock settings and store them in atomic
1082 *     state
1083 * @dc: display controller
1084 * @crtc_state: CRTC atomic state
1085 * @clk: parent clock for display controller
1086 * @pclk: pixel clock
1087 * @div: shift clock divider
1088 *
1089 * Returns:
1090 * 0 on success or a negative error-code on failure.
1091 */
1092int tegra_dc_state_setup_clock(struct tegra_dc *dc,
1093			       struct drm_crtc_state *crtc_state,
1094			       struct clk *clk, unsigned long pclk,
1095			       unsigned int div)
1096{
1097	struct tegra_dc_state *state = to_dc_state(crtc_state);
1098
1099	if (!clk_has_parent(dc->clk, clk))
1100		return -EINVAL;
1101
1102	state->clk = clk;
1103	state->pclk = pclk;
1104	state->div = div;
1105
1106	return 0;
1107}
1108
1109static void tegra_dc_commit_state(struct tegra_dc *dc,
1110				  struct tegra_dc_state *state)
1111{
1112	u32 value;
1113	int err;
1114
1115	err = clk_set_parent(dc->clk, state->clk);
1116	if (err < 0)
1117		dev_err(dc->dev, "failed to set parent clock: %d\n", err);
1118
1119	/*
1120	 * Outputs may not want to change the parent clock rate. This is only
1121	 * relevant to Tegra20 where only a single display PLL is available.
1122	 * Since that PLL would typically be used for HDMI, an internal LVDS
1123	 * panel would need to be driven by some other clock such as PLL_P
1124	 * which is shared with other peripherals. Changing the clock rate
1125	 * should therefore be avoided.
1126	 */
1127	if (state->pclk > 0) {
1128		err = clk_set_rate(state->clk, state->pclk);
1129		if (err < 0)
1130			dev_err(dc->dev,
1131				"failed to set clock rate to %lu Hz\n",
1132				state->pclk);
1133	}
1134
1135	DRM_DEBUG_KMS("rate: %lu, div: %u\n", clk_get_rate(dc->clk),
1136		      state->div);
1137	DRM_DEBUG_KMS("pclk: %lu\n", state->pclk);
1138
1139	value = SHIFT_CLK_DIVIDER(state->div) | PIXEL_CLK_DIVIDER_PCD1;
1140	tegra_dc_writel(dc, value, DC_DISP_DISP_CLOCK_CONTROL);
 
 
 
 
 
 
 
1141}
1142
1143static void tegra_dc_stop(struct tegra_dc *dc)
1144{
1145	u32 value;
1146
1147	/* stop the display controller */
1148	value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
1149	value &= ~DISP_CTRL_MODE_MASK;
1150	tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
1151
1152	tegra_dc_commit(dc);
1153}
1154
1155static bool tegra_dc_idle(struct tegra_dc *dc)
1156{
1157	u32 value;
1158
1159	value = tegra_dc_readl_active(dc, DC_CMD_DISPLAY_COMMAND);
1160
1161	return (value & DISP_CTRL_MODE_MASK) == 0;
1162}
1163
1164static int tegra_dc_wait_idle(struct tegra_dc *dc, unsigned long timeout)
1165{
1166	timeout = jiffies + msecs_to_jiffies(timeout);
1167
1168	while (time_before(jiffies, timeout)) {
1169		if (tegra_dc_idle(dc))
1170			return 0;
1171
1172		usleep_range(1000, 2000);
1173	}
1174
1175	dev_dbg(dc->dev, "timeout waiting for DC to become idle\n");
1176	return -ETIMEDOUT;
1177}
1178
1179static void tegra_crtc_disable(struct drm_crtc *crtc)
 
1180{
1181	struct tegra_dc *dc = to_tegra_dc(crtc);
1182	u32 value;
1183
1184	if (!tegra_dc_idle(dc)) {
1185		tegra_dc_stop(dc);
1186
1187		/*
1188		 * Ignore the return value, there isn't anything useful to do
1189		 * in case this fails.
1190		 */
1191		tegra_dc_wait_idle(dc, 100);
1192	}
1193
1194	/*
1195	 * This should really be part of the RGB encoder driver, but clearing
1196	 * these bits has the side-effect of stopping the display controller.
1197	 * When that happens no VBLANK interrupts will be raised. At the same
1198	 * time the encoder is disabled before the display controller, so the
1199	 * above code is always going to timeout waiting for the controller
1200	 * to go idle.
1201	 *
1202	 * Given the close coupling between the RGB encoder and the display
1203	 * controller doing it here is still kind of okay. None of the other
1204	 * encoder drivers require these bits to be cleared.
1205	 *
1206	 * XXX: Perhaps given that the display controller is switched off at
1207	 * this point anyway maybe clearing these bits isn't even useful for
1208	 * the RGB encoder?
1209	 */
1210	if (dc->rgb) {
1211		value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
1212		value &= ~(PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
1213			   PW4_ENABLE | PM0_ENABLE | PM1_ENABLE);
1214		tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
1215	}
1216
1217	tegra_dc_stats_reset(&dc->stats);
1218	drm_crtc_vblank_off(crtc);
 
 
 
 
 
 
 
 
 
 
 
1219}
1220
1221static void tegra_crtc_enable(struct drm_crtc *crtc)
 
1222{
1223	struct drm_display_mode *mode = &crtc->state->adjusted_mode;
1224	struct tegra_dc_state *state = to_dc_state(crtc->state);
1225	struct tegra_dc *dc = to_tegra_dc(crtc);
1226	u32 value;
1227
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1228	tegra_dc_commit_state(dc, state);
1229
1230	/* program display mode */
1231	tegra_dc_set_timings(dc, mode);
1232
1233	/* interlacing isn't supported yet, so disable it */
1234	if (dc->soc->supports_interlacing) {
1235		value = tegra_dc_readl(dc, DC_DISP_INTERLACE_CONTROL);
1236		value &= ~INTERLACE_ENABLE;
1237		tegra_dc_writel(dc, value, DC_DISP_INTERLACE_CONTROL);
1238	}
1239
1240	value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
1241	value &= ~DISP_CTRL_MODE_MASK;
1242	value |= DISP_CTRL_MODE_C_DISPLAY;
1243	tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
1244
1245	value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
1246	value |= PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
1247		 PW4_ENABLE | PM0_ENABLE | PM1_ENABLE;
1248	tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
 
 
 
 
 
 
 
 
1249
1250	tegra_dc_commit(dc);
1251
1252	drm_crtc_vblank_on(crtc);
1253}
1254
1255static int tegra_crtc_atomic_check(struct drm_crtc *crtc,
1256				   struct drm_crtc_state *state)
1257{
1258	return 0;
1259}
1260
1261static void tegra_crtc_atomic_begin(struct drm_crtc *crtc,
1262				    struct drm_crtc_state *old_crtc_state)
1263{
1264	struct tegra_dc *dc = to_tegra_dc(crtc);
1265
1266	if (crtc->state->event) {
1267		crtc->state->event->pipe = drm_crtc_index(crtc);
1268
1269		WARN_ON(drm_crtc_vblank_get(crtc) != 0);
 
 
 
 
 
1270
1271		dc->event = crtc->state->event;
1272		crtc->state->event = NULL;
1273	}
1274}
1275
1276static void tegra_crtc_atomic_flush(struct drm_crtc *crtc,
1277				    struct drm_crtc_state *old_crtc_state)
1278{
1279	struct tegra_dc_state *state = to_dc_state(crtc->state);
1280	struct tegra_dc *dc = to_tegra_dc(crtc);
 
1281
1282	tegra_dc_writel(dc, state->planes << 8, DC_CMD_STATE_CONTROL);
1283	tegra_dc_writel(dc, state->planes, DC_CMD_STATE_CONTROL);
 
 
 
 
 
1284}
1285
1286static const struct drm_crtc_helper_funcs tegra_crtc_helper_funcs = {
1287	.disable = tegra_crtc_disable,
1288	.enable = tegra_crtc_enable,
1289	.atomic_check = tegra_crtc_atomic_check,
1290	.atomic_begin = tegra_crtc_atomic_begin,
1291	.atomic_flush = tegra_crtc_atomic_flush,
 
 
1292};
1293
1294static irqreturn_t tegra_dc_irq(int irq, void *data)
1295{
1296	struct tegra_dc *dc = data;
1297	unsigned long status;
1298
1299	status = tegra_dc_readl(dc, DC_CMD_INT_STATUS);
1300	tegra_dc_writel(dc, status, DC_CMD_INT_STATUS);
1301
1302	if (status & FRAME_END_INT) {
1303		/*
1304		dev_dbg(dc->dev, "%s(): frame end\n", __func__);
1305		*/
1306		dc->stats.frames++;
1307	}
1308
1309	if (status & VBLANK_INT) {
1310		/*
1311		dev_dbg(dc->dev, "%s(): vertical blank\n", __func__);
1312		*/
1313		drm_crtc_handle_vblank(&dc->base);
1314		tegra_dc_finish_page_flip(dc);
1315		dc->stats.vblank++;
1316	}
1317
1318	if (status & (WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT)) {
1319		/*
1320		dev_dbg(dc->dev, "%s(): underflow\n", __func__);
1321		*/
1322		dc->stats.underflow++;
1323	}
1324
1325	if (status & (WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT)) {
1326		/*
1327		dev_dbg(dc->dev, "%s(): overflow\n", __func__);
1328		*/
1329		dc->stats.overflow++;
1330	}
1331
1332	return IRQ_HANDLED;
1333}
1334
1335static int tegra_dc_show_regs(struct seq_file *s, void *data)
1336{
1337	struct drm_info_node *node = s->private;
1338	struct tegra_dc *dc = node->info_ent->data;
1339	int err = 0;
1340
1341	drm_modeset_lock_crtc(&dc->base, NULL);
1342
1343	if (!dc->base.state->active) {
1344		err = -EBUSY;
1345		goto unlock;
1346	}
1347
1348#define DUMP_REG(name)						\
1349	seq_printf(s, "%-40s %#05x %08x\n", #name, name,	\
1350		   tegra_dc_readl(dc, name))
1351
1352	DUMP_REG(DC_CMD_GENERAL_INCR_SYNCPT);
1353	DUMP_REG(DC_CMD_GENERAL_INCR_SYNCPT_CNTRL);
1354	DUMP_REG(DC_CMD_GENERAL_INCR_SYNCPT_ERROR);
1355	DUMP_REG(DC_CMD_WIN_A_INCR_SYNCPT);
1356	DUMP_REG(DC_CMD_WIN_A_INCR_SYNCPT_CNTRL);
1357	DUMP_REG(DC_CMD_WIN_A_INCR_SYNCPT_ERROR);
1358	DUMP_REG(DC_CMD_WIN_B_INCR_SYNCPT);
1359	DUMP_REG(DC_CMD_WIN_B_INCR_SYNCPT_CNTRL);
1360	DUMP_REG(DC_CMD_WIN_B_INCR_SYNCPT_ERROR);
1361	DUMP_REG(DC_CMD_WIN_C_INCR_SYNCPT);
1362	DUMP_REG(DC_CMD_WIN_C_INCR_SYNCPT_CNTRL);
1363	DUMP_REG(DC_CMD_WIN_C_INCR_SYNCPT_ERROR);
1364	DUMP_REG(DC_CMD_CONT_SYNCPT_VSYNC);
1365	DUMP_REG(DC_CMD_DISPLAY_COMMAND_OPTION0);
1366	DUMP_REG(DC_CMD_DISPLAY_COMMAND);
1367	DUMP_REG(DC_CMD_SIGNAL_RAISE);
1368	DUMP_REG(DC_CMD_DISPLAY_POWER_CONTROL);
1369	DUMP_REG(DC_CMD_INT_STATUS);
1370	DUMP_REG(DC_CMD_INT_MASK);
1371	DUMP_REG(DC_CMD_INT_ENABLE);
1372	DUMP_REG(DC_CMD_INT_TYPE);
1373	DUMP_REG(DC_CMD_INT_POLARITY);
1374	DUMP_REG(DC_CMD_SIGNAL_RAISE1);
1375	DUMP_REG(DC_CMD_SIGNAL_RAISE2);
1376	DUMP_REG(DC_CMD_SIGNAL_RAISE3);
1377	DUMP_REG(DC_CMD_STATE_ACCESS);
1378	DUMP_REG(DC_CMD_STATE_CONTROL);
1379	DUMP_REG(DC_CMD_DISPLAY_WINDOW_HEADER);
1380	DUMP_REG(DC_CMD_REG_ACT_CONTROL);
1381	DUMP_REG(DC_COM_CRC_CONTROL);
1382	DUMP_REG(DC_COM_CRC_CHECKSUM);
1383	DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(0));
1384	DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(1));
1385	DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(2));
1386	DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(3));
1387	DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(0));
1388	DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(1));
1389	DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(2));
1390	DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(3));
1391	DUMP_REG(DC_COM_PIN_OUTPUT_DATA(0));
1392	DUMP_REG(DC_COM_PIN_OUTPUT_DATA(1));
1393	DUMP_REG(DC_COM_PIN_OUTPUT_DATA(2));
1394	DUMP_REG(DC_COM_PIN_OUTPUT_DATA(3));
1395	DUMP_REG(DC_COM_PIN_INPUT_ENABLE(0));
1396	DUMP_REG(DC_COM_PIN_INPUT_ENABLE(1));
1397	DUMP_REG(DC_COM_PIN_INPUT_ENABLE(2));
1398	DUMP_REG(DC_COM_PIN_INPUT_ENABLE(3));
1399	DUMP_REG(DC_COM_PIN_INPUT_DATA(0));
1400	DUMP_REG(DC_COM_PIN_INPUT_DATA(1));
1401	DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(0));
1402	DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(1));
1403	DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(2));
1404	DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(3));
1405	DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(4));
1406	DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(5));
1407	DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(6));
1408	DUMP_REG(DC_COM_PIN_MISC_CONTROL);
1409	DUMP_REG(DC_COM_PIN_PM0_CONTROL);
1410	DUMP_REG(DC_COM_PIN_PM0_DUTY_CYCLE);
1411	DUMP_REG(DC_COM_PIN_PM1_CONTROL);
1412	DUMP_REG(DC_COM_PIN_PM1_DUTY_CYCLE);
1413	DUMP_REG(DC_COM_SPI_CONTROL);
1414	DUMP_REG(DC_COM_SPI_START_BYTE);
1415	DUMP_REG(DC_COM_HSPI_WRITE_DATA_AB);
1416	DUMP_REG(DC_COM_HSPI_WRITE_DATA_CD);
1417	DUMP_REG(DC_COM_HSPI_CS_DC);
1418	DUMP_REG(DC_COM_SCRATCH_REGISTER_A);
1419	DUMP_REG(DC_COM_SCRATCH_REGISTER_B);
1420	DUMP_REG(DC_COM_GPIO_CTRL);
1421	DUMP_REG(DC_COM_GPIO_DEBOUNCE_COUNTER);
1422	DUMP_REG(DC_COM_CRC_CHECKSUM_LATCHED);
1423	DUMP_REG(DC_DISP_DISP_SIGNAL_OPTIONS0);
1424	DUMP_REG(DC_DISP_DISP_SIGNAL_OPTIONS1);
1425	DUMP_REG(DC_DISP_DISP_WIN_OPTIONS);
1426	DUMP_REG(DC_DISP_DISP_MEM_HIGH_PRIORITY);
1427	DUMP_REG(DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER);
1428	DUMP_REG(DC_DISP_DISP_TIMING_OPTIONS);
1429	DUMP_REG(DC_DISP_REF_TO_SYNC);
1430	DUMP_REG(DC_DISP_SYNC_WIDTH);
1431	DUMP_REG(DC_DISP_BACK_PORCH);
1432	DUMP_REG(DC_DISP_ACTIVE);
1433	DUMP_REG(DC_DISP_FRONT_PORCH);
1434	DUMP_REG(DC_DISP_H_PULSE0_CONTROL);
1435	DUMP_REG(DC_DISP_H_PULSE0_POSITION_A);
1436	DUMP_REG(DC_DISP_H_PULSE0_POSITION_B);
1437	DUMP_REG(DC_DISP_H_PULSE0_POSITION_C);
1438	DUMP_REG(DC_DISP_H_PULSE0_POSITION_D);
1439	DUMP_REG(DC_DISP_H_PULSE1_CONTROL);
1440	DUMP_REG(DC_DISP_H_PULSE1_POSITION_A);
1441	DUMP_REG(DC_DISP_H_PULSE1_POSITION_B);
1442	DUMP_REG(DC_DISP_H_PULSE1_POSITION_C);
1443	DUMP_REG(DC_DISP_H_PULSE1_POSITION_D);
1444	DUMP_REG(DC_DISP_H_PULSE2_CONTROL);
1445	DUMP_REG(DC_DISP_H_PULSE2_POSITION_A);
1446	DUMP_REG(DC_DISP_H_PULSE2_POSITION_B);
1447	DUMP_REG(DC_DISP_H_PULSE2_POSITION_C);
1448	DUMP_REG(DC_DISP_H_PULSE2_POSITION_D);
1449	DUMP_REG(DC_DISP_V_PULSE0_CONTROL);
1450	DUMP_REG(DC_DISP_V_PULSE0_POSITION_A);
1451	DUMP_REG(DC_DISP_V_PULSE0_POSITION_B);
1452	DUMP_REG(DC_DISP_V_PULSE0_POSITION_C);
1453	DUMP_REG(DC_DISP_V_PULSE1_CONTROL);
1454	DUMP_REG(DC_DISP_V_PULSE1_POSITION_A);
1455	DUMP_REG(DC_DISP_V_PULSE1_POSITION_B);
1456	DUMP_REG(DC_DISP_V_PULSE1_POSITION_C);
1457	DUMP_REG(DC_DISP_V_PULSE2_CONTROL);
1458	DUMP_REG(DC_DISP_V_PULSE2_POSITION_A);
1459	DUMP_REG(DC_DISP_V_PULSE3_CONTROL);
1460	DUMP_REG(DC_DISP_V_PULSE3_POSITION_A);
1461	DUMP_REG(DC_DISP_M0_CONTROL);
1462	DUMP_REG(DC_DISP_M1_CONTROL);
1463	DUMP_REG(DC_DISP_DI_CONTROL);
1464	DUMP_REG(DC_DISP_PP_CONTROL);
1465	DUMP_REG(DC_DISP_PP_SELECT_A);
1466	DUMP_REG(DC_DISP_PP_SELECT_B);
1467	DUMP_REG(DC_DISP_PP_SELECT_C);
1468	DUMP_REG(DC_DISP_PP_SELECT_D);
1469	DUMP_REG(DC_DISP_DISP_CLOCK_CONTROL);
1470	DUMP_REG(DC_DISP_DISP_INTERFACE_CONTROL);
1471	DUMP_REG(DC_DISP_DISP_COLOR_CONTROL);
1472	DUMP_REG(DC_DISP_SHIFT_CLOCK_OPTIONS);
1473	DUMP_REG(DC_DISP_DATA_ENABLE_OPTIONS);
1474	DUMP_REG(DC_DISP_SERIAL_INTERFACE_OPTIONS);
1475	DUMP_REG(DC_DISP_LCD_SPI_OPTIONS);
1476	DUMP_REG(DC_DISP_BORDER_COLOR);
1477	DUMP_REG(DC_DISP_COLOR_KEY0_LOWER);
1478	DUMP_REG(DC_DISP_COLOR_KEY0_UPPER);
1479	DUMP_REG(DC_DISP_COLOR_KEY1_LOWER);
1480	DUMP_REG(DC_DISP_COLOR_KEY1_UPPER);
1481	DUMP_REG(DC_DISP_CURSOR_FOREGROUND);
1482	DUMP_REG(DC_DISP_CURSOR_BACKGROUND);
1483	DUMP_REG(DC_DISP_CURSOR_START_ADDR);
1484	DUMP_REG(DC_DISP_CURSOR_START_ADDR_NS);
1485	DUMP_REG(DC_DISP_CURSOR_POSITION);
1486	DUMP_REG(DC_DISP_CURSOR_POSITION_NS);
1487	DUMP_REG(DC_DISP_INIT_SEQ_CONTROL);
1488	DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_A);
1489	DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_B);
1490	DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_C);
1491	DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_D);
1492	DUMP_REG(DC_DISP_DC_MCCIF_FIFOCTRL);
1493	DUMP_REG(DC_DISP_MCCIF_DISPLAY0A_HYST);
1494	DUMP_REG(DC_DISP_MCCIF_DISPLAY0B_HYST);
1495	DUMP_REG(DC_DISP_MCCIF_DISPLAY1A_HYST);
1496	DUMP_REG(DC_DISP_MCCIF_DISPLAY1B_HYST);
1497	DUMP_REG(DC_DISP_DAC_CRT_CTRL);
1498	DUMP_REG(DC_DISP_DISP_MISC_CONTROL);
1499	DUMP_REG(DC_DISP_SD_CONTROL);
1500	DUMP_REG(DC_DISP_SD_CSC_COEFF);
1501	DUMP_REG(DC_DISP_SD_LUT(0));
1502	DUMP_REG(DC_DISP_SD_LUT(1));
1503	DUMP_REG(DC_DISP_SD_LUT(2));
1504	DUMP_REG(DC_DISP_SD_LUT(3));
1505	DUMP_REG(DC_DISP_SD_LUT(4));
1506	DUMP_REG(DC_DISP_SD_LUT(5));
1507	DUMP_REG(DC_DISP_SD_LUT(6));
1508	DUMP_REG(DC_DISP_SD_LUT(7));
1509	DUMP_REG(DC_DISP_SD_LUT(8));
1510	DUMP_REG(DC_DISP_SD_FLICKER_CONTROL);
1511	DUMP_REG(DC_DISP_DC_PIXEL_COUNT);
1512	DUMP_REG(DC_DISP_SD_HISTOGRAM(0));
1513	DUMP_REG(DC_DISP_SD_HISTOGRAM(1));
1514	DUMP_REG(DC_DISP_SD_HISTOGRAM(2));
1515	DUMP_REG(DC_DISP_SD_HISTOGRAM(3));
1516	DUMP_REG(DC_DISP_SD_HISTOGRAM(4));
1517	DUMP_REG(DC_DISP_SD_HISTOGRAM(5));
1518	DUMP_REG(DC_DISP_SD_HISTOGRAM(6));
1519	DUMP_REG(DC_DISP_SD_HISTOGRAM(7));
1520	DUMP_REG(DC_DISP_SD_BL_TF(0));
1521	DUMP_REG(DC_DISP_SD_BL_TF(1));
1522	DUMP_REG(DC_DISP_SD_BL_TF(2));
1523	DUMP_REG(DC_DISP_SD_BL_TF(3));
1524	DUMP_REG(DC_DISP_SD_BL_CONTROL);
1525	DUMP_REG(DC_DISP_SD_HW_K_VALUES);
1526	DUMP_REG(DC_DISP_SD_MAN_K_VALUES);
1527	DUMP_REG(DC_DISP_CURSOR_START_ADDR_HI);
1528	DUMP_REG(DC_DISP_BLEND_CURSOR_CONTROL);
1529	DUMP_REG(DC_WIN_WIN_OPTIONS);
1530	DUMP_REG(DC_WIN_BYTE_SWAP);
1531	DUMP_REG(DC_WIN_BUFFER_CONTROL);
1532	DUMP_REG(DC_WIN_COLOR_DEPTH);
1533	DUMP_REG(DC_WIN_POSITION);
1534	DUMP_REG(DC_WIN_SIZE);
1535	DUMP_REG(DC_WIN_PRESCALED_SIZE);
1536	DUMP_REG(DC_WIN_H_INITIAL_DDA);
1537	DUMP_REG(DC_WIN_V_INITIAL_DDA);
1538	DUMP_REG(DC_WIN_DDA_INC);
1539	DUMP_REG(DC_WIN_LINE_STRIDE);
1540	DUMP_REG(DC_WIN_BUF_STRIDE);
1541	DUMP_REG(DC_WIN_UV_BUF_STRIDE);
1542	DUMP_REG(DC_WIN_BUFFER_ADDR_MODE);
1543	DUMP_REG(DC_WIN_DV_CONTROL);
1544	DUMP_REG(DC_WIN_BLEND_NOKEY);
1545	DUMP_REG(DC_WIN_BLEND_1WIN);
1546	DUMP_REG(DC_WIN_BLEND_2WIN_X);
1547	DUMP_REG(DC_WIN_BLEND_2WIN_Y);
1548	DUMP_REG(DC_WIN_BLEND_3WIN_XY);
1549	DUMP_REG(DC_WIN_HP_FETCH_CONTROL);
1550	DUMP_REG(DC_WINBUF_START_ADDR);
1551	DUMP_REG(DC_WINBUF_START_ADDR_NS);
1552	DUMP_REG(DC_WINBUF_START_ADDR_U);
1553	DUMP_REG(DC_WINBUF_START_ADDR_U_NS);
1554	DUMP_REG(DC_WINBUF_START_ADDR_V);
1555	DUMP_REG(DC_WINBUF_START_ADDR_V_NS);
1556	DUMP_REG(DC_WINBUF_ADDR_H_OFFSET);
1557	DUMP_REG(DC_WINBUF_ADDR_H_OFFSET_NS);
1558	DUMP_REG(DC_WINBUF_ADDR_V_OFFSET);
1559	DUMP_REG(DC_WINBUF_ADDR_V_OFFSET_NS);
1560	DUMP_REG(DC_WINBUF_UFLOW_STATUS);
1561	DUMP_REG(DC_WINBUF_AD_UFLOW_STATUS);
1562	DUMP_REG(DC_WINBUF_BD_UFLOW_STATUS);
1563	DUMP_REG(DC_WINBUF_CD_UFLOW_STATUS);
1564
1565#undef DUMP_REG
1566
1567unlock:
1568	drm_modeset_unlock_crtc(&dc->base);
1569	return err;
1570}
1571
1572static int tegra_dc_show_crc(struct seq_file *s, void *data)
1573{
1574	struct drm_info_node *node = s->private;
1575	struct tegra_dc *dc = node->info_ent->data;
1576	int err = 0;
1577	u32 value;
1578
1579	drm_modeset_lock_crtc(&dc->base, NULL);
1580
1581	if (!dc->base.state->active) {
1582		err = -EBUSY;
1583		goto unlock;
1584	}
1585
1586	value = DC_COM_CRC_CONTROL_ACTIVE_DATA | DC_COM_CRC_CONTROL_ENABLE;
1587	tegra_dc_writel(dc, value, DC_COM_CRC_CONTROL);
1588	tegra_dc_commit(dc);
1589
1590	drm_crtc_wait_one_vblank(&dc->base);
1591	drm_crtc_wait_one_vblank(&dc->base);
1592
1593	value = tegra_dc_readl(dc, DC_COM_CRC_CHECKSUM);
1594	seq_printf(s, "%08x\n", value);
1595
1596	tegra_dc_writel(dc, 0, DC_COM_CRC_CONTROL);
1597
1598unlock:
1599	drm_modeset_unlock_crtc(&dc->base);
1600	return err;
1601}
1602
1603static int tegra_dc_show_stats(struct seq_file *s, void *data)
1604{
1605	struct drm_info_node *node = s->private;
1606	struct tegra_dc *dc = node->info_ent->data;
1607
1608	seq_printf(s, "frames: %lu\n", dc->stats.frames);
1609	seq_printf(s, "vblank: %lu\n", dc->stats.vblank);
1610	seq_printf(s, "underflow: %lu\n", dc->stats.underflow);
1611	seq_printf(s, "overflow: %lu\n", dc->stats.overflow);
1612
1613	return 0;
1614}
1615
1616static struct drm_info_list debugfs_files[] = {
1617	{ "regs", tegra_dc_show_regs, 0, NULL },
1618	{ "crc", tegra_dc_show_crc, 0, NULL },
1619	{ "stats", tegra_dc_show_stats, 0, NULL },
1620};
1621
1622static int tegra_dc_debugfs_init(struct tegra_dc *dc, struct drm_minor *minor)
1623{
1624	unsigned int i;
1625	char *name;
1626	int err;
1627
1628	name = kasprintf(GFP_KERNEL, "dc.%d", dc->pipe);
1629	dc->debugfs = debugfs_create_dir(name, minor->debugfs_root);
1630	kfree(name);
1631
1632	if (!dc->debugfs)
1633		return -ENOMEM;
1634
1635	dc->debugfs_files = kmemdup(debugfs_files, sizeof(debugfs_files),
1636				    GFP_KERNEL);
1637	if (!dc->debugfs_files) {
1638		err = -ENOMEM;
1639		goto remove;
1640	}
1641
1642	for (i = 0; i < ARRAY_SIZE(debugfs_files); i++)
1643		dc->debugfs_files[i].data = dc;
1644
1645	err = drm_debugfs_create_files(dc->debugfs_files,
1646				       ARRAY_SIZE(debugfs_files),
1647				       dc->debugfs, minor);
1648	if (err < 0)
1649		goto free;
1650
1651	dc->minor = minor;
1652
1653	return 0;
1654
1655free:
1656	kfree(dc->debugfs_files);
1657	dc->debugfs_files = NULL;
1658remove:
1659	debugfs_remove(dc->debugfs);
1660	dc->debugfs = NULL;
1661
1662	return err;
1663}
1664
1665static int tegra_dc_debugfs_exit(struct tegra_dc *dc)
1666{
1667	drm_debugfs_remove_files(dc->debugfs_files, ARRAY_SIZE(debugfs_files),
1668				 dc->minor);
1669	dc->minor = NULL;
1670
1671	kfree(dc->debugfs_files);
1672	dc->debugfs_files = NULL;
1673
1674	debugfs_remove(dc->debugfs);
1675	dc->debugfs = NULL;
1676
1677	return 0;
1678}
1679
1680static int tegra_dc_init(struct host1x_client *client)
1681{
1682	struct drm_device *drm = dev_get_drvdata(client->parent);
1683	unsigned long flags = HOST1X_SYNCPT_CLIENT_MANAGED;
1684	struct tegra_dc *dc = host1x_client_to_dc(client);
1685	struct tegra_drm *tegra = drm->dev_private;
1686	struct drm_plane *primary = NULL;
1687	struct drm_plane *cursor = NULL;
1688	u32 value;
1689	int err;
1690
1691	dc->syncpt = host1x_syncpt_request(dc->dev, flags);
 
 
 
 
 
 
 
 
1692	if (!dc->syncpt)
1693		dev_warn(dc->dev, "failed to allocate syncpoint\n");
1694
1695	if (tegra->domain) {
1696		err = iommu_attach_device(tegra->domain, dc->dev);
1697		if (err < 0) {
1698			dev_err(dc->dev, "failed to attach to domain: %d\n",
1699				err);
1700			return err;
1701		}
1702
1703		dc->domain = tegra->domain;
1704	}
1705
1706	primary = tegra_dc_primary_plane_create(drm, dc);
 
 
 
 
1707	if (IS_ERR(primary)) {
1708		err = PTR_ERR(primary);
1709		goto cleanup;
1710	}
1711
1712	if (dc->soc->supports_cursor) {
1713		cursor = tegra_dc_cursor_plane_create(drm, dc);
1714		if (IS_ERR(cursor)) {
1715			err = PTR_ERR(cursor);
1716			goto cleanup;
1717		}
 
 
 
 
 
 
 
1718	}
1719
1720	err = drm_crtc_init_with_planes(drm, &dc->base, primary, cursor,
1721					&tegra_crtc_funcs, NULL);
1722	if (err < 0)
1723		goto cleanup;
1724
1725	drm_mode_crtc_set_gamma_size(&dc->base, 256);
1726	drm_crtc_helper_add(&dc->base, &tegra_crtc_helper_funcs);
1727
1728	/*
1729	 * Keep track of the minimum pitch alignment across all display
1730	 * controllers.
1731	 */
1732	if (dc->soc->pitch_align > tegra->pitch_align)
1733		tegra->pitch_align = dc->soc->pitch_align;
1734
1735	err = tegra_dc_rgb_init(drm, dc);
1736	if (err < 0 && err != -ENODEV) {
1737		dev_err(dc->dev, "failed to initialize RGB output: %d\n", err);
1738		goto cleanup;
1739	}
1740
1741	err = tegra_dc_add_planes(drm, dc);
1742	if (err < 0)
1743		goto cleanup;
1744
1745	if (IS_ENABLED(CONFIG_DEBUG_FS)) {
1746		err = tegra_dc_debugfs_init(dc, drm->primary);
1747		if (err < 0)
1748			dev_err(dc->dev, "debugfs setup failed: %d\n", err);
1749	}
1750
1751	err = devm_request_irq(dc->dev, dc->irq, tegra_dc_irq, 0,
1752			       dev_name(dc->dev), dc);
1753	if (err < 0) {
1754		dev_err(dc->dev, "failed to request IRQ#%u: %d\n", dc->irq,
1755			err);
1756		goto cleanup;
1757	}
1758
1759	/* initialize display controller */
1760	if (dc->syncpt) {
1761		u32 syncpt = host1x_syncpt_id(dc->syncpt);
1762
1763		value = SYNCPT_CNTRL_NO_STALL;
1764		tegra_dc_writel(dc, value, DC_CMD_GENERAL_INCR_SYNCPT_CNTRL);
1765
1766		value = SYNCPT_VSYNC_ENABLE | syncpt;
1767		tegra_dc_writel(dc, value, DC_CMD_CONT_SYNCPT_VSYNC);
1768	}
1769
1770	value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1771		WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1772	tegra_dc_writel(dc, value, DC_CMD_INT_TYPE);
1773
1774	value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1775		WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1776	tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY);
1777
1778	/* initialize timer */
1779	value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(0x20) |
1780		WINDOW_B_THRESHOLD(0x20) | WINDOW_C_THRESHOLD(0x20);
1781	tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY);
1782
1783	value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(1) |
1784		WINDOW_B_THRESHOLD(1) | WINDOW_C_THRESHOLD(1);
1785	tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER);
1786
1787	value = VBLANK_INT | WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1788		WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1789	tegra_dc_writel(dc, value, DC_CMD_INT_ENABLE);
1790
1791	value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1792		WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1793	tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1794
1795	if (dc->soc->supports_border_color)
1796		tegra_dc_writel(dc, 0, DC_DISP_BORDER_COLOR);
1797
1798	tegra_dc_stats_reset(&dc->stats);
1799
1800	return 0;
1801
1802cleanup:
1803	if (cursor)
1804		drm_plane_cleanup(cursor);
1805
1806	if (primary)
1807		drm_plane_cleanup(primary);
1808
1809	if (tegra->domain) {
1810		iommu_detach_device(tegra->domain, dc->dev);
1811		dc->domain = NULL;
1812	}
1813
1814	return err;
1815}
1816
1817static int tegra_dc_exit(struct host1x_client *client)
1818{
1819	struct tegra_dc *dc = host1x_client_to_dc(client);
1820	int err;
1821
1822	devm_free_irq(dc->dev, dc->irq, dc);
 
1823
1824	if (IS_ENABLED(CONFIG_DEBUG_FS)) {
1825		err = tegra_dc_debugfs_exit(dc);
1826		if (err < 0)
1827			dev_err(dc->dev, "debugfs cleanup failed: %d\n", err);
1828	}
1829
1830	err = tegra_dc_rgb_exit(dc);
1831	if (err) {
1832		dev_err(dc->dev, "failed to shutdown RGB output: %d\n", err);
1833		return err;
1834	}
1835
1836	if (dc->domain) {
1837		iommu_detach_device(dc->domain, dc->dev);
1838		dc->domain = NULL;
1839	}
1840
1841	host1x_syncpt_free(dc->syncpt);
1842
1843	return 0;
1844}
1845
1846static const struct host1x_client_ops dc_client_ops = {
1847	.init = tegra_dc_init,
1848	.exit = tegra_dc_exit,
1849};
1850
1851static const struct tegra_dc_soc_info tegra20_dc_soc_info = {
1852	.supports_border_color = true,
1853	.supports_interlacing = false,
1854	.supports_cursor = false,
1855	.supports_block_linear = false,
 
1856	.pitch_align = 8,
1857	.has_powergate = false,
 
 
 
 
 
 
 
 
 
1858};
1859
1860static const struct tegra_dc_soc_info tegra30_dc_soc_info = {
1861	.supports_border_color = true,
1862	.supports_interlacing = false,
1863	.supports_cursor = false,
1864	.supports_block_linear = false,
 
1865	.pitch_align = 8,
1866	.has_powergate = false,
 
 
 
 
 
 
 
 
 
1867};
1868
1869static const struct tegra_dc_soc_info tegra114_dc_soc_info = {
1870	.supports_border_color = true,
1871	.supports_interlacing = false,
1872	.supports_cursor = false,
1873	.supports_block_linear = false,
 
1874	.pitch_align = 64,
1875	.has_powergate = true,
 
 
 
 
 
 
 
 
 
1876};
1877
1878static const struct tegra_dc_soc_info tegra124_dc_soc_info = {
1879	.supports_border_color = false,
1880	.supports_interlacing = true,
1881	.supports_cursor = true,
1882	.supports_block_linear = true,
 
1883	.pitch_align = 64,
1884	.has_powergate = true,
 
 
 
 
 
 
 
 
 
1885};
1886
1887static const struct tegra_dc_soc_info tegra210_dc_soc_info = {
1888	.supports_border_color = false,
1889	.supports_interlacing = true,
1890	.supports_cursor = true,
1891	.supports_block_linear = true,
 
1892	.pitch_align = 64,
1893	.has_powergate = true,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1894};
1895
1896static const struct of_device_id tegra_dc_of_match[] = {
1897	{
 
 
 
 
 
 
1898		.compatible = "nvidia,tegra210-dc",
1899		.data = &tegra210_dc_soc_info,
1900	}, {
1901		.compatible = "nvidia,tegra124-dc",
1902		.data = &tegra124_dc_soc_info,
1903	}, {
1904		.compatible = "nvidia,tegra114-dc",
1905		.data = &tegra114_dc_soc_info,
1906	}, {
1907		.compatible = "nvidia,tegra30-dc",
1908		.data = &tegra30_dc_soc_info,
1909	}, {
1910		.compatible = "nvidia,tegra20-dc",
1911		.data = &tegra20_dc_soc_info,
1912	}, {
1913		/* sentinel */
1914	}
1915};
1916MODULE_DEVICE_TABLE(of, tegra_dc_of_match);
1917
1918static int tegra_dc_parse_dt(struct tegra_dc *dc)
1919{
1920	struct device_node *np;
1921	u32 value = 0;
1922	int err;
1923
1924	err = of_property_read_u32(dc->dev->of_node, "nvidia,head", &value);
1925	if (err < 0) {
1926		dev_err(dc->dev, "missing \"nvidia,head\" property\n");
1927
1928		/*
1929		 * If the nvidia,head property isn't present, try to find the
1930		 * correct head number by looking up the position of this
1931		 * display controller's node within the device tree. Assuming
1932		 * that the nodes are ordered properly in the DTS file and
1933		 * that the translation into a flattened device tree blob
1934		 * preserves that ordering this will actually yield the right
1935		 * head number.
1936		 *
1937		 * If those assumptions don't hold, this will still work for
1938		 * cases where only a single display controller is used.
1939		 */
1940		for_each_matching_node(np, tegra_dc_of_match) {
1941			if (np == dc->dev->of_node) {
1942				of_node_put(np);
1943				break;
1944			}
1945
1946			value++;
1947		}
1948	}
1949
1950	dc->pipe = value;
1951
1952	return 0;
1953}
1954
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1955static int tegra_dc_probe(struct platform_device *pdev)
1956{
1957	const struct of_device_id *id;
1958	struct resource *regs;
1959	struct tegra_dc *dc;
1960	int err;
1961
1962	dc = devm_kzalloc(&pdev->dev, sizeof(*dc), GFP_KERNEL);
1963	if (!dc)
1964		return -ENOMEM;
1965
1966	id = of_match_node(tegra_dc_of_match, pdev->dev.of_node);
1967	if (!id)
1968		return -ENODEV;
1969
1970	spin_lock_init(&dc->lock);
1971	INIT_LIST_HEAD(&dc->list);
1972	dc->dev = &pdev->dev;
1973	dc->soc = id->data;
1974
1975	err = tegra_dc_parse_dt(dc);
1976	if (err < 0)
1977		return err;
1978
 
 
 
 
1979	dc->clk = devm_clk_get(&pdev->dev, NULL);
1980	if (IS_ERR(dc->clk)) {
1981		dev_err(&pdev->dev, "failed to get clock\n");
1982		return PTR_ERR(dc->clk);
1983	}
1984
1985	dc->rst = devm_reset_control_get(&pdev->dev, "dc");
1986	if (IS_ERR(dc->rst)) {
1987		dev_err(&pdev->dev, "failed to get reset\n");
1988		return PTR_ERR(dc->rst);
1989	}
1990
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1991	if (dc->soc->has_powergate) {
1992		if (dc->pipe == 0)
1993			dc->powergate = TEGRA_POWERGATE_DIS;
1994		else
1995			dc->powergate = TEGRA_POWERGATE_DISB;
1996
1997		err = tegra_powergate_sequence_power_up(dc->powergate, dc->clk,
1998							dc->rst);
1999		if (err < 0) {
2000			dev_err(&pdev->dev, "failed to power partition: %d\n",
2001				err);
2002			return err;
2003		}
2004	} else {
2005		err = clk_prepare_enable(dc->clk);
2006		if (err < 0) {
2007			dev_err(&pdev->dev, "failed to enable clock: %d\n",
2008				err);
2009			return err;
2010		}
2011
2012		err = reset_control_deassert(dc->rst);
2013		if (err < 0) {
2014			dev_err(&pdev->dev, "failed to deassert reset: %d\n",
2015				err);
2016			return err;
2017		}
2018	}
2019
2020	regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2021	dc->regs = devm_ioremap_resource(&pdev->dev, regs);
2022	if (IS_ERR(dc->regs))
2023		return PTR_ERR(dc->regs);
2024
2025	dc->irq = platform_get_irq(pdev, 0);
2026	if (dc->irq < 0) {
2027		dev_err(&pdev->dev, "failed to get IRQ\n");
2028		return -ENXIO;
2029	}
2030
2031	INIT_LIST_HEAD(&dc->client.list);
2032	dc->client.ops = &dc_client_ops;
2033	dc->client.dev = &pdev->dev;
2034
2035	err = tegra_dc_rgb_probe(dc);
2036	if (err < 0 && err != -ENODEV) {
2037		dev_err(&pdev->dev, "failed to probe RGB output: %d\n", err);
2038		return err;
2039	}
2040
 
 
 
 
 
 
 
2041	err = host1x_client_register(&dc->client);
2042	if (err < 0) {
2043		dev_err(&pdev->dev, "failed to register host1x client: %d\n",
2044			err);
2045		return err;
2046	}
2047
2048	platform_set_drvdata(pdev, dc);
2049
2050	return 0;
2051}
2052
2053static int tegra_dc_remove(struct platform_device *pdev)
2054{
2055	struct tegra_dc *dc = platform_get_drvdata(pdev);
2056	int err;
2057
2058	err = host1x_client_unregister(&dc->client);
2059	if (err < 0) {
2060		dev_err(&pdev->dev, "failed to unregister host1x client: %d\n",
2061			err);
2062		return err;
2063	}
2064
2065	err = tegra_dc_rgb_remove(dc);
2066	if (err < 0) {
2067		dev_err(&pdev->dev, "failed to remove RGB output: %d\n", err);
2068		return err;
2069	}
2070
2071	reset_control_assert(dc->rst);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2072
2073	if (dc->soc->has_powergate)
2074		tegra_powergate_power_off(dc->powergate);
2075
2076	clk_disable_unprepare(dc->clk);
2077
2078	return 0;
2079}
2080
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2081struct platform_driver tegra_dc_driver = {
2082	.driver = {
2083		.name = "tegra-dc",
2084		.of_match_table = tegra_dc_of_match,
 
2085	},
2086	.probe = tegra_dc_probe,
2087	.remove = tegra_dc_remove,
2088};
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2012 Avionic Design GmbH
   4 * Copyright (C) 2012 NVIDIA CORPORATION.  All rights reserved.
 
 
 
 
   5 */
   6
   7#include <linux/clk.h>
   8#include <linux/debugfs.h>
   9#include <linux/delay.h>
  10#include <linux/iommu.h>
  11#include <linux/module.h>
  12#include <linux/of_device.h>
  13#include <linux/pm_runtime.h>
  14#include <linux/reset.h>
  15
  16#include <soc/tegra/pmc.h>
  17
 
 
 
 
  18#include <drm/drm_atomic.h>
  19#include <drm/drm_atomic_helper.h>
  20#include <drm/drm_debugfs.h>
  21#include <drm/drm_fourcc.h>
  22#include <drm/drm_plane_helper.h>
  23#include <drm/drm_vblank.h>
  24
  25#include "dc.h"
  26#include "drm.h"
  27#include "gem.h"
  28#include "hub.h"
  29#include "plane.h"
 
 
 
  30
  31static void tegra_crtc_atomic_destroy_state(struct drm_crtc *crtc,
  32					    struct drm_crtc_state *state);
 
 
  33
  34static void tegra_dc_stats_reset(struct tegra_dc_stats *stats)
  35{
  36	stats->frames = 0;
  37	stats->vblank = 0;
  38	stats->underflow = 0;
  39	stats->overflow = 0;
  40}
  41
  42/* Reads the active copy of a register. */
  43static u32 tegra_dc_readl_active(struct tegra_dc *dc, unsigned long offset)
  44{
  45	u32 value;
  46
  47	tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
  48	value = tegra_dc_readl(dc, offset);
  49	tegra_dc_writel(dc, 0, DC_CMD_STATE_ACCESS);
  50
  51	return value;
  52}
  53
  54static inline unsigned int tegra_plane_offset(struct tegra_plane *plane,
  55					      unsigned int offset)
  56{
  57	if (offset >= 0x500 && offset <= 0x638) {
  58		offset = 0x000 + (offset - 0x500);
  59		return plane->offset + offset;
  60	}
 
  61
  62	if (offset >= 0x700 && offset <= 0x719) {
  63		offset = 0x180 + (offset - 0x700);
  64		return plane->offset + offset;
  65	}
  66
  67	if (offset >= 0x800 && offset <= 0x839) {
  68		offset = 0x1c0 + (offset - 0x800);
  69		return plane->offset + offset;
  70	}
  71
  72	dev_WARN(plane->dc->dev, "invalid offset: %x\n", offset);
 
 
 
 
  73
  74	return plane->offset + offset;
  75}
  76
  77static inline u32 tegra_plane_readl(struct tegra_plane *plane,
  78				    unsigned int offset)
  79{
  80	return tegra_dc_readl(plane->dc, tegra_plane_offset(plane, offset));
 
 
 
  81}
  82
  83static inline void tegra_plane_writel(struct tegra_plane *plane, u32 value,
  84				      unsigned int offset)
 
 
 
 
  85{
  86	tegra_dc_writel(plane->dc, value, tegra_plane_offset(plane, offset));
  87}
  88
  89bool tegra_dc_has_output(struct tegra_dc *dc, struct device *dev)
  90{
  91	struct device_node *np = dc->dev->of_node;
  92	struct of_phandle_iterator it;
  93	int err;
  94
  95	of_for_each_phandle(&it, err, np, "nvidia,outputs", NULL, 0)
  96		if (it.node == dev->of_node)
  97			return true;
  98
  99	return false;
 
 100}
 101
 102/*
 103 * Double-buffered registers have two copies: ASSEMBLY and ACTIVE. When the
 104 * *_ACT_REQ bits are set the ASSEMBLY copy is latched into the ACTIVE copy.
 105 * Latching happens mmediately if the display controller is in STOP mode or
 106 * on the next frame boundary otherwise.
 107 *
 108 * Triple-buffered registers have three copies: ASSEMBLY, ARM and ACTIVE. The
 109 * ASSEMBLY copy is latched into the ARM copy immediately after *_UPDATE bits
 110 * are written. When the *_ACT_REQ bits are written, the ARM copy is latched
 111 * into the ACTIVE copy, either immediately if the display controller is in
 112 * STOP mode, or at the next frame boundary otherwise.
 113 */
 114void tegra_dc_commit(struct tegra_dc *dc)
 115{
 116	tegra_dc_writel(dc, GENERAL_ACT_REQ << 8, DC_CMD_STATE_CONTROL);
 117	tegra_dc_writel(dc, GENERAL_ACT_REQ, DC_CMD_STATE_CONTROL);
 118}
 119
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 120static inline u32 compute_dda_inc(unsigned int in, unsigned int out, bool v,
 121				  unsigned int bpp)
 122{
 123	fixed20_12 outf = dfixed_init(out);
 124	fixed20_12 inf = dfixed_init(in);
 125	u32 dda_inc;
 126	int max;
 127
 128	if (v)
 129		max = 15;
 130	else {
 131		switch (bpp) {
 132		case 2:
 133			max = 8;
 134			break;
 135
 136		default:
 137			WARN_ON_ONCE(1);
 138			/* fallthrough */
 139		case 4:
 140			max = 4;
 141			break;
 142		}
 143	}
 144
 145	outf.full = max_t(u32, outf.full - dfixed_const(1), dfixed_const(1));
 146	inf.full -= dfixed_const(1);
 147
 148	dda_inc = dfixed_div(inf, outf);
 149	dda_inc = min_t(u32, dda_inc, dfixed_const(max));
 150
 151	return dda_inc;
 152}
 153
 154static inline u32 compute_initial_dda(unsigned int in)
 155{
 156	fixed20_12 inf = dfixed_init(in);
 157	return dfixed_frac(inf);
 158}
 159
 160static void tegra_plane_setup_blending_legacy(struct tegra_plane *plane)
 161{
 162	u32 background[3] = {
 163		BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE,
 164		BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE,
 165		BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE,
 166	};
 167	u32 foreground = BLEND_WEIGHT1(255) | BLEND_WEIGHT0(255) |
 168			 BLEND_COLOR_KEY_NONE;
 169	u32 blendnokey = BLEND_WEIGHT1(255) | BLEND_WEIGHT0(255);
 170	struct tegra_plane_state *state;
 171	u32 blending[2];
 172	unsigned int i;
 173
 174	/* disable blending for non-overlapping case */
 175	tegra_plane_writel(plane, blendnokey, DC_WIN_BLEND_NOKEY);
 176	tegra_plane_writel(plane, foreground, DC_WIN_BLEND_1WIN);
 177
 178	state = to_tegra_plane_state(plane->base.state);
 179
 180	if (state->opaque) {
 181		/*
 182		 * Since custom fix-weight blending isn't utilized and weight
 183		 * of top window is set to max, we can enforce dependent
 184		 * blending which in this case results in transparent bottom
 185		 * window if top window is opaque and if top window enables
 186		 * alpha blending, then bottom window is getting alpha value
 187		 * of 1 minus the sum of alpha components of the overlapping
 188		 * plane.
 189		 */
 190		background[0] |= BLEND_CONTROL_DEPENDENT;
 191		background[1] |= BLEND_CONTROL_DEPENDENT;
 192
 193		/*
 194		 * The region where three windows overlap is the intersection
 195		 * of the two regions where two windows overlap. It contributes
 196		 * to the area if all of the windows on top of it have an alpha
 197		 * component.
 198		 */
 199		switch (state->base.normalized_zpos) {
 200		case 0:
 201			if (state->blending[0].alpha &&
 202			    state->blending[1].alpha)
 203				background[2] |= BLEND_CONTROL_DEPENDENT;
 204			break;
 205
 206		case 1:
 207			background[2] |= BLEND_CONTROL_DEPENDENT;
 208			break;
 209		}
 210	} else {
 211		/*
 212		 * Enable alpha blending if pixel format has an alpha
 213		 * component.
 214		 */
 215		foreground |= BLEND_CONTROL_ALPHA;
 216
 217		/*
 218		 * If any of the windows on top of this window is opaque, it
 219		 * will completely conceal this window within that area. If
 220		 * top window has an alpha component, it is blended over the
 221		 * bottom window.
 222		 */
 223		for (i = 0; i < 2; i++) {
 224			if (state->blending[i].alpha &&
 225			    state->blending[i].top)
 226				background[i] |= BLEND_CONTROL_DEPENDENT;
 227		}
 228
 229		switch (state->base.normalized_zpos) {
 230		case 0:
 231			if (state->blending[0].alpha &&
 232			    state->blending[1].alpha)
 233				background[2] |= BLEND_CONTROL_DEPENDENT;
 234			break;
 235
 236		case 1:
 237			/*
 238			 * When both middle and topmost windows have an alpha,
 239			 * these windows a mixed together and then the result
 240			 * is blended over the bottom window.
 241			 */
 242			if (state->blending[0].alpha &&
 243			    state->blending[0].top)
 244				background[2] |= BLEND_CONTROL_ALPHA;
 245
 246			if (state->blending[1].alpha &&
 247			    state->blending[1].top)
 248				background[2] |= BLEND_CONTROL_ALPHA;
 249			break;
 250		}
 251	}
 252
 253	switch (state->base.normalized_zpos) {
 254	case 0:
 255		tegra_plane_writel(plane, background[0], DC_WIN_BLEND_2WIN_X);
 256		tegra_plane_writel(plane, background[1], DC_WIN_BLEND_2WIN_Y);
 257		tegra_plane_writel(plane, background[2], DC_WIN_BLEND_3WIN_XY);
 258		break;
 259
 260	case 1:
 261		/*
 262		 * If window B / C is topmost, then X / Y registers are
 263		 * matching the order of blending[...] state indices,
 264		 * otherwise a swap is required.
 265		 */
 266		if (!state->blending[0].top && state->blending[1].top) {
 267			blending[0] = foreground;
 268			blending[1] = background[1];
 269		} else {
 270			blending[0] = background[0];
 271			blending[1] = foreground;
 272		}
 273
 274		tegra_plane_writel(plane, blending[0], DC_WIN_BLEND_2WIN_X);
 275		tegra_plane_writel(plane, blending[1], DC_WIN_BLEND_2WIN_Y);
 276		tegra_plane_writel(plane, background[2], DC_WIN_BLEND_3WIN_XY);
 277		break;
 278
 279	case 2:
 280		tegra_plane_writel(plane, foreground, DC_WIN_BLEND_2WIN_X);
 281		tegra_plane_writel(plane, foreground, DC_WIN_BLEND_2WIN_Y);
 282		tegra_plane_writel(plane, foreground, DC_WIN_BLEND_3WIN_XY);
 283		break;
 284	}
 285}
 286
 287static void tegra_plane_setup_blending(struct tegra_plane *plane,
 288				       const struct tegra_dc_window *window)
 289{
 290	u32 value;
 291
 292	value = BLEND_FACTOR_DST_ALPHA_ZERO | BLEND_FACTOR_SRC_ALPHA_K2 |
 293		BLEND_FACTOR_DST_COLOR_NEG_K1_TIMES_SRC |
 294		BLEND_FACTOR_SRC_COLOR_K1_TIMES_SRC;
 295	tegra_plane_writel(plane, value, DC_WIN_BLEND_MATCH_SELECT);
 296
 297	value = BLEND_FACTOR_DST_ALPHA_ZERO | BLEND_FACTOR_SRC_ALPHA_K2 |
 298		BLEND_FACTOR_DST_COLOR_NEG_K1_TIMES_SRC |
 299		BLEND_FACTOR_SRC_COLOR_K1_TIMES_SRC;
 300	tegra_plane_writel(plane, value, DC_WIN_BLEND_NOMATCH_SELECT);
 301
 302	value = K2(255) | K1(255) | WINDOW_LAYER_DEPTH(255 - window->zpos);
 303	tegra_plane_writel(plane, value, DC_WIN_BLEND_LAYER_CONTROL);
 304}
 305
 306static bool
 307tegra_plane_use_horizontal_filtering(struct tegra_plane *plane,
 308				     const struct tegra_dc_window *window)
 309{
 310	struct tegra_dc *dc = plane->dc;
 311
 312	if (window->src.w == window->dst.w)
 313		return false;
 314
 315	if (plane->index == 0 && dc->soc->has_win_a_without_filters)
 316		return false;
 317
 318	return true;
 319}
 320
 321static bool
 322tegra_plane_use_vertical_filtering(struct tegra_plane *plane,
 323				   const struct tegra_dc_window *window)
 324{
 325	struct tegra_dc *dc = plane->dc;
 326
 327	if (window->src.h == window->dst.h)
 328		return false;
 329
 330	if (plane->index == 0 && dc->soc->has_win_a_without_filters)
 331		return false;
 332
 333	if (plane->index == 2 && dc->soc->has_win_c_without_vert_filter)
 334		return false;
 335
 336	return true;
 337}
 338
 339static void tegra_dc_setup_window(struct tegra_plane *plane,
 340				  const struct tegra_dc_window *window)
 341{
 342	unsigned h_offset, v_offset, h_size, v_size, h_dda, v_dda, bpp;
 343	struct tegra_dc *dc = plane->dc;
 344	bool yuv, planar;
 345	u32 value;
 346
 347	/*
 348	 * For YUV planar modes, the number of bytes per pixel takes into
 349	 * account only the luma component and therefore is 1.
 350	 */
 351	yuv = tegra_plane_format_is_yuv(window->format, &planar);
 352	if (!yuv)
 353		bpp = window->bits_per_pixel / 8;
 354	else
 355		bpp = planar ? 1 : 2;
 356
 357	tegra_plane_writel(plane, window->format, DC_WIN_COLOR_DEPTH);
 358	tegra_plane_writel(plane, window->swap, DC_WIN_BYTE_SWAP);
 
 
 
 
 
 359
 360	value = V_POSITION(window->dst.y) | H_POSITION(window->dst.x);
 361	tegra_plane_writel(plane, value, DC_WIN_POSITION);
 362
 363	value = V_SIZE(window->dst.h) | H_SIZE(window->dst.w);
 364	tegra_plane_writel(plane, value, DC_WIN_SIZE);
 365
 366	h_offset = window->src.x * bpp;
 367	v_offset = window->src.y;
 368	h_size = window->src.w * bpp;
 369	v_size = window->src.h;
 370
 371	value = V_PRESCALED_SIZE(v_size) | H_PRESCALED_SIZE(h_size);
 372	tegra_plane_writel(plane, value, DC_WIN_PRESCALED_SIZE);
 373
 374	/*
 375	 * For DDA computations the number of bytes per pixel for YUV planar
 376	 * modes needs to take into account all Y, U and V components.
 377	 */
 378	if (yuv && planar)
 379		bpp = 2;
 380
 381	h_dda = compute_dda_inc(window->src.w, window->dst.w, false, bpp);
 382	v_dda = compute_dda_inc(window->src.h, window->dst.h, true, bpp);
 383
 384	value = V_DDA_INC(v_dda) | H_DDA_INC(h_dda);
 385	tegra_plane_writel(plane, value, DC_WIN_DDA_INC);
 386
 387	h_dda = compute_initial_dda(window->src.x);
 388	v_dda = compute_initial_dda(window->src.y);
 389
 390	tegra_plane_writel(plane, h_dda, DC_WIN_H_INITIAL_DDA);
 391	tegra_plane_writel(plane, v_dda, DC_WIN_V_INITIAL_DDA);
 392
 393	tegra_plane_writel(plane, 0, DC_WIN_UV_BUF_STRIDE);
 394	tegra_plane_writel(plane, 0, DC_WIN_BUF_STRIDE);
 395
 396	tegra_plane_writel(plane, window->base[0], DC_WINBUF_START_ADDR);
 397
 398	if (yuv && planar) {
 399		tegra_plane_writel(plane, window->base[1], DC_WINBUF_START_ADDR_U);
 400		tegra_plane_writel(plane, window->base[2], DC_WINBUF_START_ADDR_V);
 401		value = window->stride[1] << 16 | window->stride[0];
 402		tegra_plane_writel(plane, value, DC_WIN_LINE_STRIDE);
 403	} else {
 404		tegra_plane_writel(plane, window->stride[0], DC_WIN_LINE_STRIDE);
 405	}
 406
 407	if (window->bottom_up)
 408		v_offset += window->src.h - 1;
 409
 410	tegra_plane_writel(plane, h_offset, DC_WINBUF_ADDR_H_OFFSET);
 411	tegra_plane_writel(plane, v_offset, DC_WINBUF_ADDR_V_OFFSET);
 412
 413	if (dc->soc->supports_block_linear) {
 414		unsigned long height = window->tiling.value;
 415
 416		switch (window->tiling.mode) {
 417		case TEGRA_BO_TILING_MODE_PITCH:
 418			value = DC_WINBUF_SURFACE_KIND_PITCH;
 419			break;
 420
 421		case TEGRA_BO_TILING_MODE_TILED:
 422			value = DC_WINBUF_SURFACE_KIND_TILED;
 423			break;
 424
 425		case TEGRA_BO_TILING_MODE_BLOCK:
 426			value = DC_WINBUF_SURFACE_KIND_BLOCK_HEIGHT(height) |
 427				DC_WINBUF_SURFACE_KIND_BLOCK;
 428			break;
 429		}
 430
 431		tegra_plane_writel(plane, value, DC_WINBUF_SURFACE_KIND);
 432	} else {
 433		switch (window->tiling.mode) {
 434		case TEGRA_BO_TILING_MODE_PITCH:
 435			value = DC_WIN_BUFFER_ADDR_MODE_LINEAR_UV |
 436				DC_WIN_BUFFER_ADDR_MODE_LINEAR;
 437			break;
 438
 439		case TEGRA_BO_TILING_MODE_TILED:
 440			value = DC_WIN_BUFFER_ADDR_MODE_TILE_UV |
 441				DC_WIN_BUFFER_ADDR_MODE_TILE;
 442			break;
 443
 444		case TEGRA_BO_TILING_MODE_BLOCK:
 445			/*
 446			 * No need to handle this here because ->atomic_check
 447			 * will already have filtered it out.
 448			 */
 449			break;
 450		}
 451
 452		tegra_plane_writel(plane, value, DC_WIN_BUFFER_ADDR_MODE);
 453	}
 454
 455	value = WIN_ENABLE;
 456
 457	if (yuv) {
 458		/* setup default colorspace conversion coefficients */
 459		tegra_plane_writel(plane, 0x00f0, DC_WIN_CSC_YOF);
 460		tegra_plane_writel(plane, 0x012a, DC_WIN_CSC_KYRGB);
 461		tegra_plane_writel(plane, 0x0000, DC_WIN_CSC_KUR);
 462		tegra_plane_writel(plane, 0x0198, DC_WIN_CSC_KVR);
 463		tegra_plane_writel(plane, 0x039b, DC_WIN_CSC_KUG);
 464		tegra_plane_writel(plane, 0x032f, DC_WIN_CSC_KVG);
 465		tegra_plane_writel(plane, 0x0204, DC_WIN_CSC_KUB);
 466		tegra_plane_writel(plane, 0x0000, DC_WIN_CSC_KVB);
 467
 468		value |= CSC_ENABLE;
 469	} else if (window->bits_per_pixel < 24) {
 470		value |= COLOR_EXPAND;
 471	}
 472
 473	if (window->bottom_up)
 474		value |= V_DIRECTION;
 475
 476	if (tegra_plane_use_horizontal_filtering(plane, window)) {
 477		/*
 478		 * Enable horizontal 6-tap filter and set filtering
 479		 * coefficients to the default values defined in TRM.
 480		 */
 481		tegra_plane_writel(plane, 0x00008000, DC_WIN_H_FILTER_P(0));
 482		tegra_plane_writel(plane, 0x3e087ce1, DC_WIN_H_FILTER_P(1));
 483		tegra_plane_writel(plane, 0x3b117ac1, DC_WIN_H_FILTER_P(2));
 484		tegra_plane_writel(plane, 0x591b73aa, DC_WIN_H_FILTER_P(3));
 485		tegra_plane_writel(plane, 0x57256d9a, DC_WIN_H_FILTER_P(4));
 486		tegra_plane_writel(plane, 0x552f668b, DC_WIN_H_FILTER_P(5));
 487		tegra_plane_writel(plane, 0x73385e8b, DC_WIN_H_FILTER_P(6));
 488		tegra_plane_writel(plane, 0x72435583, DC_WIN_H_FILTER_P(7));
 489		tegra_plane_writel(plane, 0x714c4c8b, DC_WIN_H_FILTER_P(8));
 490		tegra_plane_writel(plane, 0x70554393, DC_WIN_H_FILTER_P(9));
 491		tegra_plane_writel(plane, 0x715e389b, DC_WIN_H_FILTER_P(10));
 492		tegra_plane_writel(plane, 0x71662faa, DC_WIN_H_FILTER_P(11));
 493		tegra_plane_writel(plane, 0x536d25ba, DC_WIN_H_FILTER_P(12));
 494		tegra_plane_writel(plane, 0x55731bca, DC_WIN_H_FILTER_P(13));
 495		tegra_plane_writel(plane, 0x387a11d9, DC_WIN_H_FILTER_P(14));
 496		tegra_plane_writel(plane, 0x3c7c08f1, DC_WIN_H_FILTER_P(15));
 497
 498		value |= H_FILTER;
 499	}
 
 
 
 
 500
 501	if (tegra_plane_use_vertical_filtering(plane, window)) {
 502		unsigned int i, k;
 
 
 
 
 503
 504		/*
 505		 * Enable vertical 2-tap filter and set filtering
 506		 * coefficients to the default values defined in TRM.
 507		 */
 508		for (i = 0, k = 128; i < 16; i++, k -= 8)
 509			tegra_plane_writel(plane, k, DC_WIN_V_FILTER_P(i));
 510
 511		value |= V_FILTER;
 
 
 
 
 512	}
 513
 514	tegra_plane_writel(plane, value, DC_WIN_WIN_OPTIONS);
 
 
 
 
 
 515
 516	if (dc->soc->has_legacy_blending)
 517		tegra_plane_setup_blending_legacy(plane);
 518	else
 519		tegra_plane_setup_blending(plane, window);
 520}
 521
 522static const u32 tegra20_primary_formats[] = {
 523	DRM_FORMAT_ARGB4444,
 524	DRM_FORMAT_ARGB1555,
 525	DRM_FORMAT_RGB565,
 526	DRM_FORMAT_RGBA5551,
 527	DRM_FORMAT_ABGR8888,
 528	DRM_FORMAT_ARGB8888,
 529	/* non-native formats */
 530	DRM_FORMAT_XRGB1555,
 531	DRM_FORMAT_RGBX5551,
 532	DRM_FORMAT_XBGR8888,
 533	DRM_FORMAT_XRGB8888,
 
 534};
 535
 536static const u64 tegra20_modifiers[] = {
 537	DRM_FORMAT_MOD_LINEAR,
 538	DRM_FORMAT_MOD_NVIDIA_TEGRA_TILED,
 539	DRM_FORMAT_MOD_INVALID
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 540};
 541
 542static const u32 tegra114_primary_formats[] = {
 543	DRM_FORMAT_ARGB4444,
 544	DRM_FORMAT_ARGB1555,
 545	DRM_FORMAT_RGB565,
 546	DRM_FORMAT_RGBA5551,
 547	DRM_FORMAT_ABGR8888,
 548	DRM_FORMAT_ARGB8888,
 549	/* new on Tegra114 */
 550	DRM_FORMAT_ABGR4444,
 551	DRM_FORMAT_ABGR1555,
 552	DRM_FORMAT_BGRA5551,
 553	DRM_FORMAT_XRGB1555,
 554	DRM_FORMAT_RGBX5551,
 555	DRM_FORMAT_XBGR1555,
 556	DRM_FORMAT_BGRX5551,
 557	DRM_FORMAT_BGR565,
 558	DRM_FORMAT_BGRA8888,
 559	DRM_FORMAT_RGBA8888,
 560	DRM_FORMAT_XRGB8888,
 561	DRM_FORMAT_XBGR8888,
 562};
 
 
 563
 564static const u32 tegra124_primary_formats[] = {
 565	DRM_FORMAT_ARGB4444,
 566	DRM_FORMAT_ARGB1555,
 567	DRM_FORMAT_RGB565,
 568	DRM_FORMAT_RGBA5551,
 569	DRM_FORMAT_ABGR8888,
 570	DRM_FORMAT_ARGB8888,
 571	/* new on Tegra114 */
 572	DRM_FORMAT_ABGR4444,
 573	DRM_FORMAT_ABGR1555,
 574	DRM_FORMAT_BGRA5551,
 575	DRM_FORMAT_XRGB1555,
 576	DRM_FORMAT_RGBX5551,
 577	DRM_FORMAT_XBGR1555,
 578	DRM_FORMAT_BGRX5551,
 579	DRM_FORMAT_BGR565,
 580	DRM_FORMAT_BGRA8888,
 581	DRM_FORMAT_RGBA8888,
 582	DRM_FORMAT_XRGB8888,
 583	DRM_FORMAT_XBGR8888,
 584	/* new on Tegra124 */
 585	DRM_FORMAT_RGBX8888,
 586	DRM_FORMAT_BGRX8888,
 587};
 588
 589static const u64 tegra124_modifiers[] = {
 590	DRM_FORMAT_MOD_LINEAR,
 591	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(0),
 592	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(1),
 593	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(2),
 594	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(3),
 595	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(4),
 596	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(5),
 597	DRM_FORMAT_MOD_INVALID
 598};
 599
 600static int tegra_plane_atomic_check(struct drm_plane *plane,
 601				    struct drm_plane_state *state)
 602{
 603	struct tegra_plane_state *plane_state = to_tegra_plane_state(state);
 604	unsigned int rotation = DRM_MODE_ROTATE_0 | DRM_MODE_REFLECT_Y;
 605	struct tegra_bo_tiling *tiling = &plane_state->tiling;
 606	struct tegra_plane *tegra = to_tegra_plane(plane);
 607	struct tegra_dc *dc = to_tegra_dc(state->crtc);
 608	int err;
 609
 610	/* no need for further checks if the plane is being disabled */
 611	if (!state->crtc)
 612		return 0;
 613
 614	err = tegra_plane_format(state->fb->format->format,
 615				 &plane_state->format,
 616				 &plane_state->swap);
 617	if (err < 0)
 618		return err;
 619
 620	/*
 621	 * Tegra20 and Tegra30 are special cases here because they support
 622	 * only variants of specific formats with an alpha component, but not
 623	 * the corresponding opaque formats. However, the opaque formats can
 624	 * be emulated by disabling alpha blending for the plane.
 625	 */
 626	if (dc->soc->has_legacy_blending) {
 627		err = tegra_plane_setup_legacy_state(tegra, plane_state);
 628		if (err < 0)
 629			return err;
 630	}
 631
 632	err = tegra_fb_get_tiling(state->fb, tiling);
 633	if (err < 0)
 634		return err;
 635
 636	if (tiling->mode == TEGRA_BO_TILING_MODE_BLOCK &&
 637	    !dc->soc->supports_block_linear) {
 638		DRM_ERROR("hardware doesn't support block linear mode\n");
 639		return -EINVAL;
 640	}
 641
 642	rotation = drm_rotation_simplify(state->rotation, rotation);
 643
 644	if (rotation & DRM_MODE_REFLECT_Y)
 645		plane_state->bottom_up = true;
 646	else
 647		plane_state->bottom_up = false;
 648
 649	/*
 650	 * Tegra doesn't support different strides for U and V planes so we
 651	 * error out if the user tries to display a framebuffer with such a
 652	 * configuration.
 653	 */
 654	if (state->fb->format->num_planes > 2) {
 655		if (state->fb->pitches[2] != state->fb->pitches[1]) {
 656			DRM_ERROR("unsupported UV-plane configuration\n");
 657			return -EINVAL;
 658		}
 659	}
 660
 661	err = tegra_plane_state_add(tegra, state);
 662	if (err < 0)
 663		return err;
 664
 665	return 0;
 666}
 667
 668static void tegra_plane_atomic_disable(struct drm_plane *plane,
 669				       struct drm_plane_state *old_state)
 670{
 671	struct tegra_plane *p = to_tegra_plane(plane);
 672	u32 value;
 673
 674	/* rien ne va plus */
 675	if (!old_state || !old_state->crtc)
 676		return;
 677
 678	value = tegra_plane_readl(p, DC_WIN_WIN_OPTIONS);
 679	value &= ~WIN_ENABLE;
 680	tegra_plane_writel(p, value, DC_WIN_WIN_OPTIONS);
 681}
 682
 683static void tegra_plane_atomic_update(struct drm_plane *plane,
 684				      struct drm_plane_state *old_state)
 685{
 686	struct tegra_plane_state *state = to_tegra_plane_state(plane->state);
 
 687	struct drm_framebuffer *fb = plane->state->fb;
 688	struct tegra_plane *p = to_tegra_plane(plane);
 689	struct tegra_dc_window window;
 690	unsigned int i;
 691
 692	/* rien ne va plus */
 693	if (!plane->state->crtc || !plane->state->fb)
 694		return;
 695
 696	if (!plane->state->visible)
 697		return tegra_plane_atomic_disable(plane, old_state);
 698
 699	memset(&window, 0, sizeof(window));
 700	window.src.x = plane->state->src.x1 >> 16;
 701	window.src.y = plane->state->src.y1 >> 16;
 702	window.src.w = drm_rect_width(&plane->state->src) >> 16;
 703	window.src.h = drm_rect_height(&plane->state->src) >> 16;
 704	window.dst.x = plane->state->dst.x1;
 705	window.dst.y = plane->state->dst.y1;
 706	window.dst.w = drm_rect_width(&plane->state->dst);
 707	window.dst.h = drm_rect_height(&plane->state->dst);
 708	window.bits_per_pixel = fb->format->cpp[0] * 8;
 709	window.bottom_up = tegra_fb_is_bottom_up(fb) || state->bottom_up;
 710
 711	/* copy from state */
 712	window.zpos = plane->state->normalized_zpos;
 713	window.tiling = state->tiling;
 714	window.format = state->format;
 715	window.swap = state->swap;
 716
 717	for (i = 0; i < fb->format->num_planes; i++) {
 718		struct tegra_bo *bo = tegra_fb_get_plane(fb, i);
 719
 720		window.base[i] = bo->paddr + fb->offsets[i];
 
 
 
 
 
 721
 722		/*
 723		 * Tegra uses a shared stride for UV planes. Framebuffers are
 724		 * already checked for this in the tegra_plane_atomic_check()
 725		 * function, so it's safe to ignore the V-plane pitch here.
 726		 */
 727		if (i < 2)
 728			window.stride[i] = fb->pitches[i];
 729	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 730
 731	tegra_dc_setup_window(p, &window);
 732}
 733
 734static const struct drm_plane_helper_funcs tegra_plane_helper_funcs = {
 
 
 735	.atomic_check = tegra_plane_atomic_check,
 
 736	.atomic_disable = tegra_plane_atomic_disable,
 737	.atomic_update = tegra_plane_atomic_update,
 738};
 739
 740static unsigned long tegra_plane_get_possible_crtcs(struct drm_device *drm)
 
 741{
 742	/*
 743	 * Ideally this would use drm_crtc_mask(), but that would require the
 744	 * CRTC to already be in the mode_config's list of CRTCs. However, it
 745	 * will only be added to that list in the drm_crtc_init_with_planes()
 746	 * (in tegra_dc_init()), which in turn requires registration of these
 747	 * planes. So we have ourselves a nice little chicken and egg problem
 748	 * here.
 749	 *
 750	 * We work around this by manually creating the mask from the number
 751	 * of CRTCs that have been registered, and should therefore always be
 752	 * the same as drm_crtc_index() after registration.
 753	 */
 754	return 1 << drm->mode_config.num_crtc;
 755}
 756
 757static struct drm_plane *tegra_primary_plane_create(struct drm_device *drm,
 758						    struct tegra_dc *dc)
 759{
 760	unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm);
 761	enum drm_plane_type type = DRM_PLANE_TYPE_PRIMARY;
 762	struct tegra_plane *plane;
 763	unsigned int num_formats;
 764	const u64 *modifiers;
 765	const u32 *formats;
 766	int err;
 767
 768	plane = kzalloc(sizeof(*plane), GFP_KERNEL);
 769	if (!plane)
 770		return ERR_PTR(-ENOMEM);
 771
 772	/* Always use window A as primary window */
 773	plane->offset = 0xa00;
 774	plane->index = 0;
 775	plane->dc = dc;
 776
 777	num_formats = dc->soc->num_primary_formats;
 778	formats = dc->soc->primary_formats;
 779	modifiers = dc->soc->modifiers;
 780
 781	err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
 782				       &tegra_plane_funcs, formats,
 783				       num_formats, modifiers, type, NULL);
 
 784	if (err < 0) {
 785		kfree(plane);
 786		return ERR_PTR(err);
 787	}
 788
 789	drm_plane_helper_add(&plane->base, &tegra_plane_helper_funcs);
 790	drm_plane_create_zpos_property(&plane->base, plane->index, 0, 255);
 791
 792	err = drm_plane_create_rotation_property(&plane->base,
 793						 DRM_MODE_ROTATE_0,
 794						 DRM_MODE_ROTATE_0 |
 795						 DRM_MODE_REFLECT_Y);
 796	if (err < 0)
 797		dev_err(dc->dev, "failed to create rotation property: %d\n",
 798			err);
 799
 800	return &plane->base;
 801}
 802
 803static const u32 tegra_cursor_plane_formats[] = {
 804	DRM_FORMAT_RGBA8888,
 805};
 806
 807static int tegra_cursor_atomic_check(struct drm_plane *plane,
 808				     struct drm_plane_state *state)
 809{
 810	struct tegra_plane *tegra = to_tegra_plane(plane);
 811	int err;
 812
 813	/* no need for further checks if the plane is being disabled */
 814	if (!state->crtc)
 815		return 0;
 816
 817	/* scaling not supported for cursor */
 818	if ((state->src_w >> 16 != state->crtc_w) ||
 819	    (state->src_h >> 16 != state->crtc_h))
 820		return -EINVAL;
 821
 822	/* only square cursors supported */
 823	if (state->src_w != state->src_h)
 824		return -EINVAL;
 825
 826	if (state->crtc_w != 32 && state->crtc_w != 64 &&
 827	    state->crtc_w != 128 && state->crtc_w != 256)
 828		return -EINVAL;
 829
 830	err = tegra_plane_state_add(tegra, state);
 831	if (err < 0)
 832		return err;
 833
 834	return 0;
 835}
 836
 837static void tegra_cursor_atomic_update(struct drm_plane *plane,
 838				       struct drm_plane_state *old_state)
 839{
 840	struct tegra_bo *bo = tegra_fb_get_plane(plane->state->fb, 0);
 841	struct tegra_dc *dc = to_tegra_dc(plane->state->crtc);
 842	struct drm_plane_state *state = plane->state;
 843	u32 value = CURSOR_CLIP_DISPLAY;
 844
 845	/* rien ne va plus */
 846	if (!plane->state->crtc || !plane->state->fb)
 847		return;
 848
 849	switch (state->crtc_w) {
 850	case 32:
 851		value |= CURSOR_SIZE_32x32;
 852		break;
 853
 854	case 64:
 855		value |= CURSOR_SIZE_64x64;
 856		break;
 857
 858	case 128:
 859		value |= CURSOR_SIZE_128x128;
 860		break;
 861
 862	case 256:
 863		value |= CURSOR_SIZE_256x256;
 864		break;
 865
 866	default:
 867		WARN(1, "cursor size %ux%u not supported\n", state->crtc_w,
 868		     state->crtc_h);
 869		return;
 870	}
 871
 872	value |= (bo->paddr >> 10) & 0x3fffff;
 873	tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR);
 874
 875#ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
 876	value = (bo->paddr >> 32) & 0x3;
 877	tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR_HI);
 878#endif
 879
 880	/* enable cursor and set blend mode */
 881	value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
 882	value |= CURSOR_ENABLE;
 883	tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
 884
 885	value = tegra_dc_readl(dc, DC_DISP_BLEND_CURSOR_CONTROL);
 886	value &= ~CURSOR_DST_BLEND_MASK;
 887	value &= ~CURSOR_SRC_BLEND_MASK;
 888	value |= CURSOR_MODE_NORMAL;
 889	value |= CURSOR_DST_BLEND_NEG_K1_TIMES_SRC;
 890	value |= CURSOR_SRC_BLEND_K1_TIMES_SRC;
 891	value |= CURSOR_ALPHA;
 892	tegra_dc_writel(dc, value, DC_DISP_BLEND_CURSOR_CONTROL);
 893
 894	/* position the cursor */
 895	value = (state->crtc_y & 0x3fff) << 16 | (state->crtc_x & 0x3fff);
 896	tegra_dc_writel(dc, value, DC_DISP_CURSOR_POSITION);
 897}
 898
 899static void tegra_cursor_atomic_disable(struct drm_plane *plane,
 900					struct drm_plane_state *old_state)
 901{
 902	struct tegra_dc *dc;
 903	u32 value;
 904
 905	/* rien ne va plus */
 906	if (!old_state || !old_state->crtc)
 907		return;
 908
 909	dc = to_tegra_dc(old_state->crtc);
 910
 911	value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
 912	value &= ~CURSOR_ENABLE;
 913	tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
 914}
 915
 
 
 
 
 
 
 
 
 
 916static const struct drm_plane_helper_funcs tegra_cursor_plane_helper_funcs = {
 
 
 917	.atomic_check = tegra_cursor_atomic_check,
 918	.atomic_update = tegra_cursor_atomic_update,
 919	.atomic_disable = tegra_cursor_atomic_disable,
 920};
 921
 922static struct drm_plane *tegra_dc_cursor_plane_create(struct drm_device *drm,
 923						      struct tegra_dc *dc)
 924{
 925	unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm);
 926	struct tegra_plane *plane;
 927	unsigned int num_formats;
 928	const u32 *formats;
 929	int err;
 930
 931	plane = kzalloc(sizeof(*plane), GFP_KERNEL);
 932	if (!plane)
 933		return ERR_PTR(-ENOMEM);
 934
 935	/*
 936	 * This index is kind of fake. The cursor isn't a regular plane, but
 937	 * its update and activation request bits in DC_CMD_STATE_CONTROL do
 938	 * use the same programming. Setting this fake index here allows the
 939	 * code in tegra_add_plane_state() to do the right thing without the
 940	 * need to special-casing the cursor plane.
 941	 */
 942	plane->index = 6;
 943	plane->dc = dc;
 944
 945	num_formats = ARRAY_SIZE(tegra_cursor_plane_formats);
 946	formats = tegra_cursor_plane_formats;
 947
 948	err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
 949				       &tegra_plane_funcs, formats,
 950				       num_formats, NULL,
 951				       DRM_PLANE_TYPE_CURSOR, NULL);
 952	if (err < 0) {
 953		kfree(plane);
 954		return ERR_PTR(err);
 955	}
 956
 957	drm_plane_helper_add(&plane->base, &tegra_cursor_plane_helper_funcs);
 958
 959	return &plane->base;
 960}
 961
 962static const u32 tegra20_overlay_formats[] = {
 963	DRM_FORMAT_ARGB4444,
 964	DRM_FORMAT_ARGB1555,
 965	DRM_FORMAT_RGB565,
 966	DRM_FORMAT_RGBA5551,
 967	DRM_FORMAT_ABGR8888,
 968	DRM_FORMAT_ARGB8888,
 969	/* non-native formats */
 970	DRM_FORMAT_XRGB1555,
 971	DRM_FORMAT_RGBX5551,
 
 
 
 
 
 972	DRM_FORMAT_XBGR8888,
 973	DRM_FORMAT_XRGB8888,
 974	/* planar formats */
 975	DRM_FORMAT_UYVY,
 976	DRM_FORMAT_YUYV,
 977	DRM_FORMAT_YUV420,
 978	DRM_FORMAT_YUV422,
 979};
 980
 981static const u32 tegra114_overlay_formats[] = {
 982	DRM_FORMAT_ARGB4444,
 983	DRM_FORMAT_ARGB1555,
 984	DRM_FORMAT_RGB565,
 985	DRM_FORMAT_RGBA5551,
 986	DRM_FORMAT_ABGR8888,
 987	DRM_FORMAT_ARGB8888,
 988	/* new on Tegra114 */
 989	DRM_FORMAT_ABGR4444,
 990	DRM_FORMAT_ABGR1555,
 991	DRM_FORMAT_BGRA5551,
 992	DRM_FORMAT_XRGB1555,
 993	DRM_FORMAT_RGBX5551,
 994	DRM_FORMAT_XBGR1555,
 995	DRM_FORMAT_BGRX5551,
 996	DRM_FORMAT_BGR565,
 997	DRM_FORMAT_BGRA8888,
 998	DRM_FORMAT_RGBA8888,
 999	DRM_FORMAT_XRGB8888,
1000	DRM_FORMAT_XBGR8888,
1001	/* planar formats */
1002	DRM_FORMAT_UYVY,
1003	DRM_FORMAT_YUYV,
1004	DRM_FORMAT_YUV420,
1005	DRM_FORMAT_YUV422,
1006};
1007
1008static const u32 tegra124_overlay_formats[] = {
1009	DRM_FORMAT_ARGB4444,
1010	DRM_FORMAT_ARGB1555,
1011	DRM_FORMAT_RGB565,
1012	DRM_FORMAT_RGBA5551,
1013	DRM_FORMAT_ABGR8888,
1014	DRM_FORMAT_ARGB8888,
1015	/* new on Tegra114 */
1016	DRM_FORMAT_ABGR4444,
1017	DRM_FORMAT_ABGR1555,
1018	DRM_FORMAT_BGRA5551,
1019	DRM_FORMAT_XRGB1555,
1020	DRM_FORMAT_RGBX5551,
1021	DRM_FORMAT_XBGR1555,
1022	DRM_FORMAT_BGRX5551,
1023	DRM_FORMAT_BGR565,
1024	DRM_FORMAT_BGRA8888,
1025	DRM_FORMAT_RGBA8888,
1026	DRM_FORMAT_XRGB8888,
1027	DRM_FORMAT_XBGR8888,
1028	/* new on Tegra124 */
1029	DRM_FORMAT_RGBX8888,
1030	DRM_FORMAT_BGRX8888,
1031	/* planar formats */
1032	DRM_FORMAT_UYVY,
1033	DRM_FORMAT_YUYV,
1034	DRM_FORMAT_YUV420,
1035	DRM_FORMAT_YUV422,
1036};
1037
1038static struct drm_plane *tegra_dc_overlay_plane_create(struct drm_device *drm,
1039						       struct tegra_dc *dc,
1040						       unsigned int index,
1041						       bool cursor)
1042{
1043	unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm);
1044	struct tegra_plane *plane;
1045	unsigned int num_formats;
1046	enum drm_plane_type type;
1047	const u32 *formats;
1048	int err;
1049
1050	plane = kzalloc(sizeof(*plane), GFP_KERNEL);
1051	if (!plane)
1052		return ERR_PTR(-ENOMEM);
1053
1054	plane->offset = 0xa00 + 0x200 * index;
1055	plane->index = index;
1056	plane->dc = dc;
1057
1058	num_formats = dc->soc->num_overlay_formats;
1059	formats = dc->soc->overlay_formats;
1060
1061	if (!cursor)
1062		type = DRM_PLANE_TYPE_OVERLAY;
1063	else
1064		type = DRM_PLANE_TYPE_CURSOR;
1065
1066	err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
1067				       &tegra_plane_funcs, formats,
1068				       num_formats, NULL, type, NULL);
1069	if (err < 0) {
1070		kfree(plane);
1071		return ERR_PTR(err);
1072	}
1073
1074	drm_plane_helper_add(&plane->base, &tegra_plane_helper_funcs);
1075	drm_plane_create_zpos_property(&plane->base, plane->index, 0, 255);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1076
1077	err = drm_plane_create_rotation_property(&plane->base,
1078						 DRM_MODE_ROTATE_0,
1079						 DRM_MODE_ROTATE_0 |
1080						 DRM_MODE_REFLECT_Y);
1081	if (err < 0)
1082		dev_err(dc->dev, "failed to create rotation property: %d\n",
1083			err);
1084
1085	return &plane->base;
1086}
1087
1088static struct drm_plane *tegra_dc_add_shared_planes(struct drm_device *drm,
1089						    struct tegra_dc *dc)
1090{
1091	struct drm_plane *plane, *primary = NULL;
1092	unsigned int i, j;
1093
1094	for (i = 0; i < dc->soc->num_wgrps; i++) {
1095		const struct tegra_windowgroup_soc *wgrp = &dc->soc->wgrps[i];
1096
1097		if (wgrp->dc == dc->pipe) {
1098			for (j = 0; j < wgrp->num_windows; j++) {
1099				unsigned int index = wgrp->windows[j];
1100
1101				plane = tegra_shared_plane_create(drm, dc,
1102								  wgrp->index,
1103								  index);
1104				if (IS_ERR(plane))
1105					return plane;
1106
1107				/*
1108				 * Choose the first shared plane owned by this
1109				 * head as the primary plane.
1110				 */
1111				if (!primary) {
1112					plane->type = DRM_PLANE_TYPE_PRIMARY;
1113					primary = plane;
1114				}
1115			}
1116		}
1117	}
1118
1119	return primary;
1120}
1121
1122static struct drm_plane *tegra_dc_add_planes(struct drm_device *drm,
1123					     struct tegra_dc *dc)
1124{
1125	struct drm_plane *planes[2], *primary;
1126	unsigned int planes_num;
1127	unsigned int i;
1128	int err;
 
 
1129
1130	primary = tegra_primary_plane_create(drm, dc);
1131	if (IS_ERR(primary))
1132		return primary;
 
1133
1134	if (dc->soc->supports_cursor)
1135		planes_num = 2;
1136	else
1137		planes_num = 1;
1138
1139	for (i = 0; i < planes_num; i++) {
1140		planes[i] = tegra_dc_overlay_plane_create(drm, dc, 1 + i,
1141							  false);
1142		if (IS_ERR(planes[i])) {
1143			err = PTR_ERR(planes[i]);
1144
1145			while (i--)
1146				tegra_plane_funcs.destroy(planes[i]);
 
 
 
1147
1148			tegra_plane_funcs.destroy(primary);
1149			return ERR_PTR(err);
1150		}
 
 
 
1151	}
1152
1153	return primary;
1154}
1155
1156static void tegra_dc_destroy(struct drm_crtc *crtc)
1157{
1158	drm_crtc_cleanup(crtc);
1159}
1160
1161static void tegra_crtc_reset(struct drm_crtc *crtc)
1162{
1163	struct tegra_dc_state *state = kzalloc(sizeof(*state), GFP_KERNEL);
1164
1165	if (crtc->state)
1166		tegra_crtc_atomic_destroy_state(crtc, crtc->state);
 
 
 
 
 
 
 
 
 
1167
1168	__drm_atomic_helper_crtc_reset(crtc, &state->base);
1169	drm_crtc_vblank_reset(crtc);
1170}
1171
1172static struct drm_crtc_state *
1173tegra_crtc_atomic_duplicate_state(struct drm_crtc *crtc)
1174{
1175	struct tegra_dc_state *state = to_dc_state(crtc->state);
1176	struct tegra_dc_state *copy;
1177
1178	copy = kmalloc(sizeof(*copy), GFP_KERNEL);
1179	if (!copy)
1180		return NULL;
1181
1182	__drm_atomic_helper_crtc_duplicate_state(crtc, &copy->base);
1183	copy->clk = state->clk;
1184	copy->pclk = state->pclk;
1185	copy->div = state->div;
1186	copy->planes = state->planes;
1187
1188	return &copy->base;
1189}
1190
1191static void tegra_crtc_atomic_destroy_state(struct drm_crtc *crtc,
1192					    struct drm_crtc_state *state)
1193{
1194	__drm_atomic_helper_crtc_destroy_state(state);
1195	kfree(state);
1196}
1197
1198#define DEBUGFS_REG32(_name) { .name = #_name, .offset = _name }
1199
1200static const struct debugfs_reg32 tegra_dc_regs[] = {
1201	DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT),
1202	DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT_CNTRL),
1203	DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT_ERROR),
1204	DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT),
1205	DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT_CNTRL),
1206	DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT_ERROR),
1207	DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT),
1208	DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT_CNTRL),
1209	DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT_ERROR),
1210	DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT),
1211	DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT_CNTRL),
1212	DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT_ERROR),
1213	DEBUGFS_REG32(DC_CMD_CONT_SYNCPT_VSYNC),
1214	DEBUGFS_REG32(DC_CMD_DISPLAY_COMMAND_OPTION0),
1215	DEBUGFS_REG32(DC_CMD_DISPLAY_COMMAND),
1216	DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE),
1217	DEBUGFS_REG32(DC_CMD_DISPLAY_POWER_CONTROL),
1218	DEBUGFS_REG32(DC_CMD_INT_STATUS),
1219	DEBUGFS_REG32(DC_CMD_INT_MASK),
1220	DEBUGFS_REG32(DC_CMD_INT_ENABLE),
1221	DEBUGFS_REG32(DC_CMD_INT_TYPE),
1222	DEBUGFS_REG32(DC_CMD_INT_POLARITY),
1223	DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE1),
1224	DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE2),
1225	DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE3),
1226	DEBUGFS_REG32(DC_CMD_STATE_ACCESS),
1227	DEBUGFS_REG32(DC_CMD_STATE_CONTROL),
1228	DEBUGFS_REG32(DC_CMD_DISPLAY_WINDOW_HEADER),
1229	DEBUGFS_REG32(DC_CMD_REG_ACT_CONTROL),
1230	DEBUGFS_REG32(DC_COM_CRC_CONTROL),
1231	DEBUGFS_REG32(DC_COM_CRC_CHECKSUM),
1232	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(0)),
1233	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(1)),
1234	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(2)),
1235	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(3)),
1236	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(0)),
1237	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(1)),
1238	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(2)),
1239	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(3)),
1240	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(0)),
1241	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(1)),
1242	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(2)),
1243	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(3)),
1244	DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(0)),
1245	DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(1)),
1246	DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(2)),
1247	DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(3)),
1248	DEBUGFS_REG32(DC_COM_PIN_INPUT_DATA(0)),
1249	DEBUGFS_REG32(DC_COM_PIN_INPUT_DATA(1)),
1250	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(0)),
1251	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(1)),
1252	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(2)),
1253	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(3)),
1254	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(4)),
1255	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(5)),
1256	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(6)),
1257	DEBUGFS_REG32(DC_COM_PIN_MISC_CONTROL),
1258	DEBUGFS_REG32(DC_COM_PIN_PM0_CONTROL),
1259	DEBUGFS_REG32(DC_COM_PIN_PM0_DUTY_CYCLE),
1260	DEBUGFS_REG32(DC_COM_PIN_PM1_CONTROL),
1261	DEBUGFS_REG32(DC_COM_PIN_PM1_DUTY_CYCLE),
1262	DEBUGFS_REG32(DC_COM_SPI_CONTROL),
1263	DEBUGFS_REG32(DC_COM_SPI_START_BYTE),
1264	DEBUGFS_REG32(DC_COM_HSPI_WRITE_DATA_AB),
1265	DEBUGFS_REG32(DC_COM_HSPI_WRITE_DATA_CD),
1266	DEBUGFS_REG32(DC_COM_HSPI_CS_DC),
1267	DEBUGFS_REG32(DC_COM_SCRATCH_REGISTER_A),
1268	DEBUGFS_REG32(DC_COM_SCRATCH_REGISTER_B),
1269	DEBUGFS_REG32(DC_COM_GPIO_CTRL),
1270	DEBUGFS_REG32(DC_COM_GPIO_DEBOUNCE_COUNTER),
1271	DEBUGFS_REG32(DC_COM_CRC_CHECKSUM_LATCHED),
1272	DEBUGFS_REG32(DC_DISP_DISP_SIGNAL_OPTIONS0),
1273	DEBUGFS_REG32(DC_DISP_DISP_SIGNAL_OPTIONS1),
1274	DEBUGFS_REG32(DC_DISP_DISP_WIN_OPTIONS),
1275	DEBUGFS_REG32(DC_DISP_DISP_MEM_HIGH_PRIORITY),
1276	DEBUGFS_REG32(DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER),
1277	DEBUGFS_REG32(DC_DISP_DISP_TIMING_OPTIONS),
1278	DEBUGFS_REG32(DC_DISP_REF_TO_SYNC),
1279	DEBUGFS_REG32(DC_DISP_SYNC_WIDTH),
1280	DEBUGFS_REG32(DC_DISP_BACK_PORCH),
1281	DEBUGFS_REG32(DC_DISP_ACTIVE),
1282	DEBUGFS_REG32(DC_DISP_FRONT_PORCH),
1283	DEBUGFS_REG32(DC_DISP_H_PULSE0_CONTROL),
1284	DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_A),
1285	DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_B),
1286	DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_C),
1287	DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_D),
1288	DEBUGFS_REG32(DC_DISP_H_PULSE1_CONTROL),
1289	DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_A),
1290	DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_B),
1291	DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_C),
1292	DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_D),
1293	DEBUGFS_REG32(DC_DISP_H_PULSE2_CONTROL),
1294	DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_A),
1295	DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_B),
1296	DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_C),
1297	DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_D),
1298	DEBUGFS_REG32(DC_DISP_V_PULSE0_CONTROL),
1299	DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_A),
1300	DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_B),
1301	DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_C),
1302	DEBUGFS_REG32(DC_DISP_V_PULSE1_CONTROL),
1303	DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_A),
1304	DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_B),
1305	DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_C),
1306	DEBUGFS_REG32(DC_DISP_V_PULSE2_CONTROL),
1307	DEBUGFS_REG32(DC_DISP_V_PULSE2_POSITION_A),
1308	DEBUGFS_REG32(DC_DISP_V_PULSE3_CONTROL),
1309	DEBUGFS_REG32(DC_DISP_V_PULSE3_POSITION_A),
1310	DEBUGFS_REG32(DC_DISP_M0_CONTROL),
1311	DEBUGFS_REG32(DC_DISP_M1_CONTROL),
1312	DEBUGFS_REG32(DC_DISP_DI_CONTROL),
1313	DEBUGFS_REG32(DC_DISP_PP_CONTROL),
1314	DEBUGFS_REG32(DC_DISP_PP_SELECT_A),
1315	DEBUGFS_REG32(DC_DISP_PP_SELECT_B),
1316	DEBUGFS_REG32(DC_DISP_PP_SELECT_C),
1317	DEBUGFS_REG32(DC_DISP_PP_SELECT_D),
1318	DEBUGFS_REG32(DC_DISP_DISP_CLOCK_CONTROL),
1319	DEBUGFS_REG32(DC_DISP_DISP_INTERFACE_CONTROL),
1320	DEBUGFS_REG32(DC_DISP_DISP_COLOR_CONTROL),
1321	DEBUGFS_REG32(DC_DISP_SHIFT_CLOCK_OPTIONS),
1322	DEBUGFS_REG32(DC_DISP_DATA_ENABLE_OPTIONS),
1323	DEBUGFS_REG32(DC_DISP_SERIAL_INTERFACE_OPTIONS),
1324	DEBUGFS_REG32(DC_DISP_LCD_SPI_OPTIONS),
1325	DEBUGFS_REG32(DC_DISP_BORDER_COLOR),
1326	DEBUGFS_REG32(DC_DISP_COLOR_KEY0_LOWER),
1327	DEBUGFS_REG32(DC_DISP_COLOR_KEY0_UPPER),
1328	DEBUGFS_REG32(DC_DISP_COLOR_KEY1_LOWER),
1329	DEBUGFS_REG32(DC_DISP_COLOR_KEY1_UPPER),
1330	DEBUGFS_REG32(DC_DISP_CURSOR_FOREGROUND),
1331	DEBUGFS_REG32(DC_DISP_CURSOR_BACKGROUND),
1332	DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR),
1333	DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR_NS),
1334	DEBUGFS_REG32(DC_DISP_CURSOR_POSITION),
1335	DEBUGFS_REG32(DC_DISP_CURSOR_POSITION_NS),
1336	DEBUGFS_REG32(DC_DISP_INIT_SEQ_CONTROL),
1337	DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_A),
1338	DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_B),
1339	DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_C),
1340	DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_D),
1341	DEBUGFS_REG32(DC_DISP_DC_MCCIF_FIFOCTRL),
1342	DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY0A_HYST),
1343	DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY0B_HYST),
1344	DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY1A_HYST),
1345	DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY1B_HYST),
1346	DEBUGFS_REG32(DC_DISP_DAC_CRT_CTRL),
1347	DEBUGFS_REG32(DC_DISP_DISP_MISC_CONTROL),
1348	DEBUGFS_REG32(DC_DISP_SD_CONTROL),
1349	DEBUGFS_REG32(DC_DISP_SD_CSC_COEFF),
1350	DEBUGFS_REG32(DC_DISP_SD_LUT(0)),
1351	DEBUGFS_REG32(DC_DISP_SD_LUT(1)),
1352	DEBUGFS_REG32(DC_DISP_SD_LUT(2)),
1353	DEBUGFS_REG32(DC_DISP_SD_LUT(3)),
1354	DEBUGFS_REG32(DC_DISP_SD_LUT(4)),
1355	DEBUGFS_REG32(DC_DISP_SD_LUT(5)),
1356	DEBUGFS_REG32(DC_DISP_SD_LUT(6)),
1357	DEBUGFS_REG32(DC_DISP_SD_LUT(7)),
1358	DEBUGFS_REG32(DC_DISP_SD_LUT(8)),
1359	DEBUGFS_REG32(DC_DISP_SD_FLICKER_CONTROL),
1360	DEBUGFS_REG32(DC_DISP_DC_PIXEL_COUNT),
1361	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(0)),
1362	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(1)),
1363	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(2)),
1364	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(3)),
1365	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(4)),
1366	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(5)),
1367	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(6)),
1368	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(7)),
1369	DEBUGFS_REG32(DC_DISP_SD_BL_TF(0)),
1370	DEBUGFS_REG32(DC_DISP_SD_BL_TF(1)),
1371	DEBUGFS_REG32(DC_DISP_SD_BL_TF(2)),
1372	DEBUGFS_REG32(DC_DISP_SD_BL_TF(3)),
1373	DEBUGFS_REG32(DC_DISP_SD_BL_CONTROL),
1374	DEBUGFS_REG32(DC_DISP_SD_HW_K_VALUES),
1375	DEBUGFS_REG32(DC_DISP_SD_MAN_K_VALUES),
1376	DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR_HI),
1377	DEBUGFS_REG32(DC_DISP_BLEND_CURSOR_CONTROL),
1378	DEBUGFS_REG32(DC_WIN_WIN_OPTIONS),
1379	DEBUGFS_REG32(DC_WIN_BYTE_SWAP),
1380	DEBUGFS_REG32(DC_WIN_BUFFER_CONTROL),
1381	DEBUGFS_REG32(DC_WIN_COLOR_DEPTH),
1382	DEBUGFS_REG32(DC_WIN_POSITION),
1383	DEBUGFS_REG32(DC_WIN_SIZE),
1384	DEBUGFS_REG32(DC_WIN_PRESCALED_SIZE),
1385	DEBUGFS_REG32(DC_WIN_H_INITIAL_DDA),
1386	DEBUGFS_REG32(DC_WIN_V_INITIAL_DDA),
1387	DEBUGFS_REG32(DC_WIN_DDA_INC),
1388	DEBUGFS_REG32(DC_WIN_LINE_STRIDE),
1389	DEBUGFS_REG32(DC_WIN_BUF_STRIDE),
1390	DEBUGFS_REG32(DC_WIN_UV_BUF_STRIDE),
1391	DEBUGFS_REG32(DC_WIN_BUFFER_ADDR_MODE),
1392	DEBUGFS_REG32(DC_WIN_DV_CONTROL),
1393	DEBUGFS_REG32(DC_WIN_BLEND_NOKEY),
1394	DEBUGFS_REG32(DC_WIN_BLEND_1WIN),
1395	DEBUGFS_REG32(DC_WIN_BLEND_2WIN_X),
1396	DEBUGFS_REG32(DC_WIN_BLEND_2WIN_Y),
1397	DEBUGFS_REG32(DC_WIN_BLEND_3WIN_XY),
1398	DEBUGFS_REG32(DC_WIN_HP_FETCH_CONTROL),
1399	DEBUGFS_REG32(DC_WINBUF_START_ADDR),
1400	DEBUGFS_REG32(DC_WINBUF_START_ADDR_NS),
1401	DEBUGFS_REG32(DC_WINBUF_START_ADDR_U),
1402	DEBUGFS_REG32(DC_WINBUF_START_ADDR_U_NS),
1403	DEBUGFS_REG32(DC_WINBUF_START_ADDR_V),
1404	DEBUGFS_REG32(DC_WINBUF_START_ADDR_V_NS),
1405	DEBUGFS_REG32(DC_WINBUF_ADDR_H_OFFSET),
1406	DEBUGFS_REG32(DC_WINBUF_ADDR_H_OFFSET_NS),
1407	DEBUGFS_REG32(DC_WINBUF_ADDR_V_OFFSET),
1408	DEBUGFS_REG32(DC_WINBUF_ADDR_V_OFFSET_NS),
1409	DEBUGFS_REG32(DC_WINBUF_UFLOW_STATUS),
1410	DEBUGFS_REG32(DC_WINBUF_AD_UFLOW_STATUS),
1411	DEBUGFS_REG32(DC_WINBUF_BD_UFLOW_STATUS),
1412	DEBUGFS_REG32(DC_WINBUF_CD_UFLOW_STATUS),
1413};
1414
1415static int tegra_dc_show_regs(struct seq_file *s, void *data)
1416{
1417	struct drm_info_node *node = s->private;
1418	struct tegra_dc *dc = node->info_ent->data;
1419	unsigned int i;
1420	int err = 0;
1421
1422	drm_modeset_lock(&dc->base.mutex, NULL);
1423
1424	if (!dc->base.state->active) {
1425		err = -EBUSY;
1426		goto unlock;
1427	}
1428
1429	for (i = 0; i < ARRAY_SIZE(tegra_dc_regs); i++) {
1430		unsigned int offset = tegra_dc_regs[i].offset;
1431
1432		seq_printf(s, "%-40s %#05x %08x\n", tegra_dc_regs[i].name,
1433			   offset, tegra_dc_readl(dc, offset));
1434	}
1435
1436unlock:
1437	drm_modeset_unlock(&dc->base.mutex);
1438	return err;
1439}
1440
1441static int tegra_dc_show_crc(struct seq_file *s, void *data)
1442{
1443	struct drm_info_node *node = s->private;
1444	struct tegra_dc *dc = node->info_ent->data;
1445	int err = 0;
1446	u32 value;
1447
1448	drm_modeset_lock(&dc->base.mutex, NULL);
1449
1450	if (!dc->base.state->active) {
1451		err = -EBUSY;
1452		goto unlock;
1453	}
1454
1455	value = DC_COM_CRC_CONTROL_ACTIVE_DATA | DC_COM_CRC_CONTROL_ENABLE;
1456	tegra_dc_writel(dc, value, DC_COM_CRC_CONTROL);
1457	tegra_dc_commit(dc);
1458
1459	drm_crtc_wait_one_vblank(&dc->base);
1460	drm_crtc_wait_one_vblank(&dc->base);
1461
1462	value = tegra_dc_readl(dc, DC_COM_CRC_CHECKSUM);
1463	seq_printf(s, "%08x\n", value);
1464
1465	tegra_dc_writel(dc, 0, DC_COM_CRC_CONTROL);
1466
1467unlock:
1468	drm_modeset_unlock(&dc->base.mutex);
1469	return err;
1470}
1471
1472static int tegra_dc_show_stats(struct seq_file *s, void *data)
1473{
1474	struct drm_info_node *node = s->private;
1475	struct tegra_dc *dc = node->info_ent->data;
1476
1477	seq_printf(s, "frames: %lu\n", dc->stats.frames);
1478	seq_printf(s, "vblank: %lu\n", dc->stats.vblank);
1479	seq_printf(s, "underflow: %lu\n", dc->stats.underflow);
1480	seq_printf(s, "overflow: %lu\n", dc->stats.overflow);
1481
1482	return 0;
1483}
1484
1485static struct drm_info_list debugfs_files[] = {
1486	{ "regs", tegra_dc_show_regs, 0, NULL },
1487	{ "crc", tegra_dc_show_crc, 0, NULL },
1488	{ "stats", tegra_dc_show_stats, 0, NULL },
1489};
1490
1491static int tegra_dc_late_register(struct drm_crtc *crtc)
1492{
1493	unsigned int i, count = ARRAY_SIZE(debugfs_files);
1494	struct drm_minor *minor = crtc->dev->primary;
1495	struct dentry *root;
1496	struct tegra_dc *dc = to_tegra_dc(crtc);
1497	int err;
1498
1499#ifdef CONFIG_DEBUG_FS
1500	root = crtc->debugfs_entry;
1501#else
1502	root = NULL;
1503#endif
1504
1505	dc->debugfs_files = kmemdup(debugfs_files, sizeof(debugfs_files),
1506				    GFP_KERNEL);
1507	if (!dc->debugfs_files)
1508		return -ENOMEM;
1509
1510	for (i = 0; i < count; i++)
1511		dc->debugfs_files[i].data = dc;
1512
1513	err = drm_debugfs_create_files(dc->debugfs_files, count, root, minor);
1514	if (err < 0)
1515		goto free;
1516
1517	return 0;
1518
1519free:
1520	kfree(dc->debugfs_files);
1521	dc->debugfs_files = NULL;
1522
1523	return err;
1524}
1525
1526static void tegra_dc_early_unregister(struct drm_crtc *crtc)
1527{
1528	unsigned int count = ARRAY_SIZE(debugfs_files);
1529	struct drm_minor *minor = crtc->dev->primary;
1530	struct tegra_dc *dc = to_tegra_dc(crtc);
1531
1532	drm_debugfs_remove_files(dc->debugfs_files, count, minor);
1533	kfree(dc->debugfs_files);
1534	dc->debugfs_files = NULL;
1535}
1536
1537static u32 tegra_dc_get_vblank_counter(struct drm_crtc *crtc)
1538{
1539	struct tegra_dc *dc = to_tegra_dc(crtc);
1540
1541	/* XXX vblank syncpoints don't work with nvdisplay yet */
1542	if (dc->syncpt && !dc->soc->has_nvdisplay)
1543		return host1x_syncpt_read(dc->syncpt);
1544
1545	/* fallback to software emulated VBLANK counter */
1546	return (u32)drm_crtc_vblank_count(&dc->base);
1547}
1548
1549static int tegra_dc_enable_vblank(struct drm_crtc *crtc)
1550{
1551	struct tegra_dc *dc = to_tegra_dc(crtc);
1552	u32 value;
1553
1554	value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
1555	value |= VBLANK_INT;
1556	tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1557
1558	return 0;
1559}
1560
1561static void tegra_dc_disable_vblank(struct drm_crtc *crtc)
1562{
1563	struct tegra_dc *dc = to_tegra_dc(crtc);
1564	u32 value;
1565
1566	value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
1567	value &= ~VBLANK_INT;
1568	tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1569}
1570
1571static const struct drm_crtc_funcs tegra_crtc_funcs = {
1572	.page_flip = drm_atomic_helper_page_flip,
1573	.set_config = drm_atomic_helper_set_config,
1574	.destroy = tegra_dc_destroy,
1575	.reset = tegra_crtc_reset,
1576	.atomic_duplicate_state = tegra_crtc_atomic_duplicate_state,
1577	.atomic_destroy_state = tegra_crtc_atomic_destroy_state,
1578	.late_register = tegra_dc_late_register,
1579	.early_unregister = tegra_dc_early_unregister,
1580	.get_vblank_counter = tegra_dc_get_vblank_counter,
1581	.enable_vblank = tegra_dc_enable_vblank,
1582	.disable_vblank = tegra_dc_disable_vblank,
1583};
1584
1585static int tegra_dc_set_timings(struct tegra_dc *dc,
1586				struct drm_display_mode *mode)
1587{
1588	unsigned int h_ref_to_sync = 1;
1589	unsigned int v_ref_to_sync = 1;
1590	unsigned long value;
1591
1592	if (!dc->soc->has_nvdisplay) {
1593		tegra_dc_writel(dc, 0x0, DC_DISP_DISP_TIMING_OPTIONS);
1594
1595		value = (v_ref_to_sync << 16) | h_ref_to_sync;
1596		tegra_dc_writel(dc, value, DC_DISP_REF_TO_SYNC);
1597	}
1598
1599	value = ((mode->vsync_end - mode->vsync_start) << 16) |
1600		((mode->hsync_end - mode->hsync_start) <<  0);
1601	tegra_dc_writel(dc, value, DC_DISP_SYNC_WIDTH);
1602
1603	value = ((mode->vtotal - mode->vsync_end) << 16) |
1604		((mode->htotal - mode->hsync_end) <<  0);
1605	tegra_dc_writel(dc, value, DC_DISP_BACK_PORCH);
1606
1607	value = ((mode->vsync_start - mode->vdisplay) << 16) |
1608		((mode->hsync_start - mode->hdisplay) <<  0);
1609	tegra_dc_writel(dc, value, DC_DISP_FRONT_PORCH);
1610
1611	value = (mode->vdisplay << 16) | mode->hdisplay;
1612	tegra_dc_writel(dc, value, DC_DISP_ACTIVE);
1613
1614	return 0;
1615}
1616
1617/**
1618 * tegra_dc_state_setup_clock - check clock settings and store them in atomic
1619 *     state
1620 * @dc: display controller
1621 * @crtc_state: CRTC atomic state
1622 * @clk: parent clock for display controller
1623 * @pclk: pixel clock
1624 * @div: shift clock divider
1625 *
1626 * Returns:
1627 * 0 on success or a negative error-code on failure.
1628 */
1629int tegra_dc_state_setup_clock(struct tegra_dc *dc,
1630			       struct drm_crtc_state *crtc_state,
1631			       struct clk *clk, unsigned long pclk,
1632			       unsigned int div)
1633{
1634	struct tegra_dc_state *state = to_dc_state(crtc_state);
1635
1636	if (!clk_has_parent(dc->clk, clk))
1637		return -EINVAL;
1638
1639	state->clk = clk;
1640	state->pclk = pclk;
1641	state->div = div;
1642
1643	return 0;
1644}
1645
1646static void tegra_dc_commit_state(struct tegra_dc *dc,
1647				  struct tegra_dc_state *state)
1648{
1649	u32 value;
1650	int err;
1651
1652	err = clk_set_parent(dc->clk, state->clk);
1653	if (err < 0)
1654		dev_err(dc->dev, "failed to set parent clock: %d\n", err);
1655
1656	/*
1657	 * Outputs may not want to change the parent clock rate. This is only
1658	 * relevant to Tegra20 where only a single display PLL is available.
1659	 * Since that PLL would typically be used for HDMI, an internal LVDS
1660	 * panel would need to be driven by some other clock such as PLL_P
1661	 * which is shared with other peripherals. Changing the clock rate
1662	 * should therefore be avoided.
1663	 */
1664	if (state->pclk > 0) {
1665		err = clk_set_rate(state->clk, state->pclk);
1666		if (err < 0)
1667			dev_err(dc->dev,
1668				"failed to set clock rate to %lu Hz\n",
1669				state->pclk);
1670	}
1671
1672	DRM_DEBUG_KMS("rate: %lu, div: %u\n", clk_get_rate(dc->clk),
1673		      state->div);
1674	DRM_DEBUG_KMS("pclk: %lu\n", state->pclk);
1675
1676	if (!dc->soc->has_nvdisplay) {
1677		value = SHIFT_CLK_DIVIDER(state->div) | PIXEL_CLK_DIVIDER_PCD1;
1678		tegra_dc_writel(dc, value, DC_DISP_DISP_CLOCK_CONTROL);
1679	}
1680
1681	err = clk_set_rate(dc->clk, state->pclk);
1682	if (err < 0)
1683		dev_err(dc->dev, "failed to set clock %pC to %lu Hz: %d\n",
1684			dc->clk, state->pclk, err);
1685}
1686
1687static void tegra_dc_stop(struct tegra_dc *dc)
1688{
1689	u32 value;
1690
1691	/* stop the display controller */
1692	value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
1693	value &= ~DISP_CTRL_MODE_MASK;
1694	tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
1695
1696	tegra_dc_commit(dc);
1697}
1698
1699static bool tegra_dc_idle(struct tegra_dc *dc)
1700{
1701	u32 value;
1702
1703	value = tegra_dc_readl_active(dc, DC_CMD_DISPLAY_COMMAND);
1704
1705	return (value & DISP_CTRL_MODE_MASK) == 0;
1706}
1707
1708static int tegra_dc_wait_idle(struct tegra_dc *dc, unsigned long timeout)
1709{
1710	timeout = jiffies + msecs_to_jiffies(timeout);
1711
1712	while (time_before(jiffies, timeout)) {
1713		if (tegra_dc_idle(dc))
1714			return 0;
1715
1716		usleep_range(1000, 2000);
1717	}
1718
1719	dev_dbg(dc->dev, "timeout waiting for DC to become idle\n");
1720	return -ETIMEDOUT;
1721}
1722
1723static void tegra_crtc_atomic_disable(struct drm_crtc *crtc,
1724				      struct drm_crtc_state *old_state)
1725{
1726	struct tegra_dc *dc = to_tegra_dc(crtc);
1727	u32 value;
1728
1729	if (!tegra_dc_idle(dc)) {
1730		tegra_dc_stop(dc);
1731
1732		/*
1733		 * Ignore the return value, there isn't anything useful to do
1734		 * in case this fails.
1735		 */
1736		tegra_dc_wait_idle(dc, 100);
1737	}
1738
1739	/*
1740	 * This should really be part of the RGB encoder driver, but clearing
1741	 * these bits has the side-effect of stopping the display controller.
1742	 * When that happens no VBLANK interrupts will be raised. At the same
1743	 * time the encoder is disabled before the display controller, so the
1744	 * above code is always going to timeout waiting for the controller
1745	 * to go idle.
1746	 *
1747	 * Given the close coupling between the RGB encoder and the display
1748	 * controller doing it here is still kind of okay. None of the other
1749	 * encoder drivers require these bits to be cleared.
1750	 *
1751	 * XXX: Perhaps given that the display controller is switched off at
1752	 * this point anyway maybe clearing these bits isn't even useful for
1753	 * the RGB encoder?
1754	 */
1755	if (dc->rgb) {
1756		value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
1757		value &= ~(PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
1758			   PW4_ENABLE | PM0_ENABLE | PM1_ENABLE);
1759		tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
1760	}
1761
1762	tegra_dc_stats_reset(&dc->stats);
1763	drm_crtc_vblank_off(crtc);
1764
1765	spin_lock_irq(&crtc->dev->event_lock);
1766
1767	if (crtc->state->event) {
1768		drm_crtc_send_vblank_event(crtc, crtc->state->event);
1769		crtc->state->event = NULL;
1770	}
1771
1772	spin_unlock_irq(&crtc->dev->event_lock);
1773
1774	pm_runtime_put_sync(dc->dev);
1775}
1776
1777static void tegra_crtc_atomic_enable(struct drm_crtc *crtc,
1778				     struct drm_crtc_state *old_state)
1779{
1780	struct drm_display_mode *mode = &crtc->state->adjusted_mode;
1781	struct tegra_dc_state *state = to_dc_state(crtc->state);
1782	struct tegra_dc *dc = to_tegra_dc(crtc);
1783	u32 value;
1784
1785	pm_runtime_get_sync(dc->dev);
1786
1787	/* initialize display controller */
1788	if (dc->syncpt) {
1789		u32 syncpt = host1x_syncpt_id(dc->syncpt), enable;
1790
1791		if (dc->soc->has_nvdisplay)
1792			enable = 1 << 31;
1793		else
1794			enable = 1 << 8;
1795
1796		value = SYNCPT_CNTRL_NO_STALL;
1797		tegra_dc_writel(dc, value, DC_CMD_GENERAL_INCR_SYNCPT_CNTRL);
1798
1799		value = enable | syncpt;
1800		tegra_dc_writel(dc, value, DC_CMD_CONT_SYNCPT_VSYNC);
1801	}
1802
1803	if (dc->soc->has_nvdisplay) {
1804		value = DSC_TO_UF_INT | DSC_BBUF_UF_INT | DSC_RBUF_UF_INT |
1805			DSC_OBUF_UF_INT;
1806		tegra_dc_writel(dc, value, DC_CMD_INT_TYPE);
1807
1808		value = DSC_TO_UF_INT | DSC_BBUF_UF_INT | DSC_RBUF_UF_INT |
1809			DSC_OBUF_UF_INT | SD3_BUCKET_WALK_DONE_INT |
1810			HEAD_UF_INT | MSF_INT | REG_TMOUT_INT |
1811			REGION_CRC_INT | V_PULSE2_INT | V_PULSE3_INT |
1812			VBLANK_INT | FRAME_END_INT;
1813		tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY);
1814
1815		value = SD3_BUCKET_WALK_DONE_INT | HEAD_UF_INT | VBLANK_INT |
1816			FRAME_END_INT;
1817		tegra_dc_writel(dc, value, DC_CMD_INT_ENABLE);
1818
1819		value = HEAD_UF_INT | REG_TMOUT_INT | FRAME_END_INT;
1820		tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1821
1822		tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
1823	} else {
1824		value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1825			WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1826		tegra_dc_writel(dc, value, DC_CMD_INT_TYPE);
1827
1828		value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1829			WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1830		tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY);
1831
1832		/* initialize timer */
1833		value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(0x20) |
1834			WINDOW_B_THRESHOLD(0x20) | WINDOW_C_THRESHOLD(0x20);
1835		tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY);
1836
1837		value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(1) |
1838			WINDOW_B_THRESHOLD(1) | WINDOW_C_THRESHOLD(1);
1839		tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER);
1840
1841		value = VBLANK_INT | WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1842			WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1843		tegra_dc_writel(dc, value, DC_CMD_INT_ENABLE);
1844
1845		value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1846			WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1847		tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1848	}
1849
1850	if (dc->soc->supports_background_color)
1851		tegra_dc_writel(dc, 0, DC_DISP_BLEND_BACKGROUND_COLOR);
1852	else
1853		tegra_dc_writel(dc, 0, DC_DISP_BORDER_COLOR);
1854
1855	/* apply PLL and pixel clock changes */
1856	tegra_dc_commit_state(dc, state);
1857
1858	/* program display mode */
1859	tegra_dc_set_timings(dc, mode);
1860
1861	/* interlacing isn't supported yet, so disable it */
1862	if (dc->soc->supports_interlacing) {
1863		value = tegra_dc_readl(dc, DC_DISP_INTERLACE_CONTROL);
1864		value &= ~INTERLACE_ENABLE;
1865		tegra_dc_writel(dc, value, DC_DISP_INTERLACE_CONTROL);
1866	}
1867
1868	value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
1869	value &= ~DISP_CTRL_MODE_MASK;
1870	value |= DISP_CTRL_MODE_C_DISPLAY;
1871	tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
1872
1873	if (!dc->soc->has_nvdisplay) {
1874		value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
1875		value |= PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
1876			 PW4_ENABLE | PM0_ENABLE | PM1_ENABLE;
1877		tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
1878	}
1879
1880	/* enable underflow reporting and display red for missing pixels */
1881	if (dc->soc->has_nvdisplay) {
1882		value = UNDERFLOW_MODE_RED | UNDERFLOW_REPORT_ENABLE;
1883		tegra_dc_writel(dc, value, DC_COM_RG_UNDERFLOW);
1884	}
1885
1886	tegra_dc_commit(dc);
1887
1888	drm_crtc_vblank_on(crtc);
1889}
1890
 
 
 
 
 
 
1891static void tegra_crtc_atomic_begin(struct drm_crtc *crtc,
1892				    struct drm_crtc_state *old_crtc_state)
1893{
1894	unsigned long flags;
1895
1896	if (crtc->state->event) {
1897		spin_lock_irqsave(&crtc->dev->event_lock, flags);
1898
1899		if (drm_crtc_vblank_get(crtc) != 0)
1900			drm_crtc_send_vblank_event(crtc, crtc->state->event);
1901		else
1902			drm_crtc_arm_vblank_event(crtc, crtc->state->event);
1903
1904		spin_unlock_irqrestore(&crtc->dev->event_lock, flags);
1905
 
1906		crtc->state->event = NULL;
1907	}
1908}
1909
1910static void tegra_crtc_atomic_flush(struct drm_crtc *crtc,
1911				    struct drm_crtc_state *old_crtc_state)
1912{
1913	struct tegra_dc_state *state = to_dc_state(crtc->state);
1914	struct tegra_dc *dc = to_tegra_dc(crtc);
1915	u32 value;
1916
1917	value = state->planes << 8 | GENERAL_UPDATE;
1918	tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL);
1919	value = tegra_dc_readl(dc, DC_CMD_STATE_CONTROL);
1920
1921	value = state->planes | GENERAL_ACT_REQ;
1922	tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL);
1923	value = tegra_dc_readl(dc, DC_CMD_STATE_CONTROL);
1924}
1925
1926static const struct drm_crtc_helper_funcs tegra_crtc_helper_funcs = {
 
 
 
1927	.atomic_begin = tegra_crtc_atomic_begin,
1928	.atomic_flush = tegra_crtc_atomic_flush,
1929	.atomic_enable = tegra_crtc_atomic_enable,
1930	.atomic_disable = tegra_crtc_atomic_disable,
1931};
1932
1933static irqreturn_t tegra_dc_irq(int irq, void *data)
1934{
1935	struct tegra_dc *dc = data;
1936	unsigned long status;
1937
1938	status = tegra_dc_readl(dc, DC_CMD_INT_STATUS);
1939	tegra_dc_writel(dc, status, DC_CMD_INT_STATUS);
1940
1941	if (status & FRAME_END_INT) {
1942		/*
1943		dev_dbg(dc->dev, "%s(): frame end\n", __func__);
1944		*/
1945		dc->stats.frames++;
1946	}
1947
1948	if (status & VBLANK_INT) {
1949		/*
1950		dev_dbg(dc->dev, "%s(): vertical blank\n", __func__);
1951		*/
1952		drm_crtc_handle_vblank(&dc->base);
 
1953		dc->stats.vblank++;
1954	}
1955
1956	if (status & (WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT)) {
1957		/*
1958		dev_dbg(dc->dev, "%s(): underflow\n", __func__);
1959		*/
1960		dc->stats.underflow++;
1961	}
1962
1963	if (status & (WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT)) {
1964		/*
1965		dev_dbg(dc->dev, "%s(): overflow\n", __func__);
1966		*/
1967		dc->stats.overflow++;
1968	}
1969
1970	if (status & HEAD_UF_INT) {
1971		dev_dbg_ratelimited(dc->dev, "%s(): head underflow\n", __func__);
1972		dc->stats.underflow++;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1973	}
1974
1975	return IRQ_HANDLED;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1976}
1977
1978static bool tegra_dc_has_window_groups(struct tegra_dc *dc)
 
 
 
 
 
 
1979{
1980	unsigned int i;
 
 
1981
1982	if (!dc->soc->wgrps)
1983		return true;
 
1984
1985	for (i = 0; i < dc->soc->num_wgrps; i++) {
1986		const struct tegra_windowgroup_soc *wgrp = &dc->soc->wgrps[i];
1987
1988		if (wgrp->dc == dc->pipe && wgrp->num_windows > 0)
1989			return true;
 
 
 
1990	}
1991
1992	return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1993}
1994
1995static int tegra_dc_init(struct host1x_client *client)
1996{
1997	struct drm_device *drm = dev_get_drvdata(client->parent);
1998	unsigned long flags = HOST1X_SYNCPT_CLIENT_MANAGED;
1999	struct tegra_dc *dc = host1x_client_to_dc(client);
2000	struct tegra_drm *tegra = drm->dev_private;
2001	struct drm_plane *primary = NULL;
2002	struct drm_plane *cursor = NULL;
 
2003	int err;
2004
2005	/*
2006	 * XXX do not register DCs with no window groups because we cannot
2007	 * assign a primary plane to them, which in turn will cause KMS to
2008	 * crash.
2009	 */
2010	if (!tegra_dc_has_window_groups(dc))
2011		return 0;
2012
2013	dc->syncpt = host1x_syncpt_request(client, flags);
2014	if (!dc->syncpt)
2015		dev_warn(dc->dev, "failed to allocate syncpoint\n");
2016
2017	dc->group = host1x_client_iommu_attach(client, true);
2018	if (IS_ERR(dc->group)) {
2019		err = PTR_ERR(dc->group);
2020		dev_err(client->dev, "failed to attach to domain: %d\n", err);
2021		return err;
 
 
 
 
2022	}
2023
2024	if (dc->soc->wgrps)
2025		primary = tegra_dc_add_shared_planes(drm, dc);
2026	else
2027		primary = tegra_dc_add_planes(drm, dc);
2028
2029	if (IS_ERR(primary)) {
2030		err = PTR_ERR(primary);
2031		goto cleanup;
2032	}
2033
2034	if (dc->soc->supports_cursor) {
2035		cursor = tegra_dc_cursor_plane_create(drm, dc);
2036		if (IS_ERR(cursor)) {
2037			err = PTR_ERR(cursor);
2038			goto cleanup;
2039		}
2040	} else {
2041		/* dedicate one overlay to mouse cursor */
2042		cursor = tegra_dc_overlay_plane_create(drm, dc, 2, true);
2043		if (IS_ERR(cursor)) {
2044			err = PTR_ERR(cursor);
2045			goto cleanup;
2046		}
2047	}
2048
2049	err = drm_crtc_init_with_planes(drm, &dc->base, primary, cursor,
2050					&tegra_crtc_funcs, NULL);
2051	if (err < 0)
2052		goto cleanup;
2053
 
2054	drm_crtc_helper_add(&dc->base, &tegra_crtc_helper_funcs);
2055
2056	/*
2057	 * Keep track of the minimum pitch alignment across all display
2058	 * controllers.
2059	 */
2060	if (dc->soc->pitch_align > tegra->pitch_align)
2061		tegra->pitch_align = dc->soc->pitch_align;
2062
2063	err = tegra_dc_rgb_init(drm, dc);
2064	if (err < 0 && err != -ENODEV) {
2065		dev_err(dc->dev, "failed to initialize RGB output: %d\n", err);
2066		goto cleanup;
2067	}
2068
 
 
 
 
 
 
 
 
 
 
2069	err = devm_request_irq(dc->dev, dc->irq, tegra_dc_irq, 0,
2070			       dev_name(dc->dev), dc);
2071	if (err < 0) {
2072		dev_err(dc->dev, "failed to request IRQ#%u: %d\n", dc->irq,
2073			err);
2074		goto cleanup;
2075	}
2076
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2077	return 0;
2078
2079cleanup:
2080	if (!IS_ERR_OR_NULL(cursor))
2081		drm_plane_cleanup(cursor);
2082
2083	if (!IS_ERR(primary))
2084		drm_plane_cleanup(primary);
2085
2086	host1x_client_iommu_detach(client, dc->group);
2087	host1x_syncpt_free(dc->syncpt);
 
 
2088
2089	return err;
2090}
2091
2092static int tegra_dc_exit(struct host1x_client *client)
2093{
2094	struct tegra_dc *dc = host1x_client_to_dc(client);
2095	int err;
2096
2097	if (!tegra_dc_has_window_groups(dc))
2098		return 0;
2099
2100	devm_free_irq(dc->dev, dc->irq, dc);
 
 
 
 
2101
2102	err = tegra_dc_rgb_exit(dc);
2103	if (err) {
2104		dev_err(dc->dev, "failed to shutdown RGB output: %d\n", err);
2105		return err;
2106	}
2107
2108	host1x_client_iommu_detach(client, dc->group);
 
 
 
 
2109	host1x_syncpt_free(dc->syncpt);
2110
2111	return 0;
2112}
2113
2114static const struct host1x_client_ops dc_client_ops = {
2115	.init = tegra_dc_init,
2116	.exit = tegra_dc_exit,
2117};
2118
2119static const struct tegra_dc_soc_info tegra20_dc_soc_info = {
2120	.supports_background_color = false,
2121	.supports_interlacing = false,
2122	.supports_cursor = false,
2123	.supports_block_linear = false,
2124	.has_legacy_blending = true,
2125	.pitch_align = 8,
2126	.has_powergate = false,
2127	.coupled_pm = true,
2128	.has_nvdisplay = false,
2129	.num_primary_formats = ARRAY_SIZE(tegra20_primary_formats),
2130	.primary_formats = tegra20_primary_formats,
2131	.num_overlay_formats = ARRAY_SIZE(tegra20_overlay_formats),
2132	.overlay_formats = tegra20_overlay_formats,
2133	.modifiers = tegra20_modifiers,
2134	.has_win_a_without_filters = true,
2135	.has_win_c_without_vert_filter = true,
2136};
2137
2138static const struct tegra_dc_soc_info tegra30_dc_soc_info = {
2139	.supports_background_color = false,
2140	.supports_interlacing = false,
2141	.supports_cursor = false,
2142	.supports_block_linear = false,
2143	.has_legacy_blending = true,
2144	.pitch_align = 8,
2145	.has_powergate = false,
2146	.coupled_pm = false,
2147	.has_nvdisplay = false,
2148	.num_primary_formats = ARRAY_SIZE(tegra20_primary_formats),
2149	.primary_formats = tegra20_primary_formats,
2150	.num_overlay_formats = ARRAY_SIZE(tegra20_overlay_formats),
2151	.overlay_formats = tegra20_overlay_formats,
2152	.modifiers = tegra20_modifiers,
2153	.has_win_a_without_filters = false,
2154	.has_win_c_without_vert_filter = false,
2155};
2156
2157static const struct tegra_dc_soc_info tegra114_dc_soc_info = {
2158	.supports_background_color = false,
2159	.supports_interlacing = false,
2160	.supports_cursor = false,
2161	.supports_block_linear = false,
2162	.has_legacy_blending = true,
2163	.pitch_align = 64,
2164	.has_powergate = true,
2165	.coupled_pm = false,
2166	.has_nvdisplay = false,
2167	.num_primary_formats = ARRAY_SIZE(tegra114_primary_formats),
2168	.primary_formats = tegra114_primary_formats,
2169	.num_overlay_formats = ARRAY_SIZE(tegra114_overlay_formats),
2170	.overlay_formats = tegra114_overlay_formats,
2171	.modifiers = tegra20_modifiers,
2172	.has_win_a_without_filters = false,
2173	.has_win_c_without_vert_filter = false,
2174};
2175
2176static const struct tegra_dc_soc_info tegra124_dc_soc_info = {
2177	.supports_background_color = true,
2178	.supports_interlacing = true,
2179	.supports_cursor = true,
2180	.supports_block_linear = true,
2181	.has_legacy_blending = false,
2182	.pitch_align = 64,
2183	.has_powergate = true,
2184	.coupled_pm = false,
2185	.has_nvdisplay = false,
2186	.num_primary_formats = ARRAY_SIZE(tegra124_primary_formats),
2187	.primary_formats = tegra124_primary_formats,
2188	.num_overlay_formats = ARRAY_SIZE(tegra124_overlay_formats),
2189	.overlay_formats = tegra124_overlay_formats,
2190	.modifiers = tegra124_modifiers,
2191	.has_win_a_without_filters = false,
2192	.has_win_c_without_vert_filter = false,
2193};
2194
2195static const struct tegra_dc_soc_info tegra210_dc_soc_info = {
2196	.supports_background_color = true,
2197	.supports_interlacing = true,
2198	.supports_cursor = true,
2199	.supports_block_linear = true,
2200	.has_legacy_blending = false,
2201	.pitch_align = 64,
2202	.has_powergate = true,
2203	.coupled_pm = false,
2204	.has_nvdisplay = false,
2205	.num_primary_formats = ARRAY_SIZE(tegra114_primary_formats),
2206	.primary_formats = tegra114_primary_formats,
2207	.num_overlay_formats = ARRAY_SIZE(tegra114_overlay_formats),
2208	.overlay_formats = tegra114_overlay_formats,
2209	.modifiers = tegra124_modifiers,
2210	.has_win_a_without_filters = false,
2211	.has_win_c_without_vert_filter = false,
2212};
2213
2214static const struct tegra_windowgroup_soc tegra186_dc_wgrps[] = {
2215	{
2216		.index = 0,
2217		.dc = 0,
2218		.windows = (const unsigned int[]) { 0 },
2219		.num_windows = 1,
2220	}, {
2221		.index = 1,
2222		.dc = 1,
2223		.windows = (const unsigned int[]) { 1 },
2224		.num_windows = 1,
2225	}, {
2226		.index = 2,
2227		.dc = 1,
2228		.windows = (const unsigned int[]) { 2 },
2229		.num_windows = 1,
2230	}, {
2231		.index = 3,
2232		.dc = 2,
2233		.windows = (const unsigned int[]) { 3 },
2234		.num_windows = 1,
2235	}, {
2236		.index = 4,
2237		.dc = 2,
2238		.windows = (const unsigned int[]) { 4 },
2239		.num_windows = 1,
2240	}, {
2241		.index = 5,
2242		.dc = 2,
2243		.windows = (const unsigned int[]) { 5 },
2244		.num_windows = 1,
2245	},
2246};
2247
2248static const struct tegra_dc_soc_info tegra186_dc_soc_info = {
2249	.supports_background_color = true,
2250	.supports_interlacing = true,
2251	.supports_cursor = true,
2252	.supports_block_linear = true,
2253	.has_legacy_blending = false,
2254	.pitch_align = 64,
2255	.has_powergate = false,
2256	.coupled_pm = false,
2257	.has_nvdisplay = true,
2258	.wgrps = tegra186_dc_wgrps,
2259	.num_wgrps = ARRAY_SIZE(tegra186_dc_wgrps),
2260};
2261
2262static const struct tegra_windowgroup_soc tegra194_dc_wgrps[] = {
2263	{
2264		.index = 0,
2265		.dc = 0,
2266		.windows = (const unsigned int[]) { 0 },
2267		.num_windows = 1,
2268	}, {
2269		.index = 1,
2270		.dc = 1,
2271		.windows = (const unsigned int[]) { 1 },
2272		.num_windows = 1,
2273	}, {
2274		.index = 2,
2275		.dc = 1,
2276		.windows = (const unsigned int[]) { 2 },
2277		.num_windows = 1,
2278	}, {
2279		.index = 3,
2280		.dc = 2,
2281		.windows = (const unsigned int[]) { 3 },
2282		.num_windows = 1,
2283	}, {
2284		.index = 4,
2285		.dc = 2,
2286		.windows = (const unsigned int[]) { 4 },
2287		.num_windows = 1,
2288	}, {
2289		.index = 5,
2290		.dc = 2,
2291		.windows = (const unsigned int[]) { 5 },
2292		.num_windows = 1,
2293	},
2294};
2295
2296static const struct tegra_dc_soc_info tegra194_dc_soc_info = {
2297	.supports_background_color = true,
2298	.supports_interlacing = true,
2299	.supports_cursor = true,
2300	.supports_block_linear = true,
2301	.has_legacy_blending = false,
2302	.pitch_align = 64,
2303	.has_powergate = false,
2304	.coupled_pm = false,
2305	.has_nvdisplay = true,
2306	.wgrps = tegra194_dc_wgrps,
2307	.num_wgrps = ARRAY_SIZE(tegra194_dc_wgrps),
2308};
2309
2310static const struct of_device_id tegra_dc_of_match[] = {
2311	{
2312		.compatible = "nvidia,tegra194-dc",
2313		.data = &tegra194_dc_soc_info,
2314	}, {
2315		.compatible = "nvidia,tegra186-dc",
2316		.data = &tegra186_dc_soc_info,
2317	}, {
2318		.compatible = "nvidia,tegra210-dc",
2319		.data = &tegra210_dc_soc_info,
2320	}, {
2321		.compatible = "nvidia,tegra124-dc",
2322		.data = &tegra124_dc_soc_info,
2323	}, {
2324		.compatible = "nvidia,tegra114-dc",
2325		.data = &tegra114_dc_soc_info,
2326	}, {
2327		.compatible = "nvidia,tegra30-dc",
2328		.data = &tegra30_dc_soc_info,
2329	}, {
2330		.compatible = "nvidia,tegra20-dc",
2331		.data = &tegra20_dc_soc_info,
2332	}, {
2333		/* sentinel */
2334	}
2335};
2336MODULE_DEVICE_TABLE(of, tegra_dc_of_match);
2337
2338static int tegra_dc_parse_dt(struct tegra_dc *dc)
2339{
2340	struct device_node *np;
2341	u32 value = 0;
2342	int err;
2343
2344	err = of_property_read_u32(dc->dev->of_node, "nvidia,head", &value);
2345	if (err < 0) {
2346		dev_err(dc->dev, "missing \"nvidia,head\" property\n");
2347
2348		/*
2349		 * If the nvidia,head property isn't present, try to find the
2350		 * correct head number by looking up the position of this
2351		 * display controller's node within the device tree. Assuming
2352		 * that the nodes are ordered properly in the DTS file and
2353		 * that the translation into a flattened device tree blob
2354		 * preserves that ordering this will actually yield the right
2355		 * head number.
2356		 *
2357		 * If those assumptions don't hold, this will still work for
2358		 * cases where only a single display controller is used.
2359		 */
2360		for_each_matching_node(np, tegra_dc_of_match) {
2361			if (np == dc->dev->of_node) {
2362				of_node_put(np);
2363				break;
2364			}
2365
2366			value++;
2367		}
2368	}
2369
2370	dc->pipe = value;
2371
2372	return 0;
2373}
2374
2375static int tegra_dc_match_by_pipe(struct device *dev, const void *data)
2376{
2377	struct tegra_dc *dc = dev_get_drvdata(dev);
2378	unsigned int pipe = (unsigned long)(void *)data;
2379
2380	return dc->pipe == pipe;
2381}
2382
2383static int tegra_dc_couple(struct tegra_dc *dc)
2384{
2385	/*
2386	 * On Tegra20, DC1 requires DC0 to be taken out of reset in order to
2387	 * be enabled, otherwise CPU hangs on writing to CMD_DISPLAY_COMMAND /
2388	 * POWER_CONTROL registers during CRTC enabling.
2389	 */
2390	if (dc->soc->coupled_pm && dc->pipe == 1) {
2391		u32 flags = DL_FLAG_PM_RUNTIME | DL_FLAG_AUTOREMOVE_CONSUMER;
2392		struct device_link *link;
2393		struct device *partner;
2394
2395		partner = driver_find_device(dc->dev->driver, NULL, NULL,
2396					     tegra_dc_match_by_pipe);
2397		if (!partner)
2398			return -EPROBE_DEFER;
2399
2400		link = device_link_add(dc->dev, partner, flags);
2401		if (!link) {
2402			dev_err(dc->dev, "failed to link controllers\n");
2403			return -EINVAL;
2404		}
2405
2406		dev_dbg(dc->dev, "coupled to %s\n", dev_name(partner));
2407	}
2408
2409	return 0;
2410}
2411
2412static int tegra_dc_probe(struct platform_device *pdev)
2413{
 
2414	struct resource *regs;
2415	struct tegra_dc *dc;
2416	int err;
2417
2418	dc = devm_kzalloc(&pdev->dev, sizeof(*dc), GFP_KERNEL);
2419	if (!dc)
2420		return -ENOMEM;
2421
2422	dc->soc = of_device_get_match_data(&pdev->dev);
 
 
2423
 
2424	INIT_LIST_HEAD(&dc->list);
2425	dc->dev = &pdev->dev;
 
2426
2427	err = tegra_dc_parse_dt(dc);
2428	if (err < 0)
2429		return err;
2430
2431	err = tegra_dc_couple(dc);
2432	if (err < 0)
2433		return err;
2434
2435	dc->clk = devm_clk_get(&pdev->dev, NULL);
2436	if (IS_ERR(dc->clk)) {
2437		dev_err(&pdev->dev, "failed to get clock\n");
2438		return PTR_ERR(dc->clk);
2439	}
2440
2441	dc->rst = devm_reset_control_get(&pdev->dev, "dc");
2442	if (IS_ERR(dc->rst)) {
2443		dev_err(&pdev->dev, "failed to get reset\n");
2444		return PTR_ERR(dc->rst);
2445	}
2446
2447	/* assert reset and disable clock */
2448	err = clk_prepare_enable(dc->clk);
2449	if (err < 0)
2450		return err;
2451
2452	usleep_range(2000, 4000);
2453
2454	err = reset_control_assert(dc->rst);
2455	if (err < 0)
2456		return err;
2457
2458	usleep_range(2000, 4000);
2459
2460	clk_disable_unprepare(dc->clk);
2461
2462	if (dc->soc->has_powergate) {
2463		if (dc->pipe == 0)
2464			dc->powergate = TEGRA_POWERGATE_DIS;
2465		else
2466			dc->powergate = TEGRA_POWERGATE_DISB;
2467
2468		tegra_powergate_power_off(dc->powergate);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2469	}
2470
2471	regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2472	dc->regs = devm_ioremap_resource(&pdev->dev, regs);
2473	if (IS_ERR(dc->regs))
2474		return PTR_ERR(dc->regs);
2475
2476	dc->irq = platform_get_irq(pdev, 0);
2477	if (dc->irq < 0) {
2478		dev_err(&pdev->dev, "failed to get IRQ\n");
2479		return -ENXIO;
2480	}
2481
 
 
 
 
2482	err = tegra_dc_rgb_probe(dc);
2483	if (err < 0 && err != -ENODEV) {
2484		dev_err(&pdev->dev, "failed to probe RGB output: %d\n", err);
2485		return err;
2486	}
2487
2488	platform_set_drvdata(pdev, dc);
2489	pm_runtime_enable(&pdev->dev);
2490
2491	INIT_LIST_HEAD(&dc->client.list);
2492	dc->client.ops = &dc_client_ops;
2493	dc->client.dev = &pdev->dev;
2494
2495	err = host1x_client_register(&dc->client);
2496	if (err < 0) {
2497		dev_err(&pdev->dev, "failed to register host1x client: %d\n",
2498			err);
2499		return err;
2500	}
2501
 
 
2502	return 0;
2503}
2504
2505static int tegra_dc_remove(struct platform_device *pdev)
2506{
2507	struct tegra_dc *dc = platform_get_drvdata(pdev);
2508	int err;
2509
2510	err = host1x_client_unregister(&dc->client);
2511	if (err < 0) {
2512		dev_err(&pdev->dev, "failed to unregister host1x client: %d\n",
2513			err);
2514		return err;
2515	}
2516
2517	err = tegra_dc_rgb_remove(dc);
2518	if (err < 0) {
2519		dev_err(&pdev->dev, "failed to remove RGB output: %d\n", err);
2520		return err;
2521	}
2522
2523	pm_runtime_disable(&pdev->dev);
2524
2525	return 0;
2526}
2527
2528#ifdef CONFIG_PM
2529static int tegra_dc_suspend(struct device *dev)
2530{
2531	struct tegra_dc *dc = dev_get_drvdata(dev);
2532	int err;
2533
2534	err = reset_control_assert(dc->rst);
2535	if (err < 0) {
2536		dev_err(dev, "failed to assert reset: %d\n", err);
2537		return err;
2538	}
2539
2540	if (dc->soc->has_powergate)
2541		tegra_powergate_power_off(dc->powergate);
2542
2543	clk_disable_unprepare(dc->clk);
2544
2545	return 0;
2546}
2547
2548static int tegra_dc_resume(struct device *dev)
2549{
2550	struct tegra_dc *dc = dev_get_drvdata(dev);
2551	int err;
2552
2553	if (dc->soc->has_powergate) {
2554		err = tegra_powergate_sequence_power_up(dc->powergate, dc->clk,
2555							dc->rst);
2556		if (err < 0) {
2557			dev_err(dev, "failed to power partition: %d\n", err);
2558			return err;
2559		}
2560	} else {
2561		err = clk_prepare_enable(dc->clk);
2562		if (err < 0) {
2563			dev_err(dev, "failed to enable clock: %d\n", err);
2564			return err;
2565		}
2566
2567		err = reset_control_deassert(dc->rst);
2568		if (err < 0) {
2569			dev_err(dev, "failed to deassert reset: %d\n", err);
2570			return err;
2571		}
2572	}
2573
2574	return 0;
2575}
2576#endif
2577
2578static const struct dev_pm_ops tegra_dc_pm_ops = {
2579	SET_RUNTIME_PM_OPS(tegra_dc_suspend, tegra_dc_resume, NULL)
2580};
2581
2582struct platform_driver tegra_dc_driver = {
2583	.driver = {
2584		.name = "tegra-dc",
2585		.of_match_table = tegra_dc_of_match,
2586		.pm = &tegra_dc_pm_ops,
2587	},
2588	.probe = tegra_dc_probe,
2589	.remove = tegra_dc_remove,
2590};