Linux Audio

Check our new training course

Loading...
v4.6
   1/*
   2 * Copyright (c) 2006 Luc Verhaegen (quirks list)
   3 * Copyright (c) 2007-2008 Intel Corporation
   4 *   Jesse Barnes <jesse.barnes@intel.com>
   5 * Copyright 2010 Red Hat, Inc.
   6 *
   7 * DDC probing routines (drm_ddc_read & drm_do_probe_ddc_edid) originally from
   8 * FB layer.
   9 *   Copyright (C) 2006 Dennis Munsie <dmunsie@cecropia.com>
  10 *
  11 * Permission is hereby granted, free of charge, to any person obtaining a
  12 * copy of this software and associated documentation files (the "Software"),
  13 * to deal in the Software without restriction, including without limitation
  14 * the rights to use, copy, modify, merge, publish, distribute, sub license,
  15 * and/or sell copies of the Software, and to permit persons to whom the
  16 * Software is furnished to do so, subject to the following conditions:
  17 *
  18 * The above copyright notice and this permission notice (including the
  19 * next paragraph) shall be included in all copies or substantial portions
  20 * of the Software.
  21 *
  22 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  23 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  24 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
  25 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  26 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  27 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  28 * DEALINGS IN THE SOFTWARE.
  29 */
  30#include <linux/kernel.h>
  31#include <linux/slab.h>
  32#include <linux/hdmi.h>
  33#include <linux/i2c.h>
 
  34#include <linux/module.h>
 
 
  35#include <linux/vga_switcheroo.h>
  36#include <drm/drmP.h>
  37#include <drm/drm_edid.h>
  38#include <drm/drm_displayid.h>
 
 
 
 
 
 
  39
  40#define version_greater(edid, maj, min) \
  41	(((edid)->version > (maj)) || \
  42	 ((edid)->version == (maj) && (edid)->revision > (min)))
 
  43
  44#define EDID_EST_TIMINGS 16
  45#define EDID_STD_TIMINGS 8
  46#define EDID_DETAILED_TIMINGS 4
  47
  48/*
  49 * EDID blocks out in the wild have a variety of bugs, try to collect
  50 * them here (note that userspace may work around broken monitors first,
  51 * but fixes should make their way here so that the kernel "just works"
  52 * on as many displays as possible).
  53 */
  54
  55/* First detailed mode wrong, use largest 60Hz mode */
  56#define EDID_QUIRK_PREFER_LARGE_60		(1 << 0)
  57/* Reported 135MHz pixel clock is too high, needs adjustment */
  58#define EDID_QUIRK_135_CLOCK_TOO_HIGH		(1 << 1)
  59/* Prefer the largest mode at 75 Hz */
  60#define EDID_QUIRK_PREFER_LARGE_75		(1 << 2)
  61/* Detail timing is in cm not mm */
  62#define EDID_QUIRK_DETAILED_IN_CM		(1 << 3)
  63/* Detailed timing descriptors have bogus size values, so just take the
  64 * maximum size and use that.
  65 */
  66#define EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE	(1 << 4)
  67/* Monitor forgot to set the first detailed is preferred bit. */
  68#define EDID_QUIRK_FIRST_DETAILED_PREFERRED	(1 << 5)
  69/* use +hsync +vsync for detailed mode */
  70#define EDID_QUIRK_DETAILED_SYNC_PP		(1 << 6)
  71/* Force reduced-blanking timings for detailed modes */
  72#define EDID_QUIRK_FORCE_REDUCED_BLANKING	(1 << 7)
  73/* Force 8bpc */
  74#define EDID_QUIRK_FORCE_8BPC			(1 << 8)
  75/* Force 12bpc */
  76#define EDID_QUIRK_FORCE_12BPC			(1 << 9)
 
 
 
 
 
 
 
 
 
 
  77
  78struct detailed_mode_closure {
  79	struct drm_connector *connector;
  80	struct edid *edid;
  81	bool preferred;
  82	u32 quirks;
  83	int modes;
  84};
  85
  86#define LEVEL_DMT	0
  87#define LEVEL_GTF	1
  88#define LEVEL_GTF2	2
  89#define LEVEL_CVT	3
  90
  91static struct edid_quirk {
  92	char vendor[4];
  93	int product_id;
 
 
 
 
 
 
  94	u32 quirks;
  95} edid_quirk_list[] = {
  96	/* Acer AL1706 */
  97	{ "ACR", 44358, EDID_QUIRK_PREFER_LARGE_60 },
  98	/* Acer F51 */
  99	{ "API", 0x7602, EDID_QUIRK_PREFER_LARGE_60 },
 100	/* Unknown Acer */
 101	{ "ACR", 2423, EDID_QUIRK_FIRST_DETAILED_PREFERRED },
 
 
 
 
 
 
 
 
 
 
 
 
 
 102
 103	/* Belinea 10 15 55 */
 104	{ "MAX", 1516, EDID_QUIRK_PREFER_LARGE_60 },
 105	{ "MAX", 0x77e, EDID_QUIRK_PREFER_LARGE_60 },
 106
 107	/* Envision Peripherals, Inc. EN-7100e */
 108	{ "EPI", 59264, EDID_QUIRK_135_CLOCK_TOO_HIGH },
 109	/* Envision EN2028 */
 110	{ "EPI", 8232, EDID_QUIRK_PREFER_LARGE_60 },
 111
 112	/* Funai Electronics PM36B */
 113	{ "FCM", 13600, EDID_QUIRK_PREFER_LARGE_75 |
 114	  EDID_QUIRK_DETAILED_IN_CM },
 115
 116	/* LG Philips LCD LP154W01-A5 */
 117	{ "LPL", 0, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE },
 118	{ "LPL", 0x2a00, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE },
 119
 120	/* Philips 107p5 CRT */
 121	{ "PHL", 57364, EDID_QUIRK_FIRST_DETAILED_PREFERRED },
 122
 123	/* Proview AY765C */
 124	{ "PTS", 765, EDID_QUIRK_FIRST_DETAILED_PREFERRED },
 
 
 
 
 125
 126	/* Samsung SyncMaster 205BW.  Note: irony */
 127	{ "SAM", 541, EDID_QUIRK_DETAILED_SYNC_PP },
 128	/* Samsung SyncMaster 22[5-6]BW */
 129	{ "SAM", 596, EDID_QUIRK_PREFER_LARGE_60 },
 130	{ "SAM", 638, EDID_QUIRK_PREFER_LARGE_60 },
 131
 132	/* Sony PVM-2541A does up to 12 bpc, but only reports max 8 bpc */
 133	{ "SNY", 0x2541, EDID_QUIRK_FORCE_12BPC },
 134
 135	/* ViewSonic VA2026w */
 136	{ "VSC", 5020, EDID_QUIRK_FORCE_REDUCED_BLANKING },
 137
 138	/* Medion MD 30217 PG */
 139	{ "MED", 0x7b8, EDID_QUIRK_PREFER_LARGE_75 },
 
 
 
 140
 141	/* Panel in Samsung NP700G7A-S01PL notebook reports 6bpc */
 142	{ "SEC", 0xd033, EDID_QUIRK_FORCE_8BPC },
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 143};
 144
 145/*
 146 * Autogenerated from the DMT spec.
 147 * This table is copied from xfree86/modes/xf86EdidModes.c.
 148 */
 149static const struct drm_display_mode drm_dmt_modes[] = {
 150	/* 0x01 - 640x350@85Hz */
 151	{ DRM_MODE("640x350", DRM_MODE_TYPE_DRIVER, 31500, 640, 672,
 152		   736, 832, 0, 350, 382, 385, 445, 0,
 153		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 154	/* 0x02 - 640x400@85Hz */
 155	{ DRM_MODE("640x400", DRM_MODE_TYPE_DRIVER, 31500, 640, 672,
 156		   736, 832, 0, 400, 401, 404, 445, 0,
 157		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 158	/* 0x03 - 720x400@85Hz */
 159	{ DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 35500, 720, 756,
 160		   828, 936, 0, 400, 401, 404, 446, 0,
 161		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 162	/* 0x04 - 640x480@60Hz */
 163	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
 164		   752, 800, 0, 480, 490, 492, 525, 0,
 165		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
 166	/* 0x05 - 640x480@72Hz */
 167	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 664,
 168		   704, 832, 0, 480, 489, 492, 520, 0,
 169		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
 170	/* 0x06 - 640x480@75Hz */
 171	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 656,
 172		   720, 840, 0, 480, 481, 484, 500, 0,
 173		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
 174	/* 0x07 - 640x480@85Hz */
 175	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 36000, 640, 696,
 176		   752, 832, 0, 480, 481, 484, 509, 0,
 177		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
 178	/* 0x08 - 800x600@56Hz */
 179	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 36000, 800, 824,
 180		   896, 1024, 0, 600, 601, 603, 625, 0,
 181		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 182	/* 0x09 - 800x600@60Hz */
 183	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
 184		   968, 1056, 0, 600, 601, 605, 628, 0,
 185		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 186	/* 0x0a - 800x600@72Hz */
 187	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 50000, 800, 856,
 188		   976, 1040, 0, 600, 637, 643, 666, 0,
 189		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 190	/* 0x0b - 800x600@75Hz */
 191	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 49500, 800, 816,
 192		   896, 1056, 0, 600, 601, 604, 625, 0,
 193		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 194	/* 0x0c - 800x600@85Hz */
 195	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 56250, 800, 832,
 196		   896, 1048, 0, 600, 601, 604, 631, 0,
 197		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 198	/* 0x0d - 800x600@120Hz RB */
 199	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 73250, 800, 848,
 200		   880, 960, 0, 600, 603, 607, 636, 0,
 201		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 202	/* 0x0e - 848x480@60Hz */
 203	{ DRM_MODE("848x480", DRM_MODE_TYPE_DRIVER, 33750, 848, 864,
 204		   976, 1088, 0, 480, 486, 494, 517, 0,
 205		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 206	/* 0x0f - 1024x768@43Hz, interlace */
 207	{ DRM_MODE("1024x768i", DRM_MODE_TYPE_DRIVER, 44900, 1024, 1032,
 208		   1208, 1264, 0, 768, 768, 776, 817, 0,
 209		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
 210		   DRM_MODE_FLAG_INTERLACE) },
 211	/* 0x10 - 1024x768@60Hz */
 212	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
 213		   1184, 1344, 0, 768, 771, 777, 806, 0,
 214		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
 215	/* 0x11 - 1024x768@70Hz */
 216	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 75000, 1024, 1048,
 217		   1184, 1328, 0, 768, 771, 777, 806, 0,
 218		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
 219	/* 0x12 - 1024x768@75Hz */
 220	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 78750, 1024, 1040,
 221		   1136, 1312, 0, 768, 769, 772, 800, 0,
 222		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 223	/* 0x13 - 1024x768@85Hz */
 224	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 94500, 1024, 1072,
 225		   1168, 1376, 0, 768, 769, 772, 808, 0,
 226		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 227	/* 0x14 - 1024x768@120Hz RB */
 228	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 115500, 1024, 1072,
 229		   1104, 1184, 0, 768, 771, 775, 813, 0,
 230		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 231	/* 0x15 - 1152x864@75Hz */
 232	{ DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
 233		   1344, 1600, 0, 864, 865, 868, 900, 0,
 234		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 235	/* 0x55 - 1280x720@60Hz */
 236	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
 237		   1430, 1650, 0, 720, 725, 730, 750, 0,
 238		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 239	/* 0x16 - 1280x768@60Hz RB */
 240	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 68250, 1280, 1328,
 241		   1360, 1440, 0, 768, 771, 778, 790, 0,
 242		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 243	/* 0x17 - 1280x768@60Hz */
 244	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 79500, 1280, 1344,
 245		   1472, 1664, 0, 768, 771, 778, 798, 0,
 246		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 247	/* 0x18 - 1280x768@75Hz */
 248	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 102250, 1280, 1360,
 249		   1488, 1696, 0, 768, 771, 778, 805, 0,
 250		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 251	/* 0x19 - 1280x768@85Hz */
 252	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 117500, 1280, 1360,
 253		   1496, 1712, 0, 768, 771, 778, 809, 0,
 254		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 255	/* 0x1a - 1280x768@120Hz RB */
 256	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 140250, 1280, 1328,
 257		   1360, 1440, 0, 768, 771, 778, 813, 0,
 258		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 259	/* 0x1b - 1280x800@60Hz RB */
 260	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 71000, 1280, 1328,
 261		   1360, 1440, 0, 800, 803, 809, 823, 0,
 262		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 263	/* 0x1c - 1280x800@60Hz */
 264	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 83500, 1280, 1352,
 265		   1480, 1680, 0, 800, 803, 809, 831, 0,
 266		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 267	/* 0x1d - 1280x800@75Hz */
 268	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 106500, 1280, 1360,
 269		   1488, 1696, 0, 800, 803, 809, 838, 0,
 270		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 271	/* 0x1e - 1280x800@85Hz */
 272	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 122500, 1280, 1360,
 273		   1496, 1712, 0, 800, 803, 809, 843, 0,
 274		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 275	/* 0x1f - 1280x800@120Hz RB */
 276	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 146250, 1280, 1328,
 277		   1360, 1440, 0, 800, 803, 809, 847, 0,
 278		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 279	/* 0x20 - 1280x960@60Hz */
 280	{ DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1376,
 281		   1488, 1800, 0, 960, 961, 964, 1000, 0,
 282		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 283	/* 0x21 - 1280x960@85Hz */
 284	{ DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1344,
 285		   1504, 1728, 0, 960, 961, 964, 1011, 0,
 286		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 287	/* 0x22 - 1280x960@120Hz RB */
 288	{ DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 175500, 1280, 1328,
 289		   1360, 1440, 0, 960, 963, 967, 1017, 0,
 290		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 291	/* 0x23 - 1280x1024@60Hz */
 292	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1328,
 293		   1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
 294		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 295	/* 0x24 - 1280x1024@75Hz */
 296	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 135000, 1280, 1296,
 297		   1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
 298		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 299	/* 0x25 - 1280x1024@85Hz */
 300	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 157500, 1280, 1344,
 301		   1504, 1728, 0, 1024, 1025, 1028, 1072, 0,
 302		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 303	/* 0x26 - 1280x1024@120Hz RB */
 304	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 187250, 1280, 1328,
 305		   1360, 1440, 0, 1024, 1027, 1034, 1084, 0,
 306		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 307	/* 0x27 - 1360x768@60Hz */
 308	{ DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 85500, 1360, 1424,
 309		   1536, 1792, 0, 768, 771, 777, 795, 0,
 310		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 311	/* 0x28 - 1360x768@120Hz RB */
 312	{ DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 148250, 1360, 1408,
 313		   1440, 1520, 0, 768, 771, 776, 813, 0,
 314		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 315	/* 0x51 - 1366x768@60Hz */
 316	{ DRM_MODE("1366x768", DRM_MODE_TYPE_DRIVER, 85500, 1366, 1436,
 317		   1579, 1792, 0, 768, 771, 774, 798, 0,
 318		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 319	/* 0x56 - 1366x768@60Hz */
 320	{ DRM_MODE("1366x768", DRM_MODE_TYPE_DRIVER, 72000, 1366, 1380,
 321		   1436, 1500, 0, 768, 769, 772, 800, 0,
 322		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 323	/* 0x29 - 1400x1050@60Hz RB */
 324	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 101000, 1400, 1448,
 325		   1480, 1560, 0, 1050, 1053, 1057, 1080, 0,
 326		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 327	/* 0x2a - 1400x1050@60Hz */
 328	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 121750, 1400, 1488,
 329		   1632, 1864, 0, 1050, 1053, 1057, 1089, 0,
 330		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 331	/* 0x2b - 1400x1050@75Hz */
 332	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 156000, 1400, 1504,
 333		   1648, 1896, 0, 1050, 1053, 1057, 1099, 0,
 334		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 335	/* 0x2c - 1400x1050@85Hz */
 336	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 179500, 1400, 1504,
 337		   1656, 1912, 0, 1050, 1053, 1057, 1105, 0,
 338		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 339	/* 0x2d - 1400x1050@120Hz RB */
 340	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 208000, 1400, 1448,
 341		   1480, 1560, 0, 1050, 1053, 1057, 1112, 0,
 342		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 343	/* 0x2e - 1440x900@60Hz RB */
 344	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 88750, 1440, 1488,
 345		   1520, 1600, 0, 900, 903, 909, 926, 0,
 346		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 347	/* 0x2f - 1440x900@60Hz */
 348	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 106500, 1440, 1520,
 349		   1672, 1904, 0, 900, 903, 909, 934, 0,
 350		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 351	/* 0x30 - 1440x900@75Hz */
 352	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 136750, 1440, 1536,
 353		   1688, 1936, 0, 900, 903, 909, 942, 0,
 354		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 355	/* 0x31 - 1440x900@85Hz */
 356	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 157000, 1440, 1544,
 357		   1696, 1952, 0, 900, 903, 909, 948, 0,
 358		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 359	/* 0x32 - 1440x900@120Hz RB */
 360	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 182750, 1440, 1488,
 361		   1520, 1600, 0, 900, 903, 909, 953, 0,
 362		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 363	/* 0x53 - 1600x900@60Hz */
 364	{ DRM_MODE("1600x900", DRM_MODE_TYPE_DRIVER, 108000, 1600, 1624,
 365		   1704, 1800, 0, 900, 901, 904, 1000, 0,
 366		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 367	/* 0x33 - 1600x1200@60Hz */
 368	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 162000, 1600, 1664,
 369		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
 370		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 371	/* 0x34 - 1600x1200@65Hz */
 372	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 175500, 1600, 1664,
 373		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
 374		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 375	/* 0x35 - 1600x1200@70Hz */
 376	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 189000, 1600, 1664,
 377		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
 378		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 379	/* 0x36 - 1600x1200@75Hz */
 380	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 202500, 1600, 1664,
 381		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
 382		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 383	/* 0x37 - 1600x1200@85Hz */
 384	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 229500, 1600, 1664,
 385		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
 386		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 387	/* 0x38 - 1600x1200@120Hz RB */
 388	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 268250, 1600, 1648,
 389		   1680, 1760, 0, 1200, 1203, 1207, 1271, 0,
 390		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 391	/* 0x39 - 1680x1050@60Hz RB */
 392	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 119000, 1680, 1728,
 393		   1760, 1840, 0, 1050, 1053, 1059, 1080, 0,
 394		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 395	/* 0x3a - 1680x1050@60Hz */
 396	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 146250, 1680, 1784,
 397		   1960, 2240, 0, 1050, 1053, 1059, 1089, 0,
 398		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 399	/* 0x3b - 1680x1050@75Hz */
 400	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 187000, 1680, 1800,
 401		   1976, 2272, 0, 1050, 1053, 1059, 1099, 0,
 402		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 403	/* 0x3c - 1680x1050@85Hz */
 404	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 214750, 1680, 1808,
 405		   1984, 2288, 0, 1050, 1053, 1059, 1105, 0,
 406		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 407	/* 0x3d - 1680x1050@120Hz RB */
 408	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 245500, 1680, 1728,
 409		   1760, 1840, 0, 1050, 1053, 1059, 1112, 0,
 410		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 411	/* 0x3e - 1792x1344@60Hz */
 412	{ DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 204750, 1792, 1920,
 413		   2120, 2448, 0, 1344, 1345, 1348, 1394, 0,
 414		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 415	/* 0x3f - 1792x1344@75Hz */
 416	{ DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 261000, 1792, 1888,
 417		   2104, 2456, 0, 1344, 1345, 1348, 1417, 0,
 418		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 419	/* 0x40 - 1792x1344@120Hz RB */
 420	{ DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 333250, 1792, 1840,
 421		   1872, 1952, 0, 1344, 1347, 1351, 1423, 0,
 422		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 423	/* 0x41 - 1856x1392@60Hz */
 424	{ DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 218250, 1856, 1952,
 425		   2176, 2528, 0, 1392, 1393, 1396, 1439, 0,
 426		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 427	/* 0x42 - 1856x1392@75Hz */
 428	{ DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 288000, 1856, 1984,
 429		   2208, 2560, 0, 1392, 1393, 1396, 1500, 0,
 430		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 431	/* 0x43 - 1856x1392@120Hz RB */
 432	{ DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 356500, 1856, 1904,
 433		   1936, 2016, 0, 1392, 1395, 1399, 1474, 0,
 434		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 435	/* 0x52 - 1920x1080@60Hz */
 436	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
 437		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
 438		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
 439	/* 0x44 - 1920x1200@60Hz RB */
 440	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 154000, 1920, 1968,
 441		   2000, 2080, 0, 1200, 1203, 1209, 1235, 0,
 442		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 443	/* 0x45 - 1920x1200@60Hz */
 444	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 193250, 1920, 2056,
 445		   2256, 2592, 0, 1200, 1203, 1209, 1245, 0,
 446		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 447	/* 0x46 - 1920x1200@75Hz */
 448	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 245250, 1920, 2056,
 449		   2264, 2608, 0, 1200, 1203, 1209, 1255, 0,
 450		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 451	/* 0x47 - 1920x1200@85Hz */
 452	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 281250, 1920, 2064,
 453		   2272, 2624, 0, 1200, 1203, 1209, 1262, 0,
 454		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 455	/* 0x48 - 1920x1200@120Hz RB */
 456	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 317000, 1920, 1968,
 457		   2000, 2080, 0, 1200, 1203, 1209, 1271, 0,
 458		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 459	/* 0x49 - 1920x1440@60Hz */
 460	{ DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 234000, 1920, 2048,
 461		   2256, 2600, 0, 1440, 1441, 1444, 1500, 0,
 462		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 463	/* 0x4a - 1920x1440@75Hz */
 464	{ DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2064,
 465		   2288, 2640, 0, 1440, 1441, 1444, 1500, 0,
 466		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 467	/* 0x4b - 1920x1440@120Hz RB */
 468	{ DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 380500, 1920, 1968,
 469		   2000, 2080, 0, 1440, 1443, 1447, 1525, 0,
 470		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 471	/* 0x54 - 2048x1152@60Hz */
 472	{ DRM_MODE("2048x1152", DRM_MODE_TYPE_DRIVER, 162000, 2048, 2074,
 473		   2154, 2250, 0, 1152, 1153, 1156, 1200, 0,
 474		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 475	/* 0x4c - 2560x1600@60Hz RB */
 476	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 268500, 2560, 2608,
 477		   2640, 2720, 0, 1600, 1603, 1609, 1646, 0,
 478		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 479	/* 0x4d - 2560x1600@60Hz */
 480	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 348500, 2560, 2752,
 481		   3032, 3504, 0, 1600, 1603, 1609, 1658, 0,
 482		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 483	/* 0x4e - 2560x1600@75Hz */
 484	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 443250, 2560, 2768,
 485		   3048, 3536, 0, 1600, 1603, 1609, 1672, 0,
 486		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 487	/* 0x4f - 2560x1600@85Hz */
 488	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 505250, 2560, 2768,
 489		   3048, 3536, 0, 1600, 1603, 1609, 1682, 0,
 490		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 491	/* 0x50 - 2560x1600@120Hz RB */
 492	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 552750, 2560, 2608,
 493		   2640, 2720, 0, 1600, 1603, 1609, 1694, 0,
 494		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 495	/* 0x57 - 4096x2160@60Hz RB */
 496	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 556744, 4096, 4104,
 497		   4136, 4176, 0, 2160, 2208, 2216, 2222, 0,
 498		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 499	/* 0x58 - 4096x2160@59.94Hz RB */
 500	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 556188, 4096, 4104,
 501		   4136, 4176, 0, 2160, 2208, 2216, 2222, 0,
 502		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 503};
 504
 505/*
 506 * These more or less come from the DMT spec.  The 720x400 modes are
 507 * inferred from historical 80x25 practice.  The 640x480@67 and 832x624@75
 508 * modes are old-school Mac modes.  The EDID spec says the 1152x864@75 mode
 509 * should be 1152x870, again for the Mac, but instead we use the x864 DMT
 510 * mode.
 511 *
 512 * The DMT modes have been fact-checked; the rest are mild guesses.
 513 */
 514static const struct drm_display_mode edid_est_modes[] = {
 515	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
 516		   968, 1056, 0, 600, 601, 605, 628, 0,
 517		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@60Hz */
 518	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 36000, 800, 824,
 519		   896, 1024, 0, 600, 601, 603,  625, 0,
 520		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@56Hz */
 521	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 656,
 522		   720, 840, 0, 480, 481, 484, 500, 0,
 523		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@75Hz */
 524	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 664,
 525		   704,  832, 0, 480, 489, 492, 520, 0,
 526		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@72Hz */
 527	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 30240, 640, 704,
 528		   768,  864, 0, 480, 483, 486, 525, 0,
 529		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@67Hz */
 530	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
 531		   752, 800, 0, 480, 490, 492, 525, 0,
 532		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@60Hz */
 533	{ DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 35500, 720, 738,
 534		   846, 900, 0, 400, 421, 423,  449, 0,
 535		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 720x400@88Hz */
 536	{ DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 28320, 720, 738,
 537		   846,  900, 0, 400, 412, 414, 449, 0,
 538		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 720x400@70Hz */
 539	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 135000, 1280, 1296,
 540		   1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
 541		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1280x1024@75Hz */
 542	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 78750, 1024, 1040,
 543		   1136, 1312, 0,  768, 769, 772, 800, 0,
 544		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1024x768@75Hz */
 545	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 75000, 1024, 1048,
 546		   1184, 1328, 0,  768, 771, 777, 806, 0,
 547		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 1024x768@70Hz */
 548	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
 549		   1184, 1344, 0,  768, 771, 777, 806, 0,
 550		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 1024x768@60Hz */
 551	{ DRM_MODE("1024x768i", DRM_MODE_TYPE_DRIVER,44900, 1024, 1032,
 552		   1208, 1264, 0, 768, 768, 776, 817, 0,
 553		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_INTERLACE) }, /* 1024x768@43Hz */
 554	{ DRM_MODE("832x624", DRM_MODE_TYPE_DRIVER, 57284, 832, 864,
 555		   928, 1152, 0, 624, 625, 628, 667, 0,
 556		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 832x624@75Hz */
 557	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 49500, 800, 816,
 558		   896, 1056, 0, 600, 601, 604,  625, 0,
 559		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@75Hz */
 560	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 50000, 800, 856,
 561		   976, 1040, 0, 600, 637, 643, 666, 0,
 562		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@72Hz */
 563	{ DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
 564		   1344, 1600, 0,  864, 865, 868, 900, 0,
 565		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1152x864@75Hz */
 566};
 567
 568struct minimode {
 569	short w;
 570	short h;
 571	short r;
 572	short rb;
 573};
 574
 575static const struct minimode est3_modes[] = {
 576	/* byte 6 */
 577	{ 640, 350, 85, 0 },
 578	{ 640, 400, 85, 0 },
 579	{ 720, 400, 85, 0 },
 580	{ 640, 480, 85, 0 },
 581	{ 848, 480, 60, 0 },
 582	{ 800, 600, 85, 0 },
 583	{ 1024, 768, 85, 0 },
 584	{ 1152, 864, 75, 0 },
 585	/* byte 7 */
 586	{ 1280, 768, 60, 1 },
 587	{ 1280, 768, 60, 0 },
 588	{ 1280, 768, 75, 0 },
 589	{ 1280, 768, 85, 0 },
 590	{ 1280, 960, 60, 0 },
 591	{ 1280, 960, 85, 0 },
 592	{ 1280, 1024, 60, 0 },
 593	{ 1280, 1024, 85, 0 },
 594	/* byte 8 */
 595	{ 1360, 768, 60, 0 },
 596	{ 1440, 900, 60, 1 },
 597	{ 1440, 900, 60, 0 },
 598	{ 1440, 900, 75, 0 },
 599	{ 1440, 900, 85, 0 },
 600	{ 1400, 1050, 60, 1 },
 601	{ 1400, 1050, 60, 0 },
 602	{ 1400, 1050, 75, 0 },
 603	/* byte 9 */
 604	{ 1400, 1050, 85, 0 },
 605	{ 1680, 1050, 60, 1 },
 606	{ 1680, 1050, 60, 0 },
 607	{ 1680, 1050, 75, 0 },
 608	{ 1680, 1050, 85, 0 },
 609	{ 1600, 1200, 60, 0 },
 610	{ 1600, 1200, 65, 0 },
 611	{ 1600, 1200, 70, 0 },
 612	/* byte 10 */
 613	{ 1600, 1200, 75, 0 },
 614	{ 1600, 1200, 85, 0 },
 615	{ 1792, 1344, 60, 0 },
 616	{ 1792, 1344, 75, 0 },
 617	{ 1856, 1392, 60, 0 },
 618	{ 1856, 1392, 75, 0 },
 619	{ 1920, 1200, 60, 1 },
 620	{ 1920, 1200, 60, 0 },
 621	/* byte 11 */
 622	{ 1920, 1200, 75, 0 },
 623	{ 1920, 1200, 85, 0 },
 624	{ 1920, 1440, 60, 0 },
 625	{ 1920, 1440, 75, 0 },
 626};
 627
 628static const struct minimode extra_modes[] = {
 629	{ 1024, 576,  60, 0 },
 630	{ 1366, 768,  60, 0 },
 631	{ 1600, 900,  60, 0 },
 632	{ 1680, 945,  60, 0 },
 633	{ 1920, 1080, 60, 0 },
 634	{ 2048, 1152, 60, 0 },
 635	{ 2048, 1536, 60, 0 },
 636};
 637
 638/*
 639 * Probably taken from CEA-861 spec.
 640 * This table is converted from xorg's hw/xfree86/modes/xf86EdidModes.c.
 641 *
 642 * Index using the VIC.
 643 */
 644static const struct drm_display_mode edid_cea_modes[] = {
 645	/* 0 - dummy, VICs start at 1 */
 646	{ },
 647	/* 1 - 640x480@60Hz */
 648	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
 649		   752, 800, 0, 480, 490, 492, 525, 0,
 650		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 651	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 652	/* 2 - 720x480@60Hz */
 653	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 27000, 720, 736,
 654		   798, 858, 0, 480, 489, 495, 525, 0,
 655		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 656	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 657	/* 3 - 720x480@60Hz */
 658	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 27000, 720, 736,
 659		   798, 858, 0, 480, 489, 495, 525, 0,
 660		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 661	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 662	/* 4 - 1280x720@60Hz */
 663	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
 664		   1430, 1650, 0, 720, 725, 730, 750, 0,
 665		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
 666	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 667	/* 5 - 1920x1080i@60Hz */
 668	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
 669		   2052, 2200, 0, 1080, 1084, 1094, 1125, 0,
 670		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
 671			DRM_MODE_FLAG_INTERLACE),
 672	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 673	/* 6 - 720(1440)x480i@60Hz */
 674	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
 675		   801, 858, 0, 480, 488, 494, 525, 0,
 676		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 677			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
 678	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 679	/* 7 - 720(1440)x480i@60Hz */
 680	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
 681		   801, 858, 0, 480, 488, 494, 525, 0,
 682		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 683			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
 684	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 685	/* 8 - 720(1440)x240@60Hz */
 686	{ DRM_MODE("720x240", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
 687		   801, 858, 0, 240, 244, 247, 262, 0,
 688		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 689			DRM_MODE_FLAG_DBLCLK),
 690	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 691	/* 9 - 720(1440)x240@60Hz */
 692	{ DRM_MODE("720x240", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
 693		   801, 858, 0, 240, 244, 247, 262, 0,
 694		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 695			DRM_MODE_FLAG_DBLCLK),
 696	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 697	/* 10 - 2880x480i@60Hz */
 698	{ DRM_MODE("2880x480i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
 699		   3204, 3432, 0, 480, 488, 494, 525, 0,
 700		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 701			DRM_MODE_FLAG_INTERLACE),
 702	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 703	/* 11 - 2880x480i@60Hz */
 704	{ DRM_MODE("2880x480i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
 705		   3204, 3432, 0, 480, 488, 494, 525, 0,
 706		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 707			DRM_MODE_FLAG_INTERLACE),
 708	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 709	/* 12 - 2880x240@60Hz */
 710	{ DRM_MODE("2880x240", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
 711		   3204, 3432, 0, 240, 244, 247, 262, 0,
 712		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 713	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 714	/* 13 - 2880x240@60Hz */
 715	{ DRM_MODE("2880x240", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
 716		   3204, 3432, 0, 240, 244, 247, 262, 0,
 717		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 718	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 719	/* 14 - 1440x480@60Hz */
 720	{ DRM_MODE("1440x480", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1472,
 721		   1596, 1716, 0, 480, 489, 495, 525, 0,
 722		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 723	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 724	/* 15 - 1440x480@60Hz */
 725	{ DRM_MODE("1440x480", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1472,
 726		   1596, 1716, 0, 480, 489, 495, 525, 0,
 727		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 728	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 729	/* 16 - 1920x1080@60Hz */
 730	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
 731		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
 732		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
 733	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 734	/* 17 - 720x576@50Hz */
 735	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
 736		   796, 864, 0, 576, 581, 586, 625, 0,
 737		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 738	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 739	/* 18 - 720x576@50Hz */
 740	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
 741		   796, 864, 0, 576, 581, 586, 625, 0,
 742		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 743	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 744	/* 19 - 1280x720@50Hz */
 745	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1720,
 746		   1760, 1980, 0, 720, 725, 730, 750, 0,
 747		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
 748	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 749	/* 20 - 1920x1080i@50Hz */
 750	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
 751		   2492, 2640, 0, 1080, 1084, 1094, 1125, 0,
 752		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
 753			DRM_MODE_FLAG_INTERLACE),
 754	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 755	/* 21 - 720(1440)x576i@50Hz */
 756	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
 757		   795, 864, 0, 576, 580, 586, 625, 0,
 758		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 759			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
 760	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 761	/* 22 - 720(1440)x576i@50Hz */
 762	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
 763		   795, 864, 0, 576, 580, 586, 625, 0,
 764		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 765			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
 766	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 767	/* 23 - 720(1440)x288@50Hz */
 768	{ DRM_MODE("720x288", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
 769		   795, 864, 0, 288, 290, 293, 312, 0,
 770		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 771			DRM_MODE_FLAG_DBLCLK),
 772	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 773	/* 24 - 720(1440)x288@50Hz */
 774	{ DRM_MODE("720x288", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
 775		   795, 864, 0, 288, 290, 293, 312, 0,
 776		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 777			DRM_MODE_FLAG_DBLCLK),
 778	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 779	/* 25 - 2880x576i@50Hz */
 780	{ DRM_MODE("2880x576i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
 781		   3180, 3456, 0, 576, 580, 586, 625, 0,
 782		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 783			DRM_MODE_FLAG_INTERLACE),
 784	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 785	/* 26 - 2880x576i@50Hz */
 786	{ DRM_MODE("2880x576i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
 787		   3180, 3456, 0, 576, 580, 586, 625, 0,
 788		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 789			DRM_MODE_FLAG_INTERLACE),
 790	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 791	/* 27 - 2880x288@50Hz */
 792	{ DRM_MODE("2880x288", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
 793		   3180, 3456, 0, 288, 290, 293, 312, 0,
 794		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 795	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 796	/* 28 - 2880x288@50Hz */
 797	{ DRM_MODE("2880x288", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
 798		   3180, 3456, 0, 288, 290, 293, 312, 0,
 799		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 800	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 801	/* 29 - 1440x576@50Hz */
 802	{ DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
 803		   1592, 1728, 0, 576, 581, 586, 625, 0,
 804		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 805	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 806	/* 30 - 1440x576@50Hz */
 807	{ DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
 808		   1592, 1728, 0, 576, 581, 586, 625, 0,
 809		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 810	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 811	/* 31 - 1920x1080@50Hz */
 812	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
 813		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
 814		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
 815	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 816	/* 32 - 1920x1080@24Hz */
 817	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2558,
 818		   2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
 819		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
 820	  .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 821	/* 33 - 1920x1080@25Hz */
 822	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
 823		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
 824		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
 825	  .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 826	/* 34 - 1920x1080@30Hz */
 827	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
 828		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
 829		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
 830	  .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 831	/* 35 - 2880x480@60Hz */
 832	{ DRM_MODE("2880x480", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2944,
 833		   3192, 3432, 0, 480, 489, 495, 525, 0,
 834		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 835	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 836	/* 36 - 2880x480@60Hz */
 837	{ DRM_MODE("2880x480", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2944,
 838		   3192, 3432, 0, 480, 489, 495, 525, 0,
 839		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 840	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 841	/* 37 - 2880x576@50Hz */
 842	{ DRM_MODE("2880x576", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2928,
 843		   3184, 3456, 0, 576, 581, 586, 625, 0,
 844		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 845	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 846	/* 38 - 2880x576@50Hz */
 847	{ DRM_MODE("2880x576", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2928,
 848		   3184, 3456, 0, 576, 581, 586, 625, 0,
 849		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 850	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 851	/* 39 - 1920x1080i@50Hz */
 852	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 72000, 1920, 1952,
 853		   2120, 2304, 0, 1080, 1126, 1136, 1250, 0,
 854		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC |
 855			DRM_MODE_FLAG_INTERLACE),
 856	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 857	/* 40 - 1920x1080i@100Hz */
 858	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
 859		   2492, 2640, 0, 1080, 1084, 1094, 1125, 0,
 860		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
 861			DRM_MODE_FLAG_INTERLACE),
 862	  .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 863	/* 41 - 1280x720@100Hz */
 864	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1720,
 865		   1760, 1980, 0, 720, 725, 730, 750, 0,
 866		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
 867	  .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 868	/* 42 - 720x576@100Hz */
 869	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
 870		   796, 864, 0, 576, 581, 586, 625, 0,
 871		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 872	  .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 873	/* 43 - 720x576@100Hz */
 874	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
 875		   796, 864, 0, 576, 581, 586, 625, 0,
 876		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 877	  .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 878	/* 44 - 720(1440)x576i@100Hz */
 879	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
 880		   795, 864, 0, 576, 580, 586, 625, 0,
 881		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 882			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
 883	  .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 884	/* 45 - 720(1440)x576i@100Hz */
 885	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
 886		   795, 864, 0, 576, 580, 586, 625, 0,
 887		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 888			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
 889	  .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 890	/* 46 - 1920x1080i@120Hz */
 891	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
 892		   2052, 2200, 0, 1080, 1084, 1094, 1125, 0,
 893		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
 894			DRM_MODE_FLAG_INTERLACE),
 895	  .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 896	/* 47 - 1280x720@120Hz */
 897	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1390,
 898		   1430, 1650, 0, 720, 725, 730, 750, 0,
 899		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
 900	  .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 901	/* 48 - 720x480@120Hz */
 902	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 54000, 720, 736,
 903		   798, 858, 0, 480, 489, 495, 525, 0,
 904		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 905	  .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 906	/* 49 - 720x480@120Hz */
 907	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 54000, 720, 736,
 908		   798, 858, 0, 480, 489, 495, 525, 0,
 909		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 910	  .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 911	/* 50 - 720(1440)x480i@120Hz */
 912	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 27000, 720, 739,
 913		   801, 858, 0, 480, 488, 494, 525, 0,
 914		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 915			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
 916	  .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 917	/* 51 - 720(1440)x480i@120Hz */
 918	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 27000, 720, 739,
 919		   801, 858, 0, 480, 488, 494, 525, 0,
 920		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 921			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
 922	  .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 923	/* 52 - 720x576@200Hz */
 924	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 108000, 720, 732,
 925		   796, 864, 0, 576, 581, 586, 625, 0,
 926		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 927	  .vrefresh = 200, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 928	/* 53 - 720x576@200Hz */
 929	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 108000, 720, 732,
 930		   796, 864, 0, 576, 581, 586, 625, 0,
 931		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 932	  .vrefresh = 200, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 933	/* 54 - 720(1440)x576i@200Hz */
 934	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
 935		   795, 864, 0, 576, 580, 586, 625, 0,
 936		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 937			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
 938	  .vrefresh = 200, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 939	/* 55 - 720(1440)x576i@200Hz */
 940	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
 941		   795, 864, 0, 576, 580, 586, 625, 0,
 942		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 943			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
 944	  .vrefresh = 200, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 945	/* 56 - 720x480@240Hz */
 946	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 108000, 720, 736,
 947		   798, 858, 0, 480, 489, 495, 525, 0,
 948		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 949	  .vrefresh = 240, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 950	/* 57 - 720x480@240Hz */
 951	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 108000, 720, 736,
 952		   798, 858, 0, 480, 489, 495, 525, 0,
 953		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 954	  .vrefresh = 240, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 955	/* 58 - 720(1440)x480i@240 */
 956	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 54000, 720, 739,
 957		   801, 858, 0, 480, 488, 494, 525, 0,
 958		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 959			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
 960	  .vrefresh = 240, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 961	/* 59 - 720(1440)x480i@240 */
 962	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 54000, 720, 739,
 963		   801, 858, 0, 480, 488, 494, 525, 0,
 964		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 965			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
 966	  .vrefresh = 240, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 967	/* 60 - 1280x720@24Hz */
 968	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 59400, 1280, 3040,
 969		   3080, 3300, 0, 720, 725, 730, 750, 0,
 970		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
 971	  .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 972	/* 61 - 1280x720@25Hz */
 973	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3700,
 974		   3740, 3960, 0, 720, 725, 730, 750, 0,
 975		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
 976	  .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 977	/* 62 - 1280x720@30Hz */
 978	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3040,
 979		   3080, 3300, 0, 720, 725, 730, 750, 0,
 980		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
 981	  .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 982	/* 63 - 1920x1080@120Hz */
 983	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2008,
 984		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
 985		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
 986	 .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 987	/* 64 - 1920x1080@100Hz */
 988	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2448,
 989		   2492, 2640, 0, 1080, 1084, 1094, 1125, 0,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 990		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
 991	 .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 992};
 993
 994/*
 995 * HDMI 1.4 4k modes. Index using the VIC.
 996 */
 997static const struct drm_display_mode edid_4k_modes[] = {
 998	/* 0 - dummy, VICs start at 1 */
 999	{ },
1000	/* 1 - 3840x2160@30Hz */
1001	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
1002		   3840, 4016, 4104, 4400, 0,
1003		   2160, 2168, 2178, 2250, 0,
1004		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1005	  .vrefresh = 30, },
1006	/* 2 - 3840x2160@25Hz */
1007	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
1008		   3840, 4896, 4984, 5280, 0,
1009		   2160, 2168, 2178, 2250, 0,
1010		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1011	  .vrefresh = 25, },
1012	/* 3 - 3840x2160@24Hz */
1013	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
1014		   3840, 5116, 5204, 5500, 0,
1015		   2160, 2168, 2178, 2250, 0,
1016		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1017	  .vrefresh = 24, },
1018	/* 4 - 4096x2160@24Hz (SMPTE) */
1019	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000,
1020		   4096, 5116, 5204, 5500, 0,
1021		   2160, 2168, 2178, 2250, 0,
1022		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1023	  .vrefresh = 24, },
1024};
1025
1026/*** DDC fetch and block validation ***/
1027
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1028static const u8 edid_header[] = {
1029	0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00
1030};
1031
 
 
 
 
 
1032/**
1033 * drm_edid_header_is_valid - sanity check the header of the base EDID block
1034 * @raw_edid: pointer to raw base EDID block
1035 *
1036 * Sanity check the header of the base EDID block.
1037 *
1038 * Return: 8 if the header is perfect, down to 0 if it's totally wrong.
1039 */
1040int drm_edid_header_is_valid(const u8 *raw_edid)
1041{
 
1042	int i, score = 0;
1043
1044	for (i = 0; i < sizeof(edid_header); i++)
1045		if (raw_edid[i] == edid_header[i])
1046			score++;
 
1047
1048	return score;
1049}
1050EXPORT_SYMBOL(drm_edid_header_is_valid);
1051
1052static int edid_fixup __read_mostly = 6;
1053module_param_named(edid_fixup, edid_fixup, int, 0400);
1054MODULE_PARM_DESC(edid_fixup,
1055		 "Minimum number of valid EDID header bytes (0-8, default 6)");
1056
1057static void drm_get_displayid(struct drm_connector *connector,
1058			      struct edid *edid);
1059
1060static int drm_edid_block_checksum(const u8 *raw_edid)
1061{
 
1062	int i;
1063	u8 csum = 0;
1064	for (i = 0; i < EDID_LENGTH; i++)
1065		csum += raw_edid[i];
 
 
 
 
 
 
 
 
 
 
1066
1067	return csum;
1068}
1069
1070static bool drm_edid_is_zero(const u8 *in_edid, int length)
1071{
1072	if (memchr_inv(in_edid, 0, length))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1073		return false;
1074
 
 
 
 
 
 
 
 
 
 
 
1075	return true;
1076}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1077
1078/**
1079 * drm_edid_block_valid - Sanity check the EDID block (base or extension)
1080 * @raw_edid: pointer to raw EDID block
1081 * @block: type of block to validate (0 for base, extension otherwise)
1082 * @print_bad_edid: if true, dump bad EDID blocks to the console
1083 * @edid_corrupt: if true, the header or checksum is invalid
1084 *
1085 * Validate a base or extension EDID block and optionally dump bad blocks to
1086 * the console.
1087 *
1088 * Return: True if the block is valid, false otherwise.
1089 */
1090bool drm_edid_block_valid(u8 *raw_edid, int block, bool print_bad_edid,
1091			  bool *edid_corrupt)
1092{
1093	u8 csum;
1094	struct edid *edid = (struct edid *)raw_edid;
 
 
1095
1096	if (WARN_ON(!raw_edid))
1097		return false;
1098
1099	if (edid_fixup > 8 || edid_fixup < 0)
1100		edid_fixup = 6;
1101
1102	if (block == 0) {
1103		int score = drm_edid_header_is_valid(raw_edid);
1104		if (score == 8) {
1105			if (edid_corrupt)
1106				*edid_corrupt = false;
1107		} else if (score >= edid_fixup) {
1108			/* Displayport Link CTS Core 1.2 rev1.1 test 4.2.2.6
1109			 * The corrupt flag needs to be set here otherwise, the
1110			 * fix-up code here will correct the problem, the
1111			 * checksum is correct and the test fails
1112			 */
1113			if (edid_corrupt)
1114				*edid_corrupt = true;
1115			DRM_DEBUG("Fixing EDID header, your hardware may be failing\n");
1116			memcpy(raw_edid, edid_header, sizeof(edid_header));
1117		} else {
1118			if (edid_corrupt)
1119				*edid_corrupt = true;
1120			goto bad;
1121		}
1122	}
1123
1124	csum = drm_edid_block_checksum(raw_edid);
1125	if (csum) {
1126		if (print_bad_edid) {
1127			DRM_ERROR("EDID checksum is invalid, remainder is %d\n", csum);
1128		}
1129
1130		if (edid_corrupt)
 
 
1131			*edid_corrupt = true;
1132
1133		/* allow CEA to slide through, switches mangle this */
1134		if (raw_edid[0] != 0x02)
1135			goto bad;
1136	}
1137
1138	/* per-block-type checks */
1139	switch (raw_edid[0]) {
1140	case 0: /* base */
1141		if (edid->version != 1) {
1142			DRM_ERROR("EDID has major version %d, instead of 1\n", edid->version);
1143			goto bad;
1144		}
1145
1146		if (edid->revision > 4)
1147			DRM_DEBUG("EDID minor > 4, assuming backward compatibility\n");
1148		break;
1149
1150	default:
1151		break;
 
1152	}
1153
1154	return true;
1155
1156bad:
1157	if (print_bad_edid) {
1158		if (drm_edid_is_zero(raw_edid, EDID_LENGTH)) {
1159			printk(KERN_ERR "EDID block is all zeroes\n");
1160		} else {
1161			printk(KERN_ERR "Raw EDID:\n");
1162			print_hex_dump(KERN_ERR, " \t", DUMP_PREFIX_NONE, 16, 1,
1163			       raw_edid, EDID_LENGTH, false);
1164		}
1165	}
1166	return false;
1167}
1168EXPORT_SYMBOL(drm_edid_block_valid);
1169
1170/**
1171 * drm_edid_is_valid - sanity check EDID data
1172 * @edid: EDID data
1173 *
1174 * Sanity-check an entire EDID record (including extensions)
1175 *
1176 * Return: True if the EDID data is valid, false otherwise.
1177 */
1178bool drm_edid_is_valid(struct edid *edid)
1179{
1180	int i;
1181	u8 *raw = (u8 *)edid;
1182
1183	if (!edid)
1184		return false;
1185
1186	for (i = 0; i <= edid->extensions; i++)
1187		if (!drm_edid_block_valid(raw + i * EDID_LENGTH, i, true, NULL))
 
 
1188			return false;
 
1189
1190	return true;
1191}
1192EXPORT_SYMBOL(drm_edid_is_valid);
1193
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1194#define DDC_SEGMENT_ADDR 0x30
1195/**
1196 * drm_do_probe_ddc_edid() - get EDID information via I2C
1197 * @data: I2C device adapter
1198 * @buf: EDID data buffer to be filled
1199 * @block: 128 byte EDID block to start fetching from
1200 * @len: EDID data buffer length to fetch
1201 *
1202 * Try to fetch EDID information by calling I2C driver functions.
1203 *
1204 * Return: 0 on success or -1 on failure.
1205 */
1206static int
1207drm_do_probe_ddc_edid(void *data, u8 *buf, unsigned int block, size_t len)
1208{
1209	struct i2c_adapter *adapter = data;
1210	unsigned char start = block * EDID_LENGTH;
1211	unsigned char segment = block >> 1;
1212	unsigned char xfers = segment ? 3 : 2;
1213	int ret, retries = 5;
1214
1215	/*
1216	 * The core I2C driver will automatically retry the transfer if the
1217	 * adapter reports EAGAIN. However, we find that bit-banging transfers
1218	 * are susceptible to errors under a heavily loaded machine and
1219	 * generate spurious NAKs and timeouts. Retrying the transfer
1220	 * of the individual block a few times seems to overcome this.
1221	 */
1222	do {
1223		struct i2c_msg msgs[] = {
1224			{
1225				.addr	= DDC_SEGMENT_ADDR,
1226				.flags	= 0,
1227				.len	= 1,
1228				.buf	= &segment,
1229			}, {
1230				.addr	= DDC_ADDR,
1231				.flags	= 0,
1232				.len	= 1,
1233				.buf	= &start,
1234			}, {
1235				.addr	= DDC_ADDR,
1236				.flags	= I2C_M_RD,
1237				.len	= len,
1238				.buf	= buf,
1239			}
1240		};
1241
1242		/*
1243		 * Avoid sending the segment addr to not upset non-compliant
1244		 * DDC monitors.
1245		 */
1246		ret = i2c_transfer(adapter, &msgs[3 - xfers], xfers);
1247
1248		if (ret == -ENXIO) {
1249			DRM_DEBUG_KMS("drm: skipping non-existent adapter %s\n",
1250					adapter->name);
1251			break;
1252		}
1253	} while (ret != xfers && --retries);
1254
1255	return ret == xfers ? 0 : -1;
1256}
1257
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1258/**
1259 * drm_do_get_edid - get EDID data using a custom EDID block read function
1260 * @connector: connector we're probing
1261 * @get_edid_block: EDID block read function
1262 * @data: private data passed to the block read function
1263 *
1264 * When the I2C adapter connected to the DDC bus is hidden behind a device that
1265 * exposes a different interface to read EDID blocks this function can be used
1266 * to get EDID data using a custom block read function.
1267 *
1268 * As in the general case the DDC bus is accessible by the kernel at the I2C
1269 * level, drivers must make all reasonable efforts to expose it as an I2C
1270 * adapter and use drm_get_edid() instead of abusing this function.
1271 *
 
 
 
 
1272 * Return: Pointer to valid EDID or NULL if we couldn't find any.
1273 */
1274struct edid *drm_do_get_edid(struct drm_connector *connector,
1275	int (*get_edid_block)(void *data, u8 *buf, unsigned int block,
1276			      size_t len),
1277	void *data)
1278{
1279	int i, j = 0, valid_extensions = 0;
1280	u8 *block, *new;
1281	bool print_bad_edid = !connector->bad_edid_counter || (drm_debug & DRM_UT_KMS);
1282
1283	if ((block = kmalloc(EDID_LENGTH, GFP_KERNEL)) == NULL)
 
 
 
 
 
 
 
 
 
 
 
 
1284		return NULL;
1285
1286	/* base block fetch */
1287	for (i = 0; i < 4; i++) {
1288		if (get_edid_block(data, block, 0, EDID_LENGTH))
1289			goto out;
1290		if (drm_edid_block_valid(block, 0, print_bad_edid,
1291					 &connector->edid_corrupt))
1292			break;
1293		if (i == 0 && drm_edid_is_zero(block, EDID_LENGTH)) {
1294			connector->null_edid_counter++;
1295			goto carp;
1296		}
 
 
 
 
 
 
 
 
 
 
 
 
1297	}
1298	if (i == 4)
1299		goto carp;
1300
1301	/* if there's no extensions, we're done */
1302	if (block[0x7e] == 0)
1303		return (struct edid *)block;
1304
1305	new = krealloc(block, (block[0x7e] + 1) * EDID_LENGTH, GFP_KERNEL);
1306	if (!new)
1307		goto out;
1308	block = new;
 
 
 
 
 
 
 
 
 
 
 
 
 
1309
1310	for (j = 1; j <= block[0x7e]; j++) {
1311		for (i = 0; i < 4; i++) {
1312			if (get_edid_block(data,
1313				  block + (valid_extensions + 1) * EDID_LENGTH,
1314				  j, EDID_LENGTH))
1315				goto out;
1316			if (drm_edid_block_valid(block + (valid_extensions + 1)
1317						 * EDID_LENGTH, j,
1318						 print_bad_edid,
1319						 NULL)) {
1320				valid_extensions++;
1321				break;
1322			}
1323		}
1324
1325		if (i == 4 && print_bad_edid) {
1326			dev_warn(connector->dev->dev,
1327			 "%s: Ignoring invalid EDID block %d.\n",
1328			 connector->name, j);
1329
1330			connector->bad_edid_counter++;
1331		}
1332	}
1333
1334	if (valid_extensions != block[0x7e]) {
1335		block[EDID_LENGTH-1] += block[0x7e] - valid_extensions;
1336		block[0x7e] = valid_extensions;
1337		new = krealloc(block, (valid_extensions + 1) * EDID_LENGTH, GFP_KERNEL);
1338		if (!new)
1339			goto out;
1340		block = new;
1341	}
1342
1343	return (struct edid *)block;
 
 
 
 
 
 
 
 
 
 
 
1344
1345carp:
1346	if (print_bad_edid) {
1347		dev_warn(connector->dev->dev, "%s: EDID block %d invalid.\n",
1348			 connector->name, j);
1349	}
1350	connector->bad_edid_counter++;
1351
1352out:
1353	kfree(block);
1354	return NULL;
 
 
 
 
 
 
 
 
1355}
1356EXPORT_SYMBOL_GPL(drm_do_get_edid);
1357
1358/**
1359 * drm_probe_ddc() - probe DDC presence
1360 * @adapter: I2C adapter to probe
1361 *
1362 * Return: True on success, false on failure.
1363 */
1364bool
1365drm_probe_ddc(struct i2c_adapter *adapter)
1366{
1367	unsigned char out;
1368
1369	return (drm_do_probe_ddc_edid(adapter, &out, 0, 1) == 0);
1370}
1371EXPORT_SYMBOL(drm_probe_ddc);
1372
1373/**
1374 * drm_get_edid - get EDID data, if available
1375 * @connector: connector we're probing
1376 * @adapter: I2C adapter to use for DDC
1377 *
1378 * Poke the given I2C channel to grab EDID data if possible.  If found,
1379 * attach it to the connector.
1380 *
1381 * Return: Pointer to valid EDID or NULL if we couldn't find any.
1382 */
1383struct edid *drm_get_edid(struct drm_connector *connector,
1384			  struct i2c_adapter *adapter)
1385{
1386	struct edid *edid;
1387
1388	if (!drm_probe_ddc(adapter))
1389		return NULL;
1390
1391	edid = drm_do_get_edid(connector, drm_do_probe_ddc_edid, adapter);
1392	if (edid)
1393		drm_get_displayid(connector, edid);
 
 
1394	return edid;
1395}
1396EXPORT_SYMBOL(drm_get_edid);
1397
1398/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1399 * drm_get_edid_switcheroo - get EDID data for a vga_switcheroo output
1400 * @connector: connector we're probing
1401 * @adapter: I2C adapter to use for DDC
1402 *
1403 * Wrapper around drm_get_edid() for laptops with dual GPUs using one set of
1404 * outputs. The wrapper adds the requisite vga_switcheroo calls to temporarily
1405 * switch DDC to the GPU which is retrieving EDID.
1406 *
1407 * Return: Pointer to valid EDID or %NULL if we couldn't find any.
1408 */
1409struct edid *drm_get_edid_switcheroo(struct drm_connector *connector,
1410				     struct i2c_adapter *adapter)
1411{
1412	struct pci_dev *pdev = connector->dev->pdev;
 
1413	struct edid *edid;
1414
 
 
 
1415	vga_switcheroo_lock_ddc(pdev);
1416	edid = drm_get_edid(connector, adapter);
1417	vga_switcheroo_unlock_ddc(pdev);
1418
1419	return edid;
1420}
1421EXPORT_SYMBOL(drm_get_edid_switcheroo);
1422
1423/**
1424 * drm_edid_duplicate - duplicate an EDID and the extensions
1425 * @edid: EDID to duplicate
1426 *
1427 * Return: Pointer to duplicated EDID or NULL on allocation failure.
1428 */
1429struct edid *drm_edid_duplicate(const struct edid *edid)
1430{
1431	return kmemdup(edid, (edid->extensions + 1) * EDID_LENGTH, GFP_KERNEL);
1432}
1433EXPORT_SYMBOL(drm_edid_duplicate);
1434
1435/*** EDID parsing ***/
1436
1437/**
1438 * edid_vendor - match a string against EDID's obfuscated vendor field
1439 * @edid: EDID to match
1440 * @vendor: vendor string
1441 *
1442 * Returns true if @vendor is in @edid, false otherwise
1443 */
1444static bool edid_vendor(struct edid *edid, char *vendor)
1445{
1446	char edid_vendor[3];
1447
1448	edid_vendor[0] = ((edid->mfg_id[0] & 0x7c) >> 2) + '@';
1449	edid_vendor[1] = (((edid->mfg_id[0] & 0x3) << 3) |
1450			  ((edid->mfg_id[1] & 0xe0) >> 5)) + '@';
1451	edid_vendor[2] = (edid->mfg_id[1] & 0x1f) + '@';
1452
1453	return !strncmp(edid_vendor, vendor, 3);
1454}
1455
1456/**
1457 * edid_get_quirks - return quirk flags for a given EDID
1458 * @edid: EDID to process
1459 *
1460 * This tells subsequent routines what fixes they need to apply.
1461 */
1462static u32 edid_get_quirks(struct edid *edid)
1463{
1464	struct edid_quirk *quirk;
 
1465	int i;
1466
1467	for (i = 0; i < ARRAY_SIZE(edid_quirk_list); i++) {
1468		quirk = &edid_quirk_list[i];
1469
1470		if (edid_vendor(edid, quirk->vendor) &&
1471		    (EDID_PRODUCT_ID(edid) == quirk->product_id))
1472			return quirk->quirks;
1473	}
1474
1475	return 0;
1476}
1477
1478#define MODE_SIZE(m) ((m)->hdisplay * (m)->vdisplay)
1479#define MODE_REFRESH_DIFF(c,t) (abs((c) - (t)))
1480
1481/**
1482 * edid_fixup_preferred - set preferred modes based on quirk list
1483 * @connector: has mode list to fix up
1484 * @quirks: quirks list
1485 *
1486 * Walk the mode list for @connector, clearing the preferred status
1487 * on existing modes and setting it anew for the right mode ala @quirks.
1488 */
1489static void edid_fixup_preferred(struct drm_connector *connector,
1490				 u32 quirks)
1491{
1492	struct drm_display_mode *t, *cur_mode, *preferred_mode;
1493	int target_refresh = 0;
1494	int cur_vrefresh, preferred_vrefresh;
1495
1496	if (list_empty(&connector->probed_modes))
1497		return;
1498
1499	if (quirks & EDID_QUIRK_PREFER_LARGE_60)
1500		target_refresh = 60;
1501	if (quirks & EDID_QUIRK_PREFER_LARGE_75)
1502		target_refresh = 75;
1503
1504	preferred_mode = list_first_entry(&connector->probed_modes,
1505					  struct drm_display_mode, head);
1506
1507	list_for_each_entry_safe(cur_mode, t, &connector->probed_modes, head) {
1508		cur_mode->type &= ~DRM_MODE_TYPE_PREFERRED;
1509
1510		if (cur_mode == preferred_mode)
1511			continue;
1512
1513		/* Largest mode is preferred */
1514		if (MODE_SIZE(cur_mode) > MODE_SIZE(preferred_mode))
1515			preferred_mode = cur_mode;
1516
1517		cur_vrefresh = cur_mode->vrefresh ?
1518			cur_mode->vrefresh : drm_mode_vrefresh(cur_mode);
1519		preferred_vrefresh = preferred_mode->vrefresh ?
1520			preferred_mode->vrefresh : drm_mode_vrefresh(preferred_mode);
1521		/* At a given size, try to get closest to target refresh */
1522		if ((MODE_SIZE(cur_mode) == MODE_SIZE(preferred_mode)) &&
1523		    MODE_REFRESH_DIFF(cur_vrefresh, target_refresh) <
1524		    MODE_REFRESH_DIFF(preferred_vrefresh, target_refresh)) {
1525			preferred_mode = cur_mode;
1526		}
1527	}
1528
1529	preferred_mode->type |= DRM_MODE_TYPE_PREFERRED;
1530}
1531
1532static bool
1533mode_is_rb(const struct drm_display_mode *mode)
1534{
1535	return (mode->htotal - mode->hdisplay == 160) &&
1536	       (mode->hsync_end - mode->hdisplay == 80) &&
1537	       (mode->hsync_end - mode->hsync_start == 32) &&
1538	       (mode->vsync_start - mode->vdisplay == 3);
1539}
1540
1541/*
1542 * drm_mode_find_dmt - Create a copy of a mode if present in DMT
1543 * @dev: Device to duplicate against
1544 * @hsize: Mode width
1545 * @vsize: Mode height
1546 * @fresh: Mode refresh rate
1547 * @rb: Mode reduced-blanking-ness
1548 *
1549 * Walk the DMT mode list looking for a match for the given parameters.
1550 *
1551 * Return: A newly allocated copy of the mode, or NULL if not found.
1552 */
1553struct drm_display_mode *drm_mode_find_dmt(struct drm_device *dev,
1554					   int hsize, int vsize, int fresh,
1555					   bool rb)
1556{
1557	int i;
1558
1559	for (i = 0; i < ARRAY_SIZE(drm_dmt_modes); i++) {
1560		const struct drm_display_mode *ptr = &drm_dmt_modes[i];
 
1561		if (hsize != ptr->hdisplay)
1562			continue;
1563		if (vsize != ptr->vdisplay)
1564			continue;
1565		if (fresh != drm_mode_vrefresh(ptr))
1566			continue;
1567		if (rb != mode_is_rb(ptr))
1568			continue;
1569
1570		return drm_mode_duplicate(dev, ptr);
1571	}
1572
1573	return NULL;
1574}
1575EXPORT_SYMBOL(drm_mode_find_dmt);
1576
1577typedef void detailed_cb(struct detailed_timing *timing, void *closure);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1578
1579static void
1580cea_for_each_detailed_block(u8 *ext, detailed_cb *cb, void *closure)
1581{
1582	int i, n = 0;
1583	u8 d = ext[0x02];
1584	u8 *det_base = ext + d;
 
 
 
1585
1586	n = (127 - d) / 18;
1587	for (i = 0; i < n; i++)
1588		cb((struct detailed_timing *)(det_base + 18 * i), closure);
1589}
1590
1591static void
1592vtb_for_each_detailed_block(u8 *ext, detailed_cb *cb, void *closure)
1593{
1594	unsigned int i, n = min((int)ext[0x02], 6);
1595	u8 *det_base = ext + 5;
1596
1597	if (ext[0x01] != 1)
1598		return; /* unknown version */
1599
1600	for (i = 0; i < n; i++)
1601		cb((struct detailed_timing *)(det_base + 18 * i), closure);
1602}
1603
1604static void
1605drm_for_each_detailed_block(u8 *raw_edid, detailed_cb *cb, void *closure)
1606{
 
 
1607	int i;
1608	struct edid *edid = (struct edid *)raw_edid;
1609
1610	if (edid == NULL)
1611		return;
1612
1613	for (i = 0; i < EDID_DETAILED_TIMINGS; i++)
1614		cb(&(edid->detailed_timings[i]), closure);
1615
1616	for (i = 1; i <= raw_edid[0x7e]; i++) {
1617		u8 *ext = raw_edid + (i * EDID_LENGTH);
1618		switch (*ext) {
1619		case CEA_EXT:
1620			cea_for_each_detailed_block(ext, cb, closure);
1621			break;
1622		case VTB_EXT:
1623			vtb_for_each_detailed_block(ext, cb, closure);
1624			break;
1625		default:
1626			break;
1627		}
1628	}
 
1629}
1630
1631static void
1632is_rb(struct detailed_timing *t, void *data)
1633{
1634	u8 *r = (u8 *)t;
1635	if (r[3] == EDID_DETAIL_MONITOR_RANGE)
1636		if (r[15] & 0x10)
1637			*(bool *)data = true;
 
 
 
 
 
 
 
1638}
1639
1640/* EDID 1.4 defines this explicitly.  For EDID 1.3, we guess, badly. */
1641static bool
1642drm_monitor_supports_rb(struct edid *edid)
1643{
1644	if (edid->revision >= 4) {
1645		bool ret = false;
1646		drm_for_each_detailed_block((u8 *)edid, is_rb, &ret);
 
1647		return ret;
1648	}
1649
1650	return ((edid->input & DRM_EDID_INPUT_DIGITAL) != 0);
1651}
1652
1653static void
1654find_gtf2(struct detailed_timing *t, void *data)
1655{
1656	u8 *r = (u8 *)t;
1657	if (r[3] == EDID_DETAIL_MONITOR_RANGE && r[10] == 0x02)
1658		*(u8 **)data = r;
 
 
 
 
 
 
1659}
1660
1661/* Secondary GTF curve kicks in above some break frequency */
1662static int
1663drm_gtf2_hbreak(struct edid *edid)
1664{
1665	u8 *r = NULL;
1666	drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
1667	return r ? (r[12] * 2) : 0;
 
 
 
 
1668}
1669
1670static int
1671drm_gtf2_2c(struct edid *edid)
1672{
1673	u8 *r = NULL;
1674	drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
1675	return r ? r[13] : 0;
 
 
 
 
1676}
1677
1678static int
1679drm_gtf2_m(struct edid *edid)
1680{
1681	u8 *r = NULL;
1682	drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
1683	return r ? (r[15] << 8) + r[14] : 0;
 
 
 
 
1684}
1685
1686static int
1687drm_gtf2_k(struct edid *edid)
1688{
1689	u8 *r = NULL;
1690	drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
1691	return r ? r[16] : 0;
 
 
 
 
1692}
1693
1694static int
1695drm_gtf2_2j(struct edid *edid)
1696{
1697	u8 *r = NULL;
1698	drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
1699	return r ? r[17] : 0;
 
 
 
 
1700}
1701
1702/**
1703 * standard_timing_level - get std. timing level(CVT/GTF/DMT)
1704 * @edid: EDID block to scan
1705 */
1706static int standard_timing_level(struct edid *edid)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1707{
1708	if (edid->revision >= 2) {
1709		if (edid->revision >= 4 && (edid->features & DRM_EDID_FEATURE_DEFAULT_GTF))
1710			return LEVEL_CVT;
1711		if (drm_gtf2_hbreak(edid))
1712			return LEVEL_GTF2;
 
 
 
 
 
 
 
 
 
 
1713		return LEVEL_GTF;
 
 
1714	}
1715	return LEVEL_DMT;
1716}
1717
1718/*
1719 * 0 is reserved.  The spec says 0x01 fill for unused timings.  Some old
1720 * monitors fill with ascii space (0x20) instead.
1721 */
1722static int
1723bad_std_timing(u8 a, u8 b)
1724{
1725	return (a == 0x00 && b == 0x00) ||
1726	       (a == 0x01 && b == 0x01) ||
1727	       (a == 0x20 && b == 0x20);
1728}
1729
1730/**
1731 * drm_mode_std - convert standard mode info (width, height, refresh) into mode
1732 * @connector: connector of for the EDID block
1733 * @edid: EDID block to scan
1734 * @t: standard timing params
1735 *
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1736 * Take the standard timing params (in this case width, aspect, and refresh)
1737 * and convert them into a real mode using CVT/GTF/DMT.
1738 */
1739static struct drm_display_mode *
1740drm_mode_std(struct drm_connector *connector, struct edid *edid,
1741	     struct std_timing *t)
1742{
1743	struct drm_device *dev = connector->dev;
1744	struct drm_display_mode *m, *mode = NULL;
1745	int hsize, vsize;
1746	int vrefresh_rate;
1747	unsigned aspect_ratio = (t->vfreq_aspect & EDID_TIMING_ASPECT_MASK)
1748		>> EDID_TIMING_ASPECT_SHIFT;
1749	unsigned vfreq = (t->vfreq_aspect & EDID_TIMING_VFREQ_MASK)
1750		>> EDID_TIMING_VFREQ_SHIFT;
1751	int timing_level = standard_timing_level(edid);
1752
1753	if (bad_std_timing(t->hsize, t->vfreq_aspect))
1754		return NULL;
1755
1756	/* According to the EDID spec, the hdisplay = hsize * 8 + 248 */
1757	hsize = t->hsize * 8 + 248;
1758	/* vrefresh_rate = vfreq + 60 */
1759	vrefresh_rate = vfreq + 60;
1760	/* the vdisplay is calculated based on the aspect ratio */
1761	if (aspect_ratio == 0) {
1762		if (edid->revision < 3)
1763			vsize = hsize;
1764		else
1765			vsize = (hsize * 10) / 16;
1766	} else if (aspect_ratio == 1)
1767		vsize = (hsize * 3) / 4;
1768	else if (aspect_ratio == 2)
1769		vsize = (hsize * 4) / 5;
1770	else
1771		vsize = (hsize * 9) / 16;
1772
1773	/* HDTV hack, part 1 */
1774	if (vrefresh_rate == 60 &&
1775	    ((hsize == 1360 && vsize == 765) ||
1776	     (hsize == 1368 && vsize == 769))) {
1777		hsize = 1366;
1778		vsize = 768;
1779	}
1780
1781	/*
1782	 * If this connector already has a mode for this size and refresh
1783	 * rate (because it came from detailed or CVT info), use that
1784	 * instead.  This way we don't have to guess at interlace or
1785	 * reduced blanking.
1786	 */
1787	list_for_each_entry(m, &connector->probed_modes, head)
1788		if (m->hdisplay == hsize && m->vdisplay == vsize &&
1789		    drm_mode_vrefresh(m) == vrefresh_rate)
1790			return NULL;
1791
1792	/* HDTV hack, part 2 */
1793	if (hsize == 1366 && vsize == 768 && vrefresh_rate == 60) {
1794		mode = drm_cvt_mode(dev, 1366, 768, vrefresh_rate, 0, 0,
1795				    false);
 
 
1796		mode->hdisplay = 1366;
1797		mode->hsync_start = mode->hsync_start - 1;
1798		mode->hsync_end = mode->hsync_end - 1;
1799		return mode;
1800	}
1801
1802	/* check whether it can be found in default mode table */
1803	if (drm_monitor_supports_rb(edid)) {
1804		mode = drm_mode_find_dmt(dev, hsize, vsize, vrefresh_rate,
1805					 true);
1806		if (mode)
1807			return mode;
1808	}
1809	mode = drm_mode_find_dmt(dev, hsize, vsize, vrefresh_rate, false);
1810	if (mode)
1811		return mode;
1812
1813	/* okay, generate it */
1814	switch (timing_level) {
1815	case LEVEL_DMT:
1816		break;
1817	case LEVEL_GTF:
1818		mode = drm_gtf_mode(dev, hsize, vsize, vrefresh_rate, 0, 0);
1819		break;
1820	case LEVEL_GTF2:
1821		/*
1822		 * This is potentially wrong if there's ever a monitor with
1823		 * more than one ranges section, each claiming a different
1824		 * secondary GTF curve.  Please don't do that.
1825		 */
1826		mode = drm_gtf_mode(dev, hsize, vsize, vrefresh_rate, 0, 0);
1827		if (!mode)
1828			return NULL;
1829		if (drm_mode_hsync(mode) > drm_gtf2_hbreak(edid)) {
1830			drm_mode_destroy(dev, mode);
1831			mode = drm_gtf_mode_complex(dev, hsize, vsize,
1832						    vrefresh_rate, 0, 0,
1833						    drm_gtf2_m(edid),
1834						    drm_gtf2_2c(edid),
1835						    drm_gtf2_k(edid),
1836						    drm_gtf2_2j(edid));
1837		}
1838		break;
1839	case LEVEL_CVT:
1840		mode = drm_cvt_mode(dev, hsize, vsize, vrefresh_rate, 0, 0,
1841				    false);
1842		break;
1843	}
1844	return mode;
1845}
1846
1847/*
1848 * EDID is delightfully ambiguous about how interlaced modes are to be
1849 * encoded.  Our internal representation is of frame height, but some
1850 * HDTV detailed timings are encoded as field height.
1851 *
1852 * The format list here is from CEA, in frame size.  Technically we
1853 * should be checking refresh rate too.  Whatever.
1854 */
1855static void
1856drm_mode_do_interlace_quirk(struct drm_display_mode *mode,
1857			    struct detailed_pixel_timing *pt)
1858{
1859	int i;
1860	static const struct {
1861		int w, h;
1862	} cea_interlaced[] = {
1863		{ 1920, 1080 },
1864		{  720,  480 },
1865		{ 1440,  480 },
1866		{ 2880,  480 },
1867		{  720,  576 },
1868		{ 1440,  576 },
1869		{ 2880,  576 },
1870	};
1871
1872	if (!(pt->misc & DRM_EDID_PT_INTERLACED))
1873		return;
1874
1875	for (i = 0; i < ARRAY_SIZE(cea_interlaced); i++) {
1876		if ((mode->hdisplay == cea_interlaced[i].w) &&
1877		    (mode->vdisplay == cea_interlaced[i].h / 2)) {
1878			mode->vdisplay *= 2;
1879			mode->vsync_start *= 2;
1880			mode->vsync_end *= 2;
1881			mode->vtotal *= 2;
1882			mode->vtotal |= 1;
1883		}
1884	}
1885
1886	mode->flags |= DRM_MODE_FLAG_INTERLACE;
1887}
1888
1889/**
1890 * drm_mode_detailed - create a new mode from an EDID detailed timing section
1891 * @dev: DRM device (needed to create new mode)
1892 * @edid: EDID block
1893 * @timing: EDID detailed timing info
1894 * @quirks: quirks to apply
1895 *
1896 * An EDID detailed timing block contains enough info for us to create and
1897 * return a new struct drm_display_mode.
1898 */
1899static struct drm_display_mode *drm_mode_detailed(struct drm_device *dev,
1900						  struct edid *edid,
1901						  struct detailed_timing *timing,
1902						  u32 quirks)
1903{
 
1904	struct drm_display_mode *mode;
1905	struct detailed_pixel_timing *pt = &timing->data.pixel_data;
1906	unsigned hactive = (pt->hactive_hblank_hi & 0xf0) << 4 | pt->hactive_lo;
1907	unsigned vactive = (pt->vactive_vblank_hi & 0xf0) << 4 | pt->vactive_lo;
1908	unsigned hblank = (pt->hactive_hblank_hi & 0xf) << 8 | pt->hblank_lo;
1909	unsigned vblank = (pt->vactive_vblank_hi & 0xf) << 8 | pt->vblank_lo;
1910	unsigned hsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc0) << 2 | pt->hsync_offset_lo;
1911	unsigned hsync_pulse_width = (pt->hsync_vsync_offset_pulse_width_hi & 0x30) << 4 | pt->hsync_pulse_width_lo;
1912	unsigned vsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc) << 2 | pt->vsync_offset_pulse_width_lo >> 4;
1913	unsigned vsync_pulse_width = (pt->hsync_vsync_offset_pulse_width_hi & 0x3) << 4 | (pt->vsync_offset_pulse_width_lo & 0xf);
1914
1915	/* ignore tiny modes */
1916	if (hactive < 64 || vactive < 64)
1917		return NULL;
1918
1919	if (pt->misc & DRM_EDID_PT_STEREO) {
1920		DRM_DEBUG_KMS("stereo mode not supported\n");
 
1921		return NULL;
1922	}
1923	if (!(pt->misc & DRM_EDID_PT_SEPARATE_SYNC)) {
1924		DRM_DEBUG_KMS("composite sync not supported\n");
 
1925	}
1926
1927	/* it is incorrect if hsync/vsync width is zero */
1928	if (!hsync_pulse_width || !vsync_pulse_width) {
1929		DRM_DEBUG_KMS("Incorrect Detailed timing. "
1930				"Wrong Hsync/Vsync pulse width\n");
1931		return NULL;
1932	}
1933
1934	if (quirks & EDID_QUIRK_FORCE_REDUCED_BLANKING) {
1935		mode = drm_cvt_mode(dev, hactive, vactive, 60, true, false, false);
1936		if (!mode)
1937			return NULL;
1938
1939		goto set_size;
1940	}
1941
1942	mode = drm_mode_create(dev);
1943	if (!mode)
1944		return NULL;
1945
1946	if (quirks & EDID_QUIRK_135_CLOCK_TOO_HIGH)
1947		timing->pixel_clock = cpu_to_le16(1088);
1948
1949	mode->clock = le16_to_cpu(timing->pixel_clock) * 10;
1950
1951	mode->hdisplay = hactive;
1952	mode->hsync_start = mode->hdisplay + hsync_offset;
1953	mode->hsync_end = mode->hsync_start + hsync_pulse_width;
1954	mode->htotal = mode->hdisplay + hblank;
1955
1956	mode->vdisplay = vactive;
1957	mode->vsync_start = mode->vdisplay + vsync_offset;
1958	mode->vsync_end = mode->vsync_start + vsync_pulse_width;
1959	mode->vtotal = mode->vdisplay + vblank;
1960
1961	/* Some EDIDs have bogus h/vtotal values */
1962	if (mode->hsync_end > mode->htotal)
1963		mode->htotal = mode->hsync_end + 1;
1964	if (mode->vsync_end > mode->vtotal)
1965		mode->vtotal = mode->vsync_end + 1;
1966
1967	drm_mode_do_interlace_quirk(mode, pt);
1968
1969	if (quirks & EDID_QUIRK_DETAILED_SYNC_PP) {
1970		pt->misc |= DRM_EDID_PT_HSYNC_POSITIVE | DRM_EDID_PT_VSYNC_POSITIVE;
 
 
 
 
 
1971	}
1972
1973	mode->flags |= (pt->misc & DRM_EDID_PT_HSYNC_POSITIVE) ?
1974		DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC;
1975	mode->flags |= (pt->misc & DRM_EDID_PT_VSYNC_POSITIVE) ?
1976		DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC;
1977
1978set_size:
1979	mode->width_mm = pt->width_mm_lo | (pt->width_height_mm_hi & 0xf0) << 4;
1980	mode->height_mm = pt->height_mm_lo | (pt->width_height_mm_hi & 0xf) << 8;
1981
1982	if (quirks & EDID_QUIRK_DETAILED_IN_CM) {
1983		mode->width_mm *= 10;
1984		mode->height_mm *= 10;
1985	}
1986
1987	if (quirks & EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE) {
1988		mode->width_mm = edid->width_cm * 10;
1989		mode->height_mm = edid->height_cm * 10;
1990	}
1991
1992	mode->type = DRM_MODE_TYPE_DRIVER;
1993	mode->vrefresh = drm_mode_vrefresh(mode);
1994	drm_mode_set_name(mode);
1995
1996	return mode;
1997}
1998
1999static bool
2000mode_in_hsync_range(const struct drm_display_mode *mode,
2001		    struct edid *edid, u8 *t)
2002{
2003	int hsync, hmin, hmax;
2004
2005	hmin = t[7];
2006	if (edid->revision >= 4)
2007	    hmin += ((t[4] & 0x04) ? 255 : 0);
2008	hmax = t[8];
2009	if (edid->revision >= 4)
2010	    hmax += ((t[4] & 0x08) ? 255 : 0);
2011	hsync = drm_mode_hsync(mode);
2012
2013	return (hsync <= hmax && hsync >= hmin);
2014}
2015
2016static bool
2017mode_in_vsync_range(const struct drm_display_mode *mode,
2018		    struct edid *edid, u8 *t)
2019{
2020	int vsync, vmin, vmax;
2021
2022	vmin = t[5];
2023	if (edid->revision >= 4)
2024	    vmin += ((t[4] & 0x01) ? 255 : 0);
2025	vmax = t[6];
2026	if (edid->revision >= 4)
2027	    vmax += ((t[4] & 0x02) ? 255 : 0);
2028	vsync = drm_mode_vrefresh(mode);
2029
2030	return (vsync <= vmax && vsync >= vmin);
2031}
2032
2033static u32
2034range_pixel_clock(struct edid *edid, u8 *t)
2035{
2036	/* unspecified */
2037	if (t[9] == 0 || t[9] == 255)
2038		return 0;
2039
2040	/* 1.4 with CVT support gives us real precision, yay */
2041	if (edid->revision >= 4 && t[10] == 0x04)
2042		return (t[9] * 10000) - ((t[12] >> 2) * 250);
2043
2044	/* 1.3 is pathetic, so fuzz up a bit */
2045	return t[9] * 10000 + 5001;
2046}
2047
2048static bool
2049mode_in_range(const struct drm_display_mode *mode, struct edid *edid,
2050	      struct detailed_timing *timing)
2051{
 
2052	u32 max_clock;
2053	u8 *t = (u8 *)timing;
2054
2055	if (!mode_in_hsync_range(mode, edid, t))
2056		return false;
2057
2058	if (!mode_in_vsync_range(mode, edid, t))
2059		return false;
2060
2061	if ((max_clock = range_pixel_clock(edid, t)))
2062		if (mode->clock > max_clock)
2063			return false;
2064
2065	/* 1.4 max horizontal check */
2066	if (edid->revision >= 4 && t[10] == 0x04)
2067		if (t[13] && mode->hdisplay > 8 * (t[13] + (256 * (t[12]&0x3))))
2068			return false;
2069
2070	if (mode_is_rb(mode) && !drm_monitor_supports_rb(edid))
2071		return false;
2072
2073	return true;
2074}
2075
2076static bool valid_inferred_mode(const struct drm_connector *connector,
2077				const struct drm_display_mode *mode)
2078{
2079	const struct drm_display_mode *m;
2080	bool ok = false;
2081
2082	list_for_each_entry(m, &connector->probed_modes, head) {
2083		if (mode->hdisplay == m->hdisplay &&
2084		    mode->vdisplay == m->vdisplay &&
2085		    drm_mode_vrefresh(mode) == drm_mode_vrefresh(m))
2086			return false; /* duplicated */
2087		if (mode->hdisplay <= m->hdisplay &&
2088		    mode->vdisplay <= m->vdisplay)
2089			ok = true;
2090	}
2091	return ok;
2092}
2093
2094static int
2095drm_dmt_modes_for_range(struct drm_connector *connector, struct edid *edid,
2096			struct detailed_timing *timing)
2097{
2098	int i, modes = 0;
2099	struct drm_display_mode *newmode;
2100	struct drm_device *dev = connector->dev;
2101
2102	for (i = 0; i < ARRAY_SIZE(drm_dmt_modes); i++) {
2103		if (mode_in_range(drm_dmt_modes + i, edid, timing) &&
2104		    valid_inferred_mode(connector, drm_dmt_modes + i)) {
2105			newmode = drm_mode_duplicate(dev, &drm_dmt_modes[i]);
2106			if (newmode) {
2107				drm_mode_probed_add(connector, newmode);
2108				modes++;
2109			}
2110		}
2111	}
2112
2113	return modes;
2114}
2115
2116/* fix up 1366x768 mode from 1368x768;
2117 * GFT/CVT can't express 1366 width which isn't dividable by 8
2118 */
2119static void fixup_mode_1366x768(struct drm_display_mode *mode)
2120{
2121	if (mode->hdisplay == 1368 && mode->vdisplay == 768) {
2122		mode->hdisplay = 1366;
2123		mode->hsync_start--;
2124		mode->hsync_end--;
2125		drm_mode_set_name(mode);
2126	}
2127}
2128
2129static int
2130drm_gtf_modes_for_range(struct drm_connector *connector, struct edid *edid,
2131			struct detailed_timing *timing)
2132{
2133	int i, modes = 0;
2134	struct drm_display_mode *newmode;
2135	struct drm_device *dev = connector->dev;
2136
2137	for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
2138		const struct minimode *m = &extra_modes[i];
 
2139		newmode = drm_gtf_mode(dev, m->w, m->h, m->r, 0, 0);
2140		if (!newmode)
2141			return modes;
2142
2143		fixup_mode_1366x768(newmode);
2144		if (!mode_in_range(newmode, edid, timing) ||
2145		    !valid_inferred_mode(connector, newmode)) {
2146			drm_mode_destroy(dev, newmode);
2147			continue;
2148		}
2149
2150		drm_mode_probed_add(connector, newmode);
2151		modes++;
2152	}
2153
2154	return modes;
2155}
2156
2157static int
2158drm_cvt_modes_for_range(struct drm_connector *connector, struct edid *edid,
2159			struct detailed_timing *timing)
2160{
2161	int i, modes = 0;
2162	struct drm_display_mode *newmode;
2163	struct drm_device *dev = connector->dev;
2164	bool rb = drm_monitor_supports_rb(edid);
2165
2166	for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
2167		const struct minimode *m = &extra_modes[i];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2168		newmode = drm_cvt_mode(dev, m->w, m->h, m->r, rb, 0, 0);
2169		if (!newmode)
2170			return modes;
2171
2172		fixup_mode_1366x768(newmode);
2173		if (!mode_in_range(newmode, edid, timing) ||
2174		    !valid_inferred_mode(connector, newmode)) {
2175			drm_mode_destroy(dev, newmode);
2176			continue;
2177		}
2178
2179		drm_mode_probed_add(connector, newmode);
2180		modes++;
2181	}
2182
2183	return modes;
2184}
2185
2186static void
2187do_inferred_modes(struct detailed_timing *timing, void *c)
2188{
2189	struct detailed_mode_closure *closure = c;
2190	struct detailed_non_pixel *data = &timing->data.other_data;
2191	struct detailed_data_monitor_range *range = &data->data.range;
2192
2193	if (data->type != EDID_DETAIL_MONITOR_RANGE)
2194		return;
2195
2196	closure->modes += drm_dmt_modes_for_range(closure->connector,
2197						  closure->edid,
2198						  timing);
2199	
2200	if (!version_greater(closure->edid, 1, 1))
2201		return; /* GTF not defined yet */
2202
2203	switch (range->flags) {
2204	case 0x02: /* secondary gtf, XXX could do more */
2205	case 0x00: /* default gtf */
 
 
 
 
2206		closure->modes += drm_gtf_modes_for_range(closure->connector,
2207							  closure->edid,
2208							  timing);
2209		break;
2210	case 0x04: /* cvt, only in 1.4+ */
2211		if (!version_greater(closure->edid, 1, 3))
2212			break;
2213
2214		closure->modes += drm_cvt_modes_for_range(closure->connector,
2215							  closure->edid,
2216							  timing);
2217		break;
2218	case 0x01: /* just the ranges, no formula */
2219	default:
2220		break;
2221	}
2222}
2223
2224static int
2225add_inferred_modes(struct drm_connector *connector, struct edid *edid)
2226{
2227	struct detailed_mode_closure closure = {
2228		.connector = connector,
2229		.edid = edid,
2230	};
2231
2232	if (version_greater(edid, 1, 0))
2233		drm_for_each_detailed_block((u8 *)edid, do_inferred_modes,
2234					    &closure);
2235
2236	return closure.modes;
2237}
2238
2239static int
2240drm_est3_modes(struct drm_connector *connector, struct detailed_timing *timing)
2241{
2242	int i, j, m, modes = 0;
2243	struct drm_display_mode *mode;
2244	u8 *est = ((u8 *)timing) + 6;
2245
2246	for (i = 0; i < 6; i++) {
2247		for (j = 7; j >= 0; j--) {
2248			m = (i * 8) + (7 - j);
2249			if (m >= ARRAY_SIZE(est3_modes))
2250				break;
2251			if (est[i] & (1 << j)) {
2252				mode = drm_mode_find_dmt(connector->dev,
2253							 est3_modes[m].w,
2254							 est3_modes[m].h,
2255							 est3_modes[m].r,
2256							 est3_modes[m].rb);
2257				if (mode) {
2258					drm_mode_probed_add(connector, mode);
2259					modes++;
2260				}
2261			}
2262		}
2263	}
2264
2265	return modes;
2266}
2267
2268static void
2269do_established_modes(struct detailed_timing *timing, void *c)
2270{
2271	struct detailed_mode_closure *closure = c;
2272	struct detailed_non_pixel *data = &timing->data.other_data;
2273
2274	if (data->type == EDID_DETAIL_EST_TIMINGS)
2275		closure->modes += drm_est3_modes(closure->connector, timing);
 
 
2276}
2277
2278/**
2279 * add_established_modes - get est. modes from EDID and add them
2280 * @connector: connector to add mode(s) to
2281 * @edid: EDID block to scan
2282 *
2283 * Each EDID block contains a bitmap of the supported "established modes" list
2284 * (defined above).  Tease them out and add them to the global modes list.
2285 */
2286static int
2287add_established_modes(struct drm_connector *connector, struct edid *edid)
2288{
2289	struct drm_device *dev = connector->dev;
 
2290	unsigned long est_bits = edid->established_timings.t1 |
2291		(edid->established_timings.t2 << 8) |
2292		((edid->established_timings.mfg_rsvd & 0x80) << 9);
2293	int i, modes = 0;
2294	struct detailed_mode_closure closure = {
2295		.connector = connector,
2296		.edid = edid,
2297	};
2298
2299	for (i = 0; i <= EDID_EST_TIMINGS; i++) {
2300		if (est_bits & (1<<i)) {
2301			struct drm_display_mode *newmode;
 
2302			newmode = drm_mode_duplicate(dev, &edid_est_modes[i]);
2303			if (newmode) {
2304				drm_mode_probed_add(connector, newmode);
2305				modes++;
2306			}
2307		}
2308	}
2309
2310	if (version_greater(edid, 1, 0))
2311		    drm_for_each_detailed_block((u8 *)edid,
2312						do_established_modes, &closure);
2313
2314	return modes + closure.modes;
2315}
2316
2317static void
2318do_standard_modes(struct detailed_timing *timing, void *c)
2319{
2320	struct detailed_mode_closure *closure = c;
2321	struct detailed_non_pixel *data = &timing->data.other_data;
2322	struct drm_connector *connector = closure->connector;
2323	struct edid *edid = closure->edid;
2324
2325	if (data->type == EDID_DETAIL_STD_MODES) {
2326		int i;
2327		for (i = 0; i < 6; i++) {
2328			struct std_timing *std;
2329			struct drm_display_mode *newmode;
2330
2331			std = &data->data.timings[i];
2332			newmode = drm_mode_std(connector, edid, std);
2333			if (newmode) {
2334				drm_mode_probed_add(connector, newmode);
2335				closure->modes++;
2336			}
 
 
2337		}
2338	}
2339}
2340
2341/**
2342 * add_standard_modes - get std. modes from EDID and add them
2343 * @connector: connector to add mode(s) to
2344 * @edid: EDID block to scan
2345 *
2346 * Standard modes can be calculated using the appropriate standard (DMT,
2347 * GTF or CVT. Grab them from @edid and add them to the list.
2348 */
2349static int
2350add_standard_modes(struct drm_connector *connector, struct edid *edid)
2351{
2352	int i, modes = 0;
2353	struct detailed_mode_closure closure = {
2354		.connector = connector,
2355		.edid = edid,
2356	};
2357
2358	for (i = 0; i < EDID_STD_TIMINGS; i++) {
2359		struct drm_display_mode *newmode;
2360
2361		newmode = drm_mode_std(connector, edid,
2362				       &edid->standard_timings[i]);
2363		if (newmode) {
2364			drm_mode_probed_add(connector, newmode);
2365			modes++;
2366		}
2367	}
2368
2369	if (version_greater(edid, 1, 0))
2370		drm_for_each_detailed_block((u8 *)edid, do_standard_modes,
2371					    &closure);
2372
2373	/* XXX should also look for standard codes in VTB blocks */
2374
2375	return modes + closure.modes;
2376}
2377
2378static int drm_cvt_modes(struct drm_connector *connector,
2379			 struct detailed_timing *timing)
2380{
2381	int i, j, modes = 0;
2382	struct drm_display_mode *newmode;
2383	struct drm_device *dev = connector->dev;
2384	struct cvt_timing *cvt;
2385	const int rates[] = { 60, 85, 75, 60, 50 };
2386	const u8 empty[3] = { 0, 0, 0 };
2387
2388	for (i = 0; i < 4; i++) {
2389		int uninitialized_var(width), height;
 
2390		cvt = &(timing->data.other_data.data.cvt[i]);
2391
2392		if (!memcmp(cvt->code, empty, 3))
2393			continue;
2394
2395		height = (cvt->code[0] + ((cvt->code[1] & 0xf0) << 4) + 1) * 2;
2396		switch (cvt->code[1] & 0x0c) {
 
 
2397		case 0x00:
2398			width = height * 4 / 3;
2399			break;
2400		case 0x04:
2401			width = height * 16 / 9;
2402			break;
2403		case 0x08:
2404			width = height * 16 / 10;
2405			break;
2406		case 0x0c:
2407			width = height * 15 / 9;
2408			break;
2409		}
2410
2411		for (j = 1; j < 5; j++) {
2412			if (cvt->code[2] & (1 << j)) {
2413				newmode = drm_cvt_mode(dev, width, height,
2414						       rates[j], j == 0,
2415						       false, false);
2416				if (newmode) {
2417					drm_mode_probed_add(connector, newmode);
2418					modes++;
2419				}
2420			}
2421		}
2422	}
2423
2424	return modes;
2425}
2426
2427static void
2428do_cvt_mode(struct detailed_timing *timing, void *c)
2429{
2430	struct detailed_mode_closure *closure = c;
2431	struct detailed_non_pixel *data = &timing->data.other_data;
2432
2433	if (data->type == EDID_DETAIL_CVT_3BYTE)
2434		closure->modes += drm_cvt_modes(closure->connector, timing);
 
 
2435}
2436
2437static int
2438add_cvt_modes(struct drm_connector *connector, struct edid *edid)
2439{	
2440	struct detailed_mode_closure closure = {
2441		.connector = connector,
2442		.edid = edid,
2443	};
2444
2445	if (version_greater(edid, 1, 2))
2446		drm_for_each_detailed_block((u8 *)edid, do_cvt_mode, &closure);
2447
2448	/* XXX should also look for CVT codes in VTB blocks */
2449
2450	return closure.modes;
2451}
2452
2453static void fixup_detailed_cea_mode_clock(struct drm_display_mode *mode);
 
2454
2455static void
2456do_detailed_mode(struct detailed_timing *timing, void *c)
2457{
2458	struct detailed_mode_closure *closure = c;
2459	struct drm_display_mode *newmode;
2460
2461	if (timing->pixel_clock) {
2462		newmode = drm_mode_detailed(closure->connector->dev,
2463					    closure->edid, timing,
2464					    closure->quirks);
2465		if (!newmode)
2466			return;
2467
2468		if (closure->preferred)
2469			newmode->type |= DRM_MODE_TYPE_PREFERRED;
 
 
 
2470
2471		/*
2472		 * Detailed modes are limited to 10kHz pixel clock resolution,
2473		 * so fix up anything that looks like CEA/HDMI mode, but the clock
2474		 * is just slightly off.
2475		 */
2476		fixup_detailed_cea_mode_clock(newmode);
2477
2478		drm_mode_probed_add(closure->connector, newmode);
2479		closure->modes++;
2480		closure->preferred = 0;
2481	}
 
 
 
 
 
 
2482}
2483
2484/*
2485 * add_detailed_modes - Add modes from detailed timings
2486 * @connector: attached connector
2487 * @edid: EDID block to scan
2488 * @quirks: quirks to apply
2489 */
2490static int
2491add_detailed_modes(struct drm_connector *connector, struct edid *edid,
2492		   u32 quirks)
2493{
2494	struct detailed_mode_closure closure = {
2495		.connector = connector,
2496		.edid = edid,
2497		.preferred = 1,
2498		.quirks = quirks,
2499	};
2500
2501	if (closure.preferred && !version_greater(edid, 1, 3))
 
 
2502		closure.preferred =
2503		    (edid->features & DRM_EDID_FEATURE_PREFERRED_TIMING);
2504
2505	drm_for_each_detailed_block((u8 *)edid, do_detailed_mode, &closure);
2506
2507	return closure.modes;
2508}
2509
2510#define AUDIO_BLOCK	0x01
2511#define VIDEO_BLOCK     0x02
2512#define VENDOR_BLOCK    0x03
2513#define SPEAKER_BLOCK	0x04
2514#define VIDEO_CAPABILITY_BLOCK	0x07
 
 
 
 
 
 
 
 
 
 
 
2515#define EDID_BASIC_AUDIO	(1 << 6)
2516#define EDID_CEA_YCRCB444	(1 << 5)
2517#define EDID_CEA_YCRCB422	(1 << 4)
2518#define EDID_CEA_VCDB_QS	(1 << 6)
2519
2520/*
2521 * Search EDID for CEA extension block.
 
 
2522 */
2523static u8 *drm_find_edid_extension(struct edid *edid, int ext_id)
 
2524{
2525	u8 *edid_ext = NULL;
2526	int i;
2527
2528	/* No EDID or EDID extensions */
2529	if (edid == NULL || edid->extensions == 0)
2530		return NULL;
2531
2532	/* Find CEA extension */
2533	for (i = 0; i < edid->extensions; i++) {
2534		edid_ext = (u8 *)edid + EDID_LENGTH * (i + 1);
2535		if (edid_ext[0] == ext_id)
2536			break;
2537	}
2538
2539	if (i == edid->extensions)
2540		return NULL;
2541
 
 
2542	return edid_ext;
2543}
2544
2545static u8 *drm_find_cea_extension(struct edid *edid)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2546{
2547	return drm_find_edid_extension(edid, CEA_EXT);
2548}
2549
2550static u8 *drm_find_displayid_extension(struct edid *edid)
2551{
2552	return drm_find_edid_extension(edid, DISPLAYID_EXT);
 
 
2553}
2554
2555/*
2556 * Calculate the alternate clock for the CEA mode
2557 * (60Hz vs. 59.94Hz etc.)
2558 */
2559static unsigned int
2560cea_mode_alternate_clock(const struct drm_display_mode *cea_mode)
2561{
2562	unsigned int clock = cea_mode->clock;
2563
2564	if (cea_mode->vrefresh % 6 != 0)
2565		return clock;
2566
2567	/*
2568	 * edid_cea_modes contains the 59.94Hz
2569	 * variant for 240 and 480 line modes,
2570	 * and the 60Hz variant otherwise.
2571	 */
2572	if (cea_mode->vdisplay == 240 || cea_mode->vdisplay == 480)
2573		clock = DIV_ROUND_CLOSEST(clock * 1001, 1000);
2574	else
2575		clock = DIV_ROUND_CLOSEST(clock * 1000, 1001);
2576
2577	return clock;
2578}
2579
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2580static u8 drm_match_cea_mode_clock_tolerance(const struct drm_display_mode *to_match,
2581					     unsigned int clock_tolerance)
2582{
 
2583	u8 vic;
2584
2585	if (!to_match->clock)
2586		return 0;
2587
2588	for (vic = 1; vic < ARRAY_SIZE(edid_cea_modes); vic++) {
2589		const struct drm_display_mode *cea_mode = &edid_cea_modes[vic];
 
 
 
2590		unsigned int clock1, clock2;
2591
 
 
2592		/* Check both 60Hz and 59.94Hz */
2593		clock1 = cea_mode->clock;
2594		clock2 = cea_mode_alternate_clock(cea_mode);
2595
2596		if (abs(to_match->clock - clock1) > clock_tolerance &&
2597		    abs(to_match->clock - clock2) > clock_tolerance)
2598			continue;
2599
2600		if (drm_mode_equal_no_clocks(to_match, cea_mode))
2601			return vic;
 
 
2602	}
2603
2604	return 0;
2605}
2606
2607/**
2608 * drm_match_cea_mode - look for a CEA mode matching given mode
2609 * @to_match: display mode
2610 *
2611 * Return: The CEA Video ID (VIC) of the mode or 0 if it isn't a CEA-861
2612 * mode.
2613 */
2614u8 drm_match_cea_mode(const struct drm_display_mode *to_match)
2615{
 
2616	u8 vic;
2617
2618	if (!to_match->clock)
2619		return 0;
2620
2621	for (vic = 1; vic < ARRAY_SIZE(edid_cea_modes); vic++) {
2622		const struct drm_display_mode *cea_mode = &edid_cea_modes[vic];
 
 
 
2623		unsigned int clock1, clock2;
2624
 
 
2625		/* Check both 60Hz and 59.94Hz */
2626		clock1 = cea_mode->clock;
2627		clock2 = cea_mode_alternate_clock(cea_mode);
2628
2629		if ((KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock1) ||
2630		     KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock2)) &&
2631		    drm_mode_equal_no_clocks_no_stereo(to_match, cea_mode))
2632			return vic;
 
 
 
 
2633	}
 
2634	return 0;
2635}
2636EXPORT_SYMBOL(drm_match_cea_mode);
2637
2638static bool drm_valid_cea_vic(u8 vic)
2639{
2640	return vic > 0 && vic < ARRAY_SIZE(edid_cea_modes);
2641}
2642
2643/**
2644 * drm_get_cea_aspect_ratio - get the picture aspect ratio corresponding to
2645 * the input VIC from the CEA mode list
2646 * @video_code: ID given to each of the CEA modes
2647 *
2648 * Returns picture aspect ratio
2649 */
2650enum hdmi_picture_aspect drm_get_cea_aspect_ratio(const u8 video_code)
 
 
 
2651{
2652	return edid_cea_modes[video_code].picture_aspect_ratio;
2653}
2654EXPORT_SYMBOL(drm_get_cea_aspect_ratio);
2655
2656/*
2657 * Calculate the alternate clock for HDMI modes (those from the HDMI vendor
2658 * specific block).
2659 *
2660 * It's almost like cea_mode_alternate_clock(), we just need to add an
2661 * exception for the VIC 4 mode (4096x2160@24Hz): no alternate clock for this
2662 * one.
2663 */
2664static unsigned int
2665hdmi_mode_alternate_clock(const struct drm_display_mode *hdmi_mode)
2666{
2667	if (hdmi_mode->vdisplay == 4096 && hdmi_mode->hdisplay == 2160)
2668		return hdmi_mode->clock;
2669
2670	return cea_mode_alternate_clock(hdmi_mode);
2671}
2672
2673static u8 drm_match_hdmi_mode_clock_tolerance(const struct drm_display_mode *to_match,
2674					      unsigned int clock_tolerance)
2675{
 
2676	u8 vic;
2677
2678	if (!to_match->clock)
2679		return 0;
2680
 
 
 
2681	for (vic = 1; vic < ARRAY_SIZE(edid_4k_modes); vic++) {
2682		const struct drm_display_mode *hdmi_mode = &edid_4k_modes[vic];
2683		unsigned int clock1, clock2;
2684
2685		/* Make sure to also match alternate clocks */
2686		clock1 = hdmi_mode->clock;
2687		clock2 = hdmi_mode_alternate_clock(hdmi_mode);
2688
2689		if (abs(to_match->clock - clock1) > clock_tolerance &&
2690		    abs(to_match->clock - clock2) > clock_tolerance)
2691			continue;
2692
2693		if (drm_mode_equal_no_clocks(to_match, hdmi_mode))
2694			return vic;
2695	}
2696
2697	return 0;
2698}
2699
2700/*
2701 * drm_match_hdmi_mode - look for a HDMI mode matching given mode
2702 * @to_match: display mode
2703 *
2704 * An HDMI mode is one defined in the HDMI vendor specific block.
2705 *
2706 * Returns the HDMI Video ID (VIC) of the mode or 0 if it isn't one.
2707 */
2708static u8 drm_match_hdmi_mode(const struct drm_display_mode *to_match)
2709{
 
2710	u8 vic;
2711
2712	if (!to_match->clock)
2713		return 0;
2714
 
 
 
2715	for (vic = 1; vic < ARRAY_SIZE(edid_4k_modes); vic++) {
2716		const struct drm_display_mode *hdmi_mode = &edid_4k_modes[vic];
2717		unsigned int clock1, clock2;
2718
2719		/* Make sure to also match alternate clocks */
2720		clock1 = hdmi_mode->clock;
2721		clock2 = hdmi_mode_alternate_clock(hdmi_mode);
2722
2723		if ((KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock1) ||
2724		     KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock2)) &&
2725		    drm_mode_equal_no_clocks_no_stereo(to_match, hdmi_mode))
2726			return vic;
2727	}
2728	return 0;
2729}
2730
2731static bool drm_valid_hdmi_vic(u8 vic)
2732{
2733	return vic > 0 && vic < ARRAY_SIZE(edid_4k_modes);
2734}
2735
2736static int
2737add_alternate_cea_modes(struct drm_connector *connector, struct edid *edid)
2738{
2739	struct drm_device *dev = connector->dev;
2740	struct drm_display_mode *mode, *tmp;
2741	LIST_HEAD(list);
2742	int modes = 0;
2743
2744	/* Don't add CEA modes if the CEA extension block is missing */
2745	if (!drm_find_cea_extension(edid))
2746		return 0;
2747
2748	/*
2749	 * Go through all probed modes and create a new mode
2750	 * with the alternate clock for certain CEA modes.
2751	 */
2752	list_for_each_entry(mode, &connector->probed_modes, head) {
2753		const struct drm_display_mode *cea_mode = NULL;
2754		struct drm_display_mode *newmode;
2755		u8 vic = drm_match_cea_mode(mode);
2756		unsigned int clock1, clock2;
2757
2758		if (drm_valid_cea_vic(vic)) {
2759			cea_mode = &edid_cea_modes[vic];
2760			clock2 = cea_mode_alternate_clock(cea_mode);
2761		} else {
2762			vic = drm_match_hdmi_mode(mode);
2763			if (drm_valid_hdmi_vic(vic)) {
2764				cea_mode = &edid_4k_modes[vic];
2765				clock2 = hdmi_mode_alternate_clock(cea_mode);
2766			}
2767		}
2768
2769		if (!cea_mode)
2770			continue;
2771
2772		clock1 = cea_mode->clock;
2773
2774		if (clock1 == clock2)
2775			continue;
2776
2777		if (mode->clock != clock1 && mode->clock != clock2)
2778			continue;
2779
2780		newmode = drm_mode_duplicate(dev, cea_mode);
2781		if (!newmode)
2782			continue;
2783
2784		/* Carry over the stereo flags */
2785		newmode->flags |= mode->flags & DRM_MODE_FLAG_3D_MASK;
2786
2787		/*
2788		 * The current mode could be either variant. Make
2789		 * sure to pick the "other" clock for the new mode.
2790		 */
2791		if (mode->clock != clock1)
2792			newmode->clock = clock1;
2793		else
2794			newmode->clock = clock2;
2795
2796		list_add_tail(&newmode->head, &list);
2797	}
2798
2799	list_for_each_entry_safe(mode, tmp, &list, head) {
2800		list_del(&mode->head);
2801		drm_mode_probed_add(connector, mode);
2802		modes++;
2803	}
2804
2805	return modes;
2806}
2807
 
 
 
 
 
 
 
 
 
2808static struct drm_display_mode *
2809drm_display_mode_from_vic_index(struct drm_connector *connector,
2810				const u8 *video_db, u8 video_len,
2811				u8 video_index)
2812{
2813	struct drm_device *dev = connector->dev;
2814	struct drm_display_mode *newmode;
2815	u8 vic;
2816
2817	if (video_db == NULL || video_index >= video_len)
2818		return NULL;
2819
2820	/* CEA modes are numbered 1..127 */
2821	vic = (video_db[video_index] & 127);
2822	if (!drm_valid_cea_vic(vic))
2823		return NULL;
2824
2825	newmode = drm_mode_duplicate(dev, &edid_cea_modes[vic]);
2826	if (!newmode)
2827		return NULL;
2828
2829	newmode->vrefresh = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2830
2831	return newmode;
2832}
 
2833
2834static int
2835do_cea_modes(struct drm_connector *connector, const u8 *db, u8 len)
2836{
2837	int i, modes = 0;
 
2838
2839	for (i = 0; i < len; i++) {
2840		struct drm_display_mode *mode;
 
2841		mode = drm_display_mode_from_vic_index(connector, db, len, i);
2842		if (mode) {
 
 
 
 
 
 
 
 
 
 
 
 
2843			drm_mode_probed_add(connector, mode);
2844			modes++;
2845		}
2846	}
2847
2848	return modes;
2849}
2850
2851struct stereo_mandatory_mode {
2852	int width, height, vrefresh;
2853	unsigned int flags;
2854};
2855
2856static const struct stereo_mandatory_mode stereo_mandatory_modes[] = {
2857	{ 1920, 1080, 24, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
2858	{ 1920, 1080, 24, DRM_MODE_FLAG_3D_FRAME_PACKING },
2859	{ 1920, 1080, 50,
2860	  DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF },
2861	{ 1920, 1080, 60,
2862	  DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF },
2863	{ 1280, 720,  50, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
2864	{ 1280, 720,  50, DRM_MODE_FLAG_3D_FRAME_PACKING },
2865	{ 1280, 720,  60, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
2866	{ 1280, 720,  60, DRM_MODE_FLAG_3D_FRAME_PACKING }
2867};
2868
2869static bool
2870stereo_match_mandatory(const struct drm_display_mode *mode,
2871		       const struct stereo_mandatory_mode *stereo_mode)
2872{
2873	unsigned int interlaced = mode->flags & DRM_MODE_FLAG_INTERLACE;
2874
2875	return mode->hdisplay == stereo_mode->width &&
2876	       mode->vdisplay == stereo_mode->height &&
2877	       interlaced == (stereo_mode->flags & DRM_MODE_FLAG_INTERLACE) &&
2878	       drm_mode_vrefresh(mode) == stereo_mode->vrefresh;
2879}
2880
2881static int add_hdmi_mandatory_stereo_modes(struct drm_connector *connector)
2882{
2883	struct drm_device *dev = connector->dev;
2884	const struct drm_display_mode *mode;
2885	struct list_head stereo_modes;
2886	int modes = 0, i;
2887
2888	INIT_LIST_HEAD(&stereo_modes);
2889
2890	list_for_each_entry(mode, &connector->probed_modes, head) {
2891		for (i = 0; i < ARRAY_SIZE(stereo_mandatory_modes); i++) {
2892			const struct stereo_mandatory_mode *mandatory;
2893			struct drm_display_mode *new_mode;
2894
2895			if (!stereo_match_mandatory(mode,
2896						    &stereo_mandatory_modes[i]))
2897				continue;
2898
2899			mandatory = &stereo_mandatory_modes[i];
2900			new_mode = drm_mode_duplicate(dev, mode);
2901			if (!new_mode)
2902				continue;
2903
2904			new_mode->flags |= mandatory->flags;
2905			list_add_tail(&new_mode->head, &stereo_modes);
2906			modes++;
2907		}
2908	}
2909
2910	list_splice_tail(&stereo_modes, &connector->probed_modes);
2911
2912	return modes;
2913}
2914
2915static int add_hdmi_mode(struct drm_connector *connector, u8 vic)
2916{
2917	struct drm_device *dev = connector->dev;
2918	struct drm_display_mode *newmode;
2919
2920	if (!drm_valid_hdmi_vic(vic)) {
2921		DRM_ERROR("Unknown HDMI VIC: %d\n", vic);
 
2922		return 0;
2923	}
2924
2925	newmode = drm_mode_duplicate(dev, &edid_4k_modes[vic]);
2926	if (!newmode)
2927		return 0;
2928
2929	drm_mode_probed_add(connector, newmode);
2930
2931	return 1;
2932}
2933
2934static int add_3d_struct_modes(struct drm_connector *connector, u16 structure,
2935			       const u8 *video_db, u8 video_len, u8 video_index)
2936{
2937	struct drm_display_mode *newmode;
2938	int modes = 0;
2939
2940	if (structure & (1 << 0)) {
2941		newmode = drm_display_mode_from_vic_index(connector, video_db,
2942							  video_len,
2943							  video_index);
2944		if (newmode) {
2945			newmode->flags |= DRM_MODE_FLAG_3D_FRAME_PACKING;
2946			drm_mode_probed_add(connector, newmode);
2947			modes++;
2948		}
2949	}
2950	if (structure & (1 << 6)) {
2951		newmode = drm_display_mode_from_vic_index(connector, video_db,
2952							  video_len,
2953							  video_index);
2954		if (newmode) {
2955			newmode->flags |= DRM_MODE_FLAG_3D_TOP_AND_BOTTOM;
2956			drm_mode_probed_add(connector, newmode);
2957			modes++;
2958		}
2959	}
2960	if (structure & (1 << 8)) {
2961		newmode = drm_display_mode_from_vic_index(connector, video_db,
2962							  video_len,
2963							  video_index);
2964		if (newmode) {
2965			newmode->flags |= DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF;
2966			drm_mode_probed_add(connector, newmode);
2967			modes++;
2968		}
2969	}
2970
2971	return modes;
2972}
2973
2974/*
2975 * do_hdmi_vsdb_modes - Parse the HDMI Vendor Specific data block
2976 * @connector: connector corresponding to the HDMI sink
2977 * @db: start of the CEA vendor specific block
2978 * @len: length of the CEA block payload, ie. one can access up to db[len]
2979 *
2980 * Parses the HDMI VSDB looking for modes to add to @connector. This function
2981 * also adds the stereo 3d modes when applicable.
2982 */
2983static int
2984do_hdmi_vsdb_modes(struct drm_connector *connector, const u8 *db, u8 len,
2985		   const u8 *video_db, u8 video_len)
2986{
 
2987	int modes = 0, offset = 0, i, multi_present = 0, multi_len;
2988	u8 vic_len, hdmi_3d_len = 0;
2989	u16 mask;
2990	u16 structure_all;
2991
2992	if (len < 8)
2993		goto out;
2994
2995	/* no HDMI_Video_Present */
2996	if (!(db[8] & (1 << 5)))
2997		goto out;
2998
2999	/* Latency_Fields_Present */
3000	if (db[8] & (1 << 7))
3001		offset += 2;
3002
3003	/* I_Latency_Fields_Present */
3004	if (db[8] & (1 << 6))
3005		offset += 2;
3006
3007	/* the declared length is not long enough for the 2 first bytes
3008	 * of additional video format capabilities */
3009	if (len < (8 + offset + 2))
3010		goto out;
3011
3012	/* 3D_Present */
3013	offset++;
3014	if (db[8 + offset] & (1 << 7)) {
3015		modes += add_hdmi_mandatory_stereo_modes(connector);
3016
3017		/* 3D_Multi_present */
3018		multi_present = (db[8 + offset] & 0x60) >> 5;
3019	}
3020
3021	offset++;
3022	vic_len = db[8 + offset] >> 5;
3023	hdmi_3d_len = db[8 + offset] & 0x1f;
3024
3025	for (i = 0; i < vic_len && len >= (9 + offset + i); i++) {
3026		u8 vic;
3027
3028		vic = db[9 + offset + i];
3029		modes += add_hdmi_mode(connector, vic);
3030	}
3031	offset += 1 + vic_len;
3032
3033	if (multi_present == 1)
3034		multi_len = 2;
3035	else if (multi_present == 2)
3036		multi_len = 4;
3037	else
3038		multi_len = 0;
3039
3040	if (len < (8 + offset + hdmi_3d_len - 1))
3041		goto out;
3042
3043	if (hdmi_3d_len < multi_len)
3044		goto out;
3045
3046	if (multi_present == 1 || multi_present == 2) {
3047		/* 3D_Structure_ALL */
3048		structure_all = (db[8 + offset] << 8) | db[9 + offset];
3049
3050		/* check if 3D_MASK is present */
3051		if (multi_present == 2)
3052			mask = (db[10 + offset] << 8) | db[11 + offset];
3053		else
3054			mask = 0xffff;
3055
3056		for (i = 0; i < 16; i++) {
3057			if (mask & (1 << i))
3058				modes += add_3d_struct_modes(connector,
3059						structure_all,
3060						video_db,
3061						video_len, i);
3062		}
3063	}
3064
3065	offset += multi_len;
3066
3067	for (i = 0; i < (hdmi_3d_len - multi_len); i++) {
3068		int vic_index;
3069		struct drm_display_mode *newmode = NULL;
3070		unsigned int newflag = 0;
3071		bool detail_present;
3072
3073		detail_present = ((db[8 + offset + i] & 0x0f) > 7);
3074
3075		if (detail_present && (i + 1 == hdmi_3d_len - multi_len))
3076			break;
3077
3078		/* 2D_VIC_order_X */
3079		vic_index = db[8 + offset + i] >> 4;
3080
3081		/* 3D_Structure_X */
3082		switch (db[8 + offset + i] & 0x0f) {
3083		case 0:
3084			newflag = DRM_MODE_FLAG_3D_FRAME_PACKING;
3085			break;
3086		case 6:
3087			newflag = DRM_MODE_FLAG_3D_TOP_AND_BOTTOM;
3088			break;
3089		case 8:
3090			/* 3D_Detail_X */
3091			if ((db[9 + offset + i] >> 4) == 1)
3092				newflag = DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF;
3093			break;
3094		}
3095
3096		if (newflag != 0) {
3097			newmode = drm_display_mode_from_vic_index(connector,
3098								  video_db,
3099								  video_len,
3100								  vic_index);
3101
3102			if (newmode) {
3103				newmode->flags |= newflag;
3104				drm_mode_probed_add(connector, newmode);
3105				modes++;
3106			}
3107		}
3108
3109		if (detail_present)
3110			i++;
3111	}
3112
3113out:
 
 
3114	return modes;
3115}
3116
3117static int
3118cea_db_payload_len(const u8 *db)
3119{
3120	return db[0] & 0x1f;
 
 
 
 
 
 
 
3121}
3122
3123static int
3124cea_db_tag(const u8 *db)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3125{
3126	return db[0] >> 5;
3127}
3128
3129static int
3130cea_revision(const u8 *cea)
3131{
3132	return cea[1];
 
 
 
3133}
3134
3135static int
3136cea_db_offsets(const u8 *cea, int *start, int *end)
3137{
3138	/* Data block offset in CEA extension block */
3139	*start = 4;
3140	*end = cea[2];
3141	if (*end == 0)
3142		*end = 127;
3143	if (*end < 4 || *end > 127)
3144		return -ERANGE;
3145	return 0;
3146}
3147
3148static bool cea_db_is_hdmi_vsdb(const u8 *db)
3149{
3150	int hdmi_id;
 
 
 
3151
3152	if (cea_db_tag(db) != VENDOR_BLOCK)
3153		return false;
 
3154
3155	if (cea_db_payload_len(db) < 5)
3156		return false;
 
 
3157
3158	hdmi_id = db[1] | (db[2] << 8) | (db[3] << 16);
 
 
 
3159
3160	return hdmi_id == HDMI_IEEE_OUI;
 
3161}
3162
3163#define for_each_cea_db(cea, i, start, end) \
3164	for ((i) = (start); (i) < (end) && (i) + cea_db_payload_len(&(cea)[(i)]) < (end); (i) += cea_db_payload_len(&(cea)[(i)]) + 1)
 
 
3165
3166static int
3167add_cea_modes(struct drm_connector *connector, struct edid *edid)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3168{
3169	const u8 *cea = drm_find_cea_extension(edid);
3170	const u8 *db, *hdmi = NULL, *video = NULL;
3171	u8 dbl, hdmi_len, video_len = 0;
3172	int modes = 0;
3173
3174	if (cea && cea_revision(cea) >= 3) {
3175		int i, start, end;
3176
3177		if (cea_db_offsets(cea, &start, &end))
3178			return 0;
3179
3180		for_each_cea_db(cea, i, start, end) {
3181			db = &cea[i];
3182			dbl = cea_db_payload_len(db);
3183
3184			if (cea_db_tag(db) == VIDEO_BLOCK) {
3185				video = db + 1;
3186				video_len = dbl;
3187				modes += do_cea_modes(connector, video, dbl);
3188			}
3189			else if (cea_db_is_hdmi_vsdb(db)) {
3190				hdmi = db;
3191				hdmi_len = dbl;
3192			}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3193		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3194	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3195
3196	/*
3197	 * We parse the HDMI VSDB after having added the cea modes as we will
3198	 * be patching their flags when the sink supports stereo 3D.
 
3199	 */
3200	if (hdmi)
3201		modes += do_hdmi_vsdb_modes(connector, hdmi, hdmi_len, video,
3202					    video_len);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3203
3204	return modes;
3205}
3206
3207static void fixup_detailed_cea_mode_clock(struct drm_display_mode *mode)
 
3208{
3209	const struct drm_display_mode *cea_mode;
3210	int clock1, clock2, clock;
3211	u8 vic;
3212	const char *type;
3213
3214	/*
3215	 * allow 5kHz clock difference either way to account for
3216	 * the 10kHz clock resolution limit of detailed timings.
3217	 */
3218	vic = drm_match_cea_mode_clock_tolerance(mode, 5);
3219	if (drm_valid_cea_vic(vic)) {
3220		type = "CEA";
3221		cea_mode = &edid_cea_modes[vic];
3222		clock1 = cea_mode->clock;
3223		clock2 = cea_mode_alternate_clock(cea_mode);
3224	} else {
3225		vic = drm_match_hdmi_mode_clock_tolerance(mode, 5);
3226		if (drm_valid_hdmi_vic(vic)) {
3227			type = "HDMI";
3228			cea_mode = &edid_4k_modes[vic];
3229			clock1 = cea_mode->clock;
3230			clock2 = hdmi_mode_alternate_clock(cea_mode);
3231		} else {
3232			return;
3233		}
3234	}
3235
3236	/* pick whichever is closest */
3237	if (abs(mode->clock - clock1) < abs(mode->clock - clock2))
3238		clock = clock1;
3239	else
3240		clock = clock2;
3241
3242	if (mode->clock == clock)
3243		return;
3244
3245	DRM_DEBUG("detailed mode matches %s VIC %d, adjusting clock %d -> %d\n",
3246		  type, vic, mode->clock, clock);
 
 
3247	mode->clock = clock;
3248}
3249
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3250static void
3251parse_hdmi_vsdb(struct drm_connector *connector, const u8 *db)
3252{
3253	u8 len = cea_db_payload_len(db);
 
 
3254
 
 
 
 
 
 
 
 
 
3255	if (len >= 6) {
3256		connector->eld[5] |= (db[6] >> 7) << 1;  /* Supports_AI */
3257		connector->dvi_dual = db[6] & 1;
 
 
3258	}
3259	if (len >= 7)
3260		connector->max_tmds_clock = db[7] * 5;
 
 
 
 
 
 
 
3261	if (len >= 8) {
3262		connector->latency_present[0] = db[8] >> 7;
3263		connector->latency_present[1] = (db[8] >> 6) & 1;
3264	}
3265	if (len >= 9)
3266		connector->video_latency[0] = db[9];
3267	if (len >= 10)
3268		connector->audio_latency[0] = db[10];
3269	if (len >= 11)
3270		connector->video_latency[1] = db[11];
3271	if (len >= 12)
3272		connector->audio_latency[1] = db[12];
3273
3274	DRM_DEBUG_KMS("HDMI: DVI dual %d, "
3275		    "max TMDS clock %d, "
3276		    "latency present %d %d, "
3277		    "video latency %d %d, "
3278		    "audio latency %d %d\n",
3279		    connector->dvi_dual,
3280		    connector->max_tmds_clock,
3281	      (int) connector->latency_present[0],
3282	      (int) connector->latency_present[1],
3283		    connector->video_latency[0],
3284		    connector->video_latency[1],
3285		    connector->audio_latency[0],
3286		    connector->audio_latency[1]);
3287}
3288
3289static void
3290monitor_name(struct detailed_timing *t, void *data)
3291{
3292	if (t->data.other_data.type == EDID_DETAIL_MONITOR_NAME)
3293		*(u8 **)data = t->data.other_data.data.str.str;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3294}
3295
3296/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3297 * drm_edid_to_eld - build ELD from EDID
3298 * @connector: connector corresponding to the HDMI/DP sink
3299 * @edid: EDID to parse
3300 *
3301 * Fill the ELD (EDID-Like Data) buffer for passing to the audio driver. The
3302 * Conn_Type, HDCP and Port_ID ELD fields are left for the graphics driver to
3303 * fill in.
3304 */
3305void drm_edid_to_eld(struct drm_connector *connector, struct edid *edid)
 
3306{
 
 
 
3307	uint8_t *eld = connector->eld;
3308	u8 *cea;
3309	u8 *name;
3310	u8 *db;
3311	int total_sad_count = 0;
3312	int mnl;
3313	int dbl;
3314
3315	memset(eld, 0, sizeof(connector->eld));
3316
3317	cea = drm_find_cea_extension(edid);
3318	if (!cea) {
3319		DRM_DEBUG_KMS("ELD: no CEA Extension found\n");
3320		return;
3321	}
3322
3323	name = NULL;
3324	drm_for_each_detailed_block((u8 *)edid, monitor_name, &name);
3325	/* max: 13 bytes EDID, 16 bytes ELD */
3326	for (mnl = 0; name && mnl < 13; mnl++) {
3327		if (name[mnl] == 0x0a)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3328			break;
3329		eld[20 + mnl] = name[mnl];
 
 
 
 
 
 
 
 
 
 
 
 
3330	}
3331	eld[4] = (cea[1] << 5) | mnl;
3332	DRM_DEBUG_KMS("ELD monitor %s\n", eld + 20);
3333
3334	eld[0] = 2 << 3;		/* ELD version: 2 */
3335
3336	eld[16] = edid->mfg_id[0];
3337	eld[17] = edid->mfg_id[1];
3338	eld[18] = edid->prod_code[0];
3339	eld[19] = edid->prod_code[1];
 
3340
3341	if (cea_revision(cea) >= 3) {
3342		int i, start, end;
3343
3344		if (cea_db_offsets(cea, &start, &end)) {
3345			start = 0;
3346			end = 0;
3347		}
 
 
 
 
 
 
 
3348
3349		for_each_cea_db(cea, i, start, end) {
3350			db = &cea[i];
3351			dbl = cea_db_payload_len(db);
 
3352
3353			switch (cea_db_tag(db)) {
3354				int sad_count;
 
 
 
 
3355
3356			case AUDIO_BLOCK:
3357				/* Audio Data Block, contains SADs */
3358				sad_count = min(dbl / 3, 15 - total_sad_count);
3359				if (sad_count >= 1)
3360					memcpy(eld + 20 + mnl + total_sad_count * 3,
3361					       &db[1], sad_count * 3);
3362				total_sad_count += sad_count;
3363				break;
3364			case SPEAKER_BLOCK:
3365				/* Speaker Allocation Data Block */
3366				if (dbl >= 1)
3367					eld[7] = db[1];
3368				break;
3369			case VENDOR_BLOCK:
3370				/* HDMI Vendor-Specific Data Block */
3371				if (cea_db_is_hdmi_vsdb(db))
3372					parse_hdmi_vsdb(connector, db);
3373				break;
3374			default:
3375				break;
3376			}
 
3377		}
3378	}
3379	eld[5] |= total_sad_count << 4;
3380
3381	eld[DRM_ELD_BASELINE_ELD_LEN] =
3382		DIV_ROUND_UP(drm_eld_calc_baseline_block_size(eld), 4);
3383
3384	DRM_DEBUG_KMS("ELD size %d, SAD count %d\n",
3385		      drm_eld_size(eld), total_sad_count);
3386}
3387EXPORT_SYMBOL(drm_edid_to_eld);
3388
3389/**
3390 * drm_edid_to_sad - extracts SADs from EDID
3391 * @edid: EDID to parse
3392 * @sads: pointer that will be set to the extracted SADs
3393 *
3394 * Looks for CEA EDID block and extracts SADs (Short Audio Descriptors) from it.
3395 *
3396 * Note: The returned pointer needs to be freed using kfree().
3397 *
3398 * Return: The number of found SADs or negative number on error.
3399 */
3400int drm_edid_to_sad(struct edid *edid, struct cea_sad **sads)
3401{
3402	int count = 0;
3403	int i, start, end, dbl;
3404	u8 *cea;
3405
3406	cea = drm_find_cea_extension(edid);
3407	if (!cea) {
3408		DRM_DEBUG_KMS("SAD: no CEA Extension found\n");
3409		return -ENOENT;
3410	}
3411
3412	if (cea_revision(cea) < 3) {
3413		DRM_DEBUG_KMS("SAD: wrong CEA revision\n");
3414		return -ENOTSUPP;
3415	}
3416
3417	if (cea_db_offsets(cea, &start, &end)) {
3418		DRM_DEBUG_KMS("SAD: invalid data block offsets\n");
3419		return -EPROTO;
3420	}
3421
3422	for_each_cea_db(cea, i, start, end) {
3423		u8 *db = &cea[i];
3424
3425		if (cea_db_tag(db) == AUDIO_BLOCK) {
3426			int j;
3427			dbl = cea_db_payload_len(db);
 
 
 
3428
3429			count = dbl / 3; /* SAD is 3B */
3430			*sads = kcalloc(count, sizeof(**sads), GFP_KERNEL);
3431			if (!*sads)
 
 
 
 
3432				return -ENOMEM;
3433			for (j = 0; j < count; j++) {
3434				u8 *sad = &db[1 + j * 3];
3435
3436				(*sads)[j].format = (sad[0] & 0x78) >> 3;
3437				(*sads)[j].channels = sad[0] & 0x7;
3438				(*sads)[j].freq = sad[1] & 0x7F;
3439				(*sads)[j].byte2 = sad[2];
3440			}
3441			break;
3442		}
3443	}
 
 
 
3444
3445	return count;
3446}
3447EXPORT_SYMBOL(drm_edid_to_sad);
3448
3449/**
3450 * drm_edid_to_speaker_allocation - extracts Speaker Allocation Data Blocks from EDID
3451 * @edid: EDID to parse
3452 * @sadb: pointer to the speaker block
3453 *
3454 * Looks for CEA EDID block and extracts the Speaker Allocation Data Block from it.
3455 *
3456 * Note: The returned pointer needs to be freed using kfree().
3457 *
3458 * Return: The number of found Speaker Allocation Blocks or negative number on
3459 * error.
3460 */
3461int drm_edid_to_speaker_allocation(struct edid *edid, u8 **sadb)
3462{
3463	int count = 0;
3464	int i, start, end, dbl;
3465	const u8 *cea;
3466
3467	cea = drm_find_cea_extension(edid);
3468	if (!cea) {
3469		DRM_DEBUG_KMS("SAD: no CEA Extension found\n");
3470		return -ENOENT;
3471	}
3472
3473	if (cea_revision(cea) < 3) {
3474		DRM_DEBUG_KMS("SAD: wrong CEA revision\n");
3475		return -ENOTSUPP;
3476	}
3477
3478	if (cea_db_offsets(cea, &start, &end)) {
3479		DRM_DEBUG_KMS("SAD: invalid data block offsets\n");
3480		return -EPROTO;
3481	}
3482
3483	for_each_cea_db(cea, i, start, end) {
3484		const u8 *db = &cea[i];
3485
3486		if (cea_db_tag(db) == SPEAKER_BLOCK) {
3487			dbl = cea_db_payload_len(db);
3488
3489			/* Speaker Allocation Data Block */
3490			if (dbl == 3) {
3491				*sadb = kmemdup(&db[1], dbl, GFP_KERNEL);
3492				if (!*sadb)
3493					return -ENOMEM;
3494				count = dbl;
3495				break;
3496			}
3497		}
3498	}
3499
3500	return count;
 
3501}
3502EXPORT_SYMBOL(drm_edid_to_speaker_allocation);
3503
3504/**
3505 * drm_av_sync_delay - compute the HDMI/DP sink audio-video sync delay
3506 * @connector: connector associated with the HDMI/DP sink
3507 * @mode: the display mode
3508 *
3509 * Return: The HDMI/DP sink's audio-video sync delay in milliseconds or 0 if
3510 * the sink doesn't support audio or video.
3511 */
3512int drm_av_sync_delay(struct drm_connector *connector,
3513		      const struct drm_display_mode *mode)
3514{
3515	int i = !!(mode->flags & DRM_MODE_FLAG_INTERLACE);
3516	int a, v;
3517
3518	if (!connector->latency_present[0])
3519		return 0;
3520	if (!connector->latency_present[1])
3521		i = 0;
3522
3523	a = connector->audio_latency[i];
3524	v = connector->video_latency[i];
3525
3526	/*
3527	 * HDMI/DP sink doesn't support audio or video?
3528	 */
3529	if (a == 255 || v == 255)
3530		return 0;
3531
3532	/*
3533	 * Convert raw EDID values to millisecond.
3534	 * Treat unknown latency as 0ms.
3535	 */
3536	if (a)
3537		a = min(2 * (a - 1), 500);
3538	if (v)
3539		v = min(2 * (v - 1), 500);
3540
3541	return max(v - a, 0);
3542}
3543EXPORT_SYMBOL(drm_av_sync_delay);
3544
3545/**
3546 * drm_select_eld - select one ELD from multiple HDMI/DP sinks
3547 * @encoder: the encoder just changed display mode
3548 *
3549 * It's possible for one encoder to be associated with multiple HDMI/DP sinks.
3550 * The policy is now hard coded to simply use the first HDMI/DP sink's ELD.
3551 *
3552 * Return: The connector associated with the first HDMI/DP sink that has ELD
3553 * attached to it.
3554 */
3555struct drm_connector *drm_select_eld(struct drm_encoder *encoder)
3556{
3557	struct drm_connector *connector;
3558	struct drm_device *dev = encoder->dev;
3559
3560	WARN_ON(!mutex_is_locked(&dev->mode_config.mutex));
3561	WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
3562
3563	drm_for_each_connector(connector, dev)
3564		if (connector->encoder == encoder && connector->eld[0])
3565			return connector;
 
 
 
 
 
 
 
 
 
3566
3567	return NULL;
3568}
3569EXPORT_SYMBOL(drm_select_eld);
3570
3571/**
3572 * drm_detect_hdmi_monitor - detect whether monitor is HDMI
3573 * @edid: monitor EDID information
3574 *
3575 * Parse the CEA extension according to CEA-861-B.
3576 *
 
 
 
3577 * Return: True if the monitor is HDMI, false if not or unknown.
3578 */
3579bool drm_detect_hdmi_monitor(struct edid *edid)
3580{
3581	u8 *edid_ext;
3582	int i;
3583	int start_offset, end_offset;
3584
3585	edid_ext = drm_find_cea_extension(edid);
3586	if (!edid_ext)
3587		return false;
3588
3589	if (cea_db_offsets(edid_ext, &start_offset, &end_offset))
3590		return false;
 
 
 
 
 
3591
3592	/*
3593	 * Because HDMI identifier is in Vendor Specific Block,
3594	 * search it from all data blocks of CEA extension.
3595	 */
3596	for_each_cea_db(edid_ext, i, start_offset, end_offset) {
3597		if (cea_db_is_hdmi_vsdb(&edid_ext[i]))
3598			return true;
3599	}
 
3600
3601	return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3602}
3603EXPORT_SYMBOL(drm_detect_hdmi_monitor);
3604
3605/**
3606 * drm_detect_monitor_audio - check monitor audio capability
3607 * @edid: EDID block to scan
3608 *
3609 * Monitor should have CEA extension block.
3610 * If monitor has 'basic audio', but no CEA audio blocks, it's 'basic
3611 * audio' only. If there is any audio extension block and supported
3612 * audio format, assume at least 'basic audio' support, even if 'basic
3613 * audio' is not defined in EDID.
3614 *
3615 * Return: True if the monitor supports audio, false otherwise.
3616 */
3617bool drm_detect_monitor_audio(struct edid *edid)
3618{
3619	u8 *edid_ext;
3620	int i, j;
3621	bool has_audio = false;
3622	int start_offset, end_offset;
3623
3624	edid_ext = drm_find_cea_extension(edid);
3625	if (!edid_ext)
3626		goto end;
3627
3628	has_audio = ((edid_ext[3] & EDID_BASIC_AUDIO) != 0);
3629
3630	if (has_audio) {
3631		DRM_DEBUG_KMS("Monitor has basic audio support\n");
3632		goto end;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3633	}
 
3634
3635	if (cea_db_offsets(edid_ext, &start_offset, &end_offset))
3636		goto end;
 
 
 
3637
3638	for_each_cea_db(edid_ext, i, start_offset, end_offset) {
3639		if (cea_db_tag(&edid_ext[i]) == AUDIO_BLOCK) {
3640			has_audio = true;
3641			for (j = 1; j < cea_db_payload_len(&edid_ext[i]) + 1; j += 3)
3642				DRM_DEBUG_KMS("CEA audio format %d\n",
3643					      (edid_ext[i + j] >> 3) & 0xf);
3644			goto end;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3645		}
3646	}
3647end:
3648	return has_audio;
 
3649}
3650EXPORT_SYMBOL(drm_detect_monitor_audio);
3651
3652/**
3653 * drm_rgb_quant_range_selectable - is RGB quantization range selectable?
3654 * @edid: EDID block to scan
3655 *
3656 * Check whether the monitor reports the RGB quantization range selection
3657 * as supported. The AVI infoframe can then be used to inform the monitor
3658 * which quantization range (full or limited) is used.
3659 *
3660 * Return: True if the RGB quantization range is selectable, false otherwise.
3661 */
3662bool drm_rgb_quant_range_selectable(struct edid *edid)
3663{
3664	u8 *edid_ext;
3665	int i, start, end;
 
 
 
 
3666
3667	edid_ext = drm_find_cea_extension(edid);
3668	if (!edid_ext)
3669		return false;
3670
3671	if (cea_db_offsets(edid_ext, &start, &end))
3672		return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3673
3674	for_each_cea_db(edid_ext, i, start, end) {
3675		if (cea_db_tag(&edid_ext[i]) == VIDEO_CAPABILITY_BLOCK &&
3676		    cea_db_payload_len(&edid_ext[i]) == 2) {
3677			DRM_DEBUG_KMS("CEA VCDB 0x%02x\n", edid_ext[i + 2]);
3678			return edid_ext[i + 2] & EDID_CEA_VCDB_QS;
 
3679		}
3680	}
3681
3682	return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3683}
3684EXPORT_SYMBOL(drm_rgb_quant_range_selectable);
3685
3686/**
3687 * drm_assign_hdmi_deep_color_info - detect whether monitor supports
3688 * hdmi deep color modes and update drm_display_info if so.
3689 * @edid: monitor EDID information
3690 * @info: Updated with maximum supported deep color bpc and color format
3691 *        if deep color supported.
3692 * @connector: DRM connector, used only for debug output
3693 *
3694 * Parse the CEA extension according to CEA-861-B.
3695 * Return true if HDMI deep color supported, false if not or unknown.
3696 */
3697static bool drm_assign_hdmi_deep_color_info(struct edid *edid,
3698                                            struct drm_display_info *info,
3699                                            struct drm_connector *connector)
3700{
3701	u8 *edid_ext, *hdmi;
3702	int i;
3703	int start_offset, end_offset;
3704	unsigned int dc_bpc = 0;
3705
3706	edid_ext = drm_find_cea_extension(edid);
3707	if (!edid_ext)
3708		return false;
3709
3710	if (cea_db_offsets(edid_ext, &start_offset, &end_offset))
3711		return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3712
3713	/*
3714	 * Because HDMI identifier is in Vendor Specific Block,
3715	 * search it from all data blocks of CEA extension.
3716	 */
3717	for_each_cea_db(edid_ext, i, start_offset, end_offset) {
3718		if (cea_db_is_hdmi_vsdb(&edid_ext[i])) {
3719			/* HDMI supports at least 8 bpc */
3720			info->bpc = 8;
3721
3722			hdmi = &edid_ext[i];
3723			if (cea_db_payload_len(hdmi) < 6)
3724				return false;
3725
3726			if (hdmi[6] & DRM_EDID_HDMI_DC_30) {
3727				dc_bpc = 10;
3728				info->edid_hdmi_dc_modes |= DRM_EDID_HDMI_DC_30;
3729				DRM_DEBUG("%s: HDMI sink does deep color 30.\n",
3730						  connector->name);
3731			}
3732
3733			if (hdmi[6] & DRM_EDID_HDMI_DC_36) {
3734				dc_bpc = 12;
3735				info->edid_hdmi_dc_modes |= DRM_EDID_HDMI_DC_36;
3736				DRM_DEBUG("%s: HDMI sink does deep color 36.\n",
3737						  connector->name);
3738			}
3739
3740			if (hdmi[6] & DRM_EDID_HDMI_DC_48) {
3741				dc_bpc = 16;
3742				info->edid_hdmi_dc_modes |= DRM_EDID_HDMI_DC_48;
3743				DRM_DEBUG("%s: HDMI sink does deep color 48.\n",
3744						  connector->name);
3745			}
3746
3747			if (dc_bpc > 0) {
3748				DRM_DEBUG("%s: Assigning HDMI sink color depth as %d bpc.\n",
3749						  connector->name, dc_bpc);
3750				info->bpc = dc_bpc;
3751
3752				/*
3753				 * Deep color support mandates RGB444 support for all video
3754				 * modes and forbids YCRCB422 support for all video modes per
3755				 * HDMI 1.3 spec.
3756				 */
3757				info->color_formats = DRM_COLOR_FORMAT_RGB444;
3758
3759				/* YCRCB444 is optional according to spec. */
3760				if (hdmi[6] & DRM_EDID_HDMI_DC_Y444) {
3761					info->color_formats |= DRM_COLOR_FORMAT_YCRCB444;
3762					DRM_DEBUG("%s: HDMI sink does YCRCB444 in deep color.\n",
3763							  connector->name);
3764				}
3765
3766				/*
3767				 * Spec says that if any deep color mode is supported at all,
3768				 * then deep color 36 bit must be supported.
3769				 */
3770				if (!(hdmi[6] & DRM_EDID_HDMI_DC_36)) {
3771					DRM_DEBUG("%s: HDMI sink should do DC_36, but does not!\n",
3772							  connector->name);
3773				}
3774
3775				return true;
3776			}
3777			else {
3778				DRM_DEBUG("%s: No deep color support on this HDMI sink.\n",
3779						  connector->name);
3780			}
3781		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3782	}
 
3783
3784	return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3785}
3786
3787/**
3788 * drm_add_display_info - pull display info out if present
3789 * @edid: EDID data
3790 * @info: display info (attached to connector)
3791 * @connector: connector whose edid is used to build display info
3792 *
3793 * Grab any available display info and stuff it into the drm_display_info
3794 * structure that's part of the connector.  Useful for tracking bpp and
3795 * color spaces.
3796 */
3797static void drm_add_display_info(struct edid *edid,
3798                                 struct drm_display_info *info,
3799                                 struct drm_connector *connector)
3800{
3801	u8 *edid_ext;
 
 
 
 
 
3802
3803	info->width_mm = edid->width_cm * 10;
3804	info->height_mm = edid->height_cm * 10;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3805
3806	/* driver figures it out in this case */
3807	info->bpc = 0;
3808	info->color_formats = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3809
3810	if (edid->revision < 3)
3811		return;
3812
3813	if (!(edid->input & DRM_EDID_INPUT_DIGITAL))
3814		return;
3815
3816	/* Get data from CEA blocks if present */
3817	edid_ext = drm_find_cea_extension(edid);
3818	if (edid_ext) {
3819		info->cea_rev = edid_ext[1];
3820
3821		/* The existence of a CEA block should imply RGB support */
3822		info->color_formats = DRM_COLOR_FORMAT_RGB444;
3823		if (edid_ext[3] & EDID_CEA_YCRCB444)
3824			info->color_formats |= DRM_COLOR_FORMAT_YCRCB444;
3825		if (edid_ext[3] & EDID_CEA_YCRCB422)
3826			info->color_formats |= DRM_COLOR_FORMAT_YCRCB422;
 
 
 
 
 
 
 
3827	}
3828
3829	/* HDMI deep color modes supported? Assign to info, if so */
3830	drm_assign_hdmi_deep_color_info(edid, info, connector);
3831
3832	/* Only defined for 1.4 with digital displays */
3833	if (edid->revision < 4)
3834		return;
3835
3836	switch (edid->input & DRM_EDID_DIGITAL_DEPTH_MASK) {
3837	case DRM_EDID_DIGITAL_DEPTH_6:
3838		info->bpc = 6;
3839		break;
3840	case DRM_EDID_DIGITAL_DEPTH_8:
3841		info->bpc = 8;
3842		break;
3843	case DRM_EDID_DIGITAL_DEPTH_10:
3844		info->bpc = 10;
3845		break;
3846	case DRM_EDID_DIGITAL_DEPTH_12:
3847		info->bpc = 12;
3848		break;
3849	case DRM_EDID_DIGITAL_DEPTH_14:
3850		info->bpc = 14;
3851		break;
3852	case DRM_EDID_DIGITAL_DEPTH_16:
3853		info->bpc = 16;
3854		break;
3855	case DRM_EDID_DIGITAL_DEPTH_UNDEF:
3856	default:
3857		info->bpc = 0;
3858		break;
3859	}
3860
3861	DRM_DEBUG("%s: Assigning EDID-1.4 digital sink color depth as %d bpc.\n",
3862			  connector->name, info->bpc);
 
3863
3864	info->color_formats |= DRM_COLOR_FORMAT_RGB444;
3865	if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB444)
3866		info->color_formats |= DRM_COLOR_FORMAT_YCRCB444;
3867	if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB422)
3868		info->color_formats |= DRM_COLOR_FORMAT_YCRCB422;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3869}
3870
3871/**
3872 * drm_add_edid_modes - add modes from EDID data, if available
3873 * @connector: connector we're probing
3874 * @edid: EDID data
3875 *
3876 * Add the specified modes to the connector's mode list.
3877 *
3878 * Return: The number of modes added or 0 if we couldn't find any.
3879 */
3880int drm_add_edid_modes(struct drm_connector *connector, struct edid *edid)
3881{
3882	int num_modes = 0;
3883	u32 quirks;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3884
3885	if (edid == NULL) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3886		return 0;
 
 
 
 
 
 
 
 
 
 
 
3887	}
3888	if (!drm_edid_is_valid(edid)) {
3889		dev_warn(connector->dev->dev, "%s: EDID invalid.\n",
3890			 connector->name);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3891		return 0;
3892	}
3893
3894	quirks = edid_get_quirks(edid);
 
 
 
 
 
 
 
 
3895
3896	/*
3897	 * EDID spec says modes should be preferred in this order:
3898	 * - preferred detailed mode
3899	 * - other detailed modes from base block
3900	 * - detailed modes from extension blocks
3901	 * - CVT 3-byte code modes
3902	 * - standard timing codes
3903	 * - established timing codes
3904	 * - modes inferred from GTF or CVT range information
3905	 *
3906	 * We get this pretty much right.
3907	 *
3908	 * XXX order for additional mode types in extension blocks?
3909	 */
3910	num_modes += add_detailed_modes(connector, edid, quirks);
3911	num_modes += add_cvt_modes(connector, edid);
3912	num_modes += add_standard_modes(connector, edid);
3913	num_modes += add_established_modes(connector, edid);
3914	num_modes += add_cea_modes(connector, edid);
3915	num_modes += add_alternate_cea_modes(connector, edid);
3916	if (edid->features & DRM_EDID_FEATURE_DEFAULT_GTF)
3917		num_modes += add_inferred_modes(connector, edid);
 
3918
3919	if (quirks & (EDID_QUIRK_PREFER_LARGE_60 | EDID_QUIRK_PREFER_LARGE_75))
3920		edid_fixup_preferred(connector, quirks);
3921
3922	drm_add_display_info(edid, &connector->display_info, connector);
 
3923
3924	if (quirks & EDID_QUIRK_FORCE_8BPC)
3925		connector->display_info.bpc = 8;
3926
 
 
 
3927	if (quirks & EDID_QUIRK_FORCE_12BPC)
3928		connector->display_info.bpc = 12;
3929
3930	return num_modes;
3931}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3932EXPORT_SYMBOL(drm_add_edid_modes);
3933
3934/**
3935 * drm_add_modes_noedid - add modes for the connectors without EDID
3936 * @connector: connector we're probing
3937 * @hdisplay: the horizontal display limit
3938 * @vdisplay: the vertical display limit
3939 *
3940 * Add the specified modes to the connector's mode list. Only when the
3941 * hdisplay/vdisplay is not beyond the given limit, it will be added.
3942 *
3943 * Return: The number of modes added or 0 if we couldn't find any.
3944 */
3945int drm_add_modes_noedid(struct drm_connector *connector,
3946			int hdisplay, int vdisplay)
3947{
3948	int i, count, num_modes = 0;
3949	struct drm_display_mode *mode;
3950	struct drm_device *dev = connector->dev;
3951
3952	count = ARRAY_SIZE(drm_dmt_modes);
3953	if (hdisplay < 0)
3954		hdisplay = 0;
3955	if (vdisplay < 0)
3956		vdisplay = 0;
3957
3958	for (i = 0; i < count; i++) {
3959		const struct drm_display_mode *ptr = &drm_dmt_modes[i];
 
3960		if (hdisplay && vdisplay) {
3961			/*
3962			 * Only when two are valid, they will be used to check
3963			 * whether the mode should be added to the mode list of
3964			 * the connector.
3965			 */
3966			if (ptr->hdisplay > hdisplay ||
3967					ptr->vdisplay > vdisplay)
3968				continue;
3969		}
3970		if (drm_mode_vrefresh(ptr) > 61)
3971			continue;
3972		mode = drm_mode_duplicate(dev, ptr);
3973		if (mode) {
3974			drm_mode_probed_add(connector, mode);
3975			num_modes++;
3976		}
3977	}
3978	return num_modes;
3979}
3980EXPORT_SYMBOL(drm_add_modes_noedid);
3981
3982/**
3983 * drm_set_preferred_mode - Sets the preferred mode of a connector
3984 * @connector: connector whose mode list should be processed
3985 * @hpref: horizontal resolution of preferred mode
3986 * @vpref: vertical resolution of preferred mode
3987 *
3988 * Marks a mode as preferred if it matches the resolution specified by @hpref
3989 * and @vpref.
3990 */
3991void drm_set_preferred_mode(struct drm_connector *connector,
3992			   int hpref, int vpref)
3993{
3994	struct drm_display_mode *mode;
3995
3996	list_for_each_entry(mode, &connector->probed_modes, head) {
3997		if (mode->hdisplay == hpref &&
3998		    mode->vdisplay == vpref)
3999			mode->type |= DRM_MODE_TYPE_PREFERRED;
4000	}
4001}
4002EXPORT_SYMBOL(drm_set_preferred_mode);
4003
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4004/**
4005 * drm_hdmi_avi_infoframe_from_display_mode() - fill an HDMI AVI infoframe with
4006 *                                              data from a DRM display mode
4007 * @frame: HDMI AVI infoframe
 
4008 * @mode: DRM display mode
4009 *
4010 * Return: 0 on success or a negative error code on failure.
4011 */
4012int
4013drm_hdmi_avi_infoframe_from_display_mode(struct hdmi_avi_infoframe *frame,
 
4014					 const struct drm_display_mode *mode)
4015{
4016	int err;
 
4017
4018	if (!frame || !mode)
4019		return -EINVAL;
4020
4021	err = hdmi_avi_infoframe_init(frame);
4022	if (err < 0)
4023		return err;
4024
4025	if (mode->flags & DRM_MODE_FLAG_DBLCLK)
4026		frame->pixel_repeat = 1;
4027
4028	frame->video_code = drm_match_cea_mode(mode);
 
4029
4030	frame->picture_aspect = HDMI_PICTURE_ASPECT_NONE;
4031
4032	/*
 
 
 
 
 
 
 
 
4033	 * Populate picture aspect ratio from either
4034	 * user input (if specified) or from the CEA mode list.
4035	 */
4036	if (mode->picture_aspect_ratio == HDMI_PICTURE_ASPECT_4_3 ||
4037		mode->picture_aspect_ratio == HDMI_PICTURE_ASPECT_16_9)
4038		frame->picture_aspect = mode->picture_aspect_ratio;
4039	else if (frame->video_code > 0)
4040		frame->picture_aspect = drm_get_cea_aspect_ratio(
4041						frame->video_code);
 
4042
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4043	frame->active_aspect = HDMI_ACTIVE_ASPECT_PICTURE;
4044	frame->scan_mode = HDMI_SCAN_MODE_UNDERSCAN;
4045
4046	return 0;
4047}
4048EXPORT_SYMBOL(drm_hdmi_avi_infoframe_from_display_mode);
4049
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4050static enum hdmi_3d_structure
4051s3d_structure_from_display_mode(const struct drm_display_mode *mode)
4052{
4053	u32 layout = mode->flags & DRM_MODE_FLAG_3D_MASK;
4054
4055	switch (layout) {
4056	case DRM_MODE_FLAG_3D_FRAME_PACKING:
4057		return HDMI_3D_STRUCTURE_FRAME_PACKING;
4058	case DRM_MODE_FLAG_3D_FIELD_ALTERNATIVE:
4059		return HDMI_3D_STRUCTURE_FIELD_ALTERNATIVE;
4060	case DRM_MODE_FLAG_3D_LINE_ALTERNATIVE:
4061		return HDMI_3D_STRUCTURE_LINE_ALTERNATIVE;
4062	case DRM_MODE_FLAG_3D_SIDE_BY_SIDE_FULL:
4063		return HDMI_3D_STRUCTURE_SIDE_BY_SIDE_FULL;
4064	case DRM_MODE_FLAG_3D_L_DEPTH:
4065		return HDMI_3D_STRUCTURE_L_DEPTH;
4066	case DRM_MODE_FLAG_3D_L_DEPTH_GFX_GFX_DEPTH:
4067		return HDMI_3D_STRUCTURE_L_DEPTH_GFX_GFX_DEPTH;
4068	case DRM_MODE_FLAG_3D_TOP_AND_BOTTOM:
4069		return HDMI_3D_STRUCTURE_TOP_AND_BOTTOM;
4070	case DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF:
4071		return HDMI_3D_STRUCTURE_SIDE_BY_SIDE_HALF;
4072	default:
4073		return HDMI_3D_STRUCTURE_INVALID;
4074	}
4075}
4076
4077/**
4078 * drm_hdmi_vendor_infoframe_from_display_mode() - fill an HDMI infoframe with
4079 * data from a DRM display mode
4080 * @frame: HDMI vendor infoframe
 
4081 * @mode: DRM display mode
4082 *
4083 * Note that there's is a need to send HDMI vendor infoframes only when using a
4084 * 4k or stereoscopic 3D mode. So when giving any other mode as input this
4085 * function will return -EINVAL, error that can be safely ignored.
4086 *
4087 * Return: 0 on success or a negative error code on failure.
4088 */
4089int
4090drm_hdmi_vendor_infoframe_from_display_mode(struct hdmi_vendor_infoframe *frame,
 
4091					    const struct drm_display_mode *mode)
4092{
 
 
 
 
 
 
4093	int err;
4094	u32 s3d_flags;
4095	u8 vic;
4096
4097	if (!frame || !mode)
4098		return -EINVAL;
4099
4100	vic = drm_match_hdmi_mode(mode);
4101	s3d_flags = mode->flags & DRM_MODE_FLAG_3D_MASK;
4102
4103	if (!vic && !s3d_flags)
4104		return -EINVAL;
4105
4106	if (vic && s3d_flags)
4107		return -EINVAL;
4108
4109	err = hdmi_vendor_infoframe_init(frame);
4110	if (err < 0)
4111		return err;
4112
4113	if (vic)
4114		frame->vic = vic;
4115	else
4116		frame->s3d_struct = s3d_structure_from_display_mode(mode);
 
 
 
 
 
 
 
4117
4118	return 0;
4119}
4120EXPORT_SYMBOL(drm_hdmi_vendor_infoframe_from_display_mode);
4121
4122static int drm_parse_display_id(struct drm_connector *connector,
4123				u8 *displayid, int length,
4124				bool is_edid_extension)
4125{
4126	/* if this is an EDID extension the first byte will be 0x70 */
4127	int idx = 0;
4128	struct displayid_hdr *base;
4129	struct displayid_block *block;
4130	u8 csum = 0;
4131	int i;
4132
4133	if (is_edid_extension)
4134		idx = 1;
4135
4136	base = (struct displayid_hdr *)&displayid[idx];
4137
4138	DRM_DEBUG_KMS("base revision 0x%x, length %d, %d %d\n",
4139		      base->rev, base->bytes, base->prod_id, base->ext_count);
4140
4141	if (base->bytes + 5 > length - idx)
4142		return -EINVAL;
4143
4144	for (i = idx; i <= base->bytes + 5; i++) {
4145		csum += displayid[i];
4146	}
4147	if (csum) {
4148		DRM_ERROR("DisplayID checksum invalid, remainder is %d\n", csum);
4149		return -EINVAL;
4150	}
 
 
 
 
 
 
 
 
 
 
 
 
 
4151
4152	block = (struct displayid_block *)&displayid[idx + 4];
4153	DRM_DEBUG_KMS("block id %d, rev %d, len %d\n",
4154		      block->tag, block->rev, block->num_bytes);
4155
4156	switch (block->tag) {
4157	case DATA_BLOCK_TILED_DISPLAY: {
4158		struct displayid_tiled_block *tile = (struct displayid_tiled_block *)block;
4159
4160		u16 w, h;
4161		u8 tile_v_loc, tile_h_loc;
4162		u8 num_v_tile, num_h_tile;
4163		struct drm_tile_group *tg;
4164
4165		w = tile->tile_size[0] | tile->tile_size[1] << 8;
4166		h = tile->tile_size[2] | tile->tile_size[3] << 8;
4167
4168		num_v_tile = (tile->topo[0] & 0xf) | (tile->topo[2] & 0x30);
4169		num_h_tile = (tile->topo[0] >> 4) | ((tile->topo[2] >> 2) & 0x30);
4170		tile_v_loc = (tile->topo[1] & 0xf) | ((tile->topo[2] & 0x3) << 4);
4171		tile_h_loc = (tile->topo[1] >> 4) | (((tile->topo[2] >> 2) & 0x3) << 4);
4172
4173		connector->has_tile = true;
4174		if (tile->tile_cap & 0x80)
4175			connector->tile_is_single_monitor = true;
4176
4177		connector->num_h_tile = num_h_tile + 1;
4178		connector->num_v_tile = num_v_tile + 1;
4179		connector->tile_h_loc = tile_h_loc;
4180		connector->tile_v_loc = tile_v_loc;
4181		connector->tile_h_size = w + 1;
4182		connector->tile_v_size = h + 1;
4183
4184		DRM_DEBUG_KMS("tile cap 0x%x\n", tile->tile_cap);
4185		DRM_DEBUG_KMS("tile_size %d x %d\n", w + 1, h + 1);
4186		DRM_DEBUG_KMS("topo num tiles %dx%d, location %dx%d\n",
4187		       num_h_tile + 1, num_v_tile + 1, tile_h_loc, tile_v_loc);
4188		DRM_DEBUG_KMS("vend %c%c%c\n", tile->topology_id[0], tile->topology_id[1], tile->topology_id[2]);
4189
4190		tg = drm_mode_get_tile_group(connector->dev, tile->topology_id);
4191		if (!tg) {
4192			tg = drm_mode_create_tile_group(connector->dev, tile->topology_id);
4193		}
4194		if (!tg)
4195			return -ENOMEM;
4196
4197		if (connector->tile_group != tg) {
4198			/* if we haven't got a pointer,
4199			   take the reference, drop ref to old tile group */
4200			if (connector->tile_group) {
4201				drm_mode_put_tile_group(connector->dev, connector->tile_group);
4202			}
4203			connector->tile_group = tg;
4204		} else
4205			/* if same tile group, then release the ref we just took. */
4206			drm_mode_put_tile_group(connector->dev, tg);
4207	}
4208		break;
4209	default:
4210		printk("unknown displayid tag %d\n", block->tag);
4211		break;
4212	}
4213	return 0;
4214}
4215
4216static void drm_get_displayid(struct drm_connector *connector,
4217			      struct edid *edid)
4218{
4219	void *displayid = NULL;
4220	int ret;
 
4221	connector->has_tile = false;
4222	displayid = drm_find_displayid_extension(edid);
4223	if (!displayid) {
4224		/* drop reference to any tile group we had */
4225		goto out_drop_ref;
 
4226	}
 
4227
4228	ret = drm_parse_display_id(connector, displayid, EDID_LENGTH, true);
4229	if (ret < 0)
4230		goto out_drop_ref;
4231	if (!connector->has_tile)
4232		goto out_drop_ref;
4233	return;
4234out_drop_ref:
4235	if (connector->tile_group) {
4236		drm_mode_put_tile_group(connector->dev, connector->tile_group);
4237		connector->tile_group = NULL;
4238	}
4239	return;
4240}
v6.2
   1/*
   2 * Copyright (c) 2006 Luc Verhaegen (quirks list)
   3 * Copyright (c) 2007-2008 Intel Corporation
   4 *   Jesse Barnes <jesse.barnes@intel.com>
   5 * Copyright 2010 Red Hat, Inc.
   6 *
   7 * DDC probing routines (drm_ddc_read & drm_do_probe_ddc_edid) originally from
   8 * FB layer.
   9 *   Copyright (C) 2006 Dennis Munsie <dmunsie@cecropia.com>
  10 *
  11 * Permission is hereby granted, free of charge, to any person obtaining a
  12 * copy of this software and associated documentation files (the "Software"),
  13 * to deal in the Software without restriction, including without limitation
  14 * the rights to use, copy, modify, merge, publish, distribute, sub license,
  15 * and/or sell copies of the Software, and to permit persons to whom the
  16 * Software is furnished to do so, subject to the following conditions:
  17 *
  18 * The above copyright notice and this permission notice (including the
  19 * next paragraph) shall be included in all copies or substantial portions
  20 * of the Software.
  21 *
  22 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  23 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  24 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
  25 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  26 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  27 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  28 * DEALINGS IN THE SOFTWARE.
  29 */
  30
  31#include <linux/bitfield.h>
  32#include <linux/hdmi.h>
  33#include <linux/i2c.h>
  34#include <linux/kernel.h>
  35#include <linux/module.h>
  36#include <linux/pci.h>
  37#include <linux/slab.h>
  38#include <linux/vga_switcheroo.h>
  39
 
  40#include <drm/drm_displayid.h>
  41#include <drm/drm_drv.h>
  42#include <drm/drm_edid.h>
  43#include <drm/drm_encoder.h>
  44#include <drm/drm_print.h>
  45
  46#include "drm_crtc_internal.h"
  47
  48static int oui(u8 first, u8 second, u8 third)
  49{
  50	return (first << 16) | (second << 8) | third;
  51}
  52
  53#define EDID_EST_TIMINGS 16
  54#define EDID_STD_TIMINGS 8
  55#define EDID_DETAILED_TIMINGS 4
  56
  57/*
  58 * EDID blocks out in the wild have a variety of bugs, try to collect
  59 * them here (note that userspace may work around broken monitors first,
  60 * but fixes should make their way here so that the kernel "just works"
  61 * on as many displays as possible).
  62 */
  63
  64/* First detailed mode wrong, use largest 60Hz mode */
  65#define EDID_QUIRK_PREFER_LARGE_60		(1 << 0)
  66/* Reported 135MHz pixel clock is too high, needs adjustment */
  67#define EDID_QUIRK_135_CLOCK_TOO_HIGH		(1 << 1)
  68/* Prefer the largest mode at 75 Hz */
  69#define EDID_QUIRK_PREFER_LARGE_75		(1 << 2)
  70/* Detail timing is in cm not mm */
  71#define EDID_QUIRK_DETAILED_IN_CM		(1 << 3)
  72/* Detailed timing descriptors have bogus size values, so just take the
  73 * maximum size and use that.
  74 */
  75#define EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE	(1 << 4)
 
 
  76/* use +hsync +vsync for detailed mode */
  77#define EDID_QUIRK_DETAILED_SYNC_PP		(1 << 6)
  78/* Force reduced-blanking timings for detailed modes */
  79#define EDID_QUIRK_FORCE_REDUCED_BLANKING	(1 << 7)
  80/* Force 8bpc */
  81#define EDID_QUIRK_FORCE_8BPC			(1 << 8)
  82/* Force 12bpc */
  83#define EDID_QUIRK_FORCE_12BPC			(1 << 9)
  84/* Force 6bpc */
  85#define EDID_QUIRK_FORCE_6BPC			(1 << 10)
  86/* Force 10bpc */
  87#define EDID_QUIRK_FORCE_10BPC			(1 << 11)
  88/* Non desktop display (i.e. HMD) */
  89#define EDID_QUIRK_NON_DESKTOP			(1 << 12)
  90/* Cap the DSC target bitrate to 15bpp */
  91#define EDID_QUIRK_CAP_DSC_15BPP		(1 << 13)
  92
  93#define MICROSOFT_IEEE_OUI	0xca125c
  94
  95struct detailed_mode_closure {
  96	struct drm_connector *connector;
  97	const struct drm_edid *drm_edid;
  98	bool preferred;
  99	u32 quirks;
 100	int modes;
 101};
 102
 103#define LEVEL_DMT	0
 104#define LEVEL_GTF	1
 105#define LEVEL_GTF2	2
 106#define LEVEL_CVT	3
 107
 108#define EDID_QUIRK(vend_chr_0, vend_chr_1, vend_chr_2, product_id, _quirks) \
 109{ \
 110	.panel_id = drm_edid_encode_panel_id(vend_chr_0, vend_chr_1, vend_chr_2, \
 111					     product_id), \
 112	.quirks = _quirks \
 113}
 114
 115static const struct edid_quirk {
 116	u32 panel_id;
 117	u32 quirks;
 118} edid_quirk_list[] = {
 119	/* Acer AL1706 */
 120	EDID_QUIRK('A', 'C', 'R', 44358, EDID_QUIRK_PREFER_LARGE_60),
 121	/* Acer F51 */
 122	EDID_QUIRK('A', 'P', 'I', 0x7602, EDID_QUIRK_PREFER_LARGE_60),
 123
 124	/* AEO model 0 reports 8 bpc, but is a 6 bpc panel */
 125	EDID_QUIRK('A', 'E', 'O', 0, EDID_QUIRK_FORCE_6BPC),
 126
 127	/* BOE model on HP Pavilion 15-n233sl reports 8 bpc, but is a 6 bpc panel */
 128	EDID_QUIRK('B', 'O', 'E', 0x78b, EDID_QUIRK_FORCE_6BPC),
 129
 130	/* CPT panel of Asus UX303LA reports 8 bpc, but is a 6 bpc panel */
 131	EDID_QUIRK('C', 'P', 'T', 0x17df, EDID_QUIRK_FORCE_6BPC),
 132
 133	/* SDC panel of Lenovo B50-80 reports 8 bpc, but is a 6 bpc panel */
 134	EDID_QUIRK('S', 'D', 'C', 0x3652, EDID_QUIRK_FORCE_6BPC),
 135
 136	/* BOE model 0x0771 reports 8 bpc, but is a 6 bpc panel */
 137	EDID_QUIRK('B', 'O', 'E', 0x0771, EDID_QUIRK_FORCE_6BPC),
 138
 139	/* Belinea 10 15 55 */
 140	EDID_QUIRK('M', 'A', 'X', 1516, EDID_QUIRK_PREFER_LARGE_60),
 141	EDID_QUIRK('M', 'A', 'X', 0x77e, EDID_QUIRK_PREFER_LARGE_60),
 142
 143	/* Envision Peripherals, Inc. EN-7100e */
 144	EDID_QUIRK('E', 'P', 'I', 59264, EDID_QUIRK_135_CLOCK_TOO_HIGH),
 145	/* Envision EN2028 */
 146	EDID_QUIRK('E', 'P', 'I', 8232, EDID_QUIRK_PREFER_LARGE_60),
 147
 148	/* Funai Electronics PM36B */
 149	EDID_QUIRK('F', 'C', 'M', 13600, EDID_QUIRK_PREFER_LARGE_75 |
 150				       EDID_QUIRK_DETAILED_IN_CM),
 151
 152	/* LG 27GP950 */
 153	EDID_QUIRK('G', 'S', 'M', 0x5bbf, EDID_QUIRK_CAP_DSC_15BPP),
 
 154
 155	/* LG 27GN950 */
 156	EDID_QUIRK('G', 'S', 'M', 0x5b9a, EDID_QUIRK_CAP_DSC_15BPP),
 157
 158	/* LGD panel of HP zBook 17 G2, eDP 10 bpc, but reports unknown bpc */
 159	EDID_QUIRK('L', 'G', 'D', 764, EDID_QUIRK_FORCE_10BPC),
 160
 161	/* LG Philips LCD LP154W01-A5 */
 162	EDID_QUIRK('L', 'P', 'L', 0, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE),
 163	EDID_QUIRK('L', 'P', 'L', 0x2a00, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE),
 164
 165	/* Samsung SyncMaster 205BW.  Note: irony */
 166	EDID_QUIRK('S', 'A', 'M', 541, EDID_QUIRK_DETAILED_SYNC_PP),
 167	/* Samsung SyncMaster 22[5-6]BW */
 168	EDID_QUIRK('S', 'A', 'M', 596, EDID_QUIRK_PREFER_LARGE_60),
 169	EDID_QUIRK('S', 'A', 'M', 638, EDID_QUIRK_PREFER_LARGE_60),
 170
 171	/* Sony PVM-2541A does up to 12 bpc, but only reports max 8 bpc */
 172	EDID_QUIRK('S', 'N', 'Y', 0x2541, EDID_QUIRK_FORCE_12BPC),
 173
 174	/* ViewSonic VA2026w */
 175	EDID_QUIRK('V', 'S', 'C', 5020, EDID_QUIRK_FORCE_REDUCED_BLANKING),
 176
 177	/* Medion MD 30217 PG */
 178	EDID_QUIRK('M', 'E', 'D', 0x7b8, EDID_QUIRK_PREFER_LARGE_75),
 179
 180	/* Lenovo G50 */
 181	EDID_QUIRK('S', 'D', 'C', 18514, EDID_QUIRK_FORCE_6BPC),
 182
 183	/* Panel in Samsung NP700G7A-S01PL notebook reports 6bpc */
 184	EDID_QUIRK('S', 'E', 'C', 0xd033, EDID_QUIRK_FORCE_8BPC),
 185
 186	/* Rotel RSX-1058 forwards sink's EDID but only does HDMI 1.1*/
 187	EDID_QUIRK('E', 'T', 'R', 13896, EDID_QUIRK_FORCE_8BPC),
 188
 189	/* Valve Index Headset */
 190	EDID_QUIRK('V', 'L', 'V', 0x91a8, EDID_QUIRK_NON_DESKTOP),
 191	EDID_QUIRK('V', 'L', 'V', 0x91b0, EDID_QUIRK_NON_DESKTOP),
 192	EDID_QUIRK('V', 'L', 'V', 0x91b1, EDID_QUIRK_NON_DESKTOP),
 193	EDID_QUIRK('V', 'L', 'V', 0x91b2, EDID_QUIRK_NON_DESKTOP),
 194	EDID_QUIRK('V', 'L', 'V', 0x91b3, EDID_QUIRK_NON_DESKTOP),
 195	EDID_QUIRK('V', 'L', 'V', 0x91b4, EDID_QUIRK_NON_DESKTOP),
 196	EDID_QUIRK('V', 'L', 'V', 0x91b5, EDID_QUIRK_NON_DESKTOP),
 197	EDID_QUIRK('V', 'L', 'V', 0x91b6, EDID_QUIRK_NON_DESKTOP),
 198	EDID_QUIRK('V', 'L', 'V', 0x91b7, EDID_QUIRK_NON_DESKTOP),
 199	EDID_QUIRK('V', 'L', 'V', 0x91b8, EDID_QUIRK_NON_DESKTOP),
 200	EDID_QUIRK('V', 'L', 'V', 0x91b9, EDID_QUIRK_NON_DESKTOP),
 201	EDID_QUIRK('V', 'L', 'V', 0x91ba, EDID_QUIRK_NON_DESKTOP),
 202	EDID_QUIRK('V', 'L', 'V', 0x91bb, EDID_QUIRK_NON_DESKTOP),
 203	EDID_QUIRK('V', 'L', 'V', 0x91bc, EDID_QUIRK_NON_DESKTOP),
 204	EDID_QUIRK('V', 'L', 'V', 0x91bd, EDID_QUIRK_NON_DESKTOP),
 205	EDID_QUIRK('V', 'L', 'V', 0x91be, EDID_QUIRK_NON_DESKTOP),
 206	EDID_QUIRK('V', 'L', 'V', 0x91bf, EDID_QUIRK_NON_DESKTOP),
 207
 208	/* HTC Vive and Vive Pro VR Headsets */
 209	EDID_QUIRK('H', 'V', 'R', 0xaa01, EDID_QUIRK_NON_DESKTOP),
 210	EDID_QUIRK('H', 'V', 'R', 0xaa02, EDID_QUIRK_NON_DESKTOP),
 211
 212	/* Oculus Rift DK1, DK2, CV1 and Rift S VR Headsets */
 213	EDID_QUIRK('O', 'V', 'R', 0x0001, EDID_QUIRK_NON_DESKTOP),
 214	EDID_QUIRK('O', 'V', 'R', 0x0003, EDID_QUIRK_NON_DESKTOP),
 215	EDID_QUIRK('O', 'V', 'R', 0x0004, EDID_QUIRK_NON_DESKTOP),
 216	EDID_QUIRK('O', 'V', 'R', 0x0012, EDID_QUIRK_NON_DESKTOP),
 217
 218	/* Windows Mixed Reality Headsets */
 219	EDID_QUIRK('A', 'C', 'R', 0x7fce, EDID_QUIRK_NON_DESKTOP),
 220	EDID_QUIRK('L', 'E', 'N', 0x0408, EDID_QUIRK_NON_DESKTOP),
 221	EDID_QUIRK('F', 'U', 'J', 0x1970, EDID_QUIRK_NON_DESKTOP),
 222	EDID_QUIRK('D', 'E', 'L', 0x7fce, EDID_QUIRK_NON_DESKTOP),
 223	EDID_QUIRK('S', 'E', 'C', 0x144a, EDID_QUIRK_NON_DESKTOP),
 224	EDID_QUIRK('A', 'U', 'S', 0xc102, EDID_QUIRK_NON_DESKTOP),
 225
 226	/* Sony PlayStation VR Headset */
 227	EDID_QUIRK('S', 'N', 'Y', 0x0704, EDID_QUIRK_NON_DESKTOP),
 228
 229	/* Sensics VR Headsets */
 230	EDID_QUIRK('S', 'E', 'N', 0x1019, EDID_QUIRK_NON_DESKTOP),
 231
 232	/* OSVR HDK and HDK2 VR Headsets */
 233	EDID_QUIRK('S', 'V', 'R', 0x1019, EDID_QUIRK_NON_DESKTOP),
 234};
 235
 236/*
 237 * Autogenerated from the DMT spec.
 238 * This table is copied from xfree86/modes/xf86EdidModes.c.
 239 */
 240static const struct drm_display_mode drm_dmt_modes[] = {
 241	/* 0x01 - 640x350@85Hz */
 242	{ DRM_MODE("640x350", DRM_MODE_TYPE_DRIVER, 31500, 640, 672,
 243		   736, 832, 0, 350, 382, 385, 445, 0,
 244		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 245	/* 0x02 - 640x400@85Hz */
 246	{ DRM_MODE("640x400", DRM_MODE_TYPE_DRIVER, 31500, 640, 672,
 247		   736, 832, 0, 400, 401, 404, 445, 0,
 248		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 249	/* 0x03 - 720x400@85Hz */
 250	{ DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 35500, 720, 756,
 251		   828, 936, 0, 400, 401, 404, 446, 0,
 252		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 253	/* 0x04 - 640x480@60Hz */
 254	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
 255		   752, 800, 0, 480, 490, 492, 525, 0,
 256		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
 257	/* 0x05 - 640x480@72Hz */
 258	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 664,
 259		   704, 832, 0, 480, 489, 492, 520, 0,
 260		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
 261	/* 0x06 - 640x480@75Hz */
 262	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 656,
 263		   720, 840, 0, 480, 481, 484, 500, 0,
 264		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
 265	/* 0x07 - 640x480@85Hz */
 266	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 36000, 640, 696,
 267		   752, 832, 0, 480, 481, 484, 509, 0,
 268		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
 269	/* 0x08 - 800x600@56Hz */
 270	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 36000, 800, 824,
 271		   896, 1024, 0, 600, 601, 603, 625, 0,
 272		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 273	/* 0x09 - 800x600@60Hz */
 274	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
 275		   968, 1056, 0, 600, 601, 605, 628, 0,
 276		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 277	/* 0x0a - 800x600@72Hz */
 278	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 50000, 800, 856,
 279		   976, 1040, 0, 600, 637, 643, 666, 0,
 280		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 281	/* 0x0b - 800x600@75Hz */
 282	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 49500, 800, 816,
 283		   896, 1056, 0, 600, 601, 604, 625, 0,
 284		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 285	/* 0x0c - 800x600@85Hz */
 286	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 56250, 800, 832,
 287		   896, 1048, 0, 600, 601, 604, 631, 0,
 288		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 289	/* 0x0d - 800x600@120Hz RB */
 290	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 73250, 800, 848,
 291		   880, 960, 0, 600, 603, 607, 636, 0,
 292		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 293	/* 0x0e - 848x480@60Hz */
 294	{ DRM_MODE("848x480", DRM_MODE_TYPE_DRIVER, 33750, 848, 864,
 295		   976, 1088, 0, 480, 486, 494, 517, 0,
 296		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 297	/* 0x0f - 1024x768@43Hz, interlace */
 298	{ DRM_MODE("1024x768i", DRM_MODE_TYPE_DRIVER, 44900, 1024, 1032,
 299		   1208, 1264, 0, 768, 768, 776, 817, 0,
 300		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
 301		   DRM_MODE_FLAG_INTERLACE) },
 302	/* 0x10 - 1024x768@60Hz */
 303	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
 304		   1184, 1344, 0, 768, 771, 777, 806, 0,
 305		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
 306	/* 0x11 - 1024x768@70Hz */
 307	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 75000, 1024, 1048,
 308		   1184, 1328, 0, 768, 771, 777, 806, 0,
 309		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
 310	/* 0x12 - 1024x768@75Hz */
 311	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 78750, 1024, 1040,
 312		   1136, 1312, 0, 768, 769, 772, 800, 0,
 313		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 314	/* 0x13 - 1024x768@85Hz */
 315	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 94500, 1024, 1072,
 316		   1168, 1376, 0, 768, 769, 772, 808, 0,
 317		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 318	/* 0x14 - 1024x768@120Hz RB */
 319	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 115500, 1024, 1072,
 320		   1104, 1184, 0, 768, 771, 775, 813, 0,
 321		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 322	/* 0x15 - 1152x864@75Hz */
 323	{ DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
 324		   1344, 1600, 0, 864, 865, 868, 900, 0,
 325		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 326	/* 0x55 - 1280x720@60Hz */
 327	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
 328		   1430, 1650, 0, 720, 725, 730, 750, 0,
 329		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 330	/* 0x16 - 1280x768@60Hz RB */
 331	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 68250, 1280, 1328,
 332		   1360, 1440, 0, 768, 771, 778, 790, 0,
 333		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 334	/* 0x17 - 1280x768@60Hz */
 335	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 79500, 1280, 1344,
 336		   1472, 1664, 0, 768, 771, 778, 798, 0,
 337		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 338	/* 0x18 - 1280x768@75Hz */
 339	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 102250, 1280, 1360,
 340		   1488, 1696, 0, 768, 771, 778, 805, 0,
 341		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 342	/* 0x19 - 1280x768@85Hz */
 343	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 117500, 1280, 1360,
 344		   1496, 1712, 0, 768, 771, 778, 809, 0,
 345		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 346	/* 0x1a - 1280x768@120Hz RB */
 347	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 140250, 1280, 1328,
 348		   1360, 1440, 0, 768, 771, 778, 813, 0,
 349		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 350	/* 0x1b - 1280x800@60Hz RB */
 351	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 71000, 1280, 1328,
 352		   1360, 1440, 0, 800, 803, 809, 823, 0,
 353		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 354	/* 0x1c - 1280x800@60Hz */
 355	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 83500, 1280, 1352,
 356		   1480, 1680, 0, 800, 803, 809, 831, 0,
 357		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 358	/* 0x1d - 1280x800@75Hz */
 359	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 106500, 1280, 1360,
 360		   1488, 1696, 0, 800, 803, 809, 838, 0,
 361		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 362	/* 0x1e - 1280x800@85Hz */
 363	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 122500, 1280, 1360,
 364		   1496, 1712, 0, 800, 803, 809, 843, 0,
 365		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 366	/* 0x1f - 1280x800@120Hz RB */
 367	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 146250, 1280, 1328,
 368		   1360, 1440, 0, 800, 803, 809, 847, 0,
 369		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 370	/* 0x20 - 1280x960@60Hz */
 371	{ DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1376,
 372		   1488, 1800, 0, 960, 961, 964, 1000, 0,
 373		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 374	/* 0x21 - 1280x960@85Hz */
 375	{ DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1344,
 376		   1504, 1728, 0, 960, 961, 964, 1011, 0,
 377		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 378	/* 0x22 - 1280x960@120Hz RB */
 379	{ DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 175500, 1280, 1328,
 380		   1360, 1440, 0, 960, 963, 967, 1017, 0,
 381		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 382	/* 0x23 - 1280x1024@60Hz */
 383	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1328,
 384		   1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
 385		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 386	/* 0x24 - 1280x1024@75Hz */
 387	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 135000, 1280, 1296,
 388		   1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
 389		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 390	/* 0x25 - 1280x1024@85Hz */
 391	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 157500, 1280, 1344,
 392		   1504, 1728, 0, 1024, 1025, 1028, 1072, 0,
 393		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 394	/* 0x26 - 1280x1024@120Hz RB */
 395	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 187250, 1280, 1328,
 396		   1360, 1440, 0, 1024, 1027, 1034, 1084, 0,
 397		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 398	/* 0x27 - 1360x768@60Hz */
 399	{ DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 85500, 1360, 1424,
 400		   1536, 1792, 0, 768, 771, 777, 795, 0,
 401		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 402	/* 0x28 - 1360x768@120Hz RB */
 403	{ DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 148250, 1360, 1408,
 404		   1440, 1520, 0, 768, 771, 776, 813, 0,
 405		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 406	/* 0x51 - 1366x768@60Hz */
 407	{ DRM_MODE("1366x768", DRM_MODE_TYPE_DRIVER, 85500, 1366, 1436,
 408		   1579, 1792, 0, 768, 771, 774, 798, 0,
 409		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 410	/* 0x56 - 1366x768@60Hz */
 411	{ DRM_MODE("1366x768", DRM_MODE_TYPE_DRIVER, 72000, 1366, 1380,
 412		   1436, 1500, 0, 768, 769, 772, 800, 0,
 413		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 414	/* 0x29 - 1400x1050@60Hz RB */
 415	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 101000, 1400, 1448,
 416		   1480, 1560, 0, 1050, 1053, 1057, 1080, 0,
 417		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 418	/* 0x2a - 1400x1050@60Hz */
 419	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 121750, 1400, 1488,
 420		   1632, 1864, 0, 1050, 1053, 1057, 1089, 0,
 421		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 422	/* 0x2b - 1400x1050@75Hz */
 423	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 156000, 1400, 1504,
 424		   1648, 1896, 0, 1050, 1053, 1057, 1099, 0,
 425		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 426	/* 0x2c - 1400x1050@85Hz */
 427	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 179500, 1400, 1504,
 428		   1656, 1912, 0, 1050, 1053, 1057, 1105, 0,
 429		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 430	/* 0x2d - 1400x1050@120Hz RB */
 431	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 208000, 1400, 1448,
 432		   1480, 1560, 0, 1050, 1053, 1057, 1112, 0,
 433		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 434	/* 0x2e - 1440x900@60Hz RB */
 435	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 88750, 1440, 1488,
 436		   1520, 1600, 0, 900, 903, 909, 926, 0,
 437		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 438	/* 0x2f - 1440x900@60Hz */
 439	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 106500, 1440, 1520,
 440		   1672, 1904, 0, 900, 903, 909, 934, 0,
 441		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 442	/* 0x30 - 1440x900@75Hz */
 443	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 136750, 1440, 1536,
 444		   1688, 1936, 0, 900, 903, 909, 942, 0,
 445		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 446	/* 0x31 - 1440x900@85Hz */
 447	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 157000, 1440, 1544,
 448		   1696, 1952, 0, 900, 903, 909, 948, 0,
 449		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 450	/* 0x32 - 1440x900@120Hz RB */
 451	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 182750, 1440, 1488,
 452		   1520, 1600, 0, 900, 903, 909, 953, 0,
 453		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 454	/* 0x53 - 1600x900@60Hz */
 455	{ DRM_MODE("1600x900", DRM_MODE_TYPE_DRIVER, 108000, 1600, 1624,
 456		   1704, 1800, 0, 900, 901, 904, 1000, 0,
 457		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 458	/* 0x33 - 1600x1200@60Hz */
 459	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 162000, 1600, 1664,
 460		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
 461		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 462	/* 0x34 - 1600x1200@65Hz */
 463	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 175500, 1600, 1664,
 464		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
 465		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 466	/* 0x35 - 1600x1200@70Hz */
 467	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 189000, 1600, 1664,
 468		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
 469		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 470	/* 0x36 - 1600x1200@75Hz */
 471	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 202500, 1600, 1664,
 472		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
 473		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 474	/* 0x37 - 1600x1200@85Hz */
 475	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 229500, 1600, 1664,
 476		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
 477		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 478	/* 0x38 - 1600x1200@120Hz RB */
 479	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 268250, 1600, 1648,
 480		   1680, 1760, 0, 1200, 1203, 1207, 1271, 0,
 481		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 482	/* 0x39 - 1680x1050@60Hz RB */
 483	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 119000, 1680, 1728,
 484		   1760, 1840, 0, 1050, 1053, 1059, 1080, 0,
 485		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 486	/* 0x3a - 1680x1050@60Hz */
 487	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 146250, 1680, 1784,
 488		   1960, 2240, 0, 1050, 1053, 1059, 1089, 0,
 489		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 490	/* 0x3b - 1680x1050@75Hz */
 491	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 187000, 1680, 1800,
 492		   1976, 2272, 0, 1050, 1053, 1059, 1099, 0,
 493		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 494	/* 0x3c - 1680x1050@85Hz */
 495	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 214750, 1680, 1808,
 496		   1984, 2288, 0, 1050, 1053, 1059, 1105, 0,
 497		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 498	/* 0x3d - 1680x1050@120Hz RB */
 499	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 245500, 1680, 1728,
 500		   1760, 1840, 0, 1050, 1053, 1059, 1112, 0,
 501		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 502	/* 0x3e - 1792x1344@60Hz */
 503	{ DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 204750, 1792, 1920,
 504		   2120, 2448, 0, 1344, 1345, 1348, 1394, 0,
 505		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 506	/* 0x3f - 1792x1344@75Hz */
 507	{ DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 261000, 1792, 1888,
 508		   2104, 2456, 0, 1344, 1345, 1348, 1417, 0,
 509		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 510	/* 0x40 - 1792x1344@120Hz RB */
 511	{ DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 333250, 1792, 1840,
 512		   1872, 1952, 0, 1344, 1347, 1351, 1423, 0,
 513		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 514	/* 0x41 - 1856x1392@60Hz */
 515	{ DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 218250, 1856, 1952,
 516		   2176, 2528, 0, 1392, 1393, 1396, 1439, 0,
 517		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 518	/* 0x42 - 1856x1392@75Hz */
 519	{ DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 288000, 1856, 1984,
 520		   2208, 2560, 0, 1392, 1393, 1396, 1500, 0,
 521		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 522	/* 0x43 - 1856x1392@120Hz RB */
 523	{ DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 356500, 1856, 1904,
 524		   1936, 2016, 0, 1392, 1395, 1399, 1474, 0,
 525		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 526	/* 0x52 - 1920x1080@60Hz */
 527	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
 528		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
 529		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
 530	/* 0x44 - 1920x1200@60Hz RB */
 531	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 154000, 1920, 1968,
 532		   2000, 2080, 0, 1200, 1203, 1209, 1235, 0,
 533		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 534	/* 0x45 - 1920x1200@60Hz */
 535	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 193250, 1920, 2056,
 536		   2256, 2592, 0, 1200, 1203, 1209, 1245, 0,
 537		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 538	/* 0x46 - 1920x1200@75Hz */
 539	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 245250, 1920, 2056,
 540		   2264, 2608, 0, 1200, 1203, 1209, 1255, 0,
 541		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 542	/* 0x47 - 1920x1200@85Hz */
 543	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 281250, 1920, 2064,
 544		   2272, 2624, 0, 1200, 1203, 1209, 1262, 0,
 545		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 546	/* 0x48 - 1920x1200@120Hz RB */
 547	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 317000, 1920, 1968,
 548		   2000, 2080, 0, 1200, 1203, 1209, 1271, 0,
 549		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 550	/* 0x49 - 1920x1440@60Hz */
 551	{ DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 234000, 1920, 2048,
 552		   2256, 2600, 0, 1440, 1441, 1444, 1500, 0,
 553		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 554	/* 0x4a - 1920x1440@75Hz */
 555	{ DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2064,
 556		   2288, 2640, 0, 1440, 1441, 1444, 1500, 0,
 557		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 558	/* 0x4b - 1920x1440@120Hz RB */
 559	{ DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 380500, 1920, 1968,
 560		   2000, 2080, 0, 1440, 1443, 1447, 1525, 0,
 561		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 562	/* 0x54 - 2048x1152@60Hz */
 563	{ DRM_MODE("2048x1152", DRM_MODE_TYPE_DRIVER, 162000, 2048, 2074,
 564		   2154, 2250, 0, 1152, 1153, 1156, 1200, 0,
 565		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 566	/* 0x4c - 2560x1600@60Hz RB */
 567	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 268500, 2560, 2608,
 568		   2640, 2720, 0, 1600, 1603, 1609, 1646, 0,
 569		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 570	/* 0x4d - 2560x1600@60Hz */
 571	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 348500, 2560, 2752,
 572		   3032, 3504, 0, 1600, 1603, 1609, 1658, 0,
 573		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 574	/* 0x4e - 2560x1600@75Hz */
 575	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 443250, 2560, 2768,
 576		   3048, 3536, 0, 1600, 1603, 1609, 1672, 0,
 577		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 578	/* 0x4f - 2560x1600@85Hz */
 579	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 505250, 2560, 2768,
 580		   3048, 3536, 0, 1600, 1603, 1609, 1682, 0,
 581		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 582	/* 0x50 - 2560x1600@120Hz RB */
 583	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 552750, 2560, 2608,
 584		   2640, 2720, 0, 1600, 1603, 1609, 1694, 0,
 585		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 586	/* 0x57 - 4096x2160@60Hz RB */
 587	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 556744, 4096, 4104,
 588		   4136, 4176, 0, 2160, 2208, 2216, 2222, 0,
 589		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 590	/* 0x58 - 4096x2160@59.94Hz RB */
 591	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 556188, 4096, 4104,
 592		   4136, 4176, 0, 2160, 2208, 2216, 2222, 0,
 593		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 594};
 595
 596/*
 597 * These more or less come from the DMT spec.  The 720x400 modes are
 598 * inferred from historical 80x25 practice.  The 640x480@67 and 832x624@75
 599 * modes are old-school Mac modes.  The EDID spec says the 1152x864@75 mode
 600 * should be 1152x870, again for the Mac, but instead we use the x864 DMT
 601 * mode.
 602 *
 603 * The DMT modes have been fact-checked; the rest are mild guesses.
 604 */
 605static const struct drm_display_mode edid_est_modes[] = {
 606	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
 607		   968, 1056, 0, 600, 601, 605, 628, 0,
 608		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@60Hz */
 609	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 36000, 800, 824,
 610		   896, 1024, 0, 600, 601, 603,  625, 0,
 611		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@56Hz */
 612	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 656,
 613		   720, 840, 0, 480, 481, 484, 500, 0,
 614		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@75Hz */
 615	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 664,
 616		   704,  832, 0, 480, 489, 492, 520, 0,
 617		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@72Hz */
 618	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 30240, 640, 704,
 619		   768,  864, 0, 480, 483, 486, 525, 0,
 620		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@67Hz */
 621	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
 622		   752, 800, 0, 480, 490, 492, 525, 0,
 623		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@60Hz */
 624	{ DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 35500, 720, 738,
 625		   846, 900, 0, 400, 421, 423,  449, 0,
 626		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 720x400@88Hz */
 627	{ DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 28320, 720, 738,
 628		   846,  900, 0, 400, 412, 414, 449, 0,
 629		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 720x400@70Hz */
 630	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 135000, 1280, 1296,
 631		   1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
 632		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1280x1024@75Hz */
 633	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 78750, 1024, 1040,
 634		   1136, 1312, 0,  768, 769, 772, 800, 0,
 635		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1024x768@75Hz */
 636	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 75000, 1024, 1048,
 637		   1184, 1328, 0,  768, 771, 777, 806, 0,
 638		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 1024x768@70Hz */
 639	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
 640		   1184, 1344, 0,  768, 771, 777, 806, 0,
 641		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 1024x768@60Hz */
 642	{ DRM_MODE("1024x768i", DRM_MODE_TYPE_DRIVER,44900, 1024, 1032,
 643		   1208, 1264, 0, 768, 768, 776, 817, 0,
 644		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_INTERLACE) }, /* 1024x768@43Hz */
 645	{ DRM_MODE("832x624", DRM_MODE_TYPE_DRIVER, 57284, 832, 864,
 646		   928, 1152, 0, 624, 625, 628, 667, 0,
 647		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 832x624@75Hz */
 648	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 49500, 800, 816,
 649		   896, 1056, 0, 600, 601, 604,  625, 0,
 650		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@75Hz */
 651	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 50000, 800, 856,
 652		   976, 1040, 0, 600, 637, 643, 666, 0,
 653		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@72Hz */
 654	{ DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
 655		   1344, 1600, 0,  864, 865, 868, 900, 0,
 656		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1152x864@75Hz */
 657};
 658
 659struct minimode {
 660	short w;
 661	short h;
 662	short r;
 663	short rb;
 664};
 665
 666static const struct minimode est3_modes[] = {
 667	/* byte 6 */
 668	{ 640, 350, 85, 0 },
 669	{ 640, 400, 85, 0 },
 670	{ 720, 400, 85, 0 },
 671	{ 640, 480, 85, 0 },
 672	{ 848, 480, 60, 0 },
 673	{ 800, 600, 85, 0 },
 674	{ 1024, 768, 85, 0 },
 675	{ 1152, 864, 75, 0 },
 676	/* byte 7 */
 677	{ 1280, 768, 60, 1 },
 678	{ 1280, 768, 60, 0 },
 679	{ 1280, 768, 75, 0 },
 680	{ 1280, 768, 85, 0 },
 681	{ 1280, 960, 60, 0 },
 682	{ 1280, 960, 85, 0 },
 683	{ 1280, 1024, 60, 0 },
 684	{ 1280, 1024, 85, 0 },
 685	/* byte 8 */
 686	{ 1360, 768, 60, 0 },
 687	{ 1440, 900, 60, 1 },
 688	{ 1440, 900, 60, 0 },
 689	{ 1440, 900, 75, 0 },
 690	{ 1440, 900, 85, 0 },
 691	{ 1400, 1050, 60, 1 },
 692	{ 1400, 1050, 60, 0 },
 693	{ 1400, 1050, 75, 0 },
 694	/* byte 9 */
 695	{ 1400, 1050, 85, 0 },
 696	{ 1680, 1050, 60, 1 },
 697	{ 1680, 1050, 60, 0 },
 698	{ 1680, 1050, 75, 0 },
 699	{ 1680, 1050, 85, 0 },
 700	{ 1600, 1200, 60, 0 },
 701	{ 1600, 1200, 65, 0 },
 702	{ 1600, 1200, 70, 0 },
 703	/* byte 10 */
 704	{ 1600, 1200, 75, 0 },
 705	{ 1600, 1200, 85, 0 },
 706	{ 1792, 1344, 60, 0 },
 707	{ 1792, 1344, 75, 0 },
 708	{ 1856, 1392, 60, 0 },
 709	{ 1856, 1392, 75, 0 },
 710	{ 1920, 1200, 60, 1 },
 711	{ 1920, 1200, 60, 0 },
 712	/* byte 11 */
 713	{ 1920, 1200, 75, 0 },
 714	{ 1920, 1200, 85, 0 },
 715	{ 1920, 1440, 60, 0 },
 716	{ 1920, 1440, 75, 0 },
 717};
 718
 719static const struct minimode extra_modes[] = {
 720	{ 1024, 576,  60, 0 },
 721	{ 1366, 768,  60, 0 },
 722	{ 1600, 900,  60, 0 },
 723	{ 1680, 945,  60, 0 },
 724	{ 1920, 1080, 60, 0 },
 725	{ 2048, 1152, 60, 0 },
 726	{ 2048, 1536, 60, 0 },
 727};
 728
 729/*
 730 * From CEA/CTA-861 spec.
 
 731 *
 732 * Do not access directly, instead always use cea_mode_for_vic().
 733 */
 734static const struct drm_display_mode edid_cea_modes_1[] = {
 735	/* 1 - 640x480@60Hz 4:3 */
 
 
 736	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
 737		   752, 800, 0, 480, 490, 492, 525, 0,
 738		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 739	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 740	/* 2 - 720x480@60Hz 4:3 */
 741	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 27000, 720, 736,
 742		   798, 858, 0, 480, 489, 495, 525, 0,
 743		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 744	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 745	/* 3 - 720x480@60Hz 16:9 */
 746	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 27000, 720, 736,
 747		   798, 858, 0, 480, 489, 495, 525, 0,
 748		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 749	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 750	/* 4 - 1280x720@60Hz 16:9 */
 751	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
 752		   1430, 1650, 0, 720, 725, 730, 750, 0,
 753		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
 754	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 755	/* 5 - 1920x1080i@60Hz 16:9 */
 756	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
 757		   2052, 2200, 0, 1080, 1084, 1094, 1125, 0,
 758		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
 759		   DRM_MODE_FLAG_INTERLACE),
 760	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 761	/* 6 - 720(1440)x480i@60Hz 4:3 */
 762	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
 763		   801, 858, 0, 480, 488, 494, 525, 0,
 764		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 765		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
 766	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 767	/* 7 - 720(1440)x480i@60Hz 16:9 */
 768	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
 769		   801, 858, 0, 480, 488, 494, 525, 0,
 770		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 771		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
 772	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 773	/* 8 - 720(1440)x240@60Hz 4:3 */
 774	{ DRM_MODE("720x240", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
 775		   801, 858, 0, 240, 244, 247, 262, 0,
 776		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 777		   DRM_MODE_FLAG_DBLCLK),
 778	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 779	/* 9 - 720(1440)x240@60Hz 16:9 */
 780	{ DRM_MODE("720x240", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
 781		   801, 858, 0, 240, 244, 247, 262, 0,
 782		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 783		   DRM_MODE_FLAG_DBLCLK),
 784	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 785	/* 10 - 2880x480i@60Hz 4:3 */
 786	{ DRM_MODE("2880x480i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
 787		   3204, 3432, 0, 480, 488, 494, 525, 0,
 788		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 789		   DRM_MODE_FLAG_INTERLACE),
 790	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 791	/* 11 - 2880x480i@60Hz 16:9 */
 792	{ DRM_MODE("2880x480i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
 793		   3204, 3432, 0, 480, 488, 494, 525, 0,
 794		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 795		   DRM_MODE_FLAG_INTERLACE),
 796	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 797	/* 12 - 2880x240@60Hz 4:3 */
 798	{ DRM_MODE("2880x240", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
 799		   3204, 3432, 0, 240, 244, 247, 262, 0,
 800		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 801	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 802	/* 13 - 2880x240@60Hz 16:9 */
 803	{ DRM_MODE("2880x240", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
 804		   3204, 3432, 0, 240, 244, 247, 262, 0,
 805		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 806	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 807	/* 14 - 1440x480@60Hz 4:3 */
 808	{ DRM_MODE("1440x480", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1472,
 809		   1596, 1716, 0, 480, 489, 495, 525, 0,
 810		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 811	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 812	/* 15 - 1440x480@60Hz 16:9 */
 813	{ DRM_MODE("1440x480", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1472,
 814		   1596, 1716, 0, 480, 489, 495, 525, 0,
 815		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 816	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 817	/* 16 - 1920x1080@60Hz 16:9 */
 818	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
 819		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
 820		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
 821	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 822	/* 17 - 720x576@50Hz 4:3 */
 823	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
 824		   796, 864, 0, 576, 581, 586, 625, 0,
 825		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 826	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 827	/* 18 - 720x576@50Hz 16:9 */
 828	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
 829		   796, 864, 0, 576, 581, 586, 625, 0,
 830		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 831	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 832	/* 19 - 1280x720@50Hz 16:9 */
 833	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1720,
 834		   1760, 1980, 0, 720, 725, 730, 750, 0,
 835		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
 836	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 837	/* 20 - 1920x1080i@50Hz 16:9 */
 838	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
 839		   2492, 2640, 0, 1080, 1084, 1094, 1125, 0,
 840		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
 841		   DRM_MODE_FLAG_INTERLACE),
 842	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 843	/* 21 - 720(1440)x576i@50Hz 4:3 */
 844	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
 845		   795, 864, 0, 576, 580, 586, 625, 0,
 846		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 847		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
 848	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 849	/* 22 - 720(1440)x576i@50Hz 16:9 */
 850	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
 851		   795, 864, 0, 576, 580, 586, 625, 0,
 852		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 853		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
 854	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 855	/* 23 - 720(1440)x288@50Hz 4:3 */
 856	{ DRM_MODE("720x288", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
 857		   795, 864, 0, 288, 290, 293, 312, 0,
 858		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 859		   DRM_MODE_FLAG_DBLCLK),
 860	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 861	/* 24 - 720(1440)x288@50Hz 16:9 */
 862	{ DRM_MODE("720x288", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
 863		   795, 864, 0, 288, 290, 293, 312, 0,
 864		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 865		   DRM_MODE_FLAG_DBLCLK),
 866	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 867	/* 25 - 2880x576i@50Hz 4:3 */
 868	{ DRM_MODE("2880x576i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
 869		   3180, 3456, 0, 576, 580, 586, 625, 0,
 870		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 871		   DRM_MODE_FLAG_INTERLACE),
 872	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 873	/* 26 - 2880x576i@50Hz 16:9 */
 874	{ DRM_MODE("2880x576i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
 875		   3180, 3456, 0, 576, 580, 586, 625, 0,
 876		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 877		   DRM_MODE_FLAG_INTERLACE),
 878	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 879	/* 27 - 2880x288@50Hz 4:3 */
 880	{ DRM_MODE("2880x288", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
 881		   3180, 3456, 0, 288, 290, 293, 312, 0,
 882		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 883	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 884	/* 28 - 2880x288@50Hz 16:9 */
 885	{ DRM_MODE("2880x288", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
 886		   3180, 3456, 0, 288, 290, 293, 312, 0,
 887		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 888	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 889	/* 29 - 1440x576@50Hz 4:3 */
 890	{ DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
 891		   1592, 1728, 0, 576, 581, 586, 625, 0,
 892		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 893	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 894	/* 30 - 1440x576@50Hz 16:9 */
 895	{ DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
 896		   1592, 1728, 0, 576, 581, 586, 625, 0,
 897		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 898	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 899	/* 31 - 1920x1080@50Hz 16:9 */
 900	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
 901		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
 902		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
 903	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 904	/* 32 - 1920x1080@24Hz 16:9 */
 905	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2558,
 906		   2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
 907		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
 908	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 909	/* 33 - 1920x1080@25Hz 16:9 */
 910	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
 911		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
 912		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
 913	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 914	/* 34 - 1920x1080@30Hz 16:9 */
 915	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
 916		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
 917		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
 918	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 919	/* 35 - 2880x480@60Hz 4:3 */
 920	{ DRM_MODE("2880x480", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2944,
 921		   3192, 3432, 0, 480, 489, 495, 525, 0,
 922		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 923	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 924	/* 36 - 2880x480@60Hz 16:9 */
 925	{ DRM_MODE("2880x480", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2944,
 926		   3192, 3432, 0, 480, 489, 495, 525, 0,
 927		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 928	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 929	/* 37 - 2880x576@50Hz 4:3 */
 930	{ DRM_MODE("2880x576", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2928,
 931		   3184, 3456, 0, 576, 581, 586, 625, 0,
 932		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 933	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 934	/* 38 - 2880x576@50Hz 16:9 */
 935	{ DRM_MODE("2880x576", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2928,
 936		   3184, 3456, 0, 576, 581, 586, 625, 0,
 937		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 938	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 939	/* 39 - 1920x1080i@50Hz 16:9 */
 940	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 72000, 1920, 1952,
 941		   2120, 2304, 0, 1080, 1126, 1136, 1250, 0,
 942		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC |
 943		   DRM_MODE_FLAG_INTERLACE),
 944	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 945	/* 40 - 1920x1080i@100Hz 16:9 */
 946	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
 947		   2492, 2640, 0, 1080, 1084, 1094, 1125, 0,
 948		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
 949		   DRM_MODE_FLAG_INTERLACE),
 950	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 951	/* 41 - 1280x720@100Hz 16:9 */
 952	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1720,
 953		   1760, 1980, 0, 720, 725, 730, 750, 0,
 954		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
 955	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 956	/* 42 - 720x576@100Hz 4:3 */
 957	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
 958		   796, 864, 0, 576, 581, 586, 625, 0,
 959		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 960	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 961	/* 43 - 720x576@100Hz 16:9 */
 962	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
 963		   796, 864, 0, 576, 581, 586, 625, 0,
 964		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 965	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 966	/* 44 - 720(1440)x576i@100Hz 4:3 */
 967	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
 968		   795, 864, 0, 576, 580, 586, 625, 0,
 969		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 970		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
 971	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 972	/* 45 - 720(1440)x576i@100Hz 16:9 */
 973	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
 974		   795, 864, 0, 576, 580, 586, 625, 0,
 975		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 976		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
 977	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 978	/* 46 - 1920x1080i@120Hz 16:9 */
 979	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
 980		   2052, 2200, 0, 1080, 1084, 1094, 1125, 0,
 981		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
 982		   DRM_MODE_FLAG_INTERLACE),
 983	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 984	/* 47 - 1280x720@120Hz 16:9 */
 985	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1390,
 986		   1430, 1650, 0, 720, 725, 730, 750, 0,
 987		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
 988	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 989	/* 48 - 720x480@120Hz 4:3 */
 990	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 54000, 720, 736,
 991		   798, 858, 0, 480, 489, 495, 525, 0,
 992		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 993	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 994	/* 49 - 720x480@120Hz 16:9 */
 995	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 54000, 720, 736,
 996		   798, 858, 0, 480, 489, 495, 525, 0,
 997		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 998	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 999	/* 50 - 720(1440)x480i@120Hz 4:3 */
1000	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 27000, 720, 739,
1001		   801, 858, 0, 480, 488, 494, 525, 0,
1002		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1003		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1004	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1005	/* 51 - 720(1440)x480i@120Hz 16:9 */
1006	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 27000, 720, 739,
1007		   801, 858, 0, 480, 488, 494, 525, 0,
1008		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1009		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1010	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1011	/* 52 - 720x576@200Hz 4:3 */
1012	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 108000, 720, 732,
1013		   796, 864, 0, 576, 581, 586, 625, 0,
1014		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1015	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1016	/* 53 - 720x576@200Hz 16:9 */
1017	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 108000, 720, 732,
1018		   796, 864, 0, 576, 581, 586, 625, 0,
1019		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1020	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1021	/* 54 - 720(1440)x576i@200Hz 4:3 */
1022	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
1023		   795, 864, 0, 576, 580, 586, 625, 0,
1024		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1025		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1026	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1027	/* 55 - 720(1440)x576i@200Hz 16:9 */
1028	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
1029		   795, 864, 0, 576, 580, 586, 625, 0,
1030		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1031		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1032	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1033	/* 56 - 720x480@240Hz 4:3 */
1034	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 108000, 720, 736,
1035		   798, 858, 0, 480, 489, 495, 525, 0,
1036		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1037	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1038	/* 57 - 720x480@240Hz 16:9 */
1039	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 108000, 720, 736,
1040		   798, 858, 0, 480, 489, 495, 525, 0,
1041		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1042	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1043	/* 58 - 720(1440)x480i@240Hz 4:3 */
1044	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 54000, 720, 739,
1045		   801, 858, 0, 480, 488, 494, 525, 0,
1046		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1047		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1048	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1049	/* 59 - 720(1440)x480i@240Hz 16:9 */
1050	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 54000, 720, 739,
1051		   801, 858, 0, 480, 488, 494, 525, 0,
1052		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1053		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1054	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1055	/* 60 - 1280x720@24Hz 16:9 */
1056	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 59400, 1280, 3040,
1057		   3080, 3300, 0, 720, 725, 730, 750, 0,
1058		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1059	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1060	/* 61 - 1280x720@25Hz 16:9 */
1061	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3700,
1062		   3740, 3960, 0, 720, 725, 730, 750, 0,
1063		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1064	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1065	/* 62 - 1280x720@30Hz 16:9 */
1066	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3040,
1067		   3080, 3300, 0, 720, 725, 730, 750, 0,
1068		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1069	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1070	/* 63 - 1920x1080@120Hz 16:9 */
1071	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2008,
1072		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
1073		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1074	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1075	/* 64 - 1920x1080@100Hz 16:9 */
1076	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2448,
1077		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
1078		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1079	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1080	/* 65 - 1280x720@24Hz 64:27 */
1081	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 59400, 1280, 3040,
1082		   3080, 3300, 0, 720, 725, 730, 750, 0,
1083		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1084	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1085	/* 66 - 1280x720@25Hz 64:27 */
1086	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3700,
1087		   3740, 3960, 0, 720, 725, 730, 750, 0,
1088		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1089	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1090	/* 67 - 1280x720@30Hz 64:27 */
1091	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3040,
1092		   3080, 3300, 0, 720, 725, 730, 750, 0,
1093		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1094	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1095	/* 68 - 1280x720@50Hz 64:27 */
1096	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1720,
1097		   1760, 1980, 0, 720, 725, 730, 750, 0,
1098		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1099	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1100	/* 69 - 1280x720@60Hz 64:27 */
1101	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
1102		   1430, 1650, 0, 720, 725, 730, 750, 0,
1103		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1104	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1105	/* 70 - 1280x720@100Hz 64:27 */
1106	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1720,
1107		   1760, 1980, 0, 720, 725, 730, 750, 0,
1108		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1109	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1110	/* 71 - 1280x720@120Hz 64:27 */
1111	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1390,
1112		   1430, 1650, 0, 720, 725, 730, 750, 0,
1113		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1114	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1115	/* 72 - 1920x1080@24Hz 64:27 */
1116	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2558,
1117		   2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
1118		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1119	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1120	/* 73 - 1920x1080@25Hz 64:27 */
1121	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
1122		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
1123		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1124	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1125	/* 74 - 1920x1080@30Hz 64:27 */
1126	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
1127		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
1128		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1129	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1130	/* 75 - 1920x1080@50Hz 64:27 */
1131	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
1132		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
1133		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1134	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1135	/* 76 - 1920x1080@60Hz 64:27 */
1136	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
1137		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
1138		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1139	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1140	/* 77 - 1920x1080@100Hz 64:27 */
1141	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2448,
1142		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
1143		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1144	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1145	/* 78 - 1920x1080@120Hz 64:27 */
1146	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2008,
1147		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
1148		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1149	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1150	/* 79 - 1680x720@24Hz 64:27 */
1151	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 59400, 1680, 3040,
1152		   3080, 3300, 0, 720, 725, 730, 750, 0,
1153		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1154	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1155	/* 80 - 1680x720@25Hz 64:27 */
1156	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 59400, 1680, 2908,
1157		   2948, 3168, 0, 720, 725, 730, 750, 0,
1158		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1159	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1160	/* 81 - 1680x720@30Hz 64:27 */
1161	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 59400, 1680, 2380,
1162		   2420, 2640, 0, 720, 725, 730, 750, 0,
1163		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1164	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1165	/* 82 - 1680x720@50Hz 64:27 */
1166	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 82500, 1680, 1940,
1167		   1980, 2200, 0, 720, 725, 730, 750, 0,
1168		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1169	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1170	/* 83 - 1680x720@60Hz 64:27 */
1171	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 99000, 1680, 1940,
1172		   1980, 2200, 0, 720, 725, 730, 750, 0,
1173		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1174	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1175	/* 84 - 1680x720@100Hz 64:27 */
1176	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 165000, 1680, 1740,
1177		   1780, 2000, 0, 720, 725, 730, 825, 0,
1178		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1179	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1180	/* 85 - 1680x720@120Hz 64:27 */
1181	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 198000, 1680, 1740,
1182		   1780, 2000, 0, 720, 725, 730, 825, 0,
1183		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1184	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1185	/* 86 - 2560x1080@24Hz 64:27 */
1186	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 99000, 2560, 3558,
1187		   3602, 3750, 0, 1080, 1084, 1089, 1100, 0,
1188		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1189	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1190	/* 87 - 2560x1080@25Hz 64:27 */
1191	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 90000, 2560, 3008,
1192		   3052, 3200, 0, 1080, 1084, 1089, 1125, 0,
1193		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1194	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1195	/* 88 - 2560x1080@30Hz 64:27 */
1196	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 118800, 2560, 3328,
1197		   3372, 3520, 0, 1080, 1084, 1089, 1125, 0,
1198		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1199	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1200	/* 89 - 2560x1080@50Hz 64:27 */
1201	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 185625, 2560, 3108,
1202		   3152, 3300, 0, 1080, 1084, 1089, 1125, 0,
1203		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1204	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1205	/* 90 - 2560x1080@60Hz 64:27 */
1206	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 198000, 2560, 2808,
1207		   2852, 3000, 0, 1080, 1084, 1089, 1100, 0,
1208		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1209	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1210	/* 91 - 2560x1080@100Hz 64:27 */
1211	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 371250, 2560, 2778,
1212		   2822, 2970, 0, 1080, 1084, 1089, 1250, 0,
1213		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1214	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1215	/* 92 - 2560x1080@120Hz 64:27 */
1216	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 495000, 2560, 3108,
1217		   3152, 3300, 0, 1080, 1084, 1089, 1250, 0,
1218		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1219	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1220	/* 93 - 3840x2160@24Hz 16:9 */
1221	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 5116,
1222		   5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1223		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1224	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1225	/* 94 - 3840x2160@25Hz 16:9 */
1226	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4896,
1227		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1228		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1229	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1230	/* 95 - 3840x2160@30Hz 16:9 */
1231	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4016,
1232		   4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1233		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1234	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1235	/* 96 - 3840x2160@50Hz 16:9 */
1236	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4896,
1237		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1238		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1239	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1240	/* 97 - 3840x2160@60Hz 16:9 */
1241	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4016,
1242		   4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1243		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1244	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1245	/* 98 - 4096x2160@24Hz 256:135 */
1246	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000, 4096, 5116,
1247		   5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1248		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1249	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1250	/* 99 - 4096x2160@25Hz 256:135 */
1251	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000, 4096, 5064,
1252		   5152, 5280, 0, 2160, 2168, 2178, 2250, 0,
1253		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1254	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1255	/* 100 - 4096x2160@30Hz 256:135 */
1256	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000, 4096, 4184,
1257		   4272, 4400, 0, 2160, 2168, 2178, 2250, 0,
1258		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1259	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1260	/* 101 - 4096x2160@50Hz 256:135 */
1261	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 594000, 4096, 5064,
1262		   5152, 5280, 0, 2160, 2168, 2178, 2250, 0,
1263		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1264	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1265	/* 102 - 4096x2160@60Hz 256:135 */
1266	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 594000, 4096, 4184,
1267		   4272, 4400, 0, 2160, 2168, 2178, 2250, 0,
1268		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1269	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1270	/* 103 - 3840x2160@24Hz 64:27 */
1271	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 5116,
1272		   5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1273		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1274	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1275	/* 104 - 3840x2160@25Hz 64:27 */
1276	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4896,
1277		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1278		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1279	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1280	/* 105 - 3840x2160@30Hz 64:27 */
1281	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4016,
1282		   4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1283		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1284	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1285	/* 106 - 3840x2160@50Hz 64:27 */
1286	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4896,
1287		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1288		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1289	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1290	/* 107 - 3840x2160@60Hz 64:27 */
1291	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4016,
1292		   4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1293		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1294	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1295	/* 108 - 1280x720@48Hz 16:9 */
1296	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 90000, 1280, 2240,
1297		   2280, 2500, 0, 720, 725, 730, 750, 0,
1298		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1299	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1300	/* 109 - 1280x720@48Hz 64:27 */
1301	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 90000, 1280, 2240,
1302		   2280, 2500, 0, 720, 725, 730, 750, 0,
1303		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1304	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1305	/* 110 - 1680x720@48Hz 64:27 */
1306	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 99000, 1680, 2490,
1307		   2530, 2750, 0, 720, 725, 730, 750, 0,
1308		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1309	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1310	/* 111 - 1920x1080@48Hz 16:9 */
1311	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2558,
1312		   2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
1313		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1314	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1315	/* 112 - 1920x1080@48Hz 64:27 */
1316	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2558,
1317		   2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
1318		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1319	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1320	/* 113 - 2560x1080@48Hz 64:27 */
1321	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 198000, 2560, 3558,
1322		   3602, 3750, 0, 1080, 1084, 1089, 1100, 0,
1323		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1324	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1325	/* 114 - 3840x2160@48Hz 16:9 */
1326	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 5116,
1327		   5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1328		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1329	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1330	/* 115 - 4096x2160@48Hz 256:135 */
1331	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 594000, 4096, 5116,
1332		   5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1333		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1334	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1335	/* 116 - 3840x2160@48Hz 64:27 */
1336	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 5116,
1337		   5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1338		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1339	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1340	/* 117 - 3840x2160@100Hz 16:9 */
1341	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4896,
1342		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1343		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1344	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1345	/* 118 - 3840x2160@120Hz 16:9 */
1346	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4016,
1347		   4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1348		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1349	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1350	/* 119 - 3840x2160@100Hz 64:27 */
1351	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4896,
1352		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1353		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1354	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1355	/* 120 - 3840x2160@120Hz 64:27 */
1356	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4016,
1357		   4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1358		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1359	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1360	/* 121 - 5120x2160@24Hz 64:27 */
1361	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 396000, 5120, 7116,
1362		   7204, 7500, 0, 2160, 2168, 2178, 2200, 0,
1363		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1364	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1365	/* 122 - 5120x2160@25Hz 64:27 */
1366	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 396000, 5120, 6816,
1367		   6904, 7200, 0, 2160, 2168, 2178, 2200, 0,
1368		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1369	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1370	/* 123 - 5120x2160@30Hz 64:27 */
1371	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 396000, 5120, 5784,
1372		   5872, 6000, 0, 2160, 2168, 2178, 2200, 0,
1373		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1374	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1375	/* 124 - 5120x2160@48Hz 64:27 */
1376	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 742500, 5120, 5866,
1377		   5954, 6250, 0, 2160, 2168, 2178, 2475, 0,
1378		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1379	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1380	/* 125 - 5120x2160@50Hz 64:27 */
1381	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 742500, 5120, 6216,
1382		   6304, 6600, 0, 2160, 2168, 2178, 2250, 0,
1383		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1384	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1385	/* 126 - 5120x2160@60Hz 64:27 */
1386	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 742500, 5120, 5284,
1387		   5372, 5500, 0, 2160, 2168, 2178, 2250, 0,
1388		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1389	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1390	/* 127 - 5120x2160@100Hz 64:27 */
1391	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 1485000, 5120, 6216,
1392		   6304, 6600, 0, 2160, 2168, 2178, 2250, 0,
1393		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1394	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1395};
1396
1397/*
1398 * From CEA/CTA-861 spec.
1399 *
1400 * Do not access directly, instead always use cea_mode_for_vic().
1401 */
1402static const struct drm_display_mode edid_cea_modes_193[] = {
1403	/* 193 - 5120x2160@120Hz 64:27 */
1404	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 1485000, 5120, 5284,
1405		   5372, 5500, 0, 2160, 2168, 2178, 2250, 0,
1406		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1407	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1408	/* 194 - 7680x4320@24Hz 16:9 */
1409	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10232,
1410		   10408, 11000, 0, 4320, 4336, 4356, 4500, 0,
1411		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1412	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1413	/* 195 - 7680x4320@25Hz 16:9 */
1414	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10032,
1415		   10208, 10800, 0, 4320, 4336, 4356, 4400, 0,
1416		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1417	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1418	/* 196 - 7680x4320@30Hz 16:9 */
1419	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 8232,
1420		   8408, 9000, 0, 4320, 4336, 4356, 4400, 0,
1421		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1422	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1423	/* 197 - 7680x4320@48Hz 16:9 */
1424	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10232,
1425		   10408, 11000, 0, 4320, 4336, 4356, 4500, 0,
1426		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1427	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1428	/* 198 - 7680x4320@50Hz 16:9 */
1429	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10032,
1430		   10208, 10800, 0, 4320, 4336, 4356, 4400, 0,
1431		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1432	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1433	/* 199 - 7680x4320@60Hz 16:9 */
1434	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 8232,
1435		   8408, 9000, 0, 4320, 4336, 4356, 4400, 0,
1436		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1437	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1438	/* 200 - 7680x4320@100Hz 16:9 */
1439	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 4752000, 7680, 9792,
1440		   9968, 10560, 0, 4320, 4336, 4356, 4500, 0,
1441		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1442	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1443	/* 201 - 7680x4320@120Hz 16:9 */
1444	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 4752000, 7680, 8032,
1445		   8208, 8800, 0, 4320, 4336, 4356, 4500, 0,
1446		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1447	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1448	/* 202 - 7680x4320@24Hz 64:27 */
1449	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10232,
1450		   10408, 11000, 0, 4320, 4336, 4356, 4500, 0,
1451		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1452	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1453	/* 203 - 7680x4320@25Hz 64:27 */
1454	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10032,
1455		   10208, 10800, 0, 4320, 4336, 4356, 4400, 0,
1456		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1457	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1458	/* 204 - 7680x4320@30Hz 64:27 */
1459	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 8232,
1460		   8408, 9000, 0, 4320, 4336, 4356, 4400, 0,
1461		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1462	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1463	/* 205 - 7680x4320@48Hz 64:27 */
1464	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10232,
1465		   10408, 11000, 0, 4320, 4336, 4356, 4500, 0,
1466		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1467	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1468	/* 206 - 7680x4320@50Hz 64:27 */
1469	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10032,
1470		   10208, 10800, 0, 4320, 4336, 4356, 4400, 0,
1471		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1472	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1473	/* 207 - 7680x4320@60Hz 64:27 */
1474	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 8232,
1475		   8408, 9000, 0, 4320, 4336, 4356, 4400, 0,
1476		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1477	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1478	/* 208 - 7680x4320@100Hz 64:27 */
1479	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 4752000, 7680, 9792,
1480		   9968, 10560, 0, 4320, 4336, 4356, 4500, 0,
1481		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1482	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1483	/* 209 - 7680x4320@120Hz 64:27 */
1484	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 4752000, 7680, 8032,
1485		   8208, 8800, 0, 4320, 4336, 4356, 4500, 0,
1486		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1487	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1488	/* 210 - 10240x4320@24Hz 64:27 */
1489	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 1485000, 10240, 11732,
1490		   11908, 12500, 0, 4320, 4336, 4356, 4950, 0,
1491		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1492	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1493	/* 211 - 10240x4320@25Hz 64:27 */
1494	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 1485000, 10240, 12732,
1495		   12908, 13500, 0, 4320, 4336, 4356, 4400, 0,
1496		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1497	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1498	/* 212 - 10240x4320@30Hz 64:27 */
1499	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 1485000, 10240, 10528,
1500		   10704, 11000, 0, 4320, 4336, 4356, 4500, 0,
1501		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1502	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1503	/* 213 - 10240x4320@48Hz 64:27 */
1504	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 2970000, 10240, 11732,
1505		   11908, 12500, 0, 4320, 4336, 4356, 4950, 0,
1506		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1507	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1508	/* 214 - 10240x4320@50Hz 64:27 */
1509	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 2970000, 10240, 12732,
1510		   12908, 13500, 0, 4320, 4336, 4356, 4400, 0,
1511		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1512	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1513	/* 215 - 10240x4320@60Hz 64:27 */
1514	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 2970000, 10240, 10528,
1515		   10704, 11000, 0, 4320, 4336, 4356, 4500, 0,
1516		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1517	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1518	/* 216 - 10240x4320@100Hz 64:27 */
1519	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 5940000, 10240, 12432,
1520		   12608, 13200, 0, 4320, 4336, 4356, 4500, 0,
1521		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1522	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1523	/* 217 - 10240x4320@120Hz 64:27 */
1524	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 5940000, 10240, 10528,
1525		   10704, 11000, 0, 4320, 4336, 4356, 4500, 0,
1526		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1527	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1528	/* 218 - 4096x2160@100Hz 256:135 */
1529	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 1188000, 4096, 4896,
1530		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1531		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1532	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1533	/* 219 - 4096x2160@120Hz 256:135 */
1534	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 1188000, 4096, 4184,
1535		   4272, 4400, 0, 2160, 2168, 2178, 2250, 0,
1536		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1537	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1538};
1539
1540/*
1541 * HDMI 1.4 4k modes. Index using the VIC.
1542 */
1543static const struct drm_display_mode edid_4k_modes[] = {
1544	/* 0 - dummy, VICs start at 1 */
1545	{ },
1546	/* 1 - 3840x2160@30Hz */
1547	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
1548		   3840, 4016, 4104, 4400, 0,
1549		   2160, 2168, 2178, 2250, 0,
1550		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1551	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1552	/* 2 - 3840x2160@25Hz */
1553	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
1554		   3840, 4896, 4984, 5280, 0,
1555		   2160, 2168, 2178, 2250, 0,
1556		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1557	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1558	/* 3 - 3840x2160@24Hz */
1559	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
1560		   3840, 5116, 5204, 5500, 0,
1561		   2160, 2168, 2178, 2250, 0,
1562		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1563	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1564	/* 4 - 4096x2160@24Hz (SMPTE) */
1565	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000,
1566		   4096, 5116, 5204, 5500, 0,
1567		   2160, 2168, 2178, 2250, 0,
1568		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1569	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1570};
1571
1572/*** DDC fetch and block validation ***/
1573
1574/*
1575 * The opaque EDID type, internal to drm_edid.c.
1576 */
1577struct drm_edid {
1578	/* Size allocated for edid */
1579	size_t size;
1580	const struct edid *edid;
1581};
1582
1583static int edid_hfeeodb_extension_block_count(const struct edid *edid);
1584
1585static int edid_hfeeodb_block_count(const struct edid *edid)
1586{
1587	int eeodb = edid_hfeeodb_extension_block_count(edid);
1588
1589	return eeodb ? eeodb + 1 : 0;
1590}
1591
1592static int edid_extension_block_count(const struct edid *edid)
1593{
1594	return edid->extensions;
1595}
1596
1597static int edid_block_count(const struct edid *edid)
1598{
1599	return edid_extension_block_count(edid) + 1;
1600}
1601
1602static int edid_size_by_blocks(int num_blocks)
1603{
1604	return num_blocks * EDID_LENGTH;
1605}
1606
1607static int edid_size(const struct edid *edid)
1608{
1609	return edid_size_by_blocks(edid_block_count(edid));
1610}
1611
1612static const void *edid_block_data(const struct edid *edid, int index)
1613{
1614	BUILD_BUG_ON(sizeof(*edid) != EDID_LENGTH);
1615
1616	return edid + index;
1617}
1618
1619static const void *edid_extension_block_data(const struct edid *edid, int index)
1620{
1621	return edid_block_data(edid, index + 1);
1622}
1623
1624/* EDID block count indicated in EDID, may exceed allocated size */
1625static int __drm_edid_block_count(const struct drm_edid *drm_edid)
1626{
1627	int num_blocks;
1628
1629	/* Starting point */
1630	num_blocks = edid_block_count(drm_edid->edid);
1631
1632	/* HF-EEODB override */
1633	if (drm_edid->size >= edid_size_by_blocks(2)) {
1634		int eeodb;
1635
1636		/*
1637		 * Note: HF-EEODB may specify a smaller extension count than the
1638		 * regular one. Unlike in buffer allocation, here we can use it.
1639		 */
1640		eeodb = edid_hfeeodb_block_count(drm_edid->edid);
1641		if (eeodb)
1642			num_blocks = eeodb;
1643	}
1644
1645	return num_blocks;
1646}
1647
1648/* EDID block count, limited by allocated size */
1649static int drm_edid_block_count(const struct drm_edid *drm_edid)
1650{
1651	/* Limit by allocated size */
1652	return min(__drm_edid_block_count(drm_edid),
1653		   (int)drm_edid->size / EDID_LENGTH);
1654}
1655
1656/* EDID extension block count, limited by allocated size */
1657static int drm_edid_extension_block_count(const struct drm_edid *drm_edid)
1658{
1659	return drm_edid_block_count(drm_edid) - 1;
1660}
1661
1662static const void *drm_edid_block_data(const struct drm_edid *drm_edid, int index)
1663{
1664	return edid_block_data(drm_edid->edid, index);
1665}
1666
1667static const void *drm_edid_extension_block_data(const struct drm_edid *drm_edid,
1668						 int index)
1669{
1670	return edid_extension_block_data(drm_edid->edid, index);
1671}
1672
1673/*
1674 * Initializer helper for legacy interfaces, where we have no choice but to
1675 * trust edid size. Not for general purpose use.
1676 */
1677static const struct drm_edid *drm_edid_legacy_init(struct drm_edid *drm_edid,
1678						   const struct edid *edid)
1679{
1680	if (!edid)
1681		return NULL;
1682
1683	memset(drm_edid, 0, sizeof(*drm_edid));
1684
1685	drm_edid->edid = edid;
1686	drm_edid->size = edid_size(edid);
1687
1688	return drm_edid;
1689}
1690
1691/*
1692 * EDID base and extension block iterator.
1693 *
1694 * struct drm_edid_iter iter;
1695 * const u8 *block;
1696 *
1697 * drm_edid_iter_begin(drm_edid, &iter);
1698 * drm_edid_iter_for_each(block, &iter) {
1699 *         // do stuff with block
1700 * }
1701 * drm_edid_iter_end(&iter);
1702 */
1703struct drm_edid_iter {
1704	const struct drm_edid *drm_edid;
1705
1706	/* Current block index. */
1707	int index;
1708};
1709
1710static void drm_edid_iter_begin(const struct drm_edid *drm_edid,
1711				struct drm_edid_iter *iter)
1712{
1713	memset(iter, 0, sizeof(*iter));
1714
1715	iter->drm_edid = drm_edid;
1716}
1717
1718static const void *__drm_edid_iter_next(struct drm_edid_iter *iter)
1719{
1720	const void *block = NULL;
1721
1722	if (!iter->drm_edid)
1723		return NULL;
1724
1725	if (iter->index < drm_edid_block_count(iter->drm_edid))
1726		block = drm_edid_block_data(iter->drm_edid, iter->index++);
1727
1728	return block;
1729}
1730
1731#define drm_edid_iter_for_each(__block, __iter)			\
1732	while (((__block) = __drm_edid_iter_next(__iter)))
1733
1734static void drm_edid_iter_end(struct drm_edid_iter *iter)
1735{
1736	memset(iter, 0, sizeof(*iter));
1737}
1738
1739static const u8 edid_header[] = {
1740	0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00
1741};
1742
1743static void edid_header_fix(void *edid)
1744{
1745	memcpy(edid, edid_header, sizeof(edid_header));
1746}
1747
1748/**
1749 * drm_edid_header_is_valid - sanity check the header of the base EDID block
1750 * @_edid: pointer to raw base EDID block
1751 *
1752 * Sanity check the header of the base EDID block.
1753 *
1754 * Return: 8 if the header is perfect, down to 0 if it's totally wrong.
1755 */
1756int drm_edid_header_is_valid(const void *_edid)
1757{
1758	const struct edid *edid = _edid;
1759	int i, score = 0;
1760
1761	for (i = 0; i < sizeof(edid_header); i++) {
1762		if (edid->header[i] == edid_header[i])
1763			score++;
1764	}
1765
1766	return score;
1767}
1768EXPORT_SYMBOL(drm_edid_header_is_valid);
1769
1770static int edid_fixup __read_mostly = 6;
1771module_param_named(edid_fixup, edid_fixup, int, 0400);
1772MODULE_PARM_DESC(edid_fixup,
1773		 "Minimum number of valid EDID header bytes (0-8, default 6)");
1774
1775static int edid_block_compute_checksum(const void *_block)
 
 
 
1776{
1777	const u8 *block = _block;
1778	int i;
1779	u8 csum = 0, crc = 0;
1780
1781	for (i = 0; i < EDID_LENGTH - 1; i++)
1782		csum += block[i];
1783
1784	crc = 0x100 - csum;
1785
1786	return crc;
1787}
1788
1789static int edid_block_get_checksum(const void *_block)
1790{
1791	const struct edid *block = _block;
1792
1793	return block->checksum;
1794}
1795
1796static int edid_block_tag(const void *_block)
1797{
1798	const u8 *block = _block;
1799
1800	return block[0];
1801}
1802
1803static bool edid_block_is_zero(const void *edid)
1804{
1805	return !memchr_inv(edid, 0, EDID_LENGTH);
1806}
1807
1808/**
1809 * drm_edid_are_equal - compare two edid blobs.
1810 * @edid1: pointer to first blob
1811 * @edid2: pointer to second blob
1812 * This helper can be used during probing to determine if
1813 * edid had changed.
1814 */
1815bool drm_edid_are_equal(const struct edid *edid1, const struct edid *edid2)
1816{
1817	int edid1_len, edid2_len;
1818	bool edid1_present = edid1 != NULL;
1819	bool edid2_present = edid2 != NULL;
1820
1821	if (edid1_present != edid2_present)
1822		return false;
1823
1824	if (edid1) {
1825		edid1_len = edid_size(edid1);
1826		edid2_len = edid_size(edid2);
1827
1828		if (edid1_len != edid2_len)
1829			return false;
1830
1831		if (memcmp(edid1, edid2, edid1_len))
1832			return false;
1833	}
1834
1835	return true;
1836}
1837EXPORT_SYMBOL(drm_edid_are_equal);
1838
1839enum edid_block_status {
1840	EDID_BLOCK_OK = 0,
1841	EDID_BLOCK_READ_FAIL,
1842	EDID_BLOCK_NULL,
1843	EDID_BLOCK_ZERO,
1844	EDID_BLOCK_HEADER_CORRUPT,
1845	EDID_BLOCK_HEADER_REPAIR,
1846	EDID_BLOCK_HEADER_FIXED,
1847	EDID_BLOCK_CHECKSUM,
1848	EDID_BLOCK_VERSION,
1849};
1850
1851static enum edid_block_status edid_block_check(const void *_block,
1852					       bool is_base_block)
1853{
1854	const struct edid *block = _block;
1855
1856	if (!block)
1857		return EDID_BLOCK_NULL;
1858
1859	if (is_base_block) {
1860		int score = drm_edid_header_is_valid(block);
1861
1862		if (score < clamp(edid_fixup, 0, 8)) {
1863			if (edid_block_is_zero(block))
1864				return EDID_BLOCK_ZERO;
1865			else
1866				return EDID_BLOCK_HEADER_CORRUPT;
1867		}
1868
1869		if (score < 8)
1870			return EDID_BLOCK_HEADER_REPAIR;
1871	}
1872
1873	if (edid_block_compute_checksum(block) != edid_block_get_checksum(block)) {
1874		if (edid_block_is_zero(block))
1875			return EDID_BLOCK_ZERO;
1876		else
1877			return EDID_BLOCK_CHECKSUM;
1878	}
1879
1880	if (is_base_block) {
1881		if (block->version != 1)
1882			return EDID_BLOCK_VERSION;
1883	}
1884
1885	return EDID_BLOCK_OK;
1886}
1887
1888static bool edid_block_status_valid(enum edid_block_status status, int tag)
1889{
1890	return status == EDID_BLOCK_OK ||
1891		status == EDID_BLOCK_HEADER_FIXED ||
1892		(status == EDID_BLOCK_CHECKSUM && tag == CEA_EXT);
1893}
1894
1895static bool edid_block_valid(const void *block, bool base)
1896{
1897	return edid_block_status_valid(edid_block_check(block, base),
1898				       edid_block_tag(block));
1899}
1900
1901static void edid_block_status_print(enum edid_block_status status,
1902				    const struct edid *block,
1903				    int block_num)
1904{
1905	switch (status) {
1906	case EDID_BLOCK_OK:
1907		break;
1908	case EDID_BLOCK_READ_FAIL:
1909		pr_debug("EDID block %d read failed\n", block_num);
1910		break;
1911	case EDID_BLOCK_NULL:
1912		pr_debug("EDID block %d pointer is NULL\n", block_num);
1913		break;
1914	case EDID_BLOCK_ZERO:
1915		pr_notice("EDID block %d is all zeroes\n", block_num);
1916		break;
1917	case EDID_BLOCK_HEADER_CORRUPT:
1918		pr_notice("EDID has corrupt header\n");
1919		break;
1920	case EDID_BLOCK_HEADER_REPAIR:
1921		pr_debug("EDID corrupt header needs repair\n");
1922		break;
1923	case EDID_BLOCK_HEADER_FIXED:
1924		pr_debug("EDID corrupt header fixed\n");
1925		break;
1926	case EDID_BLOCK_CHECKSUM:
1927		if (edid_block_status_valid(status, edid_block_tag(block))) {
1928			pr_debug("EDID block %d (tag 0x%02x) checksum is invalid, remainder is %d, ignoring\n",
1929				 block_num, edid_block_tag(block),
1930				 edid_block_compute_checksum(block));
1931		} else {
1932			pr_notice("EDID block %d (tag 0x%02x) checksum is invalid, remainder is %d\n",
1933				  block_num, edid_block_tag(block),
1934				  edid_block_compute_checksum(block));
1935		}
1936		break;
1937	case EDID_BLOCK_VERSION:
1938		pr_notice("EDID has major version %d, instead of 1\n",
1939			  block->version);
1940		break;
1941	default:
1942		WARN(1, "EDID block %d unknown edid block status code %d\n",
1943		     block_num, status);
1944		break;
1945	}
1946}
1947
1948static void edid_block_dump(const char *level, const void *block, int block_num)
1949{
1950	enum edid_block_status status;
1951	char prefix[20];
1952
1953	status = edid_block_check(block, block_num == 0);
1954	if (status == EDID_BLOCK_ZERO)
1955		sprintf(prefix, "\t[%02x] ZERO ", block_num);
1956	else if (!edid_block_status_valid(status, edid_block_tag(block)))
1957		sprintf(prefix, "\t[%02x] BAD  ", block_num);
1958	else
1959		sprintf(prefix, "\t[%02x] GOOD ", block_num);
1960
1961	print_hex_dump(level, prefix, DUMP_PREFIX_NONE, 16, 1,
1962		       block, EDID_LENGTH, false);
1963}
1964
1965/**
1966 * drm_edid_block_valid - Sanity check the EDID block (base or extension)
1967 * @_block: pointer to raw EDID block
1968 * @block_num: type of block to validate (0 for base, extension otherwise)
1969 * @print_bad_edid: if true, dump bad EDID blocks to the console
1970 * @edid_corrupt: if true, the header or checksum is invalid
1971 *
1972 * Validate a base or extension EDID block and optionally dump bad blocks to
1973 * the console.
1974 *
1975 * Return: True if the block is valid, false otherwise.
1976 */
1977bool drm_edid_block_valid(u8 *_block, int block_num, bool print_bad_edid,
1978			  bool *edid_corrupt)
1979{
1980	struct edid *block = (struct edid *)_block;
1981	enum edid_block_status status;
1982	bool is_base_block = block_num == 0;
1983	bool valid;
1984
1985	if (WARN_ON(!block))
1986		return false;
1987
1988	status = edid_block_check(block, is_base_block);
1989	if (status == EDID_BLOCK_HEADER_REPAIR) {
1990		DRM_DEBUG_KMS("Fixing EDID header, your hardware may be failing\n");
1991		edid_header_fix(block);
1992
1993		/* Retry with fixed header, update status if that worked. */
1994		status = edid_block_check(block, is_base_block);
1995		if (status == EDID_BLOCK_OK)
1996			status = EDID_BLOCK_HEADER_FIXED;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1997	}
1998
1999	if (edid_corrupt) {
2000		/*
2001		 * Unknown major version isn't corrupt but we can't use it. Only
2002		 * the base block can reset edid_corrupt to false.
2003		 */
2004		if (is_base_block &&
2005		    (status == EDID_BLOCK_OK || status == EDID_BLOCK_VERSION))
2006			*edid_corrupt = false;
2007		else if (status != EDID_BLOCK_OK)
2008			*edid_corrupt = true;
 
 
 
 
2009	}
2010
2011	edid_block_status_print(status, block, block_num);
 
 
 
 
 
 
2012
2013	/* Determine whether we can use this block with this status. */
2014	valid = edid_block_status_valid(status, edid_block_tag(block));
 
2015
2016	if (!valid && print_bad_edid && status != EDID_BLOCK_ZERO) {
2017		pr_notice("Raw EDID:\n");
2018		edid_block_dump(KERN_NOTICE, block, block_num);
2019	}
2020
2021	return valid;
 
 
 
 
 
 
 
 
 
 
 
 
2022}
2023EXPORT_SYMBOL(drm_edid_block_valid);
2024
2025/**
2026 * drm_edid_is_valid - sanity check EDID data
2027 * @edid: EDID data
2028 *
2029 * Sanity-check an entire EDID record (including extensions)
2030 *
2031 * Return: True if the EDID data is valid, false otherwise.
2032 */
2033bool drm_edid_is_valid(struct edid *edid)
2034{
2035	int i;
 
2036
2037	if (!edid)
2038		return false;
2039
2040	for (i = 0; i < edid_block_count(edid); i++) {
2041		void *block = (void *)edid_block_data(edid, i);
2042
2043		if (!drm_edid_block_valid(block, i, true, NULL))
2044			return false;
2045	}
2046
2047	return true;
2048}
2049EXPORT_SYMBOL(drm_edid_is_valid);
2050
2051/**
2052 * drm_edid_valid - sanity check EDID data
2053 * @drm_edid: EDID data
2054 *
2055 * Sanity check an EDID. Cross check block count against allocated size and
2056 * checksum the blocks.
2057 *
2058 * Return: True if the EDID data is valid, false otherwise.
2059 */
2060bool drm_edid_valid(const struct drm_edid *drm_edid)
2061{
2062	int i;
2063
2064	if (!drm_edid)
2065		return false;
2066
2067	if (edid_size_by_blocks(__drm_edid_block_count(drm_edid)) != drm_edid->size)
2068		return false;
2069
2070	for (i = 0; i < drm_edid_block_count(drm_edid); i++) {
2071		const void *block = drm_edid_block_data(drm_edid, i);
2072
2073		if (!edid_block_valid(block, i == 0))
2074			return false;
2075	}
2076
2077	return true;
2078}
2079EXPORT_SYMBOL(drm_edid_valid);
2080
2081static struct edid *edid_filter_invalid_blocks(struct edid *edid,
2082					       size_t *alloc_size)
2083{
2084	struct edid *new;
2085	int i, valid_blocks = 0;
2086
2087	/*
2088	 * Note: If the EDID uses HF-EEODB, but has invalid blocks, we'll revert
2089	 * back to regular extension count here. We don't want to start
2090	 * modifying the HF-EEODB extension too.
2091	 */
2092	for (i = 0; i < edid_block_count(edid); i++) {
2093		const void *src_block = edid_block_data(edid, i);
2094
2095		if (edid_block_valid(src_block, i == 0)) {
2096			void *dst_block = (void *)edid_block_data(edid, valid_blocks);
2097
2098			memmove(dst_block, src_block, EDID_LENGTH);
2099			valid_blocks++;
2100		}
2101	}
2102
2103	/* We already trusted the base block to be valid here... */
2104	if (WARN_ON(!valid_blocks)) {
2105		kfree(edid);
2106		return NULL;
2107	}
2108
2109	edid->extensions = valid_blocks - 1;
2110	edid->checksum = edid_block_compute_checksum(edid);
2111
2112	*alloc_size = edid_size_by_blocks(valid_blocks);
2113
2114	new = krealloc(edid, *alloc_size, GFP_KERNEL);
2115	if (!new)
2116		kfree(edid);
2117
2118	return new;
2119}
2120
2121#define DDC_SEGMENT_ADDR 0x30
2122/**
2123 * drm_do_probe_ddc_edid() - get EDID information via I2C
2124 * @data: I2C device adapter
2125 * @buf: EDID data buffer to be filled
2126 * @block: 128 byte EDID block to start fetching from
2127 * @len: EDID data buffer length to fetch
2128 *
2129 * Try to fetch EDID information by calling I2C driver functions.
2130 *
2131 * Return: 0 on success or -1 on failure.
2132 */
2133static int
2134drm_do_probe_ddc_edid(void *data, u8 *buf, unsigned int block, size_t len)
2135{
2136	struct i2c_adapter *adapter = data;
2137	unsigned char start = block * EDID_LENGTH;
2138	unsigned char segment = block >> 1;
2139	unsigned char xfers = segment ? 3 : 2;
2140	int ret, retries = 5;
2141
2142	/*
2143	 * The core I2C driver will automatically retry the transfer if the
2144	 * adapter reports EAGAIN. However, we find that bit-banging transfers
2145	 * are susceptible to errors under a heavily loaded machine and
2146	 * generate spurious NAKs and timeouts. Retrying the transfer
2147	 * of the individual block a few times seems to overcome this.
2148	 */
2149	do {
2150		struct i2c_msg msgs[] = {
2151			{
2152				.addr	= DDC_SEGMENT_ADDR,
2153				.flags	= 0,
2154				.len	= 1,
2155				.buf	= &segment,
2156			}, {
2157				.addr	= DDC_ADDR,
2158				.flags	= 0,
2159				.len	= 1,
2160				.buf	= &start,
2161			}, {
2162				.addr	= DDC_ADDR,
2163				.flags	= I2C_M_RD,
2164				.len	= len,
2165				.buf	= buf,
2166			}
2167		};
2168
2169		/*
2170		 * Avoid sending the segment addr to not upset non-compliant
2171		 * DDC monitors.
2172		 */
2173		ret = i2c_transfer(adapter, &msgs[3 - xfers], xfers);
2174
2175		if (ret == -ENXIO) {
2176			DRM_DEBUG_KMS("drm: skipping non-existent adapter %s\n",
2177					adapter->name);
2178			break;
2179		}
2180	} while (ret != xfers && --retries);
2181
2182	return ret == xfers ? 0 : -1;
2183}
2184
2185static void connector_bad_edid(struct drm_connector *connector,
2186			       const struct edid *edid, int num_blocks)
2187{
2188	int i;
2189	u8 last_block;
2190
2191	/*
2192	 * 0x7e in the EDID is the number of extension blocks. The EDID
2193	 * is 1 (base block) + num_ext_blocks big. That means we can think
2194	 * of 0x7e in the EDID of the _index_ of the last block in the
2195	 * combined chunk of memory.
2196	 */
2197	last_block = edid->extensions;
2198
2199	/* Calculate real checksum for the last edid extension block data */
2200	if (last_block < num_blocks)
2201		connector->real_edid_checksum =
2202			edid_block_compute_checksum(edid + last_block);
2203
2204	if (connector->bad_edid_counter++ && !drm_debug_enabled(DRM_UT_KMS))
2205		return;
2206
2207	drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] EDID is invalid:\n",
2208		    connector->base.id, connector->name);
2209	for (i = 0; i < num_blocks; i++)
2210		edid_block_dump(KERN_DEBUG, edid + i, i);
2211}
2212
2213/* Get override or firmware EDID */
2214static const struct drm_edid *drm_edid_override_get(struct drm_connector *connector)
2215{
2216	const struct drm_edid *override = NULL;
2217
2218	mutex_lock(&connector->edid_override_mutex);
2219
2220	if (connector->edid_override)
2221		override = drm_edid_dup(connector->edid_override);
2222
2223	mutex_unlock(&connector->edid_override_mutex);
2224
2225	if (!override)
2226		override = drm_edid_load_firmware(connector);
2227
2228	return IS_ERR(override) ? NULL : override;
2229}
2230
2231/* For debugfs edid_override implementation */
2232int drm_edid_override_show(struct drm_connector *connector, struct seq_file *m)
2233{
2234	const struct drm_edid *drm_edid;
2235
2236	mutex_lock(&connector->edid_override_mutex);
2237
2238	drm_edid = connector->edid_override;
2239	if (drm_edid)
2240		seq_write(m, drm_edid->edid, drm_edid->size);
2241
2242	mutex_unlock(&connector->edid_override_mutex);
2243
2244	return 0;
2245}
2246
2247/* For debugfs edid_override implementation */
2248int drm_edid_override_set(struct drm_connector *connector, const void *edid,
2249			  size_t size)
2250{
2251	const struct drm_edid *drm_edid;
2252
2253	drm_edid = drm_edid_alloc(edid, size);
2254	if (!drm_edid_valid(drm_edid)) {
2255		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] EDID override invalid\n",
2256			    connector->base.id, connector->name);
2257		drm_edid_free(drm_edid);
2258		return -EINVAL;
2259	}
2260
2261	drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] EDID override set\n",
2262		    connector->base.id, connector->name);
2263
2264	mutex_lock(&connector->edid_override_mutex);
2265
2266	drm_edid_free(connector->edid_override);
2267	connector->edid_override = drm_edid;
2268
2269	mutex_unlock(&connector->edid_override_mutex);
2270
2271	return 0;
2272}
2273
2274/* For debugfs edid_override implementation */
2275int drm_edid_override_reset(struct drm_connector *connector)
2276{
2277	drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] EDID override reset\n",
2278		    connector->base.id, connector->name);
2279
2280	mutex_lock(&connector->edid_override_mutex);
2281
2282	drm_edid_free(connector->edid_override);
2283	connector->edid_override = NULL;
2284
2285	mutex_unlock(&connector->edid_override_mutex);
2286
2287	return 0;
2288}
2289
2290/**
2291 * drm_edid_override_connector_update - add modes from override/firmware EDID
2292 * @connector: connector we're probing
2293 *
2294 * Add modes from the override/firmware EDID, if available. Only to be used from
2295 * drm_helper_probe_single_connector_modes() as a fallback for when DDC probe
2296 * failed during drm_get_edid() and caused the override/firmware EDID to be
2297 * skipped.
2298 *
2299 * Return: The number of modes added or 0 if we couldn't find any.
2300 */
2301int drm_edid_override_connector_update(struct drm_connector *connector)
2302{
2303	const struct drm_edid *override;
2304	int num_modes = 0;
2305
2306	override = drm_edid_override_get(connector);
2307	if (override) {
2308		num_modes = drm_edid_connector_update(connector, override);
2309
2310		drm_edid_free(override);
2311
2312		drm_dbg_kms(connector->dev,
2313			    "[CONNECTOR:%d:%s] adding %d modes via fallback override/firmware EDID\n",
2314			    connector->base.id, connector->name, num_modes);
2315	}
2316
2317	return num_modes;
2318}
2319EXPORT_SYMBOL(drm_edid_override_connector_update);
2320
2321typedef int read_block_fn(void *context, u8 *buf, unsigned int block, size_t len);
2322
2323static enum edid_block_status edid_block_read(void *block, unsigned int block_num,
2324					      read_block_fn read_block,
2325					      void *context)
2326{
2327	enum edid_block_status status;
2328	bool is_base_block = block_num == 0;
2329	int try;
2330
2331	for (try = 0; try < 4; try++) {
2332		if (read_block(context, block, block_num, EDID_LENGTH))
2333			return EDID_BLOCK_READ_FAIL;
2334
2335		status = edid_block_check(block, is_base_block);
2336		if (status == EDID_BLOCK_HEADER_REPAIR) {
2337			edid_header_fix(block);
2338
2339			/* Retry with fixed header, update status if that worked. */
2340			status = edid_block_check(block, is_base_block);
2341			if (status == EDID_BLOCK_OK)
2342				status = EDID_BLOCK_HEADER_FIXED;
2343		}
2344
2345		if (edid_block_status_valid(status, edid_block_tag(block)))
2346			break;
2347
2348		/* Fail early for unrepairable base block all zeros. */
2349		if (try == 0 && is_base_block && status == EDID_BLOCK_ZERO)
2350			break;
2351	}
2352
2353	return status;
2354}
2355
2356static struct edid *_drm_do_get_edid(struct drm_connector *connector,
2357				     read_block_fn read_block, void *context,
2358				     size_t *size)
2359{
2360	enum edid_block_status status;
2361	int i, num_blocks, invalid_blocks = 0;
2362	const struct drm_edid *override;
2363	struct edid *edid, *new;
2364	size_t alloc_size = EDID_LENGTH;
2365
2366	override = drm_edid_override_get(connector);
2367	if (override) {
2368		alloc_size = override->size;
2369		edid = kmemdup(override->edid, alloc_size, GFP_KERNEL);
2370		drm_edid_free(override);
2371		if (!edid)
2372			return NULL;
2373		goto ok;
2374	}
2375
2376	edid = kmalloc(alloc_size, GFP_KERNEL);
2377	if (!edid)
2378		return NULL;
2379
2380	status = edid_block_read(edid, 0, read_block, context);
2381
2382	edid_block_status_print(status, edid, 0);
2383
2384	if (status == EDID_BLOCK_READ_FAIL)
2385		goto fail;
2386
2387	/* FIXME: Clarify what a corrupt EDID actually means. */
2388	if (status == EDID_BLOCK_OK || status == EDID_BLOCK_VERSION)
2389		connector->edid_corrupt = false;
2390	else
2391		connector->edid_corrupt = true;
2392
2393	if (!edid_block_status_valid(status, edid_block_tag(edid))) {
2394		if (status == EDID_BLOCK_ZERO)
2395			connector->null_edid_counter++;
2396
2397		connector_bad_edid(connector, edid, 1);
2398		goto fail;
2399	}
2400
2401	if (!edid_extension_block_count(edid))
2402		goto ok;
2403
2404	alloc_size = edid_size(edid);
2405	new = krealloc(edid, alloc_size, GFP_KERNEL);
2406	if (!new)
2407		goto fail;
2408	edid = new;
2409
2410	num_blocks = edid_block_count(edid);
2411	for (i = 1; i < num_blocks; i++) {
2412		void *block = (void *)edid_block_data(edid, i);
2413
2414		status = edid_block_read(block, i, read_block, context);
2415
2416		edid_block_status_print(status, block, i);
2417
2418		if (!edid_block_status_valid(status, edid_block_tag(block))) {
2419			if (status == EDID_BLOCK_READ_FAIL)
2420				goto fail;
2421			invalid_blocks++;
2422		} else if (i == 1) {
2423			/*
2424			 * If the first EDID extension is a CTA extension, and
2425			 * the first Data Block is HF-EEODB, override the
2426			 * extension block count.
2427			 *
2428			 * Note: HF-EEODB could specify a smaller extension
2429			 * count too, but we can't risk allocating a smaller
2430			 * amount.
2431			 */
2432			int eeodb = edid_hfeeodb_block_count(edid);
2433
2434			if (eeodb > num_blocks) {
2435				num_blocks = eeodb;
2436				alloc_size = edid_size_by_blocks(num_blocks);
2437				new = krealloc(edid, alloc_size, GFP_KERNEL);
2438				if (!new)
2439					goto fail;
2440				edid = new;
2441			}
2442		}
2443	}
2444
2445	if (invalid_blocks) {
2446		connector_bad_edid(connector, edid, num_blocks);
2447
2448		edid = edid_filter_invalid_blocks(edid, &alloc_size);
2449	}
2450
2451ok:
2452	if (size)
2453		*size = alloc_size;
2454
2455	return edid;
2456
2457fail:
2458	kfree(edid);
2459	return NULL;
2460}
2461
2462/**
2463 * drm_do_get_edid - get EDID data using a custom EDID block read function
2464 * @connector: connector we're probing
2465 * @read_block: EDID block read function
2466 * @context: private data passed to the block read function
2467 *
2468 * When the I2C adapter connected to the DDC bus is hidden behind a device that
2469 * exposes a different interface to read EDID blocks this function can be used
2470 * to get EDID data using a custom block read function.
2471 *
2472 * As in the general case the DDC bus is accessible by the kernel at the I2C
2473 * level, drivers must make all reasonable efforts to expose it as an I2C
2474 * adapter and use drm_get_edid() instead of abusing this function.
2475 *
2476 * The EDID may be overridden using debugfs override_edid or firmware EDID
2477 * (drm_edid_load_firmware() and drm.edid_firmware parameter), in this priority
2478 * order. Having either of them bypasses actual EDID reads.
2479 *
2480 * Return: Pointer to valid EDID or NULL if we couldn't find any.
2481 */
2482struct edid *drm_do_get_edid(struct drm_connector *connector,
2483			     read_block_fn read_block,
2484			     void *context)
2485{
2486	return _drm_do_get_edid(connector, read_block, context, NULL);
2487}
2488EXPORT_SYMBOL_GPL(drm_do_get_edid);
 
2489
2490/**
2491 * drm_edid_raw - Get a pointer to the raw EDID data.
2492 * @drm_edid: drm_edid container
2493 *
2494 * Get a pointer to the raw EDID data.
2495 *
2496 * This is for transition only. Avoid using this like the plague.
2497 *
2498 * Return: Pointer to raw EDID data.
2499 */
2500const struct edid *drm_edid_raw(const struct drm_edid *drm_edid)
2501{
2502	if (!drm_edid || !drm_edid->size)
2503		return NULL;
2504
2505	/*
2506	 * Do not return pointers where relying on EDID extension count would
2507	 * lead to buffer overflow.
2508	 */
2509	if (WARN_ON(edid_size(drm_edid->edid) > drm_edid->size))
2510		return NULL;
2511
2512	return drm_edid->edid;
2513}
2514EXPORT_SYMBOL(drm_edid_raw);
2515
2516/* Allocate struct drm_edid container *without* duplicating the edid data */
2517static const struct drm_edid *_drm_edid_alloc(const void *edid, size_t size)
2518{
2519	struct drm_edid *drm_edid;
2520
2521	if (!edid || !size || size < EDID_LENGTH)
2522		return NULL;
2523
2524	drm_edid = kzalloc(sizeof(*drm_edid), GFP_KERNEL);
2525	if (drm_edid) {
2526		drm_edid->edid = edid;
2527		drm_edid->size = size;
2528	}
 
 
2529
2530	return drm_edid;
2531}
 
2532
2533/**
2534 * drm_edid_alloc - Allocate a new drm_edid container
2535 * @edid: Pointer to raw EDID data
2536 * @size: Size of memory allocated for EDID
2537 *
2538 * Allocate a new drm_edid container. Do not calculate edid size from edid, pass
2539 * the actual size that has been allocated for the data. There is no validation
2540 * of the raw EDID data against the size, but at least the EDID base block must
2541 * fit in the buffer.
2542 *
2543 * The returned pointer must be freed using drm_edid_free().
2544 *
2545 * Return: drm_edid container, or NULL on errors
2546 */
2547const struct drm_edid *drm_edid_alloc(const void *edid, size_t size)
2548{
2549	const struct drm_edid *drm_edid;
2550
2551	if (!edid || !size || size < EDID_LENGTH)
2552		return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
2553
2554	edid = kmemdup(edid, size, GFP_KERNEL);
2555	if (!edid)
2556		return NULL;
 
2557
2558	drm_edid = _drm_edid_alloc(edid, size);
2559	if (!drm_edid)
2560		kfree(edid);
2561
2562	return drm_edid;
2563}
2564EXPORT_SYMBOL(drm_edid_alloc);
 
 
 
 
 
2565
2566/**
2567 * drm_edid_dup - Duplicate a drm_edid container
2568 * @drm_edid: EDID to duplicate
2569 *
2570 * The returned pointer must be freed using drm_edid_free().
2571 *
2572 * Returns: drm_edid container copy, or NULL on errors
2573 */
2574const struct drm_edid *drm_edid_dup(const struct drm_edid *drm_edid)
2575{
2576	if (!drm_edid)
2577		return NULL;
2578
2579	return drm_edid_alloc(drm_edid->edid, drm_edid->size);
2580}
2581EXPORT_SYMBOL(drm_edid_dup);
 
 
 
2582
2583/**
2584 * drm_edid_free - Free the drm_edid container
2585 * @drm_edid: EDID to free
2586 */
2587void drm_edid_free(const struct drm_edid *drm_edid)
2588{
2589	if (!drm_edid)
2590		return;
2591
2592	kfree(drm_edid->edid);
2593	kfree(drm_edid);
2594}
2595EXPORT_SYMBOL(drm_edid_free);
2596
2597/**
2598 * drm_probe_ddc() - probe DDC presence
2599 * @adapter: I2C adapter to probe
2600 *
2601 * Return: True on success, false on failure.
2602 */
2603bool
2604drm_probe_ddc(struct i2c_adapter *adapter)
2605{
2606	unsigned char out;
2607
2608	return (drm_do_probe_ddc_edid(adapter, &out, 0, 1) == 0);
2609}
2610EXPORT_SYMBOL(drm_probe_ddc);
2611
2612/**
2613 * drm_get_edid - get EDID data, if available
2614 * @connector: connector we're probing
2615 * @adapter: I2C adapter to use for DDC
2616 *
2617 * Poke the given I2C channel to grab EDID data if possible.  If found,
2618 * attach it to the connector.
2619 *
2620 * Return: Pointer to valid EDID or NULL if we couldn't find any.
2621 */
2622struct edid *drm_get_edid(struct drm_connector *connector,
2623			  struct i2c_adapter *adapter)
2624{
2625	struct edid *edid;
2626
2627	if (connector->force == DRM_FORCE_OFF)
2628		return NULL;
2629
2630	if (connector->force == DRM_FORCE_UNSPECIFIED && !drm_probe_ddc(adapter))
2631		return NULL;
2632
2633	edid = _drm_do_get_edid(connector, drm_do_probe_ddc_edid, adapter, NULL);
2634	drm_connector_update_edid_property(connector, edid);
2635	return edid;
2636}
2637EXPORT_SYMBOL(drm_get_edid);
2638
2639/**
2640 * drm_edid_read_custom - Read EDID data using given EDID block read function
2641 * @connector: Connector to use
2642 * @read_block: EDID block read function
2643 * @context: Private data passed to the block read function
2644 *
2645 * When the I2C adapter connected to the DDC bus is hidden behind a device that
2646 * exposes a different interface to read EDID blocks this function can be used
2647 * to get EDID data using a custom block read function.
2648 *
2649 * As in the general case the DDC bus is accessible by the kernel at the I2C
2650 * level, drivers must make all reasonable efforts to expose it as an I2C
2651 * adapter and use drm_edid_read() or drm_edid_read_ddc() instead of abusing
2652 * this function.
2653 *
2654 * The EDID may be overridden using debugfs override_edid or firmware EDID
2655 * (drm_edid_load_firmware() and drm.edid_firmware parameter), in this priority
2656 * order. Having either of them bypasses actual EDID reads.
2657 *
2658 * The returned pointer must be freed using drm_edid_free().
2659 *
2660 * Return: Pointer to EDID, or NULL if probe/read failed.
2661 */
2662const struct drm_edid *drm_edid_read_custom(struct drm_connector *connector,
2663					    read_block_fn read_block,
2664					    void *context)
2665{
2666	const struct drm_edid *drm_edid;
2667	struct edid *edid;
2668	size_t size = 0;
2669
2670	edid = _drm_do_get_edid(connector, read_block, context, &size);
2671	if (!edid)
2672		return NULL;
2673
2674	/* Sanity check for now */
2675	drm_WARN_ON(connector->dev, !size);
2676
2677	drm_edid = _drm_edid_alloc(edid, size);
2678	if (!drm_edid)
2679		kfree(edid);
2680
2681	return drm_edid;
2682}
2683EXPORT_SYMBOL(drm_edid_read_custom);
2684
2685/**
2686 * drm_edid_read_ddc - Read EDID data using given I2C adapter
2687 * @connector: Connector to use
2688 * @adapter: I2C adapter to use for DDC
2689 *
2690 * Read EDID using the given I2C adapter.
2691 *
2692 * The EDID may be overridden using debugfs override_edid or firmware EDID
2693 * (drm_edid_load_firmware() and drm.edid_firmware parameter), in this priority
2694 * order. Having either of them bypasses actual EDID reads.
2695 *
2696 * Prefer initializing connector->ddc with drm_connector_init_with_ddc() and
2697 * using drm_edid_read() instead of this function.
2698 *
2699 * The returned pointer must be freed using drm_edid_free().
2700 *
2701 * Return: Pointer to EDID, or NULL if probe/read failed.
2702 */
2703const struct drm_edid *drm_edid_read_ddc(struct drm_connector *connector,
2704					 struct i2c_adapter *adapter)
2705{
2706	const struct drm_edid *drm_edid;
2707
2708	if (connector->force == DRM_FORCE_OFF)
2709		return NULL;
2710
2711	if (connector->force == DRM_FORCE_UNSPECIFIED && !drm_probe_ddc(adapter))
2712		return NULL;
2713
2714	drm_edid = drm_edid_read_custom(connector, drm_do_probe_ddc_edid, adapter);
2715
2716	/* Note: Do *not* call connector updates here. */
2717
2718	return drm_edid;
2719}
2720EXPORT_SYMBOL(drm_edid_read_ddc);
2721
2722/**
2723 * drm_edid_read - Read EDID data using connector's I2C adapter
2724 * @connector: Connector to use
2725 *
2726 * Read EDID using the connector's I2C adapter.
2727 *
2728 * The EDID may be overridden using debugfs override_edid or firmware EDID
2729 * (drm_edid_load_firmware() and drm.edid_firmware parameter), in this priority
2730 * order. Having either of them bypasses actual EDID reads.
2731 *
2732 * The returned pointer must be freed using drm_edid_free().
2733 *
2734 * Return: Pointer to EDID, or NULL if probe/read failed.
2735 */
2736const struct drm_edid *drm_edid_read(struct drm_connector *connector)
2737{
2738	if (drm_WARN_ON(connector->dev, !connector->ddc))
2739		return NULL;
2740
2741	return drm_edid_read_ddc(connector, connector->ddc);
2742}
2743EXPORT_SYMBOL(drm_edid_read);
2744
2745static u32 edid_extract_panel_id(const struct edid *edid)
2746{
2747	/*
2748	 * We represent the ID as a 32-bit number so it can easily be compared
2749	 * with "==".
2750	 *
2751	 * NOTE that we deal with endianness differently for the top half
2752	 * of this ID than for the bottom half. The bottom half (the product
2753	 * id) gets decoded as little endian by the EDID_PRODUCT_ID because
2754	 * that's how everyone seems to interpret it. The top half (the mfg_id)
2755	 * gets stored as big endian because that makes
2756	 * drm_edid_encode_panel_id() and drm_edid_decode_panel_id() easier
2757	 * to write (it's easier to extract the ASCII). It doesn't really
2758	 * matter, though, as long as the number here is unique.
2759	 */
2760	return (u32)edid->mfg_id[0] << 24   |
2761	       (u32)edid->mfg_id[1] << 16   |
2762	       (u32)EDID_PRODUCT_ID(edid);
2763}
2764
2765/**
2766 * drm_edid_get_panel_id - Get a panel's ID through DDC
2767 * @adapter: I2C adapter to use for DDC
2768 *
2769 * This function reads the first block of the EDID of a panel and (assuming
2770 * that the EDID is valid) extracts the ID out of it. The ID is a 32-bit value
2771 * (16 bits of manufacturer ID and 16 bits of per-manufacturer ID) that's
2772 * supposed to be different for each different modem of panel.
2773 *
2774 * This function is intended to be used during early probing on devices where
2775 * more than one panel might be present. Because of its intended use it must
2776 * assume that the EDID of the panel is correct, at least as far as the ID
2777 * is concerned (in other words, we don't process any overrides here).
2778 *
2779 * NOTE: it's expected that this function and drm_do_get_edid() will both
2780 * be read the EDID, but there is no caching between them. Since we're only
2781 * reading the first block, hopefully this extra overhead won't be too big.
2782 *
2783 * Return: A 32-bit ID that should be different for each make/model of panel.
2784 *         See the functions drm_edid_encode_panel_id() and
2785 *         drm_edid_decode_panel_id() for some details on the structure of this
2786 *         ID.
2787 */
2788
2789u32 drm_edid_get_panel_id(struct i2c_adapter *adapter)
2790{
2791	enum edid_block_status status;
2792	void *base_block;
2793	u32 panel_id = 0;
2794
2795	/*
2796	 * There are no manufacturer IDs of 0, so if there is a problem reading
2797	 * the EDID then we'll just return 0.
2798	 */
2799
2800	base_block = kmalloc(EDID_LENGTH, GFP_KERNEL);
2801	if (!base_block)
2802		return 0;
2803
2804	status = edid_block_read(base_block, 0, drm_do_probe_ddc_edid, adapter);
2805
2806	edid_block_status_print(status, base_block, 0);
2807
2808	if (edid_block_status_valid(status, edid_block_tag(base_block)))
2809		panel_id = edid_extract_panel_id(base_block);
2810	else
2811		edid_block_dump(KERN_NOTICE, base_block, 0);
2812
2813	kfree(base_block);
2814
2815	return panel_id;
2816}
2817EXPORT_SYMBOL(drm_edid_get_panel_id);
2818
2819/**
2820 * drm_get_edid_switcheroo - get EDID data for a vga_switcheroo output
2821 * @connector: connector we're probing
2822 * @adapter: I2C adapter to use for DDC
2823 *
2824 * Wrapper around drm_get_edid() for laptops with dual GPUs using one set of
2825 * outputs. The wrapper adds the requisite vga_switcheroo calls to temporarily
2826 * switch DDC to the GPU which is retrieving EDID.
2827 *
2828 * Return: Pointer to valid EDID or %NULL if we couldn't find any.
2829 */
2830struct edid *drm_get_edid_switcheroo(struct drm_connector *connector,
2831				     struct i2c_adapter *adapter)
2832{
2833	struct drm_device *dev = connector->dev;
2834	struct pci_dev *pdev = to_pci_dev(dev->dev);
2835	struct edid *edid;
2836
2837	if (drm_WARN_ON_ONCE(dev, !dev_is_pci(dev->dev)))
2838		return NULL;
2839
2840	vga_switcheroo_lock_ddc(pdev);
2841	edid = drm_get_edid(connector, adapter);
2842	vga_switcheroo_unlock_ddc(pdev);
2843
2844	return edid;
2845}
2846EXPORT_SYMBOL(drm_get_edid_switcheroo);
2847
2848/**
2849 * drm_edid_duplicate - duplicate an EDID and the extensions
2850 * @edid: EDID to duplicate
2851 *
2852 * Return: Pointer to duplicated EDID or NULL on allocation failure.
2853 */
2854struct edid *drm_edid_duplicate(const struct edid *edid)
2855{
2856	return kmemdup(edid, edid_size(edid), GFP_KERNEL);
2857}
2858EXPORT_SYMBOL(drm_edid_duplicate);
2859
2860/*** EDID parsing ***/
2861
2862/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2863 * edid_get_quirks - return quirk flags for a given EDID
2864 * @drm_edid: EDID to process
2865 *
2866 * This tells subsequent routines what fixes they need to apply.
2867 */
2868static u32 edid_get_quirks(const struct drm_edid *drm_edid)
2869{
2870	u32 panel_id = edid_extract_panel_id(drm_edid->edid);
2871	const struct edid_quirk *quirk;
2872	int i;
2873
2874	for (i = 0; i < ARRAY_SIZE(edid_quirk_list); i++) {
2875		quirk = &edid_quirk_list[i];
2876		if (quirk->panel_id == panel_id)
 
 
2877			return quirk->quirks;
2878	}
2879
2880	return 0;
2881}
2882
2883#define MODE_SIZE(m) ((m)->hdisplay * (m)->vdisplay)
2884#define MODE_REFRESH_DIFF(c,t) (abs((c) - (t)))
2885
2886/*
2887 * Walk the mode list for connector, clearing the preferred status on existing
2888 * modes and setting it anew for the right mode ala quirks.
 
 
 
 
2889 */
2890static void edid_fixup_preferred(struct drm_connector *connector,
2891				 u32 quirks)
2892{
2893	struct drm_display_mode *t, *cur_mode, *preferred_mode;
2894	int target_refresh = 0;
2895	int cur_vrefresh, preferred_vrefresh;
2896
2897	if (list_empty(&connector->probed_modes))
2898		return;
2899
2900	if (quirks & EDID_QUIRK_PREFER_LARGE_60)
2901		target_refresh = 60;
2902	if (quirks & EDID_QUIRK_PREFER_LARGE_75)
2903		target_refresh = 75;
2904
2905	preferred_mode = list_first_entry(&connector->probed_modes,
2906					  struct drm_display_mode, head);
2907
2908	list_for_each_entry_safe(cur_mode, t, &connector->probed_modes, head) {
2909		cur_mode->type &= ~DRM_MODE_TYPE_PREFERRED;
2910
2911		if (cur_mode == preferred_mode)
2912			continue;
2913
2914		/* Largest mode is preferred */
2915		if (MODE_SIZE(cur_mode) > MODE_SIZE(preferred_mode))
2916			preferred_mode = cur_mode;
2917
2918		cur_vrefresh = drm_mode_vrefresh(cur_mode);
2919		preferred_vrefresh = drm_mode_vrefresh(preferred_mode);
 
 
2920		/* At a given size, try to get closest to target refresh */
2921		if ((MODE_SIZE(cur_mode) == MODE_SIZE(preferred_mode)) &&
2922		    MODE_REFRESH_DIFF(cur_vrefresh, target_refresh) <
2923		    MODE_REFRESH_DIFF(preferred_vrefresh, target_refresh)) {
2924			preferred_mode = cur_mode;
2925		}
2926	}
2927
2928	preferred_mode->type |= DRM_MODE_TYPE_PREFERRED;
2929}
2930
2931static bool
2932mode_is_rb(const struct drm_display_mode *mode)
2933{
2934	return (mode->htotal - mode->hdisplay == 160) &&
2935	       (mode->hsync_end - mode->hdisplay == 80) &&
2936	       (mode->hsync_end - mode->hsync_start == 32) &&
2937	       (mode->vsync_start - mode->vdisplay == 3);
2938}
2939
2940/*
2941 * drm_mode_find_dmt - Create a copy of a mode if present in DMT
2942 * @dev: Device to duplicate against
2943 * @hsize: Mode width
2944 * @vsize: Mode height
2945 * @fresh: Mode refresh rate
2946 * @rb: Mode reduced-blanking-ness
2947 *
2948 * Walk the DMT mode list looking for a match for the given parameters.
2949 *
2950 * Return: A newly allocated copy of the mode, or NULL if not found.
2951 */
2952struct drm_display_mode *drm_mode_find_dmt(struct drm_device *dev,
2953					   int hsize, int vsize, int fresh,
2954					   bool rb)
2955{
2956	int i;
2957
2958	for (i = 0; i < ARRAY_SIZE(drm_dmt_modes); i++) {
2959		const struct drm_display_mode *ptr = &drm_dmt_modes[i];
2960
2961		if (hsize != ptr->hdisplay)
2962			continue;
2963		if (vsize != ptr->vdisplay)
2964			continue;
2965		if (fresh != drm_mode_vrefresh(ptr))
2966			continue;
2967		if (rb != mode_is_rb(ptr))
2968			continue;
2969
2970		return drm_mode_duplicate(dev, ptr);
2971	}
2972
2973	return NULL;
2974}
2975EXPORT_SYMBOL(drm_mode_find_dmt);
2976
2977static bool is_display_descriptor(const struct detailed_timing *descriptor, u8 type)
2978{
2979	BUILD_BUG_ON(offsetof(typeof(*descriptor), pixel_clock) != 0);
2980	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.pad1) != 2);
2981	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.type) != 3);
2982
2983	return descriptor->pixel_clock == 0 &&
2984		descriptor->data.other_data.pad1 == 0 &&
2985		descriptor->data.other_data.type == type;
2986}
2987
2988static bool is_detailed_timing_descriptor(const struct detailed_timing *descriptor)
2989{
2990	BUILD_BUG_ON(offsetof(typeof(*descriptor), pixel_clock) != 0);
2991
2992	return descriptor->pixel_clock != 0;
2993}
2994
2995typedef void detailed_cb(const struct detailed_timing *timing, void *closure);
2996
2997static void
2998cea_for_each_detailed_block(const u8 *ext, detailed_cb *cb, void *closure)
2999{
3000	int i, n;
3001	u8 d = ext[0x02];
3002	const u8 *det_base = ext + d;
3003
3004	if (d < 4 || d > 127)
3005		return;
3006
3007	n = (127 - d) / 18;
3008	for (i = 0; i < n; i++)
3009		cb((const struct detailed_timing *)(det_base + 18 * i), closure);
3010}
3011
3012static void
3013vtb_for_each_detailed_block(const u8 *ext, detailed_cb *cb, void *closure)
3014{
3015	unsigned int i, n = min((int)ext[0x02], 6);
3016	const u8 *det_base = ext + 5;
3017
3018	if (ext[0x01] != 1)
3019		return; /* unknown version */
3020
3021	for (i = 0; i < n; i++)
3022		cb((const struct detailed_timing *)(det_base + 18 * i), closure);
3023}
3024
3025static void drm_for_each_detailed_block(const struct drm_edid *drm_edid,
3026					detailed_cb *cb, void *closure)
3027{
3028	struct drm_edid_iter edid_iter;
3029	const u8 *ext;
3030	int i;
 
3031
3032	if (!drm_edid)
3033		return;
3034
3035	for (i = 0; i < EDID_DETAILED_TIMINGS; i++)
3036		cb(&drm_edid->edid->detailed_timings[i], closure);
3037
3038	drm_edid_iter_begin(drm_edid, &edid_iter);
3039	drm_edid_iter_for_each(ext, &edid_iter) {
3040		switch (*ext) {
3041		case CEA_EXT:
3042			cea_for_each_detailed_block(ext, cb, closure);
3043			break;
3044		case VTB_EXT:
3045			vtb_for_each_detailed_block(ext, cb, closure);
3046			break;
3047		default:
3048			break;
3049		}
3050	}
3051	drm_edid_iter_end(&edid_iter);
3052}
3053
3054static void
3055is_rb(const struct detailed_timing *descriptor, void *data)
3056{
3057	bool *res = data;
3058
3059	if (!is_display_descriptor(descriptor, EDID_DETAIL_MONITOR_RANGE))
3060		return;
3061
3062	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.flags) != 10);
3063	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.cvt.flags) != 15);
3064
3065	if (descriptor->data.other_data.data.range.flags == DRM_EDID_CVT_SUPPORT_FLAG &&
3066	    descriptor->data.other_data.data.range.formula.cvt.flags & DRM_EDID_CVT_FLAGS_REDUCED_BLANKING)
3067		*res = true;
3068}
3069
3070/* EDID 1.4 defines this explicitly.  For EDID 1.3, we guess, badly. */
3071static bool
3072drm_monitor_supports_rb(const struct drm_edid *drm_edid)
3073{
3074	if (drm_edid->edid->revision >= 4) {
3075		bool ret = false;
3076
3077		drm_for_each_detailed_block(drm_edid, is_rb, &ret);
3078		return ret;
3079	}
3080
3081	return ((drm_edid->edid->input & DRM_EDID_INPUT_DIGITAL) != 0);
3082}
3083
3084static void
3085find_gtf2(const struct detailed_timing *descriptor, void *data)
3086{
3087	const struct detailed_timing **res = data;
3088
3089	if (!is_display_descriptor(descriptor, EDID_DETAIL_MONITOR_RANGE))
3090		return;
3091
3092	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.flags) != 10);
3093
3094	if (descriptor->data.other_data.data.range.flags == DRM_EDID_SECONDARY_GTF_SUPPORT_FLAG)
3095		*res = descriptor;
3096}
3097
3098/* Secondary GTF curve kicks in above some break frequency */
3099static int
3100drm_gtf2_hbreak(const struct drm_edid *drm_edid)
3101{
3102	const struct detailed_timing *descriptor = NULL;
3103
3104	drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor);
3105
3106	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.hfreq_start_khz) != 12);
3107
3108	return descriptor ? descriptor->data.other_data.data.range.formula.gtf2.hfreq_start_khz * 2 : 0;
3109}
3110
3111static int
3112drm_gtf2_2c(const struct drm_edid *drm_edid)
3113{
3114	const struct detailed_timing *descriptor = NULL;
3115
3116	drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor);
3117
3118	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.c) != 13);
3119
3120	return descriptor ? descriptor->data.other_data.data.range.formula.gtf2.c : 0;
3121}
3122
3123static int
3124drm_gtf2_m(const struct drm_edid *drm_edid)
3125{
3126	const struct detailed_timing *descriptor = NULL;
3127
3128	drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor);
3129
3130	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.m) != 14);
3131
3132	return descriptor ? le16_to_cpu(descriptor->data.other_data.data.range.formula.gtf2.m) : 0;
3133}
3134
3135static int
3136drm_gtf2_k(const struct drm_edid *drm_edid)
3137{
3138	const struct detailed_timing *descriptor = NULL;
3139
3140	drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor);
3141
3142	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.k) != 16);
3143
3144	return descriptor ? descriptor->data.other_data.data.range.formula.gtf2.k : 0;
3145}
3146
3147static int
3148drm_gtf2_2j(const struct drm_edid *drm_edid)
3149{
3150	const struct detailed_timing *descriptor = NULL;
3151
3152	drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor);
3153
3154	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.j) != 17);
3155
3156	return descriptor ? descriptor->data.other_data.data.range.formula.gtf2.j : 0;
3157}
3158
3159static void
3160get_timing_level(const struct detailed_timing *descriptor, void *data)
3161{
3162	int *res = data;
3163
3164	if (!is_display_descriptor(descriptor, EDID_DETAIL_MONITOR_RANGE))
3165		return;
3166
3167	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.flags) != 10);
3168
3169	switch (descriptor->data.other_data.data.range.flags) {
3170	case DRM_EDID_DEFAULT_GTF_SUPPORT_FLAG:
3171		*res = LEVEL_GTF;
3172		break;
3173	case DRM_EDID_SECONDARY_GTF_SUPPORT_FLAG:
3174		*res = LEVEL_GTF2;
3175		break;
3176	case DRM_EDID_CVT_SUPPORT_FLAG:
3177		*res = LEVEL_CVT;
3178		break;
3179	default:
3180		break;
3181	}
3182}
3183
3184/* Get standard timing level (CVT/GTF/DMT). */
3185static int standard_timing_level(const struct drm_edid *drm_edid)
3186{
3187	const struct edid *edid = drm_edid->edid;
3188
3189	if (edid->revision >= 4) {
3190		/*
3191		 * If the range descriptor doesn't
3192		 * indicate otherwise default to CVT
3193		 */
3194		int ret = LEVEL_CVT;
3195
3196		drm_for_each_detailed_block(drm_edid, get_timing_level, &ret);
3197
3198		return ret;
3199	} else if (edid->revision >= 3 && drm_gtf2_hbreak(drm_edid)) {
3200		return LEVEL_GTF2;
3201	} else if (edid->revision >= 2) {
3202		return LEVEL_GTF;
3203	} else {
3204		return LEVEL_DMT;
3205	}
 
3206}
3207
3208/*
3209 * 0 is reserved.  The spec says 0x01 fill for unused timings.  Some old
3210 * monitors fill with ascii space (0x20) instead.
3211 */
3212static int
3213bad_std_timing(u8 a, u8 b)
3214{
3215	return (a == 0x00 && b == 0x00) ||
3216	       (a == 0x01 && b == 0x01) ||
3217	       (a == 0x20 && b == 0x20);
3218}
3219
3220static int drm_mode_hsync(const struct drm_display_mode *mode)
3221{
3222	if (mode->htotal <= 0)
3223		return 0;
3224
3225	return DIV_ROUND_CLOSEST(mode->clock, mode->htotal);
3226}
3227
3228static struct drm_display_mode *
3229drm_gtf2_mode(struct drm_device *dev,
3230	      const struct drm_edid *drm_edid,
3231	      int hsize, int vsize, int vrefresh_rate)
3232{
3233	struct drm_display_mode *mode;
3234
3235	/*
3236	 * This is potentially wrong if there's ever a monitor with
3237	 * more than one ranges section, each claiming a different
3238	 * secondary GTF curve.  Please don't do that.
3239	 */
3240	mode = drm_gtf_mode(dev, hsize, vsize, vrefresh_rate, 0, 0);
3241	if (!mode)
3242		return NULL;
3243
3244	if (drm_mode_hsync(mode) > drm_gtf2_hbreak(drm_edid)) {
3245		drm_mode_destroy(dev, mode);
3246		mode = drm_gtf_mode_complex(dev, hsize, vsize,
3247					    vrefresh_rate, 0, 0,
3248					    drm_gtf2_m(drm_edid),
3249					    drm_gtf2_2c(drm_edid),
3250					    drm_gtf2_k(drm_edid),
3251					    drm_gtf2_2j(drm_edid));
3252	}
3253
3254	return mode;
3255}
3256
3257/*
3258 * Take the standard timing params (in this case width, aspect, and refresh)
3259 * and convert them into a real mode using CVT/GTF/DMT.
3260 */
3261static struct drm_display_mode *drm_mode_std(struct drm_connector *connector,
3262					     const struct drm_edid *drm_edid,
3263					     const struct std_timing *t)
3264{
3265	struct drm_device *dev = connector->dev;
3266	struct drm_display_mode *m, *mode = NULL;
3267	int hsize, vsize;
3268	int vrefresh_rate;
3269	unsigned aspect_ratio = (t->vfreq_aspect & EDID_TIMING_ASPECT_MASK)
3270		>> EDID_TIMING_ASPECT_SHIFT;
3271	unsigned vfreq = (t->vfreq_aspect & EDID_TIMING_VFREQ_MASK)
3272		>> EDID_TIMING_VFREQ_SHIFT;
3273	int timing_level = standard_timing_level(drm_edid);
3274
3275	if (bad_std_timing(t->hsize, t->vfreq_aspect))
3276		return NULL;
3277
3278	/* According to the EDID spec, the hdisplay = hsize * 8 + 248 */
3279	hsize = t->hsize * 8 + 248;
3280	/* vrefresh_rate = vfreq + 60 */
3281	vrefresh_rate = vfreq + 60;
3282	/* the vdisplay is calculated based on the aspect ratio */
3283	if (aspect_ratio == 0) {
3284		if (drm_edid->edid->revision < 3)
3285			vsize = hsize;
3286		else
3287			vsize = (hsize * 10) / 16;
3288	} else if (aspect_ratio == 1)
3289		vsize = (hsize * 3) / 4;
3290	else if (aspect_ratio == 2)
3291		vsize = (hsize * 4) / 5;
3292	else
3293		vsize = (hsize * 9) / 16;
3294
3295	/* HDTV hack, part 1 */
3296	if (vrefresh_rate == 60 &&
3297	    ((hsize == 1360 && vsize == 765) ||
3298	     (hsize == 1368 && vsize == 769))) {
3299		hsize = 1366;
3300		vsize = 768;
3301	}
3302
3303	/*
3304	 * If this connector already has a mode for this size and refresh
3305	 * rate (because it came from detailed or CVT info), use that
3306	 * instead.  This way we don't have to guess at interlace or
3307	 * reduced blanking.
3308	 */
3309	list_for_each_entry(m, &connector->probed_modes, head)
3310		if (m->hdisplay == hsize && m->vdisplay == vsize &&
3311		    drm_mode_vrefresh(m) == vrefresh_rate)
3312			return NULL;
3313
3314	/* HDTV hack, part 2 */
3315	if (hsize == 1366 && vsize == 768 && vrefresh_rate == 60) {
3316		mode = drm_cvt_mode(dev, 1366, 768, vrefresh_rate, 0, 0,
3317				    false);
3318		if (!mode)
3319			return NULL;
3320		mode->hdisplay = 1366;
3321		mode->hsync_start = mode->hsync_start - 1;
3322		mode->hsync_end = mode->hsync_end - 1;
3323		return mode;
3324	}
3325
3326	/* check whether it can be found in default mode table */
3327	if (drm_monitor_supports_rb(drm_edid)) {
3328		mode = drm_mode_find_dmt(dev, hsize, vsize, vrefresh_rate,
3329					 true);
3330		if (mode)
3331			return mode;
3332	}
3333	mode = drm_mode_find_dmt(dev, hsize, vsize, vrefresh_rate, false);
3334	if (mode)
3335		return mode;
3336
3337	/* okay, generate it */
3338	switch (timing_level) {
3339	case LEVEL_DMT:
3340		break;
3341	case LEVEL_GTF:
3342		mode = drm_gtf_mode(dev, hsize, vsize, vrefresh_rate, 0, 0);
3343		break;
3344	case LEVEL_GTF2:
3345		mode = drm_gtf2_mode(dev, drm_edid, hsize, vsize, vrefresh_rate);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3346		break;
3347	case LEVEL_CVT:
3348		mode = drm_cvt_mode(dev, hsize, vsize, vrefresh_rate, 0, 0,
3349				    false);
3350		break;
3351	}
3352	return mode;
3353}
3354
3355/*
3356 * EDID is delightfully ambiguous about how interlaced modes are to be
3357 * encoded.  Our internal representation is of frame height, but some
3358 * HDTV detailed timings are encoded as field height.
3359 *
3360 * The format list here is from CEA, in frame size.  Technically we
3361 * should be checking refresh rate too.  Whatever.
3362 */
3363static void
3364drm_mode_do_interlace_quirk(struct drm_display_mode *mode,
3365			    const struct detailed_pixel_timing *pt)
3366{
3367	int i;
3368	static const struct {
3369		int w, h;
3370	} cea_interlaced[] = {
3371		{ 1920, 1080 },
3372		{  720,  480 },
3373		{ 1440,  480 },
3374		{ 2880,  480 },
3375		{  720,  576 },
3376		{ 1440,  576 },
3377		{ 2880,  576 },
3378	};
3379
3380	if (!(pt->misc & DRM_EDID_PT_INTERLACED))
3381		return;
3382
3383	for (i = 0; i < ARRAY_SIZE(cea_interlaced); i++) {
3384		if ((mode->hdisplay == cea_interlaced[i].w) &&
3385		    (mode->vdisplay == cea_interlaced[i].h / 2)) {
3386			mode->vdisplay *= 2;
3387			mode->vsync_start *= 2;
3388			mode->vsync_end *= 2;
3389			mode->vtotal *= 2;
3390			mode->vtotal |= 1;
3391		}
3392	}
3393
3394	mode->flags |= DRM_MODE_FLAG_INTERLACE;
3395}
3396
3397/*
3398 * Create a new mode from an EDID detailed timing section. An EDID detailed
3399 * timing block contains enough info for us to create and return a new struct
3400 * drm_display_mode.
3401 */
3402static struct drm_display_mode *drm_mode_detailed(struct drm_connector *connector,
3403						  const struct drm_edid *drm_edid,
3404						  const struct detailed_timing *timing,
 
 
 
 
 
3405						  u32 quirks)
3406{
3407	struct drm_device *dev = connector->dev;
3408	struct drm_display_mode *mode;
3409	const struct detailed_pixel_timing *pt = &timing->data.pixel_data;
3410	unsigned hactive = (pt->hactive_hblank_hi & 0xf0) << 4 | pt->hactive_lo;
3411	unsigned vactive = (pt->vactive_vblank_hi & 0xf0) << 4 | pt->vactive_lo;
3412	unsigned hblank = (pt->hactive_hblank_hi & 0xf) << 8 | pt->hblank_lo;
3413	unsigned vblank = (pt->vactive_vblank_hi & 0xf) << 8 | pt->vblank_lo;
3414	unsigned hsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc0) << 2 | pt->hsync_offset_lo;
3415	unsigned hsync_pulse_width = (pt->hsync_vsync_offset_pulse_width_hi & 0x30) << 4 | pt->hsync_pulse_width_lo;
3416	unsigned vsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc) << 2 | pt->vsync_offset_pulse_width_lo >> 4;
3417	unsigned vsync_pulse_width = (pt->hsync_vsync_offset_pulse_width_hi & 0x3) << 4 | (pt->vsync_offset_pulse_width_lo & 0xf);
3418
3419	/* ignore tiny modes */
3420	if (hactive < 64 || vactive < 64)
3421		return NULL;
3422
3423	if (pt->misc & DRM_EDID_PT_STEREO) {
3424		drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Stereo mode not supported\n",
3425			    connector->base.id, connector->name);
3426		return NULL;
3427	}
3428	if (!(pt->misc & DRM_EDID_PT_SEPARATE_SYNC)) {
3429		drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Composite sync not supported\n",
3430			    connector->base.id, connector->name);
3431	}
3432
3433	/* it is incorrect if hsync/vsync width is zero */
3434	if (!hsync_pulse_width || !vsync_pulse_width) {
3435		drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Incorrect Detailed timing. Wrong Hsync/Vsync pulse width\n",
3436			    connector->base.id, connector->name);
3437		return NULL;
3438	}
3439
3440	if (quirks & EDID_QUIRK_FORCE_REDUCED_BLANKING) {
3441		mode = drm_cvt_mode(dev, hactive, vactive, 60, true, false, false);
3442		if (!mode)
3443			return NULL;
3444
3445		goto set_size;
3446	}
3447
3448	mode = drm_mode_create(dev);
3449	if (!mode)
3450		return NULL;
3451
3452	if (quirks & EDID_QUIRK_135_CLOCK_TOO_HIGH)
3453		mode->clock = 1088 * 10;
3454	else
3455		mode->clock = le16_to_cpu(timing->pixel_clock) * 10;
3456
3457	mode->hdisplay = hactive;
3458	mode->hsync_start = mode->hdisplay + hsync_offset;
3459	mode->hsync_end = mode->hsync_start + hsync_pulse_width;
3460	mode->htotal = mode->hdisplay + hblank;
3461
3462	mode->vdisplay = vactive;
3463	mode->vsync_start = mode->vdisplay + vsync_offset;
3464	mode->vsync_end = mode->vsync_start + vsync_pulse_width;
3465	mode->vtotal = mode->vdisplay + vblank;
3466
3467	/* Some EDIDs have bogus h/vtotal values */
3468	if (mode->hsync_end > mode->htotal)
3469		mode->htotal = mode->hsync_end + 1;
3470	if (mode->vsync_end > mode->vtotal)
3471		mode->vtotal = mode->vsync_end + 1;
3472
3473	drm_mode_do_interlace_quirk(mode, pt);
3474
3475	if (quirks & EDID_QUIRK_DETAILED_SYNC_PP) {
3476		mode->flags |= DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC;
3477	} else {
3478		mode->flags |= (pt->misc & DRM_EDID_PT_HSYNC_POSITIVE) ?
3479			DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC;
3480		mode->flags |= (pt->misc & DRM_EDID_PT_VSYNC_POSITIVE) ?
3481			DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC;
3482	}
3483
 
 
 
 
 
3484set_size:
3485	mode->width_mm = pt->width_mm_lo | (pt->width_height_mm_hi & 0xf0) << 4;
3486	mode->height_mm = pt->height_mm_lo | (pt->width_height_mm_hi & 0xf) << 8;
3487
3488	if (quirks & EDID_QUIRK_DETAILED_IN_CM) {
3489		mode->width_mm *= 10;
3490		mode->height_mm *= 10;
3491	}
3492
3493	if (quirks & EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE) {
3494		mode->width_mm = drm_edid->edid->width_cm * 10;
3495		mode->height_mm = drm_edid->edid->height_cm * 10;
3496	}
3497
3498	mode->type = DRM_MODE_TYPE_DRIVER;
 
3499	drm_mode_set_name(mode);
3500
3501	return mode;
3502}
3503
3504static bool
3505mode_in_hsync_range(const struct drm_display_mode *mode,
3506		    const struct edid *edid, const u8 *t)
3507{
3508	int hsync, hmin, hmax;
3509
3510	hmin = t[7];
3511	if (edid->revision >= 4)
3512	    hmin += ((t[4] & 0x04) ? 255 : 0);
3513	hmax = t[8];
3514	if (edid->revision >= 4)
3515	    hmax += ((t[4] & 0x08) ? 255 : 0);
3516	hsync = drm_mode_hsync(mode);
3517
3518	return (hsync <= hmax && hsync >= hmin);
3519}
3520
3521static bool
3522mode_in_vsync_range(const struct drm_display_mode *mode,
3523		    const struct edid *edid, const u8 *t)
3524{
3525	int vsync, vmin, vmax;
3526
3527	vmin = t[5];
3528	if (edid->revision >= 4)
3529	    vmin += ((t[4] & 0x01) ? 255 : 0);
3530	vmax = t[6];
3531	if (edid->revision >= 4)
3532	    vmax += ((t[4] & 0x02) ? 255 : 0);
3533	vsync = drm_mode_vrefresh(mode);
3534
3535	return (vsync <= vmax && vsync >= vmin);
3536}
3537
3538static u32
3539range_pixel_clock(const struct edid *edid, const u8 *t)
3540{
3541	/* unspecified */
3542	if (t[9] == 0 || t[9] == 255)
3543		return 0;
3544
3545	/* 1.4 with CVT support gives us real precision, yay */
3546	if (edid->revision >= 4 && t[10] == DRM_EDID_CVT_SUPPORT_FLAG)
3547		return (t[9] * 10000) - ((t[12] >> 2) * 250);
3548
3549	/* 1.3 is pathetic, so fuzz up a bit */
3550	return t[9] * 10000 + 5001;
3551}
3552
3553static bool mode_in_range(const struct drm_display_mode *mode,
3554			  const struct drm_edid *drm_edid,
3555			  const struct detailed_timing *timing)
3556{
3557	const struct edid *edid = drm_edid->edid;
3558	u32 max_clock;
3559	const u8 *t = (const u8 *)timing;
3560
3561	if (!mode_in_hsync_range(mode, edid, t))
3562		return false;
3563
3564	if (!mode_in_vsync_range(mode, edid, t))
3565		return false;
3566
3567	if ((max_clock = range_pixel_clock(edid, t)))
3568		if (mode->clock > max_clock)
3569			return false;
3570
3571	/* 1.4 max horizontal check */
3572	if (edid->revision >= 4 && t[10] == DRM_EDID_CVT_SUPPORT_FLAG)
3573		if (t[13] && mode->hdisplay > 8 * (t[13] + (256 * (t[12]&0x3))))
3574			return false;
3575
3576	if (mode_is_rb(mode) && !drm_monitor_supports_rb(drm_edid))
3577		return false;
3578
3579	return true;
3580}
3581
3582static bool valid_inferred_mode(const struct drm_connector *connector,
3583				const struct drm_display_mode *mode)
3584{
3585	const struct drm_display_mode *m;
3586	bool ok = false;
3587
3588	list_for_each_entry(m, &connector->probed_modes, head) {
3589		if (mode->hdisplay == m->hdisplay &&
3590		    mode->vdisplay == m->vdisplay &&
3591		    drm_mode_vrefresh(mode) == drm_mode_vrefresh(m))
3592			return false; /* duplicated */
3593		if (mode->hdisplay <= m->hdisplay &&
3594		    mode->vdisplay <= m->vdisplay)
3595			ok = true;
3596	}
3597	return ok;
3598}
3599
3600static int drm_dmt_modes_for_range(struct drm_connector *connector,
3601				   const struct drm_edid *drm_edid,
3602				   const struct detailed_timing *timing)
3603{
3604	int i, modes = 0;
3605	struct drm_display_mode *newmode;
3606	struct drm_device *dev = connector->dev;
3607
3608	for (i = 0; i < ARRAY_SIZE(drm_dmt_modes); i++) {
3609		if (mode_in_range(drm_dmt_modes + i, drm_edid, timing) &&
3610		    valid_inferred_mode(connector, drm_dmt_modes + i)) {
3611			newmode = drm_mode_duplicate(dev, &drm_dmt_modes[i]);
3612			if (newmode) {
3613				drm_mode_probed_add(connector, newmode);
3614				modes++;
3615			}
3616		}
3617	}
3618
3619	return modes;
3620}
3621
3622/* fix up 1366x768 mode from 1368x768;
3623 * GFT/CVT can't express 1366 width which isn't dividable by 8
3624 */
3625void drm_mode_fixup_1366x768(struct drm_display_mode *mode)
3626{
3627	if (mode->hdisplay == 1368 && mode->vdisplay == 768) {
3628		mode->hdisplay = 1366;
3629		mode->hsync_start--;
3630		mode->hsync_end--;
3631		drm_mode_set_name(mode);
3632	}
3633}
3634
3635static int drm_gtf_modes_for_range(struct drm_connector *connector,
3636				   const struct drm_edid *drm_edid,
3637				   const struct detailed_timing *timing)
3638{
3639	int i, modes = 0;
3640	struct drm_display_mode *newmode;
3641	struct drm_device *dev = connector->dev;
3642
3643	for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
3644		const struct minimode *m = &extra_modes[i];
3645
3646		newmode = drm_gtf_mode(dev, m->w, m->h, m->r, 0, 0);
3647		if (!newmode)
3648			return modes;
3649
3650		drm_mode_fixup_1366x768(newmode);
3651		if (!mode_in_range(newmode, drm_edid, timing) ||
3652		    !valid_inferred_mode(connector, newmode)) {
3653			drm_mode_destroy(dev, newmode);
3654			continue;
3655		}
3656
3657		drm_mode_probed_add(connector, newmode);
3658		modes++;
3659	}
3660
3661	return modes;
3662}
3663
3664static int drm_gtf2_modes_for_range(struct drm_connector *connector,
3665				    const struct drm_edid *drm_edid,
3666				    const struct detailed_timing *timing)
3667{
3668	int i, modes = 0;
3669	struct drm_display_mode *newmode;
3670	struct drm_device *dev = connector->dev;
 
3671
3672	for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
3673		const struct minimode *m = &extra_modes[i];
3674
3675		newmode = drm_gtf2_mode(dev, drm_edid, m->w, m->h, m->r);
3676		if (!newmode)
3677			return modes;
3678
3679		drm_mode_fixup_1366x768(newmode);
3680		if (!mode_in_range(newmode, drm_edid, timing) ||
3681		    !valid_inferred_mode(connector, newmode)) {
3682			drm_mode_destroy(dev, newmode);
3683			continue;
3684		}
3685
3686		drm_mode_probed_add(connector, newmode);
3687		modes++;
3688	}
3689
3690	return modes;
3691}
3692
3693static int drm_cvt_modes_for_range(struct drm_connector *connector,
3694				   const struct drm_edid *drm_edid,
3695				   const struct detailed_timing *timing)
3696{
3697	int i, modes = 0;
3698	struct drm_display_mode *newmode;
3699	struct drm_device *dev = connector->dev;
3700	bool rb = drm_monitor_supports_rb(drm_edid);
3701
3702	for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
3703		const struct minimode *m = &extra_modes[i];
3704
3705		newmode = drm_cvt_mode(dev, m->w, m->h, m->r, rb, 0, 0);
3706		if (!newmode)
3707			return modes;
3708
3709		drm_mode_fixup_1366x768(newmode);
3710		if (!mode_in_range(newmode, drm_edid, timing) ||
3711		    !valid_inferred_mode(connector, newmode)) {
3712			drm_mode_destroy(dev, newmode);
3713			continue;
3714		}
3715
3716		drm_mode_probed_add(connector, newmode);
3717		modes++;
3718	}
3719
3720	return modes;
3721}
3722
3723static void
3724do_inferred_modes(const struct detailed_timing *timing, void *c)
3725{
3726	struct detailed_mode_closure *closure = c;
3727	const struct detailed_non_pixel *data = &timing->data.other_data;
3728	const struct detailed_data_monitor_range *range = &data->data.range;
3729
3730	if (!is_display_descriptor(timing, EDID_DETAIL_MONITOR_RANGE))
3731		return;
3732
3733	closure->modes += drm_dmt_modes_for_range(closure->connector,
3734						  closure->drm_edid,
3735						  timing);
3736
3737	if (closure->drm_edid->edid->revision < 2)
3738		return; /* GTF not defined yet */
3739
3740	switch (range->flags) {
3741	case DRM_EDID_SECONDARY_GTF_SUPPORT_FLAG:
3742		closure->modes += drm_gtf2_modes_for_range(closure->connector,
3743							   closure->drm_edid,
3744							   timing);
3745		break;
3746	case DRM_EDID_DEFAULT_GTF_SUPPORT_FLAG:
3747		closure->modes += drm_gtf_modes_for_range(closure->connector,
3748							  closure->drm_edid,
3749							  timing);
3750		break;
3751	case DRM_EDID_CVT_SUPPORT_FLAG:
3752		if (closure->drm_edid->edid->revision < 4)
3753			break;
3754
3755		closure->modes += drm_cvt_modes_for_range(closure->connector,
3756							  closure->drm_edid,
3757							  timing);
3758		break;
3759	case DRM_EDID_RANGE_LIMITS_ONLY_FLAG:
3760	default:
3761		break;
3762	}
3763}
3764
3765static int add_inferred_modes(struct drm_connector *connector,
3766			      const struct drm_edid *drm_edid)
3767{
3768	struct detailed_mode_closure closure = {
3769		.connector = connector,
3770		.drm_edid = drm_edid,
3771	};
3772
3773	if (drm_edid->edid->revision >= 1)
3774		drm_for_each_detailed_block(drm_edid, do_inferred_modes, &closure);
 
3775
3776	return closure.modes;
3777}
3778
3779static int
3780drm_est3_modes(struct drm_connector *connector, const struct detailed_timing *timing)
3781{
3782	int i, j, m, modes = 0;
3783	struct drm_display_mode *mode;
3784	const u8 *est = ((const u8 *)timing) + 6;
3785
3786	for (i = 0; i < 6; i++) {
3787		for (j = 7; j >= 0; j--) {
3788			m = (i * 8) + (7 - j);
3789			if (m >= ARRAY_SIZE(est3_modes))
3790				break;
3791			if (est[i] & (1 << j)) {
3792				mode = drm_mode_find_dmt(connector->dev,
3793							 est3_modes[m].w,
3794							 est3_modes[m].h,
3795							 est3_modes[m].r,
3796							 est3_modes[m].rb);
3797				if (mode) {
3798					drm_mode_probed_add(connector, mode);
3799					modes++;
3800				}
3801			}
3802		}
3803	}
3804
3805	return modes;
3806}
3807
3808static void
3809do_established_modes(const struct detailed_timing *timing, void *c)
3810{
3811	struct detailed_mode_closure *closure = c;
 
3812
3813	if (!is_display_descriptor(timing, EDID_DETAIL_EST_TIMINGS))
3814		return;
3815
3816	closure->modes += drm_est3_modes(closure->connector, timing);
3817}
3818
3819/*
3820 * Get established modes from EDID and add them. Each EDID block contains a
3821 * bitmap of the supported "established modes" list (defined above). Tease them
3822 * out and add them to the global modes list.
 
 
 
3823 */
3824static int add_established_modes(struct drm_connector *connector,
3825				 const struct drm_edid *drm_edid)
3826{
3827	struct drm_device *dev = connector->dev;
3828	const struct edid *edid = drm_edid->edid;
3829	unsigned long est_bits = edid->established_timings.t1 |
3830		(edid->established_timings.t2 << 8) |
3831		((edid->established_timings.mfg_rsvd & 0x80) << 9);
3832	int i, modes = 0;
3833	struct detailed_mode_closure closure = {
3834		.connector = connector,
3835		.drm_edid = drm_edid,
3836	};
3837
3838	for (i = 0; i <= EDID_EST_TIMINGS; i++) {
3839		if (est_bits & (1<<i)) {
3840			struct drm_display_mode *newmode;
3841
3842			newmode = drm_mode_duplicate(dev, &edid_est_modes[i]);
3843			if (newmode) {
3844				drm_mode_probed_add(connector, newmode);
3845				modes++;
3846			}
3847		}
3848	}
3849
3850	if (edid->revision >= 1)
3851		drm_for_each_detailed_block(drm_edid, do_established_modes,
3852					    &closure);
3853
3854	return modes + closure.modes;
3855}
3856
3857static void
3858do_standard_modes(const struct detailed_timing *timing, void *c)
3859{
3860	struct detailed_mode_closure *closure = c;
3861	const struct detailed_non_pixel *data = &timing->data.other_data;
3862	struct drm_connector *connector = closure->connector;
3863	int i;
3864
3865	if (!is_display_descriptor(timing, EDID_DETAIL_STD_MODES))
3866		return;
 
 
 
3867
3868	for (i = 0; i < 6; i++) {
3869		const struct std_timing *std = &data->data.timings[i];
3870		struct drm_display_mode *newmode;
3871
3872		newmode = drm_mode_std(connector, closure->drm_edid, std);
3873		if (newmode) {
3874			drm_mode_probed_add(connector, newmode);
3875			closure->modes++;
3876		}
3877	}
3878}
3879
3880/*
3881 * Get standard modes from EDID and add them. Standard modes can be calculated
3882 * using the appropriate standard (DMT, GTF, or CVT). Grab them from EDID and
3883 * add them to the list.
 
 
 
3884 */
3885static int add_standard_modes(struct drm_connector *connector,
3886			      const struct drm_edid *drm_edid)
3887{
3888	int i, modes = 0;
3889	struct detailed_mode_closure closure = {
3890		.connector = connector,
3891		.drm_edid = drm_edid,
3892	};
3893
3894	for (i = 0; i < EDID_STD_TIMINGS; i++) {
3895		struct drm_display_mode *newmode;
3896
3897		newmode = drm_mode_std(connector, drm_edid,
3898				       &drm_edid->edid->standard_timings[i]);
3899		if (newmode) {
3900			drm_mode_probed_add(connector, newmode);
3901			modes++;
3902		}
3903	}
3904
3905	if (drm_edid->edid->revision >= 1)
3906		drm_for_each_detailed_block(drm_edid, do_standard_modes,
3907					    &closure);
3908
3909	/* XXX should also look for standard codes in VTB blocks */
3910
3911	return modes + closure.modes;
3912}
3913
3914static int drm_cvt_modes(struct drm_connector *connector,
3915			 const struct detailed_timing *timing)
3916{
3917	int i, j, modes = 0;
3918	struct drm_display_mode *newmode;
3919	struct drm_device *dev = connector->dev;
3920	const struct cvt_timing *cvt;
3921	const int rates[] = { 60, 85, 75, 60, 50 };
3922	const u8 empty[3] = { 0, 0, 0 };
3923
3924	for (i = 0; i < 4; i++) {
3925		int width, height;
3926
3927		cvt = &(timing->data.other_data.data.cvt[i]);
3928
3929		if (!memcmp(cvt->code, empty, 3))
3930			continue;
3931
3932		height = (cvt->code[0] + ((cvt->code[1] & 0xf0) << 4) + 1) * 2;
3933		switch (cvt->code[1] & 0x0c) {
3934		/* default - because compiler doesn't see that we've enumerated all cases */
3935		default:
3936		case 0x00:
3937			width = height * 4 / 3;
3938			break;
3939		case 0x04:
3940			width = height * 16 / 9;
3941			break;
3942		case 0x08:
3943			width = height * 16 / 10;
3944			break;
3945		case 0x0c:
3946			width = height * 15 / 9;
3947			break;
3948		}
3949
3950		for (j = 1; j < 5; j++) {
3951			if (cvt->code[2] & (1 << j)) {
3952				newmode = drm_cvt_mode(dev, width, height,
3953						       rates[j], j == 0,
3954						       false, false);
3955				if (newmode) {
3956					drm_mode_probed_add(connector, newmode);
3957					modes++;
3958				}
3959			}
3960		}
3961	}
3962
3963	return modes;
3964}
3965
3966static void
3967do_cvt_mode(const struct detailed_timing *timing, void *c)
3968{
3969	struct detailed_mode_closure *closure = c;
 
3970
3971	if (!is_display_descriptor(timing, EDID_DETAIL_CVT_3BYTE))
3972		return;
3973
3974	closure->modes += drm_cvt_modes(closure->connector, timing);
3975}
3976
3977static int
3978add_cvt_modes(struct drm_connector *connector, const struct drm_edid *drm_edid)
3979{
3980	struct detailed_mode_closure closure = {
3981		.connector = connector,
3982		.drm_edid = drm_edid,
3983	};
3984
3985	if (drm_edid->edid->revision >= 3)
3986		drm_for_each_detailed_block(drm_edid, do_cvt_mode, &closure);
3987
3988	/* XXX should also look for CVT codes in VTB blocks */
3989
3990	return closure.modes;
3991}
3992
3993static void fixup_detailed_cea_mode_clock(struct drm_connector *connector,
3994					  struct drm_display_mode *mode);
3995
3996static void
3997do_detailed_mode(const struct detailed_timing *timing, void *c)
3998{
3999	struct detailed_mode_closure *closure = c;
4000	struct drm_display_mode *newmode;
4001
4002	if (!is_detailed_timing_descriptor(timing))
4003		return;
 
 
 
 
4004
4005	newmode = drm_mode_detailed(closure->connector,
4006				    closure->drm_edid, timing,
4007				    closure->quirks);
4008	if (!newmode)
4009		return;
4010
4011	if (closure->preferred)
4012		newmode->type |= DRM_MODE_TYPE_PREFERRED;
 
 
 
 
4013
4014	/*
4015	 * Detailed modes are limited to 10kHz pixel clock resolution,
4016	 * so fix up anything that looks like CEA/HDMI mode, but the clock
4017	 * is just slightly off.
4018	 */
4019	fixup_detailed_cea_mode_clock(closure->connector, newmode);
4020
4021	drm_mode_probed_add(closure->connector, newmode);
4022	closure->modes++;
4023	closure->preferred = false;
4024}
4025
4026/*
4027 * add_detailed_modes - Add modes from detailed timings
4028 * @connector: attached connector
4029 * @drm_edid: EDID block to scan
4030 * @quirks: quirks to apply
4031 */
4032static int add_detailed_modes(struct drm_connector *connector,
4033			      const struct drm_edid *drm_edid, u32 quirks)
 
4034{
4035	struct detailed_mode_closure closure = {
4036		.connector = connector,
4037		.drm_edid = drm_edid,
 
4038		.quirks = quirks,
4039	};
4040
4041	if (drm_edid->edid->revision >= 4)
4042		closure.preferred = true; /* first detailed timing is always preferred */
4043	else
4044		closure.preferred =
4045			drm_edid->edid->features & DRM_EDID_FEATURE_PREFERRED_TIMING;
4046
4047	drm_for_each_detailed_block(drm_edid, do_detailed_mode, &closure);
4048
4049	return closure.modes;
4050}
4051
4052/* CTA-861-H Table 60 - CTA Tag Codes */
4053#define CTA_DB_AUDIO			1
4054#define CTA_DB_VIDEO			2
4055#define CTA_DB_VENDOR			3
4056#define CTA_DB_SPEAKER			4
4057#define CTA_DB_EXTENDED_TAG		7
4058
4059/* CTA-861-H Table 62 - CTA Extended Tag Codes */
4060#define CTA_EXT_DB_VIDEO_CAP		0
4061#define CTA_EXT_DB_VENDOR		1
4062#define CTA_EXT_DB_HDR_STATIC_METADATA	6
4063#define CTA_EXT_DB_420_VIDEO_DATA	14
4064#define CTA_EXT_DB_420_VIDEO_CAP_MAP	15
4065#define CTA_EXT_DB_HF_EEODB		0x78
4066#define CTA_EXT_DB_HF_SCDB		0x79
4067
4068#define EDID_BASIC_AUDIO	(1 << 6)
4069#define EDID_CEA_YCRCB444	(1 << 5)
4070#define EDID_CEA_YCRCB422	(1 << 4)
4071#define EDID_CEA_VCDB_QS	(1 << 6)
4072
4073/*
4074 * Search EDID for CEA extension block.
4075 *
4076 * FIXME: Prefer not returning pointers to raw EDID data.
4077 */
4078const u8 *drm_find_edid_extension(const struct drm_edid *drm_edid,
4079				  int ext_id, int *ext_index)
4080{
4081	const u8 *edid_ext = NULL;
4082	int i;
4083
4084	/* No EDID or EDID extensions */
4085	if (!drm_edid || !drm_edid_extension_block_count(drm_edid))
4086		return NULL;
4087
4088	/* Find CEA extension */
4089	for (i = *ext_index; i < drm_edid_extension_block_count(drm_edid); i++) {
4090		edid_ext = drm_edid_extension_block_data(drm_edid, i);
4091		if (edid_block_tag(edid_ext) == ext_id)
4092			break;
4093	}
4094
4095	if (i >= drm_edid_extension_block_count(drm_edid))
4096		return NULL;
4097
4098	*ext_index = i + 1;
4099
4100	return edid_ext;
4101}
4102
4103/* Return true if the EDID has a CTA extension or a DisplayID CTA data block */
4104static bool drm_edid_has_cta_extension(const struct drm_edid *drm_edid)
4105{
4106	const struct displayid_block *block;
4107	struct displayid_iter iter;
4108	int ext_index = 0;
4109	bool found = false;
4110
4111	/* Look for a top level CEA extension block */
4112	if (drm_find_edid_extension(drm_edid, CEA_EXT, &ext_index))
4113		return true;
4114
4115	/* CEA blocks can also be found embedded in a DisplayID block */
4116	displayid_iter_edid_begin(drm_edid, &iter);
4117	displayid_iter_for_each(block, &iter) {
4118		if (block->tag == DATA_BLOCK_CTA) {
4119			found = true;
4120			break;
4121		}
4122	}
4123	displayid_iter_end(&iter);
4124
4125	return found;
4126}
4127
4128static __always_inline const struct drm_display_mode *cea_mode_for_vic(u8 vic)
4129{
4130	BUILD_BUG_ON(1 + ARRAY_SIZE(edid_cea_modes_1) - 1 != 127);
4131	BUILD_BUG_ON(193 + ARRAY_SIZE(edid_cea_modes_193) - 1 != 219);
4132
4133	if (vic >= 1 && vic < 1 + ARRAY_SIZE(edid_cea_modes_1))
4134		return &edid_cea_modes_1[vic - 1];
4135	if (vic >= 193 && vic < 193 + ARRAY_SIZE(edid_cea_modes_193))
4136		return &edid_cea_modes_193[vic - 193];
4137	return NULL;
4138}
4139
4140static u8 cea_num_vics(void)
4141{
4142	return 193 + ARRAY_SIZE(edid_cea_modes_193);
4143}
4144
4145static u8 cea_next_vic(u8 vic)
4146{
4147	if (++vic == 1 + ARRAY_SIZE(edid_cea_modes_1))
4148		vic = 193;
4149	return vic;
4150}
4151
4152/*
4153 * Calculate the alternate clock for the CEA mode
4154 * (60Hz vs. 59.94Hz etc.)
4155 */
4156static unsigned int
4157cea_mode_alternate_clock(const struct drm_display_mode *cea_mode)
4158{
4159	unsigned int clock = cea_mode->clock;
4160
4161	if (drm_mode_vrefresh(cea_mode) % 6 != 0)
4162		return clock;
4163
4164	/*
4165	 * edid_cea_modes contains the 59.94Hz
4166	 * variant for 240 and 480 line modes,
4167	 * and the 60Hz variant otherwise.
4168	 */
4169	if (cea_mode->vdisplay == 240 || cea_mode->vdisplay == 480)
4170		clock = DIV_ROUND_CLOSEST(clock * 1001, 1000);
4171	else
4172		clock = DIV_ROUND_CLOSEST(clock * 1000, 1001);
4173
4174	return clock;
4175}
4176
4177static bool
4178cea_mode_alternate_timings(u8 vic, struct drm_display_mode *mode)
4179{
4180	/*
4181	 * For certain VICs the spec allows the vertical
4182	 * front porch to vary by one or two lines.
4183	 *
4184	 * cea_modes[] stores the variant with the shortest
4185	 * vertical front porch. We can adjust the mode to
4186	 * get the other variants by simply increasing the
4187	 * vertical front porch length.
4188	 */
4189	BUILD_BUG_ON(cea_mode_for_vic(8)->vtotal != 262 ||
4190		     cea_mode_for_vic(9)->vtotal != 262 ||
4191		     cea_mode_for_vic(12)->vtotal != 262 ||
4192		     cea_mode_for_vic(13)->vtotal != 262 ||
4193		     cea_mode_for_vic(23)->vtotal != 312 ||
4194		     cea_mode_for_vic(24)->vtotal != 312 ||
4195		     cea_mode_for_vic(27)->vtotal != 312 ||
4196		     cea_mode_for_vic(28)->vtotal != 312);
4197
4198	if (((vic == 8 || vic == 9 ||
4199	      vic == 12 || vic == 13) && mode->vtotal < 263) ||
4200	    ((vic == 23 || vic == 24 ||
4201	      vic == 27 || vic == 28) && mode->vtotal < 314)) {
4202		mode->vsync_start++;
4203		mode->vsync_end++;
4204		mode->vtotal++;
4205
4206		return true;
4207	}
4208
4209	return false;
4210}
4211
4212static u8 drm_match_cea_mode_clock_tolerance(const struct drm_display_mode *to_match,
4213					     unsigned int clock_tolerance)
4214{
4215	unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS;
4216	u8 vic;
4217
4218	if (!to_match->clock)
4219		return 0;
4220
4221	if (to_match->picture_aspect_ratio)
4222		match_flags |= DRM_MODE_MATCH_ASPECT_RATIO;
4223
4224	for (vic = 1; vic < cea_num_vics(); vic = cea_next_vic(vic)) {
4225		struct drm_display_mode cea_mode;
4226		unsigned int clock1, clock2;
4227
4228		drm_mode_init(&cea_mode, cea_mode_for_vic(vic));
4229
4230		/* Check both 60Hz and 59.94Hz */
4231		clock1 = cea_mode.clock;
4232		clock2 = cea_mode_alternate_clock(&cea_mode);
4233
4234		if (abs(to_match->clock - clock1) > clock_tolerance &&
4235		    abs(to_match->clock - clock2) > clock_tolerance)
4236			continue;
4237
4238		do {
4239			if (drm_mode_match(to_match, &cea_mode, match_flags))
4240				return vic;
4241		} while (cea_mode_alternate_timings(vic, &cea_mode));
4242	}
4243
4244	return 0;
4245}
4246
4247/**
4248 * drm_match_cea_mode - look for a CEA mode matching given mode
4249 * @to_match: display mode
4250 *
4251 * Return: The CEA Video ID (VIC) of the mode or 0 if it isn't a CEA-861
4252 * mode.
4253 */
4254u8 drm_match_cea_mode(const struct drm_display_mode *to_match)
4255{
4256	unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS;
4257	u8 vic;
4258
4259	if (!to_match->clock)
4260		return 0;
4261
4262	if (to_match->picture_aspect_ratio)
4263		match_flags |= DRM_MODE_MATCH_ASPECT_RATIO;
4264
4265	for (vic = 1; vic < cea_num_vics(); vic = cea_next_vic(vic)) {
4266		struct drm_display_mode cea_mode;
4267		unsigned int clock1, clock2;
4268
4269		drm_mode_init(&cea_mode, cea_mode_for_vic(vic));
4270
4271		/* Check both 60Hz and 59.94Hz */
4272		clock1 = cea_mode.clock;
4273		clock2 = cea_mode_alternate_clock(&cea_mode);
4274
4275		if (KHZ2PICOS(to_match->clock) != KHZ2PICOS(clock1) &&
4276		    KHZ2PICOS(to_match->clock) != KHZ2PICOS(clock2))
4277			continue;
4278
4279		do {
4280			if (drm_mode_match(to_match, &cea_mode, match_flags))
4281				return vic;
4282		} while (cea_mode_alternate_timings(vic, &cea_mode));
4283	}
4284
4285	return 0;
4286}
4287EXPORT_SYMBOL(drm_match_cea_mode);
4288
4289static bool drm_valid_cea_vic(u8 vic)
4290{
4291	return cea_mode_for_vic(vic) != NULL;
4292}
4293
4294static enum hdmi_picture_aspect drm_get_cea_aspect_ratio(const u8 video_code)
4295{
4296	const struct drm_display_mode *mode = cea_mode_for_vic(video_code);
4297
4298	if (mode)
4299		return mode->picture_aspect_ratio;
4300
4301	return HDMI_PICTURE_ASPECT_NONE;
4302}
4303
4304static enum hdmi_picture_aspect drm_get_hdmi_aspect_ratio(const u8 video_code)
4305{
4306	return edid_4k_modes[video_code].picture_aspect_ratio;
4307}
 
4308
4309/*
4310 * Calculate the alternate clock for HDMI modes (those from the HDMI vendor
4311 * specific block).
 
 
 
 
4312 */
4313static unsigned int
4314hdmi_mode_alternate_clock(const struct drm_display_mode *hdmi_mode)
4315{
 
 
 
4316	return cea_mode_alternate_clock(hdmi_mode);
4317}
4318
4319static u8 drm_match_hdmi_mode_clock_tolerance(const struct drm_display_mode *to_match,
4320					      unsigned int clock_tolerance)
4321{
4322	unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS;
4323	u8 vic;
4324
4325	if (!to_match->clock)
4326		return 0;
4327
4328	if (to_match->picture_aspect_ratio)
4329		match_flags |= DRM_MODE_MATCH_ASPECT_RATIO;
4330
4331	for (vic = 1; vic < ARRAY_SIZE(edid_4k_modes); vic++) {
4332		const struct drm_display_mode *hdmi_mode = &edid_4k_modes[vic];
4333		unsigned int clock1, clock2;
4334
4335		/* Make sure to also match alternate clocks */
4336		clock1 = hdmi_mode->clock;
4337		clock2 = hdmi_mode_alternate_clock(hdmi_mode);
4338
4339		if (abs(to_match->clock - clock1) > clock_tolerance &&
4340		    abs(to_match->clock - clock2) > clock_tolerance)
4341			continue;
4342
4343		if (drm_mode_match(to_match, hdmi_mode, match_flags))
4344			return vic;
4345	}
4346
4347	return 0;
4348}
4349
4350/*
4351 * drm_match_hdmi_mode - look for a HDMI mode matching given mode
4352 * @to_match: display mode
4353 *
4354 * An HDMI mode is one defined in the HDMI vendor specific block.
4355 *
4356 * Returns the HDMI Video ID (VIC) of the mode or 0 if it isn't one.
4357 */
4358static u8 drm_match_hdmi_mode(const struct drm_display_mode *to_match)
4359{
4360	unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS;
4361	u8 vic;
4362
4363	if (!to_match->clock)
4364		return 0;
4365
4366	if (to_match->picture_aspect_ratio)
4367		match_flags |= DRM_MODE_MATCH_ASPECT_RATIO;
4368
4369	for (vic = 1; vic < ARRAY_SIZE(edid_4k_modes); vic++) {
4370		const struct drm_display_mode *hdmi_mode = &edid_4k_modes[vic];
4371		unsigned int clock1, clock2;
4372
4373		/* Make sure to also match alternate clocks */
4374		clock1 = hdmi_mode->clock;
4375		clock2 = hdmi_mode_alternate_clock(hdmi_mode);
4376
4377		if ((KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock1) ||
4378		     KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock2)) &&
4379		    drm_mode_match(to_match, hdmi_mode, match_flags))
4380			return vic;
4381	}
4382	return 0;
4383}
4384
4385static bool drm_valid_hdmi_vic(u8 vic)
4386{
4387	return vic > 0 && vic < ARRAY_SIZE(edid_4k_modes);
4388}
4389
4390static int add_alternate_cea_modes(struct drm_connector *connector,
4391				   const struct drm_edid *drm_edid)
4392{
4393	struct drm_device *dev = connector->dev;
4394	struct drm_display_mode *mode, *tmp;
4395	LIST_HEAD(list);
4396	int modes = 0;
4397
4398	/* Don't add CTA modes if the CTA extension block is missing */
4399	if (!drm_edid_has_cta_extension(drm_edid))
4400		return 0;
4401
4402	/*
4403	 * Go through all probed modes and create a new mode
4404	 * with the alternate clock for certain CEA modes.
4405	 */
4406	list_for_each_entry(mode, &connector->probed_modes, head) {
4407		const struct drm_display_mode *cea_mode = NULL;
4408		struct drm_display_mode *newmode;
4409		u8 vic = drm_match_cea_mode(mode);
4410		unsigned int clock1, clock2;
4411
4412		if (drm_valid_cea_vic(vic)) {
4413			cea_mode = cea_mode_for_vic(vic);
4414			clock2 = cea_mode_alternate_clock(cea_mode);
4415		} else {
4416			vic = drm_match_hdmi_mode(mode);
4417			if (drm_valid_hdmi_vic(vic)) {
4418				cea_mode = &edid_4k_modes[vic];
4419				clock2 = hdmi_mode_alternate_clock(cea_mode);
4420			}
4421		}
4422
4423		if (!cea_mode)
4424			continue;
4425
4426		clock1 = cea_mode->clock;
4427
4428		if (clock1 == clock2)
4429			continue;
4430
4431		if (mode->clock != clock1 && mode->clock != clock2)
4432			continue;
4433
4434		newmode = drm_mode_duplicate(dev, cea_mode);
4435		if (!newmode)
4436			continue;
4437
4438		/* Carry over the stereo flags */
4439		newmode->flags |= mode->flags & DRM_MODE_FLAG_3D_MASK;
4440
4441		/*
4442		 * The current mode could be either variant. Make
4443		 * sure to pick the "other" clock for the new mode.
4444		 */
4445		if (mode->clock != clock1)
4446			newmode->clock = clock1;
4447		else
4448			newmode->clock = clock2;
4449
4450		list_add_tail(&newmode->head, &list);
4451	}
4452
4453	list_for_each_entry_safe(mode, tmp, &list, head) {
4454		list_del(&mode->head);
4455		drm_mode_probed_add(connector, mode);
4456		modes++;
4457	}
4458
4459	return modes;
4460}
4461
4462static u8 svd_to_vic(u8 svd)
4463{
4464	/* 0-6 bit vic, 7th bit native mode indicator */
4465	if ((svd >= 1 &&  svd <= 64) || (svd >= 129 && svd <= 192))
4466		return svd & 127;
4467
4468	return svd;
4469}
4470
4471static struct drm_display_mode *
4472drm_display_mode_from_vic_index(struct drm_connector *connector,
4473				const u8 *video_db, u8 video_len,
4474				u8 video_index)
4475{
4476	struct drm_device *dev = connector->dev;
4477	struct drm_display_mode *newmode;
4478	u8 vic;
4479
4480	if (video_db == NULL || video_index >= video_len)
4481		return NULL;
4482
4483	/* CEA modes are numbered 1..127 */
4484	vic = svd_to_vic(video_db[video_index]);
4485	if (!drm_valid_cea_vic(vic))
4486		return NULL;
4487
4488	newmode = drm_mode_duplicate(dev, cea_mode_for_vic(vic));
4489	if (!newmode)
4490		return NULL;
4491
4492	return newmode;
4493}
4494
4495/*
4496 * do_y420vdb_modes - Parse YCBCR 420 only modes
4497 * @connector: connector corresponding to the HDMI sink
4498 * @svds: start of the data block of CEA YCBCR 420 VDB
4499 * @len: length of the CEA YCBCR 420 VDB
4500 *
4501 * Parse the CEA-861-F YCBCR 420 Video Data Block (Y420VDB)
4502 * which contains modes which can be supported in YCBCR 420
4503 * output format only.
4504 */
4505static int do_y420vdb_modes(struct drm_connector *connector,
4506			    const u8 *svds, u8 svds_len)
4507{
4508	int modes = 0, i;
4509	struct drm_device *dev = connector->dev;
4510	struct drm_display_info *info = &connector->display_info;
4511	struct drm_hdmi_info *hdmi = &info->hdmi;
4512
4513	for (i = 0; i < svds_len; i++) {
4514		u8 vic = svd_to_vic(svds[i]);
4515		struct drm_display_mode *newmode;
4516
4517		if (!drm_valid_cea_vic(vic))
4518			continue;
4519
4520		newmode = drm_mode_duplicate(dev, cea_mode_for_vic(vic));
4521		if (!newmode)
4522			break;
4523		bitmap_set(hdmi->y420_vdb_modes, vic, 1);
4524		drm_mode_probed_add(connector, newmode);
4525		modes++;
4526	}
4527
4528	if (modes > 0)
4529		info->color_formats |= DRM_COLOR_FORMAT_YCBCR420;
4530	return modes;
4531}
4532
4533/*
4534 * drm_add_cmdb_modes - Add a YCBCR 420 mode into bitmap
4535 * @connector: connector corresponding to the HDMI sink
4536 * @vic: CEA vic for the video mode to be added in the map
4537 *
4538 * Makes an entry for a videomode in the YCBCR 420 bitmap
4539 */
4540static void
4541drm_add_cmdb_modes(struct drm_connector *connector, u8 svd)
4542{
4543	u8 vic = svd_to_vic(svd);
4544	struct drm_hdmi_info *hdmi = &connector->display_info.hdmi;
4545
4546	if (!drm_valid_cea_vic(vic))
4547		return;
4548
4549	bitmap_set(hdmi->y420_cmdb_modes, vic, 1);
4550}
4551
4552/**
4553 * drm_display_mode_from_cea_vic() - return a mode for CEA VIC
4554 * @dev: DRM device
4555 * @video_code: CEA VIC of the mode
4556 *
4557 * Creates a new mode matching the specified CEA VIC.
4558 *
4559 * Returns: A new drm_display_mode on success or NULL on failure
4560 */
4561struct drm_display_mode *
4562drm_display_mode_from_cea_vic(struct drm_device *dev,
4563			      u8 video_code)
4564{
4565	const struct drm_display_mode *cea_mode;
4566	struct drm_display_mode *newmode;
4567
4568	cea_mode = cea_mode_for_vic(video_code);
4569	if (!cea_mode)
4570		return NULL;
4571
4572	newmode = drm_mode_duplicate(dev, cea_mode);
4573	if (!newmode)
4574		return NULL;
4575
4576	return newmode;
4577}
4578EXPORT_SYMBOL(drm_display_mode_from_cea_vic);
4579
4580static int
4581do_cea_modes(struct drm_connector *connector, const u8 *db, u8 len)
4582{
4583	int i, modes = 0;
4584	struct drm_hdmi_info *hdmi = &connector->display_info.hdmi;
4585
4586	for (i = 0; i < len; i++) {
4587		struct drm_display_mode *mode;
4588
4589		mode = drm_display_mode_from_vic_index(connector, db, len, i);
4590		if (mode) {
4591			/*
4592			 * YCBCR420 capability block contains a bitmap which
4593			 * gives the index of CEA modes from CEA VDB, which
4594			 * can support YCBCR 420 sampling output also (apart
4595			 * from RGB/YCBCR444 etc).
4596			 * For example, if the bit 0 in bitmap is set,
4597			 * first mode in VDB can support YCBCR420 output too.
4598			 * Add YCBCR420 modes only if sink is HDMI 2.0 capable.
4599			 */
4600			if (i < 64 && hdmi->y420_cmdb_map & (1ULL << i))
4601				drm_add_cmdb_modes(connector, db[i]);
4602
4603			drm_mode_probed_add(connector, mode);
4604			modes++;
4605		}
4606	}
4607
4608	return modes;
4609}
4610
4611struct stereo_mandatory_mode {
4612	int width, height, vrefresh;
4613	unsigned int flags;
4614};
4615
4616static const struct stereo_mandatory_mode stereo_mandatory_modes[] = {
4617	{ 1920, 1080, 24, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
4618	{ 1920, 1080, 24, DRM_MODE_FLAG_3D_FRAME_PACKING },
4619	{ 1920, 1080, 50,
4620	  DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF },
4621	{ 1920, 1080, 60,
4622	  DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF },
4623	{ 1280, 720,  50, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
4624	{ 1280, 720,  50, DRM_MODE_FLAG_3D_FRAME_PACKING },
4625	{ 1280, 720,  60, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
4626	{ 1280, 720,  60, DRM_MODE_FLAG_3D_FRAME_PACKING }
4627};
4628
4629static bool
4630stereo_match_mandatory(const struct drm_display_mode *mode,
4631		       const struct stereo_mandatory_mode *stereo_mode)
4632{
4633	unsigned int interlaced = mode->flags & DRM_MODE_FLAG_INTERLACE;
4634
4635	return mode->hdisplay == stereo_mode->width &&
4636	       mode->vdisplay == stereo_mode->height &&
4637	       interlaced == (stereo_mode->flags & DRM_MODE_FLAG_INTERLACE) &&
4638	       drm_mode_vrefresh(mode) == stereo_mode->vrefresh;
4639}
4640
4641static int add_hdmi_mandatory_stereo_modes(struct drm_connector *connector)
4642{
4643	struct drm_device *dev = connector->dev;
4644	const struct drm_display_mode *mode;
4645	struct list_head stereo_modes;
4646	int modes = 0, i;
4647
4648	INIT_LIST_HEAD(&stereo_modes);
4649
4650	list_for_each_entry(mode, &connector->probed_modes, head) {
4651		for (i = 0; i < ARRAY_SIZE(stereo_mandatory_modes); i++) {
4652			const struct stereo_mandatory_mode *mandatory;
4653			struct drm_display_mode *new_mode;
4654
4655			if (!stereo_match_mandatory(mode,
4656						    &stereo_mandatory_modes[i]))
4657				continue;
4658
4659			mandatory = &stereo_mandatory_modes[i];
4660			new_mode = drm_mode_duplicate(dev, mode);
4661			if (!new_mode)
4662				continue;
4663
4664			new_mode->flags |= mandatory->flags;
4665			list_add_tail(&new_mode->head, &stereo_modes);
4666			modes++;
4667		}
4668	}
4669
4670	list_splice_tail(&stereo_modes, &connector->probed_modes);
4671
4672	return modes;
4673}
4674
4675static int add_hdmi_mode(struct drm_connector *connector, u8 vic)
4676{
4677	struct drm_device *dev = connector->dev;
4678	struct drm_display_mode *newmode;
4679
4680	if (!drm_valid_hdmi_vic(vic)) {
4681		drm_err(connector->dev, "[CONNECTOR:%d:%s] Unknown HDMI VIC: %d\n",
4682			connector->base.id, connector->name, vic);
4683		return 0;
4684	}
4685
4686	newmode = drm_mode_duplicate(dev, &edid_4k_modes[vic]);
4687	if (!newmode)
4688		return 0;
4689
4690	drm_mode_probed_add(connector, newmode);
4691
4692	return 1;
4693}
4694
4695static int add_3d_struct_modes(struct drm_connector *connector, u16 structure,
4696			       const u8 *video_db, u8 video_len, u8 video_index)
4697{
4698	struct drm_display_mode *newmode;
4699	int modes = 0;
4700
4701	if (structure & (1 << 0)) {
4702		newmode = drm_display_mode_from_vic_index(connector, video_db,
4703							  video_len,
4704							  video_index);
4705		if (newmode) {
4706			newmode->flags |= DRM_MODE_FLAG_3D_FRAME_PACKING;
4707			drm_mode_probed_add(connector, newmode);
4708			modes++;
4709		}
4710	}
4711	if (structure & (1 << 6)) {
4712		newmode = drm_display_mode_from_vic_index(connector, video_db,
4713							  video_len,
4714							  video_index);
4715		if (newmode) {
4716			newmode->flags |= DRM_MODE_FLAG_3D_TOP_AND_BOTTOM;
4717			drm_mode_probed_add(connector, newmode);
4718			modes++;
4719		}
4720	}
4721	if (structure & (1 << 8)) {
4722		newmode = drm_display_mode_from_vic_index(connector, video_db,
4723							  video_len,
4724							  video_index);
4725		if (newmode) {
4726			newmode->flags |= DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF;
4727			drm_mode_probed_add(connector, newmode);
4728			modes++;
4729		}
4730	}
4731
4732	return modes;
4733}
4734
4735/*
4736 * do_hdmi_vsdb_modes - Parse the HDMI Vendor Specific data block
4737 * @connector: connector corresponding to the HDMI sink
4738 * @db: start of the CEA vendor specific block
4739 * @len: length of the CEA block payload, ie. one can access up to db[len]
4740 *
4741 * Parses the HDMI VSDB looking for modes to add to @connector. This function
4742 * also adds the stereo 3d modes when applicable.
4743 */
4744static int
4745do_hdmi_vsdb_modes(struct drm_connector *connector, const u8 *db, u8 len,
4746		   const u8 *video_db, u8 video_len)
4747{
4748	struct drm_display_info *info = &connector->display_info;
4749	int modes = 0, offset = 0, i, multi_present = 0, multi_len;
4750	u8 vic_len, hdmi_3d_len = 0;
4751	u16 mask;
4752	u16 structure_all;
4753
4754	if (len < 8)
4755		goto out;
4756
4757	/* no HDMI_Video_Present */
4758	if (!(db[8] & (1 << 5)))
4759		goto out;
4760
4761	/* Latency_Fields_Present */
4762	if (db[8] & (1 << 7))
4763		offset += 2;
4764
4765	/* I_Latency_Fields_Present */
4766	if (db[8] & (1 << 6))
4767		offset += 2;
4768
4769	/* the declared length is not long enough for the 2 first bytes
4770	 * of additional video format capabilities */
4771	if (len < (8 + offset + 2))
4772		goto out;
4773
4774	/* 3D_Present */
4775	offset++;
4776	if (db[8 + offset] & (1 << 7)) {
4777		modes += add_hdmi_mandatory_stereo_modes(connector);
4778
4779		/* 3D_Multi_present */
4780		multi_present = (db[8 + offset] & 0x60) >> 5;
4781	}
4782
4783	offset++;
4784	vic_len = db[8 + offset] >> 5;
4785	hdmi_3d_len = db[8 + offset] & 0x1f;
4786
4787	for (i = 0; i < vic_len && len >= (9 + offset + i); i++) {
4788		u8 vic;
4789
4790		vic = db[9 + offset + i];
4791		modes += add_hdmi_mode(connector, vic);
4792	}
4793	offset += 1 + vic_len;
4794
4795	if (multi_present == 1)
4796		multi_len = 2;
4797	else if (multi_present == 2)
4798		multi_len = 4;
4799	else
4800		multi_len = 0;
4801
4802	if (len < (8 + offset + hdmi_3d_len - 1))
4803		goto out;
4804
4805	if (hdmi_3d_len < multi_len)
4806		goto out;
4807
4808	if (multi_present == 1 || multi_present == 2) {
4809		/* 3D_Structure_ALL */
4810		structure_all = (db[8 + offset] << 8) | db[9 + offset];
4811
4812		/* check if 3D_MASK is present */
4813		if (multi_present == 2)
4814			mask = (db[10 + offset] << 8) | db[11 + offset];
4815		else
4816			mask = 0xffff;
4817
4818		for (i = 0; i < 16; i++) {
4819			if (mask & (1 << i))
4820				modes += add_3d_struct_modes(connector,
4821						structure_all,
4822						video_db,
4823						video_len, i);
4824		}
4825	}
4826
4827	offset += multi_len;
4828
4829	for (i = 0; i < (hdmi_3d_len - multi_len); i++) {
4830		int vic_index;
4831		struct drm_display_mode *newmode = NULL;
4832		unsigned int newflag = 0;
4833		bool detail_present;
4834
4835		detail_present = ((db[8 + offset + i] & 0x0f) > 7);
4836
4837		if (detail_present && (i + 1 == hdmi_3d_len - multi_len))
4838			break;
4839
4840		/* 2D_VIC_order_X */
4841		vic_index = db[8 + offset + i] >> 4;
4842
4843		/* 3D_Structure_X */
4844		switch (db[8 + offset + i] & 0x0f) {
4845		case 0:
4846			newflag = DRM_MODE_FLAG_3D_FRAME_PACKING;
4847			break;
4848		case 6:
4849			newflag = DRM_MODE_FLAG_3D_TOP_AND_BOTTOM;
4850			break;
4851		case 8:
4852			/* 3D_Detail_X */
4853			if ((db[9 + offset + i] >> 4) == 1)
4854				newflag = DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF;
4855			break;
4856		}
4857
4858		if (newflag != 0) {
4859			newmode = drm_display_mode_from_vic_index(connector,
4860								  video_db,
4861								  video_len,
4862								  vic_index);
4863
4864			if (newmode) {
4865				newmode->flags |= newflag;
4866				drm_mode_probed_add(connector, newmode);
4867				modes++;
4868			}
4869		}
4870
4871		if (detail_present)
4872			i++;
4873	}
4874
4875out:
4876	if (modes > 0)
4877		info->has_hdmi_infoframe = true;
4878	return modes;
4879}
4880
4881static int
4882cea_revision(const u8 *cea)
4883{
4884	/*
4885	 * FIXME is this correct for the DispID variant?
4886	 * The DispID spec doesn't really specify whether
4887	 * this is the revision of the CEA extension or
4888	 * the DispID CEA data block. And the only value
4889	 * given as an example is 0.
4890	 */
4891	return cea[1];
4892}
4893
4894/*
4895 * CTA Data Block iterator.
4896 *
4897 * Iterate through all CTA Data Blocks in both EDID CTA Extensions and DisplayID
4898 * CTA Data Blocks.
4899 *
4900 * struct cea_db *db:
4901 * struct cea_db_iter iter;
4902 *
4903 * cea_db_iter_edid_begin(edid, &iter);
4904 * cea_db_iter_for_each(db, &iter) {
4905 *         // do stuff with db
4906 * }
4907 * cea_db_iter_end(&iter);
4908 */
4909struct cea_db_iter {
4910	struct drm_edid_iter edid_iter;
4911	struct displayid_iter displayid_iter;
4912
4913	/* Current Data Block Collection. */
4914	const u8 *collection;
4915
4916	/* Current Data Block index in current collection. */
4917	int index;
4918
4919	/* End index in current collection. */
4920	int end;
4921};
4922
4923/* CTA-861-H section 7.4 CTA Data BLock Collection */
4924struct cea_db {
4925	u8 tag_length;
4926	u8 data[];
4927} __packed;
4928
4929static int cea_db_tag(const struct cea_db *db)
4930{
4931	return db->tag_length >> 5;
4932}
4933
4934static int cea_db_payload_len(const void *_db)
 
4935{
4936	/* FIXME: Transition to passing struct cea_db * everywhere. */
4937	const struct cea_db *db = _db;
4938
4939	return db->tag_length & 0x1f;
4940}
4941
4942static const void *cea_db_data(const struct cea_db *db)
 
4943{
4944	return db->data;
 
 
 
 
 
 
 
4945}
4946
4947static bool cea_db_is_extended_tag(const struct cea_db *db, int tag)
4948{
4949	return cea_db_tag(db) == CTA_DB_EXTENDED_TAG &&
4950		cea_db_payload_len(db) >= 1 &&
4951		db->data[0] == tag;
4952}
4953
4954static bool cea_db_is_vendor(const struct cea_db *db, int vendor_oui)
4955{
4956	const u8 *data = cea_db_data(db);
4957
4958	return cea_db_tag(db) == CTA_DB_VENDOR &&
4959		cea_db_payload_len(db) >= 3 &&
4960		oui(data[2], data[1], data[0]) == vendor_oui;
4961}
4962
4963static void cea_db_iter_edid_begin(const struct drm_edid *drm_edid,
4964				   struct cea_db_iter *iter)
4965{
4966	memset(iter, 0, sizeof(*iter));
4967
4968	drm_edid_iter_begin(drm_edid, &iter->edid_iter);
4969	displayid_iter_edid_begin(drm_edid, &iter->displayid_iter);
4970}
4971
4972static const struct cea_db *
4973__cea_db_iter_current_block(const struct cea_db_iter *iter)
4974{
4975	const struct cea_db *db;
4976
4977	if (!iter->collection)
4978		return NULL;
4979
4980	db = (const struct cea_db *)&iter->collection[iter->index];
4981
4982	if (iter->index + sizeof(*db) <= iter->end &&
4983	    iter->index + sizeof(*db) + cea_db_payload_len(db) <= iter->end)
4984		return db;
4985
4986	return NULL;
4987}
4988
4989/*
4990 * References:
4991 * - CTA-861-H section 7.3.3 CTA Extension Version 3
4992 */
4993static int cea_db_collection_size(const u8 *cta)
4994{
4995	u8 d = cta[2];
 
 
 
4996
4997	if (d < 4 || d > 127)
4998		return 0;
4999
5000	return d - 4;
5001}
5002
5003/*
5004 * References:
5005 * - VESA E-EDID v1.4
5006 * - CTA-861-H section 7.3.3 CTA Extension Version 3
5007 */
5008static const void *__cea_db_iter_edid_next(struct cea_db_iter *iter)
5009{
5010	const u8 *ext;
5011
5012	drm_edid_iter_for_each(ext, &iter->edid_iter) {
5013		int size;
5014
5015		/* Only support CTA Extension revision 3+ */
5016		if (ext[0] != CEA_EXT || cea_revision(ext) < 3)
5017			continue;
5018
5019		size = cea_db_collection_size(ext);
5020		if (!size)
5021			continue;
5022
5023		iter->index = 4;
5024		iter->end = iter->index + size;
5025
5026		return ext;
5027	}
5028
5029	return NULL;
5030}
5031
5032/*
5033 * References:
5034 * - DisplayID v1.3 Appendix C: CEA Data Block within a DisplayID Data Block
5035 * - DisplayID v2.0 section 4.10 CTA DisplayID Data Block
5036 *
5037 * Note that the above do not specify any connection between DisplayID Data
5038 * Block revision and CTA Extension versions.
5039 */
5040static const void *__cea_db_iter_displayid_next(struct cea_db_iter *iter)
5041{
5042	const struct displayid_block *block;
5043
5044	displayid_iter_for_each(block, &iter->displayid_iter) {
5045		if (block->tag != DATA_BLOCK_CTA)
5046			continue;
5047
5048		/*
5049		 * The displayid iterator has already verified the block bounds
5050		 * in displayid_iter_block().
5051		 */
5052		iter->index = sizeof(*block);
5053		iter->end = iter->index + block->num_bytes;
5054
5055		return block;
5056	}
5057
5058	return NULL;
5059}
5060
5061static const struct cea_db *__cea_db_iter_next(struct cea_db_iter *iter)
5062{
5063	const struct cea_db *db;
5064
5065	if (iter->collection) {
5066		/* Current collection should always be valid. */
5067		db = __cea_db_iter_current_block(iter);
5068		if (WARN_ON(!db)) {
5069			iter->collection = NULL;
5070			return NULL;
5071		}
5072
5073		/* Next block in CTA Data Block Collection */
5074		iter->index += sizeof(*db) + cea_db_payload_len(db);
5075
5076		db = __cea_db_iter_current_block(iter);
5077		if (db)
5078			return db;
5079	}
5080
5081	for (;;) {
5082		/*
5083		 * Find the next CTA Data Block Collection. First iterate all
5084		 * the EDID CTA Extensions, then all the DisplayID CTA blocks.
5085		 *
5086		 * Per DisplayID v1.3 Appendix B: DisplayID as an EDID
5087		 * Extension, it's recommended that DisplayID extensions are
5088		 * exposed after all of the CTA Extensions.
5089		 */
5090		iter->collection = __cea_db_iter_edid_next(iter);
5091		if (!iter->collection)
5092			iter->collection = __cea_db_iter_displayid_next(iter);
5093
5094		if (!iter->collection)
5095			return NULL;
5096
5097		db = __cea_db_iter_current_block(iter);
5098		if (db)
5099			return db;
5100	}
5101}
5102
5103#define cea_db_iter_for_each(__db, __iter) \
5104	while (((__db) = __cea_db_iter_next(__iter)))
5105
5106static void cea_db_iter_end(struct cea_db_iter *iter)
5107{
5108	displayid_iter_end(&iter->displayid_iter);
5109	drm_edid_iter_end(&iter->edid_iter);
5110
5111	memset(iter, 0, sizeof(*iter));
5112}
5113
5114static bool cea_db_is_hdmi_vsdb(const struct cea_db *db)
5115{
5116	return cea_db_is_vendor(db, HDMI_IEEE_OUI) &&
5117		cea_db_payload_len(db) >= 5;
5118}
5119
5120static bool cea_db_is_hdmi_forum_vsdb(const struct cea_db *db)
5121{
5122	return cea_db_is_vendor(db, HDMI_FORUM_IEEE_OUI) &&
5123		cea_db_payload_len(db) >= 7;
5124}
5125
5126static bool cea_db_is_hdmi_forum_eeodb(const void *db)
5127{
5128	return cea_db_is_extended_tag(db, CTA_EXT_DB_HF_EEODB) &&
5129		cea_db_payload_len(db) >= 2;
5130}
5131
5132static bool cea_db_is_microsoft_vsdb(const struct cea_db *db)
5133{
5134	return cea_db_is_vendor(db, MICROSOFT_IEEE_OUI) &&
5135		cea_db_payload_len(db) == 21;
5136}
5137
5138static bool cea_db_is_vcdb(const struct cea_db *db)
5139{
5140	return cea_db_is_extended_tag(db, CTA_EXT_DB_VIDEO_CAP) &&
5141		cea_db_payload_len(db) == 2;
5142}
5143
5144static bool cea_db_is_hdmi_forum_scdb(const struct cea_db *db)
5145{
5146	return cea_db_is_extended_tag(db, CTA_EXT_DB_HF_SCDB) &&
5147		cea_db_payload_len(db) >= 7;
5148}
5149
5150static bool cea_db_is_y420cmdb(const struct cea_db *db)
5151{
5152	return cea_db_is_extended_tag(db, CTA_EXT_DB_420_VIDEO_CAP_MAP);
5153}
5154
5155static bool cea_db_is_y420vdb(const struct cea_db *db)
5156{
5157	return cea_db_is_extended_tag(db, CTA_EXT_DB_420_VIDEO_DATA);
5158}
5159
5160static bool cea_db_is_hdmi_hdr_metadata_block(const struct cea_db *db)
5161{
5162	return cea_db_is_extended_tag(db, CTA_EXT_DB_HDR_STATIC_METADATA) &&
5163		cea_db_payload_len(db) >= 3;
5164}
5165
5166/*
5167 * Get the HF-EEODB override extension block count from EDID.
5168 *
5169 * The passed in EDID may be partially read, as long as it has at least two
5170 * blocks (base block and one extension block) if EDID extension count is > 0.
5171 *
5172 * Note that this is *not* how you should parse CTA Data Blocks in general; this
5173 * is only to handle partially read EDIDs. Normally, use the CTA Data Block
5174 * iterators instead.
5175 *
5176 * References:
5177 * - HDMI 2.1 section 10.3.6 HDMI Forum EDID Extension Override Data Block
5178 */
5179static int edid_hfeeodb_extension_block_count(const struct edid *edid)
5180{
5181	const u8 *cta;
5182
5183	/* No extensions according to base block, no HF-EEODB. */
5184	if (!edid_extension_block_count(edid))
5185		return 0;
5186
5187	/* HF-EEODB is always in the first EDID extension block only */
5188	cta = edid_extension_block_data(edid, 0);
5189	if (edid_block_tag(cta) != CEA_EXT || cea_revision(cta) < 3)
5190		return 0;
5191
5192	/* Need to have the data block collection, and at least 3 bytes. */
5193	if (cea_db_collection_size(cta) < 3)
5194		return 0;
5195
5196	/*
5197	 * Sinks that include the HF-EEODB in their E-EDID shall include one and
5198	 * only one instance of the HF-EEODB in the E-EDID, occupying bytes 4
5199	 * through 6 of Block 1 of the E-EDID.
5200	 */
5201	if (!cea_db_is_hdmi_forum_eeodb(&cta[4]))
5202		return 0;
5203
5204	return cta[4 + 2];
5205}
5206
5207static void drm_parse_y420cmdb_bitmap(struct drm_connector *connector,
5208				      const u8 *db)
5209{
5210	struct drm_display_info *info = &connector->display_info;
5211	struct drm_hdmi_info *hdmi = &info->hdmi;
5212	u8 map_len = cea_db_payload_len(db) - 1;
5213	u8 count;
5214	u64 map = 0;
5215
5216	if (map_len == 0) {
5217		/* All CEA modes support ycbcr420 sampling also.*/
5218		hdmi->y420_cmdb_map = U64_MAX;
5219		info->color_formats |= DRM_COLOR_FORMAT_YCBCR420;
5220		return;
5221	}
5222
5223	/*
5224	 * This map indicates which of the existing CEA block modes
5225	 * from VDB can support YCBCR420 output too. So if bit=0 is
5226	 * set, first mode from VDB can support YCBCR420 output too.
5227	 * We will parse and keep this map, before parsing VDB itself
5228	 * to avoid going through the same block again and again.
5229	 *
5230	 * Spec is not clear about max possible size of this block.
5231	 * Clamping max bitmap block size at 8 bytes. Every byte can
5232	 * address 8 CEA modes, in this way this map can address
5233	 * 8*8 = first 64 SVDs.
5234	 */
5235	if (WARN_ON_ONCE(map_len > 8))
5236		map_len = 8;
5237
5238	for (count = 0; count < map_len; count++)
5239		map |= (u64)db[2 + count] << (8 * count);
5240
5241	if (map)
5242		info->color_formats |= DRM_COLOR_FORMAT_YCBCR420;
5243
5244	hdmi->y420_cmdb_map = map;
5245}
5246
5247static int add_cea_modes(struct drm_connector *connector,
5248			 const struct drm_edid *drm_edid)
5249{
5250	const struct cea_db *db;
5251	struct cea_db_iter iter;
5252	int modes = 0;
5253
5254	cea_db_iter_edid_begin(drm_edid, &iter);
5255	cea_db_iter_for_each(db, &iter) {
5256		const u8 *hdmi = NULL, *video = NULL;
5257		u8 hdmi_len = 0, video_len = 0;
5258
5259		if (cea_db_tag(db) == CTA_DB_VIDEO) {
5260			video = cea_db_data(db);
5261			video_len = cea_db_payload_len(db);
5262			modes += do_cea_modes(connector, video, video_len);
5263		} else if (cea_db_is_hdmi_vsdb(db)) {
5264			/* FIXME: Switch to use cea_db_data() */
5265			hdmi = (const u8 *)db;
5266			hdmi_len = cea_db_payload_len(db);
5267		} else if (cea_db_is_y420vdb(db)) {
5268			const u8 *vdb420 = cea_db_data(db) + 1;
5269
5270			/* Add 4:2:0(only) modes present in EDID */
5271			modes += do_y420vdb_modes(connector, vdb420,
5272						  cea_db_payload_len(db) - 1);
5273		}
5274
5275		/*
5276		 * We parse the HDMI VSDB after having added the cea modes as we
5277		 * will be patching their flags when the sink supports stereo
5278		 * 3D.
5279		 */
5280		if (hdmi)
5281			modes += do_hdmi_vsdb_modes(connector, hdmi, hdmi_len,
5282						    video, video_len);
5283	}
5284	cea_db_iter_end(&iter);
5285
5286	return modes;
5287}
5288
5289static void fixup_detailed_cea_mode_clock(struct drm_connector *connector,
5290					  struct drm_display_mode *mode)
5291{
5292	const struct drm_display_mode *cea_mode;
5293	int clock1, clock2, clock;
5294	u8 vic;
5295	const char *type;
5296
5297	/*
5298	 * allow 5kHz clock difference either way to account for
5299	 * the 10kHz clock resolution limit of detailed timings.
5300	 */
5301	vic = drm_match_cea_mode_clock_tolerance(mode, 5);
5302	if (drm_valid_cea_vic(vic)) {
5303		type = "CEA";
5304		cea_mode = cea_mode_for_vic(vic);
5305		clock1 = cea_mode->clock;
5306		clock2 = cea_mode_alternate_clock(cea_mode);
5307	} else {
5308		vic = drm_match_hdmi_mode_clock_tolerance(mode, 5);
5309		if (drm_valid_hdmi_vic(vic)) {
5310			type = "HDMI";
5311			cea_mode = &edid_4k_modes[vic];
5312			clock1 = cea_mode->clock;
5313			clock2 = hdmi_mode_alternate_clock(cea_mode);
5314		} else {
5315			return;
5316		}
5317	}
5318
5319	/* pick whichever is closest */
5320	if (abs(mode->clock - clock1) < abs(mode->clock - clock2))
5321		clock = clock1;
5322	else
5323		clock = clock2;
5324
5325	if (mode->clock == clock)
5326		return;
5327
5328	drm_dbg_kms(connector->dev,
5329		    "[CONNECTOR:%d:%s] detailed mode matches %s VIC %d, adjusting clock %d -> %d\n",
5330		    connector->base.id, connector->name,
5331		    type, vic, mode->clock, clock);
5332	mode->clock = clock;
5333}
5334
5335static void drm_calculate_luminance_range(struct drm_connector *connector)
5336{
5337	struct hdr_static_metadata *hdr_metadata = &connector->hdr_sink_metadata.hdmi_type1;
5338	struct drm_luminance_range_info *luminance_range =
5339		&connector->display_info.luminance_range;
5340	static const u8 pre_computed_values[] = {
5341		50, 51, 52, 53, 55, 56, 57, 58, 59, 61, 62, 63, 65, 66, 68, 69,
5342		71, 72, 74, 75, 77, 79, 81, 82, 84, 86, 88, 90, 92, 94, 96, 98
5343	};
5344	u32 max_avg, min_cll, max, min, q, r;
5345
5346	if (!(hdr_metadata->metadata_type & BIT(HDMI_STATIC_METADATA_TYPE1)))
5347		return;
5348
5349	max_avg = hdr_metadata->max_fall;
5350	min_cll = hdr_metadata->min_cll;
5351
5352	/*
5353	 * From the specification (CTA-861-G), for calculating the maximum
5354	 * luminance we need to use:
5355	 *	Luminance = 50*2**(CV/32)
5356	 * Where CV is a one-byte value.
5357	 * For calculating this expression we may need float point precision;
5358	 * to avoid this complexity level, we take advantage that CV is divided
5359	 * by a constant. From the Euclids division algorithm, we know that CV
5360	 * can be written as: CV = 32*q + r. Next, we replace CV in the
5361	 * Luminance expression and get 50*(2**q)*(2**(r/32)), hence we just
5362	 * need to pre-compute the value of r/32. For pre-computing the values
5363	 * We just used the following Ruby line:
5364	 *	(0...32).each {|cv| puts (50*2**(cv/32.0)).round}
5365	 * The results of the above expressions can be verified at
5366	 * pre_computed_values.
5367	 */
5368	q = max_avg >> 5;
5369	r = max_avg % 32;
5370	max = (1 << q) * pre_computed_values[r];
5371
5372	/* min luminance: maxLum * (CV/255)^2 / 100 */
5373	q = DIV_ROUND_CLOSEST(min_cll, 255);
5374	min = max * DIV_ROUND_CLOSEST((q * q), 100);
5375
5376	luminance_range->min_luminance = min;
5377	luminance_range->max_luminance = max;
5378}
5379
5380static uint8_t eotf_supported(const u8 *edid_ext)
5381{
5382	return edid_ext[2] &
5383		(BIT(HDMI_EOTF_TRADITIONAL_GAMMA_SDR) |
5384		 BIT(HDMI_EOTF_TRADITIONAL_GAMMA_HDR) |
5385		 BIT(HDMI_EOTF_SMPTE_ST2084) |
5386		 BIT(HDMI_EOTF_BT_2100_HLG));
5387}
5388
5389static uint8_t hdr_metadata_type(const u8 *edid_ext)
5390{
5391	return edid_ext[3] &
5392		BIT(HDMI_STATIC_METADATA_TYPE1);
5393}
5394
5395static void
5396drm_parse_hdr_metadata_block(struct drm_connector *connector, const u8 *db)
5397{
5398	u16 len;
5399
5400	len = cea_db_payload_len(db);
5401
5402	connector->hdr_sink_metadata.hdmi_type1.eotf =
5403						eotf_supported(db);
5404	connector->hdr_sink_metadata.hdmi_type1.metadata_type =
5405						hdr_metadata_type(db);
5406
5407	if (len >= 4)
5408		connector->hdr_sink_metadata.hdmi_type1.max_cll = db[4];
5409	if (len >= 5)
5410		connector->hdr_sink_metadata.hdmi_type1.max_fall = db[5];
5411	if (len >= 6) {
5412		connector->hdr_sink_metadata.hdmi_type1.min_cll = db[6];
5413
5414		/* Calculate only when all values are available */
5415		drm_calculate_luminance_range(connector);
5416	}
5417}
5418
5419static void
5420drm_parse_hdmi_vsdb_audio(struct drm_connector *connector, const u8 *db)
5421{
5422	u8 len = cea_db_payload_len(db);
5423
5424	if (len >= 6 && (db[6] & (1 << 7)))
5425		connector->eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= DRM_ELD_SUPPORTS_AI;
5426	if (len >= 8) {
5427		connector->latency_present[0] = db[8] >> 7;
5428		connector->latency_present[1] = (db[8] >> 6) & 1;
5429	}
5430	if (len >= 9)
5431		connector->video_latency[0] = db[9];
5432	if (len >= 10)
5433		connector->audio_latency[0] = db[10];
5434	if (len >= 11)
5435		connector->video_latency[1] = db[11];
5436	if (len >= 12)
5437		connector->audio_latency[1] = db[12];
5438
5439	drm_dbg_kms(connector->dev,
5440		    "[CONNECTOR:%d:%s] HDMI: latency present %d %d, video latency %d %d, audio latency %d %d\n",
5441		    connector->base.id, connector->name,
5442		    connector->latency_present[0], connector->latency_present[1],
5443		    connector->video_latency[0], connector->video_latency[1],
5444		    connector->audio_latency[0], connector->audio_latency[1]);
 
 
 
 
 
 
 
5445}
5446
5447static void
5448monitor_name(const struct detailed_timing *timing, void *data)
5449{
5450	const char **res = data;
5451
5452	if (!is_display_descriptor(timing, EDID_DETAIL_MONITOR_NAME))
5453		return;
5454
5455	*res = timing->data.other_data.data.str.str;
5456}
5457
5458static int get_monitor_name(const struct drm_edid *drm_edid, char name[13])
5459{
5460	const char *edid_name = NULL;
5461	int mnl;
5462
5463	if (!drm_edid || !name)
5464		return 0;
5465
5466	drm_for_each_detailed_block(drm_edid, monitor_name, &edid_name);
5467	for (mnl = 0; edid_name && mnl < 13; mnl++) {
5468		if (edid_name[mnl] == 0x0a)
5469			break;
5470
5471		name[mnl] = edid_name[mnl];
5472	}
5473
5474	return mnl;
5475}
5476
5477/**
5478 * drm_edid_get_monitor_name - fetch the monitor name from the edid
5479 * @edid: monitor EDID information
5480 * @name: pointer to a character array to hold the name of the monitor
5481 * @bufsize: The size of the name buffer (should be at least 14 chars.)
5482 *
5483 */
5484void drm_edid_get_monitor_name(const struct edid *edid, char *name, int bufsize)
5485{
5486	int name_length = 0;
5487
5488	if (bufsize <= 0)
5489		return;
5490
5491	if (edid) {
5492		char buf[13];
5493		struct drm_edid drm_edid = {
5494			.edid = edid,
5495			.size = edid_size(edid),
5496		};
5497
5498		name_length = min(get_monitor_name(&drm_edid, buf), bufsize - 1);
5499		memcpy(name, buf, name_length);
5500	}
5501
5502	name[name_length] = '\0';
5503}
5504EXPORT_SYMBOL(drm_edid_get_monitor_name);
5505
5506static void clear_eld(struct drm_connector *connector)
5507{
5508	memset(connector->eld, 0, sizeof(connector->eld));
5509
5510	connector->latency_present[0] = false;
5511	connector->latency_present[1] = false;
5512	connector->video_latency[0] = 0;
5513	connector->audio_latency[0] = 0;
5514	connector->video_latency[1] = 0;
5515	connector->audio_latency[1] = 0;
5516}
5517
5518/*
5519 * drm_edid_to_eld - build ELD from EDID
5520 * @connector: connector corresponding to the HDMI/DP sink
5521 * @drm_edid: EDID to parse
5522 *
5523 * Fill the ELD (EDID-Like Data) buffer for passing to the audio driver. The
5524 * HDCP and Port_ID ELD fields are left for the graphics driver to fill in.
 
5525 */
5526static void drm_edid_to_eld(struct drm_connector *connector,
5527			    const struct drm_edid *drm_edid)
5528{
5529	const struct drm_display_info *info = &connector->display_info;
5530	const struct cea_db *db;
5531	struct cea_db_iter iter;
5532	uint8_t *eld = connector->eld;
 
 
 
5533	int total_sad_count = 0;
5534	int mnl;
 
5535
5536	clear_eld(connector);
5537
5538	if (!drm_edid)
 
 
5539		return;
 
5540
5541	mnl = get_monitor_name(drm_edid, &eld[DRM_ELD_MONITOR_NAME_STRING]);
5542	drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] ELD monitor %s\n",
5543		    connector->base.id, connector->name,
5544		    &eld[DRM_ELD_MONITOR_NAME_STRING]);
5545
5546	eld[DRM_ELD_CEA_EDID_VER_MNL] = info->cea_rev << DRM_ELD_CEA_EDID_VER_SHIFT;
5547	eld[DRM_ELD_CEA_EDID_VER_MNL] |= mnl;
5548
5549	eld[DRM_ELD_VER] = DRM_ELD_VER_CEA861D;
5550
5551	eld[DRM_ELD_MANUFACTURER_NAME0] = drm_edid->edid->mfg_id[0];
5552	eld[DRM_ELD_MANUFACTURER_NAME1] = drm_edid->edid->mfg_id[1];
5553	eld[DRM_ELD_PRODUCT_CODE0] = drm_edid->edid->prod_code[0];
5554	eld[DRM_ELD_PRODUCT_CODE1] = drm_edid->edid->prod_code[1];
5555
5556	cea_db_iter_edid_begin(drm_edid, &iter);
5557	cea_db_iter_for_each(db, &iter) {
5558		const u8 *data = cea_db_data(db);
5559		int len = cea_db_payload_len(db);
5560		int sad_count;
5561
5562		switch (cea_db_tag(db)) {
5563		case CTA_DB_AUDIO:
5564			/* Audio Data Block, contains SADs */
5565			sad_count = min(len / 3, 15 - total_sad_count);
5566			if (sad_count >= 1)
5567				memcpy(&eld[DRM_ELD_CEA_SAD(mnl, total_sad_count)],
5568				       data, sad_count * 3);
5569			total_sad_count += sad_count;
5570			break;
5571		case CTA_DB_SPEAKER:
5572			/* Speaker Allocation Data Block */
5573			if (len >= 1)
5574				eld[DRM_ELD_SPEAKER] = data[0];
5575			break;
5576		case CTA_DB_VENDOR:
5577			/* HDMI Vendor-Specific Data Block */
5578			if (cea_db_is_hdmi_vsdb(db))
5579				drm_parse_hdmi_vsdb_audio(connector, (const u8 *)db);
5580			break;
5581		default:
5582			break;
5583		}
5584	}
5585	cea_db_iter_end(&iter);
 
5586
5587	eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= total_sad_count << DRM_ELD_SAD_COUNT_SHIFT;
5588
5589	if (connector->connector_type == DRM_MODE_CONNECTOR_DisplayPort ||
5590	    connector->connector_type == DRM_MODE_CONNECTOR_eDP)
5591		eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= DRM_ELD_CONN_TYPE_DP;
5592	else
5593		eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= DRM_ELD_CONN_TYPE_HDMI;
5594
5595	eld[DRM_ELD_BASELINE_ELD_LEN] =
5596		DIV_ROUND_UP(drm_eld_calc_baseline_block_size(eld), 4);
5597
5598	drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] ELD size %d, SAD count %d\n",
5599		    connector->base.id, connector->name,
5600		    drm_eld_size(eld), total_sad_count);
5601}
5602
5603static int _drm_edid_to_sad(const struct drm_edid *drm_edid,
5604			    struct cea_sad **sads)
5605{
5606	const struct cea_db *db;
5607	struct cea_db_iter iter;
5608	int count = 0;
5609
5610	cea_db_iter_edid_begin(drm_edid, &iter);
5611	cea_db_iter_for_each(db, &iter) {
5612		if (cea_db_tag(db) == CTA_DB_AUDIO) {
5613			int j;
5614
5615			count = cea_db_payload_len(db) / 3; /* SAD is 3B */
5616			*sads = kcalloc(count, sizeof(**sads), GFP_KERNEL);
5617			if (!*sads)
5618				return -ENOMEM;
5619			for (j = 0; j < count; j++) {
5620				const u8 *sad = &db->data[j * 3];
5621
5622				(*sads)[j].format = (sad[0] & 0x78) >> 3;
5623				(*sads)[j].channels = sad[0] & 0x7;
5624				(*sads)[j].freq = sad[1] & 0x7F;
5625				(*sads)[j].byte2 = sad[2];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5626			}
5627			break;
5628		}
5629	}
5630	cea_db_iter_end(&iter);
5631
5632	DRM_DEBUG_KMS("Found %d Short Audio Descriptors\n", count);
 
5633
5634	return count;
 
5635}
 
5636
5637/**
5638 * drm_edid_to_sad - extracts SADs from EDID
5639 * @edid: EDID to parse
5640 * @sads: pointer that will be set to the extracted SADs
5641 *
5642 * Looks for CEA EDID block and extracts SADs (Short Audio Descriptors) from it.
5643 *
5644 * Note: The returned pointer needs to be freed using kfree().
5645 *
5646 * Return: The number of found SADs or negative number on error.
5647 */
5648int drm_edid_to_sad(const struct edid *edid, struct cea_sad **sads)
5649{
5650	struct drm_edid drm_edid;
 
 
 
 
 
 
 
 
 
 
 
 
 
5651
5652	return _drm_edid_to_sad(drm_edid_legacy_init(&drm_edid, edid), sads);
5653}
5654EXPORT_SYMBOL(drm_edid_to_sad);
 
 
 
 
5655
5656static int _drm_edid_to_speaker_allocation(const struct drm_edid *drm_edid,
5657					   u8 **sadb)
5658{
5659	const struct cea_db *db;
5660	struct cea_db_iter iter;
5661	int count = 0;
5662
5663	cea_db_iter_edid_begin(drm_edid, &iter);
5664	cea_db_iter_for_each(db, &iter) {
5665		if (cea_db_tag(db) == CTA_DB_SPEAKER &&
5666		    cea_db_payload_len(db) == 3) {
5667			*sadb = kmemdup(db->data, cea_db_payload_len(db),
5668					GFP_KERNEL);
5669			if (!*sadb)
5670				return -ENOMEM;
5671			count = cea_db_payload_len(db);
 
 
 
 
 
 
 
5672			break;
5673		}
5674	}
5675	cea_db_iter_end(&iter);
5676
5677	DRM_DEBUG_KMS("Found %d Speaker Allocation Data Blocks\n", count);
5678
5679	return count;
5680}
 
5681
5682/**
5683 * drm_edid_to_speaker_allocation - extracts Speaker Allocation Data Blocks from EDID
5684 * @edid: EDID to parse
5685 * @sadb: pointer to the speaker block
5686 *
5687 * Looks for CEA EDID block and extracts the Speaker Allocation Data Block from it.
5688 *
5689 * Note: The returned pointer needs to be freed using kfree().
5690 *
5691 * Return: The number of found Speaker Allocation Blocks or negative number on
5692 * error.
5693 */
5694int drm_edid_to_speaker_allocation(const struct edid *edid, u8 **sadb)
5695{
5696	struct drm_edid drm_edid;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5697
5698	return _drm_edid_to_speaker_allocation(drm_edid_legacy_init(&drm_edid, edid),
5699					       sadb);
5700}
5701EXPORT_SYMBOL(drm_edid_to_speaker_allocation);
5702
5703/**
5704 * drm_av_sync_delay - compute the HDMI/DP sink audio-video sync delay
5705 * @connector: connector associated with the HDMI/DP sink
5706 * @mode: the display mode
5707 *
5708 * Return: The HDMI/DP sink's audio-video sync delay in milliseconds or 0 if
5709 * the sink doesn't support audio or video.
5710 */
5711int drm_av_sync_delay(struct drm_connector *connector,
5712		      const struct drm_display_mode *mode)
5713{
5714	int i = !!(mode->flags & DRM_MODE_FLAG_INTERLACE);
5715	int a, v;
5716
5717	if (!connector->latency_present[0])
5718		return 0;
5719	if (!connector->latency_present[1])
5720		i = 0;
5721
5722	a = connector->audio_latency[i];
5723	v = connector->video_latency[i];
5724
5725	/*
5726	 * HDMI/DP sink doesn't support audio or video?
5727	 */
5728	if (a == 255 || v == 255)
5729		return 0;
5730
5731	/*
5732	 * Convert raw EDID values to millisecond.
5733	 * Treat unknown latency as 0ms.
5734	 */
5735	if (a)
5736		a = min(2 * (a - 1), 500);
5737	if (v)
5738		v = min(2 * (v - 1), 500);
5739
5740	return max(v - a, 0);
5741}
5742EXPORT_SYMBOL(drm_av_sync_delay);
5743
5744static bool _drm_detect_hdmi_monitor(const struct drm_edid *drm_edid)
 
 
 
 
 
 
 
 
 
 
5745{
5746	const struct cea_db *db;
5747	struct cea_db_iter iter;
5748	bool hdmi = false;
 
 
5749
5750	/*
5751	 * Because HDMI identifier is in Vendor Specific Block,
5752	 * search it from all data blocks of CEA extension.
5753	 */
5754	cea_db_iter_edid_begin(drm_edid, &iter);
5755	cea_db_iter_for_each(db, &iter) {
5756		if (cea_db_is_hdmi_vsdb(db)) {
5757			hdmi = true;
5758			break;
5759		}
5760	}
5761	cea_db_iter_end(&iter);
5762
5763	return hdmi;
5764}
 
5765
5766/**
5767 * drm_detect_hdmi_monitor - detect whether monitor is HDMI
5768 * @edid: monitor EDID information
5769 *
5770 * Parse the CEA extension according to CEA-861-B.
5771 *
5772 * Drivers that have added the modes parsed from EDID to drm_display_info
5773 * should use &drm_display_info.is_hdmi instead of calling this function.
5774 *
5775 * Return: True if the monitor is HDMI, false if not or unknown.
5776 */
5777bool drm_detect_hdmi_monitor(const struct edid *edid)
5778{
5779	struct drm_edid drm_edid;
 
 
5780
5781	return _drm_detect_hdmi_monitor(drm_edid_legacy_init(&drm_edid, edid));
5782}
5783EXPORT_SYMBOL(drm_detect_hdmi_monitor);
5784
5785static bool _drm_detect_monitor_audio(const struct drm_edid *drm_edid)
5786{
5787	struct drm_edid_iter edid_iter;
5788	const struct cea_db *db;
5789	struct cea_db_iter iter;
5790	const u8 *edid_ext;
5791	bool has_audio = false;
5792
5793	drm_edid_iter_begin(drm_edid, &edid_iter);
5794	drm_edid_iter_for_each(edid_ext, &edid_iter) {
5795		if (edid_ext[0] == CEA_EXT) {
5796			has_audio = edid_ext[3] & EDID_BASIC_AUDIO;
5797			if (has_audio)
5798				break;
5799		}
5800	}
5801	drm_edid_iter_end(&edid_iter);
5802
5803	if (has_audio) {
5804		DRM_DEBUG_KMS("Monitor has basic audio support\n");
5805		goto end;
5806	}
5807
5808	cea_db_iter_edid_begin(drm_edid, &iter);
5809	cea_db_iter_for_each(db, &iter) {
5810		if (cea_db_tag(db) == CTA_DB_AUDIO) {
5811			const u8 *data = cea_db_data(db);
5812			int i;
5813
5814			for (i = 0; i < cea_db_payload_len(db); i += 3)
5815				DRM_DEBUG_KMS("CEA audio format %d\n",
5816					      (data[i] >> 3) & 0xf);
5817			has_audio = true;
5818			break;
5819		}
5820	}
5821	cea_db_iter_end(&iter);
5822
5823end:
5824	return has_audio;
5825}
 
5826
5827/**
5828 * drm_detect_monitor_audio - check monitor audio capability
5829 * @edid: EDID block to scan
5830 *
5831 * Monitor should have CEA extension block.
5832 * If monitor has 'basic audio', but no CEA audio blocks, it's 'basic
5833 * audio' only. If there is any audio extension block and supported
5834 * audio format, assume at least 'basic audio' support, even if 'basic
5835 * audio' is not defined in EDID.
5836 *
5837 * Return: True if the monitor supports audio, false otherwise.
5838 */
5839bool drm_detect_monitor_audio(const struct edid *edid)
5840{
5841	struct drm_edid drm_edid;
 
 
 
5842
5843	return _drm_detect_monitor_audio(drm_edid_legacy_init(&drm_edid, edid));
5844}
5845EXPORT_SYMBOL(drm_detect_monitor_audio);
5846
 
5847
5848/**
5849 * drm_default_rgb_quant_range - default RGB quantization range
5850 * @mode: display mode
5851 *
5852 * Determine the default RGB quantization range for the mode,
5853 * as specified in CEA-861.
5854 *
5855 * Return: The default RGB quantization range for the mode
5856 */
5857enum hdmi_quantization_range
5858drm_default_rgb_quant_range(const struct drm_display_mode *mode)
5859{
5860	/* All CEA modes other than VIC 1 use limited quantization range. */
5861	return drm_match_cea_mode(mode) > 1 ?
5862		HDMI_QUANTIZATION_RANGE_LIMITED :
5863		HDMI_QUANTIZATION_RANGE_FULL;
5864}
5865EXPORT_SYMBOL(drm_default_rgb_quant_range);
5866
5867static void drm_parse_vcdb(struct drm_connector *connector, const u8 *db)
5868{
5869	struct drm_display_info *info = &connector->display_info;
5870
5871	drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] CEA VCDB 0x%02x\n",
5872		    connector->base.id, connector->name, db[2]);
5873
5874	if (db[2] & EDID_CEA_VCDB_QS)
5875		info->rgb_quant_range_selectable = true;
5876}
5877
5878static
5879void drm_get_max_frl_rate(int max_frl_rate, u8 *max_lanes, u8 *max_rate_per_lane)
5880{
5881	switch (max_frl_rate) {
5882	case 1:
5883		*max_lanes = 3;
5884		*max_rate_per_lane = 3;
5885		break;
5886	case 2:
5887		*max_lanes = 3;
5888		*max_rate_per_lane = 6;
5889		break;
5890	case 3:
5891		*max_lanes = 4;
5892		*max_rate_per_lane = 6;
5893		break;
5894	case 4:
5895		*max_lanes = 4;
5896		*max_rate_per_lane = 8;
5897		break;
5898	case 5:
5899		*max_lanes = 4;
5900		*max_rate_per_lane = 10;
5901		break;
5902	case 6:
5903		*max_lanes = 4;
5904		*max_rate_per_lane = 12;
5905		break;
5906	case 0:
5907	default:
5908		*max_lanes = 0;
5909		*max_rate_per_lane = 0;
5910	}
5911}
5912
5913static void drm_parse_ycbcr420_deep_color_info(struct drm_connector *connector,
5914					       const u8 *db)
5915{
5916	u8 dc_mask;
5917	struct drm_hdmi_info *hdmi = &connector->display_info.hdmi;
5918
5919	dc_mask = db[7] & DRM_EDID_YCBCR420_DC_MASK;
5920	hdmi->y420_dc_modes = dc_mask;
5921}
5922
5923static void drm_parse_dsc_info(struct drm_hdmi_dsc_cap *hdmi_dsc,
5924			       const u8 *hf_scds)
5925{
5926	hdmi_dsc->v_1p2 = hf_scds[11] & DRM_EDID_DSC_1P2;
5927
5928	if (!hdmi_dsc->v_1p2)
5929		return;
5930
5931	hdmi_dsc->native_420 = hf_scds[11] & DRM_EDID_DSC_NATIVE_420;
5932	hdmi_dsc->all_bpp = hf_scds[11] & DRM_EDID_DSC_ALL_BPP;
5933
5934	if (hf_scds[11] & DRM_EDID_DSC_16BPC)
5935		hdmi_dsc->bpc_supported = 16;
5936	else if (hf_scds[11] & DRM_EDID_DSC_12BPC)
5937		hdmi_dsc->bpc_supported = 12;
5938	else if (hf_scds[11] & DRM_EDID_DSC_10BPC)
5939		hdmi_dsc->bpc_supported = 10;
5940	else
5941		/* Supports min 8 BPC if DSC 1.2 is supported*/
5942		hdmi_dsc->bpc_supported = 8;
5943
5944	if (cea_db_payload_len(hf_scds) >= 12 && hf_scds[12]) {
5945		u8 dsc_max_slices;
5946		u8 dsc_max_frl_rate;
5947
5948		dsc_max_frl_rate = (hf_scds[12] & DRM_EDID_DSC_MAX_FRL_RATE_MASK) >> 4;
5949		drm_get_max_frl_rate(dsc_max_frl_rate, &hdmi_dsc->max_lanes,
5950				     &hdmi_dsc->max_frl_rate_per_lane);
5951
5952		dsc_max_slices = hf_scds[12] & DRM_EDID_DSC_MAX_SLICES;
5953
5954		switch (dsc_max_slices) {
5955		case 1:
5956			hdmi_dsc->max_slices = 1;
5957			hdmi_dsc->clk_per_slice = 340;
5958			break;
5959		case 2:
5960			hdmi_dsc->max_slices = 2;
5961			hdmi_dsc->clk_per_slice = 340;
5962			break;
5963		case 3:
5964			hdmi_dsc->max_slices = 4;
5965			hdmi_dsc->clk_per_slice = 340;
5966			break;
5967		case 4:
5968			hdmi_dsc->max_slices = 8;
5969			hdmi_dsc->clk_per_slice = 340;
5970			break;
5971		case 5:
5972			hdmi_dsc->max_slices = 8;
5973			hdmi_dsc->clk_per_slice = 400;
5974			break;
5975		case 6:
5976			hdmi_dsc->max_slices = 12;
5977			hdmi_dsc->clk_per_slice = 400;
5978			break;
5979		case 7:
5980			hdmi_dsc->max_slices = 16;
5981			hdmi_dsc->clk_per_slice = 400;
5982			break;
5983		case 0:
5984		default:
5985			hdmi_dsc->max_slices = 0;
5986			hdmi_dsc->clk_per_slice = 0;
5987		}
5988	}
5989
5990	if (cea_db_payload_len(hf_scds) >= 13 && hf_scds[13])
5991		hdmi_dsc->total_chunk_kbytes = hf_scds[13] & DRM_EDID_DSC_TOTAL_CHUNK_KBYTES;
5992}
 
5993
5994/* Sink Capability Data Structure */
5995static void drm_parse_hdmi_forum_scds(struct drm_connector *connector,
5996				      const u8 *hf_scds)
 
 
 
 
 
 
 
 
5997{
5998	struct drm_display_info *display = &connector->display_info;
5999	struct drm_hdmi_info *hdmi = &display->hdmi;
6000	struct drm_hdmi_dsc_cap *hdmi_dsc = &hdmi->dsc_cap;
6001	int max_tmds_clock = 0;
6002	u8 max_frl_rate = 0;
6003	bool dsc_support = false;
6004
6005	display->has_hdmi_infoframe = true;
 
 
6006
6007	if (hf_scds[6] & 0x80) {
6008		hdmi->scdc.supported = true;
6009		if (hf_scds[6] & 0x40)
6010			hdmi->scdc.read_request = true;
6011	}
6012
6013	/*
6014	 * All HDMI 2.0 monitors must support scrambling at rates > 340 MHz.
6015	 * And as per the spec, three factors confirm this:
6016	 * * Availability of a HF-VSDB block in EDID (check)
6017	 * * Non zero Max_TMDS_Char_Rate filed in HF-VSDB (let's check)
6018	 * * SCDC support available (let's check)
6019	 * Lets check it out.
6020	 */
6021
6022	if (hf_scds[5]) {
6023		struct drm_scdc *scdc = &hdmi->scdc;
6024
6025		/* max clock is 5000 KHz times block value */
6026		max_tmds_clock = hf_scds[5] * 5000;
6027
6028		if (max_tmds_clock > 340000) {
6029			display->max_tmds_clock = max_tmds_clock;
6030		}
6031
6032		if (scdc->supported) {
6033			scdc->scrambling.supported = true;
6034
6035			/* Few sinks support scrambling for clocks < 340M */
6036			if ((hf_scds[6] & 0x8))
6037				scdc->scrambling.low_rates = true;
6038		}
6039	}
6040
6041	if (hf_scds[7]) {
6042		max_frl_rate = (hf_scds[7] & DRM_EDID_MAX_FRL_RATE_MASK) >> 4;
6043		drm_get_max_frl_rate(max_frl_rate, &hdmi->max_lanes,
6044				     &hdmi->max_frl_rate_per_lane);
6045	}
6046
6047	drm_parse_ycbcr420_deep_color_info(connector, hf_scds);
6048
6049	if (cea_db_payload_len(hf_scds) >= 11 && hf_scds[11]) {
6050		drm_parse_dsc_info(hdmi_dsc, hf_scds);
6051		dsc_support = true;
6052	}
6053
6054	drm_dbg_kms(connector->dev,
6055		    "[CONNECTOR:%d:%s] HF-VSDB: max TMDS clock: %d KHz, HDMI 2.1 support: %s, DSC 1.2 support: %s\n",
6056		    connector->base.id, connector->name,
6057		    max_tmds_clock, str_yes_no(max_frl_rate), str_yes_no(dsc_support));
6058}
 
6059
6060static void drm_parse_hdmi_deep_color_info(struct drm_connector *connector,
6061					   const u8 *hdmi)
 
 
 
 
 
 
 
 
 
 
 
 
6062{
6063	struct drm_display_info *info = &connector->display_info;
 
 
6064	unsigned int dc_bpc = 0;
6065
6066	/* HDMI supports at least 8 bpc */
6067	info->bpc = 8;
 
6068
6069	if (cea_db_payload_len(hdmi) < 6)
6070		return;
6071
6072	if (hdmi[6] & DRM_EDID_HDMI_DC_30) {
6073		dc_bpc = 10;
6074		info->edid_hdmi_rgb444_dc_modes |= DRM_EDID_HDMI_DC_30;
6075		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink does deep color 30.\n",
6076			    connector->base.id, connector->name);
6077	}
6078
6079	if (hdmi[6] & DRM_EDID_HDMI_DC_36) {
6080		dc_bpc = 12;
6081		info->edid_hdmi_rgb444_dc_modes |= DRM_EDID_HDMI_DC_36;
6082		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink does deep color 36.\n",
6083			    connector->base.id, connector->name);
6084	}
6085
6086	if (hdmi[6] & DRM_EDID_HDMI_DC_48) {
6087		dc_bpc = 16;
6088		info->edid_hdmi_rgb444_dc_modes |= DRM_EDID_HDMI_DC_48;
6089		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink does deep color 48.\n",
6090			    connector->base.id, connector->name);
6091	}
6092
6093	if (dc_bpc == 0) {
6094		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] No deep color support on this HDMI sink.\n",
6095			    connector->base.id, connector->name);
6096		return;
6097	}
6098
6099	drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] Assigning HDMI sink color depth as %d bpc.\n",
6100		    connector->base.id, connector->name, dc_bpc);
6101	info->bpc = dc_bpc;
6102
6103	/* YCRCB444 is optional according to spec. */
6104	if (hdmi[6] & DRM_EDID_HDMI_DC_Y444) {
6105		info->edid_hdmi_ycbcr444_dc_modes = info->edid_hdmi_rgb444_dc_modes;
6106		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink does YCRCB444 in deep color.\n",
6107			    connector->base.id, connector->name);
6108	}
6109
6110	/*
6111	 * Spec says that if any deep color mode is supported at all,
6112	 * then deep color 36 bit must be supported.
6113	 */
6114	if (!(hdmi[6] & DRM_EDID_HDMI_DC_36)) {
6115		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink should do DC_36, but does not!\n",
6116			    connector->base.id, connector->name);
6117	}
6118}
 
 
 
 
 
 
 
 
 
 
6119
6120static void
6121drm_parse_hdmi_vsdb_video(struct drm_connector *connector, const u8 *db)
6122{
6123	struct drm_display_info *info = &connector->display_info;
6124	u8 len = cea_db_payload_len(db);
 
6125
6126	info->is_hdmi = true;
 
 
 
 
 
6127
6128	if (len >= 6)
6129		info->dvi_dual = db[6] & 1;
6130	if (len >= 7)
6131		info->max_tmds_clock = db[7] * 5000;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6132
6133	drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI: DVI dual %d, max TMDS clock %d kHz\n",
6134		    connector->base.id, connector->name,
6135		    info->dvi_dual, info->max_tmds_clock);
 
 
 
 
 
6136
6137	drm_parse_hdmi_deep_color_info(connector, db);
6138}
6139
6140/*
6141 * See EDID extension for head-mounted and specialized monitors, specified at:
6142 * https://docs.microsoft.com/en-us/windows-hardware/drivers/display/specialized-monitors-edid-extension
6143 */
6144static void drm_parse_microsoft_vsdb(struct drm_connector *connector,
6145				     const u8 *db)
6146{
6147	struct drm_display_info *info = &connector->display_info;
6148	u8 version = db[4];
6149	bool desktop_usage = db[5] & BIT(6);
6150
6151	/* Version 1 and 2 for HMDs, version 3 flags desktop usage explicitly */
6152	if (version == 1 || version == 2 || (version == 3 && !desktop_usage))
6153		info->non_desktop = true;
6154
6155	drm_dbg_kms(connector->dev,
6156		    "[CONNECTOR:%d:%s] HMD or specialized display VSDB version %u: 0x%02x\n",
6157		    connector->base.id, connector->name, version, db[5]);
6158}
6159
6160static void drm_parse_cea_ext(struct drm_connector *connector,
6161			      const struct drm_edid *drm_edid)
6162{
6163	struct drm_display_info *info = &connector->display_info;
6164	struct drm_edid_iter edid_iter;
6165	const struct cea_db *db;
6166	struct cea_db_iter iter;
6167	const u8 *edid_ext;
6168
6169	drm_edid_iter_begin(drm_edid, &edid_iter);
6170	drm_edid_iter_for_each(edid_ext, &edid_iter) {
6171		if (edid_ext[0] != CEA_EXT)
6172			continue;
6173
6174		if (!info->cea_rev)
6175			info->cea_rev = edid_ext[1];
6176
6177		if (info->cea_rev != edid_ext[1])
6178			drm_dbg_kms(connector->dev,
6179				    "[CONNECTOR:%d:%s] CEA extension version mismatch %u != %u\n",
6180				    connector->base.id, connector->name,
6181				    info->cea_rev, edid_ext[1]);
6182
6183		/* The existence of a CTA extension should imply RGB support */
6184		info->color_formats = DRM_COLOR_FORMAT_RGB444;
6185		if (edid_ext[3] & EDID_CEA_YCRCB444)
6186			info->color_formats |= DRM_COLOR_FORMAT_YCBCR444;
6187		if (edid_ext[3] & EDID_CEA_YCRCB422)
6188			info->color_formats |= DRM_COLOR_FORMAT_YCBCR422;
6189	}
6190	drm_edid_iter_end(&edid_iter);
6191
6192	cea_db_iter_edid_begin(drm_edid, &iter);
6193	cea_db_iter_for_each(db, &iter) {
6194		/* FIXME: convert parsers to use struct cea_db */
6195		const u8 *data = (const u8 *)db;
6196
6197		if (cea_db_is_hdmi_vsdb(db))
6198			drm_parse_hdmi_vsdb_video(connector, data);
6199		else if (cea_db_is_hdmi_forum_vsdb(db) ||
6200			 cea_db_is_hdmi_forum_scdb(db))
6201			drm_parse_hdmi_forum_scds(connector, data);
6202		else if (cea_db_is_microsoft_vsdb(db))
6203			drm_parse_microsoft_vsdb(connector, data);
6204		else if (cea_db_is_y420cmdb(db))
6205			drm_parse_y420cmdb_bitmap(connector, data);
6206		else if (cea_db_is_vcdb(db))
6207			drm_parse_vcdb(connector, data);
6208		else if (cea_db_is_hdmi_hdr_metadata_block(db))
6209			drm_parse_hdr_metadata_block(connector, data);
6210	}
6211	cea_db_iter_end(&iter);
6212}
6213
6214static
6215void get_monitor_range(const struct detailed_timing *timing, void *c)
 
 
 
 
 
 
 
 
 
 
 
6216{
6217	struct detailed_mode_closure *closure = c;
6218	struct drm_display_info *info = &closure->connector->display_info;
6219	struct drm_monitor_range_info *monitor_range = &info->monitor_range;
6220	const struct detailed_non_pixel *data = &timing->data.other_data;
6221	const struct detailed_data_monitor_range *range = &data->data.range;
6222	const struct edid *edid = closure->drm_edid->edid;
6223
6224	if (!is_display_descriptor(timing, EDID_DETAIL_MONITOR_RANGE))
6225		return;
6226
6227	/*
6228	 * These limits are used to determine the VRR refresh
6229	 * rate range. Only the "range limits only" variant
6230	 * of the range descriptor seems to guarantee that
6231	 * any and all timings are accepted by the sink, as
6232	 * opposed to just timings conforming to the indicated
6233	 * formula (GTF/GTF2/CVT). Thus other variants of the
6234	 * range descriptor are not accepted here.
6235	 */
6236	if (range->flags != DRM_EDID_RANGE_LIMITS_ONLY_FLAG)
6237		return;
6238
6239	monitor_range->min_vfreq = range->min_vfreq;
6240	monitor_range->max_vfreq = range->max_vfreq;
6241
6242	if (edid->revision >= 4) {
6243		if (data->pad2 & DRM_EDID_RANGE_OFFSET_MIN_VFREQ)
6244			monitor_range->min_vfreq += 255;
6245		if (data->pad2 & DRM_EDID_RANGE_OFFSET_MAX_VFREQ)
6246			monitor_range->max_vfreq += 255;
6247	}
6248}
6249
6250static void drm_get_monitor_range(struct drm_connector *connector,
6251				  const struct drm_edid *drm_edid)
6252{
6253	const struct drm_display_info *info = &connector->display_info;
6254	struct detailed_mode_closure closure = {
6255		.connector = connector,
6256		.drm_edid = drm_edid,
6257	};
6258
6259	if (drm_edid->edid->revision < 4)
6260		return;
6261
6262	if (!(drm_edid->edid->features & DRM_EDID_FEATURE_CONTINUOUS_FREQ))
6263		return;
6264
6265	drm_for_each_detailed_block(drm_edid, get_monitor_range, &closure);
6266
6267	drm_dbg_kms(connector->dev,
6268		    "[CONNECTOR:%d:%s] Supported Monitor Refresh rate range is %d Hz - %d Hz\n",
6269		    connector->base.id, connector->name,
6270		    info->monitor_range.min_vfreq, info->monitor_range.max_vfreq);
6271}
6272
6273static void drm_parse_vesa_mso_data(struct drm_connector *connector,
6274				    const struct displayid_block *block)
6275{
6276	struct displayid_vesa_vendor_specific_block *vesa =
6277		(struct displayid_vesa_vendor_specific_block *)block;
6278	struct drm_display_info *info = &connector->display_info;
6279
6280	if (block->num_bytes < 3) {
6281		drm_dbg_kms(connector->dev,
6282			    "[CONNECTOR:%d:%s] Unexpected vendor block size %u\n",
6283			    connector->base.id, connector->name, block->num_bytes);
6284		return;
6285	}
6286
6287	if (oui(vesa->oui[0], vesa->oui[1], vesa->oui[2]) != VESA_IEEE_OUI)
6288		return;
6289
6290	if (sizeof(*vesa) != sizeof(*block) + block->num_bytes) {
6291		drm_dbg_kms(connector->dev,
6292			    "[CONNECTOR:%d:%s] Unexpected VESA vendor block size\n",
6293			    connector->base.id, connector->name);
6294		return;
6295	}
6296
6297	switch (FIELD_GET(DISPLAYID_VESA_MSO_MODE, vesa->mso)) {
6298	default:
6299		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] Reserved MSO mode value\n",
6300			    connector->base.id, connector->name);
6301		fallthrough;
6302	case 0:
6303		info->mso_stream_count = 0;
6304		break;
6305	case 1:
6306		info->mso_stream_count = 2; /* 2 or 4 links */
6307		break;
6308	case 2:
6309		info->mso_stream_count = 4; /* 4 links */
6310		break;
6311	}
6312
6313	if (!info->mso_stream_count) {
6314		info->mso_pixel_overlap = 0;
6315		return;
6316	}
6317
6318	info->mso_pixel_overlap = FIELD_GET(DISPLAYID_VESA_MSO_OVERLAP, vesa->mso);
6319	if (info->mso_pixel_overlap > 8) {
6320		drm_dbg_kms(connector->dev,
6321			    "[CONNECTOR:%d:%s] Reserved MSO pixel overlap value %u\n",
6322			    connector->base.id, connector->name,
6323			    info->mso_pixel_overlap);
6324		info->mso_pixel_overlap = 8;
6325	}
6326
6327	drm_dbg_kms(connector->dev,
6328		    "[CONNECTOR:%d:%s] MSO stream count %u, pixel overlap %u\n",
6329		    connector->base.id, connector->name,
6330		    info->mso_stream_count, info->mso_pixel_overlap);
6331}
6332
6333static void drm_update_mso(struct drm_connector *connector,
6334			   const struct drm_edid *drm_edid)
6335{
6336	const struct displayid_block *block;
6337	struct displayid_iter iter;
6338
6339	displayid_iter_edid_begin(drm_edid, &iter);
6340	displayid_iter_for_each(block, &iter) {
6341		if (block->tag == DATA_BLOCK_2_VENDOR_SPECIFIC)
6342			drm_parse_vesa_mso_data(connector, block);
6343	}
6344	displayid_iter_end(&iter);
6345}
6346
6347/* A connector has no EDID information, so we've got no EDID to compute quirks from. Reset
6348 * all of the values which would have been set from EDID
6349 */
6350static void drm_reset_display_info(struct drm_connector *connector)
6351{
6352	struct drm_display_info *info = &connector->display_info;
6353
6354	info->width_mm = 0;
6355	info->height_mm = 0;
6356
 
6357	info->bpc = 0;
6358	info->color_formats = 0;
6359	info->cea_rev = 0;
6360	info->max_tmds_clock = 0;
6361	info->dvi_dual = false;
6362	info->is_hdmi = false;
6363	info->has_hdmi_infoframe = false;
6364	info->rgb_quant_range_selectable = false;
6365	memset(&info->hdmi, 0, sizeof(info->hdmi));
6366
6367	info->edid_hdmi_rgb444_dc_modes = 0;
6368	info->edid_hdmi_ycbcr444_dc_modes = 0;
6369
6370	info->non_desktop = 0;
6371	memset(&info->monitor_range, 0, sizeof(info->monitor_range));
6372	memset(&info->luminance_range, 0, sizeof(info->luminance_range));
6373
6374	info->mso_stream_count = 0;
6375	info->mso_pixel_overlap = 0;
6376	info->max_dsc_bpp = 0;
6377}
6378
6379static u32 update_display_info(struct drm_connector *connector,
6380			       const struct drm_edid *drm_edid)
6381{
6382	struct drm_display_info *info = &connector->display_info;
6383	const struct edid *edid = drm_edid->edid;
6384
6385	u32 quirks = edid_get_quirks(drm_edid);
6386
6387	drm_reset_display_info(connector);
6388
6389	info->width_mm = edid->width_cm * 10;
6390	info->height_mm = edid->height_cm * 10;
6391
6392	drm_get_monitor_range(connector, drm_edid);
6393
6394	if (edid->revision < 3)
6395		goto out;
6396
6397	if (!(edid->input & DRM_EDID_INPUT_DIGITAL))
6398		goto out;
6399
6400	info->color_formats |= DRM_COLOR_FORMAT_RGB444;
6401	drm_parse_cea_ext(connector, drm_edid);
 
 
6402
6403	/*
6404	 * Digital sink with "DFP 1.x compliant TMDS" according to EDID 1.3?
6405	 *
6406	 * For such displays, the DFP spec 1.0, section 3.10 "EDID support"
6407	 * tells us to assume 8 bpc color depth if the EDID doesn't have
6408	 * extensions which tell otherwise.
6409	 */
6410	if (info->bpc == 0 && edid->revision == 3 &&
6411	    edid->input & DRM_EDID_DIGITAL_DFP_1_X) {
6412		info->bpc = 8;
6413		drm_dbg_kms(connector->dev,
6414			    "[CONNECTOR:%d:%s] Assigning DFP sink color depth as %d bpc.\n",
6415			    connector->base.id, connector->name, info->bpc);
6416	}
6417
 
 
 
6418	/* Only defined for 1.4 with digital displays */
6419	if (edid->revision < 4)
6420		goto out;
6421
6422	switch (edid->input & DRM_EDID_DIGITAL_DEPTH_MASK) {
6423	case DRM_EDID_DIGITAL_DEPTH_6:
6424		info->bpc = 6;
6425		break;
6426	case DRM_EDID_DIGITAL_DEPTH_8:
6427		info->bpc = 8;
6428		break;
6429	case DRM_EDID_DIGITAL_DEPTH_10:
6430		info->bpc = 10;
6431		break;
6432	case DRM_EDID_DIGITAL_DEPTH_12:
6433		info->bpc = 12;
6434		break;
6435	case DRM_EDID_DIGITAL_DEPTH_14:
6436		info->bpc = 14;
6437		break;
6438	case DRM_EDID_DIGITAL_DEPTH_16:
6439		info->bpc = 16;
6440		break;
6441	case DRM_EDID_DIGITAL_DEPTH_UNDEF:
6442	default:
6443		info->bpc = 0;
6444		break;
6445	}
6446
6447	drm_dbg_kms(connector->dev,
6448		    "[CONNECTOR:%d:%s] Assigning EDID-1.4 digital sink color depth as %d bpc.\n",
6449		    connector->base.id, connector->name, info->bpc);
6450
 
6451	if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB444)
6452		info->color_formats |= DRM_COLOR_FORMAT_YCBCR444;
6453	if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB422)
6454		info->color_formats |= DRM_COLOR_FORMAT_YCBCR422;
6455
6456	drm_update_mso(connector, drm_edid);
6457
6458out:
6459	if (quirks & EDID_QUIRK_NON_DESKTOP) {
6460		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] Non-desktop display%s\n",
6461			    connector->base.id, connector->name,
6462			    info->non_desktop ? " (redundant quirk)" : "");
6463		info->non_desktop = true;
6464	}
6465
6466	if (quirks & EDID_QUIRK_CAP_DSC_15BPP)
6467		info->max_dsc_bpp = 15;
6468
6469	return quirks;
6470}
6471
6472static struct drm_display_mode *drm_mode_displayid_detailed(struct drm_device *dev,
6473							    struct displayid_detailed_timings_1 *timings,
6474							    bool type_7)
 
 
 
 
 
 
 
6475{
6476	struct drm_display_mode *mode;
6477	unsigned pixel_clock = (timings->pixel_clock[0] |
6478				(timings->pixel_clock[1] << 8) |
6479				(timings->pixel_clock[2] << 16)) + 1;
6480	unsigned hactive = (timings->hactive[0] | timings->hactive[1] << 8) + 1;
6481	unsigned hblank = (timings->hblank[0] | timings->hblank[1] << 8) + 1;
6482	unsigned hsync = (timings->hsync[0] | (timings->hsync[1] & 0x7f) << 8) + 1;
6483	unsigned hsync_width = (timings->hsw[0] | timings->hsw[1] << 8) + 1;
6484	unsigned vactive = (timings->vactive[0] | timings->vactive[1] << 8) + 1;
6485	unsigned vblank = (timings->vblank[0] | timings->vblank[1] << 8) + 1;
6486	unsigned vsync = (timings->vsync[0] | (timings->vsync[1] & 0x7f) << 8) + 1;
6487	unsigned vsync_width = (timings->vsw[0] | timings->vsw[1] << 8) + 1;
6488	bool hsync_positive = (timings->hsync[1] >> 7) & 0x1;
6489	bool vsync_positive = (timings->vsync[1] >> 7) & 0x1;
6490
6491	mode = drm_mode_create(dev);
6492	if (!mode)
6493		return NULL;
6494
6495	/* resolution is kHz for type VII, and 10 kHz for type I */
6496	mode->clock = type_7 ? pixel_clock : pixel_clock * 10;
6497	mode->hdisplay = hactive;
6498	mode->hsync_start = mode->hdisplay + hsync;
6499	mode->hsync_end = mode->hsync_start + hsync_width;
6500	mode->htotal = mode->hdisplay + hblank;
6501
6502	mode->vdisplay = vactive;
6503	mode->vsync_start = mode->vdisplay + vsync;
6504	mode->vsync_end = mode->vsync_start + vsync_width;
6505	mode->vtotal = mode->vdisplay + vblank;
6506
6507	mode->flags = 0;
6508	mode->flags |= hsync_positive ? DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC;
6509	mode->flags |= vsync_positive ? DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC;
6510	mode->type = DRM_MODE_TYPE_DRIVER;
6511
6512	if (timings->flags & 0x80)
6513		mode->type |= DRM_MODE_TYPE_PREFERRED;
6514	drm_mode_set_name(mode);
6515
6516	return mode;
6517}
6518
6519static int add_displayid_detailed_1_modes(struct drm_connector *connector,
6520					  const struct displayid_block *block)
6521{
6522	struct displayid_detailed_timing_block *det = (struct displayid_detailed_timing_block *)block;
6523	int i;
6524	int num_timings;
6525	struct drm_display_mode *newmode;
6526	int num_modes = 0;
6527	bool type_7 = block->tag == DATA_BLOCK_2_TYPE_7_DETAILED_TIMING;
6528	/* blocks must be multiple of 20 bytes length */
6529	if (block->num_bytes % 20)
6530		return 0;
6531
6532	num_timings = block->num_bytes / 20;
6533	for (i = 0; i < num_timings; i++) {
6534		struct displayid_detailed_timings_1 *timings = &det->timings[i];
6535
6536		newmode = drm_mode_displayid_detailed(connector->dev, timings, type_7);
6537		if (!newmode)
6538			continue;
6539
6540		drm_mode_probed_add(connector, newmode);
6541		num_modes++;
6542	}
6543	return num_modes;
6544}
6545
6546static int add_displayid_detailed_modes(struct drm_connector *connector,
6547					const struct drm_edid *drm_edid)
6548{
6549	const struct displayid_block *block;
6550	struct displayid_iter iter;
6551	int num_modes = 0;
6552
6553	displayid_iter_edid_begin(drm_edid, &iter);
6554	displayid_iter_for_each(block, &iter) {
6555		if (block->tag == DATA_BLOCK_TYPE_1_DETAILED_TIMING ||
6556		    block->tag == DATA_BLOCK_2_TYPE_7_DETAILED_TIMING)
6557			num_modes += add_displayid_detailed_1_modes(connector, block);
6558	}
6559	displayid_iter_end(&iter);
6560
6561	return num_modes;
6562}
6563
6564static int _drm_edid_connector_update(struct drm_connector *connector,
6565				      const struct drm_edid *drm_edid)
6566{
6567	int num_modes = 0;
6568	u32 quirks;
6569
6570	if (!drm_edid) {
6571		drm_reset_display_info(connector);
6572		clear_eld(connector);
6573		return 0;
6574	}
6575
6576	/*
6577	 * CEA-861-F adds ycbcr capability map block, for HDMI 2.0 sinks.
6578	 * To avoid multiple parsing of same block, lets parse that map
6579	 * from sink info, before parsing CEA modes.
6580	 */
6581	quirks = update_display_info(connector, drm_edid);
6582
6583	/* Depends on info->cea_rev set by update_display_info() above */
6584	drm_edid_to_eld(connector, drm_edid);
6585
6586	/*
6587	 * EDID spec says modes should be preferred in this order:
6588	 * - preferred detailed mode
6589	 * - other detailed modes from base block
6590	 * - detailed modes from extension blocks
6591	 * - CVT 3-byte code modes
6592	 * - standard timing codes
6593	 * - established timing codes
6594	 * - modes inferred from GTF or CVT range information
6595	 *
6596	 * We get this pretty much right.
6597	 *
6598	 * XXX order for additional mode types in extension blocks?
6599	 */
6600	num_modes += add_detailed_modes(connector, drm_edid, quirks);
6601	num_modes += add_cvt_modes(connector, drm_edid);
6602	num_modes += add_standard_modes(connector, drm_edid);
6603	num_modes += add_established_modes(connector, drm_edid);
6604	num_modes += add_cea_modes(connector, drm_edid);
6605	num_modes += add_alternate_cea_modes(connector, drm_edid);
6606	num_modes += add_displayid_detailed_modes(connector, drm_edid);
6607	if (drm_edid->edid->features & DRM_EDID_FEATURE_CONTINUOUS_FREQ)
6608		num_modes += add_inferred_modes(connector, drm_edid);
6609
6610	if (quirks & (EDID_QUIRK_PREFER_LARGE_60 | EDID_QUIRK_PREFER_LARGE_75))
6611		edid_fixup_preferred(connector, quirks);
6612
6613	if (quirks & EDID_QUIRK_FORCE_6BPC)
6614		connector->display_info.bpc = 6;
6615
6616	if (quirks & EDID_QUIRK_FORCE_8BPC)
6617		connector->display_info.bpc = 8;
6618
6619	if (quirks & EDID_QUIRK_FORCE_10BPC)
6620		connector->display_info.bpc = 10;
6621
6622	if (quirks & EDID_QUIRK_FORCE_12BPC)
6623		connector->display_info.bpc = 12;
6624
6625	return num_modes;
6626}
6627
6628static void _drm_update_tile_info(struct drm_connector *connector,
6629				  const struct drm_edid *drm_edid);
6630
6631static int _drm_edid_connector_property_update(struct drm_connector *connector,
6632					       const struct drm_edid *drm_edid)
6633{
6634	struct drm_device *dev = connector->dev;
6635	int ret;
6636
6637	if (connector->edid_blob_ptr) {
6638		const struct edid *old_edid = connector->edid_blob_ptr->data;
6639
6640		if (old_edid) {
6641			if (!drm_edid_are_equal(drm_edid ? drm_edid->edid : NULL, old_edid)) {
6642				connector->epoch_counter++;
6643				drm_dbg_kms(dev, "[CONNECTOR:%d:%s] EDID changed, epoch counter %llu\n",
6644					    connector->base.id, connector->name,
6645					    connector->epoch_counter);
6646			}
6647		}
6648	}
6649
6650	ret = drm_property_replace_global_blob(dev,
6651					       &connector->edid_blob_ptr,
6652					       drm_edid ? drm_edid->size : 0,
6653					       drm_edid ? drm_edid->edid : NULL,
6654					       &connector->base,
6655					       dev->mode_config.edid_property);
6656	if (ret) {
6657		drm_dbg_kms(dev, "[CONNECTOR:%d:%s] EDID property update failed (%d)\n",
6658			    connector->base.id, connector->name, ret);
6659		goto out;
6660	}
6661
6662	ret = drm_object_property_set_value(&connector->base,
6663					    dev->mode_config.non_desktop_property,
6664					    connector->display_info.non_desktop);
6665	if (ret) {
6666		drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Non-desktop property update failed (%d)\n",
6667			    connector->base.id, connector->name, ret);
6668		goto out;
6669	}
6670
6671	ret = drm_connector_set_tile_property(connector);
6672	if (ret) {
6673		drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Tile property update failed (%d)\n",
6674			    connector->base.id, connector->name, ret);
6675		goto out;
6676	}
6677
6678out:
6679	return ret;
6680}
6681
6682/**
6683 * drm_edid_connector_update - Update connector information from EDID
6684 * @connector: Connector
6685 * @drm_edid: EDID
6686 *
6687 * Update the connector mode list, display info, ELD, HDR metadata, relevant
6688 * properties, etc. from the passed in EDID.
6689 *
6690 * If EDID is NULL, reset the information.
6691 *
6692 * Return: The number of modes added or 0 if we couldn't find any.
6693 */
6694int drm_edid_connector_update(struct drm_connector *connector,
6695			      const struct drm_edid *drm_edid)
6696{
6697	int count;
6698
6699	count = _drm_edid_connector_update(connector, drm_edid);
6700
6701	_drm_update_tile_info(connector, drm_edid);
6702
6703	/* Note: Ignore errors for now. */
6704	_drm_edid_connector_property_update(connector, drm_edid);
6705
6706	return count;
6707}
6708EXPORT_SYMBOL(drm_edid_connector_update);
6709
6710static int _drm_connector_update_edid_property(struct drm_connector *connector,
6711					       const struct drm_edid *drm_edid)
6712{
6713	/*
6714	 * Set the display info, using edid if available, otherwise resetting
6715	 * the values to defaults. This duplicates the work done in
6716	 * drm_add_edid_modes, but that function is not consistently called
6717	 * before this one in all drivers and the computation is cheap enough
6718	 * that it seems better to duplicate it rather than attempt to ensure
6719	 * some arbitrary ordering of calls.
6720	 */
6721	if (drm_edid)
6722		update_display_info(connector, drm_edid);
6723	else
6724		drm_reset_display_info(connector);
6725
6726	_drm_update_tile_info(connector, drm_edid);
6727
6728	return _drm_edid_connector_property_update(connector, drm_edid);
6729}
6730
6731/**
6732 * drm_connector_update_edid_property - update the edid property of a connector
6733 * @connector: drm connector
6734 * @edid: new value of the edid property
6735 *
6736 * This function creates a new blob modeset object and assigns its id to the
6737 * connector's edid property.
6738 * Since we also parse tile information from EDID's displayID block, we also
6739 * set the connector's tile property here. See drm_connector_set_tile_property()
6740 * for more details.
6741 *
6742 * This function is deprecated. Use drm_edid_connector_update() instead.
6743 *
6744 * Returns:
6745 * Zero on success, negative errno on failure.
6746 */
6747int drm_connector_update_edid_property(struct drm_connector *connector,
6748				       const struct edid *edid)
6749{
6750	struct drm_edid drm_edid;
6751
6752	return _drm_connector_update_edid_property(connector,
6753						   drm_edid_legacy_init(&drm_edid, edid));
6754}
6755EXPORT_SYMBOL(drm_connector_update_edid_property);
6756
6757/**
6758 * drm_add_edid_modes - add modes from EDID data, if available
6759 * @connector: connector we're probing
6760 * @edid: EDID data
6761 *
6762 * Add the specified modes to the connector's mode list. Also fills out the
6763 * &drm_display_info structure and ELD in @connector with any information which
6764 * can be derived from the edid.
6765 *
6766 * This function is deprecated. Use drm_edid_connector_update() instead.
6767 *
6768 * Return: The number of modes added or 0 if we couldn't find any.
6769 */
6770int drm_add_edid_modes(struct drm_connector *connector, struct edid *edid)
6771{
6772	struct drm_edid drm_edid;
6773
6774	if (edid && !drm_edid_is_valid(edid)) {
6775		drm_warn(connector->dev, "[CONNECTOR:%d:%s] EDID invalid.\n",
6776			 connector->base.id, connector->name);
6777		edid = NULL;
6778	}
6779
6780	return _drm_edid_connector_update(connector,
6781					  drm_edid_legacy_init(&drm_edid, edid));
6782}
6783EXPORT_SYMBOL(drm_add_edid_modes);
6784
6785/**
6786 * drm_add_modes_noedid - add modes for the connectors without EDID
6787 * @connector: connector we're probing
6788 * @hdisplay: the horizontal display limit
6789 * @vdisplay: the vertical display limit
6790 *
6791 * Add the specified modes to the connector's mode list. Only when the
6792 * hdisplay/vdisplay is not beyond the given limit, it will be added.
6793 *
6794 * Return: The number of modes added or 0 if we couldn't find any.
6795 */
6796int drm_add_modes_noedid(struct drm_connector *connector,
6797			int hdisplay, int vdisplay)
6798{
6799	int i, count, num_modes = 0;
6800	struct drm_display_mode *mode;
6801	struct drm_device *dev = connector->dev;
6802
6803	count = ARRAY_SIZE(drm_dmt_modes);
6804	if (hdisplay < 0)
6805		hdisplay = 0;
6806	if (vdisplay < 0)
6807		vdisplay = 0;
6808
6809	for (i = 0; i < count; i++) {
6810		const struct drm_display_mode *ptr = &drm_dmt_modes[i];
6811
6812		if (hdisplay && vdisplay) {
6813			/*
6814			 * Only when two are valid, they will be used to check
6815			 * whether the mode should be added to the mode list of
6816			 * the connector.
6817			 */
6818			if (ptr->hdisplay > hdisplay ||
6819					ptr->vdisplay > vdisplay)
6820				continue;
6821		}
6822		if (drm_mode_vrefresh(ptr) > 61)
6823			continue;
6824		mode = drm_mode_duplicate(dev, ptr);
6825		if (mode) {
6826			drm_mode_probed_add(connector, mode);
6827			num_modes++;
6828		}
6829	}
6830	return num_modes;
6831}
6832EXPORT_SYMBOL(drm_add_modes_noedid);
6833
6834/**
6835 * drm_set_preferred_mode - Sets the preferred mode of a connector
6836 * @connector: connector whose mode list should be processed
6837 * @hpref: horizontal resolution of preferred mode
6838 * @vpref: vertical resolution of preferred mode
6839 *
6840 * Marks a mode as preferred if it matches the resolution specified by @hpref
6841 * and @vpref.
6842 */
6843void drm_set_preferred_mode(struct drm_connector *connector,
6844			   int hpref, int vpref)
6845{
6846	struct drm_display_mode *mode;
6847
6848	list_for_each_entry(mode, &connector->probed_modes, head) {
6849		if (mode->hdisplay == hpref &&
6850		    mode->vdisplay == vpref)
6851			mode->type |= DRM_MODE_TYPE_PREFERRED;
6852	}
6853}
6854EXPORT_SYMBOL(drm_set_preferred_mode);
6855
6856static bool is_hdmi2_sink(const struct drm_connector *connector)
6857{
6858	/*
6859	 * FIXME: sil-sii8620 doesn't have a connector around when
6860	 * we need one, so we have to be prepared for a NULL connector.
6861	 */
6862	if (!connector)
6863		return true;
6864
6865	return connector->display_info.hdmi.scdc.supported ||
6866		connector->display_info.color_formats & DRM_COLOR_FORMAT_YCBCR420;
6867}
6868
6869static u8 drm_mode_hdmi_vic(const struct drm_connector *connector,
6870			    const struct drm_display_mode *mode)
6871{
6872	bool has_hdmi_infoframe = connector ?
6873		connector->display_info.has_hdmi_infoframe : false;
6874
6875	if (!has_hdmi_infoframe)
6876		return 0;
6877
6878	/* No HDMI VIC when signalling 3D video format */
6879	if (mode->flags & DRM_MODE_FLAG_3D_MASK)
6880		return 0;
6881
6882	return drm_match_hdmi_mode(mode);
6883}
6884
6885static u8 drm_mode_cea_vic(const struct drm_connector *connector,
6886			   const struct drm_display_mode *mode)
6887{
6888	u8 vic;
6889
6890	/*
6891	 * HDMI spec says if a mode is found in HDMI 1.4b 4K modes
6892	 * we should send its VIC in vendor infoframes, else send the
6893	 * VIC in AVI infoframes. Lets check if this mode is present in
6894	 * HDMI 1.4b 4K modes
6895	 */
6896	if (drm_mode_hdmi_vic(connector, mode))
6897		return 0;
6898
6899	vic = drm_match_cea_mode(mode);
6900
6901	/*
6902	 * HDMI 1.4 VIC range: 1 <= VIC <= 64 (CEA-861-D) but
6903	 * HDMI 2.0 VIC range: 1 <= VIC <= 107 (CEA-861-F). So we
6904	 * have to make sure we dont break HDMI 1.4 sinks.
6905	 */
6906	if (!is_hdmi2_sink(connector) && vic > 64)
6907		return 0;
6908
6909	return vic;
6910}
6911
6912/**
6913 * drm_hdmi_avi_infoframe_from_display_mode() - fill an HDMI AVI infoframe with
6914 *                                              data from a DRM display mode
6915 * @frame: HDMI AVI infoframe
6916 * @connector: the connector
6917 * @mode: DRM display mode
6918 *
6919 * Return: 0 on success or a negative error code on failure.
6920 */
6921int
6922drm_hdmi_avi_infoframe_from_display_mode(struct hdmi_avi_infoframe *frame,
6923					 const struct drm_connector *connector,
6924					 const struct drm_display_mode *mode)
6925{
6926	enum hdmi_picture_aspect picture_aspect;
6927	u8 vic, hdmi_vic;
6928
6929	if (!frame || !mode)
6930		return -EINVAL;
6931
6932	hdmi_avi_infoframe_init(frame);
 
 
6933
6934	if (mode->flags & DRM_MODE_FLAG_DBLCLK)
6935		frame->pixel_repeat = 1;
6936
6937	vic = drm_mode_cea_vic(connector, mode);
6938	hdmi_vic = drm_mode_hdmi_vic(connector, mode);
6939
6940	frame->picture_aspect = HDMI_PICTURE_ASPECT_NONE;
6941
6942	/*
6943	 * As some drivers don't support atomic, we can't use connector state.
6944	 * So just initialize the frame with default values, just the same way
6945	 * as it's done with other properties here.
6946	 */
6947	frame->content_type = HDMI_CONTENT_TYPE_GRAPHICS;
6948	frame->itc = 0;
6949
6950	/*
6951	 * Populate picture aspect ratio from either
6952	 * user input (if specified) or from the CEA/HDMI mode lists.
6953	 */
6954	picture_aspect = mode->picture_aspect_ratio;
6955	if (picture_aspect == HDMI_PICTURE_ASPECT_NONE) {
6956		if (vic)
6957			picture_aspect = drm_get_cea_aspect_ratio(vic);
6958		else if (hdmi_vic)
6959			picture_aspect = drm_get_hdmi_aspect_ratio(hdmi_vic);
6960	}
6961
6962	/*
6963	 * The infoframe can't convey anything but none, 4:3
6964	 * and 16:9, so if the user has asked for anything else
6965	 * we can only satisfy it by specifying the right VIC.
6966	 */
6967	if (picture_aspect > HDMI_PICTURE_ASPECT_16_9) {
6968		if (vic) {
6969			if (picture_aspect != drm_get_cea_aspect_ratio(vic))
6970				return -EINVAL;
6971		} else if (hdmi_vic) {
6972			if (picture_aspect != drm_get_hdmi_aspect_ratio(hdmi_vic))
6973				return -EINVAL;
6974		} else {
6975			return -EINVAL;
6976		}
6977
6978		picture_aspect = HDMI_PICTURE_ASPECT_NONE;
6979	}
6980
6981	frame->video_code = vic;
6982	frame->picture_aspect = picture_aspect;
6983	frame->active_aspect = HDMI_ACTIVE_ASPECT_PICTURE;
6984	frame->scan_mode = HDMI_SCAN_MODE_UNDERSCAN;
6985
6986	return 0;
6987}
6988EXPORT_SYMBOL(drm_hdmi_avi_infoframe_from_display_mode);
6989
6990/**
6991 * drm_hdmi_avi_infoframe_quant_range() - fill the HDMI AVI infoframe
6992 *                                        quantization range information
6993 * @frame: HDMI AVI infoframe
6994 * @connector: the connector
6995 * @mode: DRM display mode
6996 * @rgb_quant_range: RGB quantization range (Q)
6997 */
6998void
6999drm_hdmi_avi_infoframe_quant_range(struct hdmi_avi_infoframe *frame,
7000				   const struct drm_connector *connector,
7001				   const struct drm_display_mode *mode,
7002				   enum hdmi_quantization_range rgb_quant_range)
7003{
7004	const struct drm_display_info *info = &connector->display_info;
7005
7006	/*
7007	 * CEA-861:
7008	 * "A Source shall not send a non-zero Q value that does not correspond
7009	 *  to the default RGB Quantization Range for the transmitted Picture
7010	 *  unless the Sink indicates support for the Q bit in a Video
7011	 *  Capabilities Data Block."
7012	 *
7013	 * HDMI 2.0 recommends sending non-zero Q when it does match the
7014	 * default RGB quantization range for the mode, even when QS=0.
7015	 */
7016	if (info->rgb_quant_range_selectable ||
7017	    rgb_quant_range == drm_default_rgb_quant_range(mode))
7018		frame->quantization_range = rgb_quant_range;
7019	else
7020		frame->quantization_range = HDMI_QUANTIZATION_RANGE_DEFAULT;
7021
7022	/*
7023	 * CEA-861-F:
7024	 * "When transmitting any RGB colorimetry, the Source should set the
7025	 *  YQ-field to match the RGB Quantization Range being transmitted
7026	 *  (e.g., when Limited Range RGB, set YQ=0 or when Full Range RGB,
7027	 *  set YQ=1) and the Sink shall ignore the YQ-field."
7028	 *
7029	 * Unfortunate certain sinks (eg. VIZ Model 67/E261VA) get confused
7030	 * by non-zero YQ when receiving RGB. There doesn't seem to be any
7031	 * good way to tell which version of CEA-861 the sink supports, so
7032	 * we limit non-zero YQ to HDMI 2.0 sinks only as HDMI 2.0 is based
7033	 * on CEA-861-F.
7034	 */
7035	if (!is_hdmi2_sink(connector) ||
7036	    rgb_quant_range == HDMI_QUANTIZATION_RANGE_LIMITED)
7037		frame->ycc_quantization_range =
7038			HDMI_YCC_QUANTIZATION_RANGE_LIMITED;
7039	else
7040		frame->ycc_quantization_range =
7041			HDMI_YCC_QUANTIZATION_RANGE_FULL;
7042}
7043EXPORT_SYMBOL(drm_hdmi_avi_infoframe_quant_range);
7044
7045static enum hdmi_3d_structure
7046s3d_structure_from_display_mode(const struct drm_display_mode *mode)
7047{
7048	u32 layout = mode->flags & DRM_MODE_FLAG_3D_MASK;
7049
7050	switch (layout) {
7051	case DRM_MODE_FLAG_3D_FRAME_PACKING:
7052		return HDMI_3D_STRUCTURE_FRAME_PACKING;
7053	case DRM_MODE_FLAG_3D_FIELD_ALTERNATIVE:
7054		return HDMI_3D_STRUCTURE_FIELD_ALTERNATIVE;
7055	case DRM_MODE_FLAG_3D_LINE_ALTERNATIVE:
7056		return HDMI_3D_STRUCTURE_LINE_ALTERNATIVE;
7057	case DRM_MODE_FLAG_3D_SIDE_BY_SIDE_FULL:
7058		return HDMI_3D_STRUCTURE_SIDE_BY_SIDE_FULL;
7059	case DRM_MODE_FLAG_3D_L_DEPTH:
7060		return HDMI_3D_STRUCTURE_L_DEPTH;
7061	case DRM_MODE_FLAG_3D_L_DEPTH_GFX_GFX_DEPTH:
7062		return HDMI_3D_STRUCTURE_L_DEPTH_GFX_GFX_DEPTH;
7063	case DRM_MODE_FLAG_3D_TOP_AND_BOTTOM:
7064		return HDMI_3D_STRUCTURE_TOP_AND_BOTTOM;
7065	case DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF:
7066		return HDMI_3D_STRUCTURE_SIDE_BY_SIDE_HALF;
7067	default:
7068		return HDMI_3D_STRUCTURE_INVALID;
7069	}
7070}
7071
7072/**
7073 * drm_hdmi_vendor_infoframe_from_display_mode() - fill an HDMI infoframe with
7074 * data from a DRM display mode
7075 * @frame: HDMI vendor infoframe
7076 * @connector: the connector
7077 * @mode: DRM display mode
7078 *
7079 * Note that there's is a need to send HDMI vendor infoframes only when using a
7080 * 4k or stereoscopic 3D mode. So when giving any other mode as input this
7081 * function will return -EINVAL, error that can be safely ignored.
7082 *
7083 * Return: 0 on success or a negative error code on failure.
7084 */
7085int
7086drm_hdmi_vendor_infoframe_from_display_mode(struct hdmi_vendor_infoframe *frame,
7087					    const struct drm_connector *connector,
7088					    const struct drm_display_mode *mode)
7089{
7090	/*
7091	 * FIXME: sil-sii8620 doesn't have a connector around when
7092	 * we need one, so we have to be prepared for a NULL connector.
7093	 */
7094	bool has_hdmi_infoframe = connector ?
7095		connector->display_info.has_hdmi_infoframe : false;
7096	int err;
 
 
7097
7098	if (!frame || !mode)
7099		return -EINVAL;
7100
7101	if (!has_hdmi_infoframe)
 
 
 
 
 
 
7102		return -EINVAL;
7103
7104	err = hdmi_vendor_infoframe_init(frame);
7105	if (err < 0)
7106		return err;
7107
7108	/*
7109	 * Even if it's not absolutely necessary to send the infoframe
7110	 * (ie.vic==0 and s3d_struct==0) we will still send it if we
7111	 * know that the sink can handle it. This is based on a
7112	 * suggestion in HDMI 2.0 Appendix F. Apparently some sinks
7113	 * have trouble realizing that they should switch from 3D to 2D
7114	 * mode if the source simply stops sending the infoframe when
7115	 * it wants to switch from 3D to 2D.
7116	 */
7117	frame->vic = drm_mode_hdmi_vic(connector, mode);
7118	frame->s3d_struct = s3d_structure_from_display_mode(mode);
7119
7120	return 0;
7121}
7122EXPORT_SYMBOL(drm_hdmi_vendor_infoframe_from_display_mode);
7123
7124static void drm_parse_tiled_block(struct drm_connector *connector,
7125				  const struct displayid_block *block)
7126{
7127	const struct displayid_tiled_block *tile = (struct displayid_tiled_block *)block;
7128	u16 w, h;
7129	u8 tile_v_loc, tile_h_loc;
7130	u8 num_v_tile, num_h_tile;
7131	struct drm_tile_group *tg;
7132
7133	w = tile->tile_size[0] | tile->tile_size[1] << 8;
7134	h = tile->tile_size[2] | tile->tile_size[3] << 8;
7135
7136	num_v_tile = (tile->topo[0] & 0xf) | (tile->topo[2] & 0x30);
7137	num_h_tile = (tile->topo[0] >> 4) | ((tile->topo[2] >> 2) & 0x30);
7138	tile_v_loc = (tile->topo[1] & 0xf) | ((tile->topo[2] & 0x3) << 4);
7139	tile_h_loc = (tile->topo[1] >> 4) | (((tile->topo[2] >> 2) & 0x3) << 4);
7140
7141	connector->has_tile = true;
7142	if (tile->tile_cap & 0x80)
7143		connector->tile_is_single_monitor = true;
7144
7145	connector->num_h_tile = num_h_tile + 1;
7146	connector->num_v_tile = num_v_tile + 1;
7147	connector->tile_h_loc = tile_h_loc;
7148	connector->tile_v_loc = tile_v_loc;
7149	connector->tile_h_size = w + 1;
7150	connector->tile_v_size = h + 1;
7151
7152	drm_dbg_kms(connector->dev,
7153		    "[CONNECTOR:%d:%s] tile cap 0x%x, size %dx%d, num tiles %dx%d, location %dx%d, vend %c%c%c",
7154		    connector->base.id, connector->name,
7155		    tile->tile_cap,
7156		    connector->tile_h_size, connector->tile_v_size,
7157		    connector->num_h_tile, connector->num_v_tile,
7158		    connector->tile_h_loc, connector->tile_v_loc,
7159		    tile->topology_id[0], tile->topology_id[1], tile->topology_id[2]);
7160
7161	tg = drm_mode_get_tile_group(connector->dev, tile->topology_id);
7162	if (!tg)
7163		tg = drm_mode_create_tile_group(connector->dev, tile->topology_id);
7164	if (!tg)
7165		return;
7166
7167	if (connector->tile_group != tg) {
7168		/* if we haven't got a pointer,
7169		   take the reference, drop ref to old tile group */
7170		if (connector->tile_group)
7171			drm_mode_put_tile_group(connector->dev, connector->tile_group);
7172		connector->tile_group = tg;
7173	} else {
7174		/* if same tile group, then release the ref we just took. */
7175		drm_mode_put_tile_group(connector->dev, tg);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7176	}
 
7177}
7178
7179static void _drm_update_tile_info(struct drm_connector *connector,
7180				  const struct drm_edid *drm_edid)
7181{
7182	const struct displayid_block *block;
7183	struct displayid_iter iter;
7184
7185	connector->has_tile = false;
7186
7187	displayid_iter_edid_begin(drm_edid, &iter);
7188	displayid_iter_for_each(block, &iter) {
7189		if (block->tag == DATA_BLOCK_TILED_DISPLAY)
7190			drm_parse_tiled_block(connector, block);
7191	}
7192	displayid_iter_end(&iter);
7193
7194	if (!connector->has_tile && connector->tile_group) {
 
 
 
 
 
 
 
7195		drm_mode_put_tile_group(connector->dev, connector->tile_group);
7196		connector->tile_group = NULL;
7197	}
 
7198}