Linux Audio

Check our new training course

Loading...
v4.6
  1/*
  2 * SuperH KGDB support
  3 *
  4 * Copyright (C) 2008 - 2012  Paul Mundt
  5 *
  6 * Single stepping taken from the old stub by Henry Bell and Jeremy Siegel.
  7 *
  8 * This file is subject to the terms and conditions of the GNU General Public
  9 * License.  See the file "COPYING" in the main directory of this archive
 10 * for more details.
 11 */
 12#include <linux/kgdb.h>
 13#include <linux/kdebug.h>
 14#include <linux/irq.h>
 15#include <linux/io.h>
 16#include <linux/sched.h>
 
 
 17#include <asm/cacheflush.h>
 18#include <asm/traps.h>
 19
 20/* Macros for single step instruction identification */
 21#define OPCODE_BT(op)		(((op) & 0xff00) == 0x8900)
 22#define OPCODE_BF(op)		(((op) & 0xff00) == 0x8b00)
 23#define OPCODE_BTF_DISP(op)	(((op) & 0x80) ? (((op) | 0xffffff80) << 1) : \
 24				 (((op) & 0x7f ) << 1))
 25#define OPCODE_BFS(op)		(((op) & 0xff00) == 0x8f00)
 26#define OPCODE_BTS(op)		(((op) & 0xff00) == 0x8d00)
 27#define OPCODE_BRA(op)		(((op) & 0xf000) == 0xa000)
 28#define OPCODE_BRA_DISP(op)	(((op) & 0x800) ? (((op) | 0xfffff800) << 1) : \
 29				 (((op) & 0x7ff) << 1))
 30#define OPCODE_BRAF(op)		(((op) & 0xf0ff) == 0x0023)
 31#define OPCODE_BRAF_REG(op)	(((op) & 0x0f00) >> 8)
 32#define OPCODE_BSR(op)		(((op) & 0xf000) == 0xb000)
 33#define OPCODE_BSR_DISP(op)	(((op) & 0x800) ? (((op) | 0xfffff800) << 1) : \
 34				 (((op) & 0x7ff) << 1))
 35#define OPCODE_BSRF(op)		(((op) & 0xf0ff) == 0x0003)
 36#define OPCODE_BSRF_REG(op)	(((op) >> 8) & 0xf)
 37#define OPCODE_JMP(op)		(((op) & 0xf0ff) == 0x402b)
 38#define OPCODE_JMP_REG(op)	(((op) >> 8) & 0xf)
 39#define OPCODE_JSR(op)		(((op) & 0xf0ff) == 0x400b)
 40#define OPCODE_JSR_REG(op)	(((op) >> 8) & 0xf)
 41#define OPCODE_RTS(op)		((op) == 0xb)
 42#define OPCODE_RTE(op)		((op) == 0x2b)
 43
 44#define SR_T_BIT_MASK           0x1
 45#define STEP_OPCODE             0xc33d
 46
 47/* Calculate the new address for after a step */
 48static short *get_step_address(struct pt_regs *linux_regs)
 49{
 50	insn_size_t op = __raw_readw(linux_regs->pc);
 51	long addr;
 52
 53	/* BT */
 54	if (OPCODE_BT(op)) {
 55		if (linux_regs->sr & SR_T_BIT_MASK)
 56			addr = linux_regs->pc + 4 + OPCODE_BTF_DISP(op);
 57		else
 58			addr = linux_regs->pc + 2;
 59	}
 60
 61	/* BTS */
 62	else if (OPCODE_BTS(op)) {
 63		if (linux_regs->sr & SR_T_BIT_MASK)
 64			addr = linux_regs->pc + 4 + OPCODE_BTF_DISP(op);
 65		else
 66			addr = linux_regs->pc + 4;	/* Not in delay slot */
 67	}
 68
 69	/* BF */
 70	else if (OPCODE_BF(op)) {
 71		if (!(linux_regs->sr & SR_T_BIT_MASK))
 72			addr = linux_regs->pc + 4 + OPCODE_BTF_DISP(op);
 73		else
 74			addr = linux_regs->pc + 2;
 75	}
 76
 77	/* BFS */
 78	else if (OPCODE_BFS(op)) {
 79		if (!(linux_regs->sr & SR_T_BIT_MASK))
 80			addr = linux_regs->pc + 4 + OPCODE_BTF_DISP(op);
 81		else
 82			addr = linux_regs->pc + 4;	/* Not in delay slot */
 83	}
 84
 85	/* BRA */
 86	else if (OPCODE_BRA(op))
 87		addr = linux_regs->pc + 4 + OPCODE_BRA_DISP(op);
 88
 89	/* BRAF */
 90	else if (OPCODE_BRAF(op))
 91		addr = linux_regs->pc + 4
 92		    + linux_regs->regs[OPCODE_BRAF_REG(op)];
 93
 94	/* BSR */
 95	else if (OPCODE_BSR(op))
 96		addr = linux_regs->pc + 4 + OPCODE_BSR_DISP(op);
 97
 98	/* BSRF */
 99	else if (OPCODE_BSRF(op))
100		addr = linux_regs->pc + 4
101		    + linux_regs->regs[OPCODE_BSRF_REG(op)];
102
103	/* JMP */
104	else if (OPCODE_JMP(op))
105		addr = linux_regs->regs[OPCODE_JMP_REG(op)];
106
107	/* JSR */
108	else if (OPCODE_JSR(op))
109		addr = linux_regs->regs[OPCODE_JSR_REG(op)];
110
111	/* RTS */
112	else if (OPCODE_RTS(op))
113		addr = linux_regs->pr;
114
115	/* RTE */
116	else if (OPCODE_RTE(op))
117		addr = linux_regs->regs[15];
118
119	/* Other */
120	else
121		addr = linux_regs->pc + instruction_size(op);
122
123	flush_icache_range(addr, addr + instruction_size(op));
124	return (short *)addr;
125}
126
127/*
128 * Replace the instruction immediately after the current instruction
129 * (i.e. next in the expected flow of control) with a trap instruction,
130 * so that returning will cause only a single instruction to be executed.
131 * Note that this model is slightly broken for instructions with delay
132 * slots (e.g. B[TF]S, BSR, BRA etc), where both the branch and the
133 * instruction in the delay slot will be executed.
134 */
135
136static unsigned long stepped_address;
137static insn_size_t stepped_opcode;
138
139static void do_single_step(struct pt_regs *linux_regs)
140{
141	/* Determine where the target instruction will send us to */
142	unsigned short *addr = get_step_address(linux_regs);
143
144	stepped_address = (int)addr;
145
146	/* Replace it */
147	stepped_opcode = __raw_readw((long)addr);
148	*addr = STEP_OPCODE;
149
150	/* Flush and return */
151	flush_icache_range((long)addr, (long)addr +
152			   instruction_size(stepped_opcode));
153}
154
155/* Undo a single step */
156static void undo_single_step(struct pt_regs *linux_regs)
157{
158	/* If we have stepped, put back the old instruction */
159	/* Use stepped_address in case we stopped elsewhere */
160	if (stepped_opcode != 0) {
161		__raw_writew(stepped_opcode, stepped_address);
162		flush_icache_range(stepped_address, stepped_address + 2);
163	}
164
165	stepped_opcode = 0;
166}
167
168struct dbg_reg_def_t dbg_reg_def[DBG_MAX_REG_NUM] = {
169	{ "r0",		GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[0]) },
170	{ "r1",		GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[1]) },
171	{ "r2",		GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[2]) },
172	{ "r3",		GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[3]) },
173	{ "r4",		GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[4]) },
174	{ "r5",		GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[5]) },
175	{ "r6",		GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[6]) },
176	{ "r7",		GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[7]) },
177	{ "r8",		GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[8]) },
178	{ "r9",		GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[9]) },
179	{ "r10",	GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[10]) },
180	{ "r11",	GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[11]) },
181	{ "r12",	GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[12]) },
182	{ "r13",	GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[13]) },
183	{ "r14",	GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[14]) },
184	{ "r15",	GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[15]) },
185	{ "pc",		GDB_SIZEOF_REG, offsetof(struct pt_regs, pc) },
186	{ "pr",		GDB_SIZEOF_REG, offsetof(struct pt_regs, pr) },
187	{ "sr",		GDB_SIZEOF_REG, offsetof(struct pt_regs, sr) },
188	{ "gbr",	GDB_SIZEOF_REG, offsetof(struct pt_regs, gbr) },
189	{ "mach",	GDB_SIZEOF_REG, offsetof(struct pt_regs, mach) },
190	{ "macl",	GDB_SIZEOF_REG, offsetof(struct pt_regs, macl) },
191	{ "vbr",	GDB_SIZEOF_REG, -1 },
192};
193
194int dbg_set_reg(int regno, void *mem, struct pt_regs *regs)
195{
196	if (regno < 0 || regno >= DBG_MAX_REG_NUM)
197		return -EINVAL;
198
199	if (dbg_reg_def[regno].offset != -1)
200		memcpy((void *)regs + dbg_reg_def[regno].offset, mem,
201		       dbg_reg_def[regno].size);
202
203	return 0;
204}
205
206char *dbg_get_reg(int regno, void *mem, struct pt_regs *regs)
207{
208	if (regno >= DBG_MAX_REG_NUM || regno < 0)
209		return NULL;
210
211	if (dbg_reg_def[regno].size != -1)
212		memcpy(mem, (void *)regs + dbg_reg_def[regno].offset,
213		       dbg_reg_def[regno].size);
214
215	switch (regno) {
216	case GDB_VBR:
217		__asm__ __volatile__ ("stc vbr, %0" : "=r" (mem));
218		break;
219	}
220
221	return dbg_reg_def[regno].name;
222}
223
224void sleeping_thread_to_gdb_regs(unsigned long *gdb_regs, struct task_struct *p)
225{
226	struct pt_regs *thread_regs = task_pt_regs(p);
227	int reg;
228
229	/* Initialize to zero */
230	for (reg = 0; reg < DBG_MAX_REG_NUM; reg++)
231		gdb_regs[reg] = 0;
232
233	/*
234	 * Copy out GP regs 8 to 14.
235	 *
236	 * switch_to() relies on SR.RB toggling, so regs 0->7 are banked
237	 * and need privileged instructions to get to. The r15 value we
238	 * fetch from the thread info directly.
239	 */
240	for (reg = GDB_R8; reg < GDB_R15; reg++)
241		gdb_regs[reg] = thread_regs->regs[reg];
242
243	gdb_regs[GDB_R15] = p->thread.sp;
244	gdb_regs[GDB_PC] = p->thread.pc;
245
246	/*
247	 * Additional registers we have context for
248	 */
249	gdb_regs[GDB_PR] = thread_regs->pr;
250	gdb_regs[GDB_GBR] = thread_regs->gbr;
251}
252
253int kgdb_arch_handle_exception(int e_vector, int signo, int err_code,
254			       char *remcomInBuffer, char *remcomOutBuffer,
255			       struct pt_regs *linux_regs)
256{
257	unsigned long addr;
258	char *ptr;
259
260	/* Undo any stepping we may have done */
261	undo_single_step(linux_regs);
262
263	switch (remcomInBuffer[0]) {
264	case 'c':
265	case 's':
266		/* try to read optional parameter, pc unchanged if no parm */
267		ptr = &remcomInBuffer[1];
268		if (kgdb_hex2long(&ptr, &addr))
269			linux_regs->pc = addr;
270	case 'D':
271	case 'k':
272		atomic_set(&kgdb_cpu_doing_single_step, -1);
273
274		if (remcomInBuffer[0] == 's') {
275			do_single_step(linux_regs);
276			kgdb_single_step = 1;
277
278			atomic_set(&kgdb_cpu_doing_single_step,
279				   raw_smp_processor_id());
280		}
281
282		return 0;
283	}
284
285	/* this means that we do not want to exit from the handler: */
286	return -1;
287}
288
289unsigned long kgdb_arch_pc(int exception, struct pt_regs *regs)
290{
291	if (exception == 60)
292		return instruction_pointer(regs) - 2;
293	return instruction_pointer(regs);
294}
295
296void kgdb_arch_set_pc(struct pt_regs *regs, unsigned long ip)
297{
298	regs->pc = ip;
299}
300
301/*
302 * The primary entry points for the kgdb debug trap table entries.
303 */
304BUILD_TRAP_HANDLER(singlestep)
305{
306	unsigned long flags;
307	TRAP_HANDLER_DECL;
308
309	local_irq_save(flags);
310	regs->pc -= instruction_size(__raw_readw(regs->pc - 4));
311	kgdb_handle_exception(0, SIGTRAP, 0, regs);
312	local_irq_restore(flags);
313}
314
315static void kgdb_call_nmi_hook(void *ignored)
316{
317	kgdb_nmicallback(raw_smp_processor_id(), get_irq_regs());
318}
319
320void kgdb_roundup_cpus(unsigned long flags)
321{
322	local_irq_enable();
323	smp_call_function(kgdb_call_nmi_hook, NULL, 0);
324	local_irq_disable();
325}
326
327static int __kgdb_notify(struct die_args *args, unsigned long cmd)
328{
329	int ret;
330
331	switch (cmd) {
332	case DIE_BREAKPOINT:
333		/*
334		 * This means a user thread is single stepping
335		 * a system call which should be ignored
336		 */
337		if (test_thread_flag(TIF_SINGLESTEP))
338			return NOTIFY_DONE;
339
340		ret = kgdb_handle_exception(args->trapnr & 0xff, args->signr,
341					    args->err, args->regs);
342		if (ret)
343			return NOTIFY_DONE;
344
345		break;
346	}
347
348	return NOTIFY_STOP;
349}
350
351static int
352kgdb_notify(struct notifier_block *self, unsigned long cmd, void *ptr)
353{
354	unsigned long flags;
355	int ret;
356
357	local_irq_save(flags);
358	ret = __kgdb_notify(ptr, cmd);
359	local_irq_restore(flags);
360
361	return ret;
362}
363
364static struct notifier_block kgdb_notifier = {
365	.notifier_call	= kgdb_notify,
366
367	/*
368	 * Lowest-prio notifier priority, we want to be notified last:
369	 */
370	.priority	= -INT_MAX,
371};
372
373int kgdb_arch_init(void)
374{
375	return register_die_notifier(&kgdb_notifier);
376}
377
378void kgdb_arch_exit(void)
379{
380	unregister_die_notifier(&kgdb_notifier);
381}
382
383struct kgdb_arch arch_kgdb_ops = {
384	/* Breakpoint instruction: trapa #0x3c */
385#ifdef CONFIG_CPU_LITTLE_ENDIAN
386	.gdb_bpt_instr		= { 0x3c, 0xc3 },
387#else
388	.gdb_bpt_instr		= { 0xc3, 0x3c },
389#endif
390};
v4.17
  1/*
  2 * SuperH KGDB support
  3 *
  4 * Copyright (C) 2008 - 2012  Paul Mundt
  5 *
  6 * Single stepping taken from the old stub by Henry Bell and Jeremy Siegel.
  7 *
  8 * This file is subject to the terms and conditions of the GNU General Public
  9 * License.  See the file "COPYING" in the main directory of this archive
 10 * for more details.
 11 */
 12#include <linux/kgdb.h>
 13#include <linux/kdebug.h>
 14#include <linux/irq.h>
 15#include <linux/io.h>
 16#include <linux/sched.h>
 17#include <linux/sched/task_stack.h>
 18
 19#include <asm/cacheflush.h>
 20#include <asm/traps.h>
 21
 22/* Macros for single step instruction identification */
 23#define OPCODE_BT(op)		(((op) & 0xff00) == 0x8900)
 24#define OPCODE_BF(op)		(((op) & 0xff00) == 0x8b00)
 25#define OPCODE_BTF_DISP(op)	(((op) & 0x80) ? (((op) | 0xffffff80) << 1) : \
 26				 (((op) & 0x7f ) << 1))
 27#define OPCODE_BFS(op)		(((op) & 0xff00) == 0x8f00)
 28#define OPCODE_BTS(op)		(((op) & 0xff00) == 0x8d00)
 29#define OPCODE_BRA(op)		(((op) & 0xf000) == 0xa000)
 30#define OPCODE_BRA_DISP(op)	(((op) & 0x800) ? (((op) | 0xfffff800) << 1) : \
 31				 (((op) & 0x7ff) << 1))
 32#define OPCODE_BRAF(op)		(((op) & 0xf0ff) == 0x0023)
 33#define OPCODE_BRAF_REG(op)	(((op) & 0x0f00) >> 8)
 34#define OPCODE_BSR(op)		(((op) & 0xf000) == 0xb000)
 35#define OPCODE_BSR_DISP(op)	(((op) & 0x800) ? (((op) | 0xfffff800) << 1) : \
 36				 (((op) & 0x7ff) << 1))
 37#define OPCODE_BSRF(op)		(((op) & 0xf0ff) == 0x0003)
 38#define OPCODE_BSRF_REG(op)	(((op) >> 8) & 0xf)
 39#define OPCODE_JMP(op)		(((op) & 0xf0ff) == 0x402b)
 40#define OPCODE_JMP_REG(op)	(((op) >> 8) & 0xf)
 41#define OPCODE_JSR(op)		(((op) & 0xf0ff) == 0x400b)
 42#define OPCODE_JSR_REG(op)	(((op) >> 8) & 0xf)
 43#define OPCODE_RTS(op)		((op) == 0xb)
 44#define OPCODE_RTE(op)		((op) == 0x2b)
 45
 46#define SR_T_BIT_MASK           0x1
 47#define STEP_OPCODE             0xc33d
 48
 49/* Calculate the new address for after a step */
 50static short *get_step_address(struct pt_regs *linux_regs)
 51{
 52	insn_size_t op = __raw_readw(linux_regs->pc);
 53	long addr;
 54
 55	/* BT */
 56	if (OPCODE_BT(op)) {
 57		if (linux_regs->sr & SR_T_BIT_MASK)
 58			addr = linux_regs->pc + 4 + OPCODE_BTF_DISP(op);
 59		else
 60			addr = linux_regs->pc + 2;
 61	}
 62
 63	/* BTS */
 64	else if (OPCODE_BTS(op)) {
 65		if (linux_regs->sr & SR_T_BIT_MASK)
 66			addr = linux_regs->pc + 4 + OPCODE_BTF_DISP(op);
 67		else
 68			addr = linux_regs->pc + 4;	/* Not in delay slot */
 69	}
 70
 71	/* BF */
 72	else if (OPCODE_BF(op)) {
 73		if (!(linux_regs->sr & SR_T_BIT_MASK))
 74			addr = linux_regs->pc + 4 + OPCODE_BTF_DISP(op);
 75		else
 76			addr = linux_regs->pc + 2;
 77	}
 78
 79	/* BFS */
 80	else if (OPCODE_BFS(op)) {
 81		if (!(linux_regs->sr & SR_T_BIT_MASK))
 82			addr = linux_regs->pc + 4 + OPCODE_BTF_DISP(op);
 83		else
 84			addr = linux_regs->pc + 4;	/* Not in delay slot */
 85	}
 86
 87	/* BRA */
 88	else if (OPCODE_BRA(op))
 89		addr = linux_regs->pc + 4 + OPCODE_BRA_DISP(op);
 90
 91	/* BRAF */
 92	else if (OPCODE_BRAF(op))
 93		addr = linux_regs->pc + 4
 94		    + linux_regs->regs[OPCODE_BRAF_REG(op)];
 95
 96	/* BSR */
 97	else if (OPCODE_BSR(op))
 98		addr = linux_regs->pc + 4 + OPCODE_BSR_DISP(op);
 99
100	/* BSRF */
101	else if (OPCODE_BSRF(op))
102		addr = linux_regs->pc + 4
103		    + linux_regs->regs[OPCODE_BSRF_REG(op)];
104
105	/* JMP */
106	else if (OPCODE_JMP(op))
107		addr = linux_regs->regs[OPCODE_JMP_REG(op)];
108
109	/* JSR */
110	else if (OPCODE_JSR(op))
111		addr = linux_regs->regs[OPCODE_JSR_REG(op)];
112
113	/* RTS */
114	else if (OPCODE_RTS(op))
115		addr = linux_regs->pr;
116
117	/* RTE */
118	else if (OPCODE_RTE(op))
119		addr = linux_regs->regs[15];
120
121	/* Other */
122	else
123		addr = linux_regs->pc + instruction_size(op);
124
125	flush_icache_range(addr, addr + instruction_size(op));
126	return (short *)addr;
127}
128
129/*
130 * Replace the instruction immediately after the current instruction
131 * (i.e. next in the expected flow of control) with a trap instruction,
132 * so that returning will cause only a single instruction to be executed.
133 * Note that this model is slightly broken for instructions with delay
134 * slots (e.g. B[TF]S, BSR, BRA etc), where both the branch and the
135 * instruction in the delay slot will be executed.
136 */
137
138static unsigned long stepped_address;
139static insn_size_t stepped_opcode;
140
141static void do_single_step(struct pt_regs *linux_regs)
142{
143	/* Determine where the target instruction will send us to */
144	unsigned short *addr = get_step_address(linux_regs);
145
146	stepped_address = (int)addr;
147
148	/* Replace it */
149	stepped_opcode = __raw_readw((long)addr);
150	*addr = STEP_OPCODE;
151
152	/* Flush and return */
153	flush_icache_range((long)addr, (long)addr +
154			   instruction_size(stepped_opcode));
155}
156
157/* Undo a single step */
158static void undo_single_step(struct pt_regs *linux_regs)
159{
160	/* If we have stepped, put back the old instruction */
161	/* Use stepped_address in case we stopped elsewhere */
162	if (stepped_opcode != 0) {
163		__raw_writew(stepped_opcode, stepped_address);
164		flush_icache_range(stepped_address, stepped_address + 2);
165	}
166
167	stepped_opcode = 0;
168}
169
170struct dbg_reg_def_t dbg_reg_def[DBG_MAX_REG_NUM] = {
171	{ "r0",		GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[0]) },
172	{ "r1",		GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[1]) },
173	{ "r2",		GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[2]) },
174	{ "r3",		GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[3]) },
175	{ "r4",		GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[4]) },
176	{ "r5",		GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[5]) },
177	{ "r6",		GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[6]) },
178	{ "r7",		GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[7]) },
179	{ "r8",		GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[8]) },
180	{ "r9",		GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[9]) },
181	{ "r10",	GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[10]) },
182	{ "r11",	GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[11]) },
183	{ "r12",	GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[12]) },
184	{ "r13",	GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[13]) },
185	{ "r14",	GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[14]) },
186	{ "r15",	GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[15]) },
187	{ "pc",		GDB_SIZEOF_REG, offsetof(struct pt_regs, pc) },
188	{ "pr",		GDB_SIZEOF_REG, offsetof(struct pt_regs, pr) },
189	{ "sr",		GDB_SIZEOF_REG, offsetof(struct pt_regs, sr) },
190	{ "gbr",	GDB_SIZEOF_REG, offsetof(struct pt_regs, gbr) },
191	{ "mach",	GDB_SIZEOF_REG, offsetof(struct pt_regs, mach) },
192	{ "macl",	GDB_SIZEOF_REG, offsetof(struct pt_regs, macl) },
193	{ "vbr",	GDB_SIZEOF_REG, -1 },
194};
195
196int dbg_set_reg(int regno, void *mem, struct pt_regs *regs)
197{
198	if (regno < 0 || regno >= DBG_MAX_REG_NUM)
199		return -EINVAL;
200
201	if (dbg_reg_def[regno].offset != -1)
202		memcpy((void *)regs + dbg_reg_def[regno].offset, mem,
203		       dbg_reg_def[regno].size);
204
205	return 0;
206}
207
208char *dbg_get_reg(int regno, void *mem, struct pt_regs *regs)
209{
210	if (regno >= DBG_MAX_REG_NUM || regno < 0)
211		return NULL;
212
213	if (dbg_reg_def[regno].size != -1)
214		memcpy(mem, (void *)regs + dbg_reg_def[regno].offset,
215		       dbg_reg_def[regno].size);
216
217	switch (regno) {
218	case GDB_VBR:
219		__asm__ __volatile__ ("stc vbr, %0" : "=r" (mem));
220		break;
221	}
222
223	return dbg_reg_def[regno].name;
224}
225
226void sleeping_thread_to_gdb_regs(unsigned long *gdb_regs, struct task_struct *p)
227{
228	struct pt_regs *thread_regs = task_pt_regs(p);
229	int reg;
230
231	/* Initialize to zero */
232	for (reg = 0; reg < DBG_MAX_REG_NUM; reg++)
233		gdb_regs[reg] = 0;
234
235	/*
236	 * Copy out GP regs 8 to 14.
237	 *
238	 * switch_to() relies on SR.RB toggling, so regs 0->7 are banked
239	 * and need privileged instructions to get to. The r15 value we
240	 * fetch from the thread info directly.
241	 */
242	for (reg = GDB_R8; reg < GDB_R15; reg++)
243		gdb_regs[reg] = thread_regs->regs[reg];
244
245	gdb_regs[GDB_R15] = p->thread.sp;
246	gdb_regs[GDB_PC] = p->thread.pc;
247
248	/*
249	 * Additional registers we have context for
250	 */
251	gdb_regs[GDB_PR] = thread_regs->pr;
252	gdb_regs[GDB_GBR] = thread_regs->gbr;
253}
254
255int kgdb_arch_handle_exception(int e_vector, int signo, int err_code,
256			       char *remcomInBuffer, char *remcomOutBuffer,
257			       struct pt_regs *linux_regs)
258{
259	unsigned long addr;
260	char *ptr;
261
262	/* Undo any stepping we may have done */
263	undo_single_step(linux_regs);
264
265	switch (remcomInBuffer[0]) {
266	case 'c':
267	case 's':
268		/* try to read optional parameter, pc unchanged if no parm */
269		ptr = &remcomInBuffer[1];
270		if (kgdb_hex2long(&ptr, &addr))
271			linux_regs->pc = addr;
272	case 'D':
273	case 'k':
274		atomic_set(&kgdb_cpu_doing_single_step, -1);
275
276		if (remcomInBuffer[0] == 's') {
277			do_single_step(linux_regs);
278			kgdb_single_step = 1;
279
280			atomic_set(&kgdb_cpu_doing_single_step,
281				   raw_smp_processor_id());
282		}
283
284		return 0;
285	}
286
287	/* this means that we do not want to exit from the handler: */
288	return -1;
289}
290
291unsigned long kgdb_arch_pc(int exception, struct pt_regs *regs)
292{
293	if (exception == 60)
294		return instruction_pointer(regs) - 2;
295	return instruction_pointer(regs);
296}
297
298void kgdb_arch_set_pc(struct pt_regs *regs, unsigned long ip)
299{
300	regs->pc = ip;
301}
302
303/*
304 * The primary entry points for the kgdb debug trap table entries.
305 */
306BUILD_TRAP_HANDLER(singlestep)
307{
308	unsigned long flags;
309	TRAP_HANDLER_DECL;
310
311	local_irq_save(flags);
312	regs->pc -= instruction_size(__raw_readw(regs->pc - 4));
313	kgdb_handle_exception(0, SIGTRAP, 0, regs);
314	local_irq_restore(flags);
315}
316
317static void kgdb_call_nmi_hook(void *ignored)
318{
319	kgdb_nmicallback(raw_smp_processor_id(), get_irq_regs());
320}
321
322void kgdb_roundup_cpus(unsigned long flags)
323{
324	local_irq_enable();
325	smp_call_function(kgdb_call_nmi_hook, NULL, 0);
326	local_irq_disable();
327}
328
329static int __kgdb_notify(struct die_args *args, unsigned long cmd)
330{
331	int ret;
332
333	switch (cmd) {
334	case DIE_BREAKPOINT:
335		/*
336		 * This means a user thread is single stepping
337		 * a system call which should be ignored
338		 */
339		if (test_thread_flag(TIF_SINGLESTEP))
340			return NOTIFY_DONE;
341
342		ret = kgdb_handle_exception(args->trapnr & 0xff, args->signr,
343					    args->err, args->regs);
344		if (ret)
345			return NOTIFY_DONE;
346
347		break;
348	}
349
350	return NOTIFY_STOP;
351}
352
353static int
354kgdb_notify(struct notifier_block *self, unsigned long cmd, void *ptr)
355{
356	unsigned long flags;
357	int ret;
358
359	local_irq_save(flags);
360	ret = __kgdb_notify(ptr, cmd);
361	local_irq_restore(flags);
362
363	return ret;
364}
365
366static struct notifier_block kgdb_notifier = {
367	.notifier_call	= kgdb_notify,
368
369	/*
370	 * Lowest-prio notifier priority, we want to be notified last:
371	 */
372	.priority	= -INT_MAX,
373};
374
375int kgdb_arch_init(void)
376{
377	return register_die_notifier(&kgdb_notifier);
378}
379
380void kgdb_arch_exit(void)
381{
382	unregister_die_notifier(&kgdb_notifier);
383}
384
385struct kgdb_arch arch_kgdb_ops = {
386	/* Breakpoint instruction: trapa #0x3c */
387#ifdef CONFIG_CPU_LITTLE_ENDIAN
388	.gdb_bpt_instr		= { 0x3c, 0xc3 },
389#else
390	.gdb_bpt_instr		= { 0xc3, 0x3c },
391#endif
392};