Linux Audio

Check our new training course

Loading...
v4.6
   1/*
   2 * kernel/workqueue.c - generic async execution with shared worker pool
   3 *
   4 * Copyright (C) 2002		Ingo Molnar
   5 *
   6 *   Derived from the taskqueue/keventd code by:
   7 *     David Woodhouse <dwmw2@infradead.org>
   8 *     Andrew Morton
   9 *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
  10 *     Theodore Ts'o <tytso@mit.edu>
  11 *
  12 * Made to use alloc_percpu by Christoph Lameter.
  13 *
  14 * Copyright (C) 2010		SUSE Linux Products GmbH
  15 * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
  16 *
  17 * This is the generic async execution mechanism.  Work items as are
  18 * executed in process context.  The worker pool is shared and
  19 * automatically managed.  There are two worker pools for each CPU (one for
  20 * normal work items and the other for high priority ones) and some extra
  21 * pools for workqueues which are not bound to any specific CPU - the
  22 * number of these backing pools is dynamic.
  23 *
  24 * Please read Documentation/workqueue.txt for details.
  25 */
  26
  27#include <linux/export.h>
  28#include <linux/kernel.h>
  29#include <linux/sched.h>
  30#include <linux/init.h>
  31#include <linux/signal.h>
  32#include <linux/completion.h>
  33#include <linux/workqueue.h>
  34#include <linux/slab.h>
  35#include <linux/cpu.h>
  36#include <linux/notifier.h>
  37#include <linux/kthread.h>
  38#include <linux/hardirq.h>
  39#include <linux/mempolicy.h>
  40#include <linux/freezer.h>
  41#include <linux/kallsyms.h>
  42#include <linux/debug_locks.h>
  43#include <linux/lockdep.h>
  44#include <linux/idr.h>
  45#include <linux/jhash.h>
  46#include <linux/hashtable.h>
  47#include <linux/rculist.h>
  48#include <linux/nodemask.h>
  49#include <linux/moduleparam.h>
  50#include <linux/uaccess.h>
  51
  52#include "workqueue_internal.h"
  53
  54enum {
  55	/*
  56	 * worker_pool flags
  57	 *
  58	 * A bound pool is either associated or disassociated with its CPU.
  59	 * While associated (!DISASSOCIATED), all workers are bound to the
  60	 * CPU and none has %WORKER_UNBOUND set and concurrency management
  61	 * is in effect.
  62	 *
  63	 * While DISASSOCIATED, the cpu may be offline and all workers have
  64	 * %WORKER_UNBOUND set and concurrency management disabled, and may
  65	 * be executing on any CPU.  The pool behaves as an unbound one.
  66	 *
  67	 * Note that DISASSOCIATED should be flipped only while holding
  68	 * attach_mutex to avoid changing binding state while
  69	 * worker_attach_to_pool() is in progress.
  70	 */
  71	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
  72
  73	/* worker flags */
  74	WORKER_DIE		= 1 << 1,	/* die die die */
  75	WORKER_IDLE		= 1 << 2,	/* is idle */
  76	WORKER_PREP		= 1 << 3,	/* preparing to run works */
  77	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
  78	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
  79	WORKER_REBOUND		= 1 << 8,	/* worker was rebound */
  80
  81	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_CPU_INTENSIVE |
  82				  WORKER_UNBOUND | WORKER_REBOUND,
  83
  84	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
  85
  86	UNBOUND_POOL_HASH_ORDER	= 6,		/* hashed by pool->attrs */
  87	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
  88
  89	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
  90	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */
  91
  92	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
  93						/* call for help after 10ms
  94						   (min two ticks) */
  95	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
  96	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */
  97
  98	/*
  99	 * Rescue workers are used only on emergencies and shared by
 100	 * all cpus.  Give MIN_NICE.
 101	 */
 102	RESCUER_NICE_LEVEL	= MIN_NICE,
 103	HIGHPRI_NICE_LEVEL	= MIN_NICE,
 104
 105	WQ_NAME_LEN		= 24,
 106};
 107
 108/*
 109 * Structure fields follow one of the following exclusion rules.
 110 *
 111 * I: Modifiable by initialization/destruction paths and read-only for
 112 *    everyone else.
 113 *
 114 * P: Preemption protected.  Disabling preemption is enough and should
 115 *    only be modified and accessed from the local cpu.
 116 *
 117 * L: pool->lock protected.  Access with pool->lock held.
 118 *
 119 * X: During normal operation, modification requires pool->lock and should
 120 *    be done only from local cpu.  Either disabling preemption on local
 121 *    cpu or grabbing pool->lock is enough for read access.  If
 122 *    POOL_DISASSOCIATED is set, it's identical to L.
 123 *
 124 * A: pool->attach_mutex protected.
 125 *
 126 * PL: wq_pool_mutex protected.
 127 *
 128 * PR: wq_pool_mutex protected for writes.  Sched-RCU protected for reads.
 129 *
 130 * PW: wq_pool_mutex and wq->mutex protected for writes.  Either for reads.
 131 *
 132 * PWR: wq_pool_mutex and wq->mutex protected for writes.  Either or
 133 *      sched-RCU for reads.
 134 *
 135 * WQ: wq->mutex protected.
 136 *
 137 * WR: wq->mutex protected for writes.  Sched-RCU protected for reads.
 138 *
 139 * MD: wq_mayday_lock protected.
 140 */
 141
 142/* struct worker is defined in workqueue_internal.h */
 143
 144struct worker_pool {
 145	spinlock_t		lock;		/* the pool lock */
 146	int			cpu;		/* I: the associated cpu */
 147	int			node;		/* I: the associated node ID */
 148	int			id;		/* I: pool ID */
 149	unsigned int		flags;		/* X: flags */
 150
 151	unsigned long		watchdog_ts;	/* L: watchdog timestamp */
 152
 153	struct list_head	worklist;	/* L: list of pending works */
 154	int			nr_workers;	/* L: total number of workers */
 155
 156	/* nr_idle includes the ones off idle_list for rebinding */
 157	int			nr_idle;	/* L: currently idle ones */
 158
 159	struct list_head	idle_list;	/* X: list of idle workers */
 160	struct timer_list	idle_timer;	/* L: worker idle timeout */
 161	struct timer_list	mayday_timer;	/* L: SOS timer for workers */
 162
 163	/* a workers is either on busy_hash or idle_list, or the manager */
 164	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
 165						/* L: hash of busy workers */
 166
 167	/* see manage_workers() for details on the two manager mutexes */
 168	struct mutex		manager_arb;	/* manager arbitration */
 169	struct worker		*manager;	/* L: purely informational */
 170	struct mutex		attach_mutex;	/* attach/detach exclusion */
 171	struct list_head	workers;	/* A: attached workers */
 172	struct completion	*detach_completion; /* all workers detached */
 173
 174	struct ida		worker_ida;	/* worker IDs for task name */
 175
 176	struct workqueue_attrs	*attrs;		/* I: worker attributes */
 177	struct hlist_node	hash_node;	/* PL: unbound_pool_hash node */
 178	int			refcnt;		/* PL: refcnt for unbound pools */
 179
 180	/*
 181	 * The current concurrency level.  As it's likely to be accessed
 182	 * from other CPUs during try_to_wake_up(), put it in a separate
 183	 * cacheline.
 184	 */
 185	atomic_t		nr_running ____cacheline_aligned_in_smp;
 186
 187	/*
 188	 * Destruction of pool is sched-RCU protected to allow dereferences
 189	 * from get_work_pool().
 190	 */
 191	struct rcu_head		rcu;
 192} ____cacheline_aligned_in_smp;
 193
 194/*
 195 * The per-pool workqueue.  While queued, the lower WORK_STRUCT_FLAG_BITS
 196 * of work_struct->data are used for flags and the remaining high bits
 197 * point to the pwq; thus, pwqs need to be aligned at two's power of the
 198 * number of flag bits.
 199 */
 200struct pool_workqueue {
 201	struct worker_pool	*pool;		/* I: the associated pool */
 202	struct workqueue_struct *wq;		/* I: the owning workqueue */
 203	int			work_color;	/* L: current color */
 204	int			flush_color;	/* L: flushing color */
 205	int			refcnt;		/* L: reference count */
 206	int			nr_in_flight[WORK_NR_COLORS];
 207						/* L: nr of in_flight works */
 208	int			nr_active;	/* L: nr of active works */
 209	int			max_active;	/* L: max active works */
 210	struct list_head	delayed_works;	/* L: delayed works */
 211	struct list_head	pwqs_node;	/* WR: node on wq->pwqs */
 212	struct list_head	mayday_node;	/* MD: node on wq->maydays */
 213
 214	/*
 215	 * Release of unbound pwq is punted to system_wq.  See put_pwq()
 216	 * and pwq_unbound_release_workfn() for details.  pool_workqueue
 217	 * itself is also sched-RCU protected so that the first pwq can be
 218	 * determined without grabbing wq->mutex.
 219	 */
 220	struct work_struct	unbound_release_work;
 221	struct rcu_head		rcu;
 222} __aligned(1 << WORK_STRUCT_FLAG_BITS);
 223
 224/*
 225 * Structure used to wait for workqueue flush.
 226 */
 227struct wq_flusher {
 228	struct list_head	list;		/* WQ: list of flushers */
 229	int			flush_color;	/* WQ: flush color waiting for */
 230	struct completion	done;		/* flush completion */
 231};
 232
 233struct wq_device;
 234
 235/*
 236 * The externally visible workqueue.  It relays the issued work items to
 237 * the appropriate worker_pool through its pool_workqueues.
 238 */
 239struct workqueue_struct {
 240	struct list_head	pwqs;		/* WR: all pwqs of this wq */
 241	struct list_head	list;		/* PR: list of all workqueues */
 242
 243	struct mutex		mutex;		/* protects this wq */
 244	int			work_color;	/* WQ: current work color */
 245	int			flush_color;	/* WQ: current flush color */
 246	atomic_t		nr_pwqs_to_flush; /* flush in progress */
 247	struct wq_flusher	*first_flusher;	/* WQ: first flusher */
 248	struct list_head	flusher_queue;	/* WQ: flush waiters */
 249	struct list_head	flusher_overflow; /* WQ: flush overflow list */
 250
 251	struct list_head	maydays;	/* MD: pwqs requesting rescue */
 252	struct worker		*rescuer;	/* I: rescue worker */
 253
 254	int			nr_drainers;	/* WQ: drain in progress */
 255	int			saved_max_active; /* WQ: saved pwq max_active */
 256
 257	struct workqueue_attrs	*unbound_attrs;	/* PW: only for unbound wqs */
 258	struct pool_workqueue	*dfl_pwq;	/* PW: only for unbound wqs */
 259
 260#ifdef CONFIG_SYSFS
 261	struct wq_device	*wq_dev;	/* I: for sysfs interface */
 262#endif
 263#ifdef CONFIG_LOCKDEP
 264	struct lockdep_map	lockdep_map;
 265#endif
 266	char			name[WQ_NAME_LEN]; /* I: workqueue name */
 267
 268	/*
 269	 * Destruction of workqueue_struct is sched-RCU protected to allow
 270	 * walking the workqueues list without grabbing wq_pool_mutex.
 271	 * This is used to dump all workqueues from sysrq.
 272	 */
 273	struct rcu_head		rcu;
 274
 275	/* hot fields used during command issue, aligned to cacheline */
 276	unsigned int		flags ____cacheline_aligned; /* WQ: WQ_* flags */
 277	struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
 278	struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
 279};
 280
 281static struct kmem_cache *pwq_cache;
 282
 283static cpumask_var_t *wq_numa_possible_cpumask;
 284					/* possible CPUs of each node */
 285
 286static bool wq_disable_numa;
 287module_param_named(disable_numa, wq_disable_numa, bool, 0444);
 288
 289/* see the comment above the definition of WQ_POWER_EFFICIENT */
 290static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
 291module_param_named(power_efficient, wq_power_efficient, bool, 0444);
 292
 
 
 293static bool wq_numa_enabled;		/* unbound NUMA affinity enabled */
 294
 295/* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
 296static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
 297
 298static DEFINE_MUTEX(wq_pool_mutex);	/* protects pools and workqueues list */
 299static DEFINE_SPINLOCK(wq_mayday_lock);	/* protects wq->maydays list */
 300
 301static LIST_HEAD(workqueues);		/* PR: list of all workqueues */
 302static bool workqueue_freezing;		/* PL: have wqs started freezing? */
 303
 304/* PL: allowable cpus for unbound wqs and work items */
 305static cpumask_var_t wq_unbound_cpumask;
 306
 307/* CPU where unbound work was last round robin scheduled from this CPU */
 308static DEFINE_PER_CPU(int, wq_rr_cpu_last);
 309
 310/*
 311 * Local execution of unbound work items is no longer guaranteed.  The
 312 * following always forces round-robin CPU selection on unbound work items
 313 * to uncover usages which depend on it.
 314 */
 315#ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
 316static bool wq_debug_force_rr_cpu = true;
 317#else
 318static bool wq_debug_force_rr_cpu = false;
 319#endif
 320module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
 321
 322/* the per-cpu worker pools */
 323static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
 324
 325static DEFINE_IDR(worker_pool_idr);	/* PR: idr of all pools */
 326
 327/* PL: hash of all unbound pools keyed by pool->attrs */
 328static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
 329
 330/* I: attributes used when instantiating standard unbound pools on demand */
 331static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
 332
 333/* I: attributes used when instantiating ordered pools on demand */
 334static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
 335
 336struct workqueue_struct *system_wq __read_mostly;
 337EXPORT_SYMBOL(system_wq);
 338struct workqueue_struct *system_highpri_wq __read_mostly;
 339EXPORT_SYMBOL_GPL(system_highpri_wq);
 340struct workqueue_struct *system_long_wq __read_mostly;
 341EXPORT_SYMBOL_GPL(system_long_wq);
 342struct workqueue_struct *system_unbound_wq __read_mostly;
 343EXPORT_SYMBOL_GPL(system_unbound_wq);
 344struct workqueue_struct *system_freezable_wq __read_mostly;
 345EXPORT_SYMBOL_GPL(system_freezable_wq);
 346struct workqueue_struct *system_power_efficient_wq __read_mostly;
 347EXPORT_SYMBOL_GPL(system_power_efficient_wq);
 348struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
 349EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
 350
 351static int worker_thread(void *__worker);
 352static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
 353
 354#define CREATE_TRACE_POINTS
 355#include <trace/events/workqueue.h>
 356
 357#define assert_rcu_or_pool_mutex()					\
 358	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() &&			\
 359			 !lockdep_is_held(&wq_pool_mutex),		\
 360			 "sched RCU or wq_pool_mutex should be held")
 361
 362#define assert_rcu_or_wq_mutex(wq)					\
 363	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() &&			\
 364			 !lockdep_is_held(&wq->mutex),			\
 365			 "sched RCU or wq->mutex should be held")
 366
 367#define assert_rcu_or_wq_mutex_or_pool_mutex(wq)			\
 368	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() &&			\
 369			 !lockdep_is_held(&wq->mutex) &&		\
 370			 !lockdep_is_held(&wq_pool_mutex),		\
 371			 "sched RCU, wq->mutex or wq_pool_mutex should be held")
 372
 373#define for_each_cpu_worker_pool(pool, cpu)				\
 374	for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];		\
 375	     (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
 376	     (pool)++)
 377
 378/**
 379 * for_each_pool - iterate through all worker_pools in the system
 380 * @pool: iteration cursor
 381 * @pi: integer used for iteration
 382 *
 383 * This must be called either with wq_pool_mutex held or sched RCU read
 384 * locked.  If the pool needs to be used beyond the locking in effect, the
 385 * caller is responsible for guaranteeing that the pool stays online.
 386 *
 387 * The if/else clause exists only for the lockdep assertion and can be
 388 * ignored.
 389 */
 390#define for_each_pool(pool, pi)						\
 391	idr_for_each_entry(&worker_pool_idr, pool, pi)			\
 392		if (({ assert_rcu_or_pool_mutex(); false; })) { }	\
 393		else
 394
 395/**
 396 * for_each_pool_worker - iterate through all workers of a worker_pool
 397 * @worker: iteration cursor
 398 * @pool: worker_pool to iterate workers of
 399 *
 400 * This must be called with @pool->attach_mutex.
 401 *
 402 * The if/else clause exists only for the lockdep assertion and can be
 403 * ignored.
 404 */
 405#define for_each_pool_worker(worker, pool)				\
 406	list_for_each_entry((worker), &(pool)->workers, node)		\
 407		if (({ lockdep_assert_held(&pool->attach_mutex); false; })) { } \
 408		else
 409
 410/**
 411 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
 412 * @pwq: iteration cursor
 413 * @wq: the target workqueue
 414 *
 415 * This must be called either with wq->mutex held or sched RCU read locked.
 416 * If the pwq needs to be used beyond the locking in effect, the caller is
 417 * responsible for guaranteeing that the pwq stays online.
 418 *
 419 * The if/else clause exists only for the lockdep assertion and can be
 420 * ignored.
 421 */
 422#define for_each_pwq(pwq, wq)						\
 423	list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node)		\
 424		if (({ assert_rcu_or_wq_mutex(wq); false; })) { }	\
 425		else
 426
 427#ifdef CONFIG_DEBUG_OBJECTS_WORK
 428
 429static struct debug_obj_descr work_debug_descr;
 430
 431static void *work_debug_hint(void *addr)
 432{
 433	return ((struct work_struct *) addr)->func;
 434}
 435
 436/*
 437 * fixup_init is called when:
 438 * - an active object is initialized
 439 */
 440static int work_fixup_init(void *addr, enum debug_obj_state state)
 441{
 442	struct work_struct *work = addr;
 443
 444	switch (state) {
 445	case ODEBUG_STATE_ACTIVE:
 446		cancel_work_sync(work);
 447		debug_object_init(work, &work_debug_descr);
 448		return 1;
 449	default:
 450		return 0;
 451	}
 452}
 453
 454/*
 455 * fixup_activate is called when:
 456 * - an active object is activated
 457 * - an unknown object is activated (might be a statically initialized object)
 458 */
 459static int work_fixup_activate(void *addr, enum debug_obj_state state)
 460{
 461	struct work_struct *work = addr;
 462
 463	switch (state) {
 464
 465	case ODEBUG_STATE_NOTAVAILABLE:
 466		/*
 467		 * This is not really a fixup. The work struct was
 468		 * statically initialized. We just make sure that it
 469		 * is tracked in the object tracker.
 470		 */
 471		if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
 472			debug_object_init(work, &work_debug_descr);
 473			debug_object_activate(work, &work_debug_descr);
 474			return 0;
 475		}
 476		WARN_ON_ONCE(1);
 477		return 0;
 478
 479	case ODEBUG_STATE_ACTIVE:
 480		WARN_ON(1);
 481
 
 482	default:
 483		return 0;
 484	}
 485}
 486
 487/*
 488 * fixup_free is called when:
 489 * - an active object is freed
 490 */
 491static int work_fixup_free(void *addr, enum debug_obj_state state)
 492{
 493	struct work_struct *work = addr;
 494
 495	switch (state) {
 496	case ODEBUG_STATE_ACTIVE:
 497		cancel_work_sync(work);
 498		debug_object_free(work, &work_debug_descr);
 499		return 1;
 500	default:
 501		return 0;
 502	}
 503}
 504
 505static struct debug_obj_descr work_debug_descr = {
 506	.name		= "work_struct",
 507	.debug_hint	= work_debug_hint,
 
 508	.fixup_init	= work_fixup_init,
 509	.fixup_activate	= work_fixup_activate,
 510	.fixup_free	= work_fixup_free,
 511};
 512
 513static inline void debug_work_activate(struct work_struct *work)
 514{
 515	debug_object_activate(work, &work_debug_descr);
 516}
 517
 518static inline void debug_work_deactivate(struct work_struct *work)
 519{
 520	debug_object_deactivate(work, &work_debug_descr);
 521}
 522
 523void __init_work(struct work_struct *work, int onstack)
 524{
 525	if (onstack)
 526		debug_object_init_on_stack(work, &work_debug_descr);
 527	else
 528		debug_object_init(work, &work_debug_descr);
 529}
 530EXPORT_SYMBOL_GPL(__init_work);
 531
 532void destroy_work_on_stack(struct work_struct *work)
 533{
 534	debug_object_free(work, &work_debug_descr);
 535}
 536EXPORT_SYMBOL_GPL(destroy_work_on_stack);
 537
 538void destroy_delayed_work_on_stack(struct delayed_work *work)
 539{
 540	destroy_timer_on_stack(&work->timer);
 541	debug_object_free(&work->work, &work_debug_descr);
 542}
 543EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
 544
 545#else
 546static inline void debug_work_activate(struct work_struct *work) { }
 547static inline void debug_work_deactivate(struct work_struct *work) { }
 548#endif
 549
 550/**
 551 * worker_pool_assign_id - allocate ID and assing it to @pool
 552 * @pool: the pool pointer of interest
 553 *
 554 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
 555 * successfully, -errno on failure.
 556 */
 557static int worker_pool_assign_id(struct worker_pool *pool)
 558{
 559	int ret;
 560
 561	lockdep_assert_held(&wq_pool_mutex);
 562
 563	ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
 564			GFP_KERNEL);
 565	if (ret >= 0) {
 566		pool->id = ret;
 567		return 0;
 568	}
 569	return ret;
 570}
 571
 572/**
 573 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
 574 * @wq: the target workqueue
 575 * @node: the node ID
 576 *
 577 * This must be called with any of wq_pool_mutex, wq->mutex or sched RCU
 578 * read locked.
 579 * If the pwq needs to be used beyond the locking in effect, the caller is
 580 * responsible for guaranteeing that the pwq stays online.
 581 *
 582 * Return: The unbound pool_workqueue for @node.
 583 */
 584static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
 585						  int node)
 586{
 587	assert_rcu_or_wq_mutex_or_pool_mutex(wq);
 588
 589	/*
 590	 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a
 591	 * delayed item is pending.  The plan is to keep CPU -> NODE
 592	 * mapping valid and stable across CPU on/offlines.  Once that
 593	 * happens, this workaround can be removed.
 594	 */
 595	if (unlikely(node == NUMA_NO_NODE))
 596		return wq->dfl_pwq;
 597
 598	return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
 599}
 600
 601static unsigned int work_color_to_flags(int color)
 602{
 603	return color << WORK_STRUCT_COLOR_SHIFT;
 604}
 605
 606static int get_work_color(struct work_struct *work)
 607{
 608	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
 609		((1 << WORK_STRUCT_COLOR_BITS) - 1);
 610}
 611
 612static int work_next_color(int color)
 613{
 614	return (color + 1) % WORK_NR_COLORS;
 615}
 616
 617/*
 618 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
 619 * contain the pointer to the queued pwq.  Once execution starts, the flag
 620 * is cleared and the high bits contain OFFQ flags and pool ID.
 621 *
 622 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
 623 * and clear_work_data() can be used to set the pwq, pool or clear
 624 * work->data.  These functions should only be called while the work is
 625 * owned - ie. while the PENDING bit is set.
 626 *
 627 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
 628 * corresponding to a work.  Pool is available once the work has been
 629 * queued anywhere after initialization until it is sync canceled.  pwq is
 630 * available only while the work item is queued.
 631 *
 632 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
 633 * canceled.  While being canceled, a work item may have its PENDING set
 634 * but stay off timer and worklist for arbitrarily long and nobody should
 635 * try to steal the PENDING bit.
 636 */
 637static inline void set_work_data(struct work_struct *work, unsigned long data,
 638				 unsigned long flags)
 639{
 640	WARN_ON_ONCE(!work_pending(work));
 641	atomic_long_set(&work->data, data | flags | work_static(work));
 642}
 643
 644static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
 645			 unsigned long extra_flags)
 646{
 647	set_work_data(work, (unsigned long)pwq,
 648		      WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
 649}
 650
 651static void set_work_pool_and_keep_pending(struct work_struct *work,
 652					   int pool_id)
 653{
 654	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
 655		      WORK_STRUCT_PENDING);
 656}
 657
 658static void set_work_pool_and_clear_pending(struct work_struct *work,
 659					    int pool_id)
 660{
 661	/*
 662	 * The following wmb is paired with the implied mb in
 663	 * test_and_set_bit(PENDING) and ensures all updates to @work made
 664	 * here are visible to and precede any updates by the next PENDING
 665	 * owner.
 666	 */
 667	smp_wmb();
 668	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
 669	/*
 670	 * The following mb guarantees that previous clear of a PENDING bit
 671	 * will not be reordered with any speculative LOADS or STORES from
 672	 * work->current_func, which is executed afterwards.  This possible
 673	 * reordering can lead to a missed execution on attempt to qeueue
 674	 * the same @work.  E.g. consider this case:
 675	 *
 676	 *   CPU#0                         CPU#1
 677	 *   ----------------------------  --------------------------------
 678	 *
 679	 * 1  STORE event_indicated
 680	 * 2  queue_work_on() {
 681	 * 3    test_and_set_bit(PENDING)
 682	 * 4 }                             set_..._and_clear_pending() {
 683	 * 5                                 set_work_data() # clear bit
 684	 * 6                                 smp_mb()
 685	 * 7                               work->current_func() {
 686	 * 8				      LOAD event_indicated
 687	 *				   }
 688	 *
 689	 * Without an explicit full barrier speculative LOAD on line 8 can
 690	 * be executed before CPU#0 does STORE on line 1.  If that happens,
 691	 * CPU#0 observes the PENDING bit is still set and new execution of
 692	 * a @work is not queued in a hope, that CPU#1 will eventually
 693	 * finish the queued @work.  Meanwhile CPU#1 does not see
 694	 * event_indicated is set, because speculative LOAD was executed
 695	 * before actual STORE.
 696	 */
 697	smp_mb();
 698}
 699
 700static void clear_work_data(struct work_struct *work)
 701{
 702	smp_wmb();	/* see set_work_pool_and_clear_pending() */
 703	set_work_data(work, WORK_STRUCT_NO_POOL, 0);
 704}
 705
 706static struct pool_workqueue *get_work_pwq(struct work_struct *work)
 707{
 708	unsigned long data = atomic_long_read(&work->data);
 709
 710	if (data & WORK_STRUCT_PWQ)
 711		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
 712	else
 713		return NULL;
 714}
 715
 716/**
 717 * get_work_pool - return the worker_pool a given work was associated with
 718 * @work: the work item of interest
 719 *
 720 * Pools are created and destroyed under wq_pool_mutex, and allows read
 721 * access under sched-RCU read lock.  As such, this function should be
 722 * called under wq_pool_mutex or with preemption disabled.
 723 *
 724 * All fields of the returned pool are accessible as long as the above
 725 * mentioned locking is in effect.  If the returned pool needs to be used
 726 * beyond the critical section, the caller is responsible for ensuring the
 727 * returned pool is and stays online.
 728 *
 729 * Return: The worker_pool @work was last associated with.  %NULL if none.
 730 */
 731static struct worker_pool *get_work_pool(struct work_struct *work)
 732{
 733	unsigned long data = atomic_long_read(&work->data);
 734	int pool_id;
 735
 736	assert_rcu_or_pool_mutex();
 737
 738	if (data & WORK_STRUCT_PWQ)
 739		return ((struct pool_workqueue *)
 740			(data & WORK_STRUCT_WQ_DATA_MASK))->pool;
 741
 742	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
 743	if (pool_id == WORK_OFFQ_POOL_NONE)
 744		return NULL;
 745
 746	return idr_find(&worker_pool_idr, pool_id);
 747}
 748
 749/**
 750 * get_work_pool_id - return the worker pool ID a given work is associated with
 751 * @work: the work item of interest
 752 *
 753 * Return: The worker_pool ID @work was last associated with.
 754 * %WORK_OFFQ_POOL_NONE if none.
 755 */
 756static int get_work_pool_id(struct work_struct *work)
 757{
 758	unsigned long data = atomic_long_read(&work->data);
 759
 760	if (data & WORK_STRUCT_PWQ)
 761		return ((struct pool_workqueue *)
 762			(data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
 763
 764	return data >> WORK_OFFQ_POOL_SHIFT;
 765}
 766
 767static void mark_work_canceling(struct work_struct *work)
 768{
 769	unsigned long pool_id = get_work_pool_id(work);
 770
 771	pool_id <<= WORK_OFFQ_POOL_SHIFT;
 772	set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
 773}
 774
 775static bool work_is_canceling(struct work_struct *work)
 776{
 777	unsigned long data = atomic_long_read(&work->data);
 778
 779	return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
 780}
 781
 782/*
 783 * Policy functions.  These define the policies on how the global worker
 784 * pools are managed.  Unless noted otherwise, these functions assume that
 785 * they're being called with pool->lock held.
 786 */
 787
 788static bool __need_more_worker(struct worker_pool *pool)
 789{
 790	return !atomic_read(&pool->nr_running);
 791}
 792
 793/*
 794 * Need to wake up a worker?  Called from anything but currently
 795 * running workers.
 796 *
 797 * Note that, because unbound workers never contribute to nr_running, this
 798 * function will always return %true for unbound pools as long as the
 799 * worklist isn't empty.
 800 */
 801static bool need_more_worker(struct worker_pool *pool)
 802{
 803	return !list_empty(&pool->worklist) && __need_more_worker(pool);
 804}
 805
 806/* Can I start working?  Called from busy but !running workers. */
 807static bool may_start_working(struct worker_pool *pool)
 808{
 809	return pool->nr_idle;
 810}
 811
 812/* Do I need to keep working?  Called from currently running workers. */
 813static bool keep_working(struct worker_pool *pool)
 814{
 815	return !list_empty(&pool->worklist) &&
 816		atomic_read(&pool->nr_running) <= 1;
 817}
 818
 819/* Do we need a new worker?  Called from manager. */
 820static bool need_to_create_worker(struct worker_pool *pool)
 821{
 822	return need_more_worker(pool) && !may_start_working(pool);
 823}
 824
 825/* Do we have too many workers and should some go away? */
 826static bool too_many_workers(struct worker_pool *pool)
 827{
 828	bool managing = mutex_is_locked(&pool->manager_arb);
 829	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
 830	int nr_busy = pool->nr_workers - nr_idle;
 831
 832	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
 833}
 834
 835/*
 836 * Wake up functions.
 837 */
 838
 839/* Return the first idle worker.  Safe with preemption disabled */
 840static struct worker *first_idle_worker(struct worker_pool *pool)
 841{
 842	if (unlikely(list_empty(&pool->idle_list)))
 843		return NULL;
 844
 845	return list_first_entry(&pool->idle_list, struct worker, entry);
 846}
 847
 848/**
 849 * wake_up_worker - wake up an idle worker
 850 * @pool: worker pool to wake worker from
 851 *
 852 * Wake up the first idle worker of @pool.
 853 *
 854 * CONTEXT:
 855 * spin_lock_irq(pool->lock).
 856 */
 857static void wake_up_worker(struct worker_pool *pool)
 858{
 859	struct worker *worker = first_idle_worker(pool);
 860
 861	if (likely(worker))
 862		wake_up_process(worker->task);
 863}
 864
 865/**
 866 * wq_worker_waking_up - a worker is waking up
 867 * @task: task waking up
 868 * @cpu: CPU @task is waking up to
 869 *
 870 * This function is called during try_to_wake_up() when a worker is
 871 * being awoken.
 872 *
 873 * CONTEXT:
 874 * spin_lock_irq(rq->lock)
 875 */
 876void wq_worker_waking_up(struct task_struct *task, int cpu)
 877{
 878	struct worker *worker = kthread_data(task);
 879
 880	if (!(worker->flags & WORKER_NOT_RUNNING)) {
 881		WARN_ON_ONCE(worker->pool->cpu != cpu);
 882		atomic_inc(&worker->pool->nr_running);
 883	}
 884}
 885
 886/**
 887 * wq_worker_sleeping - a worker is going to sleep
 888 * @task: task going to sleep
 889 *
 890 * This function is called during schedule() when a busy worker is
 891 * going to sleep.  Worker on the same cpu can be woken up by
 892 * returning pointer to its task.
 893 *
 894 * CONTEXT:
 895 * spin_lock_irq(rq->lock)
 896 *
 897 * Return:
 898 * Worker task on @cpu to wake up, %NULL if none.
 899 */
 900struct task_struct *wq_worker_sleeping(struct task_struct *task)
 901{
 902	struct worker *worker = kthread_data(task), *to_wakeup = NULL;
 903	struct worker_pool *pool;
 904
 905	/*
 906	 * Rescuers, which may not have all the fields set up like normal
 907	 * workers, also reach here, let's not access anything before
 908	 * checking NOT_RUNNING.
 909	 */
 910	if (worker->flags & WORKER_NOT_RUNNING)
 911		return NULL;
 912
 913	pool = worker->pool;
 914
 915	/* this can only happen on the local cpu */
 916	if (WARN_ON_ONCE(pool->cpu != raw_smp_processor_id()))
 917		return NULL;
 918
 919	/*
 920	 * The counterpart of the following dec_and_test, implied mb,
 921	 * worklist not empty test sequence is in insert_work().
 922	 * Please read comment there.
 923	 *
 924	 * NOT_RUNNING is clear.  This means that we're bound to and
 925	 * running on the local cpu w/ rq lock held and preemption
 926	 * disabled, which in turn means that none else could be
 927	 * manipulating idle_list, so dereferencing idle_list without pool
 928	 * lock is safe.
 929	 */
 930	if (atomic_dec_and_test(&pool->nr_running) &&
 931	    !list_empty(&pool->worklist))
 932		to_wakeup = first_idle_worker(pool);
 933	return to_wakeup ? to_wakeup->task : NULL;
 934}
 935
 936/**
 937 * worker_set_flags - set worker flags and adjust nr_running accordingly
 938 * @worker: self
 939 * @flags: flags to set
 940 *
 941 * Set @flags in @worker->flags and adjust nr_running accordingly.
 942 *
 943 * CONTEXT:
 944 * spin_lock_irq(pool->lock)
 945 */
 946static inline void worker_set_flags(struct worker *worker, unsigned int flags)
 947{
 948	struct worker_pool *pool = worker->pool;
 949
 950	WARN_ON_ONCE(worker->task != current);
 951
 952	/* If transitioning into NOT_RUNNING, adjust nr_running. */
 953	if ((flags & WORKER_NOT_RUNNING) &&
 954	    !(worker->flags & WORKER_NOT_RUNNING)) {
 955		atomic_dec(&pool->nr_running);
 956	}
 957
 958	worker->flags |= flags;
 959}
 960
 961/**
 962 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
 963 * @worker: self
 964 * @flags: flags to clear
 965 *
 966 * Clear @flags in @worker->flags and adjust nr_running accordingly.
 967 *
 968 * CONTEXT:
 969 * spin_lock_irq(pool->lock)
 970 */
 971static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
 972{
 973	struct worker_pool *pool = worker->pool;
 974	unsigned int oflags = worker->flags;
 975
 976	WARN_ON_ONCE(worker->task != current);
 977
 978	worker->flags &= ~flags;
 979
 980	/*
 981	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
 982	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
 983	 * of multiple flags, not a single flag.
 984	 */
 985	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
 986		if (!(worker->flags & WORKER_NOT_RUNNING))
 987			atomic_inc(&pool->nr_running);
 988}
 989
 990/**
 991 * find_worker_executing_work - find worker which is executing a work
 992 * @pool: pool of interest
 993 * @work: work to find worker for
 994 *
 995 * Find a worker which is executing @work on @pool by searching
 996 * @pool->busy_hash which is keyed by the address of @work.  For a worker
 997 * to match, its current execution should match the address of @work and
 998 * its work function.  This is to avoid unwanted dependency between
 999 * unrelated work executions through a work item being recycled while still
1000 * being executed.
1001 *
1002 * This is a bit tricky.  A work item may be freed once its execution
1003 * starts and nothing prevents the freed area from being recycled for
1004 * another work item.  If the same work item address ends up being reused
1005 * before the original execution finishes, workqueue will identify the
1006 * recycled work item as currently executing and make it wait until the
1007 * current execution finishes, introducing an unwanted dependency.
1008 *
1009 * This function checks the work item address and work function to avoid
1010 * false positives.  Note that this isn't complete as one may construct a
1011 * work function which can introduce dependency onto itself through a
1012 * recycled work item.  Well, if somebody wants to shoot oneself in the
1013 * foot that badly, there's only so much we can do, and if such deadlock
1014 * actually occurs, it should be easy to locate the culprit work function.
1015 *
1016 * CONTEXT:
1017 * spin_lock_irq(pool->lock).
1018 *
1019 * Return:
1020 * Pointer to worker which is executing @work if found, %NULL
1021 * otherwise.
1022 */
1023static struct worker *find_worker_executing_work(struct worker_pool *pool,
1024						 struct work_struct *work)
1025{
1026	struct worker *worker;
1027
1028	hash_for_each_possible(pool->busy_hash, worker, hentry,
1029			       (unsigned long)work)
1030		if (worker->current_work == work &&
1031		    worker->current_func == work->func)
1032			return worker;
1033
1034	return NULL;
1035}
1036
1037/**
1038 * move_linked_works - move linked works to a list
1039 * @work: start of series of works to be scheduled
1040 * @head: target list to append @work to
1041 * @nextp: out parameter for nested worklist walking
1042 *
1043 * Schedule linked works starting from @work to @head.  Work series to
1044 * be scheduled starts at @work and includes any consecutive work with
1045 * WORK_STRUCT_LINKED set in its predecessor.
1046 *
1047 * If @nextp is not NULL, it's updated to point to the next work of
1048 * the last scheduled work.  This allows move_linked_works() to be
1049 * nested inside outer list_for_each_entry_safe().
1050 *
1051 * CONTEXT:
1052 * spin_lock_irq(pool->lock).
1053 */
1054static void move_linked_works(struct work_struct *work, struct list_head *head,
1055			      struct work_struct **nextp)
1056{
1057	struct work_struct *n;
1058
1059	/*
1060	 * Linked worklist will always end before the end of the list,
1061	 * use NULL for list head.
1062	 */
1063	list_for_each_entry_safe_from(work, n, NULL, entry) {
1064		list_move_tail(&work->entry, head);
1065		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1066			break;
1067	}
1068
1069	/*
1070	 * If we're already inside safe list traversal and have moved
1071	 * multiple works to the scheduled queue, the next position
1072	 * needs to be updated.
1073	 */
1074	if (nextp)
1075		*nextp = n;
1076}
1077
1078/**
1079 * get_pwq - get an extra reference on the specified pool_workqueue
1080 * @pwq: pool_workqueue to get
1081 *
1082 * Obtain an extra reference on @pwq.  The caller should guarantee that
1083 * @pwq has positive refcnt and be holding the matching pool->lock.
1084 */
1085static void get_pwq(struct pool_workqueue *pwq)
1086{
1087	lockdep_assert_held(&pwq->pool->lock);
1088	WARN_ON_ONCE(pwq->refcnt <= 0);
1089	pwq->refcnt++;
1090}
1091
1092/**
1093 * put_pwq - put a pool_workqueue reference
1094 * @pwq: pool_workqueue to put
1095 *
1096 * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
1097 * destruction.  The caller should be holding the matching pool->lock.
1098 */
1099static void put_pwq(struct pool_workqueue *pwq)
1100{
1101	lockdep_assert_held(&pwq->pool->lock);
1102	if (likely(--pwq->refcnt))
1103		return;
1104	if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1105		return;
1106	/*
1107	 * @pwq can't be released under pool->lock, bounce to
1108	 * pwq_unbound_release_workfn().  This never recurses on the same
1109	 * pool->lock as this path is taken only for unbound workqueues and
1110	 * the release work item is scheduled on a per-cpu workqueue.  To
1111	 * avoid lockdep warning, unbound pool->locks are given lockdep
1112	 * subclass of 1 in get_unbound_pool().
1113	 */
1114	schedule_work(&pwq->unbound_release_work);
1115}
1116
1117/**
1118 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1119 * @pwq: pool_workqueue to put (can be %NULL)
1120 *
1121 * put_pwq() with locking.  This function also allows %NULL @pwq.
1122 */
1123static void put_pwq_unlocked(struct pool_workqueue *pwq)
1124{
1125	if (pwq) {
1126		/*
1127		 * As both pwqs and pools are sched-RCU protected, the
1128		 * following lock operations are safe.
1129		 */
1130		spin_lock_irq(&pwq->pool->lock);
1131		put_pwq(pwq);
1132		spin_unlock_irq(&pwq->pool->lock);
1133	}
1134}
1135
1136static void pwq_activate_delayed_work(struct work_struct *work)
1137{
1138	struct pool_workqueue *pwq = get_work_pwq(work);
1139
1140	trace_workqueue_activate_work(work);
1141	if (list_empty(&pwq->pool->worklist))
1142		pwq->pool->watchdog_ts = jiffies;
1143	move_linked_works(work, &pwq->pool->worklist, NULL);
1144	__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1145	pwq->nr_active++;
1146}
1147
1148static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1149{
1150	struct work_struct *work = list_first_entry(&pwq->delayed_works,
1151						    struct work_struct, entry);
1152
1153	pwq_activate_delayed_work(work);
1154}
1155
1156/**
1157 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1158 * @pwq: pwq of interest
1159 * @color: color of work which left the queue
1160 *
1161 * A work either has completed or is removed from pending queue,
1162 * decrement nr_in_flight of its pwq and handle workqueue flushing.
1163 *
1164 * CONTEXT:
1165 * spin_lock_irq(pool->lock).
1166 */
1167static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1168{
1169	/* uncolored work items don't participate in flushing or nr_active */
1170	if (color == WORK_NO_COLOR)
1171		goto out_put;
1172
1173	pwq->nr_in_flight[color]--;
1174
1175	pwq->nr_active--;
1176	if (!list_empty(&pwq->delayed_works)) {
1177		/* one down, submit a delayed one */
1178		if (pwq->nr_active < pwq->max_active)
1179			pwq_activate_first_delayed(pwq);
1180	}
1181
1182	/* is flush in progress and are we at the flushing tip? */
1183	if (likely(pwq->flush_color != color))
1184		goto out_put;
1185
1186	/* are there still in-flight works? */
1187	if (pwq->nr_in_flight[color])
1188		goto out_put;
1189
1190	/* this pwq is done, clear flush_color */
1191	pwq->flush_color = -1;
1192
1193	/*
1194	 * If this was the last pwq, wake up the first flusher.  It
1195	 * will handle the rest.
1196	 */
1197	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1198		complete(&pwq->wq->first_flusher->done);
1199out_put:
1200	put_pwq(pwq);
1201}
1202
1203/**
1204 * try_to_grab_pending - steal work item from worklist and disable irq
1205 * @work: work item to steal
1206 * @is_dwork: @work is a delayed_work
1207 * @flags: place to store irq state
1208 *
1209 * Try to grab PENDING bit of @work.  This function can handle @work in any
1210 * stable state - idle, on timer or on worklist.
1211 *
1212 * Return:
1213 *  1		if @work was pending and we successfully stole PENDING
1214 *  0		if @work was idle and we claimed PENDING
1215 *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1216 *  -ENOENT	if someone else is canceling @work, this state may persist
1217 *		for arbitrarily long
1218 *
1219 * Note:
1220 * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1221 * interrupted while holding PENDING and @work off queue, irq must be
1222 * disabled on entry.  This, combined with delayed_work->timer being
1223 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1224 *
1225 * On successful return, >= 0, irq is disabled and the caller is
1226 * responsible for releasing it using local_irq_restore(*@flags).
1227 *
1228 * This function is safe to call from any context including IRQ handler.
1229 */
1230static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1231			       unsigned long *flags)
1232{
1233	struct worker_pool *pool;
1234	struct pool_workqueue *pwq;
1235
1236	local_irq_save(*flags);
1237
1238	/* try to steal the timer if it exists */
1239	if (is_dwork) {
1240		struct delayed_work *dwork = to_delayed_work(work);
1241
1242		/*
1243		 * dwork->timer is irqsafe.  If del_timer() fails, it's
1244		 * guaranteed that the timer is not queued anywhere and not
1245		 * running on the local CPU.
1246		 */
1247		if (likely(del_timer(&dwork->timer)))
1248			return 1;
1249	}
1250
1251	/* try to claim PENDING the normal way */
1252	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1253		return 0;
1254
1255	/*
1256	 * The queueing is in progress, or it is already queued. Try to
1257	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1258	 */
1259	pool = get_work_pool(work);
1260	if (!pool)
1261		goto fail;
1262
1263	spin_lock(&pool->lock);
1264	/*
1265	 * work->data is guaranteed to point to pwq only while the work
1266	 * item is queued on pwq->wq, and both updating work->data to point
1267	 * to pwq on queueing and to pool on dequeueing are done under
1268	 * pwq->pool->lock.  This in turn guarantees that, if work->data
1269	 * points to pwq which is associated with a locked pool, the work
1270	 * item is currently queued on that pool.
1271	 */
1272	pwq = get_work_pwq(work);
1273	if (pwq && pwq->pool == pool) {
1274		debug_work_deactivate(work);
1275
1276		/*
1277		 * A delayed work item cannot be grabbed directly because
1278		 * it might have linked NO_COLOR work items which, if left
1279		 * on the delayed_list, will confuse pwq->nr_active
1280		 * management later on and cause stall.  Make sure the work
1281		 * item is activated before grabbing.
1282		 */
1283		if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1284			pwq_activate_delayed_work(work);
1285
1286		list_del_init(&work->entry);
1287		pwq_dec_nr_in_flight(pwq, get_work_color(work));
1288
1289		/* work->data points to pwq iff queued, point to pool */
1290		set_work_pool_and_keep_pending(work, pool->id);
1291
1292		spin_unlock(&pool->lock);
1293		return 1;
1294	}
1295	spin_unlock(&pool->lock);
1296fail:
1297	local_irq_restore(*flags);
1298	if (work_is_canceling(work))
1299		return -ENOENT;
1300	cpu_relax();
1301	return -EAGAIN;
1302}
1303
1304/**
1305 * insert_work - insert a work into a pool
1306 * @pwq: pwq @work belongs to
1307 * @work: work to insert
1308 * @head: insertion point
1309 * @extra_flags: extra WORK_STRUCT_* flags to set
1310 *
1311 * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
1312 * work_struct flags.
1313 *
1314 * CONTEXT:
1315 * spin_lock_irq(pool->lock).
1316 */
1317static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1318			struct list_head *head, unsigned int extra_flags)
1319{
1320	struct worker_pool *pool = pwq->pool;
1321
1322	/* we own @work, set data and link */
1323	set_work_pwq(work, pwq, extra_flags);
1324	list_add_tail(&work->entry, head);
1325	get_pwq(pwq);
1326
1327	/*
1328	 * Ensure either wq_worker_sleeping() sees the above
1329	 * list_add_tail() or we see zero nr_running to avoid workers lying
1330	 * around lazily while there are works to be processed.
1331	 */
1332	smp_mb();
1333
1334	if (__need_more_worker(pool))
1335		wake_up_worker(pool);
1336}
1337
1338/*
1339 * Test whether @work is being queued from another work executing on the
1340 * same workqueue.
1341 */
1342static bool is_chained_work(struct workqueue_struct *wq)
1343{
1344	struct worker *worker;
1345
1346	worker = current_wq_worker();
1347	/*
1348	 * Return %true iff I'm a worker execuing a work item on @wq.  If
1349	 * I'm @worker, it's safe to dereference it without locking.
1350	 */
1351	return worker && worker->current_pwq->wq == wq;
1352}
1353
1354/*
1355 * When queueing an unbound work item to a wq, prefer local CPU if allowed
1356 * by wq_unbound_cpumask.  Otherwise, round robin among the allowed ones to
1357 * avoid perturbing sensitive tasks.
1358 */
1359static int wq_select_unbound_cpu(int cpu)
1360{
1361	static bool printed_dbg_warning;
1362	int new_cpu;
1363
1364	if (likely(!wq_debug_force_rr_cpu)) {
1365		if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
1366			return cpu;
1367	} else if (!printed_dbg_warning) {
1368		pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n");
1369		printed_dbg_warning = true;
1370	}
1371
1372	if (cpumask_empty(wq_unbound_cpumask))
1373		return cpu;
1374
1375	new_cpu = __this_cpu_read(wq_rr_cpu_last);
1376	new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
1377	if (unlikely(new_cpu >= nr_cpu_ids)) {
1378		new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
1379		if (unlikely(new_cpu >= nr_cpu_ids))
1380			return cpu;
1381	}
1382	__this_cpu_write(wq_rr_cpu_last, new_cpu);
1383
1384	return new_cpu;
1385}
1386
1387static void __queue_work(int cpu, struct workqueue_struct *wq,
1388			 struct work_struct *work)
1389{
1390	struct pool_workqueue *pwq;
1391	struct worker_pool *last_pool;
1392	struct list_head *worklist;
1393	unsigned int work_flags;
1394	unsigned int req_cpu = cpu;
1395
1396	/*
1397	 * While a work item is PENDING && off queue, a task trying to
1398	 * steal the PENDING will busy-loop waiting for it to either get
1399	 * queued or lose PENDING.  Grabbing PENDING and queueing should
1400	 * happen with IRQ disabled.
1401	 */
1402	WARN_ON_ONCE(!irqs_disabled());
1403
1404	debug_work_activate(work);
1405
1406	/* if draining, only works from the same workqueue are allowed */
1407	if (unlikely(wq->flags & __WQ_DRAINING) &&
1408	    WARN_ON_ONCE(!is_chained_work(wq)))
1409		return;
1410retry:
1411	if (req_cpu == WORK_CPU_UNBOUND)
1412		cpu = wq_select_unbound_cpu(raw_smp_processor_id());
1413
1414	/* pwq which will be used unless @work is executing elsewhere */
1415	if (!(wq->flags & WQ_UNBOUND))
1416		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1417	else
1418		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1419
1420	/*
1421	 * If @work was previously on a different pool, it might still be
1422	 * running there, in which case the work needs to be queued on that
1423	 * pool to guarantee non-reentrancy.
1424	 */
1425	last_pool = get_work_pool(work);
1426	if (last_pool && last_pool != pwq->pool) {
1427		struct worker *worker;
1428
1429		spin_lock(&last_pool->lock);
1430
1431		worker = find_worker_executing_work(last_pool, work);
1432
1433		if (worker && worker->current_pwq->wq == wq) {
1434			pwq = worker->current_pwq;
1435		} else {
1436			/* meh... not running there, queue here */
1437			spin_unlock(&last_pool->lock);
1438			spin_lock(&pwq->pool->lock);
1439		}
1440	} else {
1441		spin_lock(&pwq->pool->lock);
1442	}
1443
1444	/*
1445	 * pwq is determined and locked.  For unbound pools, we could have
1446	 * raced with pwq release and it could already be dead.  If its
1447	 * refcnt is zero, repeat pwq selection.  Note that pwqs never die
1448	 * without another pwq replacing it in the numa_pwq_tbl or while
1449	 * work items are executing on it, so the retrying is guaranteed to
1450	 * make forward-progress.
1451	 */
1452	if (unlikely(!pwq->refcnt)) {
1453		if (wq->flags & WQ_UNBOUND) {
1454			spin_unlock(&pwq->pool->lock);
1455			cpu_relax();
1456			goto retry;
1457		}
1458		/* oops */
1459		WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1460			  wq->name, cpu);
1461	}
1462
1463	/* pwq determined, queue */
1464	trace_workqueue_queue_work(req_cpu, pwq, work);
1465
1466	if (WARN_ON(!list_empty(&work->entry))) {
1467		spin_unlock(&pwq->pool->lock);
1468		return;
1469	}
1470
1471	pwq->nr_in_flight[pwq->work_color]++;
1472	work_flags = work_color_to_flags(pwq->work_color);
1473
1474	if (likely(pwq->nr_active < pwq->max_active)) {
1475		trace_workqueue_activate_work(work);
1476		pwq->nr_active++;
1477		worklist = &pwq->pool->worklist;
1478		if (list_empty(worklist))
1479			pwq->pool->watchdog_ts = jiffies;
1480	} else {
1481		work_flags |= WORK_STRUCT_DELAYED;
1482		worklist = &pwq->delayed_works;
1483	}
1484
1485	insert_work(pwq, work, worklist, work_flags);
1486
1487	spin_unlock(&pwq->pool->lock);
1488}
1489
1490/**
1491 * queue_work_on - queue work on specific cpu
1492 * @cpu: CPU number to execute work on
1493 * @wq: workqueue to use
1494 * @work: work to queue
1495 *
1496 * We queue the work to a specific CPU, the caller must ensure it
1497 * can't go away.
1498 *
1499 * Return: %false if @work was already on a queue, %true otherwise.
1500 */
1501bool queue_work_on(int cpu, struct workqueue_struct *wq,
1502		   struct work_struct *work)
1503{
1504	bool ret = false;
1505	unsigned long flags;
1506
1507	local_irq_save(flags);
1508
1509	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1510		__queue_work(cpu, wq, work);
1511		ret = true;
1512	}
1513
1514	local_irq_restore(flags);
1515	return ret;
1516}
1517EXPORT_SYMBOL(queue_work_on);
1518
1519void delayed_work_timer_fn(unsigned long __data)
1520{
1521	struct delayed_work *dwork = (struct delayed_work *)__data;
1522
1523	/* should have been called from irqsafe timer with irq already off */
1524	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
1525}
1526EXPORT_SYMBOL(delayed_work_timer_fn);
1527
1528static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1529				struct delayed_work *dwork, unsigned long delay)
1530{
1531	struct timer_list *timer = &dwork->timer;
1532	struct work_struct *work = &dwork->work;
1533
1534	WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1535		     timer->data != (unsigned long)dwork);
1536	WARN_ON_ONCE(timer_pending(timer));
1537	WARN_ON_ONCE(!list_empty(&work->entry));
1538
1539	/*
1540	 * If @delay is 0, queue @dwork->work immediately.  This is for
1541	 * both optimization and correctness.  The earliest @timer can
1542	 * expire is on the closest next tick and delayed_work users depend
1543	 * on that there's no such delay when @delay is 0.
1544	 */
1545	if (!delay) {
1546		__queue_work(cpu, wq, &dwork->work);
1547		return;
1548	}
1549
1550	timer_stats_timer_set_start_info(&dwork->timer);
1551
1552	dwork->wq = wq;
1553	dwork->cpu = cpu;
1554	timer->expires = jiffies + delay;
1555
1556	if (unlikely(cpu != WORK_CPU_UNBOUND))
1557		add_timer_on(timer, cpu);
1558	else
1559		add_timer(timer);
1560}
1561
1562/**
1563 * queue_delayed_work_on - queue work on specific CPU after delay
1564 * @cpu: CPU number to execute work on
1565 * @wq: workqueue to use
1566 * @dwork: work to queue
1567 * @delay: number of jiffies to wait before queueing
1568 *
1569 * Return: %false if @work was already on a queue, %true otherwise.  If
1570 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1571 * execution.
1572 */
1573bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1574			   struct delayed_work *dwork, unsigned long delay)
1575{
1576	struct work_struct *work = &dwork->work;
1577	bool ret = false;
1578	unsigned long flags;
1579
1580	/* read the comment in __queue_work() */
1581	local_irq_save(flags);
1582
1583	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1584		__queue_delayed_work(cpu, wq, dwork, delay);
1585		ret = true;
1586	}
1587
1588	local_irq_restore(flags);
1589	return ret;
1590}
1591EXPORT_SYMBOL(queue_delayed_work_on);
1592
1593/**
1594 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1595 * @cpu: CPU number to execute work on
1596 * @wq: workqueue to use
1597 * @dwork: work to queue
1598 * @delay: number of jiffies to wait before queueing
1599 *
1600 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1601 * modify @dwork's timer so that it expires after @delay.  If @delay is
1602 * zero, @work is guaranteed to be scheduled immediately regardless of its
1603 * current state.
1604 *
1605 * Return: %false if @dwork was idle and queued, %true if @dwork was
1606 * pending and its timer was modified.
1607 *
1608 * This function is safe to call from any context including IRQ handler.
1609 * See try_to_grab_pending() for details.
1610 */
1611bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1612			 struct delayed_work *dwork, unsigned long delay)
1613{
1614	unsigned long flags;
1615	int ret;
1616
1617	do {
1618		ret = try_to_grab_pending(&dwork->work, true, &flags);
1619	} while (unlikely(ret == -EAGAIN));
1620
1621	if (likely(ret >= 0)) {
1622		__queue_delayed_work(cpu, wq, dwork, delay);
1623		local_irq_restore(flags);
1624	}
1625
1626	/* -ENOENT from try_to_grab_pending() becomes %true */
1627	return ret;
1628}
1629EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1630
1631/**
1632 * worker_enter_idle - enter idle state
1633 * @worker: worker which is entering idle state
1634 *
1635 * @worker is entering idle state.  Update stats and idle timer if
1636 * necessary.
1637 *
1638 * LOCKING:
1639 * spin_lock_irq(pool->lock).
1640 */
1641static void worker_enter_idle(struct worker *worker)
1642{
1643	struct worker_pool *pool = worker->pool;
1644
1645	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1646	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
1647			 (worker->hentry.next || worker->hentry.pprev)))
1648		return;
1649
1650	/* can't use worker_set_flags(), also called from create_worker() */
1651	worker->flags |= WORKER_IDLE;
1652	pool->nr_idle++;
1653	worker->last_active = jiffies;
1654
1655	/* idle_list is LIFO */
1656	list_add(&worker->entry, &pool->idle_list);
1657
1658	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1659		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1660
1661	/*
1662	 * Sanity check nr_running.  Because wq_unbind_fn() releases
1663	 * pool->lock between setting %WORKER_UNBOUND and zapping
1664	 * nr_running, the warning may trigger spuriously.  Check iff
1665	 * unbind is not in progress.
1666	 */
1667	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1668		     pool->nr_workers == pool->nr_idle &&
1669		     atomic_read(&pool->nr_running));
1670}
1671
1672/**
1673 * worker_leave_idle - leave idle state
1674 * @worker: worker which is leaving idle state
1675 *
1676 * @worker is leaving idle state.  Update stats.
1677 *
1678 * LOCKING:
1679 * spin_lock_irq(pool->lock).
1680 */
1681static void worker_leave_idle(struct worker *worker)
1682{
1683	struct worker_pool *pool = worker->pool;
1684
1685	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1686		return;
1687	worker_clr_flags(worker, WORKER_IDLE);
1688	pool->nr_idle--;
1689	list_del_init(&worker->entry);
1690}
1691
1692static struct worker *alloc_worker(int node)
1693{
1694	struct worker *worker;
1695
1696	worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
1697	if (worker) {
1698		INIT_LIST_HEAD(&worker->entry);
1699		INIT_LIST_HEAD(&worker->scheduled);
1700		INIT_LIST_HEAD(&worker->node);
1701		/* on creation a worker is in !idle && prep state */
1702		worker->flags = WORKER_PREP;
1703	}
1704	return worker;
1705}
1706
1707/**
1708 * worker_attach_to_pool() - attach a worker to a pool
1709 * @worker: worker to be attached
1710 * @pool: the target pool
1711 *
1712 * Attach @worker to @pool.  Once attached, the %WORKER_UNBOUND flag and
1713 * cpu-binding of @worker are kept coordinated with the pool across
1714 * cpu-[un]hotplugs.
1715 */
1716static void worker_attach_to_pool(struct worker *worker,
1717				   struct worker_pool *pool)
1718{
1719	mutex_lock(&pool->attach_mutex);
1720
1721	/*
1722	 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1723	 * online CPUs.  It'll be re-applied when any of the CPUs come up.
1724	 */
1725	set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1726
1727	/*
1728	 * The pool->attach_mutex ensures %POOL_DISASSOCIATED remains
1729	 * stable across this function.  See the comments above the
1730	 * flag definition for details.
1731	 */
1732	if (pool->flags & POOL_DISASSOCIATED)
1733		worker->flags |= WORKER_UNBOUND;
1734
1735	list_add_tail(&worker->node, &pool->workers);
1736
1737	mutex_unlock(&pool->attach_mutex);
1738}
1739
1740/**
1741 * worker_detach_from_pool() - detach a worker from its pool
1742 * @worker: worker which is attached to its pool
1743 * @pool: the pool @worker is attached to
1744 *
1745 * Undo the attaching which had been done in worker_attach_to_pool().  The
1746 * caller worker shouldn't access to the pool after detached except it has
1747 * other reference to the pool.
1748 */
1749static void worker_detach_from_pool(struct worker *worker,
1750				    struct worker_pool *pool)
1751{
1752	struct completion *detach_completion = NULL;
1753
1754	mutex_lock(&pool->attach_mutex);
1755	list_del(&worker->node);
1756	if (list_empty(&pool->workers))
1757		detach_completion = pool->detach_completion;
1758	mutex_unlock(&pool->attach_mutex);
1759
1760	/* clear leftover flags without pool->lock after it is detached */
1761	worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
1762
1763	if (detach_completion)
1764		complete(detach_completion);
1765}
1766
1767/**
1768 * create_worker - create a new workqueue worker
1769 * @pool: pool the new worker will belong to
1770 *
1771 * Create and start a new worker which is attached to @pool.
1772 *
1773 * CONTEXT:
1774 * Might sleep.  Does GFP_KERNEL allocations.
1775 *
1776 * Return:
1777 * Pointer to the newly created worker.
1778 */
1779static struct worker *create_worker(struct worker_pool *pool)
1780{
1781	struct worker *worker = NULL;
1782	int id = -1;
1783	char id_buf[16];
1784
1785	/* ID is needed to determine kthread name */
1786	id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
1787	if (id < 0)
1788		goto fail;
1789
1790	worker = alloc_worker(pool->node);
1791	if (!worker)
1792		goto fail;
1793
1794	worker->pool = pool;
1795	worker->id = id;
1796
1797	if (pool->cpu >= 0)
1798		snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1799			 pool->attrs->nice < 0  ? "H" : "");
1800	else
1801		snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1802
1803	worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1804					      "kworker/%s", id_buf);
1805	if (IS_ERR(worker->task))
1806		goto fail;
1807
1808	set_user_nice(worker->task, pool->attrs->nice);
1809	kthread_bind_mask(worker->task, pool->attrs->cpumask);
1810
1811	/* successful, attach the worker to the pool */
1812	worker_attach_to_pool(worker, pool);
1813
1814	/* start the newly created worker */
1815	spin_lock_irq(&pool->lock);
1816	worker->pool->nr_workers++;
1817	worker_enter_idle(worker);
1818	wake_up_process(worker->task);
1819	spin_unlock_irq(&pool->lock);
1820
1821	return worker;
1822
1823fail:
1824	if (id >= 0)
1825		ida_simple_remove(&pool->worker_ida, id);
1826	kfree(worker);
1827	return NULL;
1828}
1829
1830/**
1831 * destroy_worker - destroy a workqueue worker
1832 * @worker: worker to be destroyed
1833 *
1834 * Destroy @worker and adjust @pool stats accordingly.  The worker should
1835 * be idle.
1836 *
1837 * CONTEXT:
1838 * spin_lock_irq(pool->lock).
1839 */
1840static void destroy_worker(struct worker *worker)
1841{
1842	struct worker_pool *pool = worker->pool;
1843
1844	lockdep_assert_held(&pool->lock);
1845
1846	/* sanity check frenzy */
1847	if (WARN_ON(worker->current_work) ||
1848	    WARN_ON(!list_empty(&worker->scheduled)) ||
1849	    WARN_ON(!(worker->flags & WORKER_IDLE)))
1850		return;
1851
1852	pool->nr_workers--;
1853	pool->nr_idle--;
1854
1855	list_del_init(&worker->entry);
1856	worker->flags |= WORKER_DIE;
1857	wake_up_process(worker->task);
1858}
1859
1860static void idle_worker_timeout(unsigned long __pool)
1861{
1862	struct worker_pool *pool = (void *)__pool;
1863
1864	spin_lock_irq(&pool->lock);
1865
1866	while (too_many_workers(pool)) {
1867		struct worker *worker;
1868		unsigned long expires;
1869
1870		/* idle_list is kept in LIFO order, check the last one */
1871		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1872		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1873
1874		if (time_before(jiffies, expires)) {
1875			mod_timer(&pool->idle_timer, expires);
1876			break;
1877		}
1878
1879		destroy_worker(worker);
1880	}
1881
1882	spin_unlock_irq(&pool->lock);
1883}
1884
1885static void send_mayday(struct work_struct *work)
1886{
1887	struct pool_workqueue *pwq = get_work_pwq(work);
1888	struct workqueue_struct *wq = pwq->wq;
1889
1890	lockdep_assert_held(&wq_mayday_lock);
1891
1892	if (!wq->rescuer)
1893		return;
1894
1895	/* mayday mayday mayday */
1896	if (list_empty(&pwq->mayday_node)) {
1897		/*
1898		 * If @pwq is for an unbound wq, its base ref may be put at
1899		 * any time due to an attribute change.  Pin @pwq until the
1900		 * rescuer is done with it.
1901		 */
1902		get_pwq(pwq);
1903		list_add_tail(&pwq->mayday_node, &wq->maydays);
1904		wake_up_process(wq->rescuer->task);
1905	}
1906}
1907
1908static void pool_mayday_timeout(unsigned long __pool)
1909{
1910	struct worker_pool *pool = (void *)__pool;
1911	struct work_struct *work;
1912
1913	spin_lock_irq(&pool->lock);
1914	spin_lock(&wq_mayday_lock);		/* for wq->maydays */
1915
1916	if (need_to_create_worker(pool)) {
1917		/*
1918		 * We've been trying to create a new worker but
1919		 * haven't been successful.  We might be hitting an
1920		 * allocation deadlock.  Send distress signals to
1921		 * rescuers.
1922		 */
1923		list_for_each_entry(work, &pool->worklist, entry)
1924			send_mayday(work);
1925	}
1926
1927	spin_unlock(&wq_mayday_lock);
1928	spin_unlock_irq(&pool->lock);
1929
1930	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1931}
1932
1933/**
1934 * maybe_create_worker - create a new worker if necessary
1935 * @pool: pool to create a new worker for
1936 *
1937 * Create a new worker for @pool if necessary.  @pool is guaranteed to
1938 * have at least one idle worker on return from this function.  If
1939 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1940 * sent to all rescuers with works scheduled on @pool to resolve
1941 * possible allocation deadlock.
1942 *
1943 * On return, need_to_create_worker() is guaranteed to be %false and
1944 * may_start_working() %true.
1945 *
1946 * LOCKING:
1947 * spin_lock_irq(pool->lock) which may be released and regrabbed
1948 * multiple times.  Does GFP_KERNEL allocations.  Called only from
1949 * manager.
1950 */
1951static void maybe_create_worker(struct worker_pool *pool)
1952__releases(&pool->lock)
1953__acquires(&pool->lock)
1954{
1955restart:
1956	spin_unlock_irq(&pool->lock);
1957
1958	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1959	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1960
1961	while (true) {
1962		if (create_worker(pool) || !need_to_create_worker(pool))
1963			break;
1964
1965		schedule_timeout_interruptible(CREATE_COOLDOWN);
1966
1967		if (!need_to_create_worker(pool))
1968			break;
1969	}
1970
1971	del_timer_sync(&pool->mayday_timer);
1972	spin_lock_irq(&pool->lock);
1973	/*
1974	 * This is necessary even after a new worker was just successfully
1975	 * created as @pool->lock was dropped and the new worker might have
1976	 * already become busy.
1977	 */
1978	if (need_to_create_worker(pool))
1979		goto restart;
1980}
1981
1982/**
1983 * manage_workers - manage worker pool
1984 * @worker: self
1985 *
1986 * Assume the manager role and manage the worker pool @worker belongs
1987 * to.  At any given time, there can be only zero or one manager per
1988 * pool.  The exclusion is handled automatically by this function.
1989 *
1990 * The caller can safely start processing works on false return.  On
1991 * true return, it's guaranteed that need_to_create_worker() is false
1992 * and may_start_working() is true.
1993 *
1994 * CONTEXT:
1995 * spin_lock_irq(pool->lock) which may be released and regrabbed
1996 * multiple times.  Does GFP_KERNEL allocations.
1997 *
1998 * Return:
1999 * %false if the pool doesn't need management and the caller can safely
2000 * start processing works, %true if management function was performed and
2001 * the conditions that the caller verified before calling the function may
2002 * no longer be true.
2003 */
2004static bool manage_workers(struct worker *worker)
2005{
2006	struct worker_pool *pool = worker->pool;
2007
2008	/*
2009	 * Anyone who successfully grabs manager_arb wins the arbitration
2010	 * and becomes the manager.  mutex_trylock() on pool->manager_arb
2011	 * failure while holding pool->lock reliably indicates that someone
2012	 * else is managing the pool and the worker which failed trylock
2013	 * can proceed to executing work items.  This means that anyone
2014	 * grabbing manager_arb is responsible for actually performing
2015	 * manager duties.  If manager_arb is grabbed and released without
2016	 * actual management, the pool may stall indefinitely.
2017	 */
2018	if (!mutex_trylock(&pool->manager_arb))
2019		return false;
2020	pool->manager = worker;
2021
2022	maybe_create_worker(pool);
2023
2024	pool->manager = NULL;
2025	mutex_unlock(&pool->manager_arb);
2026	return true;
2027}
2028
2029/**
2030 * process_one_work - process single work
2031 * @worker: self
2032 * @work: work to process
2033 *
2034 * Process @work.  This function contains all the logics necessary to
2035 * process a single work including synchronization against and
2036 * interaction with other workers on the same cpu, queueing and
2037 * flushing.  As long as context requirement is met, any worker can
2038 * call this function to process a work.
2039 *
2040 * CONTEXT:
2041 * spin_lock_irq(pool->lock) which is released and regrabbed.
2042 */
2043static void process_one_work(struct worker *worker, struct work_struct *work)
2044__releases(&pool->lock)
2045__acquires(&pool->lock)
2046{
2047	struct pool_workqueue *pwq = get_work_pwq(work);
2048	struct worker_pool *pool = worker->pool;
2049	bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2050	int work_color;
2051	struct worker *collision;
2052#ifdef CONFIG_LOCKDEP
2053	/*
2054	 * It is permissible to free the struct work_struct from
2055	 * inside the function that is called from it, this we need to
2056	 * take into account for lockdep too.  To avoid bogus "held
2057	 * lock freed" warnings as well as problems when looking into
2058	 * work->lockdep_map, make a copy and use that here.
2059	 */
2060	struct lockdep_map lockdep_map;
2061
2062	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2063#endif
2064	/* ensure we're on the correct CPU */
2065	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
2066		     raw_smp_processor_id() != pool->cpu);
2067
2068	/*
2069	 * A single work shouldn't be executed concurrently by
2070	 * multiple workers on a single cpu.  Check whether anyone is
2071	 * already processing the work.  If so, defer the work to the
2072	 * currently executing one.
2073	 */
2074	collision = find_worker_executing_work(pool, work);
2075	if (unlikely(collision)) {
2076		move_linked_works(work, &collision->scheduled, NULL);
2077		return;
2078	}
2079
2080	/* claim and dequeue */
2081	debug_work_deactivate(work);
2082	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2083	worker->current_work = work;
2084	worker->current_func = work->func;
2085	worker->current_pwq = pwq;
2086	work_color = get_work_color(work);
2087
2088	list_del_init(&work->entry);
2089
2090	/*
2091	 * CPU intensive works don't participate in concurrency management.
2092	 * They're the scheduler's responsibility.  This takes @worker out
2093	 * of concurrency management and the next code block will chain
2094	 * execution of the pending work items.
2095	 */
2096	if (unlikely(cpu_intensive))
2097		worker_set_flags(worker, WORKER_CPU_INTENSIVE);
2098
2099	/*
2100	 * Wake up another worker if necessary.  The condition is always
2101	 * false for normal per-cpu workers since nr_running would always
2102	 * be >= 1 at this point.  This is used to chain execution of the
2103	 * pending work items for WORKER_NOT_RUNNING workers such as the
2104	 * UNBOUND and CPU_INTENSIVE ones.
2105	 */
2106	if (need_more_worker(pool))
2107		wake_up_worker(pool);
2108
2109	/*
2110	 * Record the last pool and clear PENDING which should be the last
2111	 * update to @work.  Also, do this inside @pool->lock so that
2112	 * PENDING and queued state changes happen together while IRQ is
2113	 * disabled.
2114	 */
2115	set_work_pool_and_clear_pending(work, pool->id);
2116
2117	spin_unlock_irq(&pool->lock);
2118
2119	lock_map_acquire_read(&pwq->wq->lockdep_map);
2120	lock_map_acquire(&lockdep_map);
2121	trace_workqueue_execute_start(work);
2122	worker->current_func(work);
2123	/*
2124	 * While we must be careful to not use "work" after this, the trace
2125	 * point will only record its address.
2126	 */
2127	trace_workqueue_execute_end(work);
2128	lock_map_release(&lockdep_map);
2129	lock_map_release(&pwq->wq->lockdep_map);
2130
2131	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2132		pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2133		       "     last function: %pf\n",
2134		       current->comm, preempt_count(), task_pid_nr(current),
2135		       worker->current_func);
2136		debug_show_held_locks(current);
2137		dump_stack();
2138	}
2139
2140	/*
2141	 * The following prevents a kworker from hogging CPU on !PREEMPT
2142	 * kernels, where a requeueing work item waiting for something to
2143	 * happen could deadlock with stop_machine as such work item could
2144	 * indefinitely requeue itself while all other CPUs are trapped in
2145	 * stop_machine. At the same time, report a quiescent RCU state so
2146	 * the same condition doesn't freeze RCU.
2147	 */
2148	cond_resched_rcu_qs();
2149
2150	spin_lock_irq(&pool->lock);
2151
2152	/* clear cpu intensive status */
2153	if (unlikely(cpu_intensive))
2154		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2155
2156	/* we're done with it, release */
2157	hash_del(&worker->hentry);
2158	worker->current_work = NULL;
2159	worker->current_func = NULL;
2160	worker->current_pwq = NULL;
2161	worker->desc_valid = false;
2162	pwq_dec_nr_in_flight(pwq, work_color);
2163}
2164
2165/**
2166 * process_scheduled_works - process scheduled works
2167 * @worker: self
2168 *
2169 * Process all scheduled works.  Please note that the scheduled list
2170 * may change while processing a work, so this function repeatedly
2171 * fetches a work from the top and executes it.
2172 *
2173 * CONTEXT:
2174 * spin_lock_irq(pool->lock) which may be released and regrabbed
2175 * multiple times.
2176 */
2177static void process_scheduled_works(struct worker *worker)
2178{
2179	while (!list_empty(&worker->scheduled)) {
2180		struct work_struct *work = list_first_entry(&worker->scheduled,
2181						struct work_struct, entry);
2182		process_one_work(worker, work);
2183	}
2184}
2185
2186/**
2187 * worker_thread - the worker thread function
2188 * @__worker: self
2189 *
2190 * The worker thread function.  All workers belong to a worker_pool -
2191 * either a per-cpu one or dynamic unbound one.  These workers process all
2192 * work items regardless of their specific target workqueue.  The only
2193 * exception is work items which belong to workqueues with a rescuer which
2194 * will be explained in rescuer_thread().
2195 *
2196 * Return: 0
2197 */
2198static int worker_thread(void *__worker)
2199{
2200	struct worker *worker = __worker;
2201	struct worker_pool *pool = worker->pool;
2202
2203	/* tell the scheduler that this is a workqueue worker */
2204	worker->task->flags |= PF_WQ_WORKER;
2205woke_up:
2206	spin_lock_irq(&pool->lock);
2207
2208	/* am I supposed to die? */
2209	if (unlikely(worker->flags & WORKER_DIE)) {
2210		spin_unlock_irq(&pool->lock);
2211		WARN_ON_ONCE(!list_empty(&worker->entry));
2212		worker->task->flags &= ~PF_WQ_WORKER;
2213
2214		set_task_comm(worker->task, "kworker/dying");
2215		ida_simple_remove(&pool->worker_ida, worker->id);
2216		worker_detach_from_pool(worker, pool);
2217		kfree(worker);
2218		return 0;
2219	}
2220
2221	worker_leave_idle(worker);
2222recheck:
2223	/* no more worker necessary? */
2224	if (!need_more_worker(pool))
2225		goto sleep;
2226
2227	/* do we need to manage? */
2228	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2229		goto recheck;
2230
2231	/*
2232	 * ->scheduled list can only be filled while a worker is
2233	 * preparing to process a work or actually processing it.
2234	 * Make sure nobody diddled with it while I was sleeping.
2235	 */
2236	WARN_ON_ONCE(!list_empty(&worker->scheduled));
2237
2238	/*
2239	 * Finish PREP stage.  We're guaranteed to have at least one idle
2240	 * worker or that someone else has already assumed the manager
2241	 * role.  This is where @worker starts participating in concurrency
2242	 * management if applicable and concurrency management is restored
2243	 * after being rebound.  See rebind_workers() for details.
2244	 */
2245	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2246
2247	do {
2248		struct work_struct *work =
2249			list_first_entry(&pool->worklist,
2250					 struct work_struct, entry);
2251
2252		pool->watchdog_ts = jiffies;
2253
2254		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2255			/* optimization path, not strictly necessary */
2256			process_one_work(worker, work);
2257			if (unlikely(!list_empty(&worker->scheduled)))
2258				process_scheduled_works(worker);
2259		} else {
2260			move_linked_works(work, &worker->scheduled, NULL);
2261			process_scheduled_works(worker);
2262		}
2263	} while (keep_working(pool));
2264
2265	worker_set_flags(worker, WORKER_PREP);
2266sleep:
2267	/*
2268	 * pool->lock is held and there's no work to process and no need to
2269	 * manage, sleep.  Workers are woken up only while holding
2270	 * pool->lock or from local cpu, so setting the current state
2271	 * before releasing pool->lock is enough to prevent losing any
2272	 * event.
2273	 */
2274	worker_enter_idle(worker);
2275	__set_current_state(TASK_INTERRUPTIBLE);
2276	spin_unlock_irq(&pool->lock);
2277	schedule();
2278	goto woke_up;
2279}
2280
2281/**
2282 * rescuer_thread - the rescuer thread function
2283 * @__rescuer: self
2284 *
2285 * Workqueue rescuer thread function.  There's one rescuer for each
2286 * workqueue which has WQ_MEM_RECLAIM set.
2287 *
2288 * Regular work processing on a pool may block trying to create a new
2289 * worker which uses GFP_KERNEL allocation which has slight chance of
2290 * developing into deadlock if some works currently on the same queue
2291 * need to be processed to satisfy the GFP_KERNEL allocation.  This is
2292 * the problem rescuer solves.
2293 *
2294 * When such condition is possible, the pool summons rescuers of all
2295 * workqueues which have works queued on the pool and let them process
2296 * those works so that forward progress can be guaranteed.
2297 *
2298 * This should happen rarely.
2299 *
2300 * Return: 0
2301 */
2302static int rescuer_thread(void *__rescuer)
2303{
2304	struct worker *rescuer = __rescuer;
2305	struct workqueue_struct *wq = rescuer->rescue_wq;
2306	struct list_head *scheduled = &rescuer->scheduled;
2307	bool should_stop;
2308
2309	set_user_nice(current, RESCUER_NICE_LEVEL);
2310
2311	/*
2312	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
2313	 * doesn't participate in concurrency management.
2314	 */
2315	rescuer->task->flags |= PF_WQ_WORKER;
2316repeat:
2317	set_current_state(TASK_INTERRUPTIBLE);
2318
2319	/*
2320	 * By the time the rescuer is requested to stop, the workqueue
2321	 * shouldn't have any work pending, but @wq->maydays may still have
2322	 * pwq(s) queued.  This can happen by non-rescuer workers consuming
2323	 * all the work items before the rescuer got to them.  Go through
2324	 * @wq->maydays processing before acting on should_stop so that the
2325	 * list is always empty on exit.
2326	 */
2327	should_stop = kthread_should_stop();
2328
2329	/* see whether any pwq is asking for help */
2330	spin_lock_irq(&wq_mayday_lock);
2331
2332	while (!list_empty(&wq->maydays)) {
2333		struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2334					struct pool_workqueue, mayday_node);
2335		struct worker_pool *pool = pwq->pool;
2336		struct work_struct *work, *n;
2337		bool first = true;
2338
2339		__set_current_state(TASK_RUNNING);
2340		list_del_init(&pwq->mayday_node);
2341
2342		spin_unlock_irq(&wq_mayday_lock);
2343
2344		worker_attach_to_pool(rescuer, pool);
2345
2346		spin_lock_irq(&pool->lock);
2347		rescuer->pool = pool;
2348
2349		/*
2350		 * Slurp in all works issued via this workqueue and
2351		 * process'em.
2352		 */
2353		WARN_ON_ONCE(!list_empty(scheduled));
2354		list_for_each_entry_safe(work, n, &pool->worklist, entry) {
2355			if (get_work_pwq(work) == pwq) {
2356				if (first)
2357					pool->watchdog_ts = jiffies;
2358				move_linked_works(work, scheduled, &n);
2359			}
2360			first = false;
2361		}
2362
2363		if (!list_empty(scheduled)) {
2364			process_scheduled_works(rescuer);
2365
2366			/*
2367			 * The above execution of rescued work items could
2368			 * have created more to rescue through
2369			 * pwq_activate_first_delayed() or chained
2370			 * queueing.  Let's put @pwq back on mayday list so
2371			 * that such back-to-back work items, which may be
2372			 * being used to relieve memory pressure, don't
2373			 * incur MAYDAY_INTERVAL delay inbetween.
2374			 */
2375			if (need_to_create_worker(pool)) {
2376				spin_lock(&wq_mayday_lock);
2377				get_pwq(pwq);
2378				list_move_tail(&pwq->mayday_node, &wq->maydays);
2379				spin_unlock(&wq_mayday_lock);
2380			}
2381		}
2382
2383		/*
2384		 * Put the reference grabbed by send_mayday().  @pool won't
2385		 * go away while we're still attached to it.
2386		 */
2387		put_pwq(pwq);
2388
2389		/*
2390		 * Leave this pool.  If need_more_worker() is %true, notify a
2391		 * regular worker; otherwise, we end up with 0 concurrency
2392		 * and stalling the execution.
2393		 */
2394		if (need_more_worker(pool))
2395			wake_up_worker(pool);
2396
2397		rescuer->pool = NULL;
2398		spin_unlock_irq(&pool->lock);
2399
2400		worker_detach_from_pool(rescuer, pool);
2401
2402		spin_lock_irq(&wq_mayday_lock);
2403	}
2404
2405	spin_unlock_irq(&wq_mayday_lock);
2406
2407	if (should_stop) {
2408		__set_current_state(TASK_RUNNING);
2409		rescuer->task->flags &= ~PF_WQ_WORKER;
2410		return 0;
2411	}
2412
2413	/* rescuers should never participate in concurrency management */
2414	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2415	schedule();
2416	goto repeat;
2417}
2418
2419/**
2420 * check_flush_dependency - check for flush dependency sanity
2421 * @target_wq: workqueue being flushed
2422 * @target_work: work item being flushed (NULL for workqueue flushes)
2423 *
2424 * %current is trying to flush the whole @target_wq or @target_work on it.
2425 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
2426 * reclaiming memory or running on a workqueue which doesn't have
2427 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
2428 * a deadlock.
2429 */
2430static void check_flush_dependency(struct workqueue_struct *target_wq,
2431				   struct work_struct *target_work)
2432{
2433	work_func_t target_func = target_work ? target_work->func : NULL;
2434	struct worker *worker;
2435
2436	if (target_wq->flags & WQ_MEM_RECLAIM)
2437		return;
2438
2439	worker = current_wq_worker();
2440
2441	WARN_ONCE(current->flags & PF_MEMALLOC,
2442		  "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%pf",
2443		  current->pid, current->comm, target_wq->name, target_func);
2444	WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
2445			      (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
2446		  "workqueue: WQ_MEM_RECLAIM %s:%pf is flushing !WQ_MEM_RECLAIM %s:%pf",
2447		  worker->current_pwq->wq->name, worker->current_func,
2448		  target_wq->name, target_func);
2449}
2450
2451struct wq_barrier {
2452	struct work_struct	work;
2453	struct completion	done;
2454	struct task_struct	*task;	/* purely informational */
2455};
2456
2457static void wq_barrier_func(struct work_struct *work)
2458{
2459	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2460	complete(&barr->done);
2461}
2462
2463/**
2464 * insert_wq_barrier - insert a barrier work
2465 * @pwq: pwq to insert barrier into
2466 * @barr: wq_barrier to insert
2467 * @target: target work to attach @barr to
2468 * @worker: worker currently executing @target, NULL if @target is not executing
2469 *
2470 * @barr is linked to @target such that @barr is completed only after
2471 * @target finishes execution.  Please note that the ordering
2472 * guarantee is observed only with respect to @target and on the local
2473 * cpu.
2474 *
2475 * Currently, a queued barrier can't be canceled.  This is because
2476 * try_to_grab_pending() can't determine whether the work to be
2477 * grabbed is at the head of the queue and thus can't clear LINKED
2478 * flag of the previous work while there must be a valid next work
2479 * after a work with LINKED flag set.
2480 *
2481 * Note that when @worker is non-NULL, @target may be modified
2482 * underneath us, so we can't reliably determine pwq from @target.
2483 *
2484 * CONTEXT:
2485 * spin_lock_irq(pool->lock).
2486 */
2487static void insert_wq_barrier(struct pool_workqueue *pwq,
2488			      struct wq_barrier *barr,
2489			      struct work_struct *target, struct worker *worker)
2490{
2491	struct list_head *head;
2492	unsigned int linked = 0;
2493
2494	/*
2495	 * debugobject calls are safe here even with pool->lock locked
2496	 * as we know for sure that this will not trigger any of the
2497	 * checks and call back into the fixup functions where we
2498	 * might deadlock.
2499	 */
2500	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2501	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2502	init_completion(&barr->done);
2503	barr->task = current;
2504
2505	/*
2506	 * If @target is currently being executed, schedule the
2507	 * barrier to the worker; otherwise, put it after @target.
2508	 */
2509	if (worker)
2510		head = worker->scheduled.next;
2511	else {
2512		unsigned long *bits = work_data_bits(target);
2513
2514		head = target->entry.next;
2515		/* there can already be other linked works, inherit and set */
2516		linked = *bits & WORK_STRUCT_LINKED;
2517		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
2518	}
2519
2520	debug_work_activate(&barr->work);
2521	insert_work(pwq, &barr->work, head,
2522		    work_color_to_flags(WORK_NO_COLOR) | linked);
2523}
2524
2525/**
2526 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2527 * @wq: workqueue being flushed
2528 * @flush_color: new flush color, < 0 for no-op
2529 * @work_color: new work color, < 0 for no-op
2530 *
2531 * Prepare pwqs for workqueue flushing.
2532 *
2533 * If @flush_color is non-negative, flush_color on all pwqs should be
2534 * -1.  If no pwq has in-flight commands at the specified color, all
2535 * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
2536 * has in flight commands, its pwq->flush_color is set to
2537 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2538 * wakeup logic is armed and %true is returned.
2539 *
2540 * The caller should have initialized @wq->first_flusher prior to
2541 * calling this function with non-negative @flush_color.  If
2542 * @flush_color is negative, no flush color update is done and %false
2543 * is returned.
2544 *
2545 * If @work_color is non-negative, all pwqs should have the same
2546 * work_color which is previous to @work_color and all will be
2547 * advanced to @work_color.
2548 *
2549 * CONTEXT:
2550 * mutex_lock(wq->mutex).
2551 *
2552 * Return:
2553 * %true if @flush_color >= 0 and there's something to flush.  %false
2554 * otherwise.
2555 */
2556static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2557				      int flush_color, int work_color)
2558{
2559	bool wait = false;
2560	struct pool_workqueue *pwq;
2561
2562	if (flush_color >= 0) {
2563		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2564		atomic_set(&wq->nr_pwqs_to_flush, 1);
2565	}
2566
2567	for_each_pwq(pwq, wq) {
2568		struct worker_pool *pool = pwq->pool;
2569
2570		spin_lock_irq(&pool->lock);
2571
2572		if (flush_color >= 0) {
2573			WARN_ON_ONCE(pwq->flush_color != -1);
2574
2575			if (pwq->nr_in_flight[flush_color]) {
2576				pwq->flush_color = flush_color;
2577				atomic_inc(&wq->nr_pwqs_to_flush);
2578				wait = true;
2579			}
2580		}
2581
2582		if (work_color >= 0) {
2583			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2584			pwq->work_color = work_color;
2585		}
2586
2587		spin_unlock_irq(&pool->lock);
2588	}
2589
2590	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2591		complete(&wq->first_flusher->done);
2592
2593	return wait;
2594}
2595
2596/**
2597 * flush_workqueue - ensure that any scheduled work has run to completion.
2598 * @wq: workqueue to flush
2599 *
2600 * This function sleeps until all work items which were queued on entry
2601 * have finished execution, but it is not livelocked by new incoming ones.
2602 */
2603void flush_workqueue(struct workqueue_struct *wq)
2604{
2605	struct wq_flusher this_flusher = {
2606		.list = LIST_HEAD_INIT(this_flusher.list),
2607		.flush_color = -1,
2608		.done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2609	};
2610	int next_color;
2611
 
 
 
2612	lock_map_acquire(&wq->lockdep_map);
2613	lock_map_release(&wq->lockdep_map);
2614
2615	mutex_lock(&wq->mutex);
2616
2617	/*
2618	 * Start-to-wait phase
2619	 */
2620	next_color = work_next_color(wq->work_color);
2621
2622	if (next_color != wq->flush_color) {
2623		/*
2624		 * Color space is not full.  The current work_color
2625		 * becomes our flush_color and work_color is advanced
2626		 * by one.
2627		 */
2628		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2629		this_flusher.flush_color = wq->work_color;
2630		wq->work_color = next_color;
2631
2632		if (!wq->first_flusher) {
2633			/* no flush in progress, become the first flusher */
2634			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2635
2636			wq->first_flusher = &this_flusher;
2637
2638			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2639						       wq->work_color)) {
2640				/* nothing to flush, done */
2641				wq->flush_color = next_color;
2642				wq->first_flusher = NULL;
2643				goto out_unlock;
2644			}
2645		} else {
2646			/* wait in queue */
2647			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2648			list_add_tail(&this_flusher.list, &wq->flusher_queue);
2649			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2650		}
2651	} else {
2652		/*
2653		 * Oops, color space is full, wait on overflow queue.
2654		 * The next flush completion will assign us
2655		 * flush_color and transfer to flusher_queue.
2656		 */
2657		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2658	}
2659
2660	check_flush_dependency(wq, NULL);
2661
2662	mutex_unlock(&wq->mutex);
2663
2664	wait_for_completion(&this_flusher.done);
2665
2666	/*
2667	 * Wake-up-and-cascade phase
2668	 *
2669	 * First flushers are responsible for cascading flushes and
2670	 * handling overflow.  Non-first flushers can simply return.
2671	 */
2672	if (wq->first_flusher != &this_flusher)
2673		return;
2674
2675	mutex_lock(&wq->mutex);
2676
2677	/* we might have raced, check again with mutex held */
2678	if (wq->first_flusher != &this_flusher)
2679		goto out_unlock;
2680
2681	wq->first_flusher = NULL;
2682
2683	WARN_ON_ONCE(!list_empty(&this_flusher.list));
2684	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2685
2686	while (true) {
2687		struct wq_flusher *next, *tmp;
2688
2689		/* complete all the flushers sharing the current flush color */
2690		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2691			if (next->flush_color != wq->flush_color)
2692				break;
2693			list_del_init(&next->list);
2694			complete(&next->done);
2695		}
2696
2697		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2698			     wq->flush_color != work_next_color(wq->work_color));
2699
2700		/* this flush_color is finished, advance by one */
2701		wq->flush_color = work_next_color(wq->flush_color);
2702
2703		/* one color has been freed, handle overflow queue */
2704		if (!list_empty(&wq->flusher_overflow)) {
2705			/*
2706			 * Assign the same color to all overflowed
2707			 * flushers, advance work_color and append to
2708			 * flusher_queue.  This is the start-to-wait
2709			 * phase for these overflowed flushers.
2710			 */
2711			list_for_each_entry(tmp, &wq->flusher_overflow, list)
2712				tmp->flush_color = wq->work_color;
2713
2714			wq->work_color = work_next_color(wq->work_color);
2715
2716			list_splice_tail_init(&wq->flusher_overflow,
2717					      &wq->flusher_queue);
2718			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2719		}
2720
2721		if (list_empty(&wq->flusher_queue)) {
2722			WARN_ON_ONCE(wq->flush_color != wq->work_color);
2723			break;
2724		}
2725
2726		/*
2727		 * Need to flush more colors.  Make the next flusher
2728		 * the new first flusher and arm pwqs.
2729		 */
2730		WARN_ON_ONCE(wq->flush_color == wq->work_color);
2731		WARN_ON_ONCE(wq->flush_color != next->flush_color);
2732
2733		list_del_init(&next->list);
2734		wq->first_flusher = next;
2735
2736		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2737			break;
2738
2739		/*
2740		 * Meh... this color is already done, clear first
2741		 * flusher and repeat cascading.
2742		 */
2743		wq->first_flusher = NULL;
2744	}
2745
2746out_unlock:
2747	mutex_unlock(&wq->mutex);
2748}
2749EXPORT_SYMBOL(flush_workqueue);
2750
2751/**
2752 * drain_workqueue - drain a workqueue
2753 * @wq: workqueue to drain
2754 *
2755 * Wait until the workqueue becomes empty.  While draining is in progress,
2756 * only chain queueing is allowed.  IOW, only currently pending or running
2757 * work items on @wq can queue further work items on it.  @wq is flushed
2758 * repeatedly until it becomes empty.  The number of flushing is determined
2759 * by the depth of chaining and should be relatively short.  Whine if it
2760 * takes too long.
2761 */
2762void drain_workqueue(struct workqueue_struct *wq)
2763{
2764	unsigned int flush_cnt = 0;
2765	struct pool_workqueue *pwq;
2766
2767	/*
2768	 * __queue_work() needs to test whether there are drainers, is much
2769	 * hotter than drain_workqueue() and already looks at @wq->flags.
2770	 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2771	 */
2772	mutex_lock(&wq->mutex);
2773	if (!wq->nr_drainers++)
2774		wq->flags |= __WQ_DRAINING;
2775	mutex_unlock(&wq->mutex);
2776reflush:
2777	flush_workqueue(wq);
2778
2779	mutex_lock(&wq->mutex);
2780
2781	for_each_pwq(pwq, wq) {
2782		bool drained;
2783
2784		spin_lock_irq(&pwq->pool->lock);
2785		drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2786		spin_unlock_irq(&pwq->pool->lock);
2787
2788		if (drained)
2789			continue;
2790
2791		if (++flush_cnt == 10 ||
2792		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2793			pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
2794				wq->name, flush_cnt);
2795
2796		mutex_unlock(&wq->mutex);
2797		goto reflush;
2798	}
2799
2800	if (!--wq->nr_drainers)
2801		wq->flags &= ~__WQ_DRAINING;
2802	mutex_unlock(&wq->mutex);
2803}
2804EXPORT_SYMBOL_GPL(drain_workqueue);
2805
2806static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2807{
2808	struct worker *worker = NULL;
2809	struct worker_pool *pool;
2810	struct pool_workqueue *pwq;
2811
2812	might_sleep();
2813
2814	local_irq_disable();
2815	pool = get_work_pool(work);
2816	if (!pool) {
2817		local_irq_enable();
2818		return false;
2819	}
2820
2821	spin_lock(&pool->lock);
2822	/* see the comment in try_to_grab_pending() with the same code */
2823	pwq = get_work_pwq(work);
2824	if (pwq) {
2825		if (unlikely(pwq->pool != pool))
2826			goto already_gone;
2827	} else {
2828		worker = find_worker_executing_work(pool, work);
2829		if (!worker)
2830			goto already_gone;
2831		pwq = worker->current_pwq;
2832	}
2833
2834	check_flush_dependency(pwq->wq, work);
2835
2836	insert_wq_barrier(pwq, barr, work, worker);
2837	spin_unlock_irq(&pool->lock);
2838
2839	/*
2840	 * If @max_active is 1 or rescuer is in use, flushing another work
2841	 * item on the same workqueue may lead to deadlock.  Make sure the
2842	 * flusher is not running on the same workqueue by verifying write
2843	 * access.
2844	 */
2845	if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
2846		lock_map_acquire(&pwq->wq->lockdep_map);
2847	else
2848		lock_map_acquire_read(&pwq->wq->lockdep_map);
2849	lock_map_release(&pwq->wq->lockdep_map);
2850
2851	return true;
2852already_gone:
2853	spin_unlock_irq(&pool->lock);
2854	return false;
2855}
2856
2857/**
2858 * flush_work - wait for a work to finish executing the last queueing instance
2859 * @work: the work to flush
2860 *
2861 * Wait until @work has finished execution.  @work is guaranteed to be idle
2862 * on return if it hasn't been requeued since flush started.
2863 *
2864 * Return:
2865 * %true if flush_work() waited for the work to finish execution,
2866 * %false if it was already idle.
2867 */
2868bool flush_work(struct work_struct *work)
2869{
2870	struct wq_barrier barr;
2871
 
 
 
2872	lock_map_acquire(&work->lockdep_map);
2873	lock_map_release(&work->lockdep_map);
2874
2875	if (start_flush_work(work, &barr)) {
2876		wait_for_completion(&barr.done);
2877		destroy_work_on_stack(&barr.work);
2878		return true;
2879	} else {
2880		return false;
2881	}
2882}
2883EXPORT_SYMBOL_GPL(flush_work);
2884
2885struct cwt_wait {
2886	wait_queue_t		wait;
2887	struct work_struct	*work;
2888};
2889
2890static int cwt_wakefn(wait_queue_t *wait, unsigned mode, int sync, void *key)
2891{
2892	struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
2893
2894	if (cwait->work != key)
2895		return 0;
2896	return autoremove_wake_function(wait, mode, sync, key);
2897}
2898
2899static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2900{
2901	static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
2902	unsigned long flags;
2903	int ret;
2904
2905	do {
2906		ret = try_to_grab_pending(work, is_dwork, &flags);
2907		/*
2908		 * If someone else is already canceling, wait for it to
2909		 * finish.  flush_work() doesn't work for PREEMPT_NONE
2910		 * because we may get scheduled between @work's completion
2911		 * and the other canceling task resuming and clearing
2912		 * CANCELING - flush_work() will return false immediately
2913		 * as @work is no longer busy, try_to_grab_pending() will
2914		 * return -ENOENT as @work is still being canceled and the
2915		 * other canceling task won't be able to clear CANCELING as
2916		 * we're hogging the CPU.
2917		 *
2918		 * Let's wait for completion using a waitqueue.  As this
2919		 * may lead to the thundering herd problem, use a custom
2920		 * wake function which matches @work along with exclusive
2921		 * wait and wakeup.
2922		 */
2923		if (unlikely(ret == -ENOENT)) {
2924			struct cwt_wait cwait;
2925
2926			init_wait(&cwait.wait);
2927			cwait.wait.func = cwt_wakefn;
2928			cwait.work = work;
2929
2930			prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
2931						  TASK_UNINTERRUPTIBLE);
2932			if (work_is_canceling(work))
2933				schedule();
2934			finish_wait(&cancel_waitq, &cwait.wait);
2935		}
2936	} while (unlikely(ret < 0));
2937
2938	/* tell other tasks trying to grab @work to back off */
2939	mark_work_canceling(work);
2940	local_irq_restore(flags);
2941
2942	flush_work(work);
 
 
 
 
 
 
2943	clear_work_data(work);
2944
2945	/*
2946	 * Paired with prepare_to_wait() above so that either
2947	 * waitqueue_active() is visible here or !work_is_canceling() is
2948	 * visible there.
2949	 */
2950	smp_mb();
2951	if (waitqueue_active(&cancel_waitq))
2952		__wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
2953
2954	return ret;
2955}
2956
2957/**
2958 * cancel_work_sync - cancel a work and wait for it to finish
2959 * @work: the work to cancel
2960 *
2961 * Cancel @work and wait for its execution to finish.  This function
2962 * can be used even if the work re-queues itself or migrates to
2963 * another workqueue.  On return from this function, @work is
2964 * guaranteed to be not pending or executing on any CPU.
2965 *
2966 * cancel_work_sync(&delayed_work->work) must not be used for
2967 * delayed_work's.  Use cancel_delayed_work_sync() instead.
2968 *
2969 * The caller must ensure that the workqueue on which @work was last
2970 * queued can't be destroyed before this function returns.
2971 *
2972 * Return:
2973 * %true if @work was pending, %false otherwise.
2974 */
2975bool cancel_work_sync(struct work_struct *work)
2976{
2977	return __cancel_work_timer(work, false);
2978}
2979EXPORT_SYMBOL_GPL(cancel_work_sync);
2980
2981/**
2982 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2983 * @dwork: the delayed work to flush
2984 *
2985 * Delayed timer is cancelled and the pending work is queued for
2986 * immediate execution.  Like flush_work(), this function only
2987 * considers the last queueing instance of @dwork.
2988 *
2989 * Return:
2990 * %true if flush_work() waited for the work to finish execution,
2991 * %false if it was already idle.
2992 */
2993bool flush_delayed_work(struct delayed_work *dwork)
2994{
2995	local_irq_disable();
2996	if (del_timer_sync(&dwork->timer))
2997		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
2998	local_irq_enable();
2999	return flush_work(&dwork->work);
3000}
3001EXPORT_SYMBOL(flush_delayed_work);
3002
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3003/**
3004 * cancel_delayed_work - cancel a delayed work
3005 * @dwork: delayed_work to cancel
3006 *
3007 * Kill off a pending delayed_work.
3008 *
3009 * Return: %true if @dwork was pending and canceled; %false if it wasn't
3010 * pending.
3011 *
3012 * Note:
3013 * The work callback function may still be running on return, unless
3014 * it returns %true and the work doesn't re-arm itself.  Explicitly flush or
3015 * use cancel_delayed_work_sync() to wait on it.
3016 *
3017 * This function is safe to call from any context including IRQ handler.
3018 */
3019bool cancel_delayed_work(struct delayed_work *dwork)
3020{
3021	unsigned long flags;
3022	int ret;
3023
3024	do {
3025		ret = try_to_grab_pending(&dwork->work, true, &flags);
3026	} while (unlikely(ret == -EAGAIN));
3027
3028	if (unlikely(ret < 0))
3029		return false;
3030
3031	set_work_pool_and_clear_pending(&dwork->work,
3032					get_work_pool_id(&dwork->work));
3033	local_irq_restore(flags);
3034	return ret;
3035}
3036EXPORT_SYMBOL(cancel_delayed_work);
3037
3038/**
3039 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3040 * @dwork: the delayed work cancel
3041 *
3042 * This is cancel_work_sync() for delayed works.
3043 *
3044 * Return:
3045 * %true if @dwork was pending, %false otherwise.
3046 */
3047bool cancel_delayed_work_sync(struct delayed_work *dwork)
3048{
3049	return __cancel_work_timer(&dwork->work, true);
3050}
3051EXPORT_SYMBOL(cancel_delayed_work_sync);
3052
3053/**
3054 * schedule_on_each_cpu - execute a function synchronously on each online CPU
3055 * @func: the function to call
3056 *
3057 * schedule_on_each_cpu() executes @func on each online CPU using the
3058 * system workqueue and blocks until all CPUs have completed.
3059 * schedule_on_each_cpu() is very slow.
3060 *
3061 * Return:
3062 * 0 on success, -errno on failure.
3063 */
3064int schedule_on_each_cpu(work_func_t func)
3065{
3066	int cpu;
3067	struct work_struct __percpu *works;
3068
3069	works = alloc_percpu(struct work_struct);
3070	if (!works)
3071		return -ENOMEM;
3072
3073	get_online_cpus();
3074
3075	for_each_online_cpu(cpu) {
3076		struct work_struct *work = per_cpu_ptr(works, cpu);
3077
3078		INIT_WORK(work, func);
3079		schedule_work_on(cpu, work);
3080	}
3081
3082	for_each_online_cpu(cpu)
3083		flush_work(per_cpu_ptr(works, cpu));
3084
3085	put_online_cpus();
3086	free_percpu(works);
3087	return 0;
3088}
3089
3090/**
3091 * execute_in_process_context - reliably execute the routine with user context
3092 * @fn:		the function to execute
3093 * @ew:		guaranteed storage for the execute work structure (must
3094 *		be available when the work executes)
3095 *
3096 * Executes the function immediately if process context is available,
3097 * otherwise schedules the function for delayed execution.
3098 *
3099 * Return:	0 - function was executed
3100 *		1 - function was scheduled for execution
3101 */
3102int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3103{
3104	if (!in_interrupt()) {
3105		fn(&ew->work);
3106		return 0;
3107	}
3108
3109	INIT_WORK(&ew->work, fn);
3110	schedule_work(&ew->work);
3111
3112	return 1;
3113}
3114EXPORT_SYMBOL_GPL(execute_in_process_context);
3115
3116/**
3117 * free_workqueue_attrs - free a workqueue_attrs
3118 * @attrs: workqueue_attrs to free
3119 *
3120 * Undo alloc_workqueue_attrs().
3121 */
3122void free_workqueue_attrs(struct workqueue_attrs *attrs)
3123{
3124	if (attrs) {
3125		free_cpumask_var(attrs->cpumask);
3126		kfree(attrs);
3127	}
3128}
3129
3130/**
3131 * alloc_workqueue_attrs - allocate a workqueue_attrs
3132 * @gfp_mask: allocation mask to use
3133 *
3134 * Allocate a new workqueue_attrs, initialize with default settings and
3135 * return it.
3136 *
3137 * Return: The allocated new workqueue_attr on success. %NULL on failure.
3138 */
3139struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
3140{
3141	struct workqueue_attrs *attrs;
3142
3143	attrs = kzalloc(sizeof(*attrs), gfp_mask);
3144	if (!attrs)
3145		goto fail;
3146	if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
3147		goto fail;
3148
3149	cpumask_copy(attrs->cpumask, cpu_possible_mask);
3150	return attrs;
3151fail:
3152	free_workqueue_attrs(attrs);
3153	return NULL;
3154}
3155
3156static void copy_workqueue_attrs(struct workqueue_attrs *to,
3157				 const struct workqueue_attrs *from)
3158{
3159	to->nice = from->nice;
3160	cpumask_copy(to->cpumask, from->cpumask);
3161	/*
3162	 * Unlike hash and equality test, this function doesn't ignore
3163	 * ->no_numa as it is used for both pool and wq attrs.  Instead,
3164	 * get_unbound_pool() explicitly clears ->no_numa after copying.
3165	 */
3166	to->no_numa = from->no_numa;
3167}
3168
3169/* hash value of the content of @attr */
3170static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3171{
3172	u32 hash = 0;
3173
3174	hash = jhash_1word(attrs->nice, hash);
3175	hash = jhash(cpumask_bits(attrs->cpumask),
3176		     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3177	return hash;
3178}
3179
3180/* content equality test */
3181static bool wqattrs_equal(const struct workqueue_attrs *a,
3182			  const struct workqueue_attrs *b)
3183{
3184	if (a->nice != b->nice)
3185		return false;
3186	if (!cpumask_equal(a->cpumask, b->cpumask))
3187		return false;
3188	return true;
3189}
3190
3191/**
3192 * init_worker_pool - initialize a newly zalloc'd worker_pool
3193 * @pool: worker_pool to initialize
3194 *
3195 * Initialize a newly zalloc'd @pool.  It also allocates @pool->attrs.
3196 *
3197 * Return: 0 on success, -errno on failure.  Even on failure, all fields
3198 * inside @pool proper are initialized and put_unbound_pool() can be called
3199 * on @pool safely to release it.
3200 */
3201static int init_worker_pool(struct worker_pool *pool)
3202{
3203	spin_lock_init(&pool->lock);
3204	pool->id = -1;
3205	pool->cpu = -1;
3206	pool->node = NUMA_NO_NODE;
3207	pool->flags |= POOL_DISASSOCIATED;
3208	pool->watchdog_ts = jiffies;
3209	INIT_LIST_HEAD(&pool->worklist);
3210	INIT_LIST_HEAD(&pool->idle_list);
3211	hash_init(pool->busy_hash);
3212
3213	init_timer_deferrable(&pool->idle_timer);
3214	pool->idle_timer.function = idle_worker_timeout;
3215	pool->idle_timer.data = (unsigned long)pool;
3216
3217	setup_timer(&pool->mayday_timer, pool_mayday_timeout,
3218		    (unsigned long)pool);
3219
3220	mutex_init(&pool->manager_arb);
3221	mutex_init(&pool->attach_mutex);
3222	INIT_LIST_HEAD(&pool->workers);
3223
3224	ida_init(&pool->worker_ida);
3225	INIT_HLIST_NODE(&pool->hash_node);
3226	pool->refcnt = 1;
3227
3228	/* shouldn't fail above this point */
3229	pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
3230	if (!pool->attrs)
3231		return -ENOMEM;
3232	return 0;
3233}
3234
3235static void rcu_free_wq(struct rcu_head *rcu)
3236{
3237	struct workqueue_struct *wq =
3238		container_of(rcu, struct workqueue_struct, rcu);
3239
3240	if (!(wq->flags & WQ_UNBOUND))
3241		free_percpu(wq->cpu_pwqs);
3242	else
3243		free_workqueue_attrs(wq->unbound_attrs);
3244
3245	kfree(wq->rescuer);
3246	kfree(wq);
3247}
3248
3249static void rcu_free_pool(struct rcu_head *rcu)
3250{
3251	struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3252
3253	ida_destroy(&pool->worker_ida);
3254	free_workqueue_attrs(pool->attrs);
3255	kfree(pool);
3256}
3257
3258/**
3259 * put_unbound_pool - put a worker_pool
3260 * @pool: worker_pool to put
3261 *
3262 * Put @pool.  If its refcnt reaches zero, it gets destroyed in sched-RCU
3263 * safe manner.  get_unbound_pool() calls this function on its failure path
3264 * and this function should be able to release pools which went through,
3265 * successfully or not, init_worker_pool().
3266 *
3267 * Should be called with wq_pool_mutex held.
3268 */
3269static void put_unbound_pool(struct worker_pool *pool)
3270{
3271	DECLARE_COMPLETION_ONSTACK(detach_completion);
3272	struct worker *worker;
3273
3274	lockdep_assert_held(&wq_pool_mutex);
3275
3276	if (--pool->refcnt)
3277		return;
3278
3279	/* sanity checks */
3280	if (WARN_ON(!(pool->cpu < 0)) ||
3281	    WARN_ON(!list_empty(&pool->worklist)))
3282		return;
3283
3284	/* release id and unhash */
3285	if (pool->id >= 0)
3286		idr_remove(&worker_pool_idr, pool->id);
3287	hash_del(&pool->hash_node);
3288
3289	/*
3290	 * Become the manager and destroy all workers.  Grabbing
3291	 * manager_arb prevents @pool's workers from blocking on
3292	 * attach_mutex.
3293	 */
3294	mutex_lock(&pool->manager_arb);
3295
3296	spin_lock_irq(&pool->lock);
3297	while ((worker = first_idle_worker(pool)))
3298		destroy_worker(worker);
3299	WARN_ON(pool->nr_workers || pool->nr_idle);
3300	spin_unlock_irq(&pool->lock);
3301
3302	mutex_lock(&pool->attach_mutex);
3303	if (!list_empty(&pool->workers))
3304		pool->detach_completion = &detach_completion;
3305	mutex_unlock(&pool->attach_mutex);
3306
3307	if (pool->detach_completion)
3308		wait_for_completion(pool->detach_completion);
3309
3310	mutex_unlock(&pool->manager_arb);
3311
3312	/* shut down the timers */
3313	del_timer_sync(&pool->idle_timer);
3314	del_timer_sync(&pool->mayday_timer);
3315
3316	/* sched-RCU protected to allow dereferences from get_work_pool() */
3317	call_rcu_sched(&pool->rcu, rcu_free_pool);
3318}
3319
3320/**
3321 * get_unbound_pool - get a worker_pool with the specified attributes
3322 * @attrs: the attributes of the worker_pool to get
3323 *
3324 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3325 * reference count and return it.  If there already is a matching
3326 * worker_pool, it will be used; otherwise, this function attempts to
3327 * create a new one.
3328 *
3329 * Should be called with wq_pool_mutex held.
3330 *
3331 * Return: On success, a worker_pool with the same attributes as @attrs.
3332 * On failure, %NULL.
3333 */
3334static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3335{
3336	u32 hash = wqattrs_hash(attrs);
3337	struct worker_pool *pool;
3338	int node;
3339	int target_node = NUMA_NO_NODE;
3340
3341	lockdep_assert_held(&wq_pool_mutex);
3342
3343	/* do we already have a matching pool? */
3344	hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3345		if (wqattrs_equal(pool->attrs, attrs)) {
3346			pool->refcnt++;
3347			return pool;
3348		}
3349	}
3350
3351	/* if cpumask is contained inside a NUMA node, we belong to that node */
3352	if (wq_numa_enabled) {
3353		for_each_node(node) {
3354			if (cpumask_subset(attrs->cpumask,
3355					   wq_numa_possible_cpumask[node])) {
3356				target_node = node;
3357				break;
3358			}
3359		}
3360	}
3361
3362	/* nope, create a new one */
3363	pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node);
3364	if (!pool || init_worker_pool(pool) < 0)
3365		goto fail;
3366
3367	lockdep_set_subclass(&pool->lock, 1);	/* see put_pwq() */
3368	copy_workqueue_attrs(pool->attrs, attrs);
3369	pool->node = target_node;
3370
3371	/*
3372	 * no_numa isn't a worker_pool attribute, always clear it.  See
3373	 * 'struct workqueue_attrs' comments for detail.
3374	 */
3375	pool->attrs->no_numa = false;
3376
3377	if (worker_pool_assign_id(pool) < 0)
3378		goto fail;
3379
3380	/* create and start the initial worker */
3381	if (!create_worker(pool))
3382		goto fail;
3383
3384	/* install */
3385	hash_add(unbound_pool_hash, &pool->hash_node, hash);
3386
3387	return pool;
3388fail:
3389	if (pool)
3390		put_unbound_pool(pool);
3391	return NULL;
3392}
3393
3394static void rcu_free_pwq(struct rcu_head *rcu)
3395{
3396	kmem_cache_free(pwq_cache,
3397			container_of(rcu, struct pool_workqueue, rcu));
3398}
3399
3400/*
3401 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3402 * and needs to be destroyed.
3403 */
3404static void pwq_unbound_release_workfn(struct work_struct *work)
3405{
3406	struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3407						  unbound_release_work);
3408	struct workqueue_struct *wq = pwq->wq;
3409	struct worker_pool *pool = pwq->pool;
3410	bool is_last;
3411
3412	if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3413		return;
3414
3415	mutex_lock(&wq->mutex);
3416	list_del_rcu(&pwq->pwqs_node);
3417	is_last = list_empty(&wq->pwqs);
3418	mutex_unlock(&wq->mutex);
3419
3420	mutex_lock(&wq_pool_mutex);
3421	put_unbound_pool(pool);
3422	mutex_unlock(&wq_pool_mutex);
3423
3424	call_rcu_sched(&pwq->rcu, rcu_free_pwq);
3425
3426	/*
3427	 * If we're the last pwq going away, @wq is already dead and no one
3428	 * is gonna access it anymore.  Schedule RCU free.
3429	 */
3430	if (is_last)
3431		call_rcu_sched(&wq->rcu, rcu_free_wq);
3432}
3433
3434/**
3435 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3436 * @pwq: target pool_workqueue
3437 *
3438 * If @pwq isn't freezing, set @pwq->max_active to the associated
3439 * workqueue's saved_max_active and activate delayed work items
3440 * accordingly.  If @pwq is freezing, clear @pwq->max_active to zero.
3441 */
3442static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3443{
3444	struct workqueue_struct *wq = pwq->wq;
3445	bool freezable = wq->flags & WQ_FREEZABLE;
 
3446
3447	/* for @wq->saved_max_active */
3448	lockdep_assert_held(&wq->mutex);
3449
3450	/* fast exit for non-freezable wqs */
3451	if (!freezable && pwq->max_active == wq->saved_max_active)
3452		return;
3453
3454	spin_lock_irq(&pwq->pool->lock);
 
3455
3456	/*
3457	 * During [un]freezing, the caller is responsible for ensuring that
3458	 * this function is called at least once after @workqueue_freezing
3459	 * is updated and visible.
3460	 */
3461	if (!freezable || !workqueue_freezing) {
3462		pwq->max_active = wq->saved_max_active;
3463
3464		while (!list_empty(&pwq->delayed_works) &&
3465		       pwq->nr_active < pwq->max_active)
3466			pwq_activate_first_delayed(pwq);
3467
3468		/*
3469		 * Need to kick a worker after thawed or an unbound wq's
3470		 * max_active is bumped.  It's a slow path.  Do it always.
3471		 */
3472		wake_up_worker(pwq->pool);
3473	} else {
3474		pwq->max_active = 0;
3475	}
3476
3477	spin_unlock_irq(&pwq->pool->lock);
3478}
3479
3480/* initialize newly alloced @pwq which is associated with @wq and @pool */
3481static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3482		     struct worker_pool *pool)
3483{
3484	BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3485
3486	memset(pwq, 0, sizeof(*pwq));
3487
3488	pwq->pool = pool;
3489	pwq->wq = wq;
3490	pwq->flush_color = -1;
3491	pwq->refcnt = 1;
3492	INIT_LIST_HEAD(&pwq->delayed_works);
3493	INIT_LIST_HEAD(&pwq->pwqs_node);
3494	INIT_LIST_HEAD(&pwq->mayday_node);
3495	INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3496}
3497
3498/* sync @pwq with the current state of its associated wq and link it */
3499static void link_pwq(struct pool_workqueue *pwq)
3500{
3501	struct workqueue_struct *wq = pwq->wq;
3502
3503	lockdep_assert_held(&wq->mutex);
3504
3505	/* may be called multiple times, ignore if already linked */
3506	if (!list_empty(&pwq->pwqs_node))
3507		return;
3508
3509	/* set the matching work_color */
3510	pwq->work_color = wq->work_color;
3511
3512	/* sync max_active to the current setting */
3513	pwq_adjust_max_active(pwq);
3514
3515	/* link in @pwq */
3516	list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3517}
3518
3519/* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3520static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3521					const struct workqueue_attrs *attrs)
3522{
3523	struct worker_pool *pool;
3524	struct pool_workqueue *pwq;
3525
3526	lockdep_assert_held(&wq_pool_mutex);
3527
3528	pool = get_unbound_pool(attrs);
3529	if (!pool)
3530		return NULL;
3531
3532	pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3533	if (!pwq) {
3534		put_unbound_pool(pool);
3535		return NULL;
3536	}
3537
3538	init_pwq(pwq, wq, pool);
3539	return pwq;
3540}
3541
3542/**
3543 * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
3544 * @attrs: the wq_attrs of the default pwq of the target workqueue
3545 * @node: the target NUMA node
3546 * @cpu_going_down: if >= 0, the CPU to consider as offline
3547 * @cpumask: outarg, the resulting cpumask
3548 *
3549 * Calculate the cpumask a workqueue with @attrs should use on @node.  If
3550 * @cpu_going_down is >= 0, that cpu is considered offline during
3551 * calculation.  The result is stored in @cpumask.
3552 *
3553 * If NUMA affinity is not enabled, @attrs->cpumask is always used.  If
3554 * enabled and @node has online CPUs requested by @attrs, the returned
3555 * cpumask is the intersection of the possible CPUs of @node and
3556 * @attrs->cpumask.
3557 *
3558 * The caller is responsible for ensuring that the cpumask of @node stays
3559 * stable.
3560 *
3561 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3562 * %false if equal.
3563 */
3564static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3565				 int cpu_going_down, cpumask_t *cpumask)
3566{
3567	if (!wq_numa_enabled || attrs->no_numa)
3568		goto use_dfl;
3569
3570	/* does @node have any online CPUs @attrs wants? */
3571	cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3572	if (cpu_going_down >= 0)
3573		cpumask_clear_cpu(cpu_going_down, cpumask);
3574
3575	if (cpumask_empty(cpumask))
3576		goto use_dfl;
3577
3578	/* yeap, return possible CPUs in @node that @attrs wants */
3579	cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3580	return !cpumask_equal(cpumask, attrs->cpumask);
3581
3582use_dfl:
3583	cpumask_copy(cpumask, attrs->cpumask);
3584	return false;
3585}
3586
3587/* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3588static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3589						   int node,
3590						   struct pool_workqueue *pwq)
3591{
3592	struct pool_workqueue *old_pwq;
3593
3594	lockdep_assert_held(&wq_pool_mutex);
3595	lockdep_assert_held(&wq->mutex);
3596
3597	/* link_pwq() can handle duplicate calls */
3598	link_pwq(pwq);
3599
3600	old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3601	rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3602	return old_pwq;
3603}
3604
3605/* context to store the prepared attrs & pwqs before applying */
3606struct apply_wqattrs_ctx {
3607	struct workqueue_struct	*wq;		/* target workqueue */
3608	struct workqueue_attrs	*attrs;		/* attrs to apply */
3609	struct list_head	list;		/* queued for batching commit */
3610	struct pool_workqueue	*dfl_pwq;
3611	struct pool_workqueue	*pwq_tbl[];
3612};
3613
3614/* free the resources after success or abort */
3615static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
3616{
3617	if (ctx) {
3618		int node;
3619
3620		for_each_node(node)
3621			put_pwq_unlocked(ctx->pwq_tbl[node]);
3622		put_pwq_unlocked(ctx->dfl_pwq);
3623
3624		free_workqueue_attrs(ctx->attrs);
3625
3626		kfree(ctx);
3627	}
3628}
3629
3630/* allocate the attrs and pwqs for later installation */
3631static struct apply_wqattrs_ctx *
3632apply_wqattrs_prepare(struct workqueue_struct *wq,
3633		      const struct workqueue_attrs *attrs)
3634{
3635	struct apply_wqattrs_ctx *ctx;
3636	struct workqueue_attrs *new_attrs, *tmp_attrs;
3637	int node;
3638
3639	lockdep_assert_held(&wq_pool_mutex);
3640
3641	ctx = kzalloc(sizeof(*ctx) + nr_node_ids * sizeof(ctx->pwq_tbl[0]),
3642		      GFP_KERNEL);
3643
3644	new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3645	tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3646	if (!ctx || !new_attrs || !tmp_attrs)
3647		goto out_free;
3648
3649	/*
3650	 * Calculate the attrs of the default pwq.
3651	 * If the user configured cpumask doesn't overlap with the
3652	 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
3653	 */
3654	copy_workqueue_attrs(new_attrs, attrs);
3655	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask);
3656	if (unlikely(cpumask_empty(new_attrs->cpumask)))
3657		cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask);
3658
3659	/*
3660	 * We may create multiple pwqs with differing cpumasks.  Make a
3661	 * copy of @new_attrs which will be modified and used to obtain
3662	 * pools.
3663	 */
3664	copy_workqueue_attrs(tmp_attrs, new_attrs);
3665
3666	/*
3667	 * If something goes wrong during CPU up/down, we'll fall back to
3668	 * the default pwq covering whole @attrs->cpumask.  Always create
3669	 * it even if we don't use it immediately.
3670	 */
3671	ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3672	if (!ctx->dfl_pwq)
3673		goto out_free;
3674
3675	for_each_node(node) {
3676		if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
3677			ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3678			if (!ctx->pwq_tbl[node])
3679				goto out_free;
3680		} else {
3681			ctx->dfl_pwq->refcnt++;
3682			ctx->pwq_tbl[node] = ctx->dfl_pwq;
3683		}
3684	}
3685
3686	/* save the user configured attrs and sanitize it. */
3687	copy_workqueue_attrs(new_attrs, attrs);
3688	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
3689	ctx->attrs = new_attrs;
3690
3691	ctx->wq = wq;
3692	free_workqueue_attrs(tmp_attrs);
3693	return ctx;
3694
3695out_free:
3696	free_workqueue_attrs(tmp_attrs);
3697	free_workqueue_attrs(new_attrs);
3698	apply_wqattrs_cleanup(ctx);
3699	return NULL;
3700}
3701
3702/* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
3703static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
3704{
3705	int node;
3706
3707	/* all pwqs have been created successfully, let's install'em */
3708	mutex_lock(&ctx->wq->mutex);
3709
3710	copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
3711
3712	/* save the previous pwq and install the new one */
3713	for_each_node(node)
3714		ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
3715							  ctx->pwq_tbl[node]);
3716
3717	/* @dfl_pwq might not have been used, ensure it's linked */
3718	link_pwq(ctx->dfl_pwq);
3719	swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
3720
3721	mutex_unlock(&ctx->wq->mutex);
3722}
3723
3724static void apply_wqattrs_lock(void)
3725{
3726	/* CPUs should stay stable across pwq creations and installations */
3727	get_online_cpus();
3728	mutex_lock(&wq_pool_mutex);
3729}
3730
3731static void apply_wqattrs_unlock(void)
3732{
3733	mutex_unlock(&wq_pool_mutex);
3734	put_online_cpus();
3735}
3736
3737static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
3738					const struct workqueue_attrs *attrs)
3739{
3740	struct apply_wqattrs_ctx *ctx;
3741
3742	/* only unbound workqueues can change attributes */
3743	if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
3744		return -EINVAL;
3745
3746	/* creating multiple pwqs breaks ordering guarantee */
3747	if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
3748		return -EINVAL;
3749
3750	ctx = apply_wqattrs_prepare(wq, attrs);
3751	if (!ctx)
3752		return -ENOMEM;
3753
3754	/* the ctx has been prepared successfully, let's commit it */
3755	apply_wqattrs_commit(ctx);
3756	apply_wqattrs_cleanup(ctx);
3757
3758	return 0;
3759}
3760
3761/**
3762 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
3763 * @wq: the target workqueue
3764 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
3765 *
3766 * Apply @attrs to an unbound workqueue @wq.  Unless disabled, on NUMA
3767 * machines, this function maps a separate pwq to each NUMA node with
3768 * possibles CPUs in @attrs->cpumask so that work items are affine to the
3769 * NUMA node it was issued on.  Older pwqs are released as in-flight work
3770 * items finish.  Note that a work item which repeatedly requeues itself
3771 * back-to-back will stay on its current pwq.
3772 *
3773 * Performs GFP_KERNEL allocations.
3774 *
3775 * Return: 0 on success and -errno on failure.
3776 */
3777int apply_workqueue_attrs(struct workqueue_struct *wq,
3778			  const struct workqueue_attrs *attrs)
3779{
3780	int ret;
3781
3782	apply_wqattrs_lock();
3783	ret = apply_workqueue_attrs_locked(wq, attrs);
3784	apply_wqattrs_unlock();
3785
3786	return ret;
3787}
3788
3789/**
3790 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
3791 * @wq: the target workqueue
3792 * @cpu: the CPU coming up or going down
3793 * @online: whether @cpu is coming up or going down
3794 *
3795 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
3796 * %CPU_DOWN_FAILED.  @cpu is being hot[un]plugged, update NUMA affinity of
3797 * @wq accordingly.
3798 *
3799 * If NUMA affinity can't be adjusted due to memory allocation failure, it
3800 * falls back to @wq->dfl_pwq which may not be optimal but is always
3801 * correct.
3802 *
3803 * Note that when the last allowed CPU of a NUMA node goes offline for a
3804 * workqueue with a cpumask spanning multiple nodes, the workers which were
3805 * already executing the work items for the workqueue will lose their CPU
3806 * affinity and may execute on any CPU.  This is similar to how per-cpu
3807 * workqueues behave on CPU_DOWN.  If a workqueue user wants strict
3808 * affinity, it's the user's responsibility to flush the work item from
3809 * CPU_DOWN_PREPARE.
3810 */
3811static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
3812				   bool online)
3813{
3814	int node = cpu_to_node(cpu);
3815	int cpu_off = online ? -1 : cpu;
3816	struct pool_workqueue *old_pwq = NULL, *pwq;
3817	struct workqueue_attrs *target_attrs;
3818	cpumask_t *cpumask;
3819
3820	lockdep_assert_held(&wq_pool_mutex);
3821
3822	if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
3823	    wq->unbound_attrs->no_numa)
3824		return;
3825
3826	/*
3827	 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
3828	 * Let's use a preallocated one.  The following buf is protected by
3829	 * CPU hotplug exclusion.
3830	 */
3831	target_attrs = wq_update_unbound_numa_attrs_buf;
3832	cpumask = target_attrs->cpumask;
3833
3834	copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
3835	pwq = unbound_pwq_by_node(wq, node);
3836
3837	/*
3838	 * Let's determine what needs to be done.  If the target cpumask is
3839	 * different from the default pwq's, we need to compare it to @pwq's
3840	 * and create a new one if they don't match.  If the target cpumask
3841	 * equals the default pwq's, the default pwq should be used.
3842	 */
3843	if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
3844		if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
3845			return;
3846	} else {
3847		goto use_dfl_pwq;
3848	}
3849
3850	/* create a new pwq */
3851	pwq = alloc_unbound_pwq(wq, target_attrs);
3852	if (!pwq) {
3853		pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
3854			wq->name);
3855		goto use_dfl_pwq;
3856	}
3857
3858	/* Install the new pwq. */
3859	mutex_lock(&wq->mutex);
3860	old_pwq = numa_pwq_tbl_install(wq, node, pwq);
3861	goto out_unlock;
3862
3863use_dfl_pwq:
3864	mutex_lock(&wq->mutex);
3865	spin_lock_irq(&wq->dfl_pwq->pool->lock);
3866	get_pwq(wq->dfl_pwq);
3867	spin_unlock_irq(&wq->dfl_pwq->pool->lock);
3868	old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
3869out_unlock:
3870	mutex_unlock(&wq->mutex);
3871	put_pwq_unlocked(old_pwq);
3872}
3873
3874static int alloc_and_link_pwqs(struct workqueue_struct *wq)
3875{
3876	bool highpri = wq->flags & WQ_HIGHPRI;
3877	int cpu, ret;
3878
3879	if (!(wq->flags & WQ_UNBOUND)) {
3880		wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
3881		if (!wq->cpu_pwqs)
3882			return -ENOMEM;
3883
3884		for_each_possible_cpu(cpu) {
3885			struct pool_workqueue *pwq =
3886				per_cpu_ptr(wq->cpu_pwqs, cpu);
3887			struct worker_pool *cpu_pools =
3888				per_cpu(cpu_worker_pools, cpu);
3889
3890			init_pwq(pwq, wq, &cpu_pools[highpri]);
3891
3892			mutex_lock(&wq->mutex);
3893			link_pwq(pwq);
3894			mutex_unlock(&wq->mutex);
3895		}
3896		return 0;
3897	} else if (wq->flags & __WQ_ORDERED) {
3898		ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
3899		/* there should only be single pwq for ordering guarantee */
3900		WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
3901			      wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
3902		     "ordering guarantee broken for workqueue %s\n", wq->name);
3903		return ret;
3904	} else {
3905		return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
3906	}
3907}
3908
3909static int wq_clamp_max_active(int max_active, unsigned int flags,
3910			       const char *name)
3911{
3912	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
3913
3914	if (max_active < 1 || max_active > lim)
3915		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
3916			max_active, name, 1, lim);
3917
3918	return clamp_val(max_active, 1, lim);
3919}
3920
3921struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
3922					       unsigned int flags,
3923					       int max_active,
3924					       struct lock_class_key *key,
3925					       const char *lock_name, ...)
3926{
3927	size_t tbl_size = 0;
3928	va_list args;
3929	struct workqueue_struct *wq;
3930	struct pool_workqueue *pwq;
3931
3932	/* see the comment above the definition of WQ_POWER_EFFICIENT */
3933	if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
3934		flags |= WQ_UNBOUND;
3935
3936	/* allocate wq and format name */
3937	if (flags & WQ_UNBOUND)
3938		tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
3939
3940	wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
3941	if (!wq)
3942		return NULL;
3943
3944	if (flags & WQ_UNBOUND) {
3945		wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3946		if (!wq->unbound_attrs)
3947			goto err_free_wq;
3948	}
3949
3950	va_start(args, lock_name);
3951	vsnprintf(wq->name, sizeof(wq->name), fmt, args);
3952	va_end(args);
3953
3954	max_active = max_active ?: WQ_DFL_ACTIVE;
3955	max_active = wq_clamp_max_active(max_active, flags, wq->name);
3956
3957	/* init wq */
3958	wq->flags = flags;
3959	wq->saved_max_active = max_active;
3960	mutex_init(&wq->mutex);
3961	atomic_set(&wq->nr_pwqs_to_flush, 0);
3962	INIT_LIST_HEAD(&wq->pwqs);
3963	INIT_LIST_HEAD(&wq->flusher_queue);
3964	INIT_LIST_HEAD(&wq->flusher_overflow);
3965	INIT_LIST_HEAD(&wq->maydays);
3966
3967	lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
3968	INIT_LIST_HEAD(&wq->list);
3969
3970	if (alloc_and_link_pwqs(wq) < 0)
3971		goto err_free_wq;
3972
3973	/*
3974	 * Workqueues which may be used during memory reclaim should
3975	 * have a rescuer to guarantee forward progress.
3976	 */
3977	if (flags & WQ_MEM_RECLAIM) {
3978		struct worker *rescuer;
3979
3980		rescuer = alloc_worker(NUMA_NO_NODE);
3981		if (!rescuer)
3982			goto err_destroy;
3983
3984		rescuer->rescue_wq = wq;
3985		rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
3986					       wq->name);
3987		if (IS_ERR(rescuer->task)) {
3988			kfree(rescuer);
3989			goto err_destroy;
3990		}
3991
3992		wq->rescuer = rescuer;
3993		kthread_bind_mask(rescuer->task, cpu_possible_mask);
3994		wake_up_process(rescuer->task);
3995	}
3996
3997	if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
3998		goto err_destroy;
3999
4000	/*
4001	 * wq_pool_mutex protects global freeze state and workqueues list.
4002	 * Grab it, adjust max_active and add the new @wq to workqueues
4003	 * list.
4004	 */
4005	mutex_lock(&wq_pool_mutex);
4006
4007	mutex_lock(&wq->mutex);
4008	for_each_pwq(pwq, wq)
4009		pwq_adjust_max_active(pwq);
4010	mutex_unlock(&wq->mutex);
4011
4012	list_add_tail_rcu(&wq->list, &workqueues);
4013
4014	mutex_unlock(&wq_pool_mutex);
4015
4016	return wq;
4017
4018err_free_wq:
4019	free_workqueue_attrs(wq->unbound_attrs);
4020	kfree(wq);
4021	return NULL;
4022err_destroy:
4023	destroy_workqueue(wq);
4024	return NULL;
4025}
4026EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
4027
4028/**
4029 * destroy_workqueue - safely terminate a workqueue
4030 * @wq: target workqueue
4031 *
4032 * Safely destroy a workqueue. All work currently pending will be done first.
4033 */
4034void destroy_workqueue(struct workqueue_struct *wq)
4035{
4036	struct pool_workqueue *pwq;
4037	int node;
4038
4039	/* drain it before proceeding with destruction */
4040	drain_workqueue(wq);
4041
4042	/* sanity checks */
4043	mutex_lock(&wq->mutex);
4044	for_each_pwq(pwq, wq) {
4045		int i;
4046
4047		for (i = 0; i < WORK_NR_COLORS; i++) {
4048			if (WARN_ON(pwq->nr_in_flight[i])) {
4049				mutex_unlock(&wq->mutex);
 
4050				return;
4051			}
4052		}
4053
4054		if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
4055		    WARN_ON(pwq->nr_active) ||
4056		    WARN_ON(!list_empty(&pwq->delayed_works))) {
4057			mutex_unlock(&wq->mutex);
 
4058			return;
4059		}
4060	}
4061	mutex_unlock(&wq->mutex);
4062
4063	/*
4064	 * wq list is used to freeze wq, remove from list after
4065	 * flushing is complete in case freeze races us.
4066	 */
4067	mutex_lock(&wq_pool_mutex);
4068	list_del_rcu(&wq->list);
4069	mutex_unlock(&wq_pool_mutex);
4070
4071	workqueue_sysfs_unregister(wq);
4072
4073	if (wq->rescuer)
4074		kthread_stop(wq->rescuer->task);
4075
4076	if (!(wq->flags & WQ_UNBOUND)) {
4077		/*
4078		 * The base ref is never dropped on per-cpu pwqs.  Directly
4079		 * schedule RCU free.
4080		 */
4081		call_rcu_sched(&wq->rcu, rcu_free_wq);
4082	} else {
4083		/*
4084		 * We're the sole accessor of @wq at this point.  Directly
4085		 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4086		 * @wq will be freed when the last pwq is released.
4087		 */
4088		for_each_node(node) {
4089			pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4090			RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4091			put_pwq_unlocked(pwq);
4092		}
4093
4094		/*
4095		 * Put dfl_pwq.  @wq may be freed any time after dfl_pwq is
4096		 * put.  Don't access it afterwards.
4097		 */
4098		pwq = wq->dfl_pwq;
4099		wq->dfl_pwq = NULL;
4100		put_pwq_unlocked(pwq);
4101	}
4102}
4103EXPORT_SYMBOL_GPL(destroy_workqueue);
4104
4105/**
4106 * workqueue_set_max_active - adjust max_active of a workqueue
4107 * @wq: target workqueue
4108 * @max_active: new max_active value.
4109 *
4110 * Set max_active of @wq to @max_active.
4111 *
4112 * CONTEXT:
4113 * Don't call from IRQ context.
4114 */
4115void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4116{
4117	struct pool_workqueue *pwq;
4118
4119	/* disallow meddling with max_active for ordered workqueues */
4120	if (WARN_ON(wq->flags & __WQ_ORDERED))
4121		return;
4122
4123	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4124
4125	mutex_lock(&wq->mutex);
4126
4127	wq->saved_max_active = max_active;
4128
4129	for_each_pwq(pwq, wq)
4130		pwq_adjust_max_active(pwq);
4131
4132	mutex_unlock(&wq->mutex);
4133}
4134EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4135
4136/**
4137 * current_is_workqueue_rescuer - is %current workqueue rescuer?
4138 *
4139 * Determine whether %current is a workqueue rescuer.  Can be used from
4140 * work functions to determine whether it's being run off the rescuer task.
4141 *
4142 * Return: %true if %current is a workqueue rescuer. %false otherwise.
4143 */
4144bool current_is_workqueue_rescuer(void)
4145{
4146	struct worker *worker = current_wq_worker();
4147
4148	return worker && worker->rescue_wq;
4149}
4150
4151/**
4152 * workqueue_congested - test whether a workqueue is congested
4153 * @cpu: CPU in question
4154 * @wq: target workqueue
4155 *
4156 * Test whether @wq's cpu workqueue for @cpu is congested.  There is
4157 * no synchronization around this function and the test result is
4158 * unreliable and only useful as advisory hints or for debugging.
4159 *
4160 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4161 * Note that both per-cpu and unbound workqueues may be associated with
4162 * multiple pool_workqueues which have separate congested states.  A
4163 * workqueue being congested on one CPU doesn't mean the workqueue is also
4164 * contested on other CPUs / NUMA nodes.
4165 *
4166 * Return:
4167 * %true if congested, %false otherwise.
4168 */
4169bool workqueue_congested(int cpu, struct workqueue_struct *wq)
4170{
4171	struct pool_workqueue *pwq;
4172	bool ret;
4173
4174	rcu_read_lock_sched();
4175
4176	if (cpu == WORK_CPU_UNBOUND)
4177		cpu = smp_processor_id();
4178
4179	if (!(wq->flags & WQ_UNBOUND))
4180		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4181	else
4182		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4183
4184	ret = !list_empty(&pwq->delayed_works);
4185	rcu_read_unlock_sched();
4186
4187	return ret;
4188}
4189EXPORT_SYMBOL_GPL(workqueue_congested);
4190
4191/**
4192 * work_busy - test whether a work is currently pending or running
4193 * @work: the work to be tested
4194 *
4195 * Test whether @work is currently pending or running.  There is no
4196 * synchronization around this function and the test result is
4197 * unreliable and only useful as advisory hints or for debugging.
4198 *
4199 * Return:
4200 * OR'd bitmask of WORK_BUSY_* bits.
4201 */
4202unsigned int work_busy(struct work_struct *work)
4203{
4204	struct worker_pool *pool;
4205	unsigned long flags;
4206	unsigned int ret = 0;
4207
4208	if (work_pending(work))
4209		ret |= WORK_BUSY_PENDING;
4210
4211	local_irq_save(flags);
4212	pool = get_work_pool(work);
4213	if (pool) {
4214		spin_lock(&pool->lock);
4215		if (find_worker_executing_work(pool, work))
4216			ret |= WORK_BUSY_RUNNING;
4217		spin_unlock(&pool->lock);
4218	}
4219	local_irq_restore(flags);
4220
4221	return ret;
4222}
4223EXPORT_SYMBOL_GPL(work_busy);
4224
4225/**
4226 * set_worker_desc - set description for the current work item
4227 * @fmt: printf-style format string
4228 * @...: arguments for the format string
4229 *
4230 * This function can be called by a running work function to describe what
4231 * the work item is about.  If the worker task gets dumped, this
4232 * information will be printed out together to help debugging.  The
4233 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4234 */
4235void set_worker_desc(const char *fmt, ...)
4236{
4237	struct worker *worker = current_wq_worker();
4238	va_list args;
4239
4240	if (worker) {
4241		va_start(args, fmt);
4242		vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4243		va_end(args);
4244		worker->desc_valid = true;
4245	}
4246}
4247
4248/**
4249 * print_worker_info - print out worker information and description
4250 * @log_lvl: the log level to use when printing
4251 * @task: target task
4252 *
4253 * If @task is a worker and currently executing a work item, print out the
4254 * name of the workqueue being serviced and worker description set with
4255 * set_worker_desc() by the currently executing work item.
4256 *
4257 * This function can be safely called on any task as long as the
4258 * task_struct itself is accessible.  While safe, this function isn't
4259 * synchronized and may print out mixups or garbages of limited length.
4260 */
4261void print_worker_info(const char *log_lvl, struct task_struct *task)
4262{
4263	work_func_t *fn = NULL;
4264	char name[WQ_NAME_LEN] = { };
4265	char desc[WORKER_DESC_LEN] = { };
4266	struct pool_workqueue *pwq = NULL;
4267	struct workqueue_struct *wq = NULL;
4268	bool desc_valid = false;
4269	struct worker *worker;
4270
4271	if (!(task->flags & PF_WQ_WORKER))
4272		return;
4273
4274	/*
4275	 * This function is called without any synchronization and @task
4276	 * could be in any state.  Be careful with dereferences.
4277	 */
4278	worker = probe_kthread_data(task);
4279
4280	/*
4281	 * Carefully copy the associated workqueue's workfn and name.  Keep
4282	 * the original last '\0' in case the original contains garbage.
4283	 */
4284	probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
4285	probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
4286	probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
4287	probe_kernel_read(name, wq->name, sizeof(name) - 1);
4288
4289	/* copy worker description */
4290	probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
4291	if (desc_valid)
4292		probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
4293
4294	if (fn || name[0] || desc[0]) {
4295		printk("%sWorkqueue: %s %pf", log_lvl, name, fn);
4296		if (desc[0])
4297			pr_cont(" (%s)", desc);
4298		pr_cont("\n");
4299	}
4300}
4301
4302static void pr_cont_pool_info(struct worker_pool *pool)
4303{
4304	pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
4305	if (pool->node != NUMA_NO_NODE)
4306		pr_cont(" node=%d", pool->node);
4307	pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
4308}
4309
4310static void pr_cont_work(bool comma, struct work_struct *work)
4311{
4312	if (work->func == wq_barrier_func) {
4313		struct wq_barrier *barr;
4314
4315		barr = container_of(work, struct wq_barrier, work);
4316
4317		pr_cont("%s BAR(%d)", comma ? "," : "",
4318			task_pid_nr(barr->task));
4319	} else {
4320		pr_cont("%s %pf", comma ? "," : "", work->func);
4321	}
4322}
4323
4324static void show_pwq(struct pool_workqueue *pwq)
4325{
4326	struct worker_pool *pool = pwq->pool;
4327	struct work_struct *work;
4328	struct worker *worker;
4329	bool has_in_flight = false, has_pending = false;
4330	int bkt;
4331
4332	pr_info("  pwq %d:", pool->id);
4333	pr_cont_pool_info(pool);
4334
4335	pr_cont(" active=%d/%d%s\n", pwq->nr_active, pwq->max_active,
4336		!list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
4337
4338	hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4339		if (worker->current_pwq == pwq) {
4340			has_in_flight = true;
4341			break;
4342		}
4343	}
4344	if (has_in_flight) {
4345		bool comma = false;
4346
4347		pr_info("    in-flight:");
4348		hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4349			if (worker->current_pwq != pwq)
4350				continue;
4351
4352			pr_cont("%s %d%s:%pf", comma ? "," : "",
4353				task_pid_nr(worker->task),
4354				worker == pwq->wq->rescuer ? "(RESCUER)" : "",
4355				worker->current_func);
4356			list_for_each_entry(work, &worker->scheduled, entry)
4357				pr_cont_work(false, work);
4358			comma = true;
4359		}
4360		pr_cont("\n");
4361	}
4362
4363	list_for_each_entry(work, &pool->worklist, entry) {
4364		if (get_work_pwq(work) == pwq) {
4365			has_pending = true;
4366			break;
4367		}
4368	}
4369	if (has_pending) {
4370		bool comma = false;
4371
4372		pr_info("    pending:");
4373		list_for_each_entry(work, &pool->worklist, entry) {
4374			if (get_work_pwq(work) != pwq)
4375				continue;
4376
4377			pr_cont_work(comma, work);
4378			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4379		}
4380		pr_cont("\n");
4381	}
4382
4383	if (!list_empty(&pwq->delayed_works)) {
4384		bool comma = false;
4385
4386		pr_info("    delayed:");
4387		list_for_each_entry(work, &pwq->delayed_works, entry) {
4388			pr_cont_work(comma, work);
4389			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4390		}
4391		pr_cont("\n");
4392	}
4393}
4394
4395/**
4396 * show_workqueue_state - dump workqueue state
4397 *
4398 * Called from a sysrq handler and prints out all busy workqueues and
4399 * pools.
4400 */
4401void show_workqueue_state(void)
4402{
4403	struct workqueue_struct *wq;
4404	struct worker_pool *pool;
4405	unsigned long flags;
4406	int pi;
4407
4408	rcu_read_lock_sched();
4409
4410	pr_info("Showing busy workqueues and worker pools:\n");
4411
4412	list_for_each_entry_rcu(wq, &workqueues, list) {
4413		struct pool_workqueue *pwq;
4414		bool idle = true;
4415
4416		for_each_pwq(pwq, wq) {
4417			if (pwq->nr_active || !list_empty(&pwq->delayed_works)) {
4418				idle = false;
4419				break;
4420			}
4421		}
4422		if (idle)
4423			continue;
4424
4425		pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
4426
4427		for_each_pwq(pwq, wq) {
4428			spin_lock_irqsave(&pwq->pool->lock, flags);
4429			if (pwq->nr_active || !list_empty(&pwq->delayed_works))
4430				show_pwq(pwq);
4431			spin_unlock_irqrestore(&pwq->pool->lock, flags);
4432		}
4433	}
4434
4435	for_each_pool(pool, pi) {
4436		struct worker *worker;
4437		bool first = true;
4438
4439		spin_lock_irqsave(&pool->lock, flags);
4440		if (pool->nr_workers == pool->nr_idle)
4441			goto next_pool;
4442
4443		pr_info("pool %d:", pool->id);
4444		pr_cont_pool_info(pool);
4445		pr_cont(" hung=%us workers=%d",
4446			jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000,
4447			pool->nr_workers);
4448		if (pool->manager)
4449			pr_cont(" manager: %d",
4450				task_pid_nr(pool->manager->task));
4451		list_for_each_entry(worker, &pool->idle_list, entry) {
4452			pr_cont(" %s%d", first ? "idle: " : "",
4453				task_pid_nr(worker->task));
4454			first = false;
4455		}
4456		pr_cont("\n");
4457	next_pool:
4458		spin_unlock_irqrestore(&pool->lock, flags);
4459	}
4460
4461	rcu_read_unlock_sched();
4462}
4463
4464/*
4465 * CPU hotplug.
4466 *
4467 * There are two challenges in supporting CPU hotplug.  Firstly, there
4468 * are a lot of assumptions on strong associations among work, pwq and
4469 * pool which make migrating pending and scheduled works very
4470 * difficult to implement without impacting hot paths.  Secondly,
4471 * worker pools serve mix of short, long and very long running works making
4472 * blocked draining impractical.
4473 *
4474 * This is solved by allowing the pools to be disassociated from the CPU
4475 * running as an unbound one and allowing it to be reattached later if the
4476 * cpu comes back online.
4477 */
4478
4479static void wq_unbind_fn(struct work_struct *work)
4480{
4481	int cpu = smp_processor_id();
4482	struct worker_pool *pool;
4483	struct worker *worker;
4484
4485	for_each_cpu_worker_pool(pool, cpu) {
4486		mutex_lock(&pool->attach_mutex);
4487		spin_lock_irq(&pool->lock);
4488
4489		/*
4490		 * We've blocked all attach/detach operations. Make all workers
4491		 * unbound and set DISASSOCIATED.  Before this, all workers
4492		 * except for the ones which are still executing works from
4493		 * before the last CPU down must be on the cpu.  After
4494		 * this, they may become diasporas.
4495		 */
4496		for_each_pool_worker(worker, pool)
4497			worker->flags |= WORKER_UNBOUND;
4498
4499		pool->flags |= POOL_DISASSOCIATED;
4500
4501		spin_unlock_irq(&pool->lock);
4502		mutex_unlock(&pool->attach_mutex);
4503
4504		/*
4505		 * Call schedule() so that we cross rq->lock and thus can
4506		 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4507		 * This is necessary as scheduler callbacks may be invoked
4508		 * from other cpus.
4509		 */
4510		schedule();
4511
4512		/*
4513		 * Sched callbacks are disabled now.  Zap nr_running.
4514		 * After this, nr_running stays zero and need_more_worker()
4515		 * and keep_working() are always true as long as the
4516		 * worklist is not empty.  This pool now behaves as an
4517		 * unbound (in terms of concurrency management) pool which
4518		 * are served by workers tied to the pool.
4519		 */
4520		atomic_set(&pool->nr_running, 0);
4521
4522		/*
4523		 * With concurrency management just turned off, a busy
4524		 * worker blocking could lead to lengthy stalls.  Kick off
4525		 * unbound chain execution of currently pending work items.
4526		 */
4527		spin_lock_irq(&pool->lock);
4528		wake_up_worker(pool);
4529		spin_unlock_irq(&pool->lock);
4530	}
4531}
4532
4533/**
4534 * rebind_workers - rebind all workers of a pool to the associated CPU
4535 * @pool: pool of interest
4536 *
4537 * @pool->cpu is coming online.  Rebind all workers to the CPU.
4538 */
4539static void rebind_workers(struct worker_pool *pool)
4540{
4541	struct worker *worker;
4542
4543	lockdep_assert_held(&pool->attach_mutex);
4544
4545	/*
4546	 * Restore CPU affinity of all workers.  As all idle workers should
4547	 * be on the run-queue of the associated CPU before any local
4548	 * wake-ups for concurrency management happen, restore CPU affinity
4549	 * of all workers first and then clear UNBOUND.  As we're called
4550	 * from CPU_ONLINE, the following shouldn't fail.
4551	 */
4552	for_each_pool_worker(worker, pool)
4553		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4554						  pool->attrs->cpumask) < 0);
4555
4556	spin_lock_irq(&pool->lock);
4557
4558	/*
4559	 * XXX: CPU hotplug notifiers are weird and can call DOWN_FAILED
4560	 * w/o preceding DOWN_PREPARE.  Work around it.  CPU hotplug is
4561	 * being reworked and this can go away in time.
4562	 */
4563	if (!(pool->flags & POOL_DISASSOCIATED)) {
4564		spin_unlock_irq(&pool->lock);
4565		return;
4566	}
4567
4568	pool->flags &= ~POOL_DISASSOCIATED;
4569
4570	for_each_pool_worker(worker, pool) {
4571		unsigned int worker_flags = worker->flags;
4572
4573		/*
4574		 * A bound idle worker should actually be on the runqueue
4575		 * of the associated CPU for local wake-ups targeting it to
4576		 * work.  Kick all idle workers so that they migrate to the
4577		 * associated CPU.  Doing this in the same loop as
4578		 * replacing UNBOUND with REBOUND is safe as no worker will
4579		 * be bound before @pool->lock is released.
4580		 */
4581		if (worker_flags & WORKER_IDLE)
4582			wake_up_process(worker->task);
4583
4584		/*
4585		 * We want to clear UNBOUND but can't directly call
4586		 * worker_clr_flags() or adjust nr_running.  Atomically
4587		 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4588		 * @worker will clear REBOUND using worker_clr_flags() when
4589		 * it initiates the next execution cycle thus restoring
4590		 * concurrency management.  Note that when or whether
4591		 * @worker clears REBOUND doesn't affect correctness.
4592		 *
4593		 * ACCESS_ONCE() is necessary because @worker->flags may be
4594		 * tested without holding any lock in
4595		 * wq_worker_waking_up().  Without it, NOT_RUNNING test may
4596		 * fail incorrectly leading to premature concurrency
4597		 * management operations.
4598		 */
4599		WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4600		worker_flags |= WORKER_REBOUND;
4601		worker_flags &= ~WORKER_UNBOUND;
4602		ACCESS_ONCE(worker->flags) = worker_flags;
4603	}
4604
4605	spin_unlock_irq(&pool->lock);
4606}
4607
4608/**
4609 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4610 * @pool: unbound pool of interest
4611 * @cpu: the CPU which is coming up
4612 *
4613 * An unbound pool may end up with a cpumask which doesn't have any online
4614 * CPUs.  When a worker of such pool get scheduled, the scheduler resets
4615 * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
4616 * online CPU before, cpus_allowed of all its workers should be restored.
4617 */
4618static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
4619{
4620	static cpumask_t cpumask;
4621	struct worker *worker;
4622
4623	lockdep_assert_held(&pool->attach_mutex);
4624
4625	/* is @cpu allowed for @pool? */
4626	if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
4627		return;
4628
4629	/* is @cpu the only online CPU? */
4630	cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
4631	if (cpumask_weight(&cpumask) != 1)
4632		return;
4633
4634	/* as we're called from CPU_ONLINE, the following shouldn't fail */
4635	for_each_pool_worker(worker, pool)
4636		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4637						  pool->attrs->cpumask) < 0);
4638}
4639
4640/*
4641 * Workqueues should be brought up before normal priority CPU notifiers.
4642 * This will be registered high priority CPU notifier.
4643 */
4644static int workqueue_cpu_up_callback(struct notifier_block *nfb,
4645					       unsigned long action,
4646					       void *hcpu)
 
 
 
 
 
 
 
4647{
4648	int cpu = (unsigned long)hcpu;
4649	struct worker_pool *pool;
4650	struct workqueue_struct *wq;
4651	int pi;
4652
4653	switch (action & ~CPU_TASKS_FROZEN) {
4654	case CPU_UP_PREPARE:
4655		for_each_cpu_worker_pool(pool, cpu) {
4656			if (pool->nr_workers)
4657				continue;
4658			if (!create_worker(pool))
4659				return NOTIFY_BAD;
4660		}
4661		break;
4662
4663	case CPU_DOWN_FAILED:
4664	case CPU_ONLINE:
4665		mutex_lock(&wq_pool_mutex);
4666
4667		for_each_pool(pool, pi) {
4668			mutex_lock(&pool->attach_mutex);
4669
4670			if (pool->cpu == cpu)
4671				rebind_workers(pool);
4672			else if (pool->cpu < 0)
4673				restore_unbound_workers_cpumask(pool, cpu);
4674
4675			mutex_unlock(&pool->attach_mutex);
4676		}
4677
4678		/* update NUMA affinity of unbound workqueues */
4679		list_for_each_entry(wq, &workqueues, list)
4680			wq_update_unbound_numa(wq, cpu, true);
4681
4682		mutex_unlock(&wq_pool_mutex);
4683		break;
4684	}
4685	return NOTIFY_OK;
4686}
4687
4688/*
4689 * Workqueues should be brought down after normal priority CPU notifiers.
4690 * This will be registered as low priority CPU notifier.
4691 */
4692static int workqueue_cpu_down_callback(struct notifier_block *nfb,
4693						 unsigned long action,
4694						 void *hcpu)
4695{
4696	int cpu = (unsigned long)hcpu;
4697	struct work_struct unbind_work;
4698	struct workqueue_struct *wq;
4699
4700	switch (action & ~CPU_TASKS_FROZEN) {
4701	case CPU_DOWN_PREPARE:
4702		/* unbinding per-cpu workers should happen on the local CPU */
4703		INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
4704		queue_work_on(cpu, system_highpri_wq, &unbind_work);
4705
4706		/* update NUMA affinity of unbound workqueues */
4707		mutex_lock(&wq_pool_mutex);
4708		list_for_each_entry(wq, &workqueues, list)
4709			wq_update_unbound_numa(wq, cpu, false);
4710		mutex_unlock(&wq_pool_mutex);
4711
4712		/* wait for per-cpu unbinding to finish */
4713		flush_work(&unbind_work);
4714		destroy_work_on_stack(&unbind_work);
4715		break;
4716	}
4717	return NOTIFY_OK;
4718}
4719
4720#ifdef CONFIG_SMP
4721
4722struct work_for_cpu {
4723	struct work_struct work;
4724	long (*fn)(void *);
4725	void *arg;
4726	long ret;
4727};
4728
4729static void work_for_cpu_fn(struct work_struct *work)
4730{
4731	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
4732
4733	wfc->ret = wfc->fn(wfc->arg);
4734}
4735
4736/**
4737 * work_on_cpu - run a function in thread context on a particular cpu
4738 * @cpu: the cpu to run on
4739 * @fn: the function to run
4740 * @arg: the function arg
4741 *
4742 * It is up to the caller to ensure that the cpu doesn't go offline.
4743 * The caller must not hold any locks which would prevent @fn from completing.
4744 *
4745 * Return: The value @fn returns.
4746 */
4747long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
4748{
4749	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
4750
4751	INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
4752	schedule_work_on(cpu, &wfc.work);
4753	flush_work(&wfc.work);
4754	destroy_work_on_stack(&wfc.work);
4755	return wfc.ret;
4756}
4757EXPORT_SYMBOL_GPL(work_on_cpu);
4758#endif /* CONFIG_SMP */
4759
4760#ifdef CONFIG_FREEZER
4761
4762/**
4763 * freeze_workqueues_begin - begin freezing workqueues
4764 *
4765 * Start freezing workqueues.  After this function returns, all freezable
4766 * workqueues will queue new works to their delayed_works list instead of
4767 * pool->worklist.
4768 *
4769 * CONTEXT:
4770 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4771 */
4772void freeze_workqueues_begin(void)
4773{
4774	struct workqueue_struct *wq;
4775	struct pool_workqueue *pwq;
4776
4777	mutex_lock(&wq_pool_mutex);
4778
4779	WARN_ON_ONCE(workqueue_freezing);
4780	workqueue_freezing = true;
4781
4782	list_for_each_entry(wq, &workqueues, list) {
4783		mutex_lock(&wq->mutex);
4784		for_each_pwq(pwq, wq)
4785			pwq_adjust_max_active(pwq);
4786		mutex_unlock(&wq->mutex);
4787	}
4788
4789	mutex_unlock(&wq_pool_mutex);
4790}
4791
4792/**
4793 * freeze_workqueues_busy - are freezable workqueues still busy?
4794 *
4795 * Check whether freezing is complete.  This function must be called
4796 * between freeze_workqueues_begin() and thaw_workqueues().
4797 *
4798 * CONTEXT:
4799 * Grabs and releases wq_pool_mutex.
4800 *
4801 * Return:
4802 * %true if some freezable workqueues are still busy.  %false if freezing
4803 * is complete.
4804 */
4805bool freeze_workqueues_busy(void)
4806{
4807	bool busy = false;
4808	struct workqueue_struct *wq;
4809	struct pool_workqueue *pwq;
4810
4811	mutex_lock(&wq_pool_mutex);
4812
4813	WARN_ON_ONCE(!workqueue_freezing);
4814
4815	list_for_each_entry(wq, &workqueues, list) {
4816		if (!(wq->flags & WQ_FREEZABLE))
4817			continue;
4818		/*
4819		 * nr_active is monotonically decreasing.  It's safe
4820		 * to peek without lock.
4821		 */
4822		rcu_read_lock_sched();
4823		for_each_pwq(pwq, wq) {
4824			WARN_ON_ONCE(pwq->nr_active < 0);
4825			if (pwq->nr_active) {
4826				busy = true;
4827				rcu_read_unlock_sched();
4828				goto out_unlock;
4829			}
4830		}
4831		rcu_read_unlock_sched();
4832	}
4833out_unlock:
4834	mutex_unlock(&wq_pool_mutex);
4835	return busy;
4836}
4837
4838/**
4839 * thaw_workqueues - thaw workqueues
4840 *
4841 * Thaw workqueues.  Normal queueing is restored and all collected
4842 * frozen works are transferred to their respective pool worklists.
4843 *
4844 * CONTEXT:
4845 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4846 */
4847void thaw_workqueues(void)
4848{
4849	struct workqueue_struct *wq;
4850	struct pool_workqueue *pwq;
4851
4852	mutex_lock(&wq_pool_mutex);
4853
4854	if (!workqueue_freezing)
4855		goto out_unlock;
4856
4857	workqueue_freezing = false;
4858
4859	/* restore max_active and repopulate worklist */
4860	list_for_each_entry(wq, &workqueues, list) {
4861		mutex_lock(&wq->mutex);
4862		for_each_pwq(pwq, wq)
4863			pwq_adjust_max_active(pwq);
4864		mutex_unlock(&wq->mutex);
4865	}
4866
4867out_unlock:
4868	mutex_unlock(&wq_pool_mutex);
4869}
4870#endif /* CONFIG_FREEZER */
4871
4872static int workqueue_apply_unbound_cpumask(void)
4873{
4874	LIST_HEAD(ctxs);
4875	int ret = 0;
4876	struct workqueue_struct *wq;
4877	struct apply_wqattrs_ctx *ctx, *n;
4878
4879	lockdep_assert_held(&wq_pool_mutex);
4880
4881	list_for_each_entry(wq, &workqueues, list) {
4882		if (!(wq->flags & WQ_UNBOUND))
4883			continue;
4884		/* creating multiple pwqs breaks ordering guarantee */
4885		if (wq->flags & __WQ_ORDERED)
4886			continue;
4887
4888		ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs);
4889		if (!ctx) {
4890			ret = -ENOMEM;
4891			break;
4892		}
4893
4894		list_add_tail(&ctx->list, &ctxs);
4895	}
4896
4897	list_for_each_entry_safe(ctx, n, &ctxs, list) {
4898		if (!ret)
4899			apply_wqattrs_commit(ctx);
4900		apply_wqattrs_cleanup(ctx);
4901	}
4902
4903	return ret;
4904}
4905
4906/**
4907 *  workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
4908 *  @cpumask: the cpumask to set
4909 *
4910 *  The low-level workqueues cpumask is a global cpumask that limits
4911 *  the affinity of all unbound workqueues.  This function check the @cpumask
4912 *  and apply it to all unbound workqueues and updates all pwqs of them.
4913 *
4914 *  Retun:	0	- Success
4915 *  		-EINVAL	- Invalid @cpumask
4916 *  		-ENOMEM	- Failed to allocate memory for attrs or pwqs.
4917 */
4918int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
4919{
4920	int ret = -EINVAL;
4921	cpumask_var_t saved_cpumask;
4922
4923	if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL))
4924		return -ENOMEM;
4925
4926	cpumask_and(cpumask, cpumask, cpu_possible_mask);
4927	if (!cpumask_empty(cpumask)) {
4928		apply_wqattrs_lock();
4929
4930		/* save the old wq_unbound_cpumask. */
4931		cpumask_copy(saved_cpumask, wq_unbound_cpumask);
4932
4933		/* update wq_unbound_cpumask at first and apply it to wqs. */
4934		cpumask_copy(wq_unbound_cpumask, cpumask);
4935		ret = workqueue_apply_unbound_cpumask();
4936
4937		/* restore the wq_unbound_cpumask when failed. */
4938		if (ret < 0)
4939			cpumask_copy(wq_unbound_cpumask, saved_cpumask);
4940
4941		apply_wqattrs_unlock();
4942	}
4943
4944	free_cpumask_var(saved_cpumask);
4945	return ret;
4946}
4947
4948#ifdef CONFIG_SYSFS
4949/*
4950 * Workqueues with WQ_SYSFS flag set is visible to userland via
4951 * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
4952 * following attributes.
4953 *
4954 *  per_cpu	RO bool	: whether the workqueue is per-cpu or unbound
4955 *  max_active	RW int	: maximum number of in-flight work items
4956 *
4957 * Unbound workqueues have the following extra attributes.
4958 *
4959 *  id		RO int	: the associated pool ID
4960 *  nice	RW int	: nice value of the workers
4961 *  cpumask	RW mask	: bitmask of allowed CPUs for the workers
4962 */
4963struct wq_device {
4964	struct workqueue_struct		*wq;
4965	struct device			dev;
4966};
4967
4968static struct workqueue_struct *dev_to_wq(struct device *dev)
4969{
4970	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
4971
4972	return wq_dev->wq;
4973}
4974
4975static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
4976			    char *buf)
4977{
4978	struct workqueue_struct *wq = dev_to_wq(dev);
4979
4980	return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
4981}
4982static DEVICE_ATTR_RO(per_cpu);
4983
4984static ssize_t max_active_show(struct device *dev,
4985			       struct device_attribute *attr, char *buf)
4986{
4987	struct workqueue_struct *wq = dev_to_wq(dev);
4988
4989	return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
4990}
4991
4992static ssize_t max_active_store(struct device *dev,
4993				struct device_attribute *attr, const char *buf,
4994				size_t count)
4995{
4996	struct workqueue_struct *wq = dev_to_wq(dev);
4997	int val;
4998
4999	if (sscanf(buf, "%d", &val) != 1 || val <= 0)
5000		return -EINVAL;
5001
5002	workqueue_set_max_active(wq, val);
5003	return count;
5004}
5005static DEVICE_ATTR_RW(max_active);
5006
5007static struct attribute *wq_sysfs_attrs[] = {
5008	&dev_attr_per_cpu.attr,
5009	&dev_attr_max_active.attr,
5010	NULL,
5011};
5012ATTRIBUTE_GROUPS(wq_sysfs);
5013
5014static ssize_t wq_pool_ids_show(struct device *dev,
5015				struct device_attribute *attr, char *buf)
5016{
5017	struct workqueue_struct *wq = dev_to_wq(dev);
5018	const char *delim = "";
5019	int node, written = 0;
5020
5021	rcu_read_lock_sched();
5022	for_each_node(node) {
5023		written += scnprintf(buf + written, PAGE_SIZE - written,
5024				     "%s%d:%d", delim, node,
5025				     unbound_pwq_by_node(wq, node)->pool->id);
5026		delim = " ";
5027	}
5028	written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
5029	rcu_read_unlock_sched();
5030
5031	return written;
5032}
5033
5034static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
5035			    char *buf)
5036{
5037	struct workqueue_struct *wq = dev_to_wq(dev);
5038	int written;
5039
5040	mutex_lock(&wq->mutex);
5041	written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
5042	mutex_unlock(&wq->mutex);
5043
5044	return written;
5045}
5046
5047/* prepare workqueue_attrs for sysfs store operations */
5048static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
5049{
5050	struct workqueue_attrs *attrs;
5051
5052	lockdep_assert_held(&wq_pool_mutex);
5053
5054	attrs = alloc_workqueue_attrs(GFP_KERNEL);
5055	if (!attrs)
5056		return NULL;
5057
5058	copy_workqueue_attrs(attrs, wq->unbound_attrs);
5059	return attrs;
5060}
5061
5062static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
5063			     const char *buf, size_t count)
5064{
5065	struct workqueue_struct *wq = dev_to_wq(dev);
5066	struct workqueue_attrs *attrs;
5067	int ret = -ENOMEM;
5068
5069	apply_wqattrs_lock();
5070
5071	attrs = wq_sysfs_prep_attrs(wq);
5072	if (!attrs)
5073		goto out_unlock;
5074
5075	if (sscanf(buf, "%d", &attrs->nice) == 1 &&
5076	    attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
5077		ret = apply_workqueue_attrs_locked(wq, attrs);
5078	else
5079		ret = -EINVAL;
5080
5081out_unlock:
5082	apply_wqattrs_unlock();
5083	free_workqueue_attrs(attrs);
5084	return ret ?: count;
5085}
5086
5087static ssize_t wq_cpumask_show(struct device *dev,
5088			       struct device_attribute *attr, char *buf)
5089{
5090	struct workqueue_struct *wq = dev_to_wq(dev);
5091	int written;
5092
5093	mutex_lock(&wq->mutex);
5094	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5095			    cpumask_pr_args(wq->unbound_attrs->cpumask));
5096	mutex_unlock(&wq->mutex);
5097	return written;
5098}
5099
5100static ssize_t wq_cpumask_store(struct device *dev,
5101				struct device_attribute *attr,
5102				const char *buf, size_t count)
5103{
5104	struct workqueue_struct *wq = dev_to_wq(dev);
5105	struct workqueue_attrs *attrs;
5106	int ret = -ENOMEM;
5107
5108	apply_wqattrs_lock();
5109
5110	attrs = wq_sysfs_prep_attrs(wq);
5111	if (!attrs)
5112		goto out_unlock;
5113
5114	ret = cpumask_parse(buf, attrs->cpumask);
5115	if (!ret)
5116		ret = apply_workqueue_attrs_locked(wq, attrs);
5117
5118out_unlock:
5119	apply_wqattrs_unlock();
5120	free_workqueue_attrs(attrs);
5121	return ret ?: count;
5122}
5123
5124static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
5125			    char *buf)
5126{
5127	struct workqueue_struct *wq = dev_to_wq(dev);
5128	int written;
5129
5130	mutex_lock(&wq->mutex);
5131	written = scnprintf(buf, PAGE_SIZE, "%d\n",
5132			    !wq->unbound_attrs->no_numa);
5133	mutex_unlock(&wq->mutex);
5134
5135	return written;
5136}
5137
5138static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
5139			     const char *buf, size_t count)
5140{
5141	struct workqueue_struct *wq = dev_to_wq(dev);
5142	struct workqueue_attrs *attrs;
5143	int v, ret = -ENOMEM;
5144
5145	apply_wqattrs_lock();
5146
5147	attrs = wq_sysfs_prep_attrs(wq);
5148	if (!attrs)
5149		goto out_unlock;
5150
5151	ret = -EINVAL;
5152	if (sscanf(buf, "%d", &v) == 1) {
5153		attrs->no_numa = !v;
5154		ret = apply_workqueue_attrs_locked(wq, attrs);
5155	}
5156
5157out_unlock:
5158	apply_wqattrs_unlock();
5159	free_workqueue_attrs(attrs);
5160	return ret ?: count;
5161}
5162
5163static struct device_attribute wq_sysfs_unbound_attrs[] = {
5164	__ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
5165	__ATTR(nice, 0644, wq_nice_show, wq_nice_store),
5166	__ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
5167	__ATTR(numa, 0644, wq_numa_show, wq_numa_store),
5168	__ATTR_NULL,
5169};
5170
5171static struct bus_type wq_subsys = {
5172	.name				= "workqueue",
5173	.dev_groups			= wq_sysfs_groups,
5174};
5175
5176static ssize_t wq_unbound_cpumask_show(struct device *dev,
5177		struct device_attribute *attr, char *buf)
5178{
5179	int written;
5180
5181	mutex_lock(&wq_pool_mutex);
5182	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5183			    cpumask_pr_args(wq_unbound_cpumask));
5184	mutex_unlock(&wq_pool_mutex);
5185
5186	return written;
5187}
5188
5189static ssize_t wq_unbound_cpumask_store(struct device *dev,
5190		struct device_attribute *attr, const char *buf, size_t count)
5191{
5192	cpumask_var_t cpumask;
5193	int ret;
5194
5195	if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
5196		return -ENOMEM;
5197
5198	ret = cpumask_parse(buf, cpumask);
5199	if (!ret)
5200		ret = workqueue_set_unbound_cpumask(cpumask);
5201
5202	free_cpumask_var(cpumask);
5203	return ret ? ret : count;
5204}
5205
5206static struct device_attribute wq_sysfs_cpumask_attr =
5207	__ATTR(cpumask, 0644, wq_unbound_cpumask_show,
5208	       wq_unbound_cpumask_store);
5209
5210static int __init wq_sysfs_init(void)
5211{
5212	int err;
5213
5214	err = subsys_virtual_register(&wq_subsys, NULL);
5215	if (err)
5216		return err;
5217
5218	return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr);
5219}
5220core_initcall(wq_sysfs_init);
5221
5222static void wq_device_release(struct device *dev)
5223{
5224	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5225
5226	kfree(wq_dev);
5227}
5228
5229/**
5230 * workqueue_sysfs_register - make a workqueue visible in sysfs
5231 * @wq: the workqueue to register
5232 *
5233 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
5234 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
5235 * which is the preferred method.
5236 *
5237 * Workqueue user should use this function directly iff it wants to apply
5238 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
5239 * apply_workqueue_attrs() may race against userland updating the
5240 * attributes.
5241 *
5242 * Return: 0 on success, -errno on failure.
5243 */
5244int workqueue_sysfs_register(struct workqueue_struct *wq)
5245{
5246	struct wq_device *wq_dev;
5247	int ret;
5248
5249	/*
5250	 * Adjusting max_active or creating new pwqs by applying
5251	 * attributes breaks ordering guarantee.  Disallow exposing ordered
5252	 * workqueues.
5253	 */
5254	if (WARN_ON(wq->flags & __WQ_ORDERED))
5255		return -EINVAL;
5256
5257	wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
5258	if (!wq_dev)
5259		return -ENOMEM;
5260
5261	wq_dev->wq = wq;
5262	wq_dev->dev.bus = &wq_subsys;
5263	wq_dev->dev.release = wq_device_release;
5264	dev_set_name(&wq_dev->dev, "%s", wq->name);
5265
5266	/*
5267	 * unbound_attrs are created separately.  Suppress uevent until
5268	 * everything is ready.
5269	 */
5270	dev_set_uevent_suppress(&wq_dev->dev, true);
5271
5272	ret = device_register(&wq_dev->dev);
5273	if (ret) {
5274		kfree(wq_dev);
5275		wq->wq_dev = NULL;
5276		return ret;
5277	}
5278
5279	if (wq->flags & WQ_UNBOUND) {
5280		struct device_attribute *attr;
5281
5282		for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
5283			ret = device_create_file(&wq_dev->dev, attr);
5284			if (ret) {
5285				device_unregister(&wq_dev->dev);
5286				wq->wq_dev = NULL;
5287				return ret;
5288			}
5289		}
5290	}
5291
5292	dev_set_uevent_suppress(&wq_dev->dev, false);
5293	kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
5294	return 0;
5295}
5296
5297/**
5298 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
5299 * @wq: the workqueue to unregister
5300 *
5301 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
5302 */
5303static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
5304{
5305	struct wq_device *wq_dev = wq->wq_dev;
5306
5307	if (!wq->wq_dev)
5308		return;
5309
5310	wq->wq_dev = NULL;
5311	device_unregister(&wq_dev->dev);
5312}
5313#else	/* CONFIG_SYSFS */
5314static void workqueue_sysfs_unregister(struct workqueue_struct *wq)	{ }
5315#endif	/* CONFIG_SYSFS */
5316
5317/*
5318 * Workqueue watchdog.
5319 *
5320 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
5321 * flush dependency, a concurrency managed work item which stays RUNNING
5322 * indefinitely.  Workqueue stalls can be very difficult to debug as the
5323 * usual warning mechanisms don't trigger and internal workqueue state is
5324 * largely opaque.
5325 *
5326 * Workqueue watchdog monitors all worker pools periodically and dumps
5327 * state if some pools failed to make forward progress for a while where
5328 * forward progress is defined as the first item on ->worklist changing.
5329 *
5330 * This mechanism is controlled through the kernel parameter
5331 * "workqueue.watchdog_thresh" which can be updated at runtime through the
5332 * corresponding sysfs parameter file.
5333 */
5334#ifdef CONFIG_WQ_WATCHDOG
5335
5336static void wq_watchdog_timer_fn(unsigned long data);
5337
5338static unsigned long wq_watchdog_thresh = 30;
5339static struct timer_list wq_watchdog_timer =
5340	TIMER_DEFERRED_INITIALIZER(wq_watchdog_timer_fn, 0, 0);
5341
5342static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
5343static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
5344
5345static void wq_watchdog_reset_touched(void)
5346{
5347	int cpu;
5348
5349	wq_watchdog_touched = jiffies;
5350	for_each_possible_cpu(cpu)
5351		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5352}
5353
5354static void wq_watchdog_timer_fn(unsigned long data)
5355{
5356	unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
5357	bool lockup_detected = false;
5358	struct worker_pool *pool;
5359	int pi;
5360
5361	if (!thresh)
5362		return;
5363
5364	rcu_read_lock();
5365
5366	for_each_pool(pool, pi) {
5367		unsigned long pool_ts, touched, ts;
5368
5369		if (list_empty(&pool->worklist))
5370			continue;
5371
5372		/* get the latest of pool and touched timestamps */
5373		pool_ts = READ_ONCE(pool->watchdog_ts);
5374		touched = READ_ONCE(wq_watchdog_touched);
5375
5376		if (time_after(pool_ts, touched))
5377			ts = pool_ts;
5378		else
5379			ts = touched;
5380
5381		if (pool->cpu >= 0) {
5382			unsigned long cpu_touched =
5383				READ_ONCE(per_cpu(wq_watchdog_touched_cpu,
5384						  pool->cpu));
5385			if (time_after(cpu_touched, ts))
5386				ts = cpu_touched;
5387		}
5388
5389		/* did we stall? */
5390		if (time_after(jiffies, ts + thresh)) {
5391			lockup_detected = true;
5392			pr_emerg("BUG: workqueue lockup - pool");
5393			pr_cont_pool_info(pool);
5394			pr_cont(" stuck for %us!\n",
5395				jiffies_to_msecs(jiffies - pool_ts) / 1000);
5396		}
5397	}
5398
5399	rcu_read_unlock();
5400
5401	if (lockup_detected)
5402		show_workqueue_state();
5403
5404	wq_watchdog_reset_touched();
5405	mod_timer(&wq_watchdog_timer, jiffies + thresh);
5406}
5407
5408void wq_watchdog_touch(int cpu)
5409{
5410	if (cpu >= 0)
5411		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5412	else
5413		wq_watchdog_touched = jiffies;
5414}
5415
5416static void wq_watchdog_set_thresh(unsigned long thresh)
5417{
5418	wq_watchdog_thresh = 0;
5419	del_timer_sync(&wq_watchdog_timer);
5420
5421	if (thresh) {
5422		wq_watchdog_thresh = thresh;
5423		wq_watchdog_reset_touched();
5424		mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
5425	}
5426}
5427
5428static int wq_watchdog_param_set_thresh(const char *val,
5429					const struct kernel_param *kp)
5430{
5431	unsigned long thresh;
5432	int ret;
5433
5434	ret = kstrtoul(val, 0, &thresh);
5435	if (ret)
5436		return ret;
5437
5438	if (system_wq)
5439		wq_watchdog_set_thresh(thresh);
5440	else
5441		wq_watchdog_thresh = thresh;
5442
5443	return 0;
5444}
5445
5446static const struct kernel_param_ops wq_watchdog_thresh_ops = {
5447	.set	= wq_watchdog_param_set_thresh,
5448	.get	= param_get_ulong,
5449};
5450
5451module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
5452		0644);
5453
5454static void wq_watchdog_init(void)
5455{
5456	wq_watchdog_set_thresh(wq_watchdog_thresh);
5457}
5458
5459#else	/* CONFIG_WQ_WATCHDOG */
5460
5461static inline void wq_watchdog_init(void) { }
5462
5463#endif	/* CONFIG_WQ_WATCHDOG */
5464
5465static void __init wq_numa_init(void)
5466{
5467	cpumask_var_t *tbl;
5468	int node, cpu;
5469
5470	if (num_possible_nodes() <= 1)
5471		return;
5472
5473	if (wq_disable_numa) {
5474		pr_info("workqueue: NUMA affinity support disabled\n");
5475		return;
5476	}
5477
5478	wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
5479	BUG_ON(!wq_update_unbound_numa_attrs_buf);
5480
5481	/*
5482	 * We want masks of possible CPUs of each node which isn't readily
5483	 * available.  Build one from cpu_to_node() which should have been
5484	 * fully initialized by now.
5485	 */
5486	tbl = kzalloc(nr_node_ids * sizeof(tbl[0]), GFP_KERNEL);
5487	BUG_ON(!tbl);
5488
5489	for_each_node(node)
5490		BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
5491				node_online(node) ? node : NUMA_NO_NODE));
5492
5493	for_each_possible_cpu(cpu) {
5494		node = cpu_to_node(cpu);
5495		if (WARN_ON(node == NUMA_NO_NODE)) {
5496			pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
5497			/* happens iff arch is bonkers, let's just proceed */
5498			return;
5499		}
5500		cpumask_set_cpu(cpu, tbl[node]);
5501	}
5502
5503	wq_numa_possible_cpumask = tbl;
5504	wq_numa_enabled = true;
5505}
5506
5507static int __init init_workqueues(void)
 
 
 
 
 
 
 
 
 
 
5508{
5509	int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
5510	int i, cpu;
5511
5512	WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
5513
5514	BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
5515	cpumask_copy(wq_unbound_cpumask, cpu_possible_mask);
5516
5517	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
5518
5519	cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
5520	hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
5521
5522	wq_numa_init();
5523
5524	/* initialize CPU pools */
5525	for_each_possible_cpu(cpu) {
5526		struct worker_pool *pool;
5527
5528		i = 0;
5529		for_each_cpu_worker_pool(pool, cpu) {
5530			BUG_ON(init_worker_pool(pool));
5531			pool->cpu = cpu;
5532			cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
5533			pool->attrs->nice = std_nice[i++];
5534			pool->node = cpu_to_node(cpu);
5535
5536			/* alloc pool ID */
5537			mutex_lock(&wq_pool_mutex);
5538			BUG_ON(worker_pool_assign_id(pool));
5539			mutex_unlock(&wq_pool_mutex);
5540		}
5541	}
5542
5543	/* create the initial worker */
5544	for_each_online_cpu(cpu) {
5545		struct worker_pool *pool;
5546
5547		for_each_cpu_worker_pool(pool, cpu) {
5548			pool->flags &= ~POOL_DISASSOCIATED;
5549			BUG_ON(!create_worker(pool));
5550		}
5551	}
5552
5553	/* create default unbound and ordered wq attrs */
5554	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
5555		struct workqueue_attrs *attrs;
5556
5557		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5558		attrs->nice = std_nice[i];
5559		unbound_std_wq_attrs[i] = attrs;
5560
5561		/*
5562		 * An ordered wq should have only one pwq as ordering is
5563		 * guaranteed by max_active which is enforced by pwqs.
5564		 * Turn off NUMA so that dfl_pwq is used for all nodes.
5565		 */
5566		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5567		attrs->nice = std_nice[i];
5568		attrs->no_numa = true;
5569		ordered_wq_attrs[i] = attrs;
5570	}
5571
5572	system_wq = alloc_workqueue("events", 0, 0);
5573	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
5574	system_long_wq = alloc_workqueue("events_long", 0, 0);
5575	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
5576					    WQ_UNBOUND_MAX_ACTIVE);
5577	system_freezable_wq = alloc_workqueue("events_freezable",
5578					      WQ_FREEZABLE, 0);
5579	system_power_efficient_wq = alloc_workqueue("events_power_efficient",
5580					      WQ_POWER_EFFICIENT, 0);
5581	system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
5582					      WQ_FREEZABLE | WQ_POWER_EFFICIENT,
5583					      0);
5584	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
5585	       !system_unbound_wq || !system_freezable_wq ||
5586	       !system_power_efficient_wq ||
5587	       !system_freezable_power_efficient_wq);
5588
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5589	wq_watchdog_init();
5590
5591	return 0;
5592}
5593early_initcall(init_workqueues);
v4.10.11
   1/*
   2 * kernel/workqueue.c - generic async execution with shared worker pool
   3 *
   4 * Copyright (C) 2002		Ingo Molnar
   5 *
   6 *   Derived from the taskqueue/keventd code by:
   7 *     David Woodhouse <dwmw2@infradead.org>
   8 *     Andrew Morton
   9 *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
  10 *     Theodore Ts'o <tytso@mit.edu>
  11 *
  12 * Made to use alloc_percpu by Christoph Lameter.
  13 *
  14 * Copyright (C) 2010		SUSE Linux Products GmbH
  15 * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
  16 *
  17 * This is the generic async execution mechanism.  Work items as are
  18 * executed in process context.  The worker pool is shared and
  19 * automatically managed.  There are two worker pools for each CPU (one for
  20 * normal work items and the other for high priority ones) and some extra
  21 * pools for workqueues which are not bound to any specific CPU - the
  22 * number of these backing pools is dynamic.
  23 *
  24 * Please read Documentation/workqueue.txt for details.
  25 */
  26
  27#include <linux/export.h>
  28#include <linux/kernel.h>
  29#include <linux/sched.h>
  30#include <linux/init.h>
  31#include <linux/signal.h>
  32#include <linux/completion.h>
  33#include <linux/workqueue.h>
  34#include <linux/slab.h>
  35#include <linux/cpu.h>
  36#include <linux/notifier.h>
  37#include <linux/kthread.h>
  38#include <linux/hardirq.h>
  39#include <linux/mempolicy.h>
  40#include <linux/freezer.h>
  41#include <linux/kallsyms.h>
  42#include <linux/debug_locks.h>
  43#include <linux/lockdep.h>
  44#include <linux/idr.h>
  45#include <linux/jhash.h>
  46#include <linux/hashtable.h>
  47#include <linux/rculist.h>
  48#include <linux/nodemask.h>
  49#include <linux/moduleparam.h>
  50#include <linux/uaccess.h>
  51
  52#include "workqueue_internal.h"
  53
  54enum {
  55	/*
  56	 * worker_pool flags
  57	 *
  58	 * A bound pool is either associated or disassociated with its CPU.
  59	 * While associated (!DISASSOCIATED), all workers are bound to the
  60	 * CPU and none has %WORKER_UNBOUND set and concurrency management
  61	 * is in effect.
  62	 *
  63	 * While DISASSOCIATED, the cpu may be offline and all workers have
  64	 * %WORKER_UNBOUND set and concurrency management disabled, and may
  65	 * be executing on any CPU.  The pool behaves as an unbound one.
  66	 *
  67	 * Note that DISASSOCIATED should be flipped only while holding
  68	 * attach_mutex to avoid changing binding state while
  69	 * worker_attach_to_pool() is in progress.
  70	 */
  71	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
  72
  73	/* worker flags */
  74	WORKER_DIE		= 1 << 1,	/* die die die */
  75	WORKER_IDLE		= 1 << 2,	/* is idle */
  76	WORKER_PREP		= 1 << 3,	/* preparing to run works */
  77	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
  78	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
  79	WORKER_REBOUND		= 1 << 8,	/* worker was rebound */
  80
  81	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_CPU_INTENSIVE |
  82				  WORKER_UNBOUND | WORKER_REBOUND,
  83
  84	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
  85
  86	UNBOUND_POOL_HASH_ORDER	= 6,		/* hashed by pool->attrs */
  87	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
  88
  89	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
  90	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */
  91
  92	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
  93						/* call for help after 10ms
  94						   (min two ticks) */
  95	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
  96	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */
  97
  98	/*
  99	 * Rescue workers are used only on emergencies and shared by
 100	 * all cpus.  Give MIN_NICE.
 101	 */
 102	RESCUER_NICE_LEVEL	= MIN_NICE,
 103	HIGHPRI_NICE_LEVEL	= MIN_NICE,
 104
 105	WQ_NAME_LEN		= 24,
 106};
 107
 108/*
 109 * Structure fields follow one of the following exclusion rules.
 110 *
 111 * I: Modifiable by initialization/destruction paths and read-only for
 112 *    everyone else.
 113 *
 114 * P: Preemption protected.  Disabling preemption is enough and should
 115 *    only be modified and accessed from the local cpu.
 116 *
 117 * L: pool->lock protected.  Access with pool->lock held.
 118 *
 119 * X: During normal operation, modification requires pool->lock and should
 120 *    be done only from local cpu.  Either disabling preemption on local
 121 *    cpu or grabbing pool->lock is enough for read access.  If
 122 *    POOL_DISASSOCIATED is set, it's identical to L.
 123 *
 124 * A: pool->attach_mutex protected.
 125 *
 126 * PL: wq_pool_mutex protected.
 127 *
 128 * PR: wq_pool_mutex protected for writes.  Sched-RCU protected for reads.
 129 *
 130 * PW: wq_pool_mutex and wq->mutex protected for writes.  Either for reads.
 131 *
 132 * PWR: wq_pool_mutex and wq->mutex protected for writes.  Either or
 133 *      sched-RCU for reads.
 134 *
 135 * WQ: wq->mutex protected.
 136 *
 137 * WR: wq->mutex protected for writes.  Sched-RCU protected for reads.
 138 *
 139 * MD: wq_mayday_lock protected.
 140 */
 141
 142/* struct worker is defined in workqueue_internal.h */
 143
 144struct worker_pool {
 145	spinlock_t		lock;		/* the pool lock */
 146	int			cpu;		/* I: the associated cpu */
 147	int			node;		/* I: the associated node ID */
 148	int			id;		/* I: pool ID */
 149	unsigned int		flags;		/* X: flags */
 150
 151	unsigned long		watchdog_ts;	/* L: watchdog timestamp */
 152
 153	struct list_head	worklist;	/* L: list of pending works */
 154	int			nr_workers;	/* L: total number of workers */
 155
 156	/* nr_idle includes the ones off idle_list for rebinding */
 157	int			nr_idle;	/* L: currently idle ones */
 158
 159	struct list_head	idle_list;	/* X: list of idle workers */
 160	struct timer_list	idle_timer;	/* L: worker idle timeout */
 161	struct timer_list	mayday_timer;	/* L: SOS timer for workers */
 162
 163	/* a workers is either on busy_hash or idle_list, or the manager */
 164	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
 165						/* L: hash of busy workers */
 166
 167	/* see manage_workers() for details on the two manager mutexes */
 168	struct mutex		manager_arb;	/* manager arbitration */
 169	struct worker		*manager;	/* L: purely informational */
 170	struct mutex		attach_mutex;	/* attach/detach exclusion */
 171	struct list_head	workers;	/* A: attached workers */
 172	struct completion	*detach_completion; /* all workers detached */
 173
 174	struct ida		worker_ida;	/* worker IDs for task name */
 175
 176	struct workqueue_attrs	*attrs;		/* I: worker attributes */
 177	struct hlist_node	hash_node;	/* PL: unbound_pool_hash node */
 178	int			refcnt;		/* PL: refcnt for unbound pools */
 179
 180	/*
 181	 * The current concurrency level.  As it's likely to be accessed
 182	 * from other CPUs during try_to_wake_up(), put it in a separate
 183	 * cacheline.
 184	 */
 185	atomic_t		nr_running ____cacheline_aligned_in_smp;
 186
 187	/*
 188	 * Destruction of pool is sched-RCU protected to allow dereferences
 189	 * from get_work_pool().
 190	 */
 191	struct rcu_head		rcu;
 192} ____cacheline_aligned_in_smp;
 193
 194/*
 195 * The per-pool workqueue.  While queued, the lower WORK_STRUCT_FLAG_BITS
 196 * of work_struct->data are used for flags and the remaining high bits
 197 * point to the pwq; thus, pwqs need to be aligned at two's power of the
 198 * number of flag bits.
 199 */
 200struct pool_workqueue {
 201	struct worker_pool	*pool;		/* I: the associated pool */
 202	struct workqueue_struct *wq;		/* I: the owning workqueue */
 203	int			work_color;	/* L: current color */
 204	int			flush_color;	/* L: flushing color */
 205	int			refcnt;		/* L: reference count */
 206	int			nr_in_flight[WORK_NR_COLORS];
 207						/* L: nr of in_flight works */
 208	int			nr_active;	/* L: nr of active works */
 209	int			max_active;	/* L: max active works */
 210	struct list_head	delayed_works;	/* L: delayed works */
 211	struct list_head	pwqs_node;	/* WR: node on wq->pwqs */
 212	struct list_head	mayday_node;	/* MD: node on wq->maydays */
 213
 214	/*
 215	 * Release of unbound pwq is punted to system_wq.  See put_pwq()
 216	 * and pwq_unbound_release_workfn() for details.  pool_workqueue
 217	 * itself is also sched-RCU protected so that the first pwq can be
 218	 * determined without grabbing wq->mutex.
 219	 */
 220	struct work_struct	unbound_release_work;
 221	struct rcu_head		rcu;
 222} __aligned(1 << WORK_STRUCT_FLAG_BITS);
 223
 224/*
 225 * Structure used to wait for workqueue flush.
 226 */
 227struct wq_flusher {
 228	struct list_head	list;		/* WQ: list of flushers */
 229	int			flush_color;	/* WQ: flush color waiting for */
 230	struct completion	done;		/* flush completion */
 231};
 232
 233struct wq_device;
 234
 235/*
 236 * The externally visible workqueue.  It relays the issued work items to
 237 * the appropriate worker_pool through its pool_workqueues.
 238 */
 239struct workqueue_struct {
 240	struct list_head	pwqs;		/* WR: all pwqs of this wq */
 241	struct list_head	list;		/* PR: list of all workqueues */
 242
 243	struct mutex		mutex;		/* protects this wq */
 244	int			work_color;	/* WQ: current work color */
 245	int			flush_color;	/* WQ: current flush color */
 246	atomic_t		nr_pwqs_to_flush; /* flush in progress */
 247	struct wq_flusher	*first_flusher;	/* WQ: first flusher */
 248	struct list_head	flusher_queue;	/* WQ: flush waiters */
 249	struct list_head	flusher_overflow; /* WQ: flush overflow list */
 250
 251	struct list_head	maydays;	/* MD: pwqs requesting rescue */
 252	struct worker		*rescuer;	/* I: rescue worker */
 253
 254	int			nr_drainers;	/* WQ: drain in progress */
 255	int			saved_max_active; /* WQ: saved pwq max_active */
 256
 257	struct workqueue_attrs	*unbound_attrs;	/* PW: only for unbound wqs */
 258	struct pool_workqueue	*dfl_pwq;	/* PW: only for unbound wqs */
 259
 260#ifdef CONFIG_SYSFS
 261	struct wq_device	*wq_dev;	/* I: for sysfs interface */
 262#endif
 263#ifdef CONFIG_LOCKDEP
 264	struct lockdep_map	lockdep_map;
 265#endif
 266	char			name[WQ_NAME_LEN]; /* I: workqueue name */
 267
 268	/*
 269	 * Destruction of workqueue_struct is sched-RCU protected to allow
 270	 * walking the workqueues list without grabbing wq_pool_mutex.
 271	 * This is used to dump all workqueues from sysrq.
 272	 */
 273	struct rcu_head		rcu;
 274
 275	/* hot fields used during command issue, aligned to cacheline */
 276	unsigned int		flags ____cacheline_aligned; /* WQ: WQ_* flags */
 277	struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
 278	struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
 279};
 280
 281static struct kmem_cache *pwq_cache;
 282
 283static cpumask_var_t *wq_numa_possible_cpumask;
 284					/* possible CPUs of each node */
 285
 286static bool wq_disable_numa;
 287module_param_named(disable_numa, wq_disable_numa, bool, 0444);
 288
 289/* see the comment above the definition of WQ_POWER_EFFICIENT */
 290static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
 291module_param_named(power_efficient, wq_power_efficient, bool, 0444);
 292
 293static bool wq_online;			/* can kworkers be created yet? */
 294
 295static bool wq_numa_enabled;		/* unbound NUMA affinity enabled */
 296
 297/* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
 298static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
 299
 300static DEFINE_MUTEX(wq_pool_mutex);	/* protects pools and workqueues list */
 301static DEFINE_SPINLOCK(wq_mayday_lock);	/* protects wq->maydays list */
 302
 303static LIST_HEAD(workqueues);		/* PR: list of all workqueues */
 304static bool workqueue_freezing;		/* PL: have wqs started freezing? */
 305
 306/* PL: allowable cpus for unbound wqs and work items */
 307static cpumask_var_t wq_unbound_cpumask;
 308
 309/* CPU where unbound work was last round robin scheduled from this CPU */
 310static DEFINE_PER_CPU(int, wq_rr_cpu_last);
 311
 312/*
 313 * Local execution of unbound work items is no longer guaranteed.  The
 314 * following always forces round-robin CPU selection on unbound work items
 315 * to uncover usages which depend on it.
 316 */
 317#ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
 318static bool wq_debug_force_rr_cpu = true;
 319#else
 320static bool wq_debug_force_rr_cpu = false;
 321#endif
 322module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
 323
 324/* the per-cpu worker pools */
 325static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
 326
 327static DEFINE_IDR(worker_pool_idr);	/* PR: idr of all pools */
 328
 329/* PL: hash of all unbound pools keyed by pool->attrs */
 330static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
 331
 332/* I: attributes used when instantiating standard unbound pools on demand */
 333static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
 334
 335/* I: attributes used when instantiating ordered pools on demand */
 336static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
 337
 338struct workqueue_struct *system_wq __read_mostly;
 339EXPORT_SYMBOL(system_wq);
 340struct workqueue_struct *system_highpri_wq __read_mostly;
 341EXPORT_SYMBOL_GPL(system_highpri_wq);
 342struct workqueue_struct *system_long_wq __read_mostly;
 343EXPORT_SYMBOL_GPL(system_long_wq);
 344struct workqueue_struct *system_unbound_wq __read_mostly;
 345EXPORT_SYMBOL_GPL(system_unbound_wq);
 346struct workqueue_struct *system_freezable_wq __read_mostly;
 347EXPORT_SYMBOL_GPL(system_freezable_wq);
 348struct workqueue_struct *system_power_efficient_wq __read_mostly;
 349EXPORT_SYMBOL_GPL(system_power_efficient_wq);
 350struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
 351EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
 352
 353static int worker_thread(void *__worker);
 354static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
 355
 356#define CREATE_TRACE_POINTS
 357#include <trace/events/workqueue.h>
 358
 359#define assert_rcu_or_pool_mutex()					\
 360	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() &&			\
 361			 !lockdep_is_held(&wq_pool_mutex),		\
 362			 "sched RCU or wq_pool_mutex should be held")
 363
 364#define assert_rcu_or_wq_mutex(wq)					\
 365	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() &&			\
 366			 !lockdep_is_held(&wq->mutex),			\
 367			 "sched RCU or wq->mutex should be held")
 368
 369#define assert_rcu_or_wq_mutex_or_pool_mutex(wq)			\
 370	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() &&			\
 371			 !lockdep_is_held(&wq->mutex) &&		\
 372			 !lockdep_is_held(&wq_pool_mutex),		\
 373			 "sched RCU, wq->mutex or wq_pool_mutex should be held")
 374
 375#define for_each_cpu_worker_pool(pool, cpu)				\
 376	for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];		\
 377	     (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
 378	     (pool)++)
 379
 380/**
 381 * for_each_pool - iterate through all worker_pools in the system
 382 * @pool: iteration cursor
 383 * @pi: integer used for iteration
 384 *
 385 * This must be called either with wq_pool_mutex held or sched RCU read
 386 * locked.  If the pool needs to be used beyond the locking in effect, the
 387 * caller is responsible for guaranteeing that the pool stays online.
 388 *
 389 * The if/else clause exists only for the lockdep assertion and can be
 390 * ignored.
 391 */
 392#define for_each_pool(pool, pi)						\
 393	idr_for_each_entry(&worker_pool_idr, pool, pi)			\
 394		if (({ assert_rcu_or_pool_mutex(); false; })) { }	\
 395		else
 396
 397/**
 398 * for_each_pool_worker - iterate through all workers of a worker_pool
 399 * @worker: iteration cursor
 400 * @pool: worker_pool to iterate workers of
 401 *
 402 * This must be called with @pool->attach_mutex.
 403 *
 404 * The if/else clause exists only for the lockdep assertion and can be
 405 * ignored.
 406 */
 407#define for_each_pool_worker(worker, pool)				\
 408	list_for_each_entry((worker), &(pool)->workers, node)		\
 409		if (({ lockdep_assert_held(&pool->attach_mutex); false; })) { } \
 410		else
 411
 412/**
 413 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
 414 * @pwq: iteration cursor
 415 * @wq: the target workqueue
 416 *
 417 * This must be called either with wq->mutex held or sched RCU read locked.
 418 * If the pwq needs to be used beyond the locking in effect, the caller is
 419 * responsible for guaranteeing that the pwq stays online.
 420 *
 421 * The if/else clause exists only for the lockdep assertion and can be
 422 * ignored.
 423 */
 424#define for_each_pwq(pwq, wq)						\
 425	list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node)		\
 426		if (({ assert_rcu_or_wq_mutex(wq); false; })) { }	\
 427		else
 428
 429#ifdef CONFIG_DEBUG_OBJECTS_WORK
 430
 431static struct debug_obj_descr work_debug_descr;
 432
 433static void *work_debug_hint(void *addr)
 434{
 435	return ((struct work_struct *) addr)->func;
 436}
 437
 438static bool work_is_static_object(void *addr)
 
 
 
 
 439{
 440	struct work_struct *work = addr;
 441
 442	return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
 
 
 
 
 
 
 
 443}
 444
 445/*
 446 * fixup_init is called when:
 447 * - an active object is initialized
 
 448 */
 449static bool work_fixup_init(void *addr, enum debug_obj_state state)
 450{
 451	struct work_struct *work = addr;
 452
 453	switch (state) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 454	case ODEBUG_STATE_ACTIVE:
 455		cancel_work_sync(work);
 456		debug_object_init(work, &work_debug_descr);
 457		return true;
 458	default:
 459		return false;
 460	}
 461}
 462
 463/*
 464 * fixup_free is called when:
 465 * - an active object is freed
 466 */
 467static bool work_fixup_free(void *addr, enum debug_obj_state state)
 468{
 469	struct work_struct *work = addr;
 470
 471	switch (state) {
 472	case ODEBUG_STATE_ACTIVE:
 473		cancel_work_sync(work);
 474		debug_object_free(work, &work_debug_descr);
 475		return true;
 476	default:
 477		return false;
 478	}
 479}
 480
 481static struct debug_obj_descr work_debug_descr = {
 482	.name		= "work_struct",
 483	.debug_hint	= work_debug_hint,
 484	.is_static_object = work_is_static_object,
 485	.fixup_init	= work_fixup_init,
 
 486	.fixup_free	= work_fixup_free,
 487};
 488
 489static inline void debug_work_activate(struct work_struct *work)
 490{
 491	debug_object_activate(work, &work_debug_descr);
 492}
 493
 494static inline void debug_work_deactivate(struct work_struct *work)
 495{
 496	debug_object_deactivate(work, &work_debug_descr);
 497}
 498
 499void __init_work(struct work_struct *work, int onstack)
 500{
 501	if (onstack)
 502		debug_object_init_on_stack(work, &work_debug_descr);
 503	else
 504		debug_object_init(work, &work_debug_descr);
 505}
 506EXPORT_SYMBOL_GPL(__init_work);
 507
 508void destroy_work_on_stack(struct work_struct *work)
 509{
 510	debug_object_free(work, &work_debug_descr);
 511}
 512EXPORT_SYMBOL_GPL(destroy_work_on_stack);
 513
 514void destroy_delayed_work_on_stack(struct delayed_work *work)
 515{
 516	destroy_timer_on_stack(&work->timer);
 517	debug_object_free(&work->work, &work_debug_descr);
 518}
 519EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
 520
 521#else
 522static inline void debug_work_activate(struct work_struct *work) { }
 523static inline void debug_work_deactivate(struct work_struct *work) { }
 524#endif
 525
 526/**
 527 * worker_pool_assign_id - allocate ID and assing it to @pool
 528 * @pool: the pool pointer of interest
 529 *
 530 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
 531 * successfully, -errno on failure.
 532 */
 533static int worker_pool_assign_id(struct worker_pool *pool)
 534{
 535	int ret;
 536
 537	lockdep_assert_held(&wq_pool_mutex);
 538
 539	ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
 540			GFP_KERNEL);
 541	if (ret >= 0) {
 542		pool->id = ret;
 543		return 0;
 544	}
 545	return ret;
 546}
 547
 548/**
 549 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
 550 * @wq: the target workqueue
 551 * @node: the node ID
 552 *
 553 * This must be called with any of wq_pool_mutex, wq->mutex or sched RCU
 554 * read locked.
 555 * If the pwq needs to be used beyond the locking in effect, the caller is
 556 * responsible for guaranteeing that the pwq stays online.
 557 *
 558 * Return: The unbound pool_workqueue for @node.
 559 */
 560static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
 561						  int node)
 562{
 563	assert_rcu_or_wq_mutex_or_pool_mutex(wq);
 564
 565	/*
 566	 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a
 567	 * delayed item is pending.  The plan is to keep CPU -> NODE
 568	 * mapping valid and stable across CPU on/offlines.  Once that
 569	 * happens, this workaround can be removed.
 570	 */
 571	if (unlikely(node == NUMA_NO_NODE))
 572		return wq->dfl_pwq;
 573
 574	return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
 575}
 576
 577static unsigned int work_color_to_flags(int color)
 578{
 579	return color << WORK_STRUCT_COLOR_SHIFT;
 580}
 581
 582static int get_work_color(struct work_struct *work)
 583{
 584	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
 585		((1 << WORK_STRUCT_COLOR_BITS) - 1);
 586}
 587
 588static int work_next_color(int color)
 589{
 590	return (color + 1) % WORK_NR_COLORS;
 591}
 592
 593/*
 594 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
 595 * contain the pointer to the queued pwq.  Once execution starts, the flag
 596 * is cleared and the high bits contain OFFQ flags and pool ID.
 597 *
 598 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
 599 * and clear_work_data() can be used to set the pwq, pool or clear
 600 * work->data.  These functions should only be called while the work is
 601 * owned - ie. while the PENDING bit is set.
 602 *
 603 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
 604 * corresponding to a work.  Pool is available once the work has been
 605 * queued anywhere after initialization until it is sync canceled.  pwq is
 606 * available only while the work item is queued.
 607 *
 608 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
 609 * canceled.  While being canceled, a work item may have its PENDING set
 610 * but stay off timer and worklist for arbitrarily long and nobody should
 611 * try to steal the PENDING bit.
 612 */
 613static inline void set_work_data(struct work_struct *work, unsigned long data,
 614				 unsigned long flags)
 615{
 616	WARN_ON_ONCE(!work_pending(work));
 617	atomic_long_set(&work->data, data | flags | work_static(work));
 618}
 619
 620static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
 621			 unsigned long extra_flags)
 622{
 623	set_work_data(work, (unsigned long)pwq,
 624		      WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
 625}
 626
 627static void set_work_pool_and_keep_pending(struct work_struct *work,
 628					   int pool_id)
 629{
 630	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
 631		      WORK_STRUCT_PENDING);
 632}
 633
 634static void set_work_pool_and_clear_pending(struct work_struct *work,
 635					    int pool_id)
 636{
 637	/*
 638	 * The following wmb is paired with the implied mb in
 639	 * test_and_set_bit(PENDING) and ensures all updates to @work made
 640	 * here are visible to and precede any updates by the next PENDING
 641	 * owner.
 642	 */
 643	smp_wmb();
 644	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
 645	/*
 646	 * The following mb guarantees that previous clear of a PENDING bit
 647	 * will not be reordered with any speculative LOADS or STORES from
 648	 * work->current_func, which is executed afterwards.  This possible
 649	 * reordering can lead to a missed execution on attempt to qeueue
 650	 * the same @work.  E.g. consider this case:
 651	 *
 652	 *   CPU#0                         CPU#1
 653	 *   ----------------------------  --------------------------------
 654	 *
 655	 * 1  STORE event_indicated
 656	 * 2  queue_work_on() {
 657	 * 3    test_and_set_bit(PENDING)
 658	 * 4 }                             set_..._and_clear_pending() {
 659	 * 5                                 set_work_data() # clear bit
 660	 * 6                                 smp_mb()
 661	 * 7                               work->current_func() {
 662	 * 8				      LOAD event_indicated
 663	 *				   }
 664	 *
 665	 * Without an explicit full barrier speculative LOAD on line 8 can
 666	 * be executed before CPU#0 does STORE on line 1.  If that happens,
 667	 * CPU#0 observes the PENDING bit is still set and new execution of
 668	 * a @work is not queued in a hope, that CPU#1 will eventually
 669	 * finish the queued @work.  Meanwhile CPU#1 does not see
 670	 * event_indicated is set, because speculative LOAD was executed
 671	 * before actual STORE.
 672	 */
 673	smp_mb();
 674}
 675
 676static void clear_work_data(struct work_struct *work)
 677{
 678	smp_wmb();	/* see set_work_pool_and_clear_pending() */
 679	set_work_data(work, WORK_STRUCT_NO_POOL, 0);
 680}
 681
 682static struct pool_workqueue *get_work_pwq(struct work_struct *work)
 683{
 684	unsigned long data = atomic_long_read(&work->data);
 685
 686	if (data & WORK_STRUCT_PWQ)
 687		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
 688	else
 689		return NULL;
 690}
 691
 692/**
 693 * get_work_pool - return the worker_pool a given work was associated with
 694 * @work: the work item of interest
 695 *
 696 * Pools are created and destroyed under wq_pool_mutex, and allows read
 697 * access under sched-RCU read lock.  As such, this function should be
 698 * called under wq_pool_mutex or with preemption disabled.
 699 *
 700 * All fields of the returned pool are accessible as long as the above
 701 * mentioned locking is in effect.  If the returned pool needs to be used
 702 * beyond the critical section, the caller is responsible for ensuring the
 703 * returned pool is and stays online.
 704 *
 705 * Return: The worker_pool @work was last associated with.  %NULL if none.
 706 */
 707static struct worker_pool *get_work_pool(struct work_struct *work)
 708{
 709	unsigned long data = atomic_long_read(&work->data);
 710	int pool_id;
 711
 712	assert_rcu_or_pool_mutex();
 713
 714	if (data & WORK_STRUCT_PWQ)
 715		return ((struct pool_workqueue *)
 716			(data & WORK_STRUCT_WQ_DATA_MASK))->pool;
 717
 718	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
 719	if (pool_id == WORK_OFFQ_POOL_NONE)
 720		return NULL;
 721
 722	return idr_find(&worker_pool_idr, pool_id);
 723}
 724
 725/**
 726 * get_work_pool_id - return the worker pool ID a given work is associated with
 727 * @work: the work item of interest
 728 *
 729 * Return: The worker_pool ID @work was last associated with.
 730 * %WORK_OFFQ_POOL_NONE if none.
 731 */
 732static int get_work_pool_id(struct work_struct *work)
 733{
 734	unsigned long data = atomic_long_read(&work->data);
 735
 736	if (data & WORK_STRUCT_PWQ)
 737		return ((struct pool_workqueue *)
 738			(data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
 739
 740	return data >> WORK_OFFQ_POOL_SHIFT;
 741}
 742
 743static void mark_work_canceling(struct work_struct *work)
 744{
 745	unsigned long pool_id = get_work_pool_id(work);
 746
 747	pool_id <<= WORK_OFFQ_POOL_SHIFT;
 748	set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
 749}
 750
 751static bool work_is_canceling(struct work_struct *work)
 752{
 753	unsigned long data = atomic_long_read(&work->data);
 754
 755	return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
 756}
 757
 758/*
 759 * Policy functions.  These define the policies on how the global worker
 760 * pools are managed.  Unless noted otherwise, these functions assume that
 761 * they're being called with pool->lock held.
 762 */
 763
 764static bool __need_more_worker(struct worker_pool *pool)
 765{
 766	return !atomic_read(&pool->nr_running);
 767}
 768
 769/*
 770 * Need to wake up a worker?  Called from anything but currently
 771 * running workers.
 772 *
 773 * Note that, because unbound workers never contribute to nr_running, this
 774 * function will always return %true for unbound pools as long as the
 775 * worklist isn't empty.
 776 */
 777static bool need_more_worker(struct worker_pool *pool)
 778{
 779	return !list_empty(&pool->worklist) && __need_more_worker(pool);
 780}
 781
 782/* Can I start working?  Called from busy but !running workers. */
 783static bool may_start_working(struct worker_pool *pool)
 784{
 785	return pool->nr_idle;
 786}
 787
 788/* Do I need to keep working?  Called from currently running workers. */
 789static bool keep_working(struct worker_pool *pool)
 790{
 791	return !list_empty(&pool->worklist) &&
 792		atomic_read(&pool->nr_running) <= 1;
 793}
 794
 795/* Do we need a new worker?  Called from manager. */
 796static bool need_to_create_worker(struct worker_pool *pool)
 797{
 798	return need_more_worker(pool) && !may_start_working(pool);
 799}
 800
 801/* Do we have too many workers and should some go away? */
 802static bool too_many_workers(struct worker_pool *pool)
 803{
 804	bool managing = mutex_is_locked(&pool->manager_arb);
 805	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
 806	int nr_busy = pool->nr_workers - nr_idle;
 807
 808	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
 809}
 810
 811/*
 812 * Wake up functions.
 813 */
 814
 815/* Return the first idle worker.  Safe with preemption disabled */
 816static struct worker *first_idle_worker(struct worker_pool *pool)
 817{
 818	if (unlikely(list_empty(&pool->idle_list)))
 819		return NULL;
 820
 821	return list_first_entry(&pool->idle_list, struct worker, entry);
 822}
 823
 824/**
 825 * wake_up_worker - wake up an idle worker
 826 * @pool: worker pool to wake worker from
 827 *
 828 * Wake up the first idle worker of @pool.
 829 *
 830 * CONTEXT:
 831 * spin_lock_irq(pool->lock).
 832 */
 833static void wake_up_worker(struct worker_pool *pool)
 834{
 835	struct worker *worker = first_idle_worker(pool);
 836
 837	if (likely(worker))
 838		wake_up_process(worker->task);
 839}
 840
 841/**
 842 * wq_worker_waking_up - a worker is waking up
 843 * @task: task waking up
 844 * @cpu: CPU @task is waking up to
 845 *
 846 * This function is called during try_to_wake_up() when a worker is
 847 * being awoken.
 848 *
 849 * CONTEXT:
 850 * spin_lock_irq(rq->lock)
 851 */
 852void wq_worker_waking_up(struct task_struct *task, int cpu)
 853{
 854	struct worker *worker = kthread_data(task);
 855
 856	if (!(worker->flags & WORKER_NOT_RUNNING)) {
 857		WARN_ON_ONCE(worker->pool->cpu != cpu);
 858		atomic_inc(&worker->pool->nr_running);
 859	}
 860}
 861
 862/**
 863 * wq_worker_sleeping - a worker is going to sleep
 864 * @task: task going to sleep
 865 *
 866 * This function is called during schedule() when a busy worker is
 867 * going to sleep.  Worker on the same cpu can be woken up by
 868 * returning pointer to its task.
 869 *
 870 * CONTEXT:
 871 * spin_lock_irq(rq->lock)
 872 *
 873 * Return:
 874 * Worker task on @cpu to wake up, %NULL if none.
 875 */
 876struct task_struct *wq_worker_sleeping(struct task_struct *task)
 877{
 878	struct worker *worker = kthread_data(task), *to_wakeup = NULL;
 879	struct worker_pool *pool;
 880
 881	/*
 882	 * Rescuers, which may not have all the fields set up like normal
 883	 * workers, also reach here, let's not access anything before
 884	 * checking NOT_RUNNING.
 885	 */
 886	if (worker->flags & WORKER_NOT_RUNNING)
 887		return NULL;
 888
 889	pool = worker->pool;
 890
 891	/* this can only happen on the local cpu */
 892	if (WARN_ON_ONCE(pool->cpu != raw_smp_processor_id()))
 893		return NULL;
 894
 895	/*
 896	 * The counterpart of the following dec_and_test, implied mb,
 897	 * worklist not empty test sequence is in insert_work().
 898	 * Please read comment there.
 899	 *
 900	 * NOT_RUNNING is clear.  This means that we're bound to and
 901	 * running on the local cpu w/ rq lock held and preemption
 902	 * disabled, which in turn means that none else could be
 903	 * manipulating idle_list, so dereferencing idle_list without pool
 904	 * lock is safe.
 905	 */
 906	if (atomic_dec_and_test(&pool->nr_running) &&
 907	    !list_empty(&pool->worklist))
 908		to_wakeup = first_idle_worker(pool);
 909	return to_wakeup ? to_wakeup->task : NULL;
 910}
 911
 912/**
 913 * worker_set_flags - set worker flags and adjust nr_running accordingly
 914 * @worker: self
 915 * @flags: flags to set
 916 *
 917 * Set @flags in @worker->flags and adjust nr_running accordingly.
 918 *
 919 * CONTEXT:
 920 * spin_lock_irq(pool->lock)
 921 */
 922static inline void worker_set_flags(struct worker *worker, unsigned int flags)
 923{
 924	struct worker_pool *pool = worker->pool;
 925
 926	WARN_ON_ONCE(worker->task != current);
 927
 928	/* If transitioning into NOT_RUNNING, adjust nr_running. */
 929	if ((flags & WORKER_NOT_RUNNING) &&
 930	    !(worker->flags & WORKER_NOT_RUNNING)) {
 931		atomic_dec(&pool->nr_running);
 932	}
 933
 934	worker->flags |= flags;
 935}
 936
 937/**
 938 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
 939 * @worker: self
 940 * @flags: flags to clear
 941 *
 942 * Clear @flags in @worker->flags and adjust nr_running accordingly.
 943 *
 944 * CONTEXT:
 945 * spin_lock_irq(pool->lock)
 946 */
 947static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
 948{
 949	struct worker_pool *pool = worker->pool;
 950	unsigned int oflags = worker->flags;
 951
 952	WARN_ON_ONCE(worker->task != current);
 953
 954	worker->flags &= ~flags;
 955
 956	/*
 957	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
 958	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
 959	 * of multiple flags, not a single flag.
 960	 */
 961	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
 962		if (!(worker->flags & WORKER_NOT_RUNNING))
 963			atomic_inc(&pool->nr_running);
 964}
 965
 966/**
 967 * find_worker_executing_work - find worker which is executing a work
 968 * @pool: pool of interest
 969 * @work: work to find worker for
 970 *
 971 * Find a worker which is executing @work on @pool by searching
 972 * @pool->busy_hash which is keyed by the address of @work.  For a worker
 973 * to match, its current execution should match the address of @work and
 974 * its work function.  This is to avoid unwanted dependency between
 975 * unrelated work executions through a work item being recycled while still
 976 * being executed.
 977 *
 978 * This is a bit tricky.  A work item may be freed once its execution
 979 * starts and nothing prevents the freed area from being recycled for
 980 * another work item.  If the same work item address ends up being reused
 981 * before the original execution finishes, workqueue will identify the
 982 * recycled work item as currently executing and make it wait until the
 983 * current execution finishes, introducing an unwanted dependency.
 984 *
 985 * This function checks the work item address and work function to avoid
 986 * false positives.  Note that this isn't complete as one may construct a
 987 * work function which can introduce dependency onto itself through a
 988 * recycled work item.  Well, if somebody wants to shoot oneself in the
 989 * foot that badly, there's only so much we can do, and if such deadlock
 990 * actually occurs, it should be easy to locate the culprit work function.
 991 *
 992 * CONTEXT:
 993 * spin_lock_irq(pool->lock).
 994 *
 995 * Return:
 996 * Pointer to worker which is executing @work if found, %NULL
 997 * otherwise.
 998 */
 999static struct worker *find_worker_executing_work(struct worker_pool *pool,
1000						 struct work_struct *work)
1001{
1002	struct worker *worker;
1003
1004	hash_for_each_possible(pool->busy_hash, worker, hentry,
1005			       (unsigned long)work)
1006		if (worker->current_work == work &&
1007		    worker->current_func == work->func)
1008			return worker;
1009
1010	return NULL;
1011}
1012
1013/**
1014 * move_linked_works - move linked works to a list
1015 * @work: start of series of works to be scheduled
1016 * @head: target list to append @work to
1017 * @nextp: out parameter for nested worklist walking
1018 *
1019 * Schedule linked works starting from @work to @head.  Work series to
1020 * be scheduled starts at @work and includes any consecutive work with
1021 * WORK_STRUCT_LINKED set in its predecessor.
1022 *
1023 * If @nextp is not NULL, it's updated to point to the next work of
1024 * the last scheduled work.  This allows move_linked_works() to be
1025 * nested inside outer list_for_each_entry_safe().
1026 *
1027 * CONTEXT:
1028 * spin_lock_irq(pool->lock).
1029 */
1030static void move_linked_works(struct work_struct *work, struct list_head *head,
1031			      struct work_struct **nextp)
1032{
1033	struct work_struct *n;
1034
1035	/*
1036	 * Linked worklist will always end before the end of the list,
1037	 * use NULL for list head.
1038	 */
1039	list_for_each_entry_safe_from(work, n, NULL, entry) {
1040		list_move_tail(&work->entry, head);
1041		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1042			break;
1043	}
1044
1045	/*
1046	 * If we're already inside safe list traversal and have moved
1047	 * multiple works to the scheduled queue, the next position
1048	 * needs to be updated.
1049	 */
1050	if (nextp)
1051		*nextp = n;
1052}
1053
1054/**
1055 * get_pwq - get an extra reference on the specified pool_workqueue
1056 * @pwq: pool_workqueue to get
1057 *
1058 * Obtain an extra reference on @pwq.  The caller should guarantee that
1059 * @pwq has positive refcnt and be holding the matching pool->lock.
1060 */
1061static void get_pwq(struct pool_workqueue *pwq)
1062{
1063	lockdep_assert_held(&pwq->pool->lock);
1064	WARN_ON_ONCE(pwq->refcnt <= 0);
1065	pwq->refcnt++;
1066}
1067
1068/**
1069 * put_pwq - put a pool_workqueue reference
1070 * @pwq: pool_workqueue to put
1071 *
1072 * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
1073 * destruction.  The caller should be holding the matching pool->lock.
1074 */
1075static void put_pwq(struct pool_workqueue *pwq)
1076{
1077	lockdep_assert_held(&pwq->pool->lock);
1078	if (likely(--pwq->refcnt))
1079		return;
1080	if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1081		return;
1082	/*
1083	 * @pwq can't be released under pool->lock, bounce to
1084	 * pwq_unbound_release_workfn().  This never recurses on the same
1085	 * pool->lock as this path is taken only for unbound workqueues and
1086	 * the release work item is scheduled on a per-cpu workqueue.  To
1087	 * avoid lockdep warning, unbound pool->locks are given lockdep
1088	 * subclass of 1 in get_unbound_pool().
1089	 */
1090	schedule_work(&pwq->unbound_release_work);
1091}
1092
1093/**
1094 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1095 * @pwq: pool_workqueue to put (can be %NULL)
1096 *
1097 * put_pwq() with locking.  This function also allows %NULL @pwq.
1098 */
1099static void put_pwq_unlocked(struct pool_workqueue *pwq)
1100{
1101	if (pwq) {
1102		/*
1103		 * As both pwqs and pools are sched-RCU protected, the
1104		 * following lock operations are safe.
1105		 */
1106		spin_lock_irq(&pwq->pool->lock);
1107		put_pwq(pwq);
1108		spin_unlock_irq(&pwq->pool->lock);
1109	}
1110}
1111
1112static void pwq_activate_delayed_work(struct work_struct *work)
1113{
1114	struct pool_workqueue *pwq = get_work_pwq(work);
1115
1116	trace_workqueue_activate_work(work);
1117	if (list_empty(&pwq->pool->worklist))
1118		pwq->pool->watchdog_ts = jiffies;
1119	move_linked_works(work, &pwq->pool->worklist, NULL);
1120	__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1121	pwq->nr_active++;
1122}
1123
1124static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1125{
1126	struct work_struct *work = list_first_entry(&pwq->delayed_works,
1127						    struct work_struct, entry);
1128
1129	pwq_activate_delayed_work(work);
1130}
1131
1132/**
1133 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1134 * @pwq: pwq of interest
1135 * @color: color of work which left the queue
1136 *
1137 * A work either has completed or is removed from pending queue,
1138 * decrement nr_in_flight of its pwq and handle workqueue flushing.
1139 *
1140 * CONTEXT:
1141 * spin_lock_irq(pool->lock).
1142 */
1143static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1144{
1145	/* uncolored work items don't participate in flushing or nr_active */
1146	if (color == WORK_NO_COLOR)
1147		goto out_put;
1148
1149	pwq->nr_in_flight[color]--;
1150
1151	pwq->nr_active--;
1152	if (!list_empty(&pwq->delayed_works)) {
1153		/* one down, submit a delayed one */
1154		if (pwq->nr_active < pwq->max_active)
1155			pwq_activate_first_delayed(pwq);
1156	}
1157
1158	/* is flush in progress and are we at the flushing tip? */
1159	if (likely(pwq->flush_color != color))
1160		goto out_put;
1161
1162	/* are there still in-flight works? */
1163	if (pwq->nr_in_flight[color])
1164		goto out_put;
1165
1166	/* this pwq is done, clear flush_color */
1167	pwq->flush_color = -1;
1168
1169	/*
1170	 * If this was the last pwq, wake up the first flusher.  It
1171	 * will handle the rest.
1172	 */
1173	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1174		complete(&pwq->wq->first_flusher->done);
1175out_put:
1176	put_pwq(pwq);
1177}
1178
1179/**
1180 * try_to_grab_pending - steal work item from worklist and disable irq
1181 * @work: work item to steal
1182 * @is_dwork: @work is a delayed_work
1183 * @flags: place to store irq state
1184 *
1185 * Try to grab PENDING bit of @work.  This function can handle @work in any
1186 * stable state - idle, on timer or on worklist.
1187 *
1188 * Return:
1189 *  1		if @work was pending and we successfully stole PENDING
1190 *  0		if @work was idle and we claimed PENDING
1191 *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1192 *  -ENOENT	if someone else is canceling @work, this state may persist
1193 *		for arbitrarily long
1194 *
1195 * Note:
1196 * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1197 * interrupted while holding PENDING and @work off queue, irq must be
1198 * disabled on entry.  This, combined with delayed_work->timer being
1199 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1200 *
1201 * On successful return, >= 0, irq is disabled and the caller is
1202 * responsible for releasing it using local_irq_restore(*@flags).
1203 *
1204 * This function is safe to call from any context including IRQ handler.
1205 */
1206static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1207			       unsigned long *flags)
1208{
1209	struct worker_pool *pool;
1210	struct pool_workqueue *pwq;
1211
1212	local_irq_save(*flags);
1213
1214	/* try to steal the timer if it exists */
1215	if (is_dwork) {
1216		struct delayed_work *dwork = to_delayed_work(work);
1217
1218		/*
1219		 * dwork->timer is irqsafe.  If del_timer() fails, it's
1220		 * guaranteed that the timer is not queued anywhere and not
1221		 * running on the local CPU.
1222		 */
1223		if (likely(del_timer(&dwork->timer)))
1224			return 1;
1225	}
1226
1227	/* try to claim PENDING the normal way */
1228	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1229		return 0;
1230
1231	/*
1232	 * The queueing is in progress, or it is already queued. Try to
1233	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1234	 */
1235	pool = get_work_pool(work);
1236	if (!pool)
1237		goto fail;
1238
1239	spin_lock(&pool->lock);
1240	/*
1241	 * work->data is guaranteed to point to pwq only while the work
1242	 * item is queued on pwq->wq, and both updating work->data to point
1243	 * to pwq on queueing and to pool on dequeueing are done under
1244	 * pwq->pool->lock.  This in turn guarantees that, if work->data
1245	 * points to pwq which is associated with a locked pool, the work
1246	 * item is currently queued on that pool.
1247	 */
1248	pwq = get_work_pwq(work);
1249	if (pwq && pwq->pool == pool) {
1250		debug_work_deactivate(work);
1251
1252		/*
1253		 * A delayed work item cannot be grabbed directly because
1254		 * it might have linked NO_COLOR work items which, if left
1255		 * on the delayed_list, will confuse pwq->nr_active
1256		 * management later on and cause stall.  Make sure the work
1257		 * item is activated before grabbing.
1258		 */
1259		if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1260			pwq_activate_delayed_work(work);
1261
1262		list_del_init(&work->entry);
1263		pwq_dec_nr_in_flight(pwq, get_work_color(work));
1264
1265		/* work->data points to pwq iff queued, point to pool */
1266		set_work_pool_and_keep_pending(work, pool->id);
1267
1268		spin_unlock(&pool->lock);
1269		return 1;
1270	}
1271	spin_unlock(&pool->lock);
1272fail:
1273	local_irq_restore(*flags);
1274	if (work_is_canceling(work))
1275		return -ENOENT;
1276	cpu_relax();
1277	return -EAGAIN;
1278}
1279
1280/**
1281 * insert_work - insert a work into a pool
1282 * @pwq: pwq @work belongs to
1283 * @work: work to insert
1284 * @head: insertion point
1285 * @extra_flags: extra WORK_STRUCT_* flags to set
1286 *
1287 * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
1288 * work_struct flags.
1289 *
1290 * CONTEXT:
1291 * spin_lock_irq(pool->lock).
1292 */
1293static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1294			struct list_head *head, unsigned int extra_flags)
1295{
1296	struct worker_pool *pool = pwq->pool;
1297
1298	/* we own @work, set data and link */
1299	set_work_pwq(work, pwq, extra_flags);
1300	list_add_tail(&work->entry, head);
1301	get_pwq(pwq);
1302
1303	/*
1304	 * Ensure either wq_worker_sleeping() sees the above
1305	 * list_add_tail() or we see zero nr_running to avoid workers lying
1306	 * around lazily while there are works to be processed.
1307	 */
1308	smp_mb();
1309
1310	if (__need_more_worker(pool))
1311		wake_up_worker(pool);
1312}
1313
1314/*
1315 * Test whether @work is being queued from another work executing on the
1316 * same workqueue.
1317 */
1318static bool is_chained_work(struct workqueue_struct *wq)
1319{
1320	struct worker *worker;
1321
1322	worker = current_wq_worker();
1323	/*
1324	 * Return %true iff I'm a worker execuing a work item on @wq.  If
1325	 * I'm @worker, it's safe to dereference it without locking.
1326	 */
1327	return worker && worker->current_pwq->wq == wq;
1328}
1329
1330/*
1331 * When queueing an unbound work item to a wq, prefer local CPU if allowed
1332 * by wq_unbound_cpumask.  Otherwise, round robin among the allowed ones to
1333 * avoid perturbing sensitive tasks.
1334 */
1335static int wq_select_unbound_cpu(int cpu)
1336{
1337	static bool printed_dbg_warning;
1338	int new_cpu;
1339
1340	if (likely(!wq_debug_force_rr_cpu)) {
1341		if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
1342			return cpu;
1343	} else if (!printed_dbg_warning) {
1344		pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n");
1345		printed_dbg_warning = true;
1346	}
1347
1348	if (cpumask_empty(wq_unbound_cpumask))
1349		return cpu;
1350
1351	new_cpu = __this_cpu_read(wq_rr_cpu_last);
1352	new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
1353	if (unlikely(new_cpu >= nr_cpu_ids)) {
1354		new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
1355		if (unlikely(new_cpu >= nr_cpu_ids))
1356			return cpu;
1357	}
1358	__this_cpu_write(wq_rr_cpu_last, new_cpu);
1359
1360	return new_cpu;
1361}
1362
1363static void __queue_work(int cpu, struct workqueue_struct *wq,
1364			 struct work_struct *work)
1365{
1366	struct pool_workqueue *pwq;
1367	struct worker_pool *last_pool;
1368	struct list_head *worklist;
1369	unsigned int work_flags;
1370	unsigned int req_cpu = cpu;
1371
1372	/*
1373	 * While a work item is PENDING && off queue, a task trying to
1374	 * steal the PENDING will busy-loop waiting for it to either get
1375	 * queued or lose PENDING.  Grabbing PENDING and queueing should
1376	 * happen with IRQ disabled.
1377	 */
1378	WARN_ON_ONCE(!irqs_disabled());
1379
1380	debug_work_activate(work);
1381
1382	/* if draining, only works from the same workqueue are allowed */
1383	if (unlikely(wq->flags & __WQ_DRAINING) &&
1384	    WARN_ON_ONCE(!is_chained_work(wq)))
1385		return;
1386retry:
1387	if (req_cpu == WORK_CPU_UNBOUND)
1388		cpu = wq_select_unbound_cpu(raw_smp_processor_id());
1389
1390	/* pwq which will be used unless @work is executing elsewhere */
1391	if (!(wq->flags & WQ_UNBOUND))
1392		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1393	else
1394		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1395
1396	/*
1397	 * If @work was previously on a different pool, it might still be
1398	 * running there, in which case the work needs to be queued on that
1399	 * pool to guarantee non-reentrancy.
1400	 */
1401	last_pool = get_work_pool(work);
1402	if (last_pool && last_pool != pwq->pool) {
1403		struct worker *worker;
1404
1405		spin_lock(&last_pool->lock);
1406
1407		worker = find_worker_executing_work(last_pool, work);
1408
1409		if (worker && worker->current_pwq->wq == wq) {
1410			pwq = worker->current_pwq;
1411		} else {
1412			/* meh... not running there, queue here */
1413			spin_unlock(&last_pool->lock);
1414			spin_lock(&pwq->pool->lock);
1415		}
1416	} else {
1417		spin_lock(&pwq->pool->lock);
1418	}
1419
1420	/*
1421	 * pwq is determined and locked.  For unbound pools, we could have
1422	 * raced with pwq release and it could already be dead.  If its
1423	 * refcnt is zero, repeat pwq selection.  Note that pwqs never die
1424	 * without another pwq replacing it in the numa_pwq_tbl or while
1425	 * work items are executing on it, so the retrying is guaranteed to
1426	 * make forward-progress.
1427	 */
1428	if (unlikely(!pwq->refcnt)) {
1429		if (wq->flags & WQ_UNBOUND) {
1430			spin_unlock(&pwq->pool->lock);
1431			cpu_relax();
1432			goto retry;
1433		}
1434		/* oops */
1435		WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1436			  wq->name, cpu);
1437	}
1438
1439	/* pwq determined, queue */
1440	trace_workqueue_queue_work(req_cpu, pwq, work);
1441
1442	if (WARN_ON(!list_empty(&work->entry))) {
1443		spin_unlock(&pwq->pool->lock);
1444		return;
1445	}
1446
1447	pwq->nr_in_flight[pwq->work_color]++;
1448	work_flags = work_color_to_flags(pwq->work_color);
1449
1450	if (likely(pwq->nr_active < pwq->max_active)) {
1451		trace_workqueue_activate_work(work);
1452		pwq->nr_active++;
1453		worklist = &pwq->pool->worklist;
1454		if (list_empty(worklist))
1455			pwq->pool->watchdog_ts = jiffies;
1456	} else {
1457		work_flags |= WORK_STRUCT_DELAYED;
1458		worklist = &pwq->delayed_works;
1459	}
1460
1461	insert_work(pwq, work, worklist, work_flags);
1462
1463	spin_unlock(&pwq->pool->lock);
1464}
1465
1466/**
1467 * queue_work_on - queue work on specific cpu
1468 * @cpu: CPU number to execute work on
1469 * @wq: workqueue to use
1470 * @work: work to queue
1471 *
1472 * We queue the work to a specific CPU, the caller must ensure it
1473 * can't go away.
1474 *
1475 * Return: %false if @work was already on a queue, %true otherwise.
1476 */
1477bool queue_work_on(int cpu, struct workqueue_struct *wq,
1478		   struct work_struct *work)
1479{
1480	bool ret = false;
1481	unsigned long flags;
1482
1483	local_irq_save(flags);
1484
1485	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1486		__queue_work(cpu, wq, work);
1487		ret = true;
1488	}
1489
1490	local_irq_restore(flags);
1491	return ret;
1492}
1493EXPORT_SYMBOL(queue_work_on);
1494
1495void delayed_work_timer_fn(unsigned long __data)
1496{
1497	struct delayed_work *dwork = (struct delayed_work *)__data;
1498
1499	/* should have been called from irqsafe timer with irq already off */
1500	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
1501}
1502EXPORT_SYMBOL(delayed_work_timer_fn);
1503
1504static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1505				struct delayed_work *dwork, unsigned long delay)
1506{
1507	struct timer_list *timer = &dwork->timer;
1508	struct work_struct *work = &dwork->work;
1509
1510	WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1511		     timer->data != (unsigned long)dwork);
1512	WARN_ON_ONCE(timer_pending(timer));
1513	WARN_ON_ONCE(!list_empty(&work->entry));
1514
1515	/*
1516	 * If @delay is 0, queue @dwork->work immediately.  This is for
1517	 * both optimization and correctness.  The earliest @timer can
1518	 * expire is on the closest next tick and delayed_work users depend
1519	 * on that there's no such delay when @delay is 0.
1520	 */
1521	if (!delay) {
1522		__queue_work(cpu, wq, &dwork->work);
1523		return;
1524	}
1525
1526	timer_stats_timer_set_start_info(&dwork->timer);
1527
1528	dwork->wq = wq;
1529	dwork->cpu = cpu;
1530	timer->expires = jiffies + delay;
1531
1532	if (unlikely(cpu != WORK_CPU_UNBOUND))
1533		add_timer_on(timer, cpu);
1534	else
1535		add_timer(timer);
1536}
1537
1538/**
1539 * queue_delayed_work_on - queue work on specific CPU after delay
1540 * @cpu: CPU number to execute work on
1541 * @wq: workqueue to use
1542 * @dwork: work to queue
1543 * @delay: number of jiffies to wait before queueing
1544 *
1545 * Return: %false if @work was already on a queue, %true otherwise.  If
1546 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1547 * execution.
1548 */
1549bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1550			   struct delayed_work *dwork, unsigned long delay)
1551{
1552	struct work_struct *work = &dwork->work;
1553	bool ret = false;
1554	unsigned long flags;
1555
1556	/* read the comment in __queue_work() */
1557	local_irq_save(flags);
1558
1559	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1560		__queue_delayed_work(cpu, wq, dwork, delay);
1561		ret = true;
1562	}
1563
1564	local_irq_restore(flags);
1565	return ret;
1566}
1567EXPORT_SYMBOL(queue_delayed_work_on);
1568
1569/**
1570 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1571 * @cpu: CPU number to execute work on
1572 * @wq: workqueue to use
1573 * @dwork: work to queue
1574 * @delay: number of jiffies to wait before queueing
1575 *
1576 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1577 * modify @dwork's timer so that it expires after @delay.  If @delay is
1578 * zero, @work is guaranteed to be scheduled immediately regardless of its
1579 * current state.
1580 *
1581 * Return: %false if @dwork was idle and queued, %true if @dwork was
1582 * pending and its timer was modified.
1583 *
1584 * This function is safe to call from any context including IRQ handler.
1585 * See try_to_grab_pending() for details.
1586 */
1587bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1588			 struct delayed_work *dwork, unsigned long delay)
1589{
1590	unsigned long flags;
1591	int ret;
1592
1593	do {
1594		ret = try_to_grab_pending(&dwork->work, true, &flags);
1595	} while (unlikely(ret == -EAGAIN));
1596
1597	if (likely(ret >= 0)) {
1598		__queue_delayed_work(cpu, wq, dwork, delay);
1599		local_irq_restore(flags);
1600	}
1601
1602	/* -ENOENT from try_to_grab_pending() becomes %true */
1603	return ret;
1604}
1605EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1606
1607/**
1608 * worker_enter_idle - enter idle state
1609 * @worker: worker which is entering idle state
1610 *
1611 * @worker is entering idle state.  Update stats and idle timer if
1612 * necessary.
1613 *
1614 * LOCKING:
1615 * spin_lock_irq(pool->lock).
1616 */
1617static void worker_enter_idle(struct worker *worker)
1618{
1619	struct worker_pool *pool = worker->pool;
1620
1621	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1622	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
1623			 (worker->hentry.next || worker->hentry.pprev)))
1624		return;
1625
1626	/* can't use worker_set_flags(), also called from create_worker() */
1627	worker->flags |= WORKER_IDLE;
1628	pool->nr_idle++;
1629	worker->last_active = jiffies;
1630
1631	/* idle_list is LIFO */
1632	list_add(&worker->entry, &pool->idle_list);
1633
1634	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1635		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1636
1637	/*
1638	 * Sanity check nr_running.  Because wq_unbind_fn() releases
1639	 * pool->lock between setting %WORKER_UNBOUND and zapping
1640	 * nr_running, the warning may trigger spuriously.  Check iff
1641	 * unbind is not in progress.
1642	 */
1643	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1644		     pool->nr_workers == pool->nr_idle &&
1645		     atomic_read(&pool->nr_running));
1646}
1647
1648/**
1649 * worker_leave_idle - leave idle state
1650 * @worker: worker which is leaving idle state
1651 *
1652 * @worker is leaving idle state.  Update stats.
1653 *
1654 * LOCKING:
1655 * spin_lock_irq(pool->lock).
1656 */
1657static void worker_leave_idle(struct worker *worker)
1658{
1659	struct worker_pool *pool = worker->pool;
1660
1661	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1662		return;
1663	worker_clr_flags(worker, WORKER_IDLE);
1664	pool->nr_idle--;
1665	list_del_init(&worker->entry);
1666}
1667
1668static struct worker *alloc_worker(int node)
1669{
1670	struct worker *worker;
1671
1672	worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
1673	if (worker) {
1674		INIT_LIST_HEAD(&worker->entry);
1675		INIT_LIST_HEAD(&worker->scheduled);
1676		INIT_LIST_HEAD(&worker->node);
1677		/* on creation a worker is in !idle && prep state */
1678		worker->flags = WORKER_PREP;
1679	}
1680	return worker;
1681}
1682
1683/**
1684 * worker_attach_to_pool() - attach a worker to a pool
1685 * @worker: worker to be attached
1686 * @pool: the target pool
1687 *
1688 * Attach @worker to @pool.  Once attached, the %WORKER_UNBOUND flag and
1689 * cpu-binding of @worker are kept coordinated with the pool across
1690 * cpu-[un]hotplugs.
1691 */
1692static void worker_attach_to_pool(struct worker *worker,
1693				   struct worker_pool *pool)
1694{
1695	mutex_lock(&pool->attach_mutex);
1696
1697	/*
1698	 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1699	 * online CPUs.  It'll be re-applied when any of the CPUs come up.
1700	 */
1701	set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1702
1703	/*
1704	 * The pool->attach_mutex ensures %POOL_DISASSOCIATED remains
1705	 * stable across this function.  See the comments above the
1706	 * flag definition for details.
1707	 */
1708	if (pool->flags & POOL_DISASSOCIATED)
1709		worker->flags |= WORKER_UNBOUND;
1710
1711	list_add_tail(&worker->node, &pool->workers);
1712
1713	mutex_unlock(&pool->attach_mutex);
1714}
1715
1716/**
1717 * worker_detach_from_pool() - detach a worker from its pool
1718 * @worker: worker which is attached to its pool
1719 * @pool: the pool @worker is attached to
1720 *
1721 * Undo the attaching which had been done in worker_attach_to_pool().  The
1722 * caller worker shouldn't access to the pool after detached except it has
1723 * other reference to the pool.
1724 */
1725static void worker_detach_from_pool(struct worker *worker,
1726				    struct worker_pool *pool)
1727{
1728	struct completion *detach_completion = NULL;
1729
1730	mutex_lock(&pool->attach_mutex);
1731	list_del(&worker->node);
1732	if (list_empty(&pool->workers))
1733		detach_completion = pool->detach_completion;
1734	mutex_unlock(&pool->attach_mutex);
1735
1736	/* clear leftover flags without pool->lock after it is detached */
1737	worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
1738
1739	if (detach_completion)
1740		complete(detach_completion);
1741}
1742
1743/**
1744 * create_worker - create a new workqueue worker
1745 * @pool: pool the new worker will belong to
1746 *
1747 * Create and start a new worker which is attached to @pool.
1748 *
1749 * CONTEXT:
1750 * Might sleep.  Does GFP_KERNEL allocations.
1751 *
1752 * Return:
1753 * Pointer to the newly created worker.
1754 */
1755static struct worker *create_worker(struct worker_pool *pool)
1756{
1757	struct worker *worker = NULL;
1758	int id = -1;
1759	char id_buf[16];
1760
1761	/* ID is needed to determine kthread name */
1762	id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
1763	if (id < 0)
1764		goto fail;
1765
1766	worker = alloc_worker(pool->node);
1767	if (!worker)
1768		goto fail;
1769
1770	worker->pool = pool;
1771	worker->id = id;
1772
1773	if (pool->cpu >= 0)
1774		snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1775			 pool->attrs->nice < 0  ? "H" : "");
1776	else
1777		snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1778
1779	worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1780					      "kworker/%s", id_buf);
1781	if (IS_ERR(worker->task))
1782		goto fail;
1783
1784	set_user_nice(worker->task, pool->attrs->nice);
1785	kthread_bind_mask(worker->task, pool->attrs->cpumask);
1786
1787	/* successful, attach the worker to the pool */
1788	worker_attach_to_pool(worker, pool);
1789
1790	/* start the newly created worker */
1791	spin_lock_irq(&pool->lock);
1792	worker->pool->nr_workers++;
1793	worker_enter_idle(worker);
1794	wake_up_process(worker->task);
1795	spin_unlock_irq(&pool->lock);
1796
1797	return worker;
1798
1799fail:
1800	if (id >= 0)
1801		ida_simple_remove(&pool->worker_ida, id);
1802	kfree(worker);
1803	return NULL;
1804}
1805
1806/**
1807 * destroy_worker - destroy a workqueue worker
1808 * @worker: worker to be destroyed
1809 *
1810 * Destroy @worker and adjust @pool stats accordingly.  The worker should
1811 * be idle.
1812 *
1813 * CONTEXT:
1814 * spin_lock_irq(pool->lock).
1815 */
1816static void destroy_worker(struct worker *worker)
1817{
1818	struct worker_pool *pool = worker->pool;
1819
1820	lockdep_assert_held(&pool->lock);
1821
1822	/* sanity check frenzy */
1823	if (WARN_ON(worker->current_work) ||
1824	    WARN_ON(!list_empty(&worker->scheduled)) ||
1825	    WARN_ON(!(worker->flags & WORKER_IDLE)))
1826		return;
1827
1828	pool->nr_workers--;
1829	pool->nr_idle--;
1830
1831	list_del_init(&worker->entry);
1832	worker->flags |= WORKER_DIE;
1833	wake_up_process(worker->task);
1834}
1835
1836static void idle_worker_timeout(unsigned long __pool)
1837{
1838	struct worker_pool *pool = (void *)__pool;
1839
1840	spin_lock_irq(&pool->lock);
1841
1842	while (too_many_workers(pool)) {
1843		struct worker *worker;
1844		unsigned long expires;
1845
1846		/* idle_list is kept in LIFO order, check the last one */
1847		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1848		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1849
1850		if (time_before(jiffies, expires)) {
1851			mod_timer(&pool->idle_timer, expires);
1852			break;
1853		}
1854
1855		destroy_worker(worker);
1856	}
1857
1858	spin_unlock_irq(&pool->lock);
1859}
1860
1861static void send_mayday(struct work_struct *work)
1862{
1863	struct pool_workqueue *pwq = get_work_pwq(work);
1864	struct workqueue_struct *wq = pwq->wq;
1865
1866	lockdep_assert_held(&wq_mayday_lock);
1867
1868	if (!wq->rescuer)
1869		return;
1870
1871	/* mayday mayday mayday */
1872	if (list_empty(&pwq->mayday_node)) {
1873		/*
1874		 * If @pwq is for an unbound wq, its base ref may be put at
1875		 * any time due to an attribute change.  Pin @pwq until the
1876		 * rescuer is done with it.
1877		 */
1878		get_pwq(pwq);
1879		list_add_tail(&pwq->mayday_node, &wq->maydays);
1880		wake_up_process(wq->rescuer->task);
1881	}
1882}
1883
1884static void pool_mayday_timeout(unsigned long __pool)
1885{
1886	struct worker_pool *pool = (void *)__pool;
1887	struct work_struct *work;
1888
1889	spin_lock_irq(&pool->lock);
1890	spin_lock(&wq_mayday_lock);		/* for wq->maydays */
1891
1892	if (need_to_create_worker(pool)) {
1893		/*
1894		 * We've been trying to create a new worker but
1895		 * haven't been successful.  We might be hitting an
1896		 * allocation deadlock.  Send distress signals to
1897		 * rescuers.
1898		 */
1899		list_for_each_entry(work, &pool->worklist, entry)
1900			send_mayday(work);
1901	}
1902
1903	spin_unlock(&wq_mayday_lock);
1904	spin_unlock_irq(&pool->lock);
1905
1906	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1907}
1908
1909/**
1910 * maybe_create_worker - create a new worker if necessary
1911 * @pool: pool to create a new worker for
1912 *
1913 * Create a new worker for @pool if necessary.  @pool is guaranteed to
1914 * have at least one idle worker on return from this function.  If
1915 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1916 * sent to all rescuers with works scheduled on @pool to resolve
1917 * possible allocation deadlock.
1918 *
1919 * On return, need_to_create_worker() is guaranteed to be %false and
1920 * may_start_working() %true.
1921 *
1922 * LOCKING:
1923 * spin_lock_irq(pool->lock) which may be released and regrabbed
1924 * multiple times.  Does GFP_KERNEL allocations.  Called only from
1925 * manager.
1926 */
1927static void maybe_create_worker(struct worker_pool *pool)
1928__releases(&pool->lock)
1929__acquires(&pool->lock)
1930{
1931restart:
1932	spin_unlock_irq(&pool->lock);
1933
1934	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1935	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1936
1937	while (true) {
1938		if (create_worker(pool) || !need_to_create_worker(pool))
1939			break;
1940
1941		schedule_timeout_interruptible(CREATE_COOLDOWN);
1942
1943		if (!need_to_create_worker(pool))
1944			break;
1945	}
1946
1947	del_timer_sync(&pool->mayday_timer);
1948	spin_lock_irq(&pool->lock);
1949	/*
1950	 * This is necessary even after a new worker was just successfully
1951	 * created as @pool->lock was dropped and the new worker might have
1952	 * already become busy.
1953	 */
1954	if (need_to_create_worker(pool))
1955		goto restart;
1956}
1957
1958/**
1959 * manage_workers - manage worker pool
1960 * @worker: self
1961 *
1962 * Assume the manager role and manage the worker pool @worker belongs
1963 * to.  At any given time, there can be only zero or one manager per
1964 * pool.  The exclusion is handled automatically by this function.
1965 *
1966 * The caller can safely start processing works on false return.  On
1967 * true return, it's guaranteed that need_to_create_worker() is false
1968 * and may_start_working() is true.
1969 *
1970 * CONTEXT:
1971 * spin_lock_irq(pool->lock) which may be released and regrabbed
1972 * multiple times.  Does GFP_KERNEL allocations.
1973 *
1974 * Return:
1975 * %false if the pool doesn't need management and the caller can safely
1976 * start processing works, %true if management function was performed and
1977 * the conditions that the caller verified before calling the function may
1978 * no longer be true.
1979 */
1980static bool manage_workers(struct worker *worker)
1981{
1982	struct worker_pool *pool = worker->pool;
1983
1984	/*
1985	 * Anyone who successfully grabs manager_arb wins the arbitration
1986	 * and becomes the manager.  mutex_trylock() on pool->manager_arb
1987	 * failure while holding pool->lock reliably indicates that someone
1988	 * else is managing the pool and the worker which failed trylock
1989	 * can proceed to executing work items.  This means that anyone
1990	 * grabbing manager_arb is responsible for actually performing
1991	 * manager duties.  If manager_arb is grabbed and released without
1992	 * actual management, the pool may stall indefinitely.
1993	 */
1994	if (!mutex_trylock(&pool->manager_arb))
1995		return false;
1996	pool->manager = worker;
1997
1998	maybe_create_worker(pool);
1999
2000	pool->manager = NULL;
2001	mutex_unlock(&pool->manager_arb);
2002	return true;
2003}
2004
2005/**
2006 * process_one_work - process single work
2007 * @worker: self
2008 * @work: work to process
2009 *
2010 * Process @work.  This function contains all the logics necessary to
2011 * process a single work including synchronization against and
2012 * interaction with other workers on the same cpu, queueing and
2013 * flushing.  As long as context requirement is met, any worker can
2014 * call this function to process a work.
2015 *
2016 * CONTEXT:
2017 * spin_lock_irq(pool->lock) which is released and regrabbed.
2018 */
2019static void process_one_work(struct worker *worker, struct work_struct *work)
2020__releases(&pool->lock)
2021__acquires(&pool->lock)
2022{
2023	struct pool_workqueue *pwq = get_work_pwq(work);
2024	struct worker_pool *pool = worker->pool;
2025	bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2026	int work_color;
2027	struct worker *collision;
2028#ifdef CONFIG_LOCKDEP
2029	/*
2030	 * It is permissible to free the struct work_struct from
2031	 * inside the function that is called from it, this we need to
2032	 * take into account for lockdep too.  To avoid bogus "held
2033	 * lock freed" warnings as well as problems when looking into
2034	 * work->lockdep_map, make a copy and use that here.
2035	 */
2036	struct lockdep_map lockdep_map;
2037
2038	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2039#endif
2040	/* ensure we're on the correct CPU */
2041	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
2042		     raw_smp_processor_id() != pool->cpu);
2043
2044	/*
2045	 * A single work shouldn't be executed concurrently by
2046	 * multiple workers on a single cpu.  Check whether anyone is
2047	 * already processing the work.  If so, defer the work to the
2048	 * currently executing one.
2049	 */
2050	collision = find_worker_executing_work(pool, work);
2051	if (unlikely(collision)) {
2052		move_linked_works(work, &collision->scheduled, NULL);
2053		return;
2054	}
2055
2056	/* claim and dequeue */
2057	debug_work_deactivate(work);
2058	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2059	worker->current_work = work;
2060	worker->current_func = work->func;
2061	worker->current_pwq = pwq;
2062	work_color = get_work_color(work);
2063
2064	list_del_init(&work->entry);
2065
2066	/*
2067	 * CPU intensive works don't participate in concurrency management.
2068	 * They're the scheduler's responsibility.  This takes @worker out
2069	 * of concurrency management and the next code block will chain
2070	 * execution of the pending work items.
2071	 */
2072	if (unlikely(cpu_intensive))
2073		worker_set_flags(worker, WORKER_CPU_INTENSIVE);
2074
2075	/*
2076	 * Wake up another worker if necessary.  The condition is always
2077	 * false for normal per-cpu workers since nr_running would always
2078	 * be >= 1 at this point.  This is used to chain execution of the
2079	 * pending work items for WORKER_NOT_RUNNING workers such as the
2080	 * UNBOUND and CPU_INTENSIVE ones.
2081	 */
2082	if (need_more_worker(pool))
2083		wake_up_worker(pool);
2084
2085	/*
2086	 * Record the last pool and clear PENDING which should be the last
2087	 * update to @work.  Also, do this inside @pool->lock so that
2088	 * PENDING and queued state changes happen together while IRQ is
2089	 * disabled.
2090	 */
2091	set_work_pool_and_clear_pending(work, pool->id);
2092
2093	spin_unlock_irq(&pool->lock);
2094
2095	lock_map_acquire_read(&pwq->wq->lockdep_map);
2096	lock_map_acquire(&lockdep_map);
2097	trace_workqueue_execute_start(work);
2098	worker->current_func(work);
2099	/*
2100	 * While we must be careful to not use "work" after this, the trace
2101	 * point will only record its address.
2102	 */
2103	trace_workqueue_execute_end(work);
2104	lock_map_release(&lockdep_map);
2105	lock_map_release(&pwq->wq->lockdep_map);
2106
2107	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2108		pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2109		       "     last function: %pf\n",
2110		       current->comm, preempt_count(), task_pid_nr(current),
2111		       worker->current_func);
2112		debug_show_held_locks(current);
2113		dump_stack();
2114	}
2115
2116	/*
2117	 * The following prevents a kworker from hogging CPU on !PREEMPT
2118	 * kernels, where a requeueing work item waiting for something to
2119	 * happen could deadlock with stop_machine as such work item could
2120	 * indefinitely requeue itself while all other CPUs are trapped in
2121	 * stop_machine. At the same time, report a quiescent RCU state so
2122	 * the same condition doesn't freeze RCU.
2123	 */
2124	cond_resched_rcu_qs();
2125
2126	spin_lock_irq(&pool->lock);
2127
2128	/* clear cpu intensive status */
2129	if (unlikely(cpu_intensive))
2130		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2131
2132	/* we're done with it, release */
2133	hash_del(&worker->hentry);
2134	worker->current_work = NULL;
2135	worker->current_func = NULL;
2136	worker->current_pwq = NULL;
2137	worker->desc_valid = false;
2138	pwq_dec_nr_in_flight(pwq, work_color);
2139}
2140
2141/**
2142 * process_scheduled_works - process scheduled works
2143 * @worker: self
2144 *
2145 * Process all scheduled works.  Please note that the scheduled list
2146 * may change while processing a work, so this function repeatedly
2147 * fetches a work from the top and executes it.
2148 *
2149 * CONTEXT:
2150 * spin_lock_irq(pool->lock) which may be released and regrabbed
2151 * multiple times.
2152 */
2153static void process_scheduled_works(struct worker *worker)
2154{
2155	while (!list_empty(&worker->scheduled)) {
2156		struct work_struct *work = list_first_entry(&worker->scheduled,
2157						struct work_struct, entry);
2158		process_one_work(worker, work);
2159	}
2160}
2161
2162/**
2163 * worker_thread - the worker thread function
2164 * @__worker: self
2165 *
2166 * The worker thread function.  All workers belong to a worker_pool -
2167 * either a per-cpu one or dynamic unbound one.  These workers process all
2168 * work items regardless of their specific target workqueue.  The only
2169 * exception is work items which belong to workqueues with a rescuer which
2170 * will be explained in rescuer_thread().
2171 *
2172 * Return: 0
2173 */
2174static int worker_thread(void *__worker)
2175{
2176	struct worker *worker = __worker;
2177	struct worker_pool *pool = worker->pool;
2178
2179	/* tell the scheduler that this is a workqueue worker */
2180	worker->task->flags |= PF_WQ_WORKER;
2181woke_up:
2182	spin_lock_irq(&pool->lock);
2183
2184	/* am I supposed to die? */
2185	if (unlikely(worker->flags & WORKER_DIE)) {
2186		spin_unlock_irq(&pool->lock);
2187		WARN_ON_ONCE(!list_empty(&worker->entry));
2188		worker->task->flags &= ~PF_WQ_WORKER;
2189
2190		set_task_comm(worker->task, "kworker/dying");
2191		ida_simple_remove(&pool->worker_ida, worker->id);
2192		worker_detach_from_pool(worker, pool);
2193		kfree(worker);
2194		return 0;
2195	}
2196
2197	worker_leave_idle(worker);
2198recheck:
2199	/* no more worker necessary? */
2200	if (!need_more_worker(pool))
2201		goto sleep;
2202
2203	/* do we need to manage? */
2204	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2205		goto recheck;
2206
2207	/*
2208	 * ->scheduled list can only be filled while a worker is
2209	 * preparing to process a work or actually processing it.
2210	 * Make sure nobody diddled with it while I was sleeping.
2211	 */
2212	WARN_ON_ONCE(!list_empty(&worker->scheduled));
2213
2214	/*
2215	 * Finish PREP stage.  We're guaranteed to have at least one idle
2216	 * worker or that someone else has already assumed the manager
2217	 * role.  This is where @worker starts participating in concurrency
2218	 * management if applicable and concurrency management is restored
2219	 * after being rebound.  See rebind_workers() for details.
2220	 */
2221	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2222
2223	do {
2224		struct work_struct *work =
2225			list_first_entry(&pool->worklist,
2226					 struct work_struct, entry);
2227
2228		pool->watchdog_ts = jiffies;
2229
2230		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2231			/* optimization path, not strictly necessary */
2232			process_one_work(worker, work);
2233			if (unlikely(!list_empty(&worker->scheduled)))
2234				process_scheduled_works(worker);
2235		} else {
2236			move_linked_works(work, &worker->scheduled, NULL);
2237			process_scheduled_works(worker);
2238		}
2239	} while (keep_working(pool));
2240
2241	worker_set_flags(worker, WORKER_PREP);
2242sleep:
2243	/*
2244	 * pool->lock is held and there's no work to process and no need to
2245	 * manage, sleep.  Workers are woken up only while holding
2246	 * pool->lock or from local cpu, so setting the current state
2247	 * before releasing pool->lock is enough to prevent losing any
2248	 * event.
2249	 */
2250	worker_enter_idle(worker);
2251	__set_current_state(TASK_INTERRUPTIBLE);
2252	spin_unlock_irq(&pool->lock);
2253	schedule();
2254	goto woke_up;
2255}
2256
2257/**
2258 * rescuer_thread - the rescuer thread function
2259 * @__rescuer: self
2260 *
2261 * Workqueue rescuer thread function.  There's one rescuer for each
2262 * workqueue which has WQ_MEM_RECLAIM set.
2263 *
2264 * Regular work processing on a pool may block trying to create a new
2265 * worker which uses GFP_KERNEL allocation which has slight chance of
2266 * developing into deadlock if some works currently on the same queue
2267 * need to be processed to satisfy the GFP_KERNEL allocation.  This is
2268 * the problem rescuer solves.
2269 *
2270 * When such condition is possible, the pool summons rescuers of all
2271 * workqueues which have works queued on the pool and let them process
2272 * those works so that forward progress can be guaranteed.
2273 *
2274 * This should happen rarely.
2275 *
2276 * Return: 0
2277 */
2278static int rescuer_thread(void *__rescuer)
2279{
2280	struct worker *rescuer = __rescuer;
2281	struct workqueue_struct *wq = rescuer->rescue_wq;
2282	struct list_head *scheduled = &rescuer->scheduled;
2283	bool should_stop;
2284
2285	set_user_nice(current, RESCUER_NICE_LEVEL);
2286
2287	/*
2288	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
2289	 * doesn't participate in concurrency management.
2290	 */
2291	rescuer->task->flags |= PF_WQ_WORKER;
2292repeat:
2293	set_current_state(TASK_INTERRUPTIBLE);
2294
2295	/*
2296	 * By the time the rescuer is requested to stop, the workqueue
2297	 * shouldn't have any work pending, but @wq->maydays may still have
2298	 * pwq(s) queued.  This can happen by non-rescuer workers consuming
2299	 * all the work items before the rescuer got to them.  Go through
2300	 * @wq->maydays processing before acting on should_stop so that the
2301	 * list is always empty on exit.
2302	 */
2303	should_stop = kthread_should_stop();
2304
2305	/* see whether any pwq is asking for help */
2306	spin_lock_irq(&wq_mayday_lock);
2307
2308	while (!list_empty(&wq->maydays)) {
2309		struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2310					struct pool_workqueue, mayday_node);
2311		struct worker_pool *pool = pwq->pool;
2312		struct work_struct *work, *n;
2313		bool first = true;
2314
2315		__set_current_state(TASK_RUNNING);
2316		list_del_init(&pwq->mayday_node);
2317
2318		spin_unlock_irq(&wq_mayday_lock);
2319
2320		worker_attach_to_pool(rescuer, pool);
2321
2322		spin_lock_irq(&pool->lock);
2323		rescuer->pool = pool;
2324
2325		/*
2326		 * Slurp in all works issued via this workqueue and
2327		 * process'em.
2328		 */
2329		WARN_ON_ONCE(!list_empty(scheduled));
2330		list_for_each_entry_safe(work, n, &pool->worklist, entry) {
2331			if (get_work_pwq(work) == pwq) {
2332				if (first)
2333					pool->watchdog_ts = jiffies;
2334				move_linked_works(work, scheduled, &n);
2335			}
2336			first = false;
2337		}
2338
2339		if (!list_empty(scheduled)) {
2340			process_scheduled_works(rescuer);
2341
2342			/*
2343			 * The above execution of rescued work items could
2344			 * have created more to rescue through
2345			 * pwq_activate_first_delayed() or chained
2346			 * queueing.  Let's put @pwq back on mayday list so
2347			 * that such back-to-back work items, which may be
2348			 * being used to relieve memory pressure, don't
2349			 * incur MAYDAY_INTERVAL delay inbetween.
2350			 */
2351			if (need_to_create_worker(pool)) {
2352				spin_lock(&wq_mayday_lock);
2353				get_pwq(pwq);
2354				list_move_tail(&pwq->mayday_node, &wq->maydays);
2355				spin_unlock(&wq_mayday_lock);
2356			}
2357		}
2358
2359		/*
2360		 * Put the reference grabbed by send_mayday().  @pool won't
2361		 * go away while we're still attached to it.
2362		 */
2363		put_pwq(pwq);
2364
2365		/*
2366		 * Leave this pool.  If need_more_worker() is %true, notify a
2367		 * regular worker; otherwise, we end up with 0 concurrency
2368		 * and stalling the execution.
2369		 */
2370		if (need_more_worker(pool))
2371			wake_up_worker(pool);
2372
2373		rescuer->pool = NULL;
2374		spin_unlock_irq(&pool->lock);
2375
2376		worker_detach_from_pool(rescuer, pool);
2377
2378		spin_lock_irq(&wq_mayday_lock);
2379	}
2380
2381	spin_unlock_irq(&wq_mayday_lock);
2382
2383	if (should_stop) {
2384		__set_current_state(TASK_RUNNING);
2385		rescuer->task->flags &= ~PF_WQ_WORKER;
2386		return 0;
2387	}
2388
2389	/* rescuers should never participate in concurrency management */
2390	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2391	schedule();
2392	goto repeat;
2393}
2394
2395/**
2396 * check_flush_dependency - check for flush dependency sanity
2397 * @target_wq: workqueue being flushed
2398 * @target_work: work item being flushed (NULL for workqueue flushes)
2399 *
2400 * %current is trying to flush the whole @target_wq or @target_work on it.
2401 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
2402 * reclaiming memory or running on a workqueue which doesn't have
2403 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
2404 * a deadlock.
2405 */
2406static void check_flush_dependency(struct workqueue_struct *target_wq,
2407				   struct work_struct *target_work)
2408{
2409	work_func_t target_func = target_work ? target_work->func : NULL;
2410	struct worker *worker;
2411
2412	if (target_wq->flags & WQ_MEM_RECLAIM)
2413		return;
2414
2415	worker = current_wq_worker();
2416
2417	WARN_ONCE(current->flags & PF_MEMALLOC,
2418		  "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%pf",
2419		  current->pid, current->comm, target_wq->name, target_func);
2420	WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
2421			      (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
2422		  "workqueue: WQ_MEM_RECLAIM %s:%pf is flushing !WQ_MEM_RECLAIM %s:%pf",
2423		  worker->current_pwq->wq->name, worker->current_func,
2424		  target_wq->name, target_func);
2425}
2426
2427struct wq_barrier {
2428	struct work_struct	work;
2429	struct completion	done;
2430	struct task_struct	*task;	/* purely informational */
2431};
2432
2433static void wq_barrier_func(struct work_struct *work)
2434{
2435	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2436	complete(&barr->done);
2437}
2438
2439/**
2440 * insert_wq_barrier - insert a barrier work
2441 * @pwq: pwq to insert barrier into
2442 * @barr: wq_barrier to insert
2443 * @target: target work to attach @barr to
2444 * @worker: worker currently executing @target, NULL if @target is not executing
2445 *
2446 * @barr is linked to @target such that @barr is completed only after
2447 * @target finishes execution.  Please note that the ordering
2448 * guarantee is observed only with respect to @target and on the local
2449 * cpu.
2450 *
2451 * Currently, a queued barrier can't be canceled.  This is because
2452 * try_to_grab_pending() can't determine whether the work to be
2453 * grabbed is at the head of the queue and thus can't clear LINKED
2454 * flag of the previous work while there must be a valid next work
2455 * after a work with LINKED flag set.
2456 *
2457 * Note that when @worker is non-NULL, @target may be modified
2458 * underneath us, so we can't reliably determine pwq from @target.
2459 *
2460 * CONTEXT:
2461 * spin_lock_irq(pool->lock).
2462 */
2463static void insert_wq_barrier(struct pool_workqueue *pwq,
2464			      struct wq_barrier *barr,
2465			      struct work_struct *target, struct worker *worker)
2466{
2467	struct list_head *head;
2468	unsigned int linked = 0;
2469
2470	/*
2471	 * debugobject calls are safe here even with pool->lock locked
2472	 * as we know for sure that this will not trigger any of the
2473	 * checks and call back into the fixup functions where we
2474	 * might deadlock.
2475	 */
2476	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2477	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2478	init_completion(&barr->done);
2479	barr->task = current;
2480
2481	/*
2482	 * If @target is currently being executed, schedule the
2483	 * barrier to the worker; otherwise, put it after @target.
2484	 */
2485	if (worker)
2486		head = worker->scheduled.next;
2487	else {
2488		unsigned long *bits = work_data_bits(target);
2489
2490		head = target->entry.next;
2491		/* there can already be other linked works, inherit and set */
2492		linked = *bits & WORK_STRUCT_LINKED;
2493		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
2494	}
2495
2496	debug_work_activate(&barr->work);
2497	insert_work(pwq, &barr->work, head,
2498		    work_color_to_flags(WORK_NO_COLOR) | linked);
2499}
2500
2501/**
2502 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2503 * @wq: workqueue being flushed
2504 * @flush_color: new flush color, < 0 for no-op
2505 * @work_color: new work color, < 0 for no-op
2506 *
2507 * Prepare pwqs for workqueue flushing.
2508 *
2509 * If @flush_color is non-negative, flush_color on all pwqs should be
2510 * -1.  If no pwq has in-flight commands at the specified color, all
2511 * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
2512 * has in flight commands, its pwq->flush_color is set to
2513 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2514 * wakeup logic is armed and %true is returned.
2515 *
2516 * The caller should have initialized @wq->first_flusher prior to
2517 * calling this function with non-negative @flush_color.  If
2518 * @flush_color is negative, no flush color update is done and %false
2519 * is returned.
2520 *
2521 * If @work_color is non-negative, all pwqs should have the same
2522 * work_color which is previous to @work_color and all will be
2523 * advanced to @work_color.
2524 *
2525 * CONTEXT:
2526 * mutex_lock(wq->mutex).
2527 *
2528 * Return:
2529 * %true if @flush_color >= 0 and there's something to flush.  %false
2530 * otherwise.
2531 */
2532static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2533				      int flush_color, int work_color)
2534{
2535	bool wait = false;
2536	struct pool_workqueue *pwq;
2537
2538	if (flush_color >= 0) {
2539		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2540		atomic_set(&wq->nr_pwqs_to_flush, 1);
2541	}
2542
2543	for_each_pwq(pwq, wq) {
2544		struct worker_pool *pool = pwq->pool;
2545
2546		spin_lock_irq(&pool->lock);
2547
2548		if (flush_color >= 0) {
2549			WARN_ON_ONCE(pwq->flush_color != -1);
2550
2551			if (pwq->nr_in_flight[flush_color]) {
2552				pwq->flush_color = flush_color;
2553				atomic_inc(&wq->nr_pwqs_to_flush);
2554				wait = true;
2555			}
2556		}
2557
2558		if (work_color >= 0) {
2559			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2560			pwq->work_color = work_color;
2561		}
2562
2563		spin_unlock_irq(&pool->lock);
2564	}
2565
2566	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2567		complete(&wq->first_flusher->done);
2568
2569	return wait;
2570}
2571
2572/**
2573 * flush_workqueue - ensure that any scheduled work has run to completion.
2574 * @wq: workqueue to flush
2575 *
2576 * This function sleeps until all work items which were queued on entry
2577 * have finished execution, but it is not livelocked by new incoming ones.
2578 */
2579void flush_workqueue(struct workqueue_struct *wq)
2580{
2581	struct wq_flusher this_flusher = {
2582		.list = LIST_HEAD_INIT(this_flusher.list),
2583		.flush_color = -1,
2584		.done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2585	};
2586	int next_color;
2587
2588	if (WARN_ON(!wq_online))
2589		return;
2590
2591	lock_map_acquire(&wq->lockdep_map);
2592	lock_map_release(&wq->lockdep_map);
2593
2594	mutex_lock(&wq->mutex);
2595
2596	/*
2597	 * Start-to-wait phase
2598	 */
2599	next_color = work_next_color(wq->work_color);
2600
2601	if (next_color != wq->flush_color) {
2602		/*
2603		 * Color space is not full.  The current work_color
2604		 * becomes our flush_color and work_color is advanced
2605		 * by one.
2606		 */
2607		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2608		this_flusher.flush_color = wq->work_color;
2609		wq->work_color = next_color;
2610
2611		if (!wq->first_flusher) {
2612			/* no flush in progress, become the first flusher */
2613			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2614
2615			wq->first_flusher = &this_flusher;
2616
2617			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2618						       wq->work_color)) {
2619				/* nothing to flush, done */
2620				wq->flush_color = next_color;
2621				wq->first_flusher = NULL;
2622				goto out_unlock;
2623			}
2624		} else {
2625			/* wait in queue */
2626			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2627			list_add_tail(&this_flusher.list, &wq->flusher_queue);
2628			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2629		}
2630	} else {
2631		/*
2632		 * Oops, color space is full, wait on overflow queue.
2633		 * The next flush completion will assign us
2634		 * flush_color and transfer to flusher_queue.
2635		 */
2636		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2637	}
2638
2639	check_flush_dependency(wq, NULL);
2640
2641	mutex_unlock(&wq->mutex);
2642
2643	wait_for_completion(&this_flusher.done);
2644
2645	/*
2646	 * Wake-up-and-cascade phase
2647	 *
2648	 * First flushers are responsible for cascading flushes and
2649	 * handling overflow.  Non-first flushers can simply return.
2650	 */
2651	if (wq->first_flusher != &this_flusher)
2652		return;
2653
2654	mutex_lock(&wq->mutex);
2655
2656	/* we might have raced, check again with mutex held */
2657	if (wq->first_flusher != &this_flusher)
2658		goto out_unlock;
2659
2660	wq->first_flusher = NULL;
2661
2662	WARN_ON_ONCE(!list_empty(&this_flusher.list));
2663	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2664
2665	while (true) {
2666		struct wq_flusher *next, *tmp;
2667
2668		/* complete all the flushers sharing the current flush color */
2669		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2670			if (next->flush_color != wq->flush_color)
2671				break;
2672			list_del_init(&next->list);
2673			complete(&next->done);
2674		}
2675
2676		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2677			     wq->flush_color != work_next_color(wq->work_color));
2678
2679		/* this flush_color is finished, advance by one */
2680		wq->flush_color = work_next_color(wq->flush_color);
2681
2682		/* one color has been freed, handle overflow queue */
2683		if (!list_empty(&wq->flusher_overflow)) {
2684			/*
2685			 * Assign the same color to all overflowed
2686			 * flushers, advance work_color and append to
2687			 * flusher_queue.  This is the start-to-wait
2688			 * phase for these overflowed flushers.
2689			 */
2690			list_for_each_entry(tmp, &wq->flusher_overflow, list)
2691				tmp->flush_color = wq->work_color;
2692
2693			wq->work_color = work_next_color(wq->work_color);
2694
2695			list_splice_tail_init(&wq->flusher_overflow,
2696					      &wq->flusher_queue);
2697			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2698		}
2699
2700		if (list_empty(&wq->flusher_queue)) {
2701			WARN_ON_ONCE(wq->flush_color != wq->work_color);
2702			break;
2703		}
2704
2705		/*
2706		 * Need to flush more colors.  Make the next flusher
2707		 * the new first flusher and arm pwqs.
2708		 */
2709		WARN_ON_ONCE(wq->flush_color == wq->work_color);
2710		WARN_ON_ONCE(wq->flush_color != next->flush_color);
2711
2712		list_del_init(&next->list);
2713		wq->first_flusher = next;
2714
2715		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2716			break;
2717
2718		/*
2719		 * Meh... this color is already done, clear first
2720		 * flusher and repeat cascading.
2721		 */
2722		wq->first_flusher = NULL;
2723	}
2724
2725out_unlock:
2726	mutex_unlock(&wq->mutex);
2727}
2728EXPORT_SYMBOL(flush_workqueue);
2729
2730/**
2731 * drain_workqueue - drain a workqueue
2732 * @wq: workqueue to drain
2733 *
2734 * Wait until the workqueue becomes empty.  While draining is in progress,
2735 * only chain queueing is allowed.  IOW, only currently pending or running
2736 * work items on @wq can queue further work items on it.  @wq is flushed
2737 * repeatedly until it becomes empty.  The number of flushing is determined
2738 * by the depth of chaining and should be relatively short.  Whine if it
2739 * takes too long.
2740 */
2741void drain_workqueue(struct workqueue_struct *wq)
2742{
2743	unsigned int flush_cnt = 0;
2744	struct pool_workqueue *pwq;
2745
2746	/*
2747	 * __queue_work() needs to test whether there are drainers, is much
2748	 * hotter than drain_workqueue() and already looks at @wq->flags.
2749	 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2750	 */
2751	mutex_lock(&wq->mutex);
2752	if (!wq->nr_drainers++)
2753		wq->flags |= __WQ_DRAINING;
2754	mutex_unlock(&wq->mutex);
2755reflush:
2756	flush_workqueue(wq);
2757
2758	mutex_lock(&wq->mutex);
2759
2760	for_each_pwq(pwq, wq) {
2761		bool drained;
2762
2763		spin_lock_irq(&pwq->pool->lock);
2764		drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2765		spin_unlock_irq(&pwq->pool->lock);
2766
2767		if (drained)
2768			continue;
2769
2770		if (++flush_cnt == 10 ||
2771		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2772			pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
2773				wq->name, flush_cnt);
2774
2775		mutex_unlock(&wq->mutex);
2776		goto reflush;
2777	}
2778
2779	if (!--wq->nr_drainers)
2780		wq->flags &= ~__WQ_DRAINING;
2781	mutex_unlock(&wq->mutex);
2782}
2783EXPORT_SYMBOL_GPL(drain_workqueue);
2784
2785static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2786{
2787	struct worker *worker = NULL;
2788	struct worker_pool *pool;
2789	struct pool_workqueue *pwq;
2790
2791	might_sleep();
2792
2793	local_irq_disable();
2794	pool = get_work_pool(work);
2795	if (!pool) {
2796		local_irq_enable();
2797		return false;
2798	}
2799
2800	spin_lock(&pool->lock);
2801	/* see the comment in try_to_grab_pending() with the same code */
2802	pwq = get_work_pwq(work);
2803	if (pwq) {
2804		if (unlikely(pwq->pool != pool))
2805			goto already_gone;
2806	} else {
2807		worker = find_worker_executing_work(pool, work);
2808		if (!worker)
2809			goto already_gone;
2810		pwq = worker->current_pwq;
2811	}
2812
2813	check_flush_dependency(pwq->wq, work);
2814
2815	insert_wq_barrier(pwq, barr, work, worker);
2816	spin_unlock_irq(&pool->lock);
2817
2818	/*
2819	 * If @max_active is 1 or rescuer is in use, flushing another work
2820	 * item on the same workqueue may lead to deadlock.  Make sure the
2821	 * flusher is not running on the same workqueue by verifying write
2822	 * access.
2823	 */
2824	if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
2825		lock_map_acquire(&pwq->wq->lockdep_map);
2826	else
2827		lock_map_acquire_read(&pwq->wq->lockdep_map);
2828	lock_map_release(&pwq->wq->lockdep_map);
2829
2830	return true;
2831already_gone:
2832	spin_unlock_irq(&pool->lock);
2833	return false;
2834}
2835
2836/**
2837 * flush_work - wait for a work to finish executing the last queueing instance
2838 * @work: the work to flush
2839 *
2840 * Wait until @work has finished execution.  @work is guaranteed to be idle
2841 * on return if it hasn't been requeued since flush started.
2842 *
2843 * Return:
2844 * %true if flush_work() waited for the work to finish execution,
2845 * %false if it was already idle.
2846 */
2847bool flush_work(struct work_struct *work)
2848{
2849	struct wq_barrier barr;
2850
2851	if (WARN_ON(!wq_online))
2852		return false;
2853
2854	lock_map_acquire(&work->lockdep_map);
2855	lock_map_release(&work->lockdep_map);
2856
2857	if (start_flush_work(work, &barr)) {
2858		wait_for_completion(&barr.done);
2859		destroy_work_on_stack(&barr.work);
2860		return true;
2861	} else {
2862		return false;
2863	}
2864}
2865EXPORT_SYMBOL_GPL(flush_work);
2866
2867struct cwt_wait {
2868	wait_queue_t		wait;
2869	struct work_struct	*work;
2870};
2871
2872static int cwt_wakefn(wait_queue_t *wait, unsigned mode, int sync, void *key)
2873{
2874	struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
2875
2876	if (cwait->work != key)
2877		return 0;
2878	return autoremove_wake_function(wait, mode, sync, key);
2879}
2880
2881static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2882{
2883	static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
2884	unsigned long flags;
2885	int ret;
2886
2887	do {
2888		ret = try_to_grab_pending(work, is_dwork, &flags);
2889		/*
2890		 * If someone else is already canceling, wait for it to
2891		 * finish.  flush_work() doesn't work for PREEMPT_NONE
2892		 * because we may get scheduled between @work's completion
2893		 * and the other canceling task resuming and clearing
2894		 * CANCELING - flush_work() will return false immediately
2895		 * as @work is no longer busy, try_to_grab_pending() will
2896		 * return -ENOENT as @work is still being canceled and the
2897		 * other canceling task won't be able to clear CANCELING as
2898		 * we're hogging the CPU.
2899		 *
2900		 * Let's wait for completion using a waitqueue.  As this
2901		 * may lead to the thundering herd problem, use a custom
2902		 * wake function which matches @work along with exclusive
2903		 * wait and wakeup.
2904		 */
2905		if (unlikely(ret == -ENOENT)) {
2906			struct cwt_wait cwait;
2907
2908			init_wait(&cwait.wait);
2909			cwait.wait.func = cwt_wakefn;
2910			cwait.work = work;
2911
2912			prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
2913						  TASK_UNINTERRUPTIBLE);
2914			if (work_is_canceling(work))
2915				schedule();
2916			finish_wait(&cancel_waitq, &cwait.wait);
2917		}
2918	} while (unlikely(ret < 0));
2919
2920	/* tell other tasks trying to grab @work to back off */
2921	mark_work_canceling(work);
2922	local_irq_restore(flags);
2923
2924	/*
2925	 * This allows canceling during early boot.  We know that @work
2926	 * isn't executing.
2927	 */
2928	if (wq_online)
2929		flush_work(work);
2930
2931	clear_work_data(work);
2932
2933	/*
2934	 * Paired with prepare_to_wait() above so that either
2935	 * waitqueue_active() is visible here or !work_is_canceling() is
2936	 * visible there.
2937	 */
2938	smp_mb();
2939	if (waitqueue_active(&cancel_waitq))
2940		__wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
2941
2942	return ret;
2943}
2944
2945/**
2946 * cancel_work_sync - cancel a work and wait for it to finish
2947 * @work: the work to cancel
2948 *
2949 * Cancel @work and wait for its execution to finish.  This function
2950 * can be used even if the work re-queues itself or migrates to
2951 * another workqueue.  On return from this function, @work is
2952 * guaranteed to be not pending or executing on any CPU.
2953 *
2954 * cancel_work_sync(&delayed_work->work) must not be used for
2955 * delayed_work's.  Use cancel_delayed_work_sync() instead.
2956 *
2957 * The caller must ensure that the workqueue on which @work was last
2958 * queued can't be destroyed before this function returns.
2959 *
2960 * Return:
2961 * %true if @work was pending, %false otherwise.
2962 */
2963bool cancel_work_sync(struct work_struct *work)
2964{
2965	return __cancel_work_timer(work, false);
2966}
2967EXPORT_SYMBOL_GPL(cancel_work_sync);
2968
2969/**
2970 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2971 * @dwork: the delayed work to flush
2972 *
2973 * Delayed timer is cancelled and the pending work is queued for
2974 * immediate execution.  Like flush_work(), this function only
2975 * considers the last queueing instance of @dwork.
2976 *
2977 * Return:
2978 * %true if flush_work() waited for the work to finish execution,
2979 * %false if it was already idle.
2980 */
2981bool flush_delayed_work(struct delayed_work *dwork)
2982{
2983	local_irq_disable();
2984	if (del_timer_sync(&dwork->timer))
2985		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
2986	local_irq_enable();
2987	return flush_work(&dwork->work);
2988}
2989EXPORT_SYMBOL(flush_delayed_work);
2990
2991static bool __cancel_work(struct work_struct *work, bool is_dwork)
2992{
2993	unsigned long flags;
2994	int ret;
2995
2996	do {
2997		ret = try_to_grab_pending(work, is_dwork, &flags);
2998	} while (unlikely(ret == -EAGAIN));
2999
3000	if (unlikely(ret < 0))
3001		return false;
3002
3003	set_work_pool_and_clear_pending(work, get_work_pool_id(work));
3004	local_irq_restore(flags);
3005	return ret;
3006}
3007
3008/*
3009 * See cancel_delayed_work()
3010 */
3011bool cancel_work(struct work_struct *work)
3012{
3013	return __cancel_work(work, false);
3014}
3015
3016/**
3017 * cancel_delayed_work - cancel a delayed work
3018 * @dwork: delayed_work to cancel
3019 *
3020 * Kill off a pending delayed_work.
3021 *
3022 * Return: %true if @dwork was pending and canceled; %false if it wasn't
3023 * pending.
3024 *
3025 * Note:
3026 * The work callback function may still be running on return, unless
3027 * it returns %true and the work doesn't re-arm itself.  Explicitly flush or
3028 * use cancel_delayed_work_sync() to wait on it.
3029 *
3030 * This function is safe to call from any context including IRQ handler.
3031 */
3032bool cancel_delayed_work(struct delayed_work *dwork)
3033{
3034	return __cancel_work(&dwork->work, true);
 
 
 
 
 
 
 
 
 
 
 
 
 
3035}
3036EXPORT_SYMBOL(cancel_delayed_work);
3037
3038/**
3039 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3040 * @dwork: the delayed work cancel
3041 *
3042 * This is cancel_work_sync() for delayed works.
3043 *
3044 * Return:
3045 * %true if @dwork was pending, %false otherwise.
3046 */
3047bool cancel_delayed_work_sync(struct delayed_work *dwork)
3048{
3049	return __cancel_work_timer(&dwork->work, true);
3050}
3051EXPORT_SYMBOL(cancel_delayed_work_sync);
3052
3053/**
3054 * schedule_on_each_cpu - execute a function synchronously on each online CPU
3055 * @func: the function to call
3056 *
3057 * schedule_on_each_cpu() executes @func on each online CPU using the
3058 * system workqueue and blocks until all CPUs have completed.
3059 * schedule_on_each_cpu() is very slow.
3060 *
3061 * Return:
3062 * 0 on success, -errno on failure.
3063 */
3064int schedule_on_each_cpu(work_func_t func)
3065{
3066	int cpu;
3067	struct work_struct __percpu *works;
3068
3069	works = alloc_percpu(struct work_struct);
3070	if (!works)
3071		return -ENOMEM;
3072
3073	get_online_cpus();
3074
3075	for_each_online_cpu(cpu) {
3076		struct work_struct *work = per_cpu_ptr(works, cpu);
3077
3078		INIT_WORK(work, func);
3079		schedule_work_on(cpu, work);
3080	}
3081
3082	for_each_online_cpu(cpu)
3083		flush_work(per_cpu_ptr(works, cpu));
3084
3085	put_online_cpus();
3086	free_percpu(works);
3087	return 0;
3088}
3089
3090/**
3091 * execute_in_process_context - reliably execute the routine with user context
3092 * @fn:		the function to execute
3093 * @ew:		guaranteed storage for the execute work structure (must
3094 *		be available when the work executes)
3095 *
3096 * Executes the function immediately if process context is available,
3097 * otherwise schedules the function for delayed execution.
3098 *
3099 * Return:	0 - function was executed
3100 *		1 - function was scheduled for execution
3101 */
3102int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3103{
3104	if (!in_interrupt()) {
3105		fn(&ew->work);
3106		return 0;
3107	}
3108
3109	INIT_WORK(&ew->work, fn);
3110	schedule_work(&ew->work);
3111
3112	return 1;
3113}
3114EXPORT_SYMBOL_GPL(execute_in_process_context);
3115
3116/**
3117 * free_workqueue_attrs - free a workqueue_attrs
3118 * @attrs: workqueue_attrs to free
3119 *
3120 * Undo alloc_workqueue_attrs().
3121 */
3122void free_workqueue_attrs(struct workqueue_attrs *attrs)
3123{
3124	if (attrs) {
3125		free_cpumask_var(attrs->cpumask);
3126		kfree(attrs);
3127	}
3128}
3129
3130/**
3131 * alloc_workqueue_attrs - allocate a workqueue_attrs
3132 * @gfp_mask: allocation mask to use
3133 *
3134 * Allocate a new workqueue_attrs, initialize with default settings and
3135 * return it.
3136 *
3137 * Return: The allocated new workqueue_attr on success. %NULL on failure.
3138 */
3139struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
3140{
3141	struct workqueue_attrs *attrs;
3142
3143	attrs = kzalloc(sizeof(*attrs), gfp_mask);
3144	if (!attrs)
3145		goto fail;
3146	if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
3147		goto fail;
3148
3149	cpumask_copy(attrs->cpumask, cpu_possible_mask);
3150	return attrs;
3151fail:
3152	free_workqueue_attrs(attrs);
3153	return NULL;
3154}
3155
3156static void copy_workqueue_attrs(struct workqueue_attrs *to,
3157				 const struct workqueue_attrs *from)
3158{
3159	to->nice = from->nice;
3160	cpumask_copy(to->cpumask, from->cpumask);
3161	/*
3162	 * Unlike hash and equality test, this function doesn't ignore
3163	 * ->no_numa as it is used for both pool and wq attrs.  Instead,
3164	 * get_unbound_pool() explicitly clears ->no_numa after copying.
3165	 */
3166	to->no_numa = from->no_numa;
3167}
3168
3169/* hash value of the content of @attr */
3170static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3171{
3172	u32 hash = 0;
3173
3174	hash = jhash_1word(attrs->nice, hash);
3175	hash = jhash(cpumask_bits(attrs->cpumask),
3176		     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3177	return hash;
3178}
3179
3180/* content equality test */
3181static bool wqattrs_equal(const struct workqueue_attrs *a,
3182			  const struct workqueue_attrs *b)
3183{
3184	if (a->nice != b->nice)
3185		return false;
3186	if (!cpumask_equal(a->cpumask, b->cpumask))
3187		return false;
3188	return true;
3189}
3190
3191/**
3192 * init_worker_pool - initialize a newly zalloc'd worker_pool
3193 * @pool: worker_pool to initialize
3194 *
3195 * Initialize a newly zalloc'd @pool.  It also allocates @pool->attrs.
3196 *
3197 * Return: 0 on success, -errno on failure.  Even on failure, all fields
3198 * inside @pool proper are initialized and put_unbound_pool() can be called
3199 * on @pool safely to release it.
3200 */
3201static int init_worker_pool(struct worker_pool *pool)
3202{
3203	spin_lock_init(&pool->lock);
3204	pool->id = -1;
3205	pool->cpu = -1;
3206	pool->node = NUMA_NO_NODE;
3207	pool->flags |= POOL_DISASSOCIATED;
3208	pool->watchdog_ts = jiffies;
3209	INIT_LIST_HEAD(&pool->worklist);
3210	INIT_LIST_HEAD(&pool->idle_list);
3211	hash_init(pool->busy_hash);
3212
3213	init_timer_deferrable(&pool->idle_timer);
3214	pool->idle_timer.function = idle_worker_timeout;
3215	pool->idle_timer.data = (unsigned long)pool;
3216
3217	setup_timer(&pool->mayday_timer, pool_mayday_timeout,
3218		    (unsigned long)pool);
3219
3220	mutex_init(&pool->manager_arb);
3221	mutex_init(&pool->attach_mutex);
3222	INIT_LIST_HEAD(&pool->workers);
3223
3224	ida_init(&pool->worker_ida);
3225	INIT_HLIST_NODE(&pool->hash_node);
3226	pool->refcnt = 1;
3227
3228	/* shouldn't fail above this point */
3229	pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
3230	if (!pool->attrs)
3231		return -ENOMEM;
3232	return 0;
3233}
3234
3235static void rcu_free_wq(struct rcu_head *rcu)
3236{
3237	struct workqueue_struct *wq =
3238		container_of(rcu, struct workqueue_struct, rcu);
3239
3240	if (!(wq->flags & WQ_UNBOUND))
3241		free_percpu(wq->cpu_pwqs);
3242	else
3243		free_workqueue_attrs(wq->unbound_attrs);
3244
3245	kfree(wq->rescuer);
3246	kfree(wq);
3247}
3248
3249static void rcu_free_pool(struct rcu_head *rcu)
3250{
3251	struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3252
3253	ida_destroy(&pool->worker_ida);
3254	free_workqueue_attrs(pool->attrs);
3255	kfree(pool);
3256}
3257
3258/**
3259 * put_unbound_pool - put a worker_pool
3260 * @pool: worker_pool to put
3261 *
3262 * Put @pool.  If its refcnt reaches zero, it gets destroyed in sched-RCU
3263 * safe manner.  get_unbound_pool() calls this function on its failure path
3264 * and this function should be able to release pools which went through,
3265 * successfully or not, init_worker_pool().
3266 *
3267 * Should be called with wq_pool_mutex held.
3268 */
3269static void put_unbound_pool(struct worker_pool *pool)
3270{
3271	DECLARE_COMPLETION_ONSTACK(detach_completion);
3272	struct worker *worker;
3273
3274	lockdep_assert_held(&wq_pool_mutex);
3275
3276	if (--pool->refcnt)
3277		return;
3278
3279	/* sanity checks */
3280	if (WARN_ON(!(pool->cpu < 0)) ||
3281	    WARN_ON(!list_empty(&pool->worklist)))
3282		return;
3283
3284	/* release id and unhash */
3285	if (pool->id >= 0)
3286		idr_remove(&worker_pool_idr, pool->id);
3287	hash_del(&pool->hash_node);
3288
3289	/*
3290	 * Become the manager and destroy all workers.  Grabbing
3291	 * manager_arb prevents @pool's workers from blocking on
3292	 * attach_mutex.
3293	 */
3294	mutex_lock(&pool->manager_arb);
3295
3296	spin_lock_irq(&pool->lock);
3297	while ((worker = first_idle_worker(pool)))
3298		destroy_worker(worker);
3299	WARN_ON(pool->nr_workers || pool->nr_idle);
3300	spin_unlock_irq(&pool->lock);
3301
3302	mutex_lock(&pool->attach_mutex);
3303	if (!list_empty(&pool->workers))
3304		pool->detach_completion = &detach_completion;
3305	mutex_unlock(&pool->attach_mutex);
3306
3307	if (pool->detach_completion)
3308		wait_for_completion(pool->detach_completion);
3309
3310	mutex_unlock(&pool->manager_arb);
3311
3312	/* shut down the timers */
3313	del_timer_sync(&pool->idle_timer);
3314	del_timer_sync(&pool->mayday_timer);
3315
3316	/* sched-RCU protected to allow dereferences from get_work_pool() */
3317	call_rcu_sched(&pool->rcu, rcu_free_pool);
3318}
3319
3320/**
3321 * get_unbound_pool - get a worker_pool with the specified attributes
3322 * @attrs: the attributes of the worker_pool to get
3323 *
3324 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3325 * reference count and return it.  If there already is a matching
3326 * worker_pool, it will be used; otherwise, this function attempts to
3327 * create a new one.
3328 *
3329 * Should be called with wq_pool_mutex held.
3330 *
3331 * Return: On success, a worker_pool with the same attributes as @attrs.
3332 * On failure, %NULL.
3333 */
3334static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3335{
3336	u32 hash = wqattrs_hash(attrs);
3337	struct worker_pool *pool;
3338	int node;
3339	int target_node = NUMA_NO_NODE;
3340
3341	lockdep_assert_held(&wq_pool_mutex);
3342
3343	/* do we already have a matching pool? */
3344	hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3345		if (wqattrs_equal(pool->attrs, attrs)) {
3346			pool->refcnt++;
3347			return pool;
3348		}
3349	}
3350
3351	/* if cpumask is contained inside a NUMA node, we belong to that node */
3352	if (wq_numa_enabled) {
3353		for_each_node(node) {
3354			if (cpumask_subset(attrs->cpumask,
3355					   wq_numa_possible_cpumask[node])) {
3356				target_node = node;
3357				break;
3358			}
3359		}
3360	}
3361
3362	/* nope, create a new one */
3363	pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node);
3364	if (!pool || init_worker_pool(pool) < 0)
3365		goto fail;
3366
3367	lockdep_set_subclass(&pool->lock, 1);	/* see put_pwq() */
3368	copy_workqueue_attrs(pool->attrs, attrs);
3369	pool->node = target_node;
3370
3371	/*
3372	 * no_numa isn't a worker_pool attribute, always clear it.  See
3373	 * 'struct workqueue_attrs' comments for detail.
3374	 */
3375	pool->attrs->no_numa = false;
3376
3377	if (worker_pool_assign_id(pool) < 0)
3378		goto fail;
3379
3380	/* create and start the initial worker */
3381	if (wq_online && !create_worker(pool))
3382		goto fail;
3383
3384	/* install */
3385	hash_add(unbound_pool_hash, &pool->hash_node, hash);
3386
3387	return pool;
3388fail:
3389	if (pool)
3390		put_unbound_pool(pool);
3391	return NULL;
3392}
3393
3394static void rcu_free_pwq(struct rcu_head *rcu)
3395{
3396	kmem_cache_free(pwq_cache,
3397			container_of(rcu, struct pool_workqueue, rcu));
3398}
3399
3400/*
3401 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3402 * and needs to be destroyed.
3403 */
3404static void pwq_unbound_release_workfn(struct work_struct *work)
3405{
3406	struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3407						  unbound_release_work);
3408	struct workqueue_struct *wq = pwq->wq;
3409	struct worker_pool *pool = pwq->pool;
3410	bool is_last;
3411
3412	if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3413		return;
3414
3415	mutex_lock(&wq->mutex);
3416	list_del_rcu(&pwq->pwqs_node);
3417	is_last = list_empty(&wq->pwqs);
3418	mutex_unlock(&wq->mutex);
3419
3420	mutex_lock(&wq_pool_mutex);
3421	put_unbound_pool(pool);
3422	mutex_unlock(&wq_pool_mutex);
3423
3424	call_rcu_sched(&pwq->rcu, rcu_free_pwq);
3425
3426	/*
3427	 * If we're the last pwq going away, @wq is already dead and no one
3428	 * is gonna access it anymore.  Schedule RCU free.
3429	 */
3430	if (is_last)
3431		call_rcu_sched(&wq->rcu, rcu_free_wq);
3432}
3433
3434/**
3435 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3436 * @pwq: target pool_workqueue
3437 *
3438 * If @pwq isn't freezing, set @pwq->max_active to the associated
3439 * workqueue's saved_max_active and activate delayed work items
3440 * accordingly.  If @pwq is freezing, clear @pwq->max_active to zero.
3441 */
3442static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3443{
3444	struct workqueue_struct *wq = pwq->wq;
3445	bool freezable = wq->flags & WQ_FREEZABLE;
3446	unsigned long flags;
3447
3448	/* for @wq->saved_max_active */
3449	lockdep_assert_held(&wq->mutex);
3450
3451	/* fast exit for non-freezable wqs */
3452	if (!freezable && pwq->max_active == wq->saved_max_active)
3453		return;
3454
3455	/* this function can be called during early boot w/ irq disabled */
3456	spin_lock_irqsave(&pwq->pool->lock, flags);
3457
3458	/*
3459	 * During [un]freezing, the caller is responsible for ensuring that
3460	 * this function is called at least once after @workqueue_freezing
3461	 * is updated and visible.
3462	 */
3463	if (!freezable || !workqueue_freezing) {
3464		pwq->max_active = wq->saved_max_active;
3465
3466		while (!list_empty(&pwq->delayed_works) &&
3467		       pwq->nr_active < pwq->max_active)
3468			pwq_activate_first_delayed(pwq);
3469
3470		/*
3471		 * Need to kick a worker after thawed or an unbound wq's
3472		 * max_active is bumped.  It's a slow path.  Do it always.
3473		 */
3474		wake_up_worker(pwq->pool);
3475	} else {
3476		pwq->max_active = 0;
3477	}
3478
3479	spin_unlock_irqrestore(&pwq->pool->lock, flags);
3480}
3481
3482/* initialize newly alloced @pwq which is associated with @wq and @pool */
3483static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3484		     struct worker_pool *pool)
3485{
3486	BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3487
3488	memset(pwq, 0, sizeof(*pwq));
3489
3490	pwq->pool = pool;
3491	pwq->wq = wq;
3492	pwq->flush_color = -1;
3493	pwq->refcnt = 1;
3494	INIT_LIST_HEAD(&pwq->delayed_works);
3495	INIT_LIST_HEAD(&pwq->pwqs_node);
3496	INIT_LIST_HEAD(&pwq->mayday_node);
3497	INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3498}
3499
3500/* sync @pwq with the current state of its associated wq and link it */
3501static void link_pwq(struct pool_workqueue *pwq)
3502{
3503	struct workqueue_struct *wq = pwq->wq;
3504
3505	lockdep_assert_held(&wq->mutex);
3506
3507	/* may be called multiple times, ignore if already linked */
3508	if (!list_empty(&pwq->pwqs_node))
3509		return;
3510
3511	/* set the matching work_color */
3512	pwq->work_color = wq->work_color;
3513
3514	/* sync max_active to the current setting */
3515	pwq_adjust_max_active(pwq);
3516
3517	/* link in @pwq */
3518	list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3519}
3520
3521/* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3522static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3523					const struct workqueue_attrs *attrs)
3524{
3525	struct worker_pool *pool;
3526	struct pool_workqueue *pwq;
3527
3528	lockdep_assert_held(&wq_pool_mutex);
3529
3530	pool = get_unbound_pool(attrs);
3531	if (!pool)
3532		return NULL;
3533
3534	pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3535	if (!pwq) {
3536		put_unbound_pool(pool);
3537		return NULL;
3538	}
3539
3540	init_pwq(pwq, wq, pool);
3541	return pwq;
3542}
3543
3544/**
3545 * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
3546 * @attrs: the wq_attrs of the default pwq of the target workqueue
3547 * @node: the target NUMA node
3548 * @cpu_going_down: if >= 0, the CPU to consider as offline
3549 * @cpumask: outarg, the resulting cpumask
3550 *
3551 * Calculate the cpumask a workqueue with @attrs should use on @node.  If
3552 * @cpu_going_down is >= 0, that cpu is considered offline during
3553 * calculation.  The result is stored in @cpumask.
3554 *
3555 * If NUMA affinity is not enabled, @attrs->cpumask is always used.  If
3556 * enabled and @node has online CPUs requested by @attrs, the returned
3557 * cpumask is the intersection of the possible CPUs of @node and
3558 * @attrs->cpumask.
3559 *
3560 * The caller is responsible for ensuring that the cpumask of @node stays
3561 * stable.
3562 *
3563 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3564 * %false if equal.
3565 */
3566static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3567				 int cpu_going_down, cpumask_t *cpumask)
3568{
3569	if (!wq_numa_enabled || attrs->no_numa)
3570		goto use_dfl;
3571
3572	/* does @node have any online CPUs @attrs wants? */
3573	cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3574	if (cpu_going_down >= 0)
3575		cpumask_clear_cpu(cpu_going_down, cpumask);
3576
3577	if (cpumask_empty(cpumask))
3578		goto use_dfl;
3579
3580	/* yeap, return possible CPUs in @node that @attrs wants */
3581	cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3582	return !cpumask_equal(cpumask, attrs->cpumask);
3583
3584use_dfl:
3585	cpumask_copy(cpumask, attrs->cpumask);
3586	return false;
3587}
3588
3589/* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3590static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3591						   int node,
3592						   struct pool_workqueue *pwq)
3593{
3594	struct pool_workqueue *old_pwq;
3595
3596	lockdep_assert_held(&wq_pool_mutex);
3597	lockdep_assert_held(&wq->mutex);
3598
3599	/* link_pwq() can handle duplicate calls */
3600	link_pwq(pwq);
3601
3602	old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3603	rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3604	return old_pwq;
3605}
3606
3607/* context to store the prepared attrs & pwqs before applying */
3608struct apply_wqattrs_ctx {
3609	struct workqueue_struct	*wq;		/* target workqueue */
3610	struct workqueue_attrs	*attrs;		/* attrs to apply */
3611	struct list_head	list;		/* queued for batching commit */
3612	struct pool_workqueue	*dfl_pwq;
3613	struct pool_workqueue	*pwq_tbl[];
3614};
3615
3616/* free the resources after success or abort */
3617static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
3618{
3619	if (ctx) {
3620		int node;
3621
3622		for_each_node(node)
3623			put_pwq_unlocked(ctx->pwq_tbl[node]);
3624		put_pwq_unlocked(ctx->dfl_pwq);
3625
3626		free_workqueue_attrs(ctx->attrs);
3627
3628		kfree(ctx);
3629	}
3630}
3631
3632/* allocate the attrs and pwqs for later installation */
3633static struct apply_wqattrs_ctx *
3634apply_wqattrs_prepare(struct workqueue_struct *wq,
3635		      const struct workqueue_attrs *attrs)
3636{
3637	struct apply_wqattrs_ctx *ctx;
3638	struct workqueue_attrs *new_attrs, *tmp_attrs;
3639	int node;
3640
3641	lockdep_assert_held(&wq_pool_mutex);
3642
3643	ctx = kzalloc(sizeof(*ctx) + nr_node_ids * sizeof(ctx->pwq_tbl[0]),
3644		      GFP_KERNEL);
3645
3646	new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3647	tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3648	if (!ctx || !new_attrs || !tmp_attrs)
3649		goto out_free;
3650
3651	/*
3652	 * Calculate the attrs of the default pwq.
3653	 * If the user configured cpumask doesn't overlap with the
3654	 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
3655	 */
3656	copy_workqueue_attrs(new_attrs, attrs);
3657	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask);
3658	if (unlikely(cpumask_empty(new_attrs->cpumask)))
3659		cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask);
3660
3661	/*
3662	 * We may create multiple pwqs with differing cpumasks.  Make a
3663	 * copy of @new_attrs which will be modified and used to obtain
3664	 * pools.
3665	 */
3666	copy_workqueue_attrs(tmp_attrs, new_attrs);
3667
3668	/*
3669	 * If something goes wrong during CPU up/down, we'll fall back to
3670	 * the default pwq covering whole @attrs->cpumask.  Always create
3671	 * it even if we don't use it immediately.
3672	 */
3673	ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3674	if (!ctx->dfl_pwq)
3675		goto out_free;
3676
3677	for_each_node(node) {
3678		if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
3679			ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3680			if (!ctx->pwq_tbl[node])
3681				goto out_free;
3682		} else {
3683			ctx->dfl_pwq->refcnt++;
3684			ctx->pwq_tbl[node] = ctx->dfl_pwq;
3685		}
3686	}
3687
3688	/* save the user configured attrs and sanitize it. */
3689	copy_workqueue_attrs(new_attrs, attrs);
3690	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
3691	ctx->attrs = new_attrs;
3692
3693	ctx->wq = wq;
3694	free_workqueue_attrs(tmp_attrs);
3695	return ctx;
3696
3697out_free:
3698	free_workqueue_attrs(tmp_attrs);
3699	free_workqueue_attrs(new_attrs);
3700	apply_wqattrs_cleanup(ctx);
3701	return NULL;
3702}
3703
3704/* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
3705static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
3706{
3707	int node;
3708
3709	/* all pwqs have been created successfully, let's install'em */
3710	mutex_lock(&ctx->wq->mutex);
3711
3712	copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
3713
3714	/* save the previous pwq and install the new one */
3715	for_each_node(node)
3716		ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
3717							  ctx->pwq_tbl[node]);
3718
3719	/* @dfl_pwq might not have been used, ensure it's linked */
3720	link_pwq(ctx->dfl_pwq);
3721	swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
3722
3723	mutex_unlock(&ctx->wq->mutex);
3724}
3725
3726static void apply_wqattrs_lock(void)
3727{
3728	/* CPUs should stay stable across pwq creations and installations */
3729	get_online_cpus();
3730	mutex_lock(&wq_pool_mutex);
3731}
3732
3733static void apply_wqattrs_unlock(void)
3734{
3735	mutex_unlock(&wq_pool_mutex);
3736	put_online_cpus();
3737}
3738
3739static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
3740					const struct workqueue_attrs *attrs)
3741{
3742	struct apply_wqattrs_ctx *ctx;
3743
3744	/* only unbound workqueues can change attributes */
3745	if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
3746		return -EINVAL;
3747
3748	/* creating multiple pwqs breaks ordering guarantee */
3749	if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
3750		return -EINVAL;
3751
3752	ctx = apply_wqattrs_prepare(wq, attrs);
3753	if (!ctx)
3754		return -ENOMEM;
3755
3756	/* the ctx has been prepared successfully, let's commit it */
3757	apply_wqattrs_commit(ctx);
3758	apply_wqattrs_cleanup(ctx);
3759
3760	return 0;
3761}
3762
3763/**
3764 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
3765 * @wq: the target workqueue
3766 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
3767 *
3768 * Apply @attrs to an unbound workqueue @wq.  Unless disabled, on NUMA
3769 * machines, this function maps a separate pwq to each NUMA node with
3770 * possibles CPUs in @attrs->cpumask so that work items are affine to the
3771 * NUMA node it was issued on.  Older pwqs are released as in-flight work
3772 * items finish.  Note that a work item which repeatedly requeues itself
3773 * back-to-back will stay on its current pwq.
3774 *
3775 * Performs GFP_KERNEL allocations.
3776 *
3777 * Return: 0 on success and -errno on failure.
3778 */
3779int apply_workqueue_attrs(struct workqueue_struct *wq,
3780			  const struct workqueue_attrs *attrs)
3781{
3782	int ret;
3783
3784	apply_wqattrs_lock();
3785	ret = apply_workqueue_attrs_locked(wq, attrs);
3786	apply_wqattrs_unlock();
3787
3788	return ret;
3789}
3790
3791/**
3792 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
3793 * @wq: the target workqueue
3794 * @cpu: the CPU coming up or going down
3795 * @online: whether @cpu is coming up or going down
3796 *
3797 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
3798 * %CPU_DOWN_FAILED.  @cpu is being hot[un]plugged, update NUMA affinity of
3799 * @wq accordingly.
3800 *
3801 * If NUMA affinity can't be adjusted due to memory allocation failure, it
3802 * falls back to @wq->dfl_pwq which may not be optimal but is always
3803 * correct.
3804 *
3805 * Note that when the last allowed CPU of a NUMA node goes offline for a
3806 * workqueue with a cpumask spanning multiple nodes, the workers which were
3807 * already executing the work items for the workqueue will lose their CPU
3808 * affinity and may execute on any CPU.  This is similar to how per-cpu
3809 * workqueues behave on CPU_DOWN.  If a workqueue user wants strict
3810 * affinity, it's the user's responsibility to flush the work item from
3811 * CPU_DOWN_PREPARE.
3812 */
3813static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
3814				   bool online)
3815{
3816	int node = cpu_to_node(cpu);
3817	int cpu_off = online ? -1 : cpu;
3818	struct pool_workqueue *old_pwq = NULL, *pwq;
3819	struct workqueue_attrs *target_attrs;
3820	cpumask_t *cpumask;
3821
3822	lockdep_assert_held(&wq_pool_mutex);
3823
3824	if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
3825	    wq->unbound_attrs->no_numa)
3826		return;
3827
3828	/*
3829	 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
3830	 * Let's use a preallocated one.  The following buf is protected by
3831	 * CPU hotplug exclusion.
3832	 */
3833	target_attrs = wq_update_unbound_numa_attrs_buf;
3834	cpumask = target_attrs->cpumask;
3835
3836	copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
3837	pwq = unbound_pwq_by_node(wq, node);
3838
3839	/*
3840	 * Let's determine what needs to be done.  If the target cpumask is
3841	 * different from the default pwq's, we need to compare it to @pwq's
3842	 * and create a new one if they don't match.  If the target cpumask
3843	 * equals the default pwq's, the default pwq should be used.
3844	 */
3845	if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
3846		if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
3847			return;
3848	} else {
3849		goto use_dfl_pwq;
3850	}
3851
3852	/* create a new pwq */
3853	pwq = alloc_unbound_pwq(wq, target_attrs);
3854	if (!pwq) {
3855		pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
3856			wq->name);
3857		goto use_dfl_pwq;
3858	}
3859
3860	/* Install the new pwq. */
3861	mutex_lock(&wq->mutex);
3862	old_pwq = numa_pwq_tbl_install(wq, node, pwq);
3863	goto out_unlock;
3864
3865use_dfl_pwq:
3866	mutex_lock(&wq->mutex);
3867	spin_lock_irq(&wq->dfl_pwq->pool->lock);
3868	get_pwq(wq->dfl_pwq);
3869	spin_unlock_irq(&wq->dfl_pwq->pool->lock);
3870	old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
3871out_unlock:
3872	mutex_unlock(&wq->mutex);
3873	put_pwq_unlocked(old_pwq);
3874}
3875
3876static int alloc_and_link_pwqs(struct workqueue_struct *wq)
3877{
3878	bool highpri = wq->flags & WQ_HIGHPRI;
3879	int cpu, ret;
3880
3881	if (!(wq->flags & WQ_UNBOUND)) {
3882		wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
3883		if (!wq->cpu_pwqs)
3884			return -ENOMEM;
3885
3886		for_each_possible_cpu(cpu) {
3887			struct pool_workqueue *pwq =
3888				per_cpu_ptr(wq->cpu_pwqs, cpu);
3889			struct worker_pool *cpu_pools =
3890				per_cpu(cpu_worker_pools, cpu);
3891
3892			init_pwq(pwq, wq, &cpu_pools[highpri]);
3893
3894			mutex_lock(&wq->mutex);
3895			link_pwq(pwq);
3896			mutex_unlock(&wq->mutex);
3897		}
3898		return 0;
3899	} else if (wq->flags & __WQ_ORDERED) {
3900		ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
3901		/* there should only be single pwq for ordering guarantee */
3902		WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
3903			      wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
3904		     "ordering guarantee broken for workqueue %s\n", wq->name);
3905		return ret;
3906	} else {
3907		return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
3908	}
3909}
3910
3911static int wq_clamp_max_active(int max_active, unsigned int flags,
3912			       const char *name)
3913{
3914	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
3915
3916	if (max_active < 1 || max_active > lim)
3917		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
3918			max_active, name, 1, lim);
3919
3920	return clamp_val(max_active, 1, lim);
3921}
3922
3923struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
3924					       unsigned int flags,
3925					       int max_active,
3926					       struct lock_class_key *key,
3927					       const char *lock_name, ...)
3928{
3929	size_t tbl_size = 0;
3930	va_list args;
3931	struct workqueue_struct *wq;
3932	struct pool_workqueue *pwq;
3933
3934	/* see the comment above the definition of WQ_POWER_EFFICIENT */
3935	if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
3936		flags |= WQ_UNBOUND;
3937
3938	/* allocate wq and format name */
3939	if (flags & WQ_UNBOUND)
3940		tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
3941
3942	wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
3943	if (!wq)
3944		return NULL;
3945
3946	if (flags & WQ_UNBOUND) {
3947		wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3948		if (!wq->unbound_attrs)
3949			goto err_free_wq;
3950	}
3951
3952	va_start(args, lock_name);
3953	vsnprintf(wq->name, sizeof(wq->name), fmt, args);
3954	va_end(args);
3955
3956	max_active = max_active ?: WQ_DFL_ACTIVE;
3957	max_active = wq_clamp_max_active(max_active, flags, wq->name);
3958
3959	/* init wq */
3960	wq->flags = flags;
3961	wq->saved_max_active = max_active;
3962	mutex_init(&wq->mutex);
3963	atomic_set(&wq->nr_pwqs_to_flush, 0);
3964	INIT_LIST_HEAD(&wq->pwqs);
3965	INIT_LIST_HEAD(&wq->flusher_queue);
3966	INIT_LIST_HEAD(&wq->flusher_overflow);
3967	INIT_LIST_HEAD(&wq->maydays);
3968
3969	lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
3970	INIT_LIST_HEAD(&wq->list);
3971
3972	if (alloc_and_link_pwqs(wq) < 0)
3973		goto err_free_wq;
3974
3975	/*
3976	 * Workqueues which may be used during memory reclaim should
3977	 * have a rescuer to guarantee forward progress.
3978	 */
3979	if (flags & WQ_MEM_RECLAIM) {
3980		struct worker *rescuer;
3981
3982		rescuer = alloc_worker(NUMA_NO_NODE);
3983		if (!rescuer)
3984			goto err_destroy;
3985
3986		rescuer->rescue_wq = wq;
3987		rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
3988					       wq->name);
3989		if (IS_ERR(rescuer->task)) {
3990			kfree(rescuer);
3991			goto err_destroy;
3992		}
3993
3994		wq->rescuer = rescuer;
3995		kthread_bind_mask(rescuer->task, cpu_possible_mask);
3996		wake_up_process(rescuer->task);
3997	}
3998
3999	if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4000		goto err_destroy;
4001
4002	/*
4003	 * wq_pool_mutex protects global freeze state and workqueues list.
4004	 * Grab it, adjust max_active and add the new @wq to workqueues
4005	 * list.
4006	 */
4007	mutex_lock(&wq_pool_mutex);
4008
4009	mutex_lock(&wq->mutex);
4010	for_each_pwq(pwq, wq)
4011		pwq_adjust_max_active(pwq);
4012	mutex_unlock(&wq->mutex);
4013
4014	list_add_tail_rcu(&wq->list, &workqueues);
4015
4016	mutex_unlock(&wq_pool_mutex);
4017
4018	return wq;
4019
4020err_free_wq:
4021	free_workqueue_attrs(wq->unbound_attrs);
4022	kfree(wq);
4023	return NULL;
4024err_destroy:
4025	destroy_workqueue(wq);
4026	return NULL;
4027}
4028EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
4029
4030/**
4031 * destroy_workqueue - safely terminate a workqueue
4032 * @wq: target workqueue
4033 *
4034 * Safely destroy a workqueue. All work currently pending will be done first.
4035 */
4036void destroy_workqueue(struct workqueue_struct *wq)
4037{
4038	struct pool_workqueue *pwq;
4039	int node;
4040
4041	/* drain it before proceeding with destruction */
4042	drain_workqueue(wq);
4043
4044	/* sanity checks */
4045	mutex_lock(&wq->mutex);
4046	for_each_pwq(pwq, wq) {
4047		int i;
4048
4049		for (i = 0; i < WORK_NR_COLORS; i++) {
4050			if (WARN_ON(pwq->nr_in_flight[i])) {
4051				mutex_unlock(&wq->mutex);
4052				show_workqueue_state();
4053				return;
4054			}
4055		}
4056
4057		if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
4058		    WARN_ON(pwq->nr_active) ||
4059		    WARN_ON(!list_empty(&pwq->delayed_works))) {
4060			mutex_unlock(&wq->mutex);
4061			show_workqueue_state();
4062			return;
4063		}
4064	}
4065	mutex_unlock(&wq->mutex);
4066
4067	/*
4068	 * wq list is used to freeze wq, remove from list after
4069	 * flushing is complete in case freeze races us.
4070	 */
4071	mutex_lock(&wq_pool_mutex);
4072	list_del_rcu(&wq->list);
4073	mutex_unlock(&wq_pool_mutex);
4074
4075	workqueue_sysfs_unregister(wq);
4076
4077	if (wq->rescuer)
4078		kthread_stop(wq->rescuer->task);
4079
4080	if (!(wq->flags & WQ_UNBOUND)) {
4081		/*
4082		 * The base ref is never dropped on per-cpu pwqs.  Directly
4083		 * schedule RCU free.
4084		 */
4085		call_rcu_sched(&wq->rcu, rcu_free_wq);
4086	} else {
4087		/*
4088		 * We're the sole accessor of @wq at this point.  Directly
4089		 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4090		 * @wq will be freed when the last pwq is released.
4091		 */
4092		for_each_node(node) {
4093			pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4094			RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4095			put_pwq_unlocked(pwq);
4096		}
4097
4098		/*
4099		 * Put dfl_pwq.  @wq may be freed any time after dfl_pwq is
4100		 * put.  Don't access it afterwards.
4101		 */
4102		pwq = wq->dfl_pwq;
4103		wq->dfl_pwq = NULL;
4104		put_pwq_unlocked(pwq);
4105	}
4106}
4107EXPORT_SYMBOL_GPL(destroy_workqueue);
4108
4109/**
4110 * workqueue_set_max_active - adjust max_active of a workqueue
4111 * @wq: target workqueue
4112 * @max_active: new max_active value.
4113 *
4114 * Set max_active of @wq to @max_active.
4115 *
4116 * CONTEXT:
4117 * Don't call from IRQ context.
4118 */
4119void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4120{
4121	struct pool_workqueue *pwq;
4122
4123	/* disallow meddling with max_active for ordered workqueues */
4124	if (WARN_ON(wq->flags & __WQ_ORDERED))
4125		return;
4126
4127	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4128
4129	mutex_lock(&wq->mutex);
4130
4131	wq->saved_max_active = max_active;
4132
4133	for_each_pwq(pwq, wq)
4134		pwq_adjust_max_active(pwq);
4135
4136	mutex_unlock(&wq->mutex);
4137}
4138EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4139
4140/**
4141 * current_is_workqueue_rescuer - is %current workqueue rescuer?
4142 *
4143 * Determine whether %current is a workqueue rescuer.  Can be used from
4144 * work functions to determine whether it's being run off the rescuer task.
4145 *
4146 * Return: %true if %current is a workqueue rescuer. %false otherwise.
4147 */
4148bool current_is_workqueue_rescuer(void)
4149{
4150	struct worker *worker = current_wq_worker();
4151
4152	return worker && worker->rescue_wq;
4153}
4154
4155/**
4156 * workqueue_congested - test whether a workqueue is congested
4157 * @cpu: CPU in question
4158 * @wq: target workqueue
4159 *
4160 * Test whether @wq's cpu workqueue for @cpu is congested.  There is
4161 * no synchronization around this function and the test result is
4162 * unreliable and only useful as advisory hints or for debugging.
4163 *
4164 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4165 * Note that both per-cpu and unbound workqueues may be associated with
4166 * multiple pool_workqueues which have separate congested states.  A
4167 * workqueue being congested on one CPU doesn't mean the workqueue is also
4168 * contested on other CPUs / NUMA nodes.
4169 *
4170 * Return:
4171 * %true if congested, %false otherwise.
4172 */
4173bool workqueue_congested(int cpu, struct workqueue_struct *wq)
4174{
4175	struct pool_workqueue *pwq;
4176	bool ret;
4177
4178	rcu_read_lock_sched();
4179
4180	if (cpu == WORK_CPU_UNBOUND)
4181		cpu = smp_processor_id();
4182
4183	if (!(wq->flags & WQ_UNBOUND))
4184		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4185	else
4186		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4187
4188	ret = !list_empty(&pwq->delayed_works);
4189	rcu_read_unlock_sched();
4190
4191	return ret;
4192}
4193EXPORT_SYMBOL_GPL(workqueue_congested);
4194
4195/**
4196 * work_busy - test whether a work is currently pending or running
4197 * @work: the work to be tested
4198 *
4199 * Test whether @work is currently pending or running.  There is no
4200 * synchronization around this function and the test result is
4201 * unreliable and only useful as advisory hints or for debugging.
4202 *
4203 * Return:
4204 * OR'd bitmask of WORK_BUSY_* bits.
4205 */
4206unsigned int work_busy(struct work_struct *work)
4207{
4208	struct worker_pool *pool;
4209	unsigned long flags;
4210	unsigned int ret = 0;
4211
4212	if (work_pending(work))
4213		ret |= WORK_BUSY_PENDING;
4214
4215	local_irq_save(flags);
4216	pool = get_work_pool(work);
4217	if (pool) {
4218		spin_lock(&pool->lock);
4219		if (find_worker_executing_work(pool, work))
4220			ret |= WORK_BUSY_RUNNING;
4221		spin_unlock(&pool->lock);
4222	}
4223	local_irq_restore(flags);
4224
4225	return ret;
4226}
4227EXPORT_SYMBOL_GPL(work_busy);
4228
4229/**
4230 * set_worker_desc - set description for the current work item
4231 * @fmt: printf-style format string
4232 * @...: arguments for the format string
4233 *
4234 * This function can be called by a running work function to describe what
4235 * the work item is about.  If the worker task gets dumped, this
4236 * information will be printed out together to help debugging.  The
4237 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4238 */
4239void set_worker_desc(const char *fmt, ...)
4240{
4241	struct worker *worker = current_wq_worker();
4242	va_list args;
4243
4244	if (worker) {
4245		va_start(args, fmt);
4246		vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4247		va_end(args);
4248		worker->desc_valid = true;
4249	}
4250}
4251
4252/**
4253 * print_worker_info - print out worker information and description
4254 * @log_lvl: the log level to use when printing
4255 * @task: target task
4256 *
4257 * If @task is a worker and currently executing a work item, print out the
4258 * name of the workqueue being serviced and worker description set with
4259 * set_worker_desc() by the currently executing work item.
4260 *
4261 * This function can be safely called on any task as long as the
4262 * task_struct itself is accessible.  While safe, this function isn't
4263 * synchronized and may print out mixups or garbages of limited length.
4264 */
4265void print_worker_info(const char *log_lvl, struct task_struct *task)
4266{
4267	work_func_t *fn = NULL;
4268	char name[WQ_NAME_LEN] = { };
4269	char desc[WORKER_DESC_LEN] = { };
4270	struct pool_workqueue *pwq = NULL;
4271	struct workqueue_struct *wq = NULL;
4272	bool desc_valid = false;
4273	struct worker *worker;
4274
4275	if (!(task->flags & PF_WQ_WORKER))
4276		return;
4277
4278	/*
4279	 * This function is called without any synchronization and @task
4280	 * could be in any state.  Be careful with dereferences.
4281	 */
4282	worker = kthread_probe_data(task);
4283
4284	/*
4285	 * Carefully copy the associated workqueue's workfn and name.  Keep
4286	 * the original last '\0' in case the original contains garbage.
4287	 */
4288	probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
4289	probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
4290	probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
4291	probe_kernel_read(name, wq->name, sizeof(name) - 1);
4292
4293	/* copy worker description */
4294	probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
4295	if (desc_valid)
4296		probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
4297
4298	if (fn || name[0] || desc[0]) {
4299		printk("%sWorkqueue: %s %pf", log_lvl, name, fn);
4300		if (desc[0])
4301			pr_cont(" (%s)", desc);
4302		pr_cont("\n");
4303	}
4304}
4305
4306static void pr_cont_pool_info(struct worker_pool *pool)
4307{
4308	pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
4309	if (pool->node != NUMA_NO_NODE)
4310		pr_cont(" node=%d", pool->node);
4311	pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
4312}
4313
4314static void pr_cont_work(bool comma, struct work_struct *work)
4315{
4316	if (work->func == wq_barrier_func) {
4317		struct wq_barrier *barr;
4318
4319		barr = container_of(work, struct wq_barrier, work);
4320
4321		pr_cont("%s BAR(%d)", comma ? "," : "",
4322			task_pid_nr(barr->task));
4323	} else {
4324		pr_cont("%s %pf", comma ? "," : "", work->func);
4325	}
4326}
4327
4328static void show_pwq(struct pool_workqueue *pwq)
4329{
4330	struct worker_pool *pool = pwq->pool;
4331	struct work_struct *work;
4332	struct worker *worker;
4333	bool has_in_flight = false, has_pending = false;
4334	int bkt;
4335
4336	pr_info("  pwq %d:", pool->id);
4337	pr_cont_pool_info(pool);
4338
4339	pr_cont(" active=%d/%d%s\n", pwq->nr_active, pwq->max_active,
4340		!list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
4341
4342	hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4343		if (worker->current_pwq == pwq) {
4344			has_in_flight = true;
4345			break;
4346		}
4347	}
4348	if (has_in_flight) {
4349		bool comma = false;
4350
4351		pr_info("    in-flight:");
4352		hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4353			if (worker->current_pwq != pwq)
4354				continue;
4355
4356			pr_cont("%s %d%s:%pf", comma ? "," : "",
4357				task_pid_nr(worker->task),
4358				worker == pwq->wq->rescuer ? "(RESCUER)" : "",
4359				worker->current_func);
4360			list_for_each_entry(work, &worker->scheduled, entry)
4361				pr_cont_work(false, work);
4362			comma = true;
4363		}
4364		pr_cont("\n");
4365	}
4366
4367	list_for_each_entry(work, &pool->worklist, entry) {
4368		if (get_work_pwq(work) == pwq) {
4369			has_pending = true;
4370			break;
4371		}
4372	}
4373	if (has_pending) {
4374		bool comma = false;
4375
4376		pr_info("    pending:");
4377		list_for_each_entry(work, &pool->worklist, entry) {
4378			if (get_work_pwq(work) != pwq)
4379				continue;
4380
4381			pr_cont_work(comma, work);
4382			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4383		}
4384		pr_cont("\n");
4385	}
4386
4387	if (!list_empty(&pwq->delayed_works)) {
4388		bool comma = false;
4389
4390		pr_info("    delayed:");
4391		list_for_each_entry(work, &pwq->delayed_works, entry) {
4392			pr_cont_work(comma, work);
4393			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4394		}
4395		pr_cont("\n");
4396	}
4397}
4398
4399/**
4400 * show_workqueue_state - dump workqueue state
4401 *
4402 * Called from a sysrq handler or try_to_freeze_tasks() and prints out
4403 * all busy workqueues and pools.
4404 */
4405void show_workqueue_state(void)
4406{
4407	struct workqueue_struct *wq;
4408	struct worker_pool *pool;
4409	unsigned long flags;
4410	int pi;
4411
4412	rcu_read_lock_sched();
4413
4414	pr_info("Showing busy workqueues and worker pools:\n");
4415
4416	list_for_each_entry_rcu(wq, &workqueues, list) {
4417		struct pool_workqueue *pwq;
4418		bool idle = true;
4419
4420		for_each_pwq(pwq, wq) {
4421			if (pwq->nr_active || !list_empty(&pwq->delayed_works)) {
4422				idle = false;
4423				break;
4424			}
4425		}
4426		if (idle)
4427			continue;
4428
4429		pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
4430
4431		for_each_pwq(pwq, wq) {
4432			spin_lock_irqsave(&pwq->pool->lock, flags);
4433			if (pwq->nr_active || !list_empty(&pwq->delayed_works))
4434				show_pwq(pwq);
4435			spin_unlock_irqrestore(&pwq->pool->lock, flags);
4436		}
4437	}
4438
4439	for_each_pool(pool, pi) {
4440		struct worker *worker;
4441		bool first = true;
4442
4443		spin_lock_irqsave(&pool->lock, flags);
4444		if (pool->nr_workers == pool->nr_idle)
4445			goto next_pool;
4446
4447		pr_info("pool %d:", pool->id);
4448		pr_cont_pool_info(pool);
4449		pr_cont(" hung=%us workers=%d",
4450			jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000,
4451			pool->nr_workers);
4452		if (pool->manager)
4453			pr_cont(" manager: %d",
4454				task_pid_nr(pool->manager->task));
4455		list_for_each_entry(worker, &pool->idle_list, entry) {
4456			pr_cont(" %s%d", first ? "idle: " : "",
4457				task_pid_nr(worker->task));
4458			first = false;
4459		}
4460		pr_cont("\n");
4461	next_pool:
4462		spin_unlock_irqrestore(&pool->lock, flags);
4463	}
4464
4465	rcu_read_unlock_sched();
4466}
4467
4468/*
4469 * CPU hotplug.
4470 *
4471 * There are two challenges in supporting CPU hotplug.  Firstly, there
4472 * are a lot of assumptions on strong associations among work, pwq and
4473 * pool which make migrating pending and scheduled works very
4474 * difficult to implement without impacting hot paths.  Secondly,
4475 * worker pools serve mix of short, long and very long running works making
4476 * blocked draining impractical.
4477 *
4478 * This is solved by allowing the pools to be disassociated from the CPU
4479 * running as an unbound one and allowing it to be reattached later if the
4480 * cpu comes back online.
4481 */
4482
4483static void wq_unbind_fn(struct work_struct *work)
4484{
4485	int cpu = smp_processor_id();
4486	struct worker_pool *pool;
4487	struct worker *worker;
4488
4489	for_each_cpu_worker_pool(pool, cpu) {
4490		mutex_lock(&pool->attach_mutex);
4491		spin_lock_irq(&pool->lock);
4492
4493		/*
4494		 * We've blocked all attach/detach operations. Make all workers
4495		 * unbound and set DISASSOCIATED.  Before this, all workers
4496		 * except for the ones which are still executing works from
4497		 * before the last CPU down must be on the cpu.  After
4498		 * this, they may become diasporas.
4499		 */
4500		for_each_pool_worker(worker, pool)
4501			worker->flags |= WORKER_UNBOUND;
4502
4503		pool->flags |= POOL_DISASSOCIATED;
4504
4505		spin_unlock_irq(&pool->lock);
4506		mutex_unlock(&pool->attach_mutex);
4507
4508		/*
4509		 * Call schedule() so that we cross rq->lock and thus can
4510		 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4511		 * This is necessary as scheduler callbacks may be invoked
4512		 * from other cpus.
4513		 */
4514		schedule();
4515
4516		/*
4517		 * Sched callbacks are disabled now.  Zap nr_running.
4518		 * After this, nr_running stays zero and need_more_worker()
4519		 * and keep_working() are always true as long as the
4520		 * worklist is not empty.  This pool now behaves as an
4521		 * unbound (in terms of concurrency management) pool which
4522		 * are served by workers tied to the pool.
4523		 */
4524		atomic_set(&pool->nr_running, 0);
4525
4526		/*
4527		 * With concurrency management just turned off, a busy
4528		 * worker blocking could lead to lengthy stalls.  Kick off
4529		 * unbound chain execution of currently pending work items.
4530		 */
4531		spin_lock_irq(&pool->lock);
4532		wake_up_worker(pool);
4533		spin_unlock_irq(&pool->lock);
4534	}
4535}
4536
4537/**
4538 * rebind_workers - rebind all workers of a pool to the associated CPU
4539 * @pool: pool of interest
4540 *
4541 * @pool->cpu is coming online.  Rebind all workers to the CPU.
4542 */
4543static void rebind_workers(struct worker_pool *pool)
4544{
4545	struct worker *worker;
4546
4547	lockdep_assert_held(&pool->attach_mutex);
4548
4549	/*
4550	 * Restore CPU affinity of all workers.  As all idle workers should
4551	 * be on the run-queue of the associated CPU before any local
4552	 * wake-ups for concurrency management happen, restore CPU affinity
4553	 * of all workers first and then clear UNBOUND.  As we're called
4554	 * from CPU_ONLINE, the following shouldn't fail.
4555	 */
4556	for_each_pool_worker(worker, pool)
4557		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4558						  pool->attrs->cpumask) < 0);
4559
4560	spin_lock_irq(&pool->lock);
4561
4562	/*
4563	 * XXX: CPU hotplug notifiers are weird and can call DOWN_FAILED
4564	 * w/o preceding DOWN_PREPARE.  Work around it.  CPU hotplug is
4565	 * being reworked and this can go away in time.
4566	 */
4567	if (!(pool->flags & POOL_DISASSOCIATED)) {
4568		spin_unlock_irq(&pool->lock);
4569		return;
4570	}
4571
4572	pool->flags &= ~POOL_DISASSOCIATED;
4573
4574	for_each_pool_worker(worker, pool) {
4575		unsigned int worker_flags = worker->flags;
4576
4577		/*
4578		 * A bound idle worker should actually be on the runqueue
4579		 * of the associated CPU for local wake-ups targeting it to
4580		 * work.  Kick all idle workers so that they migrate to the
4581		 * associated CPU.  Doing this in the same loop as
4582		 * replacing UNBOUND with REBOUND is safe as no worker will
4583		 * be bound before @pool->lock is released.
4584		 */
4585		if (worker_flags & WORKER_IDLE)
4586			wake_up_process(worker->task);
4587
4588		/*
4589		 * We want to clear UNBOUND but can't directly call
4590		 * worker_clr_flags() or adjust nr_running.  Atomically
4591		 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4592		 * @worker will clear REBOUND using worker_clr_flags() when
4593		 * it initiates the next execution cycle thus restoring
4594		 * concurrency management.  Note that when or whether
4595		 * @worker clears REBOUND doesn't affect correctness.
4596		 *
4597		 * ACCESS_ONCE() is necessary because @worker->flags may be
4598		 * tested without holding any lock in
4599		 * wq_worker_waking_up().  Without it, NOT_RUNNING test may
4600		 * fail incorrectly leading to premature concurrency
4601		 * management operations.
4602		 */
4603		WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4604		worker_flags |= WORKER_REBOUND;
4605		worker_flags &= ~WORKER_UNBOUND;
4606		ACCESS_ONCE(worker->flags) = worker_flags;
4607	}
4608
4609	spin_unlock_irq(&pool->lock);
4610}
4611
4612/**
4613 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4614 * @pool: unbound pool of interest
4615 * @cpu: the CPU which is coming up
4616 *
4617 * An unbound pool may end up with a cpumask which doesn't have any online
4618 * CPUs.  When a worker of such pool get scheduled, the scheduler resets
4619 * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
4620 * online CPU before, cpus_allowed of all its workers should be restored.
4621 */
4622static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
4623{
4624	static cpumask_t cpumask;
4625	struct worker *worker;
4626
4627	lockdep_assert_held(&pool->attach_mutex);
4628
4629	/* is @cpu allowed for @pool? */
4630	if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
4631		return;
4632
 
4633	cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
 
 
4634
4635	/* as we're called from CPU_ONLINE, the following shouldn't fail */
4636	for_each_pool_worker(worker, pool)
4637		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
 
4638}
4639
4640int workqueue_prepare_cpu(unsigned int cpu)
4641{
4642	struct worker_pool *pool;
4643
4644	for_each_cpu_worker_pool(pool, cpu) {
4645		if (pool->nr_workers)
4646			continue;
4647		if (!create_worker(pool))
4648			return -ENOMEM;
4649	}
4650	return 0;
4651}
4652
4653int workqueue_online_cpu(unsigned int cpu)
4654{
 
4655	struct worker_pool *pool;
4656	struct workqueue_struct *wq;
4657	int pi;
4658
4659	mutex_lock(&wq_pool_mutex);
 
 
 
 
 
 
 
 
 
 
 
 
4660
4661	for_each_pool(pool, pi) {
4662		mutex_lock(&pool->attach_mutex);
4663
4664		if (pool->cpu == cpu)
4665			rebind_workers(pool);
4666		else if (pool->cpu < 0)
4667			restore_unbound_workers_cpumask(pool, cpu);
4668
4669		mutex_unlock(&pool->attach_mutex);
4670	}
4671
4672	/* update NUMA affinity of unbound workqueues */
4673	list_for_each_entry(wq, &workqueues, list)
4674		wq_update_unbound_numa(wq, cpu, true);
4675
4676	mutex_unlock(&wq_pool_mutex);
4677	return 0;
 
 
4678}
4679
4680int workqueue_offline_cpu(unsigned int cpu)
 
 
 
 
 
 
4681{
 
4682	struct work_struct unbind_work;
4683	struct workqueue_struct *wq;
4684
4685	/* unbinding per-cpu workers should happen on the local CPU */
4686	INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
4687	queue_work_on(cpu, system_highpri_wq, &unbind_work);
4688
4689	/* update NUMA affinity of unbound workqueues */
4690	mutex_lock(&wq_pool_mutex);
4691	list_for_each_entry(wq, &workqueues, list)
4692		wq_update_unbound_numa(wq, cpu, false);
4693	mutex_unlock(&wq_pool_mutex);
4694
4695	/* wait for per-cpu unbinding to finish */
4696	flush_work(&unbind_work);
4697	destroy_work_on_stack(&unbind_work);
4698	return 0;
 
 
 
 
4699}
4700
4701#ifdef CONFIG_SMP
4702
4703struct work_for_cpu {
4704	struct work_struct work;
4705	long (*fn)(void *);
4706	void *arg;
4707	long ret;
4708};
4709
4710static void work_for_cpu_fn(struct work_struct *work)
4711{
4712	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
4713
4714	wfc->ret = wfc->fn(wfc->arg);
4715}
4716
4717/**
4718 * work_on_cpu - run a function in thread context on a particular cpu
4719 * @cpu: the cpu to run on
4720 * @fn: the function to run
4721 * @arg: the function arg
4722 *
4723 * It is up to the caller to ensure that the cpu doesn't go offline.
4724 * The caller must not hold any locks which would prevent @fn from completing.
4725 *
4726 * Return: The value @fn returns.
4727 */
4728long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
4729{
4730	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
4731
4732	INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
4733	schedule_work_on(cpu, &wfc.work);
4734	flush_work(&wfc.work);
4735	destroy_work_on_stack(&wfc.work);
4736	return wfc.ret;
4737}
4738EXPORT_SYMBOL_GPL(work_on_cpu);
4739#endif /* CONFIG_SMP */
4740
4741#ifdef CONFIG_FREEZER
4742
4743/**
4744 * freeze_workqueues_begin - begin freezing workqueues
4745 *
4746 * Start freezing workqueues.  After this function returns, all freezable
4747 * workqueues will queue new works to their delayed_works list instead of
4748 * pool->worklist.
4749 *
4750 * CONTEXT:
4751 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4752 */
4753void freeze_workqueues_begin(void)
4754{
4755	struct workqueue_struct *wq;
4756	struct pool_workqueue *pwq;
4757
4758	mutex_lock(&wq_pool_mutex);
4759
4760	WARN_ON_ONCE(workqueue_freezing);
4761	workqueue_freezing = true;
4762
4763	list_for_each_entry(wq, &workqueues, list) {
4764		mutex_lock(&wq->mutex);
4765		for_each_pwq(pwq, wq)
4766			pwq_adjust_max_active(pwq);
4767		mutex_unlock(&wq->mutex);
4768	}
4769
4770	mutex_unlock(&wq_pool_mutex);
4771}
4772
4773/**
4774 * freeze_workqueues_busy - are freezable workqueues still busy?
4775 *
4776 * Check whether freezing is complete.  This function must be called
4777 * between freeze_workqueues_begin() and thaw_workqueues().
4778 *
4779 * CONTEXT:
4780 * Grabs and releases wq_pool_mutex.
4781 *
4782 * Return:
4783 * %true if some freezable workqueues are still busy.  %false if freezing
4784 * is complete.
4785 */
4786bool freeze_workqueues_busy(void)
4787{
4788	bool busy = false;
4789	struct workqueue_struct *wq;
4790	struct pool_workqueue *pwq;
4791
4792	mutex_lock(&wq_pool_mutex);
4793
4794	WARN_ON_ONCE(!workqueue_freezing);
4795
4796	list_for_each_entry(wq, &workqueues, list) {
4797		if (!(wq->flags & WQ_FREEZABLE))
4798			continue;
4799		/*
4800		 * nr_active is monotonically decreasing.  It's safe
4801		 * to peek without lock.
4802		 */
4803		rcu_read_lock_sched();
4804		for_each_pwq(pwq, wq) {
4805			WARN_ON_ONCE(pwq->nr_active < 0);
4806			if (pwq->nr_active) {
4807				busy = true;
4808				rcu_read_unlock_sched();
4809				goto out_unlock;
4810			}
4811		}
4812		rcu_read_unlock_sched();
4813	}
4814out_unlock:
4815	mutex_unlock(&wq_pool_mutex);
4816	return busy;
4817}
4818
4819/**
4820 * thaw_workqueues - thaw workqueues
4821 *
4822 * Thaw workqueues.  Normal queueing is restored and all collected
4823 * frozen works are transferred to their respective pool worklists.
4824 *
4825 * CONTEXT:
4826 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4827 */
4828void thaw_workqueues(void)
4829{
4830	struct workqueue_struct *wq;
4831	struct pool_workqueue *pwq;
4832
4833	mutex_lock(&wq_pool_mutex);
4834
4835	if (!workqueue_freezing)
4836		goto out_unlock;
4837
4838	workqueue_freezing = false;
4839
4840	/* restore max_active and repopulate worklist */
4841	list_for_each_entry(wq, &workqueues, list) {
4842		mutex_lock(&wq->mutex);
4843		for_each_pwq(pwq, wq)
4844			pwq_adjust_max_active(pwq);
4845		mutex_unlock(&wq->mutex);
4846	}
4847
4848out_unlock:
4849	mutex_unlock(&wq_pool_mutex);
4850}
4851#endif /* CONFIG_FREEZER */
4852
4853static int workqueue_apply_unbound_cpumask(void)
4854{
4855	LIST_HEAD(ctxs);
4856	int ret = 0;
4857	struct workqueue_struct *wq;
4858	struct apply_wqattrs_ctx *ctx, *n;
4859
4860	lockdep_assert_held(&wq_pool_mutex);
4861
4862	list_for_each_entry(wq, &workqueues, list) {
4863		if (!(wq->flags & WQ_UNBOUND))
4864			continue;
4865		/* creating multiple pwqs breaks ordering guarantee */
4866		if (wq->flags & __WQ_ORDERED)
4867			continue;
4868
4869		ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs);
4870		if (!ctx) {
4871			ret = -ENOMEM;
4872			break;
4873		}
4874
4875		list_add_tail(&ctx->list, &ctxs);
4876	}
4877
4878	list_for_each_entry_safe(ctx, n, &ctxs, list) {
4879		if (!ret)
4880			apply_wqattrs_commit(ctx);
4881		apply_wqattrs_cleanup(ctx);
4882	}
4883
4884	return ret;
4885}
4886
4887/**
4888 *  workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
4889 *  @cpumask: the cpumask to set
4890 *
4891 *  The low-level workqueues cpumask is a global cpumask that limits
4892 *  the affinity of all unbound workqueues.  This function check the @cpumask
4893 *  and apply it to all unbound workqueues and updates all pwqs of them.
4894 *
4895 *  Retun:	0	- Success
4896 *  		-EINVAL	- Invalid @cpumask
4897 *  		-ENOMEM	- Failed to allocate memory for attrs or pwqs.
4898 */
4899int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
4900{
4901	int ret = -EINVAL;
4902	cpumask_var_t saved_cpumask;
4903
4904	if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL))
4905		return -ENOMEM;
4906
4907	cpumask_and(cpumask, cpumask, cpu_possible_mask);
4908	if (!cpumask_empty(cpumask)) {
4909		apply_wqattrs_lock();
4910
4911		/* save the old wq_unbound_cpumask. */
4912		cpumask_copy(saved_cpumask, wq_unbound_cpumask);
4913
4914		/* update wq_unbound_cpumask at first and apply it to wqs. */
4915		cpumask_copy(wq_unbound_cpumask, cpumask);
4916		ret = workqueue_apply_unbound_cpumask();
4917
4918		/* restore the wq_unbound_cpumask when failed. */
4919		if (ret < 0)
4920			cpumask_copy(wq_unbound_cpumask, saved_cpumask);
4921
4922		apply_wqattrs_unlock();
4923	}
4924
4925	free_cpumask_var(saved_cpumask);
4926	return ret;
4927}
4928
4929#ifdef CONFIG_SYSFS
4930/*
4931 * Workqueues with WQ_SYSFS flag set is visible to userland via
4932 * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
4933 * following attributes.
4934 *
4935 *  per_cpu	RO bool	: whether the workqueue is per-cpu or unbound
4936 *  max_active	RW int	: maximum number of in-flight work items
4937 *
4938 * Unbound workqueues have the following extra attributes.
4939 *
4940 *  id		RO int	: the associated pool ID
4941 *  nice	RW int	: nice value of the workers
4942 *  cpumask	RW mask	: bitmask of allowed CPUs for the workers
4943 */
4944struct wq_device {
4945	struct workqueue_struct		*wq;
4946	struct device			dev;
4947};
4948
4949static struct workqueue_struct *dev_to_wq(struct device *dev)
4950{
4951	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
4952
4953	return wq_dev->wq;
4954}
4955
4956static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
4957			    char *buf)
4958{
4959	struct workqueue_struct *wq = dev_to_wq(dev);
4960
4961	return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
4962}
4963static DEVICE_ATTR_RO(per_cpu);
4964
4965static ssize_t max_active_show(struct device *dev,
4966			       struct device_attribute *attr, char *buf)
4967{
4968	struct workqueue_struct *wq = dev_to_wq(dev);
4969
4970	return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
4971}
4972
4973static ssize_t max_active_store(struct device *dev,
4974				struct device_attribute *attr, const char *buf,
4975				size_t count)
4976{
4977	struct workqueue_struct *wq = dev_to_wq(dev);
4978	int val;
4979
4980	if (sscanf(buf, "%d", &val) != 1 || val <= 0)
4981		return -EINVAL;
4982
4983	workqueue_set_max_active(wq, val);
4984	return count;
4985}
4986static DEVICE_ATTR_RW(max_active);
4987
4988static struct attribute *wq_sysfs_attrs[] = {
4989	&dev_attr_per_cpu.attr,
4990	&dev_attr_max_active.attr,
4991	NULL,
4992};
4993ATTRIBUTE_GROUPS(wq_sysfs);
4994
4995static ssize_t wq_pool_ids_show(struct device *dev,
4996				struct device_attribute *attr, char *buf)
4997{
4998	struct workqueue_struct *wq = dev_to_wq(dev);
4999	const char *delim = "";
5000	int node, written = 0;
5001
5002	rcu_read_lock_sched();
5003	for_each_node(node) {
5004		written += scnprintf(buf + written, PAGE_SIZE - written,
5005				     "%s%d:%d", delim, node,
5006				     unbound_pwq_by_node(wq, node)->pool->id);
5007		delim = " ";
5008	}
5009	written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
5010	rcu_read_unlock_sched();
5011
5012	return written;
5013}
5014
5015static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
5016			    char *buf)
5017{
5018	struct workqueue_struct *wq = dev_to_wq(dev);
5019	int written;
5020
5021	mutex_lock(&wq->mutex);
5022	written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
5023	mutex_unlock(&wq->mutex);
5024
5025	return written;
5026}
5027
5028/* prepare workqueue_attrs for sysfs store operations */
5029static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
5030{
5031	struct workqueue_attrs *attrs;
5032
5033	lockdep_assert_held(&wq_pool_mutex);
5034
5035	attrs = alloc_workqueue_attrs(GFP_KERNEL);
5036	if (!attrs)
5037		return NULL;
5038
5039	copy_workqueue_attrs(attrs, wq->unbound_attrs);
5040	return attrs;
5041}
5042
5043static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
5044			     const char *buf, size_t count)
5045{
5046	struct workqueue_struct *wq = dev_to_wq(dev);
5047	struct workqueue_attrs *attrs;
5048	int ret = -ENOMEM;
5049
5050	apply_wqattrs_lock();
5051
5052	attrs = wq_sysfs_prep_attrs(wq);
5053	if (!attrs)
5054		goto out_unlock;
5055
5056	if (sscanf(buf, "%d", &attrs->nice) == 1 &&
5057	    attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
5058		ret = apply_workqueue_attrs_locked(wq, attrs);
5059	else
5060		ret = -EINVAL;
5061
5062out_unlock:
5063	apply_wqattrs_unlock();
5064	free_workqueue_attrs(attrs);
5065	return ret ?: count;
5066}
5067
5068static ssize_t wq_cpumask_show(struct device *dev,
5069			       struct device_attribute *attr, char *buf)
5070{
5071	struct workqueue_struct *wq = dev_to_wq(dev);
5072	int written;
5073
5074	mutex_lock(&wq->mutex);
5075	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5076			    cpumask_pr_args(wq->unbound_attrs->cpumask));
5077	mutex_unlock(&wq->mutex);
5078	return written;
5079}
5080
5081static ssize_t wq_cpumask_store(struct device *dev,
5082				struct device_attribute *attr,
5083				const char *buf, size_t count)
5084{
5085	struct workqueue_struct *wq = dev_to_wq(dev);
5086	struct workqueue_attrs *attrs;
5087	int ret = -ENOMEM;
5088
5089	apply_wqattrs_lock();
5090
5091	attrs = wq_sysfs_prep_attrs(wq);
5092	if (!attrs)
5093		goto out_unlock;
5094
5095	ret = cpumask_parse(buf, attrs->cpumask);
5096	if (!ret)
5097		ret = apply_workqueue_attrs_locked(wq, attrs);
5098
5099out_unlock:
5100	apply_wqattrs_unlock();
5101	free_workqueue_attrs(attrs);
5102	return ret ?: count;
5103}
5104
5105static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
5106			    char *buf)
5107{
5108	struct workqueue_struct *wq = dev_to_wq(dev);
5109	int written;
5110
5111	mutex_lock(&wq->mutex);
5112	written = scnprintf(buf, PAGE_SIZE, "%d\n",
5113			    !wq->unbound_attrs->no_numa);
5114	mutex_unlock(&wq->mutex);
5115
5116	return written;
5117}
5118
5119static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
5120			     const char *buf, size_t count)
5121{
5122	struct workqueue_struct *wq = dev_to_wq(dev);
5123	struct workqueue_attrs *attrs;
5124	int v, ret = -ENOMEM;
5125
5126	apply_wqattrs_lock();
5127
5128	attrs = wq_sysfs_prep_attrs(wq);
5129	if (!attrs)
5130		goto out_unlock;
5131
5132	ret = -EINVAL;
5133	if (sscanf(buf, "%d", &v) == 1) {
5134		attrs->no_numa = !v;
5135		ret = apply_workqueue_attrs_locked(wq, attrs);
5136	}
5137
5138out_unlock:
5139	apply_wqattrs_unlock();
5140	free_workqueue_attrs(attrs);
5141	return ret ?: count;
5142}
5143
5144static struct device_attribute wq_sysfs_unbound_attrs[] = {
5145	__ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
5146	__ATTR(nice, 0644, wq_nice_show, wq_nice_store),
5147	__ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
5148	__ATTR(numa, 0644, wq_numa_show, wq_numa_store),
5149	__ATTR_NULL,
5150};
5151
5152static struct bus_type wq_subsys = {
5153	.name				= "workqueue",
5154	.dev_groups			= wq_sysfs_groups,
5155};
5156
5157static ssize_t wq_unbound_cpumask_show(struct device *dev,
5158		struct device_attribute *attr, char *buf)
5159{
5160	int written;
5161
5162	mutex_lock(&wq_pool_mutex);
5163	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5164			    cpumask_pr_args(wq_unbound_cpumask));
5165	mutex_unlock(&wq_pool_mutex);
5166
5167	return written;
5168}
5169
5170static ssize_t wq_unbound_cpumask_store(struct device *dev,
5171		struct device_attribute *attr, const char *buf, size_t count)
5172{
5173	cpumask_var_t cpumask;
5174	int ret;
5175
5176	if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
5177		return -ENOMEM;
5178
5179	ret = cpumask_parse(buf, cpumask);
5180	if (!ret)
5181		ret = workqueue_set_unbound_cpumask(cpumask);
5182
5183	free_cpumask_var(cpumask);
5184	return ret ? ret : count;
5185}
5186
5187static struct device_attribute wq_sysfs_cpumask_attr =
5188	__ATTR(cpumask, 0644, wq_unbound_cpumask_show,
5189	       wq_unbound_cpumask_store);
5190
5191static int __init wq_sysfs_init(void)
5192{
5193	int err;
5194
5195	err = subsys_virtual_register(&wq_subsys, NULL);
5196	if (err)
5197		return err;
5198
5199	return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr);
5200}
5201core_initcall(wq_sysfs_init);
5202
5203static void wq_device_release(struct device *dev)
5204{
5205	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5206
5207	kfree(wq_dev);
5208}
5209
5210/**
5211 * workqueue_sysfs_register - make a workqueue visible in sysfs
5212 * @wq: the workqueue to register
5213 *
5214 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
5215 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
5216 * which is the preferred method.
5217 *
5218 * Workqueue user should use this function directly iff it wants to apply
5219 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
5220 * apply_workqueue_attrs() may race against userland updating the
5221 * attributes.
5222 *
5223 * Return: 0 on success, -errno on failure.
5224 */
5225int workqueue_sysfs_register(struct workqueue_struct *wq)
5226{
5227	struct wq_device *wq_dev;
5228	int ret;
5229
5230	/*
5231	 * Adjusting max_active or creating new pwqs by applying
5232	 * attributes breaks ordering guarantee.  Disallow exposing ordered
5233	 * workqueues.
5234	 */
5235	if (WARN_ON(wq->flags & __WQ_ORDERED))
5236		return -EINVAL;
5237
5238	wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
5239	if (!wq_dev)
5240		return -ENOMEM;
5241
5242	wq_dev->wq = wq;
5243	wq_dev->dev.bus = &wq_subsys;
5244	wq_dev->dev.release = wq_device_release;
5245	dev_set_name(&wq_dev->dev, "%s", wq->name);
5246
5247	/*
5248	 * unbound_attrs are created separately.  Suppress uevent until
5249	 * everything is ready.
5250	 */
5251	dev_set_uevent_suppress(&wq_dev->dev, true);
5252
5253	ret = device_register(&wq_dev->dev);
5254	if (ret) {
5255		kfree(wq_dev);
5256		wq->wq_dev = NULL;
5257		return ret;
5258	}
5259
5260	if (wq->flags & WQ_UNBOUND) {
5261		struct device_attribute *attr;
5262
5263		for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
5264			ret = device_create_file(&wq_dev->dev, attr);
5265			if (ret) {
5266				device_unregister(&wq_dev->dev);
5267				wq->wq_dev = NULL;
5268				return ret;
5269			}
5270		}
5271	}
5272
5273	dev_set_uevent_suppress(&wq_dev->dev, false);
5274	kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
5275	return 0;
5276}
5277
5278/**
5279 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
5280 * @wq: the workqueue to unregister
5281 *
5282 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
5283 */
5284static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
5285{
5286	struct wq_device *wq_dev = wq->wq_dev;
5287
5288	if (!wq->wq_dev)
5289		return;
5290
5291	wq->wq_dev = NULL;
5292	device_unregister(&wq_dev->dev);
5293}
5294#else	/* CONFIG_SYSFS */
5295static void workqueue_sysfs_unregister(struct workqueue_struct *wq)	{ }
5296#endif	/* CONFIG_SYSFS */
5297
5298/*
5299 * Workqueue watchdog.
5300 *
5301 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
5302 * flush dependency, a concurrency managed work item which stays RUNNING
5303 * indefinitely.  Workqueue stalls can be very difficult to debug as the
5304 * usual warning mechanisms don't trigger and internal workqueue state is
5305 * largely opaque.
5306 *
5307 * Workqueue watchdog monitors all worker pools periodically and dumps
5308 * state if some pools failed to make forward progress for a while where
5309 * forward progress is defined as the first item on ->worklist changing.
5310 *
5311 * This mechanism is controlled through the kernel parameter
5312 * "workqueue.watchdog_thresh" which can be updated at runtime through the
5313 * corresponding sysfs parameter file.
5314 */
5315#ifdef CONFIG_WQ_WATCHDOG
5316
5317static void wq_watchdog_timer_fn(unsigned long data);
5318
5319static unsigned long wq_watchdog_thresh = 30;
5320static struct timer_list wq_watchdog_timer =
5321	TIMER_DEFERRED_INITIALIZER(wq_watchdog_timer_fn, 0, 0);
5322
5323static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
5324static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
5325
5326static void wq_watchdog_reset_touched(void)
5327{
5328	int cpu;
5329
5330	wq_watchdog_touched = jiffies;
5331	for_each_possible_cpu(cpu)
5332		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5333}
5334
5335static void wq_watchdog_timer_fn(unsigned long data)
5336{
5337	unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
5338	bool lockup_detected = false;
5339	struct worker_pool *pool;
5340	int pi;
5341
5342	if (!thresh)
5343		return;
5344
5345	rcu_read_lock();
5346
5347	for_each_pool(pool, pi) {
5348		unsigned long pool_ts, touched, ts;
5349
5350		if (list_empty(&pool->worklist))
5351			continue;
5352
5353		/* get the latest of pool and touched timestamps */
5354		pool_ts = READ_ONCE(pool->watchdog_ts);
5355		touched = READ_ONCE(wq_watchdog_touched);
5356
5357		if (time_after(pool_ts, touched))
5358			ts = pool_ts;
5359		else
5360			ts = touched;
5361
5362		if (pool->cpu >= 0) {
5363			unsigned long cpu_touched =
5364				READ_ONCE(per_cpu(wq_watchdog_touched_cpu,
5365						  pool->cpu));
5366			if (time_after(cpu_touched, ts))
5367				ts = cpu_touched;
5368		}
5369
5370		/* did we stall? */
5371		if (time_after(jiffies, ts + thresh)) {
5372			lockup_detected = true;
5373			pr_emerg("BUG: workqueue lockup - pool");
5374			pr_cont_pool_info(pool);
5375			pr_cont(" stuck for %us!\n",
5376				jiffies_to_msecs(jiffies - pool_ts) / 1000);
5377		}
5378	}
5379
5380	rcu_read_unlock();
5381
5382	if (lockup_detected)
5383		show_workqueue_state();
5384
5385	wq_watchdog_reset_touched();
5386	mod_timer(&wq_watchdog_timer, jiffies + thresh);
5387}
5388
5389void wq_watchdog_touch(int cpu)
5390{
5391	if (cpu >= 0)
5392		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5393	else
5394		wq_watchdog_touched = jiffies;
5395}
5396
5397static void wq_watchdog_set_thresh(unsigned long thresh)
5398{
5399	wq_watchdog_thresh = 0;
5400	del_timer_sync(&wq_watchdog_timer);
5401
5402	if (thresh) {
5403		wq_watchdog_thresh = thresh;
5404		wq_watchdog_reset_touched();
5405		mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
5406	}
5407}
5408
5409static int wq_watchdog_param_set_thresh(const char *val,
5410					const struct kernel_param *kp)
5411{
5412	unsigned long thresh;
5413	int ret;
5414
5415	ret = kstrtoul(val, 0, &thresh);
5416	if (ret)
5417		return ret;
5418
5419	if (system_wq)
5420		wq_watchdog_set_thresh(thresh);
5421	else
5422		wq_watchdog_thresh = thresh;
5423
5424	return 0;
5425}
5426
5427static const struct kernel_param_ops wq_watchdog_thresh_ops = {
5428	.set	= wq_watchdog_param_set_thresh,
5429	.get	= param_get_ulong,
5430};
5431
5432module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
5433		0644);
5434
5435static void wq_watchdog_init(void)
5436{
5437	wq_watchdog_set_thresh(wq_watchdog_thresh);
5438}
5439
5440#else	/* CONFIG_WQ_WATCHDOG */
5441
5442static inline void wq_watchdog_init(void) { }
5443
5444#endif	/* CONFIG_WQ_WATCHDOG */
5445
5446static void __init wq_numa_init(void)
5447{
5448	cpumask_var_t *tbl;
5449	int node, cpu;
5450
5451	if (num_possible_nodes() <= 1)
5452		return;
5453
5454	if (wq_disable_numa) {
5455		pr_info("workqueue: NUMA affinity support disabled\n");
5456		return;
5457	}
5458
5459	wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
5460	BUG_ON(!wq_update_unbound_numa_attrs_buf);
5461
5462	/*
5463	 * We want masks of possible CPUs of each node which isn't readily
5464	 * available.  Build one from cpu_to_node() which should have been
5465	 * fully initialized by now.
5466	 */
5467	tbl = kzalloc(nr_node_ids * sizeof(tbl[0]), GFP_KERNEL);
5468	BUG_ON(!tbl);
5469
5470	for_each_node(node)
5471		BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
5472				node_online(node) ? node : NUMA_NO_NODE));
5473
5474	for_each_possible_cpu(cpu) {
5475		node = cpu_to_node(cpu);
5476		if (WARN_ON(node == NUMA_NO_NODE)) {
5477			pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
5478			/* happens iff arch is bonkers, let's just proceed */
5479			return;
5480		}
5481		cpumask_set_cpu(cpu, tbl[node]);
5482	}
5483
5484	wq_numa_possible_cpumask = tbl;
5485	wq_numa_enabled = true;
5486}
5487
5488/**
5489 * workqueue_init_early - early init for workqueue subsystem
5490 *
5491 * This is the first half of two-staged workqueue subsystem initialization
5492 * and invoked as soon as the bare basics - memory allocation, cpumasks and
5493 * idr are up.  It sets up all the data structures and system workqueues
5494 * and allows early boot code to create workqueues and queue/cancel work
5495 * items.  Actual work item execution starts only after kthreads can be
5496 * created and scheduled right before early initcalls.
5497 */
5498int __init workqueue_init_early(void)
5499{
5500	int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
5501	int i, cpu;
5502
5503	WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
5504
5505	BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
5506	cpumask_copy(wq_unbound_cpumask, cpu_possible_mask);
5507
5508	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
5509
 
 
 
 
 
5510	/* initialize CPU pools */
5511	for_each_possible_cpu(cpu) {
5512		struct worker_pool *pool;
5513
5514		i = 0;
5515		for_each_cpu_worker_pool(pool, cpu) {
5516			BUG_ON(init_worker_pool(pool));
5517			pool->cpu = cpu;
5518			cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
5519			pool->attrs->nice = std_nice[i++];
5520			pool->node = cpu_to_node(cpu);
5521
5522			/* alloc pool ID */
5523			mutex_lock(&wq_pool_mutex);
5524			BUG_ON(worker_pool_assign_id(pool));
5525			mutex_unlock(&wq_pool_mutex);
5526		}
5527	}
5528
 
 
 
 
 
 
 
 
 
 
5529	/* create default unbound and ordered wq attrs */
5530	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
5531		struct workqueue_attrs *attrs;
5532
5533		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5534		attrs->nice = std_nice[i];
5535		unbound_std_wq_attrs[i] = attrs;
5536
5537		/*
5538		 * An ordered wq should have only one pwq as ordering is
5539		 * guaranteed by max_active which is enforced by pwqs.
5540		 * Turn off NUMA so that dfl_pwq is used for all nodes.
5541		 */
5542		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5543		attrs->nice = std_nice[i];
5544		attrs->no_numa = true;
5545		ordered_wq_attrs[i] = attrs;
5546	}
5547
5548	system_wq = alloc_workqueue("events", 0, 0);
5549	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
5550	system_long_wq = alloc_workqueue("events_long", 0, 0);
5551	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
5552					    WQ_UNBOUND_MAX_ACTIVE);
5553	system_freezable_wq = alloc_workqueue("events_freezable",
5554					      WQ_FREEZABLE, 0);
5555	system_power_efficient_wq = alloc_workqueue("events_power_efficient",
5556					      WQ_POWER_EFFICIENT, 0);
5557	system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
5558					      WQ_FREEZABLE | WQ_POWER_EFFICIENT,
5559					      0);
5560	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
5561	       !system_unbound_wq || !system_freezable_wq ||
5562	       !system_power_efficient_wq ||
5563	       !system_freezable_power_efficient_wq);
5564
5565	return 0;
5566}
5567
5568/**
5569 * workqueue_init - bring workqueue subsystem fully online
5570 *
5571 * This is the latter half of two-staged workqueue subsystem initialization
5572 * and invoked as soon as kthreads can be created and scheduled.
5573 * Workqueues have been created and work items queued on them, but there
5574 * are no kworkers executing the work items yet.  Populate the worker pools
5575 * with the initial workers and enable future kworker creations.
5576 */
5577int __init workqueue_init(void)
5578{
5579	struct workqueue_struct *wq;
5580	struct worker_pool *pool;
5581	int cpu, bkt;
5582
5583	/*
5584	 * It'd be simpler to initialize NUMA in workqueue_init_early() but
5585	 * CPU to node mapping may not be available that early on some
5586	 * archs such as power and arm64.  As per-cpu pools created
5587	 * previously could be missing node hint and unbound pools NUMA
5588	 * affinity, fix them up.
5589	 */
5590	wq_numa_init();
5591
5592	mutex_lock(&wq_pool_mutex);
5593
5594	for_each_possible_cpu(cpu) {
5595		for_each_cpu_worker_pool(pool, cpu) {
5596			pool->node = cpu_to_node(cpu);
5597		}
5598	}
5599
5600	list_for_each_entry(wq, &workqueues, list)
5601		wq_update_unbound_numa(wq, smp_processor_id(), true);
5602
5603	mutex_unlock(&wq_pool_mutex);
5604
5605	/* create the initial workers */
5606	for_each_online_cpu(cpu) {
5607		for_each_cpu_worker_pool(pool, cpu) {
5608			pool->flags &= ~POOL_DISASSOCIATED;
5609			BUG_ON(!create_worker(pool));
5610		}
5611	}
5612
5613	hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
5614		BUG_ON(!create_worker(pool));
5615
5616	wq_online = true;
5617	wq_watchdog_init();
5618
5619	return 0;
5620}