Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.6.
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2018, The Linux Foundation. All rights reserved.
   4 * datasheet: https://www.ti.com/lit/ds/symlink/sn65dsi86.pdf
   5 */
   6
   7#include <linux/bits.h>
   8#include <linux/clk.h>
   9#include <linux/debugfs.h>
  10#include <linux/gpio/consumer.h>
  11#include <linux/gpio/driver.h>
  12#include <linux/i2c.h>
  13#include <linux/iopoll.h>
  14#include <linux/module.h>
  15#include <linux/of_graph.h>
  16#include <linux/pm_runtime.h>
  17#include <linux/regmap.h>
  18#include <linux/regulator/consumer.h>
  19
  20#include <drm/drm_atomic.h>
  21#include <drm/drm_atomic_helper.h>
  22#include <drm/drm_bridge.h>
  23#include <drm/drm_dp_helper.h>
  24#include <drm/drm_mipi_dsi.h>
  25#include <drm/drm_of.h>
  26#include <drm/drm_panel.h>
  27#include <drm/drm_print.h>
  28#include <drm/drm_probe_helper.h>
  29
  30#define SN_DEVICE_REV_REG			0x08
  31#define SN_DPPLL_SRC_REG			0x0A
  32#define  DPPLL_CLK_SRC_DSICLK			BIT(0)
  33#define  REFCLK_FREQ_MASK			GENMASK(3, 1)
  34#define  REFCLK_FREQ(x)				((x) << 1)
  35#define  DPPLL_SRC_DP_PLL_LOCK			BIT(7)
  36#define SN_PLL_ENABLE_REG			0x0D
  37#define SN_DSI_LANES_REG			0x10
  38#define  CHA_DSI_LANES_MASK			GENMASK(4, 3)
  39#define  CHA_DSI_LANES(x)			((x) << 3)
  40#define SN_DSIA_CLK_FREQ_REG			0x12
  41#define SN_CHA_ACTIVE_LINE_LENGTH_LOW_REG	0x20
  42#define SN_CHA_VERTICAL_DISPLAY_SIZE_LOW_REG	0x24
  43#define SN_CHA_HSYNC_PULSE_WIDTH_LOW_REG	0x2C
  44#define SN_CHA_HSYNC_PULSE_WIDTH_HIGH_REG	0x2D
  45#define  CHA_HSYNC_POLARITY			BIT(7)
  46#define SN_CHA_VSYNC_PULSE_WIDTH_LOW_REG	0x30
  47#define SN_CHA_VSYNC_PULSE_WIDTH_HIGH_REG	0x31
  48#define  CHA_VSYNC_POLARITY			BIT(7)
  49#define SN_CHA_HORIZONTAL_BACK_PORCH_REG	0x34
  50#define SN_CHA_VERTICAL_BACK_PORCH_REG		0x36
  51#define SN_CHA_HORIZONTAL_FRONT_PORCH_REG	0x38
  52#define SN_CHA_VERTICAL_FRONT_PORCH_REG		0x3A
  53#define SN_LN_ASSIGN_REG			0x59
  54#define  LN_ASSIGN_WIDTH			2
  55#define SN_ENH_FRAME_REG			0x5A
  56#define  VSTREAM_ENABLE				BIT(3)
  57#define  LN_POLRS_OFFSET			4
  58#define  LN_POLRS_MASK				0xf0
  59#define SN_DATA_FORMAT_REG			0x5B
  60#define  BPP_18_RGB				BIT(0)
  61#define SN_HPD_DISABLE_REG			0x5C
  62#define  HPD_DISABLE				BIT(0)
  63#define SN_GPIO_IO_REG				0x5E
  64#define  SN_GPIO_INPUT_SHIFT			4
  65#define  SN_GPIO_OUTPUT_SHIFT			0
  66#define SN_GPIO_CTRL_REG			0x5F
  67#define  SN_GPIO_MUX_INPUT			0
  68#define  SN_GPIO_MUX_OUTPUT			1
  69#define  SN_GPIO_MUX_SPECIAL			2
  70#define  SN_GPIO_MUX_MASK			0x3
  71#define SN_AUX_WDATA_REG(x)			(0x64 + (x))
  72#define SN_AUX_ADDR_19_16_REG			0x74
  73#define SN_AUX_ADDR_15_8_REG			0x75
  74#define SN_AUX_ADDR_7_0_REG			0x76
  75#define SN_AUX_LENGTH_REG			0x77
  76#define SN_AUX_CMD_REG				0x78
  77#define  AUX_CMD_SEND				BIT(0)
  78#define  AUX_CMD_REQ(x)				((x) << 4)
  79#define SN_AUX_RDATA_REG(x)			(0x79 + (x))
  80#define SN_SSC_CONFIG_REG			0x93
  81#define  DP_NUM_LANES_MASK			GENMASK(5, 4)
  82#define  DP_NUM_LANES(x)			((x) << 4)
  83#define SN_DATARATE_CONFIG_REG			0x94
  84#define  DP_DATARATE_MASK			GENMASK(7, 5)
  85#define  DP_DATARATE(x)				((x) << 5)
  86#define SN_ML_TX_MODE_REG			0x96
  87#define  ML_TX_MAIN_LINK_OFF			0
  88#define  ML_TX_NORMAL_MODE			BIT(0)
  89#define SN_AUX_CMD_STATUS_REG			0xF4
  90#define  AUX_IRQ_STATUS_AUX_RPLY_TOUT		BIT(3)
  91#define  AUX_IRQ_STATUS_AUX_SHORT		BIT(5)
  92#define  AUX_IRQ_STATUS_NAT_I2C_FAIL		BIT(6)
  93
  94#define MIN_DSI_CLK_FREQ_MHZ	40
  95
  96/* fudge factor required to account for 8b/10b encoding */
  97#define DP_CLK_FUDGE_NUM	10
  98#define DP_CLK_FUDGE_DEN	8
  99
 100/* Matches DP_AUX_MAX_PAYLOAD_BYTES (for now) */
 101#define SN_AUX_MAX_PAYLOAD_BYTES	16
 102
 103#define SN_REGULATOR_SUPPLY_NUM		4
 104
 105#define SN_MAX_DP_LANES			4
 106#define SN_NUM_GPIOS			4
 107#define SN_GPIO_PHYSICAL_OFFSET		1
 108
 109/**
 110 * struct ti_sn_bridge - Platform data for ti-sn65dsi86 driver.
 111 * @dev:          Pointer to our device.
 112 * @regmap:       Regmap for accessing i2c.
 113 * @aux:          Our aux channel.
 114 * @bridge:       Our bridge.
 115 * @connector:    Our connector.
 116 * @debugfs:      Used for managing our debugfs.
 117 * @host_node:    Remote DSI node.
 118 * @dsi:          Our MIPI DSI source.
 119 * @refclk:       Our reference clock.
 120 * @panel:        Our panel.
 121 * @enable_gpio:  The GPIO we toggle to enable the bridge.
 122 * @supplies:     Data for bulk enabling/disabling our regulators.
 123 * @dp_lanes:     Count of dp_lanes we're using.
 124 * @ln_assign:    Value to program to the LN_ASSIGN register.
 125 * @ln_polrs:     Value for the 4-bit LN_POLRS field of SN_ENH_FRAME_REG.
 126 *
 127 * @gchip:        If we expose our GPIOs, this is used.
 128 * @gchip_output: A cache of whether we've set GPIOs to output.  This
 129 *                serves double-duty of keeping track of the direction and
 130 *                also keeping track of whether we've incremented the
 131 *                pm_runtime reference count for this pin, which we do
 132 *                whenever a pin is configured as an output.  This is a
 133 *                bitmap so we can do atomic ops on it without an extra
 134 *                lock so concurrent users of our 4 GPIOs don't stomp on
 135 *                each other's read-modify-write.
 136 */
 137struct ti_sn_bridge {
 138	struct device			*dev;
 139	struct regmap			*regmap;
 140	struct drm_dp_aux		aux;
 141	struct drm_bridge		bridge;
 142	struct drm_connector		connector;
 143	struct dentry			*debugfs;
 144	struct device_node		*host_node;
 145	struct mipi_dsi_device		*dsi;
 146	struct clk			*refclk;
 147	struct drm_panel		*panel;
 148	struct gpio_desc		*enable_gpio;
 149	struct regulator_bulk_data	supplies[SN_REGULATOR_SUPPLY_NUM];
 150	int				dp_lanes;
 151	u8				ln_assign;
 152	u8				ln_polrs;
 153
 154#if defined(CONFIG_OF_GPIO)
 155	struct gpio_chip		gchip;
 156	DECLARE_BITMAP(gchip_output, SN_NUM_GPIOS);
 157#endif
 158};
 159
 160static const struct regmap_range ti_sn_bridge_volatile_ranges[] = {
 161	{ .range_min = 0, .range_max = 0xFF },
 162};
 163
 164static const struct regmap_access_table ti_sn_bridge_volatile_table = {
 165	.yes_ranges = ti_sn_bridge_volatile_ranges,
 166	.n_yes_ranges = ARRAY_SIZE(ti_sn_bridge_volatile_ranges),
 167};
 168
 169static const struct regmap_config ti_sn_bridge_regmap_config = {
 170	.reg_bits = 8,
 171	.val_bits = 8,
 172	.volatile_table = &ti_sn_bridge_volatile_table,
 173	.cache_type = REGCACHE_NONE,
 174};
 175
 176static void ti_sn_bridge_write_u16(struct ti_sn_bridge *pdata,
 177				   unsigned int reg, u16 val)
 178{
 179	regmap_write(pdata->regmap, reg, val & 0xFF);
 180	regmap_write(pdata->regmap, reg + 1, val >> 8);
 181}
 182
 183static int __maybe_unused ti_sn_bridge_resume(struct device *dev)
 184{
 185	struct ti_sn_bridge *pdata = dev_get_drvdata(dev);
 186	int ret;
 187
 188	ret = regulator_bulk_enable(SN_REGULATOR_SUPPLY_NUM, pdata->supplies);
 189	if (ret) {
 190		DRM_ERROR("failed to enable supplies %d\n", ret);
 191		return ret;
 192	}
 193
 194	gpiod_set_value(pdata->enable_gpio, 1);
 195
 196	return ret;
 197}
 198
 199static int __maybe_unused ti_sn_bridge_suspend(struct device *dev)
 200{
 201	struct ti_sn_bridge *pdata = dev_get_drvdata(dev);
 202	int ret;
 203
 204	gpiod_set_value(pdata->enable_gpio, 0);
 205
 206	ret = regulator_bulk_disable(SN_REGULATOR_SUPPLY_NUM, pdata->supplies);
 207	if (ret)
 208		DRM_ERROR("failed to disable supplies %d\n", ret);
 209
 210	return ret;
 211}
 212
 213static const struct dev_pm_ops ti_sn_bridge_pm_ops = {
 214	SET_RUNTIME_PM_OPS(ti_sn_bridge_suspend, ti_sn_bridge_resume, NULL)
 215	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
 216				pm_runtime_force_resume)
 217};
 218
 219static int status_show(struct seq_file *s, void *data)
 220{
 221	struct ti_sn_bridge *pdata = s->private;
 222	unsigned int reg, val;
 223
 224	seq_puts(s, "STATUS REGISTERS:\n");
 225
 226	pm_runtime_get_sync(pdata->dev);
 227
 228	/* IRQ Status Registers, see Table 31 in datasheet */
 229	for (reg = 0xf0; reg <= 0xf8; reg++) {
 230		regmap_read(pdata->regmap, reg, &val);
 231		seq_printf(s, "[0x%02x] = 0x%08x\n", reg, val);
 232	}
 233
 234	pm_runtime_put(pdata->dev);
 235
 236	return 0;
 237}
 238
 239DEFINE_SHOW_ATTRIBUTE(status);
 240
 241static void ti_sn_debugfs_init(struct ti_sn_bridge *pdata)
 242{
 243	pdata->debugfs = debugfs_create_dir(dev_name(pdata->dev), NULL);
 244
 245	debugfs_create_file("status", 0600, pdata->debugfs, pdata,
 246			&status_fops);
 247}
 248
 249static void ti_sn_debugfs_remove(struct ti_sn_bridge *pdata)
 250{
 251	debugfs_remove_recursive(pdata->debugfs);
 252	pdata->debugfs = NULL;
 253}
 254
 255/* Connector funcs */
 256static struct ti_sn_bridge *
 257connector_to_ti_sn_bridge(struct drm_connector *connector)
 258{
 259	return container_of(connector, struct ti_sn_bridge, connector);
 260}
 261
 262static int ti_sn_bridge_connector_get_modes(struct drm_connector *connector)
 263{
 264	struct ti_sn_bridge *pdata = connector_to_ti_sn_bridge(connector);
 265
 266	return drm_panel_get_modes(pdata->panel, connector);
 267}
 268
 269static enum drm_mode_status
 270ti_sn_bridge_connector_mode_valid(struct drm_connector *connector,
 271				  struct drm_display_mode *mode)
 272{
 273	/* maximum supported resolution is 4K at 60 fps */
 274	if (mode->clock > 594000)
 275		return MODE_CLOCK_HIGH;
 276
 277	return MODE_OK;
 278}
 279
 280static struct drm_connector_helper_funcs ti_sn_bridge_connector_helper_funcs = {
 281	.get_modes = ti_sn_bridge_connector_get_modes,
 282	.mode_valid = ti_sn_bridge_connector_mode_valid,
 283};
 284
 285static enum drm_connector_status
 286ti_sn_bridge_connector_detect(struct drm_connector *connector, bool force)
 287{
 288	/**
 289	 * TODO: Currently if drm_panel is present, then always
 290	 * return the status as connected. Need to add support to detect
 291	 * device state for hot pluggable scenarios.
 292	 */
 293	return connector_status_connected;
 294}
 295
 296static const struct drm_connector_funcs ti_sn_bridge_connector_funcs = {
 297	.fill_modes = drm_helper_probe_single_connector_modes,
 298	.detect = ti_sn_bridge_connector_detect,
 299	.destroy = drm_connector_cleanup,
 300	.reset = drm_atomic_helper_connector_reset,
 301	.atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state,
 302	.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
 303};
 304
 305static struct ti_sn_bridge *bridge_to_ti_sn_bridge(struct drm_bridge *bridge)
 306{
 307	return container_of(bridge, struct ti_sn_bridge, bridge);
 308}
 309
 310static int ti_sn_bridge_parse_regulators(struct ti_sn_bridge *pdata)
 311{
 312	unsigned int i;
 313	const char * const ti_sn_bridge_supply_names[] = {
 314		"vcca", "vcc", "vccio", "vpll",
 315	};
 316
 317	for (i = 0; i < SN_REGULATOR_SUPPLY_NUM; i++)
 318		pdata->supplies[i].supply = ti_sn_bridge_supply_names[i];
 319
 320	return devm_regulator_bulk_get(pdata->dev, SN_REGULATOR_SUPPLY_NUM,
 321				       pdata->supplies);
 322}
 323
 324static int ti_sn_bridge_attach(struct drm_bridge *bridge,
 325			       enum drm_bridge_attach_flags flags)
 326{
 327	int ret, val;
 328	struct ti_sn_bridge *pdata = bridge_to_ti_sn_bridge(bridge);
 329	struct mipi_dsi_host *host;
 330	struct mipi_dsi_device *dsi;
 331	const struct mipi_dsi_device_info info = { .type = "ti_sn_bridge",
 332						   .channel = 0,
 333						   .node = NULL,
 334						 };
 335
 336	if (flags & DRM_BRIDGE_ATTACH_NO_CONNECTOR) {
 337		DRM_ERROR("Fix bridge driver to make connector optional!");
 338		return -EINVAL;
 339	}
 340
 341	ret = drm_connector_init(bridge->dev, &pdata->connector,
 342				 &ti_sn_bridge_connector_funcs,
 343				 DRM_MODE_CONNECTOR_eDP);
 344	if (ret) {
 345		DRM_ERROR("Failed to initialize connector with drm\n");
 346		return ret;
 347	}
 348
 349	drm_connector_helper_add(&pdata->connector,
 350				 &ti_sn_bridge_connector_helper_funcs);
 351	drm_connector_attach_encoder(&pdata->connector, bridge->encoder);
 352
 353	/*
 354	 * TODO: ideally finding host resource and dsi dev registration needs
 355	 * to be done in bridge probe. But some existing DSI host drivers will
 356	 * wait for any of the drm_bridge/drm_panel to get added to the global
 357	 * bridge/panel list, before completing their probe. So if we do the
 358	 * dsi dev registration part in bridge probe, before populating in
 359	 * the global bridge list, then it will cause deadlock as dsi host probe
 360	 * will never complete, neither our bridge probe. So keeping it here
 361	 * will satisfy most of the existing host drivers. Once the host driver
 362	 * is fixed we can move the below code to bridge probe safely.
 363	 */
 364	host = of_find_mipi_dsi_host_by_node(pdata->host_node);
 365	if (!host) {
 366		DRM_ERROR("failed to find dsi host\n");
 367		ret = -ENODEV;
 368		goto err_dsi_host;
 369	}
 370
 371	dsi = mipi_dsi_device_register_full(host, &info);
 372	if (IS_ERR(dsi)) {
 373		DRM_ERROR("failed to create dsi device\n");
 374		ret = PTR_ERR(dsi);
 375		goto err_dsi_host;
 376	}
 377
 378	/* TODO: setting to 4 MIPI lanes always for now */
 379	dsi->lanes = 4;
 380	dsi->format = MIPI_DSI_FMT_RGB888;
 381	dsi->mode_flags = MIPI_DSI_MODE_VIDEO;
 382
 383	/* check if continuous dsi clock is required or not */
 384	pm_runtime_get_sync(pdata->dev);
 385	regmap_read(pdata->regmap, SN_DPPLL_SRC_REG, &val);
 386	pm_runtime_put(pdata->dev);
 387	if (!(val & DPPLL_CLK_SRC_DSICLK))
 388		dsi->mode_flags |= MIPI_DSI_CLOCK_NON_CONTINUOUS;
 389
 390	ret = mipi_dsi_attach(dsi);
 391	if (ret < 0) {
 392		DRM_ERROR("failed to attach dsi to host\n");
 393		goto err_dsi_attach;
 394	}
 395	pdata->dsi = dsi;
 396
 397	/* attach panel to bridge */
 398	drm_panel_attach(pdata->panel, &pdata->connector);
 399
 400	return 0;
 401
 402err_dsi_attach:
 403	mipi_dsi_device_unregister(dsi);
 404err_dsi_host:
 405	drm_connector_cleanup(&pdata->connector);
 406	return ret;
 407}
 408
 409static void ti_sn_bridge_disable(struct drm_bridge *bridge)
 410{
 411	struct ti_sn_bridge *pdata = bridge_to_ti_sn_bridge(bridge);
 412
 413	drm_panel_disable(pdata->panel);
 414
 415	/* disable video stream */
 416	regmap_update_bits(pdata->regmap, SN_ENH_FRAME_REG, VSTREAM_ENABLE, 0);
 417	/* semi auto link training mode OFF */
 418	regmap_write(pdata->regmap, SN_ML_TX_MODE_REG, 0);
 419	/* disable DP PLL */
 420	regmap_write(pdata->regmap, SN_PLL_ENABLE_REG, 0);
 421
 422	drm_panel_unprepare(pdata->panel);
 423}
 424
 425static u32 ti_sn_bridge_get_dsi_freq(struct ti_sn_bridge *pdata)
 426{
 427	u32 bit_rate_khz, clk_freq_khz;
 428	struct drm_display_mode *mode =
 429		&pdata->bridge.encoder->crtc->state->adjusted_mode;
 430
 431	bit_rate_khz = mode->clock *
 432			mipi_dsi_pixel_format_to_bpp(pdata->dsi->format);
 433	clk_freq_khz = bit_rate_khz / (pdata->dsi->lanes * 2);
 434
 435	return clk_freq_khz;
 436}
 437
 438/* clk frequencies supported by bridge in Hz in case derived from REFCLK pin */
 439static const u32 ti_sn_bridge_refclk_lut[] = {
 440	12000000,
 441	19200000,
 442	26000000,
 443	27000000,
 444	38400000,
 445};
 446
 447/* clk frequencies supported by bridge in Hz in case derived from DACP/N pin */
 448static const u32 ti_sn_bridge_dsiclk_lut[] = {
 449	468000000,
 450	384000000,
 451	416000000,
 452	486000000,
 453	460800000,
 454};
 455
 456static void ti_sn_bridge_set_refclk_freq(struct ti_sn_bridge *pdata)
 457{
 458	int i;
 459	u32 refclk_rate;
 460	const u32 *refclk_lut;
 461	size_t refclk_lut_size;
 462
 463	if (pdata->refclk) {
 464		refclk_rate = clk_get_rate(pdata->refclk);
 465		refclk_lut = ti_sn_bridge_refclk_lut;
 466		refclk_lut_size = ARRAY_SIZE(ti_sn_bridge_refclk_lut);
 467		clk_prepare_enable(pdata->refclk);
 468	} else {
 469		refclk_rate = ti_sn_bridge_get_dsi_freq(pdata) * 1000;
 470		refclk_lut = ti_sn_bridge_dsiclk_lut;
 471		refclk_lut_size = ARRAY_SIZE(ti_sn_bridge_dsiclk_lut);
 472	}
 473
 474	/* for i equals to refclk_lut_size means default frequency */
 475	for (i = 0; i < refclk_lut_size; i++)
 476		if (refclk_lut[i] == refclk_rate)
 477			break;
 478
 479	regmap_update_bits(pdata->regmap, SN_DPPLL_SRC_REG, REFCLK_FREQ_MASK,
 480			   REFCLK_FREQ(i));
 481}
 482
 483static void ti_sn_bridge_set_dsi_rate(struct ti_sn_bridge *pdata)
 484{
 485	unsigned int bit_rate_mhz, clk_freq_mhz;
 486	unsigned int val;
 487	struct drm_display_mode *mode =
 488		&pdata->bridge.encoder->crtc->state->adjusted_mode;
 489
 490	/* set DSIA clk frequency */
 491	bit_rate_mhz = (mode->clock / 1000) *
 492			mipi_dsi_pixel_format_to_bpp(pdata->dsi->format);
 493	clk_freq_mhz = bit_rate_mhz / (pdata->dsi->lanes * 2);
 494
 495	/* for each increment in val, frequency increases by 5MHz */
 496	val = (MIN_DSI_CLK_FREQ_MHZ / 5) +
 497		(((clk_freq_mhz - MIN_DSI_CLK_FREQ_MHZ) / 5) & 0xFF);
 498	regmap_write(pdata->regmap, SN_DSIA_CLK_FREQ_REG, val);
 499}
 500
 501static unsigned int ti_sn_bridge_get_bpp(struct ti_sn_bridge *pdata)
 502{
 503	if (pdata->connector.display_info.bpc <= 6)
 504		return 18;
 505	else
 506		return 24;
 507}
 508
 509/*
 510 * LUT index corresponds to register value and
 511 * LUT values corresponds to dp data rate supported
 512 * by the bridge in Mbps unit.
 513 */
 514static const unsigned int ti_sn_bridge_dp_rate_lut[] = {
 515	0, 1620, 2160, 2430, 2700, 3240, 4320, 5400
 516};
 517
 518static int ti_sn_bridge_calc_min_dp_rate_idx(struct ti_sn_bridge *pdata)
 519{
 520	unsigned int bit_rate_khz, dp_rate_mhz;
 521	unsigned int i;
 522	struct drm_display_mode *mode =
 523		&pdata->bridge.encoder->crtc->state->adjusted_mode;
 524
 525	/* Calculate minimum bit rate based on our pixel clock. */
 526	bit_rate_khz = mode->clock * ti_sn_bridge_get_bpp(pdata);
 527
 528	/* Calculate minimum DP data rate, taking 80% as per DP spec */
 529	dp_rate_mhz = DIV_ROUND_UP(bit_rate_khz * DP_CLK_FUDGE_NUM,
 530				   1000 * pdata->dp_lanes * DP_CLK_FUDGE_DEN);
 531
 532	for (i = 1; i < ARRAY_SIZE(ti_sn_bridge_dp_rate_lut) - 1; i++)
 533		if (ti_sn_bridge_dp_rate_lut[i] >= dp_rate_mhz)
 534			break;
 535
 536	return i;
 537}
 538
 539static void ti_sn_bridge_read_valid_rates(struct ti_sn_bridge *pdata,
 540					  bool rate_valid[])
 541{
 542	unsigned int rate_per_200khz;
 543	unsigned int rate_mhz;
 544	u8 dpcd_val;
 545	int ret;
 546	int i, j;
 547
 548	ret = drm_dp_dpcd_readb(&pdata->aux, DP_EDP_DPCD_REV, &dpcd_val);
 549	if (ret != 1) {
 550		DRM_DEV_ERROR(pdata->dev,
 551			      "Can't read eDP rev (%d), assuming 1.1\n", ret);
 552		dpcd_val = DP_EDP_11;
 553	}
 554
 555	if (dpcd_val >= DP_EDP_14) {
 556		/* eDP 1.4 devices must provide a custom table */
 557		__le16 sink_rates[DP_MAX_SUPPORTED_RATES];
 558
 559		ret = drm_dp_dpcd_read(&pdata->aux, DP_SUPPORTED_LINK_RATES,
 560				       sink_rates, sizeof(sink_rates));
 561
 562		if (ret != sizeof(sink_rates)) {
 563			DRM_DEV_ERROR(pdata->dev,
 564				"Can't read supported rate table (%d)\n", ret);
 565
 566			/* By zeroing we'll fall back to DP_MAX_LINK_RATE. */
 567			memset(sink_rates, 0, sizeof(sink_rates));
 568		}
 569
 570		for (i = 0; i < ARRAY_SIZE(sink_rates); i++) {
 571			rate_per_200khz = le16_to_cpu(sink_rates[i]);
 572
 573			if (!rate_per_200khz)
 574				break;
 575
 576			rate_mhz = rate_per_200khz * 200 / 1000;
 577			for (j = 0;
 578			     j < ARRAY_SIZE(ti_sn_bridge_dp_rate_lut);
 579			     j++) {
 580				if (ti_sn_bridge_dp_rate_lut[j] == rate_mhz)
 581					rate_valid[j] = true;
 582			}
 583		}
 584
 585		for (i = 0; i < ARRAY_SIZE(ti_sn_bridge_dp_rate_lut); i++) {
 586			if (rate_valid[i])
 587				return;
 588		}
 589		DRM_DEV_ERROR(pdata->dev,
 590			      "No matching eDP rates in table; falling back\n");
 591	}
 592
 593	/* On older versions best we can do is use DP_MAX_LINK_RATE */
 594	ret = drm_dp_dpcd_readb(&pdata->aux, DP_MAX_LINK_RATE, &dpcd_val);
 595	if (ret != 1) {
 596		DRM_DEV_ERROR(pdata->dev,
 597			      "Can't read max rate (%d); assuming 5.4 GHz\n",
 598			      ret);
 599		dpcd_val = DP_LINK_BW_5_4;
 600	}
 601
 602	switch (dpcd_val) {
 603	default:
 604		DRM_DEV_ERROR(pdata->dev,
 605			      "Unexpected max rate (%#x); assuming 5.4 GHz\n",
 606			      (int)dpcd_val);
 607		fallthrough;
 608	case DP_LINK_BW_5_4:
 609		rate_valid[7] = 1;
 610		fallthrough;
 611	case DP_LINK_BW_2_7:
 612		rate_valid[4] = 1;
 613		fallthrough;
 614	case DP_LINK_BW_1_62:
 615		rate_valid[1] = 1;
 616		break;
 617	}
 618}
 619
 620static void ti_sn_bridge_set_video_timings(struct ti_sn_bridge *pdata)
 621{
 622	struct drm_display_mode *mode =
 623		&pdata->bridge.encoder->crtc->state->adjusted_mode;
 624	u8 hsync_polarity = 0, vsync_polarity = 0;
 625
 626	if (mode->flags & DRM_MODE_FLAG_PHSYNC)
 627		hsync_polarity = CHA_HSYNC_POLARITY;
 628	if (mode->flags & DRM_MODE_FLAG_PVSYNC)
 629		vsync_polarity = CHA_VSYNC_POLARITY;
 630
 631	ti_sn_bridge_write_u16(pdata, SN_CHA_ACTIVE_LINE_LENGTH_LOW_REG,
 632			       mode->hdisplay);
 633	ti_sn_bridge_write_u16(pdata, SN_CHA_VERTICAL_DISPLAY_SIZE_LOW_REG,
 634			       mode->vdisplay);
 635	regmap_write(pdata->regmap, SN_CHA_HSYNC_PULSE_WIDTH_LOW_REG,
 636		     (mode->hsync_end - mode->hsync_start) & 0xFF);
 637	regmap_write(pdata->regmap, SN_CHA_HSYNC_PULSE_WIDTH_HIGH_REG,
 638		     (((mode->hsync_end - mode->hsync_start) >> 8) & 0x7F) |
 639		     hsync_polarity);
 640	regmap_write(pdata->regmap, SN_CHA_VSYNC_PULSE_WIDTH_LOW_REG,
 641		     (mode->vsync_end - mode->vsync_start) & 0xFF);
 642	regmap_write(pdata->regmap, SN_CHA_VSYNC_PULSE_WIDTH_HIGH_REG,
 643		     (((mode->vsync_end - mode->vsync_start) >> 8) & 0x7F) |
 644		     vsync_polarity);
 645
 646	regmap_write(pdata->regmap, SN_CHA_HORIZONTAL_BACK_PORCH_REG,
 647		     (mode->htotal - mode->hsync_end) & 0xFF);
 648	regmap_write(pdata->regmap, SN_CHA_VERTICAL_BACK_PORCH_REG,
 649		     (mode->vtotal - mode->vsync_end) & 0xFF);
 650
 651	regmap_write(pdata->regmap, SN_CHA_HORIZONTAL_FRONT_PORCH_REG,
 652		     (mode->hsync_start - mode->hdisplay) & 0xFF);
 653	regmap_write(pdata->regmap, SN_CHA_VERTICAL_FRONT_PORCH_REG,
 654		     (mode->vsync_start - mode->vdisplay) & 0xFF);
 655
 656	usleep_range(10000, 10500); /* 10ms delay recommended by spec */
 657}
 658
 659static unsigned int ti_sn_get_max_lanes(struct ti_sn_bridge *pdata)
 660{
 661	u8 data;
 662	int ret;
 663
 664	ret = drm_dp_dpcd_readb(&pdata->aux, DP_MAX_LANE_COUNT, &data);
 665	if (ret != 1) {
 666		DRM_DEV_ERROR(pdata->dev,
 667			      "Can't read lane count (%d); assuming 4\n", ret);
 668		return 4;
 669	}
 670
 671	return data & DP_LANE_COUNT_MASK;
 672}
 673
 674static int ti_sn_link_training(struct ti_sn_bridge *pdata, int dp_rate_idx,
 675			       const char **last_err_str)
 676{
 677	unsigned int val;
 678	int ret;
 679
 680	/* set dp clk frequency value */
 681	regmap_update_bits(pdata->regmap, SN_DATARATE_CONFIG_REG,
 682			   DP_DATARATE_MASK, DP_DATARATE(dp_rate_idx));
 683
 684	/* enable DP PLL */
 685	regmap_write(pdata->regmap, SN_PLL_ENABLE_REG, 1);
 686
 687	ret = regmap_read_poll_timeout(pdata->regmap, SN_DPPLL_SRC_REG, val,
 688				       val & DPPLL_SRC_DP_PLL_LOCK, 1000,
 689				       50 * 1000);
 690	if (ret) {
 691		*last_err_str = "DP_PLL_LOCK polling failed";
 692		goto exit;
 693	}
 694
 695	/* Semi auto link training mode */
 696	regmap_write(pdata->regmap, SN_ML_TX_MODE_REG, 0x0A);
 697	ret = regmap_read_poll_timeout(pdata->regmap, SN_ML_TX_MODE_REG, val,
 698				       val == ML_TX_MAIN_LINK_OFF ||
 699				       val == ML_TX_NORMAL_MODE, 1000,
 700				       500 * 1000);
 701	if (ret) {
 702		*last_err_str = "Training complete polling failed";
 703	} else if (val == ML_TX_MAIN_LINK_OFF) {
 704		*last_err_str = "Link training failed, link is off";
 705		ret = -EIO;
 706	}
 707
 708exit:
 709	/* Disable the PLL if we failed */
 710	if (ret)
 711		regmap_write(pdata->regmap, SN_PLL_ENABLE_REG, 0);
 712
 713	return ret;
 714}
 715
 716static void ti_sn_bridge_enable(struct drm_bridge *bridge)
 717{
 718	struct ti_sn_bridge *pdata = bridge_to_ti_sn_bridge(bridge);
 719	bool rate_valid[ARRAY_SIZE(ti_sn_bridge_dp_rate_lut)] = { };
 720	const char *last_err_str = "No supported DP rate";
 721	int dp_rate_idx;
 722	unsigned int val;
 723	int ret = -EINVAL;
 724	int max_dp_lanes;
 725
 726	max_dp_lanes = ti_sn_get_max_lanes(pdata);
 727	pdata->dp_lanes = min(pdata->dp_lanes, max_dp_lanes);
 728
 729	/* DSI_A lane config */
 730	val = CHA_DSI_LANES(SN_MAX_DP_LANES - pdata->dsi->lanes);
 731	regmap_update_bits(pdata->regmap, SN_DSI_LANES_REG,
 732			   CHA_DSI_LANES_MASK, val);
 733
 734	regmap_write(pdata->regmap, SN_LN_ASSIGN_REG, pdata->ln_assign);
 735	regmap_update_bits(pdata->regmap, SN_ENH_FRAME_REG, LN_POLRS_MASK,
 736			   pdata->ln_polrs << LN_POLRS_OFFSET);
 737
 738	/* set dsi clk frequency value */
 739	ti_sn_bridge_set_dsi_rate(pdata);
 740
 741	/**
 742	 * The SN65DSI86 only supports ASSR Display Authentication method and
 743	 * this method is enabled by default. An eDP panel must support this
 744	 * authentication method. We need to enable this method in the eDP panel
 745	 * at DisplayPort address 0x0010A prior to link training.
 746	 */
 747	drm_dp_dpcd_writeb(&pdata->aux, DP_EDP_CONFIGURATION_SET,
 748			   DP_ALTERNATE_SCRAMBLER_RESET_ENABLE);
 749
 750	/* Set the DP output format (18 bpp or 24 bpp) */
 751	val = (ti_sn_bridge_get_bpp(pdata) == 18) ? BPP_18_RGB : 0;
 752	regmap_update_bits(pdata->regmap, SN_DATA_FORMAT_REG, BPP_18_RGB, val);
 753
 754	/* DP lane config */
 755	val = DP_NUM_LANES(min(pdata->dp_lanes, 3));
 756	regmap_update_bits(pdata->regmap, SN_SSC_CONFIG_REG, DP_NUM_LANES_MASK,
 757			   val);
 758
 759	ti_sn_bridge_read_valid_rates(pdata, rate_valid);
 760
 761	/* Train until we run out of rates */
 762	for (dp_rate_idx = ti_sn_bridge_calc_min_dp_rate_idx(pdata);
 763	     dp_rate_idx < ARRAY_SIZE(ti_sn_bridge_dp_rate_lut);
 764	     dp_rate_idx++) {
 765		if (!rate_valid[dp_rate_idx])
 766			continue;
 767
 768		ret = ti_sn_link_training(pdata, dp_rate_idx, &last_err_str);
 769		if (!ret)
 770			break;
 771	}
 772	if (ret) {
 773		DRM_DEV_ERROR(pdata->dev, "%s (%d)\n", last_err_str, ret);
 774		return;
 775	}
 776
 777	/* config video parameters */
 778	ti_sn_bridge_set_video_timings(pdata);
 779
 780	/* enable video stream */
 781	regmap_update_bits(pdata->regmap, SN_ENH_FRAME_REG, VSTREAM_ENABLE,
 782			   VSTREAM_ENABLE);
 783
 784	drm_panel_enable(pdata->panel);
 785}
 786
 787static void ti_sn_bridge_pre_enable(struct drm_bridge *bridge)
 788{
 789	struct ti_sn_bridge *pdata = bridge_to_ti_sn_bridge(bridge);
 790
 791	pm_runtime_get_sync(pdata->dev);
 792
 793	/* configure bridge ref_clk */
 794	ti_sn_bridge_set_refclk_freq(pdata);
 795
 796	/*
 797	 * HPD on this bridge chip is a bit useless.  This is an eDP bridge
 798	 * so the HPD is an internal signal that's only there to signal that
 799	 * the panel is done powering up.  ...but the bridge chip debounces
 800	 * this signal by between 100 ms and 400 ms (depending on process,
 801	 * voltage, and temperate--I measured it at about 200 ms).  One
 802	 * particular panel asserted HPD 84 ms after it was powered on meaning
 803	 * that we saw HPD 284 ms after power on.  ...but the same panel said
 804	 * that instead of looking at HPD you could just hardcode a delay of
 805	 * 200 ms.  We'll assume that the panel driver will have the hardcoded
 806	 * delay in its prepare and always disable HPD.
 807	 *
 808	 * If HPD somehow makes sense on some future panel we'll have to
 809	 * change this to be conditional on someone specifying that HPD should
 810	 * be used.
 811	 */
 812	regmap_update_bits(pdata->regmap, SN_HPD_DISABLE_REG, HPD_DISABLE,
 813			   HPD_DISABLE);
 814
 815	drm_panel_prepare(pdata->panel);
 816}
 817
 818static void ti_sn_bridge_post_disable(struct drm_bridge *bridge)
 819{
 820	struct ti_sn_bridge *pdata = bridge_to_ti_sn_bridge(bridge);
 821
 822	if (pdata->refclk)
 823		clk_disable_unprepare(pdata->refclk);
 824
 825	pm_runtime_put_sync(pdata->dev);
 826}
 827
 828static const struct drm_bridge_funcs ti_sn_bridge_funcs = {
 829	.attach = ti_sn_bridge_attach,
 830	.pre_enable = ti_sn_bridge_pre_enable,
 831	.enable = ti_sn_bridge_enable,
 832	.disable = ti_sn_bridge_disable,
 833	.post_disable = ti_sn_bridge_post_disable,
 834};
 835
 836static struct ti_sn_bridge *aux_to_ti_sn_bridge(struct drm_dp_aux *aux)
 837{
 838	return container_of(aux, struct ti_sn_bridge, aux);
 839}
 840
 841static ssize_t ti_sn_aux_transfer(struct drm_dp_aux *aux,
 842				  struct drm_dp_aux_msg *msg)
 843{
 844	struct ti_sn_bridge *pdata = aux_to_ti_sn_bridge(aux);
 845	u32 request = msg->request & ~DP_AUX_I2C_MOT;
 846	u32 request_val = AUX_CMD_REQ(msg->request);
 847	u8 *buf = (u8 *)msg->buffer;
 848	unsigned int val;
 849	int ret, i;
 850
 851	if (msg->size > SN_AUX_MAX_PAYLOAD_BYTES)
 852		return -EINVAL;
 853
 854	switch (request) {
 855	case DP_AUX_NATIVE_WRITE:
 856	case DP_AUX_I2C_WRITE:
 857	case DP_AUX_NATIVE_READ:
 858	case DP_AUX_I2C_READ:
 859		regmap_write(pdata->regmap, SN_AUX_CMD_REG, request_val);
 860		break;
 861	default:
 862		return -EINVAL;
 863	}
 864
 865	regmap_write(pdata->regmap, SN_AUX_ADDR_19_16_REG,
 866		     (msg->address >> 16) & 0xF);
 867	regmap_write(pdata->regmap, SN_AUX_ADDR_15_8_REG,
 868		     (msg->address >> 8) & 0xFF);
 869	regmap_write(pdata->regmap, SN_AUX_ADDR_7_0_REG, msg->address & 0xFF);
 870
 871	regmap_write(pdata->regmap, SN_AUX_LENGTH_REG, msg->size);
 872
 873	if (request == DP_AUX_NATIVE_WRITE || request == DP_AUX_I2C_WRITE) {
 874		for (i = 0; i < msg->size; i++)
 875			regmap_write(pdata->regmap, SN_AUX_WDATA_REG(i),
 876				     buf[i]);
 877	}
 878
 879	/* Clear old status bits before start so we don't get confused */
 880	regmap_write(pdata->regmap, SN_AUX_CMD_STATUS_REG,
 881		     AUX_IRQ_STATUS_NAT_I2C_FAIL |
 882		     AUX_IRQ_STATUS_AUX_RPLY_TOUT |
 883		     AUX_IRQ_STATUS_AUX_SHORT);
 884
 885	regmap_write(pdata->regmap, SN_AUX_CMD_REG, request_val | AUX_CMD_SEND);
 886
 887	ret = regmap_read_poll_timeout(pdata->regmap, SN_AUX_CMD_REG, val,
 888				       !(val & AUX_CMD_SEND), 200,
 889				       50 * 1000);
 890	if (ret)
 891		return ret;
 892
 893	ret = regmap_read(pdata->regmap, SN_AUX_CMD_STATUS_REG, &val);
 894	if (ret)
 895		return ret;
 896	else if ((val & AUX_IRQ_STATUS_NAT_I2C_FAIL)
 897		 || (val & AUX_IRQ_STATUS_AUX_RPLY_TOUT)
 898		 || (val & AUX_IRQ_STATUS_AUX_SHORT))
 899		return -ENXIO;
 900
 901	if (request == DP_AUX_NATIVE_WRITE || request == DP_AUX_I2C_WRITE)
 902		return msg->size;
 903
 904	for (i = 0; i < msg->size; i++) {
 905		unsigned int val;
 906		ret = regmap_read(pdata->regmap, SN_AUX_RDATA_REG(i),
 907				  &val);
 908		if (ret)
 909			return ret;
 910
 911		WARN_ON(val & ~0xFF);
 912		buf[i] = (u8)(val & 0xFF);
 913	}
 914
 915	return msg->size;
 916}
 917
 918static int ti_sn_bridge_parse_dsi_host(struct ti_sn_bridge *pdata)
 919{
 920	struct device_node *np = pdata->dev->of_node;
 921
 922	pdata->host_node = of_graph_get_remote_node(np, 0, 0);
 923
 924	if (!pdata->host_node) {
 925		DRM_ERROR("remote dsi host node not found\n");
 926		return -ENODEV;
 927	}
 928
 929	return 0;
 930}
 931
 932#if defined(CONFIG_OF_GPIO)
 933
 934static int tn_sn_bridge_of_xlate(struct gpio_chip *chip,
 935				 const struct of_phandle_args *gpiospec,
 936				 u32 *flags)
 937{
 938	if (WARN_ON(gpiospec->args_count < chip->of_gpio_n_cells))
 939		return -EINVAL;
 940
 941	if (gpiospec->args[0] > chip->ngpio || gpiospec->args[0] < 1)
 942		return -EINVAL;
 943
 944	if (flags)
 945		*flags = gpiospec->args[1];
 946
 947	return gpiospec->args[0] - SN_GPIO_PHYSICAL_OFFSET;
 948}
 949
 950static int ti_sn_bridge_gpio_get_direction(struct gpio_chip *chip,
 951					   unsigned int offset)
 952{
 953	struct ti_sn_bridge *pdata = gpiochip_get_data(chip);
 954
 955	/*
 956	 * We already have to keep track of the direction because we use
 957	 * that to figure out whether we've powered the device.  We can
 958	 * just return that rather than (maybe) powering up the device
 959	 * to ask its direction.
 960	 */
 961	return test_bit(offset, pdata->gchip_output) ?
 962		GPIO_LINE_DIRECTION_OUT : GPIO_LINE_DIRECTION_IN;
 963}
 964
 965static int ti_sn_bridge_gpio_get(struct gpio_chip *chip, unsigned int offset)
 966{
 967	struct ti_sn_bridge *pdata = gpiochip_get_data(chip);
 968	unsigned int val;
 969	int ret;
 970
 971	/*
 972	 * When the pin is an input we don't forcibly keep the bridge
 973	 * powered--we just power it on to read the pin.  NOTE: part of
 974	 * the reason this works is that the bridge defaults (when
 975	 * powered back on) to all 4 GPIOs being configured as GPIO input.
 976	 * Also note that if something else is keeping the chip powered the
 977	 * pm_runtime functions are lightweight increments of a refcount.
 978	 */
 979	pm_runtime_get_sync(pdata->dev);
 980	ret = regmap_read(pdata->regmap, SN_GPIO_IO_REG, &val);
 981	pm_runtime_put(pdata->dev);
 982
 983	if (ret)
 984		return ret;
 985
 986	return !!(val & BIT(SN_GPIO_INPUT_SHIFT + offset));
 987}
 988
 989static void ti_sn_bridge_gpio_set(struct gpio_chip *chip, unsigned int offset,
 990				  int val)
 991{
 992	struct ti_sn_bridge *pdata = gpiochip_get_data(chip);
 993	int ret;
 994
 995	if (!test_bit(offset, pdata->gchip_output)) {
 996		dev_err(pdata->dev, "Ignoring GPIO set while input\n");
 997		return;
 998	}
 999
1000	val &= 1;
1001	ret = regmap_update_bits(pdata->regmap, SN_GPIO_IO_REG,
1002				 BIT(SN_GPIO_OUTPUT_SHIFT + offset),
1003				 val << (SN_GPIO_OUTPUT_SHIFT + offset));
1004	if (ret)
1005		dev_warn(pdata->dev,
1006			 "Failed to set bridge GPIO %u: %d\n", offset, ret);
1007}
1008
1009static int ti_sn_bridge_gpio_direction_input(struct gpio_chip *chip,
1010					     unsigned int offset)
1011{
1012	struct ti_sn_bridge *pdata = gpiochip_get_data(chip);
1013	int shift = offset * 2;
1014	int ret;
1015
1016	if (!test_and_clear_bit(offset, pdata->gchip_output))
1017		return 0;
1018
1019	ret = regmap_update_bits(pdata->regmap, SN_GPIO_CTRL_REG,
1020				 SN_GPIO_MUX_MASK << shift,
1021				 SN_GPIO_MUX_INPUT << shift);
1022	if (ret) {
1023		set_bit(offset, pdata->gchip_output);
1024		return ret;
1025	}
1026
1027	/*
1028	 * NOTE: if nobody else is powering the device this may fully power
1029	 * it off and when it comes back it will have lost all state, but
1030	 * that's OK because the default is input and we're now an input.
1031	 */
1032	pm_runtime_put(pdata->dev);
1033
1034	return 0;
1035}
1036
1037static int ti_sn_bridge_gpio_direction_output(struct gpio_chip *chip,
1038					      unsigned int offset, int val)
1039{
1040	struct ti_sn_bridge *pdata = gpiochip_get_data(chip);
1041	int shift = offset * 2;
1042	int ret;
1043
1044	if (test_and_set_bit(offset, pdata->gchip_output))
1045		return 0;
1046
1047	pm_runtime_get_sync(pdata->dev);
1048
1049	/* Set value first to avoid glitching */
1050	ti_sn_bridge_gpio_set(chip, offset, val);
1051
1052	/* Set direction */
1053	ret = regmap_update_bits(pdata->regmap, SN_GPIO_CTRL_REG,
1054				 SN_GPIO_MUX_MASK << shift,
1055				 SN_GPIO_MUX_OUTPUT << shift);
1056	if (ret) {
1057		clear_bit(offset, pdata->gchip_output);
1058		pm_runtime_put(pdata->dev);
1059	}
1060
1061	return ret;
1062}
1063
1064static void ti_sn_bridge_gpio_free(struct gpio_chip *chip, unsigned int offset)
1065{
1066	/* We won't keep pm_runtime if we're input, so switch there on free */
1067	ti_sn_bridge_gpio_direction_input(chip, offset);
1068}
1069
1070static const char * const ti_sn_bridge_gpio_names[SN_NUM_GPIOS] = {
1071	"GPIO1", "GPIO2", "GPIO3", "GPIO4"
1072};
1073
1074static int ti_sn_setup_gpio_controller(struct ti_sn_bridge *pdata)
1075{
1076	int ret;
1077
1078	/* Only init if someone is going to use us as a GPIO controller */
1079	if (!of_property_read_bool(pdata->dev->of_node, "gpio-controller"))
1080		return 0;
1081
1082	pdata->gchip.label = dev_name(pdata->dev);
1083	pdata->gchip.parent = pdata->dev;
1084	pdata->gchip.owner = THIS_MODULE;
1085	pdata->gchip.of_xlate = tn_sn_bridge_of_xlate;
1086	pdata->gchip.of_gpio_n_cells = 2;
1087	pdata->gchip.free = ti_sn_bridge_gpio_free;
1088	pdata->gchip.get_direction = ti_sn_bridge_gpio_get_direction;
1089	pdata->gchip.direction_input = ti_sn_bridge_gpio_direction_input;
1090	pdata->gchip.direction_output = ti_sn_bridge_gpio_direction_output;
1091	pdata->gchip.get = ti_sn_bridge_gpio_get;
1092	pdata->gchip.set = ti_sn_bridge_gpio_set;
1093	pdata->gchip.can_sleep = true;
1094	pdata->gchip.names = ti_sn_bridge_gpio_names;
1095	pdata->gchip.ngpio = SN_NUM_GPIOS;
1096	pdata->gchip.base = -1;
1097	ret = devm_gpiochip_add_data(pdata->dev, &pdata->gchip, pdata);
1098	if (ret)
1099		dev_err(pdata->dev, "can't add gpio chip\n");
1100
1101	return ret;
1102}
1103
1104#else
1105
1106static inline int ti_sn_setup_gpio_controller(struct ti_sn_bridge *pdata)
1107{
1108	return 0;
1109}
1110
1111#endif
1112
1113static void ti_sn_bridge_parse_lanes(struct ti_sn_bridge *pdata,
1114				     struct device_node *np)
1115{
1116	u32 lane_assignments[SN_MAX_DP_LANES] = { 0, 1, 2, 3 };
1117	u32 lane_polarities[SN_MAX_DP_LANES] = { };
1118	struct device_node *endpoint;
1119	u8 ln_assign = 0;
1120	u8 ln_polrs = 0;
1121	int dp_lanes;
1122	int i;
1123
1124	/*
1125	 * Read config from the device tree about lane remapping and lane
1126	 * polarities.  These are optional and we assume identity map and
1127	 * normal polarity if nothing is specified.  It's OK to specify just
1128	 * data-lanes but not lane-polarities but not vice versa.
1129	 *
1130	 * Error checking is light (we just make sure we don't crash or
1131	 * buffer overrun) and we assume dts is well formed and specifying
1132	 * mappings that the hardware supports.
1133	 */
1134	endpoint = of_graph_get_endpoint_by_regs(np, 1, -1);
1135	dp_lanes = of_property_count_u32_elems(endpoint, "data-lanes");
1136	if (dp_lanes > 0 && dp_lanes <= SN_MAX_DP_LANES) {
1137		of_property_read_u32_array(endpoint, "data-lanes",
1138					   lane_assignments, dp_lanes);
1139		of_property_read_u32_array(endpoint, "lane-polarities",
1140					   lane_polarities, dp_lanes);
1141	} else {
1142		dp_lanes = SN_MAX_DP_LANES;
1143	}
1144	of_node_put(endpoint);
1145
1146	/*
1147	 * Convert into register format.  Loop over all lanes even if
1148	 * data-lanes had fewer elements so that we nicely initialize
1149	 * the LN_ASSIGN register.
1150	 */
1151	for (i = SN_MAX_DP_LANES - 1; i >= 0; i--) {
1152		ln_assign = ln_assign << LN_ASSIGN_WIDTH | lane_assignments[i];
1153		ln_polrs = ln_polrs << 1 | lane_polarities[i];
1154	}
1155
1156	/* Stash in our struct for when we power on */
1157	pdata->dp_lanes = dp_lanes;
1158	pdata->ln_assign = ln_assign;
1159	pdata->ln_polrs = ln_polrs;
1160}
1161
1162static int ti_sn_bridge_probe(struct i2c_client *client,
1163			      const struct i2c_device_id *id)
1164{
1165	struct ti_sn_bridge *pdata;
1166	int ret;
1167
1168	if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) {
1169		DRM_ERROR("device doesn't support I2C\n");
1170		return -ENODEV;
1171	}
1172
1173	pdata = devm_kzalloc(&client->dev, sizeof(struct ti_sn_bridge),
1174			     GFP_KERNEL);
1175	if (!pdata)
1176		return -ENOMEM;
1177
1178	pdata->regmap = devm_regmap_init_i2c(client,
1179					     &ti_sn_bridge_regmap_config);
1180	if (IS_ERR(pdata->regmap)) {
1181		DRM_ERROR("regmap i2c init failed\n");
1182		return PTR_ERR(pdata->regmap);
1183	}
1184
1185	pdata->dev = &client->dev;
1186
1187	ret = drm_of_find_panel_or_bridge(pdata->dev->of_node, 1, 0,
1188					  &pdata->panel, NULL);
1189	if (ret) {
1190		DRM_ERROR("could not find any panel node\n");
1191		return ret;
1192	}
1193
1194	dev_set_drvdata(&client->dev, pdata);
1195
1196	pdata->enable_gpio = devm_gpiod_get(pdata->dev, "enable",
1197					    GPIOD_OUT_LOW);
1198	if (IS_ERR(pdata->enable_gpio)) {
1199		DRM_ERROR("failed to get enable gpio from DT\n");
1200		ret = PTR_ERR(pdata->enable_gpio);
1201		return ret;
1202	}
1203
1204	ti_sn_bridge_parse_lanes(pdata, client->dev.of_node);
1205
1206	ret = ti_sn_bridge_parse_regulators(pdata);
1207	if (ret) {
1208		DRM_ERROR("failed to parse regulators\n");
1209		return ret;
1210	}
1211
1212	pdata->refclk = devm_clk_get(pdata->dev, "refclk");
1213	if (IS_ERR(pdata->refclk)) {
1214		ret = PTR_ERR(pdata->refclk);
1215		if (ret == -EPROBE_DEFER)
1216			return ret;
1217		DRM_DEBUG_KMS("refclk not found\n");
1218		pdata->refclk = NULL;
1219	}
1220
1221	ret = ti_sn_bridge_parse_dsi_host(pdata);
1222	if (ret)
1223		return ret;
1224
1225	pm_runtime_enable(pdata->dev);
1226
1227	ret = ti_sn_setup_gpio_controller(pdata);
1228	if (ret) {
1229		pm_runtime_disable(pdata->dev);
1230		return ret;
1231	}
1232
1233	i2c_set_clientdata(client, pdata);
1234
1235	pdata->aux.name = "ti-sn65dsi86-aux";
1236	pdata->aux.dev = pdata->dev;
1237	pdata->aux.transfer = ti_sn_aux_transfer;
1238	drm_dp_aux_register(&pdata->aux);
1239
1240	pdata->bridge.funcs = &ti_sn_bridge_funcs;
1241	pdata->bridge.of_node = client->dev.of_node;
1242
1243	drm_bridge_add(&pdata->bridge);
1244
1245	ti_sn_debugfs_init(pdata);
1246
1247	return 0;
1248}
1249
1250static int ti_sn_bridge_remove(struct i2c_client *client)
1251{
1252	struct ti_sn_bridge *pdata = i2c_get_clientdata(client);
1253
1254	if (!pdata)
1255		return -EINVAL;
1256
1257	ti_sn_debugfs_remove(pdata);
1258
1259	of_node_put(pdata->host_node);
1260
1261	pm_runtime_disable(pdata->dev);
1262
1263	if (pdata->dsi) {
1264		mipi_dsi_detach(pdata->dsi);
1265		mipi_dsi_device_unregister(pdata->dsi);
1266	}
1267
1268	drm_bridge_remove(&pdata->bridge);
1269
1270	return 0;
1271}
1272
1273static struct i2c_device_id ti_sn_bridge_id[] = {
1274	{ "ti,sn65dsi86", 0},
1275	{},
1276};
1277MODULE_DEVICE_TABLE(i2c, ti_sn_bridge_id);
1278
1279static const struct of_device_id ti_sn_bridge_match_table[] = {
1280	{.compatible = "ti,sn65dsi86"},
1281	{},
1282};
1283MODULE_DEVICE_TABLE(of, ti_sn_bridge_match_table);
1284
1285static struct i2c_driver ti_sn_bridge_driver = {
1286	.driver = {
1287		.name = "ti_sn65dsi86",
1288		.of_match_table = ti_sn_bridge_match_table,
1289		.pm = &ti_sn_bridge_pm_ops,
1290	},
1291	.probe = ti_sn_bridge_probe,
1292	.remove = ti_sn_bridge_remove,
1293	.id_table = ti_sn_bridge_id,
1294};
1295module_i2c_driver(ti_sn_bridge_driver);
1296
1297MODULE_AUTHOR("Sandeep Panda <spanda@codeaurora.org>");
1298MODULE_DESCRIPTION("sn65dsi86 DSI to eDP bridge driver");
1299MODULE_LICENSE("GPL v2");