Linux Audio

Check our new training course

Loading...
v4.6
 
   1/*
   2 * linux/mm/compaction.c
   3 *
   4 * Memory compaction for the reduction of external fragmentation. Note that
   5 * this heavily depends upon page migration to do all the real heavy
   6 * lifting
   7 *
   8 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
   9 */
  10#include <linux/cpu.h>
  11#include <linux/swap.h>
  12#include <linux/migrate.h>
  13#include <linux/compaction.h>
  14#include <linux/mm_inline.h>
 
  15#include <linux/backing-dev.h>
  16#include <linux/sysctl.h>
  17#include <linux/sysfs.h>
  18#include <linux/balloon_compaction.h>
  19#include <linux/page-isolation.h>
  20#include <linux/kasan.h>
  21#include <linux/kthread.h>
  22#include <linux/freezer.h>
 
 
  23#include "internal.h"
  24
  25#ifdef CONFIG_COMPACTION
 
 
 
 
 
  26static inline void count_compact_event(enum vm_event_item item)
  27{
  28	count_vm_event(item);
  29}
  30
  31static inline void count_compact_events(enum vm_event_item item, long delta)
  32{
  33	count_vm_events(item, delta);
  34}
  35#else
  36#define count_compact_event(item) do { } while (0)
  37#define count_compact_events(item, delta) do { } while (0)
  38#endif
  39
  40#if defined CONFIG_COMPACTION || defined CONFIG_CMA
  41
  42#define CREATE_TRACE_POINTS
  43#include <trace/events/compaction.h>
  44
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  45static unsigned long release_freepages(struct list_head *freelist)
  46{
  47	struct page *page, *next;
  48	unsigned long high_pfn = 0;
  49
  50	list_for_each_entry_safe(page, next, freelist, lru) {
  51		unsigned long pfn = page_to_pfn(page);
  52		list_del(&page->lru);
  53		__free_page(page);
  54		if (pfn > high_pfn)
  55			high_pfn = pfn;
  56	}
  57
  58	return high_pfn;
  59}
  60
  61static void map_pages(struct list_head *list)
  62{
  63	struct page *page;
 
 
 
 
 
  64
  65	list_for_each_entry(page, list, lru) {
  66		arch_alloc_page(page, 0);
  67		kernel_map_pages(page, 1, 1);
  68		kasan_alloc_pages(page, 0);
 
 
 
 
 
 
 
  69	}
 
 
  70}
  71
  72static inline bool migrate_async_suitable(int migratetype)
 
  73{
  74	return is_migrate_cma(migratetype) || migratetype == MIGRATE_MOVABLE;
 
 
 
 
 
 
 
 
 
 
  75}
 
  76
  77#ifdef CONFIG_COMPACTION
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  78
  79/* Do not skip compaction more than 64 times */
  80#define COMPACT_MAX_DEFER_SHIFT 6
  81
  82/*
  83 * Compaction is deferred when compaction fails to result in a page
  84 * allocation success. 1 << compact_defer_limit compactions are skipped up
  85 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
  86 */
  87void defer_compaction(struct zone *zone, int order)
  88{
  89	zone->compact_considered = 0;
  90	zone->compact_defer_shift++;
  91
  92	if (order < zone->compact_order_failed)
  93		zone->compact_order_failed = order;
  94
  95	if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
  96		zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
  97
  98	trace_mm_compaction_defer_compaction(zone, order);
  99}
 100
 101/* Returns true if compaction should be skipped this time */
 102bool compaction_deferred(struct zone *zone, int order)
 103{
 104	unsigned long defer_limit = 1UL << zone->compact_defer_shift;
 105
 106	if (order < zone->compact_order_failed)
 107		return false;
 108
 109	/* Avoid possible overflow */
 110	if (++zone->compact_considered > defer_limit)
 111		zone->compact_considered = defer_limit;
 112
 113	if (zone->compact_considered >= defer_limit)
 114		return false;
 
 115
 116	trace_mm_compaction_deferred(zone, order);
 117
 118	return true;
 119}
 120
 121/*
 122 * Update defer tracking counters after successful compaction of given order,
 123 * which means an allocation either succeeded (alloc_success == true) or is
 124 * expected to succeed.
 125 */
 126void compaction_defer_reset(struct zone *zone, int order,
 127		bool alloc_success)
 128{
 129	if (alloc_success) {
 130		zone->compact_considered = 0;
 131		zone->compact_defer_shift = 0;
 132	}
 133	if (order >= zone->compact_order_failed)
 134		zone->compact_order_failed = order + 1;
 135
 136	trace_mm_compaction_defer_reset(zone, order);
 137}
 138
 139/* Returns true if restarting compaction after many failures */
 140bool compaction_restarting(struct zone *zone, int order)
 141{
 142	if (order < zone->compact_order_failed)
 143		return false;
 144
 145	return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
 146		zone->compact_considered >= 1UL << zone->compact_defer_shift;
 147}
 148
 149/* Returns true if the pageblock should be scanned for pages to isolate. */
 150static inline bool isolation_suitable(struct compact_control *cc,
 151					struct page *page)
 152{
 153	if (cc->ignore_skip_hint)
 154		return true;
 155
 156	return !get_pageblock_skip(page);
 157}
 158
 159static void reset_cached_positions(struct zone *zone)
 160{
 161	zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
 162	zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
 163	zone->compact_cached_free_pfn =
 164			round_down(zone_end_pfn(zone) - 1, pageblock_nr_pages);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 165}
 166
 167/*
 168 * This function is called to clear all cached information on pageblocks that
 169 * should be skipped for page isolation when the migrate and free page scanner
 170 * meet.
 171 */
 172static void __reset_isolation_suitable(struct zone *zone)
 173{
 174	unsigned long start_pfn = zone->zone_start_pfn;
 175	unsigned long end_pfn = zone_end_pfn(zone);
 176	unsigned long pfn;
 
 
 
 177
 178	zone->compact_blockskip_flush = false;
 
 179
 180	/* Walk the zone and mark every pageblock as suitable for isolation */
 181	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
 182		struct page *page;
 183
 
 
 
 
 
 
 
 
 184		cond_resched();
 185
 186		if (!pfn_valid(pfn))
 187			continue;
 188
 189		page = pfn_to_page(pfn);
 190		if (zone != page_zone(page))
 191			continue;
 192
 193		clear_pageblock_skip(page);
 
 
 
 
 
 
 
 
 
 
 194	}
 195
 196	reset_cached_positions(zone);
 
 
 
 
 
 197}
 198
 199void reset_isolation_suitable(pg_data_t *pgdat)
 200{
 201	int zoneid;
 202
 203	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
 204		struct zone *zone = &pgdat->node_zones[zoneid];
 205		if (!populated_zone(zone))
 206			continue;
 207
 208		/* Only flush if a full compaction finished recently */
 209		if (zone->compact_blockskip_flush)
 210			__reset_isolation_suitable(zone);
 211	}
 212}
 213
 214/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 215 * If no pages were isolated then mark this pageblock to be skipped in the
 216 * future. The information is later cleared by __reset_isolation_suitable().
 217 */
 218static void update_pageblock_skip(struct compact_control *cc,
 219			struct page *page, unsigned long nr_isolated,
 220			bool migrate_scanner)
 221{
 222	struct zone *zone = cc->zone;
 223	unsigned long pfn;
 224
 225	if (cc->ignore_skip_hint)
 226		return;
 227
 228	if (!page)
 229		return;
 230
 231	if (nr_isolated)
 232		return;
 233
 234	set_pageblock_skip(page);
 235
 236	pfn = page_to_pfn(page);
 237
 238	/* Update where async and sync compaction should restart */
 239	if (migrate_scanner) {
 240		if (pfn > zone->compact_cached_migrate_pfn[0])
 241			zone->compact_cached_migrate_pfn[0] = pfn;
 242		if (cc->mode != MIGRATE_ASYNC &&
 243		    pfn > zone->compact_cached_migrate_pfn[1])
 244			zone->compact_cached_migrate_pfn[1] = pfn;
 245	} else {
 246		if (pfn < zone->compact_cached_free_pfn)
 247			zone->compact_cached_free_pfn = pfn;
 248	}
 249}
 250#else
 251static inline bool isolation_suitable(struct compact_control *cc,
 252					struct page *page)
 253{
 254	return true;
 255}
 256
 257static void update_pageblock_skip(struct compact_control *cc,
 258			struct page *page, unsigned long nr_isolated,
 259			bool migrate_scanner)
 
 
 
 
 260{
 261}
 
 
 
 
 
 
 
 
 
 
 262#endif /* CONFIG_COMPACTION */
 263
 264/*
 265 * Compaction requires the taking of some coarse locks that are potentially
 266 * very heavily contended. For async compaction, back out if the lock cannot
 267 * be taken immediately. For sync compaction, spin on the lock if needed.
 
 
 268 *
 269 * Returns true if the lock is held
 270 * Returns false if the lock is not held and compaction should abort
 271 */
 272static bool compact_trylock_irqsave(spinlock_t *lock, unsigned long *flags,
 273						struct compact_control *cc)
 
 274{
 275	if (cc->mode == MIGRATE_ASYNC) {
 276		if (!spin_trylock_irqsave(lock, *flags)) {
 277			cc->contended = COMPACT_CONTENDED_LOCK;
 278			return false;
 279		}
 280	} else {
 281		spin_lock_irqsave(lock, *flags);
 282	}
 283
 
 284	return true;
 285}
 286
 287/*
 288 * Compaction requires the taking of some coarse locks that are potentially
 289 * very heavily contended. The lock should be periodically unlocked to avoid
 290 * having disabled IRQs for a long time, even when there is nobody waiting on
 291 * the lock. It might also be that allowing the IRQs will result in
 292 * need_resched() becoming true. If scheduling is needed, async compaction
 293 * aborts. Sync compaction schedules.
 294 * Either compaction type will also abort if a fatal signal is pending.
 295 * In either case if the lock was locked, it is dropped and not regained.
 296 *
 297 * Returns true if compaction should abort due to fatal signal pending, or
 298 *		async compaction due to need_resched()
 299 * Returns false when compaction can continue (sync compaction might have
 300 *		scheduled)
 301 */
 302static bool compact_unlock_should_abort(spinlock_t *lock,
 303		unsigned long flags, bool *locked, struct compact_control *cc)
 304{
 305	if (*locked) {
 306		spin_unlock_irqrestore(lock, flags);
 307		*locked = false;
 308	}
 309
 310	if (fatal_signal_pending(current)) {
 311		cc->contended = COMPACT_CONTENDED_SCHED;
 312		return true;
 313	}
 314
 315	if (need_resched()) {
 316		if (cc->mode == MIGRATE_ASYNC) {
 317			cc->contended = COMPACT_CONTENDED_SCHED;
 318			return true;
 319		}
 320		cond_resched();
 321	}
 322
 323	return false;
 324}
 325
 326/*
 327 * Aside from avoiding lock contention, compaction also periodically checks
 328 * need_resched() and either schedules in sync compaction or aborts async
 329 * compaction. This is similar to what compact_unlock_should_abort() does, but
 330 * is used where no lock is concerned.
 331 *
 332 * Returns false when no scheduling was needed, or sync compaction scheduled.
 333 * Returns true when async compaction should abort.
 334 */
 335static inline bool compact_should_abort(struct compact_control *cc)
 336{
 337	/* async compaction aborts if contended */
 338	if (need_resched()) {
 339		if (cc->mode == MIGRATE_ASYNC) {
 340			cc->contended = COMPACT_CONTENDED_SCHED;
 341			return true;
 342		}
 343
 344		cond_resched();
 345	}
 346
 347	return false;
 348}
 349
 350/*
 351 * Isolate free pages onto a private freelist. If @strict is true, will abort
 352 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
 353 * (even though it may still end up isolating some pages).
 354 */
 355static unsigned long isolate_freepages_block(struct compact_control *cc,
 356				unsigned long *start_pfn,
 357				unsigned long end_pfn,
 358				struct list_head *freelist,
 
 359				bool strict)
 360{
 361	int nr_scanned = 0, total_isolated = 0;
 362	struct page *cursor, *valid_page = NULL;
 363	unsigned long flags = 0;
 364	bool locked = false;
 365	unsigned long blockpfn = *start_pfn;
 
 
 
 
 
 366
 367	cursor = pfn_to_page(blockpfn);
 368
 369	/* Isolate free pages. */
 370	for (; blockpfn < end_pfn; blockpfn++, cursor++) {
 371		int isolated, i;
 372		struct page *page = cursor;
 373
 374		/*
 375		 * Periodically drop the lock (if held) regardless of its
 376		 * contention, to give chance to IRQs. Abort if fatal signal
 377		 * pending or async compaction detects need_resched()
 378		 */
 379		if (!(blockpfn % SWAP_CLUSTER_MAX)
 380		    && compact_unlock_should_abort(&cc->zone->lock, flags,
 381								&locked, cc))
 382			break;
 383
 384		nr_scanned++;
 385		if (!pfn_valid_within(blockpfn))
 386			goto isolate_fail;
 387
 388		if (!valid_page)
 389			valid_page = page;
 390
 391		/*
 392		 * For compound pages such as THP and hugetlbfs, we can save
 393		 * potentially a lot of iterations if we skip them at once.
 394		 * The check is racy, but we can consider only valid values
 395		 * and the only danger is skipping too much.
 396		 */
 397		if (PageCompound(page)) {
 398			unsigned int comp_order = compound_order(page);
 399
 400			if (likely(comp_order < MAX_ORDER)) {
 401				blockpfn += (1UL << comp_order) - 1;
 402				cursor += (1UL << comp_order) - 1;
 403			}
 404
 405			goto isolate_fail;
 406		}
 407
 408		if (!PageBuddy(page))
 409			goto isolate_fail;
 410
 411		/*
 412		 * If we already hold the lock, we can skip some rechecking.
 413		 * Note that if we hold the lock now, checked_pageblock was
 414		 * already set in some previous iteration (or strict is true),
 415		 * so it is correct to skip the suitable migration target
 416		 * recheck as well.
 417		 */
 418		if (!locked) {
 419			/*
 420			 * The zone lock must be held to isolate freepages.
 421			 * Unfortunately this is a very coarse lock and can be
 422			 * heavily contended if there are parallel allocations
 423			 * or parallel compactions. For async compaction do not
 424			 * spin on the lock and we acquire the lock as late as
 425			 * possible.
 426			 */
 427			locked = compact_trylock_irqsave(&cc->zone->lock,
 428								&flags, cc);
 429			if (!locked)
 430				break;
 431
 432			/* Recheck this is a buddy page under lock */
 433			if (!PageBuddy(page))
 434				goto isolate_fail;
 435		}
 436
 437		/* Found a free page, break it into order-0 pages */
 438		isolated = split_free_page(page);
 439		total_isolated += isolated;
 440		for (i = 0; i < isolated; i++) {
 441			list_add(&page->lru, freelist);
 442			page++;
 443		}
 444
 445		/* If a page was split, advance to the end of it */
 446		if (isolated) {
 447			cc->nr_freepages += isolated;
 448			if (!strict &&
 449				cc->nr_migratepages <= cc->nr_freepages) {
 450				blockpfn += isolated;
 451				break;
 452			}
 453
 454			blockpfn += isolated - 1;
 455			cursor += isolated - 1;
 456			continue;
 457		}
 
 
 
 
 458
 459isolate_fail:
 460		if (strict)
 461			break;
 462		else
 463			continue;
 464
 465	}
 466
 
 
 
 467	/*
 468	 * There is a tiny chance that we have read bogus compound_order(),
 469	 * so be careful to not go outside of the pageblock.
 470	 */
 471	if (unlikely(blockpfn > end_pfn))
 472		blockpfn = end_pfn;
 473
 474	trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
 475					nr_scanned, total_isolated);
 476
 477	/* Record how far we have got within the block */
 478	*start_pfn = blockpfn;
 479
 480	/*
 481	 * If strict isolation is requested by CMA then check that all the
 482	 * pages requested were isolated. If there were any failures, 0 is
 483	 * returned and CMA will fail.
 484	 */
 485	if (strict && blockpfn < end_pfn)
 486		total_isolated = 0;
 487
 488	if (locked)
 489		spin_unlock_irqrestore(&cc->zone->lock, flags);
 490
 491	/* Update the pageblock-skip if the whole pageblock was scanned */
 492	if (blockpfn == end_pfn)
 493		update_pageblock_skip(cc, valid_page, total_isolated, false);
 494
 495	count_compact_events(COMPACTFREE_SCANNED, nr_scanned);
 496	if (total_isolated)
 497		count_compact_events(COMPACTISOLATED, total_isolated);
 498	return total_isolated;
 499}
 500
 501/**
 502 * isolate_freepages_range() - isolate free pages.
 
 503 * @start_pfn: The first PFN to start isolating.
 504 * @end_pfn:   The one-past-last PFN.
 505 *
 506 * Non-free pages, invalid PFNs, or zone boundaries within the
 507 * [start_pfn, end_pfn) range are considered errors, cause function to
 508 * undo its actions and return zero.
 509 *
 510 * Otherwise, function returns one-past-the-last PFN of isolated page
 511 * (which may be greater then end_pfn if end fell in a middle of
 512 * a free page).
 513 */
 514unsigned long
 515isolate_freepages_range(struct compact_control *cc,
 516			unsigned long start_pfn, unsigned long end_pfn)
 517{
 518	unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
 519	LIST_HEAD(freelist);
 520
 521	pfn = start_pfn;
 522	block_start_pfn = pfn & ~(pageblock_nr_pages - 1);
 523	if (block_start_pfn < cc->zone->zone_start_pfn)
 524		block_start_pfn = cc->zone->zone_start_pfn;
 525	block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
 526
 527	for (; pfn < end_pfn; pfn += isolated,
 528				block_start_pfn = block_end_pfn,
 529				block_end_pfn += pageblock_nr_pages) {
 530		/* Protect pfn from changing by isolate_freepages_block */
 531		unsigned long isolate_start_pfn = pfn;
 532
 533		block_end_pfn = min(block_end_pfn, end_pfn);
 534
 535		/*
 536		 * pfn could pass the block_end_pfn if isolated freepage
 537		 * is more than pageblock order. In this case, we adjust
 538		 * scanning range to right one.
 539		 */
 540		if (pfn >= block_end_pfn) {
 541			block_start_pfn = pfn & ~(pageblock_nr_pages - 1);
 542			block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
 543			block_end_pfn = min(block_end_pfn, end_pfn);
 544		}
 545
 546		if (!pageblock_pfn_to_page(block_start_pfn,
 547					block_end_pfn, cc->zone))
 548			break;
 549
 550		isolated = isolate_freepages_block(cc, &isolate_start_pfn,
 551						block_end_pfn, &freelist, true);
 552
 553		/*
 554		 * In strict mode, isolate_freepages_block() returns 0 if
 555		 * there are any holes in the block (ie. invalid PFNs or
 556		 * non-free pages).
 557		 */
 558		if (!isolated)
 559			break;
 560
 561		/*
 562		 * If we managed to isolate pages, it is always (1 << n) *
 563		 * pageblock_nr_pages for some non-negative n.  (Max order
 564		 * page may span two pageblocks).
 565		 */
 566	}
 567
 568	/* split_free_page does not map the pages */
 569	map_pages(&freelist);
 570
 571	if (pfn < end_pfn) {
 572		/* Loop terminated early, cleanup. */
 573		release_freepages(&freelist);
 574		return 0;
 575	}
 576
 577	/* We don't use freelists for anything. */
 578	return pfn;
 579}
 580
 581/* Update the number of anon and file isolated pages in the zone */
 582static void acct_isolated(struct zone *zone, struct compact_control *cc)
 583{
 584	struct page *page;
 585	unsigned int count[2] = { 0, };
 586
 587	if (list_empty(&cc->migratepages))
 588		return;
 589
 590	list_for_each_entry(page, &cc->migratepages, lru)
 591		count[!!page_is_file_cache(page)]++;
 592
 593	mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
 594	mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
 595}
 596
 597/* Similar to reclaim, but different enough that they don't share logic */
 598static bool too_many_isolated(struct zone *zone)
 599{
 
 
 600	unsigned long active, inactive, isolated;
 601
 602	inactive = zone_page_state(zone, NR_INACTIVE_FILE) +
 603					zone_page_state(zone, NR_INACTIVE_ANON);
 604	active = zone_page_state(zone, NR_ACTIVE_FILE) +
 605					zone_page_state(zone, NR_ACTIVE_ANON);
 606	isolated = zone_page_state(zone, NR_ISOLATED_FILE) +
 607					zone_page_state(zone, NR_ISOLATED_ANON);
 
 
 
 
 608
 609	return isolated > (inactive + active) / 2;
 610}
 611
 612/**
 613 * isolate_migratepages_block() - isolate all migrate-able pages within
 614 *				  a single pageblock
 615 * @cc:		Compaction control structure.
 616 * @low_pfn:	The first PFN to isolate
 617 * @end_pfn:	The one-past-the-last PFN to isolate, within same pageblock
 618 * @isolate_mode: Isolation mode to be used.
 619 *
 620 * Isolate all pages that can be migrated from the range specified by
 621 * [low_pfn, end_pfn). The range is expected to be within same pageblock.
 622 * Returns zero if there is a fatal signal pending, otherwise PFN of the
 623 * first page that was not scanned (which may be both less, equal to or more
 624 * than end_pfn).
 625 *
 626 * The pages are isolated on cc->migratepages list (not required to be empty),
 627 * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
 628 * is neither read nor updated.
 629 */
 630static unsigned long
 631isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
 632			unsigned long end_pfn, isolate_mode_t isolate_mode)
 633{
 634	struct zone *zone = cc->zone;
 635	unsigned long nr_scanned = 0, nr_isolated = 0;
 636	struct list_head *migratelist = &cc->migratepages;
 637	struct lruvec *lruvec;
 638	unsigned long flags = 0;
 639	bool locked = false;
 640	struct page *page = NULL, *valid_page = NULL;
 
 641	unsigned long start_pfn = low_pfn;
 
 
 
 
 
 
 642
 643	/*
 644	 * Ensure that there are not too many pages isolated from the LRU
 645	 * list by either parallel reclaimers or compaction. If there are,
 646	 * delay for some time until fewer pages are isolated
 647	 */
 648	while (unlikely(too_many_isolated(zone))) {
 
 
 
 
 649		/* async migration should just abort */
 650		if (cc->mode == MIGRATE_ASYNC)
 651			return 0;
 652
 653		congestion_wait(BLK_RW_ASYNC, HZ/10);
 654
 655		if (fatal_signal_pending(current))
 656			return 0;
 657	}
 658
 659	if (compact_should_abort(cc))
 660		return 0;
 
 
 
 
 661
 662	/* Time to isolate some pages for migration */
 663	for (; low_pfn < end_pfn; low_pfn++) {
 664		bool is_lru;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 665
 666		/*
 667		 * Periodically drop the lock (if held) regardless of its
 668		 * contention, to give chance to IRQs. Abort async compaction
 669		 * if contended.
 670		 */
 671		if (!(low_pfn % SWAP_CLUSTER_MAX)
 672		    && compact_unlock_should_abort(&zone->lru_lock, flags,
 673								&locked, cc))
 674			break;
 
 
 
 
 
 
 
 
 
 
 
 675
 676		if (!pfn_valid_within(low_pfn))
 677			continue;
 678		nr_scanned++;
 679
 680		page = pfn_to_page(low_pfn);
 681
 682		if (!valid_page)
 
 
 
 
 
 
 
 
 
 
 
 683			valid_page = page;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 684
 685		/*
 686		 * Skip if free. We read page order here without zone lock
 687		 * which is generally unsafe, but the race window is small and
 688		 * the worst thing that can happen is that we skip some
 689		 * potential isolation targets.
 690		 */
 691		if (PageBuddy(page)) {
 692			unsigned long freepage_order = page_order_unsafe(page);
 693
 694			/*
 695			 * Without lock, we cannot be sure that what we got is
 696			 * a valid page order. Consider only values in the
 697			 * valid order range to prevent low_pfn overflow.
 698			 */
 699			if (freepage_order > 0 && freepage_order < MAX_ORDER)
 700				low_pfn += (1UL << freepage_order) - 1;
 701			continue;
 702		}
 703
 704		/*
 705		 * Check may be lockless but that's ok as we recheck later.
 706		 * It's possible to migrate LRU pages and balloon pages
 707		 * Skip any other type of page
 
 
 
 708		 */
 709		is_lru = PageLRU(page);
 710		if (!is_lru) {
 711			if (unlikely(balloon_page_movable(page))) {
 712				if (balloon_page_isolate(page)) {
 713					/* Successfully isolated */
 714					goto isolate_success;
 715				}
 716			}
 717		}
 718
 719		/*
 720		 * Regardless of being on LRU, compound pages such as THP and
 721		 * hugetlbfs are not to be compacted. We can potentially save
 722		 * a lot of iterations if we skip them at once. The check is
 723		 * racy, but we can consider only valid values and the only
 724		 * danger is skipping too much.
 725		 */
 726		if (PageCompound(page)) {
 727			unsigned int comp_order = compound_order(page);
 
 
 
 
 
 
 
 
 
 728
 729			if (likely(comp_order < MAX_ORDER))
 730				low_pfn += (1UL << comp_order) - 1;
 
 731
 732			continue;
 733		}
 734
 735		if (!is_lru)
 736			continue;
 
 
 
 
 
 737
 738		/*
 739		 * Migration will fail if an anonymous page is pinned in memory,
 740		 * so avoid taking lru_lock and isolating it unnecessarily in an
 741		 * admittedly racy check.
 742		 */
 743		if (!page_mapping(page) &&
 744		    page_count(page) > page_mapcount(page))
 745			continue;
 746
 747		/* If we already hold the lock, we can skip some rechecking */
 748		if (!locked) {
 749			locked = compact_trylock_irqsave(&zone->lru_lock,
 750								&flags, cc);
 751			if (!locked)
 752				break;
 753
 754			/* Recheck PageLRU and PageCompound under lock */
 755			if (!PageLRU(page))
 756				continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 757
 758			/*
 759			 * Page become compound since the non-locked check,
 760			 * and it's on LRU. It can only be a THP so the order
 761			 * is safe to read and it's 0 for tail pages.
 762			 */
 763			if (unlikely(PageCompound(page))) {
 764				low_pfn += (1UL << compound_order(page)) - 1;
 765				continue;
 
 766			}
 767		}
 768
 769		lruvec = mem_cgroup_page_lruvec(page, zone);
 770
 771		/* Try isolate the page */
 772		if (__isolate_lru_page(page, isolate_mode) != 0)
 773			continue;
 774
 775		VM_BUG_ON_PAGE(PageCompound(page), page);
 776
 777		/* Successfully isolated */
 778		del_page_from_lru_list(page, lruvec, page_lru(page));
 
 
 
 779
 780isolate_success:
 781		list_add(&page->lru, migratelist);
 782		cc->nr_migratepages++;
 783		nr_isolated++;
 
 
 784
 785		/* Avoid isolating too much */
 786		if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
 
 
 
 
 
 
 787			++low_pfn;
 788			break;
 789		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 790	}
 791
 792	/*
 793	 * The PageBuddy() check could have potentially brought us outside
 794	 * the range to be scanned.
 795	 */
 796	if (unlikely(low_pfn > end_pfn))
 797		low_pfn = end_pfn;
 798
 
 
 
 799	if (locked)
 800		spin_unlock_irqrestore(&zone->lru_lock, flags);
 
 
 
 
 801
 802	/*
 803	 * Update the pageblock-skip information and cached scanner pfn,
 804	 * if the whole pageblock was scanned without isolating any page.
 
 
 
 
 805	 */
 806	if (low_pfn == end_pfn)
 807		update_pageblock_skip(cc, valid_page, nr_isolated, true);
 
 
 
 808
 809	trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
 810						nr_scanned, nr_isolated);
 811
 812	count_compact_events(COMPACTMIGRATE_SCANNED, nr_scanned);
 
 813	if (nr_isolated)
 814		count_compact_events(COMPACTISOLATED, nr_isolated);
 815
 816	return low_pfn;
 
 
 817}
 818
 819/**
 820 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
 821 * @cc:        Compaction control structure.
 822 * @start_pfn: The first PFN to start isolating.
 823 * @end_pfn:   The one-past-last PFN.
 824 *
 825 * Returns zero if isolation fails fatally due to e.g. pending signal.
 826 * Otherwise, function returns one-past-the-last PFN of isolated page
 827 * (which may be greater than end_pfn if end fell in a middle of a THP page).
 828 */
 829unsigned long
 830isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
 831							unsigned long end_pfn)
 832{
 833	unsigned long pfn, block_start_pfn, block_end_pfn;
 
 834
 835	/* Scan block by block. First and last block may be incomplete */
 836	pfn = start_pfn;
 837	block_start_pfn = pfn & ~(pageblock_nr_pages - 1);
 838	if (block_start_pfn < cc->zone->zone_start_pfn)
 839		block_start_pfn = cc->zone->zone_start_pfn;
 840	block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
 841
 842	for (; pfn < end_pfn; pfn = block_end_pfn,
 843				block_start_pfn = block_end_pfn,
 844				block_end_pfn += pageblock_nr_pages) {
 845
 846		block_end_pfn = min(block_end_pfn, end_pfn);
 847
 848		if (!pageblock_pfn_to_page(block_start_pfn,
 849					block_end_pfn, cc->zone))
 850			continue;
 851
 852		pfn = isolate_migratepages_block(cc, pfn, block_end_pfn,
 853							ISOLATE_UNEVICTABLE);
 854
 855		if (!pfn)
 856			break;
 857
 858		if (cc->nr_migratepages == COMPACT_CLUSTER_MAX)
 859			break;
 860	}
 861	acct_isolated(cc->zone, cc);
 862
 863	return pfn;
 864}
 865
 866#endif /* CONFIG_COMPACTION || CONFIG_CMA */
 867#ifdef CONFIG_COMPACTION
 868
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 869/* Returns true if the page is within a block suitable for migration to */
 870static bool suitable_migration_target(struct page *page)
 
 871{
 872	/* If the page is a large free page, then disallow migration */
 873	if (PageBuddy(page)) {
 874		/*
 875		 * We are checking page_order without zone->lock taken. But
 876		 * the only small danger is that we skip a potentially suitable
 877		 * pageblock, so it's not worth to check order for valid range.
 878		 */
 879		if (page_order_unsafe(page) >= pageblock_order)
 880			return false;
 881	}
 882
 
 
 
 883	/* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
 884	if (migrate_async_suitable(get_pageblock_migratetype(page)))
 885		return true;
 886
 887	/* Otherwise skip the block */
 888	return false;
 889}
 890
 
 
 
 
 
 
 
 
 891/*
 892 * Test whether the free scanner has reached the same or lower pageblock than
 893 * the migration scanner, and compaction should thus terminate.
 894 */
 895static inline bool compact_scanners_met(struct compact_control *cc)
 896{
 897	return (cc->free_pfn >> pageblock_order)
 898		<= (cc->migrate_pfn >> pageblock_order);
 899}
 900
 901/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 902 * Based on information in the current compact_control, find blocks
 903 * suitable for isolating free pages from and then isolate them.
 904 */
 905static void isolate_freepages(struct compact_control *cc)
 906{
 907	struct zone *zone = cc->zone;
 908	struct page *page;
 909	unsigned long block_start_pfn;	/* start of current pageblock */
 910	unsigned long isolate_start_pfn; /* exact pfn we start at */
 911	unsigned long block_end_pfn;	/* end of current pageblock */
 912	unsigned long low_pfn;	     /* lowest pfn scanner is able to scan */
 913	struct list_head *freelist = &cc->freepages;
 
 
 
 
 
 
 914
 915	/*
 916	 * Initialise the free scanner. The starting point is where we last
 917	 * successfully isolated from, zone-cached value, or the end of the
 918	 * zone when isolating for the first time. For looping we also need
 919	 * this pfn aligned down to the pageblock boundary, because we do
 920	 * block_start_pfn -= pageblock_nr_pages in the for loop.
 921	 * For ending point, take care when isolating in last pageblock of a
 922	 * a zone which ends in the middle of a pageblock.
 923	 * The low boundary is the end of the pageblock the migration scanner
 924	 * is using.
 925	 */
 926	isolate_start_pfn = cc->free_pfn;
 927	block_start_pfn = cc->free_pfn & ~(pageblock_nr_pages-1);
 928	block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
 929						zone_end_pfn(zone));
 930	low_pfn = ALIGN(cc->migrate_pfn + 1, pageblock_nr_pages);
 
 931
 932	/*
 933	 * Isolate free pages until enough are available to migrate the
 934	 * pages on cc->migratepages. We stop searching if the migrate
 935	 * and free page scanners meet or enough free pages are isolated.
 936	 */
 937	for (; block_start_pfn >= low_pfn;
 938				block_end_pfn = block_start_pfn,
 939				block_start_pfn -= pageblock_nr_pages,
 940				isolate_start_pfn = block_start_pfn) {
 
 941
 942		/*
 943		 * This can iterate a massively long zone without finding any
 944		 * suitable migration targets, so periodically check if we need
 945		 * to schedule, or even abort async compaction.
 946		 */
 947		if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
 948						&& compact_should_abort(cc))
 949			break;
 950
 951		page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
 952									zone);
 953		if (!page)
 954			continue;
 955
 956		/* Check the block is suitable for migration */
 957		if (!suitable_migration_target(page))
 958			continue;
 959
 960		/* If isolation recently failed, do not retry */
 961		if (!isolation_suitable(cc, page))
 962			continue;
 963
 964		/* Found a block suitable for isolating free pages from. */
 965		isolate_freepages_block(cc, &isolate_start_pfn,
 966					block_end_pfn, freelist, false);
 967
 968		/*
 969		 * If we isolated enough freepages, or aborted due to async
 970		 * compaction being contended, terminate the loop.
 971		 * Remember where the free scanner should restart next time,
 972		 * which is where isolate_freepages_block() left off.
 973		 * But if it scanned the whole pageblock, isolate_start_pfn
 974		 * now points at block_end_pfn, which is the start of the next
 975		 * pageblock.
 976		 * In that case we will however want to restart at the start
 977		 * of the previous pageblock.
 978		 */
 979		if ((cc->nr_freepages >= cc->nr_migratepages)
 980							|| cc->contended) {
 981			if (isolate_start_pfn >= block_end_pfn)
 982				isolate_start_pfn =
 983					block_start_pfn - pageblock_nr_pages;
 
 984			break;
 985		} else {
 986			/*
 987			 * isolate_freepages_block() should not terminate
 988			 * prematurely unless contended, or isolated enough
 989			 */
 990			VM_BUG_ON(isolate_start_pfn < block_end_pfn);
 991		}
 992	}
 993
 994	/* split_free_page does not map the pages */
 995	map_pages(freelist);
 
 
 
 
 
 996
 997	/*
 998	 * Record where the free scanner will restart next time. Either we
 999	 * broke from the loop and set isolate_start_pfn based on the last
1000	 * call to isolate_freepages_block(), or we met the migration scanner
1001	 * and the loop terminated due to isolate_start_pfn < low_pfn
1002	 */
1003	cc->free_pfn = isolate_start_pfn;
 
 
 
 
1004}
1005
1006/*
1007 * This is a migrate-callback that "allocates" freepages by taking pages
1008 * from the isolated freelists in the block we are migrating to.
1009 */
1010static struct page *compaction_alloc(struct page *migratepage,
1011					unsigned long data,
1012					int **result)
1013{
1014	struct compact_control *cc = (struct compact_control *)data;
1015	struct page *freepage;
1016
1017	/*
1018	 * Isolate free pages if necessary, and if we are not aborting due to
1019	 * contention.
1020	 */
1021	if (list_empty(&cc->freepages)) {
1022		if (!cc->contended)
1023			isolate_freepages(cc);
1024
1025		if (list_empty(&cc->freepages))
1026			return NULL;
1027	}
1028
1029	freepage = list_entry(cc->freepages.next, struct page, lru);
1030	list_del(&freepage->lru);
1031	cc->nr_freepages--;
1032
1033	return freepage;
1034}
1035
1036/*
1037 * This is a migrate-callback that "frees" freepages back to the isolated
1038 * freelist.  All pages on the freelist are from the same zone, so there is no
1039 * special handling needed for NUMA.
1040 */
1041static void compaction_free(struct page *page, unsigned long data)
1042{
1043	struct compact_control *cc = (struct compact_control *)data;
1044
1045	list_add(&page->lru, &cc->freepages);
1046	cc->nr_freepages++;
1047}
1048
1049/* possible outcome of isolate_migratepages */
1050typedef enum {
1051	ISOLATE_ABORT,		/* Abort compaction now */
1052	ISOLATE_NONE,		/* No pages isolated, continue scanning */
1053	ISOLATE_SUCCESS,	/* Pages isolated, migrate */
1054} isolate_migrate_t;
1055
1056/*
1057 * Allow userspace to control policy on scanning the unevictable LRU for
1058 * compactable pages.
1059 */
1060int sysctl_compact_unevictable_allowed __read_mostly = 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1061
1062/*
1063 * Isolate all pages that can be migrated from the first suitable block,
1064 * starting at the block pointed to by the migrate scanner pfn within
1065 * compact_control.
1066 */
1067static isolate_migrate_t isolate_migratepages(struct zone *zone,
1068					struct compact_control *cc)
1069{
1070	unsigned long block_start_pfn;
1071	unsigned long block_end_pfn;
1072	unsigned long low_pfn;
1073	unsigned long isolate_start_pfn;
1074	struct page *page;
1075	const isolate_mode_t isolate_mode =
1076		(sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1077		(cc->mode == MIGRATE_ASYNC ? ISOLATE_ASYNC_MIGRATE : 0);
 
1078
1079	/*
1080	 * Start at where we last stopped, or beginning of the zone as
1081	 * initialized by compact_zone()
 
 
 
 
 
 
 
 
 
 
 
1082	 */
1083	low_pfn = cc->migrate_pfn;
1084	block_start_pfn = cc->migrate_pfn & ~(pageblock_nr_pages - 1);
1085	if (block_start_pfn < zone->zone_start_pfn)
1086		block_start_pfn = zone->zone_start_pfn;
1087
1088	/* Only scan within a pageblock boundary */
1089	block_end_pfn = ALIGN(low_pfn + 1, pageblock_nr_pages);
1090
1091	/*
1092	 * Iterate over whole pageblocks until we find the first suitable.
1093	 * Do not cross the free scanner.
1094	 */
1095	for (; block_end_pfn <= cc->free_pfn;
1096			low_pfn = block_end_pfn,
 
1097			block_start_pfn = block_end_pfn,
1098			block_end_pfn += pageblock_nr_pages) {
1099
1100		/*
1101		 * This can potentially iterate a massively long zone with
1102		 * many pageblocks unsuitable, so periodically check if we
1103		 * need to schedule, or even abort async compaction.
1104		 */
1105		if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
1106						&& compact_should_abort(cc))
1107			break;
1108
1109		page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1110									zone);
1111		if (!page)
1112			continue;
1113
1114		/* If isolation recently failed, do not retry */
1115		if (!isolation_suitable(cc, page))
 
 
 
 
 
 
 
1116			continue;
1117
1118		/*
1119		 * For async compaction, also only scan in MOVABLE blocks.
1120		 * Async compaction is optimistic to see if the minimum amount
1121		 * of work satisfies the allocation.
 
 
 
1122		 */
1123		if (cc->mode == MIGRATE_ASYNC &&
1124		    !migrate_async_suitable(get_pageblock_migratetype(page)))
1125			continue;
 
1126
1127		/* Perform the isolation */
1128		isolate_start_pfn = low_pfn;
1129		low_pfn = isolate_migratepages_block(cc, low_pfn,
1130						block_end_pfn, isolate_mode);
1131
1132		if (!low_pfn || cc->contended) {
1133			acct_isolated(zone, cc);
1134			return ISOLATE_ABORT;
1135		}
1136
1137		/*
1138		 * Record where we could have freed pages by migration and not
1139		 * yet flushed them to buddy allocator.
1140		 * - this is the lowest page that could have been isolated and
1141		 * then freed by migration.
1142		 */
1143		if (cc->nr_migratepages && !cc->last_migrated_pfn)
1144			cc->last_migrated_pfn = isolate_start_pfn;
1145
1146		/*
1147		 * Either we isolated something and proceed with migration. Or
1148		 * we failed and compact_zone should decide if we should
1149		 * continue or not.
1150		 */
1151		break;
1152	}
1153
1154	acct_isolated(zone, cc);
1155	/* Record where migration scanner will be restarted. */
1156	cc->migrate_pfn = low_pfn;
1157
1158	return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1159}
1160
1161/*
1162 * order == -1 is expected when compacting via
1163 * /proc/sys/vm/compact_memory
1164 */
1165static inline bool is_via_compact_memory(int order)
1166{
1167	return order == -1;
1168}
1169
1170static int __compact_finished(struct zone *zone, struct compact_control *cc,
1171			    const int migratetype)
 
 
 
 
 
1172{
1173	unsigned int order;
1174	unsigned long watermark;
1175
1176	if (cc->contended || fatal_signal_pending(current))
1177		return COMPACT_CONTENDED;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1178
1179	/* Compaction run completes if the migrate and free scanner meet */
1180	if (compact_scanners_met(cc)) {
1181		/* Let the next compaction start anew. */
1182		reset_cached_positions(zone);
1183
1184		/*
1185		 * Mark that the PG_migrate_skip information should be cleared
1186		 * by kswapd when it goes to sleep. kcompactd does not set the
1187		 * flag itself as the decision to be clear should be directly
1188		 * based on an allocation request.
1189		 */
1190		if (cc->direct_compaction)
1191			zone->compact_blockskip_flush = true;
1192
1193		return COMPACT_COMPLETE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1194	}
1195
1196	if (is_via_compact_memory(cc->order))
1197		return COMPACT_CONTINUE;
1198
1199	/* Compaction run is not finished if the watermark is not met */
1200	watermark = low_wmark_pages(zone);
1201
1202	if (!zone_watermark_ok(zone, cc->order, watermark, cc->classzone_idx,
1203							cc->alloc_flags))
 
 
1204		return COMPACT_CONTINUE;
1205
1206	/* Direct compactor: Is a suitable page free? */
 
1207	for (order = cc->order; order < MAX_ORDER; order++) {
1208		struct free_area *area = &zone->free_area[order];
1209		bool can_steal;
1210
1211		/* Job done if page is free of the right migratetype */
1212		if (!list_empty(&area->free_list[migratetype]))
1213			return COMPACT_PARTIAL;
1214
1215#ifdef CONFIG_CMA
1216		/* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
1217		if (migratetype == MIGRATE_MOVABLE &&
1218			!list_empty(&area->free_list[MIGRATE_CMA]))
1219			return COMPACT_PARTIAL;
1220#endif
1221		/*
1222		 * Job done if allocation would steal freepages from
1223		 * other migratetype buddy lists.
1224		 */
1225		if (find_suitable_fallback(area, order, migratetype,
1226						true, &can_steal) != -1)
1227			return COMPACT_PARTIAL;
 
 
 
 
 
 
 
 
1228	}
1229
1230	return COMPACT_NO_SUITABLE_PAGE;
 
 
 
 
1231}
1232
1233static int compact_finished(struct zone *zone, struct compact_control *cc,
1234			    const int migratetype)
1235{
1236	int ret;
1237
1238	ret = __compact_finished(zone, cc, migratetype);
1239	trace_mm_compaction_finished(zone, cc->order, ret);
1240	if (ret == COMPACT_NO_SUITABLE_PAGE)
1241		ret = COMPACT_CONTINUE;
1242
1243	return ret;
1244}
1245
1246/*
1247 * compaction_suitable: Is this suitable to run compaction on this zone now?
1248 * Returns
1249 *   COMPACT_SKIPPED  - If there are too few free pages for compaction
1250 *   COMPACT_PARTIAL  - If the allocation would succeed without compaction
1251 *   COMPACT_CONTINUE - If compaction should run now
1252 */
1253static unsigned long __compaction_suitable(struct zone *zone, int order,
1254					int alloc_flags, int classzone_idx)
1255{
1256	int fragindex;
1257	unsigned long watermark;
1258
1259	if (is_via_compact_memory(order))
1260		return COMPACT_CONTINUE;
1261
1262	watermark = low_wmark_pages(zone);
1263	/*
1264	 * If watermarks for high-order allocation are already met, there
1265	 * should be no need for compaction at all.
1266	 */
1267	if (zone_watermark_ok(zone, order, watermark, classzone_idx,
1268								alloc_flags))
1269		return COMPACT_PARTIAL;
1270
1271	/*
1272	 * Watermarks for order-0 must be met for compaction. Note the 2UL.
1273	 * This is because during migration, copies of pages need to be
1274	 * allocated and for a short time, the footprint is higher
 
 
 
 
 
 
 
 
 
1275	 */
1276	watermark += (2UL << order);
1277	if (!zone_watermark_ok(zone, 0, watermark, classzone_idx, alloc_flags))
 
 
 
1278		return COMPACT_SKIPPED;
1279
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1280	/*
1281	 * fragmentation index determines if allocation failures are due to
1282	 * low memory or external fragmentation
1283	 *
1284	 * index of -1000 would imply allocations might succeed depending on
1285	 * watermarks, but we already failed the high-order watermark check
1286	 * index towards 0 implies failure is due to lack of memory
1287	 * index towards 1000 implies failure is due to fragmentation
1288	 *
1289	 * Only compact if a failure would be due to fragmentation.
 
 
 
 
 
1290	 */
1291	fragindex = fragmentation_index(zone, order);
1292	if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
1293		return COMPACT_NOT_SUITABLE_ZONE;
1294
1295	return COMPACT_CONTINUE;
1296}
1297
1298unsigned long compaction_suitable(struct zone *zone, int order,
1299					int alloc_flags, int classzone_idx)
1300{
1301	unsigned long ret;
1302
1303	ret = __compaction_suitable(zone, order, alloc_flags, classzone_idx);
1304	trace_mm_compaction_suitable(zone, order, ret);
1305	if (ret == COMPACT_NOT_SUITABLE_ZONE)
1306		ret = COMPACT_SKIPPED;
1307
1308	return ret;
1309}
1310
1311static int compact_zone(struct zone *zone, struct compact_control *cc)
 
1312{
1313	int ret;
1314	unsigned long start_pfn = zone->zone_start_pfn;
1315	unsigned long end_pfn = zone_end_pfn(zone);
1316	const int migratetype = gfpflags_to_migratetype(cc->gfp_mask);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1317	const bool sync = cc->mode != MIGRATE_ASYNC;
 
 
1318
1319	ret = compaction_suitable(zone, cc->order, cc->alloc_flags,
1320							cc->classzone_idx);
1321	switch (ret) {
1322	case COMPACT_PARTIAL:
1323	case COMPACT_SKIPPED:
1324		/* Compaction is likely to fail */
 
 
 
 
 
 
 
 
 
 
1325		return ret;
1326	case COMPACT_CONTINUE:
1327		/* Fall through to compaction */
1328		;
1329	}
1330
1331	/*
1332	 * Clear pageblock skip if there were failures recently and compaction
1333	 * is about to be retried after being deferred.
1334	 */
1335	if (compaction_restarting(zone, cc->order))
1336		__reset_isolation_suitable(zone);
1337
1338	/*
1339	 * Setup to move all movable pages to the end of the zone. Used cached
1340	 * information on where the scanners should start but check that it
1341	 * is initialised by ensuring the values are within zone boundaries.
 
1342	 */
1343	cc->migrate_pfn = zone->compact_cached_migrate_pfn[sync];
1344	cc->free_pfn = zone->compact_cached_free_pfn;
1345	if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
1346		cc->free_pfn = round_down(end_pfn - 1, pageblock_nr_pages);
1347		zone->compact_cached_free_pfn = cc->free_pfn;
1348	}
1349	if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
1350		cc->migrate_pfn = start_pfn;
1351		zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
1352		zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1353	}
1354	cc->last_migrated_pfn = 0;
1355
1356	trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
1357				cc->free_pfn, end_pfn, sync);
1358
1359	migrate_prep_local();
 
 
 
 
 
 
 
 
 
1360
1361	while ((ret = compact_finished(zone, cc, migratetype)) ==
1362						COMPACT_CONTINUE) {
 
 
 
 
1363		int err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1364
1365		switch (isolate_migratepages(zone, cc)) {
1366		case ISOLATE_ABORT:
1367			ret = COMPACT_CONTENDED;
1368			putback_movable_pages(&cc->migratepages);
1369			cc->nr_migratepages = 0;
1370			goto out;
1371		case ISOLATE_NONE:
 
 
 
 
 
1372			/*
1373			 * We haven't isolated and migrated anything, but
1374			 * there might still be unflushed migrations from
1375			 * previous cc->order aligned block.
1376			 */
1377			goto check_drain;
1378		case ISOLATE_SUCCESS:
1379			;
 
1380		}
1381
1382		err = migrate_pages(&cc->migratepages, compaction_alloc,
1383				compaction_free, (unsigned long)cc, cc->mode,
1384				MR_COMPACTION);
1385
1386		trace_mm_compaction_migratepages(cc->nr_migratepages, err,
1387							&cc->migratepages);
1388
1389		/* All pages were either migrated or will be released */
1390		cc->nr_migratepages = 0;
1391		if (err) {
1392			putback_movable_pages(&cc->migratepages);
1393			/*
1394			 * migrate_pages() may return -ENOMEM when scanners meet
1395			 * and we want compact_finished() to detect it
1396			 */
1397			if (err == -ENOMEM && !compact_scanners_met(cc)) {
1398				ret = COMPACT_CONTENDED;
1399				goto out;
1400			}
 
 
 
 
 
 
 
 
 
 
 
1401		}
1402
1403check_drain:
1404		/*
1405		 * Has the migration scanner moved away from the previous
1406		 * cc->order aligned block where we migrated from? If yes,
1407		 * flush the pages that were freed, so that they can merge and
1408		 * compact_finished() can detect immediately if allocation
1409		 * would succeed.
1410		 */
1411		if (cc->order > 0 && cc->last_migrated_pfn) {
1412			int cpu;
1413			unsigned long current_block_start =
1414				cc->migrate_pfn & ~((1UL << cc->order) - 1);
1415
1416			if (cc->last_migrated_pfn < current_block_start) {
1417				cpu = get_cpu();
1418				lru_add_drain_cpu(cpu);
1419				drain_local_pages(zone);
1420				put_cpu();
1421				/* No more flushing until we migrate again */
1422				cc->last_migrated_pfn = 0;
1423			}
1424		}
1425
 
 
 
 
 
1426	}
1427
1428out:
1429	/*
1430	 * Release free pages and update where the free scanner should restart,
1431	 * so we don't leave any returned pages behind in the next attempt.
1432	 */
1433	if (cc->nr_freepages > 0) {
1434		unsigned long free_pfn = release_freepages(&cc->freepages);
1435
1436		cc->nr_freepages = 0;
1437		VM_BUG_ON(free_pfn == 0);
1438		/* The cached pfn is always the first in a pageblock */
1439		free_pfn &= ~(pageblock_nr_pages-1);
1440		/*
1441		 * Only go back, not forward. The cached pfn might have been
1442		 * already reset to zone end in compact_finished()
1443		 */
1444		if (free_pfn > zone->compact_cached_free_pfn)
1445			zone->compact_cached_free_pfn = free_pfn;
1446	}
1447
1448	trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
1449				cc->free_pfn, end_pfn, sync, ret);
1450
1451	if (ret == COMPACT_CONTENDED)
1452		ret = COMPACT_PARTIAL;
1453
1454	return ret;
1455}
1456
1457static unsigned long compact_zone_order(struct zone *zone, int order,
1458		gfp_t gfp_mask, enum migrate_mode mode, int *contended,
1459		int alloc_flags, int classzone_idx)
 
1460{
1461	unsigned long ret;
1462	struct compact_control cc = {
1463		.nr_freepages = 0,
1464		.nr_migratepages = 0,
1465		.order = order,
 
1466		.gfp_mask = gfp_mask,
1467		.zone = zone,
1468		.mode = mode,
 
1469		.alloc_flags = alloc_flags,
1470		.classzone_idx = classzone_idx,
1471		.direct_compaction = true,
 
 
 
 
 
 
 
1472	};
1473	INIT_LIST_HEAD(&cc.freepages);
1474	INIT_LIST_HEAD(&cc.migratepages);
1475
1476	ret = compact_zone(zone, &cc);
 
 
 
 
 
 
 
 
1477
1478	VM_BUG_ON(!list_empty(&cc.freepages));
1479	VM_BUG_ON(!list_empty(&cc.migratepages));
1480
1481	*contended = cc.contended;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1482	return ret;
1483}
1484
1485int sysctl_extfrag_threshold = 500;
1486
1487/**
1488 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
1489 * @gfp_mask: The GFP mask of the current allocation
1490 * @order: The order of the current allocation
1491 * @alloc_flags: The allocation flags of the current allocation
1492 * @ac: The context of current allocation
1493 * @mode: The migration mode for async, sync light, or sync migration
1494 * @contended: Return value that determines if compaction was aborted due to
1495 *	       need_resched() or lock contention
1496 *
1497 * This is the main entry point for direct page compaction.
1498 */
1499unsigned long try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
1500			int alloc_flags, const struct alloc_context *ac,
1501			enum migrate_mode mode, int *contended)
1502{
1503	int may_enter_fs = gfp_mask & __GFP_FS;
1504	int may_perform_io = gfp_mask & __GFP_IO;
1505	struct zoneref *z;
1506	struct zone *zone;
1507	int rc = COMPACT_DEFERRED;
1508	int all_zones_contended = COMPACT_CONTENDED_LOCK; /* init for &= op */
1509
1510	*contended = COMPACT_CONTENDED_NONE;
1511
1512	/* Check if the GFP flags allow compaction */
1513	if (!order || !may_enter_fs || !may_perform_io)
 
 
 
1514		return COMPACT_SKIPPED;
1515
1516	trace_mm_compaction_try_to_compact_pages(order, gfp_mask, mode);
1517
1518	/* Compact each zone in the list */
1519	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
1520								ac->nodemask) {
1521		int status;
1522		int zone_contended;
1523
1524		if (compaction_deferred(zone, order))
 
 
1525			continue;
 
1526
1527		status = compact_zone_order(zone, order, gfp_mask, mode,
1528				&zone_contended, alloc_flags,
1529				ac->classzone_idx);
1530		rc = max(status, rc);
1531		/*
1532		 * It takes at least one zone that wasn't lock contended
1533		 * to clear all_zones_contended.
1534		 */
1535		all_zones_contended &= zone_contended;
1536
1537		/* If a normal allocation would succeed, stop compacting */
1538		if (zone_watermark_ok(zone, order, low_wmark_pages(zone),
1539					ac->classzone_idx, alloc_flags)) {
1540			/*
1541			 * We think the allocation will succeed in this zone,
1542			 * but it is not certain, hence the false. The caller
1543			 * will repeat this with true if allocation indeed
1544			 * succeeds in this zone.
1545			 */
1546			compaction_defer_reset(zone, order, false);
1547			/*
1548			 * It is possible that async compaction aborted due to
1549			 * need_resched() and the watermarks were ok thanks to
1550			 * somebody else freeing memory. The allocation can
1551			 * however still fail so we better signal the
1552			 * need_resched() contention anyway (this will not
1553			 * prevent the allocation attempt).
1554			 */
1555			if (zone_contended == COMPACT_CONTENDED_SCHED)
1556				*contended = COMPACT_CONTENDED_SCHED;
1557
1558			goto break_loop;
1559		}
1560
1561		if (mode != MIGRATE_ASYNC && status == COMPACT_COMPLETE) {
 
1562			/*
1563			 * We think that allocation won't succeed in this zone
1564			 * so we defer compaction there. If it ends up
1565			 * succeeding after all, it will be reset.
1566			 */
1567			defer_compaction(zone, order);
1568		}
1569
1570		/*
1571		 * We might have stopped compacting due to need_resched() in
1572		 * async compaction, or due to a fatal signal detected. In that
1573		 * case do not try further zones and signal need_resched()
1574		 * contention.
1575		 */
1576		if ((zone_contended == COMPACT_CONTENDED_SCHED)
1577					|| fatal_signal_pending(current)) {
1578			*contended = COMPACT_CONTENDED_SCHED;
1579			goto break_loop;
1580		}
1581
1582		continue;
1583break_loop:
1584		/*
1585		 * We might not have tried all the zones, so  be conservative
1586		 * and assume they are not all lock contended.
1587		 */
1588		all_zones_contended = 0;
1589		break;
1590	}
1591
1592	/*
1593	 * If at least one zone wasn't deferred or skipped, we report if all
1594	 * zones that were tried were lock contended.
1595	 */
1596	if (rc > COMPACT_SKIPPED && all_zones_contended)
1597		*contended = COMPACT_CONTENDED_LOCK;
1598
1599	return rc;
1600}
1601
1602
1603/* Compact all zones within a node */
1604static void __compact_pgdat(pg_data_t *pgdat, struct compact_control *cc)
 
 
 
 
 
 
 
1605{
1606	int zoneid;
1607	struct zone *zone;
 
 
 
 
 
 
 
 
1608
1609	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
1610
1611		zone = &pgdat->node_zones[zoneid];
1612		if (!populated_zone(zone))
1613			continue;
1614
1615		cc->nr_freepages = 0;
1616		cc->nr_migratepages = 0;
1617		cc->zone = zone;
1618		INIT_LIST_HEAD(&cc->freepages);
1619		INIT_LIST_HEAD(&cc->migratepages);
1620
1621		/*
1622		 * When called via /proc/sys/vm/compact_memory
1623		 * this makes sure we compact the whole zone regardless of
1624		 * cached scanner positions.
1625		 */
1626		if (is_via_compact_memory(cc->order))
1627			__reset_isolation_suitable(zone);
1628
1629		if (is_via_compact_memory(cc->order) ||
1630				!compaction_deferred(zone, cc->order))
1631			compact_zone(zone, cc);
1632
1633		VM_BUG_ON(!list_empty(&cc->freepages));
1634		VM_BUG_ON(!list_empty(&cc->migratepages));
1635
1636		if (is_via_compact_memory(cc->order))
1637			continue;
1638
1639		if (zone_watermark_ok(zone, cc->order,
1640				low_wmark_pages(zone), 0, 0))
1641			compaction_defer_reset(zone, cc->order, false);
1642	}
1643}
1644
1645void compact_pgdat(pg_data_t *pgdat, int order)
1646{
1647	struct compact_control cc = {
1648		.order = order,
1649		.mode = MIGRATE_ASYNC,
1650	};
1651
1652	if (!order)
1653		return;
1654
1655	__compact_pgdat(pgdat, &cc);
1656}
1657
1658static void compact_node(int nid)
1659{
 
 
 
1660	struct compact_control cc = {
1661		.order = -1,
1662		.mode = MIGRATE_SYNC,
1663		.ignore_skip_hint = true,
 
 
1664	};
1665
1666	__compact_pgdat(NODE_DATA(nid), &cc);
 
 
 
 
 
 
 
 
 
 
 
 
 
1667}
1668
1669/* Compact all nodes in the system */
1670static void compact_nodes(void)
1671{
1672	int nid;
1673
1674	/* Flush pending updates to the LRU lists */
1675	lru_add_drain_all();
1676
1677	for_each_online_node(nid)
1678		compact_node(nid);
1679}
1680
1681/* The written value is actually unused, all memory is compacted */
1682int sysctl_compact_memory;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1683
1684/*
1685 * This is the entry point for compacting all nodes via
1686 * /proc/sys/vm/compact_memory
1687 */
1688int sysctl_compaction_handler(struct ctl_table *table, int write,
1689			void __user *buffer, size_t *length, loff_t *ppos)
1690{
1691	if (write)
1692		compact_nodes();
1693
1694	return 0;
1695}
1696
1697int sysctl_extfrag_handler(struct ctl_table *table, int write,
1698			void __user *buffer, size_t *length, loff_t *ppos)
1699{
1700	proc_dointvec_minmax(table, write, buffer, length, ppos);
1701
1702	return 0;
1703}
1704
1705#if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
1706static ssize_t sysfs_compact_node(struct device *dev,
1707			struct device_attribute *attr,
1708			const char *buf, size_t count)
1709{
1710	int nid = dev->id;
1711
1712	if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
1713		/* Flush pending updates to the LRU lists */
1714		lru_add_drain_all();
1715
1716		compact_node(nid);
1717	}
1718
1719	return count;
1720}
1721static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
1722
1723int compaction_register_node(struct node *node)
1724{
1725	return device_create_file(&node->dev, &dev_attr_compact);
1726}
1727
1728void compaction_unregister_node(struct node *node)
1729{
1730	return device_remove_file(&node->dev, &dev_attr_compact);
1731}
1732#endif /* CONFIG_SYSFS && CONFIG_NUMA */
1733
1734static inline bool kcompactd_work_requested(pg_data_t *pgdat)
1735{
1736	return pgdat->kcompactd_max_order > 0 || kthread_should_stop();
 
1737}
1738
1739static bool kcompactd_node_suitable(pg_data_t *pgdat)
1740{
1741	int zoneid;
1742	struct zone *zone;
1743	enum zone_type classzone_idx = pgdat->kcompactd_classzone_idx;
1744
1745	for (zoneid = 0; zoneid < classzone_idx; zoneid++) {
1746		zone = &pgdat->node_zones[zoneid];
1747
1748		if (!populated_zone(zone))
1749			continue;
1750
1751		if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0,
1752					classzone_idx) == COMPACT_CONTINUE)
1753			return true;
1754	}
1755
1756	return false;
1757}
1758
1759static void kcompactd_do_work(pg_data_t *pgdat)
1760{
1761	/*
1762	 * With no special task, compact all zones so that a page of requested
1763	 * order is allocatable.
1764	 */
1765	int zoneid;
1766	struct zone *zone;
1767	struct compact_control cc = {
1768		.order = pgdat->kcompactd_max_order,
1769		.classzone_idx = pgdat->kcompactd_classzone_idx,
 
1770		.mode = MIGRATE_SYNC_LIGHT,
1771		.ignore_skip_hint = true,
1772
1773	};
1774	bool success = false;
1775
1776	trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
1777							cc.classzone_idx);
1778	count_vm_event(KCOMPACTD_WAKE);
1779
1780	for (zoneid = 0; zoneid < cc.classzone_idx; zoneid++) {
1781		int status;
1782
1783		zone = &pgdat->node_zones[zoneid];
1784		if (!populated_zone(zone))
1785			continue;
1786
1787		if (compaction_deferred(zone, cc.order))
1788			continue;
1789
1790		if (compaction_suitable(zone, cc.order, 0, zoneid) !=
1791							COMPACT_CONTINUE)
1792			continue;
1793
1794		cc.nr_freepages = 0;
1795		cc.nr_migratepages = 0;
1796		cc.zone = zone;
1797		INIT_LIST_HEAD(&cc.freepages);
1798		INIT_LIST_HEAD(&cc.migratepages);
1799
1800		if (kthread_should_stop())
1801			return;
1802		status = compact_zone(zone, &cc);
1803
1804		if (zone_watermark_ok(zone, cc.order, low_wmark_pages(zone),
1805						cc.classzone_idx, 0)) {
1806			success = true;
 
1807			compaction_defer_reset(zone, cc.order, false);
1808		} else if (status == COMPACT_COMPLETE) {
 
 
 
 
 
 
 
 
1809			/*
1810			 * We use sync migration mode here, so we defer like
1811			 * sync direct compaction does.
1812			 */
1813			defer_compaction(zone, cc.order);
1814		}
1815
 
 
 
 
 
1816		VM_BUG_ON(!list_empty(&cc.freepages));
1817		VM_BUG_ON(!list_empty(&cc.migratepages));
1818	}
1819
1820	/*
1821	 * Regardless of success, we are done until woken up next. But remember
1822	 * the requested order/classzone_idx in case it was higher/tighter than
1823	 * our current ones
1824	 */
1825	if (pgdat->kcompactd_max_order <= cc.order)
1826		pgdat->kcompactd_max_order = 0;
1827	if (pgdat->kcompactd_classzone_idx >= cc.classzone_idx)
1828		pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;
1829}
1830
1831void wakeup_kcompactd(pg_data_t *pgdat, int order, int classzone_idx)
1832{
1833	if (!order)
1834		return;
1835
1836	if (pgdat->kcompactd_max_order < order)
1837		pgdat->kcompactd_max_order = order;
1838
1839	if (pgdat->kcompactd_classzone_idx > classzone_idx)
1840		pgdat->kcompactd_classzone_idx = classzone_idx;
1841
1842	if (!waitqueue_active(&pgdat->kcompactd_wait))
 
 
 
 
1843		return;
1844
1845	if (!kcompactd_node_suitable(pgdat))
1846		return;
1847
1848	trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
1849							classzone_idx);
1850	wake_up_interruptible(&pgdat->kcompactd_wait);
1851}
1852
1853/*
1854 * The background compaction daemon, started as a kernel thread
1855 * from the init process.
1856 */
1857static int kcompactd(void *p)
1858{
1859	pg_data_t *pgdat = (pg_data_t*)p;
1860	struct task_struct *tsk = current;
 
 
1861
1862	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1863
1864	if (!cpumask_empty(cpumask))
1865		set_cpus_allowed_ptr(tsk, cpumask);
1866
1867	set_freezable();
1868
1869	pgdat->kcompactd_max_order = 0;
1870	pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;
1871
1872	while (!kthread_should_stop()) {
 
 
 
 
 
 
 
 
1873		trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
1874		wait_event_freezable(pgdat->kcompactd_wait,
1875				kcompactd_work_requested(pgdat));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1876
1877		kcompactd_do_work(pgdat);
 
 
 
 
 
 
 
 
 
 
 
 
1878	}
1879
1880	return 0;
1881}
1882
1883/*
1884 * This kcompactd start function will be called by init and node-hot-add.
1885 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
1886 */
1887int kcompactd_run(int nid)
1888{
1889	pg_data_t *pgdat = NODE_DATA(nid);
1890	int ret = 0;
1891
1892	if (pgdat->kcompactd)
1893		return 0;
1894
1895	pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
1896	if (IS_ERR(pgdat->kcompactd)) {
1897		pr_err("Failed to start kcompactd on node %d\n", nid);
1898		ret = PTR_ERR(pgdat->kcompactd);
1899		pgdat->kcompactd = NULL;
1900	}
1901	return ret;
1902}
1903
1904/*
1905 * Called by memory hotplug when all memory in a node is offlined. Caller must
1906 * hold mem_hotplug_begin/end().
1907 */
1908void kcompactd_stop(int nid)
1909{
1910	struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
1911
1912	if (kcompactd) {
1913		kthread_stop(kcompactd);
1914		NODE_DATA(nid)->kcompactd = NULL;
1915	}
1916}
1917
1918/*
1919 * It's optimal to keep kcompactd on the same CPUs as their memory, but
1920 * not required for correctness. So if the last cpu in a node goes
1921 * away, we get changed to run anywhere: as the first one comes back,
1922 * restore their cpu bindings.
1923 */
1924static int cpu_callback(struct notifier_block *nfb, unsigned long action,
1925			void *hcpu)
1926{
1927	int nid;
1928
1929	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
1930		for_each_node_state(nid, N_MEMORY) {
1931			pg_data_t *pgdat = NODE_DATA(nid);
1932			const struct cpumask *mask;
1933
1934			mask = cpumask_of_node(pgdat->node_id);
1935
1936			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
1937				/* One of our CPUs online: restore mask */
1938				set_cpus_allowed_ptr(pgdat->kcompactd, mask);
1939		}
1940	}
1941	return NOTIFY_OK;
1942}
1943
1944static int __init kcompactd_init(void)
1945{
1946	int nid;
 
 
 
 
 
 
 
 
 
1947
1948	for_each_node_state(nid, N_MEMORY)
1949		kcompactd_run(nid);
1950	hotcpu_notifier(cpu_callback, 0);
1951	return 0;
1952}
1953subsys_initcall(kcompactd_init)
1954
1955#endif /* CONFIG_COMPACTION */
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * linux/mm/compaction.c
   4 *
   5 * Memory compaction for the reduction of external fragmentation. Note that
   6 * this heavily depends upon page migration to do all the real heavy
   7 * lifting
   8 *
   9 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
  10 */
  11#include <linux/cpu.h>
  12#include <linux/swap.h>
  13#include <linux/migrate.h>
  14#include <linux/compaction.h>
  15#include <linux/mm_inline.h>
  16#include <linux/sched/signal.h>
  17#include <linux/backing-dev.h>
  18#include <linux/sysctl.h>
  19#include <linux/sysfs.h>
 
  20#include <linux/page-isolation.h>
  21#include <linux/kasan.h>
  22#include <linux/kthread.h>
  23#include <linux/freezer.h>
  24#include <linux/page_owner.h>
  25#include <linux/psi.h>
  26#include "internal.h"
  27
  28#ifdef CONFIG_COMPACTION
  29/*
  30 * Fragmentation score check interval for proactive compaction purposes.
  31 */
  32#define HPAGE_FRAG_CHECK_INTERVAL_MSEC	(500)
  33
  34static inline void count_compact_event(enum vm_event_item item)
  35{
  36	count_vm_event(item);
  37}
  38
  39static inline void count_compact_events(enum vm_event_item item, long delta)
  40{
  41	count_vm_events(item, delta);
  42}
  43#else
  44#define count_compact_event(item) do { } while (0)
  45#define count_compact_events(item, delta) do { } while (0)
  46#endif
  47
  48#if defined CONFIG_COMPACTION || defined CONFIG_CMA
  49
  50#define CREATE_TRACE_POINTS
  51#include <trace/events/compaction.h>
  52
  53#define block_start_pfn(pfn, order)	round_down(pfn, 1UL << (order))
  54#define block_end_pfn(pfn, order)	ALIGN((pfn) + 1, 1UL << (order))
  55
  56/*
  57 * Page order with-respect-to which proactive compaction
  58 * calculates external fragmentation, which is used as
  59 * the "fragmentation score" of a node/zone.
  60 */
  61#if defined CONFIG_TRANSPARENT_HUGEPAGE
  62#define COMPACTION_HPAGE_ORDER	HPAGE_PMD_ORDER
  63#elif defined CONFIG_HUGETLBFS
  64#define COMPACTION_HPAGE_ORDER	HUGETLB_PAGE_ORDER
  65#else
  66#define COMPACTION_HPAGE_ORDER	(PMD_SHIFT - PAGE_SHIFT)
  67#endif
  68
  69static unsigned long release_freepages(struct list_head *freelist)
  70{
  71	struct page *page, *next;
  72	unsigned long high_pfn = 0;
  73
  74	list_for_each_entry_safe(page, next, freelist, lru) {
  75		unsigned long pfn = page_to_pfn(page);
  76		list_del(&page->lru);
  77		__free_page(page);
  78		if (pfn > high_pfn)
  79			high_pfn = pfn;
  80	}
  81
  82	return high_pfn;
  83}
  84
  85static void split_map_pages(struct list_head *list)
  86{
  87	unsigned int i, order, nr_pages;
  88	struct page *page, *next;
  89	LIST_HEAD(tmp_list);
  90
  91	list_for_each_entry_safe(page, next, list, lru) {
  92		list_del(&page->lru);
  93
  94		order = page_private(page);
  95		nr_pages = 1 << order;
  96
  97		post_alloc_hook(page, order, __GFP_MOVABLE);
  98		if (order)
  99			split_page(page, order);
 100
 101		for (i = 0; i < nr_pages; i++) {
 102			list_add(&page->lru, &tmp_list);
 103			page++;
 104		}
 105	}
 106
 107	list_splice(&tmp_list, list);
 108}
 109
 110#ifdef CONFIG_COMPACTION
 111bool PageMovable(struct page *page)
 112{
 113	const struct movable_operations *mops;
 114
 115	VM_BUG_ON_PAGE(!PageLocked(page), page);
 116	if (!__PageMovable(page))
 117		return false;
 118
 119	mops = page_movable_ops(page);
 120	if (mops)
 121		return true;
 122
 123	return false;
 124}
 125EXPORT_SYMBOL(PageMovable);
 126
 127void __SetPageMovable(struct page *page, const struct movable_operations *mops)
 128{
 129	VM_BUG_ON_PAGE(!PageLocked(page), page);
 130	VM_BUG_ON_PAGE((unsigned long)mops & PAGE_MAPPING_MOVABLE, page);
 131	page->mapping = (void *)((unsigned long)mops | PAGE_MAPPING_MOVABLE);
 132}
 133EXPORT_SYMBOL(__SetPageMovable);
 134
 135void __ClearPageMovable(struct page *page)
 136{
 137	VM_BUG_ON_PAGE(!PageMovable(page), page);
 138	/*
 139	 * This page still has the type of a movable page, but it's
 140	 * actually not movable any more.
 141	 */
 142	page->mapping = (void *)PAGE_MAPPING_MOVABLE;
 143}
 144EXPORT_SYMBOL(__ClearPageMovable);
 145
 146/* Do not skip compaction more than 64 times */
 147#define COMPACT_MAX_DEFER_SHIFT 6
 148
 149/*
 150 * Compaction is deferred when compaction fails to result in a page
 151 * allocation success. 1 << compact_defer_shift, compactions are skipped up
 152 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
 153 */
 154static void defer_compaction(struct zone *zone, int order)
 155{
 156	zone->compact_considered = 0;
 157	zone->compact_defer_shift++;
 158
 159	if (order < zone->compact_order_failed)
 160		zone->compact_order_failed = order;
 161
 162	if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
 163		zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
 164
 165	trace_mm_compaction_defer_compaction(zone, order);
 166}
 167
 168/* Returns true if compaction should be skipped this time */
 169static bool compaction_deferred(struct zone *zone, int order)
 170{
 171	unsigned long defer_limit = 1UL << zone->compact_defer_shift;
 172
 173	if (order < zone->compact_order_failed)
 174		return false;
 175
 176	/* Avoid possible overflow */
 177	if (++zone->compact_considered >= defer_limit) {
 178		zone->compact_considered = defer_limit;
 
 
 179		return false;
 180	}
 181
 182	trace_mm_compaction_deferred(zone, order);
 183
 184	return true;
 185}
 186
 187/*
 188 * Update defer tracking counters after successful compaction of given order,
 189 * which means an allocation either succeeded (alloc_success == true) or is
 190 * expected to succeed.
 191 */
 192void compaction_defer_reset(struct zone *zone, int order,
 193		bool alloc_success)
 194{
 195	if (alloc_success) {
 196		zone->compact_considered = 0;
 197		zone->compact_defer_shift = 0;
 198	}
 199	if (order >= zone->compact_order_failed)
 200		zone->compact_order_failed = order + 1;
 201
 202	trace_mm_compaction_defer_reset(zone, order);
 203}
 204
 205/* Returns true if restarting compaction after many failures */
 206static bool compaction_restarting(struct zone *zone, int order)
 207{
 208	if (order < zone->compact_order_failed)
 209		return false;
 210
 211	return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
 212		zone->compact_considered >= 1UL << zone->compact_defer_shift;
 213}
 214
 215/* Returns true if the pageblock should be scanned for pages to isolate. */
 216static inline bool isolation_suitable(struct compact_control *cc,
 217					struct page *page)
 218{
 219	if (cc->ignore_skip_hint)
 220		return true;
 221
 222	return !get_pageblock_skip(page);
 223}
 224
 225static void reset_cached_positions(struct zone *zone)
 226{
 227	zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
 228	zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
 229	zone->compact_cached_free_pfn =
 230				pageblock_start_pfn(zone_end_pfn(zone) - 1);
 231}
 232
 233/*
 234 * Compound pages of >= pageblock_order should consistently be skipped until
 235 * released. It is always pointless to compact pages of such order (if they are
 236 * migratable), and the pageblocks they occupy cannot contain any free pages.
 237 */
 238static bool pageblock_skip_persistent(struct page *page)
 239{
 240	if (!PageCompound(page))
 241		return false;
 242
 243	page = compound_head(page);
 244
 245	if (compound_order(page) >= pageblock_order)
 246		return true;
 247
 248	return false;
 249}
 250
 251static bool
 252__reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source,
 253							bool check_target)
 254{
 255	struct page *page = pfn_to_online_page(pfn);
 256	struct page *block_page;
 257	struct page *end_page;
 258	unsigned long block_pfn;
 259
 260	if (!page)
 261		return false;
 262	if (zone != page_zone(page))
 263		return false;
 264	if (pageblock_skip_persistent(page))
 265		return false;
 266
 267	/*
 268	 * If skip is already cleared do no further checking once the
 269	 * restart points have been set.
 270	 */
 271	if (check_source && check_target && !get_pageblock_skip(page))
 272		return true;
 273
 274	/*
 275	 * If clearing skip for the target scanner, do not select a
 276	 * non-movable pageblock as the starting point.
 277	 */
 278	if (!check_source && check_target &&
 279	    get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
 280		return false;
 281
 282	/* Ensure the start of the pageblock or zone is online and valid */
 283	block_pfn = pageblock_start_pfn(pfn);
 284	block_pfn = max(block_pfn, zone->zone_start_pfn);
 285	block_page = pfn_to_online_page(block_pfn);
 286	if (block_page) {
 287		page = block_page;
 288		pfn = block_pfn;
 289	}
 290
 291	/* Ensure the end of the pageblock or zone is online and valid */
 292	block_pfn = pageblock_end_pfn(pfn) - 1;
 293	block_pfn = min(block_pfn, zone_end_pfn(zone) - 1);
 294	end_page = pfn_to_online_page(block_pfn);
 295	if (!end_page)
 296		return false;
 297
 298	/*
 299	 * Only clear the hint if a sample indicates there is either a
 300	 * free page or an LRU page in the block. One or other condition
 301	 * is necessary for the block to be a migration source/target.
 302	 */
 303	do {
 304		if (check_source && PageLRU(page)) {
 305			clear_pageblock_skip(page);
 306			return true;
 307		}
 308
 309		if (check_target && PageBuddy(page)) {
 310			clear_pageblock_skip(page);
 311			return true;
 312		}
 313
 314		page += (1 << PAGE_ALLOC_COSTLY_ORDER);
 315	} while (page <= end_page);
 316
 317	return false;
 318}
 319
 320/*
 321 * This function is called to clear all cached information on pageblocks that
 322 * should be skipped for page isolation when the migrate and free page scanner
 323 * meet.
 324 */
 325static void __reset_isolation_suitable(struct zone *zone)
 326{
 327	unsigned long migrate_pfn = zone->zone_start_pfn;
 328	unsigned long free_pfn = zone_end_pfn(zone) - 1;
 329	unsigned long reset_migrate = free_pfn;
 330	unsigned long reset_free = migrate_pfn;
 331	bool source_set = false;
 332	bool free_set = false;
 333
 334	if (!zone->compact_blockskip_flush)
 335		return;
 336
 337	zone->compact_blockskip_flush = false;
 
 
 338
 339	/*
 340	 * Walk the zone and update pageblock skip information. Source looks
 341	 * for PageLRU while target looks for PageBuddy. When the scanner
 342	 * is found, both PageBuddy and PageLRU are checked as the pageblock
 343	 * is suitable as both source and target.
 344	 */
 345	for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages,
 346					free_pfn -= pageblock_nr_pages) {
 347		cond_resched();
 348
 349		/* Update the migrate PFN */
 350		if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) &&
 351		    migrate_pfn < reset_migrate) {
 352			source_set = true;
 353			reset_migrate = migrate_pfn;
 354			zone->compact_init_migrate_pfn = reset_migrate;
 355			zone->compact_cached_migrate_pfn[0] = reset_migrate;
 356			zone->compact_cached_migrate_pfn[1] = reset_migrate;
 357		}
 358
 359		/* Update the free PFN */
 360		if (__reset_isolation_pfn(zone, free_pfn, free_set, true) &&
 361		    free_pfn > reset_free) {
 362			free_set = true;
 363			reset_free = free_pfn;
 364			zone->compact_init_free_pfn = reset_free;
 365			zone->compact_cached_free_pfn = reset_free;
 366		}
 367	}
 368
 369	/* Leave no distance if no suitable block was reset */
 370	if (reset_migrate >= reset_free) {
 371		zone->compact_cached_migrate_pfn[0] = migrate_pfn;
 372		zone->compact_cached_migrate_pfn[1] = migrate_pfn;
 373		zone->compact_cached_free_pfn = free_pfn;
 374	}
 375}
 376
 377void reset_isolation_suitable(pg_data_t *pgdat)
 378{
 379	int zoneid;
 380
 381	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
 382		struct zone *zone = &pgdat->node_zones[zoneid];
 383		if (!populated_zone(zone))
 384			continue;
 385
 386		/* Only flush if a full compaction finished recently */
 387		if (zone->compact_blockskip_flush)
 388			__reset_isolation_suitable(zone);
 389	}
 390}
 391
 392/*
 393 * Sets the pageblock skip bit if it was clear. Note that this is a hint as
 394 * locks are not required for read/writers. Returns true if it was already set.
 395 */
 396static bool test_and_set_skip(struct compact_control *cc, struct page *page,
 397							unsigned long pfn)
 398{
 399	bool skip;
 400
 401	/* Do no update if skip hint is being ignored */
 402	if (cc->ignore_skip_hint)
 403		return false;
 404
 405	if (!pageblock_aligned(pfn))
 406		return false;
 407
 408	skip = get_pageblock_skip(page);
 409	if (!skip && !cc->no_set_skip_hint)
 410		set_pageblock_skip(page);
 411
 412	return skip;
 413}
 414
 415static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
 416{
 417	struct zone *zone = cc->zone;
 418
 419	pfn = pageblock_end_pfn(pfn);
 420
 421	/* Set for isolation rather than compaction */
 422	if (cc->no_set_skip_hint)
 423		return;
 424
 425	if (pfn > zone->compact_cached_migrate_pfn[0])
 426		zone->compact_cached_migrate_pfn[0] = pfn;
 427	if (cc->mode != MIGRATE_ASYNC &&
 428	    pfn > zone->compact_cached_migrate_pfn[1])
 429		zone->compact_cached_migrate_pfn[1] = pfn;
 430}
 431
 432/*
 433 * If no pages were isolated then mark this pageblock to be skipped in the
 434 * future. The information is later cleared by __reset_isolation_suitable().
 435 */
 436static void update_pageblock_skip(struct compact_control *cc,
 437			struct page *page, unsigned long pfn)
 
 438{
 439	struct zone *zone = cc->zone;
 
 440
 441	if (cc->no_set_skip_hint)
 442		return;
 443
 444	if (!page)
 445		return;
 446
 
 
 
 447	set_pageblock_skip(page);
 448
 
 
 449	/* Update where async and sync compaction should restart */
 450	if (pfn < zone->compact_cached_free_pfn)
 451		zone->compact_cached_free_pfn = pfn;
 
 
 
 
 
 
 
 
 452}
 453#else
 454static inline bool isolation_suitable(struct compact_control *cc,
 455					struct page *page)
 456{
 457	return true;
 458}
 459
 460static inline bool pageblock_skip_persistent(struct page *page)
 461{
 462	return false;
 463}
 464
 465static inline void update_pageblock_skip(struct compact_control *cc,
 466			struct page *page, unsigned long pfn)
 467{
 468}
 469
 470static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
 471{
 472}
 473
 474static bool test_and_set_skip(struct compact_control *cc, struct page *page,
 475							unsigned long pfn)
 476{
 477	return false;
 478}
 479#endif /* CONFIG_COMPACTION */
 480
 481/*
 482 * Compaction requires the taking of some coarse locks that are potentially
 483 * very heavily contended. For async compaction, trylock and record if the
 484 * lock is contended. The lock will still be acquired but compaction will
 485 * abort when the current block is finished regardless of success rate.
 486 * Sync compaction acquires the lock.
 487 *
 488 * Always returns true which makes it easier to track lock state in callers.
 
 489 */
 490static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags,
 491						struct compact_control *cc)
 492	__acquires(lock)
 493{
 494	/* Track if the lock is contended in async mode */
 495	if (cc->mode == MIGRATE_ASYNC && !cc->contended) {
 496		if (spin_trylock_irqsave(lock, *flags))
 497			return true;
 498
 499		cc->contended = true;
 
 500	}
 501
 502	spin_lock_irqsave(lock, *flags);
 503	return true;
 504}
 505
 506/*
 507 * Compaction requires the taking of some coarse locks that are potentially
 508 * very heavily contended. The lock should be periodically unlocked to avoid
 509 * having disabled IRQs for a long time, even when there is nobody waiting on
 510 * the lock. It might also be that allowing the IRQs will result in
 511 * need_resched() becoming true. If scheduling is needed, compaction schedules.
 
 512 * Either compaction type will also abort if a fatal signal is pending.
 513 * In either case if the lock was locked, it is dropped and not regained.
 514 *
 515 * Returns true if compaction should abort due to fatal signal pending.
 516 * Returns false when compaction can continue.
 
 
 517 */
 518static bool compact_unlock_should_abort(spinlock_t *lock,
 519		unsigned long flags, bool *locked, struct compact_control *cc)
 520{
 521	if (*locked) {
 522		spin_unlock_irqrestore(lock, flags);
 523		*locked = false;
 524	}
 525
 526	if (fatal_signal_pending(current)) {
 527		cc->contended = true;
 528		return true;
 529	}
 530
 531	cond_resched();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 532
 533	return false;
 534}
 535
 536/*
 537 * Isolate free pages onto a private freelist. If @strict is true, will abort
 538 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
 539 * (even though it may still end up isolating some pages).
 540 */
 541static unsigned long isolate_freepages_block(struct compact_control *cc,
 542				unsigned long *start_pfn,
 543				unsigned long end_pfn,
 544				struct list_head *freelist,
 545				unsigned int stride,
 546				bool strict)
 547{
 548	int nr_scanned = 0, total_isolated = 0;
 549	struct page *cursor;
 550	unsigned long flags = 0;
 551	bool locked = false;
 552	unsigned long blockpfn = *start_pfn;
 553	unsigned int order;
 554
 555	/* Strict mode is for isolation, speed is secondary */
 556	if (strict)
 557		stride = 1;
 558
 559	cursor = pfn_to_page(blockpfn);
 560
 561	/* Isolate free pages. */
 562	for (; blockpfn < end_pfn; blockpfn += stride, cursor += stride) {
 563		int isolated;
 564		struct page *page = cursor;
 565
 566		/*
 567		 * Periodically drop the lock (if held) regardless of its
 568		 * contention, to give chance to IRQs. Abort if fatal signal
 569		 * pending.
 570		 */
 571		if (!(blockpfn % COMPACT_CLUSTER_MAX)
 572		    && compact_unlock_should_abort(&cc->zone->lock, flags,
 573								&locked, cc))
 574			break;
 575
 576		nr_scanned++;
 
 
 
 
 
 577
 578		/*
 579		 * For compound pages such as THP and hugetlbfs, we can save
 580		 * potentially a lot of iterations if we skip them at once.
 581		 * The check is racy, but we can consider only valid values
 582		 * and the only danger is skipping too much.
 583		 */
 584		if (PageCompound(page)) {
 585			const unsigned int order = compound_order(page);
 586
 587			if (likely(order < MAX_ORDER)) {
 588				blockpfn += (1UL << order) - 1;
 589				cursor += (1UL << order) - 1;
 590			}
 
 591			goto isolate_fail;
 592		}
 593
 594		if (!PageBuddy(page))
 595			goto isolate_fail;
 596
 597		/* If we already hold the lock, we can skip some rechecking. */
 
 
 
 
 
 
 598		if (!locked) {
 599			locked = compact_lock_irqsave(&cc->zone->lock,
 
 
 
 
 
 
 
 
 600								&flags, cc);
 
 
 601
 602			/* Recheck this is a buddy page under lock */
 603			if (!PageBuddy(page))
 604				goto isolate_fail;
 605		}
 606
 607		/* Found a free page, will break it into order-0 pages */
 608		order = buddy_order(page);
 609		isolated = __isolate_free_page(page, order);
 610		if (!isolated)
 611			break;
 612		set_page_private(page, order);
 
 613
 614		nr_scanned += isolated - 1;
 615		total_isolated += isolated;
 616		cc->nr_freepages += isolated;
 617		list_add_tail(&page->lru, freelist);
 
 
 
 
 618
 619		if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
 620			blockpfn += isolated;
 621			break;
 622		}
 623		/* Advance to the end of split page */
 624		blockpfn += isolated - 1;
 625		cursor += isolated - 1;
 626		continue;
 627
 628isolate_fail:
 629		if (strict)
 630			break;
 631		else
 632			continue;
 633
 634	}
 635
 636	if (locked)
 637		spin_unlock_irqrestore(&cc->zone->lock, flags);
 638
 639	/*
 640	 * There is a tiny chance that we have read bogus compound_order(),
 641	 * so be careful to not go outside of the pageblock.
 642	 */
 643	if (unlikely(blockpfn > end_pfn))
 644		blockpfn = end_pfn;
 645
 646	trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
 647					nr_scanned, total_isolated);
 648
 649	/* Record how far we have got within the block */
 650	*start_pfn = blockpfn;
 651
 652	/*
 653	 * If strict isolation is requested by CMA then check that all the
 654	 * pages requested were isolated. If there were any failures, 0 is
 655	 * returned and CMA will fail.
 656	 */
 657	if (strict && blockpfn < end_pfn)
 658		total_isolated = 0;
 659
 660	cc->total_free_scanned += nr_scanned;
 
 
 
 
 
 
 
 661	if (total_isolated)
 662		count_compact_events(COMPACTISOLATED, total_isolated);
 663	return total_isolated;
 664}
 665
 666/**
 667 * isolate_freepages_range() - isolate free pages.
 668 * @cc:        Compaction control structure.
 669 * @start_pfn: The first PFN to start isolating.
 670 * @end_pfn:   The one-past-last PFN.
 671 *
 672 * Non-free pages, invalid PFNs, or zone boundaries within the
 673 * [start_pfn, end_pfn) range are considered errors, cause function to
 674 * undo its actions and return zero.
 675 *
 676 * Otherwise, function returns one-past-the-last PFN of isolated page
 677 * (which may be greater then end_pfn if end fell in a middle of
 678 * a free page).
 679 */
 680unsigned long
 681isolate_freepages_range(struct compact_control *cc,
 682			unsigned long start_pfn, unsigned long end_pfn)
 683{
 684	unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
 685	LIST_HEAD(freelist);
 686
 687	pfn = start_pfn;
 688	block_start_pfn = pageblock_start_pfn(pfn);
 689	if (block_start_pfn < cc->zone->zone_start_pfn)
 690		block_start_pfn = cc->zone->zone_start_pfn;
 691	block_end_pfn = pageblock_end_pfn(pfn);
 692
 693	for (; pfn < end_pfn; pfn += isolated,
 694				block_start_pfn = block_end_pfn,
 695				block_end_pfn += pageblock_nr_pages) {
 696		/* Protect pfn from changing by isolate_freepages_block */
 697		unsigned long isolate_start_pfn = pfn;
 698
 699		block_end_pfn = min(block_end_pfn, end_pfn);
 700
 701		/*
 702		 * pfn could pass the block_end_pfn if isolated freepage
 703		 * is more than pageblock order. In this case, we adjust
 704		 * scanning range to right one.
 705		 */
 706		if (pfn >= block_end_pfn) {
 707			block_start_pfn = pageblock_start_pfn(pfn);
 708			block_end_pfn = pageblock_end_pfn(pfn);
 709			block_end_pfn = min(block_end_pfn, end_pfn);
 710		}
 711
 712		if (!pageblock_pfn_to_page(block_start_pfn,
 713					block_end_pfn, cc->zone))
 714			break;
 715
 716		isolated = isolate_freepages_block(cc, &isolate_start_pfn,
 717					block_end_pfn, &freelist, 0, true);
 718
 719		/*
 720		 * In strict mode, isolate_freepages_block() returns 0 if
 721		 * there are any holes in the block (ie. invalid PFNs or
 722		 * non-free pages).
 723		 */
 724		if (!isolated)
 725			break;
 726
 727		/*
 728		 * If we managed to isolate pages, it is always (1 << n) *
 729		 * pageblock_nr_pages for some non-negative n.  (Max order
 730		 * page may span two pageblocks).
 731		 */
 732	}
 733
 734	/* __isolate_free_page() does not map the pages */
 735	split_map_pages(&freelist);
 736
 737	if (pfn < end_pfn) {
 738		/* Loop terminated early, cleanup. */
 739		release_freepages(&freelist);
 740		return 0;
 741	}
 742
 743	/* We don't use freelists for anything. */
 744	return pfn;
 745}
 746
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 747/* Similar to reclaim, but different enough that they don't share logic */
 748static bool too_many_isolated(pg_data_t *pgdat)
 749{
 750	bool too_many;
 751
 752	unsigned long active, inactive, isolated;
 753
 754	inactive = node_page_state(pgdat, NR_INACTIVE_FILE) +
 755			node_page_state(pgdat, NR_INACTIVE_ANON);
 756	active = node_page_state(pgdat, NR_ACTIVE_FILE) +
 757			node_page_state(pgdat, NR_ACTIVE_ANON);
 758	isolated = node_page_state(pgdat, NR_ISOLATED_FILE) +
 759			node_page_state(pgdat, NR_ISOLATED_ANON);
 760
 761	too_many = isolated > (inactive + active) / 2;
 762	if (!too_many)
 763		wake_throttle_isolated(pgdat);
 764
 765	return too_many;
 766}
 767
 768/**
 769 * isolate_migratepages_block() - isolate all migrate-able pages within
 770 *				  a single pageblock
 771 * @cc:		Compaction control structure.
 772 * @low_pfn:	The first PFN to isolate
 773 * @end_pfn:	The one-past-the-last PFN to isolate, within same pageblock
 774 * @mode:	Isolation mode to be used.
 775 *
 776 * Isolate all pages that can be migrated from the range specified by
 777 * [low_pfn, end_pfn). The range is expected to be within same pageblock.
 778 * Returns errno, like -EAGAIN or -EINTR in case e.g signal pending or congestion,
 779 * -ENOMEM in case we could not allocate a page, or 0.
 780 * cc->migrate_pfn will contain the next pfn to scan.
 781 *
 782 * The pages are isolated on cc->migratepages list (not required to be empty),
 783 * and cc->nr_migratepages is updated accordingly.
 
 784 */
 785static int
 786isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
 787			unsigned long end_pfn, isolate_mode_t mode)
 788{
 789	pg_data_t *pgdat = cc->zone->zone_pgdat;
 790	unsigned long nr_scanned = 0, nr_isolated = 0;
 
 791	struct lruvec *lruvec;
 792	unsigned long flags = 0;
 793	struct lruvec *locked = NULL;
 794	struct page *page = NULL, *valid_page = NULL;
 795	struct address_space *mapping;
 796	unsigned long start_pfn = low_pfn;
 797	bool skip_on_failure = false;
 798	unsigned long next_skip_pfn = 0;
 799	bool skip_updated = false;
 800	int ret = 0;
 801
 802	cc->migrate_pfn = low_pfn;
 803
 804	/*
 805	 * Ensure that there are not too many pages isolated from the LRU
 806	 * list by either parallel reclaimers or compaction. If there are,
 807	 * delay for some time until fewer pages are isolated
 808	 */
 809	while (unlikely(too_many_isolated(pgdat))) {
 810		/* stop isolation if there are still pages not migrated */
 811		if (cc->nr_migratepages)
 812			return -EAGAIN;
 813
 814		/* async migration should just abort */
 815		if (cc->mode == MIGRATE_ASYNC)
 816			return -EAGAIN;
 817
 818		reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
 819
 820		if (fatal_signal_pending(current))
 821			return -EINTR;
 822	}
 823
 824	cond_resched();
 825
 826	if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
 827		skip_on_failure = true;
 828		next_skip_pfn = block_end_pfn(low_pfn, cc->order);
 829	}
 830
 831	/* Time to isolate some pages for migration */
 832	for (; low_pfn < end_pfn; low_pfn++) {
 833
 834		if (skip_on_failure && low_pfn >= next_skip_pfn) {
 835			/*
 836			 * We have isolated all migration candidates in the
 837			 * previous order-aligned block, and did not skip it due
 838			 * to failure. We should migrate the pages now and
 839			 * hopefully succeed compaction.
 840			 */
 841			if (nr_isolated)
 842				break;
 843
 844			/*
 845			 * We failed to isolate in the previous order-aligned
 846			 * block. Set the new boundary to the end of the
 847			 * current block. Note we can't simply increase
 848			 * next_skip_pfn by 1 << order, as low_pfn might have
 849			 * been incremented by a higher number due to skipping
 850			 * a compound or a high-order buddy page in the
 851			 * previous loop iteration.
 852			 */
 853			next_skip_pfn = block_end_pfn(low_pfn, cc->order);
 854		}
 855
 856		/*
 857		 * Periodically drop the lock (if held) regardless of its
 858		 * contention, to give chance to IRQs. Abort completely if
 859		 * a fatal signal is pending.
 860		 */
 861		if (!(low_pfn % COMPACT_CLUSTER_MAX)) {
 862			if (locked) {
 863				unlock_page_lruvec_irqrestore(locked, flags);
 864				locked = NULL;
 865			}
 866
 867			if (fatal_signal_pending(current)) {
 868				cc->contended = true;
 869				ret = -EINTR;
 870
 871				goto fatal_pending;
 872			}
 873
 874			cond_resched();
 875		}
 876
 
 
 877		nr_scanned++;
 878
 879		page = pfn_to_page(low_pfn);
 880
 881		/*
 882		 * Check if the pageblock has already been marked skipped.
 883		 * Only the aligned PFN is checked as the caller isolates
 884		 * COMPACT_CLUSTER_MAX at a time so the second call must
 885		 * not falsely conclude that the block should be skipped.
 886		 */
 887		if (!valid_page && pageblock_aligned(low_pfn)) {
 888			if (!isolation_suitable(cc, page)) {
 889				low_pfn = end_pfn;
 890				page = NULL;
 891				goto isolate_abort;
 892			}
 893			valid_page = page;
 894		}
 895
 896		if (PageHuge(page) && cc->alloc_contig) {
 897			ret = isolate_or_dissolve_huge_page(page, &cc->migratepages);
 898
 899			/*
 900			 * Fail isolation in case isolate_or_dissolve_huge_page()
 901			 * reports an error. In case of -ENOMEM, abort right away.
 902			 */
 903			if (ret < 0) {
 904				 /* Do not report -EBUSY down the chain */
 905				if (ret == -EBUSY)
 906					ret = 0;
 907				low_pfn += compound_nr(page) - 1;
 908				goto isolate_fail;
 909			}
 910
 911			if (PageHuge(page)) {
 912				/*
 913				 * Hugepage was successfully isolated and placed
 914				 * on the cc->migratepages list.
 915				 */
 916				low_pfn += compound_nr(page) - 1;
 917				goto isolate_success_no_list;
 918			}
 919
 920			/*
 921			 * Ok, the hugepage was dissolved. Now these pages are
 922			 * Buddy and cannot be re-allocated because they are
 923			 * isolated. Fall-through as the check below handles
 924			 * Buddy pages.
 925			 */
 926		}
 927
 928		/*
 929		 * Skip if free. We read page order here without zone lock
 930		 * which is generally unsafe, but the race window is small and
 931		 * the worst thing that can happen is that we skip some
 932		 * potential isolation targets.
 933		 */
 934		if (PageBuddy(page)) {
 935			unsigned long freepage_order = buddy_order_unsafe(page);
 936
 937			/*
 938			 * Without lock, we cannot be sure that what we got is
 939			 * a valid page order. Consider only values in the
 940			 * valid order range to prevent low_pfn overflow.
 941			 */
 942			if (freepage_order > 0 && freepage_order < MAX_ORDER)
 943				low_pfn += (1UL << freepage_order) - 1;
 944			continue;
 945		}
 946
 947		/*
 948		 * Regardless of being on LRU, compound pages such as THP and
 949		 * hugetlbfs are not to be compacted unless we are attempting
 950		 * an allocation much larger than the huge page size (eg CMA).
 951		 * We can potentially save a lot of iterations if we skip them
 952		 * at once. The check is racy, but we can consider only valid
 953		 * values and the only danger is skipping too much.
 954		 */
 955		if (PageCompound(page) && !cc->alloc_contig) {
 956			const unsigned int order = compound_order(page);
 957
 958			if (likely(order < MAX_ORDER))
 959				low_pfn += (1UL << order) - 1;
 960			goto isolate_fail;
 
 
 961		}
 962
 963		/*
 964		 * Check may be lockless but that's ok as we recheck later.
 965		 * It's possible to migrate LRU and non-lru movable pages.
 966		 * Skip any other type of page
 
 
 967		 */
 968		if (!PageLRU(page)) {
 969			/*
 970			 * __PageMovable can return false positive so we need
 971			 * to verify it under page_lock.
 972			 */
 973			if (unlikely(__PageMovable(page)) &&
 974					!PageIsolated(page)) {
 975				if (locked) {
 976					unlock_page_lruvec_irqrestore(locked, flags);
 977					locked = NULL;
 978				}
 979
 980				if (!isolate_movable_page(page, mode))
 981					goto isolate_success;
 982			}
 983
 984			goto isolate_fail;
 985		}
 986
 987		/*
 988		 * Be careful not to clear PageLRU until after we're
 989		 * sure the page is not being freed elsewhere -- the
 990		 * page release code relies on it.
 991		 */
 992		if (unlikely(!get_page_unless_zero(page)))
 993			goto isolate_fail;
 994
 995		/*
 996		 * Migration will fail if an anonymous page is pinned in memory,
 997		 * so avoid taking lru_lock and isolating it unnecessarily in an
 998		 * admittedly racy check.
 999		 */
1000		mapping = page_mapping(page);
1001		if (!mapping && (page_count(page) - 1) > total_mapcount(page))
1002			goto isolate_fail_put;
1003
1004		/*
1005		 * Only allow to migrate anonymous pages in GFP_NOFS context
1006		 * because those do not depend on fs locks.
1007		 */
1008		if (!(cc->gfp_mask & __GFP_FS) && mapping)
1009			goto isolate_fail_put;
1010
1011		/* Only take pages on LRU: a check now makes later tests safe */
1012		if (!PageLRU(page))
1013			goto isolate_fail_put;
1014
1015		/* Compaction might skip unevictable pages but CMA takes them */
1016		if (!(mode & ISOLATE_UNEVICTABLE) && PageUnevictable(page))
1017			goto isolate_fail_put;
1018
1019		/*
1020		 * To minimise LRU disruption, the caller can indicate with
1021		 * ISOLATE_ASYNC_MIGRATE that it only wants to isolate pages
1022		 * it will be able to migrate without blocking - clean pages
1023		 * for the most part.  PageWriteback would require blocking.
1024		 */
1025		if ((mode & ISOLATE_ASYNC_MIGRATE) && PageWriteback(page))
1026			goto isolate_fail_put;
1027
1028		if ((mode & ISOLATE_ASYNC_MIGRATE) && PageDirty(page)) {
1029			bool migrate_dirty;
1030
1031			/*
1032			 * Only pages without mappings or that have a
1033			 * ->migrate_folio callback are possible to migrate
1034			 * without blocking. However, we can be racing with
1035			 * truncation so it's necessary to lock the page
1036			 * to stabilise the mapping as truncation holds
1037			 * the page lock until after the page is removed
1038			 * from the page cache.
1039			 */
1040			if (!trylock_page(page))
1041				goto isolate_fail_put;
1042
1043			mapping = page_mapping(page);
1044			migrate_dirty = !mapping ||
1045					mapping->a_ops->migrate_folio;
1046			unlock_page(page);
1047			if (!migrate_dirty)
1048				goto isolate_fail_put;
1049		}
1050
1051		/* Try isolate the page */
1052		if (!TestClearPageLRU(page))
1053			goto isolate_fail_put;
1054
1055		lruvec = folio_lruvec(page_folio(page));
1056
1057		/* If we already hold the lock, we can skip some rechecking */
1058		if (lruvec != locked) {
1059			if (locked)
1060				unlock_page_lruvec_irqrestore(locked, flags);
1061
1062			compact_lock_irqsave(&lruvec->lru_lock, &flags, cc);
1063			locked = lruvec;
1064
1065			lruvec_memcg_debug(lruvec, page_folio(page));
1066
1067			/* Try get exclusive access under lock */
1068			if (!skip_updated) {
1069				skip_updated = true;
1070				if (test_and_set_skip(cc, page, low_pfn))
1071					goto isolate_abort;
1072			}
1073
1074			/*
1075			 * Page become compound since the non-locked check,
1076			 * and it's on LRU. It can only be a THP so the order
1077			 * is safe to read and it's 0 for tail pages.
1078			 */
1079			if (unlikely(PageCompound(page) && !cc->alloc_contig)) {
1080				low_pfn += compound_nr(page) - 1;
1081				SetPageLRU(page);
1082				goto isolate_fail_put;
1083			}
1084		}
1085
1086		/* The whole page is taken off the LRU; skip the tail pages. */
1087		if (PageCompound(page))
1088			low_pfn += compound_nr(page) - 1;
 
 
 
 
1089
1090		/* Successfully isolated */
1091		del_page_from_lru_list(page, lruvec);
1092		mod_node_page_state(page_pgdat(page),
1093				NR_ISOLATED_ANON + page_is_file_lru(page),
1094				thp_nr_pages(page));
1095
1096isolate_success:
1097		list_add(&page->lru, &cc->migratepages);
1098isolate_success_no_list:
1099		cc->nr_migratepages += compound_nr(page);
1100		nr_isolated += compound_nr(page);
1101		nr_scanned += compound_nr(page) - 1;
1102
1103		/*
1104		 * Avoid isolating too much unless this block is being
1105		 * rescanned (e.g. dirty/writeback pages, parallel allocation)
1106		 * or a lock is contended. For contention, isolate quickly to
1107		 * potentially remove one source of contention.
1108		 */
1109		if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX &&
1110		    !cc->rescan && !cc->contended) {
1111			++low_pfn;
1112			break;
1113		}
1114
1115		continue;
1116
1117isolate_fail_put:
1118		/* Avoid potential deadlock in freeing page under lru_lock */
1119		if (locked) {
1120			unlock_page_lruvec_irqrestore(locked, flags);
1121			locked = NULL;
1122		}
1123		put_page(page);
1124
1125isolate_fail:
1126		if (!skip_on_failure && ret != -ENOMEM)
1127			continue;
1128
1129		/*
1130		 * We have isolated some pages, but then failed. Release them
1131		 * instead of migrating, as we cannot form the cc->order buddy
1132		 * page anyway.
1133		 */
1134		if (nr_isolated) {
1135			if (locked) {
1136				unlock_page_lruvec_irqrestore(locked, flags);
1137				locked = NULL;
1138			}
1139			putback_movable_pages(&cc->migratepages);
1140			cc->nr_migratepages = 0;
1141			nr_isolated = 0;
1142		}
1143
1144		if (low_pfn < next_skip_pfn) {
1145			low_pfn = next_skip_pfn - 1;
1146			/*
1147			 * The check near the loop beginning would have updated
1148			 * next_skip_pfn too, but this is a bit simpler.
1149			 */
1150			next_skip_pfn += 1UL << cc->order;
1151		}
1152
1153		if (ret == -ENOMEM)
1154			break;
1155	}
1156
1157	/*
1158	 * The PageBuddy() check could have potentially brought us outside
1159	 * the range to be scanned.
1160	 */
1161	if (unlikely(low_pfn > end_pfn))
1162		low_pfn = end_pfn;
1163
1164	page = NULL;
1165
1166isolate_abort:
1167	if (locked)
1168		unlock_page_lruvec_irqrestore(locked, flags);
1169	if (page) {
1170		SetPageLRU(page);
1171		put_page(page);
1172	}
1173
1174	/*
1175	 * Updated the cached scanner pfn once the pageblock has been scanned
1176	 * Pages will either be migrated in which case there is no point
1177	 * scanning in the near future or migration failed in which case the
1178	 * failure reason may persist. The block is marked for skipping if
1179	 * there were no pages isolated in the block or if the block is
1180	 * rescanned twice in a row.
1181	 */
1182	if (low_pfn == end_pfn && (!nr_isolated || cc->rescan)) {
1183		if (valid_page && !skip_updated)
1184			set_pageblock_skip(valid_page);
1185		update_cached_migrate(cc, low_pfn);
1186	}
1187
1188	trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
1189						nr_scanned, nr_isolated);
1190
1191fatal_pending:
1192	cc->total_migrate_scanned += nr_scanned;
1193	if (nr_isolated)
1194		count_compact_events(COMPACTISOLATED, nr_isolated);
1195
1196	cc->migrate_pfn = low_pfn;
1197
1198	return ret;
1199}
1200
1201/**
1202 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
1203 * @cc:        Compaction control structure.
1204 * @start_pfn: The first PFN to start isolating.
1205 * @end_pfn:   The one-past-last PFN.
1206 *
1207 * Returns -EAGAIN when contented, -EINTR in case of a signal pending, -ENOMEM
1208 * in case we could not allocate a page, or 0.
 
1209 */
1210int
1211isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
1212							unsigned long end_pfn)
1213{
1214	unsigned long pfn, block_start_pfn, block_end_pfn;
1215	int ret = 0;
1216
1217	/* Scan block by block. First and last block may be incomplete */
1218	pfn = start_pfn;
1219	block_start_pfn = pageblock_start_pfn(pfn);
1220	if (block_start_pfn < cc->zone->zone_start_pfn)
1221		block_start_pfn = cc->zone->zone_start_pfn;
1222	block_end_pfn = pageblock_end_pfn(pfn);
1223
1224	for (; pfn < end_pfn; pfn = block_end_pfn,
1225				block_start_pfn = block_end_pfn,
1226				block_end_pfn += pageblock_nr_pages) {
1227
1228		block_end_pfn = min(block_end_pfn, end_pfn);
1229
1230		if (!pageblock_pfn_to_page(block_start_pfn,
1231					block_end_pfn, cc->zone))
1232			continue;
1233
1234		ret = isolate_migratepages_block(cc, pfn, block_end_pfn,
1235						 ISOLATE_UNEVICTABLE);
1236
1237		if (ret)
1238			break;
1239
1240		if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX)
1241			break;
1242	}
 
1243
1244	return ret;
1245}
1246
1247#endif /* CONFIG_COMPACTION || CONFIG_CMA */
1248#ifdef CONFIG_COMPACTION
1249
1250static bool suitable_migration_source(struct compact_control *cc,
1251							struct page *page)
1252{
1253	int block_mt;
1254
1255	if (pageblock_skip_persistent(page))
1256		return false;
1257
1258	if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
1259		return true;
1260
1261	block_mt = get_pageblock_migratetype(page);
1262
1263	if (cc->migratetype == MIGRATE_MOVABLE)
1264		return is_migrate_movable(block_mt);
1265	else
1266		return block_mt == cc->migratetype;
1267}
1268
1269/* Returns true if the page is within a block suitable for migration to */
1270static bool suitable_migration_target(struct compact_control *cc,
1271							struct page *page)
1272{
1273	/* If the page is a large free page, then disallow migration */
1274	if (PageBuddy(page)) {
1275		/*
1276		 * We are checking page_order without zone->lock taken. But
1277		 * the only small danger is that we skip a potentially suitable
1278		 * pageblock, so it's not worth to check order for valid range.
1279		 */
1280		if (buddy_order_unsafe(page) >= pageblock_order)
1281			return false;
1282	}
1283
1284	if (cc->ignore_block_suitable)
1285		return true;
1286
1287	/* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1288	if (is_migrate_movable(get_pageblock_migratetype(page)))
1289		return true;
1290
1291	/* Otherwise skip the block */
1292	return false;
1293}
1294
1295static inline unsigned int
1296freelist_scan_limit(struct compact_control *cc)
1297{
1298	unsigned short shift = BITS_PER_LONG - 1;
1299
1300	return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1;
1301}
1302
1303/*
1304 * Test whether the free scanner has reached the same or lower pageblock than
1305 * the migration scanner, and compaction should thus terminate.
1306 */
1307static inline bool compact_scanners_met(struct compact_control *cc)
1308{
1309	return (cc->free_pfn >> pageblock_order)
1310		<= (cc->migrate_pfn >> pageblock_order);
1311}
1312
1313/*
1314 * Used when scanning for a suitable migration target which scans freelists
1315 * in reverse. Reorders the list such as the unscanned pages are scanned
1316 * first on the next iteration of the free scanner
1317 */
1318static void
1319move_freelist_head(struct list_head *freelist, struct page *freepage)
1320{
1321	LIST_HEAD(sublist);
1322
1323	if (!list_is_last(freelist, &freepage->lru)) {
1324		list_cut_before(&sublist, freelist, &freepage->lru);
1325		list_splice_tail(&sublist, freelist);
1326	}
1327}
1328
1329/*
1330 * Similar to move_freelist_head except used by the migration scanner
1331 * when scanning forward. It's possible for these list operations to
1332 * move against each other if they search the free list exactly in
1333 * lockstep.
1334 */
1335static void
1336move_freelist_tail(struct list_head *freelist, struct page *freepage)
1337{
1338	LIST_HEAD(sublist);
1339
1340	if (!list_is_first(freelist, &freepage->lru)) {
1341		list_cut_position(&sublist, freelist, &freepage->lru);
1342		list_splice_tail(&sublist, freelist);
1343	}
1344}
1345
1346static void
1347fast_isolate_around(struct compact_control *cc, unsigned long pfn)
1348{
1349	unsigned long start_pfn, end_pfn;
1350	struct page *page;
1351
1352	/* Do not search around if there are enough pages already */
1353	if (cc->nr_freepages >= cc->nr_migratepages)
1354		return;
1355
1356	/* Minimise scanning during async compaction */
1357	if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC)
1358		return;
1359
1360	/* Pageblock boundaries */
1361	start_pfn = max(pageblock_start_pfn(pfn), cc->zone->zone_start_pfn);
1362	end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone));
1363
1364	page = pageblock_pfn_to_page(start_pfn, end_pfn, cc->zone);
1365	if (!page)
1366		return;
1367
1368	isolate_freepages_block(cc, &start_pfn, end_pfn, &cc->freepages, 1, false);
1369
1370	/* Skip this pageblock in the future as it's full or nearly full */
1371	if (cc->nr_freepages < cc->nr_migratepages)
1372		set_pageblock_skip(page);
1373
1374	return;
1375}
1376
1377/* Search orders in round-robin fashion */
1378static int next_search_order(struct compact_control *cc, int order)
1379{
1380	order--;
1381	if (order < 0)
1382		order = cc->order - 1;
1383
1384	/* Search wrapped around? */
1385	if (order == cc->search_order) {
1386		cc->search_order--;
1387		if (cc->search_order < 0)
1388			cc->search_order = cc->order - 1;
1389		return -1;
1390	}
1391
1392	return order;
1393}
1394
1395static unsigned long
1396fast_isolate_freepages(struct compact_control *cc)
1397{
1398	unsigned int limit = max(1U, freelist_scan_limit(cc) >> 1);
1399	unsigned int nr_scanned = 0;
1400	unsigned long low_pfn, min_pfn, highest = 0;
1401	unsigned long nr_isolated = 0;
1402	unsigned long distance;
1403	struct page *page = NULL;
1404	bool scan_start = false;
1405	int order;
1406
1407	/* Full compaction passes in a negative order */
1408	if (cc->order <= 0)
1409		return cc->free_pfn;
1410
1411	/*
1412	 * If starting the scan, use a deeper search and use the highest
1413	 * PFN found if a suitable one is not found.
1414	 */
1415	if (cc->free_pfn >= cc->zone->compact_init_free_pfn) {
1416		limit = pageblock_nr_pages >> 1;
1417		scan_start = true;
1418	}
1419
1420	/*
1421	 * Preferred point is in the top quarter of the scan space but take
1422	 * a pfn from the top half if the search is problematic.
1423	 */
1424	distance = (cc->free_pfn - cc->migrate_pfn);
1425	low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2));
1426	min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1));
1427
1428	if (WARN_ON_ONCE(min_pfn > low_pfn))
1429		low_pfn = min_pfn;
1430
1431	/*
1432	 * Search starts from the last successful isolation order or the next
1433	 * order to search after a previous failure
1434	 */
1435	cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order);
1436
1437	for (order = cc->search_order;
1438	     !page && order >= 0;
1439	     order = next_search_order(cc, order)) {
1440		struct free_area *area = &cc->zone->free_area[order];
1441		struct list_head *freelist;
1442		struct page *freepage;
1443		unsigned long flags;
1444		unsigned int order_scanned = 0;
1445		unsigned long high_pfn = 0;
1446
1447		if (!area->nr_free)
1448			continue;
1449
1450		spin_lock_irqsave(&cc->zone->lock, flags);
1451		freelist = &area->free_list[MIGRATE_MOVABLE];
1452		list_for_each_entry_reverse(freepage, freelist, lru) {
1453			unsigned long pfn;
1454
1455			order_scanned++;
1456			nr_scanned++;
1457			pfn = page_to_pfn(freepage);
1458
1459			if (pfn >= highest)
1460				highest = max(pageblock_start_pfn(pfn),
1461					      cc->zone->zone_start_pfn);
1462
1463			if (pfn >= low_pfn) {
1464				cc->fast_search_fail = 0;
1465				cc->search_order = order;
1466				page = freepage;
1467				break;
1468			}
1469
1470			if (pfn >= min_pfn && pfn > high_pfn) {
1471				high_pfn = pfn;
1472
1473				/* Shorten the scan if a candidate is found */
1474				limit >>= 1;
1475			}
1476
1477			if (order_scanned >= limit)
1478				break;
1479		}
1480
1481		/* Use a minimum pfn if a preferred one was not found */
1482		if (!page && high_pfn) {
1483			page = pfn_to_page(high_pfn);
1484
1485			/* Update freepage for the list reorder below */
1486			freepage = page;
1487		}
1488
1489		/* Reorder to so a future search skips recent pages */
1490		move_freelist_head(freelist, freepage);
1491
1492		/* Isolate the page if available */
1493		if (page) {
1494			if (__isolate_free_page(page, order)) {
1495				set_page_private(page, order);
1496				nr_isolated = 1 << order;
1497				nr_scanned += nr_isolated - 1;
1498				cc->nr_freepages += nr_isolated;
1499				list_add_tail(&page->lru, &cc->freepages);
1500				count_compact_events(COMPACTISOLATED, nr_isolated);
1501			} else {
1502				/* If isolation fails, abort the search */
1503				order = cc->search_order + 1;
1504				page = NULL;
1505			}
1506		}
1507
1508		spin_unlock_irqrestore(&cc->zone->lock, flags);
1509
1510		/*
1511		 * Smaller scan on next order so the total scan is related
1512		 * to freelist_scan_limit.
1513		 */
1514		if (order_scanned >= limit)
1515			limit = max(1U, limit >> 1);
1516	}
1517
1518	if (!page) {
1519		cc->fast_search_fail++;
1520		if (scan_start) {
1521			/*
1522			 * Use the highest PFN found above min. If one was
1523			 * not found, be pessimistic for direct compaction
1524			 * and use the min mark.
1525			 */
1526			if (highest >= min_pfn) {
1527				page = pfn_to_page(highest);
1528				cc->free_pfn = highest;
1529			} else {
1530				if (cc->direct_compaction && pfn_valid(min_pfn)) {
1531					page = pageblock_pfn_to_page(min_pfn,
1532						min(pageblock_end_pfn(min_pfn),
1533						    zone_end_pfn(cc->zone)),
1534						cc->zone);
1535					cc->free_pfn = min_pfn;
1536				}
1537			}
1538		}
1539	}
1540
1541	if (highest && highest >= cc->zone->compact_cached_free_pfn) {
1542		highest -= pageblock_nr_pages;
1543		cc->zone->compact_cached_free_pfn = highest;
1544	}
1545
1546	cc->total_free_scanned += nr_scanned;
1547	if (!page)
1548		return cc->free_pfn;
1549
1550	low_pfn = page_to_pfn(page);
1551	fast_isolate_around(cc, low_pfn);
1552	return low_pfn;
1553}
1554
1555/*
1556 * Based on information in the current compact_control, find blocks
1557 * suitable for isolating free pages from and then isolate them.
1558 */
1559static void isolate_freepages(struct compact_control *cc)
1560{
1561	struct zone *zone = cc->zone;
1562	struct page *page;
1563	unsigned long block_start_pfn;	/* start of current pageblock */
1564	unsigned long isolate_start_pfn; /* exact pfn we start at */
1565	unsigned long block_end_pfn;	/* end of current pageblock */
1566	unsigned long low_pfn;	     /* lowest pfn scanner is able to scan */
1567	struct list_head *freelist = &cc->freepages;
1568	unsigned int stride;
1569
1570	/* Try a small search of the free lists for a candidate */
1571	fast_isolate_freepages(cc);
1572	if (cc->nr_freepages)
1573		goto splitmap;
1574
1575	/*
1576	 * Initialise the free scanner. The starting point is where we last
1577	 * successfully isolated from, zone-cached value, or the end of the
1578	 * zone when isolating for the first time. For looping we also need
1579	 * this pfn aligned down to the pageblock boundary, because we do
1580	 * block_start_pfn -= pageblock_nr_pages in the for loop.
1581	 * For ending point, take care when isolating in last pageblock of a
1582	 * zone which ends in the middle of a pageblock.
1583	 * The low boundary is the end of the pageblock the migration scanner
1584	 * is using.
1585	 */
1586	isolate_start_pfn = cc->free_pfn;
1587	block_start_pfn = pageblock_start_pfn(isolate_start_pfn);
1588	block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1589						zone_end_pfn(zone));
1590	low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1591	stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1;
1592
1593	/*
1594	 * Isolate free pages until enough are available to migrate the
1595	 * pages on cc->migratepages. We stop searching if the migrate
1596	 * and free page scanners meet or enough free pages are isolated.
1597	 */
1598	for (; block_start_pfn >= low_pfn;
1599				block_end_pfn = block_start_pfn,
1600				block_start_pfn -= pageblock_nr_pages,
1601				isolate_start_pfn = block_start_pfn) {
1602		unsigned long nr_isolated;
1603
1604		/*
1605		 * This can iterate a massively long zone without finding any
1606		 * suitable migration targets, so periodically check resched.
 
1607		 */
1608		if (!(block_start_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages)))
1609			cond_resched();
 
1610
1611		page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1612									zone);
1613		if (!page)
1614			continue;
1615
1616		/* Check the block is suitable for migration */
1617		if (!suitable_migration_target(cc, page))
1618			continue;
1619
1620		/* If isolation recently failed, do not retry */
1621		if (!isolation_suitable(cc, page))
1622			continue;
1623
1624		/* Found a block suitable for isolating free pages from. */
1625		nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn,
1626					block_end_pfn, freelist, stride, false);
1627
1628		/* Update the skip hint if the full pageblock was scanned */
1629		if (isolate_start_pfn == block_end_pfn)
1630			update_pageblock_skip(cc, page, block_start_pfn);
1631
1632		/* Are enough freepages isolated? */
1633		if (cc->nr_freepages >= cc->nr_migratepages) {
1634			if (isolate_start_pfn >= block_end_pfn) {
1635				/*
1636				 * Restart at previous pageblock if more
1637				 * freepages can be isolated next time.
1638				 */
 
 
 
1639				isolate_start_pfn =
1640					block_start_pfn - pageblock_nr_pages;
1641			}
1642			break;
1643		} else if (isolate_start_pfn < block_end_pfn) {
1644			/*
1645			 * If isolation failed early, do not continue
1646			 * needlessly.
1647			 */
1648			break;
1649		}
 
1650
1651		/* Adjust stride depending on isolation */
1652		if (nr_isolated) {
1653			stride = 1;
1654			continue;
1655		}
1656		stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1);
1657	}
1658
1659	/*
1660	 * Record where the free scanner will restart next time. Either we
1661	 * broke from the loop and set isolate_start_pfn based on the last
1662	 * call to isolate_freepages_block(), or we met the migration scanner
1663	 * and the loop terminated due to isolate_start_pfn < low_pfn
1664	 */
1665	cc->free_pfn = isolate_start_pfn;
1666
1667splitmap:
1668	/* __isolate_free_page() does not map the pages */
1669	split_map_pages(freelist);
1670}
1671
1672/*
1673 * This is a migrate-callback that "allocates" freepages by taking pages
1674 * from the isolated freelists in the block we are migrating to.
1675 */
1676static struct page *compaction_alloc(struct page *migratepage,
1677					unsigned long data)
 
1678{
1679	struct compact_control *cc = (struct compact_control *)data;
1680	struct page *freepage;
1681
 
 
 
 
1682	if (list_empty(&cc->freepages)) {
1683		isolate_freepages(cc);
 
1684
1685		if (list_empty(&cc->freepages))
1686			return NULL;
1687	}
1688
1689	freepage = list_entry(cc->freepages.next, struct page, lru);
1690	list_del(&freepage->lru);
1691	cc->nr_freepages--;
1692
1693	return freepage;
1694}
1695
1696/*
1697 * This is a migrate-callback that "frees" freepages back to the isolated
1698 * freelist.  All pages on the freelist are from the same zone, so there is no
1699 * special handling needed for NUMA.
1700 */
1701static void compaction_free(struct page *page, unsigned long data)
1702{
1703	struct compact_control *cc = (struct compact_control *)data;
1704
1705	list_add(&page->lru, &cc->freepages);
1706	cc->nr_freepages++;
1707}
1708
1709/* possible outcome of isolate_migratepages */
1710typedef enum {
1711	ISOLATE_ABORT,		/* Abort compaction now */
1712	ISOLATE_NONE,		/* No pages isolated, continue scanning */
1713	ISOLATE_SUCCESS,	/* Pages isolated, migrate */
1714} isolate_migrate_t;
1715
1716/*
1717 * Allow userspace to control policy on scanning the unevictable LRU for
1718 * compactable pages.
1719 */
1720int sysctl_compact_unevictable_allowed __read_mostly = CONFIG_COMPACT_UNEVICTABLE_DEFAULT;
1721
1722static inline void
1723update_fast_start_pfn(struct compact_control *cc, unsigned long pfn)
1724{
1725	if (cc->fast_start_pfn == ULONG_MAX)
1726		return;
1727
1728	if (!cc->fast_start_pfn)
1729		cc->fast_start_pfn = pfn;
1730
1731	cc->fast_start_pfn = min(cc->fast_start_pfn, pfn);
1732}
1733
1734static inline unsigned long
1735reinit_migrate_pfn(struct compact_control *cc)
1736{
1737	if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX)
1738		return cc->migrate_pfn;
1739
1740	cc->migrate_pfn = cc->fast_start_pfn;
1741	cc->fast_start_pfn = ULONG_MAX;
1742
1743	return cc->migrate_pfn;
1744}
1745
1746/*
1747 * Briefly search the free lists for a migration source that already has
1748 * some free pages to reduce the number of pages that need migration
1749 * before a pageblock is free.
1750 */
1751static unsigned long fast_find_migrateblock(struct compact_control *cc)
1752{
1753	unsigned int limit = freelist_scan_limit(cc);
1754	unsigned int nr_scanned = 0;
1755	unsigned long distance;
1756	unsigned long pfn = cc->migrate_pfn;
1757	unsigned long high_pfn;
1758	int order;
1759	bool found_block = false;
1760
1761	/* Skip hints are relied on to avoid repeats on the fast search */
1762	if (cc->ignore_skip_hint)
1763		return pfn;
1764
1765	/*
1766	 * If the migrate_pfn is not at the start of a zone or the start
1767	 * of a pageblock then assume this is a continuation of a previous
1768	 * scan restarted due to COMPACT_CLUSTER_MAX.
1769	 */
1770	if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn))
1771		return pfn;
1772
1773	/*
1774	 * For smaller orders, just linearly scan as the number of pages
1775	 * to migrate should be relatively small and does not necessarily
1776	 * justify freeing up a large block for a small allocation.
1777	 */
1778	if (cc->order <= PAGE_ALLOC_COSTLY_ORDER)
1779		return pfn;
1780
1781	/*
1782	 * Only allow kcompactd and direct requests for movable pages to
1783	 * quickly clear out a MOVABLE pageblock for allocation. This
1784	 * reduces the risk that a large movable pageblock is freed for
1785	 * an unmovable/reclaimable small allocation.
1786	 */
1787	if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE)
1788		return pfn;
1789
1790	/*
1791	 * When starting the migration scanner, pick any pageblock within the
1792	 * first half of the search space. Otherwise try and pick a pageblock
1793	 * within the first eighth to reduce the chances that a migration
1794	 * target later becomes a source.
1795	 */
1796	distance = (cc->free_pfn - cc->migrate_pfn) >> 1;
1797	if (cc->migrate_pfn != cc->zone->zone_start_pfn)
1798		distance >>= 2;
1799	high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance);
1800
1801	for (order = cc->order - 1;
1802	     order >= PAGE_ALLOC_COSTLY_ORDER && !found_block && nr_scanned < limit;
1803	     order--) {
1804		struct free_area *area = &cc->zone->free_area[order];
1805		struct list_head *freelist;
1806		unsigned long flags;
1807		struct page *freepage;
1808
1809		if (!area->nr_free)
1810			continue;
1811
1812		spin_lock_irqsave(&cc->zone->lock, flags);
1813		freelist = &area->free_list[MIGRATE_MOVABLE];
1814		list_for_each_entry(freepage, freelist, lru) {
1815			unsigned long free_pfn;
1816
1817			if (nr_scanned++ >= limit) {
1818				move_freelist_tail(freelist, freepage);
1819				break;
1820			}
1821
1822			free_pfn = page_to_pfn(freepage);
1823			if (free_pfn < high_pfn) {
1824				/*
1825				 * Avoid if skipped recently. Ideally it would
1826				 * move to the tail but even safe iteration of
1827				 * the list assumes an entry is deleted, not
1828				 * reordered.
1829				 */
1830				if (get_pageblock_skip(freepage))
1831					continue;
1832
1833				/* Reorder to so a future search skips recent pages */
1834				move_freelist_tail(freelist, freepage);
1835
1836				update_fast_start_pfn(cc, free_pfn);
1837				pfn = pageblock_start_pfn(free_pfn);
1838				if (pfn < cc->zone->zone_start_pfn)
1839					pfn = cc->zone->zone_start_pfn;
1840				cc->fast_search_fail = 0;
1841				found_block = true;
1842				set_pageblock_skip(freepage);
1843				break;
1844			}
1845		}
1846		spin_unlock_irqrestore(&cc->zone->lock, flags);
1847	}
1848
1849	cc->total_migrate_scanned += nr_scanned;
1850
1851	/*
1852	 * If fast scanning failed then use a cached entry for a page block
1853	 * that had free pages as the basis for starting a linear scan.
1854	 */
1855	if (!found_block) {
1856		cc->fast_search_fail++;
1857		pfn = reinit_migrate_pfn(cc);
1858	}
1859	return pfn;
1860}
1861
1862/*
1863 * Isolate all pages that can be migrated from the first suitable block,
1864 * starting at the block pointed to by the migrate scanner pfn within
1865 * compact_control.
1866 */
1867static isolate_migrate_t isolate_migratepages(struct compact_control *cc)
 
1868{
1869	unsigned long block_start_pfn;
1870	unsigned long block_end_pfn;
1871	unsigned long low_pfn;
 
1872	struct page *page;
1873	const isolate_mode_t isolate_mode =
1874		(sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1875		(cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1876	bool fast_find_block;
1877
1878	/*
1879	 * Start at where we last stopped, or beginning of the zone as
1880	 * initialized by compact_zone(). The first failure will use
1881	 * the lowest PFN as the starting point for linear scanning.
1882	 */
1883	low_pfn = fast_find_migrateblock(cc);
1884	block_start_pfn = pageblock_start_pfn(low_pfn);
1885	if (block_start_pfn < cc->zone->zone_start_pfn)
1886		block_start_pfn = cc->zone->zone_start_pfn;
1887
1888	/*
1889	 * fast_find_migrateblock marks a pageblock skipped so to avoid
1890	 * the isolation_suitable check below, check whether the fast
1891	 * search was successful.
1892	 */
1893	fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail;
 
 
 
1894
1895	/* Only scan within a pageblock boundary */
1896	block_end_pfn = pageblock_end_pfn(low_pfn);
1897
1898	/*
1899	 * Iterate over whole pageblocks until we find the first suitable.
1900	 * Do not cross the free scanner.
1901	 */
1902	for (; block_end_pfn <= cc->free_pfn;
1903			fast_find_block = false,
1904			cc->migrate_pfn = low_pfn = block_end_pfn,
1905			block_start_pfn = block_end_pfn,
1906			block_end_pfn += pageblock_nr_pages) {
1907
1908		/*
1909		 * This can potentially iterate a massively long zone with
1910		 * many pageblocks unsuitable, so periodically check if we
1911		 * need to schedule.
1912		 */
1913		if (!(low_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages)))
1914			cond_resched();
 
1915
1916		page = pageblock_pfn_to_page(block_start_pfn,
1917						block_end_pfn, cc->zone);
1918		if (!page)
1919			continue;
1920
1921		/*
1922		 * If isolation recently failed, do not retry. Only check the
1923		 * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock
1924		 * to be visited multiple times. Assume skip was checked
1925		 * before making it "skip" so other compaction instances do
1926		 * not scan the same block.
1927		 */
1928		if (pageblock_aligned(low_pfn) &&
1929		    !fast_find_block && !isolation_suitable(cc, page))
1930			continue;
1931
1932		/*
1933		 * For async direct compaction, only scan the pageblocks of the
1934		 * same migratetype without huge pages. Async direct compaction
1935		 * is optimistic to see if the minimum amount of work satisfies
1936		 * the allocation. The cached PFN is updated as it's possible
1937		 * that all remaining blocks between source and target are
1938		 * unsuitable and the compaction scanners fail to meet.
1939		 */
1940		if (!suitable_migration_source(cc, page)) {
1941			update_cached_migrate(cc, block_end_pfn);
1942			continue;
1943		}
1944
1945		/* Perform the isolation */
1946		if (isolate_migratepages_block(cc, low_pfn, block_end_pfn,
1947						isolate_mode))
 
 
 
 
1948			return ISOLATE_ABORT;
 
 
 
 
 
 
 
 
 
 
1949
1950		/*
1951		 * Either we isolated something and proceed with migration. Or
1952		 * we failed and compact_zone should decide if we should
1953		 * continue or not.
1954		 */
1955		break;
1956	}
1957
 
 
 
 
1958	return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1959}
1960
1961/*
1962 * order == -1 is expected when compacting via
1963 * /proc/sys/vm/compact_memory
1964 */
1965static inline bool is_via_compact_memory(int order)
1966{
1967	return order == -1;
1968}
1969
1970/*
1971 * Determine whether kswapd is (or recently was!) running on this node.
1972 *
1973 * pgdat_kswapd_lock() pins pgdat->kswapd, so a concurrent kswapd_stop() can't
1974 * zero it.
1975 */
1976static bool kswapd_is_running(pg_data_t *pgdat)
1977{
1978	bool running;
 
1979
1980	pgdat_kswapd_lock(pgdat);
1981	running = pgdat->kswapd && task_is_running(pgdat->kswapd);
1982	pgdat_kswapd_unlock(pgdat);
1983
1984	return running;
1985}
1986
1987/*
1988 * A zone's fragmentation score is the external fragmentation wrt to the
1989 * COMPACTION_HPAGE_ORDER. It returns a value in the range [0, 100].
1990 */
1991static unsigned int fragmentation_score_zone(struct zone *zone)
1992{
1993	return extfrag_for_order(zone, COMPACTION_HPAGE_ORDER);
1994}
1995
1996/*
1997 * A weighted zone's fragmentation score is the external fragmentation
1998 * wrt to the COMPACTION_HPAGE_ORDER scaled by the zone's size. It
1999 * returns a value in the range [0, 100].
2000 *
2001 * The scaling factor ensures that proactive compaction focuses on larger
2002 * zones like ZONE_NORMAL, rather than smaller, specialized zones like
2003 * ZONE_DMA32. For smaller zones, the score value remains close to zero,
2004 * and thus never exceeds the high threshold for proactive compaction.
2005 */
2006static unsigned int fragmentation_score_zone_weighted(struct zone *zone)
2007{
2008	unsigned long score;
2009
2010	score = zone->present_pages * fragmentation_score_zone(zone);
2011	return div64_ul(score, zone->zone_pgdat->node_present_pages + 1);
2012}
2013
2014/*
2015 * The per-node proactive (background) compaction process is started by its
2016 * corresponding kcompactd thread when the node's fragmentation score
2017 * exceeds the high threshold. The compaction process remains active till
2018 * the node's score falls below the low threshold, or one of the back-off
2019 * conditions is met.
2020 */
2021static unsigned int fragmentation_score_node(pg_data_t *pgdat)
2022{
2023	unsigned int score = 0;
2024	int zoneid;
2025
2026	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2027		struct zone *zone;
2028
2029		zone = &pgdat->node_zones[zoneid];
2030		score += fragmentation_score_zone_weighted(zone);
2031	}
2032
2033	return score;
2034}
2035
2036static unsigned int fragmentation_score_wmark(pg_data_t *pgdat, bool low)
2037{
2038	unsigned int wmark_low;
2039
2040	/*
2041	 * Cap the low watermark to avoid excessive compaction
2042	 * activity in case a user sets the proactiveness tunable
2043	 * close to 100 (maximum).
2044	 */
2045	wmark_low = max(100U - sysctl_compaction_proactiveness, 5U);
2046	return low ? wmark_low : min(wmark_low + 10, 100U);
2047}
2048
2049static bool should_proactive_compact_node(pg_data_t *pgdat)
2050{
2051	int wmark_high;
2052
2053	if (!sysctl_compaction_proactiveness || kswapd_is_running(pgdat))
2054		return false;
2055
2056	wmark_high = fragmentation_score_wmark(pgdat, false);
2057	return fragmentation_score_node(pgdat) > wmark_high;
2058}
2059
2060static enum compact_result __compact_finished(struct compact_control *cc)
2061{
2062	unsigned int order;
2063	const int migratetype = cc->migratetype;
2064	int ret;
2065
2066	/* Compaction run completes if the migrate and free scanner meet */
2067	if (compact_scanners_met(cc)) {
2068		/* Let the next compaction start anew. */
2069		reset_cached_positions(cc->zone);
2070
2071		/*
2072		 * Mark that the PG_migrate_skip information should be cleared
2073		 * by kswapd when it goes to sleep. kcompactd does not set the
2074		 * flag itself as the decision to be clear should be directly
2075		 * based on an allocation request.
2076		 */
2077		if (cc->direct_compaction)
2078			cc->zone->compact_blockskip_flush = true;
2079
2080		if (cc->whole_zone)
2081			return COMPACT_COMPLETE;
2082		else
2083			return COMPACT_PARTIAL_SKIPPED;
2084	}
2085
2086	if (cc->proactive_compaction) {
2087		int score, wmark_low;
2088		pg_data_t *pgdat;
2089
2090		pgdat = cc->zone->zone_pgdat;
2091		if (kswapd_is_running(pgdat))
2092			return COMPACT_PARTIAL_SKIPPED;
2093
2094		score = fragmentation_score_zone(cc->zone);
2095		wmark_low = fragmentation_score_wmark(pgdat, true);
2096
2097		if (score > wmark_low)
2098			ret = COMPACT_CONTINUE;
2099		else
2100			ret = COMPACT_SUCCESS;
2101
2102		goto out;
2103	}
2104
2105	if (is_via_compact_memory(cc->order))
2106		return COMPACT_CONTINUE;
2107
2108	/*
2109	 * Always finish scanning a pageblock to reduce the possibility of
2110	 * fallbacks in the future. This is particularly important when
2111	 * migration source is unmovable/reclaimable but it's not worth
2112	 * special casing.
2113	 */
2114	if (!pageblock_aligned(cc->migrate_pfn))
2115		return COMPACT_CONTINUE;
2116
2117	/* Direct compactor: Is a suitable page free? */
2118	ret = COMPACT_NO_SUITABLE_PAGE;
2119	for (order = cc->order; order < MAX_ORDER; order++) {
2120		struct free_area *area = &cc->zone->free_area[order];
2121		bool can_steal;
2122
2123		/* Job done if page is free of the right migratetype */
2124		if (!free_area_empty(area, migratetype))
2125			return COMPACT_SUCCESS;
2126
2127#ifdef CONFIG_CMA
2128		/* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
2129		if (migratetype == MIGRATE_MOVABLE &&
2130			!free_area_empty(area, MIGRATE_CMA))
2131			return COMPACT_SUCCESS;
2132#endif
2133		/*
2134		 * Job done if allocation would steal freepages from
2135		 * other migratetype buddy lists.
2136		 */
2137		if (find_suitable_fallback(area, order, migratetype,
2138						true, &can_steal) != -1)
2139			/*
2140			 * Movable pages are OK in any pageblock. If we are
2141			 * stealing for a non-movable allocation, make sure
2142			 * we finish compacting the current pageblock first
2143			 * (which is assured by the above migrate_pfn align
2144			 * check) so it is as free as possible and we won't
2145			 * have to steal another one soon.
2146			 */
2147			return COMPACT_SUCCESS;
2148	}
2149
2150out:
2151	if (cc->contended || fatal_signal_pending(current))
2152		ret = COMPACT_CONTENDED;
2153
2154	return ret;
2155}
2156
2157static enum compact_result compact_finished(struct compact_control *cc)
 
2158{
2159	int ret;
2160
2161	ret = __compact_finished(cc);
2162	trace_mm_compaction_finished(cc->zone, cc->order, ret);
2163	if (ret == COMPACT_NO_SUITABLE_PAGE)
2164		ret = COMPACT_CONTINUE;
2165
2166	return ret;
2167}
2168
2169static enum compact_result __compaction_suitable(struct zone *zone, int order,
2170					unsigned int alloc_flags,
2171					int highest_zoneidx,
2172					unsigned long wmark_target)
 
 
 
 
 
2173{
 
2174	unsigned long watermark;
2175
2176	if (is_via_compact_memory(order))
2177		return COMPACT_CONTINUE;
2178
2179	watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
2180	/*
2181	 * If watermarks for high-order allocation are already met, there
2182	 * should be no need for compaction at all.
2183	 */
2184	if (zone_watermark_ok(zone, order, watermark, highest_zoneidx,
2185								alloc_flags))
2186		return COMPACT_SUCCESS;
2187
2188	/*
2189	 * Watermarks for order-0 must be met for compaction to be able to
2190	 * isolate free pages for migration targets. This means that the
2191	 * watermark and alloc_flags have to match, or be more pessimistic than
2192	 * the check in __isolate_free_page(). We don't use the direct
2193	 * compactor's alloc_flags, as they are not relevant for freepage
2194	 * isolation. We however do use the direct compactor's highest_zoneidx
2195	 * to skip over zones where lowmem reserves would prevent allocation
2196	 * even if compaction succeeds.
2197	 * For costly orders, we require low watermark instead of min for
2198	 * compaction to proceed to increase its chances.
2199	 * ALLOC_CMA is used, as pages in CMA pageblocks are considered
2200	 * suitable migration targets
2201	 */
2202	watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
2203				low_wmark_pages(zone) : min_wmark_pages(zone);
2204	watermark += compact_gap(order);
2205	if (!__zone_watermark_ok(zone, 0, watermark, highest_zoneidx,
2206						ALLOC_CMA, wmark_target))
2207		return COMPACT_SKIPPED;
2208
2209	return COMPACT_CONTINUE;
2210}
2211
2212/*
2213 * compaction_suitable: Is this suitable to run compaction on this zone now?
2214 * Returns
2215 *   COMPACT_SKIPPED  - If there are too few free pages for compaction
2216 *   COMPACT_SUCCESS  - If the allocation would succeed without compaction
2217 *   COMPACT_CONTINUE - If compaction should run now
2218 */
2219enum compact_result compaction_suitable(struct zone *zone, int order,
2220					unsigned int alloc_flags,
2221					int highest_zoneidx)
2222{
2223	enum compact_result ret;
2224	int fragindex;
2225
2226	ret = __compaction_suitable(zone, order, alloc_flags, highest_zoneidx,
2227				    zone_page_state(zone, NR_FREE_PAGES));
2228	/*
2229	 * fragmentation index determines if allocation failures are due to
2230	 * low memory or external fragmentation
2231	 *
2232	 * index of -1000 would imply allocations might succeed depending on
2233	 * watermarks, but we already failed the high-order watermark check
2234	 * index towards 0 implies failure is due to lack of memory
2235	 * index towards 1000 implies failure is due to fragmentation
2236	 *
2237	 * Only compact if a failure would be due to fragmentation. Also
2238	 * ignore fragindex for non-costly orders where the alternative to
2239	 * a successful reclaim/compaction is OOM. Fragindex and the
2240	 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
2241	 * excessive compaction for costly orders, but it should not be at the
2242	 * expense of system stability.
2243	 */
2244	if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) {
2245		fragindex = fragmentation_index(zone, order);
2246		if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
2247			ret = COMPACT_NOT_SUITABLE_ZONE;
2248	}
 
 
 
 
 
 
2249
 
2250	trace_mm_compaction_suitable(zone, order, ret);
2251	if (ret == COMPACT_NOT_SUITABLE_ZONE)
2252		ret = COMPACT_SKIPPED;
2253
2254	return ret;
2255}
2256
2257bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
2258		int alloc_flags)
2259{
2260	struct zone *zone;
2261	struct zoneref *z;
2262
2263	/*
2264	 * Make sure at least one zone would pass __compaction_suitable if we continue
2265	 * retrying the reclaim.
2266	 */
2267	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2268				ac->highest_zoneidx, ac->nodemask) {
2269		unsigned long available;
2270		enum compact_result compact_result;
2271
2272		/*
2273		 * Do not consider all the reclaimable memory because we do not
2274		 * want to trash just for a single high order allocation which
2275		 * is even not guaranteed to appear even if __compaction_suitable
2276		 * is happy about the watermark check.
2277		 */
2278		available = zone_reclaimable_pages(zone) / order;
2279		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
2280		compact_result = __compaction_suitable(zone, order, alloc_flags,
2281				ac->highest_zoneidx, available);
2282		if (compact_result == COMPACT_CONTINUE)
2283			return true;
2284	}
2285
2286	return false;
2287}
2288
2289static enum compact_result
2290compact_zone(struct compact_control *cc, struct capture_control *capc)
2291{
2292	enum compact_result ret;
2293	unsigned long start_pfn = cc->zone->zone_start_pfn;
2294	unsigned long end_pfn = zone_end_pfn(cc->zone);
2295	unsigned long last_migrated_pfn;
2296	const bool sync = cc->mode != MIGRATE_ASYNC;
2297	bool update_cached;
2298	unsigned int nr_succeeded = 0;
2299
2300	/*
2301	 * These counters track activities during zone compaction.  Initialize
2302	 * them before compacting a new zone.
2303	 */
2304	cc->total_migrate_scanned = 0;
2305	cc->total_free_scanned = 0;
2306	cc->nr_migratepages = 0;
2307	cc->nr_freepages = 0;
2308	INIT_LIST_HEAD(&cc->freepages);
2309	INIT_LIST_HEAD(&cc->migratepages);
2310
2311	cc->migratetype = gfp_migratetype(cc->gfp_mask);
2312	ret = compaction_suitable(cc->zone, cc->order, cc->alloc_flags,
2313							cc->highest_zoneidx);
2314	/* Compaction is likely to fail */
2315	if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED)
2316		return ret;
2317
2318	/* huh, compaction_suitable is returning something unexpected */
2319	VM_BUG_ON(ret != COMPACT_CONTINUE);
 
2320
2321	/*
2322	 * Clear pageblock skip if there were failures recently and compaction
2323	 * is about to be retried after being deferred.
2324	 */
2325	if (compaction_restarting(cc->zone, cc->order))
2326		__reset_isolation_suitable(cc->zone);
2327
2328	/*
2329	 * Setup to move all movable pages to the end of the zone. Used cached
2330	 * information on where the scanners should start (unless we explicitly
2331	 * want to compact the whole zone), but check that it is initialised
2332	 * by ensuring the values are within zone boundaries.
2333	 */
2334	cc->fast_start_pfn = 0;
2335	if (cc->whole_zone) {
 
 
 
 
 
2336		cc->migrate_pfn = start_pfn;
2337		cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2338	} else {
2339		cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync];
2340		cc->free_pfn = cc->zone->compact_cached_free_pfn;
2341		if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
2342			cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2343			cc->zone->compact_cached_free_pfn = cc->free_pfn;
2344		}
2345		if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
2346			cc->migrate_pfn = start_pfn;
2347			cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
2348			cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
2349		}
2350
2351		if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn)
2352			cc->whole_zone = true;
2353	}
 
2354
2355	last_migrated_pfn = 0;
 
2356
2357	/*
2358	 * Migrate has separate cached PFNs for ASYNC and SYNC* migration on
2359	 * the basis that some migrations will fail in ASYNC mode. However,
2360	 * if the cached PFNs match and pageblocks are skipped due to having
2361	 * no isolation candidates, then the sync state does not matter.
2362	 * Until a pageblock with isolation candidates is found, keep the
2363	 * cached PFNs in sync to avoid revisiting the same blocks.
2364	 */
2365	update_cached = !sync &&
2366		cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1];
2367
2368	trace_mm_compaction_begin(cc, start_pfn, end_pfn, sync);
2369
2370	/* lru_add_drain_all could be expensive with involving other CPUs */
2371	lru_add_drain();
2372
2373	while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) {
2374		int err;
2375		unsigned long iteration_start_pfn = cc->migrate_pfn;
2376
2377		/*
2378		 * Avoid multiple rescans which can happen if a page cannot be
2379		 * isolated (dirty/writeback in async mode) or if the migrated
2380		 * pages are being allocated before the pageblock is cleared.
2381		 * The first rescan will capture the entire pageblock for
2382		 * migration. If it fails, it'll be marked skip and scanning
2383		 * will proceed as normal.
2384		 */
2385		cc->rescan = false;
2386		if (pageblock_start_pfn(last_migrated_pfn) ==
2387		    pageblock_start_pfn(iteration_start_pfn)) {
2388			cc->rescan = true;
2389		}
2390
2391		switch (isolate_migratepages(cc)) {
2392		case ISOLATE_ABORT:
2393			ret = COMPACT_CONTENDED;
2394			putback_movable_pages(&cc->migratepages);
2395			cc->nr_migratepages = 0;
2396			goto out;
2397		case ISOLATE_NONE:
2398			if (update_cached) {
2399				cc->zone->compact_cached_migrate_pfn[1] =
2400					cc->zone->compact_cached_migrate_pfn[0];
2401			}
2402
2403			/*
2404			 * We haven't isolated and migrated anything, but
2405			 * there might still be unflushed migrations from
2406			 * previous cc->order aligned block.
2407			 */
2408			goto check_drain;
2409		case ISOLATE_SUCCESS:
2410			update_cached = false;
2411			last_migrated_pfn = iteration_start_pfn;
2412		}
2413
2414		err = migrate_pages(&cc->migratepages, compaction_alloc,
2415				compaction_free, (unsigned long)cc, cc->mode,
2416				MR_COMPACTION, &nr_succeeded);
2417
2418		trace_mm_compaction_migratepages(cc, nr_succeeded);
 
2419
2420		/* All pages were either migrated or will be released */
2421		cc->nr_migratepages = 0;
2422		if (err) {
2423			putback_movable_pages(&cc->migratepages);
2424			/*
2425			 * migrate_pages() may return -ENOMEM when scanners meet
2426			 * and we want compact_finished() to detect it
2427			 */
2428			if (err == -ENOMEM && !compact_scanners_met(cc)) {
2429				ret = COMPACT_CONTENDED;
2430				goto out;
2431			}
2432			/*
2433			 * We failed to migrate at least one page in the current
2434			 * order-aligned block, so skip the rest of it.
2435			 */
2436			if (cc->direct_compaction &&
2437						(cc->mode == MIGRATE_ASYNC)) {
2438				cc->migrate_pfn = block_end_pfn(
2439						cc->migrate_pfn - 1, cc->order);
2440				/* Draining pcplists is useless in this case */
2441				last_migrated_pfn = 0;
2442			}
2443		}
2444
2445check_drain:
2446		/*
2447		 * Has the migration scanner moved away from the previous
2448		 * cc->order aligned block where we migrated from? If yes,
2449		 * flush the pages that were freed, so that they can merge and
2450		 * compact_finished() can detect immediately if allocation
2451		 * would succeed.
2452		 */
2453		if (cc->order > 0 && last_migrated_pfn) {
 
2454			unsigned long current_block_start =
2455				block_start_pfn(cc->migrate_pfn, cc->order);
2456
2457			if (last_migrated_pfn < current_block_start) {
2458				lru_add_drain_cpu_zone(cc->zone);
 
 
 
2459				/* No more flushing until we migrate again */
2460				last_migrated_pfn = 0;
2461			}
2462		}
2463
2464		/* Stop if a page has been captured */
2465		if (capc && capc->page) {
2466			ret = COMPACT_SUCCESS;
2467			break;
2468		}
2469	}
2470
2471out:
2472	/*
2473	 * Release free pages and update where the free scanner should restart,
2474	 * so we don't leave any returned pages behind in the next attempt.
2475	 */
2476	if (cc->nr_freepages > 0) {
2477		unsigned long free_pfn = release_freepages(&cc->freepages);
2478
2479		cc->nr_freepages = 0;
2480		VM_BUG_ON(free_pfn == 0);
2481		/* The cached pfn is always the first in a pageblock */
2482		free_pfn = pageblock_start_pfn(free_pfn);
2483		/*
2484		 * Only go back, not forward. The cached pfn might have been
2485		 * already reset to zone end in compact_finished()
2486		 */
2487		if (free_pfn > cc->zone->compact_cached_free_pfn)
2488			cc->zone->compact_cached_free_pfn = free_pfn;
2489	}
2490
2491	count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
2492	count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);
2493
2494	trace_mm_compaction_end(cc, start_pfn, end_pfn, sync, ret);
 
2495
2496	return ret;
2497}
2498
2499static enum compact_result compact_zone_order(struct zone *zone, int order,
2500		gfp_t gfp_mask, enum compact_priority prio,
2501		unsigned int alloc_flags, int highest_zoneidx,
2502		struct page **capture)
2503{
2504	enum compact_result ret;
2505	struct compact_control cc = {
 
 
2506		.order = order,
2507		.search_order = order,
2508		.gfp_mask = gfp_mask,
2509		.zone = zone,
2510		.mode = (prio == COMPACT_PRIO_ASYNC) ?
2511					MIGRATE_ASYNC :	MIGRATE_SYNC_LIGHT,
2512		.alloc_flags = alloc_flags,
2513		.highest_zoneidx = highest_zoneidx,
2514		.direct_compaction = true,
2515		.whole_zone = (prio == MIN_COMPACT_PRIORITY),
2516		.ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
2517		.ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
2518	};
2519	struct capture_control capc = {
2520		.cc = &cc,
2521		.page = NULL,
2522	};
 
 
2523
2524	/*
2525	 * Make sure the structs are really initialized before we expose the
2526	 * capture control, in case we are interrupted and the interrupt handler
2527	 * frees a page.
2528	 */
2529	barrier();
2530	WRITE_ONCE(current->capture_control, &capc);
2531
2532	ret = compact_zone(&cc, &capc);
2533
2534	VM_BUG_ON(!list_empty(&cc.freepages));
2535	VM_BUG_ON(!list_empty(&cc.migratepages));
2536
2537	/*
2538	 * Make sure we hide capture control first before we read the captured
2539	 * page pointer, otherwise an interrupt could free and capture a page
2540	 * and we would leak it.
2541	 */
2542	WRITE_ONCE(current->capture_control, NULL);
2543	*capture = READ_ONCE(capc.page);
2544	/*
2545	 * Technically, it is also possible that compaction is skipped but
2546	 * the page is still captured out of luck(IRQ came and freed the page).
2547	 * Returning COMPACT_SUCCESS in such cases helps in properly accounting
2548	 * the COMPACT[STALL|FAIL] when compaction is skipped.
2549	 */
2550	if (*capture)
2551		ret = COMPACT_SUCCESS;
2552
2553	return ret;
2554}
2555
2556int sysctl_extfrag_threshold = 500;
2557
2558/**
2559 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
2560 * @gfp_mask: The GFP mask of the current allocation
2561 * @order: The order of the current allocation
2562 * @alloc_flags: The allocation flags of the current allocation
2563 * @ac: The context of current allocation
2564 * @prio: Determines how hard direct compaction should try to succeed
2565 * @capture: Pointer to free page created by compaction will be stored here
 
2566 *
2567 * This is the main entry point for direct page compaction.
2568 */
2569enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
2570		unsigned int alloc_flags, const struct alloc_context *ac,
2571		enum compact_priority prio, struct page **capture)
2572{
2573	int may_perform_io = (__force int)(gfp_mask & __GFP_IO);
 
2574	struct zoneref *z;
2575	struct zone *zone;
2576	enum compact_result rc = COMPACT_SKIPPED;
 
 
 
2577
2578	/*
2579	 * Check if the GFP flags allow compaction - GFP_NOIO is really
2580	 * tricky context because the migration might require IO
2581	 */
2582	if (!may_perform_io)
2583		return COMPACT_SKIPPED;
2584
2585	trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
2586
2587	/* Compact each zone in the list */
2588	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2589					ac->highest_zoneidx, ac->nodemask) {
2590		enum compact_result status;
 
2591
2592		if (prio > MIN_COMPACT_PRIORITY
2593					&& compaction_deferred(zone, order)) {
2594			rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
2595			continue;
2596		}
2597
2598		status = compact_zone_order(zone, order, gfp_mask, prio,
2599				alloc_flags, ac->highest_zoneidx, capture);
 
2600		rc = max(status, rc);
 
 
 
 
 
2601
2602		/* The allocation should succeed, stop compacting */
2603		if (status == COMPACT_SUCCESS) {
 
2604			/*
2605			 * We think the allocation will succeed in this zone,
2606			 * but it is not certain, hence the false. The caller
2607			 * will repeat this with true if allocation indeed
2608			 * succeeds in this zone.
2609			 */
2610			compaction_defer_reset(zone, order, false);
 
 
 
 
 
 
 
 
 
 
2611
2612			break;
2613		}
2614
2615		if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
2616					status == COMPACT_PARTIAL_SKIPPED))
2617			/*
2618			 * We think that allocation won't succeed in this zone
2619			 * so we defer compaction there. If it ends up
2620			 * succeeding after all, it will be reset.
2621			 */
2622			defer_compaction(zone, order);
 
2623
2624		/*
2625		 * We might have stopped compacting due to need_resched() in
2626		 * async compaction, or due to a fatal signal detected. In that
2627		 * case do not try further zones
 
2628		 */
2629		if ((prio == COMPACT_PRIO_ASYNC && need_resched())
2630					|| fatal_signal_pending(current))
2631			break;
 
 
 
 
 
 
 
 
 
 
 
2632	}
2633
 
 
 
 
 
 
 
2634	return rc;
2635}
2636
2637/*
2638 * Compact all zones within a node till each zone's fragmentation score
2639 * reaches within proactive compaction thresholds (as determined by the
2640 * proactiveness tunable).
2641 *
2642 * It is possible that the function returns before reaching score targets
2643 * due to various back-off conditions, such as, contention on per-node or
2644 * per-zone locks.
2645 */
2646static void proactive_compact_node(pg_data_t *pgdat)
2647{
2648	int zoneid;
2649	struct zone *zone;
2650	struct compact_control cc = {
2651		.order = -1,
2652		.mode = MIGRATE_SYNC_LIGHT,
2653		.ignore_skip_hint = true,
2654		.whole_zone = true,
2655		.gfp_mask = GFP_KERNEL,
2656		.proactive_compaction = true,
2657	};
2658
2659	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
 
2660		zone = &pgdat->node_zones[zoneid];
2661		if (!populated_zone(zone))
2662			continue;
2663
2664		cc.zone = zone;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2665
2666		compact_zone(&cc, NULL);
 
2667
2668		VM_BUG_ON(!list_empty(&cc.freepages));
2669		VM_BUG_ON(!list_empty(&cc.migratepages));
 
2670	}
2671}
2672
2673/* Compact all zones within a node */
 
 
 
 
 
 
 
 
 
 
 
 
2674static void compact_node(int nid)
2675{
2676	pg_data_t *pgdat = NODE_DATA(nid);
2677	int zoneid;
2678	struct zone *zone;
2679	struct compact_control cc = {
2680		.order = -1,
2681		.mode = MIGRATE_SYNC,
2682		.ignore_skip_hint = true,
2683		.whole_zone = true,
2684		.gfp_mask = GFP_KERNEL,
2685	};
2686
2687
2688	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2689
2690		zone = &pgdat->node_zones[zoneid];
2691		if (!populated_zone(zone))
2692			continue;
2693
2694		cc.zone = zone;
2695
2696		compact_zone(&cc, NULL);
2697
2698		VM_BUG_ON(!list_empty(&cc.freepages));
2699		VM_BUG_ON(!list_empty(&cc.migratepages));
2700	}
2701}
2702
2703/* Compact all nodes in the system */
2704static void compact_nodes(void)
2705{
2706	int nid;
2707
2708	/* Flush pending updates to the LRU lists */
2709	lru_add_drain_all();
2710
2711	for_each_online_node(nid)
2712		compact_node(nid);
2713}
2714
2715/*
2716 * Tunable for proactive compaction. It determines how
2717 * aggressively the kernel should compact memory in the
2718 * background. It takes values in the range [0, 100].
2719 */
2720unsigned int __read_mostly sysctl_compaction_proactiveness = 20;
2721
2722int compaction_proactiveness_sysctl_handler(struct ctl_table *table, int write,
2723		void *buffer, size_t *length, loff_t *ppos)
2724{
2725	int rc, nid;
2726
2727	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
2728	if (rc)
2729		return rc;
2730
2731	if (write && sysctl_compaction_proactiveness) {
2732		for_each_online_node(nid) {
2733			pg_data_t *pgdat = NODE_DATA(nid);
2734
2735			if (pgdat->proactive_compact_trigger)
2736				continue;
2737
2738			pgdat->proactive_compact_trigger = true;
2739			wake_up_interruptible(&pgdat->kcompactd_wait);
2740		}
2741	}
2742
2743	return 0;
2744}
2745
2746/*
2747 * This is the entry point for compacting all nodes via
2748 * /proc/sys/vm/compact_memory
2749 */
2750int sysctl_compaction_handler(struct ctl_table *table, int write,
2751			void *buffer, size_t *length, loff_t *ppos)
2752{
2753	if (write)
2754		compact_nodes();
2755
2756	return 0;
2757}
2758
 
 
 
 
 
 
 
 
2759#if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
2760static ssize_t compact_store(struct device *dev,
2761			     struct device_attribute *attr,
2762			     const char *buf, size_t count)
2763{
2764	int nid = dev->id;
2765
2766	if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
2767		/* Flush pending updates to the LRU lists */
2768		lru_add_drain_all();
2769
2770		compact_node(nid);
2771	}
2772
2773	return count;
2774}
2775static DEVICE_ATTR_WO(compact);
2776
2777int compaction_register_node(struct node *node)
2778{
2779	return device_create_file(&node->dev, &dev_attr_compact);
2780}
2781
2782void compaction_unregister_node(struct node *node)
2783{
2784	return device_remove_file(&node->dev, &dev_attr_compact);
2785}
2786#endif /* CONFIG_SYSFS && CONFIG_NUMA */
2787
2788static inline bool kcompactd_work_requested(pg_data_t *pgdat)
2789{
2790	return pgdat->kcompactd_max_order > 0 || kthread_should_stop() ||
2791		pgdat->proactive_compact_trigger;
2792}
2793
2794static bool kcompactd_node_suitable(pg_data_t *pgdat)
2795{
2796	int zoneid;
2797	struct zone *zone;
2798	enum zone_type highest_zoneidx = pgdat->kcompactd_highest_zoneidx;
2799
2800	for (zoneid = 0; zoneid <= highest_zoneidx; zoneid++) {
2801		zone = &pgdat->node_zones[zoneid];
2802
2803		if (!populated_zone(zone))
2804			continue;
2805
2806		if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0,
2807					highest_zoneidx) == COMPACT_CONTINUE)
2808			return true;
2809	}
2810
2811	return false;
2812}
2813
2814static void kcompactd_do_work(pg_data_t *pgdat)
2815{
2816	/*
2817	 * With no special task, compact all zones so that a page of requested
2818	 * order is allocatable.
2819	 */
2820	int zoneid;
2821	struct zone *zone;
2822	struct compact_control cc = {
2823		.order = pgdat->kcompactd_max_order,
2824		.search_order = pgdat->kcompactd_max_order,
2825		.highest_zoneidx = pgdat->kcompactd_highest_zoneidx,
2826		.mode = MIGRATE_SYNC_LIGHT,
2827		.ignore_skip_hint = false,
2828		.gfp_mask = GFP_KERNEL,
2829	};
 
 
2830	trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
2831							cc.highest_zoneidx);
2832	count_compact_event(KCOMPACTD_WAKE);
2833
2834	for (zoneid = 0; zoneid <= cc.highest_zoneidx; zoneid++) {
2835		int status;
2836
2837		zone = &pgdat->node_zones[zoneid];
2838		if (!populated_zone(zone))
2839			continue;
2840
2841		if (compaction_deferred(zone, cc.order))
2842			continue;
2843
2844		if (compaction_suitable(zone, cc.order, 0, zoneid) !=
2845							COMPACT_CONTINUE)
2846			continue;
2847
 
 
 
 
 
 
2848		if (kthread_should_stop())
2849			return;
 
2850
2851		cc.zone = zone;
2852		status = compact_zone(&cc, NULL);
2853
2854		if (status == COMPACT_SUCCESS) {
2855			compaction_defer_reset(zone, cc.order, false);
2856		} else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
2857			/*
2858			 * Buddy pages may become stranded on pcps that could
2859			 * otherwise coalesce on the zone's free area for
2860			 * order >= cc.order.  This is ratelimited by the
2861			 * upcoming deferral.
2862			 */
2863			drain_all_pages(zone);
2864
2865			/*
2866			 * We use sync migration mode here, so we defer like
2867			 * sync direct compaction does.
2868			 */
2869			defer_compaction(zone, cc.order);
2870		}
2871
2872		count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2873				     cc.total_migrate_scanned);
2874		count_compact_events(KCOMPACTD_FREE_SCANNED,
2875				     cc.total_free_scanned);
2876
2877		VM_BUG_ON(!list_empty(&cc.freepages));
2878		VM_BUG_ON(!list_empty(&cc.migratepages));
2879	}
2880
2881	/*
2882	 * Regardless of success, we are done until woken up next. But remember
2883	 * the requested order/highest_zoneidx in case it was higher/tighter
2884	 * than our current ones
2885	 */
2886	if (pgdat->kcompactd_max_order <= cc.order)
2887		pgdat->kcompactd_max_order = 0;
2888	if (pgdat->kcompactd_highest_zoneidx >= cc.highest_zoneidx)
2889		pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
2890}
2891
2892void wakeup_kcompactd(pg_data_t *pgdat, int order, int highest_zoneidx)
2893{
2894	if (!order)
2895		return;
2896
2897	if (pgdat->kcompactd_max_order < order)
2898		pgdat->kcompactd_max_order = order;
2899
2900	if (pgdat->kcompactd_highest_zoneidx > highest_zoneidx)
2901		pgdat->kcompactd_highest_zoneidx = highest_zoneidx;
2902
2903	/*
2904	 * Pairs with implicit barrier in wait_event_freezable()
2905	 * such that wakeups are not missed.
2906	 */
2907	if (!wq_has_sleeper(&pgdat->kcompactd_wait))
2908		return;
2909
2910	if (!kcompactd_node_suitable(pgdat))
2911		return;
2912
2913	trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
2914							highest_zoneidx);
2915	wake_up_interruptible(&pgdat->kcompactd_wait);
2916}
2917
2918/*
2919 * The background compaction daemon, started as a kernel thread
2920 * from the init process.
2921 */
2922static int kcompactd(void *p)
2923{
2924	pg_data_t *pgdat = (pg_data_t *)p;
2925	struct task_struct *tsk = current;
2926	long default_timeout = msecs_to_jiffies(HPAGE_FRAG_CHECK_INTERVAL_MSEC);
2927	long timeout = default_timeout;
2928
2929	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2930
2931	if (!cpumask_empty(cpumask))
2932		set_cpus_allowed_ptr(tsk, cpumask);
2933
2934	set_freezable();
2935
2936	pgdat->kcompactd_max_order = 0;
2937	pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
2938
2939	while (!kthread_should_stop()) {
2940		unsigned long pflags;
2941
2942		/*
2943		 * Avoid the unnecessary wakeup for proactive compaction
2944		 * when it is disabled.
2945		 */
2946		if (!sysctl_compaction_proactiveness)
2947			timeout = MAX_SCHEDULE_TIMEOUT;
2948		trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
2949		if (wait_event_freezable_timeout(pgdat->kcompactd_wait,
2950			kcompactd_work_requested(pgdat), timeout) &&
2951			!pgdat->proactive_compact_trigger) {
2952
2953			psi_memstall_enter(&pflags);
2954			kcompactd_do_work(pgdat);
2955			psi_memstall_leave(&pflags);
2956			/*
2957			 * Reset the timeout value. The defer timeout from
2958			 * proactive compaction is lost here but that is fine
2959			 * as the condition of the zone changing substantionally
2960			 * then carrying on with the previous defer interval is
2961			 * not useful.
2962			 */
2963			timeout = default_timeout;
2964			continue;
2965		}
2966
2967		/*
2968		 * Start the proactive work with default timeout. Based
2969		 * on the fragmentation score, this timeout is updated.
2970		 */
2971		timeout = default_timeout;
2972		if (should_proactive_compact_node(pgdat)) {
2973			unsigned int prev_score, score;
2974
2975			prev_score = fragmentation_score_node(pgdat);
2976			proactive_compact_node(pgdat);
2977			score = fragmentation_score_node(pgdat);
2978			/*
2979			 * Defer proactive compaction if the fragmentation
2980			 * score did not go down i.e. no progress made.
2981			 */
2982			if (unlikely(score >= prev_score))
2983				timeout =
2984				   default_timeout << COMPACT_MAX_DEFER_SHIFT;
2985		}
2986		if (unlikely(pgdat->proactive_compact_trigger))
2987			pgdat->proactive_compact_trigger = false;
2988	}
2989
2990	return 0;
2991}
2992
2993/*
2994 * This kcompactd start function will be called by init and node-hot-add.
2995 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
2996 */
2997void kcompactd_run(int nid)
2998{
2999	pg_data_t *pgdat = NODE_DATA(nid);
 
3000
3001	if (pgdat->kcompactd)
3002		return;
3003
3004	pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
3005	if (IS_ERR(pgdat->kcompactd)) {
3006		pr_err("Failed to start kcompactd on node %d\n", nid);
 
3007		pgdat->kcompactd = NULL;
3008	}
 
3009}
3010
3011/*
3012 * Called by memory hotplug when all memory in a node is offlined. Caller must
3013 * be holding mem_hotplug_begin/done().
3014 */
3015void kcompactd_stop(int nid)
3016{
3017	struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
3018
3019	if (kcompactd) {
3020		kthread_stop(kcompactd);
3021		NODE_DATA(nid)->kcompactd = NULL;
3022	}
3023}
3024
3025/*
3026 * It's optimal to keep kcompactd on the same CPUs as their memory, but
3027 * not required for correctness. So if the last cpu in a node goes
3028 * away, we get changed to run anywhere: as the first one comes back,
3029 * restore their cpu bindings.
3030 */
3031static int kcompactd_cpu_online(unsigned int cpu)
 
3032{
3033	int nid;
3034
3035	for_each_node_state(nid, N_MEMORY) {
3036		pg_data_t *pgdat = NODE_DATA(nid);
3037		const struct cpumask *mask;
3038
3039		mask = cpumask_of_node(pgdat->node_id);
3040
3041		if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3042			/* One of our CPUs online: restore mask */
3043			if (pgdat->kcompactd)
3044				set_cpus_allowed_ptr(pgdat->kcompactd, mask);
 
3045	}
3046	return 0;
3047}
3048
3049static int __init kcompactd_init(void)
3050{
3051	int nid;
3052	int ret;
3053
3054	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3055					"mm/compaction:online",
3056					kcompactd_cpu_online, NULL);
3057	if (ret < 0) {
3058		pr_err("kcompactd: failed to register hotplug callbacks.\n");
3059		return ret;
3060	}
3061
3062	for_each_node_state(nid, N_MEMORY)
3063		kcompactd_run(nid);
 
3064	return 0;
3065}
3066subsys_initcall(kcompactd_init)
3067
3068#endif /* CONFIG_COMPACTION */