Linux Audio

Check our new training course

Loading...
v4.6
 
   1/*
   2 * linux/mm/compaction.c
   3 *
   4 * Memory compaction for the reduction of external fragmentation. Note that
   5 * this heavily depends upon page migration to do all the real heavy
   6 * lifting
   7 *
   8 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
   9 */
  10#include <linux/cpu.h>
  11#include <linux/swap.h>
  12#include <linux/migrate.h>
  13#include <linux/compaction.h>
  14#include <linux/mm_inline.h>
 
  15#include <linux/backing-dev.h>
  16#include <linux/sysctl.h>
  17#include <linux/sysfs.h>
  18#include <linux/balloon_compaction.h>
  19#include <linux/page-isolation.h>
  20#include <linux/kasan.h>
  21#include <linux/kthread.h>
  22#include <linux/freezer.h>
 
 
  23#include "internal.h"
  24
  25#ifdef CONFIG_COMPACTION
  26static inline void count_compact_event(enum vm_event_item item)
  27{
  28	count_vm_event(item);
  29}
  30
  31static inline void count_compact_events(enum vm_event_item item, long delta)
  32{
  33	count_vm_events(item, delta);
  34}
  35#else
  36#define count_compact_event(item) do { } while (0)
  37#define count_compact_events(item, delta) do { } while (0)
  38#endif
  39
  40#if defined CONFIG_COMPACTION || defined CONFIG_CMA
  41
  42#define CREATE_TRACE_POINTS
  43#include <trace/events/compaction.h>
  44
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  45static unsigned long release_freepages(struct list_head *freelist)
  46{
  47	struct page *page, *next;
  48	unsigned long high_pfn = 0;
  49
  50	list_for_each_entry_safe(page, next, freelist, lru) {
  51		unsigned long pfn = page_to_pfn(page);
  52		list_del(&page->lru);
  53		__free_page(page);
  54		if (pfn > high_pfn)
  55			high_pfn = pfn;
  56	}
  57
  58	return high_pfn;
  59}
  60
  61static void map_pages(struct list_head *list)
  62{
  63	struct page *page;
 
 
  64
  65	list_for_each_entry(page, list, lru) {
  66		arch_alloc_page(page, 0);
  67		kernel_map_pages(page, 1, 1);
  68		kasan_alloc_pages(page, 0);
 
 
 
 
 
 
 
 
 
 
  69	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  70}
 
  71
  72static inline bool migrate_async_suitable(int migratetype)
  73{
  74	return is_migrate_cma(migratetype) || migratetype == MIGRATE_MOVABLE;
 
 
  75}
 
  76
  77#ifdef CONFIG_COMPACTION
 
 
 
 
 
 
 
 
 
 
 
  78
  79/* Do not skip compaction more than 64 times */
  80#define COMPACT_MAX_DEFER_SHIFT 6
  81
  82/*
  83 * Compaction is deferred when compaction fails to result in a page
  84 * allocation success. 1 << compact_defer_limit compactions are skipped up
  85 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
  86 */
  87void defer_compaction(struct zone *zone, int order)
  88{
  89	zone->compact_considered = 0;
  90	zone->compact_defer_shift++;
  91
  92	if (order < zone->compact_order_failed)
  93		zone->compact_order_failed = order;
  94
  95	if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
  96		zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
  97
  98	trace_mm_compaction_defer_compaction(zone, order);
  99}
 100
 101/* Returns true if compaction should be skipped this time */
 102bool compaction_deferred(struct zone *zone, int order)
 103{
 104	unsigned long defer_limit = 1UL << zone->compact_defer_shift;
 105
 106	if (order < zone->compact_order_failed)
 107		return false;
 108
 109	/* Avoid possible overflow */
 110	if (++zone->compact_considered > defer_limit)
 111		zone->compact_considered = defer_limit;
 112
 113	if (zone->compact_considered >= defer_limit)
 114		return false;
 
 115
 116	trace_mm_compaction_deferred(zone, order);
 117
 118	return true;
 119}
 120
 121/*
 122 * Update defer tracking counters after successful compaction of given order,
 123 * which means an allocation either succeeded (alloc_success == true) or is
 124 * expected to succeed.
 125 */
 126void compaction_defer_reset(struct zone *zone, int order,
 127		bool alloc_success)
 128{
 129	if (alloc_success) {
 130		zone->compact_considered = 0;
 131		zone->compact_defer_shift = 0;
 132	}
 133	if (order >= zone->compact_order_failed)
 134		zone->compact_order_failed = order + 1;
 135
 136	trace_mm_compaction_defer_reset(zone, order);
 137}
 138
 139/* Returns true if restarting compaction after many failures */
 140bool compaction_restarting(struct zone *zone, int order)
 141{
 142	if (order < zone->compact_order_failed)
 143		return false;
 144
 145	return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
 146		zone->compact_considered >= 1UL << zone->compact_defer_shift;
 147}
 148
 149/* Returns true if the pageblock should be scanned for pages to isolate. */
 150static inline bool isolation_suitable(struct compact_control *cc,
 151					struct page *page)
 152{
 153	if (cc->ignore_skip_hint)
 154		return true;
 155
 156	return !get_pageblock_skip(page);
 157}
 158
 159static void reset_cached_positions(struct zone *zone)
 160{
 161	zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
 162	zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
 163	zone->compact_cached_free_pfn =
 164			round_down(zone_end_pfn(zone) - 1, pageblock_nr_pages);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 165}
 166
 167/*
 168 * This function is called to clear all cached information on pageblocks that
 169 * should be skipped for page isolation when the migrate and free page scanner
 170 * meet.
 171 */
 172static void __reset_isolation_suitable(struct zone *zone)
 173{
 174	unsigned long start_pfn = zone->zone_start_pfn;
 175	unsigned long end_pfn = zone_end_pfn(zone);
 176	unsigned long pfn;
 
 
 
 177
 178	zone->compact_blockskip_flush = false;
 
 179
 180	/* Walk the zone and mark every pageblock as suitable for isolation */
 181	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
 182		struct page *page;
 183
 
 
 
 
 
 
 
 
 184		cond_resched();
 185
 186		if (!pfn_valid(pfn))
 187			continue;
 188
 189		page = pfn_to_page(pfn);
 190		if (zone != page_zone(page))
 191			continue;
 192
 193		clear_pageblock_skip(page);
 
 
 
 
 
 
 
 
 
 
 194	}
 195
 196	reset_cached_positions(zone);
 
 
 
 
 
 197}
 198
 199void reset_isolation_suitable(pg_data_t *pgdat)
 200{
 201	int zoneid;
 202
 203	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
 204		struct zone *zone = &pgdat->node_zones[zoneid];
 205		if (!populated_zone(zone))
 206			continue;
 207
 208		/* Only flush if a full compaction finished recently */
 209		if (zone->compact_blockskip_flush)
 210			__reset_isolation_suitable(zone);
 211	}
 212}
 213
 214/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 215 * If no pages were isolated then mark this pageblock to be skipped in the
 216 * future. The information is later cleared by __reset_isolation_suitable().
 217 */
 218static void update_pageblock_skip(struct compact_control *cc,
 219			struct page *page, unsigned long nr_isolated,
 220			bool migrate_scanner)
 221{
 222	struct zone *zone = cc->zone;
 223	unsigned long pfn;
 224
 225	if (cc->ignore_skip_hint)
 226		return;
 227
 228	if (!page)
 229		return;
 230
 231	if (nr_isolated)
 232		return;
 233
 234	set_pageblock_skip(page);
 235
 236	pfn = page_to_pfn(page);
 237
 238	/* Update where async and sync compaction should restart */
 239	if (migrate_scanner) {
 240		if (pfn > zone->compact_cached_migrate_pfn[0])
 241			zone->compact_cached_migrate_pfn[0] = pfn;
 242		if (cc->mode != MIGRATE_ASYNC &&
 243		    pfn > zone->compact_cached_migrate_pfn[1])
 244			zone->compact_cached_migrate_pfn[1] = pfn;
 245	} else {
 246		if (pfn < zone->compact_cached_free_pfn)
 247			zone->compact_cached_free_pfn = pfn;
 248	}
 249}
 250#else
 251static inline bool isolation_suitable(struct compact_control *cc,
 252					struct page *page)
 253{
 254	return true;
 255}
 256
 257static void update_pageblock_skip(struct compact_control *cc,
 258			struct page *page, unsigned long nr_isolated,
 259			bool migrate_scanner)
 
 
 
 
 
 
 
 
 260{
 261}
 
 
 
 
 
 
 262#endif /* CONFIG_COMPACTION */
 263
 264/*
 265 * Compaction requires the taking of some coarse locks that are potentially
 266 * very heavily contended. For async compaction, back out if the lock cannot
 267 * be taken immediately. For sync compaction, spin on the lock if needed.
 
 
 268 *
 269 * Returns true if the lock is held
 270 * Returns false if the lock is not held and compaction should abort
 271 */
 272static bool compact_trylock_irqsave(spinlock_t *lock, unsigned long *flags,
 273						struct compact_control *cc)
 
 274{
 275	if (cc->mode == MIGRATE_ASYNC) {
 276		if (!spin_trylock_irqsave(lock, *flags)) {
 277			cc->contended = COMPACT_CONTENDED_LOCK;
 278			return false;
 279		}
 280	} else {
 281		spin_lock_irqsave(lock, *flags);
 282	}
 283
 
 284	return true;
 285}
 286
 287/*
 288 * Compaction requires the taking of some coarse locks that are potentially
 289 * very heavily contended. The lock should be periodically unlocked to avoid
 290 * having disabled IRQs for a long time, even when there is nobody waiting on
 291 * the lock. It might also be that allowing the IRQs will result in
 292 * need_resched() becoming true. If scheduling is needed, async compaction
 293 * aborts. Sync compaction schedules.
 294 * Either compaction type will also abort if a fatal signal is pending.
 295 * In either case if the lock was locked, it is dropped and not regained.
 296 *
 297 * Returns true if compaction should abort due to fatal signal pending, or
 298 *		async compaction due to need_resched()
 299 * Returns false when compaction can continue (sync compaction might have
 300 *		scheduled)
 301 */
 302static bool compact_unlock_should_abort(spinlock_t *lock,
 303		unsigned long flags, bool *locked, struct compact_control *cc)
 304{
 305	if (*locked) {
 306		spin_unlock_irqrestore(lock, flags);
 307		*locked = false;
 308	}
 309
 310	if (fatal_signal_pending(current)) {
 311		cc->contended = COMPACT_CONTENDED_SCHED;
 312		return true;
 313	}
 314
 315	if (need_resched()) {
 316		if (cc->mode == MIGRATE_ASYNC) {
 317			cc->contended = COMPACT_CONTENDED_SCHED;
 318			return true;
 319		}
 320		cond_resched();
 321	}
 322
 323	return false;
 324}
 325
 326/*
 327 * Aside from avoiding lock contention, compaction also periodically checks
 328 * need_resched() and either schedules in sync compaction or aborts async
 329 * compaction. This is similar to what compact_unlock_should_abort() does, but
 330 * is used where no lock is concerned.
 331 *
 332 * Returns false when no scheduling was needed, or sync compaction scheduled.
 333 * Returns true when async compaction should abort.
 334 */
 335static inline bool compact_should_abort(struct compact_control *cc)
 336{
 337	/* async compaction aborts if contended */
 338	if (need_resched()) {
 339		if (cc->mode == MIGRATE_ASYNC) {
 340			cc->contended = COMPACT_CONTENDED_SCHED;
 341			return true;
 342		}
 343
 344		cond_resched();
 345	}
 346
 347	return false;
 348}
 349
 350/*
 351 * Isolate free pages onto a private freelist. If @strict is true, will abort
 352 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
 353 * (even though it may still end up isolating some pages).
 354 */
 355static unsigned long isolate_freepages_block(struct compact_control *cc,
 356				unsigned long *start_pfn,
 357				unsigned long end_pfn,
 358				struct list_head *freelist,
 
 359				bool strict)
 360{
 361	int nr_scanned = 0, total_isolated = 0;
 362	struct page *cursor, *valid_page = NULL;
 363	unsigned long flags = 0;
 364	bool locked = false;
 365	unsigned long blockpfn = *start_pfn;
 
 
 
 
 
 366
 367	cursor = pfn_to_page(blockpfn);
 368
 369	/* Isolate free pages. */
 370	for (; blockpfn < end_pfn; blockpfn++, cursor++) {
 371		int isolated, i;
 372		struct page *page = cursor;
 373
 374		/*
 375		 * Periodically drop the lock (if held) regardless of its
 376		 * contention, to give chance to IRQs. Abort if fatal signal
 377		 * pending or async compaction detects need_resched()
 378		 */
 379		if (!(blockpfn % SWAP_CLUSTER_MAX)
 380		    && compact_unlock_should_abort(&cc->zone->lock, flags,
 381								&locked, cc))
 382			break;
 383
 384		nr_scanned++;
 385		if (!pfn_valid_within(blockpfn))
 386			goto isolate_fail;
 387
 388		if (!valid_page)
 389			valid_page = page;
 390
 391		/*
 392		 * For compound pages such as THP and hugetlbfs, we can save
 393		 * potentially a lot of iterations if we skip them at once.
 394		 * The check is racy, but we can consider only valid values
 395		 * and the only danger is skipping too much.
 396		 */
 397		if (PageCompound(page)) {
 398			unsigned int comp_order = compound_order(page);
 399
 400			if (likely(comp_order < MAX_ORDER)) {
 401				blockpfn += (1UL << comp_order) - 1;
 402				cursor += (1UL << comp_order) - 1;
 403			}
 404
 405			goto isolate_fail;
 406		}
 407
 408		if (!PageBuddy(page))
 409			goto isolate_fail;
 410
 411		/*
 412		 * If we already hold the lock, we can skip some rechecking.
 413		 * Note that if we hold the lock now, checked_pageblock was
 414		 * already set in some previous iteration (or strict is true),
 415		 * so it is correct to skip the suitable migration target
 416		 * recheck as well.
 417		 */
 418		if (!locked) {
 419			/*
 420			 * The zone lock must be held to isolate freepages.
 421			 * Unfortunately this is a very coarse lock and can be
 422			 * heavily contended if there are parallel allocations
 423			 * or parallel compactions. For async compaction do not
 424			 * spin on the lock and we acquire the lock as late as
 425			 * possible.
 426			 */
 427			locked = compact_trylock_irqsave(&cc->zone->lock,
 428								&flags, cc);
 429			if (!locked)
 430				break;
 431
 432			/* Recheck this is a buddy page under lock */
 433			if (!PageBuddy(page))
 434				goto isolate_fail;
 435		}
 436
 437		/* Found a free page, break it into order-0 pages */
 438		isolated = split_free_page(page);
 439		total_isolated += isolated;
 440		for (i = 0; i < isolated; i++) {
 441			list_add(&page->lru, freelist);
 442			page++;
 443		}
 444
 445		/* If a page was split, advance to the end of it */
 446		if (isolated) {
 447			cc->nr_freepages += isolated;
 448			if (!strict &&
 449				cc->nr_migratepages <= cc->nr_freepages) {
 450				blockpfn += isolated;
 451				break;
 452			}
 453
 454			blockpfn += isolated - 1;
 455			cursor += isolated - 1;
 456			continue;
 457		}
 
 
 
 
 458
 459isolate_fail:
 460		if (strict)
 461			break;
 462		else
 463			continue;
 464
 465	}
 466
 
 
 
 467	/*
 468	 * There is a tiny chance that we have read bogus compound_order(),
 469	 * so be careful to not go outside of the pageblock.
 470	 */
 471	if (unlikely(blockpfn > end_pfn))
 472		blockpfn = end_pfn;
 473
 474	trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
 475					nr_scanned, total_isolated);
 476
 477	/* Record how far we have got within the block */
 478	*start_pfn = blockpfn;
 479
 480	/*
 481	 * If strict isolation is requested by CMA then check that all the
 482	 * pages requested were isolated. If there were any failures, 0 is
 483	 * returned and CMA will fail.
 484	 */
 485	if (strict && blockpfn < end_pfn)
 486		total_isolated = 0;
 487
 488	if (locked)
 489		spin_unlock_irqrestore(&cc->zone->lock, flags);
 490
 491	/* Update the pageblock-skip if the whole pageblock was scanned */
 492	if (blockpfn == end_pfn)
 493		update_pageblock_skip(cc, valid_page, total_isolated, false);
 494
 495	count_compact_events(COMPACTFREE_SCANNED, nr_scanned);
 496	if (total_isolated)
 497		count_compact_events(COMPACTISOLATED, total_isolated);
 498	return total_isolated;
 499}
 500
 501/**
 502 * isolate_freepages_range() - isolate free pages.
 
 503 * @start_pfn: The first PFN to start isolating.
 504 * @end_pfn:   The one-past-last PFN.
 505 *
 506 * Non-free pages, invalid PFNs, or zone boundaries within the
 507 * [start_pfn, end_pfn) range are considered errors, cause function to
 508 * undo its actions and return zero.
 509 *
 510 * Otherwise, function returns one-past-the-last PFN of isolated page
 511 * (which may be greater then end_pfn if end fell in a middle of
 512 * a free page).
 513 */
 514unsigned long
 515isolate_freepages_range(struct compact_control *cc,
 516			unsigned long start_pfn, unsigned long end_pfn)
 517{
 518	unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
 519	LIST_HEAD(freelist);
 520
 521	pfn = start_pfn;
 522	block_start_pfn = pfn & ~(pageblock_nr_pages - 1);
 523	if (block_start_pfn < cc->zone->zone_start_pfn)
 524		block_start_pfn = cc->zone->zone_start_pfn;
 525	block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
 526
 527	for (; pfn < end_pfn; pfn += isolated,
 528				block_start_pfn = block_end_pfn,
 529				block_end_pfn += pageblock_nr_pages) {
 530		/* Protect pfn from changing by isolate_freepages_block */
 531		unsigned long isolate_start_pfn = pfn;
 532
 533		block_end_pfn = min(block_end_pfn, end_pfn);
 534
 535		/*
 536		 * pfn could pass the block_end_pfn if isolated freepage
 537		 * is more than pageblock order. In this case, we adjust
 538		 * scanning range to right one.
 539		 */
 540		if (pfn >= block_end_pfn) {
 541			block_start_pfn = pfn & ~(pageblock_nr_pages - 1);
 542			block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
 543			block_end_pfn = min(block_end_pfn, end_pfn);
 544		}
 545
 546		if (!pageblock_pfn_to_page(block_start_pfn,
 547					block_end_pfn, cc->zone))
 548			break;
 549
 550		isolated = isolate_freepages_block(cc, &isolate_start_pfn,
 551						block_end_pfn, &freelist, true);
 552
 553		/*
 554		 * In strict mode, isolate_freepages_block() returns 0 if
 555		 * there are any holes in the block (ie. invalid PFNs or
 556		 * non-free pages).
 557		 */
 558		if (!isolated)
 559			break;
 560
 561		/*
 562		 * If we managed to isolate pages, it is always (1 << n) *
 563		 * pageblock_nr_pages for some non-negative n.  (Max order
 564		 * page may span two pageblocks).
 565		 */
 566	}
 567
 568	/* split_free_page does not map the pages */
 569	map_pages(&freelist);
 570
 571	if (pfn < end_pfn) {
 572		/* Loop terminated early, cleanup. */
 573		release_freepages(&freelist);
 574		return 0;
 575	}
 576
 577	/* We don't use freelists for anything. */
 578	return pfn;
 579}
 580
 581/* Update the number of anon and file isolated pages in the zone */
 582static void acct_isolated(struct zone *zone, struct compact_control *cc)
 583{
 584	struct page *page;
 585	unsigned int count[2] = { 0, };
 586
 587	if (list_empty(&cc->migratepages))
 588		return;
 589
 590	list_for_each_entry(page, &cc->migratepages, lru)
 591		count[!!page_is_file_cache(page)]++;
 592
 593	mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
 594	mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
 595}
 596
 597/* Similar to reclaim, but different enough that they don't share logic */
 598static bool too_many_isolated(struct zone *zone)
 599{
 600	unsigned long active, inactive, isolated;
 601
 602	inactive = zone_page_state(zone, NR_INACTIVE_FILE) +
 603					zone_page_state(zone, NR_INACTIVE_ANON);
 604	active = zone_page_state(zone, NR_ACTIVE_FILE) +
 605					zone_page_state(zone, NR_ACTIVE_ANON);
 606	isolated = zone_page_state(zone, NR_ISOLATED_FILE) +
 607					zone_page_state(zone, NR_ISOLATED_ANON);
 608
 609	return isolated > (inactive + active) / 2;
 610}
 611
 612/**
 613 * isolate_migratepages_block() - isolate all migrate-able pages within
 614 *				  a single pageblock
 615 * @cc:		Compaction control structure.
 616 * @low_pfn:	The first PFN to isolate
 617 * @end_pfn:	The one-past-the-last PFN to isolate, within same pageblock
 618 * @isolate_mode: Isolation mode to be used.
 619 *
 620 * Isolate all pages that can be migrated from the range specified by
 621 * [low_pfn, end_pfn). The range is expected to be within same pageblock.
 622 * Returns zero if there is a fatal signal pending, otherwise PFN of the
 623 * first page that was not scanned (which may be both less, equal to or more
 624 * than end_pfn).
 625 *
 626 * The pages are isolated on cc->migratepages list (not required to be empty),
 627 * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
 628 * is neither read nor updated.
 629 */
 630static unsigned long
 631isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
 632			unsigned long end_pfn, isolate_mode_t isolate_mode)
 633{
 634	struct zone *zone = cc->zone;
 635	unsigned long nr_scanned = 0, nr_isolated = 0;
 636	struct list_head *migratelist = &cc->migratepages;
 637	struct lruvec *lruvec;
 638	unsigned long flags = 0;
 639	bool locked = false;
 640	struct page *page = NULL, *valid_page = NULL;
 641	unsigned long start_pfn = low_pfn;
 
 
 
 
 
 
 642
 643	/*
 644	 * Ensure that there are not too many pages isolated from the LRU
 645	 * list by either parallel reclaimers or compaction. If there are,
 646	 * delay for some time until fewer pages are isolated
 647	 */
 648	while (unlikely(too_many_isolated(zone))) {
 
 
 
 
 649		/* async migration should just abort */
 650		if (cc->mode == MIGRATE_ASYNC)
 651			return 0;
 652
 653		congestion_wait(BLK_RW_ASYNC, HZ/10);
 654
 655		if (fatal_signal_pending(current))
 656			return 0;
 657	}
 658
 659	if (compact_should_abort(cc))
 660		return 0;
 
 
 
 
 661
 662	/* Time to isolate some pages for migration */
 663	for (; low_pfn < end_pfn; low_pfn++) {
 664		bool is_lru;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 665
 666		/*
 667		 * Periodically drop the lock (if held) regardless of its
 668		 * contention, to give chance to IRQs. Abort async compaction
 669		 * if contended.
 670		 */
 671		if (!(low_pfn % SWAP_CLUSTER_MAX)
 672		    && compact_unlock_should_abort(&zone->lru_lock, flags,
 673								&locked, cc))
 674			break;
 
 
 
 
 
 
 
 
 
 
 
 675
 676		if (!pfn_valid_within(low_pfn))
 677			continue;
 678		nr_scanned++;
 679
 680		page = pfn_to_page(low_pfn);
 681
 682		if (!valid_page)
 
 
 
 
 
 
 
 
 
 
 
 683			valid_page = page;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 684
 685		/*
 686		 * Skip if free. We read page order here without zone lock
 687		 * which is generally unsafe, but the race window is small and
 688		 * the worst thing that can happen is that we skip some
 689		 * potential isolation targets.
 690		 */
 691		if (PageBuddy(page)) {
 692			unsigned long freepage_order = page_order_unsafe(page);
 693
 694			/*
 695			 * Without lock, we cannot be sure that what we got is
 696			 * a valid page order. Consider only values in the
 697			 * valid order range to prevent low_pfn overflow.
 698			 */
 699			if (freepage_order > 0 && freepage_order < MAX_ORDER)
 700				low_pfn += (1UL << freepage_order) - 1;
 701			continue;
 702		}
 703
 704		/*
 705		 * Check may be lockless but that's ok as we recheck later.
 706		 * It's possible to migrate LRU pages and balloon pages
 707		 * Skip any other type of page
 
 
 
 708		 */
 709		is_lru = PageLRU(page);
 710		if (!is_lru) {
 711			if (unlikely(balloon_page_movable(page))) {
 712				if (balloon_page_isolate(page)) {
 713					/* Successfully isolated */
 714					goto isolate_success;
 715				}
 716			}
 717		}
 718
 719		/*
 720		 * Regardless of being on LRU, compound pages such as THP and
 721		 * hugetlbfs are not to be compacted. We can potentially save
 722		 * a lot of iterations if we skip them at once. The check is
 723		 * racy, but we can consider only valid values and the only
 724		 * danger is skipping too much.
 725		 */
 726		if (PageCompound(page)) {
 727			unsigned int comp_order = compound_order(page);
 
 
 
 
 
 
 
 
 
 728
 729			if (likely(comp_order < MAX_ORDER))
 730				low_pfn += (1UL << comp_order) - 1;
 
 731
 732			continue;
 733		}
 734
 735		if (!is_lru)
 736			continue;
 737
 738		/*
 739		 * Migration will fail if an anonymous page is pinned in memory,
 740		 * so avoid taking lru_lock and isolating it unnecessarily in an
 741		 * admittedly racy check.
 742		 */
 743		if (!page_mapping(page) &&
 744		    page_count(page) > page_mapcount(page))
 745			continue;
 746
 747		/* If we already hold the lock, we can skip some rechecking */
 748		if (!locked) {
 749			locked = compact_trylock_irqsave(&zone->lru_lock,
 750								&flags, cc);
 751			if (!locked)
 752				break;
 753
 754			/* Recheck PageLRU and PageCompound under lock */
 755			if (!PageLRU(page))
 756				continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 757
 758			/*
 759			 * Page become compound since the non-locked check,
 760			 * and it's on LRU. It can only be a THP so the order
 761			 * is safe to read and it's 0 for tail pages.
 762			 */
 763			if (unlikely(PageCompound(page))) {
 764				low_pfn += (1UL << compound_order(page)) - 1;
 765				continue;
 
 766			}
 767		}
 768
 769		lruvec = mem_cgroup_page_lruvec(page, zone);
 770
 771		/* Try isolate the page */
 772		if (__isolate_lru_page(page, isolate_mode) != 0)
 773			continue;
 774
 775		VM_BUG_ON_PAGE(PageCompound(page), page);
 776
 777		/* Successfully isolated */
 778		del_page_from_lru_list(page, lruvec, page_lru(page));
 
 
 
 779
 780isolate_success:
 781		list_add(&page->lru, migratelist);
 782		cc->nr_migratepages++;
 783		nr_isolated++;
 
 784
 785		/* Avoid isolating too much */
 786		if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
 
 
 
 
 
 
 787			++low_pfn;
 788			break;
 789		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 790	}
 791
 792	/*
 793	 * The PageBuddy() check could have potentially brought us outside
 794	 * the range to be scanned.
 795	 */
 796	if (unlikely(low_pfn > end_pfn))
 797		low_pfn = end_pfn;
 798
 
 
 
 799	if (locked)
 800		spin_unlock_irqrestore(&zone->lru_lock, flags);
 
 
 
 
 801
 802	/*
 803	 * Update the pageblock-skip information and cached scanner pfn,
 804	 * if the whole pageblock was scanned without isolating any page.
 
 
 
 
 805	 */
 806	if (low_pfn == end_pfn)
 807		update_pageblock_skip(cc, valid_page, nr_isolated, true);
 
 
 
 808
 809	trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
 810						nr_scanned, nr_isolated);
 811
 812	count_compact_events(COMPACTMIGRATE_SCANNED, nr_scanned);
 
 813	if (nr_isolated)
 814		count_compact_events(COMPACTISOLATED, nr_isolated);
 815
 816	return low_pfn;
 
 
 817}
 818
 819/**
 820 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
 821 * @cc:        Compaction control structure.
 822 * @start_pfn: The first PFN to start isolating.
 823 * @end_pfn:   The one-past-last PFN.
 824 *
 825 * Returns zero if isolation fails fatally due to e.g. pending signal.
 826 * Otherwise, function returns one-past-the-last PFN of isolated page
 827 * (which may be greater than end_pfn if end fell in a middle of a THP page).
 828 */
 829unsigned long
 830isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
 831							unsigned long end_pfn)
 832{
 833	unsigned long pfn, block_start_pfn, block_end_pfn;
 
 834
 835	/* Scan block by block. First and last block may be incomplete */
 836	pfn = start_pfn;
 837	block_start_pfn = pfn & ~(pageblock_nr_pages - 1);
 838	if (block_start_pfn < cc->zone->zone_start_pfn)
 839		block_start_pfn = cc->zone->zone_start_pfn;
 840	block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
 841
 842	for (; pfn < end_pfn; pfn = block_end_pfn,
 843				block_start_pfn = block_end_pfn,
 844				block_end_pfn += pageblock_nr_pages) {
 845
 846		block_end_pfn = min(block_end_pfn, end_pfn);
 847
 848		if (!pageblock_pfn_to_page(block_start_pfn,
 849					block_end_pfn, cc->zone))
 850			continue;
 851
 852		pfn = isolate_migratepages_block(cc, pfn, block_end_pfn,
 853							ISOLATE_UNEVICTABLE);
 854
 855		if (!pfn)
 856			break;
 857
 858		if (cc->nr_migratepages == COMPACT_CLUSTER_MAX)
 859			break;
 860	}
 861	acct_isolated(cc->zone, cc);
 862
 863	return pfn;
 864}
 865
 866#endif /* CONFIG_COMPACTION || CONFIG_CMA */
 867#ifdef CONFIG_COMPACTION
 868
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 869/* Returns true if the page is within a block suitable for migration to */
 870static bool suitable_migration_target(struct page *page)
 
 871{
 872	/* If the page is a large free page, then disallow migration */
 873	if (PageBuddy(page)) {
 874		/*
 875		 * We are checking page_order without zone->lock taken. But
 876		 * the only small danger is that we skip a potentially suitable
 877		 * pageblock, so it's not worth to check order for valid range.
 878		 */
 879		if (page_order_unsafe(page) >= pageblock_order)
 880			return false;
 881	}
 882
 
 
 
 883	/* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
 884	if (migrate_async_suitable(get_pageblock_migratetype(page)))
 885		return true;
 886
 887	/* Otherwise skip the block */
 888	return false;
 889}
 890
 
 
 
 
 
 
 
 
 891/*
 892 * Test whether the free scanner has reached the same or lower pageblock than
 893 * the migration scanner, and compaction should thus terminate.
 894 */
 895static inline bool compact_scanners_met(struct compact_control *cc)
 896{
 897	return (cc->free_pfn >> pageblock_order)
 898		<= (cc->migrate_pfn >> pageblock_order);
 899}
 900
 901/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 902 * Based on information in the current compact_control, find blocks
 903 * suitable for isolating free pages from and then isolate them.
 904 */
 905static void isolate_freepages(struct compact_control *cc)
 906{
 907	struct zone *zone = cc->zone;
 908	struct page *page;
 909	unsigned long block_start_pfn;	/* start of current pageblock */
 910	unsigned long isolate_start_pfn; /* exact pfn we start at */
 911	unsigned long block_end_pfn;	/* end of current pageblock */
 912	unsigned long low_pfn;	     /* lowest pfn scanner is able to scan */
 913	struct list_head *freelist = &cc->freepages;
 
 
 
 
 
 
 914
 915	/*
 916	 * Initialise the free scanner. The starting point is where we last
 917	 * successfully isolated from, zone-cached value, or the end of the
 918	 * zone when isolating for the first time. For looping we also need
 919	 * this pfn aligned down to the pageblock boundary, because we do
 920	 * block_start_pfn -= pageblock_nr_pages in the for loop.
 921	 * For ending point, take care when isolating in last pageblock of a
 922	 * a zone which ends in the middle of a pageblock.
 923	 * The low boundary is the end of the pageblock the migration scanner
 924	 * is using.
 925	 */
 926	isolate_start_pfn = cc->free_pfn;
 927	block_start_pfn = cc->free_pfn & ~(pageblock_nr_pages-1);
 928	block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
 929						zone_end_pfn(zone));
 930	low_pfn = ALIGN(cc->migrate_pfn + 1, pageblock_nr_pages);
 
 931
 932	/*
 933	 * Isolate free pages until enough are available to migrate the
 934	 * pages on cc->migratepages. We stop searching if the migrate
 935	 * and free page scanners meet or enough free pages are isolated.
 936	 */
 937	for (; block_start_pfn >= low_pfn;
 938				block_end_pfn = block_start_pfn,
 939				block_start_pfn -= pageblock_nr_pages,
 940				isolate_start_pfn = block_start_pfn) {
 
 941
 942		/*
 943		 * This can iterate a massively long zone without finding any
 944		 * suitable migration targets, so periodically check if we need
 945		 * to schedule, or even abort async compaction.
 946		 */
 947		if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
 948						&& compact_should_abort(cc))
 949			break;
 950
 951		page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
 952									zone);
 953		if (!page)
 954			continue;
 955
 956		/* Check the block is suitable for migration */
 957		if (!suitable_migration_target(page))
 958			continue;
 959
 960		/* If isolation recently failed, do not retry */
 961		if (!isolation_suitable(cc, page))
 962			continue;
 963
 964		/* Found a block suitable for isolating free pages from. */
 965		isolate_freepages_block(cc, &isolate_start_pfn,
 966					block_end_pfn, freelist, false);
 967
 968		/*
 969		 * If we isolated enough freepages, or aborted due to async
 970		 * compaction being contended, terminate the loop.
 971		 * Remember where the free scanner should restart next time,
 972		 * which is where isolate_freepages_block() left off.
 973		 * But if it scanned the whole pageblock, isolate_start_pfn
 974		 * now points at block_end_pfn, which is the start of the next
 975		 * pageblock.
 976		 * In that case we will however want to restart at the start
 977		 * of the previous pageblock.
 978		 */
 979		if ((cc->nr_freepages >= cc->nr_migratepages)
 980							|| cc->contended) {
 981			if (isolate_start_pfn >= block_end_pfn)
 982				isolate_start_pfn =
 983					block_start_pfn - pageblock_nr_pages;
 
 984			break;
 985		} else {
 986			/*
 987			 * isolate_freepages_block() should not terminate
 988			 * prematurely unless contended, or isolated enough
 989			 */
 990			VM_BUG_ON(isolate_start_pfn < block_end_pfn);
 991		}
 992	}
 993
 994	/* split_free_page does not map the pages */
 995	map_pages(freelist);
 
 
 
 
 
 996
 997	/*
 998	 * Record where the free scanner will restart next time. Either we
 999	 * broke from the loop and set isolate_start_pfn based on the last
1000	 * call to isolate_freepages_block(), or we met the migration scanner
1001	 * and the loop terminated due to isolate_start_pfn < low_pfn
1002	 */
1003	cc->free_pfn = isolate_start_pfn;
 
 
 
 
1004}
1005
1006/*
1007 * This is a migrate-callback that "allocates" freepages by taking pages
1008 * from the isolated freelists in the block we are migrating to.
1009 */
1010static struct page *compaction_alloc(struct page *migratepage,
1011					unsigned long data,
1012					int **result)
1013{
1014	struct compact_control *cc = (struct compact_control *)data;
1015	struct page *freepage;
1016
1017	/*
1018	 * Isolate free pages if necessary, and if we are not aborting due to
1019	 * contention.
1020	 */
1021	if (list_empty(&cc->freepages)) {
1022		if (!cc->contended)
1023			isolate_freepages(cc);
1024
1025		if (list_empty(&cc->freepages))
1026			return NULL;
1027	}
1028
1029	freepage = list_entry(cc->freepages.next, struct page, lru);
1030	list_del(&freepage->lru);
1031	cc->nr_freepages--;
1032
1033	return freepage;
1034}
1035
1036/*
1037 * This is a migrate-callback that "frees" freepages back to the isolated
1038 * freelist.  All pages on the freelist are from the same zone, so there is no
1039 * special handling needed for NUMA.
1040 */
1041static void compaction_free(struct page *page, unsigned long data)
1042{
1043	struct compact_control *cc = (struct compact_control *)data;
1044
1045	list_add(&page->lru, &cc->freepages);
1046	cc->nr_freepages++;
1047}
1048
1049/* possible outcome of isolate_migratepages */
1050typedef enum {
1051	ISOLATE_ABORT,		/* Abort compaction now */
1052	ISOLATE_NONE,		/* No pages isolated, continue scanning */
1053	ISOLATE_SUCCESS,	/* Pages isolated, migrate */
1054} isolate_migrate_t;
1055
1056/*
1057 * Allow userspace to control policy on scanning the unevictable LRU for
1058 * compactable pages.
1059 */
 
 
 
1060int sysctl_compact_unevictable_allowed __read_mostly = 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1061
1062/*
1063 * Isolate all pages that can be migrated from the first suitable block,
1064 * starting at the block pointed to by the migrate scanner pfn within
1065 * compact_control.
1066 */
1067static isolate_migrate_t isolate_migratepages(struct zone *zone,
1068					struct compact_control *cc)
1069{
1070	unsigned long block_start_pfn;
1071	unsigned long block_end_pfn;
1072	unsigned long low_pfn;
1073	unsigned long isolate_start_pfn;
1074	struct page *page;
1075	const isolate_mode_t isolate_mode =
1076		(sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1077		(cc->mode == MIGRATE_ASYNC ? ISOLATE_ASYNC_MIGRATE : 0);
 
1078
1079	/*
1080	 * Start at where we last stopped, or beginning of the zone as
1081	 * initialized by compact_zone()
 
1082	 */
1083	low_pfn = cc->migrate_pfn;
1084	block_start_pfn = cc->migrate_pfn & ~(pageblock_nr_pages - 1);
1085	if (block_start_pfn < zone->zone_start_pfn)
1086		block_start_pfn = zone->zone_start_pfn;
 
 
 
 
 
 
 
1087
1088	/* Only scan within a pageblock boundary */
1089	block_end_pfn = ALIGN(low_pfn + 1, pageblock_nr_pages);
1090
1091	/*
1092	 * Iterate over whole pageblocks until we find the first suitable.
1093	 * Do not cross the free scanner.
1094	 */
1095	for (; block_end_pfn <= cc->free_pfn;
1096			low_pfn = block_end_pfn,
 
1097			block_start_pfn = block_end_pfn,
1098			block_end_pfn += pageblock_nr_pages) {
1099
1100		/*
1101		 * This can potentially iterate a massively long zone with
1102		 * many pageblocks unsuitable, so periodically check if we
1103		 * need to schedule, or even abort async compaction.
1104		 */
1105		if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
1106						&& compact_should_abort(cc))
1107			break;
1108
1109		page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1110									zone);
1111		if (!page)
1112			continue;
1113
1114		/* If isolation recently failed, do not retry */
1115		if (!isolation_suitable(cc, page))
 
 
 
 
 
 
 
1116			continue;
1117
1118		/*
1119		 * For async compaction, also only scan in MOVABLE blocks.
1120		 * Async compaction is optimistic to see if the minimum amount
1121		 * of work satisfies the allocation.
 
 
 
1122		 */
1123		if (cc->mode == MIGRATE_ASYNC &&
1124		    !migrate_async_suitable(get_pageblock_migratetype(page)))
1125			continue;
 
1126
1127		/* Perform the isolation */
1128		isolate_start_pfn = low_pfn;
1129		low_pfn = isolate_migratepages_block(cc, low_pfn,
1130						block_end_pfn, isolate_mode);
1131
1132		if (!low_pfn || cc->contended) {
1133			acct_isolated(zone, cc);
1134			return ISOLATE_ABORT;
1135		}
1136
1137		/*
1138		 * Record where we could have freed pages by migration and not
1139		 * yet flushed them to buddy allocator.
1140		 * - this is the lowest page that could have been isolated and
1141		 * then freed by migration.
1142		 */
1143		if (cc->nr_migratepages && !cc->last_migrated_pfn)
1144			cc->last_migrated_pfn = isolate_start_pfn;
1145
1146		/*
1147		 * Either we isolated something and proceed with migration. Or
1148		 * we failed and compact_zone should decide if we should
1149		 * continue or not.
1150		 */
1151		break;
1152	}
1153
1154	acct_isolated(zone, cc);
1155	/* Record where migration scanner will be restarted. */
1156	cc->migrate_pfn = low_pfn;
1157
1158	return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1159}
1160
1161/*
1162 * order == -1 is expected when compacting via
1163 * /proc/sys/vm/compact_memory
1164 */
1165static inline bool is_via_compact_memory(int order)
1166{
1167	return order == -1;
1168}
1169
1170static int __compact_finished(struct zone *zone, struct compact_control *cc,
1171			    const int migratetype)
1172{
1173	unsigned int order;
1174	unsigned long watermark;
1175
1176	if (cc->contended || fatal_signal_pending(current))
1177		return COMPACT_CONTENDED;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1178
1179	/* Compaction run completes if the migrate and free scanner meet */
1180	if (compact_scanners_met(cc)) {
1181		/* Let the next compaction start anew. */
1182		reset_cached_positions(zone);
1183
1184		/*
1185		 * Mark that the PG_migrate_skip information should be cleared
1186		 * by kswapd when it goes to sleep. kcompactd does not set the
1187		 * flag itself as the decision to be clear should be directly
1188		 * based on an allocation request.
1189		 */
1190		if (cc->direct_compaction)
1191			zone->compact_blockskip_flush = true;
1192
1193		return COMPACT_COMPLETE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1194	}
1195
1196	if (is_via_compact_memory(cc->order))
1197		return COMPACT_CONTINUE;
1198
1199	/* Compaction run is not finished if the watermark is not met */
1200	watermark = low_wmark_pages(zone);
1201
1202	if (!zone_watermark_ok(zone, cc->order, watermark, cc->classzone_idx,
1203							cc->alloc_flags))
 
 
1204		return COMPACT_CONTINUE;
1205
1206	/* Direct compactor: Is a suitable page free? */
 
1207	for (order = cc->order; order < MAX_ORDER; order++) {
1208		struct free_area *area = &zone->free_area[order];
1209		bool can_steal;
1210
1211		/* Job done if page is free of the right migratetype */
1212		if (!list_empty(&area->free_list[migratetype]))
1213			return COMPACT_PARTIAL;
1214
1215#ifdef CONFIG_CMA
1216		/* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
1217		if (migratetype == MIGRATE_MOVABLE &&
1218			!list_empty(&area->free_list[MIGRATE_CMA]))
1219			return COMPACT_PARTIAL;
1220#endif
1221		/*
1222		 * Job done if allocation would steal freepages from
1223		 * other migratetype buddy lists.
1224		 */
1225		if (find_suitable_fallback(area, order, migratetype,
1226						true, &can_steal) != -1)
1227			return COMPACT_PARTIAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1228	}
1229
1230	return COMPACT_NO_SUITABLE_PAGE;
 
 
 
 
1231}
1232
1233static int compact_finished(struct zone *zone, struct compact_control *cc,
1234			    const int migratetype)
1235{
1236	int ret;
1237
1238	ret = __compact_finished(zone, cc, migratetype);
1239	trace_mm_compaction_finished(zone, cc->order, ret);
1240	if (ret == COMPACT_NO_SUITABLE_PAGE)
1241		ret = COMPACT_CONTINUE;
1242
1243	return ret;
1244}
1245
1246/*
1247 * compaction_suitable: Is this suitable to run compaction on this zone now?
1248 * Returns
1249 *   COMPACT_SKIPPED  - If there are too few free pages for compaction
1250 *   COMPACT_PARTIAL  - If the allocation would succeed without compaction
1251 *   COMPACT_CONTINUE - If compaction should run now
1252 */
1253static unsigned long __compaction_suitable(struct zone *zone, int order,
1254					int alloc_flags, int classzone_idx)
1255{
1256	int fragindex;
1257	unsigned long watermark;
1258
1259	if (is_via_compact_memory(order))
1260		return COMPACT_CONTINUE;
1261
1262	watermark = low_wmark_pages(zone);
1263	/*
1264	 * If watermarks for high-order allocation are already met, there
1265	 * should be no need for compaction at all.
1266	 */
1267	if (zone_watermark_ok(zone, order, watermark, classzone_idx,
1268								alloc_flags))
1269		return COMPACT_PARTIAL;
1270
1271	/*
1272	 * Watermarks for order-0 must be met for compaction. Note the 2UL.
1273	 * This is because during migration, copies of pages need to be
1274	 * allocated and for a short time, the footprint is higher
 
 
 
 
 
 
 
 
 
1275	 */
1276	watermark += (2UL << order);
1277	if (!zone_watermark_ok(zone, 0, watermark, classzone_idx, alloc_flags))
 
 
 
1278		return COMPACT_SKIPPED;
1279
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1280	/*
1281	 * fragmentation index determines if allocation failures are due to
1282	 * low memory or external fragmentation
1283	 *
1284	 * index of -1000 would imply allocations might succeed depending on
1285	 * watermarks, but we already failed the high-order watermark check
1286	 * index towards 0 implies failure is due to lack of memory
1287	 * index towards 1000 implies failure is due to fragmentation
1288	 *
1289	 * Only compact if a failure would be due to fragmentation.
 
 
 
 
 
1290	 */
1291	fragindex = fragmentation_index(zone, order);
1292	if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
1293		return COMPACT_NOT_SUITABLE_ZONE;
1294
1295	return COMPACT_CONTINUE;
1296}
1297
1298unsigned long compaction_suitable(struct zone *zone, int order,
1299					int alloc_flags, int classzone_idx)
1300{
1301	unsigned long ret;
1302
1303	ret = __compaction_suitable(zone, order, alloc_flags, classzone_idx);
1304	trace_mm_compaction_suitable(zone, order, ret);
1305	if (ret == COMPACT_NOT_SUITABLE_ZONE)
1306		ret = COMPACT_SKIPPED;
1307
1308	return ret;
1309}
1310
1311static int compact_zone(struct zone *zone, struct compact_control *cc)
 
1312{
1313	int ret;
1314	unsigned long start_pfn = zone->zone_start_pfn;
1315	unsigned long end_pfn = zone_end_pfn(zone);
1316	const int migratetype = gfpflags_to_migratetype(cc->gfp_mask);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1317	const bool sync = cc->mode != MIGRATE_ASYNC;
 
1318
1319	ret = compaction_suitable(zone, cc->order, cc->alloc_flags,
1320							cc->classzone_idx);
1321	switch (ret) {
1322	case COMPACT_PARTIAL:
1323	case COMPACT_SKIPPED:
1324		/* Compaction is likely to fail */
 
 
 
 
 
 
 
 
 
 
1325		return ret;
1326	case COMPACT_CONTINUE:
1327		/* Fall through to compaction */
1328		;
1329	}
1330
1331	/*
1332	 * Clear pageblock skip if there were failures recently and compaction
1333	 * is about to be retried after being deferred.
1334	 */
1335	if (compaction_restarting(zone, cc->order))
1336		__reset_isolation_suitable(zone);
1337
1338	/*
1339	 * Setup to move all movable pages to the end of the zone. Used cached
1340	 * information on where the scanners should start but check that it
1341	 * is initialised by ensuring the values are within zone boundaries.
 
1342	 */
1343	cc->migrate_pfn = zone->compact_cached_migrate_pfn[sync];
1344	cc->free_pfn = zone->compact_cached_free_pfn;
1345	if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
1346		cc->free_pfn = round_down(end_pfn - 1, pageblock_nr_pages);
1347		zone->compact_cached_free_pfn = cc->free_pfn;
1348	}
1349	if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
1350		cc->migrate_pfn = start_pfn;
1351		zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
1352		zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1353	}
1354	cc->last_migrated_pfn = 0;
 
 
 
 
 
 
 
 
 
 
 
 
1355
1356	trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
1357				cc->free_pfn, end_pfn, sync);
1358
1359	migrate_prep_local();
 
1360
1361	while ((ret = compact_finished(zone, cc, migratetype)) ==
1362						COMPACT_CONTINUE) {
1363		int err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1364
1365		switch (isolate_migratepages(zone, cc)) {
1366		case ISOLATE_ABORT:
1367			ret = COMPACT_CONTENDED;
1368			putback_movable_pages(&cc->migratepages);
1369			cc->nr_migratepages = 0;
1370			goto out;
1371		case ISOLATE_NONE:
 
 
 
 
 
1372			/*
1373			 * We haven't isolated and migrated anything, but
1374			 * there might still be unflushed migrations from
1375			 * previous cc->order aligned block.
1376			 */
1377			goto check_drain;
1378		case ISOLATE_SUCCESS:
1379			;
 
1380		}
1381
1382		err = migrate_pages(&cc->migratepages, compaction_alloc,
1383				compaction_free, (unsigned long)cc, cc->mode,
1384				MR_COMPACTION);
1385
1386		trace_mm_compaction_migratepages(cc->nr_migratepages, err,
1387							&cc->migratepages);
1388
1389		/* All pages were either migrated or will be released */
1390		cc->nr_migratepages = 0;
1391		if (err) {
1392			putback_movable_pages(&cc->migratepages);
1393			/*
1394			 * migrate_pages() may return -ENOMEM when scanners meet
1395			 * and we want compact_finished() to detect it
1396			 */
1397			if (err == -ENOMEM && !compact_scanners_met(cc)) {
1398				ret = COMPACT_CONTENDED;
1399				goto out;
1400			}
 
 
 
 
 
 
 
 
 
 
 
1401		}
1402
1403check_drain:
1404		/*
1405		 * Has the migration scanner moved away from the previous
1406		 * cc->order aligned block where we migrated from? If yes,
1407		 * flush the pages that were freed, so that they can merge and
1408		 * compact_finished() can detect immediately if allocation
1409		 * would succeed.
1410		 */
1411		if (cc->order > 0 && cc->last_migrated_pfn) {
1412			int cpu;
1413			unsigned long current_block_start =
1414				cc->migrate_pfn & ~((1UL << cc->order) - 1);
1415
1416			if (cc->last_migrated_pfn < current_block_start) {
1417				cpu = get_cpu();
1418				lru_add_drain_cpu(cpu);
1419				drain_local_pages(zone);
1420				put_cpu();
1421				/* No more flushing until we migrate again */
1422				cc->last_migrated_pfn = 0;
1423			}
1424		}
1425
 
 
 
 
 
1426	}
1427
1428out:
1429	/*
1430	 * Release free pages and update where the free scanner should restart,
1431	 * so we don't leave any returned pages behind in the next attempt.
1432	 */
1433	if (cc->nr_freepages > 0) {
1434		unsigned long free_pfn = release_freepages(&cc->freepages);
1435
1436		cc->nr_freepages = 0;
1437		VM_BUG_ON(free_pfn == 0);
1438		/* The cached pfn is always the first in a pageblock */
1439		free_pfn &= ~(pageblock_nr_pages-1);
1440		/*
1441		 * Only go back, not forward. The cached pfn might have been
1442		 * already reset to zone end in compact_finished()
1443		 */
1444		if (free_pfn > zone->compact_cached_free_pfn)
1445			zone->compact_cached_free_pfn = free_pfn;
1446	}
1447
 
 
 
1448	trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
1449				cc->free_pfn, end_pfn, sync, ret);
1450
1451	if (ret == COMPACT_CONTENDED)
1452		ret = COMPACT_PARTIAL;
1453
1454	return ret;
1455}
1456
1457static unsigned long compact_zone_order(struct zone *zone, int order,
1458		gfp_t gfp_mask, enum migrate_mode mode, int *contended,
1459		int alloc_flags, int classzone_idx)
 
1460{
1461	unsigned long ret;
1462	struct compact_control cc = {
1463		.nr_freepages = 0,
1464		.nr_migratepages = 0,
1465		.order = order,
 
1466		.gfp_mask = gfp_mask,
1467		.zone = zone,
1468		.mode = mode,
 
1469		.alloc_flags = alloc_flags,
1470		.classzone_idx = classzone_idx,
1471		.direct_compaction = true,
 
 
 
 
 
 
 
1472	};
1473	INIT_LIST_HEAD(&cc.freepages);
1474	INIT_LIST_HEAD(&cc.migratepages);
1475
1476	ret = compact_zone(zone, &cc);
 
 
 
 
 
 
 
 
1477
1478	VM_BUG_ON(!list_empty(&cc.freepages));
1479	VM_BUG_ON(!list_empty(&cc.migratepages));
1480
1481	*contended = cc.contended;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1482	return ret;
1483}
1484
1485int sysctl_extfrag_threshold = 500;
1486
1487/**
1488 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
1489 * @gfp_mask: The GFP mask of the current allocation
1490 * @order: The order of the current allocation
1491 * @alloc_flags: The allocation flags of the current allocation
1492 * @ac: The context of current allocation
1493 * @mode: The migration mode for async, sync light, or sync migration
1494 * @contended: Return value that determines if compaction was aborted due to
1495 *	       need_resched() or lock contention
1496 *
1497 * This is the main entry point for direct page compaction.
1498 */
1499unsigned long try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
1500			int alloc_flags, const struct alloc_context *ac,
1501			enum migrate_mode mode, int *contended)
1502{
1503	int may_enter_fs = gfp_mask & __GFP_FS;
1504	int may_perform_io = gfp_mask & __GFP_IO;
1505	struct zoneref *z;
1506	struct zone *zone;
1507	int rc = COMPACT_DEFERRED;
1508	int all_zones_contended = COMPACT_CONTENDED_LOCK; /* init for &= op */
1509
1510	*contended = COMPACT_CONTENDED_NONE;
1511
1512	/* Check if the GFP flags allow compaction */
1513	if (!order || !may_enter_fs || !may_perform_io)
 
 
 
1514		return COMPACT_SKIPPED;
1515
1516	trace_mm_compaction_try_to_compact_pages(order, gfp_mask, mode);
1517
1518	/* Compact each zone in the list */
1519	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
1520								ac->nodemask) {
1521		int status;
1522		int zone_contended;
1523
1524		if (compaction_deferred(zone, order))
 
 
1525			continue;
 
1526
1527		status = compact_zone_order(zone, order, gfp_mask, mode,
1528				&zone_contended, alloc_flags,
1529				ac->classzone_idx);
1530		rc = max(status, rc);
1531		/*
1532		 * It takes at least one zone that wasn't lock contended
1533		 * to clear all_zones_contended.
1534		 */
1535		all_zones_contended &= zone_contended;
1536
1537		/* If a normal allocation would succeed, stop compacting */
1538		if (zone_watermark_ok(zone, order, low_wmark_pages(zone),
1539					ac->classzone_idx, alloc_flags)) {
1540			/*
1541			 * We think the allocation will succeed in this zone,
1542			 * but it is not certain, hence the false. The caller
1543			 * will repeat this with true if allocation indeed
1544			 * succeeds in this zone.
1545			 */
1546			compaction_defer_reset(zone, order, false);
1547			/*
1548			 * It is possible that async compaction aborted due to
1549			 * need_resched() and the watermarks were ok thanks to
1550			 * somebody else freeing memory. The allocation can
1551			 * however still fail so we better signal the
1552			 * need_resched() contention anyway (this will not
1553			 * prevent the allocation attempt).
1554			 */
1555			if (zone_contended == COMPACT_CONTENDED_SCHED)
1556				*contended = COMPACT_CONTENDED_SCHED;
1557
1558			goto break_loop;
1559		}
1560
1561		if (mode != MIGRATE_ASYNC && status == COMPACT_COMPLETE) {
 
1562			/*
1563			 * We think that allocation won't succeed in this zone
1564			 * so we defer compaction there. If it ends up
1565			 * succeeding after all, it will be reset.
1566			 */
1567			defer_compaction(zone, order);
1568		}
1569
1570		/*
1571		 * We might have stopped compacting due to need_resched() in
1572		 * async compaction, or due to a fatal signal detected. In that
1573		 * case do not try further zones and signal need_resched()
1574		 * contention.
1575		 */
1576		if ((zone_contended == COMPACT_CONTENDED_SCHED)
1577					|| fatal_signal_pending(current)) {
1578			*contended = COMPACT_CONTENDED_SCHED;
1579			goto break_loop;
1580		}
1581
1582		continue;
1583break_loop:
1584		/*
1585		 * We might not have tried all the zones, so  be conservative
1586		 * and assume they are not all lock contended.
1587		 */
1588		all_zones_contended = 0;
1589		break;
1590	}
1591
1592	/*
1593	 * If at least one zone wasn't deferred or skipped, we report if all
1594	 * zones that were tried were lock contended.
1595	 */
1596	if (rc > COMPACT_SKIPPED && all_zones_contended)
1597		*contended = COMPACT_CONTENDED_LOCK;
1598
1599	return rc;
1600}
1601
1602
1603/* Compact all zones within a node */
1604static void __compact_pgdat(pg_data_t *pgdat, struct compact_control *cc)
 
 
 
 
 
 
 
1605{
1606	int zoneid;
1607	struct zone *zone;
 
 
 
 
 
 
 
 
1608
1609	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
1610
1611		zone = &pgdat->node_zones[zoneid];
1612		if (!populated_zone(zone))
1613			continue;
1614
1615		cc->nr_freepages = 0;
1616		cc->nr_migratepages = 0;
1617		cc->zone = zone;
1618		INIT_LIST_HEAD(&cc->freepages);
1619		INIT_LIST_HEAD(&cc->migratepages);
1620
1621		/*
1622		 * When called via /proc/sys/vm/compact_memory
1623		 * this makes sure we compact the whole zone regardless of
1624		 * cached scanner positions.
1625		 */
1626		if (is_via_compact_memory(cc->order))
1627			__reset_isolation_suitable(zone);
1628
1629		if (is_via_compact_memory(cc->order) ||
1630				!compaction_deferred(zone, cc->order))
1631			compact_zone(zone, cc);
1632
1633		VM_BUG_ON(!list_empty(&cc->freepages));
1634		VM_BUG_ON(!list_empty(&cc->migratepages));
1635
1636		if (is_via_compact_memory(cc->order))
1637			continue;
1638
1639		if (zone_watermark_ok(zone, cc->order,
1640				low_wmark_pages(zone), 0, 0))
1641			compaction_defer_reset(zone, cc->order, false);
1642	}
1643}
1644
1645void compact_pgdat(pg_data_t *pgdat, int order)
1646{
1647	struct compact_control cc = {
1648		.order = order,
1649		.mode = MIGRATE_ASYNC,
1650	};
1651
1652	if (!order)
1653		return;
1654
1655	__compact_pgdat(pgdat, &cc);
1656}
1657
1658static void compact_node(int nid)
1659{
 
 
 
1660	struct compact_control cc = {
1661		.order = -1,
1662		.mode = MIGRATE_SYNC,
1663		.ignore_skip_hint = true,
 
 
1664	};
1665
1666	__compact_pgdat(NODE_DATA(nid), &cc);
 
 
 
 
 
 
 
 
 
 
 
 
 
1667}
1668
1669/* Compact all nodes in the system */
1670static void compact_nodes(void)
1671{
1672	int nid;
1673
1674	/* Flush pending updates to the LRU lists */
1675	lru_add_drain_all();
1676
1677	for_each_online_node(nid)
1678		compact_node(nid);
1679}
1680
1681/* The written value is actually unused, all memory is compacted */
1682int sysctl_compact_memory;
 
 
 
 
1683
1684/*
1685 * This is the entry point for compacting all nodes via
1686 * /proc/sys/vm/compact_memory
1687 */
1688int sysctl_compaction_handler(struct ctl_table *table, int write,
1689			void __user *buffer, size_t *length, loff_t *ppos)
1690{
1691	if (write)
1692		compact_nodes();
1693
1694	return 0;
1695}
1696
1697int sysctl_extfrag_handler(struct ctl_table *table, int write,
1698			void __user *buffer, size_t *length, loff_t *ppos)
1699{
1700	proc_dointvec_minmax(table, write, buffer, length, ppos);
1701
1702	return 0;
1703}
1704
1705#if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
1706static ssize_t sysfs_compact_node(struct device *dev,
1707			struct device_attribute *attr,
1708			const char *buf, size_t count)
1709{
1710	int nid = dev->id;
1711
1712	if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
1713		/* Flush pending updates to the LRU lists */
1714		lru_add_drain_all();
1715
1716		compact_node(nid);
1717	}
1718
1719	return count;
1720}
1721static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
1722
1723int compaction_register_node(struct node *node)
1724{
1725	return device_create_file(&node->dev, &dev_attr_compact);
1726}
1727
1728void compaction_unregister_node(struct node *node)
1729{
1730	return device_remove_file(&node->dev, &dev_attr_compact);
1731}
1732#endif /* CONFIG_SYSFS && CONFIG_NUMA */
1733
1734static inline bool kcompactd_work_requested(pg_data_t *pgdat)
1735{
1736	return pgdat->kcompactd_max_order > 0 || kthread_should_stop();
1737}
1738
1739static bool kcompactd_node_suitable(pg_data_t *pgdat)
1740{
1741	int zoneid;
1742	struct zone *zone;
1743	enum zone_type classzone_idx = pgdat->kcompactd_classzone_idx;
1744
1745	for (zoneid = 0; zoneid < classzone_idx; zoneid++) {
1746		zone = &pgdat->node_zones[zoneid];
1747
1748		if (!populated_zone(zone))
1749			continue;
1750
1751		if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0,
1752					classzone_idx) == COMPACT_CONTINUE)
1753			return true;
1754	}
1755
1756	return false;
1757}
1758
1759static void kcompactd_do_work(pg_data_t *pgdat)
1760{
1761	/*
1762	 * With no special task, compact all zones so that a page of requested
1763	 * order is allocatable.
1764	 */
1765	int zoneid;
1766	struct zone *zone;
1767	struct compact_control cc = {
1768		.order = pgdat->kcompactd_max_order,
1769		.classzone_idx = pgdat->kcompactd_classzone_idx,
 
1770		.mode = MIGRATE_SYNC_LIGHT,
1771		.ignore_skip_hint = true,
1772
1773	};
1774	bool success = false;
1775
1776	trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
1777							cc.classzone_idx);
1778	count_vm_event(KCOMPACTD_WAKE);
1779
1780	for (zoneid = 0; zoneid < cc.classzone_idx; zoneid++) {
1781		int status;
1782
1783		zone = &pgdat->node_zones[zoneid];
1784		if (!populated_zone(zone))
1785			continue;
1786
1787		if (compaction_deferred(zone, cc.order))
1788			continue;
1789
1790		if (compaction_suitable(zone, cc.order, 0, zoneid) !=
1791							COMPACT_CONTINUE)
1792			continue;
1793
1794		cc.nr_freepages = 0;
1795		cc.nr_migratepages = 0;
1796		cc.zone = zone;
1797		INIT_LIST_HEAD(&cc.freepages);
1798		INIT_LIST_HEAD(&cc.migratepages);
1799
1800		if (kthread_should_stop())
1801			return;
1802		status = compact_zone(zone, &cc);
1803
1804		if (zone_watermark_ok(zone, cc.order, low_wmark_pages(zone),
1805						cc.classzone_idx, 0)) {
1806			success = true;
 
1807			compaction_defer_reset(zone, cc.order, false);
1808		} else if (status == COMPACT_COMPLETE) {
 
 
 
 
 
 
 
 
1809			/*
1810			 * We use sync migration mode here, so we defer like
1811			 * sync direct compaction does.
1812			 */
1813			defer_compaction(zone, cc.order);
1814		}
1815
 
 
 
 
 
1816		VM_BUG_ON(!list_empty(&cc.freepages));
1817		VM_BUG_ON(!list_empty(&cc.migratepages));
1818	}
1819
1820	/*
1821	 * Regardless of success, we are done until woken up next. But remember
1822	 * the requested order/classzone_idx in case it was higher/tighter than
1823	 * our current ones
1824	 */
1825	if (pgdat->kcompactd_max_order <= cc.order)
1826		pgdat->kcompactd_max_order = 0;
1827	if (pgdat->kcompactd_classzone_idx >= cc.classzone_idx)
1828		pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;
1829}
1830
1831void wakeup_kcompactd(pg_data_t *pgdat, int order, int classzone_idx)
1832{
1833	if (!order)
1834		return;
1835
1836	if (pgdat->kcompactd_max_order < order)
1837		pgdat->kcompactd_max_order = order;
1838
1839	if (pgdat->kcompactd_classzone_idx > classzone_idx)
1840		pgdat->kcompactd_classzone_idx = classzone_idx;
1841
1842	if (!waitqueue_active(&pgdat->kcompactd_wait))
 
 
 
 
1843		return;
1844
1845	if (!kcompactd_node_suitable(pgdat))
1846		return;
1847
1848	trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
1849							classzone_idx);
1850	wake_up_interruptible(&pgdat->kcompactd_wait);
1851}
1852
1853/*
1854 * The background compaction daemon, started as a kernel thread
1855 * from the init process.
1856 */
1857static int kcompactd(void *p)
1858{
1859	pg_data_t *pgdat = (pg_data_t*)p;
1860	struct task_struct *tsk = current;
 
1861
1862	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1863
1864	if (!cpumask_empty(cpumask))
1865		set_cpus_allowed_ptr(tsk, cpumask);
1866
1867	set_freezable();
1868
1869	pgdat->kcompactd_max_order = 0;
1870	pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;
1871
1872	while (!kthread_should_stop()) {
 
 
1873		trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
1874		wait_event_freezable(pgdat->kcompactd_wait,
1875				kcompactd_work_requested(pgdat));
 
1876
1877		kcompactd_do_work(pgdat);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1878	}
1879
1880	return 0;
1881}
1882
1883/*
1884 * This kcompactd start function will be called by init and node-hot-add.
1885 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
1886 */
1887int kcompactd_run(int nid)
1888{
1889	pg_data_t *pgdat = NODE_DATA(nid);
1890	int ret = 0;
1891
1892	if (pgdat->kcompactd)
1893		return 0;
1894
1895	pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
1896	if (IS_ERR(pgdat->kcompactd)) {
1897		pr_err("Failed to start kcompactd on node %d\n", nid);
1898		ret = PTR_ERR(pgdat->kcompactd);
1899		pgdat->kcompactd = NULL;
1900	}
1901	return ret;
1902}
1903
1904/*
1905 * Called by memory hotplug when all memory in a node is offlined. Caller must
1906 * hold mem_hotplug_begin/end().
1907 */
1908void kcompactd_stop(int nid)
1909{
1910	struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
1911
1912	if (kcompactd) {
1913		kthread_stop(kcompactd);
1914		NODE_DATA(nid)->kcompactd = NULL;
1915	}
1916}
1917
1918/*
1919 * It's optimal to keep kcompactd on the same CPUs as their memory, but
1920 * not required for correctness. So if the last cpu in a node goes
1921 * away, we get changed to run anywhere: as the first one comes back,
1922 * restore their cpu bindings.
1923 */
1924static int cpu_callback(struct notifier_block *nfb, unsigned long action,
1925			void *hcpu)
1926{
1927	int nid;
1928
1929	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
1930		for_each_node_state(nid, N_MEMORY) {
1931			pg_data_t *pgdat = NODE_DATA(nid);
1932			const struct cpumask *mask;
1933
1934			mask = cpumask_of_node(pgdat->node_id);
1935
1936			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
1937				/* One of our CPUs online: restore mask */
1938				set_cpus_allowed_ptr(pgdat->kcompactd, mask);
1939		}
1940	}
1941	return NOTIFY_OK;
1942}
1943
1944static int __init kcompactd_init(void)
1945{
1946	int nid;
 
 
 
 
 
 
 
 
 
1947
1948	for_each_node_state(nid, N_MEMORY)
1949		kcompactd_run(nid);
1950	hotcpu_notifier(cpu_callback, 0);
1951	return 0;
1952}
1953subsys_initcall(kcompactd_init)
1954
1955#endif /* CONFIG_COMPACTION */
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * linux/mm/compaction.c
   4 *
   5 * Memory compaction for the reduction of external fragmentation. Note that
   6 * this heavily depends upon page migration to do all the real heavy
   7 * lifting
   8 *
   9 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
  10 */
  11#include <linux/cpu.h>
  12#include <linux/swap.h>
  13#include <linux/migrate.h>
  14#include <linux/compaction.h>
  15#include <linux/mm_inline.h>
  16#include <linux/sched/signal.h>
  17#include <linux/backing-dev.h>
  18#include <linux/sysctl.h>
  19#include <linux/sysfs.h>
 
  20#include <linux/page-isolation.h>
  21#include <linux/kasan.h>
  22#include <linux/kthread.h>
  23#include <linux/freezer.h>
  24#include <linux/page_owner.h>
  25#include <linux/psi.h>
  26#include "internal.h"
  27
  28#ifdef CONFIG_COMPACTION
  29static inline void count_compact_event(enum vm_event_item item)
  30{
  31	count_vm_event(item);
  32}
  33
  34static inline void count_compact_events(enum vm_event_item item, long delta)
  35{
  36	count_vm_events(item, delta);
  37}
  38#else
  39#define count_compact_event(item) do { } while (0)
  40#define count_compact_events(item, delta) do { } while (0)
  41#endif
  42
  43#if defined CONFIG_COMPACTION || defined CONFIG_CMA
  44
  45#define CREATE_TRACE_POINTS
  46#include <trace/events/compaction.h>
  47
  48#define block_start_pfn(pfn, order)	round_down(pfn, 1UL << (order))
  49#define block_end_pfn(pfn, order)	ALIGN((pfn) + 1, 1UL << (order))
  50#define pageblock_start_pfn(pfn)	block_start_pfn(pfn, pageblock_order)
  51#define pageblock_end_pfn(pfn)		block_end_pfn(pfn, pageblock_order)
  52
  53/*
  54 * Fragmentation score check interval for proactive compaction purposes.
  55 */
  56static const unsigned int HPAGE_FRAG_CHECK_INTERVAL_MSEC = 500;
  57
  58/*
  59 * Page order with-respect-to which proactive compaction
  60 * calculates external fragmentation, which is used as
  61 * the "fragmentation score" of a node/zone.
  62 */
  63#if defined CONFIG_TRANSPARENT_HUGEPAGE
  64#define COMPACTION_HPAGE_ORDER	HPAGE_PMD_ORDER
  65#elif defined CONFIG_HUGETLBFS
  66#define COMPACTION_HPAGE_ORDER	HUGETLB_PAGE_ORDER
  67#else
  68#define COMPACTION_HPAGE_ORDER	(PMD_SHIFT - PAGE_SHIFT)
  69#endif
  70
  71static unsigned long release_freepages(struct list_head *freelist)
  72{
  73	struct page *page, *next;
  74	unsigned long high_pfn = 0;
  75
  76	list_for_each_entry_safe(page, next, freelist, lru) {
  77		unsigned long pfn = page_to_pfn(page);
  78		list_del(&page->lru);
  79		__free_page(page);
  80		if (pfn > high_pfn)
  81			high_pfn = pfn;
  82	}
  83
  84	return high_pfn;
  85}
  86
  87static void split_map_pages(struct list_head *list)
  88{
  89	unsigned int i, order, nr_pages;
  90	struct page *page, *next;
  91	LIST_HEAD(tmp_list);
  92
  93	list_for_each_entry_safe(page, next, list, lru) {
  94		list_del(&page->lru);
  95
  96		order = page_private(page);
  97		nr_pages = 1 << order;
  98
  99		post_alloc_hook(page, order, __GFP_MOVABLE);
 100		if (order)
 101			split_page(page, order);
 102
 103		for (i = 0; i < nr_pages; i++) {
 104			list_add(&page->lru, &tmp_list);
 105			page++;
 106		}
 107	}
 108
 109	list_splice(&tmp_list, list);
 110}
 111
 112#ifdef CONFIG_COMPACTION
 113
 114int PageMovable(struct page *page)
 115{
 116	struct address_space *mapping;
 117
 118	VM_BUG_ON_PAGE(!PageLocked(page), page);
 119	if (!__PageMovable(page))
 120		return 0;
 121
 122	mapping = page_mapping(page);
 123	if (mapping && mapping->a_ops && mapping->a_ops->isolate_page)
 124		return 1;
 125
 126	return 0;
 127}
 128EXPORT_SYMBOL(PageMovable);
 129
 130void __SetPageMovable(struct page *page, struct address_space *mapping)
 131{
 132	VM_BUG_ON_PAGE(!PageLocked(page), page);
 133	VM_BUG_ON_PAGE((unsigned long)mapping & PAGE_MAPPING_MOVABLE, page);
 134	page->mapping = (void *)((unsigned long)mapping | PAGE_MAPPING_MOVABLE);
 135}
 136EXPORT_SYMBOL(__SetPageMovable);
 137
 138void __ClearPageMovable(struct page *page)
 139{
 140	VM_BUG_ON_PAGE(!PageMovable(page), page);
 141	/*
 142	 * Clear registered address_space val with keeping PAGE_MAPPING_MOVABLE
 143	 * flag so that VM can catch up released page by driver after isolation.
 144	 * With it, VM migration doesn't try to put it back.
 145	 */
 146	page->mapping = (void *)((unsigned long)page->mapping &
 147				PAGE_MAPPING_MOVABLE);
 148}
 149EXPORT_SYMBOL(__ClearPageMovable);
 150
 151/* Do not skip compaction more than 64 times */
 152#define COMPACT_MAX_DEFER_SHIFT 6
 153
 154/*
 155 * Compaction is deferred when compaction fails to result in a page
 156 * allocation success. 1 << compact_defer_shift, compactions are skipped up
 157 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
 158 */
 159static void defer_compaction(struct zone *zone, int order)
 160{
 161	zone->compact_considered = 0;
 162	zone->compact_defer_shift++;
 163
 164	if (order < zone->compact_order_failed)
 165		zone->compact_order_failed = order;
 166
 167	if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
 168		zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
 169
 170	trace_mm_compaction_defer_compaction(zone, order);
 171}
 172
 173/* Returns true if compaction should be skipped this time */
 174static bool compaction_deferred(struct zone *zone, int order)
 175{
 176	unsigned long defer_limit = 1UL << zone->compact_defer_shift;
 177
 178	if (order < zone->compact_order_failed)
 179		return false;
 180
 181	/* Avoid possible overflow */
 182	if (++zone->compact_considered >= defer_limit) {
 183		zone->compact_considered = defer_limit;
 
 
 184		return false;
 185	}
 186
 187	trace_mm_compaction_deferred(zone, order);
 188
 189	return true;
 190}
 191
 192/*
 193 * Update defer tracking counters after successful compaction of given order,
 194 * which means an allocation either succeeded (alloc_success == true) or is
 195 * expected to succeed.
 196 */
 197void compaction_defer_reset(struct zone *zone, int order,
 198		bool alloc_success)
 199{
 200	if (alloc_success) {
 201		zone->compact_considered = 0;
 202		zone->compact_defer_shift = 0;
 203	}
 204	if (order >= zone->compact_order_failed)
 205		zone->compact_order_failed = order + 1;
 206
 207	trace_mm_compaction_defer_reset(zone, order);
 208}
 209
 210/* Returns true if restarting compaction after many failures */
 211static bool compaction_restarting(struct zone *zone, int order)
 212{
 213	if (order < zone->compact_order_failed)
 214		return false;
 215
 216	return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
 217		zone->compact_considered >= 1UL << zone->compact_defer_shift;
 218}
 219
 220/* Returns true if the pageblock should be scanned for pages to isolate. */
 221static inline bool isolation_suitable(struct compact_control *cc,
 222					struct page *page)
 223{
 224	if (cc->ignore_skip_hint)
 225		return true;
 226
 227	return !get_pageblock_skip(page);
 228}
 229
 230static void reset_cached_positions(struct zone *zone)
 231{
 232	zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
 233	zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
 234	zone->compact_cached_free_pfn =
 235				pageblock_start_pfn(zone_end_pfn(zone) - 1);
 236}
 237
 238/*
 239 * Compound pages of >= pageblock_order should consistently be skipped until
 240 * released. It is always pointless to compact pages of such order (if they are
 241 * migratable), and the pageblocks they occupy cannot contain any free pages.
 242 */
 243static bool pageblock_skip_persistent(struct page *page)
 244{
 245	if (!PageCompound(page))
 246		return false;
 247
 248	page = compound_head(page);
 249
 250	if (compound_order(page) >= pageblock_order)
 251		return true;
 252
 253	return false;
 254}
 255
 256static bool
 257__reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source,
 258							bool check_target)
 259{
 260	struct page *page = pfn_to_online_page(pfn);
 261	struct page *block_page;
 262	struct page *end_page;
 263	unsigned long block_pfn;
 264
 265	if (!page)
 266		return false;
 267	if (zone != page_zone(page))
 268		return false;
 269	if (pageblock_skip_persistent(page))
 270		return false;
 271
 272	/*
 273	 * If skip is already cleared do no further checking once the
 274	 * restart points have been set.
 275	 */
 276	if (check_source && check_target && !get_pageblock_skip(page))
 277		return true;
 278
 279	/*
 280	 * If clearing skip for the target scanner, do not select a
 281	 * non-movable pageblock as the starting point.
 282	 */
 283	if (!check_source && check_target &&
 284	    get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
 285		return false;
 286
 287	/* Ensure the start of the pageblock or zone is online and valid */
 288	block_pfn = pageblock_start_pfn(pfn);
 289	block_pfn = max(block_pfn, zone->zone_start_pfn);
 290	block_page = pfn_to_online_page(block_pfn);
 291	if (block_page) {
 292		page = block_page;
 293		pfn = block_pfn;
 294	}
 295
 296	/* Ensure the end of the pageblock or zone is online and valid */
 297	block_pfn = pageblock_end_pfn(pfn) - 1;
 298	block_pfn = min(block_pfn, zone_end_pfn(zone) - 1);
 299	end_page = pfn_to_online_page(block_pfn);
 300	if (!end_page)
 301		return false;
 302
 303	/*
 304	 * Only clear the hint if a sample indicates there is either a
 305	 * free page or an LRU page in the block. One or other condition
 306	 * is necessary for the block to be a migration source/target.
 307	 */
 308	do {
 309		if (pfn_valid_within(pfn)) {
 310			if (check_source && PageLRU(page)) {
 311				clear_pageblock_skip(page);
 312				return true;
 313			}
 314
 315			if (check_target && PageBuddy(page)) {
 316				clear_pageblock_skip(page);
 317				return true;
 318			}
 319		}
 320
 321		page += (1 << PAGE_ALLOC_COSTLY_ORDER);
 322		pfn += (1 << PAGE_ALLOC_COSTLY_ORDER);
 323	} while (page <= end_page);
 324
 325	return false;
 326}
 327
 328/*
 329 * This function is called to clear all cached information on pageblocks that
 330 * should be skipped for page isolation when the migrate and free page scanner
 331 * meet.
 332 */
 333static void __reset_isolation_suitable(struct zone *zone)
 334{
 335	unsigned long migrate_pfn = zone->zone_start_pfn;
 336	unsigned long free_pfn = zone_end_pfn(zone) - 1;
 337	unsigned long reset_migrate = free_pfn;
 338	unsigned long reset_free = migrate_pfn;
 339	bool source_set = false;
 340	bool free_set = false;
 341
 342	if (!zone->compact_blockskip_flush)
 343		return;
 344
 345	zone->compact_blockskip_flush = false;
 
 
 346
 347	/*
 348	 * Walk the zone and update pageblock skip information. Source looks
 349	 * for PageLRU while target looks for PageBuddy. When the scanner
 350	 * is found, both PageBuddy and PageLRU are checked as the pageblock
 351	 * is suitable as both source and target.
 352	 */
 353	for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages,
 354					free_pfn -= pageblock_nr_pages) {
 355		cond_resched();
 356
 357		/* Update the migrate PFN */
 358		if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) &&
 359		    migrate_pfn < reset_migrate) {
 360			source_set = true;
 361			reset_migrate = migrate_pfn;
 362			zone->compact_init_migrate_pfn = reset_migrate;
 363			zone->compact_cached_migrate_pfn[0] = reset_migrate;
 364			zone->compact_cached_migrate_pfn[1] = reset_migrate;
 365		}
 366
 367		/* Update the free PFN */
 368		if (__reset_isolation_pfn(zone, free_pfn, free_set, true) &&
 369		    free_pfn > reset_free) {
 370			free_set = true;
 371			reset_free = free_pfn;
 372			zone->compact_init_free_pfn = reset_free;
 373			zone->compact_cached_free_pfn = reset_free;
 374		}
 375	}
 376
 377	/* Leave no distance if no suitable block was reset */
 378	if (reset_migrate >= reset_free) {
 379		zone->compact_cached_migrate_pfn[0] = migrate_pfn;
 380		zone->compact_cached_migrate_pfn[1] = migrate_pfn;
 381		zone->compact_cached_free_pfn = free_pfn;
 382	}
 383}
 384
 385void reset_isolation_suitable(pg_data_t *pgdat)
 386{
 387	int zoneid;
 388
 389	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
 390		struct zone *zone = &pgdat->node_zones[zoneid];
 391		if (!populated_zone(zone))
 392			continue;
 393
 394		/* Only flush if a full compaction finished recently */
 395		if (zone->compact_blockskip_flush)
 396			__reset_isolation_suitable(zone);
 397	}
 398}
 399
 400/*
 401 * Sets the pageblock skip bit if it was clear. Note that this is a hint as
 402 * locks are not required for read/writers. Returns true if it was already set.
 403 */
 404static bool test_and_set_skip(struct compact_control *cc, struct page *page,
 405							unsigned long pfn)
 406{
 407	bool skip;
 408
 409	/* Do no update if skip hint is being ignored */
 410	if (cc->ignore_skip_hint)
 411		return false;
 412
 413	if (!IS_ALIGNED(pfn, pageblock_nr_pages))
 414		return false;
 415
 416	skip = get_pageblock_skip(page);
 417	if (!skip && !cc->no_set_skip_hint)
 418		set_pageblock_skip(page);
 419
 420	return skip;
 421}
 422
 423static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
 424{
 425	struct zone *zone = cc->zone;
 426
 427	pfn = pageblock_end_pfn(pfn);
 428
 429	/* Set for isolation rather than compaction */
 430	if (cc->no_set_skip_hint)
 431		return;
 432
 433	if (pfn > zone->compact_cached_migrate_pfn[0])
 434		zone->compact_cached_migrate_pfn[0] = pfn;
 435	if (cc->mode != MIGRATE_ASYNC &&
 436	    pfn > zone->compact_cached_migrate_pfn[1])
 437		zone->compact_cached_migrate_pfn[1] = pfn;
 438}
 439
 440/*
 441 * If no pages were isolated then mark this pageblock to be skipped in the
 442 * future. The information is later cleared by __reset_isolation_suitable().
 443 */
 444static void update_pageblock_skip(struct compact_control *cc,
 445			struct page *page, unsigned long pfn)
 
 446{
 447	struct zone *zone = cc->zone;
 
 448
 449	if (cc->no_set_skip_hint)
 450		return;
 451
 452	if (!page)
 453		return;
 454
 
 
 
 455	set_pageblock_skip(page);
 456
 
 
 457	/* Update where async and sync compaction should restart */
 458	if (pfn < zone->compact_cached_free_pfn)
 459		zone->compact_cached_free_pfn = pfn;
 
 
 
 
 
 
 
 
 460}
 461#else
 462static inline bool isolation_suitable(struct compact_control *cc,
 463					struct page *page)
 464{
 465	return true;
 466}
 467
 468static inline bool pageblock_skip_persistent(struct page *page)
 469{
 470	return false;
 471}
 472
 473static inline void update_pageblock_skip(struct compact_control *cc,
 474			struct page *page, unsigned long pfn)
 475{
 476}
 477
 478static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
 479{
 480}
 481
 482static bool test_and_set_skip(struct compact_control *cc, struct page *page,
 483							unsigned long pfn)
 484{
 485	return false;
 486}
 487#endif /* CONFIG_COMPACTION */
 488
 489/*
 490 * Compaction requires the taking of some coarse locks that are potentially
 491 * very heavily contended. For async compaction, trylock and record if the
 492 * lock is contended. The lock will still be acquired but compaction will
 493 * abort when the current block is finished regardless of success rate.
 494 * Sync compaction acquires the lock.
 495 *
 496 * Always returns true which makes it easier to track lock state in callers.
 
 497 */
 498static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags,
 499						struct compact_control *cc)
 500	__acquires(lock)
 501{
 502	/* Track if the lock is contended in async mode */
 503	if (cc->mode == MIGRATE_ASYNC && !cc->contended) {
 504		if (spin_trylock_irqsave(lock, *flags))
 505			return true;
 506
 507		cc->contended = true;
 
 508	}
 509
 510	spin_lock_irqsave(lock, *flags);
 511	return true;
 512}
 513
 514/*
 515 * Compaction requires the taking of some coarse locks that are potentially
 516 * very heavily contended. The lock should be periodically unlocked to avoid
 517 * having disabled IRQs for a long time, even when there is nobody waiting on
 518 * the lock. It might also be that allowing the IRQs will result in
 519 * need_resched() becoming true. If scheduling is needed, async compaction
 520 * aborts. Sync compaction schedules.
 521 * Either compaction type will also abort if a fatal signal is pending.
 522 * In either case if the lock was locked, it is dropped and not regained.
 523 *
 524 * Returns true if compaction should abort due to fatal signal pending, or
 525 *		async compaction due to need_resched()
 526 * Returns false when compaction can continue (sync compaction might have
 527 *		scheduled)
 528 */
 529static bool compact_unlock_should_abort(spinlock_t *lock,
 530		unsigned long flags, bool *locked, struct compact_control *cc)
 531{
 532	if (*locked) {
 533		spin_unlock_irqrestore(lock, flags);
 534		*locked = false;
 535	}
 536
 537	if (fatal_signal_pending(current)) {
 538		cc->contended = true;
 539		return true;
 540	}
 541
 542	cond_resched();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 543
 544	return false;
 545}
 546
 547/*
 548 * Isolate free pages onto a private freelist. If @strict is true, will abort
 549 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
 550 * (even though it may still end up isolating some pages).
 551 */
 552static unsigned long isolate_freepages_block(struct compact_control *cc,
 553				unsigned long *start_pfn,
 554				unsigned long end_pfn,
 555				struct list_head *freelist,
 556				unsigned int stride,
 557				bool strict)
 558{
 559	int nr_scanned = 0, total_isolated = 0;
 560	struct page *cursor;
 561	unsigned long flags = 0;
 562	bool locked = false;
 563	unsigned long blockpfn = *start_pfn;
 564	unsigned int order;
 565
 566	/* Strict mode is for isolation, speed is secondary */
 567	if (strict)
 568		stride = 1;
 569
 570	cursor = pfn_to_page(blockpfn);
 571
 572	/* Isolate free pages. */
 573	for (; blockpfn < end_pfn; blockpfn += stride, cursor += stride) {
 574		int isolated;
 575		struct page *page = cursor;
 576
 577		/*
 578		 * Periodically drop the lock (if held) regardless of its
 579		 * contention, to give chance to IRQs. Abort if fatal signal
 580		 * pending or async compaction detects need_resched()
 581		 */
 582		if (!(blockpfn % SWAP_CLUSTER_MAX)
 583		    && compact_unlock_should_abort(&cc->zone->lock, flags,
 584								&locked, cc))
 585			break;
 586
 587		nr_scanned++;
 588		if (!pfn_valid_within(blockpfn))
 589			goto isolate_fail;
 590
 
 
 
 591		/*
 592		 * For compound pages such as THP and hugetlbfs, we can save
 593		 * potentially a lot of iterations if we skip them at once.
 594		 * The check is racy, but we can consider only valid values
 595		 * and the only danger is skipping too much.
 596		 */
 597		if (PageCompound(page)) {
 598			const unsigned int order = compound_order(page);
 599
 600			if (likely(order < MAX_ORDER)) {
 601				blockpfn += (1UL << order) - 1;
 602				cursor += (1UL << order) - 1;
 603			}
 
 604			goto isolate_fail;
 605		}
 606
 607		if (!PageBuddy(page))
 608			goto isolate_fail;
 609
 610		/*
 611		 * If we already hold the lock, we can skip some rechecking.
 612		 * Note that if we hold the lock now, checked_pageblock was
 613		 * already set in some previous iteration (or strict is true),
 614		 * so it is correct to skip the suitable migration target
 615		 * recheck as well.
 616		 */
 617		if (!locked) {
 618			locked = compact_lock_irqsave(&cc->zone->lock,
 
 
 
 
 
 
 
 
 619								&flags, cc);
 
 
 620
 621			/* Recheck this is a buddy page under lock */
 622			if (!PageBuddy(page))
 623				goto isolate_fail;
 624		}
 625
 626		/* Found a free page, will break it into order-0 pages */
 627		order = buddy_order(page);
 628		isolated = __isolate_free_page(page, order);
 629		if (!isolated)
 630			break;
 631		set_page_private(page, order);
 
 632
 633		total_isolated += isolated;
 634		cc->nr_freepages += isolated;
 635		list_add_tail(&page->lru, freelist);
 
 
 
 
 
 636
 637		if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
 638			blockpfn += isolated;
 639			break;
 640		}
 641		/* Advance to the end of split page */
 642		blockpfn += isolated - 1;
 643		cursor += isolated - 1;
 644		continue;
 645
 646isolate_fail:
 647		if (strict)
 648			break;
 649		else
 650			continue;
 651
 652	}
 653
 654	if (locked)
 655		spin_unlock_irqrestore(&cc->zone->lock, flags);
 656
 657	/*
 658	 * There is a tiny chance that we have read bogus compound_order(),
 659	 * so be careful to not go outside of the pageblock.
 660	 */
 661	if (unlikely(blockpfn > end_pfn))
 662		blockpfn = end_pfn;
 663
 664	trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
 665					nr_scanned, total_isolated);
 666
 667	/* Record how far we have got within the block */
 668	*start_pfn = blockpfn;
 669
 670	/*
 671	 * If strict isolation is requested by CMA then check that all the
 672	 * pages requested were isolated. If there were any failures, 0 is
 673	 * returned and CMA will fail.
 674	 */
 675	if (strict && blockpfn < end_pfn)
 676		total_isolated = 0;
 677
 678	cc->total_free_scanned += nr_scanned;
 
 
 
 
 
 
 
 679	if (total_isolated)
 680		count_compact_events(COMPACTISOLATED, total_isolated);
 681	return total_isolated;
 682}
 683
 684/**
 685 * isolate_freepages_range() - isolate free pages.
 686 * @cc:        Compaction control structure.
 687 * @start_pfn: The first PFN to start isolating.
 688 * @end_pfn:   The one-past-last PFN.
 689 *
 690 * Non-free pages, invalid PFNs, or zone boundaries within the
 691 * [start_pfn, end_pfn) range are considered errors, cause function to
 692 * undo its actions and return zero.
 693 *
 694 * Otherwise, function returns one-past-the-last PFN of isolated page
 695 * (which may be greater then end_pfn if end fell in a middle of
 696 * a free page).
 697 */
 698unsigned long
 699isolate_freepages_range(struct compact_control *cc,
 700			unsigned long start_pfn, unsigned long end_pfn)
 701{
 702	unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
 703	LIST_HEAD(freelist);
 704
 705	pfn = start_pfn;
 706	block_start_pfn = pageblock_start_pfn(pfn);
 707	if (block_start_pfn < cc->zone->zone_start_pfn)
 708		block_start_pfn = cc->zone->zone_start_pfn;
 709	block_end_pfn = pageblock_end_pfn(pfn);
 710
 711	for (; pfn < end_pfn; pfn += isolated,
 712				block_start_pfn = block_end_pfn,
 713				block_end_pfn += pageblock_nr_pages) {
 714		/* Protect pfn from changing by isolate_freepages_block */
 715		unsigned long isolate_start_pfn = pfn;
 716
 717		block_end_pfn = min(block_end_pfn, end_pfn);
 718
 719		/*
 720		 * pfn could pass the block_end_pfn if isolated freepage
 721		 * is more than pageblock order. In this case, we adjust
 722		 * scanning range to right one.
 723		 */
 724		if (pfn >= block_end_pfn) {
 725			block_start_pfn = pageblock_start_pfn(pfn);
 726			block_end_pfn = pageblock_end_pfn(pfn);
 727			block_end_pfn = min(block_end_pfn, end_pfn);
 728		}
 729
 730		if (!pageblock_pfn_to_page(block_start_pfn,
 731					block_end_pfn, cc->zone))
 732			break;
 733
 734		isolated = isolate_freepages_block(cc, &isolate_start_pfn,
 735					block_end_pfn, &freelist, 0, true);
 736
 737		/*
 738		 * In strict mode, isolate_freepages_block() returns 0 if
 739		 * there are any holes in the block (ie. invalid PFNs or
 740		 * non-free pages).
 741		 */
 742		if (!isolated)
 743			break;
 744
 745		/*
 746		 * If we managed to isolate pages, it is always (1 << n) *
 747		 * pageblock_nr_pages for some non-negative n.  (Max order
 748		 * page may span two pageblocks).
 749		 */
 750	}
 751
 752	/* __isolate_free_page() does not map the pages */
 753	split_map_pages(&freelist);
 754
 755	if (pfn < end_pfn) {
 756		/* Loop terminated early, cleanup. */
 757		release_freepages(&freelist);
 758		return 0;
 759	}
 760
 761	/* We don't use freelists for anything. */
 762	return pfn;
 763}
 764
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 765/* Similar to reclaim, but different enough that they don't share logic */
 766static bool too_many_isolated(pg_data_t *pgdat)
 767{
 768	unsigned long active, inactive, isolated;
 769
 770	inactive = node_page_state(pgdat, NR_INACTIVE_FILE) +
 771			node_page_state(pgdat, NR_INACTIVE_ANON);
 772	active = node_page_state(pgdat, NR_ACTIVE_FILE) +
 773			node_page_state(pgdat, NR_ACTIVE_ANON);
 774	isolated = node_page_state(pgdat, NR_ISOLATED_FILE) +
 775			node_page_state(pgdat, NR_ISOLATED_ANON);
 776
 777	return isolated > (inactive + active) / 2;
 778}
 779
 780/**
 781 * isolate_migratepages_block() - isolate all migrate-able pages within
 782 *				  a single pageblock
 783 * @cc:		Compaction control structure.
 784 * @low_pfn:	The first PFN to isolate
 785 * @end_pfn:	The one-past-the-last PFN to isolate, within same pageblock
 786 * @isolate_mode: Isolation mode to be used.
 787 *
 788 * Isolate all pages that can be migrated from the range specified by
 789 * [low_pfn, end_pfn). The range is expected to be within same pageblock.
 790 * Returns errno, like -EAGAIN or -EINTR in case e.g signal pending or congestion,
 791 * -ENOMEM in case we could not allocate a page, or 0.
 792 * cc->migrate_pfn will contain the next pfn to scan.
 793 *
 794 * The pages are isolated on cc->migratepages list (not required to be empty),
 795 * and cc->nr_migratepages is updated accordingly.
 
 796 */
 797static int
 798isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
 799			unsigned long end_pfn, isolate_mode_t isolate_mode)
 800{
 801	pg_data_t *pgdat = cc->zone->zone_pgdat;
 802	unsigned long nr_scanned = 0, nr_isolated = 0;
 
 803	struct lruvec *lruvec;
 804	unsigned long flags = 0;
 805	struct lruvec *locked = NULL;
 806	struct page *page = NULL, *valid_page = NULL;
 807	unsigned long start_pfn = low_pfn;
 808	bool skip_on_failure = false;
 809	unsigned long next_skip_pfn = 0;
 810	bool skip_updated = false;
 811	int ret = 0;
 812
 813	cc->migrate_pfn = low_pfn;
 814
 815	/*
 816	 * Ensure that there are not too many pages isolated from the LRU
 817	 * list by either parallel reclaimers or compaction. If there are,
 818	 * delay for some time until fewer pages are isolated
 819	 */
 820	while (unlikely(too_many_isolated(pgdat))) {
 821		/* stop isolation if there are still pages not migrated */
 822		if (cc->nr_migratepages)
 823			return -EAGAIN;
 824
 825		/* async migration should just abort */
 826		if (cc->mode == MIGRATE_ASYNC)
 827			return -EAGAIN;
 828
 829		congestion_wait(BLK_RW_ASYNC, HZ/10);
 830
 831		if (fatal_signal_pending(current))
 832			return -EINTR;
 833	}
 834
 835	cond_resched();
 836
 837	if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
 838		skip_on_failure = true;
 839		next_skip_pfn = block_end_pfn(low_pfn, cc->order);
 840	}
 841
 842	/* Time to isolate some pages for migration */
 843	for (; low_pfn < end_pfn; low_pfn++) {
 844
 845		if (skip_on_failure && low_pfn >= next_skip_pfn) {
 846			/*
 847			 * We have isolated all migration candidates in the
 848			 * previous order-aligned block, and did not skip it due
 849			 * to failure. We should migrate the pages now and
 850			 * hopefully succeed compaction.
 851			 */
 852			if (nr_isolated)
 853				break;
 854
 855			/*
 856			 * We failed to isolate in the previous order-aligned
 857			 * block. Set the new boundary to the end of the
 858			 * current block. Note we can't simply increase
 859			 * next_skip_pfn by 1 << order, as low_pfn might have
 860			 * been incremented by a higher number due to skipping
 861			 * a compound or a high-order buddy page in the
 862			 * previous loop iteration.
 863			 */
 864			next_skip_pfn = block_end_pfn(low_pfn, cc->order);
 865		}
 866
 867		/*
 868		 * Periodically drop the lock (if held) regardless of its
 869		 * contention, to give chance to IRQs. Abort completely if
 870		 * a fatal signal is pending.
 871		 */
 872		if (!(low_pfn % SWAP_CLUSTER_MAX)) {
 873			if (locked) {
 874				unlock_page_lruvec_irqrestore(locked, flags);
 875				locked = NULL;
 876			}
 877
 878			if (fatal_signal_pending(current)) {
 879				cc->contended = true;
 880				ret = -EINTR;
 881
 882				goto fatal_pending;
 883			}
 884
 885			cond_resched();
 886		}
 887
 888		if (!pfn_valid_within(low_pfn))
 889			goto isolate_fail;
 890		nr_scanned++;
 891
 892		page = pfn_to_page(low_pfn);
 893
 894		/*
 895		 * Check if the pageblock has already been marked skipped.
 896		 * Only the aligned PFN is checked as the caller isolates
 897		 * COMPACT_CLUSTER_MAX at a time so the second call must
 898		 * not falsely conclude that the block should be skipped.
 899		 */
 900		if (!valid_page && IS_ALIGNED(low_pfn, pageblock_nr_pages)) {
 901			if (!cc->ignore_skip_hint && get_pageblock_skip(page)) {
 902				low_pfn = end_pfn;
 903				page = NULL;
 904				goto isolate_abort;
 905			}
 906			valid_page = page;
 907		}
 908
 909		if (PageHuge(page) && cc->alloc_contig) {
 910			ret = isolate_or_dissolve_huge_page(page, &cc->migratepages);
 911
 912			/*
 913			 * Fail isolation in case isolate_or_dissolve_huge_page()
 914			 * reports an error. In case of -ENOMEM, abort right away.
 915			 */
 916			if (ret < 0) {
 917				 /* Do not report -EBUSY down the chain */
 918				if (ret == -EBUSY)
 919					ret = 0;
 920				low_pfn += (1UL << compound_order(page)) - 1;
 921				goto isolate_fail;
 922			}
 923
 924			if (PageHuge(page)) {
 925				/*
 926				 * Hugepage was successfully isolated and placed
 927				 * on the cc->migratepages list.
 928				 */
 929				low_pfn += compound_nr(page) - 1;
 930				goto isolate_success_no_list;
 931			}
 932
 933			/*
 934			 * Ok, the hugepage was dissolved. Now these pages are
 935			 * Buddy and cannot be re-allocated because they are
 936			 * isolated. Fall-through as the check below handles
 937			 * Buddy pages.
 938			 */
 939		}
 940
 941		/*
 942		 * Skip if free. We read page order here without zone lock
 943		 * which is generally unsafe, but the race window is small and
 944		 * the worst thing that can happen is that we skip some
 945		 * potential isolation targets.
 946		 */
 947		if (PageBuddy(page)) {
 948			unsigned long freepage_order = buddy_order_unsafe(page);
 949
 950			/*
 951			 * Without lock, we cannot be sure that what we got is
 952			 * a valid page order. Consider only values in the
 953			 * valid order range to prevent low_pfn overflow.
 954			 */
 955			if (freepage_order > 0 && freepage_order < MAX_ORDER)
 956				low_pfn += (1UL << freepage_order) - 1;
 957			continue;
 958		}
 959
 960		/*
 961		 * Regardless of being on LRU, compound pages such as THP and
 962		 * hugetlbfs are not to be compacted unless we are attempting
 963		 * an allocation much larger than the huge page size (eg CMA).
 964		 * We can potentially save a lot of iterations if we skip them
 965		 * at once. The check is racy, but we can consider only valid
 966		 * values and the only danger is skipping too much.
 967		 */
 968		if (PageCompound(page) && !cc->alloc_contig) {
 969			const unsigned int order = compound_order(page);
 970
 971			if (likely(order < MAX_ORDER))
 972				low_pfn += (1UL << order) - 1;
 973			goto isolate_fail;
 
 
 974		}
 975
 976		/*
 977		 * Check may be lockless but that's ok as we recheck later.
 978		 * It's possible to migrate LRU and non-lru movable pages.
 979		 * Skip any other type of page
 
 
 980		 */
 981		if (!PageLRU(page)) {
 982			/*
 983			 * __PageMovable can return false positive so we need
 984			 * to verify it under page_lock.
 985			 */
 986			if (unlikely(__PageMovable(page)) &&
 987					!PageIsolated(page)) {
 988				if (locked) {
 989					unlock_page_lruvec_irqrestore(locked, flags);
 990					locked = NULL;
 991				}
 992
 993				if (!isolate_movable_page(page, isolate_mode))
 994					goto isolate_success;
 995			}
 996
 997			goto isolate_fail;
 998		}
 999
 
 
 
1000		/*
1001		 * Migration will fail if an anonymous page is pinned in memory,
1002		 * so avoid taking lru_lock and isolating it unnecessarily in an
1003		 * admittedly racy check.
1004		 */
1005		if (!page_mapping(page) &&
1006		    page_count(page) > page_mapcount(page))
1007			goto isolate_fail;
1008
1009		/*
1010		 * Only allow to migrate anonymous pages in GFP_NOFS context
1011		 * because those do not depend on fs locks.
1012		 */
1013		if (!(cc->gfp_mask & __GFP_FS) && page_mapping(page))
1014			goto isolate_fail;
1015
1016		/*
1017		 * Be careful not to clear PageLRU until after we're
1018		 * sure the page is not being freed elsewhere -- the
1019		 * page release code relies on it.
1020		 */
1021		if (unlikely(!get_page_unless_zero(page)))
1022			goto isolate_fail;
1023
1024		if (!__isolate_lru_page_prepare(page, isolate_mode))
1025			goto isolate_fail_put;
1026
1027		/* Try isolate the page */
1028		if (!TestClearPageLRU(page))
1029			goto isolate_fail_put;
1030
1031		lruvec = mem_cgroup_page_lruvec(page);
1032
1033		/* If we already hold the lock, we can skip some rechecking */
1034		if (lruvec != locked) {
1035			if (locked)
1036				unlock_page_lruvec_irqrestore(locked, flags);
1037
1038			compact_lock_irqsave(&lruvec->lru_lock, &flags, cc);
1039			locked = lruvec;
1040
1041			lruvec_memcg_debug(lruvec, page);
1042
1043			/* Try get exclusive access under lock */
1044			if (!skip_updated) {
1045				skip_updated = true;
1046				if (test_and_set_skip(cc, page, low_pfn))
1047					goto isolate_abort;
1048			}
1049
1050			/*
1051			 * Page become compound since the non-locked check,
1052			 * and it's on LRU. It can only be a THP so the order
1053			 * is safe to read and it's 0 for tail pages.
1054			 */
1055			if (unlikely(PageCompound(page) && !cc->alloc_contig)) {
1056				low_pfn += compound_nr(page) - 1;
1057				SetPageLRU(page);
1058				goto isolate_fail_put;
1059			}
1060		}
1061
1062		/* The whole page is taken off the LRU; skip the tail pages. */
1063		if (PageCompound(page))
1064			low_pfn += compound_nr(page) - 1;
 
 
 
 
1065
1066		/* Successfully isolated */
1067		del_page_from_lru_list(page, lruvec);
1068		mod_node_page_state(page_pgdat(page),
1069				NR_ISOLATED_ANON + page_is_file_lru(page),
1070				thp_nr_pages(page));
1071
1072isolate_success:
1073		list_add(&page->lru, &cc->migratepages);
1074isolate_success_no_list:
1075		cc->nr_migratepages += compound_nr(page);
1076		nr_isolated += compound_nr(page);
1077
1078		/*
1079		 * Avoid isolating too much unless this block is being
1080		 * rescanned (e.g. dirty/writeback pages, parallel allocation)
1081		 * or a lock is contended. For contention, isolate quickly to
1082		 * potentially remove one source of contention.
1083		 */
1084		if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX &&
1085		    !cc->rescan && !cc->contended) {
1086			++low_pfn;
1087			break;
1088		}
1089
1090		continue;
1091
1092isolate_fail_put:
1093		/* Avoid potential deadlock in freeing page under lru_lock */
1094		if (locked) {
1095			unlock_page_lruvec_irqrestore(locked, flags);
1096			locked = NULL;
1097		}
1098		put_page(page);
1099
1100isolate_fail:
1101		if (!skip_on_failure && ret != -ENOMEM)
1102			continue;
1103
1104		/*
1105		 * We have isolated some pages, but then failed. Release them
1106		 * instead of migrating, as we cannot form the cc->order buddy
1107		 * page anyway.
1108		 */
1109		if (nr_isolated) {
1110			if (locked) {
1111				unlock_page_lruvec_irqrestore(locked, flags);
1112				locked = NULL;
1113			}
1114			putback_movable_pages(&cc->migratepages);
1115			cc->nr_migratepages = 0;
1116			nr_isolated = 0;
1117		}
1118
1119		if (low_pfn < next_skip_pfn) {
1120			low_pfn = next_skip_pfn - 1;
1121			/*
1122			 * The check near the loop beginning would have updated
1123			 * next_skip_pfn too, but this is a bit simpler.
1124			 */
1125			next_skip_pfn += 1UL << cc->order;
1126		}
1127
1128		if (ret == -ENOMEM)
1129			break;
1130	}
1131
1132	/*
1133	 * The PageBuddy() check could have potentially brought us outside
1134	 * the range to be scanned.
1135	 */
1136	if (unlikely(low_pfn > end_pfn))
1137		low_pfn = end_pfn;
1138
1139	page = NULL;
1140
1141isolate_abort:
1142	if (locked)
1143		unlock_page_lruvec_irqrestore(locked, flags);
1144	if (page) {
1145		SetPageLRU(page);
1146		put_page(page);
1147	}
1148
1149	/*
1150	 * Updated the cached scanner pfn once the pageblock has been scanned
1151	 * Pages will either be migrated in which case there is no point
1152	 * scanning in the near future or migration failed in which case the
1153	 * failure reason may persist. The block is marked for skipping if
1154	 * there were no pages isolated in the block or if the block is
1155	 * rescanned twice in a row.
1156	 */
1157	if (low_pfn == end_pfn && (!nr_isolated || cc->rescan)) {
1158		if (valid_page && !skip_updated)
1159			set_pageblock_skip(valid_page);
1160		update_cached_migrate(cc, low_pfn);
1161	}
1162
1163	trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
1164						nr_scanned, nr_isolated);
1165
1166fatal_pending:
1167	cc->total_migrate_scanned += nr_scanned;
1168	if (nr_isolated)
1169		count_compact_events(COMPACTISOLATED, nr_isolated);
1170
1171	cc->migrate_pfn = low_pfn;
1172
1173	return ret;
1174}
1175
1176/**
1177 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
1178 * @cc:        Compaction control structure.
1179 * @start_pfn: The first PFN to start isolating.
1180 * @end_pfn:   The one-past-last PFN.
1181 *
1182 * Returns -EAGAIN when contented, -EINTR in case of a signal pending, -ENOMEM
1183 * in case we could not allocate a page, or 0.
 
1184 */
1185int
1186isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
1187							unsigned long end_pfn)
1188{
1189	unsigned long pfn, block_start_pfn, block_end_pfn;
1190	int ret = 0;
1191
1192	/* Scan block by block. First and last block may be incomplete */
1193	pfn = start_pfn;
1194	block_start_pfn = pageblock_start_pfn(pfn);
1195	if (block_start_pfn < cc->zone->zone_start_pfn)
1196		block_start_pfn = cc->zone->zone_start_pfn;
1197	block_end_pfn = pageblock_end_pfn(pfn);
1198
1199	for (; pfn < end_pfn; pfn = block_end_pfn,
1200				block_start_pfn = block_end_pfn,
1201				block_end_pfn += pageblock_nr_pages) {
1202
1203		block_end_pfn = min(block_end_pfn, end_pfn);
1204
1205		if (!pageblock_pfn_to_page(block_start_pfn,
1206					block_end_pfn, cc->zone))
1207			continue;
1208
1209		ret = isolate_migratepages_block(cc, pfn, block_end_pfn,
1210						 ISOLATE_UNEVICTABLE);
1211
1212		if (ret)
1213			break;
1214
1215		if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX)
1216			break;
1217	}
 
1218
1219	return ret;
1220}
1221
1222#endif /* CONFIG_COMPACTION || CONFIG_CMA */
1223#ifdef CONFIG_COMPACTION
1224
1225static bool suitable_migration_source(struct compact_control *cc,
1226							struct page *page)
1227{
1228	int block_mt;
1229
1230	if (pageblock_skip_persistent(page))
1231		return false;
1232
1233	if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
1234		return true;
1235
1236	block_mt = get_pageblock_migratetype(page);
1237
1238	if (cc->migratetype == MIGRATE_MOVABLE)
1239		return is_migrate_movable(block_mt);
1240	else
1241		return block_mt == cc->migratetype;
1242}
1243
1244/* Returns true if the page is within a block suitable for migration to */
1245static bool suitable_migration_target(struct compact_control *cc,
1246							struct page *page)
1247{
1248	/* If the page is a large free page, then disallow migration */
1249	if (PageBuddy(page)) {
1250		/*
1251		 * We are checking page_order without zone->lock taken. But
1252		 * the only small danger is that we skip a potentially suitable
1253		 * pageblock, so it's not worth to check order for valid range.
1254		 */
1255		if (buddy_order_unsafe(page) >= pageblock_order)
1256			return false;
1257	}
1258
1259	if (cc->ignore_block_suitable)
1260		return true;
1261
1262	/* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1263	if (is_migrate_movable(get_pageblock_migratetype(page)))
1264		return true;
1265
1266	/* Otherwise skip the block */
1267	return false;
1268}
1269
1270static inline unsigned int
1271freelist_scan_limit(struct compact_control *cc)
1272{
1273	unsigned short shift = BITS_PER_LONG - 1;
1274
1275	return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1;
1276}
1277
1278/*
1279 * Test whether the free scanner has reached the same or lower pageblock than
1280 * the migration scanner, and compaction should thus terminate.
1281 */
1282static inline bool compact_scanners_met(struct compact_control *cc)
1283{
1284	return (cc->free_pfn >> pageblock_order)
1285		<= (cc->migrate_pfn >> pageblock_order);
1286}
1287
1288/*
1289 * Used when scanning for a suitable migration target which scans freelists
1290 * in reverse. Reorders the list such as the unscanned pages are scanned
1291 * first on the next iteration of the free scanner
1292 */
1293static void
1294move_freelist_head(struct list_head *freelist, struct page *freepage)
1295{
1296	LIST_HEAD(sublist);
1297
1298	if (!list_is_last(freelist, &freepage->lru)) {
1299		list_cut_before(&sublist, freelist, &freepage->lru);
1300		list_splice_tail(&sublist, freelist);
1301	}
1302}
1303
1304/*
1305 * Similar to move_freelist_head except used by the migration scanner
1306 * when scanning forward. It's possible for these list operations to
1307 * move against each other if they search the free list exactly in
1308 * lockstep.
1309 */
1310static void
1311move_freelist_tail(struct list_head *freelist, struct page *freepage)
1312{
1313	LIST_HEAD(sublist);
1314
1315	if (!list_is_first(freelist, &freepage->lru)) {
1316		list_cut_position(&sublist, freelist, &freepage->lru);
1317		list_splice_tail(&sublist, freelist);
1318	}
1319}
1320
1321static void
1322fast_isolate_around(struct compact_control *cc, unsigned long pfn, unsigned long nr_isolated)
1323{
1324	unsigned long start_pfn, end_pfn;
1325	struct page *page;
1326
1327	/* Do not search around if there are enough pages already */
1328	if (cc->nr_freepages >= cc->nr_migratepages)
1329		return;
1330
1331	/* Minimise scanning during async compaction */
1332	if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC)
1333		return;
1334
1335	/* Pageblock boundaries */
1336	start_pfn = max(pageblock_start_pfn(pfn), cc->zone->zone_start_pfn);
1337	end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone));
1338
1339	page = pageblock_pfn_to_page(start_pfn, end_pfn, cc->zone);
1340	if (!page)
1341		return;
1342
1343	/* Scan before */
1344	if (start_pfn != pfn) {
1345		isolate_freepages_block(cc, &start_pfn, pfn, &cc->freepages, 1, false);
1346		if (cc->nr_freepages >= cc->nr_migratepages)
1347			return;
1348	}
1349
1350	/* Scan after */
1351	start_pfn = pfn + nr_isolated;
1352	if (start_pfn < end_pfn)
1353		isolate_freepages_block(cc, &start_pfn, end_pfn, &cc->freepages, 1, false);
1354
1355	/* Skip this pageblock in the future as it's full or nearly full */
1356	if (cc->nr_freepages < cc->nr_migratepages)
1357		set_pageblock_skip(page);
1358}
1359
1360/* Search orders in round-robin fashion */
1361static int next_search_order(struct compact_control *cc, int order)
1362{
1363	order--;
1364	if (order < 0)
1365		order = cc->order - 1;
1366
1367	/* Search wrapped around? */
1368	if (order == cc->search_order) {
1369		cc->search_order--;
1370		if (cc->search_order < 0)
1371			cc->search_order = cc->order - 1;
1372		return -1;
1373	}
1374
1375	return order;
1376}
1377
1378static unsigned long
1379fast_isolate_freepages(struct compact_control *cc)
1380{
1381	unsigned int limit = max(1U, freelist_scan_limit(cc) >> 1);
1382	unsigned int nr_scanned = 0;
1383	unsigned long low_pfn, min_pfn, highest = 0;
1384	unsigned long nr_isolated = 0;
1385	unsigned long distance;
1386	struct page *page = NULL;
1387	bool scan_start = false;
1388	int order;
1389
1390	/* Full compaction passes in a negative order */
1391	if (cc->order <= 0)
1392		return cc->free_pfn;
1393
1394	/*
1395	 * If starting the scan, use a deeper search and use the highest
1396	 * PFN found if a suitable one is not found.
1397	 */
1398	if (cc->free_pfn >= cc->zone->compact_init_free_pfn) {
1399		limit = pageblock_nr_pages >> 1;
1400		scan_start = true;
1401	}
1402
1403	/*
1404	 * Preferred point is in the top quarter of the scan space but take
1405	 * a pfn from the top half if the search is problematic.
1406	 */
1407	distance = (cc->free_pfn - cc->migrate_pfn);
1408	low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2));
1409	min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1));
1410
1411	if (WARN_ON_ONCE(min_pfn > low_pfn))
1412		low_pfn = min_pfn;
1413
1414	/*
1415	 * Search starts from the last successful isolation order or the next
1416	 * order to search after a previous failure
1417	 */
1418	cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order);
1419
1420	for (order = cc->search_order;
1421	     !page && order >= 0;
1422	     order = next_search_order(cc, order)) {
1423		struct free_area *area = &cc->zone->free_area[order];
1424		struct list_head *freelist;
1425		struct page *freepage;
1426		unsigned long flags;
1427		unsigned int order_scanned = 0;
1428		unsigned long high_pfn = 0;
1429
1430		if (!area->nr_free)
1431			continue;
1432
1433		spin_lock_irqsave(&cc->zone->lock, flags);
1434		freelist = &area->free_list[MIGRATE_MOVABLE];
1435		list_for_each_entry_reverse(freepage, freelist, lru) {
1436			unsigned long pfn;
1437
1438			order_scanned++;
1439			nr_scanned++;
1440			pfn = page_to_pfn(freepage);
1441
1442			if (pfn >= highest)
1443				highest = max(pageblock_start_pfn(pfn),
1444					      cc->zone->zone_start_pfn);
1445
1446			if (pfn >= low_pfn) {
1447				cc->fast_search_fail = 0;
1448				cc->search_order = order;
1449				page = freepage;
1450				break;
1451			}
1452
1453			if (pfn >= min_pfn && pfn > high_pfn) {
1454				high_pfn = pfn;
1455
1456				/* Shorten the scan if a candidate is found */
1457				limit >>= 1;
1458			}
1459
1460			if (order_scanned >= limit)
1461				break;
1462		}
1463
1464		/* Use a minimum pfn if a preferred one was not found */
1465		if (!page && high_pfn) {
1466			page = pfn_to_page(high_pfn);
1467
1468			/* Update freepage for the list reorder below */
1469			freepage = page;
1470		}
1471
1472		/* Reorder to so a future search skips recent pages */
1473		move_freelist_head(freelist, freepage);
1474
1475		/* Isolate the page if available */
1476		if (page) {
1477			if (__isolate_free_page(page, order)) {
1478				set_page_private(page, order);
1479				nr_isolated = 1 << order;
1480				cc->nr_freepages += nr_isolated;
1481				list_add_tail(&page->lru, &cc->freepages);
1482				count_compact_events(COMPACTISOLATED, nr_isolated);
1483			} else {
1484				/* If isolation fails, abort the search */
1485				order = cc->search_order + 1;
1486				page = NULL;
1487			}
1488		}
1489
1490		spin_unlock_irqrestore(&cc->zone->lock, flags);
1491
1492		/*
1493		 * Smaller scan on next order so the total scan is related
1494		 * to freelist_scan_limit.
1495		 */
1496		if (order_scanned >= limit)
1497			limit = max(1U, limit >> 1);
1498	}
1499
1500	if (!page) {
1501		cc->fast_search_fail++;
1502		if (scan_start) {
1503			/*
1504			 * Use the highest PFN found above min. If one was
1505			 * not found, be pessimistic for direct compaction
1506			 * and use the min mark.
1507			 */
1508			if (highest) {
1509				page = pfn_to_page(highest);
1510				cc->free_pfn = highest;
1511			} else {
1512				if (cc->direct_compaction && pfn_valid(min_pfn)) {
1513					page = pageblock_pfn_to_page(min_pfn,
1514						min(pageblock_end_pfn(min_pfn),
1515						    zone_end_pfn(cc->zone)),
1516						cc->zone);
1517					cc->free_pfn = min_pfn;
1518				}
1519			}
1520		}
1521	}
1522
1523	if (highest && highest >= cc->zone->compact_cached_free_pfn) {
1524		highest -= pageblock_nr_pages;
1525		cc->zone->compact_cached_free_pfn = highest;
1526	}
1527
1528	cc->total_free_scanned += nr_scanned;
1529	if (!page)
1530		return cc->free_pfn;
1531
1532	low_pfn = page_to_pfn(page);
1533	fast_isolate_around(cc, low_pfn, nr_isolated);
1534	return low_pfn;
1535}
1536
1537/*
1538 * Based on information in the current compact_control, find blocks
1539 * suitable for isolating free pages from and then isolate them.
1540 */
1541static void isolate_freepages(struct compact_control *cc)
1542{
1543	struct zone *zone = cc->zone;
1544	struct page *page;
1545	unsigned long block_start_pfn;	/* start of current pageblock */
1546	unsigned long isolate_start_pfn; /* exact pfn we start at */
1547	unsigned long block_end_pfn;	/* end of current pageblock */
1548	unsigned long low_pfn;	     /* lowest pfn scanner is able to scan */
1549	struct list_head *freelist = &cc->freepages;
1550	unsigned int stride;
1551
1552	/* Try a small search of the free lists for a candidate */
1553	isolate_start_pfn = fast_isolate_freepages(cc);
1554	if (cc->nr_freepages)
1555		goto splitmap;
1556
1557	/*
1558	 * Initialise the free scanner. The starting point is where we last
1559	 * successfully isolated from, zone-cached value, or the end of the
1560	 * zone when isolating for the first time. For looping we also need
1561	 * this pfn aligned down to the pageblock boundary, because we do
1562	 * block_start_pfn -= pageblock_nr_pages in the for loop.
1563	 * For ending point, take care when isolating in last pageblock of a
1564	 * zone which ends in the middle of a pageblock.
1565	 * The low boundary is the end of the pageblock the migration scanner
1566	 * is using.
1567	 */
1568	isolate_start_pfn = cc->free_pfn;
1569	block_start_pfn = pageblock_start_pfn(isolate_start_pfn);
1570	block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1571						zone_end_pfn(zone));
1572	low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1573	stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1;
1574
1575	/*
1576	 * Isolate free pages until enough are available to migrate the
1577	 * pages on cc->migratepages. We stop searching if the migrate
1578	 * and free page scanners meet or enough free pages are isolated.
1579	 */
1580	for (; block_start_pfn >= low_pfn;
1581				block_end_pfn = block_start_pfn,
1582				block_start_pfn -= pageblock_nr_pages,
1583				isolate_start_pfn = block_start_pfn) {
1584		unsigned long nr_isolated;
1585
1586		/*
1587		 * This can iterate a massively long zone without finding any
1588		 * suitable migration targets, so periodically check resched.
 
1589		 */
1590		if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)))
1591			cond_resched();
 
1592
1593		page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1594									zone);
1595		if (!page)
1596			continue;
1597
1598		/* Check the block is suitable for migration */
1599		if (!suitable_migration_target(cc, page))
1600			continue;
1601
1602		/* If isolation recently failed, do not retry */
1603		if (!isolation_suitable(cc, page))
1604			continue;
1605
1606		/* Found a block suitable for isolating free pages from. */
1607		nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn,
1608					block_end_pfn, freelist, stride, false);
1609
1610		/* Update the skip hint if the full pageblock was scanned */
1611		if (isolate_start_pfn == block_end_pfn)
1612			update_pageblock_skip(cc, page, block_start_pfn);
1613
1614		/* Are enough freepages isolated? */
1615		if (cc->nr_freepages >= cc->nr_migratepages) {
1616			if (isolate_start_pfn >= block_end_pfn) {
1617				/*
1618				 * Restart at previous pageblock if more
1619				 * freepages can be isolated next time.
1620				 */
 
 
 
1621				isolate_start_pfn =
1622					block_start_pfn - pageblock_nr_pages;
1623			}
1624			break;
1625		} else if (isolate_start_pfn < block_end_pfn) {
1626			/*
1627			 * If isolation failed early, do not continue
1628			 * needlessly.
1629			 */
1630			break;
1631		}
 
1632
1633		/* Adjust stride depending on isolation */
1634		if (nr_isolated) {
1635			stride = 1;
1636			continue;
1637		}
1638		stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1);
1639	}
1640
1641	/*
1642	 * Record where the free scanner will restart next time. Either we
1643	 * broke from the loop and set isolate_start_pfn based on the last
1644	 * call to isolate_freepages_block(), or we met the migration scanner
1645	 * and the loop terminated due to isolate_start_pfn < low_pfn
1646	 */
1647	cc->free_pfn = isolate_start_pfn;
1648
1649splitmap:
1650	/* __isolate_free_page() does not map the pages */
1651	split_map_pages(freelist);
1652}
1653
1654/*
1655 * This is a migrate-callback that "allocates" freepages by taking pages
1656 * from the isolated freelists in the block we are migrating to.
1657 */
1658static struct page *compaction_alloc(struct page *migratepage,
1659					unsigned long data)
 
1660{
1661	struct compact_control *cc = (struct compact_control *)data;
1662	struct page *freepage;
1663
 
 
 
 
1664	if (list_empty(&cc->freepages)) {
1665		isolate_freepages(cc);
 
1666
1667		if (list_empty(&cc->freepages))
1668			return NULL;
1669	}
1670
1671	freepage = list_entry(cc->freepages.next, struct page, lru);
1672	list_del(&freepage->lru);
1673	cc->nr_freepages--;
1674
1675	return freepage;
1676}
1677
1678/*
1679 * This is a migrate-callback that "frees" freepages back to the isolated
1680 * freelist.  All pages on the freelist are from the same zone, so there is no
1681 * special handling needed for NUMA.
1682 */
1683static void compaction_free(struct page *page, unsigned long data)
1684{
1685	struct compact_control *cc = (struct compact_control *)data;
1686
1687	list_add(&page->lru, &cc->freepages);
1688	cc->nr_freepages++;
1689}
1690
1691/* possible outcome of isolate_migratepages */
1692typedef enum {
1693	ISOLATE_ABORT,		/* Abort compaction now */
1694	ISOLATE_NONE,		/* No pages isolated, continue scanning */
1695	ISOLATE_SUCCESS,	/* Pages isolated, migrate */
1696} isolate_migrate_t;
1697
1698/*
1699 * Allow userspace to control policy on scanning the unevictable LRU for
1700 * compactable pages.
1701 */
1702#ifdef CONFIG_PREEMPT_RT
1703int sysctl_compact_unevictable_allowed __read_mostly = 0;
1704#else
1705int sysctl_compact_unevictable_allowed __read_mostly = 1;
1706#endif
1707
1708static inline void
1709update_fast_start_pfn(struct compact_control *cc, unsigned long pfn)
1710{
1711	if (cc->fast_start_pfn == ULONG_MAX)
1712		return;
1713
1714	if (!cc->fast_start_pfn)
1715		cc->fast_start_pfn = pfn;
1716
1717	cc->fast_start_pfn = min(cc->fast_start_pfn, pfn);
1718}
1719
1720static inline unsigned long
1721reinit_migrate_pfn(struct compact_control *cc)
1722{
1723	if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX)
1724		return cc->migrate_pfn;
1725
1726	cc->migrate_pfn = cc->fast_start_pfn;
1727	cc->fast_start_pfn = ULONG_MAX;
1728
1729	return cc->migrate_pfn;
1730}
1731
1732/*
1733 * Briefly search the free lists for a migration source that already has
1734 * some free pages to reduce the number of pages that need migration
1735 * before a pageblock is free.
1736 */
1737static unsigned long fast_find_migrateblock(struct compact_control *cc)
1738{
1739	unsigned int limit = freelist_scan_limit(cc);
1740	unsigned int nr_scanned = 0;
1741	unsigned long distance;
1742	unsigned long pfn = cc->migrate_pfn;
1743	unsigned long high_pfn;
1744	int order;
1745	bool found_block = false;
1746
1747	/* Skip hints are relied on to avoid repeats on the fast search */
1748	if (cc->ignore_skip_hint)
1749		return pfn;
1750
1751	/*
1752	 * If the migrate_pfn is not at the start of a zone or the start
1753	 * of a pageblock then assume this is a continuation of a previous
1754	 * scan restarted due to COMPACT_CLUSTER_MAX.
1755	 */
1756	if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn))
1757		return pfn;
1758
1759	/*
1760	 * For smaller orders, just linearly scan as the number of pages
1761	 * to migrate should be relatively small and does not necessarily
1762	 * justify freeing up a large block for a small allocation.
1763	 */
1764	if (cc->order <= PAGE_ALLOC_COSTLY_ORDER)
1765		return pfn;
1766
1767	/*
1768	 * Only allow kcompactd and direct requests for movable pages to
1769	 * quickly clear out a MOVABLE pageblock for allocation. This
1770	 * reduces the risk that a large movable pageblock is freed for
1771	 * an unmovable/reclaimable small allocation.
1772	 */
1773	if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE)
1774		return pfn;
1775
1776	/*
1777	 * When starting the migration scanner, pick any pageblock within the
1778	 * first half of the search space. Otherwise try and pick a pageblock
1779	 * within the first eighth to reduce the chances that a migration
1780	 * target later becomes a source.
1781	 */
1782	distance = (cc->free_pfn - cc->migrate_pfn) >> 1;
1783	if (cc->migrate_pfn != cc->zone->zone_start_pfn)
1784		distance >>= 2;
1785	high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance);
1786
1787	for (order = cc->order - 1;
1788	     order >= PAGE_ALLOC_COSTLY_ORDER && !found_block && nr_scanned < limit;
1789	     order--) {
1790		struct free_area *area = &cc->zone->free_area[order];
1791		struct list_head *freelist;
1792		unsigned long flags;
1793		struct page *freepage;
1794
1795		if (!area->nr_free)
1796			continue;
1797
1798		spin_lock_irqsave(&cc->zone->lock, flags);
1799		freelist = &area->free_list[MIGRATE_MOVABLE];
1800		list_for_each_entry(freepage, freelist, lru) {
1801			unsigned long free_pfn;
1802
1803			if (nr_scanned++ >= limit) {
1804				move_freelist_tail(freelist, freepage);
1805				break;
1806			}
1807
1808			free_pfn = page_to_pfn(freepage);
1809			if (free_pfn < high_pfn) {
1810				/*
1811				 * Avoid if skipped recently. Ideally it would
1812				 * move to the tail but even safe iteration of
1813				 * the list assumes an entry is deleted, not
1814				 * reordered.
1815				 */
1816				if (get_pageblock_skip(freepage))
1817					continue;
1818
1819				/* Reorder to so a future search skips recent pages */
1820				move_freelist_tail(freelist, freepage);
1821
1822				update_fast_start_pfn(cc, free_pfn);
1823				pfn = pageblock_start_pfn(free_pfn);
1824				cc->fast_search_fail = 0;
1825				found_block = true;
1826				set_pageblock_skip(freepage);
1827				break;
1828			}
1829		}
1830		spin_unlock_irqrestore(&cc->zone->lock, flags);
1831	}
1832
1833	cc->total_migrate_scanned += nr_scanned;
1834
1835	/*
1836	 * If fast scanning failed then use a cached entry for a page block
1837	 * that had free pages as the basis for starting a linear scan.
1838	 */
1839	if (!found_block) {
1840		cc->fast_search_fail++;
1841		pfn = reinit_migrate_pfn(cc);
1842	}
1843	return pfn;
1844}
1845
1846/*
1847 * Isolate all pages that can be migrated from the first suitable block,
1848 * starting at the block pointed to by the migrate scanner pfn within
1849 * compact_control.
1850 */
1851static isolate_migrate_t isolate_migratepages(struct compact_control *cc)
 
1852{
1853	unsigned long block_start_pfn;
1854	unsigned long block_end_pfn;
1855	unsigned long low_pfn;
 
1856	struct page *page;
1857	const isolate_mode_t isolate_mode =
1858		(sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1859		(cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1860	bool fast_find_block;
1861
1862	/*
1863	 * Start at where we last stopped, or beginning of the zone as
1864	 * initialized by compact_zone(). The first failure will use
1865	 * the lowest PFN as the starting point for linear scanning.
1866	 */
1867	low_pfn = fast_find_migrateblock(cc);
1868	block_start_pfn = pageblock_start_pfn(low_pfn);
1869	if (block_start_pfn < cc->zone->zone_start_pfn)
1870		block_start_pfn = cc->zone->zone_start_pfn;
1871
1872	/*
1873	 * fast_find_migrateblock marks a pageblock skipped so to avoid
1874	 * the isolation_suitable check below, check whether the fast
1875	 * search was successful.
1876	 */
1877	fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail;
1878
1879	/* Only scan within a pageblock boundary */
1880	block_end_pfn = pageblock_end_pfn(low_pfn);
1881
1882	/*
1883	 * Iterate over whole pageblocks until we find the first suitable.
1884	 * Do not cross the free scanner.
1885	 */
1886	for (; block_end_pfn <= cc->free_pfn;
1887			fast_find_block = false,
1888			cc->migrate_pfn = low_pfn = block_end_pfn,
1889			block_start_pfn = block_end_pfn,
1890			block_end_pfn += pageblock_nr_pages) {
1891
1892		/*
1893		 * This can potentially iterate a massively long zone with
1894		 * many pageblocks unsuitable, so periodically check if we
1895		 * need to schedule.
1896		 */
1897		if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)))
1898			cond_resched();
 
1899
1900		page = pageblock_pfn_to_page(block_start_pfn,
1901						block_end_pfn, cc->zone);
1902		if (!page)
1903			continue;
1904
1905		/*
1906		 * If isolation recently failed, do not retry. Only check the
1907		 * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock
1908		 * to be visited multiple times. Assume skip was checked
1909		 * before making it "skip" so other compaction instances do
1910		 * not scan the same block.
1911		 */
1912		if (IS_ALIGNED(low_pfn, pageblock_nr_pages) &&
1913		    !fast_find_block && !isolation_suitable(cc, page))
1914			continue;
1915
1916		/*
1917		 * For async compaction, also only scan in MOVABLE blocks
1918		 * without huge pages. Async compaction is optimistic to see
1919		 * if the minimum amount of work satisfies the allocation.
1920		 * The cached PFN is updated as it's possible that all
1921		 * remaining blocks between source and target are unsuitable
1922		 * and the compaction scanners fail to meet.
1923		 */
1924		if (!suitable_migration_source(cc, page)) {
1925			update_cached_migrate(cc, block_end_pfn);
1926			continue;
1927		}
1928
1929		/* Perform the isolation */
1930		if (isolate_migratepages_block(cc, low_pfn, block_end_pfn,
1931						isolate_mode))
 
 
 
 
1932			return ISOLATE_ABORT;
 
 
 
 
 
 
 
 
 
 
1933
1934		/*
1935		 * Either we isolated something and proceed with migration. Or
1936		 * we failed and compact_zone should decide if we should
1937		 * continue or not.
1938		 */
1939		break;
1940	}
1941
 
 
 
 
1942	return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1943}
1944
1945/*
1946 * order == -1 is expected when compacting via
1947 * /proc/sys/vm/compact_memory
1948 */
1949static inline bool is_via_compact_memory(int order)
1950{
1951	return order == -1;
1952}
1953
1954static bool kswapd_is_running(pg_data_t *pgdat)
 
1955{
1956	return pgdat->kswapd && task_is_running(pgdat->kswapd);
1957}
1958
1959/*
1960 * A zone's fragmentation score is the external fragmentation wrt to the
1961 * COMPACTION_HPAGE_ORDER. It returns a value in the range [0, 100].
1962 */
1963static unsigned int fragmentation_score_zone(struct zone *zone)
1964{
1965	return extfrag_for_order(zone, COMPACTION_HPAGE_ORDER);
1966}
1967
1968/*
1969 * A weighted zone's fragmentation score is the external fragmentation
1970 * wrt to the COMPACTION_HPAGE_ORDER scaled by the zone's size. It
1971 * returns a value in the range [0, 100].
1972 *
1973 * The scaling factor ensures that proactive compaction focuses on larger
1974 * zones like ZONE_NORMAL, rather than smaller, specialized zones like
1975 * ZONE_DMA32. For smaller zones, the score value remains close to zero,
1976 * and thus never exceeds the high threshold for proactive compaction.
1977 */
1978static unsigned int fragmentation_score_zone_weighted(struct zone *zone)
1979{
1980	unsigned long score;
1981
1982	score = zone->present_pages * fragmentation_score_zone(zone);
1983	return div64_ul(score, zone->zone_pgdat->node_present_pages + 1);
1984}
1985
1986/*
1987 * The per-node proactive (background) compaction process is started by its
1988 * corresponding kcompactd thread when the node's fragmentation score
1989 * exceeds the high threshold. The compaction process remains active till
1990 * the node's score falls below the low threshold, or one of the back-off
1991 * conditions is met.
1992 */
1993static unsigned int fragmentation_score_node(pg_data_t *pgdat)
1994{
1995	unsigned int score = 0;
1996	int zoneid;
1997
1998	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
1999		struct zone *zone;
2000
2001		zone = &pgdat->node_zones[zoneid];
2002		score += fragmentation_score_zone_weighted(zone);
2003	}
2004
2005	return score;
2006}
2007
2008static unsigned int fragmentation_score_wmark(pg_data_t *pgdat, bool low)
2009{
2010	unsigned int wmark_low;
2011
2012	/*
2013	 * Cap the low watermark to avoid excessive compaction
2014	 * activity in case a user sets the proactiveness tunable
2015	 * close to 100 (maximum).
2016	 */
2017	wmark_low = max(100U - sysctl_compaction_proactiveness, 5U);
2018	return low ? wmark_low : min(wmark_low + 10, 100U);
2019}
2020
2021static bool should_proactive_compact_node(pg_data_t *pgdat)
2022{
2023	int wmark_high;
2024
2025	if (!sysctl_compaction_proactiveness || kswapd_is_running(pgdat))
2026		return false;
2027
2028	wmark_high = fragmentation_score_wmark(pgdat, false);
2029	return fragmentation_score_node(pgdat) > wmark_high;
2030}
2031
2032static enum compact_result __compact_finished(struct compact_control *cc)
2033{
2034	unsigned int order;
2035	const int migratetype = cc->migratetype;
2036	int ret;
2037
2038	/* Compaction run completes if the migrate and free scanner meet */
2039	if (compact_scanners_met(cc)) {
2040		/* Let the next compaction start anew. */
2041		reset_cached_positions(cc->zone);
2042
2043		/*
2044		 * Mark that the PG_migrate_skip information should be cleared
2045		 * by kswapd when it goes to sleep. kcompactd does not set the
2046		 * flag itself as the decision to be clear should be directly
2047		 * based on an allocation request.
2048		 */
2049		if (cc->direct_compaction)
2050			cc->zone->compact_blockskip_flush = true;
2051
2052		if (cc->whole_zone)
2053			return COMPACT_COMPLETE;
2054		else
2055			return COMPACT_PARTIAL_SKIPPED;
2056	}
2057
2058	if (cc->proactive_compaction) {
2059		int score, wmark_low;
2060		pg_data_t *pgdat;
2061
2062		pgdat = cc->zone->zone_pgdat;
2063		if (kswapd_is_running(pgdat))
2064			return COMPACT_PARTIAL_SKIPPED;
2065
2066		score = fragmentation_score_zone(cc->zone);
2067		wmark_low = fragmentation_score_wmark(pgdat, true);
2068
2069		if (score > wmark_low)
2070			ret = COMPACT_CONTINUE;
2071		else
2072			ret = COMPACT_SUCCESS;
2073
2074		goto out;
2075	}
2076
2077	if (is_via_compact_memory(cc->order))
2078		return COMPACT_CONTINUE;
2079
2080	/*
2081	 * Always finish scanning a pageblock to reduce the possibility of
2082	 * fallbacks in the future. This is particularly important when
2083	 * migration source is unmovable/reclaimable but it's not worth
2084	 * special casing.
2085	 */
2086	if (!IS_ALIGNED(cc->migrate_pfn, pageblock_nr_pages))
2087		return COMPACT_CONTINUE;
2088
2089	/* Direct compactor: Is a suitable page free? */
2090	ret = COMPACT_NO_SUITABLE_PAGE;
2091	for (order = cc->order; order < MAX_ORDER; order++) {
2092		struct free_area *area = &cc->zone->free_area[order];
2093		bool can_steal;
2094
2095		/* Job done if page is free of the right migratetype */
2096		if (!free_area_empty(area, migratetype))
2097			return COMPACT_SUCCESS;
2098
2099#ifdef CONFIG_CMA
2100		/* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
2101		if (migratetype == MIGRATE_MOVABLE &&
2102			!free_area_empty(area, MIGRATE_CMA))
2103			return COMPACT_SUCCESS;
2104#endif
2105		/*
2106		 * Job done if allocation would steal freepages from
2107		 * other migratetype buddy lists.
2108		 */
2109		if (find_suitable_fallback(area, order, migratetype,
2110						true, &can_steal) != -1) {
2111
2112			/* movable pages are OK in any pageblock */
2113			if (migratetype == MIGRATE_MOVABLE)
2114				return COMPACT_SUCCESS;
2115
2116			/*
2117			 * We are stealing for a non-movable allocation. Make
2118			 * sure we finish compacting the current pageblock
2119			 * first so it is as free as possible and we won't
2120			 * have to steal another one soon. This only applies
2121			 * to sync compaction, as async compaction operates
2122			 * on pageblocks of the same migratetype.
2123			 */
2124			if (cc->mode == MIGRATE_ASYNC ||
2125					IS_ALIGNED(cc->migrate_pfn,
2126							pageblock_nr_pages)) {
2127				return COMPACT_SUCCESS;
2128			}
2129
2130			ret = COMPACT_CONTINUE;
2131			break;
2132		}
2133	}
2134
2135out:
2136	if (cc->contended || fatal_signal_pending(current))
2137		ret = COMPACT_CONTENDED;
2138
2139	return ret;
2140}
2141
2142static enum compact_result compact_finished(struct compact_control *cc)
 
2143{
2144	int ret;
2145
2146	ret = __compact_finished(cc);
2147	trace_mm_compaction_finished(cc->zone, cc->order, ret);
2148	if (ret == COMPACT_NO_SUITABLE_PAGE)
2149		ret = COMPACT_CONTINUE;
2150
2151	return ret;
2152}
2153
2154static enum compact_result __compaction_suitable(struct zone *zone, int order,
2155					unsigned int alloc_flags,
2156					int highest_zoneidx,
2157					unsigned long wmark_target)
 
 
 
 
 
2158{
 
2159	unsigned long watermark;
2160
2161	if (is_via_compact_memory(order))
2162		return COMPACT_CONTINUE;
2163
2164	watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
2165	/*
2166	 * If watermarks for high-order allocation are already met, there
2167	 * should be no need for compaction at all.
2168	 */
2169	if (zone_watermark_ok(zone, order, watermark, highest_zoneidx,
2170								alloc_flags))
2171		return COMPACT_SUCCESS;
2172
2173	/*
2174	 * Watermarks for order-0 must be met for compaction to be able to
2175	 * isolate free pages for migration targets. This means that the
2176	 * watermark and alloc_flags have to match, or be more pessimistic than
2177	 * the check in __isolate_free_page(). We don't use the direct
2178	 * compactor's alloc_flags, as they are not relevant for freepage
2179	 * isolation. We however do use the direct compactor's highest_zoneidx
2180	 * to skip over zones where lowmem reserves would prevent allocation
2181	 * even if compaction succeeds.
2182	 * For costly orders, we require low watermark instead of min for
2183	 * compaction to proceed to increase its chances.
2184	 * ALLOC_CMA is used, as pages in CMA pageblocks are considered
2185	 * suitable migration targets
2186	 */
2187	watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
2188				low_wmark_pages(zone) : min_wmark_pages(zone);
2189	watermark += compact_gap(order);
2190	if (!__zone_watermark_ok(zone, 0, watermark, highest_zoneidx,
2191						ALLOC_CMA, wmark_target))
2192		return COMPACT_SKIPPED;
2193
2194	return COMPACT_CONTINUE;
2195}
2196
2197/*
2198 * compaction_suitable: Is this suitable to run compaction on this zone now?
2199 * Returns
2200 *   COMPACT_SKIPPED  - If there are too few free pages for compaction
2201 *   COMPACT_SUCCESS  - If the allocation would succeed without compaction
2202 *   COMPACT_CONTINUE - If compaction should run now
2203 */
2204enum compact_result compaction_suitable(struct zone *zone, int order,
2205					unsigned int alloc_flags,
2206					int highest_zoneidx)
2207{
2208	enum compact_result ret;
2209	int fragindex;
2210
2211	ret = __compaction_suitable(zone, order, alloc_flags, highest_zoneidx,
2212				    zone_page_state(zone, NR_FREE_PAGES));
2213	/*
2214	 * fragmentation index determines if allocation failures are due to
2215	 * low memory or external fragmentation
2216	 *
2217	 * index of -1000 would imply allocations might succeed depending on
2218	 * watermarks, but we already failed the high-order watermark check
2219	 * index towards 0 implies failure is due to lack of memory
2220	 * index towards 1000 implies failure is due to fragmentation
2221	 *
2222	 * Only compact if a failure would be due to fragmentation. Also
2223	 * ignore fragindex for non-costly orders where the alternative to
2224	 * a successful reclaim/compaction is OOM. Fragindex and the
2225	 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
2226	 * excessive compaction for costly orders, but it should not be at the
2227	 * expense of system stability.
2228	 */
2229	if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) {
2230		fragindex = fragmentation_index(zone, order);
2231		if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
2232			ret = COMPACT_NOT_SUITABLE_ZONE;
2233	}
 
 
 
 
 
 
2234
 
2235	trace_mm_compaction_suitable(zone, order, ret);
2236	if (ret == COMPACT_NOT_SUITABLE_ZONE)
2237		ret = COMPACT_SKIPPED;
2238
2239	return ret;
2240}
2241
2242bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
2243		int alloc_flags)
2244{
2245	struct zone *zone;
2246	struct zoneref *z;
2247
2248	/*
2249	 * Make sure at least one zone would pass __compaction_suitable if we continue
2250	 * retrying the reclaim.
2251	 */
2252	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2253				ac->highest_zoneidx, ac->nodemask) {
2254		unsigned long available;
2255		enum compact_result compact_result;
2256
2257		/*
2258		 * Do not consider all the reclaimable memory because we do not
2259		 * want to trash just for a single high order allocation which
2260		 * is even not guaranteed to appear even if __compaction_suitable
2261		 * is happy about the watermark check.
2262		 */
2263		available = zone_reclaimable_pages(zone) / order;
2264		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
2265		compact_result = __compaction_suitable(zone, order, alloc_flags,
2266				ac->highest_zoneidx, available);
2267		if (compact_result != COMPACT_SKIPPED)
2268			return true;
2269	}
2270
2271	return false;
2272}
2273
2274static enum compact_result
2275compact_zone(struct compact_control *cc, struct capture_control *capc)
2276{
2277	enum compact_result ret;
2278	unsigned long start_pfn = cc->zone->zone_start_pfn;
2279	unsigned long end_pfn = zone_end_pfn(cc->zone);
2280	unsigned long last_migrated_pfn;
2281	const bool sync = cc->mode != MIGRATE_ASYNC;
2282	bool update_cached;
2283
2284	/*
2285	 * These counters track activities during zone compaction.  Initialize
2286	 * them before compacting a new zone.
2287	 */
2288	cc->total_migrate_scanned = 0;
2289	cc->total_free_scanned = 0;
2290	cc->nr_migratepages = 0;
2291	cc->nr_freepages = 0;
2292	INIT_LIST_HEAD(&cc->freepages);
2293	INIT_LIST_HEAD(&cc->migratepages);
2294
2295	cc->migratetype = gfp_migratetype(cc->gfp_mask);
2296	ret = compaction_suitable(cc->zone, cc->order, cc->alloc_flags,
2297							cc->highest_zoneidx);
2298	/* Compaction is likely to fail */
2299	if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED)
2300		return ret;
2301
2302	/* huh, compaction_suitable is returning something unexpected */
2303	VM_BUG_ON(ret != COMPACT_CONTINUE);
 
2304
2305	/*
2306	 * Clear pageblock skip if there were failures recently and compaction
2307	 * is about to be retried after being deferred.
2308	 */
2309	if (compaction_restarting(cc->zone, cc->order))
2310		__reset_isolation_suitable(cc->zone);
2311
2312	/*
2313	 * Setup to move all movable pages to the end of the zone. Used cached
2314	 * information on where the scanners should start (unless we explicitly
2315	 * want to compact the whole zone), but check that it is initialised
2316	 * by ensuring the values are within zone boundaries.
2317	 */
2318	cc->fast_start_pfn = 0;
2319	if (cc->whole_zone) {
 
 
 
 
 
2320		cc->migrate_pfn = start_pfn;
2321		cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2322	} else {
2323		cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync];
2324		cc->free_pfn = cc->zone->compact_cached_free_pfn;
2325		if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
2326			cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2327			cc->zone->compact_cached_free_pfn = cc->free_pfn;
2328		}
2329		if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
2330			cc->migrate_pfn = start_pfn;
2331			cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
2332			cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
2333		}
2334
2335		if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn)
2336			cc->whole_zone = true;
2337	}
2338
2339	last_migrated_pfn = 0;
2340
2341	/*
2342	 * Migrate has separate cached PFNs for ASYNC and SYNC* migration on
2343	 * the basis that some migrations will fail in ASYNC mode. However,
2344	 * if the cached PFNs match and pageblocks are skipped due to having
2345	 * no isolation candidates, then the sync state does not matter.
2346	 * Until a pageblock with isolation candidates is found, keep the
2347	 * cached PFNs in sync to avoid revisiting the same blocks.
2348	 */
2349	update_cached = !sync &&
2350		cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1];
2351
2352	trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
2353				cc->free_pfn, end_pfn, sync);
2354
2355	/* lru_add_drain_all could be expensive with involving other CPUs */
2356	lru_add_drain();
2357
2358	while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) {
 
2359		int err;
2360		unsigned long iteration_start_pfn = cc->migrate_pfn;
2361
2362		/*
2363		 * Avoid multiple rescans which can happen if a page cannot be
2364		 * isolated (dirty/writeback in async mode) or if the migrated
2365		 * pages are being allocated before the pageblock is cleared.
2366		 * The first rescan will capture the entire pageblock for
2367		 * migration. If it fails, it'll be marked skip and scanning
2368		 * will proceed as normal.
2369		 */
2370		cc->rescan = false;
2371		if (pageblock_start_pfn(last_migrated_pfn) ==
2372		    pageblock_start_pfn(iteration_start_pfn)) {
2373			cc->rescan = true;
2374		}
2375
2376		switch (isolate_migratepages(cc)) {
2377		case ISOLATE_ABORT:
2378			ret = COMPACT_CONTENDED;
2379			putback_movable_pages(&cc->migratepages);
2380			cc->nr_migratepages = 0;
2381			goto out;
2382		case ISOLATE_NONE:
2383			if (update_cached) {
2384				cc->zone->compact_cached_migrate_pfn[1] =
2385					cc->zone->compact_cached_migrate_pfn[0];
2386			}
2387
2388			/*
2389			 * We haven't isolated and migrated anything, but
2390			 * there might still be unflushed migrations from
2391			 * previous cc->order aligned block.
2392			 */
2393			goto check_drain;
2394		case ISOLATE_SUCCESS:
2395			update_cached = false;
2396			last_migrated_pfn = iteration_start_pfn;
2397		}
2398
2399		err = migrate_pages(&cc->migratepages, compaction_alloc,
2400				compaction_free, (unsigned long)cc, cc->mode,
2401				MR_COMPACTION);
2402
2403		trace_mm_compaction_migratepages(cc->nr_migratepages, err,
2404							&cc->migratepages);
2405
2406		/* All pages were either migrated or will be released */
2407		cc->nr_migratepages = 0;
2408		if (err) {
2409			putback_movable_pages(&cc->migratepages);
2410			/*
2411			 * migrate_pages() may return -ENOMEM when scanners meet
2412			 * and we want compact_finished() to detect it
2413			 */
2414			if (err == -ENOMEM && !compact_scanners_met(cc)) {
2415				ret = COMPACT_CONTENDED;
2416				goto out;
2417			}
2418			/*
2419			 * We failed to migrate at least one page in the current
2420			 * order-aligned block, so skip the rest of it.
2421			 */
2422			if (cc->direct_compaction &&
2423						(cc->mode == MIGRATE_ASYNC)) {
2424				cc->migrate_pfn = block_end_pfn(
2425						cc->migrate_pfn - 1, cc->order);
2426				/* Draining pcplists is useless in this case */
2427				last_migrated_pfn = 0;
2428			}
2429		}
2430
2431check_drain:
2432		/*
2433		 * Has the migration scanner moved away from the previous
2434		 * cc->order aligned block where we migrated from? If yes,
2435		 * flush the pages that were freed, so that they can merge and
2436		 * compact_finished() can detect immediately if allocation
2437		 * would succeed.
2438		 */
2439		if (cc->order > 0 && last_migrated_pfn) {
 
2440			unsigned long current_block_start =
2441				block_start_pfn(cc->migrate_pfn, cc->order);
2442
2443			if (last_migrated_pfn < current_block_start) {
2444				lru_add_drain_cpu_zone(cc->zone);
 
 
 
2445				/* No more flushing until we migrate again */
2446				last_migrated_pfn = 0;
2447			}
2448		}
2449
2450		/* Stop if a page has been captured */
2451		if (capc && capc->page) {
2452			ret = COMPACT_SUCCESS;
2453			break;
2454		}
2455	}
2456
2457out:
2458	/*
2459	 * Release free pages and update where the free scanner should restart,
2460	 * so we don't leave any returned pages behind in the next attempt.
2461	 */
2462	if (cc->nr_freepages > 0) {
2463		unsigned long free_pfn = release_freepages(&cc->freepages);
2464
2465		cc->nr_freepages = 0;
2466		VM_BUG_ON(free_pfn == 0);
2467		/* The cached pfn is always the first in a pageblock */
2468		free_pfn = pageblock_start_pfn(free_pfn);
2469		/*
2470		 * Only go back, not forward. The cached pfn might have been
2471		 * already reset to zone end in compact_finished()
2472		 */
2473		if (free_pfn > cc->zone->compact_cached_free_pfn)
2474			cc->zone->compact_cached_free_pfn = free_pfn;
2475	}
2476
2477	count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
2478	count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);
2479
2480	trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
2481				cc->free_pfn, end_pfn, sync, ret);
2482
 
 
 
2483	return ret;
2484}
2485
2486static enum compact_result compact_zone_order(struct zone *zone, int order,
2487		gfp_t gfp_mask, enum compact_priority prio,
2488		unsigned int alloc_flags, int highest_zoneidx,
2489		struct page **capture)
2490{
2491	enum compact_result ret;
2492	struct compact_control cc = {
 
 
2493		.order = order,
2494		.search_order = order,
2495		.gfp_mask = gfp_mask,
2496		.zone = zone,
2497		.mode = (prio == COMPACT_PRIO_ASYNC) ?
2498					MIGRATE_ASYNC :	MIGRATE_SYNC_LIGHT,
2499		.alloc_flags = alloc_flags,
2500		.highest_zoneidx = highest_zoneidx,
2501		.direct_compaction = true,
2502		.whole_zone = (prio == MIN_COMPACT_PRIORITY),
2503		.ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
2504		.ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
2505	};
2506	struct capture_control capc = {
2507		.cc = &cc,
2508		.page = NULL,
2509	};
 
 
2510
2511	/*
2512	 * Make sure the structs are really initialized before we expose the
2513	 * capture control, in case we are interrupted and the interrupt handler
2514	 * frees a page.
2515	 */
2516	barrier();
2517	WRITE_ONCE(current->capture_control, &capc);
2518
2519	ret = compact_zone(&cc, &capc);
2520
2521	VM_BUG_ON(!list_empty(&cc.freepages));
2522	VM_BUG_ON(!list_empty(&cc.migratepages));
2523
2524	/*
2525	 * Make sure we hide capture control first before we read the captured
2526	 * page pointer, otherwise an interrupt could free and capture a page
2527	 * and we would leak it.
2528	 */
2529	WRITE_ONCE(current->capture_control, NULL);
2530	*capture = READ_ONCE(capc.page);
2531	/*
2532	 * Technically, it is also possible that compaction is skipped but
2533	 * the page is still captured out of luck(IRQ came and freed the page).
2534	 * Returning COMPACT_SUCCESS in such cases helps in properly accounting
2535	 * the COMPACT[STALL|FAIL] when compaction is skipped.
2536	 */
2537	if (*capture)
2538		ret = COMPACT_SUCCESS;
2539
2540	return ret;
2541}
2542
2543int sysctl_extfrag_threshold = 500;
2544
2545/**
2546 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
2547 * @gfp_mask: The GFP mask of the current allocation
2548 * @order: The order of the current allocation
2549 * @alloc_flags: The allocation flags of the current allocation
2550 * @ac: The context of current allocation
2551 * @prio: Determines how hard direct compaction should try to succeed
2552 * @capture: Pointer to free page created by compaction will be stored here
 
2553 *
2554 * This is the main entry point for direct page compaction.
2555 */
2556enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
2557		unsigned int alloc_flags, const struct alloc_context *ac,
2558		enum compact_priority prio, struct page **capture)
2559{
 
2560	int may_perform_io = gfp_mask & __GFP_IO;
2561	struct zoneref *z;
2562	struct zone *zone;
2563	enum compact_result rc = COMPACT_SKIPPED;
 
 
 
2564
2565	/*
2566	 * Check if the GFP flags allow compaction - GFP_NOIO is really
2567	 * tricky context because the migration might require IO
2568	 */
2569	if (!may_perform_io)
2570		return COMPACT_SKIPPED;
2571
2572	trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
2573
2574	/* Compact each zone in the list */
2575	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2576					ac->highest_zoneidx, ac->nodemask) {
2577		enum compact_result status;
 
2578
2579		if (prio > MIN_COMPACT_PRIORITY
2580					&& compaction_deferred(zone, order)) {
2581			rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
2582			continue;
2583		}
2584
2585		status = compact_zone_order(zone, order, gfp_mask, prio,
2586				alloc_flags, ac->highest_zoneidx, capture);
 
2587		rc = max(status, rc);
 
 
 
 
 
2588
2589		/* The allocation should succeed, stop compacting */
2590		if (status == COMPACT_SUCCESS) {
 
2591			/*
2592			 * We think the allocation will succeed in this zone,
2593			 * but it is not certain, hence the false. The caller
2594			 * will repeat this with true if allocation indeed
2595			 * succeeds in this zone.
2596			 */
2597			compaction_defer_reset(zone, order, false);
 
 
 
 
 
 
 
 
 
 
2598
2599			break;
2600		}
2601
2602		if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
2603					status == COMPACT_PARTIAL_SKIPPED))
2604			/*
2605			 * We think that allocation won't succeed in this zone
2606			 * so we defer compaction there. If it ends up
2607			 * succeeding after all, it will be reset.
2608			 */
2609			defer_compaction(zone, order);
 
2610
2611		/*
2612		 * We might have stopped compacting due to need_resched() in
2613		 * async compaction, or due to a fatal signal detected. In that
2614		 * case do not try further zones
 
2615		 */
2616		if ((prio == COMPACT_PRIO_ASYNC && need_resched())
2617					|| fatal_signal_pending(current))
2618			break;
 
 
 
 
 
 
 
 
 
 
 
2619	}
2620
 
 
 
 
 
 
 
2621	return rc;
2622}
2623
2624/*
2625 * Compact all zones within a node till each zone's fragmentation score
2626 * reaches within proactive compaction thresholds (as determined by the
2627 * proactiveness tunable).
2628 *
2629 * It is possible that the function returns before reaching score targets
2630 * due to various back-off conditions, such as, contention on per-node or
2631 * per-zone locks.
2632 */
2633static void proactive_compact_node(pg_data_t *pgdat)
2634{
2635	int zoneid;
2636	struct zone *zone;
2637	struct compact_control cc = {
2638		.order = -1,
2639		.mode = MIGRATE_SYNC_LIGHT,
2640		.ignore_skip_hint = true,
2641		.whole_zone = true,
2642		.gfp_mask = GFP_KERNEL,
2643		.proactive_compaction = true,
2644	};
2645
2646	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
 
2647		zone = &pgdat->node_zones[zoneid];
2648		if (!populated_zone(zone))
2649			continue;
2650
2651		cc.zone = zone;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2652
2653		compact_zone(&cc, NULL);
 
2654
2655		VM_BUG_ON(!list_empty(&cc.freepages));
2656		VM_BUG_ON(!list_empty(&cc.migratepages));
 
2657	}
2658}
2659
2660/* Compact all zones within a node */
 
 
 
 
 
 
 
 
 
 
 
 
2661static void compact_node(int nid)
2662{
2663	pg_data_t *pgdat = NODE_DATA(nid);
2664	int zoneid;
2665	struct zone *zone;
2666	struct compact_control cc = {
2667		.order = -1,
2668		.mode = MIGRATE_SYNC,
2669		.ignore_skip_hint = true,
2670		.whole_zone = true,
2671		.gfp_mask = GFP_KERNEL,
2672	};
2673
2674
2675	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2676
2677		zone = &pgdat->node_zones[zoneid];
2678		if (!populated_zone(zone))
2679			continue;
2680
2681		cc.zone = zone;
2682
2683		compact_zone(&cc, NULL);
2684
2685		VM_BUG_ON(!list_empty(&cc.freepages));
2686		VM_BUG_ON(!list_empty(&cc.migratepages));
2687	}
2688}
2689
2690/* Compact all nodes in the system */
2691static void compact_nodes(void)
2692{
2693	int nid;
2694
2695	/* Flush pending updates to the LRU lists */
2696	lru_add_drain_all();
2697
2698	for_each_online_node(nid)
2699		compact_node(nid);
2700}
2701
2702/*
2703 * Tunable for proactive compaction. It determines how
2704 * aggressively the kernel should compact memory in the
2705 * background. It takes values in the range [0, 100].
2706 */
2707unsigned int __read_mostly sysctl_compaction_proactiveness = 20;
2708
2709/*
2710 * This is the entry point for compacting all nodes via
2711 * /proc/sys/vm/compact_memory
2712 */
2713int sysctl_compaction_handler(struct ctl_table *table, int write,
2714			void *buffer, size_t *length, loff_t *ppos)
2715{
2716	if (write)
2717		compact_nodes();
2718
2719	return 0;
2720}
2721
 
 
 
 
 
 
 
 
2722#if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
2723static ssize_t compact_store(struct device *dev,
2724			     struct device_attribute *attr,
2725			     const char *buf, size_t count)
2726{
2727	int nid = dev->id;
2728
2729	if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
2730		/* Flush pending updates to the LRU lists */
2731		lru_add_drain_all();
2732
2733		compact_node(nid);
2734	}
2735
2736	return count;
2737}
2738static DEVICE_ATTR_WO(compact);
2739
2740int compaction_register_node(struct node *node)
2741{
2742	return device_create_file(&node->dev, &dev_attr_compact);
2743}
2744
2745void compaction_unregister_node(struct node *node)
2746{
2747	return device_remove_file(&node->dev, &dev_attr_compact);
2748}
2749#endif /* CONFIG_SYSFS && CONFIG_NUMA */
2750
2751static inline bool kcompactd_work_requested(pg_data_t *pgdat)
2752{
2753	return pgdat->kcompactd_max_order > 0 || kthread_should_stop();
2754}
2755
2756static bool kcompactd_node_suitable(pg_data_t *pgdat)
2757{
2758	int zoneid;
2759	struct zone *zone;
2760	enum zone_type highest_zoneidx = pgdat->kcompactd_highest_zoneidx;
2761
2762	for (zoneid = 0; zoneid <= highest_zoneidx; zoneid++) {
2763		zone = &pgdat->node_zones[zoneid];
2764
2765		if (!populated_zone(zone))
2766			continue;
2767
2768		if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0,
2769					highest_zoneidx) == COMPACT_CONTINUE)
2770			return true;
2771	}
2772
2773	return false;
2774}
2775
2776static void kcompactd_do_work(pg_data_t *pgdat)
2777{
2778	/*
2779	 * With no special task, compact all zones so that a page of requested
2780	 * order is allocatable.
2781	 */
2782	int zoneid;
2783	struct zone *zone;
2784	struct compact_control cc = {
2785		.order = pgdat->kcompactd_max_order,
2786		.search_order = pgdat->kcompactd_max_order,
2787		.highest_zoneidx = pgdat->kcompactd_highest_zoneidx,
2788		.mode = MIGRATE_SYNC_LIGHT,
2789		.ignore_skip_hint = false,
2790		.gfp_mask = GFP_KERNEL,
2791	};
 
 
2792	trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
2793							cc.highest_zoneidx);
2794	count_compact_event(KCOMPACTD_WAKE);
2795
2796	for (zoneid = 0; zoneid <= cc.highest_zoneidx; zoneid++) {
2797		int status;
2798
2799		zone = &pgdat->node_zones[zoneid];
2800		if (!populated_zone(zone))
2801			continue;
2802
2803		if (compaction_deferred(zone, cc.order))
2804			continue;
2805
2806		if (compaction_suitable(zone, cc.order, 0, zoneid) !=
2807							COMPACT_CONTINUE)
2808			continue;
2809
 
 
 
 
 
 
2810		if (kthread_should_stop())
2811			return;
 
2812
2813		cc.zone = zone;
2814		status = compact_zone(&cc, NULL);
2815
2816		if (status == COMPACT_SUCCESS) {
2817			compaction_defer_reset(zone, cc.order, false);
2818		} else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
2819			/*
2820			 * Buddy pages may become stranded on pcps that could
2821			 * otherwise coalesce on the zone's free area for
2822			 * order >= cc.order.  This is ratelimited by the
2823			 * upcoming deferral.
2824			 */
2825			drain_all_pages(zone);
2826
2827			/*
2828			 * We use sync migration mode here, so we defer like
2829			 * sync direct compaction does.
2830			 */
2831			defer_compaction(zone, cc.order);
2832		}
2833
2834		count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2835				     cc.total_migrate_scanned);
2836		count_compact_events(KCOMPACTD_FREE_SCANNED,
2837				     cc.total_free_scanned);
2838
2839		VM_BUG_ON(!list_empty(&cc.freepages));
2840		VM_BUG_ON(!list_empty(&cc.migratepages));
2841	}
2842
2843	/*
2844	 * Regardless of success, we are done until woken up next. But remember
2845	 * the requested order/highest_zoneidx in case it was higher/tighter
2846	 * than our current ones
2847	 */
2848	if (pgdat->kcompactd_max_order <= cc.order)
2849		pgdat->kcompactd_max_order = 0;
2850	if (pgdat->kcompactd_highest_zoneidx >= cc.highest_zoneidx)
2851		pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
2852}
2853
2854void wakeup_kcompactd(pg_data_t *pgdat, int order, int highest_zoneidx)
2855{
2856	if (!order)
2857		return;
2858
2859	if (pgdat->kcompactd_max_order < order)
2860		pgdat->kcompactd_max_order = order;
2861
2862	if (pgdat->kcompactd_highest_zoneidx > highest_zoneidx)
2863		pgdat->kcompactd_highest_zoneidx = highest_zoneidx;
2864
2865	/*
2866	 * Pairs with implicit barrier in wait_event_freezable()
2867	 * such that wakeups are not missed.
2868	 */
2869	if (!wq_has_sleeper(&pgdat->kcompactd_wait))
2870		return;
2871
2872	if (!kcompactd_node_suitable(pgdat))
2873		return;
2874
2875	trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
2876							highest_zoneidx);
2877	wake_up_interruptible(&pgdat->kcompactd_wait);
2878}
2879
2880/*
2881 * The background compaction daemon, started as a kernel thread
2882 * from the init process.
2883 */
2884static int kcompactd(void *p)
2885{
2886	pg_data_t *pgdat = (pg_data_t *)p;
2887	struct task_struct *tsk = current;
2888	unsigned int proactive_defer = 0;
2889
2890	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2891
2892	if (!cpumask_empty(cpumask))
2893		set_cpus_allowed_ptr(tsk, cpumask);
2894
2895	set_freezable();
2896
2897	pgdat->kcompactd_max_order = 0;
2898	pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
2899
2900	while (!kthread_should_stop()) {
2901		unsigned long pflags;
2902
2903		trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
2904		if (wait_event_freezable_timeout(pgdat->kcompactd_wait,
2905			kcompactd_work_requested(pgdat),
2906			msecs_to_jiffies(HPAGE_FRAG_CHECK_INTERVAL_MSEC))) {
2907
2908			psi_memstall_enter(&pflags);
2909			kcompactd_do_work(pgdat);
2910			psi_memstall_leave(&pflags);
2911			continue;
2912		}
2913
2914		/* kcompactd wait timeout */
2915		if (should_proactive_compact_node(pgdat)) {
2916			unsigned int prev_score, score;
2917
2918			if (proactive_defer) {
2919				proactive_defer--;
2920				continue;
2921			}
2922			prev_score = fragmentation_score_node(pgdat);
2923			proactive_compact_node(pgdat);
2924			score = fragmentation_score_node(pgdat);
2925			/*
2926			 * Defer proactive compaction if the fragmentation
2927			 * score did not go down i.e. no progress made.
2928			 */
2929			proactive_defer = score < prev_score ?
2930					0 : 1 << COMPACT_MAX_DEFER_SHIFT;
2931		}
2932	}
2933
2934	return 0;
2935}
2936
2937/*
2938 * This kcompactd start function will be called by init and node-hot-add.
2939 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
2940 */
2941int kcompactd_run(int nid)
2942{
2943	pg_data_t *pgdat = NODE_DATA(nid);
2944	int ret = 0;
2945
2946	if (pgdat->kcompactd)
2947		return 0;
2948
2949	pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
2950	if (IS_ERR(pgdat->kcompactd)) {
2951		pr_err("Failed to start kcompactd on node %d\n", nid);
2952		ret = PTR_ERR(pgdat->kcompactd);
2953		pgdat->kcompactd = NULL;
2954	}
2955	return ret;
2956}
2957
2958/*
2959 * Called by memory hotplug when all memory in a node is offlined. Caller must
2960 * hold mem_hotplug_begin/end().
2961 */
2962void kcompactd_stop(int nid)
2963{
2964	struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
2965
2966	if (kcompactd) {
2967		kthread_stop(kcompactd);
2968		NODE_DATA(nid)->kcompactd = NULL;
2969	}
2970}
2971
2972/*
2973 * It's optimal to keep kcompactd on the same CPUs as their memory, but
2974 * not required for correctness. So if the last cpu in a node goes
2975 * away, we get changed to run anywhere: as the first one comes back,
2976 * restore their cpu bindings.
2977 */
2978static int kcompactd_cpu_online(unsigned int cpu)
 
2979{
2980	int nid;
2981
2982	for_each_node_state(nid, N_MEMORY) {
2983		pg_data_t *pgdat = NODE_DATA(nid);
2984		const struct cpumask *mask;
2985
2986		mask = cpumask_of_node(pgdat->node_id);
2987
2988		if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2989			/* One of our CPUs online: restore mask */
2990			set_cpus_allowed_ptr(pgdat->kcompactd, mask);
 
 
2991	}
2992	return 0;
2993}
2994
2995static int __init kcompactd_init(void)
2996{
2997	int nid;
2998	int ret;
2999
3000	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3001					"mm/compaction:online",
3002					kcompactd_cpu_online, NULL);
3003	if (ret < 0) {
3004		pr_err("kcompactd: failed to register hotplug callbacks.\n");
3005		return ret;
3006	}
3007
3008	for_each_node_state(nid, N_MEMORY)
3009		kcompactd_run(nid);
 
3010	return 0;
3011}
3012subsys_initcall(kcompactd_init)
3013
3014#endif /* CONFIG_COMPACTION */