Loading...
1/*
2 * SuperH KGDB support
3 *
4 * Copyright (C) 2008 - 2012 Paul Mundt
5 *
6 * Single stepping taken from the old stub by Henry Bell and Jeremy Siegel.
7 *
8 * This file is subject to the terms and conditions of the GNU General Public
9 * License. See the file "COPYING" in the main directory of this archive
10 * for more details.
11 */
12#include <linux/kgdb.h>
13#include <linux/kdebug.h>
14#include <linux/irq.h>
15#include <linux/io.h>
16#include <linux/sched.h>
17#include <asm/cacheflush.h>
18#include <asm/traps.h>
19
20/* Macros for single step instruction identification */
21#define OPCODE_BT(op) (((op) & 0xff00) == 0x8900)
22#define OPCODE_BF(op) (((op) & 0xff00) == 0x8b00)
23#define OPCODE_BTF_DISP(op) (((op) & 0x80) ? (((op) | 0xffffff80) << 1) : \
24 (((op) & 0x7f ) << 1))
25#define OPCODE_BFS(op) (((op) & 0xff00) == 0x8f00)
26#define OPCODE_BTS(op) (((op) & 0xff00) == 0x8d00)
27#define OPCODE_BRA(op) (((op) & 0xf000) == 0xa000)
28#define OPCODE_BRA_DISP(op) (((op) & 0x800) ? (((op) | 0xfffff800) << 1) : \
29 (((op) & 0x7ff) << 1))
30#define OPCODE_BRAF(op) (((op) & 0xf0ff) == 0x0023)
31#define OPCODE_BRAF_REG(op) (((op) & 0x0f00) >> 8)
32#define OPCODE_BSR(op) (((op) & 0xf000) == 0xb000)
33#define OPCODE_BSR_DISP(op) (((op) & 0x800) ? (((op) | 0xfffff800) << 1) : \
34 (((op) & 0x7ff) << 1))
35#define OPCODE_BSRF(op) (((op) & 0xf0ff) == 0x0003)
36#define OPCODE_BSRF_REG(op) (((op) >> 8) & 0xf)
37#define OPCODE_JMP(op) (((op) & 0xf0ff) == 0x402b)
38#define OPCODE_JMP_REG(op) (((op) >> 8) & 0xf)
39#define OPCODE_JSR(op) (((op) & 0xf0ff) == 0x400b)
40#define OPCODE_JSR_REG(op) (((op) >> 8) & 0xf)
41#define OPCODE_RTS(op) ((op) == 0xb)
42#define OPCODE_RTE(op) ((op) == 0x2b)
43
44#define SR_T_BIT_MASK 0x1
45#define STEP_OPCODE 0xc33d
46
47/* Calculate the new address for after a step */
48static short *get_step_address(struct pt_regs *linux_regs)
49{
50 insn_size_t op = __raw_readw(linux_regs->pc);
51 long addr;
52
53 /* BT */
54 if (OPCODE_BT(op)) {
55 if (linux_regs->sr & SR_T_BIT_MASK)
56 addr = linux_regs->pc + 4 + OPCODE_BTF_DISP(op);
57 else
58 addr = linux_regs->pc + 2;
59 }
60
61 /* BTS */
62 else if (OPCODE_BTS(op)) {
63 if (linux_regs->sr & SR_T_BIT_MASK)
64 addr = linux_regs->pc + 4 + OPCODE_BTF_DISP(op);
65 else
66 addr = linux_regs->pc + 4; /* Not in delay slot */
67 }
68
69 /* BF */
70 else if (OPCODE_BF(op)) {
71 if (!(linux_regs->sr & SR_T_BIT_MASK))
72 addr = linux_regs->pc + 4 + OPCODE_BTF_DISP(op);
73 else
74 addr = linux_regs->pc + 2;
75 }
76
77 /* BFS */
78 else if (OPCODE_BFS(op)) {
79 if (!(linux_regs->sr & SR_T_BIT_MASK))
80 addr = linux_regs->pc + 4 + OPCODE_BTF_DISP(op);
81 else
82 addr = linux_regs->pc + 4; /* Not in delay slot */
83 }
84
85 /* BRA */
86 else if (OPCODE_BRA(op))
87 addr = linux_regs->pc + 4 + OPCODE_BRA_DISP(op);
88
89 /* BRAF */
90 else if (OPCODE_BRAF(op))
91 addr = linux_regs->pc + 4
92 + linux_regs->regs[OPCODE_BRAF_REG(op)];
93
94 /* BSR */
95 else if (OPCODE_BSR(op))
96 addr = linux_regs->pc + 4 + OPCODE_BSR_DISP(op);
97
98 /* BSRF */
99 else if (OPCODE_BSRF(op))
100 addr = linux_regs->pc + 4
101 + linux_regs->regs[OPCODE_BSRF_REG(op)];
102
103 /* JMP */
104 else if (OPCODE_JMP(op))
105 addr = linux_regs->regs[OPCODE_JMP_REG(op)];
106
107 /* JSR */
108 else if (OPCODE_JSR(op))
109 addr = linux_regs->regs[OPCODE_JSR_REG(op)];
110
111 /* RTS */
112 else if (OPCODE_RTS(op))
113 addr = linux_regs->pr;
114
115 /* RTE */
116 else if (OPCODE_RTE(op))
117 addr = linux_regs->regs[15];
118
119 /* Other */
120 else
121 addr = linux_regs->pc + instruction_size(op);
122
123 flush_icache_range(addr, addr + instruction_size(op));
124 return (short *)addr;
125}
126
127/*
128 * Replace the instruction immediately after the current instruction
129 * (i.e. next in the expected flow of control) with a trap instruction,
130 * so that returning will cause only a single instruction to be executed.
131 * Note that this model is slightly broken for instructions with delay
132 * slots (e.g. B[TF]S, BSR, BRA etc), where both the branch and the
133 * instruction in the delay slot will be executed.
134 */
135
136static unsigned long stepped_address;
137static insn_size_t stepped_opcode;
138
139static void do_single_step(struct pt_regs *linux_regs)
140{
141 /* Determine where the target instruction will send us to */
142 unsigned short *addr = get_step_address(linux_regs);
143
144 stepped_address = (int)addr;
145
146 /* Replace it */
147 stepped_opcode = __raw_readw((long)addr);
148 *addr = STEP_OPCODE;
149
150 /* Flush and return */
151 flush_icache_range((long)addr, (long)addr +
152 instruction_size(stepped_opcode));
153}
154
155/* Undo a single step */
156static void undo_single_step(struct pt_regs *linux_regs)
157{
158 /* If we have stepped, put back the old instruction */
159 /* Use stepped_address in case we stopped elsewhere */
160 if (stepped_opcode != 0) {
161 __raw_writew(stepped_opcode, stepped_address);
162 flush_icache_range(stepped_address, stepped_address + 2);
163 }
164
165 stepped_opcode = 0;
166}
167
168struct dbg_reg_def_t dbg_reg_def[DBG_MAX_REG_NUM] = {
169 { "r0", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[0]) },
170 { "r1", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[1]) },
171 { "r2", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[2]) },
172 { "r3", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[3]) },
173 { "r4", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[4]) },
174 { "r5", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[5]) },
175 { "r6", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[6]) },
176 { "r7", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[7]) },
177 { "r8", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[8]) },
178 { "r9", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[9]) },
179 { "r10", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[10]) },
180 { "r11", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[11]) },
181 { "r12", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[12]) },
182 { "r13", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[13]) },
183 { "r14", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[14]) },
184 { "r15", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[15]) },
185 { "pc", GDB_SIZEOF_REG, offsetof(struct pt_regs, pc) },
186 { "pr", GDB_SIZEOF_REG, offsetof(struct pt_regs, pr) },
187 { "sr", GDB_SIZEOF_REG, offsetof(struct pt_regs, sr) },
188 { "gbr", GDB_SIZEOF_REG, offsetof(struct pt_regs, gbr) },
189 { "mach", GDB_SIZEOF_REG, offsetof(struct pt_regs, mach) },
190 { "macl", GDB_SIZEOF_REG, offsetof(struct pt_regs, macl) },
191 { "vbr", GDB_SIZEOF_REG, -1 },
192};
193
194int dbg_set_reg(int regno, void *mem, struct pt_regs *regs)
195{
196 if (regno < 0 || regno >= DBG_MAX_REG_NUM)
197 return -EINVAL;
198
199 if (dbg_reg_def[regno].offset != -1)
200 memcpy((void *)regs + dbg_reg_def[regno].offset, mem,
201 dbg_reg_def[regno].size);
202
203 return 0;
204}
205
206char *dbg_get_reg(int regno, void *mem, struct pt_regs *regs)
207{
208 if (regno >= DBG_MAX_REG_NUM || regno < 0)
209 return NULL;
210
211 if (dbg_reg_def[regno].size != -1)
212 memcpy(mem, (void *)regs + dbg_reg_def[regno].offset,
213 dbg_reg_def[regno].size);
214
215 switch (regno) {
216 case GDB_VBR:
217 __asm__ __volatile__ ("stc vbr, %0" : "=r" (mem));
218 break;
219 }
220
221 return dbg_reg_def[regno].name;
222}
223
224void sleeping_thread_to_gdb_regs(unsigned long *gdb_regs, struct task_struct *p)
225{
226 struct pt_regs *thread_regs = task_pt_regs(p);
227 int reg;
228
229 /* Initialize to zero */
230 for (reg = 0; reg < DBG_MAX_REG_NUM; reg++)
231 gdb_regs[reg] = 0;
232
233 /*
234 * Copy out GP regs 8 to 14.
235 *
236 * switch_to() relies on SR.RB toggling, so regs 0->7 are banked
237 * and need privileged instructions to get to. The r15 value we
238 * fetch from the thread info directly.
239 */
240 for (reg = GDB_R8; reg < GDB_R15; reg++)
241 gdb_regs[reg] = thread_regs->regs[reg];
242
243 gdb_regs[GDB_R15] = p->thread.sp;
244 gdb_regs[GDB_PC] = p->thread.pc;
245
246 /*
247 * Additional registers we have context for
248 */
249 gdb_regs[GDB_PR] = thread_regs->pr;
250 gdb_regs[GDB_GBR] = thread_regs->gbr;
251}
252
253int kgdb_arch_handle_exception(int e_vector, int signo, int err_code,
254 char *remcomInBuffer, char *remcomOutBuffer,
255 struct pt_regs *linux_regs)
256{
257 unsigned long addr;
258 char *ptr;
259
260 /* Undo any stepping we may have done */
261 undo_single_step(linux_regs);
262
263 switch (remcomInBuffer[0]) {
264 case 'c':
265 case 's':
266 /* try to read optional parameter, pc unchanged if no parm */
267 ptr = &remcomInBuffer[1];
268 if (kgdb_hex2long(&ptr, &addr))
269 linux_regs->pc = addr;
270 case 'D':
271 case 'k':
272 atomic_set(&kgdb_cpu_doing_single_step, -1);
273
274 if (remcomInBuffer[0] == 's') {
275 do_single_step(linux_regs);
276 kgdb_single_step = 1;
277
278 atomic_set(&kgdb_cpu_doing_single_step,
279 raw_smp_processor_id());
280 }
281
282 return 0;
283 }
284
285 /* this means that we do not want to exit from the handler: */
286 return -1;
287}
288
289unsigned long kgdb_arch_pc(int exception, struct pt_regs *regs)
290{
291 if (exception == 60)
292 return instruction_pointer(regs) - 2;
293 return instruction_pointer(regs);
294}
295
296void kgdb_arch_set_pc(struct pt_regs *regs, unsigned long ip)
297{
298 regs->pc = ip;
299}
300
301/*
302 * The primary entry points for the kgdb debug trap table entries.
303 */
304BUILD_TRAP_HANDLER(singlestep)
305{
306 unsigned long flags;
307 TRAP_HANDLER_DECL;
308
309 local_irq_save(flags);
310 regs->pc -= instruction_size(__raw_readw(regs->pc - 4));
311 kgdb_handle_exception(0, SIGTRAP, 0, regs);
312 local_irq_restore(flags);
313}
314
315static void kgdb_call_nmi_hook(void *ignored)
316{
317 kgdb_nmicallback(raw_smp_processor_id(), get_irq_regs());
318}
319
320void kgdb_roundup_cpus(unsigned long flags)
321{
322 local_irq_enable();
323 smp_call_function(kgdb_call_nmi_hook, NULL, 0);
324 local_irq_disable();
325}
326
327static int __kgdb_notify(struct die_args *args, unsigned long cmd)
328{
329 int ret;
330
331 switch (cmd) {
332 case DIE_BREAKPOINT:
333 /*
334 * This means a user thread is single stepping
335 * a system call which should be ignored
336 */
337 if (test_thread_flag(TIF_SINGLESTEP))
338 return NOTIFY_DONE;
339
340 ret = kgdb_handle_exception(args->trapnr & 0xff, args->signr,
341 args->err, args->regs);
342 if (ret)
343 return NOTIFY_DONE;
344
345 break;
346 }
347
348 return NOTIFY_STOP;
349}
350
351static int
352kgdb_notify(struct notifier_block *self, unsigned long cmd, void *ptr)
353{
354 unsigned long flags;
355 int ret;
356
357 local_irq_save(flags);
358 ret = __kgdb_notify(ptr, cmd);
359 local_irq_restore(flags);
360
361 return ret;
362}
363
364static struct notifier_block kgdb_notifier = {
365 .notifier_call = kgdb_notify,
366
367 /*
368 * Lowest-prio notifier priority, we want to be notified last:
369 */
370 .priority = -INT_MAX,
371};
372
373int kgdb_arch_init(void)
374{
375 return register_die_notifier(&kgdb_notifier);
376}
377
378void kgdb_arch_exit(void)
379{
380 unregister_die_notifier(&kgdb_notifier);
381}
382
383struct kgdb_arch arch_kgdb_ops = {
384 /* Breakpoint instruction: trapa #0x3c */
385#ifdef CONFIG_CPU_LITTLE_ENDIAN
386 .gdb_bpt_instr = { 0x3c, 0xc3 },
387#else
388 .gdb_bpt_instr = { 0xc3, 0x3c },
389#endif
390};
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * SuperH KGDB support
4 *
5 * Copyright (C) 2008 - 2012 Paul Mundt
6 *
7 * Single stepping taken from the old stub by Henry Bell and Jeremy Siegel.
8 */
9#include <linux/kgdb.h>
10#include <linux/kdebug.h>
11#include <linux/irq.h>
12#include <linux/io.h>
13#include <linux/sched.h>
14#include <linux/sched/task_stack.h>
15
16#include <asm/cacheflush.h>
17#include <asm/traps.h>
18
19/* Macros for single step instruction identification */
20#define OPCODE_BT(op) (((op) & 0xff00) == 0x8900)
21#define OPCODE_BF(op) (((op) & 0xff00) == 0x8b00)
22#define OPCODE_BTF_DISP(op) (((op) & 0x80) ? (((op) | 0xffffff80) << 1) : \
23 (((op) & 0x7f ) << 1))
24#define OPCODE_BFS(op) (((op) & 0xff00) == 0x8f00)
25#define OPCODE_BTS(op) (((op) & 0xff00) == 0x8d00)
26#define OPCODE_BRA(op) (((op) & 0xf000) == 0xa000)
27#define OPCODE_BRA_DISP(op) (((op) & 0x800) ? (((op) | 0xfffff800) << 1) : \
28 (((op) & 0x7ff) << 1))
29#define OPCODE_BRAF(op) (((op) & 0xf0ff) == 0x0023)
30#define OPCODE_BRAF_REG(op) (((op) & 0x0f00) >> 8)
31#define OPCODE_BSR(op) (((op) & 0xf000) == 0xb000)
32#define OPCODE_BSR_DISP(op) (((op) & 0x800) ? (((op) | 0xfffff800) << 1) : \
33 (((op) & 0x7ff) << 1))
34#define OPCODE_BSRF(op) (((op) & 0xf0ff) == 0x0003)
35#define OPCODE_BSRF_REG(op) (((op) >> 8) & 0xf)
36#define OPCODE_JMP(op) (((op) & 0xf0ff) == 0x402b)
37#define OPCODE_JMP_REG(op) (((op) >> 8) & 0xf)
38#define OPCODE_JSR(op) (((op) & 0xf0ff) == 0x400b)
39#define OPCODE_JSR_REG(op) (((op) >> 8) & 0xf)
40#define OPCODE_RTS(op) ((op) == 0xb)
41#define OPCODE_RTE(op) ((op) == 0x2b)
42
43#define SR_T_BIT_MASK 0x1
44#define STEP_OPCODE 0xc33d
45
46/* Calculate the new address for after a step */
47static short *get_step_address(struct pt_regs *linux_regs)
48{
49 insn_size_t op = __raw_readw(linux_regs->pc);
50 long addr;
51
52 /* BT */
53 if (OPCODE_BT(op)) {
54 if (linux_regs->sr & SR_T_BIT_MASK)
55 addr = linux_regs->pc + 4 + OPCODE_BTF_DISP(op);
56 else
57 addr = linux_regs->pc + 2;
58 }
59
60 /* BTS */
61 else if (OPCODE_BTS(op)) {
62 if (linux_regs->sr & SR_T_BIT_MASK)
63 addr = linux_regs->pc + 4 + OPCODE_BTF_DISP(op);
64 else
65 addr = linux_regs->pc + 4; /* Not in delay slot */
66 }
67
68 /* BF */
69 else if (OPCODE_BF(op)) {
70 if (!(linux_regs->sr & SR_T_BIT_MASK))
71 addr = linux_regs->pc + 4 + OPCODE_BTF_DISP(op);
72 else
73 addr = linux_regs->pc + 2;
74 }
75
76 /* BFS */
77 else if (OPCODE_BFS(op)) {
78 if (!(linux_regs->sr & SR_T_BIT_MASK))
79 addr = linux_regs->pc + 4 + OPCODE_BTF_DISP(op);
80 else
81 addr = linux_regs->pc + 4; /* Not in delay slot */
82 }
83
84 /* BRA */
85 else if (OPCODE_BRA(op))
86 addr = linux_regs->pc + 4 + OPCODE_BRA_DISP(op);
87
88 /* BRAF */
89 else if (OPCODE_BRAF(op))
90 addr = linux_regs->pc + 4
91 + linux_regs->regs[OPCODE_BRAF_REG(op)];
92
93 /* BSR */
94 else if (OPCODE_BSR(op))
95 addr = linux_regs->pc + 4 + OPCODE_BSR_DISP(op);
96
97 /* BSRF */
98 else if (OPCODE_BSRF(op))
99 addr = linux_regs->pc + 4
100 + linux_regs->regs[OPCODE_BSRF_REG(op)];
101
102 /* JMP */
103 else if (OPCODE_JMP(op))
104 addr = linux_regs->regs[OPCODE_JMP_REG(op)];
105
106 /* JSR */
107 else if (OPCODE_JSR(op))
108 addr = linux_regs->regs[OPCODE_JSR_REG(op)];
109
110 /* RTS */
111 else if (OPCODE_RTS(op))
112 addr = linux_regs->pr;
113
114 /* RTE */
115 else if (OPCODE_RTE(op))
116 addr = linux_regs->regs[15];
117
118 /* Other */
119 else
120 addr = linux_regs->pc + instruction_size(op);
121
122 flush_icache_range(addr, addr + instruction_size(op));
123 return (short *)addr;
124}
125
126/*
127 * Replace the instruction immediately after the current instruction
128 * (i.e. next in the expected flow of control) with a trap instruction,
129 * so that returning will cause only a single instruction to be executed.
130 * Note that this model is slightly broken for instructions with delay
131 * slots (e.g. B[TF]S, BSR, BRA etc), where both the branch and the
132 * instruction in the delay slot will be executed.
133 */
134
135static unsigned long stepped_address;
136static insn_size_t stepped_opcode;
137
138static void do_single_step(struct pt_regs *linux_regs)
139{
140 /* Determine where the target instruction will send us to */
141 unsigned short *addr = get_step_address(linux_regs);
142
143 stepped_address = (int)addr;
144
145 /* Replace it */
146 stepped_opcode = __raw_readw((long)addr);
147 *addr = STEP_OPCODE;
148
149 /* Flush and return */
150 flush_icache_range((long)addr, (long)addr +
151 instruction_size(stepped_opcode));
152}
153
154/* Undo a single step */
155static void undo_single_step(struct pt_regs *linux_regs)
156{
157 /* If we have stepped, put back the old instruction */
158 /* Use stepped_address in case we stopped elsewhere */
159 if (stepped_opcode != 0) {
160 __raw_writew(stepped_opcode, stepped_address);
161 flush_icache_range(stepped_address, stepped_address + 2);
162 }
163
164 stepped_opcode = 0;
165}
166
167struct dbg_reg_def_t dbg_reg_def[DBG_MAX_REG_NUM] = {
168 { "r0", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[0]) },
169 { "r1", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[1]) },
170 { "r2", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[2]) },
171 { "r3", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[3]) },
172 { "r4", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[4]) },
173 { "r5", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[5]) },
174 { "r6", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[6]) },
175 { "r7", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[7]) },
176 { "r8", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[8]) },
177 { "r9", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[9]) },
178 { "r10", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[10]) },
179 { "r11", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[11]) },
180 { "r12", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[12]) },
181 { "r13", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[13]) },
182 { "r14", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[14]) },
183 { "r15", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[15]) },
184 { "pc", GDB_SIZEOF_REG, offsetof(struct pt_regs, pc) },
185 { "pr", GDB_SIZEOF_REG, offsetof(struct pt_regs, pr) },
186 { "sr", GDB_SIZEOF_REG, offsetof(struct pt_regs, sr) },
187 { "gbr", GDB_SIZEOF_REG, offsetof(struct pt_regs, gbr) },
188 { "mach", GDB_SIZEOF_REG, offsetof(struct pt_regs, mach) },
189 { "macl", GDB_SIZEOF_REG, offsetof(struct pt_regs, macl) },
190 { "vbr", GDB_SIZEOF_REG, -1 },
191};
192
193int dbg_set_reg(int regno, void *mem, struct pt_regs *regs)
194{
195 if (regno < 0 || regno >= DBG_MAX_REG_NUM)
196 return -EINVAL;
197
198 if (dbg_reg_def[regno].offset != -1)
199 memcpy((void *)regs + dbg_reg_def[regno].offset, mem,
200 dbg_reg_def[regno].size);
201
202 return 0;
203}
204
205char *dbg_get_reg(int regno, void *mem, struct pt_regs *regs)
206{
207 if (regno >= DBG_MAX_REG_NUM || regno < 0)
208 return NULL;
209
210 if (dbg_reg_def[regno].size != -1)
211 memcpy(mem, (void *)regs + dbg_reg_def[regno].offset,
212 dbg_reg_def[regno].size);
213
214 switch (regno) {
215 case GDB_VBR:
216 __asm__ __volatile__ ("stc vbr, %0" : "=r" (mem));
217 break;
218 }
219
220 return dbg_reg_def[regno].name;
221}
222
223void sleeping_thread_to_gdb_regs(unsigned long *gdb_regs, struct task_struct *p)
224{
225 struct pt_regs *thread_regs = task_pt_regs(p);
226 int reg;
227
228 /* Initialize to zero */
229 for (reg = 0; reg < DBG_MAX_REG_NUM; reg++)
230 gdb_regs[reg] = 0;
231
232 /*
233 * Copy out GP regs 8 to 14.
234 *
235 * switch_to() relies on SR.RB toggling, so regs 0->7 are banked
236 * and need privileged instructions to get to. The r15 value we
237 * fetch from the thread info directly.
238 */
239 for (reg = GDB_R8; reg < GDB_R15; reg++)
240 gdb_regs[reg] = thread_regs->regs[reg];
241
242 gdb_regs[GDB_R15] = p->thread.sp;
243 gdb_regs[GDB_PC] = p->thread.pc;
244
245 /*
246 * Additional registers we have context for
247 */
248 gdb_regs[GDB_PR] = thread_regs->pr;
249 gdb_regs[GDB_GBR] = thread_regs->gbr;
250}
251
252int kgdb_arch_handle_exception(int e_vector, int signo, int err_code,
253 char *remcomInBuffer, char *remcomOutBuffer,
254 struct pt_regs *linux_regs)
255{
256 unsigned long addr;
257 char *ptr;
258
259 /* Undo any stepping we may have done */
260 undo_single_step(linux_regs);
261
262 switch (remcomInBuffer[0]) {
263 case 'c':
264 case 's':
265 /* try to read optional parameter, pc unchanged if no parm */
266 ptr = &remcomInBuffer[1];
267 if (kgdb_hex2long(&ptr, &addr))
268 linux_regs->pc = addr;
269 fallthrough;
270 case 'D':
271 case 'k':
272 atomic_set(&kgdb_cpu_doing_single_step, -1);
273
274 if (remcomInBuffer[0] == 's') {
275 do_single_step(linux_regs);
276 kgdb_single_step = 1;
277
278 atomic_set(&kgdb_cpu_doing_single_step,
279 raw_smp_processor_id());
280 }
281
282 return 0;
283 }
284
285 /* this means that we do not want to exit from the handler: */
286 return -1;
287}
288
289unsigned long kgdb_arch_pc(int exception, struct pt_regs *regs)
290{
291 if (exception == 60)
292 return instruction_pointer(regs) - 2;
293 return instruction_pointer(regs);
294}
295
296void kgdb_arch_set_pc(struct pt_regs *regs, unsigned long ip)
297{
298 regs->pc = ip;
299}
300
301/*
302 * The primary entry points for the kgdb debug trap table entries.
303 */
304BUILD_TRAP_HANDLER(singlestep)
305{
306 unsigned long flags;
307 TRAP_HANDLER_DECL;
308
309 local_irq_save(flags);
310 regs->pc -= instruction_size(__raw_readw(regs->pc - 4));
311 kgdb_handle_exception(0, SIGTRAP, 0, regs);
312 local_irq_restore(flags);
313}
314
315static int __kgdb_notify(struct die_args *args, unsigned long cmd)
316{
317 int ret;
318
319 switch (cmd) {
320 case DIE_BREAKPOINT:
321 /*
322 * This means a user thread is single stepping
323 * a system call which should be ignored
324 */
325 if (test_thread_flag(TIF_SINGLESTEP))
326 return NOTIFY_DONE;
327
328 ret = kgdb_handle_exception(args->trapnr & 0xff, args->signr,
329 args->err, args->regs);
330 if (ret)
331 return NOTIFY_DONE;
332
333 break;
334 }
335
336 return NOTIFY_STOP;
337}
338
339static int
340kgdb_notify(struct notifier_block *self, unsigned long cmd, void *ptr)
341{
342 unsigned long flags;
343 int ret;
344
345 local_irq_save(flags);
346 ret = __kgdb_notify(ptr, cmd);
347 local_irq_restore(flags);
348
349 return ret;
350}
351
352static struct notifier_block kgdb_notifier = {
353 .notifier_call = kgdb_notify,
354
355 /*
356 * Lowest-prio notifier priority, we want to be notified last:
357 */
358 .priority = -INT_MAX,
359};
360
361int kgdb_arch_init(void)
362{
363 return register_die_notifier(&kgdb_notifier);
364}
365
366void kgdb_arch_exit(void)
367{
368 unregister_die_notifier(&kgdb_notifier);
369}
370
371const struct kgdb_arch arch_kgdb_ops = {
372 /* Breakpoint instruction: trapa #0x3c */
373#ifdef CONFIG_CPU_LITTLE_ENDIAN
374 .gdb_bpt_instr = { 0x3c, 0xc3 },
375#else
376 .gdb_bpt_instr = { 0xc3, 0x3c },
377#endif
378};