Linux Audio

Check our new training course

Loading...
v4.6
 
  1/*
  2 * mm/truncate.c - code for taking down pages from address_spaces
  3 *
  4 * Copyright (C) 2002, Linus Torvalds
  5 *
  6 * 10Sep2002	Andrew Morton
  7 *		Initial version.
  8 */
  9
 10#include <linux/kernel.h>
 11#include <linux/backing-dev.h>
 12#include <linux/dax.h>
 13#include <linux/gfp.h>
 14#include <linux/mm.h>
 15#include <linux/swap.h>
 16#include <linux/export.h>
 17#include <linux/pagemap.h>
 18#include <linux/highmem.h>
 19#include <linux/pagevec.h>
 20#include <linux/task_io_accounting_ops.h>
 21#include <linux/buffer_head.h>	/* grr. try_to_release_page,
 22				   do_invalidatepage */
 23#include <linux/cleancache.h>
 24#include <linux/rmap.h>
 25#include "internal.h"
 26
 27static void clear_exceptional_entry(struct address_space *mapping,
 28				    pgoff_t index, void *entry)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 29{
 30	struct radix_tree_node *node;
 31	void **slot;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 32
 33	/* Handled by shmem itself */
 34	if (shmem_mapping(mapping))
 35		return;
 36
 37	spin_lock_irq(&mapping->tree_lock);
 
 
 38
 39	if (dax_mapping(mapping)) {
 40		if (radix_tree_delete_item(&mapping->page_tree, index, entry))
 41			mapping->nrexceptional--;
 42	} else {
 43		/*
 44		 * Regular page slots are stabilized by the page lock even
 45		 * without the tree itself locked.  These unlocked entries
 46		 * need verification under the tree lock.
 47		 */
 48		if (!__radix_tree_lookup(&mapping->page_tree, index, &node,
 49					&slot))
 50			goto unlock;
 51		if (*slot != entry)
 52			goto unlock;
 53		radix_tree_replace_slot(slot, NULL);
 54		mapping->nrexceptional--;
 55		if (!node)
 56			goto unlock;
 57		workingset_node_shadows_dec(node);
 58		/*
 59		 * Don't track node without shadow entries.
 60		 *
 61		 * Avoid acquiring the list_lru lock if already untracked.
 62		 * The list_empty() test is safe as node->private_list is
 63		 * protected by mapping->tree_lock.
 64		 */
 65		if (!workingset_node_shadows(node) &&
 66		    !list_empty(&node->private_list))
 67			list_lru_del(&workingset_shadow_nodes,
 68					&node->private_list);
 69		__radix_tree_delete_node(&mapping->page_tree, node);
 70	}
 71unlock:
 72	spin_unlock_irq(&mapping->tree_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 73}
 74
 75/**
 76 * do_invalidatepage - invalidate part or all of a page
 77 * @page: the page which is affected
 78 * @offset: start of the range to invalidate
 79 * @length: length of the range to invalidate
 80 *
 81 * do_invalidatepage() is called when all or part of the page has become
 82 * invalidated by a truncate operation.
 83 *
 84 * do_invalidatepage() does not have to release all buffers, but it must
 85 * ensure that no dirty buffer is left outside @offset and that no I/O
 86 * is underway against any of the blocks which are outside the truncation
 87 * point.  Because the caller is about to free (and possibly reuse) those
 88 * blocks on-disk.
 89 */
 90void do_invalidatepage(struct page *page, unsigned int offset,
 91		       unsigned int length)
 92{
 93	void (*invalidatepage)(struct page *, unsigned int, unsigned int);
 94
 95	invalidatepage = page->mapping->a_ops->invalidatepage;
 96#ifdef CONFIG_BLOCK
 97	if (!invalidatepage)
 98		invalidatepage = block_invalidatepage;
 99#endif
100	if (invalidatepage)
101		(*invalidatepage)(page, offset, length);
102}
 
103
104/*
105 * If truncate cannot remove the fs-private metadata from the page, the page
106 * becomes orphaned.  It will be left on the LRU and may even be mapped into
107 * user pagetables if we're racing with filemap_fault().
108 *
109 * We need to bale out if page->mapping is no longer equal to the original
110 * mapping.  This happens a) when the VM reclaimed the page while we waited on
111 * its lock, b) when a concurrent invalidate_mapping_pages got there first and
112 * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space.
113 */
114static int
115truncate_complete_page(struct address_space *mapping, struct page *page)
116{
117	if (page->mapping != mapping)
118		return -EIO;
119
120	if (page_has_private(page))
121		do_invalidatepage(page, 0, PAGE_SIZE);
122
123	/*
124	 * Some filesystems seem to re-dirty the page even after
125	 * the VM has canceled the dirty bit (eg ext3 journaling).
126	 * Hence dirty accounting check is placed after invalidation.
127	 */
128	cancel_dirty_page(page);
129	ClearPageMappedToDisk(page);
130	delete_from_page_cache(page);
 
 
 
 
 
 
 
 
131	return 0;
132}
133
134/*
135 * This is for invalidate_mapping_pages().  That function can be called at
136 * any time, and is not supposed to throw away dirty pages.  But pages can
137 * be marked dirty at any time too, so use remove_mapping which safely
138 * discards clean, unused pages.
139 *
140 * Returns non-zero if the page was successfully invalidated.
 
 
 
141 */
142static int
143invalidate_complete_page(struct address_space *mapping, struct page *page)
144{
145	int ret;
146
147	if (page->mapping != mapping)
148		return 0;
149
150	if (page_has_private(page) && !try_to_release_page(page, 0))
151		return 0;
 
 
 
 
 
 
 
152
153	ret = remove_mapping(mapping, page);
 
 
 
 
154
155	return ret;
156}
 
 
 
 
157
158int truncate_inode_page(struct address_space *mapping, struct page *page)
159{
160	if (page_mapped(page)) {
161		unmap_mapping_range(mapping,
162				   (loff_t)page->index << PAGE_SHIFT,
163				   PAGE_SIZE, 0);
164	}
165	return truncate_complete_page(mapping, page);
 
 
166}
167
168/*
169 * Used to get rid of pages on hardware memory corruption.
170 */
171int generic_error_remove_page(struct address_space *mapping, struct page *page)
172{
 
 
173	if (!mapping)
174		return -EINVAL;
175	/*
176	 * Only punch for normal data pages for now.
177	 * Handling other types like directories would need more auditing.
178	 */
179	if (!S_ISREG(mapping->host->i_mode))
180		return -EIO;
181	return truncate_inode_page(mapping, page);
182}
183EXPORT_SYMBOL(generic_error_remove_page);
184
185/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
186 * Safely invalidate one page from its pagecache mapping.
187 * It only drops clean, unused pages. The page must be locked.
188 *
189 * Returns 1 if the page is successfully invalidated, otherwise 0.
 
190 */
191int invalidate_inode_page(struct page *page)
192{
193	struct address_space *mapping = page_mapping(page);
 
 
 
194	if (!mapping)
195		return 0;
196	if (PageDirty(page) || PageWriteback(page))
197		return 0;
198	if (page_mapped(page))
199		return 0;
200	return invalidate_complete_page(mapping, page);
201}
202
203/**
204 * truncate_inode_pages_range - truncate range of pages specified by start & end byte offsets
205 * @mapping: mapping to truncate
206 * @lstart: offset from which to truncate
207 * @lend: offset to which to truncate (inclusive)
208 *
209 * Truncate the page cache, removing the pages that are between
210 * specified offsets (and zeroing out partial pages
211 * if lstart or lend + 1 is not page aligned).
212 *
213 * Truncate takes two passes - the first pass is nonblocking.  It will not
214 * block on page locks and it will not block on writeback.  The second pass
215 * will wait.  This is to prevent as much IO as possible in the affected region.
216 * The first pass will remove most pages, so the search cost of the second pass
217 * is low.
218 *
219 * We pass down the cache-hot hint to the page freeing code.  Even if the
220 * mapping is large, it is probably the case that the final pages are the most
221 * recently touched, and freeing happens in ascending file offset order.
222 *
223 * Note that since ->invalidatepage() accepts range to invalidate
224 * truncate_inode_pages_range is able to handle cases where lend + 1 is not
225 * page aligned properly.
226 */
227void truncate_inode_pages_range(struct address_space *mapping,
228				loff_t lstart, loff_t lend)
229{
230	pgoff_t		start;		/* inclusive */
231	pgoff_t		end;		/* exclusive */
232	unsigned int	partial_start;	/* inclusive */
233	unsigned int	partial_end;	/* exclusive */
234	struct pagevec	pvec;
235	pgoff_t		indices[PAGEVEC_SIZE];
236	pgoff_t		index;
237	int		i;
 
 
238
239	cleancache_invalidate_inode(mapping);
240	if (mapping->nrpages == 0 && mapping->nrexceptional == 0)
241		return;
242
243	/* Offsets within partial pages */
244	partial_start = lstart & (PAGE_SIZE - 1);
245	partial_end = (lend + 1) & (PAGE_SIZE - 1);
246
247	/*
248	 * 'start' and 'end' always covers the range of pages to be fully
249	 * truncated. Partial pages are covered with 'partial_start' at the
250	 * start of the range and 'partial_end' at the end of the range.
251	 * Note that 'end' is exclusive while 'lend' is inclusive.
252	 */
253	start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
254	if (lend == -1)
255		/*
256		 * lend == -1 indicates end-of-file so we have to set 'end'
257		 * to the highest possible pgoff_t and since the type is
258		 * unsigned we're using -1.
259		 */
260		end = -1;
261	else
262		end = (lend + 1) >> PAGE_SHIFT;
263
264	pagevec_init(&pvec, 0);
265	index = start;
266	while (index < end && pagevec_lookup_entries(&pvec, mapping, index,
267			min(end - index, (pgoff_t)PAGEVEC_SIZE),
268			indices)) {
269		for (i = 0; i < pagevec_count(&pvec); i++) {
270			struct page *page = pvec.pages[i];
271
272			/* We rely upon deletion not changing page->index */
273			index = indices[i];
274			if (index >= end)
275				break;
276
277			if (radix_tree_exceptional_entry(page)) {
278				clear_exceptional_entry(mapping, index, page);
279				continue;
280			}
281
282			if (!trylock_page(page))
283				continue;
284			WARN_ON(page->index != index);
285			if (PageWriteback(page)) {
286				unlock_page(page);
287				continue;
288			}
289			truncate_inode_page(mapping, page);
290			unlock_page(page);
291		}
292		pagevec_remove_exceptionals(&pvec);
293		pagevec_release(&pvec);
294		cond_resched();
295		index++;
296	}
297
298	if (partial_start) {
299		struct page *page = find_lock_page(mapping, start - 1);
300		if (page) {
301			unsigned int top = PAGE_SIZE;
302			if (start > end) {
303				/* Truncation within a single page */
304				top = partial_end;
305				partial_end = 0;
306			}
307			wait_on_page_writeback(page);
308			zero_user_segment(page, partial_start, top);
309			cleancache_invalidate_page(mapping, page);
310			if (page_has_private(page))
311				do_invalidatepage(page, partial_start,
312						  top - partial_start);
313			unlock_page(page);
314			put_page(page);
315		}
 
 
 
316	}
317	if (partial_end) {
318		struct page *page = find_lock_page(mapping, end);
319		if (page) {
320			wait_on_page_writeback(page);
321			zero_user_segment(page, 0, partial_end);
322			cleancache_invalidate_page(mapping, page);
323			if (page_has_private(page))
324				do_invalidatepage(page, 0,
325						  partial_end);
326			unlock_page(page);
327			put_page(page);
328		}
329	}
330	/*
331	 * If the truncation happened within a single page no pages
332	 * will be released, just zeroed, so we can bail out now.
333	 */
334	if (start >= end)
335		return;
336
337	index = start;
338	for ( ; ; ) {
339		cond_resched();
340		if (!pagevec_lookup_entries(&pvec, mapping, index,
341			min(end - index, (pgoff_t)PAGEVEC_SIZE), indices)) {
342			/* If all gone from start onwards, we're done */
343			if (index == start)
344				break;
345			/* Otherwise restart to make sure all gone */
346			index = start;
347			continue;
348		}
349		if (index == start && indices[0] >= end) {
350			/* All gone out of hole to be punched, we're done */
351			pagevec_remove_exceptionals(&pvec);
352			pagevec_release(&pvec);
353			break;
354		}
355		for (i = 0; i < pagevec_count(&pvec); i++) {
356			struct page *page = pvec.pages[i];
357
358			/* We rely upon deletion not changing page->index */
359			index = indices[i];
360			if (index >= end) {
361				/* Restart punch to make sure all gone */
362				index = start - 1;
363				break;
364			}
365
366			if (radix_tree_exceptional_entry(page)) {
367				clear_exceptional_entry(mapping, index, page);
368				continue;
369			}
370
371			lock_page(page);
372			WARN_ON(page->index != index);
373			wait_on_page_writeback(page);
374			truncate_inode_page(mapping, page);
375			unlock_page(page);
376		}
377		pagevec_remove_exceptionals(&pvec);
378		pagevec_release(&pvec);
379		index++;
380	}
381	cleancache_invalidate_inode(mapping);
382}
383EXPORT_SYMBOL(truncate_inode_pages_range);
384
385/**
386 * truncate_inode_pages - truncate *all* the pages from an offset
387 * @mapping: mapping to truncate
388 * @lstart: offset from which to truncate
389 *
390 * Called under (and serialised by) inode->i_mutex.
 
391 *
392 * Note: When this function returns, there can be a page in the process of
393 * deletion (inside __delete_from_page_cache()) in the specified range.  Thus
394 * mapping->nrpages can be non-zero when this function returns even after
395 * truncation of the whole mapping.
396 */
397void truncate_inode_pages(struct address_space *mapping, loff_t lstart)
398{
399	truncate_inode_pages_range(mapping, lstart, (loff_t)-1);
400}
401EXPORT_SYMBOL(truncate_inode_pages);
402
403/**
404 * truncate_inode_pages_final - truncate *all* pages before inode dies
405 * @mapping: mapping to truncate
406 *
407 * Called under (and serialized by) inode->i_mutex.
408 *
409 * Filesystems have to use this in the .evict_inode path to inform the
410 * VM that this is the final truncate and the inode is going away.
411 */
412void truncate_inode_pages_final(struct address_space *mapping)
413{
414	unsigned long nrexceptional;
415	unsigned long nrpages;
416
417	/*
418	 * Page reclaim can not participate in regular inode lifetime
419	 * management (can't call iput()) and thus can race with the
420	 * inode teardown.  Tell it when the address space is exiting,
421	 * so that it does not install eviction information after the
422	 * final truncate has begun.
423	 */
424	mapping_set_exiting(mapping);
425
426	/*
427	 * When reclaim installs eviction entries, it increases
428	 * nrexceptional first, then decreases nrpages.  Make sure we see
429	 * this in the right order or we might miss an entry.
430	 */
431	nrpages = mapping->nrpages;
432	smp_rmb();
433	nrexceptional = mapping->nrexceptional;
434
435	if (nrpages || nrexceptional) {
436		/*
437		 * As truncation uses a lockless tree lookup, cycle
438		 * the tree lock to make sure any ongoing tree
439		 * modification that does not see AS_EXITING is
440		 * completed before starting the final truncate.
441		 */
442		spin_lock_irq(&mapping->tree_lock);
443		spin_unlock_irq(&mapping->tree_lock);
444
445		truncate_inode_pages(mapping, 0);
446	}
 
 
447}
448EXPORT_SYMBOL(truncate_inode_pages_final);
449
450/**
451 * invalidate_mapping_pages - Invalidate all the unlocked pages of one inode
452 * @mapping: the address_space which holds the pages to invalidate
453 * @start: the offset 'from' which to invalidate
454 * @end: the offset 'to' which to invalidate (inclusive)
 
455 *
456 * This function only removes the unlocked pages, if you want to
457 * remove all the pages of one inode, you must call truncate_inode_pages.
458 *
459 * invalidate_mapping_pages() will not block on IO activity. It will not
460 * invalidate pages which are dirty, locked, under writeback or mapped into
461 * pagetables.
462 */
463unsigned long invalidate_mapping_pages(struct address_space *mapping,
464		pgoff_t start, pgoff_t end)
465{
466	pgoff_t indices[PAGEVEC_SIZE];
467	struct pagevec pvec;
468	pgoff_t index = start;
469	unsigned long ret;
470	unsigned long count = 0;
471	int i;
472
473	pagevec_init(&pvec, 0);
474	while (index <= end && pagevec_lookup_entries(&pvec, mapping, index,
475			min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1,
476			indices)) {
477		for (i = 0; i < pagevec_count(&pvec); i++) {
478			struct page *page = pvec.pages[i];
479
480			/* We rely upon deletion not changing page->index */
481			index = indices[i];
482			if (index > end)
483				break;
484
485			if (radix_tree_exceptional_entry(page)) {
486				clear_exceptional_entry(mapping, index, page);
487				continue;
488			}
489
490			if (!trylock_page(page))
491				continue;
492			WARN_ON(page->index != index);
493			ret = invalidate_inode_page(page);
494			unlock_page(page);
495			/*
496			 * Invalidation is a hint that the page is no longer
497			 * of interest and try to speed up its reclaim.
498			 */
499			if (!ret)
500				deactivate_file_page(page);
 
 
 
 
501			count += ret;
502		}
503		pagevec_remove_exceptionals(&pvec);
504		pagevec_release(&pvec);
505		cond_resched();
506		index++;
507	}
508	return count;
509}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
510EXPORT_SYMBOL(invalidate_mapping_pages);
511
512/*
513 * This is like invalidate_complete_page(), except it ignores the page's
514 * refcount.  We do this because invalidate_inode_pages2() needs stronger
515 * invalidation guarantees, and cannot afford to leave pages behind because
516 * shrink_page_list() has a temp ref on them, or because they're transiently
517 * sitting in the lru_cache_add() pagevecs.
518 */
519static int
520invalidate_complete_page2(struct address_space *mapping, struct page *page)
521{
522	unsigned long flags;
523
524	if (page->mapping != mapping)
525		return 0;
526
527	if (page_has_private(page) && !try_to_release_page(page, GFP_KERNEL))
 
528		return 0;
529
530	spin_lock_irqsave(&mapping->tree_lock, flags);
531	if (PageDirty(page))
 
532		goto failed;
533
534	BUG_ON(page_has_private(page));
535	__delete_from_page_cache(page, NULL);
536	spin_unlock_irqrestore(&mapping->tree_lock, flags);
537
538	if (mapping->a_ops->freepage)
539		mapping->a_ops->freepage(page);
540
541	put_page(page);	/* pagecache ref */
542	return 1;
543failed:
544	spin_unlock_irqrestore(&mapping->tree_lock, flags);
 
545	return 0;
546}
547
548static int do_launder_page(struct address_space *mapping, struct page *page)
549{
550	if (!PageDirty(page))
551		return 0;
552	if (page->mapping != mapping || mapping->a_ops->launder_page == NULL)
553		return 0;
554	return mapping->a_ops->launder_page(page);
555}
556
557/**
558 * invalidate_inode_pages2_range - remove range of pages from an address_space
559 * @mapping: the address_space
560 * @start: the page offset 'from' which to invalidate
561 * @end: the page offset 'to' which to invalidate (inclusive)
562 *
563 * Any pages which are found to be mapped into pagetables are unmapped prior to
564 * invalidation.
565 *
566 * Returns -EBUSY if any pages could not be invalidated.
567 */
568int invalidate_inode_pages2_range(struct address_space *mapping,
569				  pgoff_t start, pgoff_t end)
570{
571	pgoff_t indices[PAGEVEC_SIZE];
572	struct pagevec pvec;
573	pgoff_t index;
574	int i;
575	int ret = 0;
576	int ret2 = 0;
577	int did_range_unmap = 0;
578
579	cleancache_invalidate_inode(mapping);
580	pagevec_init(&pvec, 0);
581	index = start;
582	while (index <= end && pagevec_lookup_entries(&pvec, mapping, index,
583			min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1,
584			indices)) {
585		for (i = 0; i < pagevec_count(&pvec); i++) {
586			struct page *page = pvec.pages[i];
587
588			/* We rely upon deletion not changing page->index */
589			index = indices[i];
590			if (index > end)
591				break;
592
593			if (radix_tree_exceptional_entry(page)) {
594				clear_exceptional_entry(mapping, index, page);
 
 
 
 
 
 
 
 
 
 
595				continue;
596			}
597
598			lock_page(page);
599			WARN_ON(page->index != index);
600			if (page->mapping != mapping) {
601				unlock_page(page);
602				continue;
 
 
 
603			}
604			wait_on_page_writeback(page);
605			if (page_mapped(page)) {
606				if (!did_range_unmap) {
607					/*
608					 * Zap the rest of the file in one hit.
609					 */
610					unmap_mapping_range(mapping,
611					   (loff_t)index << PAGE_SHIFT,
612					   (loff_t)(1 + end - index)
613							 << PAGE_SHIFT,
614							 0);
615					did_range_unmap = 1;
616				} else {
617					/*
618					 * Just zap this page
619					 */
620					unmap_mapping_range(mapping,
621					   (loff_t)index << PAGE_SHIFT,
622					   PAGE_SIZE, 0);
623				}
624			}
625			BUG_ON(page_mapped(page));
626			ret2 = do_launder_page(mapping, page);
 
 
 
 
 
627			if (ret2 == 0) {
628				if (!invalidate_complete_page2(mapping, page))
629					ret2 = -EBUSY;
630			}
631			if (ret2 < 0)
632				ret = ret2;
633			unlock_page(page);
634		}
635		pagevec_remove_exceptionals(&pvec);
636		pagevec_release(&pvec);
637		cond_resched();
638		index++;
639	}
640	cleancache_invalidate_inode(mapping);
 
 
 
 
 
 
 
 
 
641	return ret;
642}
643EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range);
644
645/**
646 * invalidate_inode_pages2 - remove all pages from an address_space
647 * @mapping: the address_space
648 *
649 * Any pages which are found to be mapped into pagetables are unmapped prior to
650 * invalidation.
651 *
652 * Returns -EBUSY if any pages could not be invalidated.
653 */
654int invalidate_inode_pages2(struct address_space *mapping)
655{
656	return invalidate_inode_pages2_range(mapping, 0, -1);
657}
658EXPORT_SYMBOL_GPL(invalidate_inode_pages2);
659
660/**
661 * truncate_pagecache - unmap and remove pagecache that has been truncated
662 * @inode: inode
663 * @newsize: new file size
664 *
665 * inode's new i_size must already be written before truncate_pagecache
666 * is called.
667 *
668 * This function should typically be called before the filesystem
669 * releases resources associated with the freed range (eg. deallocates
670 * blocks). This way, pagecache will always stay logically coherent
671 * with on-disk format, and the filesystem would not have to deal with
672 * situations such as writepage being called for a page that has already
673 * had its underlying blocks deallocated.
674 */
675void truncate_pagecache(struct inode *inode, loff_t newsize)
676{
677	struct address_space *mapping = inode->i_mapping;
678	loff_t holebegin = round_up(newsize, PAGE_SIZE);
679
680	/*
681	 * unmap_mapping_range is called twice, first simply for
682	 * efficiency so that truncate_inode_pages does fewer
683	 * single-page unmaps.  However after this first call, and
684	 * before truncate_inode_pages finishes, it is possible for
685	 * private pages to be COWed, which remain after
686	 * truncate_inode_pages finishes, hence the second
687	 * unmap_mapping_range call must be made for correctness.
688	 */
689	unmap_mapping_range(mapping, holebegin, 0, 1);
690	truncate_inode_pages(mapping, newsize);
691	unmap_mapping_range(mapping, holebegin, 0, 1);
692}
693EXPORT_SYMBOL(truncate_pagecache);
694
695/**
696 * truncate_setsize - update inode and pagecache for a new file size
697 * @inode: inode
698 * @newsize: new file size
699 *
700 * truncate_setsize updates i_size and performs pagecache truncation (if
701 * necessary) to @newsize. It will be typically be called from the filesystem's
702 * setattr function when ATTR_SIZE is passed in.
703 *
704 * Must be called with a lock serializing truncates and writes (generally
705 * i_mutex but e.g. xfs uses a different lock) and before all filesystem
706 * specific block truncation has been performed.
707 */
708void truncate_setsize(struct inode *inode, loff_t newsize)
709{
710	loff_t oldsize = inode->i_size;
711
712	i_size_write(inode, newsize);
713	if (newsize > oldsize)
714		pagecache_isize_extended(inode, oldsize, newsize);
715	truncate_pagecache(inode, newsize);
716}
717EXPORT_SYMBOL(truncate_setsize);
718
719/**
720 * pagecache_isize_extended - update pagecache after extension of i_size
721 * @inode:	inode for which i_size was extended
722 * @from:	original inode size
723 * @to:		new inode size
724 *
725 * Handle extension of inode size either caused by extending truncate or by
726 * write starting after current i_size. We mark the page straddling current
727 * i_size RO so that page_mkwrite() is called on the nearest write access to
728 * the page.  This way filesystem can be sure that page_mkwrite() is called on
729 * the page before user writes to the page via mmap after the i_size has been
730 * changed.
731 *
732 * The function must be called after i_size is updated so that page fault
733 * coming after we unlock the page will already see the new i_size.
734 * The function must be called while we still hold i_mutex - this not only
735 * makes sure i_size is stable but also that userspace cannot observe new
736 * i_size value before we are prepared to store mmap writes at new inode size.
737 */
738void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to)
739{
740	int bsize = 1 << inode->i_blkbits;
741	loff_t rounded_from;
742	struct page *page;
743	pgoff_t index;
744
745	WARN_ON(to > inode->i_size);
746
747	if (from >= to || bsize == PAGE_SIZE)
748		return;
749	/* Page straddling @from will not have any hole block created? */
750	rounded_from = round_up(from, bsize);
751	if (to <= rounded_from || !(rounded_from & (PAGE_SIZE - 1)))
752		return;
753
754	index = from >> PAGE_SHIFT;
755	page = find_lock_page(inode->i_mapping, index);
756	/* Page not cached? Nothing to do */
757	if (!page)
758		return;
759	/*
760	 * See clear_page_dirty_for_io() for details why set_page_dirty()
761	 * is needed.
762	 */
763	if (page_mkclean(page))
764		set_page_dirty(page);
765	unlock_page(page);
766	put_page(page);
767}
768EXPORT_SYMBOL(pagecache_isize_extended);
769
770/**
771 * truncate_pagecache_range - unmap and remove pagecache that is hole-punched
772 * @inode: inode
773 * @lstart: offset of beginning of hole
774 * @lend: offset of last byte of hole
775 *
776 * This function should typically be called before the filesystem
777 * releases resources associated with the freed range (eg. deallocates
778 * blocks). This way, pagecache will always stay logically coherent
779 * with on-disk format, and the filesystem would not have to deal with
780 * situations such as writepage being called for a page that has already
781 * had its underlying blocks deallocated.
782 */
783void truncate_pagecache_range(struct inode *inode, loff_t lstart, loff_t lend)
784{
785	struct address_space *mapping = inode->i_mapping;
786	loff_t unmap_start = round_up(lstart, PAGE_SIZE);
787	loff_t unmap_end = round_down(1 + lend, PAGE_SIZE) - 1;
788	/*
789	 * This rounding is currently just for example: unmap_mapping_range
790	 * expands its hole outwards, whereas we want it to contract the hole
791	 * inwards.  However, existing callers of truncate_pagecache_range are
792	 * doing their own page rounding first.  Note that unmap_mapping_range
793	 * allows holelen 0 for all, and we allow lend -1 for end of file.
794	 */
795
796	/*
797	 * Unlike in truncate_pagecache, unmap_mapping_range is called only
798	 * once (before truncating pagecache), and without "even_cows" flag:
799	 * hole-punching should not remove private COWed pages from the hole.
800	 */
801	if ((u64)unmap_end > (u64)unmap_start)
802		unmap_mapping_range(mapping, unmap_start,
803				    1 + unmap_end - unmap_start, 0);
804	truncate_inode_pages_range(mapping, lstart, lend);
805}
806EXPORT_SYMBOL(truncate_pagecache_range);
v6.2
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * mm/truncate.c - code for taking down pages from address_spaces
  4 *
  5 * Copyright (C) 2002, Linus Torvalds
  6 *
  7 * 10Sep2002	Andrew Morton
  8 *		Initial version.
  9 */
 10
 11#include <linux/kernel.h>
 12#include <linux/backing-dev.h>
 13#include <linux/dax.h>
 14#include <linux/gfp.h>
 15#include <linux/mm.h>
 16#include <linux/swap.h>
 17#include <linux/export.h>
 18#include <linux/pagemap.h>
 19#include <linux/highmem.h>
 20#include <linux/pagevec.h>
 21#include <linux/task_io_accounting_ops.h>
 22#include <linux/buffer_head.h>	/* grr. try_to_release_page */
 23#include <linux/shmem_fs.h>
 
 24#include <linux/rmap.h>
 25#include "internal.h"
 26
 27/*
 28 * Regular page slots are stabilized by the page lock even without the tree
 29 * itself locked.  These unlocked entries need verification under the tree
 30 * lock.
 31 */
 32static inline void __clear_shadow_entry(struct address_space *mapping,
 33				pgoff_t index, void *entry)
 34{
 35	XA_STATE(xas, &mapping->i_pages, index);
 36
 37	xas_set_update(&xas, workingset_update_node);
 38	if (xas_load(&xas) != entry)
 39		return;
 40	xas_store(&xas, NULL);
 41}
 42
 43static void clear_shadow_entry(struct address_space *mapping, pgoff_t index,
 44			       void *entry)
 45{
 46	spin_lock(&mapping->host->i_lock);
 47	xa_lock_irq(&mapping->i_pages);
 48	__clear_shadow_entry(mapping, index, entry);
 49	xa_unlock_irq(&mapping->i_pages);
 50	if (mapping_shrinkable(mapping))
 51		inode_add_lru(mapping->host);
 52	spin_unlock(&mapping->host->i_lock);
 53}
 54
 55/*
 56 * Unconditionally remove exceptional entries. Usually called from truncate
 57 * path. Note that the folio_batch may be altered by this function by removing
 58 * exceptional entries similar to what folio_batch_remove_exceptionals() does.
 59 */
 60static void truncate_folio_batch_exceptionals(struct address_space *mapping,
 61				struct folio_batch *fbatch, pgoff_t *indices)
 62{
 63	int i, j;
 64	bool dax;
 65
 66	/* Handled by shmem itself */
 67	if (shmem_mapping(mapping))
 68		return;
 69
 70	for (j = 0; j < folio_batch_count(fbatch); j++)
 71		if (xa_is_value(fbatch->folios[j]))
 72			break;
 73
 74	if (j == folio_batch_count(fbatch))
 75		return;
 76
 77	dax = dax_mapping(mapping);
 78	if (!dax) {
 79		spin_lock(&mapping->host->i_lock);
 80		xa_lock_irq(&mapping->i_pages);
 81	}
 82
 83	for (i = j; i < folio_batch_count(fbatch); i++) {
 84		struct folio *folio = fbatch->folios[i];
 85		pgoff_t index = indices[i];
 86
 87		if (!xa_is_value(folio)) {
 88			fbatch->folios[j++] = folio;
 89			continue;
 90		}
 91
 92		if (unlikely(dax)) {
 93			dax_delete_mapping_entry(mapping, index);
 94			continue;
 95		}
 96
 97		__clear_shadow_entry(mapping, index, folio);
 98	}
 99
100	if (!dax) {
101		xa_unlock_irq(&mapping->i_pages);
102		if (mapping_shrinkable(mapping))
103			inode_add_lru(mapping->host);
104		spin_unlock(&mapping->host->i_lock);
105	}
106	fbatch->nr = j;
107}
108
109/*
110 * Invalidate exceptional entry if easily possible. This handles exceptional
111 * entries for invalidate_inode_pages().
112 */
113static int invalidate_exceptional_entry(struct address_space *mapping,
114					pgoff_t index, void *entry)
115{
116	/* Handled by shmem itself, or for DAX we do nothing. */
117	if (shmem_mapping(mapping) || dax_mapping(mapping))
118		return 1;
119	clear_shadow_entry(mapping, index, entry);
120	return 1;
121}
122
123/*
124 * Invalidate exceptional entry if clean. This handles exceptional entries for
125 * invalidate_inode_pages2() so for DAX it evicts only clean entries.
126 */
127static int invalidate_exceptional_entry2(struct address_space *mapping,
128					 pgoff_t index, void *entry)
129{
130	/* Handled by shmem itself */
131	if (shmem_mapping(mapping))
132		return 1;
133	if (dax_mapping(mapping))
134		return dax_invalidate_mapping_entry_sync(mapping, index);
135	clear_shadow_entry(mapping, index, entry);
136	return 1;
137}
138
139/**
140 * folio_invalidate - Invalidate part or all of a folio.
141 * @folio: The folio which is affected.
142 * @offset: start of the range to invalidate
143 * @length: length of the range to invalidate
144 *
145 * folio_invalidate() is called when all or part of the folio has become
146 * invalidated by a truncate operation.
147 *
148 * folio_invalidate() does not have to release all buffers, but it must
149 * ensure that no dirty buffer is left outside @offset and that no I/O
150 * is underway against any of the blocks which are outside the truncation
151 * point.  Because the caller is about to free (and possibly reuse) those
152 * blocks on-disk.
153 */
154void folio_invalidate(struct folio *folio, size_t offset, size_t length)
 
155{
156	const struct address_space_operations *aops = folio->mapping->a_ops;
157
158	if (aops->invalidate_folio)
159		aops->invalidate_folio(folio, offset, length);
 
 
 
 
 
160}
161EXPORT_SYMBOL_GPL(folio_invalidate);
162
163/*
164 * If truncate cannot remove the fs-private metadata from the page, the page
165 * becomes orphaned.  It will be left on the LRU and may even be mapped into
166 * user pagetables if we're racing with filemap_fault().
167 *
168 * We need to bail out if page->mapping is no longer equal to the original
169 * mapping.  This happens a) when the VM reclaimed the page while we waited on
170 * its lock, b) when a concurrent invalidate_mapping_pages got there first and
171 * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space.
172 */
173static void truncate_cleanup_folio(struct folio *folio)
 
174{
175	if (folio_mapped(folio))
176		unmap_mapping_folio(folio);
177
178	if (folio_has_private(folio))
179		folio_invalidate(folio, 0, folio_size(folio));
180
181	/*
182	 * Some filesystems seem to re-dirty the page even after
183	 * the VM has canceled the dirty bit (eg ext3 journaling).
184	 * Hence dirty accounting check is placed after invalidation.
185	 */
186	folio_cancel_dirty(folio);
187	folio_clear_mappedtodisk(folio);
188}
189
190int truncate_inode_folio(struct address_space *mapping, struct folio *folio)
191{
192	if (folio->mapping != mapping)
193		return -EIO;
194
195	truncate_cleanup_folio(folio);
196	filemap_remove_folio(folio);
197	return 0;
198}
199
200/*
201 * Handle partial folios.  The folio may be entirely within the
202 * range if a split has raced with us.  If not, we zero the part of the
203 * folio that's within the [start, end] range, and then split the folio if
204 * it's large.  split_page_range() will discard pages which now lie beyond
205 * i_size, and we rely on the caller to discard pages which lie within a
206 * newly created hole.
207 *
208 * Returns false if splitting failed so the caller can avoid
209 * discarding the entire folio which is stubbornly unsplit.
210 */
211bool truncate_inode_partial_folio(struct folio *folio, loff_t start, loff_t end)
 
212{
213	loff_t pos = folio_pos(folio);
214	unsigned int offset, length;
 
 
215
216	if (pos < start)
217		offset = start - pos;
218	else
219		offset = 0;
220	length = folio_size(folio);
221	if (pos + length <= (u64)end)
222		length = length - offset;
223	else
224		length = end + 1 - pos - offset;
225
226	folio_wait_writeback(folio);
227	if (length == folio_size(folio)) {
228		truncate_inode_folio(folio->mapping, folio);
229		return true;
230	}
231
232	/*
233	 * We may be zeroing pages we're about to discard, but it avoids
234	 * doing a complex calculation here, and then doing the zeroing
235	 * anyway if the page split fails.
236	 */
237	folio_zero_range(folio, offset, length);
238
239	if (folio_has_private(folio))
240		folio_invalidate(folio, offset, length);
241	if (!folio_test_large(folio))
242		return true;
243	if (split_folio(folio) == 0)
244		return true;
245	if (folio_test_dirty(folio))
246		return false;
247	truncate_inode_folio(folio->mapping, folio);
248	return true;
249}
250
251/*
252 * Used to get rid of pages on hardware memory corruption.
253 */
254int generic_error_remove_page(struct address_space *mapping, struct page *page)
255{
256	VM_BUG_ON_PAGE(PageTail(page), page);
257
258	if (!mapping)
259		return -EINVAL;
260	/*
261	 * Only punch for normal data pages for now.
262	 * Handling other types like directories would need more auditing.
263	 */
264	if (!S_ISREG(mapping->host->i_mode))
265		return -EIO;
266	return truncate_inode_folio(mapping, page_folio(page));
267}
268EXPORT_SYMBOL(generic_error_remove_page);
269
270static long mapping_evict_folio(struct address_space *mapping,
271		struct folio *folio)
272{
273	if (folio_test_dirty(folio) || folio_test_writeback(folio))
274		return 0;
275	/* The refcount will be elevated if any page in the folio is mapped */
276	if (folio_ref_count(folio) >
277			folio_nr_pages(folio) + folio_has_private(folio) + 1)
278		return 0;
279	if (folio_has_private(folio) && !filemap_release_folio(folio, 0))
280		return 0;
281
282	return remove_mapping(mapping, folio);
283}
284
285/**
286 * invalidate_inode_page() - Remove an unused page from the pagecache.
287 * @page: The page to remove.
288 *
289 * Safely invalidate one page from its pagecache mapping.
290 * It only drops clean, unused pages.
291 *
292 * Context: Page must be locked.
293 * Return: The number of pages successfully removed.
294 */
295long invalidate_inode_page(struct page *page)
296{
297	struct folio *folio = page_folio(page);
298	struct address_space *mapping = folio_mapping(folio);
299
300	/* The page may have been truncated before it was locked */
301	if (!mapping)
302		return 0;
303	return mapping_evict_folio(mapping, folio);
 
 
 
 
304}
305
306/**
307 * truncate_inode_pages_range - truncate range of pages specified by start & end byte offsets
308 * @mapping: mapping to truncate
309 * @lstart: offset from which to truncate
310 * @lend: offset to which to truncate (inclusive)
311 *
312 * Truncate the page cache, removing the pages that are between
313 * specified offsets (and zeroing out partial pages
314 * if lstart or lend + 1 is not page aligned).
315 *
316 * Truncate takes two passes - the first pass is nonblocking.  It will not
317 * block on page locks and it will not block on writeback.  The second pass
318 * will wait.  This is to prevent as much IO as possible in the affected region.
319 * The first pass will remove most pages, so the search cost of the second pass
320 * is low.
321 *
322 * We pass down the cache-hot hint to the page freeing code.  Even if the
323 * mapping is large, it is probably the case that the final pages are the most
324 * recently touched, and freeing happens in ascending file offset order.
325 *
326 * Note that since ->invalidate_folio() accepts range to invalidate
327 * truncate_inode_pages_range is able to handle cases where lend + 1 is not
328 * page aligned properly.
329 */
330void truncate_inode_pages_range(struct address_space *mapping,
331				loff_t lstart, loff_t lend)
332{
333	pgoff_t		start;		/* inclusive */
334	pgoff_t		end;		/* exclusive */
335	struct folio_batch fbatch;
 
 
336	pgoff_t		indices[PAGEVEC_SIZE];
337	pgoff_t		index;
338	int		i;
339	struct folio	*folio;
340	bool		same_folio;
341
342	if (mapping_empty(mapping))
 
343		return;
344
 
 
 
 
345	/*
346	 * 'start' and 'end' always covers the range of pages to be fully
347	 * truncated. Partial pages are covered with 'partial_start' at the
348	 * start of the range and 'partial_end' at the end of the range.
349	 * Note that 'end' is exclusive while 'lend' is inclusive.
350	 */
351	start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
352	if (lend == -1)
353		/*
354		 * lend == -1 indicates end-of-file so we have to set 'end'
355		 * to the highest possible pgoff_t and since the type is
356		 * unsigned we're using -1.
357		 */
358		end = -1;
359	else
360		end = (lend + 1) >> PAGE_SHIFT;
361
362	folio_batch_init(&fbatch);
363	index = start;
364	while (index < end && find_lock_entries(mapping, &index, end - 1,
365			&fbatch, indices)) {
366		truncate_folio_batch_exceptionals(mapping, &fbatch, indices);
367		for (i = 0; i < folio_batch_count(&fbatch); i++)
368			truncate_cleanup_folio(fbatch.folios[i]);
369		delete_from_page_cache_batch(mapping, &fbatch);
370		for (i = 0; i < folio_batch_count(&fbatch); i++)
371			folio_unlock(fbatch.folios[i]);
372		folio_batch_release(&fbatch);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
373		cond_resched();
 
374	}
375
376	same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT);
377	folio = __filemap_get_folio(mapping, lstart >> PAGE_SHIFT, FGP_LOCK, 0);
378	if (folio) {
379		same_folio = lend < folio_pos(folio) + folio_size(folio);
380		if (!truncate_inode_partial_folio(folio, lstart, lend)) {
381			start = folio->index + folio_nr_pages(folio);
382			if (same_folio)
383				end = folio->index;
 
 
 
 
 
 
 
 
 
384		}
385		folio_unlock(folio);
386		folio_put(folio);
387		folio = NULL;
388	}
389
390	if (!same_folio)
391		folio = __filemap_get_folio(mapping, lend >> PAGE_SHIFT,
392						FGP_LOCK, 0);
393	if (folio) {
394		if (!truncate_inode_partial_folio(folio, lstart, lend))
395			end = folio->index;
396		folio_unlock(folio);
397		folio_put(folio);
 
 
 
398	}
 
 
 
 
 
 
399
400	index = start;
401	while (index < end) {
402		cond_resched();
403		if (!find_get_entries(mapping, &index, end - 1, &fbatch,
404				indices)) {
405			/* If all gone from start onwards, we're done */
406			if (index == start)
407				break;
408			/* Otherwise restart to make sure all gone */
409			index = start;
410			continue;
411		}
412
413		for (i = 0; i < folio_batch_count(&fbatch); i++) {
414			struct folio *folio = fbatch.folios[i];
 
 
 
 
 
415
416			/* We rely upon deletion not changing page->index */
 
 
 
 
 
 
417
418			if (xa_is_value(folio))
 
419				continue;
 
420
421			folio_lock(folio);
422			VM_BUG_ON_FOLIO(!folio_contains(folio, indices[i]), folio);
423			folio_wait_writeback(folio);
424			truncate_inode_folio(mapping, folio);
425			folio_unlock(folio);
426		}
427		truncate_folio_batch_exceptionals(mapping, &fbatch, indices);
428		folio_batch_release(&fbatch);
 
429	}
 
430}
431EXPORT_SYMBOL(truncate_inode_pages_range);
432
433/**
434 * truncate_inode_pages - truncate *all* the pages from an offset
435 * @mapping: mapping to truncate
436 * @lstart: offset from which to truncate
437 *
438 * Called under (and serialised by) inode->i_rwsem and
439 * mapping->invalidate_lock.
440 *
441 * Note: When this function returns, there can be a page in the process of
442 * deletion (inside __filemap_remove_folio()) in the specified range.  Thus
443 * mapping->nrpages can be non-zero when this function returns even after
444 * truncation of the whole mapping.
445 */
446void truncate_inode_pages(struct address_space *mapping, loff_t lstart)
447{
448	truncate_inode_pages_range(mapping, lstart, (loff_t)-1);
449}
450EXPORT_SYMBOL(truncate_inode_pages);
451
452/**
453 * truncate_inode_pages_final - truncate *all* pages before inode dies
454 * @mapping: mapping to truncate
455 *
456 * Called under (and serialized by) inode->i_rwsem.
457 *
458 * Filesystems have to use this in the .evict_inode path to inform the
459 * VM that this is the final truncate and the inode is going away.
460 */
461void truncate_inode_pages_final(struct address_space *mapping)
462{
 
 
 
463	/*
464	 * Page reclaim can not participate in regular inode lifetime
465	 * management (can't call iput()) and thus can race with the
466	 * inode teardown.  Tell it when the address space is exiting,
467	 * so that it does not install eviction information after the
468	 * final truncate has begun.
469	 */
470	mapping_set_exiting(mapping);
471
472	if (!mapping_empty(mapping)) {
 
 
 
 
 
 
 
 
 
473		/*
474		 * As truncation uses a lockless tree lookup, cycle
475		 * the tree lock to make sure any ongoing tree
476		 * modification that does not see AS_EXITING is
477		 * completed before starting the final truncate.
478		 */
479		xa_lock_irq(&mapping->i_pages);
480		xa_unlock_irq(&mapping->i_pages);
 
 
481	}
482
483	truncate_inode_pages(mapping, 0);
484}
485EXPORT_SYMBOL(truncate_inode_pages_final);
486
487/**
488 * invalidate_mapping_pagevec - Invalidate all the unlocked pages of one inode
489 * @mapping: the address_space which holds the pages to invalidate
490 * @start: the offset 'from' which to invalidate
491 * @end: the offset 'to' which to invalidate (inclusive)
492 * @nr_pagevec: invalidate failed page number for caller
493 *
494 * This helper is similar to invalidate_mapping_pages(), except that it accounts
495 * for pages that are likely on a pagevec and counts them in @nr_pagevec, which
496 * will be used by the caller.
 
 
 
497 */
498unsigned long invalidate_mapping_pagevec(struct address_space *mapping,
499		pgoff_t start, pgoff_t end, unsigned long *nr_pagevec)
500{
501	pgoff_t indices[PAGEVEC_SIZE];
502	struct folio_batch fbatch;
503	pgoff_t index = start;
504	unsigned long ret;
505	unsigned long count = 0;
506	int i;
507
508	folio_batch_init(&fbatch);
509	while (find_lock_entries(mapping, &index, end, &fbatch, indices)) {
510		for (i = 0; i < folio_batch_count(&fbatch); i++) {
511			struct folio *folio = fbatch.folios[i];
512
513			/* We rely upon deletion not changing folio->index */
514
515			if (xa_is_value(folio)) {
516				count += invalidate_exceptional_entry(mapping,
517							     indices[i], folio);
 
 
 
 
518				continue;
519			}
520
521			ret = mapping_evict_folio(mapping, folio);
522			folio_unlock(folio);
 
 
 
523			/*
524			 * Invalidation is a hint that the folio is no longer
525			 * of interest and try to speed up its reclaim.
526			 */
527			if (!ret) {
528				deactivate_file_folio(folio);
529				/* It is likely on the pagevec of a remote CPU */
530				if (nr_pagevec)
531					(*nr_pagevec)++;
532			}
533			count += ret;
534		}
535		folio_batch_remove_exceptionals(&fbatch);
536		folio_batch_release(&fbatch);
537		cond_resched();
 
538	}
539	return count;
540}
541
542/**
543 * invalidate_mapping_pages - Invalidate all clean, unlocked cache of one inode
544 * @mapping: the address_space which holds the cache to invalidate
545 * @start: the offset 'from' which to invalidate
546 * @end: the offset 'to' which to invalidate (inclusive)
547 *
548 * This function removes pages that are clean, unmapped and unlocked,
549 * as well as shadow entries. It will not block on IO activity.
550 *
551 * If you want to remove all the pages of one inode, regardless of
552 * their use and writeback state, use truncate_inode_pages().
553 *
554 * Return: the number of the cache entries that were invalidated
555 */
556unsigned long invalidate_mapping_pages(struct address_space *mapping,
557		pgoff_t start, pgoff_t end)
558{
559	return invalidate_mapping_pagevec(mapping, start, end, NULL);
560}
561EXPORT_SYMBOL(invalidate_mapping_pages);
562
563/*
564 * This is like invalidate_inode_page(), except it ignores the page's
565 * refcount.  We do this because invalidate_inode_pages2() needs stronger
566 * invalidation guarantees, and cannot afford to leave pages behind because
567 * shrink_page_list() has a temp ref on them, or because they're transiently
568 * sitting in the folio_add_lru() pagevecs.
569 */
570static int invalidate_complete_folio2(struct address_space *mapping,
571					struct folio *folio)
572{
573	if (folio->mapping != mapping)
 
 
574		return 0;
575
576	if (folio_has_private(folio) &&
577	    !filemap_release_folio(folio, GFP_KERNEL))
578		return 0;
579
580	spin_lock(&mapping->host->i_lock);
581	xa_lock_irq(&mapping->i_pages);
582	if (folio_test_dirty(folio))
583		goto failed;
584
585	BUG_ON(folio_has_private(folio));
586	__filemap_remove_folio(folio, NULL);
587	xa_unlock_irq(&mapping->i_pages);
588	if (mapping_shrinkable(mapping))
589		inode_add_lru(mapping->host);
590	spin_unlock(&mapping->host->i_lock);
591
592	filemap_free_folio(mapping, folio);
593	return 1;
594failed:
595	xa_unlock_irq(&mapping->i_pages);
596	spin_unlock(&mapping->host->i_lock);
597	return 0;
598}
599
600static int folio_launder(struct address_space *mapping, struct folio *folio)
601{
602	if (!folio_test_dirty(folio))
603		return 0;
604	if (folio->mapping != mapping || mapping->a_ops->launder_folio == NULL)
605		return 0;
606	return mapping->a_ops->launder_folio(folio);
607}
608
609/**
610 * invalidate_inode_pages2_range - remove range of pages from an address_space
611 * @mapping: the address_space
612 * @start: the page offset 'from' which to invalidate
613 * @end: the page offset 'to' which to invalidate (inclusive)
614 *
615 * Any pages which are found to be mapped into pagetables are unmapped prior to
616 * invalidation.
617 *
618 * Return: -EBUSY if any pages could not be invalidated.
619 */
620int invalidate_inode_pages2_range(struct address_space *mapping,
621				  pgoff_t start, pgoff_t end)
622{
623	pgoff_t indices[PAGEVEC_SIZE];
624	struct folio_batch fbatch;
625	pgoff_t index;
626	int i;
627	int ret = 0;
628	int ret2 = 0;
629	int did_range_unmap = 0;
630
631	if (mapping_empty(mapping))
632		return 0;
 
 
 
 
 
 
 
 
 
 
 
633
634	folio_batch_init(&fbatch);
635	index = start;
636	while (find_get_entries(mapping, &index, end, &fbatch, indices)) {
637		for (i = 0; i < folio_batch_count(&fbatch); i++) {
638			struct folio *folio = fbatch.folios[i];
639
640			/* We rely upon deletion not changing folio->index */
641
642			if (xa_is_value(folio)) {
643				if (!invalidate_exceptional_entry2(mapping,
644						indices[i], folio))
645					ret = -EBUSY;
646				continue;
647			}
648
649			if (!did_range_unmap && folio_mapped(folio)) {
650				/*
651				 * If folio is mapped, before taking its lock,
652				 * zap the rest of the file in one hit.
653				 */
654				unmap_mapping_pages(mapping, indices[i],
655						(1 + end - indices[i]), false);
656				did_range_unmap = 1;
657			}
658
659			folio_lock(folio);
660			VM_BUG_ON_FOLIO(!folio_contains(folio, indices[i]), folio);
661			if (folio->mapping != mapping) {
662				folio_unlock(folio);
663				continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
664			}
665			folio_wait_writeback(folio);
666
667			if (folio_mapped(folio))
668				unmap_mapping_folio(folio);
669			BUG_ON(folio_mapped(folio));
670
671			ret2 = folio_launder(mapping, folio);
672			if (ret2 == 0) {
673				if (!invalidate_complete_folio2(mapping, folio))
674					ret2 = -EBUSY;
675			}
676			if (ret2 < 0)
677				ret = ret2;
678			folio_unlock(folio);
679		}
680		folio_batch_remove_exceptionals(&fbatch);
681		folio_batch_release(&fbatch);
682		cond_resched();
 
683	}
684	/*
685	 * For DAX we invalidate page tables after invalidating page cache.  We
686	 * could invalidate page tables while invalidating each entry however
687	 * that would be expensive. And doing range unmapping before doesn't
688	 * work as we have no cheap way to find whether page cache entry didn't
689	 * get remapped later.
690	 */
691	if (dax_mapping(mapping)) {
692		unmap_mapping_pages(mapping, start, end - start + 1, false);
693	}
694	return ret;
695}
696EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range);
697
698/**
699 * invalidate_inode_pages2 - remove all pages from an address_space
700 * @mapping: the address_space
701 *
702 * Any pages which are found to be mapped into pagetables are unmapped prior to
703 * invalidation.
704 *
705 * Return: -EBUSY if any pages could not be invalidated.
706 */
707int invalidate_inode_pages2(struct address_space *mapping)
708{
709	return invalidate_inode_pages2_range(mapping, 0, -1);
710}
711EXPORT_SYMBOL_GPL(invalidate_inode_pages2);
712
713/**
714 * truncate_pagecache - unmap and remove pagecache that has been truncated
715 * @inode: inode
716 * @newsize: new file size
717 *
718 * inode's new i_size must already be written before truncate_pagecache
719 * is called.
720 *
721 * This function should typically be called before the filesystem
722 * releases resources associated with the freed range (eg. deallocates
723 * blocks). This way, pagecache will always stay logically coherent
724 * with on-disk format, and the filesystem would not have to deal with
725 * situations such as writepage being called for a page that has already
726 * had its underlying blocks deallocated.
727 */
728void truncate_pagecache(struct inode *inode, loff_t newsize)
729{
730	struct address_space *mapping = inode->i_mapping;
731	loff_t holebegin = round_up(newsize, PAGE_SIZE);
732
733	/*
734	 * unmap_mapping_range is called twice, first simply for
735	 * efficiency so that truncate_inode_pages does fewer
736	 * single-page unmaps.  However after this first call, and
737	 * before truncate_inode_pages finishes, it is possible for
738	 * private pages to be COWed, which remain after
739	 * truncate_inode_pages finishes, hence the second
740	 * unmap_mapping_range call must be made for correctness.
741	 */
742	unmap_mapping_range(mapping, holebegin, 0, 1);
743	truncate_inode_pages(mapping, newsize);
744	unmap_mapping_range(mapping, holebegin, 0, 1);
745}
746EXPORT_SYMBOL(truncate_pagecache);
747
748/**
749 * truncate_setsize - update inode and pagecache for a new file size
750 * @inode: inode
751 * @newsize: new file size
752 *
753 * truncate_setsize updates i_size and performs pagecache truncation (if
754 * necessary) to @newsize. It will be typically be called from the filesystem's
755 * setattr function when ATTR_SIZE is passed in.
756 *
757 * Must be called with a lock serializing truncates and writes (generally
758 * i_rwsem but e.g. xfs uses a different lock) and before all filesystem
759 * specific block truncation has been performed.
760 */
761void truncate_setsize(struct inode *inode, loff_t newsize)
762{
763	loff_t oldsize = inode->i_size;
764
765	i_size_write(inode, newsize);
766	if (newsize > oldsize)
767		pagecache_isize_extended(inode, oldsize, newsize);
768	truncate_pagecache(inode, newsize);
769}
770EXPORT_SYMBOL(truncate_setsize);
771
772/**
773 * pagecache_isize_extended - update pagecache after extension of i_size
774 * @inode:	inode for which i_size was extended
775 * @from:	original inode size
776 * @to:		new inode size
777 *
778 * Handle extension of inode size either caused by extending truncate or by
779 * write starting after current i_size. We mark the page straddling current
780 * i_size RO so that page_mkwrite() is called on the nearest write access to
781 * the page.  This way filesystem can be sure that page_mkwrite() is called on
782 * the page before user writes to the page via mmap after the i_size has been
783 * changed.
784 *
785 * The function must be called after i_size is updated so that page fault
786 * coming after we unlock the page will already see the new i_size.
787 * The function must be called while we still hold i_rwsem - this not only
788 * makes sure i_size is stable but also that userspace cannot observe new
789 * i_size value before we are prepared to store mmap writes at new inode size.
790 */
791void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to)
792{
793	int bsize = i_blocksize(inode);
794	loff_t rounded_from;
795	struct page *page;
796	pgoff_t index;
797
798	WARN_ON(to > inode->i_size);
799
800	if (from >= to || bsize == PAGE_SIZE)
801		return;
802	/* Page straddling @from will not have any hole block created? */
803	rounded_from = round_up(from, bsize);
804	if (to <= rounded_from || !(rounded_from & (PAGE_SIZE - 1)))
805		return;
806
807	index = from >> PAGE_SHIFT;
808	page = find_lock_page(inode->i_mapping, index);
809	/* Page not cached? Nothing to do */
810	if (!page)
811		return;
812	/*
813	 * See clear_page_dirty_for_io() for details why set_page_dirty()
814	 * is needed.
815	 */
816	if (page_mkclean(page))
817		set_page_dirty(page);
818	unlock_page(page);
819	put_page(page);
820}
821EXPORT_SYMBOL(pagecache_isize_extended);
822
823/**
824 * truncate_pagecache_range - unmap and remove pagecache that is hole-punched
825 * @inode: inode
826 * @lstart: offset of beginning of hole
827 * @lend: offset of last byte of hole
828 *
829 * This function should typically be called before the filesystem
830 * releases resources associated with the freed range (eg. deallocates
831 * blocks). This way, pagecache will always stay logically coherent
832 * with on-disk format, and the filesystem would not have to deal with
833 * situations such as writepage being called for a page that has already
834 * had its underlying blocks deallocated.
835 */
836void truncate_pagecache_range(struct inode *inode, loff_t lstart, loff_t lend)
837{
838	struct address_space *mapping = inode->i_mapping;
839	loff_t unmap_start = round_up(lstart, PAGE_SIZE);
840	loff_t unmap_end = round_down(1 + lend, PAGE_SIZE) - 1;
841	/*
842	 * This rounding is currently just for example: unmap_mapping_range
843	 * expands its hole outwards, whereas we want it to contract the hole
844	 * inwards.  However, existing callers of truncate_pagecache_range are
845	 * doing their own page rounding first.  Note that unmap_mapping_range
846	 * allows holelen 0 for all, and we allow lend -1 for end of file.
847	 */
848
849	/*
850	 * Unlike in truncate_pagecache, unmap_mapping_range is called only
851	 * once (before truncating pagecache), and without "even_cows" flag:
852	 * hole-punching should not remove private COWed pages from the hole.
853	 */
854	if ((u64)unmap_end > (u64)unmap_start)
855		unmap_mapping_range(mapping, unmap_start,
856				    1 + unmap_end - unmap_start, 0);
857	truncate_inode_pages_range(mapping, lstart, lend);
858}
859EXPORT_SYMBOL(truncate_pagecache_range);