Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.6.
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2018, The Linux Foundation. All rights reserved.
   4 * datasheet: https://www.ti.com/lit/ds/symlink/sn65dsi86.pdf
   5 */
   6
   7#include <linux/atomic.h>
   8#include <linux/auxiliary_bus.h>
   9#include <linux/bitfield.h>
  10#include <linux/bits.h>
  11#include <linux/clk.h>
  12#include <linux/debugfs.h>
  13#include <linux/gpio/consumer.h>
  14#include <linux/gpio/driver.h>
  15#include <linux/i2c.h>
  16#include <linux/iopoll.h>
  17#include <linux/module.h>
  18#include <linux/of_graph.h>
  19#include <linux/pm_runtime.h>
  20#include <linux/pwm.h>
  21#include <linux/regmap.h>
  22#include <linux/regulator/consumer.h>
  23
  24#include <asm/unaligned.h>
  25
  26#include <drm/display/drm_dp_aux_bus.h>
  27#include <drm/display/drm_dp_helper.h>
  28#include <drm/drm_atomic.h>
  29#include <drm/drm_atomic_helper.h>
  30#include <drm/drm_bridge.h>
  31#include <drm/drm_bridge_connector.h>
  32#include <drm/drm_edid.h>
  33#include <drm/drm_mipi_dsi.h>
  34#include <drm/drm_of.h>
  35#include <drm/drm_panel.h>
  36#include <drm/drm_print.h>
  37#include <drm/drm_probe_helper.h>
  38
  39#define SN_DEVICE_REV_REG			0x08
  40#define SN_DPPLL_SRC_REG			0x0A
  41#define  DPPLL_CLK_SRC_DSICLK			BIT(0)
  42#define  REFCLK_FREQ_MASK			GENMASK(3, 1)
  43#define  REFCLK_FREQ(x)				((x) << 1)
  44#define  DPPLL_SRC_DP_PLL_LOCK			BIT(7)
  45#define SN_PLL_ENABLE_REG			0x0D
  46#define SN_DSI_LANES_REG			0x10
  47#define  CHA_DSI_LANES_MASK			GENMASK(4, 3)
  48#define  CHA_DSI_LANES(x)			((x) << 3)
  49#define SN_DSIA_CLK_FREQ_REG			0x12
  50#define SN_CHA_ACTIVE_LINE_LENGTH_LOW_REG	0x20
  51#define SN_CHA_VERTICAL_DISPLAY_SIZE_LOW_REG	0x24
  52#define SN_CHA_HSYNC_PULSE_WIDTH_LOW_REG	0x2C
  53#define SN_CHA_HSYNC_PULSE_WIDTH_HIGH_REG	0x2D
  54#define  CHA_HSYNC_POLARITY			BIT(7)
  55#define SN_CHA_VSYNC_PULSE_WIDTH_LOW_REG	0x30
  56#define SN_CHA_VSYNC_PULSE_WIDTH_HIGH_REG	0x31
  57#define  CHA_VSYNC_POLARITY			BIT(7)
  58#define SN_CHA_HORIZONTAL_BACK_PORCH_REG	0x34
  59#define SN_CHA_VERTICAL_BACK_PORCH_REG		0x36
  60#define SN_CHA_HORIZONTAL_FRONT_PORCH_REG	0x38
  61#define SN_CHA_VERTICAL_FRONT_PORCH_REG		0x3A
  62#define SN_LN_ASSIGN_REG			0x59
  63#define  LN_ASSIGN_WIDTH			2
  64#define SN_ENH_FRAME_REG			0x5A
  65#define  VSTREAM_ENABLE				BIT(3)
  66#define  LN_POLRS_OFFSET			4
  67#define  LN_POLRS_MASK				0xf0
  68#define SN_DATA_FORMAT_REG			0x5B
  69#define  BPP_18_RGB				BIT(0)
  70#define SN_HPD_DISABLE_REG			0x5C
  71#define  HPD_DISABLE				BIT(0)
  72#define  HPD_DEBOUNCED_STATE			BIT(4)
  73#define SN_GPIO_IO_REG				0x5E
  74#define  SN_GPIO_INPUT_SHIFT			4
  75#define  SN_GPIO_OUTPUT_SHIFT			0
  76#define SN_GPIO_CTRL_REG			0x5F
  77#define  SN_GPIO_MUX_INPUT			0
  78#define  SN_GPIO_MUX_OUTPUT			1
  79#define  SN_GPIO_MUX_SPECIAL			2
  80#define  SN_GPIO_MUX_MASK			0x3
  81#define SN_AUX_WDATA_REG(x)			(0x64 + (x))
  82#define SN_AUX_ADDR_19_16_REG			0x74
  83#define SN_AUX_ADDR_15_8_REG			0x75
  84#define SN_AUX_ADDR_7_0_REG			0x76
  85#define SN_AUX_ADDR_MASK			GENMASK(19, 0)
  86#define SN_AUX_LENGTH_REG			0x77
  87#define SN_AUX_CMD_REG				0x78
  88#define  AUX_CMD_SEND				BIT(0)
  89#define  AUX_CMD_REQ(x)				((x) << 4)
  90#define SN_AUX_RDATA_REG(x)			(0x79 + (x))
  91#define SN_SSC_CONFIG_REG			0x93
  92#define  DP_NUM_LANES_MASK			GENMASK(5, 4)
  93#define  DP_NUM_LANES(x)			((x) << 4)
  94#define SN_DATARATE_CONFIG_REG			0x94
  95#define  DP_DATARATE_MASK			GENMASK(7, 5)
  96#define  DP_DATARATE(x)				((x) << 5)
  97#define SN_TRAINING_SETTING_REG			0x95
  98#define  SCRAMBLE_DISABLE			BIT(4)
  99#define SN_ML_TX_MODE_REG			0x96
 100#define  ML_TX_MAIN_LINK_OFF			0
 101#define  ML_TX_NORMAL_MODE			BIT(0)
 102#define SN_PWM_PRE_DIV_REG			0xA0
 103#define SN_BACKLIGHT_SCALE_REG			0xA1
 104#define  BACKLIGHT_SCALE_MAX			0xFFFF
 105#define SN_BACKLIGHT_REG			0xA3
 106#define SN_PWM_EN_INV_REG			0xA5
 107#define  SN_PWM_INV_MASK			BIT(0)
 108#define  SN_PWM_EN_MASK				BIT(1)
 109#define SN_AUX_CMD_STATUS_REG			0xF4
 110#define  AUX_IRQ_STATUS_AUX_RPLY_TOUT		BIT(3)
 111#define  AUX_IRQ_STATUS_AUX_SHORT		BIT(5)
 112#define  AUX_IRQ_STATUS_NAT_I2C_FAIL		BIT(6)
 113
 114#define MIN_DSI_CLK_FREQ_MHZ	40
 115
 116/* fudge factor required to account for 8b/10b encoding */
 117#define DP_CLK_FUDGE_NUM	10
 118#define DP_CLK_FUDGE_DEN	8
 119
 120/* Matches DP_AUX_MAX_PAYLOAD_BYTES (for now) */
 121#define SN_AUX_MAX_PAYLOAD_BYTES	16
 122
 123#define SN_REGULATOR_SUPPLY_NUM		4
 124
 125#define SN_MAX_DP_LANES			4
 126#define SN_NUM_GPIOS			4
 127#define SN_GPIO_PHYSICAL_OFFSET		1
 128
 129#define SN_LINK_TRAINING_TRIES		10
 130
 131#define SN_PWM_GPIO_IDX			3 /* 4th GPIO */
 132
 133/**
 134 * struct ti_sn65dsi86 - Platform data for ti-sn65dsi86 driver.
 135 * @bridge_aux:   AUX-bus sub device for MIPI-to-eDP bridge functionality.
 136 * @gpio_aux:     AUX-bus sub device for GPIO controller functionality.
 137 * @aux_aux:      AUX-bus sub device for eDP AUX channel functionality.
 138 * @pwm_aux:      AUX-bus sub device for PWM controller functionality.
 139 *
 140 * @dev:          Pointer to the top level (i2c) device.
 141 * @regmap:       Regmap for accessing i2c.
 142 * @aux:          Our aux channel.
 143 * @bridge:       Our bridge.
 144 * @connector:    Our connector.
 145 * @host_node:    Remote DSI node.
 146 * @dsi:          Our MIPI DSI source.
 147 * @refclk:       Our reference clock.
 148 * @next_bridge:  The bridge on the eDP side.
 149 * @enable_gpio:  The GPIO we toggle to enable the bridge.
 150 * @supplies:     Data for bulk enabling/disabling our regulators.
 151 * @dp_lanes:     Count of dp_lanes we're using.
 152 * @ln_assign:    Value to program to the LN_ASSIGN register.
 153 * @ln_polrs:     Value for the 4-bit LN_POLRS field of SN_ENH_FRAME_REG.
 154 * @comms_enabled: If true then communication over the aux channel is enabled.
 155 * @comms_mutex:   Protects modification of comms_enabled.
 156 *
 157 * @gchip:        If we expose our GPIOs, this is used.
 158 * @gchip_output: A cache of whether we've set GPIOs to output.  This
 159 *                serves double-duty of keeping track of the direction and
 160 *                also keeping track of whether we've incremented the
 161 *                pm_runtime reference count for this pin, which we do
 162 *                whenever a pin is configured as an output.  This is a
 163 *                bitmap so we can do atomic ops on it without an extra
 164 *                lock so concurrent users of our 4 GPIOs don't stomp on
 165 *                each other's read-modify-write.
 166 *
 167 * @pchip:        pwm_chip if the PWM is exposed.
 168 * @pwm_enabled:  Used to track if the PWM signal is currently enabled.
 169 * @pwm_pin_busy: Track if GPIO4 is currently requested for GPIO or PWM.
 170 * @pwm_refclk_freq: Cache for the reference clock input to the PWM.
 171 */
 172struct ti_sn65dsi86 {
 173	struct auxiliary_device		bridge_aux;
 174	struct auxiliary_device		gpio_aux;
 175	struct auxiliary_device		aux_aux;
 176	struct auxiliary_device		pwm_aux;
 177
 178	struct device			*dev;
 179	struct regmap			*regmap;
 180	struct drm_dp_aux		aux;
 181	struct drm_bridge		bridge;
 182	struct drm_connector		*connector;
 183	struct device_node		*host_node;
 184	struct mipi_dsi_device		*dsi;
 185	struct clk			*refclk;
 186	struct drm_bridge		*next_bridge;
 187	struct gpio_desc		*enable_gpio;
 188	struct regulator_bulk_data	supplies[SN_REGULATOR_SUPPLY_NUM];
 189	int				dp_lanes;
 190	u8				ln_assign;
 191	u8				ln_polrs;
 192	bool				comms_enabled;
 193	struct mutex			comms_mutex;
 194
 195#if defined(CONFIG_OF_GPIO)
 196	struct gpio_chip		gchip;
 197	DECLARE_BITMAP(gchip_output, SN_NUM_GPIOS);
 198#endif
 199#if defined(CONFIG_PWM)
 200	struct pwm_chip			pchip;
 201	bool				pwm_enabled;
 202	atomic_t			pwm_pin_busy;
 203#endif
 204	unsigned int			pwm_refclk_freq;
 205};
 206
 207static const struct regmap_range ti_sn65dsi86_volatile_ranges[] = {
 208	{ .range_min = 0, .range_max = 0xFF },
 209};
 210
 211static const struct regmap_access_table ti_sn_bridge_volatile_table = {
 212	.yes_ranges = ti_sn65dsi86_volatile_ranges,
 213	.n_yes_ranges = ARRAY_SIZE(ti_sn65dsi86_volatile_ranges),
 214};
 215
 216static const struct regmap_config ti_sn65dsi86_regmap_config = {
 217	.reg_bits = 8,
 218	.val_bits = 8,
 219	.volatile_table = &ti_sn_bridge_volatile_table,
 220	.cache_type = REGCACHE_NONE,
 221	.max_register = 0xFF,
 222};
 223
 224static int __maybe_unused ti_sn65dsi86_read_u16(struct ti_sn65dsi86 *pdata,
 225						unsigned int reg, u16 *val)
 226{
 227	u8 buf[2];
 228	int ret;
 229
 230	ret = regmap_bulk_read(pdata->regmap, reg, buf, ARRAY_SIZE(buf));
 231	if (ret)
 232		return ret;
 233
 234	*val = buf[0] | (buf[1] << 8);
 235
 236	return 0;
 237}
 238
 239static void ti_sn65dsi86_write_u16(struct ti_sn65dsi86 *pdata,
 240				   unsigned int reg, u16 val)
 241{
 242	u8 buf[2] = { val & 0xff, val >> 8 };
 243
 244	regmap_bulk_write(pdata->regmap, reg, buf, ARRAY_SIZE(buf));
 245}
 246
 247static u32 ti_sn_bridge_get_dsi_freq(struct ti_sn65dsi86 *pdata)
 248{
 249	u32 bit_rate_khz, clk_freq_khz;
 250	struct drm_display_mode *mode =
 251		&pdata->bridge.encoder->crtc->state->adjusted_mode;
 252
 253	bit_rate_khz = mode->clock *
 254			mipi_dsi_pixel_format_to_bpp(pdata->dsi->format);
 255	clk_freq_khz = bit_rate_khz / (pdata->dsi->lanes * 2);
 256
 257	return clk_freq_khz;
 258}
 259
 260/* clk frequencies supported by bridge in Hz in case derived from REFCLK pin */
 261static const u32 ti_sn_bridge_refclk_lut[] = {
 262	12000000,
 263	19200000,
 264	26000000,
 265	27000000,
 266	38400000,
 267};
 268
 269/* clk frequencies supported by bridge in Hz in case derived from DACP/N pin */
 270static const u32 ti_sn_bridge_dsiclk_lut[] = {
 271	468000000,
 272	384000000,
 273	416000000,
 274	486000000,
 275	460800000,
 276};
 277
 278static void ti_sn_bridge_set_refclk_freq(struct ti_sn65dsi86 *pdata)
 279{
 280	int i;
 281	u32 refclk_rate;
 282	const u32 *refclk_lut;
 283	size_t refclk_lut_size;
 284
 285	if (pdata->refclk) {
 286		refclk_rate = clk_get_rate(pdata->refclk);
 287		refclk_lut = ti_sn_bridge_refclk_lut;
 288		refclk_lut_size = ARRAY_SIZE(ti_sn_bridge_refclk_lut);
 289		clk_prepare_enable(pdata->refclk);
 290	} else {
 291		refclk_rate = ti_sn_bridge_get_dsi_freq(pdata) * 1000;
 292		refclk_lut = ti_sn_bridge_dsiclk_lut;
 293		refclk_lut_size = ARRAY_SIZE(ti_sn_bridge_dsiclk_lut);
 294	}
 295
 296	/* for i equals to refclk_lut_size means default frequency */
 297	for (i = 0; i < refclk_lut_size; i++)
 298		if (refclk_lut[i] == refclk_rate)
 299			break;
 300
 301	regmap_update_bits(pdata->regmap, SN_DPPLL_SRC_REG, REFCLK_FREQ_MASK,
 302			   REFCLK_FREQ(i));
 303
 304	/*
 305	 * The PWM refclk is based on the value written to SN_DPPLL_SRC_REG,
 306	 * regardless of its actual sourcing.
 307	 */
 308	pdata->pwm_refclk_freq = ti_sn_bridge_refclk_lut[i];
 309}
 310
 311static void ti_sn65dsi86_enable_comms(struct ti_sn65dsi86 *pdata)
 312{
 313	mutex_lock(&pdata->comms_mutex);
 314
 315	/* configure bridge ref_clk */
 316	ti_sn_bridge_set_refclk_freq(pdata);
 317
 318	/*
 319	 * HPD on this bridge chip is a bit useless.  This is an eDP bridge
 320	 * so the HPD is an internal signal that's only there to signal that
 321	 * the panel is done powering up.  ...but the bridge chip debounces
 322	 * this signal by between 100 ms and 400 ms (depending on process,
 323	 * voltage, and temperate--I measured it at about 200 ms).  One
 324	 * particular panel asserted HPD 84 ms after it was powered on meaning
 325	 * that we saw HPD 284 ms after power on.  ...but the same panel said
 326	 * that instead of looking at HPD you could just hardcode a delay of
 327	 * 200 ms.  We'll assume that the panel driver will have the hardcoded
 328	 * delay in its prepare and always disable HPD.
 329	 *
 330	 * If HPD somehow makes sense on some future panel we'll have to
 331	 * change this to be conditional on someone specifying that HPD should
 332	 * be used.
 333	 */
 334	regmap_update_bits(pdata->regmap, SN_HPD_DISABLE_REG, HPD_DISABLE,
 335			   HPD_DISABLE);
 336
 337	pdata->comms_enabled = true;
 338
 339	mutex_unlock(&pdata->comms_mutex);
 340}
 341
 342static void ti_sn65dsi86_disable_comms(struct ti_sn65dsi86 *pdata)
 343{
 344	mutex_lock(&pdata->comms_mutex);
 345
 346	pdata->comms_enabled = false;
 347	clk_disable_unprepare(pdata->refclk);
 348
 349	mutex_unlock(&pdata->comms_mutex);
 350}
 351
 352static int __maybe_unused ti_sn65dsi86_resume(struct device *dev)
 353{
 354	struct ti_sn65dsi86 *pdata = dev_get_drvdata(dev);
 355	int ret;
 356
 357	ret = regulator_bulk_enable(SN_REGULATOR_SUPPLY_NUM, pdata->supplies);
 358	if (ret) {
 359		DRM_ERROR("failed to enable supplies %d\n", ret);
 360		return ret;
 361	}
 362
 363	/* td2: min 100 us after regulators before enabling the GPIO */
 364	usleep_range(100, 110);
 365
 366	gpiod_set_value(pdata->enable_gpio, 1);
 367
 368	/*
 369	 * If we have a reference clock we can enable communication w/ the
 370	 * panel (including the aux channel) w/out any need for an input clock
 371	 * so we can do it in resume which lets us read the EDID before
 372	 * pre_enable(). Without a reference clock we need the MIPI reference
 373	 * clock so reading early doesn't work.
 374	 */
 375	if (pdata->refclk)
 376		ti_sn65dsi86_enable_comms(pdata);
 377
 378	return ret;
 379}
 380
 381static int __maybe_unused ti_sn65dsi86_suspend(struct device *dev)
 382{
 383	struct ti_sn65dsi86 *pdata = dev_get_drvdata(dev);
 384	int ret;
 385
 386	if (pdata->refclk)
 387		ti_sn65dsi86_disable_comms(pdata);
 388
 389	gpiod_set_value(pdata->enable_gpio, 0);
 390
 391	ret = regulator_bulk_disable(SN_REGULATOR_SUPPLY_NUM, pdata->supplies);
 392	if (ret)
 393		DRM_ERROR("failed to disable supplies %d\n", ret);
 394
 395	return ret;
 396}
 397
 398static const struct dev_pm_ops ti_sn65dsi86_pm_ops = {
 399	SET_RUNTIME_PM_OPS(ti_sn65dsi86_suspend, ti_sn65dsi86_resume, NULL)
 400	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
 401				pm_runtime_force_resume)
 402};
 403
 404static int status_show(struct seq_file *s, void *data)
 405{
 406	struct ti_sn65dsi86 *pdata = s->private;
 407	unsigned int reg, val;
 408
 409	seq_puts(s, "STATUS REGISTERS:\n");
 410
 411	pm_runtime_get_sync(pdata->dev);
 412
 413	/* IRQ Status Registers, see Table 31 in datasheet */
 414	for (reg = 0xf0; reg <= 0xf8; reg++) {
 415		regmap_read(pdata->regmap, reg, &val);
 416		seq_printf(s, "[0x%02x] = 0x%08x\n", reg, val);
 417	}
 418
 419	pm_runtime_put_autosuspend(pdata->dev);
 420
 421	return 0;
 422}
 423
 424DEFINE_SHOW_ATTRIBUTE(status);
 425
 426static void ti_sn65dsi86_debugfs_remove(void *data)
 427{
 428	debugfs_remove_recursive(data);
 429}
 430
 431static void ti_sn65dsi86_debugfs_init(struct ti_sn65dsi86 *pdata)
 432{
 433	struct device *dev = pdata->dev;
 434	struct dentry *debugfs;
 435	int ret;
 436
 437	debugfs = debugfs_create_dir(dev_name(dev), NULL);
 438
 439	/*
 440	 * We might get an error back if debugfs wasn't enabled in the kernel
 441	 * so let's just silently return upon failure.
 442	 */
 443	if (IS_ERR_OR_NULL(debugfs))
 444		return;
 445
 446	ret = devm_add_action_or_reset(dev, ti_sn65dsi86_debugfs_remove, debugfs);
 447	if (ret)
 448		return;
 449
 450	debugfs_create_file("status", 0600, debugfs, pdata, &status_fops);
 451}
 452
 453/* -----------------------------------------------------------------------------
 454 * Auxiliary Devices (*not* AUX)
 455 */
 456
 457static void ti_sn65dsi86_uninit_aux(void *data)
 458{
 459	auxiliary_device_uninit(data);
 460}
 461
 462static void ti_sn65dsi86_delete_aux(void *data)
 463{
 464	auxiliary_device_delete(data);
 465}
 466
 467/*
 468 * AUX bus docs say that a non-NULL release is mandatory, but it makes no
 469 * sense for the model used here where all of the aux devices are allocated
 470 * in the single shared structure. We'll use this noop as a workaround.
 471 */
 472static void ti_sn65dsi86_noop(struct device *dev) {}
 473
 474static int ti_sn65dsi86_add_aux_device(struct ti_sn65dsi86 *pdata,
 475				       struct auxiliary_device *aux,
 476				       const char *name)
 477{
 478	struct device *dev = pdata->dev;
 479	int ret;
 480
 481	aux->name = name;
 482	aux->dev.parent = dev;
 483	aux->dev.release = ti_sn65dsi86_noop;
 484	device_set_of_node_from_dev(&aux->dev, dev);
 485	ret = auxiliary_device_init(aux);
 486	if (ret)
 487		return ret;
 488	ret = devm_add_action_or_reset(dev, ti_sn65dsi86_uninit_aux, aux);
 489	if (ret)
 490		return ret;
 491
 492	ret = auxiliary_device_add(aux);
 493	if (ret)
 494		return ret;
 495	ret = devm_add_action_or_reset(dev, ti_sn65dsi86_delete_aux, aux);
 496
 497	return ret;
 498}
 499
 500/* -----------------------------------------------------------------------------
 501 * AUX Adapter
 502 */
 503
 504static struct ti_sn65dsi86 *aux_to_ti_sn65dsi86(struct drm_dp_aux *aux)
 505{
 506	return container_of(aux, struct ti_sn65dsi86, aux);
 507}
 508
 509static ssize_t ti_sn_aux_transfer(struct drm_dp_aux *aux,
 510				  struct drm_dp_aux_msg *msg)
 511{
 512	struct ti_sn65dsi86 *pdata = aux_to_ti_sn65dsi86(aux);
 513	u32 request = msg->request & ~(DP_AUX_I2C_MOT | DP_AUX_I2C_WRITE_STATUS_UPDATE);
 514	u32 request_val = AUX_CMD_REQ(msg->request);
 515	u8 *buf = msg->buffer;
 516	unsigned int len = msg->size;
 517	unsigned int val;
 518	int ret;
 519	u8 addr_len[SN_AUX_LENGTH_REG + 1 - SN_AUX_ADDR_19_16_REG];
 520
 521	if (len > SN_AUX_MAX_PAYLOAD_BYTES)
 522		return -EINVAL;
 523
 524	pm_runtime_get_sync(pdata->dev);
 525	mutex_lock(&pdata->comms_mutex);
 526
 527	/*
 528	 * If someone tries to do a DDC over AUX transaction before pre_enable()
 529	 * on a device without a dedicated reference clock then we just can't
 530	 * do it. Fail right away. This prevents non-refclk users from reading
 531	 * the EDID before enabling the panel but such is life.
 532	 */
 533	if (!pdata->comms_enabled) {
 534		ret = -EIO;
 535		goto exit;
 536	}
 537
 538	switch (request) {
 539	case DP_AUX_NATIVE_WRITE:
 540	case DP_AUX_I2C_WRITE:
 541	case DP_AUX_NATIVE_READ:
 542	case DP_AUX_I2C_READ:
 543		regmap_write(pdata->regmap, SN_AUX_CMD_REG, request_val);
 544		/* Assume it's good */
 545		msg->reply = 0;
 546		break;
 547	default:
 548		ret = -EINVAL;
 549		goto exit;
 550	}
 551
 552	BUILD_BUG_ON(sizeof(addr_len) != sizeof(__be32));
 553	put_unaligned_be32((msg->address & SN_AUX_ADDR_MASK) << 8 | len,
 554			   addr_len);
 555	regmap_bulk_write(pdata->regmap, SN_AUX_ADDR_19_16_REG, addr_len,
 556			  ARRAY_SIZE(addr_len));
 557
 558	if (request == DP_AUX_NATIVE_WRITE || request == DP_AUX_I2C_WRITE)
 559		regmap_bulk_write(pdata->regmap, SN_AUX_WDATA_REG(0), buf, len);
 560
 561	/* Clear old status bits before start so we don't get confused */
 562	regmap_write(pdata->regmap, SN_AUX_CMD_STATUS_REG,
 563		     AUX_IRQ_STATUS_NAT_I2C_FAIL |
 564		     AUX_IRQ_STATUS_AUX_RPLY_TOUT |
 565		     AUX_IRQ_STATUS_AUX_SHORT);
 566
 567	regmap_write(pdata->regmap, SN_AUX_CMD_REG, request_val | AUX_CMD_SEND);
 568
 569	/* Zero delay loop because i2c transactions are slow already */
 570	ret = regmap_read_poll_timeout(pdata->regmap, SN_AUX_CMD_REG, val,
 571				       !(val & AUX_CMD_SEND), 0, 50 * 1000);
 572	if (ret)
 573		goto exit;
 574
 575	ret = regmap_read(pdata->regmap, SN_AUX_CMD_STATUS_REG, &val);
 576	if (ret)
 577		goto exit;
 578
 579	if (val & AUX_IRQ_STATUS_AUX_RPLY_TOUT) {
 580		/*
 581		 * The hardware tried the message seven times per the DP spec
 582		 * but it hit a timeout. We ignore defers here because they're
 583		 * handled in hardware.
 584		 */
 585		ret = -ETIMEDOUT;
 586		goto exit;
 587	}
 588
 589	if (val & AUX_IRQ_STATUS_AUX_SHORT) {
 590		ret = regmap_read(pdata->regmap, SN_AUX_LENGTH_REG, &len);
 591		if (ret)
 592			goto exit;
 593	} else if (val & AUX_IRQ_STATUS_NAT_I2C_FAIL) {
 594		switch (request) {
 595		case DP_AUX_I2C_WRITE:
 596		case DP_AUX_I2C_READ:
 597			msg->reply |= DP_AUX_I2C_REPLY_NACK;
 598			break;
 599		case DP_AUX_NATIVE_READ:
 600		case DP_AUX_NATIVE_WRITE:
 601			msg->reply |= DP_AUX_NATIVE_REPLY_NACK;
 602			break;
 603		}
 604		len = 0;
 605		goto exit;
 606	}
 607
 608	if (request != DP_AUX_NATIVE_WRITE && request != DP_AUX_I2C_WRITE && len != 0)
 609		ret = regmap_bulk_read(pdata->regmap, SN_AUX_RDATA_REG(0), buf, len);
 610
 611exit:
 612	mutex_unlock(&pdata->comms_mutex);
 613	pm_runtime_mark_last_busy(pdata->dev);
 614	pm_runtime_put_autosuspend(pdata->dev);
 615
 616	if (ret)
 617		return ret;
 618	return len;
 619}
 620
 621static int ti_sn_aux_probe(struct auxiliary_device *adev,
 622			   const struct auxiliary_device_id *id)
 623{
 624	struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent);
 625	int ret;
 626
 627	pdata->aux.name = "ti-sn65dsi86-aux";
 628	pdata->aux.dev = &adev->dev;
 629	pdata->aux.transfer = ti_sn_aux_transfer;
 630	drm_dp_aux_init(&pdata->aux);
 631
 632	ret = devm_of_dp_aux_populate_ep_devices(&pdata->aux);
 633	if (ret)
 634		return ret;
 635
 636	/*
 637	 * The eDP to MIPI bridge parts don't work until the AUX channel is
 638	 * setup so we don't add it in the main driver probe, we add it now.
 639	 */
 640	return ti_sn65dsi86_add_aux_device(pdata, &pdata->bridge_aux, "bridge");
 641}
 642
 643static const struct auxiliary_device_id ti_sn_aux_id_table[] = {
 644	{ .name = "ti_sn65dsi86.aux", },
 645	{},
 646};
 647
 648static struct auxiliary_driver ti_sn_aux_driver = {
 649	.name = "aux",
 650	.probe = ti_sn_aux_probe,
 651	.id_table = ti_sn_aux_id_table,
 652};
 653
 654/*------------------------------------------------------------------------------
 655 * DRM Bridge
 656 */
 657
 658static struct ti_sn65dsi86 *bridge_to_ti_sn65dsi86(struct drm_bridge *bridge)
 659{
 660	return container_of(bridge, struct ti_sn65dsi86, bridge);
 661}
 662
 663static int ti_sn_attach_host(struct ti_sn65dsi86 *pdata)
 664{
 665	int val;
 666	struct mipi_dsi_host *host;
 667	struct mipi_dsi_device *dsi;
 668	struct device *dev = pdata->dev;
 669	const struct mipi_dsi_device_info info = { .type = "ti_sn_bridge",
 670						   .channel = 0,
 671						   .node = NULL,
 672	};
 673
 674	host = of_find_mipi_dsi_host_by_node(pdata->host_node);
 675	if (!host)
 676		return -EPROBE_DEFER;
 677
 678	dsi = devm_mipi_dsi_device_register_full(dev, host, &info);
 679	if (IS_ERR(dsi))
 680		return PTR_ERR(dsi);
 681
 682	/* TODO: setting to 4 MIPI lanes always for now */
 683	dsi->lanes = 4;
 684	dsi->format = MIPI_DSI_FMT_RGB888;
 685	dsi->mode_flags = MIPI_DSI_MODE_VIDEO;
 686
 687	/* check if continuous dsi clock is required or not */
 688	pm_runtime_get_sync(dev);
 689	regmap_read(pdata->regmap, SN_DPPLL_SRC_REG, &val);
 690	pm_runtime_put_autosuspend(dev);
 691	if (!(val & DPPLL_CLK_SRC_DSICLK))
 692		dsi->mode_flags |= MIPI_DSI_CLOCK_NON_CONTINUOUS;
 693
 694	pdata->dsi = dsi;
 695
 696	return devm_mipi_dsi_attach(dev, dsi);
 697}
 698
 699static int ti_sn_bridge_attach(struct drm_bridge *bridge,
 700			       enum drm_bridge_attach_flags flags)
 701{
 702	struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
 703	int ret;
 704
 705	pdata->aux.drm_dev = bridge->dev;
 706	ret = drm_dp_aux_register(&pdata->aux);
 707	if (ret < 0) {
 708		drm_err(bridge->dev, "Failed to register DP AUX channel: %d\n", ret);
 709		return ret;
 710	}
 711
 712	/*
 713	 * Attach the next bridge.
 714	 * We never want the next bridge to *also* create a connector.
 715	 */
 716	ret = drm_bridge_attach(bridge->encoder, pdata->next_bridge,
 717				&pdata->bridge, flags | DRM_BRIDGE_ATTACH_NO_CONNECTOR);
 718	if (ret < 0)
 719		goto err_initted_aux;
 720
 721	if (flags & DRM_BRIDGE_ATTACH_NO_CONNECTOR)
 722		return 0;
 723
 724	pdata->connector = drm_bridge_connector_init(pdata->bridge.dev,
 725						     pdata->bridge.encoder);
 726	if (IS_ERR(pdata->connector)) {
 727		ret = PTR_ERR(pdata->connector);
 728		goto err_initted_aux;
 729	}
 730
 731	drm_connector_attach_encoder(pdata->connector, pdata->bridge.encoder);
 732
 733	return 0;
 734
 735err_initted_aux:
 736	drm_dp_aux_unregister(&pdata->aux);
 737	return ret;
 738}
 739
 740static void ti_sn_bridge_detach(struct drm_bridge *bridge)
 741{
 742	drm_dp_aux_unregister(&bridge_to_ti_sn65dsi86(bridge)->aux);
 743}
 744
 745static enum drm_mode_status
 746ti_sn_bridge_mode_valid(struct drm_bridge *bridge,
 747			const struct drm_display_info *info,
 748			const struct drm_display_mode *mode)
 749{
 750	/* maximum supported resolution is 4K at 60 fps */
 751	if (mode->clock > 594000)
 752		return MODE_CLOCK_HIGH;
 753
 754	/*
 755	 * The front and back porch registers are 8 bits, and pulse width
 756	 * registers are 15 bits, so reject any modes with larger periods.
 757	 */
 758
 759	if ((mode->hsync_start - mode->hdisplay) > 0xff)
 760		return MODE_HBLANK_WIDE;
 761
 762	if ((mode->vsync_start - mode->vdisplay) > 0xff)
 763		return MODE_VBLANK_WIDE;
 764
 765	if ((mode->hsync_end - mode->hsync_start) > 0x7fff)
 766		return MODE_HSYNC_WIDE;
 767
 768	if ((mode->vsync_end - mode->vsync_start) > 0x7fff)
 769		return MODE_VSYNC_WIDE;
 770
 771	if ((mode->htotal - mode->hsync_end) > 0xff)
 772		return MODE_HBLANK_WIDE;
 773
 774	if ((mode->vtotal - mode->vsync_end) > 0xff)
 775		return MODE_VBLANK_WIDE;
 776
 777	return MODE_OK;
 778}
 779
 780static void ti_sn_bridge_atomic_disable(struct drm_bridge *bridge,
 781					struct drm_bridge_state *old_bridge_state)
 782{
 783	struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
 784
 785	/* disable video stream */
 786	regmap_update_bits(pdata->regmap, SN_ENH_FRAME_REG, VSTREAM_ENABLE, 0);
 787}
 788
 789static void ti_sn_bridge_set_dsi_rate(struct ti_sn65dsi86 *pdata)
 790{
 791	unsigned int bit_rate_mhz, clk_freq_mhz;
 792	unsigned int val;
 793	struct drm_display_mode *mode =
 794		&pdata->bridge.encoder->crtc->state->adjusted_mode;
 795
 796	/* set DSIA clk frequency */
 797	bit_rate_mhz = (mode->clock / 1000) *
 798			mipi_dsi_pixel_format_to_bpp(pdata->dsi->format);
 799	clk_freq_mhz = bit_rate_mhz / (pdata->dsi->lanes * 2);
 800
 801	/* for each increment in val, frequency increases by 5MHz */
 802	val = (MIN_DSI_CLK_FREQ_MHZ / 5) +
 803		(((clk_freq_mhz - MIN_DSI_CLK_FREQ_MHZ) / 5) & 0xFF);
 804	regmap_write(pdata->regmap, SN_DSIA_CLK_FREQ_REG, val);
 805}
 806
 807static unsigned int ti_sn_bridge_get_bpp(struct drm_connector *connector)
 808{
 809	if (connector->display_info.bpc <= 6)
 810		return 18;
 811	else
 812		return 24;
 813}
 814
 815/*
 816 * LUT index corresponds to register value and
 817 * LUT values corresponds to dp data rate supported
 818 * by the bridge in Mbps unit.
 819 */
 820static const unsigned int ti_sn_bridge_dp_rate_lut[] = {
 821	0, 1620, 2160, 2430, 2700, 3240, 4320, 5400
 822};
 823
 824static int ti_sn_bridge_calc_min_dp_rate_idx(struct ti_sn65dsi86 *pdata, unsigned int bpp)
 825{
 826	unsigned int bit_rate_khz, dp_rate_mhz;
 827	unsigned int i;
 828	struct drm_display_mode *mode =
 829		&pdata->bridge.encoder->crtc->state->adjusted_mode;
 830
 831	/* Calculate minimum bit rate based on our pixel clock. */
 832	bit_rate_khz = mode->clock * bpp;
 833
 834	/* Calculate minimum DP data rate, taking 80% as per DP spec */
 835	dp_rate_mhz = DIV_ROUND_UP(bit_rate_khz * DP_CLK_FUDGE_NUM,
 836				   1000 * pdata->dp_lanes * DP_CLK_FUDGE_DEN);
 837
 838	for (i = 1; i < ARRAY_SIZE(ti_sn_bridge_dp_rate_lut) - 1; i++)
 839		if (ti_sn_bridge_dp_rate_lut[i] >= dp_rate_mhz)
 840			break;
 841
 842	return i;
 843}
 844
 845static unsigned int ti_sn_bridge_read_valid_rates(struct ti_sn65dsi86 *pdata)
 846{
 847	unsigned int valid_rates = 0;
 848	unsigned int rate_per_200khz;
 849	unsigned int rate_mhz;
 850	u8 dpcd_val;
 851	int ret;
 852	int i, j;
 853
 854	ret = drm_dp_dpcd_readb(&pdata->aux, DP_EDP_DPCD_REV, &dpcd_val);
 855	if (ret != 1) {
 856		DRM_DEV_ERROR(pdata->dev,
 857			      "Can't read eDP rev (%d), assuming 1.1\n", ret);
 858		dpcd_val = DP_EDP_11;
 859	}
 860
 861	if (dpcd_val >= DP_EDP_14) {
 862		/* eDP 1.4 devices must provide a custom table */
 863		__le16 sink_rates[DP_MAX_SUPPORTED_RATES];
 864
 865		ret = drm_dp_dpcd_read(&pdata->aux, DP_SUPPORTED_LINK_RATES,
 866				       sink_rates, sizeof(sink_rates));
 867
 868		if (ret != sizeof(sink_rates)) {
 869			DRM_DEV_ERROR(pdata->dev,
 870				"Can't read supported rate table (%d)\n", ret);
 871
 872			/* By zeroing we'll fall back to DP_MAX_LINK_RATE. */
 873			memset(sink_rates, 0, sizeof(sink_rates));
 874		}
 875
 876		for (i = 0; i < ARRAY_SIZE(sink_rates); i++) {
 877			rate_per_200khz = le16_to_cpu(sink_rates[i]);
 878
 879			if (!rate_per_200khz)
 880				break;
 881
 882			rate_mhz = rate_per_200khz * 200 / 1000;
 883			for (j = 0;
 884			     j < ARRAY_SIZE(ti_sn_bridge_dp_rate_lut);
 885			     j++) {
 886				if (ti_sn_bridge_dp_rate_lut[j] == rate_mhz)
 887					valid_rates |= BIT(j);
 888			}
 889		}
 890
 891		for (i = 0; i < ARRAY_SIZE(ti_sn_bridge_dp_rate_lut); i++) {
 892			if (valid_rates & BIT(i))
 893				return valid_rates;
 894		}
 895		DRM_DEV_ERROR(pdata->dev,
 896			      "No matching eDP rates in table; falling back\n");
 897	}
 898
 899	/* On older versions best we can do is use DP_MAX_LINK_RATE */
 900	ret = drm_dp_dpcd_readb(&pdata->aux, DP_MAX_LINK_RATE, &dpcd_val);
 901	if (ret != 1) {
 902		DRM_DEV_ERROR(pdata->dev,
 903			      "Can't read max rate (%d); assuming 5.4 GHz\n",
 904			      ret);
 905		dpcd_val = DP_LINK_BW_5_4;
 906	}
 907
 908	switch (dpcd_val) {
 909	default:
 910		DRM_DEV_ERROR(pdata->dev,
 911			      "Unexpected max rate (%#x); assuming 5.4 GHz\n",
 912			      (int)dpcd_val);
 913		fallthrough;
 914	case DP_LINK_BW_5_4:
 915		valid_rates |= BIT(7);
 916		fallthrough;
 917	case DP_LINK_BW_2_7:
 918		valid_rates |= BIT(4);
 919		fallthrough;
 920	case DP_LINK_BW_1_62:
 921		valid_rates |= BIT(1);
 922		break;
 923	}
 924
 925	return valid_rates;
 926}
 927
 928static void ti_sn_bridge_set_video_timings(struct ti_sn65dsi86 *pdata)
 929{
 930	struct drm_display_mode *mode =
 931		&pdata->bridge.encoder->crtc->state->adjusted_mode;
 932	u8 hsync_polarity = 0, vsync_polarity = 0;
 933
 934	if (mode->flags & DRM_MODE_FLAG_NHSYNC)
 935		hsync_polarity = CHA_HSYNC_POLARITY;
 936	if (mode->flags & DRM_MODE_FLAG_NVSYNC)
 937		vsync_polarity = CHA_VSYNC_POLARITY;
 938
 939	ti_sn65dsi86_write_u16(pdata, SN_CHA_ACTIVE_LINE_LENGTH_LOW_REG,
 940			       mode->hdisplay);
 941	ti_sn65dsi86_write_u16(pdata, SN_CHA_VERTICAL_DISPLAY_SIZE_LOW_REG,
 942			       mode->vdisplay);
 943	regmap_write(pdata->regmap, SN_CHA_HSYNC_PULSE_WIDTH_LOW_REG,
 944		     (mode->hsync_end - mode->hsync_start) & 0xFF);
 945	regmap_write(pdata->regmap, SN_CHA_HSYNC_PULSE_WIDTH_HIGH_REG,
 946		     (((mode->hsync_end - mode->hsync_start) >> 8) & 0x7F) |
 947		     hsync_polarity);
 948	regmap_write(pdata->regmap, SN_CHA_VSYNC_PULSE_WIDTH_LOW_REG,
 949		     (mode->vsync_end - mode->vsync_start) & 0xFF);
 950	regmap_write(pdata->regmap, SN_CHA_VSYNC_PULSE_WIDTH_HIGH_REG,
 951		     (((mode->vsync_end - mode->vsync_start) >> 8) & 0x7F) |
 952		     vsync_polarity);
 953
 954	regmap_write(pdata->regmap, SN_CHA_HORIZONTAL_BACK_PORCH_REG,
 955		     (mode->htotal - mode->hsync_end) & 0xFF);
 956	regmap_write(pdata->regmap, SN_CHA_VERTICAL_BACK_PORCH_REG,
 957		     (mode->vtotal - mode->vsync_end) & 0xFF);
 958
 959	regmap_write(pdata->regmap, SN_CHA_HORIZONTAL_FRONT_PORCH_REG,
 960		     (mode->hsync_start - mode->hdisplay) & 0xFF);
 961	regmap_write(pdata->regmap, SN_CHA_VERTICAL_FRONT_PORCH_REG,
 962		     (mode->vsync_start - mode->vdisplay) & 0xFF);
 963
 964	usleep_range(10000, 10500); /* 10ms delay recommended by spec */
 965}
 966
 967static unsigned int ti_sn_get_max_lanes(struct ti_sn65dsi86 *pdata)
 968{
 969	u8 data;
 970	int ret;
 971
 972	ret = drm_dp_dpcd_readb(&pdata->aux, DP_MAX_LANE_COUNT, &data);
 973	if (ret != 1) {
 974		DRM_DEV_ERROR(pdata->dev,
 975			      "Can't read lane count (%d); assuming 4\n", ret);
 976		return 4;
 977	}
 978
 979	return data & DP_LANE_COUNT_MASK;
 980}
 981
 982static int ti_sn_link_training(struct ti_sn65dsi86 *pdata, int dp_rate_idx,
 983			       const char **last_err_str)
 984{
 985	unsigned int val;
 986	int ret;
 987	int i;
 988
 989	/* set dp clk frequency value */
 990	regmap_update_bits(pdata->regmap, SN_DATARATE_CONFIG_REG,
 991			   DP_DATARATE_MASK, DP_DATARATE(dp_rate_idx));
 992
 993	/* enable DP PLL */
 994	regmap_write(pdata->regmap, SN_PLL_ENABLE_REG, 1);
 995
 996	ret = regmap_read_poll_timeout(pdata->regmap, SN_DPPLL_SRC_REG, val,
 997				       val & DPPLL_SRC_DP_PLL_LOCK, 1000,
 998				       50 * 1000);
 999	if (ret) {
1000		*last_err_str = "DP_PLL_LOCK polling failed";
1001		goto exit;
1002	}
1003
1004	/*
1005	 * We'll try to link train several times.  As part of link training
1006	 * the bridge chip will write DP_SET_POWER_D0 to DP_SET_POWER.  If
1007	 * the panel isn't ready quite it might respond NAK here which means
1008	 * we need to try again.
1009	 */
1010	for (i = 0; i < SN_LINK_TRAINING_TRIES; i++) {
1011		/* Semi auto link training mode */
1012		regmap_write(pdata->regmap, SN_ML_TX_MODE_REG, 0x0A);
1013		ret = regmap_read_poll_timeout(pdata->regmap, SN_ML_TX_MODE_REG, val,
1014					       val == ML_TX_MAIN_LINK_OFF ||
1015					       val == ML_TX_NORMAL_MODE, 1000,
1016					       500 * 1000);
1017		if (ret) {
1018			*last_err_str = "Training complete polling failed";
1019		} else if (val == ML_TX_MAIN_LINK_OFF) {
1020			*last_err_str = "Link training failed, link is off";
1021			ret = -EIO;
1022			continue;
1023		}
1024
1025		break;
1026	}
1027
1028	/* If we saw quite a few retries, add a note about it */
1029	if (!ret && i > SN_LINK_TRAINING_TRIES / 2)
1030		DRM_DEV_INFO(pdata->dev, "Link training needed %d retries\n", i);
1031
1032exit:
1033	/* Disable the PLL if we failed */
1034	if (ret)
1035		regmap_write(pdata->regmap, SN_PLL_ENABLE_REG, 0);
1036
1037	return ret;
1038}
1039
1040static void ti_sn_bridge_atomic_enable(struct drm_bridge *bridge,
1041				       struct drm_bridge_state *old_bridge_state)
1042{
1043	struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
1044	struct drm_connector *connector;
1045	const char *last_err_str = "No supported DP rate";
1046	unsigned int valid_rates;
1047	int dp_rate_idx;
1048	unsigned int val;
1049	int ret = -EINVAL;
1050	int max_dp_lanes;
1051	unsigned int bpp;
1052
1053	connector = drm_atomic_get_new_connector_for_encoder(old_bridge_state->base.state,
1054							     bridge->encoder);
1055	if (!connector) {
1056		dev_err_ratelimited(pdata->dev, "Could not get the connector\n");
1057		return;
1058	}
1059
1060	max_dp_lanes = ti_sn_get_max_lanes(pdata);
1061	pdata->dp_lanes = min(pdata->dp_lanes, max_dp_lanes);
1062
1063	/* DSI_A lane config */
1064	val = CHA_DSI_LANES(SN_MAX_DP_LANES - pdata->dsi->lanes);
1065	regmap_update_bits(pdata->regmap, SN_DSI_LANES_REG,
1066			   CHA_DSI_LANES_MASK, val);
1067
1068	regmap_write(pdata->regmap, SN_LN_ASSIGN_REG, pdata->ln_assign);
1069	regmap_update_bits(pdata->regmap, SN_ENH_FRAME_REG, LN_POLRS_MASK,
1070			   pdata->ln_polrs << LN_POLRS_OFFSET);
1071
1072	/* set dsi clk frequency value */
1073	ti_sn_bridge_set_dsi_rate(pdata);
1074
1075	/*
1076	 * The SN65DSI86 only supports ASSR Display Authentication method and
1077	 * this method is enabled for eDP panels. An eDP panel must support this
1078	 * authentication method. We need to enable this method in the eDP panel
1079	 * at DisplayPort address 0x0010A prior to link training.
1080	 *
1081	 * As only ASSR is supported by SN65DSI86, for full DisplayPort displays
1082	 * we need to disable the scrambler.
1083	 */
1084	if (pdata->bridge.type == DRM_MODE_CONNECTOR_eDP) {
1085		drm_dp_dpcd_writeb(&pdata->aux, DP_EDP_CONFIGURATION_SET,
1086				   DP_ALTERNATE_SCRAMBLER_RESET_ENABLE);
1087
1088		regmap_update_bits(pdata->regmap, SN_TRAINING_SETTING_REG,
1089				   SCRAMBLE_DISABLE, 0);
1090	} else {
1091		regmap_update_bits(pdata->regmap, SN_TRAINING_SETTING_REG,
1092				   SCRAMBLE_DISABLE, SCRAMBLE_DISABLE);
1093	}
1094
1095	bpp = ti_sn_bridge_get_bpp(connector);
1096	/* Set the DP output format (18 bpp or 24 bpp) */
1097	val = bpp == 18 ? BPP_18_RGB : 0;
1098	regmap_update_bits(pdata->regmap, SN_DATA_FORMAT_REG, BPP_18_RGB, val);
1099
1100	/* DP lane config */
1101	val = DP_NUM_LANES(min(pdata->dp_lanes, 3));
1102	regmap_update_bits(pdata->regmap, SN_SSC_CONFIG_REG, DP_NUM_LANES_MASK,
1103			   val);
1104
1105	valid_rates = ti_sn_bridge_read_valid_rates(pdata);
1106
1107	/* Train until we run out of rates */
1108	for (dp_rate_idx = ti_sn_bridge_calc_min_dp_rate_idx(pdata, bpp);
1109	     dp_rate_idx < ARRAY_SIZE(ti_sn_bridge_dp_rate_lut);
1110	     dp_rate_idx++) {
1111		if (!(valid_rates & BIT(dp_rate_idx)))
1112			continue;
1113
1114		ret = ti_sn_link_training(pdata, dp_rate_idx, &last_err_str);
1115		if (!ret)
1116			break;
1117	}
1118	if (ret) {
1119		DRM_DEV_ERROR(pdata->dev, "%s (%d)\n", last_err_str, ret);
1120		return;
1121	}
1122
1123	/* config video parameters */
1124	ti_sn_bridge_set_video_timings(pdata);
1125
1126	/* enable video stream */
1127	regmap_update_bits(pdata->regmap, SN_ENH_FRAME_REG, VSTREAM_ENABLE,
1128			   VSTREAM_ENABLE);
1129}
1130
1131static void ti_sn_bridge_atomic_pre_enable(struct drm_bridge *bridge,
1132					   struct drm_bridge_state *old_bridge_state)
1133{
1134	struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
1135
1136	pm_runtime_get_sync(pdata->dev);
1137
1138	if (!pdata->refclk)
1139		ti_sn65dsi86_enable_comms(pdata);
1140
1141	/* td7: min 100 us after enable before DSI data */
1142	usleep_range(100, 110);
1143}
1144
1145static void ti_sn_bridge_atomic_post_disable(struct drm_bridge *bridge,
1146					     struct drm_bridge_state *old_bridge_state)
1147{
1148	struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
1149
1150	/* semi auto link training mode OFF */
1151	regmap_write(pdata->regmap, SN_ML_TX_MODE_REG, 0);
1152	/* Num lanes to 0 as per power sequencing in data sheet */
1153	regmap_update_bits(pdata->regmap, SN_SSC_CONFIG_REG, DP_NUM_LANES_MASK, 0);
1154	/* disable DP PLL */
1155	regmap_write(pdata->regmap, SN_PLL_ENABLE_REG, 0);
1156
1157	if (!pdata->refclk)
1158		ti_sn65dsi86_disable_comms(pdata);
1159
1160	pm_runtime_put_sync(pdata->dev);
1161}
1162
1163static enum drm_connector_status ti_sn_bridge_detect(struct drm_bridge *bridge)
1164{
1165	struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
1166	int val = 0;
1167
1168	pm_runtime_get_sync(pdata->dev);
1169	regmap_read(pdata->regmap, SN_HPD_DISABLE_REG, &val);
1170	pm_runtime_put_autosuspend(pdata->dev);
1171
1172	return val & HPD_DEBOUNCED_STATE ? connector_status_connected
1173					 : connector_status_disconnected;
1174}
1175
1176static struct edid *ti_sn_bridge_get_edid(struct drm_bridge *bridge,
1177					  struct drm_connector *connector)
1178{
1179	struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
1180
1181	return drm_get_edid(connector, &pdata->aux.ddc);
1182}
1183
1184static const struct drm_bridge_funcs ti_sn_bridge_funcs = {
1185	.attach = ti_sn_bridge_attach,
1186	.detach = ti_sn_bridge_detach,
1187	.mode_valid = ti_sn_bridge_mode_valid,
1188	.get_edid = ti_sn_bridge_get_edid,
1189	.detect = ti_sn_bridge_detect,
1190	.atomic_pre_enable = ti_sn_bridge_atomic_pre_enable,
1191	.atomic_enable = ti_sn_bridge_atomic_enable,
1192	.atomic_disable = ti_sn_bridge_atomic_disable,
1193	.atomic_post_disable = ti_sn_bridge_atomic_post_disable,
1194	.atomic_reset = drm_atomic_helper_bridge_reset,
1195	.atomic_duplicate_state = drm_atomic_helper_bridge_duplicate_state,
1196	.atomic_destroy_state = drm_atomic_helper_bridge_destroy_state,
1197};
1198
1199static void ti_sn_bridge_parse_lanes(struct ti_sn65dsi86 *pdata,
1200				     struct device_node *np)
1201{
1202	u32 lane_assignments[SN_MAX_DP_LANES] = { 0, 1, 2, 3 };
1203	u32 lane_polarities[SN_MAX_DP_LANES] = { };
1204	struct device_node *endpoint;
1205	u8 ln_assign = 0;
1206	u8 ln_polrs = 0;
1207	int dp_lanes;
1208	int i;
1209
1210	/*
1211	 * Read config from the device tree about lane remapping and lane
1212	 * polarities.  These are optional and we assume identity map and
1213	 * normal polarity if nothing is specified.  It's OK to specify just
1214	 * data-lanes but not lane-polarities but not vice versa.
1215	 *
1216	 * Error checking is light (we just make sure we don't crash or
1217	 * buffer overrun) and we assume dts is well formed and specifying
1218	 * mappings that the hardware supports.
1219	 */
1220	endpoint = of_graph_get_endpoint_by_regs(np, 1, -1);
1221	dp_lanes = drm_of_get_data_lanes_count(endpoint, 1, SN_MAX_DP_LANES);
1222	if (dp_lanes > 0) {
1223		of_property_read_u32_array(endpoint, "data-lanes",
1224					   lane_assignments, dp_lanes);
1225		of_property_read_u32_array(endpoint, "lane-polarities",
1226					   lane_polarities, dp_lanes);
1227	} else {
1228		dp_lanes = SN_MAX_DP_LANES;
1229	}
1230	of_node_put(endpoint);
1231
1232	/*
1233	 * Convert into register format.  Loop over all lanes even if
1234	 * data-lanes had fewer elements so that we nicely initialize
1235	 * the LN_ASSIGN register.
1236	 */
1237	for (i = SN_MAX_DP_LANES - 1; i >= 0; i--) {
1238		ln_assign = ln_assign << LN_ASSIGN_WIDTH | lane_assignments[i];
1239		ln_polrs = ln_polrs << 1 | lane_polarities[i];
1240	}
1241
1242	/* Stash in our struct for when we power on */
1243	pdata->dp_lanes = dp_lanes;
1244	pdata->ln_assign = ln_assign;
1245	pdata->ln_polrs = ln_polrs;
1246}
1247
1248static int ti_sn_bridge_parse_dsi_host(struct ti_sn65dsi86 *pdata)
1249{
1250	struct device_node *np = pdata->dev->of_node;
1251
1252	pdata->host_node = of_graph_get_remote_node(np, 0, 0);
1253
1254	if (!pdata->host_node) {
1255		DRM_ERROR("remote dsi host node not found\n");
1256		return -ENODEV;
1257	}
1258
1259	return 0;
1260}
1261
1262static int ti_sn_bridge_probe(struct auxiliary_device *adev,
1263			      const struct auxiliary_device_id *id)
1264{
1265	struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent);
1266	struct device_node *np = pdata->dev->of_node;
1267	int ret;
1268
1269	pdata->next_bridge = devm_drm_of_get_bridge(pdata->dev, np, 1, 0);
1270	if (IS_ERR(pdata->next_bridge))
1271		return dev_err_probe(pdata->dev, PTR_ERR(pdata->next_bridge),
1272				     "failed to create panel bridge\n");
1273
1274	ti_sn_bridge_parse_lanes(pdata, np);
1275
1276	ret = ti_sn_bridge_parse_dsi_host(pdata);
1277	if (ret)
1278		return ret;
1279
1280	pdata->bridge.funcs = &ti_sn_bridge_funcs;
1281	pdata->bridge.of_node = np;
1282	pdata->bridge.type = pdata->next_bridge->type == DRM_MODE_CONNECTOR_DisplayPort
1283			   ? DRM_MODE_CONNECTOR_DisplayPort : DRM_MODE_CONNECTOR_eDP;
1284
1285	if (pdata->bridge.type == DRM_MODE_CONNECTOR_DisplayPort)
1286		pdata->bridge.ops = DRM_BRIDGE_OP_EDID | DRM_BRIDGE_OP_DETECT;
1287
1288	drm_bridge_add(&pdata->bridge);
1289
1290	ret = ti_sn_attach_host(pdata);
1291	if (ret) {
1292		dev_err_probe(pdata->dev, ret, "failed to attach dsi host\n");
1293		goto err_remove_bridge;
1294	}
1295
1296	return 0;
1297
1298err_remove_bridge:
1299	drm_bridge_remove(&pdata->bridge);
1300	return ret;
1301}
1302
1303static void ti_sn_bridge_remove(struct auxiliary_device *adev)
1304{
1305	struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent);
1306
1307	if (!pdata)
1308		return;
1309
1310	drm_bridge_remove(&pdata->bridge);
1311
1312	of_node_put(pdata->host_node);
1313}
1314
1315static const struct auxiliary_device_id ti_sn_bridge_id_table[] = {
1316	{ .name = "ti_sn65dsi86.bridge", },
1317	{},
1318};
1319
1320static struct auxiliary_driver ti_sn_bridge_driver = {
1321	.name = "bridge",
1322	.probe = ti_sn_bridge_probe,
1323	.remove = ti_sn_bridge_remove,
1324	.id_table = ti_sn_bridge_id_table,
1325};
1326
1327/* -----------------------------------------------------------------------------
1328 * PWM Controller
1329 */
1330#if defined(CONFIG_PWM)
1331static int ti_sn_pwm_pin_request(struct ti_sn65dsi86 *pdata)
1332{
1333	return atomic_xchg(&pdata->pwm_pin_busy, 1) ? -EBUSY : 0;
1334}
1335
1336static void ti_sn_pwm_pin_release(struct ti_sn65dsi86 *pdata)
1337{
1338	atomic_set(&pdata->pwm_pin_busy, 0);
1339}
1340
1341static struct ti_sn65dsi86 *pwm_chip_to_ti_sn_bridge(struct pwm_chip *chip)
1342{
1343	return container_of(chip, struct ti_sn65dsi86, pchip);
1344}
1345
1346static int ti_sn_pwm_request(struct pwm_chip *chip, struct pwm_device *pwm)
1347{
1348	struct ti_sn65dsi86 *pdata = pwm_chip_to_ti_sn_bridge(chip);
1349
1350	return ti_sn_pwm_pin_request(pdata);
1351}
1352
1353static void ti_sn_pwm_free(struct pwm_chip *chip, struct pwm_device *pwm)
1354{
1355	struct ti_sn65dsi86 *pdata = pwm_chip_to_ti_sn_bridge(chip);
1356
1357	ti_sn_pwm_pin_release(pdata);
1358}
1359
1360/*
1361 * Limitations:
1362 * - The PWM signal is not driven when the chip is powered down, or in its
1363 *   reset state and the driver does not implement the "suspend state"
1364 *   described in the documentation. In order to save power, state->enabled is
1365 *   interpreted as denoting if the signal is expected to be valid, and is used
1366 *   to determine if the chip needs to be kept powered.
1367 * - Changing both period and duty_cycle is not done atomically, neither is the
1368 *   multi-byte register updates, so the output might briefly be undefined
1369 *   during update.
1370 */
1371static int ti_sn_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
1372			   const struct pwm_state *state)
1373{
1374	struct ti_sn65dsi86 *pdata = pwm_chip_to_ti_sn_bridge(chip);
1375	unsigned int pwm_en_inv;
1376	unsigned int backlight;
1377	unsigned int pre_div;
1378	unsigned int scale;
1379	u64 period_max;
1380	u64 period;
1381	int ret;
1382
1383	if (!pdata->pwm_enabled) {
1384		ret = pm_runtime_get_sync(pdata->dev);
1385		if (ret < 0) {
1386			pm_runtime_put_sync(pdata->dev);
1387			return ret;
1388		}
1389	}
1390
1391	if (state->enabled) {
1392		if (!pdata->pwm_enabled) {
1393			/*
1394			 * The chip might have been powered down while we
1395			 * didn't hold a PM runtime reference, so mux in the
1396			 * PWM function on the GPIO pin again.
1397			 */
1398			ret = regmap_update_bits(pdata->regmap, SN_GPIO_CTRL_REG,
1399						 SN_GPIO_MUX_MASK << (2 * SN_PWM_GPIO_IDX),
1400						 SN_GPIO_MUX_SPECIAL << (2 * SN_PWM_GPIO_IDX));
1401			if (ret) {
1402				dev_err(pdata->dev, "failed to mux in PWM function\n");
1403				goto out;
1404			}
1405		}
1406
1407		/*
1408		 * Per the datasheet the PWM frequency is given by:
1409		 *
1410		 *                          REFCLK_FREQ
1411		 *   PWM_FREQ = -----------------------------------
1412		 *               PWM_PRE_DIV * BACKLIGHT_SCALE + 1
1413		 *
1414		 * However, after careful review the author is convinced that
1415		 * the documentation has lost some parenthesis around
1416		 * "BACKLIGHT_SCALE + 1".
1417		 *
1418		 * With the period T_pwm = 1/PWM_FREQ this can be written:
1419		 *
1420		 *   T_pwm * REFCLK_FREQ = PWM_PRE_DIV * (BACKLIGHT_SCALE + 1)
1421		 *
1422		 * In order to keep BACKLIGHT_SCALE within its 16 bits,
1423		 * PWM_PRE_DIV must be:
1424		 *
1425		 *                     T_pwm * REFCLK_FREQ
1426		 *   PWM_PRE_DIV >= -------------------------
1427		 *                   BACKLIGHT_SCALE_MAX + 1
1428		 *
1429		 * To simplify the search and to favour higher resolution of
1430		 * the duty cycle over accuracy of the period, the lowest
1431		 * possible PWM_PRE_DIV is used. Finally the scale is
1432		 * calculated as:
1433		 *
1434		 *                      T_pwm * REFCLK_FREQ
1435		 *   BACKLIGHT_SCALE = ---------------------- - 1
1436		 *                          PWM_PRE_DIV
1437		 *
1438		 * Here T_pwm is represented in seconds, so appropriate scaling
1439		 * to nanoseconds is necessary.
1440		 */
1441
1442		/* Minimum T_pwm is 1 / REFCLK_FREQ */
1443		if (state->period <= NSEC_PER_SEC / pdata->pwm_refclk_freq) {
1444			ret = -EINVAL;
1445			goto out;
1446		}
1447
1448		/*
1449		 * Maximum T_pwm is 255 * (65535 + 1) / REFCLK_FREQ
1450		 * Limit period to this to avoid overflows
1451		 */
1452		period_max = div_u64((u64)NSEC_PER_SEC * 255 * (65535 + 1),
1453				     pdata->pwm_refclk_freq);
1454		period = min(state->period, period_max);
1455
1456		pre_div = DIV64_U64_ROUND_UP(period * pdata->pwm_refclk_freq,
1457					     (u64)NSEC_PER_SEC * (BACKLIGHT_SCALE_MAX + 1));
1458		scale = div64_u64(period * pdata->pwm_refclk_freq, (u64)NSEC_PER_SEC * pre_div) - 1;
1459
1460		/*
1461		 * The documentation has the duty ratio given as:
1462		 *
1463		 *     duty          BACKLIGHT
1464		 *   ------- = ---------------------
1465		 *    period    BACKLIGHT_SCALE + 1
1466		 *
1467		 * Solve for BACKLIGHT, substituting BACKLIGHT_SCALE according
1468		 * to definition above and adjusting for nanosecond
1469		 * representation of duty cycle gives us:
1470		 */
1471		backlight = div64_u64(state->duty_cycle * pdata->pwm_refclk_freq,
1472				      (u64)NSEC_PER_SEC * pre_div);
1473		if (backlight > scale)
1474			backlight = scale;
1475
1476		ret = regmap_write(pdata->regmap, SN_PWM_PRE_DIV_REG, pre_div);
1477		if (ret) {
1478			dev_err(pdata->dev, "failed to update PWM_PRE_DIV\n");
1479			goto out;
1480		}
1481
1482		ti_sn65dsi86_write_u16(pdata, SN_BACKLIGHT_SCALE_REG, scale);
1483		ti_sn65dsi86_write_u16(pdata, SN_BACKLIGHT_REG, backlight);
1484	}
1485
1486	pwm_en_inv = FIELD_PREP(SN_PWM_EN_MASK, state->enabled) |
1487		     FIELD_PREP(SN_PWM_INV_MASK, state->polarity == PWM_POLARITY_INVERSED);
1488	ret = regmap_write(pdata->regmap, SN_PWM_EN_INV_REG, pwm_en_inv);
1489	if (ret) {
1490		dev_err(pdata->dev, "failed to update PWM_EN/PWM_INV\n");
1491		goto out;
1492	}
1493
1494	pdata->pwm_enabled = state->enabled;
1495out:
1496
1497	if (!pdata->pwm_enabled)
1498		pm_runtime_put_sync(pdata->dev);
1499
1500	return ret;
1501}
1502
1503static int ti_sn_pwm_get_state(struct pwm_chip *chip, struct pwm_device *pwm,
1504			       struct pwm_state *state)
1505{
1506	struct ti_sn65dsi86 *pdata = pwm_chip_to_ti_sn_bridge(chip);
1507	unsigned int pwm_en_inv;
1508	unsigned int pre_div;
1509	u16 backlight;
1510	u16 scale;
1511	int ret;
1512
1513	ret = regmap_read(pdata->regmap, SN_PWM_EN_INV_REG, &pwm_en_inv);
1514	if (ret)
1515		return ret;
1516
1517	ret = ti_sn65dsi86_read_u16(pdata, SN_BACKLIGHT_SCALE_REG, &scale);
1518	if (ret)
1519		return ret;
1520
1521	ret = ti_sn65dsi86_read_u16(pdata, SN_BACKLIGHT_REG, &backlight);
1522	if (ret)
1523		return ret;
1524
1525	ret = regmap_read(pdata->regmap, SN_PWM_PRE_DIV_REG, &pre_div);
1526	if (ret)
1527		return ret;
1528
1529	state->enabled = FIELD_GET(SN_PWM_EN_MASK, pwm_en_inv);
1530	if (FIELD_GET(SN_PWM_INV_MASK, pwm_en_inv))
1531		state->polarity = PWM_POLARITY_INVERSED;
1532	else
1533		state->polarity = PWM_POLARITY_NORMAL;
1534
1535	state->period = DIV_ROUND_UP_ULL((u64)NSEC_PER_SEC * pre_div * (scale + 1),
1536					 pdata->pwm_refclk_freq);
1537	state->duty_cycle = DIV_ROUND_UP_ULL((u64)NSEC_PER_SEC * pre_div * backlight,
1538					     pdata->pwm_refclk_freq);
1539
1540	if (state->duty_cycle > state->period)
1541		state->duty_cycle = state->period;
1542
1543	return 0;
1544}
1545
1546static const struct pwm_ops ti_sn_pwm_ops = {
1547	.request = ti_sn_pwm_request,
1548	.free = ti_sn_pwm_free,
1549	.apply = ti_sn_pwm_apply,
1550	.get_state = ti_sn_pwm_get_state,
1551	.owner = THIS_MODULE,
1552};
1553
1554static int ti_sn_pwm_probe(struct auxiliary_device *adev,
1555			   const struct auxiliary_device_id *id)
1556{
1557	struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent);
1558
1559	pdata->pchip.dev = pdata->dev;
1560	pdata->pchip.ops = &ti_sn_pwm_ops;
1561	pdata->pchip.npwm = 1;
1562	pdata->pchip.of_xlate = of_pwm_single_xlate;
1563	pdata->pchip.of_pwm_n_cells = 1;
1564
1565	return pwmchip_add(&pdata->pchip);
1566}
1567
1568static void ti_sn_pwm_remove(struct auxiliary_device *adev)
1569{
1570	struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent);
1571
1572	pwmchip_remove(&pdata->pchip);
1573
1574	if (pdata->pwm_enabled)
1575		pm_runtime_put_sync(pdata->dev);
1576}
1577
1578static const struct auxiliary_device_id ti_sn_pwm_id_table[] = {
1579	{ .name = "ti_sn65dsi86.pwm", },
1580	{},
1581};
1582
1583static struct auxiliary_driver ti_sn_pwm_driver = {
1584	.name = "pwm",
1585	.probe = ti_sn_pwm_probe,
1586	.remove = ti_sn_pwm_remove,
1587	.id_table = ti_sn_pwm_id_table,
1588};
1589
1590static int __init ti_sn_pwm_register(void)
1591{
1592	return auxiliary_driver_register(&ti_sn_pwm_driver);
1593}
1594
1595static void ti_sn_pwm_unregister(void)
1596{
1597	auxiliary_driver_unregister(&ti_sn_pwm_driver);
1598}
1599
1600#else
1601static inline int ti_sn_pwm_pin_request(struct ti_sn65dsi86 *pdata) { return 0; }
1602static inline void ti_sn_pwm_pin_release(struct ti_sn65dsi86 *pdata) {}
1603
1604static inline int ti_sn_pwm_register(void) { return 0; }
1605static inline void ti_sn_pwm_unregister(void) {}
1606#endif
1607
1608/* -----------------------------------------------------------------------------
1609 * GPIO Controller
1610 */
1611#if defined(CONFIG_OF_GPIO)
1612
1613static int tn_sn_bridge_of_xlate(struct gpio_chip *chip,
1614				 const struct of_phandle_args *gpiospec,
1615				 u32 *flags)
1616{
1617	if (WARN_ON(gpiospec->args_count < chip->of_gpio_n_cells))
1618		return -EINVAL;
1619
1620	if (gpiospec->args[0] > chip->ngpio || gpiospec->args[0] < 1)
1621		return -EINVAL;
1622
1623	if (flags)
1624		*flags = gpiospec->args[1];
1625
1626	return gpiospec->args[0] - SN_GPIO_PHYSICAL_OFFSET;
1627}
1628
1629static int ti_sn_bridge_gpio_get_direction(struct gpio_chip *chip,
1630					   unsigned int offset)
1631{
1632	struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip);
1633
1634	/*
1635	 * We already have to keep track of the direction because we use
1636	 * that to figure out whether we've powered the device.  We can
1637	 * just return that rather than (maybe) powering up the device
1638	 * to ask its direction.
1639	 */
1640	return test_bit(offset, pdata->gchip_output) ?
1641		GPIO_LINE_DIRECTION_OUT : GPIO_LINE_DIRECTION_IN;
1642}
1643
1644static int ti_sn_bridge_gpio_get(struct gpio_chip *chip, unsigned int offset)
1645{
1646	struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip);
1647	unsigned int val;
1648	int ret;
1649
1650	/*
1651	 * When the pin is an input we don't forcibly keep the bridge
1652	 * powered--we just power it on to read the pin.  NOTE: part of
1653	 * the reason this works is that the bridge defaults (when
1654	 * powered back on) to all 4 GPIOs being configured as GPIO input.
1655	 * Also note that if something else is keeping the chip powered the
1656	 * pm_runtime functions are lightweight increments of a refcount.
1657	 */
1658	pm_runtime_get_sync(pdata->dev);
1659	ret = regmap_read(pdata->regmap, SN_GPIO_IO_REG, &val);
1660	pm_runtime_put_autosuspend(pdata->dev);
1661
1662	if (ret)
1663		return ret;
1664
1665	return !!(val & BIT(SN_GPIO_INPUT_SHIFT + offset));
1666}
1667
1668static void ti_sn_bridge_gpio_set(struct gpio_chip *chip, unsigned int offset,
1669				  int val)
1670{
1671	struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip);
1672	int ret;
1673
1674	if (!test_bit(offset, pdata->gchip_output)) {
1675		dev_err(pdata->dev, "Ignoring GPIO set while input\n");
1676		return;
1677	}
1678
1679	val &= 1;
1680	ret = regmap_update_bits(pdata->regmap, SN_GPIO_IO_REG,
1681				 BIT(SN_GPIO_OUTPUT_SHIFT + offset),
1682				 val << (SN_GPIO_OUTPUT_SHIFT + offset));
1683	if (ret)
1684		dev_warn(pdata->dev,
1685			 "Failed to set bridge GPIO %u: %d\n", offset, ret);
1686}
1687
1688static int ti_sn_bridge_gpio_direction_input(struct gpio_chip *chip,
1689					     unsigned int offset)
1690{
1691	struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip);
1692	int shift = offset * 2;
1693	int ret;
1694
1695	if (!test_and_clear_bit(offset, pdata->gchip_output))
1696		return 0;
1697
1698	ret = regmap_update_bits(pdata->regmap, SN_GPIO_CTRL_REG,
1699				 SN_GPIO_MUX_MASK << shift,
1700				 SN_GPIO_MUX_INPUT << shift);
1701	if (ret) {
1702		set_bit(offset, pdata->gchip_output);
1703		return ret;
1704	}
1705
1706	/*
1707	 * NOTE: if nobody else is powering the device this may fully power
1708	 * it off and when it comes back it will have lost all state, but
1709	 * that's OK because the default is input and we're now an input.
1710	 */
1711	pm_runtime_put_autosuspend(pdata->dev);
1712
1713	return 0;
1714}
1715
1716static int ti_sn_bridge_gpio_direction_output(struct gpio_chip *chip,
1717					      unsigned int offset, int val)
1718{
1719	struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip);
1720	int shift = offset * 2;
1721	int ret;
1722
1723	if (test_and_set_bit(offset, pdata->gchip_output))
1724		return 0;
1725
1726	pm_runtime_get_sync(pdata->dev);
1727
1728	/* Set value first to avoid glitching */
1729	ti_sn_bridge_gpio_set(chip, offset, val);
1730
1731	/* Set direction */
1732	ret = regmap_update_bits(pdata->regmap, SN_GPIO_CTRL_REG,
1733				 SN_GPIO_MUX_MASK << shift,
1734				 SN_GPIO_MUX_OUTPUT << shift);
1735	if (ret) {
1736		clear_bit(offset, pdata->gchip_output);
1737		pm_runtime_put_autosuspend(pdata->dev);
1738	}
1739
1740	return ret;
1741}
1742
1743static int ti_sn_bridge_gpio_request(struct gpio_chip *chip, unsigned int offset)
1744{
1745	struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip);
1746
1747	if (offset == SN_PWM_GPIO_IDX)
1748		return ti_sn_pwm_pin_request(pdata);
1749
1750	return 0;
1751}
1752
1753static void ti_sn_bridge_gpio_free(struct gpio_chip *chip, unsigned int offset)
1754{
1755	struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip);
1756
1757	/* We won't keep pm_runtime if we're input, so switch there on free */
1758	ti_sn_bridge_gpio_direction_input(chip, offset);
1759
1760	if (offset == SN_PWM_GPIO_IDX)
1761		ti_sn_pwm_pin_release(pdata);
1762}
1763
1764static const char * const ti_sn_bridge_gpio_names[SN_NUM_GPIOS] = {
1765	"GPIO1", "GPIO2", "GPIO3", "GPIO4"
1766};
1767
1768static int ti_sn_gpio_probe(struct auxiliary_device *adev,
1769			    const struct auxiliary_device_id *id)
1770{
1771	struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent);
1772	int ret;
1773
1774	/* Only init if someone is going to use us as a GPIO controller */
1775	if (!of_property_read_bool(pdata->dev->of_node, "gpio-controller"))
1776		return 0;
1777
1778	pdata->gchip.label = dev_name(pdata->dev);
1779	pdata->gchip.parent = pdata->dev;
1780	pdata->gchip.owner = THIS_MODULE;
1781	pdata->gchip.of_xlate = tn_sn_bridge_of_xlate;
1782	pdata->gchip.of_gpio_n_cells = 2;
1783	pdata->gchip.request = ti_sn_bridge_gpio_request;
1784	pdata->gchip.free = ti_sn_bridge_gpio_free;
1785	pdata->gchip.get_direction = ti_sn_bridge_gpio_get_direction;
1786	pdata->gchip.direction_input = ti_sn_bridge_gpio_direction_input;
1787	pdata->gchip.direction_output = ti_sn_bridge_gpio_direction_output;
1788	pdata->gchip.get = ti_sn_bridge_gpio_get;
1789	pdata->gchip.set = ti_sn_bridge_gpio_set;
1790	pdata->gchip.can_sleep = true;
1791	pdata->gchip.names = ti_sn_bridge_gpio_names;
1792	pdata->gchip.ngpio = SN_NUM_GPIOS;
1793	pdata->gchip.base = -1;
1794	ret = devm_gpiochip_add_data(&adev->dev, &pdata->gchip, pdata);
1795	if (ret)
1796		dev_err(pdata->dev, "can't add gpio chip\n");
1797
1798	return ret;
1799}
1800
1801static const struct auxiliary_device_id ti_sn_gpio_id_table[] = {
1802	{ .name = "ti_sn65dsi86.gpio", },
1803	{},
1804};
1805
1806MODULE_DEVICE_TABLE(auxiliary, ti_sn_gpio_id_table);
1807
1808static struct auxiliary_driver ti_sn_gpio_driver = {
1809	.name = "gpio",
1810	.probe = ti_sn_gpio_probe,
1811	.id_table = ti_sn_gpio_id_table,
1812};
1813
1814static int __init ti_sn_gpio_register(void)
1815{
1816	return auxiliary_driver_register(&ti_sn_gpio_driver);
1817}
1818
1819static void ti_sn_gpio_unregister(void)
1820{
1821	auxiliary_driver_unregister(&ti_sn_gpio_driver);
1822}
1823
1824#else
1825
1826static inline int ti_sn_gpio_register(void) { return 0; }
1827static inline void ti_sn_gpio_unregister(void) {}
1828
1829#endif
1830
1831/* -----------------------------------------------------------------------------
1832 * Probe & Remove
1833 */
1834
1835static void ti_sn65dsi86_runtime_disable(void *data)
1836{
1837	pm_runtime_dont_use_autosuspend(data);
1838	pm_runtime_disable(data);
1839}
1840
1841static int ti_sn65dsi86_parse_regulators(struct ti_sn65dsi86 *pdata)
1842{
1843	unsigned int i;
1844	const char * const ti_sn_bridge_supply_names[] = {
1845		"vcca", "vcc", "vccio", "vpll",
1846	};
1847
1848	for (i = 0; i < SN_REGULATOR_SUPPLY_NUM; i++)
1849		pdata->supplies[i].supply = ti_sn_bridge_supply_names[i];
1850
1851	return devm_regulator_bulk_get(pdata->dev, SN_REGULATOR_SUPPLY_NUM,
1852				       pdata->supplies);
1853}
1854
1855static int ti_sn65dsi86_probe(struct i2c_client *client,
1856			      const struct i2c_device_id *id)
1857{
1858	struct device *dev = &client->dev;
1859	struct ti_sn65dsi86 *pdata;
1860	int ret;
1861
1862	if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) {
1863		DRM_ERROR("device doesn't support I2C\n");
1864		return -ENODEV;
1865	}
1866
1867	pdata = devm_kzalloc(dev, sizeof(struct ti_sn65dsi86), GFP_KERNEL);
1868	if (!pdata)
1869		return -ENOMEM;
1870	dev_set_drvdata(dev, pdata);
1871	pdata->dev = dev;
1872
1873	mutex_init(&pdata->comms_mutex);
1874
1875	pdata->regmap = devm_regmap_init_i2c(client,
1876					     &ti_sn65dsi86_regmap_config);
1877	if (IS_ERR(pdata->regmap))
1878		return dev_err_probe(dev, PTR_ERR(pdata->regmap),
1879				     "regmap i2c init failed\n");
1880
1881	pdata->enable_gpio = devm_gpiod_get_optional(dev, "enable",
1882						     GPIOD_OUT_LOW);
1883	if (IS_ERR(pdata->enable_gpio))
1884		return dev_err_probe(dev, PTR_ERR(pdata->enable_gpio),
1885				     "failed to get enable gpio from DT\n");
1886
1887	ret = ti_sn65dsi86_parse_regulators(pdata);
1888	if (ret)
1889		return dev_err_probe(dev, ret, "failed to parse regulators\n");
1890
1891	pdata->refclk = devm_clk_get_optional(dev, "refclk");
1892	if (IS_ERR(pdata->refclk))
1893		return dev_err_probe(dev, PTR_ERR(pdata->refclk),
1894				     "failed to get reference clock\n");
1895
1896	pm_runtime_enable(dev);
1897	pm_runtime_set_autosuspend_delay(pdata->dev, 500);
1898	pm_runtime_use_autosuspend(pdata->dev);
1899	ret = devm_add_action_or_reset(dev, ti_sn65dsi86_runtime_disable, dev);
1900	if (ret)
1901		return ret;
1902
1903	ti_sn65dsi86_debugfs_init(pdata);
1904
1905	/*
1906	 * Break ourselves up into a collection of aux devices. The only real
1907	 * motiviation here is to solve the chicken-and-egg problem of probe
1908	 * ordering. The bridge wants the panel to be there when it probes.
1909	 * The panel wants its HPD GPIO (provided by sn65dsi86 on some boards)
1910	 * when it probes. The panel and maybe backlight might want the DDC
1911	 * bus or the pwm_chip. Having sub-devices allows the some sub devices
1912	 * to finish probing even if others return -EPROBE_DEFER and gets us
1913	 * around the problems.
1914	 */
1915
1916	if (IS_ENABLED(CONFIG_OF_GPIO)) {
1917		ret = ti_sn65dsi86_add_aux_device(pdata, &pdata->gpio_aux, "gpio");
1918		if (ret)
1919			return ret;
1920	}
1921
1922	if (IS_ENABLED(CONFIG_PWM)) {
1923		ret = ti_sn65dsi86_add_aux_device(pdata, &pdata->pwm_aux, "pwm");
1924		if (ret)
1925			return ret;
1926	}
1927
1928	/*
1929	 * NOTE: At the end of the AUX channel probe we'll add the aux device
1930	 * for the bridge. This is because the bridge can't be used until the
1931	 * AUX channel is there and this is a very simple solution to the
1932	 * dependency problem.
1933	 */
1934	return ti_sn65dsi86_add_aux_device(pdata, &pdata->aux_aux, "aux");
1935}
1936
1937static struct i2c_device_id ti_sn65dsi86_id[] = {
1938	{ "ti,sn65dsi86", 0},
1939	{},
1940};
1941MODULE_DEVICE_TABLE(i2c, ti_sn65dsi86_id);
1942
1943static const struct of_device_id ti_sn65dsi86_match_table[] = {
1944	{.compatible = "ti,sn65dsi86"},
1945	{},
1946};
1947MODULE_DEVICE_TABLE(of, ti_sn65dsi86_match_table);
1948
1949static struct i2c_driver ti_sn65dsi86_driver = {
1950	.driver = {
1951		.name = "ti_sn65dsi86",
1952		.of_match_table = ti_sn65dsi86_match_table,
1953		.pm = &ti_sn65dsi86_pm_ops,
1954	},
1955	.probe = ti_sn65dsi86_probe,
1956	.id_table = ti_sn65dsi86_id,
1957};
1958
1959static int __init ti_sn65dsi86_init(void)
1960{
1961	int ret;
1962
1963	ret = i2c_add_driver(&ti_sn65dsi86_driver);
1964	if (ret)
1965		return ret;
1966
1967	ret = ti_sn_gpio_register();
1968	if (ret)
1969		goto err_main_was_registered;
1970
1971	ret = ti_sn_pwm_register();
1972	if (ret)
1973		goto err_gpio_was_registered;
1974
1975	ret = auxiliary_driver_register(&ti_sn_aux_driver);
1976	if (ret)
1977		goto err_pwm_was_registered;
1978
1979	ret = auxiliary_driver_register(&ti_sn_bridge_driver);
1980	if (ret)
1981		goto err_aux_was_registered;
1982
1983	return 0;
1984
1985err_aux_was_registered:
1986	auxiliary_driver_unregister(&ti_sn_aux_driver);
1987err_pwm_was_registered:
1988	ti_sn_pwm_unregister();
1989err_gpio_was_registered:
1990	ti_sn_gpio_unregister();
1991err_main_was_registered:
1992	i2c_del_driver(&ti_sn65dsi86_driver);
1993
1994	return ret;
1995}
1996module_init(ti_sn65dsi86_init);
1997
1998static void __exit ti_sn65dsi86_exit(void)
1999{
2000	auxiliary_driver_unregister(&ti_sn_bridge_driver);
2001	auxiliary_driver_unregister(&ti_sn_aux_driver);
2002	ti_sn_pwm_unregister();
2003	ti_sn_gpio_unregister();
2004	i2c_del_driver(&ti_sn65dsi86_driver);
2005}
2006module_exit(ti_sn65dsi86_exit);
2007
2008MODULE_AUTHOR("Sandeep Panda <spanda@codeaurora.org>");
2009MODULE_DESCRIPTION("sn65dsi86 DSI to eDP bridge driver");
2010MODULE_LICENSE("GPL v2");