Linux Audio

Check our new training course

Loading...
v4.6
 
   1/*
   2 * kernel/workqueue.c - generic async execution with shared worker pool
   3 *
   4 * Copyright (C) 2002		Ingo Molnar
   5 *
   6 *   Derived from the taskqueue/keventd code by:
   7 *     David Woodhouse <dwmw2@infradead.org>
   8 *     Andrew Morton
   9 *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
  10 *     Theodore Ts'o <tytso@mit.edu>
  11 *
  12 * Made to use alloc_percpu by Christoph Lameter.
  13 *
  14 * Copyright (C) 2010		SUSE Linux Products GmbH
  15 * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
  16 *
  17 * This is the generic async execution mechanism.  Work items as are
  18 * executed in process context.  The worker pool is shared and
  19 * automatically managed.  There are two worker pools for each CPU (one for
  20 * normal work items and the other for high priority ones) and some extra
  21 * pools for workqueues which are not bound to any specific CPU - the
  22 * number of these backing pools is dynamic.
  23 *
  24 * Please read Documentation/workqueue.txt for details.
  25 */
  26
  27#include <linux/export.h>
  28#include <linux/kernel.h>
  29#include <linux/sched.h>
  30#include <linux/init.h>
  31#include <linux/signal.h>
  32#include <linux/completion.h>
  33#include <linux/workqueue.h>
  34#include <linux/slab.h>
  35#include <linux/cpu.h>
  36#include <linux/notifier.h>
  37#include <linux/kthread.h>
  38#include <linux/hardirq.h>
  39#include <linux/mempolicy.h>
  40#include <linux/freezer.h>
  41#include <linux/kallsyms.h>
  42#include <linux/debug_locks.h>
  43#include <linux/lockdep.h>
  44#include <linux/idr.h>
  45#include <linux/jhash.h>
  46#include <linux/hashtable.h>
  47#include <linux/rculist.h>
  48#include <linux/nodemask.h>
  49#include <linux/moduleparam.h>
  50#include <linux/uaccess.h>
 
 
 
  51
  52#include "workqueue_internal.h"
  53
  54enum {
  55	/*
  56	 * worker_pool flags
  57	 *
  58	 * A bound pool is either associated or disassociated with its CPU.
  59	 * While associated (!DISASSOCIATED), all workers are bound to the
  60	 * CPU and none has %WORKER_UNBOUND set and concurrency management
  61	 * is in effect.
  62	 *
  63	 * While DISASSOCIATED, the cpu may be offline and all workers have
  64	 * %WORKER_UNBOUND set and concurrency management disabled, and may
  65	 * be executing on any CPU.  The pool behaves as an unbound one.
  66	 *
  67	 * Note that DISASSOCIATED should be flipped only while holding
  68	 * attach_mutex to avoid changing binding state while
  69	 * worker_attach_to_pool() is in progress.
  70	 */
 
  71	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
  72
  73	/* worker flags */
  74	WORKER_DIE		= 1 << 1,	/* die die die */
  75	WORKER_IDLE		= 1 << 2,	/* is idle */
  76	WORKER_PREP		= 1 << 3,	/* preparing to run works */
  77	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
  78	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
  79	WORKER_REBOUND		= 1 << 8,	/* worker was rebound */
  80
  81	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_CPU_INTENSIVE |
  82				  WORKER_UNBOUND | WORKER_REBOUND,
  83
  84	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
  85
  86	UNBOUND_POOL_HASH_ORDER	= 6,		/* hashed by pool->attrs */
  87	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
  88
  89	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
  90	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */
  91
  92	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
  93						/* call for help after 10ms
  94						   (min two ticks) */
  95	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
  96	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */
  97
  98	/*
  99	 * Rescue workers are used only on emergencies and shared by
 100	 * all cpus.  Give MIN_NICE.
 101	 */
 102	RESCUER_NICE_LEVEL	= MIN_NICE,
 103	HIGHPRI_NICE_LEVEL	= MIN_NICE,
 104
 105	WQ_NAME_LEN		= 24,
 106};
 107
 108/*
 109 * Structure fields follow one of the following exclusion rules.
 110 *
 111 * I: Modifiable by initialization/destruction paths and read-only for
 112 *    everyone else.
 113 *
 114 * P: Preemption protected.  Disabling preemption is enough and should
 115 *    only be modified and accessed from the local cpu.
 116 *
 117 * L: pool->lock protected.  Access with pool->lock held.
 118 *
 119 * X: During normal operation, modification requires pool->lock and should
 120 *    be done only from local cpu.  Either disabling preemption on local
 121 *    cpu or grabbing pool->lock is enough for read access.  If
 122 *    POOL_DISASSOCIATED is set, it's identical to L.
 123 *
 124 * A: pool->attach_mutex protected.
 125 *
 126 * PL: wq_pool_mutex protected.
 127 *
 128 * PR: wq_pool_mutex protected for writes.  Sched-RCU protected for reads.
 129 *
 130 * PW: wq_pool_mutex and wq->mutex protected for writes.  Either for reads.
 131 *
 132 * PWR: wq_pool_mutex and wq->mutex protected for writes.  Either or
 133 *      sched-RCU for reads.
 134 *
 135 * WQ: wq->mutex protected.
 136 *
 137 * WR: wq->mutex protected for writes.  Sched-RCU protected for reads.
 138 *
 139 * MD: wq_mayday_lock protected.
 140 */
 141
 142/* struct worker is defined in workqueue_internal.h */
 143
 144struct worker_pool {
 145	spinlock_t		lock;		/* the pool lock */
 146	int			cpu;		/* I: the associated cpu */
 147	int			node;		/* I: the associated node ID */
 148	int			id;		/* I: pool ID */
 149	unsigned int		flags;		/* X: flags */
 150
 151	unsigned long		watchdog_ts;	/* L: watchdog timestamp */
 152
 
 
 
 
 
 
 
 
 153	struct list_head	worklist;	/* L: list of pending works */
 154	int			nr_workers;	/* L: total number of workers */
 155
 156	/* nr_idle includes the ones off idle_list for rebinding */
 157	int			nr_idle;	/* L: currently idle ones */
 158
 159	struct list_head	idle_list;	/* X: list of idle workers */
 160	struct timer_list	idle_timer;	/* L: worker idle timeout */
 161	struct timer_list	mayday_timer;	/* L: SOS timer for workers */
 162
 163	/* a workers is either on busy_hash or idle_list, or the manager */
 164	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
 165						/* L: hash of busy workers */
 166
 167	/* see manage_workers() for details on the two manager mutexes */
 168	struct mutex		manager_arb;	/* manager arbitration */
 169	struct worker		*manager;	/* L: purely informational */
 170	struct mutex		attach_mutex;	/* attach/detach exclusion */
 171	struct list_head	workers;	/* A: attached workers */
 172	struct completion	*detach_completion; /* all workers detached */
 173
 174	struct ida		worker_ida;	/* worker IDs for task name */
 175
 176	struct workqueue_attrs	*attrs;		/* I: worker attributes */
 177	struct hlist_node	hash_node;	/* PL: unbound_pool_hash node */
 178	int			refcnt;		/* PL: refcnt for unbound pools */
 179
 180	/*
 181	 * The current concurrency level.  As it's likely to be accessed
 182	 * from other CPUs during try_to_wake_up(), put it in a separate
 183	 * cacheline.
 184	 */
 185	atomic_t		nr_running ____cacheline_aligned_in_smp;
 186
 187	/*
 188	 * Destruction of pool is sched-RCU protected to allow dereferences
 189	 * from get_work_pool().
 190	 */
 191	struct rcu_head		rcu;
 192} ____cacheline_aligned_in_smp;
 193
 194/*
 195 * The per-pool workqueue.  While queued, the lower WORK_STRUCT_FLAG_BITS
 196 * of work_struct->data are used for flags and the remaining high bits
 197 * point to the pwq; thus, pwqs need to be aligned at two's power of the
 198 * number of flag bits.
 199 */
 200struct pool_workqueue {
 201	struct worker_pool	*pool;		/* I: the associated pool */
 202	struct workqueue_struct *wq;		/* I: the owning workqueue */
 203	int			work_color;	/* L: current color */
 204	int			flush_color;	/* L: flushing color */
 205	int			refcnt;		/* L: reference count */
 206	int			nr_in_flight[WORK_NR_COLORS];
 207						/* L: nr of in_flight works */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 208	int			nr_active;	/* L: nr of active works */
 209	int			max_active;	/* L: max active works */
 210	struct list_head	delayed_works;	/* L: delayed works */
 211	struct list_head	pwqs_node;	/* WR: node on wq->pwqs */
 212	struct list_head	mayday_node;	/* MD: node on wq->maydays */
 213
 214	/*
 215	 * Release of unbound pwq is punted to system_wq.  See put_pwq()
 216	 * and pwq_unbound_release_workfn() for details.  pool_workqueue
 217	 * itself is also sched-RCU protected so that the first pwq can be
 218	 * determined without grabbing wq->mutex.
 219	 */
 220	struct work_struct	unbound_release_work;
 221	struct rcu_head		rcu;
 222} __aligned(1 << WORK_STRUCT_FLAG_BITS);
 223
 224/*
 225 * Structure used to wait for workqueue flush.
 226 */
 227struct wq_flusher {
 228	struct list_head	list;		/* WQ: list of flushers */
 229	int			flush_color;	/* WQ: flush color waiting for */
 230	struct completion	done;		/* flush completion */
 231};
 232
 233struct wq_device;
 234
 235/*
 236 * The externally visible workqueue.  It relays the issued work items to
 237 * the appropriate worker_pool through its pool_workqueues.
 238 */
 239struct workqueue_struct {
 240	struct list_head	pwqs;		/* WR: all pwqs of this wq */
 241	struct list_head	list;		/* PR: list of all workqueues */
 242
 243	struct mutex		mutex;		/* protects this wq */
 244	int			work_color;	/* WQ: current work color */
 245	int			flush_color;	/* WQ: current flush color */
 246	atomic_t		nr_pwqs_to_flush; /* flush in progress */
 247	struct wq_flusher	*first_flusher;	/* WQ: first flusher */
 248	struct list_head	flusher_queue;	/* WQ: flush waiters */
 249	struct list_head	flusher_overflow; /* WQ: flush overflow list */
 250
 251	struct list_head	maydays;	/* MD: pwqs requesting rescue */
 252	struct worker		*rescuer;	/* I: rescue worker */
 253
 254	int			nr_drainers;	/* WQ: drain in progress */
 255	int			saved_max_active; /* WQ: saved pwq max_active */
 256
 257	struct workqueue_attrs	*unbound_attrs;	/* PW: only for unbound wqs */
 258	struct pool_workqueue	*dfl_pwq;	/* PW: only for unbound wqs */
 259
 260#ifdef CONFIG_SYSFS
 261	struct wq_device	*wq_dev;	/* I: for sysfs interface */
 262#endif
 263#ifdef CONFIG_LOCKDEP
 
 
 264	struct lockdep_map	lockdep_map;
 265#endif
 266	char			name[WQ_NAME_LEN]; /* I: workqueue name */
 267
 268	/*
 269	 * Destruction of workqueue_struct is sched-RCU protected to allow
 270	 * walking the workqueues list without grabbing wq_pool_mutex.
 271	 * This is used to dump all workqueues from sysrq.
 272	 */
 273	struct rcu_head		rcu;
 274
 275	/* hot fields used during command issue, aligned to cacheline */
 276	unsigned int		flags ____cacheline_aligned; /* WQ: WQ_* flags */
 277	struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
 278	struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
 279};
 280
 281static struct kmem_cache *pwq_cache;
 282
 283static cpumask_var_t *wq_numa_possible_cpumask;
 284					/* possible CPUs of each node */
 285
 286static bool wq_disable_numa;
 287module_param_named(disable_numa, wq_disable_numa, bool, 0444);
 288
 289/* see the comment above the definition of WQ_POWER_EFFICIENT */
 290static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
 291module_param_named(power_efficient, wq_power_efficient, bool, 0444);
 292
 
 
 293static bool wq_numa_enabled;		/* unbound NUMA affinity enabled */
 294
 295/* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
 296static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
 297
 298static DEFINE_MUTEX(wq_pool_mutex);	/* protects pools and workqueues list */
 299static DEFINE_SPINLOCK(wq_mayday_lock);	/* protects wq->maydays list */
 
 
 
 300
 301static LIST_HEAD(workqueues);		/* PR: list of all workqueues */
 302static bool workqueue_freezing;		/* PL: have wqs started freezing? */
 303
 304/* PL: allowable cpus for unbound wqs and work items */
 305static cpumask_var_t wq_unbound_cpumask;
 306
 307/* CPU where unbound work was last round robin scheduled from this CPU */
 308static DEFINE_PER_CPU(int, wq_rr_cpu_last);
 309
 310/*
 311 * Local execution of unbound work items is no longer guaranteed.  The
 312 * following always forces round-robin CPU selection on unbound work items
 313 * to uncover usages which depend on it.
 314 */
 315#ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
 316static bool wq_debug_force_rr_cpu = true;
 317#else
 318static bool wq_debug_force_rr_cpu = false;
 319#endif
 320module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
 321
 322/* the per-cpu worker pools */
 323static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
 324
 325static DEFINE_IDR(worker_pool_idr);	/* PR: idr of all pools */
 326
 327/* PL: hash of all unbound pools keyed by pool->attrs */
 328static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
 329
 330/* I: attributes used when instantiating standard unbound pools on demand */
 331static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
 332
 333/* I: attributes used when instantiating ordered pools on demand */
 334static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
 335
 336struct workqueue_struct *system_wq __read_mostly;
 337EXPORT_SYMBOL(system_wq);
 338struct workqueue_struct *system_highpri_wq __read_mostly;
 339EXPORT_SYMBOL_GPL(system_highpri_wq);
 340struct workqueue_struct *system_long_wq __read_mostly;
 341EXPORT_SYMBOL_GPL(system_long_wq);
 342struct workqueue_struct *system_unbound_wq __read_mostly;
 343EXPORT_SYMBOL_GPL(system_unbound_wq);
 344struct workqueue_struct *system_freezable_wq __read_mostly;
 345EXPORT_SYMBOL_GPL(system_freezable_wq);
 346struct workqueue_struct *system_power_efficient_wq __read_mostly;
 347EXPORT_SYMBOL_GPL(system_power_efficient_wq);
 348struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
 349EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
 350
 351static int worker_thread(void *__worker);
 352static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
 
 
 353
 354#define CREATE_TRACE_POINTS
 355#include <trace/events/workqueue.h>
 356
 357#define assert_rcu_or_pool_mutex()					\
 358	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() &&			\
 359			 !lockdep_is_held(&wq_pool_mutex),		\
 360			 "sched RCU or wq_pool_mutex should be held")
 361
 362#define assert_rcu_or_wq_mutex(wq)					\
 363	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() &&			\
 364			 !lockdep_is_held(&wq->mutex),			\
 365			 "sched RCU or wq->mutex should be held")
 366
 367#define assert_rcu_or_wq_mutex_or_pool_mutex(wq)			\
 368	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() &&			\
 369			 !lockdep_is_held(&wq->mutex) &&		\
 370			 !lockdep_is_held(&wq_pool_mutex),		\
 371			 "sched RCU, wq->mutex or wq_pool_mutex should be held")
 372
 373#define for_each_cpu_worker_pool(pool, cpu)				\
 374	for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];		\
 375	     (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
 376	     (pool)++)
 377
 378/**
 379 * for_each_pool - iterate through all worker_pools in the system
 380 * @pool: iteration cursor
 381 * @pi: integer used for iteration
 382 *
 383 * This must be called either with wq_pool_mutex held or sched RCU read
 384 * locked.  If the pool needs to be used beyond the locking in effect, the
 385 * caller is responsible for guaranteeing that the pool stays online.
 386 *
 387 * The if/else clause exists only for the lockdep assertion and can be
 388 * ignored.
 389 */
 390#define for_each_pool(pool, pi)						\
 391	idr_for_each_entry(&worker_pool_idr, pool, pi)			\
 392		if (({ assert_rcu_or_pool_mutex(); false; })) { }	\
 393		else
 394
 395/**
 396 * for_each_pool_worker - iterate through all workers of a worker_pool
 397 * @worker: iteration cursor
 398 * @pool: worker_pool to iterate workers of
 399 *
 400 * This must be called with @pool->attach_mutex.
 401 *
 402 * The if/else clause exists only for the lockdep assertion and can be
 403 * ignored.
 404 */
 405#define for_each_pool_worker(worker, pool)				\
 406	list_for_each_entry((worker), &(pool)->workers, node)		\
 407		if (({ lockdep_assert_held(&pool->attach_mutex); false; })) { } \
 408		else
 409
 410/**
 411 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
 412 * @pwq: iteration cursor
 413 * @wq: the target workqueue
 414 *
 415 * This must be called either with wq->mutex held or sched RCU read locked.
 416 * If the pwq needs to be used beyond the locking in effect, the caller is
 417 * responsible for guaranteeing that the pwq stays online.
 418 *
 419 * The if/else clause exists only for the lockdep assertion and can be
 420 * ignored.
 421 */
 422#define for_each_pwq(pwq, wq)						\
 423	list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node)		\
 424		if (({ assert_rcu_or_wq_mutex(wq); false; })) { }	\
 425		else
 426
 427#ifdef CONFIG_DEBUG_OBJECTS_WORK
 428
 429static struct debug_obj_descr work_debug_descr;
 430
 431static void *work_debug_hint(void *addr)
 432{
 433	return ((struct work_struct *) addr)->func;
 434}
 435
 436/*
 437 * fixup_init is called when:
 438 * - an active object is initialized
 439 */
 440static int work_fixup_init(void *addr, enum debug_obj_state state)
 441{
 442	struct work_struct *work = addr;
 443
 444	switch (state) {
 445	case ODEBUG_STATE_ACTIVE:
 446		cancel_work_sync(work);
 447		debug_object_init(work, &work_debug_descr);
 448		return 1;
 449	default:
 450		return 0;
 451	}
 452}
 453
 454/*
 455 * fixup_activate is called when:
 456 * - an active object is activated
 457 * - an unknown object is activated (might be a statically initialized object)
 458 */
 459static int work_fixup_activate(void *addr, enum debug_obj_state state)
 460{
 461	struct work_struct *work = addr;
 462
 463	switch (state) {
 464
 465	case ODEBUG_STATE_NOTAVAILABLE:
 466		/*
 467		 * This is not really a fixup. The work struct was
 468		 * statically initialized. We just make sure that it
 469		 * is tracked in the object tracker.
 470		 */
 471		if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
 472			debug_object_init(work, &work_debug_descr);
 473			debug_object_activate(work, &work_debug_descr);
 474			return 0;
 475		}
 476		WARN_ON_ONCE(1);
 477		return 0;
 478
 479	case ODEBUG_STATE_ACTIVE:
 480		WARN_ON(1);
 481
 
 482	default:
 483		return 0;
 484	}
 485}
 486
 487/*
 488 * fixup_free is called when:
 489 * - an active object is freed
 490 */
 491static int work_fixup_free(void *addr, enum debug_obj_state state)
 492{
 493	struct work_struct *work = addr;
 494
 495	switch (state) {
 496	case ODEBUG_STATE_ACTIVE:
 497		cancel_work_sync(work);
 498		debug_object_free(work, &work_debug_descr);
 499		return 1;
 500	default:
 501		return 0;
 502	}
 503}
 504
 505static struct debug_obj_descr work_debug_descr = {
 506	.name		= "work_struct",
 507	.debug_hint	= work_debug_hint,
 
 508	.fixup_init	= work_fixup_init,
 509	.fixup_activate	= work_fixup_activate,
 510	.fixup_free	= work_fixup_free,
 511};
 512
 513static inline void debug_work_activate(struct work_struct *work)
 514{
 515	debug_object_activate(work, &work_debug_descr);
 516}
 517
 518static inline void debug_work_deactivate(struct work_struct *work)
 519{
 520	debug_object_deactivate(work, &work_debug_descr);
 521}
 522
 523void __init_work(struct work_struct *work, int onstack)
 524{
 525	if (onstack)
 526		debug_object_init_on_stack(work, &work_debug_descr);
 527	else
 528		debug_object_init(work, &work_debug_descr);
 529}
 530EXPORT_SYMBOL_GPL(__init_work);
 531
 532void destroy_work_on_stack(struct work_struct *work)
 533{
 534	debug_object_free(work, &work_debug_descr);
 535}
 536EXPORT_SYMBOL_GPL(destroy_work_on_stack);
 537
 538void destroy_delayed_work_on_stack(struct delayed_work *work)
 539{
 540	destroy_timer_on_stack(&work->timer);
 541	debug_object_free(&work->work, &work_debug_descr);
 542}
 543EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
 544
 545#else
 546static inline void debug_work_activate(struct work_struct *work) { }
 547static inline void debug_work_deactivate(struct work_struct *work) { }
 548#endif
 549
 550/**
 551 * worker_pool_assign_id - allocate ID and assing it to @pool
 552 * @pool: the pool pointer of interest
 553 *
 554 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
 555 * successfully, -errno on failure.
 556 */
 557static int worker_pool_assign_id(struct worker_pool *pool)
 558{
 559	int ret;
 560
 561	lockdep_assert_held(&wq_pool_mutex);
 562
 563	ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
 564			GFP_KERNEL);
 565	if (ret >= 0) {
 566		pool->id = ret;
 567		return 0;
 568	}
 569	return ret;
 570}
 571
 572/**
 573 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
 574 * @wq: the target workqueue
 575 * @node: the node ID
 576 *
 577 * This must be called with any of wq_pool_mutex, wq->mutex or sched RCU
 578 * read locked.
 579 * If the pwq needs to be used beyond the locking in effect, the caller is
 580 * responsible for guaranteeing that the pwq stays online.
 581 *
 582 * Return: The unbound pool_workqueue for @node.
 583 */
 584static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
 585						  int node)
 586{
 587	assert_rcu_or_wq_mutex_or_pool_mutex(wq);
 588
 589	/*
 590	 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a
 591	 * delayed item is pending.  The plan is to keep CPU -> NODE
 592	 * mapping valid and stable across CPU on/offlines.  Once that
 593	 * happens, this workaround can be removed.
 594	 */
 595	if (unlikely(node == NUMA_NO_NODE))
 596		return wq->dfl_pwq;
 597
 598	return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
 599}
 600
 601static unsigned int work_color_to_flags(int color)
 602{
 603	return color << WORK_STRUCT_COLOR_SHIFT;
 604}
 605
 606static int get_work_color(struct work_struct *work)
 607{
 608	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
 609		((1 << WORK_STRUCT_COLOR_BITS) - 1);
 610}
 611
 612static int work_next_color(int color)
 613{
 614	return (color + 1) % WORK_NR_COLORS;
 615}
 616
 617/*
 618 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
 619 * contain the pointer to the queued pwq.  Once execution starts, the flag
 620 * is cleared and the high bits contain OFFQ flags and pool ID.
 621 *
 622 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
 623 * and clear_work_data() can be used to set the pwq, pool or clear
 624 * work->data.  These functions should only be called while the work is
 625 * owned - ie. while the PENDING bit is set.
 626 *
 627 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
 628 * corresponding to a work.  Pool is available once the work has been
 629 * queued anywhere after initialization until it is sync canceled.  pwq is
 630 * available only while the work item is queued.
 631 *
 632 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
 633 * canceled.  While being canceled, a work item may have its PENDING set
 634 * but stay off timer and worklist for arbitrarily long and nobody should
 635 * try to steal the PENDING bit.
 636 */
 637static inline void set_work_data(struct work_struct *work, unsigned long data,
 638				 unsigned long flags)
 639{
 640	WARN_ON_ONCE(!work_pending(work));
 641	atomic_long_set(&work->data, data | flags | work_static(work));
 642}
 643
 644static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
 645			 unsigned long extra_flags)
 646{
 647	set_work_data(work, (unsigned long)pwq,
 648		      WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
 649}
 650
 651static void set_work_pool_and_keep_pending(struct work_struct *work,
 652					   int pool_id)
 653{
 654	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
 655		      WORK_STRUCT_PENDING);
 656}
 657
 658static void set_work_pool_and_clear_pending(struct work_struct *work,
 659					    int pool_id)
 660{
 661	/*
 662	 * The following wmb is paired with the implied mb in
 663	 * test_and_set_bit(PENDING) and ensures all updates to @work made
 664	 * here are visible to and precede any updates by the next PENDING
 665	 * owner.
 666	 */
 667	smp_wmb();
 668	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
 669	/*
 670	 * The following mb guarantees that previous clear of a PENDING bit
 671	 * will not be reordered with any speculative LOADS or STORES from
 672	 * work->current_func, which is executed afterwards.  This possible
 673	 * reordering can lead to a missed execution on attempt to qeueue
 674	 * the same @work.  E.g. consider this case:
 675	 *
 676	 *   CPU#0                         CPU#1
 677	 *   ----------------------------  --------------------------------
 678	 *
 679	 * 1  STORE event_indicated
 680	 * 2  queue_work_on() {
 681	 * 3    test_and_set_bit(PENDING)
 682	 * 4 }                             set_..._and_clear_pending() {
 683	 * 5                                 set_work_data() # clear bit
 684	 * 6                                 smp_mb()
 685	 * 7                               work->current_func() {
 686	 * 8				      LOAD event_indicated
 687	 *				   }
 688	 *
 689	 * Without an explicit full barrier speculative LOAD on line 8 can
 690	 * be executed before CPU#0 does STORE on line 1.  If that happens,
 691	 * CPU#0 observes the PENDING bit is still set and new execution of
 692	 * a @work is not queued in a hope, that CPU#1 will eventually
 693	 * finish the queued @work.  Meanwhile CPU#1 does not see
 694	 * event_indicated is set, because speculative LOAD was executed
 695	 * before actual STORE.
 696	 */
 697	smp_mb();
 698}
 699
 700static void clear_work_data(struct work_struct *work)
 701{
 702	smp_wmb();	/* see set_work_pool_and_clear_pending() */
 703	set_work_data(work, WORK_STRUCT_NO_POOL, 0);
 704}
 705
 706static struct pool_workqueue *get_work_pwq(struct work_struct *work)
 707{
 708	unsigned long data = atomic_long_read(&work->data);
 709
 710	if (data & WORK_STRUCT_PWQ)
 711		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
 712	else
 713		return NULL;
 714}
 715
 716/**
 717 * get_work_pool - return the worker_pool a given work was associated with
 718 * @work: the work item of interest
 719 *
 720 * Pools are created and destroyed under wq_pool_mutex, and allows read
 721 * access under sched-RCU read lock.  As such, this function should be
 722 * called under wq_pool_mutex or with preemption disabled.
 723 *
 724 * All fields of the returned pool are accessible as long as the above
 725 * mentioned locking is in effect.  If the returned pool needs to be used
 726 * beyond the critical section, the caller is responsible for ensuring the
 727 * returned pool is and stays online.
 728 *
 729 * Return: The worker_pool @work was last associated with.  %NULL if none.
 730 */
 731static struct worker_pool *get_work_pool(struct work_struct *work)
 732{
 733	unsigned long data = atomic_long_read(&work->data);
 734	int pool_id;
 735
 736	assert_rcu_or_pool_mutex();
 737
 738	if (data & WORK_STRUCT_PWQ)
 739		return ((struct pool_workqueue *)
 740			(data & WORK_STRUCT_WQ_DATA_MASK))->pool;
 741
 742	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
 743	if (pool_id == WORK_OFFQ_POOL_NONE)
 744		return NULL;
 745
 746	return idr_find(&worker_pool_idr, pool_id);
 747}
 748
 749/**
 750 * get_work_pool_id - return the worker pool ID a given work is associated with
 751 * @work: the work item of interest
 752 *
 753 * Return: The worker_pool ID @work was last associated with.
 754 * %WORK_OFFQ_POOL_NONE if none.
 755 */
 756static int get_work_pool_id(struct work_struct *work)
 757{
 758	unsigned long data = atomic_long_read(&work->data);
 759
 760	if (data & WORK_STRUCT_PWQ)
 761		return ((struct pool_workqueue *)
 762			(data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
 763
 764	return data >> WORK_OFFQ_POOL_SHIFT;
 765}
 766
 767static void mark_work_canceling(struct work_struct *work)
 768{
 769	unsigned long pool_id = get_work_pool_id(work);
 770
 771	pool_id <<= WORK_OFFQ_POOL_SHIFT;
 772	set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
 773}
 774
 775static bool work_is_canceling(struct work_struct *work)
 776{
 777	unsigned long data = atomic_long_read(&work->data);
 778
 779	return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
 780}
 781
 782/*
 783 * Policy functions.  These define the policies on how the global worker
 784 * pools are managed.  Unless noted otherwise, these functions assume that
 785 * they're being called with pool->lock held.
 786 */
 787
 788static bool __need_more_worker(struct worker_pool *pool)
 789{
 790	return !atomic_read(&pool->nr_running);
 791}
 792
 793/*
 794 * Need to wake up a worker?  Called from anything but currently
 795 * running workers.
 796 *
 797 * Note that, because unbound workers never contribute to nr_running, this
 798 * function will always return %true for unbound pools as long as the
 799 * worklist isn't empty.
 800 */
 801static bool need_more_worker(struct worker_pool *pool)
 802{
 803	return !list_empty(&pool->worklist) && __need_more_worker(pool);
 804}
 805
 806/* Can I start working?  Called from busy but !running workers. */
 807static bool may_start_working(struct worker_pool *pool)
 808{
 809	return pool->nr_idle;
 810}
 811
 812/* Do I need to keep working?  Called from currently running workers. */
 813static bool keep_working(struct worker_pool *pool)
 814{
 815	return !list_empty(&pool->worklist) &&
 816		atomic_read(&pool->nr_running) <= 1;
 817}
 818
 819/* Do we need a new worker?  Called from manager. */
 820static bool need_to_create_worker(struct worker_pool *pool)
 821{
 822	return need_more_worker(pool) && !may_start_working(pool);
 823}
 824
 825/* Do we have too many workers and should some go away? */
 826static bool too_many_workers(struct worker_pool *pool)
 827{
 828	bool managing = mutex_is_locked(&pool->manager_arb);
 829	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
 830	int nr_busy = pool->nr_workers - nr_idle;
 831
 832	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
 833}
 834
 835/*
 836 * Wake up functions.
 837 */
 838
 839/* Return the first idle worker.  Safe with preemption disabled */
 840static struct worker *first_idle_worker(struct worker_pool *pool)
 841{
 842	if (unlikely(list_empty(&pool->idle_list)))
 843		return NULL;
 844
 845	return list_first_entry(&pool->idle_list, struct worker, entry);
 846}
 847
 848/**
 849 * wake_up_worker - wake up an idle worker
 850 * @pool: worker pool to wake worker from
 851 *
 852 * Wake up the first idle worker of @pool.
 853 *
 854 * CONTEXT:
 855 * spin_lock_irq(pool->lock).
 856 */
 857static void wake_up_worker(struct worker_pool *pool)
 858{
 859	struct worker *worker = first_idle_worker(pool);
 860
 861	if (likely(worker))
 862		wake_up_process(worker->task);
 863}
 864
 865/**
 866 * wq_worker_waking_up - a worker is waking up
 867 * @task: task waking up
 868 * @cpu: CPU @task is waking up to
 869 *
 870 * This function is called during try_to_wake_up() when a worker is
 871 * being awoken.
 872 *
 873 * CONTEXT:
 874 * spin_lock_irq(rq->lock)
 875 */
 876void wq_worker_waking_up(struct task_struct *task, int cpu)
 877{
 878	struct worker *worker = kthread_data(task);
 879
 880	if (!(worker->flags & WORKER_NOT_RUNNING)) {
 881		WARN_ON_ONCE(worker->pool->cpu != cpu);
 882		atomic_inc(&worker->pool->nr_running);
 883	}
 
 
 
 
 
 
 
 
 
 
 884}
 885
 886/**
 887 * wq_worker_sleeping - a worker is going to sleep
 888 * @task: task going to sleep
 889 *
 890 * This function is called during schedule() when a busy worker is
 891 * going to sleep.  Worker on the same cpu can be woken up by
 892 * returning pointer to its task.
 893 *
 894 * CONTEXT:
 895 * spin_lock_irq(rq->lock)
 896 *
 897 * Return:
 898 * Worker task on @cpu to wake up, %NULL if none.
 899 */
 900struct task_struct *wq_worker_sleeping(struct task_struct *task)
 901{
 902	struct worker *worker = kthread_data(task), *to_wakeup = NULL;
 903	struct worker_pool *pool;
 904
 905	/*
 906	 * Rescuers, which may not have all the fields set up like normal
 907	 * workers, also reach here, let's not access anything before
 908	 * checking NOT_RUNNING.
 909	 */
 910	if (worker->flags & WORKER_NOT_RUNNING)
 911		return NULL;
 912
 913	pool = worker->pool;
 914
 915	/* this can only happen on the local cpu */
 916	if (WARN_ON_ONCE(pool->cpu != raw_smp_processor_id()))
 917		return NULL;
 
 
 
 918
 919	/*
 920	 * The counterpart of the following dec_and_test, implied mb,
 921	 * worklist not empty test sequence is in insert_work().
 922	 * Please read comment there.
 923	 *
 924	 * NOT_RUNNING is clear.  This means that we're bound to and
 925	 * running on the local cpu w/ rq lock held and preemption
 926	 * disabled, which in turn means that none else could be
 927	 * manipulating idle_list, so dereferencing idle_list without pool
 928	 * lock is safe.
 929	 */
 930	if (atomic_dec_and_test(&pool->nr_running) &&
 931	    !list_empty(&pool->worklist))
 932		to_wakeup = first_idle_worker(pool);
 933	return to_wakeup ? to_wakeup->task : NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 934}
 935
 936/**
 937 * worker_set_flags - set worker flags and adjust nr_running accordingly
 938 * @worker: self
 939 * @flags: flags to set
 940 *
 941 * Set @flags in @worker->flags and adjust nr_running accordingly.
 942 *
 943 * CONTEXT:
 944 * spin_lock_irq(pool->lock)
 945 */
 946static inline void worker_set_flags(struct worker *worker, unsigned int flags)
 947{
 948	struct worker_pool *pool = worker->pool;
 949
 950	WARN_ON_ONCE(worker->task != current);
 951
 952	/* If transitioning into NOT_RUNNING, adjust nr_running. */
 953	if ((flags & WORKER_NOT_RUNNING) &&
 954	    !(worker->flags & WORKER_NOT_RUNNING)) {
 955		atomic_dec(&pool->nr_running);
 956	}
 957
 958	worker->flags |= flags;
 959}
 960
 961/**
 962 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
 963 * @worker: self
 964 * @flags: flags to clear
 965 *
 966 * Clear @flags in @worker->flags and adjust nr_running accordingly.
 967 *
 968 * CONTEXT:
 969 * spin_lock_irq(pool->lock)
 970 */
 971static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
 972{
 973	struct worker_pool *pool = worker->pool;
 974	unsigned int oflags = worker->flags;
 975
 976	WARN_ON_ONCE(worker->task != current);
 977
 978	worker->flags &= ~flags;
 979
 980	/*
 981	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
 982	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
 983	 * of multiple flags, not a single flag.
 984	 */
 985	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
 986		if (!(worker->flags & WORKER_NOT_RUNNING))
 987			atomic_inc(&pool->nr_running);
 988}
 989
 990/**
 991 * find_worker_executing_work - find worker which is executing a work
 992 * @pool: pool of interest
 993 * @work: work to find worker for
 994 *
 995 * Find a worker which is executing @work on @pool by searching
 996 * @pool->busy_hash which is keyed by the address of @work.  For a worker
 997 * to match, its current execution should match the address of @work and
 998 * its work function.  This is to avoid unwanted dependency between
 999 * unrelated work executions through a work item being recycled while still
1000 * being executed.
1001 *
1002 * This is a bit tricky.  A work item may be freed once its execution
1003 * starts and nothing prevents the freed area from being recycled for
1004 * another work item.  If the same work item address ends up being reused
1005 * before the original execution finishes, workqueue will identify the
1006 * recycled work item as currently executing and make it wait until the
1007 * current execution finishes, introducing an unwanted dependency.
1008 *
1009 * This function checks the work item address and work function to avoid
1010 * false positives.  Note that this isn't complete as one may construct a
1011 * work function which can introduce dependency onto itself through a
1012 * recycled work item.  Well, if somebody wants to shoot oneself in the
1013 * foot that badly, there's only so much we can do, and if such deadlock
1014 * actually occurs, it should be easy to locate the culprit work function.
1015 *
1016 * CONTEXT:
1017 * spin_lock_irq(pool->lock).
1018 *
1019 * Return:
1020 * Pointer to worker which is executing @work if found, %NULL
1021 * otherwise.
1022 */
1023static struct worker *find_worker_executing_work(struct worker_pool *pool,
1024						 struct work_struct *work)
1025{
1026	struct worker *worker;
1027
1028	hash_for_each_possible(pool->busy_hash, worker, hentry,
1029			       (unsigned long)work)
1030		if (worker->current_work == work &&
1031		    worker->current_func == work->func)
1032			return worker;
1033
1034	return NULL;
1035}
1036
1037/**
1038 * move_linked_works - move linked works to a list
1039 * @work: start of series of works to be scheduled
1040 * @head: target list to append @work to
1041 * @nextp: out parameter for nested worklist walking
1042 *
1043 * Schedule linked works starting from @work to @head.  Work series to
1044 * be scheduled starts at @work and includes any consecutive work with
1045 * WORK_STRUCT_LINKED set in its predecessor.
1046 *
1047 * If @nextp is not NULL, it's updated to point to the next work of
1048 * the last scheduled work.  This allows move_linked_works() to be
1049 * nested inside outer list_for_each_entry_safe().
1050 *
1051 * CONTEXT:
1052 * spin_lock_irq(pool->lock).
1053 */
1054static void move_linked_works(struct work_struct *work, struct list_head *head,
1055			      struct work_struct **nextp)
1056{
1057	struct work_struct *n;
1058
1059	/*
1060	 * Linked worklist will always end before the end of the list,
1061	 * use NULL for list head.
1062	 */
1063	list_for_each_entry_safe_from(work, n, NULL, entry) {
1064		list_move_tail(&work->entry, head);
1065		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1066			break;
1067	}
1068
1069	/*
1070	 * If we're already inside safe list traversal and have moved
1071	 * multiple works to the scheduled queue, the next position
1072	 * needs to be updated.
1073	 */
1074	if (nextp)
1075		*nextp = n;
1076}
1077
1078/**
1079 * get_pwq - get an extra reference on the specified pool_workqueue
1080 * @pwq: pool_workqueue to get
1081 *
1082 * Obtain an extra reference on @pwq.  The caller should guarantee that
1083 * @pwq has positive refcnt and be holding the matching pool->lock.
1084 */
1085static void get_pwq(struct pool_workqueue *pwq)
1086{
1087	lockdep_assert_held(&pwq->pool->lock);
1088	WARN_ON_ONCE(pwq->refcnt <= 0);
1089	pwq->refcnt++;
1090}
1091
1092/**
1093 * put_pwq - put a pool_workqueue reference
1094 * @pwq: pool_workqueue to put
1095 *
1096 * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
1097 * destruction.  The caller should be holding the matching pool->lock.
1098 */
1099static void put_pwq(struct pool_workqueue *pwq)
1100{
1101	lockdep_assert_held(&pwq->pool->lock);
1102	if (likely(--pwq->refcnt))
1103		return;
1104	if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1105		return;
1106	/*
1107	 * @pwq can't be released under pool->lock, bounce to
1108	 * pwq_unbound_release_workfn().  This never recurses on the same
1109	 * pool->lock as this path is taken only for unbound workqueues and
1110	 * the release work item is scheduled on a per-cpu workqueue.  To
1111	 * avoid lockdep warning, unbound pool->locks are given lockdep
1112	 * subclass of 1 in get_unbound_pool().
1113	 */
1114	schedule_work(&pwq->unbound_release_work);
1115}
1116
1117/**
1118 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1119 * @pwq: pool_workqueue to put (can be %NULL)
1120 *
1121 * put_pwq() with locking.  This function also allows %NULL @pwq.
1122 */
1123static void put_pwq_unlocked(struct pool_workqueue *pwq)
1124{
1125	if (pwq) {
1126		/*
1127		 * As both pwqs and pools are sched-RCU protected, the
1128		 * following lock operations are safe.
1129		 */
1130		spin_lock_irq(&pwq->pool->lock);
1131		put_pwq(pwq);
1132		spin_unlock_irq(&pwq->pool->lock);
1133	}
1134}
1135
1136static void pwq_activate_delayed_work(struct work_struct *work)
1137{
1138	struct pool_workqueue *pwq = get_work_pwq(work);
1139
1140	trace_workqueue_activate_work(work);
1141	if (list_empty(&pwq->pool->worklist))
1142		pwq->pool->watchdog_ts = jiffies;
1143	move_linked_works(work, &pwq->pool->worklist, NULL);
1144	__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1145	pwq->nr_active++;
1146}
1147
1148static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1149{
1150	struct work_struct *work = list_first_entry(&pwq->delayed_works,
1151						    struct work_struct, entry);
1152
1153	pwq_activate_delayed_work(work);
1154}
1155
1156/**
1157 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1158 * @pwq: pwq of interest
1159 * @color: color of work which left the queue
1160 *
1161 * A work either has completed or is removed from pending queue,
1162 * decrement nr_in_flight of its pwq and handle workqueue flushing.
1163 *
1164 * CONTEXT:
1165 * spin_lock_irq(pool->lock).
1166 */
1167static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1168{
1169	/* uncolored work items don't participate in flushing or nr_active */
1170	if (color == WORK_NO_COLOR)
1171		goto out_put;
1172
1173	pwq->nr_in_flight[color]--;
1174
1175	pwq->nr_active--;
1176	if (!list_empty(&pwq->delayed_works)) {
1177		/* one down, submit a delayed one */
1178		if (pwq->nr_active < pwq->max_active)
1179			pwq_activate_first_delayed(pwq);
1180	}
1181
 
 
1182	/* is flush in progress and are we at the flushing tip? */
1183	if (likely(pwq->flush_color != color))
1184		goto out_put;
1185
1186	/* are there still in-flight works? */
1187	if (pwq->nr_in_flight[color])
1188		goto out_put;
1189
1190	/* this pwq is done, clear flush_color */
1191	pwq->flush_color = -1;
1192
1193	/*
1194	 * If this was the last pwq, wake up the first flusher.  It
1195	 * will handle the rest.
1196	 */
1197	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1198		complete(&pwq->wq->first_flusher->done);
1199out_put:
1200	put_pwq(pwq);
1201}
1202
1203/**
1204 * try_to_grab_pending - steal work item from worklist and disable irq
1205 * @work: work item to steal
1206 * @is_dwork: @work is a delayed_work
1207 * @flags: place to store irq state
1208 *
1209 * Try to grab PENDING bit of @work.  This function can handle @work in any
1210 * stable state - idle, on timer or on worklist.
1211 *
1212 * Return:
 
 
1213 *  1		if @work was pending and we successfully stole PENDING
1214 *  0		if @work was idle and we claimed PENDING
1215 *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1216 *  -ENOENT	if someone else is canceling @work, this state may persist
1217 *		for arbitrarily long
 
1218 *
1219 * Note:
1220 * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1221 * interrupted while holding PENDING and @work off queue, irq must be
1222 * disabled on entry.  This, combined with delayed_work->timer being
1223 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1224 *
1225 * On successful return, >= 0, irq is disabled and the caller is
1226 * responsible for releasing it using local_irq_restore(*@flags).
1227 *
1228 * This function is safe to call from any context including IRQ handler.
1229 */
1230static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1231			       unsigned long *flags)
1232{
1233	struct worker_pool *pool;
1234	struct pool_workqueue *pwq;
1235
1236	local_irq_save(*flags);
1237
1238	/* try to steal the timer if it exists */
1239	if (is_dwork) {
1240		struct delayed_work *dwork = to_delayed_work(work);
1241
1242		/*
1243		 * dwork->timer is irqsafe.  If del_timer() fails, it's
1244		 * guaranteed that the timer is not queued anywhere and not
1245		 * running on the local CPU.
1246		 */
1247		if (likely(del_timer(&dwork->timer)))
1248			return 1;
1249	}
1250
1251	/* try to claim PENDING the normal way */
1252	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1253		return 0;
1254
 
1255	/*
1256	 * The queueing is in progress, or it is already queued. Try to
1257	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1258	 */
1259	pool = get_work_pool(work);
1260	if (!pool)
1261		goto fail;
1262
1263	spin_lock(&pool->lock);
1264	/*
1265	 * work->data is guaranteed to point to pwq only while the work
1266	 * item is queued on pwq->wq, and both updating work->data to point
1267	 * to pwq on queueing and to pool on dequeueing are done under
1268	 * pwq->pool->lock.  This in turn guarantees that, if work->data
1269	 * points to pwq which is associated with a locked pool, the work
1270	 * item is currently queued on that pool.
1271	 */
1272	pwq = get_work_pwq(work);
1273	if (pwq && pwq->pool == pool) {
1274		debug_work_deactivate(work);
1275
1276		/*
1277		 * A delayed work item cannot be grabbed directly because
1278		 * it might have linked NO_COLOR work items which, if left
1279		 * on the delayed_list, will confuse pwq->nr_active
 
 
 
 
1280		 * management later on and cause stall.  Make sure the work
1281		 * item is activated before grabbing.
1282		 */
1283		if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1284			pwq_activate_delayed_work(work);
1285
1286		list_del_init(&work->entry);
1287		pwq_dec_nr_in_flight(pwq, get_work_color(work));
1288
1289		/* work->data points to pwq iff queued, point to pool */
1290		set_work_pool_and_keep_pending(work, pool->id);
1291
1292		spin_unlock(&pool->lock);
 
1293		return 1;
1294	}
1295	spin_unlock(&pool->lock);
1296fail:
 
1297	local_irq_restore(*flags);
1298	if (work_is_canceling(work))
1299		return -ENOENT;
1300	cpu_relax();
1301	return -EAGAIN;
1302}
1303
1304/**
1305 * insert_work - insert a work into a pool
1306 * @pwq: pwq @work belongs to
1307 * @work: work to insert
1308 * @head: insertion point
1309 * @extra_flags: extra WORK_STRUCT_* flags to set
1310 *
1311 * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
1312 * work_struct flags.
1313 *
1314 * CONTEXT:
1315 * spin_lock_irq(pool->lock).
1316 */
1317static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1318			struct list_head *head, unsigned int extra_flags)
1319{
1320	struct worker_pool *pool = pwq->pool;
1321
 
 
 
1322	/* we own @work, set data and link */
1323	set_work_pwq(work, pwq, extra_flags);
1324	list_add_tail(&work->entry, head);
1325	get_pwq(pwq);
1326
1327	/*
1328	 * Ensure either wq_worker_sleeping() sees the above
1329	 * list_add_tail() or we see zero nr_running to avoid workers lying
1330	 * around lazily while there are works to be processed.
1331	 */
1332	smp_mb();
1333
1334	if (__need_more_worker(pool))
1335		wake_up_worker(pool);
1336}
1337
1338/*
1339 * Test whether @work is being queued from another work executing on the
1340 * same workqueue.
1341 */
1342static bool is_chained_work(struct workqueue_struct *wq)
1343{
1344	struct worker *worker;
1345
1346	worker = current_wq_worker();
1347	/*
1348	 * Return %true iff I'm a worker execuing a work item on @wq.  If
1349	 * I'm @worker, it's safe to dereference it without locking.
1350	 */
1351	return worker && worker->current_pwq->wq == wq;
1352}
1353
1354/*
1355 * When queueing an unbound work item to a wq, prefer local CPU if allowed
1356 * by wq_unbound_cpumask.  Otherwise, round robin among the allowed ones to
1357 * avoid perturbing sensitive tasks.
1358 */
1359static int wq_select_unbound_cpu(int cpu)
1360{
1361	static bool printed_dbg_warning;
1362	int new_cpu;
1363
1364	if (likely(!wq_debug_force_rr_cpu)) {
1365		if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
1366			return cpu;
1367	} else if (!printed_dbg_warning) {
1368		pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n");
1369		printed_dbg_warning = true;
1370	}
1371
1372	if (cpumask_empty(wq_unbound_cpumask))
1373		return cpu;
1374
1375	new_cpu = __this_cpu_read(wq_rr_cpu_last);
1376	new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
1377	if (unlikely(new_cpu >= nr_cpu_ids)) {
1378		new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
1379		if (unlikely(new_cpu >= nr_cpu_ids))
1380			return cpu;
1381	}
1382	__this_cpu_write(wq_rr_cpu_last, new_cpu);
1383
1384	return new_cpu;
1385}
1386
1387static void __queue_work(int cpu, struct workqueue_struct *wq,
1388			 struct work_struct *work)
1389{
1390	struct pool_workqueue *pwq;
1391	struct worker_pool *last_pool;
1392	struct list_head *worklist;
1393	unsigned int work_flags;
1394	unsigned int req_cpu = cpu;
1395
1396	/*
1397	 * While a work item is PENDING && off queue, a task trying to
1398	 * steal the PENDING will busy-loop waiting for it to either get
1399	 * queued or lose PENDING.  Grabbing PENDING and queueing should
1400	 * happen with IRQ disabled.
1401	 */
1402	WARN_ON_ONCE(!irqs_disabled());
1403
1404	debug_work_activate(work);
1405
1406	/* if draining, only works from the same workqueue are allowed */
1407	if (unlikely(wq->flags & __WQ_DRAINING) &&
1408	    WARN_ON_ONCE(!is_chained_work(wq)))
1409		return;
 
1410retry:
1411	if (req_cpu == WORK_CPU_UNBOUND)
1412		cpu = wq_select_unbound_cpu(raw_smp_processor_id());
1413
1414	/* pwq which will be used unless @work is executing elsewhere */
1415	if (!(wq->flags & WQ_UNBOUND))
1416		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1417	else
1418		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
 
 
 
 
 
1419
1420	/*
1421	 * If @work was previously on a different pool, it might still be
1422	 * running there, in which case the work needs to be queued on that
1423	 * pool to guarantee non-reentrancy.
1424	 */
1425	last_pool = get_work_pool(work);
1426	if (last_pool && last_pool != pwq->pool) {
1427		struct worker *worker;
1428
1429		spin_lock(&last_pool->lock);
1430
1431		worker = find_worker_executing_work(last_pool, work);
1432
1433		if (worker && worker->current_pwq->wq == wq) {
1434			pwq = worker->current_pwq;
1435		} else {
1436			/* meh... not running there, queue here */
1437			spin_unlock(&last_pool->lock);
1438			spin_lock(&pwq->pool->lock);
1439		}
1440	} else {
1441		spin_lock(&pwq->pool->lock);
1442	}
1443
1444	/*
1445	 * pwq is determined and locked.  For unbound pools, we could have
1446	 * raced with pwq release and it could already be dead.  If its
1447	 * refcnt is zero, repeat pwq selection.  Note that pwqs never die
1448	 * without another pwq replacing it in the numa_pwq_tbl or while
1449	 * work items are executing on it, so the retrying is guaranteed to
1450	 * make forward-progress.
1451	 */
1452	if (unlikely(!pwq->refcnt)) {
1453		if (wq->flags & WQ_UNBOUND) {
1454			spin_unlock(&pwq->pool->lock);
1455			cpu_relax();
1456			goto retry;
1457		}
1458		/* oops */
1459		WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1460			  wq->name, cpu);
1461	}
1462
1463	/* pwq determined, queue */
1464	trace_workqueue_queue_work(req_cpu, pwq, work);
1465
1466	if (WARN_ON(!list_empty(&work->entry))) {
1467		spin_unlock(&pwq->pool->lock);
1468		return;
1469	}
1470
1471	pwq->nr_in_flight[pwq->work_color]++;
1472	work_flags = work_color_to_flags(pwq->work_color);
1473
1474	if (likely(pwq->nr_active < pwq->max_active)) {
1475		trace_workqueue_activate_work(work);
1476		pwq->nr_active++;
1477		worklist = &pwq->pool->worklist;
1478		if (list_empty(worklist))
1479			pwq->pool->watchdog_ts = jiffies;
1480	} else {
1481		work_flags |= WORK_STRUCT_DELAYED;
1482		worklist = &pwq->delayed_works;
1483	}
1484
 
1485	insert_work(pwq, work, worklist, work_flags);
1486
1487	spin_unlock(&pwq->pool->lock);
 
 
1488}
1489
1490/**
1491 * queue_work_on - queue work on specific cpu
1492 * @cpu: CPU number to execute work on
1493 * @wq: workqueue to use
1494 * @work: work to queue
1495 *
1496 * We queue the work to a specific CPU, the caller must ensure it
1497 * can't go away.
 
1498 *
1499 * Return: %false if @work was already on a queue, %true otherwise.
1500 */
1501bool queue_work_on(int cpu, struct workqueue_struct *wq,
1502		   struct work_struct *work)
1503{
1504	bool ret = false;
1505	unsigned long flags;
1506
1507	local_irq_save(flags);
1508
1509	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1510		__queue_work(cpu, wq, work);
1511		ret = true;
1512	}
1513
1514	local_irq_restore(flags);
1515	return ret;
1516}
1517EXPORT_SYMBOL(queue_work_on);
1518
1519void delayed_work_timer_fn(unsigned long __data)
 
 
 
 
 
 
 
 
 
1520{
1521	struct delayed_work *dwork = (struct delayed_work *)__data;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1522
1523	/* should have been called from irqsafe timer with irq already off */
1524	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
1525}
1526EXPORT_SYMBOL(delayed_work_timer_fn);
1527
1528static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1529				struct delayed_work *dwork, unsigned long delay)
1530{
1531	struct timer_list *timer = &dwork->timer;
1532	struct work_struct *work = &dwork->work;
1533
1534	WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1535		     timer->data != (unsigned long)dwork);
1536	WARN_ON_ONCE(timer_pending(timer));
1537	WARN_ON_ONCE(!list_empty(&work->entry));
1538
1539	/*
1540	 * If @delay is 0, queue @dwork->work immediately.  This is for
1541	 * both optimization and correctness.  The earliest @timer can
1542	 * expire is on the closest next tick and delayed_work users depend
1543	 * on that there's no such delay when @delay is 0.
1544	 */
1545	if (!delay) {
1546		__queue_work(cpu, wq, &dwork->work);
1547		return;
1548	}
1549
1550	timer_stats_timer_set_start_info(&dwork->timer);
1551
1552	dwork->wq = wq;
1553	dwork->cpu = cpu;
1554	timer->expires = jiffies + delay;
1555
1556	if (unlikely(cpu != WORK_CPU_UNBOUND))
1557		add_timer_on(timer, cpu);
1558	else
1559		add_timer(timer);
1560}
1561
1562/**
1563 * queue_delayed_work_on - queue work on specific CPU after delay
1564 * @cpu: CPU number to execute work on
1565 * @wq: workqueue to use
1566 * @dwork: work to queue
1567 * @delay: number of jiffies to wait before queueing
1568 *
1569 * Return: %false if @work was already on a queue, %true otherwise.  If
1570 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1571 * execution.
1572 */
1573bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1574			   struct delayed_work *dwork, unsigned long delay)
1575{
1576	struct work_struct *work = &dwork->work;
1577	bool ret = false;
1578	unsigned long flags;
1579
1580	/* read the comment in __queue_work() */
1581	local_irq_save(flags);
1582
1583	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1584		__queue_delayed_work(cpu, wq, dwork, delay);
1585		ret = true;
1586	}
1587
1588	local_irq_restore(flags);
1589	return ret;
1590}
1591EXPORT_SYMBOL(queue_delayed_work_on);
1592
1593/**
1594 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1595 * @cpu: CPU number to execute work on
1596 * @wq: workqueue to use
1597 * @dwork: work to queue
1598 * @delay: number of jiffies to wait before queueing
1599 *
1600 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1601 * modify @dwork's timer so that it expires after @delay.  If @delay is
1602 * zero, @work is guaranteed to be scheduled immediately regardless of its
1603 * current state.
1604 *
1605 * Return: %false if @dwork was idle and queued, %true if @dwork was
1606 * pending and its timer was modified.
1607 *
1608 * This function is safe to call from any context including IRQ handler.
1609 * See try_to_grab_pending() for details.
1610 */
1611bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1612			 struct delayed_work *dwork, unsigned long delay)
1613{
1614	unsigned long flags;
1615	int ret;
1616
1617	do {
1618		ret = try_to_grab_pending(&dwork->work, true, &flags);
1619	} while (unlikely(ret == -EAGAIN));
1620
1621	if (likely(ret >= 0)) {
1622		__queue_delayed_work(cpu, wq, dwork, delay);
1623		local_irq_restore(flags);
1624	}
1625
1626	/* -ENOENT from try_to_grab_pending() becomes %true */
1627	return ret;
1628}
1629EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1630
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1631/**
1632 * worker_enter_idle - enter idle state
1633 * @worker: worker which is entering idle state
1634 *
1635 * @worker is entering idle state.  Update stats and idle timer if
1636 * necessary.
1637 *
1638 * LOCKING:
1639 * spin_lock_irq(pool->lock).
1640 */
1641static void worker_enter_idle(struct worker *worker)
1642{
1643	struct worker_pool *pool = worker->pool;
1644
1645	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1646	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
1647			 (worker->hentry.next || worker->hentry.pprev)))
1648		return;
1649
1650	/* can't use worker_set_flags(), also called from create_worker() */
1651	worker->flags |= WORKER_IDLE;
1652	pool->nr_idle++;
1653	worker->last_active = jiffies;
1654
1655	/* idle_list is LIFO */
1656	list_add(&worker->entry, &pool->idle_list);
1657
1658	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1659		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1660
1661	/*
1662	 * Sanity check nr_running.  Because wq_unbind_fn() releases
1663	 * pool->lock between setting %WORKER_UNBOUND and zapping
1664	 * nr_running, the warning may trigger spuriously.  Check iff
1665	 * unbind is not in progress.
1666	 */
1667	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1668		     pool->nr_workers == pool->nr_idle &&
1669		     atomic_read(&pool->nr_running));
1670}
1671
1672/**
1673 * worker_leave_idle - leave idle state
1674 * @worker: worker which is leaving idle state
1675 *
1676 * @worker is leaving idle state.  Update stats.
1677 *
1678 * LOCKING:
1679 * spin_lock_irq(pool->lock).
1680 */
1681static void worker_leave_idle(struct worker *worker)
1682{
1683	struct worker_pool *pool = worker->pool;
1684
1685	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1686		return;
1687	worker_clr_flags(worker, WORKER_IDLE);
1688	pool->nr_idle--;
1689	list_del_init(&worker->entry);
1690}
1691
1692static struct worker *alloc_worker(int node)
1693{
1694	struct worker *worker;
1695
1696	worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
1697	if (worker) {
1698		INIT_LIST_HEAD(&worker->entry);
1699		INIT_LIST_HEAD(&worker->scheduled);
1700		INIT_LIST_HEAD(&worker->node);
1701		/* on creation a worker is in !idle && prep state */
1702		worker->flags = WORKER_PREP;
1703	}
1704	return worker;
1705}
1706
1707/**
1708 * worker_attach_to_pool() - attach a worker to a pool
1709 * @worker: worker to be attached
1710 * @pool: the target pool
1711 *
1712 * Attach @worker to @pool.  Once attached, the %WORKER_UNBOUND flag and
1713 * cpu-binding of @worker are kept coordinated with the pool across
1714 * cpu-[un]hotplugs.
1715 */
1716static void worker_attach_to_pool(struct worker *worker,
1717				   struct worker_pool *pool)
1718{
1719	mutex_lock(&pool->attach_mutex);
1720
1721	/*
1722	 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1723	 * online CPUs.  It'll be re-applied when any of the CPUs come up.
1724	 */
1725	set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1726
1727	/*
1728	 * The pool->attach_mutex ensures %POOL_DISASSOCIATED remains
1729	 * stable across this function.  See the comments above the
1730	 * flag definition for details.
1731	 */
1732	if (pool->flags & POOL_DISASSOCIATED)
1733		worker->flags |= WORKER_UNBOUND;
 
 
 
 
 
1734
1735	list_add_tail(&worker->node, &pool->workers);
 
1736
1737	mutex_unlock(&pool->attach_mutex);
1738}
1739
1740/**
1741 * worker_detach_from_pool() - detach a worker from its pool
1742 * @worker: worker which is attached to its pool
1743 * @pool: the pool @worker is attached to
1744 *
1745 * Undo the attaching which had been done in worker_attach_to_pool().  The
1746 * caller worker shouldn't access to the pool after detached except it has
1747 * other reference to the pool.
1748 */
1749static void worker_detach_from_pool(struct worker *worker,
1750				    struct worker_pool *pool)
1751{
 
1752	struct completion *detach_completion = NULL;
1753
1754	mutex_lock(&pool->attach_mutex);
 
 
1755	list_del(&worker->node);
 
 
1756	if (list_empty(&pool->workers))
1757		detach_completion = pool->detach_completion;
1758	mutex_unlock(&pool->attach_mutex);
1759
1760	/* clear leftover flags without pool->lock after it is detached */
1761	worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
1762
1763	if (detach_completion)
1764		complete(detach_completion);
1765}
1766
1767/**
1768 * create_worker - create a new workqueue worker
1769 * @pool: pool the new worker will belong to
1770 *
1771 * Create and start a new worker which is attached to @pool.
1772 *
1773 * CONTEXT:
1774 * Might sleep.  Does GFP_KERNEL allocations.
1775 *
1776 * Return:
1777 * Pointer to the newly created worker.
1778 */
1779static struct worker *create_worker(struct worker_pool *pool)
1780{
1781	struct worker *worker = NULL;
1782	int id = -1;
1783	char id_buf[16];
1784
1785	/* ID is needed to determine kthread name */
1786	id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
1787	if (id < 0)
1788		goto fail;
1789
1790	worker = alloc_worker(pool->node);
1791	if (!worker)
1792		goto fail;
1793
1794	worker->pool = pool;
1795	worker->id = id;
1796
1797	if (pool->cpu >= 0)
1798		snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1799			 pool->attrs->nice < 0  ? "H" : "");
1800	else
1801		snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1802
1803	worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1804					      "kworker/%s", id_buf);
1805	if (IS_ERR(worker->task))
1806		goto fail;
1807
1808	set_user_nice(worker->task, pool->attrs->nice);
1809	kthread_bind_mask(worker->task, pool->attrs->cpumask);
1810
1811	/* successful, attach the worker to the pool */
1812	worker_attach_to_pool(worker, pool);
1813
1814	/* start the newly created worker */
1815	spin_lock_irq(&pool->lock);
1816	worker->pool->nr_workers++;
1817	worker_enter_idle(worker);
1818	wake_up_process(worker->task);
1819	spin_unlock_irq(&pool->lock);
1820
1821	return worker;
1822
1823fail:
1824	if (id >= 0)
1825		ida_simple_remove(&pool->worker_ida, id);
1826	kfree(worker);
1827	return NULL;
1828}
1829
1830/**
1831 * destroy_worker - destroy a workqueue worker
1832 * @worker: worker to be destroyed
1833 *
1834 * Destroy @worker and adjust @pool stats accordingly.  The worker should
1835 * be idle.
1836 *
1837 * CONTEXT:
1838 * spin_lock_irq(pool->lock).
1839 */
1840static void destroy_worker(struct worker *worker)
1841{
1842	struct worker_pool *pool = worker->pool;
1843
1844	lockdep_assert_held(&pool->lock);
1845
1846	/* sanity check frenzy */
1847	if (WARN_ON(worker->current_work) ||
1848	    WARN_ON(!list_empty(&worker->scheduled)) ||
1849	    WARN_ON(!(worker->flags & WORKER_IDLE)))
1850		return;
1851
1852	pool->nr_workers--;
1853	pool->nr_idle--;
1854
1855	list_del_init(&worker->entry);
1856	worker->flags |= WORKER_DIE;
1857	wake_up_process(worker->task);
1858}
1859
1860static void idle_worker_timeout(unsigned long __pool)
1861{
1862	struct worker_pool *pool = (void *)__pool;
1863
1864	spin_lock_irq(&pool->lock);
1865
1866	while (too_many_workers(pool)) {
1867		struct worker *worker;
1868		unsigned long expires;
1869
1870		/* idle_list is kept in LIFO order, check the last one */
1871		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1872		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1873
1874		if (time_before(jiffies, expires)) {
1875			mod_timer(&pool->idle_timer, expires);
1876			break;
1877		}
1878
1879		destroy_worker(worker);
1880	}
1881
1882	spin_unlock_irq(&pool->lock);
1883}
1884
1885static void send_mayday(struct work_struct *work)
1886{
1887	struct pool_workqueue *pwq = get_work_pwq(work);
1888	struct workqueue_struct *wq = pwq->wq;
1889
1890	lockdep_assert_held(&wq_mayday_lock);
1891
1892	if (!wq->rescuer)
1893		return;
1894
1895	/* mayday mayday mayday */
1896	if (list_empty(&pwq->mayday_node)) {
1897		/*
1898		 * If @pwq is for an unbound wq, its base ref may be put at
1899		 * any time due to an attribute change.  Pin @pwq until the
1900		 * rescuer is done with it.
1901		 */
1902		get_pwq(pwq);
1903		list_add_tail(&pwq->mayday_node, &wq->maydays);
1904		wake_up_process(wq->rescuer->task);
1905	}
1906}
1907
1908static void pool_mayday_timeout(unsigned long __pool)
1909{
1910	struct worker_pool *pool = (void *)__pool;
1911	struct work_struct *work;
1912
1913	spin_lock_irq(&pool->lock);
1914	spin_lock(&wq_mayday_lock);		/* for wq->maydays */
1915
1916	if (need_to_create_worker(pool)) {
1917		/*
1918		 * We've been trying to create a new worker but
1919		 * haven't been successful.  We might be hitting an
1920		 * allocation deadlock.  Send distress signals to
1921		 * rescuers.
1922		 */
1923		list_for_each_entry(work, &pool->worklist, entry)
1924			send_mayday(work);
1925	}
1926
1927	spin_unlock(&wq_mayday_lock);
1928	spin_unlock_irq(&pool->lock);
1929
1930	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1931}
1932
1933/**
1934 * maybe_create_worker - create a new worker if necessary
1935 * @pool: pool to create a new worker for
1936 *
1937 * Create a new worker for @pool if necessary.  @pool is guaranteed to
1938 * have at least one idle worker on return from this function.  If
1939 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1940 * sent to all rescuers with works scheduled on @pool to resolve
1941 * possible allocation deadlock.
1942 *
1943 * On return, need_to_create_worker() is guaranteed to be %false and
1944 * may_start_working() %true.
1945 *
1946 * LOCKING:
1947 * spin_lock_irq(pool->lock) which may be released and regrabbed
1948 * multiple times.  Does GFP_KERNEL allocations.  Called only from
1949 * manager.
1950 */
1951static void maybe_create_worker(struct worker_pool *pool)
1952__releases(&pool->lock)
1953__acquires(&pool->lock)
1954{
1955restart:
1956	spin_unlock_irq(&pool->lock);
1957
1958	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1959	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1960
1961	while (true) {
1962		if (create_worker(pool) || !need_to_create_worker(pool))
1963			break;
1964
1965		schedule_timeout_interruptible(CREATE_COOLDOWN);
1966
1967		if (!need_to_create_worker(pool))
1968			break;
1969	}
1970
1971	del_timer_sync(&pool->mayday_timer);
1972	spin_lock_irq(&pool->lock);
1973	/*
1974	 * This is necessary even after a new worker was just successfully
1975	 * created as @pool->lock was dropped and the new worker might have
1976	 * already become busy.
1977	 */
1978	if (need_to_create_worker(pool))
1979		goto restart;
1980}
1981
1982/**
1983 * manage_workers - manage worker pool
1984 * @worker: self
1985 *
1986 * Assume the manager role and manage the worker pool @worker belongs
1987 * to.  At any given time, there can be only zero or one manager per
1988 * pool.  The exclusion is handled automatically by this function.
1989 *
1990 * The caller can safely start processing works on false return.  On
1991 * true return, it's guaranteed that need_to_create_worker() is false
1992 * and may_start_working() is true.
1993 *
1994 * CONTEXT:
1995 * spin_lock_irq(pool->lock) which may be released and regrabbed
1996 * multiple times.  Does GFP_KERNEL allocations.
1997 *
1998 * Return:
1999 * %false if the pool doesn't need management and the caller can safely
2000 * start processing works, %true if management function was performed and
2001 * the conditions that the caller verified before calling the function may
2002 * no longer be true.
2003 */
2004static bool manage_workers(struct worker *worker)
2005{
2006	struct worker_pool *pool = worker->pool;
2007
2008	/*
2009	 * Anyone who successfully grabs manager_arb wins the arbitration
2010	 * and becomes the manager.  mutex_trylock() on pool->manager_arb
2011	 * failure while holding pool->lock reliably indicates that someone
2012	 * else is managing the pool and the worker which failed trylock
2013	 * can proceed to executing work items.  This means that anyone
2014	 * grabbing manager_arb is responsible for actually performing
2015	 * manager duties.  If manager_arb is grabbed and released without
2016	 * actual management, the pool may stall indefinitely.
2017	 */
2018	if (!mutex_trylock(&pool->manager_arb))
2019		return false;
 
 
2020	pool->manager = worker;
2021
2022	maybe_create_worker(pool);
2023
2024	pool->manager = NULL;
2025	mutex_unlock(&pool->manager_arb);
 
2026	return true;
2027}
2028
2029/**
2030 * process_one_work - process single work
2031 * @worker: self
2032 * @work: work to process
2033 *
2034 * Process @work.  This function contains all the logics necessary to
2035 * process a single work including synchronization against and
2036 * interaction with other workers on the same cpu, queueing and
2037 * flushing.  As long as context requirement is met, any worker can
2038 * call this function to process a work.
2039 *
2040 * CONTEXT:
2041 * spin_lock_irq(pool->lock) which is released and regrabbed.
2042 */
2043static void process_one_work(struct worker *worker, struct work_struct *work)
2044__releases(&pool->lock)
2045__acquires(&pool->lock)
2046{
2047	struct pool_workqueue *pwq = get_work_pwq(work);
2048	struct worker_pool *pool = worker->pool;
2049	bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2050	int work_color;
2051	struct worker *collision;
2052#ifdef CONFIG_LOCKDEP
2053	/*
2054	 * It is permissible to free the struct work_struct from
2055	 * inside the function that is called from it, this we need to
2056	 * take into account for lockdep too.  To avoid bogus "held
2057	 * lock freed" warnings as well as problems when looking into
2058	 * work->lockdep_map, make a copy and use that here.
2059	 */
2060	struct lockdep_map lockdep_map;
2061
2062	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2063#endif
2064	/* ensure we're on the correct CPU */
2065	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
2066		     raw_smp_processor_id() != pool->cpu);
2067
2068	/*
2069	 * A single work shouldn't be executed concurrently by
2070	 * multiple workers on a single cpu.  Check whether anyone is
2071	 * already processing the work.  If so, defer the work to the
2072	 * currently executing one.
2073	 */
2074	collision = find_worker_executing_work(pool, work);
2075	if (unlikely(collision)) {
2076		move_linked_works(work, &collision->scheduled, NULL);
2077		return;
2078	}
2079
2080	/* claim and dequeue */
2081	debug_work_deactivate(work);
2082	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2083	worker->current_work = work;
2084	worker->current_func = work->func;
2085	worker->current_pwq = pwq;
2086	work_color = get_work_color(work);
 
 
 
 
 
 
 
2087
2088	list_del_init(&work->entry);
2089
2090	/*
2091	 * CPU intensive works don't participate in concurrency management.
2092	 * They're the scheduler's responsibility.  This takes @worker out
2093	 * of concurrency management and the next code block will chain
2094	 * execution of the pending work items.
2095	 */
2096	if (unlikely(cpu_intensive))
2097		worker_set_flags(worker, WORKER_CPU_INTENSIVE);
2098
2099	/*
2100	 * Wake up another worker if necessary.  The condition is always
2101	 * false for normal per-cpu workers since nr_running would always
2102	 * be >= 1 at this point.  This is used to chain execution of the
2103	 * pending work items for WORKER_NOT_RUNNING workers such as the
2104	 * UNBOUND and CPU_INTENSIVE ones.
2105	 */
2106	if (need_more_worker(pool))
2107		wake_up_worker(pool);
2108
2109	/*
2110	 * Record the last pool and clear PENDING which should be the last
2111	 * update to @work.  Also, do this inside @pool->lock so that
2112	 * PENDING and queued state changes happen together while IRQ is
2113	 * disabled.
2114	 */
2115	set_work_pool_and_clear_pending(work, pool->id);
2116
2117	spin_unlock_irq(&pool->lock);
2118
2119	lock_map_acquire_read(&pwq->wq->lockdep_map);
2120	lock_map_acquire(&lockdep_map);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2121	trace_workqueue_execute_start(work);
2122	worker->current_func(work);
2123	/*
2124	 * While we must be careful to not use "work" after this, the trace
2125	 * point will only record its address.
2126	 */
2127	trace_workqueue_execute_end(work);
2128	lock_map_release(&lockdep_map);
2129	lock_map_release(&pwq->wq->lockdep_map);
2130
2131	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2132		pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2133		       "     last function: %pf\n",
2134		       current->comm, preempt_count(), task_pid_nr(current),
2135		       worker->current_func);
2136		debug_show_held_locks(current);
2137		dump_stack();
2138	}
2139
2140	/*
2141	 * The following prevents a kworker from hogging CPU on !PREEMPT
2142	 * kernels, where a requeueing work item waiting for something to
2143	 * happen could deadlock with stop_machine as such work item could
2144	 * indefinitely requeue itself while all other CPUs are trapped in
2145	 * stop_machine. At the same time, report a quiescent RCU state so
2146	 * the same condition doesn't freeze RCU.
2147	 */
2148	cond_resched_rcu_qs();
2149
2150	spin_lock_irq(&pool->lock);
2151
2152	/* clear cpu intensive status */
2153	if (unlikely(cpu_intensive))
2154		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2155
 
 
 
2156	/* we're done with it, release */
2157	hash_del(&worker->hentry);
2158	worker->current_work = NULL;
2159	worker->current_func = NULL;
2160	worker->current_pwq = NULL;
2161	worker->desc_valid = false;
2162	pwq_dec_nr_in_flight(pwq, work_color);
2163}
2164
2165/**
2166 * process_scheduled_works - process scheduled works
2167 * @worker: self
2168 *
2169 * Process all scheduled works.  Please note that the scheduled list
2170 * may change while processing a work, so this function repeatedly
2171 * fetches a work from the top and executes it.
2172 *
2173 * CONTEXT:
2174 * spin_lock_irq(pool->lock) which may be released and regrabbed
2175 * multiple times.
2176 */
2177static void process_scheduled_works(struct worker *worker)
2178{
2179	while (!list_empty(&worker->scheduled)) {
2180		struct work_struct *work = list_first_entry(&worker->scheduled,
2181						struct work_struct, entry);
2182		process_one_work(worker, work);
2183	}
2184}
2185
 
 
 
 
 
 
 
 
 
 
2186/**
2187 * worker_thread - the worker thread function
2188 * @__worker: self
2189 *
2190 * The worker thread function.  All workers belong to a worker_pool -
2191 * either a per-cpu one or dynamic unbound one.  These workers process all
2192 * work items regardless of their specific target workqueue.  The only
2193 * exception is work items which belong to workqueues with a rescuer which
2194 * will be explained in rescuer_thread().
2195 *
2196 * Return: 0
2197 */
2198static int worker_thread(void *__worker)
2199{
2200	struct worker *worker = __worker;
2201	struct worker_pool *pool = worker->pool;
2202
2203	/* tell the scheduler that this is a workqueue worker */
2204	worker->task->flags |= PF_WQ_WORKER;
2205woke_up:
2206	spin_lock_irq(&pool->lock);
2207
2208	/* am I supposed to die? */
2209	if (unlikely(worker->flags & WORKER_DIE)) {
2210		spin_unlock_irq(&pool->lock);
2211		WARN_ON_ONCE(!list_empty(&worker->entry));
2212		worker->task->flags &= ~PF_WQ_WORKER;
2213
2214		set_task_comm(worker->task, "kworker/dying");
2215		ida_simple_remove(&pool->worker_ida, worker->id);
2216		worker_detach_from_pool(worker, pool);
2217		kfree(worker);
2218		return 0;
2219	}
2220
2221	worker_leave_idle(worker);
2222recheck:
2223	/* no more worker necessary? */
2224	if (!need_more_worker(pool))
2225		goto sleep;
2226
2227	/* do we need to manage? */
2228	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2229		goto recheck;
2230
2231	/*
2232	 * ->scheduled list can only be filled while a worker is
2233	 * preparing to process a work or actually processing it.
2234	 * Make sure nobody diddled with it while I was sleeping.
2235	 */
2236	WARN_ON_ONCE(!list_empty(&worker->scheduled));
2237
2238	/*
2239	 * Finish PREP stage.  We're guaranteed to have at least one idle
2240	 * worker or that someone else has already assumed the manager
2241	 * role.  This is where @worker starts participating in concurrency
2242	 * management if applicable and concurrency management is restored
2243	 * after being rebound.  See rebind_workers() for details.
2244	 */
2245	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2246
2247	do {
2248		struct work_struct *work =
2249			list_first_entry(&pool->worklist,
2250					 struct work_struct, entry);
2251
2252		pool->watchdog_ts = jiffies;
2253
2254		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2255			/* optimization path, not strictly necessary */
2256			process_one_work(worker, work);
2257			if (unlikely(!list_empty(&worker->scheduled)))
2258				process_scheduled_works(worker);
2259		} else {
2260			move_linked_works(work, &worker->scheduled, NULL);
2261			process_scheduled_works(worker);
2262		}
2263	} while (keep_working(pool));
2264
2265	worker_set_flags(worker, WORKER_PREP);
2266sleep:
2267	/*
2268	 * pool->lock is held and there's no work to process and no need to
2269	 * manage, sleep.  Workers are woken up only while holding
2270	 * pool->lock or from local cpu, so setting the current state
2271	 * before releasing pool->lock is enough to prevent losing any
2272	 * event.
2273	 */
2274	worker_enter_idle(worker);
2275	__set_current_state(TASK_INTERRUPTIBLE);
2276	spin_unlock_irq(&pool->lock);
2277	schedule();
2278	goto woke_up;
2279}
2280
2281/**
2282 * rescuer_thread - the rescuer thread function
2283 * @__rescuer: self
2284 *
2285 * Workqueue rescuer thread function.  There's one rescuer for each
2286 * workqueue which has WQ_MEM_RECLAIM set.
2287 *
2288 * Regular work processing on a pool may block trying to create a new
2289 * worker which uses GFP_KERNEL allocation which has slight chance of
2290 * developing into deadlock if some works currently on the same queue
2291 * need to be processed to satisfy the GFP_KERNEL allocation.  This is
2292 * the problem rescuer solves.
2293 *
2294 * When such condition is possible, the pool summons rescuers of all
2295 * workqueues which have works queued on the pool and let them process
2296 * those works so that forward progress can be guaranteed.
2297 *
2298 * This should happen rarely.
2299 *
2300 * Return: 0
2301 */
2302static int rescuer_thread(void *__rescuer)
2303{
2304	struct worker *rescuer = __rescuer;
2305	struct workqueue_struct *wq = rescuer->rescue_wq;
2306	struct list_head *scheduled = &rescuer->scheduled;
2307	bool should_stop;
2308
2309	set_user_nice(current, RESCUER_NICE_LEVEL);
2310
2311	/*
2312	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
2313	 * doesn't participate in concurrency management.
2314	 */
2315	rescuer->task->flags |= PF_WQ_WORKER;
2316repeat:
2317	set_current_state(TASK_INTERRUPTIBLE);
2318
2319	/*
2320	 * By the time the rescuer is requested to stop, the workqueue
2321	 * shouldn't have any work pending, but @wq->maydays may still have
2322	 * pwq(s) queued.  This can happen by non-rescuer workers consuming
2323	 * all the work items before the rescuer got to them.  Go through
2324	 * @wq->maydays processing before acting on should_stop so that the
2325	 * list is always empty on exit.
2326	 */
2327	should_stop = kthread_should_stop();
2328
2329	/* see whether any pwq is asking for help */
2330	spin_lock_irq(&wq_mayday_lock);
2331
2332	while (!list_empty(&wq->maydays)) {
2333		struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2334					struct pool_workqueue, mayday_node);
2335		struct worker_pool *pool = pwq->pool;
2336		struct work_struct *work, *n;
2337		bool first = true;
2338
2339		__set_current_state(TASK_RUNNING);
2340		list_del_init(&pwq->mayday_node);
2341
2342		spin_unlock_irq(&wq_mayday_lock);
2343
2344		worker_attach_to_pool(rescuer, pool);
2345
2346		spin_lock_irq(&pool->lock);
2347		rescuer->pool = pool;
2348
2349		/*
2350		 * Slurp in all works issued via this workqueue and
2351		 * process'em.
2352		 */
2353		WARN_ON_ONCE(!list_empty(scheduled));
2354		list_for_each_entry_safe(work, n, &pool->worklist, entry) {
2355			if (get_work_pwq(work) == pwq) {
2356				if (first)
2357					pool->watchdog_ts = jiffies;
2358				move_linked_works(work, scheduled, &n);
2359			}
2360			first = false;
2361		}
2362
2363		if (!list_empty(scheduled)) {
2364			process_scheduled_works(rescuer);
2365
2366			/*
2367			 * The above execution of rescued work items could
2368			 * have created more to rescue through
2369			 * pwq_activate_first_delayed() or chained
2370			 * queueing.  Let's put @pwq back on mayday list so
2371			 * that such back-to-back work items, which may be
2372			 * being used to relieve memory pressure, don't
2373			 * incur MAYDAY_INTERVAL delay inbetween.
2374			 */
2375			if (need_to_create_worker(pool)) {
2376				spin_lock(&wq_mayday_lock);
2377				get_pwq(pwq);
2378				list_move_tail(&pwq->mayday_node, &wq->maydays);
2379				spin_unlock(&wq_mayday_lock);
 
 
 
 
 
 
2380			}
2381		}
2382
2383		/*
2384		 * Put the reference grabbed by send_mayday().  @pool won't
2385		 * go away while we're still attached to it.
2386		 */
2387		put_pwq(pwq);
2388
2389		/*
2390		 * Leave this pool.  If need_more_worker() is %true, notify a
2391		 * regular worker; otherwise, we end up with 0 concurrency
2392		 * and stalling the execution.
2393		 */
2394		if (need_more_worker(pool))
2395			wake_up_worker(pool);
2396
2397		rescuer->pool = NULL;
2398		spin_unlock_irq(&pool->lock);
2399
2400		worker_detach_from_pool(rescuer, pool);
2401
2402		spin_lock_irq(&wq_mayday_lock);
2403	}
2404
2405	spin_unlock_irq(&wq_mayday_lock);
2406
2407	if (should_stop) {
2408		__set_current_state(TASK_RUNNING);
2409		rescuer->task->flags &= ~PF_WQ_WORKER;
2410		return 0;
2411	}
2412
2413	/* rescuers should never participate in concurrency management */
2414	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2415	schedule();
2416	goto repeat;
2417}
2418
2419/**
2420 * check_flush_dependency - check for flush dependency sanity
2421 * @target_wq: workqueue being flushed
2422 * @target_work: work item being flushed (NULL for workqueue flushes)
2423 *
2424 * %current is trying to flush the whole @target_wq or @target_work on it.
2425 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
2426 * reclaiming memory or running on a workqueue which doesn't have
2427 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
2428 * a deadlock.
2429 */
2430static void check_flush_dependency(struct workqueue_struct *target_wq,
2431				   struct work_struct *target_work)
2432{
2433	work_func_t target_func = target_work ? target_work->func : NULL;
2434	struct worker *worker;
2435
2436	if (target_wq->flags & WQ_MEM_RECLAIM)
2437		return;
2438
2439	worker = current_wq_worker();
2440
2441	WARN_ONCE(current->flags & PF_MEMALLOC,
2442		  "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%pf",
2443		  current->pid, current->comm, target_wq->name, target_func);
2444	WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
2445			      (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
2446		  "workqueue: WQ_MEM_RECLAIM %s:%pf is flushing !WQ_MEM_RECLAIM %s:%pf",
2447		  worker->current_pwq->wq->name, worker->current_func,
2448		  target_wq->name, target_func);
2449}
2450
2451struct wq_barrier {
2452	struct work_struct	work;
2453	struct completion	done;
2454	struct task_struct	*task;	/* purely informational */
2455};
2456
2457static void wq_barrier_func(struct work_struct *work)
2458{
2459	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2460	complete(&barr->done);
2461}
2462
2463/**
2464 * insert_wq_barrier - insert a barrier work
2465 * @pwq: pwq to insert barrier into
2466 * @barr: wq_barrier to insert
2467 * @target: target work to attach @barr to
2468 * @worker: worker currently executing @target, NULL if @target is not executing
2469 *
2470 * @barr is linked to @target such that @barr is completed only after
2471 * @target finishes execution.  Please note that the ordering
2472 * guarantee is observed only with respect to @target and on the local
2473 * cpu.
2474 *
2475 * Currently, a queued barrier can't be canceled.  This is because
2476 * try_to_grab_pending() can't determine whether the work to be
2477 * grabbed is at the head of the queue and thus can't clear LINKED
2478 * flag of the previous work while there must be a valid next work
2479 * after a work with LINKED flag set.
2480 *
2481 * Note that when @worker is non-NULL, @target may be modified
2482 * underneath us, so we can't reliably determine pwq from @target.
2483 *
2484 * CONTEXT:
2485 * spin_lock_irq(pool->lock).
2486 */
2487static void insert_wq_barrier(struct pool_workqueue *pwq,
2488			      struct wq_barrier *barr,
2489			      struct work_struct *target, struct worker *worker)
2490{
 
 
2491	struct list_head *head;
2492	unsigned int linked = 0;
2493
2494	/*
2495	 * debugobject calls are safe here even with pool->lock locked
2496	 * as we know for sure that this will not trigger any of the
2497	 * checks and call back into the fixup functions where we
2498	 * might deadlock.
2499	 */
2500	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2501	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2502	init_completion(&barr->done);
 
 
2503	barr->task = current;
2504
 
 
 
2505	/*
2506	 * If @target is currently being executed, schedule the
2507	 * barrier to the worker; otherwise, put it after @target.
2508	 */
2509	if (worker)
2510		head = worker->scheduled.next;
2511	else {
 
2512		unsigned long *bits = work_data_bits(target);
2513
2514		head = target->entry.next;
2515		/* there can already be other linked works, inherit and set */
2516		linked = *bits & WORK_STRUCT_LINKED;
 
2517		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
2518	}
2519
 
 
 
2520	debug_work_activate(&barr->work);
2521	insert_work(pwq, &barr->work, head,
2522		    work_color_to_flags(WORK_NO_COLOR) | linked);
2523}
2524
2525/**
2526 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2527 * @wq: workqueue being flushed
2528 * @flush_color: new flush color, < 0 for no-op
2529 * @work_color: new work color, < 0 for no-op
2530 *
2531 * Prepare pwqs for workqueue flushing.
2532 *
2533 * If @flush_color is non-negative, flush_color on all pwqs should be
2534 * -1.  If no pwq has in-flight commands at the specified color, all
2535 * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
2536 * has in flight commands, its pwq->flush_color is set to
2537 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2538 * wakeup logic is armed and %true is returned.
2539 *
2540 * The caller should have initialized @wq->first_flusher prior to
2541 * calling this function with non-negative @flush_color.  If
2542 * @flush_color is negative, no flush color update is done and %false
2543 * is returned.
2544 *
2545 * If @work_color is non-negative, all pwqs should have the same
2546 * work_color which is previous to @work_color and all will be
2547 * advanced to @work_color.
2548 *
2549 * CONTEXT:
2550 * mutex_lock(wq->mutex).
2551 *
2552 * Return:
2553 * %true if @flush_color >= 0 and there's something to flush.  %false
2554 * otherwise.
2555 */
2556static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2557				      int flush_color, int work_color)
2558{
2559	bool wait = false;
2560	struct pool_workqueue *pwq;
2561
2562	if (flush_color >= 0) {
2563		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2564		atomic_set(&wq->nr_pwqs_to_flush, 1);
2565	}
2566
2567	for_each_pwq(pwq, wq) {
2568		struct worker_pool *pool = pwq->pool;
2569
2570		spin_lock_irq(&pool->lock);
2571
2572		if (flush_color >= 0) {
2573			WARN_ON_ONCE(pwq->flush_color != -1);
2574
2575			if (pwq->nr_in_flight[flush_color]) {
2576				pwq->flush_color = flush_color;
2577				atomic_inc(&wq->nr_pwqs_to_flush);
2578				wait = true;
2579			}
2580		}
2581
2582		if (work_color >= 0) {
2583			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2584			pwq->work_color = work_color;
2585		}
2586
2587		spin_unlock_irq(&pool->lock);
2588	}
2589
2590	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2591		complete(&wq->first_flusher->done);
2592
2593	return wait;
2594}
2595
2596/**
2597 * flush_workqueue - ensure that any scheduled work has run to completion.
2598 * @wq: workqueue to flush
2599 *
2600 * This function sleeps until all work items which were queued on entry
2601 * have finished execution, but it is not livelocked by new incoming ones.
2602 */
2603void flush_workqueue(struct workqueue_struct *wq)
2604{
2605	struct wq_flusher this_flusher = {
2606		.list = LIST_HEAD_INIT(this_flusher.list),
2607		.flush_color = -1,
2608		.done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2609	};
2610	int next_color;
2611
 
 
 
2612	lock_map_acquire(&wq->lockdep_map);
2613	lock_map_release(&wq->lockdep_map);
2614
2615	mutex_lock(&wq->mutex);
2616
2617	/*
2618	 * Start-to-wait phase
2619	 */
2620	next_color = work_next_color(wq->work_color);
2621
2622	if (next_color != wq->flush_color) {
2623		/*
2624		 * Color space is not full.  The current work_color
2625		 * becomes our flush_color and work_color is advanced
2626		 * by one.
2627		 */
2628		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2629		this_flusher.flush_color = wq->work_color;
2630		wq->work_color = next_color;
2631
2632		if (!wq->first_flusher) {
2633			/* no flush in progress, become the first flusher */
2634			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2635
2636			wq->first_flusher = &this_flusher;
2637
2638			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2639						       wq->work_color)) {
2640				/* nothing to flush, done */
2641				wq->flush_color = next_color;
2642				wq->first_flusher = NULL;
2643				goto out_unlock;
2644			}
2645		} else {
2646			/* wait in queue */
2647			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2648			list_add_tail(&this_flusher.list, &wq->flusher_queue);
2649			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2650		}
2651	} else {
2652		/*
2653		 * Oops, color space is full, wait on overflow queue.
2654		 * The next flush completion will assign us
2655		 * flush_color and transfer to flusher_queue.
2656		 */
2657		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2658	}
2659
2660	check_flush_dependency(wq, NULL);
2661
2662	mutex_unlock(&wq->mutex);
2663
2664	wait_for_completion(&this_flusher.done);
2665
2666	/*
2667	 * Wake-up-and-cascade phase
2668	 *
2669	 * First flushers are responsible for cascading flushes and
2670	 * handling overflow.  Non-first flushers can simply return.
2671	 */
2672	if (wq->first_flusher != &this_flusher)
2673		return;
2674
2675	mutex_lock(&wq->mutex);
2676
2677	/* we might have raced, check again with mutex held */
2678	if (wq->first_flusher != &this_flusher)
2679		goto out_unlock;
2680
2681	wq->first_flusher = NULL;
2682
2683	WARN_ON_ONCE(!list_empty(&this_flusher.list));
2684	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2685
2686	while (true) {
2687		struct wq_flusher *next, *tmp;
2688
2689		/* complete all the flushers sharing the current flush color */
2690		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2691			if (next->flush_color != wq->flush_color)
2692				break;
2693			list_del_init(&next->list);
2694			complete(&next->done);
2695		}
2696
2697		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2698			     wq->flush_color != work_next_color(wq->work_color));
2699
2700		/* this flush_color is finished, advance by one */
2701		wq->flush_color = work_next_color(wq->flush_color);
2702
2703		/* one color has been freed, handle overflow queue */
2704		if (!list_empty(&wq->flusher_overflow)) {
2705			/*
2706			 * Assign the same color to all overflowed
2707			 * flushers, advance work_color and append to
2708			 * flusher_queue.  This is the start-to-wait
2709			 * phase for these overflowed flushers.
2710			 */
2711			list_for_each_entry(tmp, &wq->flusher_overflow, list)
2712				tmp->flush_color = wq->work_color;
2713
2714			wq->work_color = work_next_color(wq->work_color);
2715
2716			list_splice_tail_init(&wq->flusher_overflow,
2717					      &wq->flusher_queue);
2718			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2719		}
2720
2721		if (list_empty(&wq->flusher_queue)) {
2722			WARN_ON_ONCE(wq->flush_color != wq->work_color);
2723			break;
2724		}
2725
2726		/*
2727		 * Need to flush more colors.  Make the next flusher
2728		 * the new first flusher and arm pwqs.
2729		 */
2730		WARN_ON_ONCE(wq->flush_color == wq->work_color);
2731		WARN_ON_ONCE(wq->flush_color != next->flush_color);
2732
2733		list_del_init(&next->list);
2734		wq->first_flusher = next;
2735
2736		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2737			break;
2738
2739		/*
2740		 * Meh... this color is already done, clear first
2741		 * flusher and repeat cascading.
2742		 */
2743		wq->first_flusher = NULL;
2744	}
2745
2746out_unlock:
2747	mutex_unlock(&wq->mutex);
2748}
2749EXPORT_SYMBOL(flush_workqueue);
2750
2751/**
2752 * drain_workqueue - drain a workqueue
2753 * @wq: workqueue to drain
2754 *
2755 * Wait until the workqueue becomes empty.  While draining is in progress,
2756 * only chain queueing is allowed.  IOW, only currently pending or running
2757 * work items on @wq can queue further work items on it.  @wq is flushed
2758 * repeatedly until it becomes empty.  The number of flushing is determined
2759 * by the depth of chaining and should be relatively short.  Whine if it
2760 * takes too long.
2761 */
2762void drain_workqueue(struct workqueue_struct *wq)
2763{
2764	unsigned int flush_cnt = 0;
2765	struct pool_workqueue *pwq;
2766
2767	/*
2768	 * __queue_work() needs to test whether there are drainers, is much
2769	 * hotter than drain_workqueue() and already looks at @wq->flags.
2770	 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2771	 */
2772	mutex_lock(&wq->mutex);
2773	if (!wq->nr_drainers++)
2774		wq->flags |= __WQ_DRAINING;
2775	mutex_unlock(&wq->mutex);
2776reflush:
2777	flush_workqueue(wq);
2778
2779	mutex_lock(&wq->mutex);
2780
2781	for_each_pwq(pwq, wq) {
2782		bool drained;
2783
2784		spin_lock_irq(&pwq->pool->lock);
2785		drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2786		spin_unlock_irq(&pwq->pool->lock);
2787
2788		if (drained)
2789			continue;
2790
2791		if (++flush_cnt == 10 ||
2792		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2793			pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
2794				wq->name, flush_cnt);
2795
2796		mutex_unlock(&wq->mutex);
2797		goto reflush;
2798	}
2799
2800	if (!--wq->nr_drainers)
2801		wq->flags &= ~__WQ_DRAINING;
2802	mutex_unlock(&wq->mutex);
2803}
2804EXPORT_SYMBOL_GPL(drain_workqueue);
2805
2806static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
 
2807{
2808	struct worker *worker = NULL;
2809	struct worker_pool *pool;
2810	struct pool_workqueue *pwq;
2811
2812	might_sleep();
2813
2814	local_irq_disable();
2815	pool = get_work_pool(work);
2816	if (!pool) {
2817		local_irq_enable();
2818		return false;
2819	}
2820
2821	spin_lock(&pool->lock);
2822	/* see the comment in try_to_grab_pending() with the same code */
2823	pwq = get_work_pwq(work);
2824	if (pwq) {
2825		if (unlikely(pwq->pool != pool))
2826			goto already_gone;
2827	} else {
2828		worker = find_worker_executing_work(pool, work);
2829		if (!worker)
2830			goto already_gone;
2831		pwq = worker->current_pwq;
2832	}
2833
2834	check_flush_dependency(pwq->wq, work);
2835
2836	insert_wq_barrier(pwq, barr, work, worker);
2837	spin_unlock_irq(&pool->lock);
2838
2839	/*
2840	 * If @max_active is 1 or rescuer is in use, flushing another work
2841	 * item on the same workqueue may lead to deadlock.  Make sure the
2842	 * flusher is not running on the same workqueue by verifying write
2843	 * access.
 
 
 
2844	 */
2845	if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
 
2846		lock_map_acquire(&pwq->wq->lockdep_map);
2847	else
2848		lock_map_acquire_read(&pwq->wq->lockdep_map);
2849	lock_map_release(&pwq->wq->lockdep_map);
2850
2851	return true;
2852already_gone:
2853	spin_unlock_irq(&pool->lock);
 
2854	return false;
2855}
2856
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2857/**
2858 * flush_work - wait for a work to finish executing the last queueing instance
2859 * @work: the work to flush
2860 *
2861 * Wait until @work has finished execution.  @work is guaranteed to be idle
2862 * on return if it hasn't been requeued since flush started.
2863 *
2864 * Return:
2865 * %true if flush_work() waited for the work to finish execution,
2866 * %false if it was already idle.
2867 */
2868bool flush_work(struct work_struct *work)
2869{
2870	struct wq_barrier barr;
2871
2872	lock_map_acquire(&work->lockdep_map);
2873	lock_map_release(&work->lockdep_map);
2874
2875	if (start_flush_work(work, &barr)) {
2876		wait_for_completion(&barr.done);
2877		destroy_work_on_stack(&barr.work);
2878		return true;
2879	} else {
2880		return false;
2881	}
2882}
2883EXPORT_SYMBOL_GPL(flush_work);
2884
2885struct cwt_wait {
2886	wait_queue_t		wait;
2887	struct work_struct	*work;
2888};
2889
2890static int cwt_wakefn(wait_queue_t *wait, unsigned mode, int sync, void *key)
2891{
2892	struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
2893
2894	if (cwait->work != key)
2895		return 0;
2896	return autoremove_wake_function(wait, mode, sync, key);
2897}
2898
2899static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2900{
2901	static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
2902	unsigned long flags;
2903	int ret;
2904
2905	do {
2906		ret = try_to_grab_pending(work, is_dwork, &flags);
2907		/*
2908		 * If someone else is already canceling, wait for it to
2909		 * finish.  flush_work() doesn't work for PREEMPT_NONE
2910		 * because we may get scheduled between @work's completion
2911		 * and the other canceling task resuming and clearing
2912		 * CANCELING - flush_work() will return false immediately
2913		 * as @work is no longer busy, try_to_grab_pending() will
2914		 * return -ENOENT as @work is still being canceled and the
2915		 * other canceling task won't be able to clear CANCELING as
2916		 * we're hogging the CPU.
2917		 *
2918		 * Let's wait for completion using a waitqueue.  As this
2919		 * may lead to the thundering herd problem, use a custom
2920		 * wake function which matches @work along with exclusive
2921		 * wait and wakeup.
2922		 */
2923		if (unlikely(ret == -ENOENT)) {
2924			struct cwt_wait cwait;
2925
2926			init_wait(&cwait.wait);
2927			cwait.wait.func = cwt_wakefn;
2928			cwait.work = work;
2929
2930			prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
2931						  TASK_UNINTERRUPTIBLE);
2932			if (work_is_canceling(work))
2933				schedule();
2934			finish_wait(&cancel_waitq, &cwait.wait);
2935		}
2936	} while (unlikely(ret < 0));
2937
2938	/* tell other tasks trying to grab @work to back off */
2939	mark_work_canceling(work);
2940	local_irq_restore(flags);
2941
2942	flush_work(work);
 
 
 
 
 
 
2943	clear_work_data(work);
2944
2945	/*
2946	 * Paired with prepare_to_wait() above so that either
2947	 * waitqueue_active() is visible here or !work_is_canceling() is
2948	 * visible there.
2949	 */
2950	smp_mb();
2951	if (waitqueue_active(&cancel_waitq))
2952		__wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
2953
2954	return ret;
2955}
2956
2957/**
2958 * cancel_work_sync - cancel a work and wait for it to finish
2959 * @work: the work to cancel
2960 *
2961 * Cancel @work and wait for its execution to finish.  This function
2962 * can be used even if the work re-queues itself or migrates to
2963 * another workqueue.  On return from this function, @work is
2964 * guaranteed to be not pending or executing on any CPU.
2965 *
2966 * cancel_work_sync(&delayed_work->work) must not be used for
2967 * delayed_work's.  Use cancel_delayed_work_sync() instead.
2968 *
2969 * The caller must ensure that the workqueue on which @work was last
2970 * queued can't be destroyed before this function returns.
2971 *
2972 * Return:
2973 * %true if @work was pending, %false otherwise.
2974 */
2975bool cancel_work_sync(struct work_struct *work)
2976{
2977	return __cancel_work_timer(work, false);
2978}
2979EXPORT_SYMBOL_GPL(cancel_work_sync);
2980
2981/**
2982 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2983 * @dwork: the delayed work to flush
2984 *
2985 * Delayed timer is cancelled and the pending work is queued for
2986 * immediate execution.  Like flush_work(), this function only
2987 * considers the last queueing instance of @dwork.
2988 *
2989 * Return:
2990 * %true if flush_work() waited for the work to finish execution,
2991 * %false if it was already idle.
2992 */
2993bool flush_delayed_work(struct delayed_work *dwork)
2994{
2995	local_irq_disable();
2996	if (del_timer_sync(&dwork->timer))
2997		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
2998	local_irq_enable();
2999	return flush_work(&dwork->work);
3000}
3001EXPORT_SYMBOL(flush_delayed_work);
3002
3003/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3004 * cancel_delayed_work - cancel a delayed work
3005 * @dwork: delayed_work to cancel
3006 *
3007 * Kill off a pending delayed_work.
3008 *
3009 * Return: %true if @dwork was pending and canceled; %false if it wasn't
3010 * pending.
3011 *
3012 * Note:
3013 * The work callback function may still be running on return, unless
3014 * it returns %true and the work doesn't re-arm itself.  Explicitly flush or
3015 * use cancel_delayed_work_sync() to wait on it.
3016 *
3017 * This function is safe to call from any context including IRQ handler.
3018 */
3019bool cancel_delayed_work(struct delayed_work *dwork)
3020{
3021	unsigned long flags;
3022	int ret;
3023
3024	do {
3025		ret = try_to_grab_pending(&dwork->work, true, &flags);
3026	} while (unlikely(ret == -EAGAIN));
3027
3028	if (unlikely(ret < 0))
3029		return false;
3030
3031	set_work_pool_and_clear_pending(&dwork->work,
3032					get_work_pool_id(&dwork->work));
3033	local_irq_restore(flags);
3034	return ret;
3035}
3036EXPORT_SYMBOL(cancel_delayed_work);
3037
3038/**
3039 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3040 * @dwork: the delayed work cancel
3041 *
3042 * This is cancel_work_sync() for delayed works.
3043 *
3044 * Return:
3045 * %true if @dwork was pending, %false otherwise.
3046 */
3047bool cancel_delayed_work_sync(struct delayed_work *dwork)
3048{
3049	return __cancel_work_timer(&dwork->work, true);
3050}
3051EXPORT_SYMBOL(cancel_delayed_work_sync);
3052
3053/**
3054 * schedule_on_each_cpu - execute a function synchronously on each online CPU
3055 * @func: the function to call
3056 *
3057 * schedule_on_each_cpu() executes @func on each online CPU using the
3058 * system workqueue and blocks until all CPUs have completed.
3059 * schedule_on_each_cpu() is very slow.
3060 *
3061 * Return:
3062 * 0 on success, -errno on failure.
3063 */
3064int schedule_on_each_cpu(work_func_t func)
3065{
3066	int cpu;
3067	struct work_struct __percpu *works;
3068
3069	works = alloc_percpu(struct work_struct);
3070	if (!works)
3071		return -ENOMEM;
3072
3073	get_online_cpus();
3074
3075	for_each_online_cpu(cpu) {
3076		struct work_struct *work = per_cpu_ptr(works, cpu);
3077
3078		INIT_WORK(work, func);
3079		schedule_work_on(cpu, work);
3080	}
3081
3082	for_each_online_cpu(cpu)
3083		flush_work(per_cpu_ptr(works, cpu));
3084
3085	put_online_cpus();
3086	free_percpu(works);
3087	return 0;
3088}
3089
3090/**
3091 * execute_in_process_context - reliably execute the routine with user context
3092 * @fn:		the function to execute
3093 * @ew:		guaranteed storage for the execute work structure (must
3094 *		be available when the work executes)
3095 *
3096 * Executes the function immediately if process context is available,
3097 * otherwise schedules the function for delayed execution.
3098 *
3099 * Return:	0 - function was executed
3100 *		1 - function was scheduled for execution
3101 */
3102int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3103{
3104	if (!in_interrupt()) {
3105		fn(&ew->work);
3106		return 0;
3107	}
3108
3109	INIT_WORK(&ew->work, fn);
3110	schedule_work(&ew->work);
3111
3112	return 1;
3113}
3114EXPORT_SYMBOL_GPL(execute_in_process_context);
3115
3116/**
3117 * free_workqueue_attrs - free a workqueue_attrs
3118 * @attrs: workqueue_attrs to free
3119 *
3120 * Undo alloc_workqueue_attrs().
3121 */
3122void free_workqueue_attrs(struct workqueue_attrs *attrs)
3123{
3124	if (attrs) {
3125		free_cpumask_var(attrs->cpumask);
3126		kfree(attrs);
3127	}
3128}
3129
3130/**
3131 * alloc_workqueue_attrs - allocate a workqueue_attrs
3132 * @gfp_mask: allocation mask to use
3133 *
3134 * Allocate a new workqueue_attrs, initialize with default settings and
3135 * return it.
3136 *
3137 * Return: The allocated new workqueue_attr on success. %NULL on failure.
3138 */
3139struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
3140{
3141	struct workqueue_attrs *attrs;
3142
3143	attrs = kzalloc(sizeof(*attrs), gfp_mask);
3144	if (!attrs)
3145		goto fail;
3146	if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
3147		goto fail;
3148
3149	cpumask_copy(attrs->cpumask, cpu_possible_mask);
3150	return attrs;
3151fail:
3152	free_workqueue_attrs(attrs);
3153	return NULL;
3154}
3155
3156static void copy_workqueue_attrs(struct workqueue_attrs *to,
3157				 const struct workqueue_attrs *from)
3158{
3159	to->nice = from->nice;
3160	cpumask_copy(to->cpumask, from->cpumask);
3161	/*
3162	 * Unlike hash and equality test, this function doesn't ignore
3163	 * ->no_numa as it is used for both pool and wq attrs.  Instead,
3164	 * get_unbound_pool() explicitly clears ->no_numa after copying.
3165	 */
3166	to->no_numa = from->no_numa;
3167}
3168
3169/* hash value of the content of @attr */
3170static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3171{
3172	u32 hash = 0;
3173
3174	hash = jhash_1word(attrs->nice, hash);
3175	hash = jhash(cpumask_bits(attrs->cpumask),
3176		     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3177	return hash;
3178}
3179
3180/* content equality test */
3181static bool wqattrs_equal(const struct workqueue_attrs *a,
3182			  const struct workqueue_attrs *b)
3183{
3184	if (a->nice != b->nice)
3185		return false;
3186	if (!cpumask_equal(a->cpumask, b->cpumask))
3187		return false;
3188	return true;
3189}
3190
3191/**
3192 * init_worker_pool - initialize a newly zalloc'd worker_pool
3193 * @pool: worker_pool to initialize
3194 *
3195 * Initialize a newly zalloc'd @pool.  It also allocates @pool->attrs.
3196 *
3197 * Return: 0 on success, -errno on failure.  Even on failure, all fields
3198 * inside @pool proper are initialized and put_unbound_pool() can be called
3199 * on @pool safely to release it.
3200 */
3201static int init_worker_pool(struct worker_pool *pool)
3202{
3203	spin_lock_init(&pool->lock);
3204	pool->id = -1;
3205	pool->cpu = -1;
3206	pool->node = NUMA_NO_NODE;
3207	pool->flags |= POOL_DISASSOCIATED;
3208	pool->watchdog_ts = jiffies;
3209	INIT_LIST_HEAD(&pool->worklist);
3210	INIT_LIST_HEAD(&pool->idle_list);
3211	hash_init(pool->busy_hash);
3212
3213	init_timer_deferrable(&pool->idle_timer);
3214	pool->idle_timer.function = idle_worker_timeout;
3215	pool->idle_timer.data = (unsigned long)pool;
3216
3217	setup_timer(&pool->mayday_timer, pool_mayday_timeout,
3218		    (unsigned long)pool);
3219
3220	mutex_init(&pool->manager_arb);
3221	mutex_init(&pool->attach_mutex);
3222	INIT_LIST_HEAD(&pool->workers);
3223
3224	ida_init(&pool->worker_ida);
3225	INIT_HLIST_NODE(&pool->hash_node);
3226	pool->refcnt = 1;
3227
3228	/* shouldn't fail above this point */
3229	pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
3230	if (!pool->attrs)
3231		return -ENOMEM;
3232	return 0;
3233}
3234
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3235static void rcu_free_wq(struct rcu_head *rcu)
3236{
3237	struct workqueue_struct *wq =
3238		container_of(rcu, struct workqueue_struct, rcu);
3239
 
 
3240	if (!(wq->flags & WQ_UNBOUND))
3241		free_percpu(wq->cpu_pwqs);
3242	else
3243		free_workqueue_attrs(wq->unbound_attrs);
3244
3245	kfree(wq->rescuer);
3246	kfree(wq);
3247}
3248
3249static void rcu_free_pool(struct rcu_head *rcu)
3250{
3251	struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3252
3253	ida_destroy(&pool->worker_ida);
3254	free_workqueue_attrs(pool->attrs);
3255	kfree(pool);
3256}
3257
 
 
 
 
 
 
 
 
 
 
 
 
3258/**
3259 * put_unbound_pool - put a worker_pool
3260 * @pool: worker_pool to put
3261 *
3262 * Put @pool.  If its refcnt reaches zero, it gets destroyed in sched-RCU
3263 * safe manner.  get_unbound_pool() calls this function on its failure path
3264 * and this function should be able to release pools which went through,
3265 * successfully or not, init_worker_pool().
3266 *
3267 * Should be called with wq_pool_mutex held.
3268 */
3269static void put_unbound_pool(struct worker_pool *pool)
3270{
3271	DECLARE_COMPLETION_ONSTACK(detach_completion);
3272	struct worker *worker;
3273
3274	lockdep_assert_held(&wq_pool_mutex);
3275
3276	if (--pool->refcnt)
3277		return;
3278
3279	/* sanity checks */
3280	if (WARN_ON(!(pool->cpu < 0)) ||
3281	    WARN_ON(!list_empty(&pool->worklist)))
3282		return;
3283
3284	/* release id and unhash */
3285	if (pool->id >= 0)
3286		idr_remove(&worker_pool_idr, pool->id);
3287	hash_del(&pool->hash_node);
3288
3289	/*
3290	 * Become the manager and destroy all workers.  Grabbing
3291	 * manager_arb prevents @pool's workers from blocking on
3292	 * attach_mutex.
3293	 */
3294	mutex_lock(&pool->manager_arb);
 
 
 
 
3295
3296	spin_lock_irq(&pool->lock);
3297	while ((worker = first_idle_worker(pool)))
3298		destroy_worker(worker);
3299	WARN_ON(pool->nr_workers || pool->nr_idle);
3300	spin_unlock_irq(&pool->lock);
3301
3302	mutex_lock(&pool->attach_mutex);
3303	if (!list_empty(&pool->workers))
3304		pool->detach_completion = &detach_completion;
3305	mutex_unlock(&pool->attach_mutex);
3306
3307	if (pool->detach_completion)
3308		wait_for_completion(pool->detach_completion);
3309
3310	mutex_unlock(&pool->manager_arb);
3311
3312	/* shut down the timers */
3313	del_timer_sync(&pool->idle_timer);
3314	del_timer_sync(&pool->mayday_timer);
3315
3316	/* sched-RCU protected to allow dereferences from get_work_pool() */
3317	call_rcu_sched(&pool->rcu, rcu_free_pool);
3318}
3319
3320/**
3321 * get_unbound_pool - get a worker_pool with the specified attributes
3322 * @attrs: the attributes of the worker_pool to get
3323 *
3324 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3325 * reference count and return it.  If there already is a matching
3326 * worker_pool, it will be used; otherwise, this function attempts to
3327 * create a new one.
3328 *
3329 * Should be called with wq_pool_mutex held.
3330 *
3331 * Return: On success, a worker_pool with the same attributes as @attrs.
3332 * On failure, %NULL.
3333 */
3334static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3335{
3336	u32 hash = wqattrs_hash(attrs);
3337	struct worker_pool *pool;
3338	int node;
3339	int target_node = NUMA_NO_NODE;
3340
3341	lockdep_assert_held(&wq_pool_mutex);
3342
3343	/* do we already have a matching pool? */
3344	hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3345		if (wqattrs_equal(pool->attrs, attrs)) {
3346			pool->refcnt++;
3347			return pool;
3348		}
3349	}
3350
3351	/* if cpumask is contained inside a NUMA node, we belong to that node */
3352	if (wq_numa_enabled) {
3353		for_each_node(node) {
3354			if (cpumask_subset(attrs->cpumask,
3355					   wq_numa_possible_cpumask[node])) {
3356				target_node = node;
3357				break;
3358			}
3359		}
3360	}
3361
3362	/* nope, create a new one */
3363	pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node);
3364	if (!pool || init_worker_pool(pool) < 0)
3365		goto fail;
3366
3367	lockdep_set_subclass(&pool->lock, 1);	/* see put_pwq() */
3368	copy_workqueue_attrs(pool->attrs, attrs);
3369	pool->node = target_node;
3370
3371	/*
3372	 * no_numa isn't a worker_pool attribute, always clear it.  See
3373	 * 'struct workqueue_attrs' comments for detail.
3374	 */
3375	pool->attrs->no_numa = false;
3376
3377	if (worker_pool_assign_id(pool) < 0)
3378		goto fail;
3379
3380	/* create and start the initial worker */
3381	if (!create_worker(pool))
3382		goto fail;
3383
3384	/* install */
3385	hash_add(unbound_pool_hash, &pool->hash_node, hash);
3386
3387	return pool;
3388fail:
3389	if (pool)
3390		put_unbound_pool(pool);
3391	return NULL;
3392}
3393
3394static void rcu_free_pwq(struct rcu_head *rcu)
3395{
3396	kmem_cache_free(pwq_cache,
3397			container_of(rcu, struct pool_workqueue, rcu));
3398}
3399
3400/*
3401 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3402 * and needs to be destroyed.
3403 */
3404static void pwq_unbound_release_workfn(struct work_struct *work)
3405{
3406	struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3407						  unbound_release_work);
3408	struct workqueue_struct *wq = pwq->wq;
3409	struct worker_pool *pool = pwq->pool;
3410	bool is_last;
3411
3412	if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3413		return;
 
 
 
 
 
3414
3415	mutex_lock(&wq->mutex);
3416	list_del_rcu(&pwq->pwqs_node);
3417	is_last = list_empty(&wq->pwqs);
3418	mutex_unlock(&wq->mutex);
 
3419
3420	mutex_lock(&wq_pool_mutex);
3421	put_unbound_pool(pool);
3422	mutex_unlock(&wq_pool_mutex);
3423
3424	call_rcu_sched(&pwq->rcu, rcu_free_pwq);
3425
3426	/*
3427	 * If we're the last pwq going away, @wq is already dead and no one
3428	 * is gonna access it anymore.  Schedule RCU free.
3429	 */
3430	if (is_last)
3431		call_rcu_sched(&wq->rcu, rcu_free_wq);
 
 
3432}
3433
3434/**
3435 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3436 * @pwq: target pool_workqueue
3437 *
3438 * If @pwq isn't freezing, set @pwq->max_active to the associated
3439 * workqueue's saved_max_active and activate delayed work items
3440 * accordingly.  If @pwq is freezing, clear @pwq->max_active to zero.
3441 */
3442static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3443{
3444	struct workqueue_struct *wq = pwq->wq;
3445	bool freezable = wq->flags & WQ_FREEZABLE;
 
3446
3447	/* for @wq->saved_max_active */
3448	lockdep_assert_held(&wq->mutex);
3449
3450	/* fast exit for non-freezable wqs */
3451	if (!freezable && pwq->max_active == wq->saved_max_active)
3452		return;
3453
3454	spin_lock_irq(&pwq->pool->lock);
 
3455
3456	/*
3457	 * During [un]freezing, the caller is responsible for ensuring that
3458	 * this function is called at least once after @workqueue_freezing
3459	 * is updated and visible.
3460	 */
3461	if (!freezable || !workqueue_freezing) {
 
 
3462		pwq->max_active = wq->saved_max_active;
3463
3464		while (!list_empty(&pwq->delayed_works) &&
3465		       pwq->nr_active < pwq->max_active)
3466			pwq_activate_first_delayed(pwq);
 
 
3467
3468		/*
3469		 * Need to kick a worker after thawed or an unbound wq's
3470		 * max_active is bumped.  It's a slow path.  Do it always.
 
 
3471		 */
3472		wake_up_worker(pwq->pool);
 
3473	} else {
3474		pwq->max_active = 0;
3475	}
3476
3477	spin_unlock_irq(&pwq->pool->lock);
3478}
3479
3480/* initialize newly alloced @pwq which is associated with @wq and @pool */
3481static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3482		     struct worker_pool *pool)
3483{
3484	BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3485
3486	memset(pwq, 0, sizeof(*pwq));
3487
3488	pwq->pool = pool;
3489	pwq->wq = wq;
3490	pwq->flush_color = -1;
3491	pwq->refcnt = 1;
3492	INIT_LIST_HEAD(&pwq->delayed_works);
3493	INIT_LIST_HEAD(&pwq->pwqs_node);
3494	INIT_LIST_HEAD(&pwq->mayday_node);
3495	INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3496}
3497
3498/* sync @pwq with the current state of its associated wq and link it */
3499static void link_pwq(struct pool_workqueue *pwq)
3500{
3501	struct workqueue_struct *wq = pwq->wq;
3502
3503	lockdep_assert_held(&wq->mutex);
3504
3505	/* may be called multiple times, ignore if already linked */
3506	if (!list_empty(&pwq->pwqs_node))
3507		return;
3508
3509	/* set the matching work_color */
3510	pwq->work_color = wq->work_color;
3511
3512	/* sync max_active to the current setting */
3513	pwq_adjust_max_active(pwq);
3514
3515	/* link in @pwq */
3516	list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3517}
3518
3519/* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3520static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3521					const struct workqueue_attrs *attrs)
3522{
3523	struct worker_pool *pool;
3524	struct pool_workqueue *pwq;
3525
3526	lockdep_assert_held(&wq_pool_mutex);
3527
3528	pool = get_unbound_pool(attrs);
3529	if (!pool)
3530		return NULL;
3531
3532	pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3533	if (!pwq) {
3534		put_unbound_pool(pool);
3535		return NULL;
3536	}
3537
3538	init_pwq(pwq, wq, pool);
3539	return pwq;
3540}
3541
3542/**
3543 * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
3544 * @attrs: the wq_attrs of the default pwq of the target workqueue
3545 * @node: the target NUMA node
3546 * @cpu_going_down: if >= 0, the CPU to consider as offline
3547 * @cpumask: outarg, the resulting cpumask
3548 *
3549 * Calculate the cpumask a workqueue with @attrs should use on @node.  If
3550 * @cpu_going_down is >= 0, that cpu is considered offline during
3551 * calculation.  The result is stored in @cpumask.
3552 *
3553 * If NUMA affinity is not enabled, @attrs->cpumask is always used.  If
3554 * enabled and @node has online CPUs requested by @attrs, the returned
3555 * cpumask is the intersection of the possible CPUs of @node and
3556 * @attrs->cpumask.
3557 *
3558 * The caller is responsible for ensuring that the cpumask of @node stays
3559 * stable.
3560 *
3561 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3562 * %false if equal.
3563 */
3564static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3565				 int cpu_going_down, cpumask_t *cpumask)
3566{
3567	if (!wq_numa_enabled || attrs->no_numa)
3568		goto use_dfl;
3569
3570	/* does @node have any online CPUs @attrs wants? */
3571	cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3572	if (cpu_going_down >= 0)
3573		cpumask_clear_cpu(cpu_going_down, cpumask);
3574
3575	if (cpumask_empty(cpumask))
3576		goto use_dfl;
3577
3578	/* yeap, return possible CPUs in @node that @attrs wants */
3579	cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
 
 
 
 
 
 
 
3580	return !cpumask_equal(cpumask, attrs->cpumask);
3581
3582use_dfl:
3583	cpumask_copy(cpumask, attrs->cpumask);
3584	return false;
3585}
3586
3587/* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3588static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3589						   int node,
3590						   struct pool_workqueue *pwq)
3591{
3592	struct pool_workqueue *old_pwq;
3593
3594	lockdep_assert_held(&wq_pool_mutex);
3595	lockdep_assert_held(&wq->mutex);
3596
3597	/* link_pwq() can handle duplicate calls */
3598	link_pwq(pwq);
3599
3600	old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3601	rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3602	return old_pwq;
3603}
3604
3605/* context to store the prepared attrs & pwqs before applying */
3606struct apply_wqattrs_ctx {
3607	struct workqueue_struct	*wq;		/* target workqueue */
3608	struct workqueue_attrs	*attrs;		/* attrs to apply */
3609	struct list_head	list;		/* queued for batching commit */
3610	struct pool_workqueue	*dfl_pwq;
3611	struct pool_workqueue	*pwq_tbl[];
3612};
3613
3614/* free the resources after success or abort */
3615static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
3616{
3617	if (ctx) {
3618		int node;
3619
3620		for_each_node(node)
3621			put_pwq_unlocked(ctx->pwq_tbl[node]);
3622		put_pwq_unlocked(ctx->dfl_pwq);
3623
3624		free_workqueue_attrs(ctx->attrs);
3625
3626		kfree(ctx);
3627	}
3628}
3629
3630/* allocate the attrs and pwqs for later installation */
3631static struct apply_wqattrs_ctx *
3632apply_wqattrs_prepare(struct workqueue_struct *wq,
3633		      const struct workqueue_attrs *attrs)
3634{
3635	struct apply_wqattrs_ctx *ctx;
3636	struct workqueue_attrs *new_attrs, *tmp_attrs;
3637	int node;
3638
3639	lockdep_assert_held(&wq_pool_mutex);
3640
3641	ctx = kzalloc(sizeof(*ctx) + nr_node_ids * sizeof(ctx->pwq_tbl[0]),
3642		      GFP_KERNEL);
3643
3644	new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3645	tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3646	if (!ctx || !new_attrs || !tmp_attrs)
3647		goto out_free;
3648
3649	/*
3650	 * Calculate the attrs of the default pwq.
3651	 * If the user configured cpumask doesn't overlap with the
3652	 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
3653	 */
3654	copy_workqueue_attrs(new_attrs, attrs);
3655	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask);
3656	if (unlikely(cpumask_empty(new_attrs->cpumask)))
3657		cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask);
3658
3659	/*
3660	 * We may create multiple pwqs with differing cpumasks.  Make a
3661	 * copy of @new_attrs which will be modified and used to obtain
3662	 * pools.
3663	 */
3664	copy_workqueue_attrs(tmp_attrs, new_attrs);
3665
3666	/*
3667	 * If something goes wrong during CPU up/down, we'll fall back to
3668	 * the default pwq covering whole @attrs->cpumask.  Always create
3669	 * it even if we don't use it immediately.
3670	 */
3671	ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3672	if (!ctx->dfl_pwq)
3673		goto out_free;
3674
3675	for_each_node(node) {
3676		if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
3677			ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3678			if (!ctx->pwq_tbl[node])
3679				goto out_free;
3680		} else {
3681			ctx->dfl_pwq->refcnt++;
3682			ctx->pwq_tbl[node] = ctx->dfl_pwq;
3683		}
3684	}
3685
3686	/* save the user configured attrs and sanitize it. */
3687	copy_workqueue_attrs(new_attrs, attrs);
3688	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
3689	ctx->attrs = new_attrs;
3690
3691	ctx->wq = wq;
3692	free_workqueue_attrs(tmp_attrs);
3693	return ctx;
3694
3695out_free:
3696	free_workqueue_attrs(tmp_attrs);
3697	free_workqueue_attrs(new_attrs);
3698	apply_wqattrs_cleanup(ctx);
3699	return NULL;
3700}
3701
3702/* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
3703static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
3704{
3705	int node;
3706
3707	/* all pwqs have been created successfully, let's install'em */
3708	mutex_lock(&ctx->wq->mutex);
3709
3710	copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
3711
3712	/* save the previous pwq and install the new one */
3713	for_each_node(node)
3714		ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
3715							  ctx->pwq_tbl[node]);
3716
3717	/* @dfl_pwq might not have been used, ensure it's linked */
3718	link_pwq(ctx->dfl_pwq);
3719	swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
3720
3721	mutex_unlock(&ctx->wq->mutex);
3722}
3723
3724static void apply_wqattrs_lock(void)
3725{
3726	/* CPUs should stay stable across pwq creations and installations */
3727	get_online_cpus();
3728	mutex_lock(&wq_pool_mutex);
3729}
3730
3731static void apply_wqattrs_unlock(void)
3732{
3733	mutex_unlock(&wq_pool_mutex);
3734	put_online_cpus();
3735}
3736
3737static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
3738					const struct workqueue_attrs *attrs)
3739{
3740	struct apply_wqattrs_ctx *ctx;
3741
3742	/* only unbound workqueues can change attributes */
3743	if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
3744		return -EINVAL;
3745
3746	/* creating multiple pwqs breaks ordering guarantee */
3747	if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
3748		return -EINVAL;
 
 
 
 
3749
3750	ctx = apply_wqattrs_prepare(wq, attrs);
3751	if (!ctx)
3752		return -ENOMEM;
3753
3754	/* the ctx has been prepared successfully, let's commit it */
3755	apply_wqattrs_commit(ctx);
3756	apply_wqattrs_cleanup(ctx);
3757
3758	return 0;
3759}
3760
3761/**
3762 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
3763 * @wq: the target workqueue
3764 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
3765 *
3766 * Apply @attrs to an unbound workqueue @wq.  Unless disabled, on NUMA
3767 * machines, this function maps a separate pwq to each NUMA node with
3768 * possibles CPUs in @attrs->cpumask so that work items are affine to the
3769 * NUMA node it was issued on.  Older pwqs are released as in-flight work
3770 * items finish.  Note that a work item which repeatedly requeues itself
3771 * back-to-back will stay on its current pwq.
3772 *
3773 * Performs GFP_KERNEL allocations.
3774 *
 
 
3775 * Return: 0 on success and -errno on failure.
3776 */
3777int apply_workqueue_attrs(struct workqueue_struct *wq,
3778			  const struct workqueue_attrs *attrs)
3779{
3780	int ret;
3781
3782	apply_wqattrs_lock();
 
 
3783	ret = apply_workqueue_attrs_locked(wq, attrs);
3784	apply_wqattrs_unlock();
3785
3786	return ret;
3787}
3788
3789/**
3790 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
3791 * @wq: the target workqueue
3792 * @cpu: the CPU coming up or going down
3793 * @online: whether @cpu is coming up or going down
3794 *
3795 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
3796 * %CPU_DOWN_FAILED.  @cpu is being hot[un]plugged, update NUMA affinity of
3797 * @wq accordingly.
3798 *
3799 * If NUMA affinity can't be adjusted due to memory allocation failure, it
3800 * falls back to @wq->dfl_pwq which may not be optimal but is always
3801 * correct.
3802 *
3803 * Note that when the last allowed CPU of a NUMA node goes offline for a
3804 * workqueue with a cpumask spanning multiple nodes, the workers which were
3805 * already executing the work items for the workqueue will lose their CPU
3806 * affinity and may execute on any CPU.  This is similar to how per-cpu
3807 * workqueues behave on CPU_DOWN.  If a workqueue user wants strict
3808 * affinity, it's the user's responsibility to flush the work item from
3809 * CPU_DOWN_PREPARE.
3810 */
3811static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
3812				   bool online)
3813{
3814	int node = cpu_to_node(cpu);
3815	int cpu_off = online ? -1 : cpu;
3816	struct pool_workqueue *old_pwq = NULL, *pwq;
3817	struct workqueue_attrs *target_attrs;
3818	cpumask_t *cpumask;
3819
3820	lockdep_assert_held(&wq_pool_mutex);
3821
3822	if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
3823	    wq->unbound_attrs->no_numa)
3824		return;
3825
3826	/*
3827	 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
3828	 * Let's use a preallocated one.  The following buf is protected by
3829	 * CPU hotplug exclusion.
3830	 */
3831	target_attrs = wq_update_unbound_numa_attrs_buf;
3832	cpumask = target_attrs->cpumask;
3833
3834	copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
3835	pwq = unbound_pwq_by_node(wq, node);
3836
3837	/*
3838	 * Let's determine what needs to be done.  If the target cpumask is
3839	 * different from the default pwq's, we need to compare it to @pwq's
3840	 * and create a new one if they don't match.  If the target cpumask
3841	 * equals the default pwq's, the default pwq should be used.
3842	 */
3843	if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
3844		if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
3845			return;
3846	} else {
3847		goto use_dfl_pwq;
3848	}
3849
3850	/* create a new pwq */
3851	pwq = alloc_unbound_pwq(wq, target_attrs);
3852	if (!pwq) {
3853		pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
3854			wq->name);
3855		goto use_dfl_pwq;
3856	}
3857
3858	/* Install the new pwq. */
3859	mutex_lock(&wq->mutex);
3860	old_pwq = numa_pwq_tbl_install(wq, node, pwq);
3861	goto out_unlock;
3862
3863use_dfl_pwq:
3864	mutex_lock(&wq->mutex);
3865	spin_lock_irq(&wq->dfl_pwq->pool->lock);
3866	get_pwq(wq->dfl_pwq);
3867	spin_unlock_irq(&wq->dfl_pwq->pool->lock);
3868	old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
3869out_unlock:
3870	mutex_unlock(&wq->mutex);
3871	put_pwq_unlocked(old_pwq);
3872}
3873
3874static int alloc_and_link_pwqs(struct workqueue_struct *wq)
3875{
3876	bool highpri = wq->flags & WQ_HIGHPRI;
3877	int cpu, ret;
3878
3879	if (!(wq->flags & WQ_UNBOUND)) {
3880		wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
3881		if (!wq->cpu_pwqs)
3882			return -ENOMEM;
3883
3884		for_each_possible_cpu(cpu) {
3885			struct pool_workqueue *pwq =
3886				per_cpu_ptr(wq->cpu_pwqs, cpu);
3887			struct worker_pool *cpu_pools =
3888				per_cpu(cpu_worker_pools, cpu);
3889
3890			init_pwq(pwq, wq, &cpu_pools[highpri]);
3891
3892			mutex_lock(&wq->mutex);
3893			link_pwq(pwq);
3894			mutex_unlock(&wq->mutex);
3895		}
3896		return 0;
3897	} else if (wq->flags & __WQ_ORDERED) {
 
 
 
3898		ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
3899		/* there should only be single pwq for ordering guarantee */
3900		WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
3901			      wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
3902		     "ordering guarantee broken for workqueue %s\n", wq->name);
3903		return ret;
3904	} else {
3905		return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
3906	}
 
 
 
3907}
3908
3909static int wq_clamp_max_active(int max_active, unsigned int flags,
3910			       const char *name)
3911{
3912	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
3913
3914	if (max_active < 1 || max_active > lim)
3915		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
3916			max_active, name, 1, lim);
3917
3918	return clamp_val(max_active, 1, lim);
3919}
3920
3921struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
3922					       unsigned int flags,
3923					       int max_active,
3924					       struct lock_class_key *key,
3925					       const char *lock_name, ...)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3926{
3927	size_t tbl_size = 0;
3928	va_list args;
3929	struct workqueue_struct *wq;
3930	struct pool_workqueue *pwq;
3931
 
 
 
 
 
 
 
 
 
 
3932	/* see the comment above the definition of WQ_POWER_EFFICIENT */
3933	if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
3934		flags |= WQ_UNBOUND;
3935
3936	/* allocate wq and format name */
3937	if (flags & WQ_UNBOUND)
3938		tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
3939
3940	wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
3941	if (!wq)
3942		return NULL;
3943
3944	if (flags & WQ_UNBOUND) {
3945		wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3946		if (!wq->unbound_attrs)
3947			goto err_free_wq;
3948	}
3949
3950	va_start(args, lock_name);
3951	vsnprintf(wq->name, sizeof(wq->name), fmt, args);
3952	va_end(args);
3953
3954	max_active = max_active ?: WQ_DFL_ACTIVE;
3955	max_active = wq_clamp_max_active(max_active, flags, wq->name);
3956
3957	/* init wq */
3958	wq->flags = flags;
3959	wq->saved_max_active = max_active;
3960	mutex_init(&wq->mutex);
3961	atomic_set(&wq->nr_pwqs_to_flush, 0);
3962	INIT_LIST_HEAD(&wq->pwqs);
3963	INIT_LIST_HEAD(&wq->flusher_queue);
3964	INIT_LIST_HEAD(&wq->flusher_overflow);
3965	INIT_LIST_HEAD(&wq->maydays);
3966
3967	lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
3968	INIT_LIST_HEAD(&wq->list);
3969
3970	if (alloc_and_link_pwqs(wq) < 0)
3971		goto err_free_wq;
3972
3973	/*
3974	 * Workqueues which may be used during memory reclaim should
3975	 * have a rescuer to guarantee forward progress.
3976	 */
3977	if (flags & WQ_MEM_RECLAIM) {
3978		struct worker *rescuer;
3979
3980		rescuer = alloc_worker(NUMA_NO_NODE);
3981		if (!rescuer)
3982			goto err_destroy;
3983
3984		rescuer->rescue_wq = wq;
3985		rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
3986					       wq->name);
3987		if (IS_ERR(rescuer->task)) {
3988			kfree(rescuer);
3989			goto err_destroy;
3990		}
3991
3992		wq->rescuer = rescuer;
3993		kthread_bind_mask(rescuer->task, cpu_possible_mask);
3994		wake_up_process(rescuer->task);
3995	}
3996
3997	if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
3998		goto err_destroy;
3999
4000	/*
4001	 * wq_pool_mutex protects global freeze state and workqueues list.
4002	 * Grab it, adjust max_active and add the new @wq to workqueues
4003	 * list.
4004	 */
4005	mutex_lock(&wq_pool_mutex);
4006
4007	mutex_lock(&wq->mutex);
4008	for_each_pwq(pwq, wq)
4009		pwq_adjust_max_active(pwq);
4010	mutex_unlock(&wq->mutex);
4011
4012	list_add_tail_rcu(&wq->list, &workqueues);
4013
4014	mutex_unlock(&wq_pool_mutex);
4015
4016	return wq;
4017
 
 
 
4018err_free_wq:
4019	free_workqueue_attrs(wq->unbound_attrs);
4020	kfree(wq);
4021	return NULL;
4022err_destroy:
4023	destroy_workqueue(wq);
4024	return NULL;
4025}
4026EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4027
4028/**
4029 * destroy_workqueue - safely terminate a workqueue
4030 * @wq: target workqueue
4031 *
4032 * Safely destroy a workqueue. All work currently pending will be done first.
4033 */
4034void destroy_workqueue(struct workqueue_struct *wq)
4035{
4036	struct pool_workqueue *pwq;
4037	int node;
4038
 
 
 
 
 
 
4039	/* drain it before proceeding with destruction */
4040	drain_workqueue(wq);
4041
4042	/* sanity checks */
4043	mutex_lock(&wq->mutex);
4044	for_each_pwq(pwq, wq) {
4045		int i;
4046
4047		for (i = 0; i < WORK_NR_COLORS; i++) {
4048			if (WARN_ON(pwq->nr_in_flight[i])) {
4049				mutex_unlock(&wq->mutex);
4050				return;
4051			}
4052		}
 
 
 
4053
4054		if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
4055		    WARN_ON(pwq->nr_active) ||
4056		    WARN_ON(!list_empty(&pwq->delayed_works))) {
 
 
 
 
 
 
 
 
 
 
4057			mutex_unlock(&wq->mutex);
 
 
4058			return;
4059		}
 
4060	}
4061	mutex_unlock(&wq->mutex);
4062
4063	/*
4064	 * wq list is used to freeze wq, remove from list after
4065	 * flushing is complete in case freeze races us.
4066	 */
4067	mutex_lock(&wq_pool_mutex);
4068	list_del_rcu(&wq->list);
4069	mutex_unlock(&wq_pool_mutex);
4070
4071	workqueue_sysfs_unregister(wq);
4072
4073	if (wq->rescuer)
4074		kthread_stop(wq->rescuer->task);
4075
4076	if (!(wq->flags & WQ_UNBOUND)) {
 
4077		/*
4078		 * The base ref is never dropped on per-cpu pwqs.  Directly
4079		 * schedule RCU free.
4080		 */
4081		call_rcu_sched(&wq->rcu, rcu_free_wq);
4082	} else {
4083		/*
4084		 * We're the sole accessor of @wq at this point.  Directly
4085		 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4086		 * @wq will be freed when the last pwq is released.
4087		 */
4088		for_each_node(node) {
4089			pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4090			RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4091			put_pwq_unlocked(pwq);
4092		}
4093
4094		/*
4095		 * Put dfl_pwq.  @wq may be freed any time after dfl_pwq is
4096		 * put.  Don't access it afterwards.
4097		 */
4098		pwq = wq->dfl_pwq;
4099		wq->dfl_pwq = NULL;
4100		put_pwq_unlocked(pwq);
4101	}
4102}
4103EXPORT_SYMBOL_GPL(destroy_workqueue);
4104
4105/**
4106 * workqueue_set_max_active - adjust max_active of a workqueue
4107 * @wq: target workqueue
4108 * @max_active: new max_active value.
4109 *
4110 * Set max_active of @wq to @max_active.
4111 *
4112 * CONTEXT:
4113 * Don't call from IRQ context.
4114 */
4115void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4116{
4117	struct pool_workqueue *pwq;
4118
4119	/* disallow meddling with max_active for ordered workqueues */
4120	if (WARN_ON(wq->flags & __WQ_ORDERED))
4121		return;
4122
4123	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4124
4125	mutex_lock(&wq->mutex);
4126
 
4127	wq->saved_max_active = max_active;
4128
4129	for_each_pwq(pwq, wq)
4130		pwq_adjust_max_active(pwq);
4131
4132	mutex_unlock(&wq->mutex);
4133}
4134EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4135
4136/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4137 * current_is_workqueue_rescuer - is %current workqueue rescuer?
4138 *
4139 * Determine whether %current is a workqueue rescuer.  Can be used from
4140 * work functions to determine whether it's being run off the rescuer task.
4141 *
4142 * Return: %true if %current is a workqueue rescuer. %false otherwise.
4143 */
4144bool current_is_workqueue_rescuer(void)
4145{
4146	struct worker *worker = current_wq_worker();
4147
4148	return worker && worker->rescue_wq;
4149}
4150
4151/**
4152 * workqueue_congested - test whether a workqueue is congested
4153 * @cpu: CPU in question
4154 * @wq: target workqueue
4155 *
4156 * Test whether @wq's cpu workqueue for @cpu is congested.  There is
4157 * no synchronization around this function and the test result is
4158 * unreliable and only useful as advisory hints or for debugging.
4159 *
4160 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4161 * Note that both per-cpu and unbound workqueues may be associated with
4162 * multiple pool_workqueues which have separate congested states.  A
4163 * workqueue being congested on one CPU doesn't mean the workqueue is also
4164 * contested on other CPUs / NUMA nodes.
4165 *
4166 * Return:
4167 * %true if congested, %false otherwise.
4168 */
4169bool workqueue_congested(int cpu, struct workqueue_struct *wq)
4170{
4171	struct pool_workqueue *pwq;
4172	bool ret;
4173
4174	rcu_read_lock_sched();
 
4175
4176	if (cpu == WORK_CPU_UNBOUND)
4177		cpu = smp_processor_id();
4178
4179	if (!(wq->flags & WQ_UNBOUND))
4180		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4181	else
4182		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4183
4184	ret = !list_empty(&pwq->delayed_works);
4185	rcu_read_unlock_sched();
 
4186
4187	return ret;
4188}
4189EXPORT_SYMBOL_GPL(workqueue_congested);
4190
4191/**
4192 * work_busy - test whether a work is currently pending or running
4193 * @work: the work to be tested
4194 *
4195 * Test whether @work is currently pending or running.  There is no
4196 * synchronization around this function and the test result is
4197 * unreliable and only useful as advisory hints or for debugging.
4198 *
4199 * Return:
4200 * OR'd bitmask of WORK_BUSY_* bits.
4201 */
4202unsigned int work_busy(struct work_struct *work)
4203{
4204	struct worker_pool *pool;
4205	unsigned long flags;
4206	unsigned int ret = 0;
4207
4208	if (work_pending(work))
4209		ret |= WORK_BUSY_PENDING;
4210
4211	local_irq_save(flags);
4212	pool = get_work_pool(work);
4213	if (pool) {
4214		spin_lock(&pool->lock);
4215		if (find_worker_executing_work(pool, work))
4216			ret |= WORK_BUSY_RUNNING;
4217		spin_unlock(&pool->lock);
4218	}
4219	local_irq_restore(flags);
4220
4221	return ret;
4222}
4223EXPORT_SYMBOL_GPL(work_busy);
4224
4225/**
4226 * set_worker_desc - set description for the current work item
4227 * @fmt: printf-style format string
4228 * @...: arguments for the format string
4229 *
4230 * This function can be called by a running work function to describe what
4231 * the work item is about.  If the worker task gets dumped, this
4232 * information will be printed out together to help debugging.  The
4233 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4234 */
4235void set_worker_desc(const char *fmt, ...)
4236{
4237	struct worker *worker = current_wq_worker();
4238	va_list args;
4239
4240	if (worker) {
4241		va_start(args, fmt);
4242		vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4243		va_end(args);
4244		worker->desc_valid = true;
4245	}
4246}
 
4247
4248/**
4249 * print_worker_info - print out worker information and description
4250 * @log_lvl: the log level to use when printing
4251 * @task: target task
4252 *
4253 * If @task is a worker and currently executing a work item, print out the
4254 * name of the workqueue being serviced and worker description set with
4255 * set_worker_desc() by the currently executing work item.
4256 *
4257 * This function can be safely called on any task as long as the
4258 * task_struct itself is accessible.  While safe, this function isn't
4259 * synchronized and may print out mixups or garbages of limited length.
4260 */
4261void print_worker_info(const char *log_lvl, struct task_struct *task)
4262{
4263	work_func_t *fn = NULL;
4264	char name[WQ_NAME_LEN] = { };
4265	char desc[WORKER_DESC_LEN] = { };
4266	struct pool_workqueue *pwq = NULL;
4267	struct workqueue_struct *wq = NULL;
4268	bool desc_valid = false;
4269	struct worker *worker;
4270
4271	if (!(task->flags & PF_WQ_WORKER))
4272		return;
4273
4274	/*
4275	 * This function is called without any synchronization and @task
4276	 * could be in any state.  Be careful with dereferences.
4277	 */
4278	worker = probe_kthread_data(task);
4279
4280	/*
4281	 * Carefully copy the associated workqueue's workfn and name.  Keep
4282	 * the original last '\0' in case the original contains garbage.
4283	 */
4284	probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
4285	probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
4286	probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
4287	probe_kernel_read(name, wq->name, sizeof(name) - 1);
4288
4289	/* copy worker description */
4290	probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
4291	if (desc_valid)
4292		probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
4293
4294	if (fn || name[0] || desc[0]) {
4295		printk("%sWorkqueue: %s %pf", log_lvl, name, fn);
4296		if (desc[0])
4297			pr_cont(" (%s)", desc);
4298		pr_cont("\n");
4299	}
4300}
4301
4302static void pr_cont_pool_info(struct worker_pool *pool)
4303{
4304	pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
4305	if (pool->node != NUMA_NO_NODE)
4306		pr_cont(" node=%d", pool->node);
4307	pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
4308}
4309
4310static void pr_cont_work(bool comma, struct work_struct *work)
4311{
4312	if (work->func == wq_barrier_func) {
4313		struct wq_barrier *barr;
4314
4315		barr = container_of(work, struct wq_barrier, work);
4316
4317		pr_cont("%s BAR(%d)", comma ? "," : "",
4318			task_pid_nr(barr->task));
4319	} else {
4320		pr_cont("%s %pf", comma ? "," : "", work->func);
4321	}
4322}
4323
4324static void show_pwq(struct pool_workqueue *pwq)
4325{
4326	struct worker_pool *pool = pwq->pool;
4327	struct work_struct *work;
4328	struct worker *worker;
4329	bool has_in_flight = false, has_pending = false;
4330	int bkt;
4331
4332	pr_info("  pwq %d:", pool->id);
4333	pr_cont_pool_info(pool);
4334
4335	pr_cont(" active=%d/%d%s\n", pwq->nr_active, pwq->max_active,
 
4336		!list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
4337
4338	hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4339		if (worker->current_pwq == pwq) {
4340			has_in_flight = true;
4341			break;
4342		}
4343	}
4344	if (has_in_flight) {
4345		bool comma = false;
4346
4347		pr_info("    in-flight:");
4348		hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4349			if (worker->current_pwq != pwq)
4350				continue;
4351
4352			pr_cont("%s %d%s:%pf", comma ? "," : "",
4353				task_pid_nr(worker->task),
4354				worker == pwq->wq->rescuer ? "(RESCUER)" : "",
4355				worker->current_func);
4356			list_for_each_entry(work, &worker->scheduled, entry)
4357				pr_cont_work(false, work);
4358			comma = true;
4359		}
4360		pr_cont("\n");
4361	}
4362
4363	list_for_each_entry(work, &pool->worklist, entry) {
4364		if (get_work_pwq(work) == pwq) {
4365			has_pending = true;
4366			break;
4367		}
4368	}
4369	if (has_pending) {
4370		bool comma = false;
4371
4372		pr_info("    pending:");
4373		list_for_each_entry(work, &pool->worklist, entry) {
4374			if (get_work_pwq(work) != pwq)
4375				continue;
4376
4377			pr_cont_work(comma, work);
4378			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4379		}
4380		pr_cont("\n");
4381	}
4382
4383	if (!list_empty(&pwq->delayed_works)) {
4384		bool comma = false;
4385
4386		pr_info("    delayed:");
4387		list_for_each_entry(work, &pwq->delayed_works, entry) {
4388			pr_cont_work(comma, work);
4389			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4390		}
4391		pr_cont("\n");
4392	}
4393}
4394
4395/**
4396 * show_workqueue_state - dump workqueue state
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4397 *
4398 * Called from a sysrq handler and prints out all busy workqueues and
4399 * pools.
4400 */
4401void show_workqueue_state(void)
4402{
4403	struct workqueue_struct *wq;
4404	struct worker_pool *pool;
4405	unsigned long flags;
4406	int pi;
4407
4408	rcu_read_lock_sched();
4409
4410	pr_info("Showing busy workqueues and worker pools:\n");
4411
4412	list_for_each_entry_rcu(wq, &workqueues, list) {
4413		struct pool_workqueue *pwq;
4414		bool idle = true;
4415
4416		for_each_pwq(pwq, wq) {
4417			if (pwq->nr_active || !list_empty(&pwq->delayed_works)) {
4418				idle = false;
4419				break;
4420			}
4421		}
4422		if (idle)
4423			continue;
4424
4425		pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
 
4426
4427		for_each_pwq(pwq, wq) {
4428			spin_lock_irqsave(&pwq->pool->lock, flags);
4429			if (pwq->nr_active || !list_empty(&pwq->delayed_works))
4430				show_pwq(pwq);
4431			spin_unlock_irqrestore(&pwq->pool->lock, flags);
4432		}
4433	}
4434
4435	for_each_pool(pool, pi) {
4436		struct worker *worker;
4437		bool first = true;
 
4438
4439		spin_lock_irqsave(&pool->lock, flags);
4440		if (pool->nr_workers == pool->nr_idle)
4441			goto next_pool;
4442
4443		pr_info("pool %d:", pool->id);
4444		pr_cont_pool_info(pool);
4445		pr_cont(" hung=%us workers=%d",
4446			jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000,
4447			pool->nr_workers);
4448		if (pool->manager)
4449			pr_cont(" manager: %d",
4450				task_pid_nr(pool->manager->task));
4451		list_for_each_entry(worker, &pool->idle_list, entry) {
4452			pr_cont(" %s%d", first ? "idle: " : "",
4453				task_pid_nr(worker->task));
4454			first = false;
 
 
 
 
 
 
 
4455		}
4456		pr_cont("\n");
4457	next_pool:
4458		spin_unlock_irqrestore(&pool->lock, flags);
4459	}
4460
4461	rcu_read_unlock_sched();
4462}
4463
 
 
4464/*
4465 * CPU hotplug.
4466 *
4467 * There are two challenges in supporting CPU hotplug.  Firstly, there
4468 * are a lot of assumptions on strong associations among work, pwq and
4469 * pool which make migrating pending and scheduled works very
4470 * difficult to implement without impacting hot paths.  Secondly,
4471 * worker pools serve mix of short, long and very long running works making
4472 * blocked draining impractical.
4473 *
4474 * This is solved by allowing the pools to be disassociated from the CPU
4475 * running as an unbound one and allowing it to be reattached later if the
4476 * cpu comes back online.
4477 */
4478
4479static void wq_unbind_fn(struct work_struct *work)
4480{
4481	int cpu = smp_processor_id();
4482	struct worker_pool *pool;
4483	struct worker *worker;
4484
4485	for_each_cpu_worker_pool(pool, cpu) {
4486		mutex_lock(&pool->attach_mutex);
4487		spin_lock_irq(&pool->lock);
4488
4489		/*
4490		 * We've blocked all attach/detach operations. Make all workers
4491		 * unbound and set DISASSOCIATED.  Before this, all workers
4492		 * except for the ones which are still executing works from
4493		 * before the last CPU down must be on the cpu.  After
4494		 * this, they may become diasporas.
 
4495		 */
4496		for_each_pool_worker(worker, pool)
4497			worker->flags |= WORKER_UNBOUND;
4498
4499		pool->flags |= POOL_DISASSOCIATED;
4500
4501		spin_unlock_irq(&pool->lock);
4502		mutex_unlock(&pool->attach_mutex);
4503
4504		/*
4505		 * Call schedule() so that we cross rq->lock and thus can
4506		 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4507		 * This is necessary as scheduler callbacks may be invoked
4508		 * from other cpus.
4509		 */
4510		schedule();
4511
4512		/*
4513		 * Sched callbacks are disabled now.  Zap nr_running.
4514		 * After this, nr_running stays zero and need_more_worker()
4515		 * and keep_working() are always true as long as the
4516		 * worklist is not empty.  This pool now behaves as an
4517		 * unbound (in terms of concurrency management) pool which
4518		 * are served by workers tied to the pool.
4519		 */
4520		atomic_set(&pool->nr_running, 0);
4521
4522		/*
4523		 * With concurrency management just turned off, a busy
4524		 * worker blocking could lead to lengthy stalls.  Kick off
4525		 * unbound chain execution of currently pending work items.
4526		 */
4527		spin_lock_irq(&pool->lock);
4528		wake_up_worker(pool);
4529		spin_unlock_irq(&pool->lock);
 
 
 
 
 
 
 
 
 
 
 
4530	}
4531}
4532
4533/**
4534 * rebind_workers - rebind all workers of a pool to the associated CPU
4535 * @pool: pool of interest
4536 *
4537 * @pool->cpu is coming online.  Rebind all workers to the CPU.
4538 */
4539static void rebind_workers(struct worker_pool *pool)
4540{
4541	struct worker *worker;
4542
4543	lockdep_assert_held(&pool->attach_mutex);
4544
4545	/*
4546	 * Restore CPU affinity of all workers.  As all idle workers should
4547	 * be on the run-queue of the associated CPU before any local
4548	 * wake-ups for concurrency management happen, restore CPU affinity
4549	 * of all workers first and then clear UNBOUND.  As we're called
4550	 * from CPU_ONLINE, the following shouldn't fail.
4551	 */
4552	for_each_pool_worker(worker, pool)
 
4553		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4554						  pool->attrs->cpumask) < 0);
4555
4556	spin_lock_irq(&pool->lock);
4557
4558	/*
4559	 * XXX: CPU hotplug notifiers are weird and can call DOWN_FAILED
4560	 * w/o preceding DOWN_PREPARE.  Work around it.  CPU hotplug is
4561	 * being reworked and this can go away in time.
4562	 */
4563	if (!(pool->flags & POOL_DISASSOCIATED)) {
4564		spin_unlock_irq(&pool->lock);
4565		return;
4566	}
4567
 
 
4568	pool->flags &= ~POOL_DISASSOCIATED;
4569
4570	for_each_pool_worker(worker, pool) {
4571		unsigned int worker_flags = worker->flags;
4572
4573		/*
4574		 * A bound idle worker should actually be on the runqueue
4575		 * of the associated CPU for local wake-ups targeting it to
4576		 * work.  Kick all idle workers so that they migrate to the
4577		 * associated CPU.  Doing this in the same loop as
4578		 * replacing UNBOUND with REBOUND is safe as no worker will
4579		 * be bound before @pool->lock is released.
4580		 */
4581		if (worker_flags & WORKER_IDLE)
4582			wake_up_process(worker->task);
4583
4584		/*
4585		 * We want to clear UNBOUND but can't directly call
4586		 * worker_clr_flags() or adjust nr_running.  Atomically
4587		 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4588		 * @worker will clear REBOUND using worker_clr_flags() when
4589		 * it initiates the next execution cycle thus restoring
4590		 * concurrency management.  Note that when or whether
4591		 * @worker clears REBOUND doesn't affect correctness.
4592		 *
4593		 * ACCESS_ONCE() is necessary because @worker->flags may be
4594		 * tested without holding any lock in
4595		 * wq_worker_waking_up().  Without it, NOT_RUNNING test may
4596		 * fail incorrectly leading to premature concurrency
4597		 * management operations.
4598		 */
4599		WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4600		worker_flags |= WORKER_REBOUND;
4601		worker_flags &= ~WORKER_UNBOUND;
4602		ACCESS_ONCE(worker->flags) = worker_flags;
4603	}
4604
4605	spin_unlock_irq(&pool->lock);
4606}
4607
4608/**
4609 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4610 * @pool: unbound pool of interest
4611 * @cpu: the CPU which is coming up
4612 *
4613 * An unbound pool may end up with a cpumask which doesn't have any online
4614 * CPUs.  When a worker of such pool get scheduled, the scheduler resets
4615 * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
4616 * online CPU before, cpus_allowed of all its workers should be restored.
4617 */
4618static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
4619{
4620	static cpumask_t cpumask;
4621	struct worker *worker;
4622
4623	lockdep_assert_held(&pool->attach_mutex);
4624
4625	/* is @cpu allowed for @pool? */
4626	if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
4627		return;
4628
4629	/* is @cpu the only online CPU? */
4630	cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
4631	if (cpumask_weight(&cpumask) != 1)
4632		return;
4633
4634	/* as we're called from CPU_ONLINE, the following shouldn't fail */
4635	for_each_pool_worker(worker, pool)
4636		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4637						  pool->attrs->cpumask) < 0);
4638}
4639
4640/*
4641 * Workqueues should be brought up before normal priority CPU notifiers.
4642 * This will be registered high priority CPU notifier.
4643 */
4644static int workqueue_cpu_up_callback(struct notifier_block *nfb,
4645					       unsigned long action,
4646					       void *hcpu)
 
 
 
 
 
 
 
4647{
4648	int cpu = (unsigned long)hcpu;
4649	struct worker_pool *pool;
4650	struct workqueue_struct *wq;
4651	int pi;
4652
4653	switch (action & ~CPU_TASKS_FROZEN) {
4654	case CPU_UP_PREPARE:
4655		for_each_cpu_worker_pool(pool, cpu) {
4656			if (pool->nr_workers)
4657				continue;
4658			if (!create_worker(pool))
4659				return NOTIFY_BAD;
4660		}
4661		break;
4662
4663	case CPU_DOWN_FAILED:
4664	case CPU_ONLINE:
4665		mutex_lock(&wq_pool_mutex);
4666
4667		for_each_pool(pool, pi) {
4668			mutex_lock(&pool->attach_mutex);
4669
4670			if (pool->cpu == cpu)
4671				rebind_workers(pool);
4672			else if (pool->cpu < 0)
4673				restore_unbound_workers_cpumask(pool, cpu);
4674
4675			mutex_unlock(&pool->attach_mutex);
4676		}
4677
4678		/* update NUMA affinity of unbound workqueues */
4679		list_for_each_entry(wq, &workqueues, list)
4680			wq_update_unbound_numa(wq, cpu, true);
4681
4682		mutex_unlock(&wq_pool_mutex);
4683		break;
4684	}
4685	return NOTIFY_OK;
4686}
4687
4688/*
4689 * Workqueues should be brought down after normal priority CPU notifiers.
4690 * This will be registered as low priority CPU notifier.
4691 */
4692static int workqueue_cpu_down_callback(struct notifier_block *nfb,
4693						 unsigned long action,
4694						 void *hcpu)
4695{
4696	int cpu = (unsigned long)hcpu;
4697	struct work_struct unbind_work;
4698	struct workqueue_struct *wq;
4699
4700	switch (action & ~CPU_TASKS_FROZEN) {
4701	case CPU_DOWN_PREPARE:
4702		/* unbinding per-cpu workers should happen on the local CPU */
4703		INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
4704		queue_work_on(cpu, system_highpri_wq, &unbind_work);
4705
4706		/* update NUMA affinity of unbound workqueues */
4707		mutex_lock(&wq_pool_mutex);
4708		list_for_each_entry(wq, &workqueues, list)
4709			wq_update_unbound_numa(wq, cpu, false);
4710		mutex_unlock(&wq_pool_mutex);
4711
4712		/* wait for per-cpu unbinding to finish */
4713		flush_work(&unbind_work);
4714		destroy_work_on_stack(&unbind_work);
4715		break;
4716	}
4717	return NOTIFY_OK;
4718}
4719
4720#ifdef CONFIG_SMP
 
 
 
 
 
 
 
 
 
4721
4722struct work_for_cpu {
4723	struct work_struct work;
4724	long (*fn)(void *);
4725	void *arg;
4726	long ret;
4727};
4728
4729static void work_for_cpu_fn(struct work_struct *work)
4730{
4731	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
4732
4733	wfc->ret = wfc->fn(wfc->arg);
4734}
4735
4736/**
4737 * work_on_cpu - run a function in thread context on a particular cpu
4738 * @cpu: the cpu to run on
4739 * @fn: the function to run
4740 * @arg: the function arg
4741 *
4742 * It is up to the caller to ensure that the cpu doesn't go offline.
4743 * The caller must not hold any locks which would prevent @fn from completing.
4744 *
4745 * Return: The value @fn returns.
4746 */
4747long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
4748{
4749	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
4750
4751	INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
4752	schedule_work_on(cpu, &wfc.work);
4753	flush_work(&wfc.work);
4754	destroy_work_on_stack(&wfc.work);
4755	return wfc.ret;
4756}
4757EXPORT_SYMBOL_GPL(work_on_cpu);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4758#endif /* CONFIG_SMP */
4759
4760#ifdef CONFIG_FREEZER
4761
4762/**
4763 * freeze_workqueues_begin - begin freezing workqueues
4764 *
4765 * Start freezing workqueues.  After this function returns, all freezable
4766 * workqueues will queue new works to their delayed_works list instead of
4767 * pool->worklist.
4768 *
4769 * CONTEXT:
4770 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4771 */
4772void freeze_workqueues_begin(void)
4773{
4774	struct workqueue_struct *wq;
4775	struct pool_workqueue *pwq;
4776
4777	mutex_lock(&wq_pool_mutex);
4778
4779	WARN_ON_ONCE(workqueue_freezing);
4780	workqueue_freezing = true;
4781
4782	list_for_each_entry(wq, &workqueues, list) {
4783		mutex_lock(&wq->mutex);
4784		for_each_pwq(pwq, wq)
4785			pwq_adjust_max_active(pwq);
4786		mutex_unlock(&wq->mutex);
4787	}
4788
4789	mutex_unlock(&wq_pool_mutex);
4790}
4791
4792/**
4793 * freeze_workqueues_busy - are freezable workqueues still busy?
4794 *
4795 * Check whether freezing is complete.  This function must be called
4796 * between freeze_workqueues_begin() and thaw_workqueues().
4797 *
4798 * CONTEXT:
4799 * Grabs and releases wq_pool_mutex.
4800 *
4801 * Return:
4802 * %true if some freezable workqueues are still busy.  %false if freezing
4803 * is complete.
4804 */
4805bool freeze_workqueues_busy(void)
4806{
4807	bool busy = false;
4808	struct workqueue_struct *wq;
4809	struct pool_workqueue *pwq;
4810
4811	mutex_lock(&wq_pool_mutex);
4812
4813	WARN_ON_ONCE(!workqueue_freezing);
4814
4815	list_for_each_entry(wq, &workqueues, list) {
4816		if (!(wq->flags & WQ_FREEZABLE))
4817			continue;
4818		/*
4819		 * nr_active is monotonically decreasing.  It's safe
4820		 * to peek without lock.
4821		 */
4822		rcu_read_lock_sched();
4823		for_each_pwq(pwq, wq) {
4824			WARN_ON_ONCE(pwq->nr_active < 0);
4825			if (pwq->nr_active) {
4826				busy = true;
4827				rcu_read_unlock_sched();
4828				goto out_unlock;
4829			}
4830		}
4831		rcu_read_unlock_sched();
4832	}
4833out_unlock:
4834	mutex_unlock(&wq_pool_mutex);
4835	return busy;
4836}
4837
4838/**
4839 * thaw_workqueues - thaw workqueues
4840 *
4841 * Thaw workqueues.  Normal queueing is restored and all collected
4842 * frozen works are transferred to their respective pool worklists.
4843 *
4844 * CONTEXT:
4845 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4846 */
4847void thaw_workqueues(void)
4848{
4849	struct workqueue_struct *wq;
4850	struct pool_workqueue *pwq;
4851
4852	mutex_lock(&wq_pool_mutex);
4853
4854	if (!workqueue_freezing)
4855		goto out_unlock;
4856
4857	workqueue_freezing = false;
4858
4859	/* restore max_active and repopulate worklist */
4860	list_for_each_entry(wq, &workqueues, list) {
4861		mutex_lock(&wq->mutex);
4862		for_each_pwq(pwq, wq)
4863			pwq_adjust_max_active(pwq);
4864		mutex_unlock(&wq->mutex);
4865	}
4866
4867out_unlock:
4868	mutex_unlock(&wq_pool_mutex);
4869}
4870#endif /* CONFIG_FREEZER */
4871
4872static int workqueue_apply_unbound_cpumask(void)
4873{
4874	LIST_HEAD(ctxs);
4875	int ret = 0;
4876	struct workqueue_struct *wq;
4877	struct apply_wqattrs_ctx *ctx, *n;
4878
4879	lockdep_assert_held(&wq_pool_mutex);
4880
4881	list_for_each_entry(wq, &workqueues, list) {
4882		if (!(wq->flags & WQ_UNBOUND))
4883			continue;
4884		/* creating multiple pwqs breaks ordering guarantee */
4885		if (wq->flags & __WQ_ORDERED)
4886			continue;
4887
4888		ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs);
4889		if (!ctx) {
4890			ret = -ENOMEM;
4891			break;
4892		}
4893
4894		list_add_tail(&ctx->list, &ctxs);
4895	}
4896
4897	list_for_each_entry_safe(ctx, n, &ctxs, list) {
4898		if (!ret)
4899			apply_wqattrs_commit(ctx);
4900		apply_wqattrs_cleanup(ctx);
4901	}
4902
4903	return ret;
4904}
4905
4906/**
4907 *  workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
4908 *  @cpumask: the cpumask to set
4909 *
4910 *  The low-level workqueues cpumask is a global cpumask that limits
4911 *  the affinity of all unbound workqueues.  This function check the @cpumask
4912 *  and apply it to all unbound workqueues and updates all pwqs of them.
4913 *
4914 *  Retun:	0	- Success
4915 *  		-EINVAL	- Invalid @cpumask
4916 *  		-ENOMEM	- Failed to allocate memory for attrs or pwqs.
4917 */
4918int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
4919{
4920	int ret = -EINVAL;
4921	cpumask_var_t saved_cpumask;
4922
4923	if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL))
4924		return -ENOMEM;
4925
 
4926	cpumask_and(cpumask, cpumask, cpu_possible_mask);
4927	if (!cpumask_empty(cpumask)) {
4928		apply_wqattrs_lock();
 
 
 
 
 
 
 
 
 
4929
4930		/* save the old wq_unbound_cpumask. */
4931		cpumask_copy(saved_cpumask, wq_unbound_cpumask);
4932
4933		/* update wq_unbound_cpumask at first and apply it to wqs. */
4934		cpumask_copy(wq_unbound_cpumask, cpumask);
4935		ret = workqueue_apply_unbound_cpumask();
4936
4937		/* restore the wq_unbound_cpumask when failed. */
4938		if (ret < 0)
4939			cpumask_copy(wq_unbound_cpumask, saved_cpumask);
4940
 
 
4941		apply_wqattrs_unlock();
4942	}
4943
4944	free_cpumask_var(saved_cpumask);
4945	return ret;
4946}
4947
4948#ifdef CONFIG_SYSFS
4949/*
4950 * Workqueues with WQ_SYSFS flag set is visible to userland via
4951 * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
4952 * following attributes.
4953 *
4954 *  per_cpu	RO bool	: whether the workqueue is per-cpu or unbound
4955 *  max_active	RW int	: maximum number of in-flight work items
4956 *
4957 * Unbound workqueues have the following extra attributes.
4958 *
4959 *  id		RO int	: the associated pool ID
4960 *  nice	RW int	: nice value of the workers
4961 *  cpumask	RW mask	: bitmask of allowed CPUs for the workers
 
4962 */
4963struct wq_device {
4964	struct workqueue_struct		*wq;
4965	struct device			dev;
4966};
4967
4968static struct workqueue_struct *dev_to_wq(struct device *dev)
4969{
4970	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
4971
4972	return wq_dev->wq;
4973}
4974
4975static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
4976			    char *buf)
4977{
4978	struct workqueue_struct *wq = dev_to_wq(dev);
4979
4980	return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
4981}
4982static DEVICE_ATTR_RO(per_cpu);
4983
4984static ssize_t max_active_show(struct device *dev,
4985			       struct device_attribute *attr, char *buf)
4986{
4987	struct workqueue_struct *wq = dev_to_wq(dev);
4988
4989	return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
4990}
4991
4992static ssize_t max_active_store(struct device *dev,
4993				struct device_attribute *attr, const char *buf,
4994				size_t count)
4995{
4996	struct workqueue_struct *wq = dev_to_wq(dev);
4997	int val;
4998
4999	if (sscanf(buf, "%d", &val) != 1 || val <= 0)
5000		return -EINVAL;
5001
5002	workqueue_set_max_active(wq, val);
5003	return count;
5004}
5005static DEVICE_ATTR_RW(max_active);
5006
5007static struct attribute *wq_sysfs_attrs[] = {
5008	&dev_attr_per_cpu.attr,
5009	&dev_attr_max_active.attr,
5010	NULL,
5011};
5012ATTRIBUTE_GROUPS(wq_sysfs);
5013
5014static ssize_t wq_pool_ids_show(struct device *dev,
5015				struct device_attribute *attr, char *buf)
5016{
5017	struct workqueue_struct *wq = dev_to_wq(dev);
5018	const char *delim = "";
5019	int node, written = 0;
5020
5021	rcu_read_lock_sched();
 
5022	for_each_node(node) {
5023		written += scnprintf(buf + written, PAGE_SIZE - written,
5024				     "%s%d:%d", delim, node,
5025				     unbound_pwq_by_node(wq, node)->pool->id);
5026		delim = " ";
5027	}
5028	written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
5029	rcu_read_unlock_sched();
 
5030
5031	return written;
5032}
5033
5034static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
5035			    char *buf)
5036{
5037	struct workqueue_struct *wq = dev_to_wq(dev);
5038	int written;
5039
5040	mutex_lock(&wq->mutex);
5041	written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
5042	mutex_unlock(&wq->mutex);
5043
5044	return written;
5045}
5046
5047/* prepare workqueue_attrs for sysfs store operations */
5048static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
5049{
5050	struct workqueue_attrs *attrs;
5051
5052	lockdep_assert_held(&wq_pool_mutex);
5053
5054	attrs = alloc_workqueue_attrs(GFP_KERNEL);
5055	if (!attrs)
5056		return NULL;
5057
5058	copy_workqueue_attrs(attrs, wq->unbound_attrs);
5059	return attrs;
5060}
5061
5062static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
5063			     const char *buf, size_t count)
5064{
5065	struct workqueue_struct *wq = dev_to_wq(dev);
5066	struct workqueue_attrs *attrs;
5067	int ret = -ENOMEM;
5068
5069	apply_wqattrs_lock();
5070
5071	attrs = wq_sysfs_prep_attrs(wq);
5072	if (!attrs)
5073		goto out_unlock;
5074
5075	if (sscanf(buf, "%d", &attrs->nice) == 1 &&
5076	    attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
5077		ret = apply_workqueue_attrs_locked(wq, attrs);
5078	else
5079		ret = -EINVAL;
5080
5081out_unlock:
5082	apply_wqattrs_unlock();
5083	free_workqueue_attrs(attrs);
5084	return ret ?: count;
5085}
5086
5087static ssize_t wq_cpumask_show(struct device *dev,
5088			       struct device_attribute *attr, char *buf)
5089{
5090	struct workqueue_struct *wq = dev_to_wq(dev);
5091	int written;
5092
5093	mutex_lock(&wq->mutex);
5094	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5095			    cpumask_pr_args(wq->unbound_attrs->cpumask));
5096	mutex_unlock(&wq->mutex);
5097	return written;
5098}
5099
5100static ssize_t wq_cpumask_store(struct device *dev,
5101				struct device_attribute *attr,
5102				const char *buf, size_t count)
5103{
5104	struct workqueue_struct *wq = dev_to_wq(dev);
5105	struct workqueue_attrs *attrs;
5106	int ret = -ENOMEM;
5107
5108	apply_wqattrs_lock();
5109
5110	attrs = wq_sysfs_prep_attrs(wq);
5111	if (!attrs)
5112		goto out_unlock;
5113
5114	ret = cpumask_parse(buf, attrs->cpumask);
5115	if (!ret)
5116		ret = apply_workqueue_attrs_locked(wq, attrs);
5117
5118out_unlock:
5119	apply_wqattrs_unlock();
5120	free_workqueue_attrs(attrs);
5121	return ret ?: count;
5122}
5123
5124static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
5125			    char *buf)
5126{
5127	struct workqueue_struct *wq = dev_to_wq(dev);
5128	int written;
5129
5130	mutex_lock(&wq->mutex);
5131	written = scnprintf(buf, PAGE_SIZE, "%d\n",
5132			    !wq->unbound_attrs->no_numa);
5133	mutex_unlock(&wq->mutex);
5134
5135	return written;
5136}
5137
5138static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
5139			     const char *buf, size_t count)
5140{
5141	struct workqueue_struct *wq = dev_to_wq(dev);
5142	struct workqueue_attrs *attrs;
5143	int v, ret = -ENOMEM;
5144
5145	apply_wqattrs_lock();
5146
5147	attrs = wq_sysfs_prep_attrs(wq);
5148	if (!attrs)
5149		goto out_unlock;
5150
5151	ret = -EINVAL;
5152	if (sscanf(buf, "%d", &v) == 1) {
5153		attrs->no_numa = !v;
5154		ret = apply_workqueue_attrs_locked(wq, attrs);
5155	}
5156
5157out_unlock:
5158	apply_wqattrs_unlock();
5159	free_workqueue_attrs(attrs);
5160	return ret ?: count;
5161}
5162
5163static struct device_attribute wq_sysfs_unbound_attrs[] = {
5164	__ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
5165	__ATTR(nice, 0644, wq_nice_show, wq_nice_store),
5166	__ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
5167	__ATTR(numa, 0644, wq_numa_show, wq_numa_store),
5168	__ATTR_NULL,
5169};
5170
5171static struct bus_type wq_subsys = {
5172	.name				= "workqueue",
5173	.dev_groups			= wq_sysfs_groups,
5174};
5175
5176static ssize_t wq_unbound_cpumask_show(struct device *dev,
5177		struct device_attribute *attr, char *buf)
5178{
5179	int written;
5180
5181	mutex_lock(&wq_pool_mutex);
5182	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5183			    cpumask_pr_args(wq_unbound_cpumask));
5184	mutex_unlock(&wq_pool_mutex);
5185
5186	return written;
5187}
5188
5189static ssize_t wq_unbound_cpumask_store(struct device *dev,
5190		struct device_attribute *attr, const char *buf, size_t count)
5191{
5192	cpumask_var_t cpumask;
5193	int ret;
5194
5195	if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
5196		return -ENOMEM;
5197
5198	ret = cpumask_parse(buf, cpumask);
5199	if (!ret)
5200		ret = workqueue_set_unbound_cpumask(cpumask);
5201
5202	free_cpumask_var(cpumask);
5203	return ret ? ret : count;
5204}
5205
5206static struct device_attribute wq_sysfs_cpumask_attr =
5207	__ATTR(cpumask, 0644, wq_unbound_cpumask_show,
5208	       wq_unbound_cpumask_store);
5209
5210static int __init wq_sysfs_init(void)
5211{
5212	int err;
5213
5214	err = subsys_virtual_register(&wq_subsys, NULL);
5215	if (err)
5216		return err;
5217
5218	return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr);
5219}
5220core_initcall(wq_sysfs_init);
5221
5222static void wq_device_release(struct device *dev)
5223{
5224	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5225
5226	kfree(wq_dev);
5227}
5228
5229/**
5230 * workqueue_sysfs_register - make a workqueue visible in sysfs
5231 * @wq: the workqueue to register
5232 *
5233 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
5234 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
5235 * which is the preferred method.
5236 *
5237 * Workqueue user should use this function directly iff it wants to apply
5238 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
5239 * apply_workqueue_attrs() may race against userland updating the
5240 * attributes.
5241 *
5242 * Return: 0 on success, -errno on failure.
5243 */
5244int workqueue_sysfs_register(struct workqueue_struct *wq)
5245{
5246	struct wq_device *wq_dev;
5247	int ret;
5248
5249	/*
5250	 * Adjusting max_active or creating new pwqs by applying
5251	 * attributes breaks ordering guarantee.  Disallow exposing ordered
5252	 * workqueues.
5253	 */
5254	if (WARN_ON(wq->flags & __WQ_ORDERED))
5255		return -EINVAL;
5256
5257	wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
5258	if (!wq_dev)
5259		return -ENOMEM;
5260
5261	wq_dev->wq = wq;
5262	wq_dev->dev.bus = &wq_subsys;
5263	wq_dev->dev.release = wq_device_release;
5264	dev_set_name(&wq_dev->dev, "%s", wq->name);
5265
5266	/*
5267	 * unbound_attrs are created separately.  Suppress uevent until
5268	 * everything is ready.
5269	 */
5270	dev_set_uevent_suppress(&wq_dev->dev, true);
5271
5272	ret = device_register(&wq_dev->dev);
5273	if (ret) {
5274		kfree(wq_dev);
5275		wq->wq_dev = NULL;
5276		return ret;
5277	}
5278
5279	if (wq->flags & WQ_UNBOUND) {
5280		struct device_attribute *attr;
5281
5282		for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
5283			ret = device_create_file(&wq_dev->dev, attr);
5284			if (ret) {
5285				device_unregister(&wq_dev->dev);
5286				wq->wq_dev = NULL;
5287				return ret;
5288			}
5289		}
5290	}
5291
5292	dev_set_uevent_suppress(&wq_dev->dev, false);
5293	kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
5294	return 0;
5295}
5296
5297/**
5298 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
5299 * @wq: the workqueue to unregister
5300 *
5301 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
5302 */
5303static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
5304{
5305	struct wq_device *wq_dev = wq->wq_dev;
5306
5307	if (!wq->wq_dev)
5308		return;
5309
5310	wq->wq_dev = NULL;
5311	device_unregister(&wq_dev->dev);
5312}
5313#else	/* CONFIG_SYSFS */
5314static void workqueue_sysfs_unregister(struct workqueue_struct *wq)	{ }
5315#endif	/* CONFIG_SYSFS */
5316
5317/*
5318 * Workqueue watchdog.
5319 *
5320 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
5321 * flush dependency, a concurrency managed work item which stays RUNNING
5322 * indefinitely.  Workqueue stalls can be very difficult to debug as the
5323 * usual warning mechanisms don't trigger and internal workqueue state is
5324 * largely opaque.
5325 *
5326 * Workqueue watchdog monitors all worker pools periodically and dumps
5327 * state if some pools failed to make forward progress for a while where
5328 * forward progress is defined as the first item on ->worklist changing.
5329 *
5330 * This mechanism is controlled through the kernel parameter
5331 * "workqueue.watchdog_thresh" which can be updated at runtime through the
5332 * corresponding sysfs parameter file.
5333 */
5334#ifdef CONFIG_WQ_WATCHDOG
5335
5336static void wq_watchdog_timer_fn(unsigned long data);
5337
5338static unsigned long wq_watchdog_thresh = 30;
5339static struct timer_list wq_watchdog_timer =
5340	TIMER_DEFERRED_INITIALIZER(wq_watchdog_timer_fn, 0, 0);
5341
5342static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
5343static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
5344
5345static void wq_watchdog_reset_touched(void)
5346{
5347	int cpu;
5348
5349	wq_watchdog_touched = jiffies;
5350	for_each_possible_cpu(cpu)
5351		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5352}
5353
5354static void wq_watchdog_timer_fn(unsigned long data)
5355{
5356	unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
5357	bool lockup_detected = false;
 
5358	struct worker_pool *pool;
5359	int pi;
5360
5361	if (!thresh)
5362		return;
5363
5364	rcu_read_lock();
5365
5366	for_each_pool(pool, pi) {
5367		unsigned long pool_ts, touched, ts;
5368
5369		if (list_empty(&pool->worklist))
5370			continue;
5371
 
 
 
 
 
 
5372		/* get the latest of pool and touched timestamps */
 
 
 
 
5373		pool_ts = READ_ONCE(pool->watchdog_ts);
5374		touched = READ_ONCE(wq_watchdog_touched);
5375
5376		if (time_after(pool_ts, touched))
5377			ts = pool_ts;
5378		else
5379			ts = touched;
5380
5381		if (pool->cpu >= 0) {
5382			unsigned long cpu_touched =
5383				READ_ONCE(per_cpu(wq_watchdog_touched_cpu,
5384						  pool->cpu));
5385			if (time_after(cpu_touched, ts))
5386				ts = cpu_touched;
5387		}
5388
5389		/* did we stall? */
5390		if (time_after(jiffies, ts + thresh)) {
5391			lockup_detected = true;
5392			pr_emerg("BUG: workqueue lockup - pool");
5393			pr_cont_pool_info(pool);
5394			pr_cont(" stuck for %us!\n",
5395				jiffies_to_msecs(jiffies - pool_ts) / 1000);
5396		}
5397	}
5398
5399	rcu_read_unlock();
5400
5401	if (lockup_detected)
5402		show_workqueue_state();
5403
5404	wq_watchdog_reset_touched();
5405	mod_timer(&wq_watchdog_timer, jiffies + thresh);
5406}
5407
5408void wq_watchdog_touch(int cpu)
5409{
5410	if (cpu >= 0)
5411		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5412	else
5413		wq_watchdog_touched = jiffies;
5414}
5415
5416static void wq_watchdog_set_thresh(unsigned long thresh)
5417{
5418	wq_watchdog_thresh = 0;
5419	del_timer_sync(&wq_watchdog_timer);
5420
5421	if (thresh) {
5422		wq_watchdog_thresh = thresh;
5423		wq_watchdog_reset_touched();
5424		mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
5425	}
5426}
5427
5428static int wq_watchdog_param_set_thresh(const char *val,
5429					const struct kernel_param *kp)
5430{
5431	unsigned long thresh;
5432	int ret;
5433
5434	ret = kstrtoul(val, 0, &thresh);
5435	if (ret)
5436		return ret;
5437
5438	if (system_wq)
5439		wq_watchdog_set_thresh(thresh);
5440	else
5441		wq_watchdog_thresh = thresh;
5442
5443	return 0;
5444}
5445
5446static const struct kernel_param_ops wq_watchdog_thresh_ops = {
5447	.set	= wq_watchdog_param_set_thresh,
5448	.get	= param_get_ulong,
5449};
5450
5451module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
5452		0644);
5453
5454static void wq_watchdog_init(void)
5455{
 
5456	wq_watchdog_set_thresh(wq_watchdog_thresh);
5457}
5458
5459#else	/* CONFIG_WQ_WATCHDOG */
5460
5461static inline void wq_watchdog_init(void) { }
5462
5463#endif	/* CONFIG_WQ_WATCHDOG */
5464
5465static void __init wq_numa_init(void)
5466{
5467	cpumask_var_t *tbl;
5468	int node, cpu;
5469
5470	if (num_possible_nodes() <= 1)
5471		return;
5472
5473	if (wq_disable_numa) {
5474		pr_info("workqueue: NUMA affinity support disabled\n");
5475		return;
5476	}
5477
5478	wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
 
 
 
 
 
 
 
5479	BUG_ON(!wq_update_unbound_numa_attrs_buf);
5480
5481	/*
5482	 * We want masks of possible CPUs of each node which isn't readily
5483	 * available.  Build one from cpu_to_node() which should have been
5484	 * fully initialized by now.
5485	 */
5486	tbl = kzalloc(nr_node_ids * sizeof(tbl[0]), GFP_KERNEL);
5487	BUG_ON(!tbl);
5488
5489	for_each_node(node)
5490		BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
5491				node_online(node) ? node : NUMA_NO_NODE));
5492
5493	for_each_possible_cpu(cpu) {
5494		node = cpu_to_node(cpu);
5495		if (WARN_ON(node == NUMA_NO_NODE)) {
5496			pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
5497			/* happens iff arch is bonkers, let's just proceed */
5498			return;
5499		}
5500		cpumask_set_cpu(cpu, tbl[node]);
5501	}
5502
5503	wq_numa_possible_cpumask = tbl;
5504	wq_numa_enabled = true;
5505}
5506
5507static int __init init_workqueues(void)
 
 
 
 
 
 
 
 
 
 
5508{
5509	int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
5510	int i, cpu;
5511
5512	WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
5513
5514	BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
5515	cpumask_copy(wq_unbound_cpumask, cpu_possible_mask);
 
5516
5517	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
5518
5519	cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
5520	hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
5521
5522	wq_numa_init();
5523
5524	/* initialize CPU pools */
5525	for_each_possible_cpu(cpu) {
5526		struct worker_pool *pool;
5527
5528		i = 0;
5529		for_each_cpu_worker_pool(pool, cpu) {
5530			BUG_ON(init_worker_pool(pool));
5531			pool->cpu = cpu;
5532			cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
5533			pool->attrs->nice = std_nice[i++];
5534			pool->node = cpu_to_node(cpu);
5535
5536			/* alloc pool ID */
5537			mutex_lock(&wq_pool_mutex);
5538			BUG_ON(worker_pool_assign_id(pool));
5539			mutex_unlock(&wq_pool_mutex);
5540		}
5541	}
5542
5543	/* create the initial worker */
5544	for_each_online_cpu(cpu) {
5545		struct worker_pool *pool;
5546
5547		for_each_cpu_worker_pool(pool, cpu) {
5548			pool->flags &= ~POOL_DISASSOCIATED;
5549			BUG_ON(!create_worker(pool));
5550		}
5551	}
5552
5553	/* create default unbound and ordered wq attrs */
5554	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
5555		struct workqueue_attrs *attrs;
5556
5557		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5558		attrs->nice = std_nice[i];
5559		unbound_std_wq_attrs[i] = attrs;
5560
5561		/*
5562		 * An ordered wq should have only one pwq as ordering is
5563		 * guaranteed by max_active which is enforced by pwqs.
5564		 * Turn off NUMA so that dfl_pwq is used for all nodes.
5565		 */
5566		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5567		attrs->nice = std_nice[i];
5568		attrs->no_numa = true;
5569		ordered_wq_attrs[i] = attrs;
5570	}
5571
5572	system_wq = alloc_workqueue("events", 0, 0);
5573	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
5574	system_long_wq = alloc_workqueue("events_long", 0, 0);
5575	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
5576					    WQ_UNBOUND_MAX_ACTIVE);
5577	system_freezable_wq = alloc_workqueue("events_freezable",
5578					      WQ_FREEZABLE, 0);
5579	system_power_efficient_wq = alloc_workqueue("events_power_efficient",
5580					      WQ_POWER_EFFICIENT, 0);
5581	system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
5582					      WQ_FREEZABLE | WQ_POWER_EFFICIENT,
5583					      0);
5584	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
5585	       !system_unbound_wq || !system_freezable_wq ||
5586	       !system_power_efficient_wq ||
5587	       !system_freezable_power_efficient_wq);
 
5588
5589	wq_watchdog_init();
 
 
 
 
 
 
 
 
 
 
 
 
 
5590
5591	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5592}
5593early_initcall(init_workqueues);
 
 
 
 
 
 
 
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * kernel/workqueue.c - generic async execution with shared worker pool
   4 *
   5 * Copyright (C) 2002		Ingo Molnar
   6 *
   7 *   Derived from the taskqueue/keventd code by:
   8 *     David Woodhouse <dwmw2@infradead.org>
   9 *     Andrew Morton
  10 *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
  11 *     Theodore Ts'o <tytso@mit.edu>
  12 *
  13 * Made to use alloc_percpu by Christoph Lameter.
  14 *
  15 * Copyright (C) 2010		SUSE Linux Products GmbH
  16 * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
  17 *
  18 * This is the generic async execution mechanism.  Work items as are
  19 * executed in process context.  The worker pool is shared and
  20 * automatically managed.  There are two worker pools for each CPU (one for
  21 * normal work items and the other for high priority ones) and some extra
  22 * pools for workqueues which are not bound to any specific CPU - the
  23 * number of these backing pools is dynamic.
  24 *
  25 * Please read Documentation/core-api/workqueue.rst for details.
  26 */
  27
  28#include <linux/export.h>
  29#include <linux/kernel.h>
  30#include <linux/sched.h>
  31#include <linux/init.h>
  32#include <linux/signal.h>
  33#include <linux/completion.h>
  34#include <linux/workqueue.h>
  35#include <linux/slab.h>
  36#include <linux/cpu.h>
  37#include <linux/notifier.h>
  38#include <linux/kthread.h>
  39#include <linux/hardirq.h>
  40#include <linux/mempolicy.h>
  41#include <linux/freezer.h>
 
  42#include <linux/debug_locks.h>
  43#include <linux/lockdep.h>
  44#include <linux/idr.h>
  45#include <linux/jhash.h>
  46#include <linux/hashtable.h>
  47#include <linux/rculist.h>
  48#include <linux/nodemask.h>
  49#include <linux/moduleparam.h>
  50#include <linux/uaccess.h>
  51#include <linux/sched/isolation.h>
  52#include <linux/nmi.h>
  53#include <linux/kvm_para.h>
  54
  55#include "workqueue_internal.h"
  56
  57enum {
  58	/*
  59	 * worker_pool flags
  60	 *
  61	 * A bound pool is either associated or disassociated with its CPU.
  62	 * While associated (!DISASSOCIATED), all workers are bound to the
  63	 * CPU and none has %WORKER_UNBOUND set and concurrency management
  64	 * is in effect.
  65	 *
  66	 * While DISASSOCIATED, the cpu may be offline and all workers have
  67	 * %WORKER_UNBOUND set and concurrency management disabled, and may
  68	 * be executing on any CPU.  The pool behaves as an unbound one.
  69	 *
  70	 * Note that DISASSOCIATED should be flipped only while holding
  71	 * wq_pool_attach_mutex to avoid changing binding state while
  72	 * worker_attach_to_pool() is in progress.
  73	 */
  74	POOL_MANAGER_ACTIVE	= 1 << 0,	/* being managed */
  75	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
  76
  77	/* worker flags */
  78	WORKER_DIE		= 1 << 1,	/* die die die */
  79	WORKER_IDLE		= 1 << 2,	/* is idle */
  80	WORKER_PREP		= 1 << 3,	/* preparing to run works */
  81	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
  82	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
  83	WORKER_REBOUND		= 1 << 8,	/* worker was rebound */
  84
  85	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_CPU_INTENSIVE |
  86				  WORKER_UNBOUND | WORKER_REBOUND,
  87
  88	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
  89
  90	UNBOUND_POOL_HASH_ORDER	= 6,		/* hashed by pool->attrs */
  91	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
  92
  93	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
  94	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */
  95
  96	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
  97						/* call for help after 10ms
  98						   (min two ticks) */
  99	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
 100	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */
 101
 102	/*
 103	 * Rescue workers are used only on emergencies and shared by
 104	 * all cpus.  Give MIN_NICE.
 105	 */
 106	RESCUER_NICE_LEVEL	= MIN_NICE,
 107	HIGHPRI_NICE_LEVEL	= MIN_NICE,
 108
 109	WQ_NAME_LEN		= 24,
 110};
 111
 112/*
 113 * Structure fields follow one of the following exclusion rules.
 114 *
 115 * I: Modifiable by initialization/destruction paths and read-only for
 116 *    everyone else.
 117 *
 118 * P: Preemption protected.  Disabling preemption is enough and should
 119 *    only be modified and accessed from the local cpu.
 120 *
 121 * L: pool->lock protected.  Access with pool->lock held.
 122 *
 123 * X: During normal operation, modification requires pool->lock and should
 124 *    be done only from local cpu.  Either disabling preemption on local
 125 *    cpu or grabbing pool->lock is enough for read access.  If
 126 *    POOL_DISASSOCIATED is set, it's identical to L.
 127 *
 128 * A: wq_pool_attach_mutex protected.
 129 *
 130 * PL: wq_pool_mutex protected.
 131 *
 132 * PR: wq_pool_mutex protected for writes.  RCU protected for reads.
 133 *
 134 * PW: wq_pool_mutex and wq->mutex protected for writes.  Either for reads.
 135 *
 136 * PWR: wq_pool_mutex and wq->mutex protected for writes.  Either or
 137 *      RCU for reads.
 138 *
 139 * WQ: wq->mutex protected.
 140 *
 141 * WR: wq->mutex protected for writes.  RCU protected for reads.
 142 *
 143 * MD: wq_mayday_lock protected.
 144 */
 145
 146/* struct worker is defined in workqueue_internal.h */
 147
 148struct worker_pool {
 149	raw_spinlock_t		lock;		/* the pool lock */
 150	int			cpu;		/* I: the associated cpu */
 151	int			node;		/* I: the associated node ID */
 152	int			id;		/* I: pool ID */
 153	unsigned int		flags;		/* X: flags */
 154
 155	unsigned long		watchdog_ts;	/* L: watchdog timestamp */
 156
 157	/*
 158	 * The counter is incremented in a process context on the associated CPU
 159	 * w/ preemption disabled, and decremented or reset in the same context
 160	 * but w/ pool->lock held. The readers grab pool->lock and are
 161	 * guaranteed to see if the counter reached zero.
 162	 */
 163	int			nr_running;
 164
 165	struct list_head	worklist;	/* L: list of pending works */
 
 166
 167	int			nr_workers;	/* L: total number of workers */
 168	int			nr_idle;	/* L: currently idle workers */
 169
 170	struct list_head	idle_list;	/* L: list of idle workers */
 171	struct timer_list	idle_timer;	/* L: worker idle timeout */
 172	struct timer_list	mayday_timer;	/* L: SOS timer for workers */
 173
 174	/* a workers is either on busy_hash or idle_list, or the manager */
 175	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
 176						/* L: hash of busy workers */
 177
 
 
 178	struct worker		*manager;	/* L: purely informational */
 
 179	struct list_head	workers;	/* A: attached workers */
 180	struct completion	*detach_completion; /* all workers detached */
 181
 182	struct ida		worker_ida;	/* worker IDs for task name */
 183
 184	struct workqueue_attrs	*attrs;		/* I: worker attributes */
 185	struct hlist_node	hash_node;	/* PL: unbound_pool_hash node */
 186	int			refcnt;		/* PL: refcnt for unbound pools */
 187
 188	/*
 189	 * Destruction of pool is RCU protected to allow dereferences
 
 
 
 
 
 
 
 190	 * from get_work_pool().
 191	 */
 192	struct rcu_head		rcu;
 193};
 194
 195/*
 196 * The per-pool workqueue.  While queued, the lower WORK_STRUCT_FLAG_BITS
 197 * of work_struct->data are used for flags and the remaining high bits
 198 * point to the pwq; thus, pwqs need to be aligned at two's power of the
 199 * number of flag bits.
 200 */
 201struct pool_workqueue {
 202	struct worker_pool	*pool;		/* I: the associated pool */
 203	struct workqueue_struct *wq;		/* I: the owning workqueue */
 204	int			work_color;	/* L: current color */
 205	int			flush_color;	/* L: flushing color */
 206	int			refcnt;		/* L: reference count */
 207	int			nr_in_flight[WORK_NR_COLORS];
 208						/* L: nr of in_flight works */
 209
 210	/*
 211	 * nr_active management and WORK_STRUCT_INACTIVE:
 212	 *
 213	 * When pwq->nr_active >= max_active, new work item is queued to
 214	 * pwq->inactive_works instead of pool->worklist and marked with
 215	 * WORK_STRUCT_INACTIVE.
 216	 *
 217	 * All work items marked with WORK_STRUCT_INACTIVE do not participate
 218	 * in pwq->nr_active and all work items in pwq->inactive_works are
 219	 * marked with WORK_STRUCT_INACTIVE.  But not all WORK_STRUCT_INACTIVE
 220	 * work items are in pwq->inactive_works.  Some of them are ready to
 221	 * run in pool->worklist or worker->scheduled.  Those work itmes are
 222	 * only struct wq_barrier which is used for flush_work() and should
 223	 * not participate in pwq->nr_active.  For non-barrier work item, it
 224	 * is marked with WORK_STRUCT_INACTIVE iff it is in pwq->inactive_works.
 225	 */
 226	int			nr_active;	/* L: nr of active works */
 227	int			max_active;	/* L: max active works */
 228	struct list_head	inactive_works;	/* L: inactive works */
 229	struct list_head	pwqs_node;	/* WR: node on wq->pwqs */
 230	struct list_head	mayday_node;	/* MD: node on wq->maydays */
 231
 232	/*
 233	 * Release of unbound pwq is punted to system_wq.  See put_pwq()
 234	 * and pwq_unbound_release_workfn() for details.  pool_workqueue
 235	 * itself is also RCU protected so that the first pwq can be
 236	 * determined without grabbing wq->mutex.
 237	 */
 238	struct work_struct	unbound_release_work;
 239	struct rcu_head		rcu;
 240} __aligned(1 << WORK_STRUCT_FLAG_BITS);
 241
 242/*
 243 * Structure used to wait for workqueue flush.
 244 */
 245struct wq_flusher {
 246	struct list_head	list;		/* WQ: list of flushers */
 247	int			flush_color;	/* WQ: flush color waiting for */
 248	struct completion	done;		/* flush completion */
 249};
 250
 251struct wq_device;
 252
 253/*
 254 * The externally visible workqueue.  It relays the issued work items to
 255 * the appropriate worker_pool through its pool_workqueues.
 256 */
 257struct workqueue_struct {
 258	struct list_head	pwqs;		/* WR: all pwqs of this wq */
 259	struct list_head	list;		/* PR: list of all workqueues */
 260
 261	struct mutex		mutex;		/* protects this wq */
 262	int			work_color;	/* WQ: current work color */
 263	int			flush_color;	/* WQ: current flush color */
 264	atomic_t		nr_pwqs_to_flush; /* flush in progress */
 265	struct wq_flusher	*first_flusher;	/* WQ: first flusher */
 266	struct list_head	flusher_queue;	/* WQ: flush waiters */
 267	struct list_head	flusher_overflow; /* WQ: flush overflow list */
 268
 269	struct list_head	maydays;	/* MD: pwqs requesting rescue */
 270	struct worker		*rescuer;	/* MD: rescue worker */
 271
 272	int			nr_drainers;	/* WQ: drain in progress */
 273	int			saved_max_active; /* WQ: saved pwq max_active */
 274
 275	struct workqueue_attrs	*unbound_attrs;	/* PW: only for unbound wqs */
 276	struct pool_workqueue	*dfl_pwq;	/* PW: only for unbound wqs */
 277
 278#ifdef CONFIG_SYSFS
 279	struct wq_device	*wq_dev;	/* I: for sysfs interface */
 280#endif
 281#ifdef CONFIG_LOCKDEP
 282	char			*lock_name;
 283	struct lock_class_key	key;
 284	struct lockdep_map	lockdep_map;
 285#endif
 286	char			name[WQ_NAME_LEN]; /* I: workqueue name */
 287
 288	/*
 289	 * Destruction of workqueue_struct is RCU protected to allow walking
 290	 * the workqueues list without grabbing wq_pool_mutex.
 291	 * This is used to dump all workqueues from sysrq.
 292	 */
 293	struct rcu_head		rcu;
 294
 295	/* hot fields used during command issue, aligned to cacheline */
 296	unsigned int		flags ____cacheline_aligned; /* WQ: WQ_* flags */
 297	struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
 298	struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
 299};
 300
 301static struct kmem_cache *pwq_cache;
 302
 303static cpumask_var_t *wq_numa_possible_cpumask;
 304					/* possible CPUs of each node */
 305
 306static bool wq_disable_numa;
 307module_param_named(disable_numa, wq_disable_numa, bool, 0444);
 308
 309/* see the comment above the definition of WQ_POWER_EFFICIENT */
 310static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
 311module_param_named(power_efficient, wq_power_efficient, bool, 0444);
 312
 313static bool wq_online;			/* can kworkers be created yet? */
 314
 315static bool wq_numa_enabled;		/* unbound NUMA affinity enabled */
 316
 317/* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
 318static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
 319
 320static DEFINE_MUTEX(wq_pool_mutex);	/* protects pools and workqueues list */
 321static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */
 322static DEFINE_RAW_SPINLOCK(wq_mayday_lock);	/* protects wq->maydays list */
 323/* wait for manager to go away */
 324static struct rcuwait manager_wait = __RCUWAIT_INITIALIZER(manager_wait);
 325
 326static LIST_HEAD(workqueues);		/* PR: list of all workqueues */
 327static bool workqueue_freezing;		/* PL: have wqs started freezing? */
 328
 329/* PL: allowable cpus for unbound wqs and work items */
 330static cpumask_var_t wq_unbound_cpumask;
 331
 332/* CPU where unbound work was last round robin scheduled from this CPU */
 333static DEFINE_PER_CPU(int, wq_rr_cpu_last);
 334
 335/*
 336 * Local execution of unbound work items is no longer guaranteed.  The
 337 * following always forces round-robin CPU selection on unbound work items
 338 * to uncover usages which depend on it.
 339 */
 340#ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
 341static bool wq_debug_force_rr_cpu = true;
 342#else
 343static bool wq_debug_force_rr_cpu = false;
 344#endif
 345module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
 346
 347/* the per-cpu worker pools */
 348static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
 349
 350static DEFINE_IDR(worker_pool_idr);	/* PR: idr of all pools */
 351
 352/* PL: hash of all unbound pools keyed by pool->attrs */
 353static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
 354
 355/* I: attributes used when instantiating standard unbound pools on demand */
 356static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
 357
 358/* I: attributes used when instantiating ordered pools on demand */
 359static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
 360
 361struct workqueue_struct *system_wq __read_mostly;
 362EXPORT_SYMBOL(system_wq);
 363struct workqueue_struct *system_highpri_wq __read_mostly;
 364EXPORT_SYMBOL_GPL(system_highpri_wq);
 365struct workqueue_struct *system_long_wq __read_mostly;
 366EXPORT_SYMBOL_GPL(system_long_wq);
 367struct workqueue_struct *system_unbound_wq __read_mostly;
 368EXPORT_SYMBOL_GPL(system_unbound_wq);
 369struct workqueue_struct *system_freezable_wq __read_mostly;
 370EXPORT_SYMBOL_GPL(system_freezable_wq);
 371struct workqueue_struct *system_power_efficient_wq __read_mostly;
 372EXPORT_SYMBOL_GPL(system_power_efficient_wq);
 373struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
 374EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
 375
 376static int worker_thread(void *__worker);
 377static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
 378static void show_pwq(struct pool_workqueue *pwq);
 379static void show_one_worker_pool(struct worker_pool *pool);
 380
 381#define CREATE_TRACE_POINTS
 382#include <trace/events/workqueue.h>
 383
 384#define assert_rcu_or_pool_mutex()					\
 385	RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&			\
 386			 !lockdep_is_held(&wq_pool_mutex),		\
 387			 "RCU or wq_pool_mutex should be held")
 
 
 
 
 
 388
 389#define assert_rcu_or_wq_mutex_or_pool_mutex(wq)			\
 390	RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&			\
 391			 !lockdep_is_held(&wq->mutex) &&		\
 392			 !lockdep_is_held(&wq_pool_mutex),		\
 393			 "RCU, wq->mutex or wq_pool_mutex should be held")
 394
 395#define for_each_cpu_worker_pool(pool, cpu)				\
 396	for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];		\
 397	     (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
 398	     (pool)++)
 399
 400/**
 401 * for_each_pool - iterate through all worker_pools in the system
 402 * @pool: iteration cursor
 403 * @pi: integer used for iteration
 404 *
 405 * This must be called either with wq_pool_mutex held or RCU read
 406 * locked.  If the pool needs to be used beyond the locking in effect, the
 407 * caller is responsible for guaranteeing that the pool stays online.
 408 *
 409 * The if/else clause exists only for the lockdep assertion and can be
 410 * ignored.
 411 */
 412#define for_each_pool(pool, pi)						\
 413	idr_for_each_entry(&worker_pool_idr, pool, pi)			\
 414		if (({ assert_rcu_or_pool_mutex(); false; })) { }	\
 415		else
 416
 417/**
 418 * for_each_pool_worker - iterate through all workers of a worker_pool
 419 * @worker: iteration cursor
 420 * @pool: worker_pool to iterate workers of
 421 *
 422 * This must be called with wq_pool_attach_mutex.
 423 *
 424 * The if/else clause exists only for the lockdep assertion and can be
 425 * ignored.
 426 */
 427#define for_each_pool_worker(worker, pool)				\
 428	list_for_each_entry((worker), &(pool)->workers, node)		\
 429		if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \
 430		else
 431
 432/**
 433 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
 434 * @pwq: iteration cursor
 435 * @wq: the target workqueue
 436 *
 437 * This must be called either with wq->mutex held or RCU read locked.
 438 * If the pwq needs to be used beyond the locking in effect, the caller is
 439 * responsible for guaranteeing that the pwq stays online.
 440 *
 441 * The if/else clause exists only for the lockdep assertion and can be
 442 * ignored.
 443 */
 444#define for_each_pwq(pwq, wq)						\
 445	list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node,		\
 446				 lockdep_is_held(&(wq->mutex)))
 
 447
 448#ifdef CONFIG_DEBUG_OBJECTS_WORK
 449
 450static const struct debug_obj_descr work_debug_descr;
 451
 452static void *work_debug_hint(void *addr)
 453{
 454	return ((struct work_struct *) addr)->func;
 455}
 456
 457static bool work_is_static_object(void *addr)
 
 
 
 
 458{
 459	struct work_struct *work = addr;
 460
 461	return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
 
 
 
 
 
 
 
 462}
 463
 464/*
 465 * fixup_init is called when:
 466 * - an active object is initialized
 
 467 */
 468static bool work_fixup_init(void *addr, enum debug_obj_state state)
 469{
 470	struct work_struct *work = addr;
 471
 472	switch (state) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 473	case ODEBUG_STATE_ACTIVE:
 474		cancel_work_sync(work);
 475		debug_object_init(work, &work_debug_descr);
 476		return true;
 477	default:
 478		return false;
 479	}
 480}
 481
 482/*
 483 * fixup_free is called when:
 484 * - an active object is freed
 485 */
 486static bool work_fixup_free(void *addr, enum debug_obj_state state)
 487{
 488	struct work_struct *work = addr;
 489
 490	switch (state) {
 491	case ODEBUG_STATE_ACTIVE:
 492		cancel_work_sync(work);
 493		debug_object_free(work, &work_debug_descr);
 494		return true;
 495	default:
 496		return false;
 497	}
 498}
 499
 500static const struct debug_obj_descr work_debug_descr = {
 501	.name		= "work_struct",
 502	.debug_hint	= work_debug_hint,
 503	.is_static_object = work_is_static_object,
 504	.fixup_init	= work_fixup_init,
 
 505	.fixup_free	= work_fixup_free,
 506};
 507
 508static inline void debug_work_activate(struct work_struct *work)
 509{
 510	debug_object_activate(work, &work_debug_descr);
 511}
 512
 513static inline void debug_work_deactivate(struct work_struct *work)
 514{
 515	debug_object_deactivate(work, &work_debug_descr);
 516}
 517
 518void __init_work(struct work_struct *work, int onstack)
 519{
 520	if (onstack)
 521		debug_object_init_on_stack(work, &work_debug_descr);
 522	else
 523		debug_object_init(work, &work_debug_descr);
 524}
 525EXPORT_SYMBOL_GPL(__init_work);
 526
 527void destroy_work_on_stack(struct work_struct *work)
 528{
 529	debug_object_free(work, &work_debug_descr);
 530}
 531EXPORT_SYMBOL_GPL(destroy_work_on_stack);
 532
 533void destroy_delayed_work_on_stack(struct delayed_work *work)
 534{
 535	destroy_timer_on_stack(&work->timer);
 536	debug_object_free(&work->work, &work_debug_descr);
 537}
 538EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
 539
 540#else
 541static inline void debug_work_activate(struct work_struct *work) { }
 542static inline void debug_work_deactivate(struct work_struct *work) { }
 543#endif
 544
 545/**
 546 * worker_pool_assign_id - allocate ID and assign it to @pool
 547 * @pool: the pool pointer of interest
 548 *
 549 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
 550 * successfully, -errno on failure.
 551 */
 552static int worker_pool_assign_id(struct worker_pool *pool)
 553{
 554	int ret;
 555
 556	lockdep_assert_held(&wq_pool_mutex);
 557
 558	ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
 559			GFP_KERNEL);
 560	if (ret >= 0) {
 561		pool->id = ret;
 562		return 0;
 563	}
 564	return ret;
 565}
 566
 567/**
 568 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
 569 * @wq: the target workqueue
 570 * @node: the node ID
 571 *
 572 * This must be called with any of wq_pool_mutex, wq->mutex or RCU
 573 * read locked.
 574 * If the pwq needs to be used beyond the locking in effect, the caller is
 575 * responsible for guaranteeing that the pwq stays online.
 576 *
 577 * Return: The unbound pool_workqueue for @node.
 578 */
 579static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
 580						  int node)
 581{
 582	assert_rcu_or_wq_mutex_or_pool_mutex(wq);
 583
 584	/*
 585	 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a
 586	 * delayed item is pending.  The plan is to keep CPU -> NODE
 587	 * mapping valid and stable across CPU on/offlines.  Once that
 588	 * happens, this workaround can be removed.
 589	 */
 590	if (unlikely(node == NUMA_NO_NODE))
 591		return wq->dfl_pwq;
 592
 593	return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
 594}
 595
 596static unsigned int work_color_to_flags(int color)
 597{
 598	return color << WORK_STRUCT_COLOR_SHIFT;
 599}
 600
 601static int get_work_color(unsigned long work_data)
 602{
 603	return (work_data >> WORK_STRUCT_COLOR_SHIFT) &
 604		((1 << WORK_STRUCT_COLOR_BITS) - 1);
 605}
 606
 607static int work_next_color(int color)
 608{
 609	return (color + 1) % WORK_NR_COLORS;
 610}
 611
 612/*
 613 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
 614 * contain the pointer to the queued pwq.  Once execution starts, the flag
 615 * is cleared and the high bits contain OFFQ flags and pool ID.
 616 *
 617 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
 618 * and clear_work_data() can be used to set the pwq, pool or clear
 619 * work->data.  These functions should only be called while the work is
 620 * owned - ie. while the PENDING bit is set.
 621 *
 622 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
 623 * corresponding to a work.  Pool is available once the work has been
 624 * queued anywhere after initialization until it is sync canceled.  pwq is
 625 * available only while the work item is queued.
 626 *
 627 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
 628 * canceled.  While being canceled, a work item may have its PENDING set
 629 * but stay off timer and worklist for arbitrarily long and nobody should
 630 * try to steal the PENDING bit.
 631 */
 632static inline void set_work_data(struct work_struct *work, unsigned long data,
 633				 unsigned long flags)
 634{
 635	WARN_ON_ONCE(!work_pending(work));
 636	atomic_long_set(&work->data, data | flags | work_static(work));
 637}
 638
 639static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
 640			 unsigned long extra_flags)
 641{
 642	set_work_data(work, (unsigned long)pwq,
 643		      WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
 644}
 645
 646static void set_work_pool_and_keep_pending(struct work_struct *work,
 647					   int pool_id)
 648{
 649	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
 650		      WORK_STRUCT_PENDING);
 651}
 652
 653static void set_work_pool_and_clear_pending(struct work_struct *work,
 654					    int pool_id)
 655{
 656	/*
 657	 * The following wmb is paired with the implied mb in
 658	 * test_and_set_bit(PENDING) and ensures all updates to @work made
 659	 * here are visible to and precede any updates by the next PENDING
 660	 * owner.
 661	 */
 662	smp_wmb();
 663	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
 664	/*
 665	 * The following mb guarantees that previous clear of a PENDING bit
 666	 * will not be reordered with any speculative LOADS or STORES from
 667	 * work->current_func, which is executed afterwards.  This possible
 668	 * reordering can lead to a missed execution on attempt to queue
 669	 * the same @work.  E.g. consider this case:
 670	 *
 671	 *   CPU#0                         CPU#1
 672	 *   ----------------------------  --------------------------------
 673	 *
 674	 * 1  STORE event_indicated
 675	 * 2  queue_work_on() {
 676	 * 3    test_and_set_bit(PENDING)
 677	 * 4 }                             set_..._and_clear_pending() {
 678	 * 5                                 set_work_data() # clear bit
 679	 * 6                                 smp_mb()
 680	 * 7                               work->current_func() {
 681	 * 8				      LOAD event_indicated
 682	 *				   }
 683	 *
 684	 * Without an explicit full barrier speculative LOAD on line 8 can
 685	 * be executed before CPU#0 does STORE on line 1.  If that happens,
 686	 * CPU#0 observes the PENDING bit is still set and new execution of
 687	 * a @work is not queued in a hope, that CPU#1 will eventually
 688	 * finish the queued @work.  Meanwhile CPU#1 does not see
 689	 * event_indicated is set, because speculative LOAD was executed
 690	 * before actual STORE.
 691	 */
 692	smp_mb();
 693}
 694
 695static void clear_work_data(struct work_struct *work)
 696{
 697	smp_wmb();	/* see set_work_pool_and_clear_pending() */
 698	set_work_data(work, WORK_STRUCT_NO_POOL, 0);
 699}
 700
 701static struct pool_workqueue *get_work_pwq(struct work_struct *work)
 702{
 703	unsigned long data = atomic_long_read(&work->data);
 704
 705	if (data & WORK_STRUCT_PWQ)
 706		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
 707	else
 708		return NULL;
 709}
 710
 711/**
 712 * get_work_pool - return the worker_pool a given work was associated with
 713 * @work: the work item of interest
 714 *
 715 * Pools are created and destroyed under wq_pool_mutex, and allows read
 716 * access under RCU read lock.  As such, this function should be
 717 * called under wq_pool_mutex or inside of a rcu_read_lock() region.
 718 *
 719 * All fields of the returned pool are accessible as long as the above
 720 * mentioned locking is in effect.  If the returned pool needs to be used
 721 * beyond the critical section, the caller is responsible for ensuring the
 722 * returned pool is and stays online.
 723 *
 724 * Return: The worker_pool @work was last associated with.  %NULL if none.
 725 */
 726static struct worker_pool *get_work_pool(struct work_struct *work)
 727{
 728	unsigned long data = atomic_long_read(&work->data);
 729	int pool_id;
 730
 731	assert_rcu_or_pool_mutex();
 732
 733	if (data & WORK_STRUCT_PWQ)
 734		return ((struct pool_workqueue *)
 735			(data & WORK_STRUCT_WQ_DATA_MASK))->pool;
 736
 737	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
 738	if (pool_id == WORK_OFFQ_POOL_NONE)
 739		return NULL;
 740
 741	return idr_find(&worker_pool_idr, pool_id);
 742}
 743
 744/**
 745 * get_work_pool_id - return the worker pool ID a given work is associated with
 746 * @work: the work item of interest
 747 *
 748 * Return: The worker_pool ID @work was last associated with.
 749 * %WORK_OFFQ_POOL_NONE if none.
 750 */
 751static int get_work_pool_id(struct work_struct *work)
 752{
 753	unsigned long data = atomic_long_read(&work->data);
 754
 755	if (data & WORK_STRUCT_PWQ)
 756		return ((struct pool_workqueue *)
 757			(data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
 758
 759	return data >> WORK_OFFQ_POOL_SHIFT;
 760}
 761
 762static void mark_work_canceling(struct work_struct *work)
 763{
 764	unsigned long pool_id = get_work_pool_id(work);
 765
 766	pool_id <<= WORK_OFFQ_POOL_SHIFT;
 767	set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
 768}
 769
 770static bool work_is_canceling(struct work_struct *work)
 771{
 772	unsigned long data = atomic_long_read(&work->data);
 773
 774	return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
 775}
 776
 777/*
 778 * Policy functions.  These define the policies on how the global worker
 779 * pools are managed.  Unless noted otherwise, these functions assume that
 780 * they're being called with pool->lock held.
 781 */
 782
 783static bool __need_more_worker(struct worker_pool *pool)
 784{
 785	return !pool->nr_running;
 786}
 787
 788/*
 789 * Need to wake up a worker?  Called from anything but currently
 790 * running workers.
 791 *
 792 * Note that, because unbound workers never contribute to nr_running, this
 793 * function will always return %true for unbound pools as long as the
 794 * worklist isn't empty.
 795 */
 796static bool need_more_worker(struct worker_pool *pool)
 797{
 798	return !list_empty(&pool->worklist) && __need_more_worker(pool);
 799}
 800
 801/* Can I start working?  Called from busy but !running workers. */
 802static bool may_start_working(struct worker_pool *pool)
 803{
 804	return pool->nr_idle;
 805}
 806
 807/* Do I need to keep working?  Called from currently running workers. */
 808static bool keep_working(struct worker_pool *pool)
 809{
 810	return !list_empty(&pool->worklist) && (pool->nr_running <= 1);
 
 811}
 812
 813/* Do we need a new worker?  Called from manager. */
 814static bool need_to_create_worker(struct worker_pool *pool)
 815{
 816	return need_more_worker(pool) && !may_start_working(pool);
 817}
 818
 819/* Do we have too many workers and should some go away? */
 820static bool too_many_workers(struct worker_pool *pool)
 821{
 822	bool managing = pool->flags & POOL_MANAGER_ACTIVE;
 823	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
 824	int nr_busy = pool->nr_workers - nr_idle;
 825
 826	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
 827}
 828
 829/*
 830 * Wake up functions.
 831 */
 832
 833/* Return the first idle worker.  Called with pool->lock held. */
 834static struct worker *first_idle_worker(struct worker_pool *pool)
 835{
 836	if (unlikely(list_empty(&pool->idle_list)))
 837		return NULL;
 838
 839	return list_first_entry(&pool->idle_list, struct worker, entry);
 840}
 841
 842/**
 843 * wake_up_worker - wake up an idle worker
 844 * @pool: worker pool to wake worker from
 845 *
 846 * Wake up the first idle worker of @pool.
 847 *
 848 * CONTEXT:
 849 * raw_spin_lock_irq(pool->lock).
 850 */
 851static void wake_up_worker(struct worker_pool *pool)
 852{
 853	struct worker *worker = first_idle_worker(pool);
 854
 855	if (likely(worker))
 856		wake_up_process(worker->task);
 857}
 858
 859/**
 860 * wq_worker_running - a worker is running again
 861 * @task: task waking up
 
 
 
 
 862 *
 863 * This function is called when a worker returns from schedule()
 
 864 */
 865void wq_worker_running(struct task_struct *task)
 866{
 867	struct worker *worker = kthread_data(task);
 868
 869	if (!worker->sleeping)
 870		return;
 871
 872	/*
 873	 * If preempted by unbind_workers() between the WORKER_NOT_RUNNING check
 874	 * and the nr_running increment below, we may ruin the nr_running reset
 875	 * and leave with an unexpected pool->nr_running == 1 on the newly unbound
 876	 * pool. Protect against such race.
 877	 */
 878	preempt_disable();
 879	if (!(worker->flags & WORKER_NOT_RUNNING))
 880		worker->pool->nr_running++;
 881	preempt_enable();
 882	worker->sleeping = 0;
 883}
 884
 885/**
 886 * wq_worker_sleeping - a worker is going to sleep
 887 * @task: task going to sleep
 888 *
 889 * This function is called from schedule() when a busy worker is
 890 * going to sleep.
 
 
 
 
 
 
 
 891 */
 892void wq_worker_sleeping(struct task_struct *task)
 893{
 894	struct worker *worker = kthread_data(task);
 895	struct worker_pool *pool;
 896
 897	/*
 898	 * Rescuers, which may not have all the fields set up like normal
 899	 * workers, also reach here, let's not access anything before
 900	 * checking NOT_RUNNING.
 901	 */
 902	if (worker->flags & WORKER_NOT_RUNNING)
 903		return;
 904
 905	pool = worker->pool;
 906
 907	/* Return if preempted before wq_worker_running() was reached */
 908	if (worker->sleeping)
 909		return;
 910
 911	worker->sleeping = 1;
 912	raw_spin_lock_irq(&pool->lock);
 913
 914	/*
 915	 * Recheck in case unbind_workers() preempted us. We don't
 916	 * want to decrement nr_running after the worker is unbound
 917	 * and nr_running has been reset.
 918	 */
 919	if (worker->flags & WORKER_NOT_RUNNING) {
 920		raw_spin_unlock_irq(&pool->lock);
 921		return;
 922	}
 923
 924	pool->nr_running--;
 925	if (need_more_worker(pool))
 926		wake_up_worker(pool);
 927	raw_spin_unlock_irq(&pool->lock);
 928}
 929
 930/**
 931 * wq_worker_last_func - retrieve worker's last work function
 932 * @task: Task to retrieve last work function of.
 933 *
 934 * Determine the last function a worker executed. This is called from
 935 * the scheduler to get a worker's last known identity.
 936 *
 937 * CONTEXT:
 938 * raw_spin_lock_irq(rq->lock)
 939 *
 940 * This function is called during schedule() when a kworker is going
 941 * to sleep. It's used by psi to identify aggregation workers during
 942 * dequeuing, to allow periodic aggregation to shut-off when that
 943 * worker is the last task in the system or cgroup to go to sleep.
 944 *
 945 * As this function doesn't involve any workqueue-related locking, it
 946 * only returns stable values when called from inside the scheduler's
 947 * queuing and dequeuing paths, when @task, which must be a kworker,
 948 * is guaranteed to not be processing any works.
 949 *
 950 * Return:
 951 * The last work function %current executed as a worker, NULL if it
 952 * hasn't executed any work yet.
 953 */
 954work_func_t wq_worker_last_func(struct task_struct *task)
 955{
 956	struct worker *worker = kthread_data(task);
 957
 958	return worker->last_func;
 959}
 960
 961/**
 962 * worker_set_flags - set worker flags and adjust nr_running accordingly
 963 * @worker: self
 964 * @flags: flags to set
 965 *
 966 * Set @flags in @worker->flags and adjust nr_running accordingly.
 967 *
 968 * CONTEXT:
 969 * raw_spin_lock_irq(pool->lock)
 970 */
 971static inline void worker_set_flags(struct worker *worker, unsigned int flags)
 972{
 973	struct worker_pool *pool = worker->pool;
 974
 975	WARN_ON_ONCE(worker->task != current);
 976
 977	/* If transitioning into NOT_RUNNING, adjust nr_running. */
 978	if ((flags & WORKER_NOT_RUNNING) &&
 979	    !(worker->flags & WORKER_NOT_RUNNING)) {
 980		pool->nr_running--;
 981	}
 982
 983	worker->flags |= flags;
 984}
 985
 986/**
 987 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
 988 * @worker: self
 989 * @flags: flags to clear
 990 *
 991 * Clear @flags in @worker->flags and adjust nr_running accordingly.
 992 *
 993 * CONTEXT:
 994 * raw_spin_lock_irq(pool->lock)
 995 */
 996static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
 997{
 998	struct worker_pool *pool = worker->pool;
 999	unsigned int oflags = worker->flags;
1000
1001	WARN_ON_ONCE(worker->task != current);
1002
1003	worker->flags &= ~flags;
1004
1005	/*
1006	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
1007	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
1008	 * of multiple flags, not a single flag.
1009	 */
1010	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
1011		if (!(worker->flags & WORKER_NOT_RUNNING))
1012			pool->nr_running++;
1013}
1014
1015/**
1016 * find_worker_executing_work - find worker which is executing a work
1017 * @pool: pool of interest
1018 * @work: work to find worker for
1019 *
1020 * Find a worker which is executing @work on @pool by searching
1021 * @pool->busy_hash which is keyed by the address of @work.  For a worker
1022 * to match, its current execution should match the address of @work and
1023 * its work function.  This is to avoid unwanted dependency between
1024 * unrelated work executions through a work item being recycled while still
1025 * being executed.
1026 *
1027 * This is a bit tricky.  A work item may be freed once its execution
1028 * starts and nothing prevents the freed area from being recycled for
1029 * another work item.  If the same work item address ends up being reused
1030 * before the original execution finishes, workqueue will identify the
1031 * recycled work item as currently executing and make it wait until the
1032 * current execution finishes, introducing an unwanted dependency.
1033 *
1034 * This function checks the work item address and work function to avoid
1035 * false positives.  Note that this isn't complete as one may construct a
1036 * work function which can introduce dependency onto itself through a
1037 * recycled work item.  Well, if somebody wants to shoot oneself in the
1038 * foot that badly, there's only so much we can do, and if such deadlock
1039 * actually occurs, it should be easy to locate the culprit work function.
1040 *
1041 * CONTEXT:
1042 * raw_spin_lock_irq(pool->lock).
1043 *
1044 * Return:
1045 * Pointer to worker which is executing @work if found, %NULL
1046 * otherwise.
1047 */
1048static struct worker *find_worker_executing_work(struct worker_pool *pool,
1049						 struct work_struct *work)
1050{
1051	struct worker *worker;
1052
1053	hash_for_each_possible(pool->busy_hash, worker, hentry,
1054			       (unsigned long)work)
1055		if (worker->current_work == work &&
1056		    worker->current_func == work->func)
1057			return worker;
1058
1059	return NULL;
1060}
1061
1062/**
1063 * move_linked_works - move linked works to a list
1064 * @work: start of series of works to be scheduled
1065 * @head: target list to append @work to
1066 * @nextp: out parameter for nested worklist walking
1067 *
1068 * Schedule linked works starting from @work to @head.  Work series to
1069 * be scheduled starts at @work and includes any consecutive work with
1070 * WORK_STRUCT_LINKED set in its predecessor.
1071 *
1072 * If @nextp is not NULL, it's updated to point to the next work of
1073 * the last scheduled work.  This allows move_linked_works() to be
1074 * nested inside outer list_for_each_entry_safe().
1075 *
1076 * CONTEXT:
1077 * raw_spin_lock_irq(pool->lock).
1078 */
1079static void move_linked_works(struct work_struct *work, struct list_head *head,
1080			      struct work_struct **nextp)
1081{
1082	struct work_struct *n;
1083
1084	/*
1085	 * Linked worklist will always end before the end of the list,
1086	 * use NULL for list head.
1087	 */
1088	list_for_each_entry_safe_from(work, n, NULL, entry) {
1089		list_move_tail(&work->entry, head);
1090		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1091			break;
1092	}
1093
1094	/*
1095	 * If we're already inside safe list traversal and have moved
1096	 * multiple works to the scheduled queue, the next position
1097	 * needs to be updated.
1098	 */
1099	if (nextp)
1100		*nextp = n;
1101}
1102
1103/**
1104 * get_pwq - get an extra reference on the specified pool_workqueue
1105 * @pwq: pool_workqueue to get
1106 *
1107 * Obtain an extra reference on @pwq.  The caller should guarantee that
1108 * @pwq has positive refcnt and be holding the matching pool->lock.
1109 */
1110static void get_pwq(struct pool_workqueue *pwq)
1111{
1112	lockdep_assert_held(&pwq->pool->lock);
1113	WARN_ON_ONCE(pwq->refcnt <= 0);
1114	pwq->refcnt++;
1115}
1116
1117/**
1118 * put_pwq - put a pool_workqueue reference
1119 * @pwq: pool_workqueue to put
1120 *
1121 * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
1122 * destruction.  The caller should be holding the matching pool->lock.
1123 */
1124static void put_pwq(struct pool_workqueue *pwq)
1125{
1126	lockdep_assert_held(&pwq->pool->lock);
1127	if (likely(--pwq->refcnt))
1128		return;
1129	if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1130		return;
1131	/*
1132	 * @pwq can't be released under pool->lock, bounce to
1133	 * pwq_unbound_release_workfn().  This never recurses on the same
1134	 * pool->lock as this path is taken only for unbound workqueues and
1135	 * the release work item is scheduled on a per-cpu workqueue.  To
1136	 * avoid lockdep warning, unbound pool->locks are given lockdep
1137	 * subclass of 1 in get_unbound_pool().
1138	 */
1139	schedule_work(&pwq->unbound_release_work);
1140}
1141
1142/**
1143 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1144 * @pwq: pool_workqueue to put (can be %NULL)
1145 *
1146 * put_pwq() with locking.  This function also allows %NULL @pwq.
1147 */
1148static void put_pwq_unlocked(struct pool_workqueue *pwq)
1149{
1150	if (pwq) {
1151		/*
1152		 * As both pwqs and pools are RCU protected, the
1153		 * following lock operations are safe.
1154		 */
1155		raw_spin_lock_irq(&pwq->pool->lock);
1156		put_pwq(pwq);
1157		raw_spin_unlock_irq(&pwq->pool->lock);
1158	}
1159}
1160
1161static void pwq_activate_inactive_work(struct work_struct *work)
1162{
1163	struct pool_workqueue *pwq = get_work_pwq(work);
1164
1165	trace_workqueue_activate_work(work);
1166	if (list_empty(&pwq->pool->worklist))
1167		pwq->pool->watchdog_ts = jiffies;
1168	move_linked_works(work, &pwq->pool->worklist, NULL);
1169	__clear_bit(WORK_STRUCT_INACTIVE_BIT, work_data_bits(work));
1170	pwq->nr_active++;
1171}
1172
1173static void pwq_activate_first_inactive(struct pool_workqueue *pwq)
1174{
1175	struct work_struct *work = list_first_entry(&pwq->inactive_works,
1176						    struct work_struct, entry);
1177
1178	pwq_activate_inactive_work(work);
1179}
1180
1181/**
1182 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1183 * @pwq: pwq of interest
1184 * @work_data: work_data of work which left the queue
1185 *
1186 * A work either has completed or is removed from pending queue,
1187 * decrement nr_in_flight of its pwq and handle workqueue flushing.
1188 *
1189 * CONTEXT:
1190 * raw_spin_lock_irq(pool->lock).
1191 */
1192static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, unsigned long work_data)
1193{
1194	int color = get_work_color(work_data);
 
 
1195
1196	if (!(work_data & WORK_STRUCT_INACTIVE)) {
1197		pwq->nr_active--;
1198		if (!list_empty(&pwq->inactive_works)) {
1199			/* one down, submit an inactive one */
1200			if (pwq->nr_active < pwq->max_active)
1201				pwq_activate_first_inactive(pwq);
1202		}
1203	}
1204
1205	pwq->nr_in_flight[color]--;
1206
1207	/* is flush in progress and are we at the flushing tip? */
1208	if (likely(pwq->flush_color != color))
1209		goto out_put;
1210
1211	/* are there still in-flight works? */
1212	if (pwq->nr_in_flight[color])
1213		goto out_put;
1214
1215	/* this pwq is done, clear flush_color */
1216	pwq->flush_color = -1;
1217
1218	/*
1219	 * If this was the last pwq, wake up the first flusher.  It
1220	 * will handle the rest.
1221	 */
1222	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1223		complete(&pwq->wq->first_flusher->done);
1224out_put:
1225	put_pwq(pwq);
1226}
1227
1228/**
1229 * try_to_grab_pending - steal work item from worklist and disable irq
1230 * @work: work item to steal
1231 * @is_dwork: @work is a delayed_work
1232 * @flags: place to store irq state
1233 *
1234 * Try to grab PENDING bit of @work.  This function can handle @work in any
1235 * stable state - idle, on timer or on worklist.
1236 *
1237 * Return:
1238 *
1239 *  ========	================================================================
1240 *  1		if @work was pending and we successfully stole PENDING
1241 *  0		if @work was idle and we claimed PENDING
1242 *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1243 *  -ENOENT	if someone else is canceling @work, this state may persist
1244 *		for arbitrarily long
1245 *  ========	================================================================
1246 *
1247 * Note:
1248 * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1249 * interrupted while holding PENDING and @work off queue, irq must be
1250 * disabled on entry.  This, combined with delayed_work->timer being
1251 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1252 *
1253 * On successful return, >= 0, irq is disabled and the caller is
1254 * responsible for releasing it using local_irq_restore(*@flags).
1255 *
1256 * This function is safe to call from any context including IRQ handler.
1257 */
1258static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1259			       unsigned long *flags)
1260{
1261	struct worker_pool *pool;
1262	struct pool_workqueue *pwq;
1263
1264	local_irq_save(*flags);
1265
1266	/* try to steal the timer if it exists */
1267	if (is_dwork) {
1268		struct delayed_work *dwork = to_delayed_work(work);
1269
1270		/*
1271		 * dwork->timer is irqsafe.  If del_timer() fails, it's
1272		 * guaranteed that the timer is not queued anywhere and not
1273		 * running on the local CPU.
1274		 */
1275		if (likely(del_timer(&dwork->timer)))
1276			return 1;
1277	}
1278
1279	/* try to claim PENDING the normal way */
1280	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1281		return 0;
1282
1283	rcu_read_lock();
1284	/*
1285	 * The queueing is in progress, or it is already queued. Try to
1286	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1287	 */
1288	pool = get_work_pool(work);
1289	if (!pool)
1290		goto fail;
1291
1292	raw_spin_lock(&pool->lock);
1293	/*
1294	 * work->data is guaranteed to point to pwq only while the work
1295	 * item is queued on pwq->wq, and both updating work->data to point
1296	 * to pwq on queueing and to pool on dequeueing are done under
1297	 * pwq->pool->lock.  This in turn guarantees that, if work->data
1298	 * points to pwq which is associated with a locked pool, the work
1299	 * item is currently queued on that pool.
1300	 */
1301	pwq = get_work_pwq(work);
1302	if (pwq && pwq->pool == pool) {
1303		debug_work_deactivate(work);
1304
1305		/*
1306		 * A cancelable inactive work item must be in the
1307		 * pwq->inactive_works since a queued barrier can't be
1308		 * canceled (see the comments in insert_wq_barrier()).
1309		 *
1310		 * An inactive work item cannot be grabbed directly because
1311		 * it might have linked barrier work items which, if left
1312		 * on the inactive_works list, will confuse pwq->nr_active
1313		 * management later on and cause stall.  Make sure the work
1314		 * item is activated before grabbing.
1315		 */
1316		if (*work_data_bits(work) & WORK_STRUCT_INACTIVE)
1317			pwq_activate_inactive_work(work);
1318
1319		list_del_init(&work->entry);
1320		pwq_dec_nr_in_flight(pwq, *work_data_bits(work));
1321
1322		/* work->data points to pwq iff queued, point to pool */
1323		set_work_pool_and_keep_pending(work, pool->id);
1324
1325		raw_spin_unlock(&pool->lock);
1326		rcu_read_unlock();
1327		return 1;
1328	}
1329	raw_spin_unlock(&pool->lock);
1330fail:
1331	rcu_read_unlock();
1332	local_irq_restore(*flags);
1333	if (work_is_canceling(work))
1334		return -ENOENT;
1335	cpu_relax();
1336	return -EAGAIN;
1337}
1338
1339/**
1340 * insert_work - insert a work into a pool
1341 * @pwq: pwq @work belongs to
1342 * @work: work to insert
1343 * @head: insertion point
1344 * @extra_flags: extra WORK_STRUCT_* flags to set
1345 *
1346 * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
1347 * work_struct flags.
1348 *
1349 * CONTEXT:
1350 * raw_spin_lock_irq(pool->lock).
1351 */
1352static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1353			struct list_head *head, unsigned int extra_flags)
1354{
1355	struct worker_pool *pool = pwq->pool;
1356
1357	/* record the work call stack in order to print it in KASAN reports */
1358	kasan_record_aux_stack_noalloc(work);
1359
1360	/* we own @work, set data and link */
1361	set_work_pwq(work, pwq, extra_flags);
1362	list_add_tail(&work->entry, head);
1363	get_pwq(pwq);
1364
 
 
 
 
 
 
 
1365	if (__need_more_worker(pool))
1366		wake_up_worker(pool);
1367}
1368
1369/*
1370 * Test whether @work is being queued from another work executing on the
1371 * same workqueue.
1372 */
1373static bool is_chained_work(struct workqueue_struct *wq)
1374{
1375	struct worker *worker;
1376
1377	worker = current_wq_worker();
1378	/*
1379	 * Return %true iff I'm a worker executing a work item on @wq.  If
1380	 * I'm @worker, it's safe to dereference it without locking.
1381	 */
1382	return worker && worker->current_pwq->wq == wq;
1383}
1384
1385/*
1386 * When queueing an unbound work item to a wq, prefer local CPU if allowed
1387 * by wq_unbound_cpumask.  Otherwise, round robin among the allowed ones to
1388 * avoid perturbing sensitive tasks.
1389 */
1390static int wq_select_unbound_cpu(int cpu)
1391{
1392	static bool printed_dbg_warning;
1393	int new_cpu;
1394
1395	if (likely(!wq_debug_force_rr_cpu)) {
1396		if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
1397			return cpu;
1398	} else if (!printed_dbg_warning) {
1399		pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n");
1400		printed_dbg_warning = true;
1401	}
1402
1403	if (cpumask_empty(wq_unbound_cpumask))
1404		return cpu;
1405
1406	new_cpu = __this_cpu_read(wq_rr_cpu_last);
1407	new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
1408	if (unlikely(new_cpu >= nr_cpu_ids)) {
1409		new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
1410		if (unlikely(new_cpu >= nr_cpu_ids))
1411			return cpu;
1412	}
1413	__this_cpu_write(wq_rr_cpu_last, new_cpu);
1414
1415	return new_cpu;
1416}
1417
1418static void __queue_work(int cpu, struct workqueue_struct *wq,
1419			 struct work_struct *work)
1420{
1421	struct pool_workqueue *pwq;
1422	struct worker_pool *last_pool;
1423	struct list_head *worklist;
1424	unsigned int work_flags;
1425	unsigned int req_cpu = cpu;
1426
1427	/*
1428	 * While a work item is PENDING && off queue, a task trying to
1429	 * steal the PENDING will busy-loop waiting for it to either get
1430	 * queued or lose PENDING.  Grabbing PENDING and queueing should
1431	 * happen with IRQ disabled.
1432	 */
1433	lockdep_assert_irqs_disabled();
1434
 
1435
1436	/* if draining, only works from the same workqueue are allowed */
1437	if (unlikely(wq->flags & __WQ_DRAINING) &&
1438	    WARN_ON_ONCE(!is_chained_work(wq)))
1439		return;
1440	rcu_read_lock();
1441retry:
 
 
 
1442	/* pwq which will be used unless @work is executing elsewhere */
1443	if (wq->flags & WQ_UNBOUND) {
1444		if (req_cpu == WORK_CPU_UNBOUND)
1445			cpu = wq_select_unbound_cpu(raw_smp_processor_id());
1446		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1447	} else {
1448		if (req_cpu == WORK_CPU_UNBOUND)
1449			cpu = raw_smp_processor_id();
1450		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1451	}
1452
1453	/*
1454	 * If @work was previously on a different pool, it might still be
1455	 * running there, in which case the work needs to be queued on that
1456	 * pool to guarantee non-reentrancy.
1457	 */
1458	last_pool = get_work_pool(work);
1459	if (last_pool && last_pool != pwq->pool) {
1460		struct worker *worker;
1461
1462		raw_spin_lock(&last_pool->lock);
1463
1464		worker = find_worker_executing_work(last_pool, work);
1465
1466		if (worker && worker->current_pwq->wq == wq) {
1467			pwq = worker->current_pwq;
1468		} else {
1469			/* meh... not running there, queue here */
1470			raw_spin_unlock(&last_pool->lock);
1471			raw_spin_lock(&pwq->pool->lock);
1472		}
1473	} else {
1474		raw_spin_lock(&pwq->pool->lock);
1475	}
1476
1477	/*
1478	 * pwq is determined and locked.  For unbound pools, we could have
1479	 * raced with pwq release and it could already be dead.  If its
1480	 * refcnt is zero, repeat pwq selection.  Note that pwqs never die
1481	 * without another pwq replacing it in the numa_pwq_tbl or while
1482	 * work items are executing on it, so the retrying is guaranteed to
1483	 * make forward-progress.
1484	 */
1485	if (unlikely(!pwq->refcnt)) {
1486		if (wq->flags & WQ_UNBOUND) {
1487			raw_spin_unlock(&pwq->pool->lock);
1488			cpu_relax();
1489			goto retry;
1490		}
1491		/* oops */
1492		WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1493			  wq->name, cpu);
1494	}
1495
1496	/* pwq determined, queue */
1497	trace_workqueue_queue_work(req_cpu, pwq, work);
1498
1499	if (WARN_ON(!list_empty(&work->entry)))
1500		goto out;
 
 
1501
1502	pwq->nr_in_flight[pwq->work_color]++;
1503	work_flags = work_color_to_flags(pwq->work_color);
1504
1505	if (likely(pwq->nr_active < pwq->max_active)) {
1506		trace_workqueue_activate_work(work);
1507		pwq->nr_active++;
1508		worklist = &pwq->pool->worklist;
1509		if (list_empty(worklist))
1510			pwq->pool->watchdog_ts = jiffies;
1511	} else {
1512		work_flags |= WORK_STRUCT_INACTIVE;
1513		worklist = &pwq->inactive_works;
1514	}
1515
1516	debug_work_activate(work);
1517	insert_work(pwq, work, worklist, work_flags);
1518
1519out:
1520	raw_spin_unlock(&pwq->pool->lock);
1521	rcu_read_unlock();
1522}
1523
1524/**
1525 * queue_work_on - queue work on specific cpu
1526 * @cpu: CPU number to execute work on
1527 * @wq: workqueue to use
1528 * @work: work to queue
1529 *
1530 * We queue the work to a specific CPU, the caller must ensure it
1531 * can't go away.  Callers that fail to ensure that the specified
1532 * CPU cannot go away will execute on a randomly chosen CPU.
1533 *
1534 * Return: %false if @work was already on a queue, %true otherwise.
1535 */
1536bool queue_work_on(int cpu, struct workqueue_struct *wq,
1537		   struct work_struct *work)
1538{
1539	bool ret = false;
1540	unsigned long flags;
1541
1542	local_irq_save(flags);
1543
1544	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1545		__queue_work(cpu, wq, work);
1546		ret = true;
1547	}
1548
1549	local_irq_restore(flags);
1550	return ret;
1551}
1552EXPORT_SYMBOL(queue_work_on);
1553
1554/**
1555 * workqueue_select_cpu_near - Select a CPU based on NUMA node
1556 * @node: NUMA node ID that we want to select a CPU from
1557 *
1558 * This function will attempt to find a "random" cpu available on a given
1559 * node. If there are no CPUs available on the given node it will return
1560 * WORK_CPU_UNBOUND indicating that we should just schedule to any
1561 * available CPU if we need to schedule this work.
1562 */
1563static int workqueue_select_cpu_near(int node)
1564{
1565	int cpu;
1566
1567	/* No point in doing this if NUMA isn't enabled for workqueues */
1568	if (!wq_numa_enabled)
1569		return WORK_CPU_UNBOUND;
1570
1571	/* Delay binding to CPU if node is not valid or online */
1572	if (node < 0 || node >= MAX_NUMNODES || !node_online(node))
1573		return WORK_CPU_UNBOUND;
1574
1575	/* Use local node/cpu if we are already there */
1576	cpu = raw_smp_processor_id();
1577	if (node == cpu_to_node(cpu))
1578		return cpu;
1579
1580	/* Use "random" otherwise know as "first" online CPU of node */
1581	cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask);
1582
1583	/* If CPU is valid return that, otherwise just defer */
1584	return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND;
1585}
1586
1587/**
1588 * queue_work_node - queue work on a "random" cpu for a given NUMA node
1589 * @node: NUMA node that we are targeting the work for
1590 * @wq: workqueue to use
1591 * @work: work to queue
1592 *
1593 * We queue the work to a "random" CPU within a given NUMA node. The basic
1594 * idea here is to provide a way to somehow associate work with a given
1595 * NUMA node.
1596 *
1597 * This function will only make a best effort attempt at getting this onto
1598 * the right NUMA node. If no node is requested or the requested node is
1599 * offline then we just fall back to standard queue_work behavior.
1600 *
1601 * Currently the "random" CPU ends up being the first available CPU in the
1602 * intersection of cpu_online_mask and the cpumask of the node, unless we
1603 * are running on the node. In that case we just use the current CPU.
1604 *
1605 * Return: %false if @work was already on a queue, %true otherwise.
1606 */
1607bool queue_work_node(int node, struct workqueue_struct *wq,
1608		     struct work_struct *work)
1609{
1610	unsigned long flags;
1611	bool ret = false;
1612
1613	/*
1614	 * This current implementation is specific to unbound workqueues.
1615	 * Specifically we only return the first available CPU for a given
1616	 * node instead of cycling through individual CPUs within the node.
1617	 *
1618	 * If this is used with a per-cpu workqueue then the logic in
1619	 * workqueue_select_cpu_near would need to be updated to allow for
1620	 * some round robin type logic.
1621	 */
1622	WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND));
1623
1624	local_irq_save(flags);
1625
1626	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1627		int cpu = workqueue_select_cpu_near(node);
1628
1629		__queue_work(cpu, wq, work);
1630		ret = true;
1631	}
1632
1633	local_irq_restore(flags);
1634	return ret;
1635}
1636EXPORT_SYMBOL_GPL(queue_work_node);
1637
1638void delayed_work_timer_fn(struct timer_list *t)
1639{
1640	struct delayed_work *dwork = from_timer(dwork, t, timer);
1641
1642	/* should have been called from irqsafe timer with irq already off */
1643	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
1644}
1645EXPORT_SYMBOL(delayed_work_timer_fn);
1646
1647static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1648				struct delayed_work *dwork, unsigned long delay)
1649{
1650	struct timer_list *timer = &dwork->timer;
1651	struct work_struct *work = &dwork->work;
1652
1653	WARN_ON_ONCE(!wq);
1654	WARN_ON_ONCE(timer->function != delayed_work_timer_fn);
1655	WARN_ON_ONCE(timer_pending(timer));
1656	WARN_ON_ONCE(!list_empty(&work->entry));
1657
1658	/*
1659	 * If @delay is 0, queue @dwork->work immediately.  This is for
1660	 * both optimization and correctness.  The earliest @timer can
1661	 * expire is on the closest next tick and delayed_work users depend
1662	 * on that there's no such delay when @delay is 0.
1663	 */
1664	if (!delay) {
1665		__queue_work(cpu, wq, &dwork->work);
1666		return;
1667	}
1668
 
 
1669	dwork->wq = wq;
1670	dwork->cpu = cpu;
1671	timer->expires = jiffies + delay;
1672
1673	if (unlikely(cpu != WORK_CPU_UNBOUND))
1674		add_timer_on(timer, cpu);
1675	else
1676		add_timer(timer);
1677}
1678
1679/**
1680 * queue_delayed_work_on - queue work on specific CPU after delay
1681 * @cpu: CPU number to execute work on
1682 * @wq: workqueue to use
1683 * @dwork: work to queue
1684 * @delay: number of jiffies to wait before queueing
1685 *
1686 * Return: %false if @work was already on a queue, %true otherwise.  If
1687 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1688 * execution.
1689 */
1690bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1691			   struct delayed_work *dwork, unsigned long delay)
1692{
1693	struct work_struct *work = &dwork->work;
1694	bool ret = false;
1695	unsigned long flags;
1696
1697	/* read the comment in __queue_work() */
1698	local_irq_save(flags);
1699
1700	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1701		__queue_delayed_work(cpu, wq, dwork, delay);
1702		ret = true;
1703	}
1704
1705	local_irq_restore(flags);
1706	return ret;
1707}
1708EXPORT_SYMBOL(queue_delayed_work_on);
1709
1710/**
1711 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1712 * @cpu: CPU number to execute work on
1713 * @wq: workqueue to use
1714 * @dwork: work to queue
1715 * @delay: number of jiffies to wait before queueing
1716 *
1717 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1718 * modify @dwork's timer so that it expires after @delay.  If @delay is
1719 * zero, @work is guaranteed to be scheduled immediately regardless of its
1720 * current state.
1721 *
1722 * Return: %false if @dwork was idle and queued, %true if @dwork was
1723 * pending and its timer was modified.
1724 *
1725 * This function is safe to call from any context including IRQ handler.
1726 * See try_to_grab_pending() for details.
1727 */
1728bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1729			 struct delayed_work *dwork, unsigned long delay)
1730{
1731	unsigned long flags;
1732	int ret;
1733
1734	do {
1735		ret = try_to_grab_pending(&dwork->work, true, &flags);
1736	} while (unlikely(ret == -EAGAIN));
1737
1738	if (likely(ret >= 0)) {
1739		__queue_delayed_work(cpu, wq, dwork, delay);
1740		local_irq_restore(flags);
1741	}
1742
1743	/* -ENOENT from try_to_grab_pending() becomes %true */
1744	return ret;
1745}
1746EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1747
1748static void rcu_work_rcufn(struct rcu_head *rcu)
1749{
1750	struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu);
1751
1752	/* read the comment in __queue_work() */
1753	local_irq_disable();
1754	__queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work);
1755	local_irq_enable();
1756}
1757
1758/**
1759 * queue_rcu_work - queue work after a RCU grace period
1760 * @wq: workqueue to use
1761 * @rwork: work to queue
1762 *
1763 * Return: %false if @rwork was already pending, %true otherwise.  Note
1764 * that a full RCU grace period is guaranteed only after a %true return.
1765 * While @rwork is guaranteed to be executed after a %false return, the
1766 * execution may happen before a full RCU grace period has passed.
1767 */
1768bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork)
1769{
1770	struct work_struct *work = &rwork->work;
1771
1772	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1773		rwork->wq = wq;
1774		call_rcu_hurry(&rwork->rcu, rcu_work_rcufn);
1775		return true;
1776	}
1777
1778	return false;
1779}
1780EXPORT_SYMBOL(queue_rcu_work);
1781
1782/**
1783 * worker_enter_idle - enter idle state
1784 * @worker: worker which is entering idle state
1785 *
1786 * @worker is entering idle state.  Update stats and idle timer if
1787 * necessary.
1788 *
1789 * LOCKING:
1790 * raw_spin_lock_irq(pool->lock).
1791 */
1792static void worker_enter_idle(struct worker *worker)
1793{
1794	struct worker_pool *pool = worker->pool;
1795
1796	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1797	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
1798			 (worker->hentry.next || worker->hentry.pprev)))
1799		return;
1800
1801	/* can't use worker_set_flags(), also called from create_worker() */
1802	worker->flags |= WORKER_IDLE;
1803	pool->nr_idle++;
1804	worker->last_active = jiffies;
1805
1806	/* idle_list is LIFO */
1807	list_add(&worker->entry, &pool->idle_list);
1808
1809	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1810		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1811
1812	/* Sanity check nr_running. */
1813	WARN_ON_ONCE(pool->nr_workers == pool->nr_idle && pool->nr_running);
 
 
 
 
 
 
 
1814}
1815
1816/**
1817 * worker_leave_idle - leave idle state
1818 * @worker: worker which is leaving idle state
1819 *
1820 * @worker is leaving idle state.  Update stats.
1821 *
1822 * LOCKING:
1823 * raw_spin_lock_irq(pool->lock).
1824 */
1825static void worker_leave_idle(struct worker *worker)
1826{
1827	struct worker_pool *pool = worker->pool;
1828
1829	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1830		return;
1831	worker_clr_flags(worker, WORKER_IDLE);
1832	pool->nr_idle--;
1833	list_del_init(&worker->entry);
1834}
1835
1836static struct worker *alloc_worker(int node)
1837{
1838	struct worker *worker;
1839
1840	worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
1841	if (worker) {
1842		INIT_LIST_HEAD(&worker->entry);
1843		INIT_LIST_HEAD(&worker->scheduled);
1844		INIT_LIST_HEAD(&worker->node);
1845		/* on creation a worker is in !idle && prep state */
1846		worker->flags = WORKER_PREP;
1847	}
1848	return worker;
1849}
1850
1851/**
1852 * worker_attach_to_pool() - attach a worker to a pool
1853 * @worker: worker to be attached
1854 * @pool: the target pool
1855 *
1856 * Attach @worker to @pool.  Once attached, the %WORKER_UNBOUND flag and
1857 * cpu-binding of @worker are kept coordinated with the pool across
1858 * cpu-[un]hotplugs.
1859 */
1860static void worker_attach_to_pool(struct worker *worker,
1861				   struct worker_pool *pool)
1862{
1863	mutex_lock(&wq_pool_attach_mutex);
1864
1865	/*
1866	 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains
1867	 * stable across this function.  See the comments above the flag
1868	 * definition for details.
 
 
 
 
 
 
1869	 */
1870	if (pool->flags & POOL_DISASSOCIATED)
1871		worker->flags |= WORKER_UNBOUND;
1872	else
1873		kthread_set_per_cpu(worker->task, pool->cpu);
1874
1875	if (worker->rescue_wq)
1876		set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1877
1878	list_add_tail(&worker->node, &pool->workers);
1879	worker->pool = pool;
1880
1881	mutex_unlock(&wq_pool_attach_mutex);
1882}
1883
1884/**
1885 * worker_detach_from_pool() - detach a worker from its pool
1886 * @worker: worker which is attached to its pool
 
1887 *
1888 * Undo the attaching which had been done in worker_attach_to_pool().  The
1889 * caller worker shouldn't access to the pool after detached except it has
1890 * other reference to the pool.
1891 */
1892static void worker_detach_from_pool(struct worker *worker)
 
1893{
1894	struct worker_pool *pool = worker->pool;
1895	struct completion *detach_completion = NULL;
1896
1897	mutex_lock(&wq_pool_attach_mutex);
1898
1899	kthread_set_per_cpu(worker->task, -1);
1900	list_del(&worker->node);
1901	worker->pool = NULL;
1902
1903	if (list_empty(&pool->workers))
1904		detach_completion = pool->detach_completion;
1905	mutex_unlock(&wq_pool_attach_mutex);
1906
1907	/* clear leftover flags without pool->lock after it is detached */
1908	worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
1909
1910	if (detach_completion)
1911		complete(detach_completion);
1912}
1913
1914/**
1915 * create_worker - create a new workqueue worker
1916 * @pool: pool the new worker will belong to
1917 *
1918 * Create and start a new worker which is attached to @pool.
1919 *
1920 * CONTEXT:
1921 * Might sleep.  Does GFP_KERNEL allocations.
1922 *
1923 * Return:
1924 * Pointer to the newly created worker.
1925 */
1926static struct worker *create_worker(struct worker_pool *pool)
1927{
1928	struct worker *worker;
1929	int id;
1930	char id_buf[16];
1931
1932	/* ID is needed to determine kthread name */
1933	id = ida_alloc(&pool->worker_ida, GFP_KERNEL);
1934	if (id < 0)
1935		return NULL;
1936
1937	worker = alloc_worker(pool->node);
1938	if (!worker)
1939		goto fail;
1940
 
1941	worker->id = id;
1942
1943	if (pool->cpu >= 0)
1944		snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1945			 pool->attrs->nice < 0  ? "H" : "");
1946	else
1947		snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1948
1949	worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1950					      "kworker/%s", id_buf);
1951	if (IS_ERR(worker->task))
1952		goto fail;
1953
1954	set_user_nice(worker->task, pool->attrs->nice);
1955	kthread_bind_mask(worker->task, pool->attrs->cpumask);
1956
1957	/* successful, attach the worker to the pool */
1958	worker_attach_to_pool(worker, pool);
1959
1960	/* start the newly created worker */
1961	raw_spin_lock_irq(&pool->lock);
1962	worker->pool->nr_workers++;
1963	worker_enter_idle(worker);
1964	wake_up_process(worker->task);
1965	raw_spin_unlock_irq(&pool->lock);
1966
1967	return worker;
1968
1969fail:
1970	ida_free(&pool->worker_ida, id);
 
1971	kfree(worker);
1972	return NULL;
1973}
1974
1975/**
1976 * destroy_worker - destroy a workqueue worker
1977 * @worker: worker to be destroyed
1978 *
1979 * Destroy @worker and adjust @pool stats accordingly.  The worker should
1980 * be idle.
1981 *
1982 * CONTEXT:
1983 * raw_spin_lock_irq(pool->lock).
1984 */
1985static void destroy_worker(struct worker *worker)
1986{
1987	struct worker_pool *pool = worker->pool;
1988
1989	lockdep_assert_held(&pool->lock);
1990
1991	/* sanity check frenzy */
1992	if (WARN_ON(worker->current_work) ||
1993	    WARN_ON(!list_empty(&worker->scheduled)) ||
1994	    WARN_ON(!(worker->flags & WORKER_IDLE)))
1995		return;
1996
1997	pool->nr_workers--;
1998	pool->nr_idle--;
1999
2000	list_del_init(&worker->entry);
2001	worker->flags |= WORKER_DIE;
2002	wake_up_process(worker->task);
2003}
2004
2005static void idle_worker_timeout(struct timer_list *t)
2006{
2007	struct worker_pool *pool = from_timer(pool, t, idle_timer);
2008
2009	raw_spin_lock_irq(&pool->lock);
2010
2011	while (too_many_workers(pool)) {
2012		struct worker *worker;
2013		unsigned long expires;
2014
2015		/* idle_list is kept in LIFO order, check the last one */
2016		worker = list_entry(pool->idle_list.prev, struct worker, entry);
2017		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2018
2019		if (time_before(jiffies, expires)) {
2020			mod_timer(&pool->idle_timer, expires);
2021			break;
2022		}
2023
2024		destroy_worker(worker);
2025	}
2026
2027	raw_spin_unlock_irq(&pool->lock);
2028}
2029
2030static void send_mayday(struct work_struct *work)
2031{
2032	struct pool_workqueue *pwq = get_work_pwq(work);
2033	struct workqueue_struct *wq = pwq->wq;
2034
2035	lockdep_assert_held(&wq_mayday_lock);
2036
2037	if (!wq->rescuer)
2038		return;
2039
2040	/* mayday mayday mayday */
2041	if (list_empty(&pwq->mayday_node)) {
2042		/*
2043		 * If @pwq is for an unbound wq, its base ref may be put at
2044		 * any time due to an attribute change.  Pin @pwq until the
2045		 * rescuer is done with it.
2046		 */
2047		get_pwq(pwq);
2048		list_add_tail(&pwq->mayday_node, &wq->maydays);
2049		wake_up_process(wq->rescuer->task);
2050	}
2051}
2052
2053static void pool_mayday_timeout(struct timer_list *t)
2054{
2055	struct worker_pool *pool = from_timer(pool, t, mayday_timer);
2056	struct work_struct *work;
2057
2058	raw_spin_lock_irq(&pool->lock);
2059	raw_spin_lock(&wq_mayday_lock);		/* for wq->maydays */
2060
2061	if (need_to_create_worker(pool)) {
2062		/*
2063		 * We've been trying to create a new worker but
2064		 * haven't been successful.  We might be hitting an
2065		 * allocation deadlock.  Send distress signals to
2066		 * rescuers.
2067		 */
2068		list_for_each_entry(work, &pool->worklist, entry)
2069			send_mayday(work);
2070	}
2071
2072	raw_spin_unlock(&wq_mayday_lock);
2073	raw_spin_unlock_irq(&pool->lock);
2074
2075	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
2076}
2077
2078/**
2079 * maybe_create_worker - create a new worker if necessary
2080 * @pool: pool to create a new worker for
2081 *
2082 * Create a new worker for @pool if necessary.  @pool is guaranteed to
2083 * have at least one idle worker on return from this function.  If
2084 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
2085 * sent to all rescuers with works scheduled on @pool to resolve
2086 * possible allocation deadlock.
2087 *
2088 * On return, need_to_create_worker() is guaranteed to be %false and
2089 * may_start_working() %true.
2090 *
2091 * LOCKING:
2092 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2093 * multiple times.  Does GFP_KERNEL allocations.  Called only from
2094 * manager.
2095 */
2096static void maybe_create_worker(struct worker_pool *pool)
2097__releases(&pool->lock)
2098__acquires(&pool->lock)
2099{
2100restart:
2101	raw_spin_unlock_irq(&pool->lock);
2102
2103	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
2104	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
2105
2106	while (true) {
2107		if (create_worker(pool) || !need_to_create_worker(pool))
2108			break;
2109
2110		schedule_timeout_interruptible(CREATE_COOLDOWN);
2111
2112		if (!need_to_create_worker(pool))
2113			break;
2114	}
2115
2116	del_timer_sync(&pool->mayday_timer);
2117	raw_spin_lock_irq(&pool->lock);
2118	/*
2119	 * This is necessary even after a new worker was just successfully
2120	 * created as @pool->lock was dropped and the new worker might have
2121	 * already become busy.
2122	 */
2123	if (need_to_create_worker(pool))
2124		goto restart;
2125}
2126
2127/**
2128 * manage_workers - manage worker pool
2129 * @worker: self
2130 *
2131 * Assume the manager role and manage the worker pool @worker belongs
2132 * to.  At any given time, there can be only zero or one manager per
2133 * pool.  The exclusion is handled automatically by this function.
2134 *
2135 * The caller can safely start processing works on false return.  On
2136 * true return, it's guaranteed that need_to_create_worker() is false
2137 * and may_start_working() is true.
2138 *
2139 * CONTEXT:
2140 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2141 * multiple times.  Does GFP_KERNEL allocations.
2142 *
2143 * Return:
2144 * %false if the pool doesn't need management and the caller can safely
2145 * start processing works, %true if management function was performed and
2146 * the conditions that the caller verified before calling the function may
2147 * no longer be true.
2148 */
2149static bool manage_workers(struct worker *worker)
2150{
2151	struct worker_pool *pool = worker->pool;
2152
2153	if (pool->flags & POOL_MANAGER_ACTIVE)
 
 
 
 
 
 
 
 
 
 
2154		return false;
2155
2156	pool->flags |= POOL_MANAGER_ACTIVE;
2157	pool->manager = worker;
2158
2159	maybe_create_worker(pool);
2160
2161	pool->manager = NULL;
2162	pool->flags &= ~POOL_MANAGER_ACTIVE;
2163	rcuwait_wake_up(&manager_wait);
2164	return true;
2165}
2166
2167/**
2168 * process_one_work - process single work
2169 * @worker: self
2170 * @work: work to process
2171 *
2172 * Process @work.  This function contains all the logics necessary to
2173 * process a single work including synchronization against and
2174 * interaction with other workers on the same cpu, queueing and
2175 * flushing.  As long as context requirement is met, any worker can
2176 * call this function to process a work.
2177 *
2178 * CONTEXT:
2179 * raw_spin_lock_irq(pool->lock) which is released and regrabbed.
2180 */
2181static void process_one_work(struct worker *worker, struct work_struct *work)
2182__releases(&pool->lock)
2183__acquires(&pool->lock)
2184{
2185	struct pool_workqueue *pwq = get_work_pwq(work);
2186	struct worker_pool *pool = worker->pool;
2187	bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2188	unsigned long work_data;
2189	struct worker *collision;
2190#ifdef CONFIG_LOCKDEP
2191	/*
2192	 * It is permissible to free the struct work_struct from
2193	 * inside the function that is called from it, this we need to
2194	 * take into account for lockdep too.  To avoid bogus "held
2195	 * lock freed" warnings as well as problems when looking into
2196	 * work->lockdep_map, make a copy and use that here.
2197	 */
2198	struct lockdep_map lockdep_map;
2199
2200	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2201#endif
2202	/* ensure we're on the correct CPU */
2203	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
2204		     raw_smp_processor_id() != pool->cpu);
2205
2206	/*
2207	 * A single work shouldn't be executed concurrently by
2208	 * multiple workers on a single cpu.  Check whether anyone is
2209	 * already processing the work.  If so, defer the work to the
2210	 * currently executing one.
2211	 */
2212	collision = find_worker_executing_work(pool, work);
2213	if (unlikely(collision)) {
2214		move_linked_works(work, &collision->scheduled, NULL);
2215		return;
2216	}
2217
2218	/* claim and dequeue */
2219	debug_work_deactivate(work);
2220	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2221	worker->current_work = work;
2222	worker->current_func = work->func;
2223	worker->current_pwq = pwq;
2224	work_data = *work_data_bits(work);
2225	worker->current_color = get_work_color(work_data);
2226
2227	/*
2228	 * Record wq name for cmdline and debug reporting, may get
2229	 * overridden through set_worker_desc().
2230	 */
2231	strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN);
2232
2233	list_del_init(&work->entry);
2234
2235	/*
2236	 * CPU intensive works don't participate in concurrency management.
2237	 * They're the scheduler's responsibility.  This takes @worker out
2238	 * of concurrency management and the next code block will chain
2239	 * execution of the pending work items.
2240	 */
2241	if (unlikely(cpu_intensive))
2242		worker_set_flags(worker, WORKER_CPU_INTENSIVE);
2243
2244	/*
2245	 * Wake up another worker if necessary.  The condition is always
2246	 * false for normal per-cpu workers since nr_running would always
2247	 * be >= 1 at this point.  This is used to chain execution of the
2248	 * pending work items for WORKER_NOT_RUNNING workers such as the
2249	 * UNBOUND and CPU_INTENSIVE ones.
2250	 */
2251	if (need_more_worker(pool))
2252		wake_up_worker(pool);
2253
2254	/*
2255	 * Record the last pool and clear PENDING which should be the last
2256	 * update to @work.  Also, do this inside @pool->lock so that
2257	 * PENDING and queued state changes happen together while IRQ is
2258	 * disabled.
2259	 */
2260	set_work_pool_and_clear_pending(work, pool->id);
2261
2262	raw_spin_unlock_irq(&pool->lock);
2263
2264	lock_map_acquire(&pwq->wq->lockdep_map);
2265	lock_map_acquire(&lockdep_map);
2266	/*
2267	 * Strictly speaking we should mark the invariant state without holding
2268	 * any locks, that is, before these two lock_map_acquire()'s.
2269	 *
2270	 * However, that would result in:
2271	 *
2272	 *   A(W1)
2273	 *   WFC(C)
2274	 *		A(W1)
2275	 *		C(C)
2276	 *
2277	 * Which would create W1->C->W1 dependencies, even though there is no
2278	 * actual deadlock possible. There are two solutions, using a
2279	 * read-recursive acquire on the work(queue) 'locks', but this will then
2280	 * hit the lockdep limitation on recursive locks, or simply discard
2281	 * these locks.
2282	 *
2283	 * AFAICT there is no possible deadlock scenario between the
2284	 * flush_work() and complete() primitives (except for single-threaded
2285	 * workqueues), so hiding them isn't a problem.
2286	 */
2287	lockdep_invariant_state(true);
2288	trace_workqueue_execute_start(work);
2289	worker->current_func(work);
2290	/*
2291	 * While we must be careful to not use "work" after this, the trace
2292	 * point will only record its address.
2293	 */
2294	trace_workqueue_execute_end(work, worker->current_func);
2295	lock_map_release(&lockdep_map);
2296	lock_map_release(&pwq->wq->lockdep_map);
2297
2298	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2299		pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2300		       "     last function: %ps\n",
2301		       current->comm, preempt_count(), task_pid_nr(current),
2302		       worker->current_func);
2303		debug_show_held_locks(current);
2304		dump_stack();
2305	}
2306
2307	/*
2308	 * The following prevents a kworker from hogging CPU on !PREEMPTION
2309	 * kernels, where a requeueing work item waiting for something to
2310	 * happen could deadlock with stop_machine as such work item could
2311	 * indefinitely requeue itself while all other CPUs are trapped in
2312	 * stop_machine. At the same time, report a quiescent RCU state so
2313	 * the same condition doesn't freeze RCU.
2314	 */
2315	cond_resched();
2316
2317	raw_spin_lock_irq(&pool->lock);
2318
2319	/* clear cpu intensive status */
2320	if (unlikely(cpu_intensive))
2321		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2322
2323	/* tag the worker for identification in schedule() */
2324	worker->last_func = worker->current_func;
2325
2326	/* we're done with it, release */
2327	hash_del(&worker->hentry);
2328	worker->current_work = NULL;
2329	worker->current_func = NULL;
2330	worker->current_pwq = NULL;
2331	worker->current_color = INT_MAX;
2332	pwq_dec_nr_in_flight(pwq, work_data);
2333}
2334
2335/**
2336 * process_scheduled_works - process scheduled works
2337 * @worker: self
2338 *
2339 * Process all scheduled works.  Please note that the scheduled list
2340 * may change while processing a work, so this function repeatedly
2341 * fetches a work from the top and executes it.
2342 *
2343 * CONTEXT:
2344 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2345 * multiple times.
2346 */
2347static void process_scheduled_works(struct worker *worker)
2348{
2349	while (!list_empty(&worker->scheduled)) {
2350		struct work_struct *work = list_first_entry(&worker->scheduled,
2351						struct work_struct, entry);
2352		process_one_work(worker, work);
2353	}
2354}
2355
2356static void set_pf_worker(bool val)
2357{
2358	mutex_lock(&wq_pool_attach_mutex);
2359	if (val)
2360		current->flags |= PF_WQ_WORKER;
2361	else
2362		current->flags &= ~PF_WQ_WORKER;
2363	mutex_unlock(&wq_pool_attach_mutex);
2364}
2365
2366/**
2367 * worker_thread - the worker thread function
2368 * @__worker: self
2369 *
2370 * The worker thread function.  All workers belong to a worker_pool -
2371 * either a per-cpu one or dynamic unbound one.  These workers process all
2372 * work items regardless of their specific target workqueue.  The only
2373 * exception is work items which belong to workqueues with a rescuer which
2374 * will be explained in rescuer_thread().
2375 *
2376 * Return: 0
2377 */
2378static int worker_thread(void *__worker)
2379{
2380	struct worker *worker = __worker;
2381	struct worker_pool *pool = worker->pool;
2382
2383	/* tell the scheduler that this is a workqueue worker */
2384	set_pf_worker(true);
2385woke_up:
2386	raw_spin_lock_irq(&pool->lock);
2387
2388	/* am I supposed to die? */
2389	if (unlikely(worker->flags & WORKER_DIE)) {
2390		raw_spin_unlock_irq(&pool->lock);
2391		WARN_ON_ONCE(!list_empty(&worker->entry));
2392		set_pf_worker(false);
2393
2394		set_task_comm(worker->task, "kworker/dying");
2395		ida_free(&pool->worker_ida, worker->id);
2396		worker_detach_from_pool(worker);
2397		kfree(worker);
2398		return 0;
2399	}
2400
2401	worker_leave_idle(worker);
2402recheck:
2403	/* no more worker necessary? */
2404	if (!need_more_worker(pool))
2405		goto sleep;
2406
2407	/* do we need to manage? */
2408	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2409		goto recheck;
2410
2411	/*
2412	 * ->scheduled list can only be filled while a worker is
2413	 * preparing to process a work or actually processing it.
2414	 * Make sure nobody diddled with it while I was sleeping.
2415	 */
2416	WARN_ON_ONCE(!list_empty(&worker->scheduled));
2417
2418	/*
2419	 * Finish PREP stage.  We're guaranteed to have at least one idle
2420	 * worker or that someone else has already assumed the manager
2421	 * role.  This is where @worker starts participating in concurrency
2422	 * management if applicable and concurrency management is restored
2423	 * after being rebound.  See rebind_workers() for details.
2424	 */
2425	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2426
2427	do {
2428		struct work_struct *work =
2429			list_first_entry(&pool->worklist,
2430					 struct work_struct, entry);
2431
2432		pool->watchdog_ts = jiffies;
2433
2434		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2435			/* optimization path, not strictly necessary */
2436			process_one_work(worker, work);
2437			if (unlikely(!list_empty(&worker->scheduled)))
2438				process_scheduled_works(worker);
2439		} else {
2440			move_linked_works(work, &worker->scheduled, NULL);
2441			process_scheduled_works(worker);
2442		}
2443	} while (keep_working(pool));
2444
2445	worker_set_flags(worker, WORKER_PREP);
2446sleep:
2447	/*
2448	 * pool->lock is held and there's no work to process and no need to
2449	 * manage, sleep.  Workers are woken up only while holding
2450	 * pool->lock or from local cpu, so setting the current state
2451	 * before releasing pool->lock is enough to prevent losing any
2452	 * event.
2453	 */
2454	worker_enter_idle(worker);
2455	__set_current_state(TASK_IDLE);
2456	raw_spin_unlock_irq(&pool->lock);
2457	schedule();
2458	goto woke_up;
2459}
2460
2461/**
2462 * rescuer_thread - the rescuer thread function
2463 * @__rescuer: self
2464 *
2465 * Workqueue rescuer thread function.  There's one rescuer for each
2466 * workqueue which has WQ_MEM_RECLAIM set.
2467 *
2468 * Regular work processing on a pool may block trying to create a new
2469 * worker which uses GFP_KERNEL allocation which has slight chance of
2470 * developing into deadlock if some works currently on the same queue
2471 * need to be processed to satisfy the GFP_KERNEL allocation.  This is
2472 * the problem rescuer solves.
2473 *
2474 * When such condition is possible, the pool summons rescuers of all
2475 * workqueues which have works queued on the pool and let them process
2476 * those works so that forward progress can be guaranteed.
2477 *
2478 * This should happen rarely.
2479 *
2480 * Return: 0
2481 */
2482static int rescuer_thread(void *__rescuer)
2483{
2484	struct worker *rescuer = __rescuer;
2485	struct workqueue_struct *wq = rescuer->rescue_wq;
2486	struct list_head *scheduled = &rescuer->scheduled;
2487	bool should_stop;
2488
2489	set_user_nice(current, RESCUER_NICE_LEVEL);
2490
2491	/*
2492	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
2493	 * doesn't participate in concurrency management.
2494	 */
2495	set_pf_worker(true);
2496repeat:
2497	set_current_state(TASK_IDLE);
2498
2499	/*
2500	 * By the time the rescuer is requested to stop, the workqueue
2501	 * shouldn't have any work pending, but @wq->maydays may still have
2502	 * pwq(s) queued.  This can happen by non-rescuer workers consuming
2503	 * all the work items before the rescuer got to them.  Go through
2504	 * @wq->maydays processing before acting on should_stop so that the
2505	 * list is always empty on exit.
2506	 */
2507	should_stop = kthread_should_stop();
2508
2509	/* see whether any pwq is asking for help */
2510	raw_spin_lock_irq(&wq_mayday_lock);
2511
2512	while (!list_empty(&wq->maydays)) {
2513		struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2514					struct pool_workqueue, mayday_node);
2515		struct worker_pool *pool = pwq->pool;
2516		struct work_struct *work, *n;
2517		bool first = true;
2518
2519		__set_current_state(TASK_RUNNING);
2520		list_del_init(&pwq->mayday_node);
2521
2522		raw_spin_unlock_irq(&wq_mayday_lock);
2523
2524		worker_attach_to_pool(rescuer, pool);
2525
2526		raw_spin_lock_irq(&pool->lock);
 
2527
2528		/*
2529		 * Slurp in all works issued via this workqueue and
2530		 * process'em.
2531		 */
2532		WARN_ON_ONCE(!list_empty(scheduled));
2533		list_for_each_entry_safe(work, n, &pool->worklist, entry) {
2534			if (get_work_pwq(work) == pwq) {
2535				if (first)
2536					pool->watchdog_ts = jiffies;
2537				move_linked_works(work, scheduled, &n);
2538			}
2539			first = false;
2540		}
2541
2542		if (!list_empty(scheduled)) {
2543			process_scheduled_works(rescuer);
2544
2545			/*
2546			 * The above execution of rescued work items could
2547			 * have created more to rescue through
2548			 * pwq_activate_first_inactive() or chained
2549			 * queueing.  Let's put @pwq back on mayday list so
2550			 * that such back-to-back work items, which may be
2551			 * being used to relieve memory pressure, don't
2552			 * incur MAYDAY_INTERVAL delay inbetween.
2553			 */
2554			if (pwq->nr_active && need_to_create_worker(pool)) {
2555				raw_spin_lock(&wq_mayday_lock);
2556				/*
2557				 * Queue iff we aren't racing destruction
2558				 * and somebody else hasn't queued it already.
2559				 */
2560				if (wq->rescuer && list_empty(&pwq->mayday_node)) {
2561					get_pwq(pwq);
2562					list_add_tail(&pwq->mayday_node, &wq->maydays);
2563				}
2564				raw_spin_unlock(&wq_mayday_lock);
2565			}
2566		}
2567
2568		/*
2569		 * Put the reference grabbed by send_mayday().  @pool won't
2570		 * go away while we're still attached to it.
2571		 */
2572		put_pwq(pwq);
2573
2574		/*
2575		 * Leave this pool.  If need_more_worker() is %true, notify a
2576		 * regular worker; otherwise, we end up with 0 concurrency
2577		 * and stalling the execution.
2578		 */
2579		if (need_more_worker(pool))
2580			wake_up_worker(pool);
2581
2582		raw_spin_unlock_irq(&pool->lock);
 
2583
2584		worker_detach_from_pool(rescuer);
2585
2586		raw_spin_lock_irq(&wq_mayday_lock);
2587	}
2588
2589	raw_spin_unlock_irq(&wq_mayday_lock);
2590
2591	if (should_stop) {
2592		__set_current_state(TASK_RUNNING);
2593		set_pf_worker(false);
2594		return 0;
2595	}
2596
2597	/* rescuers should never participate in concurrency management */
2598	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2599	schedule();
2600	goto repeat;
2601}
2602
2603/**
2604 * check_flush_dependency - check for flush dependency sanity
2605 * @target_wq: workqueue being flushed
2606 * @target_work: work item being flushed (NULL for workqueue flushes)
2607 *
2608 * %current is trying to flush the whole @target_wq or @target_work on it.
2609 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
2610 * reclaiming memory or running on a workqueue which doesn't have
2611 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
2612 * a deadlock.
2613 */
2614static void check_flush_dependency(struct workqueue_struct *target_wq,
2615				   struct work_struct *target_work)
2616{
2617	work_func_t target_func = target_work ? target_work->func : NULL;
2618	struct worker *worker;
2619
2620	if (target_wq->flags & WQ_MEM_RECLAIM)
2621		return;
2622
2623	worker = current_wq_worker();
2624
2625	WARN_ONCE(current->flags & PF_MEMALLOC,
2626		  "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps",
2627		  current->pid, current->comm, target_wq->name, target_func);
2628	WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
2629			      (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
2630		  "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps",
2631		  worker->current_pwq->wq->name, worker->current_func,
2632		  target_wq->name, target_func);
2633}
2634
2635struct wq_barrier {
2636	struct work_struct	work;
2637	struct completion	done;
2638	struct task_struct	*task;	/* purely informational */
2639};
2640
2641static void wq_barrier_func(struct work_struct *work)
2642{
2643	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2644	complete(&barr->done);
2645}
2646
2647/**
2648 * insert_wq_barrier - insert a barrier work
2649 * @pwq: pwq to insert barrier into
2650 * @barr: wq_barrier to insert
2651 * @target: target work to attach @barr to
2652 * @worker: worker currently executing @target, NULL if @target is not executing
2653 *
2654 * @barr is linked to @target such that @barr is completed only after
2655 * @target finishes execution.  Please note that the ordering
2656 * guarantee is observed only with respect to @target and on the local
2657 * cpu.
2658 *
2659 * Currently, a queued barrier can't be canceled.  This is because
2660 * try_to_grab_pending() can't determine whether the work to be
2661 * grabbed is at the head of the queue and thus can't clear LINKED
2662 * flag of the previous work while there must be a valid next work
2663 * after a work with LINKED flag set.
2664 *
2665 * Note that when @worker is non-NULL, @target may be modified
2666 * underneath us, so we can't reliably determine pwq from @target.
2667 *
2668 * CONTEXT:
2669 * raw_spin_lock_irq(pool->lock).
2670 */
2671static void insert_wq_barrier(struct pool_workqueue *pwq,
2672			      struct wq_barrier *barr,
2673			      struct work_struct *target, struct worker *worker)
2674{
2675	unsigned int work_flags = 0;
2676	unsigned int work_color;
2677	struct list_head *head;
 
2678
2679	/*
2680	 * debugobject calls are safe here even with pool->lock locked
2681	 * as we know for sure that this will not trigger any of the
2682	 * checks and call back into the fixup functions where we
2683	 * might deadlock.
2684	 */
2685	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2686	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2687
2688	init_completion_map(&barr->done, &target->lockdep_map);
2689
2690	barr->task = current;
2691
2692	/* The barrier work item does not participate in pwq->nr_active. */
2693	work_flags |= WORK_STRUCT_INACTIVE;
2694
2695	/*
2696	 * If @target is currently being executed, schedule the
2697	 * barrier to the worker; otherwise, put it after @target.
2698	 */
2699	if (worker) {
2700		head = worker->scheduled.next;
2701		work_color = worker->current_color;
2702	} else {
2703		unsigned long *bits = work_data_bits(target);
2704
2705		head = target->entry.next;
2706		/* there can already be other linked works, inherit and set */
2707		work_flags |= *bits & WORK_STRUCT_LINKED;
2708		work_color = get_work_color(*bits);
2709		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
2710	}
2711
2712	pwq->nr_in_flight[work_color]++;
2713	work_flags |= work_color_to_flags(work_color);
2714
2715	debug_work_activate(&barr->work);
2716	insert_work(pwq, &barr->work, head, work_flags);
 
2717}
2718
2719/**
2720 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2721 * @wq: workqueue being flushed
2722 * @flush_color: new flush color, < 0 for no-op
2723 * @work_color: new work color, < 0 for no-op
2724 *
2725 * Prepare pwqs for workqueue flushing.
2726 *
2727 * If @flush_color is non-negative, flush_color on all pwqs should be
2728 * -1.  If no pwq has in-flight commands at the specified color, all
2729 * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
2730 * has in flight commands, its pwq->flush_color is set to
2731 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2732 * wakeup logic is armed and %true is returned.
2733 *
2734 * The caller should have initialized @wq->first_flusher prior to
2735 * calling this function with non-negative @flush_color.  If
2736 * @flush_color is negative, no flush color update is done and %false
2737 * is returned.
2738 *
2739 * If @work_color is non-negative, all pwqs should have the same
2740 * work_color which is previous to @work_color and all will be
2741 * advanced to @work_color.
2742 *
2743 * CONTEXT:
2744 * mutex_lock(wq->mutex).
2745 *
2746 * Return:
2747 * %true if @flush_color >= 0 and there's something to flush.  %false
2748 * otherwise.
2749 */
2750static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2751				      int flush_color, int work_color)
2752{
2753	bool wait = false;
2754	struct pool_workqueue *pwq;
2755
2756	if (flush_color >= 0) {
2757		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2758		atomic_set(&wq->nr_pwqs_to_flush, 1);
2759	}
2760
2761	for_each_pwq(pwq, wq) {
2762		struct worker_pool *pool = pwq->pool;
2763
2764		raw_spin_lock_irq(&pool->lock);
2765
2766		if (flush_color >= 0) {
2767			WARN_ON_ONCE(pwq->flush_color != -1);
2768
2769			if (pwq->nr_in_flight[flush_color]) {
2770				pwq->flush_color = flush_color;
2771				atomic_inc(&wq->nr_pwqs_to_flush);
2772				wait = true;
2773			}
2774		}
2775
2776		if (work_color >= 0) {
2777			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2778			pwq->work_color = work_color;
2779		}
2780
2781		raw_spin_unlock_irq(&pool->lock);
2782	}
2783
2784	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2785		complete(&wq->first_flusher->done);
2786
2787	return wait;
2788}
2789
2790/**
2791 * __flush_workqueue - ensure that any scheduled work has run to completion.
2792 * @wq: workqueue to flush
2793 *
2794 * This function sleeps until all work items which were queued on entry
2795 * have finished execution, but it is not livelocked by new incoming ones.
2796 */
2797void __flush_workqueue(struct workqueue_struct *wq)
2798{
2799	struct wq_flusher this_flusher = {
2800		.list = LIST_HEAD_INIT(this_flusher.list),
2801		.flush_color = -1,
2802		.done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map),
2803	};
2804	int next_color;
2805
2806	if (WARN_ON(!wq_online))
2807		return;
2808
2809	lock_map_acquire(&wq->lockdep_map);
2810	lock_map_release(&wq->lockdep_map);
2811
2812	mutex_lock(&wq->mutex);
2813
2814	/*
2815	 * Start-to-wait phase
2816	 */
2817	next_color = work_next_color(wq->work_color);
2818
2819	if (next_color != wq->flush_color) {
2820		/*
2821		 * Color space is not full.  The current work_color
2822		 * becomes our flush_color and work_color is advanced
2823		 * by one.
2824		 */
2825		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2826		this_flusher.flush_color = wq->work_color;
2827		wq->work_color = next_color;
2828
2829		if (!wq->first_flusher) {
2830			/* no flush in progress, become the first flusher */
2831			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2832
2833			wq->first_flusher = &this_flusher;
2834
2835			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2836						       wq->work_color)) {
2837				/* nothing to flush, done */
2838				wq->flush_color = next_color;
2839				wq->first_flusher = NULL;
2840				goto out_unlock;
2841			}
2842		} else {
2843			/* wait in queue */
2844			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2845			list_add_tail(&this_flusher.list, &wq->flusher_queue);
2846			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2847		}
2848	} else {
2849		/*
2850		 * Oops, color space is full, wait on overflow queue.
2851		 * The next flush completion will assign us
2852		 * flush_color and transfer to flusher_queue.
2853		 */
2854		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2855	}
2856
2857	check_flush_dependency(wq, NULL);
2858
2859	mutex_unlock(&wq->mutex);
2860
2861	wait_for_completion(&this_flusher.done);
2862
2863	/*
2864	 * Wake-up-and-cascade phase
2865	 *
2866	 * First flushers are responsible for cascading flushes and
2867	 * handling overflow.  Non-first flushers can simply return.
2868	 */
2869	if (READ_ONCE(wq->first_flusher) != &this_flusher)
2870		return;
2871
2872	mutex_lock(&wq->mutex);
2873
2874	/* we might have raced, check again with mutex held */
2875	if (wq->first_flusher != &this_flusher)
2876		goto out_unlock;
2877
2878	WRITE_ONCE(wq->first_flusher, NULL);
2879
2880	WARN_ON_ONCE(!list_empty(&this_flusher.list));
2881	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2882
2883	while (true) {
2884		struct wq_flusher *next, *tmp;
2885
2886		/* complete all the flushers sharing the current flush color */
2887		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2888			if (next->flush_color != wq->flush_color)
2889				break;
2890			list_del_init(&next->list);
2891			complete(&next->done);
2892		}
2893
2894		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2895			     wq->flush_color != work_next_color(wq->work_color));
2896
2897		/* this flush_color is finished, advance by one */
2898		wq->flush_color = work_next_color(wq->flush_color);
2899
2900		/* one color has been freed, handle overflow queue */
2901		if (!list_empty(&wq->flusher_overflow)) {
2902			/*
2903			 * Assign the same color to all overflowed
2904			 * flushers, advance work_color and append to
2905			 * flusher_queue.  This is the start-to-wait
2906			 * phase for these overflowed flushers.
2907			 */
2908			list_for_each_entry(tmp, &wq->flusher_overflow, list)
2909				tmp->flush_color = wq->work_color;
2910
2911			wq->work_color = work_next_color(wq->work_color);
2912
2913			list_splice_tail_init(&wq->flusher_overflow,
2914					      &wq->flusher_queue);
2915			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2916		}
2917
2918		if (list_empty(&wq->flusher_queue)) {
2919			WARN_ON_ONCE(wq->flush_color != wq->work_color);
2920			break;
2921		}
2922
2923		/*
2924		 * Need to flush more colors.  Make the next flusher
2925		 * the new first flusher and arm pwqs.
2926		 */
2927		WARN_ON_ONCE(wq->flush_color == wq->work_color);
2928		WARN_ON_ONCE(wq->flush_color != next->flush_color);
2929
2930		list_del_init(&next->list);
2931		wq->first_flusher = next;
2932
2933		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2934			break;
2935
2936		/*
2937		 * Meh... this color is already done, clear first
2938		 * flusher and repeat cascading.
2939		 */
2940		wq->first_flusher = NULL;
2941	}
2942
2943out_unlock:
2944	mutex_unlock(&wq->mutex);
2945}
2946EXPORT_SYMBOL(__flush_workqueue);
2947
2948/**
2949 * drain_workqueue - drain a workqueue
2950 * @wq: workqueue to drain
2951 *
2952 * Wait until the workqueue becomes empty.  While draining is in progress,
2953 * only chain queueing is allowed.  IOW, only currently pending or running
2954 * work items on @wq can queue further work items on it.  @wq is flushed
2955 * repeatedly until it becomes empty.  The number of flushing is determined
2956 * by the depth of chaining and should be relatively short.  Whine if it
2957 * takes too long.
2958 */
2959void drain_workqueue(struct workqueue_struct *wq)
2960{
2961	unsigned int flush_cnt = 0;
2962	struct pool_workqueue *pwq;
2963
2964	/*
2965	 * __queue_work() needs to test whether there are drainers, is much
2966	 * hotter than drain_workqueue() and already looks at @wq->flags.
2967	 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2968	 */
2969	mutex_lock(&wq->mutex);
2970	if (!wq->nr_drainers++)
2971		wq->flags |= __WQ_DRAINING;
2972	mutex_unlock(&wq->mutex);
2973reflush:
2974	__flush_workqueue(wq);
2975
2976	mutex_lock(&wq->mutex);
2977
2978	for_each_pwq(pwq, wq) {
2979		bool drained;
2980
2981		raw_spin_lock_irq(&pwq->pool->lock);
2982		drained = !pwq->nr_active && list_empty(&pwq->inactive_works);
2983		raw_spin_unlock_irq(&pwq->pool->lock);
2984
2985		if (drained)
2986			continue;
2987
2988		if (++flush_cnt == 10 ||
2989		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2990			pr_warn("workqueue %s: %s() isn't complete after %u tries\n",
2991				wq->name, __func__, flush_cnt);
2992
2993		mutex_unlock(&wq->mutex);
2994		goto reflush;
2995	}
2996
2997	if (!--wq->nr_drainers)
2998		wq->flags &= ~__WQ_DRAINING;
2999	mutex_unlock(&wq->mutex);
3000}
3001EXPORT_SYMBOL_GPL(drain_workqueue);
3002
3003static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
3004			     bool from_cancel)
3005{
3006	struct worker *worker = NULL;
3007	struct worker_pool *pool;
3008	struct pool_workqueue *pwq;
3009
3010	might_sleep();
3011
3012	rcu_read_lock();
3013	pool = get_work_pool(work);
3014	if (!pool) {
3015		rcu_read_unlock();
3016		return false;
3017	}
3018
3019	raw_spin_lock_irq(&pool->lock);
3020	/* see the comment in try_to_grab_pending() with the same code */
3021	pwq = get_work_pwq(work);
3022	if (pwq) {
3023		if (unlikely(pwq->pool != pool))
3024			goto already_gone;
3025	} else {
3026		worker = find_worker_executing_work(pool, work);
3027		if (!worker)
3028			goto already_gone;
3029		pwq = worker->current_pwq;
3030	}
3031
3032	check_flush_dependency(pwq->wq, work);
3033
3034	insert_wq_barrier(pwq, barr, work, worker);
3035	raw_spin_unlock_irq(&pool->lock);
3036
3037	/*
3038	 * Force a lock recursion deadlock when using flush_work() inside a
3039	 * single-threaded or rescuer equipped workqueue.
3040	 *
3041	 * For single threaded workqueues the deadlock happens when the work
3042	 * is after the work issuing the flush_work(). For rescuer equipped
3043	 * workqueues the deadlock happens when the rescuer stalls, blocking
3044	 * forward progress.
3045	 */
3046	if (!from_cancel &&
3047	    (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)) {
3048		lock_map_acquire(&pwq->wq->lockdep_map);
3049		lock_map_release(&pwq->wq->lockdep_map);
3050	}
3051	rcu_read_unlock();
 
3052	return true;
3053already_gone:
3054	raw_spin_unlock_irq(&pool->lock);
3055	rcu_read_unlock();
3056	return false;
3057}
3058
3059static bool __flush_work(struct work_struct *work, bool from_cancel)
3060{
3061	struct wq_barrier barr;
3062
3063	if (WARN_ON(!wq_online))
3064		return false;
3065
3066	if (WARN_ON(!work->func))
3067		return false;
3068
3069	lock_map_acquire(&work->lockdep_map);
3070	lock_map_release(&work->lockdep_map);
3071
3072	if (start_flush_work(work, &barr, from_cancel)) {
3073		wait_for_completion(&barr.done);
3074		destroy_work_on_stack(&barr.work);
3075		return true;
3076	} else {
3077		return false;
3078	}
3079}
3080
3081/**
3082 * flush_work - wait for a work to finish executing the last queueing instance
3083 * @work: the work to flush
3084 *
3085 * Wait until @work has finished execution.  @work is guaranteed to be idle
3086 * on return if it hasn't been requeued since flush started.
3087 *
3088 * Return:
3089 * %true if flush_work() waited for the work to finish execution,
3090 * %false if it was already idle.
3091 */
3092bool flush_work(struct work_struct *work)
3093{
3094	return __flush_work(work, false);
 
 
 
 
 
 
 
 
 
 
 
3095}
3096EXPORT_SYMBOL_GPL(flush_work);
3097
3098struct cwt_wait {
3099	wait_queue_entry_t		wait;
3100	struct work_struct	*work;
3101};
3102
3103static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
3104{
3105	struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
3106
3107	if (cwait->work != key)
3108		return 0;
3109	return autoremove_wake_function(wait, mode, sync, key);
3110}
3111
3112static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
3113{
3114	static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
3115	unsigned long flags;
3116	int ret;
3117
3118	do {
3119		ret = try_to_grab_pending(work, is_dwork, &flags);
3120		/*
3121		 * If someone else is already canceling, wait for it to
3122		 * finish.  flush_work() doesn't work for PREEMPT_NONE
3123		 * because we may get scheduled between @work's completion
3124		 * and the other canceling task resuming and clearing
3125		 * CANCELING - flush_work() will return false immediately
3126		 * as @work is no longer busy, try_to_grab_pending() will
3127		 * return -ENOENT as @work is still being canceled and the
3128		 * other canceling task won't be able to clear CANCELING as
3129		 * we're hogging the CPU.
3130		 *
3131		 * Let's wait for completion using a waitqueue.  As this
3132		 * may lead to the thundering herd problem, use a custom
3133		 * wake function which matches @work along with exclusive
3134		 * wait and wakeup.
3135		 */
3136		if (unlikely(ret == -ENOENT)) {
3137			struct cwt_wait cwait;
3138
3139			init_wait(&cwait.wait);
3140			cwait.wait.func = cwt_wakefn;
3141			cwait.work = work;
3142
3143			prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
3144						  TASK_UNINTERRUPTIBLE);
3145			if (work_is_canceling(work))
3146				schedule();
3147			finish_wait(&cancel_waitq, &cwait.wait);
3148		}
3149	} while (unlikely(ret < 0));
3150
3151	/* tell other tasks trying to grab @work to back off */
3152	mark_work_canceling(work);
3153	local_irq_restore(flags);
3154
3155	/*
3156	 * This allows canceling during early boot.  We know that @work
3157	 * isn't executing.
3158	 */
3159	if (wq_online)
3160		__flush_work(work, true);
3161
3162	clear_work_data(work);
3163
3164	/*
3165	 * Paired with prepare_to_wait() above so that either
3166	 * waitqueue_active() is visible here or !work_is_canceling() is
3167	 * visible there.
3168	 */
3169	smp_mb();
3170	if (waitqueue_active(&cancel_waitq))
3171		__wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
3172
3173	return ret;
3174}
3175
3176/**
3177 * cancel_work_sync - cancel a work and wait for it to finish
3178 * @work: the work to cancel
3179 *
3180 * Cancel @work and wait for its execution to finish.  This function
3181 * can be used even if the work re-queues itself or migrates to
3182 * another workqueue.  On return from this function, @work is
3183 * guaranteed to be not pending or executing on any CPU.
3184 *
3185 * cancel_work_sync(&delayed_work->work) must not be used for
3186 * delayed_work's.  Use cancel_delayed_work_sync() instead.
3187 *
3188 * The caller must ensure that the workqueue on which @work was last
3189 * queued can't be destroyed before this function returns.
3190 *
3191 * Return:
3192 * %true if @work was pending, %false otherwise.
3193 */
3194bool cancel_work_sync(struct work_struct *work)
3195{
3196	return __cancel_work_timer(work, false);
3197}
3198EXPORT_SYMBOL_GPL(cancel_work_sync);
3199
3200/**
3201 * flush_delayed_work - wait for a dwork to finish executing the last queueing
3202 * @dwork: the delayed work to flush
3203 *
3204 * Delayed timer is cancelled and the pending work is queued for
3205 * immediate execution.  Like flush_work(), this function only
3206 * considers the last queueing instance of @dwork.
3207 *
3208 * Return:
3209 * %true if flush_work() waited for the work to finish execution,
3210 * %false if it was already idle.
3211 */
3212bool flush_delayed_work(struct delayed_work *dwork)
3213{
3214	local_irq_disable();
3215	if (del_timer_sync(&dwork->timer))
3216		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
3217	local_irq_enable();
3218	return flush_work(&dwork->work);
3219}
3220EXPORT_SYMBOL(flush_delayed_work);
3221
3222/**
3223 * flush_rcu_work - wait for a rwork to finish executing the last queueing
3224 * @rwork: the rcu work to flush
3225 *
3226 * Return:
3227 * %true if flush_rcu_work() waited for the work to finish execution,
3228 * %false if it was already idle.
3229 */
3230bool flush_rcu_work(struct rcu_work *rwork)
3231{
3232	if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) {
3233		rcu_barrier();
3234		flush_work(&rwork->work);
3235		return true;
3236	} else {
3237		return flush_work(&rwork->work);
3238	}
3239}
3240EXPORT_SYMBOL(flush_rcu_work);
3241
3242static bool __cancel_work(struct work_struct *work, bool is_dwork)
3243{
3244	unsigned long flags;
3245	int ret;
3246
3247	do {
3248		ret = try_to_grab_pending(work, is_dwork, &flags);
3249	} while (unlikely(ret == -EAGAIN));
3250
3251	if (unlikely(ret < 0))
3252		return false;
3253
3254	set_work_pool_and_clear_pending(work, get_work_pool_id(work));
3255	local_irq_restore(flags);
3256	return ret;
3257}
3258
3259/*
3260 * See cancel_delayed_work()
3261 */
3262bool cancel_work(struct work_struct *work)
3263{
3264	return __cancel_work(work, false);
3265}
3266EXPORT_SYMBOL(cancel_work);
3267
3268/**
3269 * cancel_delayed_work - cancel a delayed work
3270 * @dwork: delayed_work to cancel
3271 *
3272 * Kill off a pending delayed_work.
3273 *
3274 * Return: %true if @dwork was pending and canceled; %false if it wasn't
3275 * pending.
3276 *
3277 * Note:
3278 * The work callback function may still be running on return, unless
3279 * it returns %true and the work doesn't re-arm itself.  Explicitly flush or
3280 * use cancel_delayed_work_sync() to wait on it.
3281 *
3282 * This function is safe to call from any context including IRQ handler.
3283 */
3284bool cancel_delayed_work(struct delayed_work *dwork)
3285{
3286	return __cancel_work(&dwork->work, true);
 
 
 
 
 
 
 
 
 
 
 
 
 
3287}
3288EXPORT_SYMBOL(cancel_delayed_work);
3289
3290/**
3291 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3292 * @dwork: the delayed work cancel
3293 *
3294 * This is cancel_work_sync() for delayed works.
3295 *
3296 * Return:
3297 * %true if @dwork was pending, %false otherwise.
3298 */
3299bool cancel_delayed_work_sync(struct delayed_work *dwork)
3300{
3301	return __cancel_work_timer(&dwork->work, true);
3302}
3303EXPORT_SYMBOL(cancel_delayed_work_sync);
3304
3305/**
3306 * schedule_on_each_cpu - execute a function synchronously on each online CPU
3307 * @func: the function to call
3308 *
3309 * schedule_on_each_cpu() executes @func on each online CPU using the
3310 * system workqueue and blocks until all CPUs have completed.
3311 * schedule_on_each_cpu() is very slow.
3312 *
3313 * Return:
3314 * 0 on success, -errno on failure.
3315 */
3316int schedule_on_each_cpu(work_func_t func)
3317{
3318	int cpu;
3319	struct work_struct __percpu *works;
3320
3321	works = alloc_percpu(struct work_struct);
3322	if (!works)
3323		return -ENOMEM;
3324
3325	cpus_read_lock();
3326
3327	for_each_online_cpu(cpu) {
3328		struct work_struct *work = per_cpu_ptr(works, cpu);
3329
3330		INIT_WORK(work, func);
3331		schedule_work_on(cpu, work);
3332	}
3333
3334	for_each_online_cpu(cpu)
3335		flush_work(per_cpu_ptr(works, cpu));
3336
3337	cpus_read_unlock();
3338	free_percpu(works);
3339	return 0;
3340}
3341
3342/**
3343 * execute_in_process_context - reliably execute the routine with user context
3344 * @fn:		the function to execute
3345 * @ew:		guaranteed storage for the execute work structure (must
3346 *		be available when the work executes)
3347 *
3348 * Executes the function immediately if process context is available,
3349 * otherwise schedules the function for delayed execution.
3350 *
3351 * Return:	0 - function was executed
3352 *		1 - function was scheduled for execution
3353 */
3354int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3355{
3356	if (!in_interrupt()) {
3357		fn(&ew->work);
3358		return 0;
3359	}
3360
3361	INIT_WORK(&ew->work, fn);
3362	schedule_work(&ew->work);
3363
3364	return 1;
3365}
3366EXPORT_SYMBOL_GPL(execute_in_process_context);
3367
3368/**
3369 * free_workqueue_attrs - free a workqueue_attrs
3370 * @attrs: workqueue_attrs to free
3371 *
3372 * Undo alloc_workqueue_attrs().
3373 */
3374void free_workqueue_attrs(struct workqueue_attrs *attrs)
3375{
3376	if (attrs) {
3377		free_cpumask_var(attrs->cpumask);
3378		kfree(attrs);
3379	}
3380}
3381
3382/**
3383 * alloc_workqueue_attrs - allocate a workqueue_attrs
 
3384 *
3385 * Allocate a new workqueue_attrs, initialize with default settings and
3386 * return it.
3387 *
3388 * Return: The allocated new workqueue_attr on success. %NULL on failure.
3389 */
3390struct workqueue_attrs *alloc_workqueue_attrs(void)
3391{
3392	struct workqueue_attrs *attrs;
3393
3394	attrs = kzalloc(sizeof(*attrs), GFP_KERNEL);
3395	if (!attrs)
3396		goto fail;
3397	if (!alloc_cpumask_var(&attrs->cpumask, GFP_KERNEL))
3398		goto fail;
3399
3400	cpumask_copy(attrs->cpumask, cpu_possible_mask);
3401	return attrs;
3402fail:
3403	free_workqueue_attrs(attrs);
3404	return NULL;
3405}
3406
3407static void copy_workqueue_attrs(struct workqueue_attrs *to,
3408				 const struct workqueue_attrs *from)
3409{
3410	to->nice = from->nice;
3411	cpumask_copy(to->cpumask, from->cpumask);
3412	/*
3413	 * Unlike hash and equality test, this function doesn't ignore
3414	 * ->no_numa as it is used for both pool and wq attrs.  Instead,
3415	 * get_unbound_pool() explicitly clears ->no_numa after copying.
3416	 */
3417	to->no_numa = from->no_numa;
3418}
3419
3420/* hash value of the content of @attr */
3421static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3422{
3423	u32 hash = 0;
3424
3425	hash = jhash_1word(attrs->nice, hash);
3426	hash = jhash(cpumask_bits(attrs->cpumask),
3427		     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3428	return hash;
3429}
3430
3431/* content equality test */
3432static bool wqattrs_equal(const struct workqueue_attrs *a,
3433			  const struct workqueue_attrs *b)
3434{
3435	if (a->nice != b->nice)
3436		return false;
3437	if (!cpumask_equal(a->cpumask, b->cpumask))
3438		return false;
3439	return true;
3440}
3441
3442/**
3443 * init_worker_pool - initialize a newly zalloc'd worker_pool
3444 * @pool: worker_pool to initialize
3445 *
3446 * Initialize a newly zalloc'd @pool.  It also allocates @pool->attrs.
3447 *
3448 * Return: 0 on success, -errno on failure.  Even on failure, all fields
3449 * inside @pool proper are initialized and put_unbound_pool() can be called
3450 * on @pool safely to release it.
3451 */
3452static int init_worker_pool(struct worker_pool *pool)
3453{
3454	raw_spin_lock_init(&pool->lock);
3455	pool->id = -1;
3456	pool->cpu = -1;
3457	pool->node = NUMA_NO_NODE;
3458	pool->flags |= POOL_DISASSOCIATED;
3459	pool->watchdog_ts = jiffies;
3460	INIT_LIST_HEAD(&pool->worklist);
3461	INIT_LIST_HEAD(&pool->idle_list);
3462	hash_init(pool->busy_hash);
3463
3464	timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE);
 
 
3465
3466	timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0);
 
3467
 
 
3468	INIT_LIST_HEAD(&pool->workers);
3469
3470	ida_init(&pool->worker_ida);
3471	INIT_HLIST_NODE(&pool->hash_node);
3472	pool->refcnt = 1;
3473
3474	/* shouldn't fail above this point */
3475	pool->attrs = alloc_workqueue_attrs();
3476	if (!pool->attrs)
3477		return -ENOMEM;
3478	return 0;
3479}
3480
3481#ifdef CONFIG_LOCKDEP
3482static void wq_init_lockdep(struct workqueue_struct *wq)
3483{
3484	char *lock_name;
3485
3486	lockdep_register_key(&wq->key);
3487	lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name);
3488	if (!lock_name)
3489		lock_name = wq->name;
3490
3491	wq->lock_name = lock_name;
3492	lockdep_init_map(&wq->lockdep_map, lock_name, &wq->key, 0);
3493}
3494
3495static void wq_unregister_lockdep(struct workqueue_struct *wq)
3496{
3497	lockdep_unregister_key(&wq->key);
3498}
3499
3500static void wq_free_lockdep(struct workqueue_struct *wq)
3501{
3502	if (wq->lock_name != wq->name)
3503		kfree(wq->lock_name);
3504}
3505#else
3506static void wq_init_lockdep(struct workqueue_struct *wq)
3507{
3508}
3509
3510static void wq_unregister_lockdep(struct workqueue_struct *wq)
3511{
3512}
3513
3514static void wq_free_lockdep(struct workqueue_struct *wq)
3515{
3516}
3517#endif
3518
3519static void rcu_free_wq(struct rcu_head *rcu)
3520{
3521	struct workqueue_struct *wq =
3522		container_of(rcu, struct workqueue_struct, rcu);
3523
3524	wq_free_lockdep(wq);
3525
3526	if (!(wq->flags & WQ_UNBOUND))
3527		free_percpu(wq->cpu_pwqs);
3528	else
3529		free_workqueue_attrs(wq->unbound_attrs);
3530
 
3531	kfree(wq);
3532}
3533
3534static void rcu_free_pool(struct rcu_head *rcu)
3535{
3536	struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3537
3538	ida_destroy(&pool->worker_ida);
3539	free_workqueue_attrs(pool->attrs);
3540	kfree(pool);
3541}
3542
3543/* This returns with the lock held on success (pool manager is inactive). */
3544static bool wq_manager_inactive(struct worker_pool *pool)
3545{
3546	raw_spin_lock_irq(&pool->lock);
3547
3548	if (pool->flags & POOL_MANAGER_ACTIVE) {
3549		raw_spin_unlock_irq(&pool->lock);
3550		return false;
3551	}
3552	return true;
3553}
3554
3555/**
3556 * put_unbound_pool - put a worker_pool
3557 * @pool: worker_pool to put
3558 *
3559 * Put @pool.  If its refcnt reaches zero, it gets destroyed in RCU
3560 * safe manner.  get_unbound_pool() calls this function on its failure path
3561 * and this function should be able to release pools which went through,
3562 * successfully or not, init_worker_pool().
3563 *
3564 * Should be called with wq_pool_mutex held.
3565 */
3566static void put_unbound_pool(struct worker_pool *pool)
3567{
3568	DECLARE_COMPLETION_ONSTACK(detach_completion);
3569	struct worker *worker;
3570
3571	lockdep_assert_held(&wq_pool_mutex);
3572
3573	if (--pool->refcnt)
3574		return;
3575
3576	/* sanity checks */
3577	if (WARN_ON(!(pool->cpu < 0)) ||
3578	    WARN_ON(!list_empty(&pool->worklist)))
3579		return;
3580
3581	/* release id and unhash */
3582	if (pool->id >= 0)
3583		idr_remove(&worker_pool_idr, pool->id);
3584	hash_del(&pool->hash_node);
3585
3586	/*
3587	 * Become the manager and destroy all workers.  This prevents
3588	 * @pool's workers from blocking on attach_mutex.  We're the last
3589	 * manager and @pool gets freed with the flag set.
3590	 * Because of how wq_manager_inactive() works, we will hold the
3591	 * spinlock after a successful wait.
3592	 */
3593	rcuwait_wait_event(&manager_wait, wq_manager_inactive(pool),
3594			   TASK_UNINTERRUPTIBLE);
3595	pool->flags |= POOL_MANAGER_ACTIVE;
3596
 
3597	while ((worker = first_idle_worker(pool)))
3598		destroy_worker(worker);
3599	WARN_ON(pool->nr_workers || pool->nr_idle);
3600	raw_spin_unlock_irq(&pool->lock);
3601
3602	mutex_lock(&wq_pool_attach_mutex);
3603	if (!list_empty(&pool->workers))
3604		pool->detach_completion = &detach_completion;
3605	mutex_unlock(&wq_pool_attach_mutex);
3606
3607	if (pool->detach_completion)
3608		wait_for_completion(pool->detach_completion);
3609
 
 
3610	/* shut down the timers */
3611	del_timer_sync(&pool->idle_timer);
3612	del_timer_sync(&pool->mayday_timer);
3613
3614	/* RCU protected to allow dereferences from get_work_pool() */
3615	call_rcu(&pool->rcu, rcu_free_pool);
3616}
3617
3618/**
3619 * get_unbound_pool - get a worker_pool with the specified attributes
3620 * @attrs: the attributes of the worker_pool to get
3621 *
3622 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3623 * reference count and return it.  If there already is a matching
3624 * worker_pool, it will be used; otherwise, this function attempts to
3625 * create a new one.
3626 *
3627 * Should be called with wq_pool_mutex held.
3628 *
3629 * Return: On success, a worker_pool with the same attributes as @attrs.
3630 * On failure, %NULL.
3631 */
3632static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3633{
3634	u32 hash = wqattrs_hash(attrs);
3635	struct worker_pool *pool;
3636	int node;
3637	int target_node = NUMA_NO_NODE;
3638
3639	lockdep_assert_held(&wq_pool_mutex);
3640
3641	/* do we already have a matching pool? */
3642	hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3643		if (wqattrs_equal(pool->attrs, attrs)) {
3644			pool->refcnt++;
3645			return pool;
3646		}
3647	}
3648
3649	/* if cpumask is contained inside a NUMA node, we belong to that node */
3650	if (wq_numa_enabled) {
3651		for_each_node(node) {
3652			if (cpumask_subset(attrs->cpumask,
3653					   wq_numa_possible_cpumask[node])) {
3654				target_node = node;
3655				break;
3656			}
3657		}
3658	}
3659
3660	/* nope, create a new one */
3661	pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node);
3662	if (!pool || init_worker_pool(pool) < 0)
3663		goto fail;
3664
3665	lockdep_set_subclass(&pool->lock, 1);	/* see put_pwq() */
3666	copy_workqueue_attrs(pool->attrs, attrs);
3667	pool->node = target_node;
3668
3669	/*
3670	 * no_numa isn't a worker_pool attribute, always clear it.  See
3671	 * 'struct workqueue_attrs' comments for detail.
3672	 */
3673	pool->attrs->no_numa = false;
3674
3675	if (worker_pool_assign_id(pool) < 0)
3676		goto fail;
3677
3678	/* create and start the initial worker */
3679	if (wq_online && !create_worker(pool))
3680		goto fail;
3681
3682	/* install */
3683	hash_add(unbound_pool_hash, &pool->hash_node, hash);
3684
3685	return pool;
3686fail:
3687	if (pool)
3688		put_unbound_pool(pool);
3689	return NULL;
3690}
3691
3692static void rcu_free_pwq(struct rcu_head *rcu)
3693{
3694	kmem_cache_free(pwq_cache,
3695			container_of(rcu, struct pool_workqueue, rcu));
3696}
3697
3698/*
3699 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3700 * and needs to be destroyed.
3701 */
3702static void pwq_unbound_release_workfn(struct work_struct *work)
3703{
3704	struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3705						  unbound_release_work);
3706	struct workqueue_struct *wq = pwq->wq;
3707	struct worker_pool *pool = pwq->pool;
3708	bool is_last = false;
3709
3710	/*
3711	 * when @pwq is not linked, it doesn't hold any reference to the
3712	 * @wq, and @wq is invalid to access.
3713	 */
3714	if (!list_empty(&pwq->pwqs_node)) {
3715		if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3716			return;
3717
3718		mutex_lock(&wq->mutex);
3719		list_del_rcu(&pwq->pwqs_node);
3720		is_last = list_empty(&wq->pwqs);
3721		mutex_unlock(&wq->mutex);
3722	}
3723
3724	mutex_lock(&wq_pool_mutex);
3725	put_unbound_pool(pool);
3726	mutex_unlock(&wq_pool_mutex);
3727
3728	call_rcu(&pwq->rcu, rcu_free_pwq);
3729
3730	/*
3731	 * If we're the last pwq going away, @wq is already dead and no one
3732	 * is gonna access it anymore.  Schedule RCU free.
3733	 */
3734	if (is_last) {
3735		wq_unregister_lockdep(wq);
3736		call_rcu(&wq->rcu, rcu_free_wq);
3737	}
3738}
3739
3740/**
3741 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3742 * @pwq: target pool_workqueue
3743 *
3744 * If @pwq isn't freezing, set @pwq->max_active to the associated
3745 * workqueue's saved_max_active and activate inactive work items
3746 * accordingly.  If @pwq is freezing, clear @pwq->max_active to zero.
3747 */
3748static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3749{
3750	struct workqueue_struct *wq = pwq->wq;
3751	bool freezable = wq->flags & WQ_FREEZABLE;
3752	unsigned long flags;
3753
3754	/* for @wq->saved_max_active */
3755	lockdep_assert_held(&wq->mutex);
3756
3757	/* fast exit for non-freezable wqs */
3758	if (!freezable && pwq->max_active == wq->saved_max_active)
3759		return;
3760
3761	/* this function can be called during early boot w/ irq disabled */
3762	raw_spin_lock_irqsave(&pwq->pool->lock, flags);
3763
3764	/*
3765	 * During [un]freezing, the caller is responsible for ensuring that
3766	 * this function is called at least once after @workqueue_freezing
3767	 * is updated and visible.
3768	 */
3769	if (!freezable || !workqueue_freezing) {
3770		bool kick = false;
3771
3772		pwq->max_active = wq->saved_max_active;
3773
3774		while (!list_empty(&pwq->inactive_works) &&
3775		       pwq->nr_active < pwq->max_active) {
3776			pwq_activate_first_inactive(pwq);
3777			kick = true;
3778		}
3779
3780		/*
3781		 * Need to kick a worker after thawed or an unbound wq's
3782		 * max_active is bumped. In realtime scenarios, always kicking a
3783		 * worker will cause interference on the isolated cpu cores, so
3784		 * let's kick iff work items were activated.
3785		 */
3786		if (kick)
3787			wake_up_worker(pwq->pool);
3788	} else {
3789		pwq->max_active = 0;
3790	}
3791
3792	raw_spin_unlock_irqrestore(&pwq->pool->lock, flags);
3793}
3794
3795/* initialize newly allocated @pwq which is associated with @wq and @pool */
3796static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3797		     struct worker_pool *pool)
3798{
3799	BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3800
3801	memset(pwq, 0, sizeof(*pwq));
3802
3803	pwq->pool = pool;
3804	pwq->wq = wq;
3805	pwq->flush_color = -1;
3806	pwq->refcnt = 1;
3807	INIT_LIST_HEAD(&pwq->inactive_works);
3808	INIT_LIST_HEAD(&pwq->pwqs_node);
3809	INIT_LIST_HEAD(&pwq->mayday_node);
3810	INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3811}
3812
3813/* sync @pwq with the current state of its associated wq and link it */
3814static void link_pwq(struct pool_workqueue *pwq)
3815{
3816	struct workqueue_struct *wq = pwq->wq;
3817
3818	lockdep_assert_held(&wq->mutex);
3819
3820	/* may be called multiple times, ignore if already linked */
3821	if (!list_empty(&pwq->pwqs_node))
3822		return;
3823
3824	/* set the matching work_color */
3825	pwq->work_color = wq->work_color;
3826
3827	/* sync max_active to the current setting */
3828	pwq_adjust_max_active(pwq);
3829
3830	/* link in @pwq */
3831	list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3832}
3833
3834/* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3835static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3836					const struct workqueue_attrs *attrs)
3837{
3838	struct worker_pool *pool;
3839	struct pool_workqueue *pwq;
3840
3841	lockdep_assert_held(&wq_pool_mutex);
3842
3843	pool = get_unbound_pool(attrs);
3844	if (!pool)
3845		return NULL;
3846
3847	pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3848	if (!pwq) {
3849		put_unbound_pool(pool);
3850		return NULL;
3851	}
3852
3853	init_pwq(pwq, wq, pool);
3854	return pwq;
3855}
3856
3857/**
3858 * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
3859 * @attrs: the wq_attrs of the default pwq of the target workqueue
3860 * @node: the target NUMA node
3861 * @cpu_going_down: if >= 0, the CPU to consider as offline
3862 * @cpumask: outarg, the resulting cpumask
3863 *
3864 * Calculate the cpumask a workqueue with @attrs should use on @node.  If
3865 * @cpu_going_down is >= 0, that cpu is considered offline during
3866 * calculation.  The result is stored in @cpumask.
3867 *
3868 * If NUMA affinity is not enabled, @attrs->cpumask is always used.  If
3869 * enabled and @node has online CPUs requested by @attrs, the returned
3870 * cpumask is the intersection of the possible CPUs of @node and
3871 * @attrs->cpumask.
3872 *
3873 * The caller is responsible for ensuring that the cpumask of @node stays
3874 * stable.
3875 *
3876 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3877 * %false if equal.
3878 */
3879static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3880				 int cpu_going_down, cpumask_t *cpumask)
3881{
3882	if (!wq_numa_enabled || attrs->no_numa)
3883		goto use_dfl;
3884
3885	/* does @node have any online CPUs @attrs wants? */
3886	cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3887	if (cpu_going_down >= 0)
3888		cpumask_clear_cpu(cpu_going_down, cpumask);
3889
3890	if (cpumask_empty(cpumask))
3891		goto use_dfl;
3892
3893	/* yeap, return possible CPUs in @node that @attrs wants */
3894	cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3895
3896	if (cpumask_empty(cpumask)) {
3897		pr_warn_once("WARNING: workqueue cpumask: online intersect > "
3898				"possible intersect\n");
3899		return false;
3900	}
3901
3902	return !cpumask_equal(cpumask, attrs->cpumask);
3903
3904use_dfl:
3905	cpumask_copy(cpumask, attrs->cpumask);
3906	return false;
3907}
3908
3909/* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3910static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3911						   int node,
3912						   struct pool_workqueue *pwq)
3913{
3914	struct pool_workqueue *old_pwq;
3915
3916	lockdep_assert_held(&wq_pool_mutex);
3917	lockdep_assert_held(&wq->mutex);
3918
3919	/* link_pwq() can handle duplicate calls */
3920	link_pwq(pwq);
3921
3922	old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3923	rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3924	return old_pwq;
3925}
3926
3927/* context to store the prepared attrs & pwqs before applying */
3928struct apply_wqattrs_ctx {
3929	struct workqueue_struct	*wq;		/* target workqueue */
3930	struct workqueue_attrs	*attrs;		/* attrs to apply */
3931	struct list_head	list;		/* queued for batching commit */
3932	struct pool_workqueue	*dfl_pwq;
3933	struct pool_workqueue	*pwq_tbl[];
3934};
3935
3936/* free the resources after success or abort */
3937static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
3938{
3939	if (ctx) {
3940		int node;
3941
3942		for_each_node(node)
3943			put_pwq_unlocked(ctx->pwq_tbl[node]);
3944		put_pwq_unlocked(ctx->dfl_pwq);
3945
3946		free_workqueue_attrs(ctx->attrs);
3947
3948		kfree(ctx);
3949	}
3950}
3951
3952/* allocate the attrs and pwqs for later installation */
3953static struct apply_wqattrs_ctx *
3954apply_wqattrs_prepare(struct workqueue_struct *wq,
3955		      const struct workqueue_attrs *attrs)
3956{
3957	struct apply_wqattrs_ctx *ctx;
3958	struct workqueue_attrs *new_attrs, *tmp_attrs;
3959	int node;
3960
3961	lockdep_assert_held(&wq_pool_mutex);
3962
3963	ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_node_ids), GFP_KERNEL);
 
3964
3965	new_attrs = alloc_workqueue_attrs();
3966	tmp_attrs = alloc_workqueue_attrs();
3967	if (!ctx || !new_attrs || !tmp_attrs)
3968		goto out_free;
3969
3970	/*
3971	 * Calculate the attrs of the default pwq.
3972	 * If the user configured cpumask doesn't overlap with the
3973	 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
3974	 */
3975	copy_workqueue_attrs(new_attrs, attrs);
3976	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask);
3977	if (unlikely(cpumask_empty(new_attrs->cpumask)))
3978		cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask);
3979
3980	/*
3981	 * We may create multiple pwqs with differing cpumasks.  Make a
3982	 * copy of @new_attrs which will be modified and used to obtain
3983	 * pools.
3984	 */
3985	copy_workqueue_attrs(tmp_attrs, new_attrs);
3986
3987	/*
3988	 * If something goes wrong during CPU up/down, we'll fall back to
3989	 * the default pwq covering whole @attrs->cpumask.  Always create
3990	 * it even if we don't use it immediately.
3991	 */
3992	ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3993	if (!ctx->dfl_pwq)
3994		goto out_free;
3995
3996	for_each_node(node) {
3997		if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
3998			ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3999			if (!ctx->pwq_tbl[node])
4000				goto out_free;
4001		} else {
4002			ctx->dfl_pwq->refcnt++;
4003			ctx->pwq_tbl[node] = ctx->dfl_pwq;
4004		}
4005	}
4006
4007	/* save the user configured attrs and sanitize it. */
4008	copy_workqueue_attrs(new_attrs, attrs);
4009	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
4010	ctx->attrs = new_attrs;
4011
4012	ctx->wq = wq;
4013	free_workqueue_attrs(tmp_attrs);
4014	return ctx;
4015
4016out_free:
4017	free_workqueue_attrs(tmp_attrs);
4018	free_workqueue_attrs(new_attrs);
4019	apply_wqattrs_cleanup(ctx);
4020	return NULL;
4021}
4022
4023/* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
4024static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
4025{
4026	int node;
4027
4028	/* all pwqs have been created successfully, let's install'em */
4029	mutex_lock(&ctx->wq->mutex);
4030
4031	copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
4032
4033	/* save the previous pwq and install the new one */
4034	for_each_node(node)
4035		ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
4036							  ctx->pwq_tbl[node]);
4037
4038	/* @dfl_pwq might not have been used, ensure it's linked */
4039	link_pwq(ctx->dfl_pwq);
4040	swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
4041
4042	mutex_unlock(&ctx->wq->mutex);
4043}
4044
4045static void apply_wqattrs_lock(void)
4046{
4047	/* CPUs should stay stable across pwq creations and installations */
4048	cpus_read_lock();
4049	mutex_lock(&wq_pool_mutex);
4050}
4051
4052static void apply_wqattrs_unlock(void)
4053{
4054	mutex_unlock(&wq_pool_mutex);
4055	cpus_read_unlock();
4056}
4057
4058static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
4059					const struct workqueue_attrs *attrs)
4060{
4061	struct apply_wqattrs_ctx *ctx;
4062
4063	/* only unbound workqueues can change attributes */
4064	if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
4065		return -EINVAL;
4066
4067	/* creating multiple pwqs breaks ordering guarantee */
4068	if (!list_empty(&wq->pwqs)) {
4069		if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4070			return -EINVAL;
4071
4072		wq->flags &= ~__WQ_ORDERED;
4073	}
4074
4075	ctx = apply_wqattrs_prepare(wq, attrs);
4076	if (!ctx)
4077		return -ENOMEM;
4078
4079	/* the ctx has been prepared successfully, let's commit it */
4080	apply_wqattrs_commit(ctx);
4081	apply_wqattrs_cleanup(ctx);
4082
4083	return 0;
4084}
4085
4086/**
4087 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
4088 * @wq: the target workqueue
4089 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
4090 *
4091 * Apply @attrs to an unbound workqueue @wq.  Unless disabled, on NUMA
4092 * machines, this function maps a separate pwq to each NUMA node with
4093 * possibles CPUs in @attrs->cpumask so that work items are affine to the
4094 * NUMA node it was issued on.  Older pwqs are released as in-flight work
4095 * items finish.  Note that a work item which repeatedly requeues itself
4096 * back-to-back will stay on its current pwq.
4097 *
4098 * Performs GFP_KERNEL allocations.
4099 *
4100 * Assumes caller has CPU hotplug read exclusion, i.e. cpus_read_lock().
4101 *
4102 * Return: 0 on success and -errno on failure.
4103 */
4104int apply_workqueue_attrs(struct workqueue_struct *wq,
4105			  const struct workqueue_attrs *attrs)
4106{
4107	int ret;
4108
4109	lockdep_assert_cpus_held();
4110
4111	mutex_lock(&wq_pool_mutex);
4112	ret = apply_workqueue_attrs_locked(wq, attrs);
4113	mutex_unlock(&wq_pool_mutex);
4114
4115	return ret;
4116}
4117
4118/**
4119 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
4120 * @wq: the target workqueue
4121 * @cpu: the CPU coming up or going down
4122 * @online: whether @cpu is coming up or going down
4123 *
4124 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
4125 * %CPU_DOWN_FAILED.  @cpu is being hot[un]plugged, update NUMA affinity of
4126 * @wq accordingly.
4127 *
4128 * If NUMA affinity can't be adjusted due to memory allocation failure, it
4129 * falls back to @wq->dfl_pwq which may not be optimal but is always
4130 * correct.
4131 *
4132 * Note that when the last allowed CPU of a NUMA node goes offline for a
4133 * workqueue with a cpumask spanning multiple nodes, the workers which were
4134 * already executing the work items for the workqueue will lose their CPU
4135 * affinity and may execute on any CPU.  This is similar to how per-cpu
4136 * workqueues behave on CPU_DOWN.  If a workqueue user wants strict
4137 * affinity, it's the user's responsibility to flush the work item from
4138 * CPU_DOWN_PREPARE.
4139 */
4140static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
4141				   bool online)
4142{
4143	int node = cpu_to_node(cpu);
4144	int cpu_off = online ? -1 : cpu;
4145	struct pool_workqueue *old_pwq = NULL, *pwq;
4146	struct workqueue_attrs *target_attrs;
4147	cpumask_t *cpumask;
4148
4149	lockdep_assert_held(&wq_pool_mutex);
4150
4151	if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
4152	    wq->unbound_attrs->no_numa)
4153		return;
4154
4155	/*
4156	 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
4157	 * Let's use a preallocated one.  The following buf is protected by
4158	 * CPU hotplug exclusion.
4159	 */
4160	target_attrs = wq_update_unbound_numa_attrs_buf;
4161	cpumask = target_attrs->cpumask;
4162
4163	copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
4164	pwq = unbound_pwq_by_node(wq, node);
4165
4166	/*
4167	 * Let's determine what needs to be done.  If the target cpumask is
4168	 * different from the default pwq's, we need to compare it to @pwq's
4169	 * and create a new one if they don't match.  If the target cpumask
4170	 * equals the default pwq's, the default pwq should be used.
4171	 */
4172	if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
4173		if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
4174			return;
4175	} else {
4176		goto use_dfl_pwq;
4177	}
4178
4179	/* create a new pwq */
4180	pwq = alloc_unbound_pwq(wq, target_attrs);
4181	if (!pwq) {
4182		pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
4183			wq->name);
4184		goto use_dfl_pwq;
4185	}
4186
4187	/* Install the new pwq. */
4188	mutex_lock(&wq->mutex);
4189	old_pwq = numa_pwq_tbl_install(wq, node, pwq);
4190	goto out_unlock;
4191
4192use_dfl_pwq:
4193	mutex_lock(&wq->mutex);
4194	raw_spin_lock_irq(&wq->dfl_pwq->pool->lock);
4195	get_pwq(wq->dfl_pwq);
4196	raw_spin_unlock_irq(&wq->dfl_pwq->pool->lock);
4197	old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
4198out_unlock:
4199	mutex_unlock(&wq->mutex);
4200	put_pwq_unlocked(old_pwq);
4201}
4202
4203static int alloc_and_link_pwqs(struct workqueue_struct *wq)
4204{
4205	bool highpri = wq->flags & WQ_HIGHPRI;
4206	int cpu, ret;
4207
4208	if (!(wq->flags & WQ_UNBOUND)) {
4209		wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
4210		if (!wq->cpu_pwqs)
4211			return -ENOMEM;
4212
4213		for_each_possible_cpu(cpu) {
4214			struct pool_workqueue *pwq =
4215				per_cpu_ptr(wq->cpu_pwqs, cpu);
4216			struct worker_pool *cpu_pools =
4217				per_cpu(cpu_worker_pools, cpu);
4218
4219			init_pwq(pwq, wq, &cpu_pools[highpri]);
4220
4221			mutex_lock(&wq->mutex);
4222			link_pwq(pwq);
4223			mutex_unlock(&wq->mutex);
4224		}
4225		return 0;
4226	}
4227
4228	cpus_read_lock();
4229	if (wq->flags & __WQ_ORDERED) {
4230		ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
4231		/* there should only be single pwq for ordering guarantee */
4232		WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
4233			      wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
4234		     "ordering guarantee broken for workqueue %s\n", wq->name);
 
4235	} else {
4236		ret = apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
4237	}
4238	cpus_read_unlock();
4239
4240	return ret;
4241}
4242
4243static int wq_clamp_max_active(int max_active, unsigned int flags,
4244			       const char *name)
4245{
4246	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
4247
4248	if (max_active < 1 || max_active > lim)
4249		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
4250			max_active, name, 1, lim);
4251
4252	return clamp_val(max_active, 1, lim);
4253}
4254
4255/*
4256 * Workqueues which may be used during memory reclaim should have a rescuer
4257 * to guarantee forward progress.
4258 */
4259static int init_rescuer(struct workqueue_struct *wq)
4260{
4261	struct worker *rescuer;
4262	int ret;
4263
4264	if (!(wq->flags & WQ_MEM_RECLAIM))
4265		return 0;
4266
4267	rescuer = alloc_worker(NUMA_NO_NODE);
4268	if (!rescuer)
4269		return -ENOMEM;
4270
4271	rescuer->rescue_wq = wq;
4272	rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", wq->name);
4273	if (IS_ERR(rescuer->task)) {
4274		ret = PTR_ERR(rescuer->task);
4275		kfree(rescuer);
4276		return ret;
4277	}
4278
4279	wq->rescuer = rescuer;
4280	kthread_bind_mask(rescuer->task, cpu_possible_mask);
4281	wake_up_process(rescuer->task);
4282
4283	return 0;
4284}
4285
4286__printf(1, 4)
4287struct workqueue_struct *alloc_workqueue(const char *fmt,
4288					 unsigned int flags,
4289					 int max_active, ...)
4290{
4291	size_t tbl_size = 0;
4292	va_list args;
4293	struct workqueue_struct *wq;
4294	struct pool_workqueue *pwq;
4295
4296	/*
4297	 * Unbound && max_active == 1 used to imply ordered, which is no
4298	 * longer the case on NUMA machines due to per-node pools.  While
4299	 * alloc_ordered_workqueue() is the right way to create an ordered
4300	 * workqueue, keep the previous behavior to avoid subtle breakages
4301	 * on NUMA.
4302	 */
4303	if ((flags & WQ_UNBOUND) && max_active == 1)
4304		flags |= __WQ_ORDERED;
4305
4306	/* see the comment above the definition of WQ_POWER_EFFICIENT */
4307	if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
4308		flags |= WQ_UNBOUND;
4309
4310	/* allocate wq and format name */
4311	if (flags & WQ_UNBOUND)
4312		tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
4313
4314	wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
4315	if (!wq)
4316		return NULL;
4317
4318	if (flags & WQ_UNBOUND) {
4319		wq->unbound_attrs = alloc_workqueue_attrs();
4320		if (!wq->unbound_attrs)
4321			goto err_free_wq;
4322	}
4323
4324	va_start(args, max_active);
4325	vsnprintf(wq->name, sizeof(wq->name), fmt, args);
4326	va_end(args);
4327
4328	max_active = max_active ?: WQ_DFL_ACTIVE;
4329	max_active = wq_clamp_max_active(max_active, flags, wq->name);
4330
4331	/* init wq */
4332	wq->flags = flags;
4333	wq->saved_max_active = max_active;
4334	mutex_init(&wq->mutex);
4335	atomic_set(&wq->nr_pwqs_to_flush, 0);
4336	INIT_LIST_HEAD(&wq->pwqs);
4337	INIT_LIST_HEAD(&wq->flusher_queue);
4338	INIT_LIST_HEAD(&wq->flusher_overflow);
4339	INIT_LIST_HEAD(&wq->maydays);
4340
4341	wq_init_lockdep(wq);
4342	INIT_LIST_HEAD(&wq->list);
4343
4344	if (alloc_and_link_pwqs(wq) < 0)
4345		goto err_unreg_lockdep;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4346
4347	if (wq_online && init_rescuer(wq) < 0)
4348		goto err_destroy;
 
 
4349
4350	if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4351		goto err_destroy;
4352
4353	/*
4354	 * wq_pool_mutex protects global freeze state and workqueues list.
4355	 * Grab it, adjust max_active and add the new @wq to workqueues
4356	 * list.
4357	 */
4358	mutex_lock(&wq_pool_mutex);
4359
4360	mutex_lock(&wq->mutex);
4361	for_each_pwq(pwq, wq)
4362		pwq_adjust_max_active(pwq);
4363	mutex_unlock(&wq->mutex);
4364
4365	list_add_tail_rcu(&wq->list, &workqueues);
4366
4367	mutex_unlock(&wq_pool_mutex);
4368
4369	return wq;
4370
4371err_unreg_lockdep:
4372	wq_unregister_lockdep(wq);
4373	wq_free_lockdep(wq);
4374err_free_wq:
4375	free_workqueue_attrs(wq->unbound_attrs);
4376	kfree(wq);
4377	return NULL;
4378err_destroy:
4379	destroy_workqueue(wq);
4380	return NULL;
4381}
4382EXPORT_SYMBOL_GPL(alloc_workqueue);
4383
4384static bool pwq_busy(struct pool_workqueue *pwq)
4385{
4386	int i;
4387
4388	for (i = 0; i < WORK_NR_COLORS; i++)
4389		if (pwq->nr_in_flight[i])
4390			return true;
4391
4392	if ((pwq != pwq->wq->dfl_pwq) && (pwq->refcnt > 1))
4393		return true;
4394	if (pwq->nr_active || !list_empty(&pwq->inactive_works))
4395		return true;
4396
4397	return false;
4398}
4399
4400/**
4401 * destroy_workqueue - safely terminate a workqueue
4402 * @wq: target workqueue
4403 *
4404 * Safely destroy a workqueue. All work currently pending will be done first.
4405 */
4406void destroy_workqueue(struct workqueue_struct *wq)
4407{
4408	struct pool_workqueue *pwq;
4409	int node;
4410
4411	/*
4412	 * Remove it from sysfs first so that sanity check failure doesn't
4413	 * lead to sysfs name conflicts.
4414	 */
4415	workqueue_sysfs_unregister(wq);
4416
4417	/* drain it before proceeding with destruction */
4418	drain_workqueue(wq);
4419
4420	/* kill rescuer, if sanity checks fail, leave it w/o rescuer */
4421	if (wq->rescuer) {
4422		struct worker *rescuer = wq->rescuer;
 
4423
4424		/* this prevents new queueing */
4425		raw_spin_lock_irq(&wq_mayday_lock);
4426		wq->rescuer = NULL;
4427		raw_spin_unlock_irq(&wq_mayday_lock);
4428
4429		/* rescuer will empty maydays list before exiting */
4430		kthread_stop(rescuer->task);
4431		kfree(rescuer);
4432	}
4433
4434	/*
4435	 * Sanity checks - grab all the locks so that we wait for all
4436	 * in-flight operations which may do put_pwq().
4437	 */
4438	mutex_lock(&wq_pool_mutex);
4439	mutex_lock(&wq->mutex);
4440	for_each_pwq(pwq, wq) {
4441		raw_spin_lock_irq(&pwq->pool->lock);
4442		if (WARN_ON(pwq_busy(pwq))) {
4443			pr_warn("%s: %s has the following busy pwq\n",
4444				__func__, wq->name);
4445			show_pwq(pwq);
4446			raw_spin_unlock_irq(&pwq->pool->lock);
4447			mutex_unlock(&wq->mutex);
4448			mutex_unlock(&wq_pool_mutex);
4449			show_one_workqueue(wq);
4450			return;
4451		}
4452		raw_spin_unlock_irq(&pwq->pool->lock);
4453	}
4454	mutex_unlock(&wq->mutex);
4455
4456	/*
4457	 * wq list is used to freeze wq, remove from list after
4458	 * flushing is complete in case freeze races us.
4459	 */
 
4460	list_del_rcu(&wq->list);
4461	mutex_unlock(&wq_pool_mutex);
4462
 
 
 
 
 
4463	if (!(wq->flags & WQ_UNBOUND)) {
4464		wq_unregister_lockdep(wq);
4465		/*
4466		 * The base ref is never dropped on per-cpu pwqs.  Directly
4467		 * schedule RCU free.
4468		 */
4469		call_rcu(&wq->rcu, rcu_free_wq);
4470	} else {
4471		/*
4472		 * We're the sole accessor of @wq at this point.  Directly
4473		 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4474		 * @wq will be freed when the last pwq is released.
4475		 */
4476		for_each_node(node) {
4477			pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4478			RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4479			put_pwq_unlocked(pwq);
4480		}
4481
4482		/*
4483		 * Put dfl_pwq.  @wq may be freed any time after dfl_pwq is
4484		 * put.  Don't access it afterwards.
4485		 */
4486		pwq = wq->dfl_pwq;
4487		wq->dfl_pwq = NULL;
4488		put_pwq_unlocked(pwq);
4489	}
4490}
4491EXPORT_SYMBOL_GPL(destroy_workqueue);
4492
4493/**
4494 * workqueue_set_max_active - adjust max_active of a workqueue
4495 * @wq: target workqueue
4496 * @max_active: new max_active value.
4497 *
4498 * Set max_active of @wq to @max_active.
4499 *
4500 * CONTEXT:
4501 * Don't call from IRQ context.
4502 */
4503void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4504{
4505	struct pool_workqueue *pwq;
4506
4507	/* disallow meddling with max_active for ordered workqueues */
4508	if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4509		return;
4510
4511	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4512
4513	mutex_lock(&wq->mutex);
4514
4515	wq->flags &= ~__WQ_ORDERED;
4516	wq->saved_max_active = max_active;
4517
4518	for_each_pwq(pwq, wq)
4519		pwq_adjust_max_active(pwq);
4520
4521	mutex_unlock(&wq->mutex);
4522}
4523EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4524
4525/**
4526 * current_work - retrieve %current task's work struct
4527 *
4528 * Determine if %current task is a workqueue worker and what it's working on.
4529 * Useful to find out the context that the %current task is running in.
4530 *
4531 * Return: work struct if %current task is a workqueue worker, %NULL otherwise.
4532 */
4533struct work_struct *current_work(void)
4534{
4535	struct worker *worker = current_wq_worker();
4536
4537	return worker ? worker->current_work : NULL;
4538}
4539EXPORT_SYMBOL(current_work);
4540
4541/**
4542 * current_is_workqueue_rescuer - is %current workqueue rescuer?
4543 *
4544 * Determine whether %current is a workqueue rescuer.  Can be used from
4545 * work functions to determine whether it's being run off the rescuer task.
4546 *
4547 * Return: %true if %current is a workqueue rescuer. %false otherwise.
4548 */
4549bool current_is_workqueue_rescuer(void)
4550{
4551	struct worker *worker = current_wq_worker();
4552
4553	return worker && worker->rescue_wq;
4554}
4555
4556/**
4557 * workqueue_congested - test whether a workqueue is congested
4558 * @cpu: CPU in question
4559 * @wq: target workqueue
4560 *
4561 * Test whether @wq's cpu workqueue for @cpu is congested.  There is
4562 * no synchronization around this function and the test result is
4563 * unreliable and only useful as advisory hints or for debugging.
4564 *
4565 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4566 * Note that both per-cpu and unbound workqueues may be associated with
4567 * multiple pool_workqueues which have separate congested states.  A
4568 * workqueue being congested on one CPU doesn't mean the workqueue is also
4569 * contested on other CPUs / NUMA nodes.
4570 *
4571 * Return:
4572 * %true if congested, %false otherwise.
4573 */
4574bool workqueue_congested(int cpu, struct workqueue_struct *wq)
4575{
4576	struct pool_workqueue *pwq;
4577	bool ret;
4578
4579	rcu_read_lock();
4580	preempt_disable();
4581
4582	if (cpu == WORK_CPU_UNBOUND)
4583		cpu = smp_processor_id();
4584
4585	if (!(wq->flags & WQ_UNBOUND))
4586		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4587	else
4588		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4589
4590	ret = !list_empty(&pwq->inactive_works);
4591	preempt_enable();
4592	rcu_read_unlock();
4593
4594	return ret;
4595}
4596EXPORT_SYMBOL_GPL(workqueue_congested);
4597
4598/**
4599 * work_busy - test whether a work is currently pending or running
4600 * @work: the work to be tested
4601 *
4602 * Test whether @work is currently pending or running.  There is no
4603 * synchronization around this function and the test result is
4604 * unreliable and only useful as advisory hints or for debugging.
4605 *
4606 * Return:
4607 * OR'd bitmask of WORK_BUSY_* bits.
4608 */
4609unsigned int work_busy(struct work_struct *work)
4610{
4611	struct worker_pool *pool;
4612	unsigned long flags;
4613	unsigned int ret = 0;
4614
4615	if (work_pending(work))
4616		ret |= WORK_BUSY_PENDING;
4617
4618	rcu_read_lock();
4619	pool = get_work_pool(work);
4620	if (pool) {
4621		raw_spin_lock_irqsave(&pool->lock, flags);
4622		if (find_worker_executing_work(pool, work))
4623			ret |= WORK_BUSY_RUNNING;
4624		raw_spin_unlock_irqrestore(&pool->lock, flags);
4625	}
4626	rcu_read_unlock();
4627
4628	return ret;
4629}
4630EXPORT_SYMBOL_GPL(work_busy);
4631
4632/**
4633 * set_worker_desc - set description for the current work item
4634 * @fmt: printf-style format string
4635 * @...: arguments for the format string
4636 *
4637 * This function can be called by a running work function to describe what
4638 * the work item is about.  If the worker task gets dumped, this
4639 * information will be printed out together to help debugging.  The
4640 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4641 */
4642void set_worker_desc(const char *fmt, ...)
4643{
4644	struct worker *worker = current_wq_worker();
4645	va_list args;
4646
4647	if (worker) {
4648		va_start(args, fmt);
4649		vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4650		va_end(args);
 
4651	}
4652}
4653EXPORT_SYMBOL_GPL(set_worker_desc);
4654
4655/**
4656 * print_worker_info - print out worker information and description
4657 * @log_lvl: the log level to use when printing
4658 * @task: target task
4659 *
4660 * If @task is a worker and currently executing a work item, print out the
4661 * name of the workqueue being serviced and worker description set with
4662 * set_worker_desc() by the currently executing work item.
4663 *
4664 * This function can be safely called on any task as long as the
4665 * task_struct itself is accessible.  While safe, this function isn't
4666 * synchronized and may print out mixups or garbages of limited length.
4667 */
4668void print_worker_info(const char *log_lvl, struct task_struct *task)
4669{
4670	work_func_t *fn = NULL;
4671	char name[WQ_NAME_LEN] = { };
4672	char desc[WORKER_DESC_LEN] = { };
4673	struct pool_workqueue *pwq = NULL;
4674	struct workqueue_struct *wq = NULL;
 
4675	struct worker *worker;
4676
4677	if (!(task->flags & PF_WQ_WORKER))
4678		return;
4679
4680	/*
4681	 * This function is called without any synchronization and @task
4682	 * could be in any state.  Be careful with dereferences.
4683	 */
4684	worker = kthread_probe_data(task);
4685
4686	/*
4687	 * Carefully copy the associated workqueue's workfn, name and desc.
4688	 * Keep the original last '\0' in case the original is garbage.
4689	 */
4690	copy_from_kernel_nofault(&fn, &worker->current_func, sizeof(fn));
4691	copy_from_kernel_nofault(&pwq, &worker->current_pwq, sizeof(pwq));
4692	copy_from_kernel_nofault(&wq, &pwq->wq, sizeof(wq));
4693	copy_from_kernel_nofault(name, wq->name, sizeof(name) - 1);
4694	copy_from_kernel_nofault(desc, worker->desc, sizeof(desc) - 1);
 
 
 
 
4695
4696	if (fn || name[0] || desc[0]) {
4697		printk("%sWorkqueue: %s %ps", log_lvl, name, fn);
4698		if (strcmp(name, desc))
4699			pr_cont(" (%s)", desc);
4700		pr_cont("\n");
4701	}
4702}
4703
4704static void pr_cont_pool_info(struct worker_pool *pool)
4705{
4706	pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
4707	if (pool->node != NUMA_NO_NODE)
4708		pr_cont(" node=%d", pool->node);
4709	pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
4710}
4711
4712static void pr_cont_work(bool comma, struct work_struct *work)
4713{
4714	if (work->func == wq_barrier_func) {
4715		struct wq_barrier *barr;
4716
4717		barr = container_of(work, struct wq_barrier, work);
4718
4719		pr_cont("%s BAR(%d)", comma ? "," : "",
4720			task_pid_nr(barr->task));
4721	} else {
4722		pr_cont("%s %ps", comma ? "," : "", work->func);
4723	}
4724}
4725
4726static void show_pwq(struct pool_workqueue *pwq)
4727{
4728	struct worker_pool *pool = pwq->pool;
4729	struct work_struct *work;
4730	struct worker *worker;
4731	bool has_in_flight = false, has_pending = false;
4732	int bkt;
4733
4734	pr_info("  pwq %d:", pool->id);
4735	pr_cont_pool_info(pool);
4736
4737	pr_cont(" active=%d/%d refcnt=%d%s\n",
4738		pwq->nr_active, pwq->max_active, pwq->refcnt,
4739		!list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
4740
4741	hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4742		if (worker->current_pwq == pwq) {
4743			has_in_flight = true;
4744			break;
4745		}
4746	}
4747	if (has_in_flight) {
4748		bool comma = false;
4749
4750		pr_info("    in-flight:");
4751		hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4752			if (worker->current_pwq != pwq)
4753				continue;
4754
4755			pr_cont("%s %d%s:%ps", comma ? "," : "",
4756				task_pid_nr(worker->task),
4757				worker->rescue_wq ? "(RESCUER)" : "",
4758				worker->current_func);
4759			list_for_each_entry(work, &worker->scheduled, entry)
4760				pr_cont_work(false, work);
4761			comma = true;
4762		}
4763		pr_cont("\n");
4764	}
4765
4766	list_for_each_entry(work, &pool->worklist, entry) {
4767		if (get_work_pwq(work) == pwq) {
4768			has_pending = true;
4769			break;
4770		}
4771	}
4772	if (has_pending) {
4773		bool comma = false;
4774
4775		pr_info("    pending:");
4776		list_for_each_entry(work, &pool->worklist, entry) {
4777			if (get_work_pwq(work) != pwq)
4778				continue;
4779
4780			pr_cont_work(comma, work);
4781			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4782		}
4783		pr_cont("\n");
4784	}
4785
4786	if (!list_empty(&pwq->inactive_works)) {
4787		bool comma = false;
4788
4789		pr_info("    inactive:");
4790		list_for_each_entry(work, &pwq->inactive_works, entry) {
4791			pr_cont_work(comma, work);
4792			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4793		}
4794		pr_cont("\n");
4795	}
4796}
4797
4798/**
4799 * show_one_workqueue - dump state of specified workqueue
4800 * @wq: workqueue whose state will be printed
4801 */
4802void show_one_workqueue(struct workqueue_struct *wq)
4803{
4804	struct pool_workqueue *pwq;
4805	bool idle = true;
4806	unsigned long flags;
4807
4808	for_each_pwq(pwq, wq) {
4809		if (pwq->nr_active || !list_empty(&pwq->inactive_works)) {
4810			idle = false;
4811			break;
4812		}
4813	}
4814	if (idle) /* Nothing to print for idle workqueue */
4815		return;
4816
4817	pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
4818
4819	for_each_pwq(pwq, wq) {
4820		raw_spin_lock_irqsave(&pwq->pool->lock, flags);
4821		if (pwq->nr_active || !list_empty(&pwq->inactive_works)) {
4822			/*
4823			 * Defer printing to avoid deadlocks in console
4824			 * drivers that queue work while holding locks
4825			 * also taken in their write paths.
4826			 */
4827			printk_deferred_enter();
4828			show_pwq(pwq);
4829			printk_deferred_exit();
4830		}
4831		raw_spin_unlock_irqrestore(&pwq->pool->lock, flags);
4832		/*
4833		 * We could be printing a lot from atomic context, e.g.
4834		 * sysrq-t -> show_all_workqueues(). Avoid triggering
4835		 * hard lockup.
4836		 */
4837		touch_nmi_watchdog();
4838	}
4839
4840}
4841
4842/**
4843 * show_one_worker_pool - dump state of specified worker pool
4844 * @pool: worker pool whose state will be printed
4845 */
4846static void show_one_worker_pool(struct worker_pool *pool)
4847{
4848	struct worker *worker;
4849	bool first = true;
4850	unsigned long flags;
4851
4852	raw_spin_lock_irqsave(&pool->lock, flags);
4853	if (pool->nr_workers == pool->nr_idle)
4854		goto next_pool;
4855	/*
4856	 * Defer printing to avoid deadlocks in console drivers that
4857	 * queue work while holding locks also taken in their write
4858	 * paths.
4859	 */
4860	printk_deferred_enter();
4861	pr_info("pool %d:", pool->id);
4862	pr_cont_pool_info(pool);
4863	pr_cont(" hung=%us workers=%d",
4864		jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000,
4865		pool->nr_workers);
4866	if (pool->manager)
4867		pr_cont(" manager: %d",
4868			task_pid_nr(pool->manager->task));
4869	list_for_each_entry(worker, &pool->idle_list, entry) {
4870		pr_cont(" %s%d", first ? "idle: " : "",
4871			task_pid_nr(worker->task));
4872		first = false;
4873	}
4874	pr_cont("\n");
4875	printk_deferred_exit();
4876next_pool:
4877	raw_spin_unlock_irqrestore(&pool->lock, flags);
4878	/*
4879	 * We could be printing a lot from atomic context, e.g.
4880	 * sysrq-t -> show_all_workqueues(). Avoid triggering
4881	 * hard lockup.
4882	 */
4883	touch_nmi_watchdog();
4884
4885}
4886
4887/**
4888 * show_all_workqueues - dump workqueue state
4889 *
4890 * Called from a sysrq handler or try_to_freeze_tasks() and prints out
4891 * all busy workqueues and pools.
4892 */
4893void show_all_workqueues(void)
4894{
4895	struct workqueue_struct *wq;
4896	struct worker_pool *pool;
 
4897	int pi;
4898
4899	rcu_read_lock();
4900
4901	pr_info("Showing busy workqueues and worker pools:\n");
4902
4903	list_for_each_entry_rcu(wq, &workqueues, list)
4904		show_one_workqueue(wq);
 
4905
4906	for_each_pool(pool, pi)
4907		show_one_worker_pool(pool);
 
 
 
 
 
 
4908
4909	rcu_read_unlock();
4910}
4911
4912/* used to show worker information through /proc/PID/{comm,stat,status} */
4913void wq_worker_comm(char *buf, size_t size, struct task_struct *task)
4914{
4915	int off;
 
 
 
4916
4917	/* always show the actual comm */
4918	off = strscpy(buf, task->comm, size);
4919	if (off < 0)
4920		return;
4921
4922	/* stabilize PF_WQ_WORKER and worker pool association */
4923	mutex_lock(&wq_pool_attach_mutex);
4924
4925	if (task->flags & PF_WQ_WORKER) {
4926		struct worker *worker = kthread_data(task);
4927		struct worker_pool *pool = worker->pool;
4928
4929		if (pool) {
4930			raw_spin_lock_irq(&pool->lock);
4931			/*
4932			 * ->desc tracks information (wq name or
4933			 * set_worker_desc()) for the latest execution.  If
4934			 * current, prepend '+', otherwise '-'.
4935			 */
4936			if (worker->desc[0] != '\0') {
4937				if (worker->current_work)
4938					scnprintf(buf + off, size - off, "+%s",
4939						  worker->desc);
4940				else
4941					scnprintf(buf + off, size - off, "-%s",
4942						  worker->desc);
4943			}
4944			raw_spin_unlock_irq(&pool->lock);
4945		}
 
 
 
4946	}
4947
4948	mutex_unlock(&wq_pool_attach_mutex);
4949}
4950
4951#ifdef CONFIG_SMP
4952
4953/*
4954 * CPU hotplug.
4955 *
4956 * There are two challenges in supporting CPU hotplug.  Firstly, there
4957 * are a lot of assumptions on strong associations among work, pwq and
4958 * pool which make migrating pending and scheduled works very
4959 * difficult to implement without impacting hot paths.  Secondly,
4960 * worker pools serve mix of short, long and very long running works making
4961 * blocked draining impractical.
4962 *
4963 * This is solved by allowing the pools to be disassociated from the CPU
4964 * running as an unbound one and allowing it to be reattached later if the
4965 * cpu comes back online.
4966 */
4967
4968static void unbind_workers(int cpu)
4969{
 
4970	struct worker_pool *pool;
4971	struct worker *worker;
4972
4973	for_each_cpu_worker_pool(pool, cpu) {
4974		mutex_lock(&wq_pool_attach_mutex);
4975		raw_spin_lock_irq(&pool->lock);
4976
4977		/*
4978		 * We've blocked all attach/detach operations. Make all workers
4979		 * unbound and set DISASSOCIATED.  Before this, all workers
4980		 * must be on the cpu.  After this, they may become diasporas.
4981		 * And the preemption disabled section in their sched callbacks
4982		 * are guaranteed to see WORKER_UNBOUND since the code here
4983		 * is on the same cpu.
4984		 */
4985		for_each_pool_worker(worker, pool)
4986			worker->flags |= WORKER_UNBOUND;
4987
4988		pool->flags |= POOL_DISASSOCIATED;
4989
 
 
 
4990		/*
4991		 * The handling of nr_running in sched callbacks are disabled
4992		 * now.  Zap nr_running.  After this, nr_running stays zero and
4993		 * need_more_worker() and keep_working() are always true as
4994		 * long as the worklist is not empty.  This pool now behaves as
4995		 * an unbound (in terms of concurrency management) pool which
 
 
 
 
 
 
 
 
4996		 * are served by workers tied to the pool.
4997		 */
4998		pool->nr_running = 0;
4999
5000		/*
5001		 * With concurrency management just turned off, a busy
5002		 * worker blocking could lead to lengthy stalls.  Kick off
5003		 * unbound chain execution of currently pending work items.
5004		 */
 
5005		wake_up_worker(pool);
5006
5007		raw_spin_unlock_irq(&pool->lock);
5008
5009		for_each_pool_worker(worker, pool) {
5010			kthread_set_per_cpu(worker->task, -1);
5011			if (cpumask_intersects(wq_unbound_cpumask, cpu_active_mask))
5012				WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, wq_unbound_cpumask) < 0);
5013			else
5014				WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, cpu_possible_mask) < 0);
5015		}
5016
5017		mutex_unlock(&wq_pool_attach_mutex);
5018	}
5019}
5020
5021/**
5022 * rebind_workers - rebind all workers of a pool to the associated CPU
5023 * @pool: pool of interest
5024 *
5025 * @pool->cpu is coming online.  Rebind all workers to the CPU.
5026 */
5027static void rebind_workers(struct worker_pool *pool)
5028{
5029	struct worker *worker;
5030
5031	lockdep_assert_held(&wq_pool_attach_mutex);
5032
5033	/*
5034	 * Restore CPU affinity of all workers.  As all idle workers should
5035	 * be on the run-queue of the associated CPU before any local
5036	 * wake-ups for concurrency management happen, restore CPU affinity
5037	 * of all workers first and then clear UNBOUND.  As we're called
5038	 * from CPU_ONLINE, the following shouldn't fail.
5039	 */
5040	for_each_pool_worker(worker, pool) {
5041		kthread_set_per_cpu(worker->task, pool->cpu);
5042		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
5043						  pool->attrs->cpumask) < 0);
 
 
 
 
 
 
 
 
 
 
 
5044	}
5045
5046	raw_spin_lock_irq(&pool->lock);
5047
5048	pool->flags &= ~POOL_DISASSOCIATED;
5049
5050	for_each_pool_worker(worker, pool) {
5051		unsigned int worker_flags = worker->flags;
5052
5053		/*
 
 
 
 
 
 
 
 
 
 
 
5054		 * We want to clear UNBOUND but can't directly call
5055		 * worker_clr_flags() or adjust nr_running.  Atomically
5056		 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
5057		 * @worker will clear REBOUND using worker_clr_flags() when
5058		 * it initiates the next execution cycle thus restoring
5059		 * concurrency management.  Note that when or whether
5060		 * @worker clears REBOUND doesn't affect correctness.
5061		 *
5062		 * WRITE_ONCE() is necessary because @worker->flags may be
5063		 * tested without holding any lock in
5064		 * wq_worker_running().  Without it, NOT_RUNNING test may
5065		 * fail incorrectly leading to premature concurrency
5066		 * management operations.
5067		 */
5068		WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
5069		worker_flags |= WORKER_REBOUND;
5070		worker_flags &= ~WORKER_UNBOUND;
5071		WRITE_ONCE(worker->flags, worker_flags);
5072	}
5073
5074	raw_spin_unlock_irq(&pool->lock);
5075}
5076
5077/**
5078 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
5079 * @pool: unbound pool of interest
5080 * @cpu: the CPU which is coming up
5081 *
5082 * An unbound pool may end up with a cpumask which doesn't have any online
5083 * CPUs.  When a worker of such pool get scheduled, the scheduler resets
5084 * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
5085 * online CPU before, cpus_allowed of all its workers should be restored.
5086 */
5087static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
5088{
5089	static cpumask_t cpumask;
5090	struct worker *worker;
5091
5092	lockdep_assert_held(&wq_pool_attach_mutex);
5093
5094	/* is @cpu allowed for @pool? */
5095	if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
5096		return;
5097
 
5098	cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
 
 
5099
5100	/* as we're called from CPU_ONLINE, the following shouldn't fail */
5101	for_each_pool_worker(worker, pool)
5102		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
 
5103}
5104
5105int workqueue_prepare_cpu(unsigned int cpu)
5106{
5107	struct worker_pool *pool;
5108
5109	for_each_cpu_worker_pool(pool, cpu) {
5110		if (pool->nr_workers)
5111			continue;
5112		if (!create_worker(pool))
5113			return -ENOMEM;
5114	}
5115	return 0;
5116}
5117
5118int workqueue_online_cpu(unsigned int cpu)
5119{
 
5120	struct worker_pool *pool;
5121	struct workqueue_struct *wq;
5122	int pi;
5123
5124	mutex_lock(&wq_pool_mutex);
 
 
 
 
 
 
 
 
 
 
 
 
5125
5126	for_each_pool(pool, pi) {
5127		mutex_lock(&wq_pool_attach_mutex);
5128
5129		if (pool->cpu == cpu)
5130			rebind_workers(pool);
5131		else if (pool->cpu < 0)
5132			restore_unbound_workers_cpumask(pool, cpu);
5133
5134		mutex_unlock(&wq_pool_attach_mutex);
5135	}
5136
5137	/* update NUMA affinity of unbound workqueues */
5138	list_for_each_entry(wq, &workqueues, list)
5139		wq_update_unbound_numa(wq, cpu, true);
5140
5141	mutex_unlock(&wq_pool_mutex);
5142	return 0;
 
 
5143}
5144
5145int workqueue_offline_cpu(unsigned int cpu)
 
 
 
 
 
 
5146{
 
 
5147	struct workqueue_struct *wq;
5148
5149	/* unbinding per-cpu workers should happen on the local CPU */
5150	if (WARN_ON(cpu != smp_processor_id()))
5151		return -1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5152
5153	unbind_workers(cpu);
5154
5155	/* update NUMA affinity of unbound workqueues */
5156	mutex_lock(&wq_pool_mutex);
5157	list_for_each_entry(wq, &workqueues, list)
5158		wq_update_unbound_numa(wq, cpu, false);
5159	mutex_unlock(&wq_pool_mutex);
5160
5161	return 0;
5162}
5163
5164struct work_for_cpu {
5165	struct work_struct work;
5166	long (*fn)(void *);
5167	void *arg;
5168	long ret;
5169};
5170
5171static void work_for_cpu_fn(struct work_struct *work)
5172{
5173	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
5174
5175	wfc->ret = wfc->fn(wfc->arg);
5176}
5177
5178/**
5179 * work_on_cpu - run a function in thread context on a particular cpu
5180 * @cpu: the cpu to run on
5181 * @fn: the function to run
5182 * @arg: the function arg
5183 *
5184 * It is up to the caller to ensure that the cpu doesn't go offline.
5185 * The caller must not hold any locks which would prevent @fn from completing.
5186 *
5187 * Return: The value @fn returns.
5188 */
5189long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
5190{
5191	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
5192
5193	INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
5194	schedule_work_on(cpu, &wfc.work);
5195	flush_work(&wfc.work);
5196	destroy_work_on_stack(&wfc.work);
5197	return wfc.ret;
5198}
5199EXPORT_SYMBOL_GPL(work_on_cpu);
5200
5201/**
5202 * work_on_cpu_safe - run a function in thread context on a particular cpu
5203 * @cpu: the cpu to run on
5204 * @fn:  the function to run
5205 * @arg: the function argument
5206 *
5207 * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
5208 * any locks which would prevent @fn from completing.
5209 *
5210 * Return: The value @fn returns.
5211 */
5212long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg)
5213{
5214	long ret = -ENODEV;
5215
5216	cpus_read_lock();
5217	if (cpu_online(cpu))
5218		ret = work_on_cpu(cpu, fn, arg);
5219	cpus_read_unlock();
5220	return ret;
5221}
5222EXPORT_SYMBOL_GPL(work_on_cpu_safe);
5223#endif /* CONFIG_SMP */
5224
5225#ifdef CONFIG_FREEZER
5226
5227/**
5228 * freeze_workqueues_begin - begin freezing workqueues
5229 *
5230 * Start freezing workqueues.  After this function returns, all freezable
5231 * workqueues will queue new works to their inactive_works list instead of
5232 * pool->worklist.
5233 *
5234 * CONTEXT:
5235 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5236 */
5237void freeze_workqueues_begin(void)
5238{
5239	struct workqueue_struct *wq;
5240	struct pool_workqueue *pwq;
5241
5242	mutex_lock(&wq_pool_mutex);
5243
5244	WARN_ON_ONCE(workqueue_freezing);
5245	workqueue_freezing = true;
5246
5247	list_for_each_entry(wq, &workqueues, list) {
5248		mutex_lock(&wq->mutex);
5249		for_each_pwq(pwq, wq)
5250			pwq_adjust_max_active(pwq);
5251		mutex_unlock(&wq->mutex);
5252	}
5253
5254	mutex_unlock(&wq_pool_mutex);
5255}
5256
5257/**
5258 * freeze_workqueues_busy - are freezable workqueues still busy?
5259 *
5260 * Check whether freezing is complete.  This function must be called
5261 * between freeze_workqueues_begin() and thaw_workqueues().
5262 *
5263 * CONTEXT:
5264 * Grabs and releases wq_pool_mutex.
5265 *
5266 * Return:
5267 * %true if some freezable workqueues are still busy.  %false if freezing
5268 * is complete.
5269 */
5270bool freeze_workqueues_busy(void)
5271{
5272	bool busy = false;
5273	struct workqueue_struct *wq;
5274	struct pool_workqueue *pwq;
5275
5276	mutex_lock(&wq_pool_mutex);
5277
5278	WARN_ON_ONCE(!workqueue_freezing);
5279
5280	list_for_each_entry(wq, &workqueues, list) {
5281		if (!(wq->flags & WQ_FREEZABLE))
5282			continue;
5283		/*
5284		 * nr_active is monotonically decreasing.  It's safe
5285		 * to peek without lock.
5286		 */
5287		rcu_read_lock();
5288		for_each_pwq(pwq, wq) {
5289			WARN_ON_ONCE(pwq->nr_active < 0);
5290			if (pwq->nr_active) {
5291				busy = true;
5292				rcu_read_unlock();
5293				goto out_unlock;
5294			}
5295		}
5296		rcu_read_unlock();
5297	}
5298out_unlock:
5299	mutex_unlock(&wq_pool_mutex);
5300	return busy;
5301}
5302
5303/**
5304 * thaw_workqueues - thaw workqueues
5305 *
5306 * Thaw workqueues.  Normal queueing is restored and all collected
5307 * frozen works are transferred to their respective pool worklists.
5308 *
5309 * CONTEXT:
5310 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5311 */
5312void thaw_workqueues(void)
5313{
5314	struct workqueue_struct *wq;
5315	struct pool_workqueue *pwq;
5316
5317	mutex_lock(&wq_pool_mutex);
5318
5319	if (!workqueue_freezing)
5320		goto out_unlock;
5321
5322	workqueue_freezing = false;
5323
5324	/* restore max_active and repopulate worklist */
5325	list_for_each_entry(wq, &workqueues, list) {
5326		mutex_lock(&wq->mutex);
5327		for_each_pwq(pwq, wq)
5328			pwq_adjust_max_active(pwq);
5329		mutex_unlock(&wq->mutex);
5330	}
5331
5332out_unlock:
5333	mutex_unlock(&wq_pool_mutex);
5334}
5335#endif /* CONFIG_FREEZER */
5336
5337static int workqueue_apply_unbound_cpumask(void)
5338{
5339	LIST_HEAD(ctxs);
5340	int ret = 0;
5341	struct workqueue_struct *wq;
5342	struct apply_wqattrs_ctx *ctx, *n;
5343
5344	lockdep_assert_held(&wq_pool_mutex);
5345
5346	list_for_each_entry(wq, &workqueues, list) {
5347		if (!(wq->flags & WQ_UNBOUND))
5348			continue;
5349		/* creating multiple pwqs breaks ordering guarantee */
5350		if (wq->flags & __WQ_ORDERED)
5351			continue;
5352
5353		ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs);
5354		if (!ctx) {
5355			ret = -ENOMEM;
5356			break;
5357		}
5358
5359		list_add_tail(&ctx->list, &ctxs);
5360	}
5361
5362	list_for_each_entry_safe(ctx, n, &ctxs, list) {
5363		if (!ret)
5364			apply_wqattrs_commit(ctx);
5365		apply_wqattrs_cleanup(ctx);
5366	}
5367
5368	return ret;
5369}
5370
5371/**
5372 *  workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
5373 *  @cpumask: the cpumask to set
5374 *
5375 *  The low-level workqueues cpumask is a global cpumask that limits
5376 *  the affinity of all unbound workqueues.  This function check the @cpumask
5377 *  and apply it to all unbound workqueues and updates all pwqs of them.
5378 *
5379 *  Return:	0	- Success
5380 *  		-EINVAL	- Invalid @cpumask
5381 *  		-ENOMEM	- Failed to allocate memory for attrs or pwqs.
5382 */
5383int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
5384{
5385	int ret = -EINVAL;
5386	cpumask_var_t saved_cpumask;
5387
5388	/*
5389	 * Not excluding isolated cpus on purpose.
5390	 * If the user wishes to include them, we allow that.
5391	 */
5392	cpumask_and(cpumask, cpumask, cpu_possible_mask);
5393	if (!cpumask_empty(cpumask)) {
5394		apply_wqattrs_lock();
5395		if (cpumask_equal(cpumask, wq_unbound_cpumask)) {
5396			ret = 0;
5397			goto out_unlock;
5398		}
5399
5400		if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL)) {
5401			ret = -ENOMEM;
5402			goto out_unlock;
5403		}
5404
5405		/* save the old wq_unbound_cpumask. */
5406		cpumask_copy(saved_cpumask, wq_unbound_cpumask);
5407
5408		/* update wq_unbound_cpumask at first and apply it to wqs. */
5409		cpumask_copy(wq_unbound_cpumask, cpumask);
5410		ret = workqueue_apply_unbound_cpumask();
5411
5412		/* restore the wq_unbound_cpumask when failed. */
5413		if (ret < 0)
5414			cpumask_copy(wq_unbound_cpumask, saved_cpumask);
5415
5416		free_cpumask_var(saved_cpumask);
5417out_unlock:
5418		apply_wqattrs_unlock();
5419	}
5420
 
5421	return ret;
5422}
5423
5424#ifdef CONFIG_SYSFS
5425/*
5426 * Workqueues with WQ_SYSFS flag set is visible to userland via
5427 * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
5428 * following attributes.
5429 *
5430 *  per_cpu	RO bool	: whether the workqueue is per-cpu or unbound
5431 *  max_active	RW int	: maximum number of in-flight work items
5432 *
5433 * Unbound workqueues have the following extra attributes.
5434 *
5435 *  pool_ids	RO int	: the associated pool IDs for each node
5436 *  nice	RW int	: nice value of the workers
5437 *  cpumask	RW mask	: bitmask of allowed CPUs for the workers
5438 *  numa	RW bool	: whether enable NUMA affinity
5439 */
5440struct wq_device {
5441	struct workqueue_struct		*wq;
5442	struct device			dev;
5443};
5444
5445static struct workqueue_struct *dev_to_wq(struct device *dev)
5446{
5447	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5448
5449	return wq_dev->wq;
5450}
5451
5452static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
5453			    char *buf)
5454{
5455	struct workqueue_struct *wq = dev_to_wq(dev);
5456
5457	return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
5458}
5459static DEVICE_ATTR_RO(per_cpu);
5460
5461static ssize_t max_active_show(struct device *dev,
5462			       struct device_attribute *attr, char *buf)
5463{
5464	struct workqueue_struct *wq = dev_to_wq(dev);
5465
5466	return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
5467}
5468
5469static ssize_t max_active_store(struct device *dev,
5470				struct device_attribute *attr, const char *buf,
5471				size_t count)
5472{
5473	struct workqueue_struct *wq = dev_to_wq(dev);
5474	int val;
5475
5476	if (sscanf(buf, "%d", &val) != 1 || val <= 0)
5477		return -EINVAL;
5478
5479	workqueue_set_max_active(wq, val);
5480	return count;
5481}
5482static DEVICE_ATTR_RW(max_active);
5483
5484static struct attribute *wq_sysfs_attrs[] = {
5485	&dev_attr_per_cpu.attr,
5486	&dev_attr_max_active.attr,
5487	NULL,
5488};
5489ATTRIBUTE_GROUPS(wq_sysfs);
5490
5491static ssize_t wq_pool_ids_show(struct device *dev,
5492				struct device_attribute *attr, char *buf)
5493{
5494	struct workqueue_struct *wq = dev_to_wq(dev);
5495	const char *delim = "";
5496	int node, written = 0;
5497
5498	cpus_read_lock();
5499	rcu_read_lock();
5500	for_each_node(node) {
5501		written += scnprintf(buf + written, PAGE_SIZE - written,
5502				     "%s%d:%d", delim, node,
5503				     unbound_pwq_by_node(wq, node)->pool->id);
5504		delim = " ";
5505	}
5506	written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
5507	rcu_read_unlock();
5508	cpus_read_unlock();
5509
5510	return written;
5511}
5512
5513static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
5514			    char *buf)
5515{
5516	struct workqueue_struct *wq = dev_to_wq(dev);
5517	int written;
5518
5519	mutex_lock(&wq->mutex);
5520	written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
5521	mutex_unlock(&wq->mutex);
5522
5523	return written;
5524}
5525
5526/* prepare workqueue_attrs for sysfs store operations */
5527static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
5528{
5529	struct workqueue_attrs *attrs;
5530
5531	lockdep_assert_held(&wq_pool_mutex);
5532
5533	attrs = alloc_workqueue_attrs();
5534	if (!attrs)
5535		return NULL;
5536
5537	copy_workqueue_attrs(attrs, wq->unbound_attrs);
5538	return attrs;
5539}
5540
5541static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
5542			     const char *buf, size_t count)
5543{
5544	struct workqueue_struct *wq = dev_to_wq(dev);
5545	struct workqueue_attrs *attrs;
5546	int ret = -ENOMEM;
5547
5548	apply_wqattrs_lock();
5549
5550	attrs = wq_sysfs_prep_attrs(wq);
5551	if (!attrs)
5552		goto out_unlock;
5553
5554	if (sscanf(buf, "%d", &attrs->nice) == 1 &&
5555	    attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
5556		ret = apply_workqueue_attrs_locked(wq, attrs);
5557	else
5558		ret = -EINVAL;
5559
5560out_unlock:
5561	apply_wqattrs_unlock();
5562	free_workqueue_attrs(attrs);
5563	return ret ?: count;
5564}
5565
5566static ssize_t wq_cpumask_show(struct device *dev,
5567			       struct device_attribute *attr, char *buf)
5568{
5569	struct workqueue_struct *wq = dev_to_wq(dev);
5570	int written;
5571
5572	mutex_lock(&wq->mutex);
5573	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5574			    cpumask_pr_args(wq->unbound_attrs->cpumask));
5575	mutex_unlock(&wq->mutex);
5576	return written;
5577}
5578
5579static ssize_t wq_cpumask_store(struct device *dev,
5580				struct device_attribute *attr,
5581				const char *buf, size_t count)
5582{
5583	struct workqueue_struct *wq = dev_to_wq(dev);
5584	struct workqueue_attrs *attrs;
5585	int ret = -ENOMEM;
5586
5587	apply_wqattrs_lock();
5588
5589	attrs = wq_sysfs_prep_attrs(wq);
5590	if (!attrs)
5591		goto out_unlock;
5592
5593	ret = cpumask_parse(buf, attrs->cpumask);
5594	if (!ret)
5595		ret = apply_workqueue_attrs_locked(wq, attrs);
5596
5597out_unlock:
5598	apply_wqattrs_unlock();
5599	free_workqueue_attrs(attrs);
5600	return ret ?: count;
5601}
5602
5603static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
5604			    char *buf)
5605{
5606	struct workqueue_struct *wq = dev_to_wq(dev);
5607	int written;
5608
5609	mutex_lock(&wq->mutex);
5610	written = scnprintf(buf, PAGE_SIZE, "%d\n",
5611			    !wq->unbound_attrs->no_numa);
5612	mutex_unlock(&wq->mutex);
5613
5614	return written;
5615}
5616
5617static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
5618			     const char *buf, size_t count)
5619{
5620	struct workqueue_struct *wq = dev_to_wq(dev);
5621	struct workqueue_attrs *attrs;
5622	int v, ret = -ENOMEM;
5623
5624	apply_wqattrs_lock();
5625
5626	attrs = wq_sysfs_prep_attrs(wq);
5627	if (!attrs)
5628		goto out_unlock;
5629
5630	ret = -EINVAL;
5631	if (sscanf(buf, "%d", &v) == 1) {
5632		attrs->no_numa = !v;
5633		ret = apply_workqueue_attrs_locked(wq, attrs);
5634	}
5635
5636out_unlock:
5637	apply_wqattrs_unlock();
5638	free_workqueue_attrs(attrs);
5639	return ret ?: count;
5640}
5641
5642static struct device_attribute wq_sysfs_unbound_attrs[] = {
5643	__ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
5644	__ATTR(nice, 0644, wq_nice_show, wq_nice_store),
5645	__ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
5646	__ATTR(numa, 0644, wq_numa_show, wq_numa_store),
5647	__ATTR_NULL,
5648};
5649
5650static struct bus_type wq_subsys = {
5651	.name				= "workqueue",
5652	.dev_groups			= wq_sysfs_groups,
5653};
5654
5655static ssize_t wq_unbound_cpumask_show(struct device *dev,
5656		struct device_attribute *attr, char *buf)
5657{
5658	int written;
5659
5660	mutex_lock(&wq_pool_mutex);
5661	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5662			    cpumask_pr_args(wq_unbound_cpumask));
5663	mutex_unlock(&wq_pool_mutex);
5664
5665	return written;
5666}
5667
5668static ssize_t wq_unbound_cpumask_store(struct device *dev,
5669		struct device_attribute *attr, const char *buf, size_t count)
5670{
5671	cpumask_var_t cpumask;
5672	int ret;
5673
5674	if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
5675		return -ENOMEM;
5676
5677	ret = cpumask_parse(buf, cpumask);
5678	if (!ret)
5679		ret = workqueue_set_unbound_cpumask(cpumask);
5680
5681	free_cpumask_var(cpumask);
5682	return ret ? ret : count;
5683}
5684
5685static struct device_attribute wq_sysfs_cpumask_attr =
5686	__ATTR(cpumask, 0644, wq_unbound_cpumask_show,
5687	       wq_unbound_cpumask_store);
5688
5689static int __init wq_sysfs_init(void)
5690{
5691	int err;
5692
5693	err = subsys_virtual_register(&wq_subsys, NULL);
5694	if (err)
5695		return err;
5696
5697	return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr);
5698}
5699core_initcall(wq_sysfs_init);
5700
5701static void wq_device_release(struct device *dev)
5702{
5703	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5704
5705	kfree(wq_dev);
5706}
5707
5708/**
5709 * workqueue_sysfs_register - make a workqueue visible in sysfs
5710 * @wq: the workqueue to register
5711 *
5712 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
5713 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
5714 * which is the preferred method.
5715 *
5716 * Workqueue user should use this function directly iff it wants to apply
5717 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
5718 * apply_workqueue_attrs() may race against userland updating the
5719 * attributes.
5720 *
5721 * Return: 0 on success, -errno on failure.
5722 */
5723int workqueue_sysfs_register(struct workqueue_struct *wq)
5724{
5725	struct wq_device *wq_dev;
5726	int ret;
5727
5728	/*
5729	 * Adjusting max_active or creating new pwqs by applying
5730	 * attributes breaks ordering guarantee.  Disallow exposing ordered
5731	 * workqueues.
5732	 */
5733	if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
5734		return -EINVAL;
5735
5736	wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
5737	if (!wq_dev)
5738		return -ENOMEM;
5739
5740	wq_dev->wq = wq;
5741	wq_dev->dev.bus = &wq_subsys;
5742	wq_dev->dev.release = wq_device_release;
5743	dev_set_name(&wq_dev->dev, "%s", wq->name);
5744
5745	/*
5746	 * unbound_attrs are created separately.  Suppress uevent until
5747	 * everything is ready.
5748	 */
5749	dev_set_uevent_suppress(&wq_dev->dev, true);
5750
5751	ret = device_register(&wq_dev->dev);
5752	if (ret) {
5753		put_device(&wq_dev->dev);
5754		wq->wq_dev = NULL;
5755		return ret;
5756	}
5757
5758	if (wq->flags & WQ_UNBOUND) {
5759		struct device_attribute *attr;
5760
5761		for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
5762			ret = device_create_file(&wq_dev->dev, attr);
5763			if (ret) {
5764				device_unregister(&wq_dev->dev);
5765				wq->wq_dev = NULL;
5766				return ret;
5767			}
5768		}
5769	}
5770
5771	dev_set_uevent_suppress(&wq_dev->dev, false);
5772	kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
5773	return 0;
5774}
5775
5776/**
5777 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
5778 * @wq: the workqueue to unregister
5779 *
5780 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
5781 */
5782static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
5783{
5784	struct wq_device *wq_dev = wq->wq_dev;
5785
5786	if (!wq->wq_dev)
5787		return;
5788
5789	wq->wq_dev = NULL;
5790	device_unregister(&wq_dev->dev);
5791}
5792#else	/* CONFIG_SYSFS */
5793static void workqueue_sysfs_unregister(struct workqueue_struct *wq)	{ }
5794#endif	/* CONFIG_SYSFS */
5795
5796/*
5797 * Workqueue watchdog.
5798 *
5799 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
5800 * flush dependency, a concurrency managed work item which stays RUNNING
5801 * indefinitely.  Workqueue stalls can be very difficult to debug as the
5802 * usual warning mechanisms don't trigger and internal workqueue state is
5803 * largely opaque.
5804 *
5805 * Workqueue watchdog monitors all worker pools periodically and dumps
5806 * state if some pools failed to make forward progress for a while where
5807 * forward progress is defined as the first item on ->worklist changing.
5808 *
5809 * This mechanism is controlled through the kernel parameter
5810 * "workqueue.watchdog_thresh" which can be updated at runtime through the
5811 * corresponding sysfs parameter file.
5812 */
5813#ifdef CONFIG_WQ_WATCHDOG
5814
 
 
5815static unsigned long wq_watchdog_thresh = 30;
5816static struct timer_list wq_watchdog_timer;
 
5817
5818static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
5819static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
5820
5821static void wq_watchdog_reset_touched(void)
5822{
5823	int cpu;
5824
5825	wq_watchdog_touched = jiffies;
5826	for_each_possible_cpu(cpu)
5827		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5828}
5829
5830static void wq_watchdog_timer_fn(struct timer_list *unused)
5831{
5832	unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
5833	bool lockup_detected = false;
5834	unsigned long now = jiffies;
5835	struct worker_pool *pool;
5836	int pi;
5837
5838	if (!thresh)
5839		return;
5840
5841	rcu_read_lock();
5842
5843	for_each_pool(pool, pi) {
5844		unsigned long pool_ts, touched, ts;
5845
5846		if (list_empty(&pool->worklist))
5847			continue;
5848
5849		/*
5850		 * If a virtual machine is stopped by the host it can look to
5851		 * the watchdog like a stall.
5852		 */
5853		kvm_check_and_clear_guest_paused();
5854
5855		/* get the latest of pool and touched timestamps */
5856		if (pool->cpu >= 0)
5857			touched = READ_ONCE(per_cpu(wq_watchdog_touched_cpu, pool->cpu));
5858		else
5859			touched = READ_ONCE(wq_watchdog_touched);
5860		pool_ts = READ_ONCE(pool->watchdog_ts);
 
5861
5862		if (time_after(pool_ts, touched))
5863			ts = pool_ts;
5864		else
5865			ts = touched;
5866
 
 
 
 
 
 
 
 
5867		/* did we stall? */
5868		if (time_after(now, ts + thresh)) {
5869			lockup_detected = true;
5870			pr_emerg("BUG: workqueue lockup - pool");
5871			pr_cont_pool_info(pool);
5872			pr_cont(" stuck for %us!\n",
5873				jiffies_to_msecs(now - pool_ts) / 1000);
5874		}
5875	}
5876
5877	rcu_read_unlock();
5878
5879	if (lockup_detected)
5880		show_all_workqueues();
5881
5882	wq_watchdog_reset_touched();
5883	mod_timer(&wq_watchdog_timer, jiffies + thresh);
5884}
5885
5886notrace void wq_watchdog_touch(int cpu)
5887{
5888	if (cpu >= 0)
5889		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5890
5891	wq_watchdog_touched = jiffies;
5892}
5893
5894static void wq_watchdog_set_thresh(unsigned long thresh)
5895{
5896	wq_watchdog_thresh = 0;
5897	del_timer_sync(&wq_watchdog_timer);
5898
5899	if (thresh) {
5900		wq_watchdog_thresh = thresh;
5901		wq_watchdog_reset_touched();
5902		mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
5903	}
5904}
5905
5906static int wq_watchdog_param_set_thresh(const char *val,
5907					const struct kernel_param *kp)
5908{
5909	unsigned long thresh;
5910	int ret;
5911
5912	ret = kstrtoul(val, 0, &thresh);
5913	if (ret)
5914		return ret;
5915
5916	if (system_wq)
5917		wq_watchdog_set_thresh(thresh);
5918	else
5919		wq_watchdog_thresh = thresh;
5920
5921	return 0;
5922}
5923
5924static const struct kernel_param_ops wq_watchdog_thresh_ops = {
5925	.set	= wq_watchdog_param_set_thresh,
5926	.get	= param_get_ulong,
5927};
5928
5929module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
5930		0644);
5931
5932static void wq_watchdog_init(void)
5933{
5934	timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE);
5935	wq_watchdog_set_thresh(wq_watchdog_thresh);
5936}
5937
5938#else	/* CONFIG_WQ_WATCHDOG */
5939
5940static inline void wq_watchdog_init(void) { }
5941
5942#endif	/* CONFIG_WQ_WATCHDOG */
5943
5944static void __init wq_numa_init(void)
5945{
5946	cpumask_var_t *tbl;
5947	int node, cpu;
5948
5949	if (num_possible_nodes() <= 1)
5950		return;
5951
5952	if (wq_disable_numa) {
5953		pr_info("workqueue: NUMA affinity support disabled\n");
5954		return;
5955	}
5956
5957	for_each_possible_cpu(cpu) {
5958		if (WARN_ON(cpu_to_node(cpu) == NUMA_NO_NODE)) {
5959			pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
5960			return;
5961		}
5962	}
5963
5964	wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs();
5965	BUG_ON(!wq_update_unbound_numa_attrs_buf);
5966
5967	/*
5968	 * We want masks of possible CPUs of each node which isn't readily
5969	 * available.  Build one from cpu_to_node() which should have been
5970	 * fully initialized by now.
5971	 */
5972	tbl = kcalloc(nr_node_ids, sizeof(tbl[0]), GFP_KERNEL);
5973	BUG_ON(!tbl);
5974
5975	for_each_node(node)
5976		BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
5977				node_online(node) ? node : NUMA_NO_NODE));
5978
5979	for_each_possible_cpu(cpu) {
5980		node = cpu_to_node(cpu);
 
 
 
 
 
5981		cpumask_set_cpu(cpu, tbl[node]);
5982	}
5983
5984	wq_numa_possible_cpumask = tbl;
5985	wq_numa_enabled = true;
5986}
5987
5988/**
5989 * workqueue_init_early - early init for workqueue subsystem
5990 *
5991 * This is the first half of two-staged workqueue subsystem initialization
5992 * and invoked as soon as the bare basics - memory allocation, cpumasks and
5993 * idr are up.  It sets up all the data structures and system workqueues
5994 * and allows early boot code to create workqueues and queue/cancel work
5995 * items.  Actual work item execution starts only after kthreads can be
5996 * created and scheduled right before early initcalls.
5997 */
5998void __init workqueue_init_early(void)
5999{
6000	int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
6001	int i, cpu;
6002
6003	BUILD_BUG_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
6004
6005	BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
6006	cpumask_copy(wq_unbound_cpumask, housekeeping_cpumask(HK_TYPE_WQ));
6007	cpumask_and(wq_unbound_cpumask, wq_unbound_cpumask, housekeeping_cpumask(HK_TYPE_DOMAIN));
6008
6009	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
6010
 
 
 
 
 
6011	/* initialize CPU pools */
6012	for_each_possible_cpu(cpu) {
6013		struct worker_pool *pool;
6014
6015		i = 0;
6016		for_each_cpu_worker_pool(pool, cpu) {
6017			BUG_ON(init_worker_pool(pool));
6018			pool->cpu = cpu;
6019			cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
6020			pool->attrs->nice = std_nice[i++];
6021			pool->node = cpu_to_node(cpu);
6022
6023			/* alloc pool ID */
6024			mutex_lock(&wq_pool_mutex);
6025			BUG_ON(worker_pool_assign_id(pool));
6026			mutex_unlock(&wq_pool_mutex);
6027		}
6028	}
6029
 
 
 
 
 
 
 
 
 
 
6030	/* create default unbound and ordered wq attrs */
6031	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
6032		struct workqueue_attrs *attrs;
6033
6034		BUG_ON(!(attrs = alloc_workqueue_attrs()));
6035		attrs->nice = std_nice[i];
6036		unbound_std_wq_attrs[i] = attrs;
6037
6038		/*
6039		 * An ordered wq should have only one pwq as ordering is
6040		 * guaranteed by max_active which is enforced by pwqs.
6041		 * Turn off NUMA so that dfl_pwq is used for all nodes.
6042		 */
6043		BUG_ON(!(attrs = alloc_workqueue_attrs()));
6044		attrs->nice = std_nice[i];
6045		attrs->no_numa = true;
6046		ordered_wq_attrs[i] = attrs;
6047	}
6048
6049	system_wq = alloc_workqueue("events", 0, 0);
6050	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
6051	system_long_wq = alloc_workqueue("events_long", 0, 0);
6052	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
6053					    WQ_UNBOUND_MAX_ACTIVE);
6054	system_freezable_wq = alloc_workqueue("events_freezable",
6055					      WQ_FREEZABLE, 0);
6056	system_power_efficient_wq = alloc_workqueue("events_power_efficient",
6057					      WQ_POWER_EFFICIENT, 0);
6058	system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
6059					      WQ_FREEZABLE | WQ_POWER_EFFICIENT,
6060					      0);
6061	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
6062	       !system_unbound_wq || !system_freezable_wq ||
6063	       !system_power_efficient_wq ||
6064	       !system_freezable_power_efficient_wq);
6065}
6066
6067/**
6068 * workqueue_init - bring workqueue subsystem fully online
6069 *
6070 * This is the latter half of two-staged workqueue subsystem initialization
6071 * and invoked as soon as kthreads can be created and scheduled.
6072 * Workqueues have been created and work items queued on them, but there
6073 * are no kworkers executing the work items yet.  Populate the worker pools
6074 * with the initial workers and enable future kworker creations.
6075 */
6076void __init workqueue_init(void)
6077{
6078	struct workqueue_struct *wq;
6079	struct worker_pool *pool;
6080	int cpu, bkt;
6081
6082	/*
6083	 * It'd be simpler to initialize NUMA in workqueue_init_early() but
6084	 * CPU to node mapping may not be available that early on some
6085	 * archs such as power and arm64.  As per-cpu pools created
6086	 * previously could be missing node hint and unbound pools NUMA
6087	 * affinity, fix them up.
6088	 *
6089	 * Also, while iterating workqueues, create rescuers if requested.
6090	 */
6091	wq_numa_init();
6092
6093	mutex_lock(&wq_pool_mutex);
6094
6095	for_each_possible_cpu(cpu) {
6096		for_each_cpu_worker_pool(pool, cpu) {
6097			pool->node = cpu_to_node(cpu);
6098		}
6099	}
6100
6101	list_for_each_entry(wq, &workqueues, list) {
6102		wq_update_unbound_numa(wq, smp_processor_id(), true);
6103		WARN(init_rescuer(wq),
6104		     "workqueue: failed to create early rescuer for %s",
6105		     wq->name);
6106	}
6107
6108	mutex_unlock(&wq_pool_mutex);
6109
6110	/* create the initial workers */
6111	for_each_online_cpu(cpu) {
6112		for_each_cpu_worker_pool(pool, cpu) {
6113			pool->flags &= ~POOL_DISASSOCIATED;
6114			BUG_ON(!create_worker(pool));
6115		}
6116	}
6117
6118	hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
6119		BUG_ON(!create_worker(pool));
6120
6121	wq_online = true;
6122	wq_watchdog_init();
6123}
6124
6125/*
6126 * Despite the naming, this is a no-op function which is here only for avoiding
6127 * link error. Since compile-time warning may fail to catch, we will need to
6128 * emit run-time warning from __flush_workqueue().
6129 */
6130void __warn_flushing_systemwide_wq(void) { }
6131EXPORT_SYMBOL(__warn_flushing_systemwide_wq);