Linux Audio

Check our new training course

Loading...
v4.6
 
  1/*
  2 *  linux/arch/parisc/kernel/time.c
  3 *
  4 *  Copyright (C) 1991, 1992, 1995  Linus Torvalds
  5 *  Modifications for ARM (C) 1994, 1995, 1996,1997 Russell King
  6 *  Copyright (C) 1999 SuSE GmbH, (Philipp Rumpf, prumpf@tux.org)
  7 *
  8 * 1994-07-02  Alan Modra
  9 *             fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime
 10 * 1998-12-20  Updated NTP code according to technical memorandum Jan '96
 11 *             "A Kernel Model for Precision Timekeeping" by Dave Mills
 12 */
 13#include <linux/errno.h>
 14#include <linux/module.h>
 
 15#include <linux/sched.h>
 
 
 16#include <linux/kernel.h>
 17#include <linux/param.h>
 18#include <linux/string.h>
 19#include <linux/mm.h>
 20#include <linux/interrupt.h>
 21#include <linux/time.h>
 22#include <linux/init.h>
 23#include <linux/smp.h>
 24#include <linux/profile.h>
 25#include <linux/clocksource.h>
 26#include <linux/platform_device.h>
 27#include <linux/ftrace.h>
 28
 29#include <asm/uaccess.h>
 30#include <asm/io.h>
 31#include <asm/irq.h>
 32#include <asm/page.h>
 33#include <asm/param.h>
 34#include <asm/pdc.h>
 35#include <asm/led.h>
 36
 37#include <linux/timex.h>
 38
 39static unsigned long clocktick __read_mostly;	/* timer cycles per tick */
 
 
 40
 41/*
 42 * We keep time on PA-RISC Linux by using the Interval Timer which is
 43 * a pair of registers; one is read-only and one is write-only; both
 44 * accessed through CR16.  The read-only register is 32 or 64 bits wide,
 45 * and increments by 1 every CPU clock tick.  The architecture only
 46 * guarantees us a rate between 0.5 and 2, but all implementations use a
 47 * rate of 1.  The write-only register is 32-bits wide.  When the lowest
 48 * 32 bits of the read-only register compare equal to the write-only
 49 * register, it raises a maskable external interrupt.  Each processor has
 50 * an Interval Timer of its own and they are not synchronised.  
 51 *
 52 * We want to generate an interrupt every 1/HZ seconds.  So we program
 53 * CR16 to interrupt every @clocktick cycles.  The it_value in cpu_data
 54 * is programmed with the intended time of the next tick.  We can be
 55 * held off for an arbitrarily long period of time by interrupts being
 56 * disabled, so we may miss one or more ticks.
 57 */
 58irqreturn_t __irq_entry timer_interrupt(int irq, void *dev_id)
 59{
 60	unsigned long now, now2;
 61	unsigned long next_tick;
 62	unsigned long cycles_elapsed, ticks_elapsed = 1;
 63	unsigned long cycles_remainder;
 64	unsigned int cpu = smp_processor_id();
 65	struct cpuinfo_parisc *cpuinfo = &per_cpu(cpu_data, cpu);
 66
 67	/* gcc can optimize for "read-only" case with a local clocktick */
 68	unsigned long cpt = clocktick;
 69
 70	profile_tick(CPU_PROFILING);
 71
 72	/* Initialize next_tick to the expected tick time. */
 73	next_tick = cpuinfo->it_value;
 74
 75	/* Get current cycle counter (Control Register 16). */
 76	now = mfctl(16);
 
 
 
 
 77
 78	cycles_elapsed = now - next_tick;
 79
 80	if ((cycles_elapsed >> 6) < cpt) {
 81		/* use "cheap" math (add/subtract) instead
 82		 * of the more expensive div/mul method
 83		 */
 84		cycles_remainder = cycles_elapsed;
 85		while (cycles_remainder > cpt) {
 86			cycles_remainder -= cpt;
 87			ticks_elapsed++;
 88		}
 89	} else {
 90		/* TODO: Reduce this to one fdiv op */
 91		cycles_remainder = cycles_elapsed % cpt;
 92		ticks_elapsed += cycles_elapsed / cpt;
 93	}
 94
 95	/* convert from "division remainder" to "remainder of clock tick" */
 96	cycles_remainder = cpt - cycles_remainder;
 97
 98	/* Determine when (in CR16 cycles) next IT interrupt will fire.
 99	 * We want IT to fire modulo clocktick even if we miss/skip some.
100	 * But those interrupts don't in fact get delivered that regularly.
101	 */
102	next_tick = now + cycles_remainder;
103
104	cpuinfo->it_value = next_tick;
105
106	/* Program the IT when to deliver the next interrupt.
107	 * Only bottom 32-bits of next_tick are writable in CR16!
108	 */
109	mtctl(next_tick, 16);
110
111	/* Skip one clocktick on purpose if we missed next_tick.
112	 * The new CR16 must be "later" than current CR16 otherwise
113	 * itimer would not fire until CR16 wrapped - e.g 4 seconds
114	 * later on a 1Ghz processor. We'll account for the missed
115	 * tick on the next timer interrupt.
 
 
116	 *
117	 * "next_tick - now" will always give the difference regardless
118	 * if one or the other wrapped. If "now" is "bigger" we'll end up
119	 * with a very large unsigned number.
120	 */
121	now2 = mfctl(16);
122	if (next_tick - now2 > cpt)
123		mtctl(next_tick+cpt, 16);
124
125#if 1
126/*
127 * GGG: DEBUG code for how many cycles programming CR16 used.
128 */
129	if (unlikely(now2 - now > 0x3000)) 	/* 12K cycles */
130		printk (KERN_CRIT "timer_interrupt(CPU %d): SLOW! 0x%lx cycles!"
131			" cyc %lX rem %lX "
132			" next/now %lX/%lX\n",
133			cpu, now2 - now, cycles_elapsed, cycles_remainder,
134			next_tick, now );
135#endif
136
137	/* Can we differentiate between "early CR16" (aka Scenario 1) and
138	 * "long delay" (aka Scenario 3)? I don't think so.
139	 *
140	 * Timer_interrupt will be delivered at least a few hundred cycles
141	 * after the IT fires. But it's arbitrary how much time passes
142	 * before we call it "late". I've picked one second.
143	 *
144	 * It's important NO printk's are between reading CR16 and
145	 * setting up the next value. May introduce huge variance.
146	 */
147	if (unlikely(ticks_elapsed > HZ)) {
148		/* Scenario 3: very long delay?  bad in any case */
149		printk (KERN_CRIT "timer_interrupt(CPU %d): delayed!"
150			" cycles %lX rem %lX "
151			" next/now %lX/%lX\n",
152			cpu,
153			cycles_elapsed, cycles_remainder,
154			next_tick, now );
155	}
156
157	/* Done mucking with unreliable delivery of interrupts.
158	 * Go do system house keeping.
 
 
 
159	 */
160
161	if (!--cpuinfo->prof_counter) {
162		cpuinfo->prof_counter = cpuinfo->prof_multiplier;
163		update_process_times(user_mode(get_irq_regs()));
164	}
165
166	if (cpu == 0)
167		xtime_update(ticks_elapsed);
168
169	return IRQ_HANDLED;
170}
171
172
173unsigned long profile_pc(struct pt_regs *regs)
174{
175	unsigned long pc = instruction_pointer(regs);
176
177	if (regs->gr[0] & PSW_N)
178		pc -= 4;
179
180#ifdef CONFIG_SMP
181	if (in_lock_functions(pc))
182		pc = regs->gr[2];
183#endif
184
185	return pc;
186}
187EXPORT_SYMBOL(profile_pc);
188
189
190/* clock source code */
191
192static cycle_t read_cr16(struct clocksource *cs)
193{
194	return get_cycles();
195}
196
197static struct clocksource clocksource_cr16 = {
198	.name			= "cr16",
199	.rating			= 300,
200	.read			= read_cr16,
201	.mask			= CLOCKSOURCE_MASK(BITS_PER_LONG),
202	.flags			= CLOCK_SOURCE_IS_CONTINUOUS,
203};
204
205int update_cr16_clocksource(void)
206{
207	/* since the cr16 cycle counters are not synchronized across CPUs,
208	   we'll check if we should switch to a safe clocksource: */
209	if (clocksource_cr16.rating != 0 && num_online_cpus() > 1) {
210		clocksource_change_rating(&clocksource_cr16, 0);
211		return 1;
212	}
 
 
 
 
 
 
 
 
 
 
213
 
 
214	return 0;
215}
216
217void __init start_cpu_itimer(void)
218{
219	unsigned int cpu = smp_processor_id();
220	unsigned long next_tick = mfctl(16) + clocktick;
221
222	mtctl(next_tick, 16);		/* kick off Interval Timer (CR16) */
 
 
 
 
 
 
 
223
224	per_cpu(cpu_data, cpu).it_value = next_tick;
225}
226
 
 
 
 
 
227static int __init rtc_init(void)
228{
229	struct platform_device *pdev;
230
231	pdev = platform_device_register_simple("rtc-generic", -1, NULL, 0);
 
 
 
232	return PTR_ERR_OR_ZERO(pdev);
233}
234device_initcall(rtc_init);
 
235
236void read_persistent_clock(struct timespec *ts)
237{
238	static struct pdc_tod tod_data;
239	if (pdc_tod_read(&tod_data) == 0) {
240		ts->tv_sec = tod_data.tod_sec;
241		ts->tv_nsec = tod_data.tod_usec * 1000;
242	} else {
243		printk(KERN_ERR "Error reading tod clock\n");
244	        ts->tv_sec = 0;
245		ts->tv_nsec = 0;
246	}
247}
248
 
 
 
 
 
 
 
 
 
 
 
249void __init time_init(void)
250{
251	unsigned long current_cr16_khz;
252
253	clocktick = (100 * PAGE0->mem_10msec) / HZ;
254
255	start_cpu_itimer();	/* get CPU 0 started */
256
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
257	/* register at clocksource framework */
258	current_cr16_khz = PAGE0->mem_10msec/10;  /* kHz */
259	clocksource_register_khz(&clocksource_cr16, current_cr16_khz);
 
 
260}
v6.2
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 *  linux/arch/parisc/kernel/time.c
  4 *
  5 *  Copyright (C) 1991, 1992, 1995  Linus Torvalds
  6 *  Modifications for ARM (C) 1994, 1995, 1996,1997 Russell King
  7 *  Copyright (C) 1999 SuSE GmbH, (Philipp Rumpf, prumpf@tux.org)
  8 *
  9 * 1994-07-02  Alan Modra
 10 *             fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime
 11 * 1998-12-20  Updated NTP code according to technical memorandum Jan '96
 12 *             "A Kernel Model for Precision Timekeeping" by Dave Mills
 13 */
 14#include <linux/errno.h>
 15#include <linux/module.h>
 16#include <linux/rtc.h>
 17#include <linux/sched.h>
 18#include <linux/sched/clock.h>
 19#include <linux/sched_clock.h>
 20#include <linux/kernel.h>
 21#include <linux/param.h>
 22#include <linux/string.h>
 23#include <linux/mm.h>
 24#include <linux/interrupt.h>
 25#include <linux/time.h>
 26#include <linux/init.h>
 27#include <linux/smp.h>
 28#include <linux/profile.h>
 29#include <linux/clocksource.h>
 30#include <linux/platform_device.h>
 31#include <linux/ftrace.h>
 32
 33#include <linux/uaccess.h>
 34#include <asm/io.h>
 35#include <asm/irq.h>
 36#include <asm/page.h>
 37#include <asm/param.h>
 38#include <asm/pdc.h>
 39#include <asm/led.h>
 40
 41#include <linux/timex.h>
 42
 43int time_keeper_id __read_mostly;	/* CPU used for timekeeping. */
 44
 45static unsigned long clocktick __ro_after_init;	/* timer cycles per tick */
 46
 47/*
 48 * We keep time on PA-RISC Linux by using the Interval Timer which is
 49 * a pair of registers; one is read-only and one is write-only; both
 50 * accessed through CR16.  The read-only register is 32 or 64 bits wide,
 51 * and increments by 1 every CPU clock tick.  The architecture only
 52 * guarantees us a rate between 0.5 and 2, but all implementations use a
 53 * rate of 1.  The write-only register is 32-bits wide.  When the lowest
 54 * 32 bits of the read-only register compare equal to the write-only
 55 * register, it raises a maskable external interrupt.  Each processor has
 56 * an Interval Timer of its own and they are not synchronised.  
 57 *
 58 * We want to generate an interrupt every 1/HZ seconds.  So we program
 59 * CR16 to interrupt every @clocktick cycles.  The it_value in cpu_data
 60 * is programmed with the intended time of the next tick.  We can be
 61 * held off for an arbitrarily long period of time by interrupts being
 62 * disabled, so we may miss one or more ticks.
 63 */
 64irqreturn_t __irq_entry timer_interrupt(int irq, void *dev_id)
 65{
 66	unsigned long now;
 67	unsigned long next_tick;
 68	unsigned long ticks_elapsed = 0;
 
 69	unsigned int cpu = smp_processor_id();
 70	struct cpuinfo_parisc *cpuinfo = &per_cpu(cpu_data, cpu);
 71
 72	/* gcc can optimize for "read-only" case with a local clocktick */
 73	unsigned long cpt = clocktick;
 74
 75	/* Initialize next_tick to the old expected tick time. */
 
 
 76	next_tick = cpuinfo->it_value;
 77
 78	/* Calculate how many ticks have elapsed. */
 79	now = mfctl(16);
 80	do {
 81		++ticks_elapsed;
 82		next_tick += cpt;
 83	} while (next_tick - now > cpt);
 84
 85	/* Store (in CR16 cycles) up to when we are accounting right now. */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 86	cpuinfo->it_value = next_tick;
 87
 88	/* Go do system house keeping. */
 89	if (IS_ENABLED(CONFIG_SMP) && (cpu != time_keeper_id))
 90		ticks_elapsed = 0;
 91	legacy_timer_tick(ticks_elapsed);
 92
 93	/* Skip clockticks on purpose if we know we would miss those.
 94	 * The new CR16 must be "later" than current CR16 otherwise
 95	 * itimer would not fire until CR16 wrapped - e.g 4 seconds
 96	 * later on a 1Ghz processor. We'll account for the missed
 97	 * ticks on the next timer interrupt.
 98	 * We want IT to fire modulo clocktick even if we miss/skip some.
 99	 * But those interrupts don't in fact get delivered that regularly.
100	 *
101	 * "next_tick - now" will always give the difference regardless
102	 * if one or the other wrapped. If "now" is "bigger" we'll end up
103	 * with a very large unsigned number.
104	 */
105	now = mfctl(16);
106	while (next_tick - now > cpt)
107		next_tick += cpt;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
108
109	/* Program the IT when to deliver the next interrupt.
110	 * Only bottom 32-bits of next_tick are writable in CR16!
111	 * Timer interrupt will be delivered at least a few hundred cycles
112	 * after the IT fires, so if we are too close (<= 8000 cycles) to the
113	 * next cycle, simply skip it.
114	 */
115	if (next_tick - now <= 8000)
116		next_tick += cpt;
117	mtctl(next_tick, 16);
 
 
 
 
 
118
119	return IRQ_HANDLED;
120}
121
122
123unsigned long profile_pc(struct pt_regs *regs)
124{
125	unsigned long pc = instruction_pointer(regs);
126
127	if (regs->gr[0] & PSW_N)
128		pc -= 4;
129
130#ifdef CONFIG_SMP
131	if (in_lock_functions(pc))
132		pc = regs->gr[2];
133#endif
134
135	return pc;
136}
137EXPORT_SYMBOL(profile_pc);
138
139
140/* clock source code */
141
142static u64 notrace read_cr16(struct clocksource *cs)
143{
144	return get_cycles();
145}
146
147static struct clocksource clocksource_cr16 = {
148	.name			= "cr16",
149	.rating			= 300,
150	.read			= read_cr16,
151	.mask			= CLOCKSOURCE_MASK(BITS_PER_LONG),
152	.flags			= CLOCK_SOURCE_IS_CONTINUOUS,
153};
154
155void start_cpu_itimer(void)
156{
157	unsigned int cpu = smp_processor_id();
158	unsigned long next_tick = mfctl(16) + clocktick;
159
160	mtctl(next_tick, 16);		/* kick off Interval Timer (CR16) */
161
162	per_cpu(cpu_data, cpu).it_value = next_tick;
163}
164
165#if IS_ENABLED(CONFIG_RTC_DRV_GENERIC)
166static int rtc_generic_get_time(struct device *dev, struct rtc_time *tm)
167{
168	struct pdc_tod tod_data;
169
170	memset(tm, 0, sizeof(*tm));
171	if (pdc_tod_read(&tod_data) < 0)
172		return -EOPNOTSUPP;
173
174	/* we treat tod_sec as unsigned, so this can work until year 2106 */
175	rtc_time64_to_tm(tod_data.tod_sec, tm);
176	return 0;
177}
178
179static int rtc_generic_set_time(struct device *dev, struct rtc_time *tm)
180{
181	time64_t secs = rtc_tm_to_time64(tm);
182	int ret;
183
184	/* hppa has Y2K38 problem: pdc_tod_set() takes an u32 value! */
185	ret = pdc_tod_set(secs, 0);
186	if (ret != 0) {
187		pr_warn("pdc_tod_set(%lld) returned error %d\n", secs, ret);
188		if (ret == PDC_INVALID_ARG)
189			return -EINVAL;
190		return -EOPNOTSUPP;
191	}
192
193	return 0;
194}
195
196static const struct rtc_class_ops rtc_generic_ops = {
197	.read_time = rtc_generic_get_time,
198	.set_time = rtc_generic_set_time,
199};
200
201static int __init rtc_init(void)
202{
203	struct platform_device *pdev;
204
205	pdev = platform_device_register_data(NULL, "rtc-generic", -1,
206					     &rtc_generic_ops,
207					     sizeof(rtc_generic_ops));
208
209	return PTR_ERR_OR_ZERO(pdev);
210}
211device_initcall(rtc_init);
212#endif
213
214void read_persistent_clock64(struct timespec64 *ts)
215{
216	static struct pdc_tod tod_data;
217	if (pdc_tod_read(&tod_data) == 0) {
218		ts->tv_sec = tod_data.tod_sec;
219		ts->tv_nsec = tod_data.tod_usec * 1000;
220	} else {
221		printk(KERN_ERR "Error reading tod clock\n");
222	        ts->tv_sec = 0;
223		ts->tv_nsec = 0;
224	}
225}
226
227
228static u64 notrace read_cr16_sched_clock(void)
229{
230	return get_cycles();
231}
232
233
234/*
235 * timer interrupt and sched_clock() initialization
236 */
237
238void __init time_init(void)
239{
240	unsigned long cr16_hz;
241
242	clocktick = (100 * PAGE0->mem_10msec) / HZ;
 
243	start_cpu_itimer();	/* get CPU 0 started */
244
245	cr16_hz = 100 * PAGE0->mem_10msec;  /* Hz */
246
247	/* register as sched_clock source */
248	sched_clock_register(read_cr16_sched_clock, BITS_PER_LONG, cr16_hz);
249}
250
251static int __init init_cr16_clocksource(void)
252{
253	/*
254	 * The cr16 interval timers are not synchronized across CPUs.
255	 */
256	if (num_online_cpus() > 1 && !running_on_qemu) {
257		clocksource_cr16.name = "cr16_unstable";
258		clocksource_cr16.flags = CLOCK_SOURCE_UNSTABLE;
259		clocksource_cr16.rating = 0;
260	}
261
262	/* register at clocksource framework */
263	clocksource_register_hz(&clocksource_cr16,
264		100 * PAGE0->mem_10msec);
265
266	return 0;
267}
268
269device_initcall(init_cr16_clocksource);