Linux Audio

Check our new training course

Loading...
v4.6
  1/*
  2 * mm/truncate.c - code for taking down pages from address_spaces
  3 *
  4 * Copyright (C) 2002, Linus Torvalds
  5 *
  6 * 10Sep2002	Andrew Morton
  7 *		Initial version.
  8 */
  9
 10#include <linux/kernel.h>
 11#include <linux/backing-dev.h>
 12#include <linux/dax.h>
 13#include <linux/gfp.h>
 14#include <linux/mm.h>
 15#include <linux/swap.h>
 16#include <linux/export.h>
 17#include <linux/pagemap.h>
 18#include <linux/highmem.h>
 19#include <linux/pagevec.h>
 20#include <linux/task_io_accounting_ops.h>
 21#include <linux/buffer_head.h>	/* grr. try_to_release_page,
 22				   do_invalidatepage */
 23#include <linux/cleancache.h>
 24#include <linux/rmap.h>
 25#include "internal.h"
 26
 27static void clear_exceptional_entry(struct address_space *mapping,
 28				    pgoff_t index, void *entry)
 29{
 30	struct radix_tree_node *node;
 31	void **slot;
 32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 33	/* Handled by shmem itself */
 34	if (shmem_mapping(mapping))
 35		return;
 36
 37	spin_lock_irq(&mapping->tree_lock);
 38
 39	if (dax_mapping(mapping)) {
 40		if (radix_tree_delete_item(&mapping->page_tree, index, entry))
 41			mapping->nrexceptional--;
 42	} else {
 43		/*
 44		 * Regular page slots are stabilized by the page lock even
 45		 * without the tree itself locked.  These unlocked entries
 46		 * need verification under the tree lock.
 47		 */
 48		if (!__radix_tree_lookup(&mapping->page_tree, index, &node,
 49					&slot))
 50			goto unlock;
 51		if (*slot != entry)
 52			goto unlock;
 53		radix_tree_replace_slot(slot, NULL);
 54		mapping->nrexceptional--;
 55		if (!node)
 56			goto unlock;
 57		workingset_node_shadows_dec(node);
 58		/*
 59		 * Don't track node without shadow entries.
 60		 *
 61		 * Avoid acquiring the list_lru lock if already untracked.
 62		 * The list_empty() test is safe as node->private_list is
 63		 * protected by mapping->tree_lock.
 64		 */
 65		if (!workingset_node_shadows(node) &&
 66		    !list_empty(&node->private_list))
 67			list_lru_del(&workingset_shadow_nodes,
 68					&node->private_list);
 69		__radix_tree_delete_node(&mapping->page_tree, node);
 70	}
 71unlock:
 72	spin_unlock_irq(&mapping->tree_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 73}
 74
 75/**
 76 * do_invalidatepage - invalidate part or all of a page
 77 * @page: the page which is affected
 78 * @offset: start of the range to invalidate
 79 * @length: length of the range to invalidate
 80 *
 81 * do_invalidatepage() is called when all or part of the page has become
 82 * invalidated by a truncate operation.
 83 *
 84 * do_invalidatepage() does not have to release all buffers, but it must
 85 * ensure that no dirty buffer is left outside @offset and that no I/O
 86 * is underway against any of the blocks which are outside the truncation
 87 * point.  Because the caller is about to free (and possibly reuse) those
 88 * blocks on-disk.
 89 */
 90void do_invalidatepage(struct page *page, unsigned int offset,
 91		       unsigned int length)
 92{
 93	void (*invalidatepage)(struct page *, unsigned int, unsigned int);
 94
 95	invalidatepage = page->mapping->a_ops->invalidatepage;
 96#ifdef CONFIG_BLOCK
 97	if (!invalidatepage)
 98		invalidatepage = block_invalidatepage;
 99#endif
100	if (invalidatepage)
101		(*invalidatepage)(page, offset, length);
102}
103
104/*
105 * If truncate cannot remove the fs-private metadata from the page, the page
106 * becomes orphaned.  It will be left on the LRU and may even be mapped into
107 * user pagetables if we're racing with filemap_fault().
108 *
109 * We need to bale out if page->mapping is no longer equal to the original
110 * mapping.  This happens a) when the VM reclaimed the page while we waited on
111 * its lock, b) when a concurrent invalidate_mapping_pages got there first and
112 * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space.
113 */
114static int
115truncate_complete_page(struct address_space *mapping, struct page *page)
116{
117	if (page->mapping != mapping)
118		return -EIO;
119
120	if (page_has_private(page))
121		do_invalidatepage(page, 0, PAGE_SIZE);
122
123	/*
124	 * Some filesystems seem to re-dirty the page even after
125	 * the VM has canceled the dirty bit (eg ext3 journaling).
126	 * Hence dirty accounting check is placed after invalidation.
127	 */
128	cancel_dirty_page(page);
129	ClearPageMappedToDisk(page);
130	delete_from_page_cache(page);
131	return 0;
132}
133
134/*
135 * This is for invalidate_mapping_pages().  That function can be called at
136 * any time, and is not supposed to throw away dirty pages.  But pages can
137 * be marked dirty at any time too, so use remove_mapping which safely
138 * discards clean, unused pages.
139 *
140 * Returns non-zero if the page was successfully invalidated.
141 */
142static int
143invalidate_complete_page(struct address_space *mapping, struct page *page)
144{
145	int ret;
146
147	if (page->mapping != mapping)
148		return 0;
149
150	if (page_has_private(page) && !try_to_release_page(page, 0))
151		return 0;
152
153	ret = remove_mapping(mapping, page);
154
155	return ret;
156}
157
158int truncate_inode_page(struct address_space *mapping, struct page *page)
159{
 
 
 
 
160	if (page_mapped(page)) {
161		unmap_mapping_range(mapping,
162				   (loff_t)page->index << PAGE_SHIFT,
163				   PAGE_SIZE, 0);
164	}
165	return truncate_complete_page(mapping, page);
166}
167
168/*
169 * Used to get rid of pages on hardware memory corruption.
170 */
171int generic_error_remove_page(struct address_space *mapping, struct page *page)
172{
173	if (!mapping)
174		return -EINVAL;
175	/*
176	 * Only punch for normal data pages for now.
177	 * Handling other types like directories would need more auditing.
178	 */
179	if (!S_ISREG(mapping->host->i_mode))
180		return -EIO;
181	return truncate_inode_page(mapping, page);
182}
183EXPORT_SYMBOL(generic_error_remove_page);
184
185/*
186 * Safely invalidate one page from its pagecache mapping.
187 * It only drops clean, unused pages. The page must be locked.
188 *
189 * Returns 1 if the page is successfully invalidated, otherwise 0.
190 */
191int invalidate_inode_page(struct page *page)
192{
193	struct address_space *mapping = page_mapping(page);
194	if (!mapping)
195		return 0;
196	if (PageDirty(page) || PageWriteback(page))
197		return 0;
198	if (page_mapped(page))
199		return 0;
200	return invalidate_complete_page(mapping, page);
201}
202
203/**
204 * truncate_inode_pages_range - truncate range of pages specified by start & end byte offsets
205 * @mapping: mapping to truncate
206 * @lstart: offset from which to truncate
207 * @lend: offset to which to truncate (inclusive)
208 *
209 * Truncate the page cache, removing the pages that are between
210 * specified offsets (and zeroing out partial pages
211 * if lstart or lend + 1 is not page aligned).
212 *
213 * Truncate takes two passes - the first pass is nonblocking.  It will not
214 * block on page locks and it will not block on writeback.  The second pass
215 * will wait.  This is to prevent as much IO as possible in the affected region.
216 * The first pass will remove most pages, so the search cost of the second pass
217 * is low.
218 *
219 * We pass down the cache-hot hint to the page freeing code.  Even if the
220 * mapping is large, it is probably the case that the final pages are the most
221 * recently touched, and freeing happens in ascending file offset order.
222 *
223 * Note that since ->invalidatepage() accepts range to invalidate
224 * truncate_inode_pages_range is able to handle cases where lend + 1 is not
225 * page aligned properly.
226 */
227void truncate_inode_pages_range(struct address_space *mapping,
228				loff_t lstart, loff_t lend)
229{
230	pgoff_t		start;		/* inclusive */
231	pgoff_t		end;		/* exclusive */
232	unsigned int	partial_start;	/* inclusive */
233	unsigned int	partial_end;	/* exclusive */
234	struct pagevec	pvec;
235	pgoff_t		indices[PAGEVEC_SIZE];
236	pgoff_t		index;
237	int		i;
238
239	cleancache_invalidate_inode(mapping);
240	if (mapping->nrpages == 0 && mapping->nrexceptional == 0)
241		return;
242
243	/* Offsets within partial pages */
244	partial_start = lstart & (PAGE_SIZE - 1);
245	partial_end = (lend + 1) & (PAGE_SIZE - 1);
246
247	/*
248	 * 'start' and 'end' always covers the range of pages to be fully
249	 * truncated. Partial pages are covered with 'partial_start' at the
250	 * start of the range and 'partial_end' at the end of the range.
251	 * Note that 'end' is exclusive while 'lend' is inclusive.
252	 */
253	start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
254	if (lend == -1)
255		/*
256		 * lend == -1 indicates end-of-file so we have to set 'end'
257		 * to the highest possible pgoff_t and since the type is
258		 * unsigned we're using -1.
259		 */
260		end = -1;
261	else
262		end = (lend + 1) >> PAGE_SHIFT;
263
264	pagevec_init(&pvec, 0);
265	index = start;
266	while (index < end && pagevec_lookup_entries(&pvec, mapping, index,
267			min(end - index, (pgoff_t)PAGEVEC_SIZE),
268			indices)) {
269		for (i = 0; i < pagevec_count(&pvec); i++) {
270			struct page *page = pvec.pages[i];
271
272			/* We rely upon deletion not changing page->index */
273			index = indices[i];
274			if (index >= end)
275				break;
276
277			if (radix_tree_exceptional_entry(page)) {
278				clear_exceptional_entry(mapping, index, page);
 
279				continue;
280			}
281
282			if (!trylock_page(page))
283				continue;
284			WARN_ON(page->index != index);
285			if (PageWriteback(page)) {
286				unlock_page(page);
287				continue;
288			}
289			truncate_inode_page(mapping, page);
290			unlock_page(page);
291		}
292		pagevec_remove_exceptionals(&pvec);
293		pagevec_release(&pvec);
294		cond_resched();
295		index++;
296	}
297
298	if (partial_start) {
299		struct page *page = find_lock_page(mapping, start - 1);
300		if (page) {
301			unsigned int top = PAGE_SIZE;
302			if (start > end) {
303				/* Truncation within a single page */
304				top = partial_end;
305				partial_end = 0;
306			}
307			wait_on_page_writeback(page);
308			zero_user_segment(page, partial_start, top);
309			cleancache_invalidate_page(mapping, page);
310			if (page_has_private(page))
311				do_invalidatepage(page, partial_start,
312						  top - partial_start);
313			unlock_page(page);
314			put_page(page);
315		}
316	}
317	if (partial_end) {
318		struct page *page = find_lock_page(mapping, end);
319		if (page) {
320			wait_on_page_writeback(page);
321			zero_user_segment(page, 0, partial_end);
322			cleancache_invalidate_page(mapping, page);
323			if (page_has_private(page))
324				do_invalidatepage(page, 0,
325						  partial_end);
326			unlock_page(page);
327			put_page(page);
328		}
329	}
330	/*
331	 * If the truncation happened within a single page no pages
332	 * will be released, just zeroed, so we can bail out now.
333	 */
334	if (start >= end)
335		return;
336
337	index = start;
338	for ( ; ; ) {
339		cond_resched();
340		if (!pagevec_lookup_entries(&pvec, mapping, index,
341			min(end - index, (pgoff_t)PAGEVEC_SIZE), indices)) {
342			/* If all gone from start onwards, we're done */
343			if (index == start)
344				break;
345			/* Otherwise restart to make sure all gone */
346			index = start;
347			continue;
348		}
349		if (index == start && indices[0] >= end) {
350			/* All gone out of hole to be punched, we're done */
351			pagevec_remove_exceptionals(&pvec);
352			pagevec_release(&pvec);
353			break;
354		}
355		for (i = 0; i < pagevec_count(&pvec); i++) {
356			struct page *page = pvec.pages[i];
357
358			/* We rely upon deletion not changing page->index */
359			index = indices[i];
360			if (index >= end) {
361				/* Restart punch to make sure all gone */
362				index = start - 1;
363				break;
364			}
365
366			if (radix_tree_exceptional_entry(page)) {
367				clear_exceptional_entry(mapping, index, page);
 
368				continue;
369			}
370
371			lock_page(page);
372			WARN_ON(page->index != index);
373			wait_on_page_writeback(page);
374			truncate_inode_page(mapping, page);
375			unlock_page(page);
376		}
377		pagevec_remove_exceptionals(&pvec);
378		pagevec_release(&pvec);
379		index++;
380	}
381	cleancache_invalidate_inode(mapping);
382}
383EXPORT_SYMBOL(truncate_inode_pages_range);
384
385/**
386 * truncate_inode_pages - truncate *all* the pages from an offset
387 * @mapping: mapping to truncate
388 * @lstart: offset from which to truncate
389 *
390 * Called under (and serialised by) inode->i_mutex.
391 *
392 * Note: When this function returns, there can be a page in the process of
393 * deletion (inside __delete_from_page_cache()) in the specified range.  Thus
394 * mapping->nrpages can be non-zero when this function returns even after
395 * truncation of the whole mapping.
396 */
397void truncate_inode_pages(struct address_space *mapping, loff_t lstart)
398{
399	truncate_inode_pages_range(mapping, lstart, (loff_t)-1);
400}
401EXPORT_SYMBOL(truncate_inode_pages);
402
403/**
404 * truncate_inode_pages_final - truncate *all* pages before inode dies
405 * @mapping: mapping to truncate
406 *
407 * Called under (and serialized by) inode->i_mutex.
408 *
409 * Filesystems have to use this in the .evict_inode path to inform the
410 * VM that this is the final truncate and the inode is going away.
411 */
412void truncate_inode_pages_final(struct address_space *mapping)
413{
414	unsigned long nrexceptional;
415	unsigned long nrpages;
416
417	/*
418	 * Page reclaim can not participate in regular inode lifetime
419	 * management (can't call iput()) and thus can race with the
420	 * inode teardown.  Tell it when the address space is exiting,
421	 * so that it does not install eviction information after the
422	 * final truncate has begun.
423	 */
424	mapping_set_exiting(mapping);
425
426	/*
427	 * When reclaim installs eviction entries, it increases
428	 * nrexceptional first, then decreases nrpages.  Make sure we see
429	 * this in the right order or we might miss an entry.
430	 */
431	nrpages = mapping->nrpages;
432	smp_rmb();
433	nrexceptional = mapping->nrexceptional;
434
435	if (nrpages || nrexceptional) {
436		/*
437		 * As truncation uses a lockless tree lookup, cycle
438		 * the tree lock to make sure any ongoing tree
439		 * modification that does not see AS_EXITING is
440		 * completed before starting the final truncate.
441		 */
442		spin_lock_irq(&mapping->tree_lock);
443		spin_unlock_irq(&mapping->tree_lock);
444
445		truncate_inode_pages(mapping, 0);
446	}
447}
448EXPORT_SYMBOL(truncate_inode_pages_final);
449
450/**
451 * invalidate_mapping_pages - Invalidate all the unlocked pages of one inode
452 * @mapping: the address_space which holds the pages to invalidate
453 * @start: the offset 'from' which to invalidate
454 * @end: the offset 'to' which to invalidate (inclusive)
455 *
456 * This function only removes the unlocked pages, if you want to
457 * remove all the pages of one inode, you must call truncate_inode_pages.
458 *
459 * invalidate_mapping_pages() will not block on IO activity. It will not
460 * invalidate pages which are dirty, locked, under writeback or mapped into
461 * pagetables.
462 */
463unsigned long invalidate_mapping_pages(struct address_space *mapping,
464		pgoff_t start, pgoff_t end)
465{
466	pgoff_t indices[PAGEVEC_SIZE];
467	struct pagevec pvec;
468	pgoff_t index = start;
469	unsigned long ret;
470	unsigned long count = 0;
471	int i;
472
473	pagevec_init(&pvec, 0);
474	while (index <= end && pagevec_lookup_entries(&pvec, mapping, index,
475			min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1,
476			indices)) {
477		for (i = 0; i < pagevec_count(&pvec); i++) {
478			struct page *page = pvec.pages[i];
479
480			/* We rely upon deletion not changing page->index */
481			index = indices[i];
482			if (index > end)
483				break;
484
485			if (radix_tree_exceptional_entry(page)) {
486				clear_exceptional_entry(mapping, index, page);
 
487				continue;
488			}
489
490			if (!trylock_page(page))
491				continue;
492			WARN_ON(page->index != index);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
493			ret = invalidate_inode_page(page);
494			unlock_page(page);
495			/*
496			 * Invalidation is a hint that the page is no longer
497			 * of interest and try to speed up its reclaim.
498			 */
499			if (!ret)
500				deactivate_file_page(page);
501			count += ret;
502		}
503		pagevec_remove_exceptionals(&pvec);
504		pagevec_release(&pvec);
505		cond_resched();
506		index++;
507	}
508	return count;
509}
510EXPORT_SYMBOL(invalidate_mapping_pages);
511
512/*
513 * This is like invalidate_complete_page(), except it ignores the page's
514 * refcount.  We do this because invalidate_inode_pages2() needs stronger
515 * invalidation guarantees, and cannot afford to leave pages behind because
516 * shrink_page_list() has a temp ref on them, or because they're transiently
517 * sitting in the lru_cache_add() pagevecs.
518 */
519static int
520invalidate_complete_page2(struct address_space *mapping, struct page *page)
521{
522	unsigned long flags;
523
524	if (page->mapping != mapping)
525		return 0;
526
527	if (page_has_private(page) && !try_to_release_page(page, GFP_KERNEL))
528		return 0;
529
530	spin_lock_irqsave(&mapping->tree_lock, flags);
531	if (PageDirty(page))
532		goto failed;
533
534	BUG_ON(page_has_private(page));
535	__delete_from_page_cache(page, NULL);
536	spin_unlock_irqrestore(&mapping->tree_lock, flags);
537
538	if (mapping->a_ops->freepage)
539		mapping->a_ops->freepage(page);
540
541	put_page(page);	/* pagecache ref */
542	return 1;
543failed:
544	spin_unlock_irqrestore(&mapping->tree_lock, flags);
545	return 0;
546}
547
548static int do_launder_page(struct address_space *mapping, struct page *page)
549{
550	if (!PageDirty(page))
551		return 0;
552	if (page->mapping != mapping || mapping->a_ops->launder_page == NULL)
553		return 0;
554	return mapping->a_ops->launder_page(page);
555}
556
557/**
558 * invalidate_inode_pages2_range - remove range of pages from an address_space
559 * @mapping: the address_space
560 * @start: the page offset 'from' which to invalidate
561 * @end: the page offset 'to' which to invalidate (inclusive)
562 *
563 * Any pages which are found to be mapped into pagetables are unmapped prior to
564 * invalidation.
565 *
566 * Returns -EBUSY if any pages could not be invalidated.
567 */
568int invalidate_inode_pages2_range(struct address_space *mapping,
569				  pgoff_t start, pgoff_t end)
570{
571	pgoff_t indices[PAGEVEC_SIZE];
572	struct pagevec pvec;
573	pgoff_t index;
574	int i;
575	int ret = 0;
576	int ret2 = 0;
577	int did_range_unmap = 0;
578
579	cleancache_invalidate_inode(mapping);
580	pagevec_init(&pvec, 0);
581	index = start;
582	while (index <= end && pagevec_lookup_entries(&pvec, mapping, index,
583			min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1,
584			indices)) {
585		for (i = 0; i < pagevec_count(&pvec); i++) {
586			struct page *page = pvec.pages[i];
587
588			/* We rely upon deletion not changing page->index */
589			index = indices[i];
590			if (index > end)
591				break;
592
593			if (radix_tree_exceptional_entry(page)) {
594				clear_exceptional_entry(mapping, index, page);
 
 
595				continue;
596			}
597
598			lock_page(page);
599			WARN_ON(page->index != index);
600			if (page->mapping != mapping) {
601				unlock_page(page);
602				continue;
603			}
604			wait_on_page_writeback(page);
605			if (page_mapped(page)) {
606				if (!did_range_unmap) {
607					/*
608					 * Zap the rest of the file in one hit.
609					 */
610					unmap_mapping_range(mapping,
611					   (loff_t)index << PAGE_SHIFT,
612					   (loff_t)(1 + end - index)
613							 << PAGE_SHIFT,
614							 0);
615					did_range_unmap = 1;
616				} else {
617					/*
618					 * Just zap this page
619					 */
620					unmap_mapping_range(mapping,
621					   (loff_t)index << PAGE_SHIFT,
622					   PAGE_SIZE, 0);
623				}
624			}
625			BUG_ON(page_mapped(page));
626			ret2 = do_launder_page(mapping, page);
627			if (ret2 == 0) {
628				if (!invalidate_complete_page2(mapping, page))
629					ret2 = -EBUSY;
630			}
631			if (ret2 < 0)
632				ret = ret2;
633			unlock_page(page);
634		}
635		pagevec_remove_exceptionals(&pvec);
636		pagevec_release(&pvec);
637		cond_resched();
638		index++;
639	}
640	cleancache_invalidate_inode(mapping);
641	return ret;
642}
643EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range);
644
645/**
646 * invalidate_inode_pages2 - remove all pages from an address_space
647 * @mapping: the address_space
648 *
649 * Any pages which are found to be mapped into pagetables are unmapped prior to
650 * invalidation.
651 *
652 * Returns -EBUSY if any pages could not be invalidated.
653 */
654int invalidate_inode_pages2(struct address_space *mapping)
655{
656	return invalidate_inode_pages2_range(mapping, 0, -1);
657}
658EXPORT_SYMBOL_GPL(invalidate_inode_pages2);
659
660/**
661 * truncate_pagecache - unmap and remove pagecache that has been truncated
662 * @inode: inode
663 * @newsize: new file size
664 *
665 * inode's new i_size must already be written before truncate_pagecache
666 * is called.
667 *
668 * This function should typically be called before the filesystem
669 * releases resources associated with the freed range (eg. deallocates
670 * blocks). This way, pagecache will always stay logically coherent
671 * with on-disk format, and the filesystem would not have to deal with
672 * situations such as writepage being called for a page that has already
673 * had its underlying blocks deallocated.
674 */
675void truncate_pagecache(struct inode *inode, loff_t newsize)
676{
677	struct address_space *mapping = inode->i_mapping;
678	loff_t holebegin = round_up(newsize, PAGE_SIZE);
679
680	/*
681	 * unmap_mapping_range is called twice, first simply for
682	 * efficiency so that truncate_inode_pages does fewer
683	 * single-page unmaps.  However after this first call, and
684	 * before truncate_inode_pages finishes, it is possible for
685	 * private pages to be COWed, which remain after
686	 * truncate_inode_pages finishes, hence the second
687	 * unmap_mapping_range call must be made for correctness.
688	 */
689	unmap_mapping_range(mapping, holebegin, 0, 1);
690	truncate_inode_pages(mapping, newsize);
691	unmap_mapping_range(mapping, holebegin, 0, 1);
692}
693EXPORT_SYMBOL(truncate_pagecache);
694
695/**
696 * truncate_setsize - update inode and pagecache for a new file size
697 * @inode: inode
698 * @newsize: new file size
699 *
700 * truncate_setsize updates i_size and performs pagecache truncation (if
701 * necessary) to @newsize. It will be typically be called from the filesystem's
702 * setattr function when ATTR_SIZE is passed in.
703 *
704 * Must be called with a lock serializing truncates and writes (generally
705 * i_mutex but e.g. xfs uses a different lock) and before all filesystem
706 * specific block truncation has been performed.
707 */
708void truncate_setsize(struct inode *inode, loff_t newsize)
709{
710	loff_t oldsize = inode->i_size;
711
712	i_size_write(inode, newsize);
713	if (newsize > oldsize)
714		pagecache_isize_extended(inode, oldsize, newsize);
715	truncate_pagecache(inode, newsize);
716}
717EXPORT_SYMBOL(truncate_setsize);
718
719/**
720 * pagecache_isize_extended - update pagecache after extension of i_size
721 * @inode:	inode for which i_size was extended
722 * @from:	original inode size
723 * @to:		new inode size
724 *
725 * Handle extension of inode size either caused by extending truncate or by
726 * write starting after current i_size. We mark the page straddling current
727 * i_size RO so that page_mkwrite() is called on the nearest write access to
728 * the page.  This way filesystem can be sure that page_mkwrite() is called on
729 * the page before user writes to the page via mmap after the i_size has been
730 * changed.
731 *
732 * The function must be called after i_size is updated so that page fault
733 * coming after we unlock the page will already see the new i_size.
734 * The function must be called while we still hold i_mutex - this not only
735 * makes sure i_size is stable but also that userspace cannot observe new
736 * i_size value before we are prepared to store mmap writes at new inode size.
737 */
738void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to)
739{
740	int bsize = 1 << inode->i_blkbits;
741	loff_t rounded_from;
742	struct page *page;
743	pgoff_t index;
744
745	WARN_ON(to > inode->i_size);
746
747	if (from >= to || bsize == PAGE_SIZE)
748		return;
749	/* Page straddling @from will not have any hole block created? */
750	rounded_from = round_up(from, bsize);
751	if (to <= rounded_from || !(rounded_from & (PAGE_SIZE - 1)))
752		return;
753
754	index = from >> PAGE_SHIFT;
755	page = find_lock_page(inode->i_mapping, index);
756	/* Page not cached? Nothing to do */
757	if (!page)
758		return;
759	/*
760	 * See clear_page_dirty_for_io() for details why set_page_dirty()
761	 * is needed.
762	 */
763	if (page_mkclean(page))
764		set_page_dirty(page);
765	unlock_page(page);
766	put_page(page);
767}
768EXPORT_SYMBOL(pagecache_isize_extended);
769
770/**
771 * truncate_pagecache_range - unmap and remove pagecache that is hole-punched
772 * @inode: inode
773 * @lstart: offset of beginning of hole
774 * @lend: offset of last byte of hole
775 *
776 * This function should typically be called before the filesystem
777 * releases resources associated with the freed range (eg. deallocates
778 * blocks). This way, pagecache will always stay logically coherent
779 * with on-disk format, and the filesystem would not have to deal with
780 * situations such as writepage being called for a page that has already
781 * had its underlying blocks deallocated.
782 */
783void truncate_pagecache_range(struct inode *inode, loff_t lstart, loff_t lend)
784{
785	struct address_space *mapping = inode->i_mapping;
786	loff_t unmap_start = round_up(lstart, PAGE_SIZE);
787	loff_t unmap_end = round_down(1 + lend, PAGE_SIZE) - 1;
788	/*
789	 * This rounding is currently just for example: unmap_mapping_range
790	 * expands its hole outwards, whereas we want it to contract the hole
791	 * inwards.  However, existing callers of truncate_pagecache_range are
792	 * doing their own page rounding first.  Note that unmap_mapping_range
793	 * allows holelen 0 for all, and we allow lend -1 for end of file.
794	 */
795
796	/*
797	 * Unlike in truncate_pagecache, unmap_mapping_range is called only
798	 * once (before truncating pagecache), and without "even_cows" flag:
799	 * hole-punching should not remove private COWed pages from the hole.
800	 */
801	if ((u64)unmap_end > (u64)unmap_start)
802		unmap_mapping_range(mapping, unmap_start,
803				    1 + unmap_end - unmap_start, 0);
804	truncate_inode_pages_range(mapping, lstart, lend);
805}
806EXPORT_SYMBOL(truncate_pagecache_range);
v4.10.11
  1/*
  2 * mm/truncate.c - code for taking down pages from address_spaces
  3 *
  4 * Copyright (C) 2002, Linus Torvalds
  5 *
  6 * 10Sep2002	Andrew Morton
  7 *		Initial version.
  8 */
  9
 10#include <linux/kernel.h>
 11#include <linux/backing-dev.h>
 12#include <linux/dax.h>
 13#include <linux/gfp.h>
 14#include <linux/mm.h>
 15#include <linux/swap.h>
 16#include <linux/export.h>
 17#include <linux/pagemap.h>
 18#include <linux/highmem.h>
 19#include <linux/pagevec.h>
 20#include <linux/task_io_accounting_ops.h>
 21#include <linux/buffer_head.h>	/* grr. try_to_release_page,
 22				   do_invalidatepage */
 23#include <linux/cleancache.h>
 24#include <linux/rmap.h>
 25#include "internal.h"
 26
 27static void clear_shadow_entry(struct address_space *mapping, pgoff_t index,
 28			       void *entry)
 29{
 30	struct radix_tree_node *node;
 31	void **slot;
 32
 33	spin_lock_irq(&mapping->tree_lock);
 34	/*
 35	 * Regular page slots are stabilized by the page lock even
 36	 * without the tree itself locked.  These unlocked entries
 37	 * need verification under the tree lock.
 38	 */
 39	if (!__radix_tree_lookup(&mapping->page_tree, index, &node, &slot))
 40		goto unlock;
 41	if (*slot != entry)
 42		goto unlock;
 43	__radix_tree_replace(&mapping->page_tree, node, slot, NULL,
 44			     workingset_update_node, mapping);
 45	mapping->nrexceptional--;
 46unlock:
 47	spin_unlock_irq(&mapping->tree_lock);
 48}
 49
 50/*
 51 * Unconditionally remove exceptional entry. Usually called from truncate path.
 52 */
 53static void truncate_exceptional_entry(struct address_space *mapping,
 54				       pgoff_t index, void *entry)
 55{
 56	/* Handled by shmem itself */
 57	if (shmem_mapping(mapping))
 58		return;
 59
 
 
 60	if (dax_mapping(mapping)) {
 61		dax_delete_mapping_entry(mapping, index);
 62		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 63	}
 64	clear_shadow_entry(mapping, index, entry);
 65}
 66
 67/*
 68 * Invalidate exceptional entry if easily possible. This handles exceptional
 69 * entries for invalidate_inode_pages() so for DAX it evicts only unlocked and
 70 * clean entries.
 71 */
 72static int invalidate_exceptional_entry(struct address_space *mapping,
 73					pgoff_t index, void *entry)
 74{
 75	/* Handled by shmem itself */
 76	if (shmem_mapping(mapping))
 77		return 1;
 78	if (dax_mapping(mapping))
 79		return dax_invalidate_mapping_entry(mapping, index);
 80	clear_shadow_entry(mapping, index, entry);
 81	return 1;
 82}
 83
 84/*
 85 * Invalidate exceptional entry if clean. This handles exceptional entries for
 86 * invalidate_inode_pages2() so for DAX it evicts only clean entries.
 87 */
 88static int invalidate_exceptional_entry2(struct address_space *mapping,
 89					 pgoff_t index, void *entry)
 90{
 91	/* Handled by shmem itself */
 92	if (shmem_mapping(mapping))
 93		return 1;
 94	if (dax_mapping(mapping))
 95		return dax_invalidate_mapping_entry_sync(mapping, index);
 96	clear_shadow_entry(mapping, index, entry);
 97	return 1;
 98}
 99
100/**
101 * do_invalidatepage - invalidate part or all of a page
102 * @page: the page which is affected
103 * @offset: start of the range to invalidate
104 * @length: length of the range to invalidate
105 *
106 * do_invalidatepage() is called when all or part of the page has become
107 * invalidated by a truncate operation.
108 *
109 * do_invalidatepage() does not have to release all buffers, but it must
110 * ensure that no dirty buffer is left outside @offset and that no I/O
111 * is underway against any of the blocks which are outside the truncation
112 * point.  Because the caller is about to free (and possibly reuse) those
113 * blocks on-disk.
114 */
115void do_invalidatepage(struct page *page, unsigned int offset,
116		       unsigned int length)
117{
118	void (*invalidatepage)(struct page *, unsigned int, unsigned int);
119
120	invalidatepage = page->mapping->a_ops->invalidatepage;
121#ifdef CONFIG_BLOCK
122	if (!invalidatepage)
123		invalidatepage = block_invalidatepage;
124#endif
125	if (invalidatepage)
126		(*invalidatepage)(page, offset, length);
127}
128
129/*
130 * If truncate cannot remove the fs-private metadata from the page, the page
131 * becomes orphaned.  It will be left on the LRU and may even be mapped into
132 * user pagetables if we're racing with filemap_fault().
133 *
134 * We need to bale out if page->mapping is no longer equal to the original
135 * mapping.  This happens a) when the VM reclaimed the page while we waited on
136 * its lock, b) when a concurrent invalidate_mapping_pages got there first and
137 * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space.
138 */
139static int
140truncate_complete_page(struct address_space *mapping, struct page *page)
141{
142	if (page->mapping != mapping)
143		return -EIO;
144
145	if (page_has_private(page))
146		do_invalidatepage(page, 0, PAGE_SIZE);
147
148	/*
149	 * Some filesystems seem to re-dirty the page even after
150	 * the VM has canceled the dirty bit (eg ext3 journaling).
151	 * Hence dirty accounting check is placed after invalidation.
152	 */
153	cancel_dirty_page(page);
154	ClearPageMappedToDisk(page);
155	delete_from_page_cache(page);
156	return 0;
157}
158
159/*
160 * This is for invalidate_mapping_pages().  That function can be called at
161 * any time, and is not supposed to throw away dirty pages.  But pages can
162 * be marked dirty at any time too, so use remove_mapping which safely
163 * discards clean, unused pages.
164 *
165 * Returns non-zero if the page was successfully invalidated.
166 */
167static int
168invalidate_complete_page(struct address_space *mapping, struct page *page)
169{
170	int ret;
171
172	if (page->mapping != mapping)
173		return 0;
174
175	if (page_has_private(page) && !try_to_release_page(page, 0))
176		return 0;
177
178	ret = remove_mapping(mapping, page);
179
180	return ret;
181}
182
183int truncate_inode_page(struct address_space *mapping, struct page *page)
184{
185	loff_t holelen;
186	VM_BUG_ON_PAGE(PageTail(page), page);
187
188	holelen = PageTransHuge(page) ? HPAGE_PMD_SIZE : PAGE_SIZE;
189	if (page_mapped(page)) {
190		unmap_mapping_range(mapping,
191				   (loff_t)page->index << PAGE_SHIFT,
192				   holelen, 0);
193	}
194	return truncate_complete_page(mapping, page);
195}
196
197/*
198 * Used to get rid of pages on hardware memory corruption.
199 */
200int generic_error_remove_page(struct address_space *mapping, struct page *page)
201{
202	if (!mapping)
203		return -EINVAL;
204	/*
205	 * Only punch for normal data pages for now.
206	 * Handling other types like directories would need more auditing.
207	 */
208	if (!S_ISREG(mapping->host->i_mode))
209		return -EIO;
210	return truncate_inode_page(mapping, page);
211}
212EXPORT_SYMBOL(generic_error_remove_page);
213
214/*
215 * Safely invalidate one page from its pagecache mapping.
216 * It only drops clean, unused pages. The page must be locked.
217 *
218 * Returns 1 if the page is successfully invalidated, otherwise 0.
219 */
220int invalidate_inode_page(struct page *page)
221{
222	struct address_space *mapping = page_mapping(page);
223	if (!mapping)
224		return 0;
225	if (PageDirty(page) || PageWriteback(page))
226		return 0;
227	if (page_mapped(page))
228		return 0;
229	return invalidate_complete_page(mapping, page);
230}
231
232/**
233 * truncate_inode_pages_range - truncate range of pages specified by start & end byte offsets
234 * @mapping: mapping to truncate
235 * @lstart: offset from which to truncate
236 * @lend: offset to which to truncate (inclusive)
237 *
238 * Truncate the page cache, removing the pages that are between
239 * specified offsets (and zeroing out partial pages
240 * if lstart or lend + 1 is not page aligned).
241 *
242 * Truncate takes two passes - the first pass is nonblocking.  It will not
243 * block on page locks and it will not block on writeback.  The second pass
244 * will wait.  This is to prevent as much IO as possible in the affected region.
245 * The first pass will remove most pages, so the search cost of the second pass
246 * is low.
247 *
248 * We pass down the cache-hot hint to the page freeing code.  Even if the
249 * mapping is large, it is probably the case that the final pages are the most
250 * recently touched, and freeing happens in ascending file offset order.
251 *
252 * Note that since ->invalidatepage() accepts range to invalidate
253 * truncate_inode_pages_range is able to handle cases where lend + 1 is not
254 * page aligned properly.
255 */
256void truncate_inode_pages_range(struct address_space *mapping,
257				loff_t lstart, loff_t lend)
258{
259	pgoff_t		start;		/* inclusive */
260	pgoff_t		end;		/* exclusive */
261	unsigned int	partial_start;	/* inclusive */
262	unsigned int	partial_end;	/* exclusive */
263	struct pagevec	pvec;
264	pgoff_t		indices[PAGEVEC_SIZE];
265	pgoff_t		index;
266	int		i;
267
268	cleancache_invalidate_inode(mapping);
269	if (mapping->nrpages == 0 && mapping->nrexceptional == 0)
270		return;
271
272	/* Offsets within partial pages */
273	partial_start = lstart & (PAGE_SIZE - 1);
274	partial_end = (lend + 1) & (PAGE_SIZE - 1);
275
276	/*
277	 * 'start' and 'end' always covers the range of pages to be fully
278	 * truncated. Partial pages are covered with 'partial_start' at the
279	 * start of the range and 'partial_end' at the end of the range.
280	 * Note that 'end' is exclusive while 'lend' is inclusive.
281	 */
282	start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
283	if (lend == -1)
284		/*
285		 * lend == -1 indicates end-of-file so we have to set 'end'
286		 * to the highest possible pgoff_t and since the type is
287		 * unsigned we're using -1.
288		 */
289		end = -1;
290	else
291		end = (lend + 1) >> PAGE_SHIFT;
292
293	pagevec_init(&pvec, 0);
294	index = start;
295	while (index < end && pagevec_lookup_entries(&pvec, mapping, index,
296			min(end - index, (pgoff_t)PAGEVEC_SIZE),
297			indices)) {
298		for (i = 0; i < pagevec_count(&pvec); i++) {
299			struct page *page = pvec.pages[i];
300
301			/* We rely upon deletion not changing page->index */
302			index = indices[i];
303			if (index >= end)
304				break;
305
306			if (radix_tree_exceptional_entry(page)) {
307				truncate_exceptional_entry(mapping, index,
308							   page);
309				continue;
310			}
311
312			if (!trylock_page(page))
313				continue;
314			WARN_ON(page_to_index(page) != index);
315			if (PageWriteback(page)) {
316				unlock_page(page);
317				continue;
318			}
319			truncate_inode_page(mapping, page);
320			unlock_page(page);
321		}
322		pagevec_remove_exceptionals(&pvec);
323		pagevec_release(&pvec);
324		cond_resched();
325		index++;
326	}
327
328	if (partial_start) {
329		struct page *page = find_lock_page(mapping, start - 1);
330		if (page) {
331			unsigned int top = PAGE_SIZE;
332			if (start > end) {
333				/* Truncation within a single page */
334				top = partial_end;
335				partial_end = 0;
336			}
337			wait_on_page_writeback(page);
338			zero_user_segment(page, partial_start, top);
339			cleancache_invalidate_page(mapping, page);
340			if (page_has_private(page))
341				do_invalidatepage(page, partial_start,
342						  top - partial_start);
343			unlock_page(page);
344			put_page(page);
345		}
346	}
347	if (partial_end) {
348		struct page *page = find_lock_page(mapping, end);
349		if (page) {
350			wait_on_page_writeback(page);
351			zero_user_segment(page, 0, partial_end);
352			cleancache_invalidate_page(mapping, page);
353			if (page_has_private(page))
354				do_invalidatepage(page, 0,
355						  partial_end);
356			unlock_page(page);
357			put_page(page);
358		}
359	}
360	/*
361	 * If the truncation happened within a single page no pages
362	 * will be released, just zeroed, so we can bail out now.
363	 */
364	if (start >= end)
365		return;
366
367	index = start;
368	for ( ; ; ) {
369		cond_resched();
370		if (!pagevec_lookup_entries(&pvec, mapping, index,
371			min(end - index, (pgoff_t)PAGEVEC_SIZE), indices)) {
372			/* If all gone from start onwards, we're done */
373			if (index == start)
374				break;
375			/* Otherwise restart to make sure all gone */
376			index = start;
377			continue;
378		}
379		if (index == start && indices[0] >= end) {
380			/* All gone out of hole to be punched, we're done */
381			pagevec_remove_exceptionals(&pvec);
382			pagevec_release(&pvec);
383			break;
384		}
385		for (i = 0; i < pagevec_count(&pvec); i++) {
386			struct page *page = pvec.pages[i];
387
388			/* We rely upon deletion not changing page->index */
389			index = indices[i];
390			if (index >= end) {
391				/* Restart punch to make sure all gone */
392				index = start - 1;
393				break;
394			}
395
396			if (radix_tree_exceptional_entry(page)) {
397				truncate_exceptional_entry(mapping, index,
398							   page);
399				continue;
400			}
401
402			lock_page(page);
403			WARN_ON(page_to_index(page) != index);
404			wait_on_page_writeback(page);
405			truncate_inode_page(mapping, page);
406			unlock_page(page);
407		}
408		pagevec_remove_exceptionals(&pvec);
409		pagevec_release(&pvec);
410		index++;
411	}
412	cleancache_invalidate_inode(mapping);
413}
414EXPORT_SYMBOL(truncate_inode_pages_range);
415
416/**
417 * truncate_inode_pages - truncate *all* the pages from an offset
418 * @mapping: mapping to truncate
419 * @lstart: offset from which to truncate
420 *
421 * Called under (and serialised by) inode->i_mutex.
422 *
423 * Note: When this function returns, there can be a page in the process of
424 * deletion (inside __delete_from_page_cache()) in the specified range.  Thus
425 * mapping->nrpages can be non-zero when this function returns even after
426 * truncation of the whole mapping.
427 */
428void truncate_inode_pages(struct address_space *mapping, loff_t lstart)
429{
430	truncate_inode_pages_range(mapping, lstart, (loff_t)-1);
431}
432EXPORT_SYMBOL(truncate_inode_pages);
433
434/**
435 * truncate_inode_pages_final - truncate *all* pages before inode dies
436 * @mapping: mapping to truncate
437 *
438 * Called under (and serialized by) inode->i_mutex.
439 *
440 * Filesystems have to use this in the .evict_inode path to inform the
441 * VM that this is the final truncate and the inode is going away.
442 */
443void truncate_inode_pages_final(struct address_space *mapping)
444{
445	unsigned long nrexceptional;
446	unsigned long nrpages;
447
448	/*
449	 * Page reclaim can not participate in regular inode lifetime
450	 * management (can't call iput()) and thus can race with the
451	 * inode teardown.  Tell it when the address space is exiting,
452	 * so that it does not install eviction information after the
453	 * final truncate has begun.
454	 */
455	mapping_set_exiting(mapping);
456
457	/*
458	 * When reclaim installs eviction entries, it increases
459	 * nrexceptional first, then decreases nrpages.  Make sure we see
460	 * this in the right order or we might miss an entry.
461	 */
462	nrpages = mapping->nrpages;
463	smp_rmb();
464	nrexceptional = mapping->nrexceptional;
465
466	if (nrpages || nrexceptional) {
467		/*
468		 * As truncation uses a lockless tree lookup, cycle
469		 * the tree lock to make sure any ongoing tree
470		 * modification that does not see AS_EXITING is
471		 * completed before starting the final truncate.
472		 */
473		spin_lock_irq(&mapping->tree_lock);
474		spin_unlock_irq(&mapping->tree_lock);
475
476		truncate_inode_pages(mapping, 0);
477	}
478}
479EXPORT_SYMBOL(truncate_inode_pages_final);
480
481/**
482 * invalidate_mapping_pages - Invalidate all the unlocked pages of one inode
483 * @mapping: the address_space which holds the pages to invalidate
484 * @start: the offset 'from' which to invalidate
485 * @end: the offset 'to' which to invalidate (inclusive)
486 *
487 * This function only removes the unlocked pages, if you want to
488 * remove all the pages of one inode, you must call truncate_inode_pages.
489 *
490 * invalidate_mapping_pages() will not block on IO activity. It will not
491 * invalidate pages which are dirty, locked, under writeback or mapped into
492 * pagetables.
493 */
494unsigned long invalidate_mapping_pages(struct address_space *mapping,
495		pgoff_t start, pgoff_t end)
496{
497	pgoff_t indices[PAGEVEC_SIZE];
498	struct pagevec pvec;
499	pgoff_t index = start;
500	unsigned long ret;
501	unsigned long count = 0;
502	int i;
503
504	pagevec_init(&pvec, 0);
505	while (index <= end && pagevec_lookup_entries(&pvec, mapping, index,
506			min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1,
507			indices)) {
508		for (i = 0; i < pagevec_count(&pvec); i++) {
509			struct page *page = pvec.pages[i];
510
511			/* We rely upon deletion not changing page->index */
512			index = indices[i];
513			if (index > end)
514				break;
515
516			if (radix_tree_exceptional_entry(page)) {
517				invalidate_exceptional_entry(mapping, index,
518							     page);
519				continue;
520			}
521
522			if (!trylock_page(page))
523				continue;
524
525			WARN_ON(page_to_index(page) != index);
526
527			/* Middle of THP: skip */
528			if (PageTransTail(page)) {
529				unlock_page(page);
530				continue;
531			} else if (PageTransHuge(page)) {
532				index += HPAGE_PMD_NR - 1;
533				i += HPAGE_PMD_NR - 1;
534				/* 'end' is in the middle of THP */
535				if (index ==  round_down(end, HPAGE_PMD_NR))
536					continue;
537			}
538
539			ret = invalidate_inode_page(page);
540			unlock_page(page);
541			/*
542			 * Invalidation is a hint that the page is no longer
543			 * of interest and try to speed up its reclaim.
544			 */
545			if (!ret)
546				deactivate_file_page(page);
547			count += ret;
548		}
549		pagevec_remove_exceptionals(&pvec);
550		pagevec_release(&pvec);
551		cond_resched();
552		index++;
553	}
554	return count;
555}
556EXPORT_SYMBOL(invalidate_mapping_pages);
557
558/*
559 * This is like invalidate_complete_page(), except it ignores the page's
560 * refcount.  We do this because invalidate_inode_pages2() needs stronger
561 * invalidation guarantees, and cannot afford to leave pages behind because
562 * shrink_page_list() has a temp ref on them, or because they're transiently
563 * sitting in the lru_cache_add() pagevecs.
564 */
565static int
566invalidate_complete_page2(struct address_space *mapping, struct page *page)
567{
568	unsigned long flags;
569
570	if (page->mapping != mapping)
571		return 0;
572
573	if (page_has_private(page) && !try_to_release_page(page, GFP_KERNEL))
574		return 0;
575
576	spin_lock_irqsave(&mapping->tree_lock, flags);
577	if (PageDirty(page))
578		goto failed;
579
580	BUG_ON(page_has_private(page));
581	__delete_from_page_cache(page, NULL);
582	spin_unlock_irqrestore(&mapping->tree_lock, flags);
583
584	if (mapping->a_ops->freepage)
585		mapping->a_ops->freepage(page);
586
587	put_page(page);	/* pagecache ref */
588	return 1;
589failed:
590	spin_unlock_irqrestore(&mapping->tree_lock, flags);
591	return 0;
592}
593
594static int do_launder_page(struct address_space *mapping, struct page *page)
595{
596	if (!PageDirty(page))
597		return 0;
598	if (page->mapping != mapping || mapping->a_ops->launder_page == NULL)
599		return 0;
600	return mapping->a_ops->launder_page(page);
601}
602
603/**
604 * invalidate_inode_pages2_range - remove range of pages from an address_space
605 * @mapping: the address_space
606 * @start: the page offset 'from' which to invalidate
607 * @end: the page offset 'to' which to invalidate (inclusive)
608 *
609 * Any pages which are found to be mapped into pagetables are unmapped prior to
610 * invalidation.
611 *
612 * Returns -EBUSY if any pages could not be invalidated.
613 */
614int invalidate_inode_pages2_range(struct address_space *mapping,
615				  pgoff_t start, pgoff_t end)
616{
617	pgoff_t indices[PAGEVEC_SIZE];
618	struct pagevec pvec;
619	pgoff_t index;
620	int i;
621	int ret = 0;
622	int ret2 = 0;
623	int did_range_unmap = 0;
624
625	cleancache_invalidate_inode(mapping);
626	pagevec_init(&pvec, 0);
627	index = start;
628	while (index <= end && pagevec_lookup_entries(&pvec, mapping, index,
629			min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1,
630			indices)) {
631		for (i = 0; i < pagevec_count(&pvec); i++) {
632			struct page *page = pvec.pages[i];
633
634			/* We rely upon deletion not changing page->index */
635			index = indices[i];
636			if (index > end)
637				break;
638
639			if (radix_tree_exceptional_entry(page)) {
640				if (!invalidate_exceptional_entry2(mapping,
641								   index, page))
642					ret = -EBUSY;
643				continue;
644			}
645
646			lock_page(page);
647			WARN_ON(page_to_index(page) != index);
648			if (page->mapping != mapping) {
649				unlock_page(page);
650				continue;
651			}
652			wait_on_page_writeback(page);
653			if (page_mapped(page)) {
654				if (!did_range_unmap) {
655					/*
656					 * Zap the rest of the file in one hit.
657					 */
658					unmap_mapping_range(mapping,
659					   (loff_t)index << PAGE_SHIFT,
660					   (loff_t)(1 + end - index)
661							 << PAGE_SHIFT,
662							 0);
663					did_range_unmap = 1;
664				} else {
665					/*
666					 * Just zap this page
667					 */
668					unmap_mapping_range(mapping,
669					   (loff_t)index << PAGE_SHIFT,
670					   PAGE_SIZE, 0);
671				}
672			}
673			BUG_ON(page_mapped(page));
674			ret2 = do_launder_page(mapping, page);
675			if (ret2 == 0) {
676				if (!invalidate_complete_page2(mapping, page))
677					ret2 = -EBUSY;
678			}
679			if (ret2 < 0)
680				ret = ret2;
681			unlock_page(page);
682		}
683		pagevec_remove_exceptionals(&pvec);
684		pagevec_release(&pvec);
685		cond_resched();
686		index++;
687	}
688	cleancache_invalidate_inode(mapping);
689	return ret;
690}
691EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range);
692
693/**
694 * invalidate_inode_pages2 - remove all pages from an address_space
695 * @mapping: the address_space
696 *
697 * Any pages which are found to be mapped into pagetables are unmapped prior to
698 * invalidation.
699 *
700 * Returns -EBUSY if any pages could not be invalidated.
701 */
702int invalidate_inode_pages2(struct address_space *mapping)
703{
704	return invalidate_inode_pages2_range(mapping, 0, -1);
705}
706EXPORT_SYMBOL_GPL(invalidate_inode_pages2);
707
708/**
709 * truncate_pagecache - unmap and remove pagecache that has been truncated
710 * @inode: inode
711 * @newsize: new file size
712 *
713 * inode's new i_size must already be written before truncate_pagecache
714 * is called.
715 *
716 * This function should typically be called before the filesystem
717 * releases resources associated with the freed range (eg. deallocates
718 * blocks). This way, pagecache will always stay logically coherent
719 * with on-disk format, and the filesystem would not have to deal with
720 * situations such as writepage being called for a page that has already
721 * had its underlying blocks deallocated.
722 */
723void truncate_pagecache(struct inode *inode, loff_t newsize)
724{
725	struct address_space *mapping = inode->i_mapping;
726	loff_t holebegin = round_up(newsize, PAGE_SIZE);
727
728	/*
729	 * unmap_mapping_range is called twice, first simply for
730	 * efficiency so that truncate_inode_pages does fewer
731	 * single-page unmaps.  However after this first call, and
732	 * before truncate_inode_pages finishes, it is possible for
733	 * private pages to be COWed, which remain after
734	 * truncate_inode_pages finishes, hence the second
735	 * unmap_mapping_range call must be made for correctness.
736	 */
737	unmap_mapping_range(mapping, holebegin, 0, 1);
738	truncate_inode_pages(mapping, newsize);
739	unmap_mapping_range(mapping, holebegin, 0, 1);
740}
741EXPORT_SYMBOL(truncate_pagecache);
742
743/**
744 * truncate_setsize - update inode and pagecache for a new file size
745 * @inode: inode
746 * @newsize: new file size
747 *
748 * truncate_setsize updates i_size and performs pagecache truncation (if
749 * necessary) to @newsize. It will be typically be called from the filesystem's
750 * setattr function when ATTR_SIZE is passed in.
751 *
752 * Must be called with a lock serializing truncates and writes (generally
753 * i_mutex but e.g. xfs uses a different lock) and before all filesystem
754 * specific block truncation has been performed.
755 */
756void truncate_setsize(struct inode *inode, loff_t newsize)
757{
758	loff_t oldsize = inode->i_size;
759
760	i_size_write(inode, newsize);
761	if (newsize > oldsize)
762		pagecache_isize_extended(inode, oldsize, newsize);
763	truncate_pagecache(inode, newsize);
764}
765EXPORT_SYMBOL(truncate_setsize);
766
767/**
768 * pagecache_isize_extended - update pagecache after extension of i_size
769 * @inode:	inode for which i_size was extended
770 * @from:	original inode size
771 * @to:		new inode size
772 *
773 * Handle extension of inode size either caused by extending truncate or by
774 * write starting after current i_size. We mark the page straddling current
775 * i_size RO so that page_mkwrite() is called on the nearest write access to
776 * the page.  This way filesystem can be sure that page_mkwrite() is called on
777 * the page before user writes to the page via mmap after the i_size has been
778 * changed.
779 *
780 * The function must be called after i_size is updated so that page fault
781 * coming after we unlock the page will already see the new i_size.
782 * The function must be called while we still hold i_mutex - this not only
783 * makes sure i_size is stable but also that userspace cannot observe new
784 * i_size value before we are prepared to store mmap writes at new inode size.
785 */
786void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to)
787{
788	int bsize = 1 << inode->i_blkbits;
789	loff_t rounded_from;
790	struct page *page;
791	pgoff_t index;
792
793	WARN_ON(to > inode->i_size);
794
795	if (from >= to || bsize == PAGE_SIZE)
796		return;
797	/* Page straddling @from will not have any hole block created? */
798	rounded_from = round_up(from, bsize);
799	if (to <= rounded_from || !(rounded_from & (PAGE_SIZE - 1)))
800		return;
801
802	index = from >> PAGE_SHIFT;
803	page = find_lock_page(inode->i_mapping, index);
804	/* Page not cached? Nothing to do */
805	if (!page)
806		return;
807	/*
808	 * See clear_page_dirty_for_io() for details why set_page_dirty()
809	 * is needed.
810	 */
811	if (page_mkclean(page))
812		set_page_dirty(page);
813	unlock_page(page);
814	put_page(page);
815}
816EXPORT_SYMBOL(pagecache_isize_extended);
817
818/**
819 * truncate_pagecache_range - unmap and remove pagecache that is hole-punched
820 * @inode: inode
821 * @lstart: offset of beginning of hole
822 * @lend: offset of last byte of hole
823 *
824 * This function should typically be called before the filesystem
825 * releases resources associated with the freed range (eg. deallocates
826 * blocks). This way, pagecache will always stay logically coherent
827 * with on-disk format, and the filesystem would not have to deal with
828 * situations such as writepage being called for a page that has already
829 * had its underlying blocks deallocated.
830 */
831void truncate_pagecache_range(struct inode *inode, loff_t lstart, loff_t lend)
832{
833	struct address_space *mapping = inode->i_mapping;
834	loff_t unmap_start = round_up(lstart, PAGE_SIZE);
835	loff_t unmap_end = round_down(1 + lend, PAGE_SIZE) - 1;
836	/*
837	 * This rounding is currently just for example: unmap_mapping_range
838	 * expands its hole outwards, whereas we want it to contract the hole
839	 * inwards.  However, existing callers of truncate_pagecache_range are
840	 * doing their own page rounding first.  Note that unmap_mapping_range
841	 * allows holelen 0 for all, and we allow lend -1 for end of file.
842	 */
843
844	/*
845	 * Unlike in truncate_pagecache, unmap_mapping_range is called only
846	 * once (before truncating pagecache), and without "even_cows" flag:
847	 * hole-punching should not remove private COWed pages from the hole.
848	 */
849	if ((u64)unmap_end > (u64)unmap_start)
850		unmap_mapping_range(mapping, unmap_start,
851				    1 + unmap_end - unmap_start, 0);
852	truncate_inode_pages_range(mapping, lstart, lend);
853}
854EXPORT_SYMBOL(truncate_pagecache_range);