Linux Audio

Check our new training course

Loading...
v4.6
 
   1/*
   2 *  linux/fs/ext2/inode.c
   3 *
   4 * Copyright (C) 1992, 1993, 1994, 1995
   5 * Remy Card (card@masi.ibp.fr)
   6 * Laboratoire MASI - Institut Blaise Pascal
   7 * Universite Pierre et Marie Curie (Paris VI)
   8 *
   9 *  from
  10 *
  11 *  linux/fs/minix/inode.c
  12 *
  13 *  Copyright (C) 1991, 1992  Linus Torvalds
  14 *
  15 *  Goal-directed block allocation by Stephen Tweedie
  16 * 	(sct@dcs.ed.ac.uk), 1993, 1998
  17 *  Big-endian to little-endian byte-swapping/bitmaps by
  18 *        David S. Miller (davem@caip.rutgers.edu), 1995
  19 *  64-bit file support on 64-bit platforms by Jakub Jelinek
  20 * 	(jj@sunsite.ms.mff.cuni.cz)
  21 *
  22 *  Assorted race fixes, rewrite of ext2_get_block() by Al Viro, 2000
  23 */
  24
  25#include <linux/time.h>
  26#include <linux/highuid.h>
  27#include <linux/pagemap.h>
  28#include <linux/dax.h>
 
  29#include <linux/quotaops.h>
  30#include <linux/writeback.h>
  31#include <linux/buffer_head.h>
  32#include <linux/mpage.h>
  33#include <linux/fiemap.h>
 
  34#include <linux/namei.h>
  35#include <linux/uio.h>
  36#include "ext2.h"
  37#include "acl.h"
  38#include "xattr.h"
  39
  40static int __ext2_write_inode(struct inode *inode, int do_sync);
  41
  42/*
  43 * Test whether an inode is a fast symlink.
  44 */
  45static inline int ext2_inode_is_fast_symlink(struct inode *inode)
  46{
  47	int ea_blocks = EXT2_I(inode)->i_file_acl ?
  48		(inode->i_sb->s_blocksize >> 9) : 0;
  49
  50	return (S_ISLNK(inode->i_mode) &&
  51		inode->i_blocks - ea_blocks == 0);
  52}
  53
  54static void ext2_truncate_blocks(struct inode *inode, loff_t offset);
  55
  56static void ext2_write_failed(struct address_space *mapping, loff_t to)
  57{
  58	struct inode *inode = mapping->host;
  59
  60	if (to > inode->i_size) {
  61		truncate_pagecache(inode, inode->i_size);
  62		ext2_truncate_blocks(inode, inode->i_size);
  63	}
  64}
  65
  66/*
  67 * Called at the last iput() if i_nlink is zero.
  68 */
  69void ext2_evict_inode(struct inode * inode)
  70{
  71	struct ext2_block_alloc_info *rsv;
  72	int want_delete = 0;
  73
  74	if (!inode->i_nlink && !is_bad_inode(inode)) {
  75		want_delete = 1;
  76		dquot_initialize(inode);
  77	} else {
  78		dquot_drop(inode);
  79	}
  80
  81	truncate_inode_pages_final(&inode->i_data);
  82
  83	if (want_delete) {
  84		sb_start_intwrite(inode->i_sb);
  85		/* set dtime */
  86		EXT2_I(inode)->i_dtime	= get_seconds();
  87		mark_inode_dirty(inode);
  88		__ext2_write_inode(inode, inode_needs_sync(inode));
  89		/* truncate to 0 */
  90		inode->i_size = 0;
  91		if (inode->i_blocks)
  92			ext2_truncate_blocks(inode, 0);
  93		ext2_xattr_delete_inode(inode);
  94	}
  95
  96	invalidate_inode_buffers(inode);
  97	clear_inode(inode);
  98
  99	ext2_discard_reservation(inode);
 100	rsv = EXT2_I(inode)->i_block_alloc_info;
 101	EXT2_I(inode)->i_block_alloc_info = NULL;
 102	if (unlikely(rsv))
 103		kfree(rsv);
 104
 105	if (want_delete) {
 106		ext2_free_inode(inode);
 107		sb_end_intwrite(inode->i_sb);
 108	}
 109}
 110
 111typedef struct {
 112	__le32	*p;
 113	__le32	key;
 114	struct buffer_head *bh;
 115} Indirect;
 116
 117static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
 118{
 119	p->key = *(p->p = v);
 120	p->bh = bh;
 121}
 122
 123static inline int verify_chain(Indirect *from, Indirect *to)
 124{
 125	while (from <= to && from->key == *from->p)
 126		from++;
 127	return (from > to);
 128}
 129
 130/**
 131 *	ext2_block_to_path - parse the block number into array of offsets
 132 *	@inode: inode in question (we are only interested in its superblock)
 133 *	@i_block: block number to be parsed
 134 *	@offsets: array to store the offsets in
 135 *      @boundary: set this non-zero if the referred-to block is likely to be
 136 *             followed (on disk) by an indirect block.
 137 *	To store the locations of file's data ext2 uses a data structure common
 138 *	for UNIX filesystems - tree of pointers anchored in the inode, with
 139 *	data blocks at leaves and indirect blocks in intermediate nodes.
 140 *	This function translates the block number into path in that tree -
 141 *	return value is the path length and @offsets[n] is the offset of
 142 *	pointer to (n+1)th node in the nth one. If @block is out of range
 143 *	(negative or too large) warning is printed and zero returned.
 144 *
 145 *	Note: function doesn't find node addresses, so no IO is needed. All
 146 *	we need to know is the capacity of indirect blocks (taken from the
 147 *	inode->i_sb).
 148 */
 149
 150/*
 151 * Portability note: the last comparison (check that we fit into triple
 152 * indirect block) is spelled differently, because otherwise on an
 153 * architecture with 32-bit longs and 8Kb pages we might get into trouble
 154 * if our filesystem had 8Kb blocks. We might use long long, but that would
 155 * kill us on x86. Oh, well, at least the sign propagation does not matter -
 156 * i_block would have to be negative in the very beginning, so we would not
 157 * get there at all.
 158 */
 159
 160static int ext2_block_to_path(struct inode *inode,
 161			long i_block, int offsets[4], int *boundary)
 162{
 163	int ptrs = EXT2_ADDR_PER_BLOCK(inode->i_sb);
 164	int ptrs_bits = EXT2_ADDR_PER_BLOCK_BITS(inode->i_sb);
 165	const long direct_blocks = EXT2_NDIR_BLOCKS,
 166		indirect_blocks = ptrs,
 167		double_blocks = (1 << (ptrs_bits * 2));
 168	int n = 0;
 169	int final = 0;
 170
 171	if (i_block < 0) {
 172		ext2_msg(inode->i_sb, KERN_WARNING,
 173			"warning: %s: block < 0", __func__);
 174	} else if (i_block < direct_blocks) {
 175		offsets[n++] = i_block;
 176		final = direct_blocks;
 177	} else if ( (i_block -= direct_blocks) < indirect_blocks) {
 178		offsets[n++] = EXT2_IND_BLOCK;
 179		offsets[n++] = i_block;
 180		final = ptrs;
 181	} else if ((i_block -= indirect_blocks) < double_blocks) {
 182		offsets[n++] = EXT2_DIND_BLOCK;
 183		offsets[n++] = i_block >> ptrs_bits;
 184		offsets[n++] = i_block & (ptrs - 1);
 185		final = ptrs;
 186	} else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
 187		offsets[n++] = EXT2_TIND_BLOCK;
 188		offsets[n++] = i_block >> (ptrs_bits * 2);
 189		offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
 190		offsets[n++] = i_block & (ptrs - 1);
 191		final = ptrs;
 192	} else {
 193		ext2_msg(inode->i_sb, KERN_WARNING,
 194			"warning: %s: block is too big", __func__);
 195	}
 196	if (boundary)
 197		*boundary = final - 1 - (i_block & (ptrs - 1));
 198
 199	return n;
 200}
 201
 202/**
 203 *	ext2_get_branch - read the chain of indirect blocks leading to data
 204 *	@inode: inode in question
 205 *	@depth: depth of the chain (1 - direct pointer, etc.)
 206 *	@offsets: offsets of pointers in inode/indirect blocks
 207 *	@chain: place to store the result
 208 *	@err: here we store the error value
 209 *
 210 *	Function fills the array of triples <key, p, bh> and returns %NULL
 211 *	if everything went OK or the pointer to the last filled triple
 212 *	(incomplete one) otherwise. Upon the return chain[i].key contains
 213 *	the number of (i+1)-th block in the chain (as it is stored in memory,
 214 *	i.e. little-endian 32-bit), chain[i].p contains the address of that
 215 *	number (it points into struct inode for i==0 and into the bh->b_data
 216 *	for i>0) and chain[i].bh points to the buffer_head of i-th indirect
 217 *	block for i>0 and NULL for i==0. In other words, it holds the block
 218 *	numbers of the chain, addresses they were taken from (and where we can
 219 *	verify that chain did not change) and buffer_heads hosting these
 220 *	numbers.
 221 *
 222 *	Function stops when it stumbles upon zero pointer (absent block)
 223 *		(pointer to last triple returned, *@err == 0)
 224 *	or when it gets an IO error reading an indirect block
 225 *		(ditto, *@err == -EIO)
 226 *	or when it notices that chain had been changed while it was reading
 227 *		(ditto, *@err == -EAGAIN)
 228 *	or when it reads all @depth-1 indirect blocks successfully and finds
 229 *	the whole chain, all way to the data (returns %NULL, *err == 0).
 230 */
 231static Indirect *ext2_get_branch(struct inode *inode,
 232				 int depth,
 233				 int *offsets,
 234				 Indirect chain[4],
 235				 int *err)
 236{
 237	struct super_block *sb = inode->i_sb;
 238	Indirect *p = chain;
 239	struct buffer_head *bh;
 240
 241	*err = 0;
 242	/* i_data is not going away, no lock needed */
 243	add_chain (chain, NULL, EXT2_I(inode)->i_data + *offsets);
 244	if (!p->key)
 245		goto no_block;
 246	while (--depth) {
 247		bh = sb_bread(sb, le32_to_cpu(p->key));
 248		if (!bh)
 249			goto failure;
 250		read_lock(&EXT2_I(inode)->i_meta_lock);
 251		if (!verify_chain(chain, p))
 252			goto changed;
 253		add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
 254		read_unlock(&EXT2_I(inode)->i_meta_lock);
 255		if (!p->key)
 256			goto no_block;
 257	}
 258	return NULL;
 259
 260changed:
 261	read_unlock(&EXT2_I(inode)->i_meta_lock);
 262	brelse(bh);
 263	*err = -EAGAIN;
 264	goto no_block;
 265failure:
 266	*err = -EIO;
 267no_block:
 268	return p;
 269}
 270
 271/**
 272 *	ext2_find_near - find a place for allocation with sufficient locality
 273 *	@inode: owner
 274 *	@ind: descriptor of indirect block.
 275 *
 276 *	This function returns the preferred place for block allocation.
 277 *	It is used when heuristic for sequential allocation fails.
 278 *	Rules are:
 279 *	  + if there is a block to the left of our position - allocate near it.
 280 *	  + if pointer will live in indirect block - allocate near that block.
 281 *	  + if pointer will live in inode - allocate in the same cylinder group.
 282 *
 283 * In the latter case we colour the starting block by the callers PID to
 284 * prevent it from clashing with concurrent allocations for a different inode
 285 * in the same block group.   The PID is used here so that functionally related
 286 * files will be close-by on-disk.
 287 *
 288 *	Caller must make sure that @ind is valid and will stay that way.
 289 */
 290
 291static ext2_fsblk_t ext2_find_near(struct inode *inode, Indirect *ind)
 292{
 293	struct ext2_inode_info *ei = EXT2_I(inode);
 294	__le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
 295	__le32 *p;
 296	ext2_fsblk_t bg_start;
 297	ext2_fsblk_t colour;
 298
 299	/* Try to find previous block */
 300	for (p = ind->p - 1; p >= start; p--)
 301		if (*p)
 302			return le32_to_cpu(*p);
 303
 304	/* No such thing, so let's try location of indirect block */
 305	if (ind->bh)
 306		return ind->bh->b_blocknr;
 307
 308	/*
 309	 * It is going to be referred from inode itself? OK, just put it into
 310	 * the same cylinder group then.
 311	 */
 312	bg_start = ext2_group_first_block_no(inode->i_sb, ei->i_block_group);
 313	colour = (current->pid % 16) *
 314			(EXT2_BLOCKS_PER_GROUP(inode->i_sb) / 16);
 315	return bg_start + colour;
 316}
 317
 318/**
 319 *	ext2_find_goal - find a preferred place for allocation.
 320 *	@inode: owner
 321 *	@block:  block we want
 322 *	@partial: pointer to the last triple within a chain
 323 *
 324 *	Returns preferred place for a block (the goal).
 325 */
 326
 327static inline ext2_fsblk_t ext2_find_goal(struct inode *inode, long block,
 328					  Indirect *partial)
 329{
 330	struct ext2_block_alloc_info *block_i;
 331
 332	block_i = EXT2_I(inode)->i_block_alloc_info;
 333
 334	/*
 335	 * try the heuristic for sequential allocation,
 336	 * failing that at least try to get decent locality.
 337	 */
 338	if (block_i && (block == block_i->last_alloc_logical_block + 1)
 339		&& (block_i->last_alloc_physical_block != 0)) {
 340		return block_i->last_alloc_physical_block + 1;
 341	}
 342
 343	return ext2_find_near(inode, partial);
 344}
 345
 346/**
 347 *	ext2_blks_to_allocate: Look up the block map and count the number
 348 *	of direct blocks need to be allocated for the given branch.
 349 *
 350 * 	@branch: chain of indirect blocks
 351 *	@k: number of blocks need for indirect blocks
 352 *	@blks: number of data blocks to be mapped.
 353 *	@blocks_to_boundary:  the offset in the indirect block
 354 *
 355 *	return the total number of blocks to be allocate, including the
 356 *	direct and indirect blocks.
 357 */
 358static int
 359ext2_blks_to_allocate(Indirect * branch, int k, unsigned long blks,
 360		int blocks_to_boundary)
 361{
 362	unsigned long count = 0;
 363
 364	/*
 365	 * Simple case, [t,d]Indirect block(s) has not allocated yet
 366	 * then it's clear blocks on that path have not allocated
 367	 */
 368	if (k > 0) {
 369		/* right now don't hanel cross boundary allocation */
 370		if (blks < blocks_to_boundary + 1)
 371			count += blks;
 372		else
 373			count += blocks_to_boundary + 1;
 374		return count;
 375	}
 376
 377	count++;
 378	while (count < blks && count <= blocks_to_boundary
 379		&& le32_to_cpu(*(branch[0].p + count)) == 0) {
 380		count++;
 381	}
 382	return count;
 383}
 384
 385/**
 386 *	ext2_alloc_blocks: multiple allocate blocks needed for a branch
 387 *	@indirect_blks: the number of blocks need to allocate for indirect
 388 *			blocks
 389 *
 390 *	@new_blocks: on return it will store the new block numbers for
 391 *	the indirect blocks(if needed) and the first direct block,
 392 *	@blks:	on return it will store the total number of allocated
 393 *		direct blocks
 394 */
 395static int ext2_alloc_blocks(struct inode *inode,
 396			ext2_fsblk_t goal, int indirect_blks, int blks,
 397			ext2_fsblk_t new_blocks[4], int *err)
 398{
 399	int target, i;
 400	unsigned long count = 0;
 401	int index = 0;
 402	ext2_fsblk_t current_block = 0;
 403	int ret = 0;
 404
 405	/*
 406	 * Here we try to allocate the requested multiple blocks at once,
 407	 * on a best-effort basis.
 408	 * To build a branch, we should allocate blocks for
 409	 * the indirect blocks(if not allocated yet), and at least
 410	 * the first direct block of this branch.  That's the
 411	 * minimum number of blocks need to allocate(required)
 412	 */
 413	target = blks + indirect_blks;
 414
 415	while (1) {
 416		count = target;
 417		/* allocating blocks for indirect blocks and direct blocks */
 418		current_block = ext2_new_blocks(inode,goal,&count,err);
 419		if (*err)
 420			goto failed_out;
 421
 422		target -= count;
 423		/* allocate blocks for indirect blocks */
 424		while (index < indirect_blks && count) {
 425			new_blocks[index++] = current_block++;
 426			count--;
 427		}
 428
 429		if (count > 0)
 430			break;
 431	}
 432
 433	/* save the new block number for the first direct block */
 434	new_blocks[index] = current_block;
 435
 436	/* total number of blocks allocated for direct blocks */
 437	ret = count;
 438	*err = 0;
 439	return ret;
 440failed_out:
 441	for (i = 0; i <index; i++)
 442		ext2_free_blocks(inode, new_blocks[i], 1);
 443	if (index)
 444		mark_inode_dirty(inode);
 445	return ret;
 446}
 447
 448/**
 449 *	ext2_alloc_branch - allocate and set up a chain of blocks.
 450 *	@inode: owner
 451 *	@num: depth of the chain (number of blocks to allocate)
 
 
 452 *	@offsets: offsets (in the blocks) to store the pointers to next.
 453 *	@branch: place to store the chain in.
 454 *
 455 *	This function allocates @num blocks, zeroes out all but the last one,
 456 *	links them into chain and (if we are synchronous) writes them to disk.
 457 *	In other words, it prepares a branch that can be spliced onto the
 458 *	inode. It stores the information about that chain in the branch[], in
 459 *	the same format as ext2_get_branch() would do. We are calling it after
 460 *	we had read the existing part of chain and partial points to the last
 461 *	triple of that (one with zero ->key). Upon the exit we have the same
 462 *	picture as after the successful ext2_get_block(), except that in one
 463 *	place chain is disconnected - *branch->p is still zero (we did not
 464 *	set the last link), but branch->key contains the number that should
 465 *	be placed into *branch->p to fill that gap.
 466 *
 467 *	If allocation fails we free all blocks we've allocated (and forget
 468 *	their buffer_heads) and return the error value the from failed
 469 *	ext2_alloc_block() (normally -ENOSPC). Otherwise we set the chain
 470 *	as described above and return 0.
 471 */
 472
 473static int ext2_alloc_branch(struct inode *inode,
 474			int indirect_blks, int *blks, ext2_fsblk_t goal,
 475			int *offsets, Indirect *branch)
 476{
 477	int blocksize = inode->i_sb->s_blocksize;
 478	int i, n = 0;
 479	int err = 0;
 480	struct buffer_head *bh;
 481	int num;
 482	ext2_fsblk_t new_blocks[4];
 483	ext2_fsblk_t current_block;
 484
 485	num = ext2_alloc_blocks(inode, goal, indirect_blks,
 486				*blks, new_blocks, &err);
 487	if (err)
 488		return err;
 489
 490	branch[0].key = cpu_to_le32(new_blocks[0]);
 491	/*
 492	 * metadata blocks and data blocks are allocated.
 493	 */
 494	for (n = 1; n <= indirect_blks;  n++) {
 495		/*
 496		 * Get buffer_head for parent block, zero it out
 497		 * and set the pointer to new one, then send
 498		 * parent to disk.
 499		 */
 500		bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
 501		if (unlikely(!bh)) {
 502			err = -ENOMEM;
 503			goto failed;
 504		}
 505		branch[n].bh = bh;
 506		lock_buffer(bh);
 507		memset(bh->b_data, 0, blocksize);
 508		branch[n].p = (__le32 *) bh->b_data + offsets[n];
 509		branch[n].key = cpu_to_le32(new_blocks[n]);
 510		*branch[n].p = branch[n].key;
 511		if ( n == indirect_blks) {
 512			current_block = new_blocks[n];
 513			/*
 514			 * End of chain, update the last new metablock of
 515			 * the chain to point to the new allocated
 516			 * data blocks numbers
 517			 */
 518			for (i=1; i < num; i++)
 519				*(branch[n].p + i) = cpu_to_le32(++current_block);
 520		}
 521		set_buffer_uptodate(bh);
 522		unlock_buffer(bh);
 523		mark_buffer_dirty_inode(bh, inode);
 524		/* We used to sync bh here if IS_SYNC(inode).
 525		 * But we now rely upon generic_write_sync()
 526		 * and b_inode_buffers.  But not for directories.
 527		 */
 528		if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
 529			sync_dirty_buffer(bh);
 530	}
 531	*blks = num;
 532	return err;
 533
 534failed:
 535	for (i = 1; i < n; i++)
 536		bforget(branch[i].bh);
 537	for (i = 0; i < indirect_blks; i++)
 538		ext2_free_blocks(inode, new_blocks[i], 1);
 539	ext2_free_blocks(inode, new_blocks[i], num);
 540	return err;
 541}
 542
 543/**
 544 * ext2_splice_branch - splice the allocated branch onto inode.
 545 * @inode: owner
 546 * @block: (logical) number of block we are adding
 547 * @where: location of missing link
 548 * @num:   number of indirect blocks we are adding
 549 * @blks:  number of direct blocks we are adding
 550 *
 551 * This function fills the missing link and does all housekeeping needed in
 552 * inode (->i_blocks, etc.). In case of success we end up with the full
 553 * chain to new block and return 0.
 554 */
 555static void ext2_splice_branch(struct inode *inode,
 556			long block, Indirect *where, int num, int blks)
 557{
 558	int i;
 559	struct ext2_block_alloc_info *block_i;
 560	ext2_fsblk_t current_block;
 561
 562	block_i = EXT2_I(inode)->i_block_alloc_info;
 563
 564	/* XXX LOCKING probably should have i_meta_lock ?*/
 565	/* That's it */
 566
 567	*where->p = where->key;
 568
 569	/*
 570	 * Update the host buffer_head or inode to point to more just allocated
 571	 * direct blocks blocks
 572	 */
 573	if (num == 0 && blks > 1) {
 574		current_block = le32_to_cpu(where->key) + 1;
 575		for (i = 1; i < blks; i++)
 576			*(where->p + i ) = cpu_to_le32(current_block++);
 577	}
 578
 579	/*
 580	 * update the most recently allocated logical & physical block
 581	 * in i_block_alloc_info, to assist find the proper goal block for next
 582	 * allocation
 583	 */
 584	if (block_i) {
 585		block_i->last_alloc_logical_block = block + blks - 1;
 586		block_i->last_alloc_physical_block =
 587				le32_to_cpu(where[num].key) + blks - 1;
 588	}
 589
 590	/* We are done with atomic stuff, now do the rest of housekeeping */
 591
 592	/* had we spliced it onto indirect block? */
 593	if (where->bh)
 594		mark_buffer_dirty_inode(where->bh, inode);
 595
 596	inode->i_ctime = CURRENT_TIME_SEC;
 597	mark_inode_dirty(inode);
 598}
 599
 600/*
 601 * Allocation strategy is simple: if we have to allocate something, we will
 602 * have to go the whole way to leaf. So let's do it before attaching anything
 603 * to tree, set linkage between the newborn blocks, write them if sync is
 604 * required, recheck the path, free and repeat if check fails, otherwise
 605 * set the last missing link (that will protect us from any truncate-generated
 606 * removals - all blocks on the path are immune now) and possibly force the
 607 * write on the parent block.
 608 * That has a nice additional property: no special recovery from the failed
 609 * allocations is needed - we simply release blocks and do not touch anything
 610 * reachable from inode.
 611 *
 612 * `handle' can be NULL if create == 0.
 613 *
 614 * return > 0, # of blocks mapped or allocated.
 615 * return = 0, if plain lookup failed.
 616 * return < 0, error case.
 617 */
 618static int ext2_get_blocks(struct inode *inode,
 619			   sector_t iblock, unsigned long maxblocks,
 620			   struct buffer_head *bh_result,
 621			   int create)
 622{
 623	int err = -EIO;
 624	int offsets[4];
 625	Indirect chain[4];
 626	Indirect *partial;
 627	ext2_fsblk_t goal;
 628	int indirect_blks;
 629	int blocks_to_boundary = 0;
 630	int depth;
 631	struct ext2_inode_info *ei = EXT2_I(inode);
 632	int count = 0;
 633	ext2_fsblk_t first_block = 0;
 634
 635	BUG_ON(maxblocks == 0);
 636
 637	depth = ext2_block_to_path(inode,iblock,offsets,&blocks_to_boundary);
 638
 639	if (depth == 0)
 640		return (err);
 641
 642	partial = ext2_get_branch(inode, depth, offsets, chain, &err);
 643	/* Simplest case - block found, no allocation needed */
 644	if (!partial) {
 645		first_block = le32_to_cpu(chain[depth - 1].key);
 646		clear_buffer_new(bh_result); /* What's this do? */
 647		count++;
 648		/*map more blocks*/
 649		while (count < maxblocks && count <= blocks_to_boundary) {
 650			ext2_fsblk_t blk;
 651
 652			if (!verify_chain(chain, chain + depth - 1)) {
 653				/*
 654				 * Indirect block might be removed by
 655				 * truncate while we were reading it.
 656				 * Handling of that case: forget what we've
 657				 * got now, go to reread.
 658				 */
 659				err = -EAGAIN;
 660				count = 0;
 
 661				break;
 662			}
 663			blk = le32_to_cpu(*(chain[depth-1].p + count));
 664			if (blk == first_block + count)
 665				count++;
 666			else
 667				break;
 668		}
 669		if (err != -EAGAIN)
 670			goto got_it;
 671	}
 672
 673	/* Next simple case - plain lookup or failed read of indirect block */
 674	if (!create || err == -EIO)
 675		goto cleanup;
 676
 677	mutex_lock(&ei->truncate_mutex);
 678	/*
 679	 * If the indirect block is missing while we are reading
 680	 * the chain(ext2_get_branch() returns -EAGAIN err), or
 681	 * if the chain has been changed after we grab the semaphore,
 682	 * (either because another process truncated this branch, or
 683	 * another get_block allocated this branch) re-grab the chain to see if
 684	 * the request block has been allocated or not.
 685	 *
 686	 * Since we already block the truncate/other get_block
 687	 * at this point, we will have the current copy of the chain when we
 688	 * splice the branch into the tree.
 689	 */
 690	if (err == -EAGAIN || !verify_chain(chain, partial)) {
 691		while (partial > chain) {
 692			brelse(partial->bh);
 693			partial--;
 694		}
 695		partial = ext2_get_branch(inode, depth, offsets, chain, &err);
 696		if (!partial) {
 697			count++;
 698			mutex_unlock(&ei->truncate_mutex);
 699			if (err)
 700				goto cleanup;
 701			clear_buffer_new(bh_result);
 702			goto got_it;
 703		}
 
 
 
 
 
 704	}
 705
 706	/*
 707	 * Okay, we need to do block allocation.  Lazily initialize the block
 708	 * allocation info here if necessary
 709	*/
 710	if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
 711		ext2_init_block_alloc_info(inode);
 712
 713	goal = ext2_find_goal(inode, iblock, partial);
 714
 715	/* the number of blocks need to allocate for [d,t]indirect blocks */
 716	indirect_blks = (chain + depth) - partial - 1;
 717	/*
 718	 * Next look up the indirect map to count the totoal number of
 719	 * direct blocks to allocate for this branch.
 720	 */
 721	count = ext2_blks_to_allocate(partial, indirect_blks,
 722					maxblocks, blocks_to_boundary);
 723	/*
 724	 * XXX ???? Block out ext2_truncate while we alter the tree
 725	 */
 726	err = ext2_alloc_branch(inode, indirect_blks, &count, goal,
 727				offsets + (partial - chain), partial);
 728
 729	if (err) {
 730		mutex_unlock(&ei->truncate_mutex);
 731		goto cleanup;
 732	}
 733
 734	if (IS_DAX(inode)) {
 735		/*
 
 
 
 
 
 
 
 736		 * block must be initialised before we put it in the tree
 737		 * so that it's not found by another thread before it's
 738		 * initialised
 739		 */
 740		err = dax_clear_sectors(inode->i_sb->s_bdev,
 741				le32_to_cpu(chain[depth-1].key) <<
 742				(inode->i_blkbits - 9),
 743				1 << inode->i_blkbits);
 744		if (err) {
 745			mutex_unlock(&ei->truncate_mutex);
 746			goto cleanup;
 747		}
 748	}
 
 749
 750	ext2_splice_branch(inode, iblock, partial, indirect_blks, count);
 751	mutex_unlock(&ei->truncate_mutex);
 752	set_buffer_new(bh_result);
 753got_it:
 754	map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
 755	if (count > blocks_to_boundary)
 756		set_buffer_boundary(bh_result);
 757	err = count;
 758	/* Clean up and exit */
 759	partial = chain + depth - 1;	/* the whole chain */
 760cleanup:
 761	while (partial > chain) {
 762		brelse(partial->bh);
 763		partial--;
 764	}
 
 
 765	return err;
 766}
 767
 768int ext2_get_block(struct inode *inode, sector_t iblock, struct buffer_head *bh_result, int create)
 
 769{
 770	unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
 771	int ret = ext2_get_blocks(inode, iblock, max_blocks,
 772			      bh_result, create);
 773	if (ret > 0) {
 774		bh_result->b_size = (ret << inode->i_blkbits);
 775		ret = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 776	}
 777	return ret;
 778
 
 
 
 779}
 780
 781int ext2_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
 782		u64 start, u64 len)
 
 783{
 784	return generic_block_fiemap(inode, fieinfo, start, len,
 785				    ext2_get_block);
 
 
 
 786}
 787
 788static int ext2_writepage(struct page *page, struct writeback_control *wbc)
 
 
 
 
 
 
 789{
 790	return block_write_full_page(page, ext2_get_block, wbc);
 
 
 
 
 
 
 
 791}
 792
 793static int ext2_readpage(struct file *file, struct page *page)
 794{
 795	return mpage_readpage(page, ext2_get_block);
 796}
 797
 798static int
 799ext2_readpages(struct file *file, struct address_space *mapping,
 800		struct list_head *pages, unsigned nr_pages)
 801{
 802	return mpage_readpages(mapping, pages, nr_pages, ext2_get_block);
 803}
 804
 805static int
 806ext2_write_begin(struct file *file, struct address_space *mapping,
 807		loff_t pos, unsigned len, unsigned flags,
 808		struct page **pagep, void **fsdata)
 809{
 810	int ret;
 811
 812	ret = block_write_begin(mapping, pos, len, flags, pagep,
 813				ext2_get_block);
 814	if (ret < 0)
 815		ext2_write_failed(mapping, pos + len);
 816	return ret;
 817}
 818
 819static int ext2_write_end(struct file *file, struct address_space *mapping,
 820			loff_t pos, unsigned len, unsigned copied,
 821			struct page *page, void *fsdata)
 822{
 823	int ret;
 824
 825	ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
 826	if (ret < len)
 827		ext2_write_failed(mapping, pos + len);
 828	return ret;
 829}
 830
 831static int
 832ext2_nobh_write_begin(struct file *file, struct address_space *mapping,
 833		loff_t pos, unsigned len, unsigned flags,
 834		struct page **pagep, void **fsdata)
 835{
 836	int ret;
 837
 838	ret = nobh_write_begin(mapping, pos, len, flags, pagep, fsdata,
 839			       ext2_get_block);
 840	if (ret < 0)
 841		ext2_write_failed(mapping, pos + len);
 842	return ret;
 843}
 844
 845static int ext2_nobh_writepage(struct page *page,
 846			struct writeback_control *wbc)
 847{
 848	return nobh_writepage(page, ext2_get_block, wbc);
 849}
 850
 851static sector_t ext2_bmap(struct address_space *mapping, sector_t block)
 852{
 853	return generic_block_bmap(mapping,block,ext2_get_block);
 854}
 855
 856static ssize_t
 857ext2_direct_IO(struct kiocb *iocb, struct iov_iter *iter, loff_t offset)
 858{
 859	struct file *file = iocb->ki_filp;
 860	struct address_space *mapping = file->f_mapping;
 861	struct inode *inode = mapping->host;
 862	size_t count = iov_iter_count(iter);
 
 863	ssize_t ret;
 864
 865	if (IS_DAX(inode))
 866		ret = dax_do_io(iocb, inode, iter, offset, ext2_get_block, NULL,
 867				DIO_LOCKING);
 868	else
 869		ret = blockdev_direct_IO(iocb, inode, iter, offset,
 870					 ext2_get_block);
 871	if (ret < 0 && iov_iter_rw(iter) == WRITE)
 872		ext2_write_failed(mapping, offset + count);
 873	return ret;
 874}
 875
 876static int
 877ext2_writepages(struct address_space *mapping, struct writeback_control *wbc)
 878{
 879#ifdef CONFIG_FS_DAX
 880	if (dax_mapping(mapping)) {
 881		return dax_writeback_mapping_range(mapping,
 882						   mapping->host->i_sb->s_bdev,
 883						   wbc);
 884	}
 885#endif
 886
 887	return mpage_writepages(mapping, wbc, ext2_get_block);
 888}
 889
 
 
 
 
 
 
 
 
 890const struct address_space_operations ext2_aops = {
 891	.readpage		= ext2_readpage,
 892	.readpages		= ext2_readpages,
 893	.writepage		= ext2_writepage,
 
 894	.write_begin		= ext2_write_begin,
 895	.write_end		= ext2_write_end,
 896	.bmap			= ext2_bmap,
 897	.direct_IO		= ext2_direct_IO,
 898	.writepages		= ext2_writepages,
 899	.migratepage		= buffer_migrate_page,
 900	.is_partially_uptodate	= block_is_partially_uptodate,
 901	.error_remove_page	= generic_error_remove_page,
 902};
 903
 904const struct address_space_operations ext2_nobh_aops = {
 905	.readpage		= ext2_readpage,
 906	.readpages		= ext2_readpages,
 907	.writepage		= ext2_nobh_writepage,
 908	.write_begin		= ext2_nobh_write_begin,
 909	.write_end		= nobh_write_end,
 910	.bmap			= ext2_bmap,
 911	.direct_IO		= ext2_direct_IO,
 912	.writepages		= ext2_writepages,
 913	.migratepage		= buffer_migrate_page,
 914	.error_remove_page	= generic_error_remove_page,
 915};
 916
 917/*
 918 * Probably it should be a library function... search for first non-zero word
 919 * or memcmp with zero_page, whatever is better for particular architecture.
 920 * Linus?
 921 */
 922static inline int all_zeroes(__le32 *p, __le32 *q)
 923{
 924	while (p < q)
 925		if (*p++)
 926			return 0;
 927	return 1;
 928}
 929
 930/**
 931 *	ext2_find_shared - find the indirect blocks for partial truncation.
 932 *	@inode:	  inode in question
 933 *	@depth:	  depth of the affected branch
 934 *	@offsets: offsets of pointers in that branch (see ext2_block_to_path)
 935 *	@chain:	  place to store the pointers to partial indirect blocks
 936 *	@top:	  place to the (detached) top of branch
 937 *
 938 *	This is a helper function used by ext2_truncate().
 939 *
 940 *	When we do truncate() we may have to clean the ends of several indirect
 941 *	blocks but leave the blocks themselves alive. Block is partially
 942 *	truncated if some data below the new i_size is referred from it (and
 943 *	it is on the path to the first completely truncated data block, indeed).
 944 *	We have to free the top of that path along with everything to the right
 945 *	of the path. Since no allocation past the truncation point is possible
 946 *	until ext2_truncate() finishes, we may safely do the latter, but top
 947 *	of branch may require special attention - pageout below the truncation
 948 *	point might try to populate it.
 949 *
 950 *	We atomically detach the top of branch from the tree, store the block
 951 *	number of its root in *@top, pointers to buffer_heads of partially
 952 *	truncated blocks - in @chain[].bh and pointers to their last elements
 953 *	that should not be removed - in @chain[].p. Return value is the pointer
 954 *	to last filled element of @chain.
 955 *
 956 *	The work left to caller to do the actual freeing of subtrees:
 957 *		a) free the subtree starting from *@top
 958 *		b) free the subtrees whose roots are stored in
 959 *			(@chain[i].p+1 .. end of @chain[i].bh->b_data)
 960 *		c) free the subtrees growing from the inode past the @chain[0].p
 961 *			(no partially truncated stuff there).
 962 */
 963
 964static Indirect *ext2_find_shared(struct inode *inode,
 965				int depth,
 966				int offsets[4],
 967				Indirect chain[4],
 968				__le32 *top)
 969{
 970	Indirect *partial, *p;
 971	int k, err;
 972
 973	*top = 0;
 974	for (k = depth; k > 1 && !offsets[k-1]; k--)
 975		;
 976	partial = ext2_get_branch(inode, k, offsets, chain, &err);
 977	if (!partial)
 978		partial = chain + k-1;
 979	/*
 980	 * If the branch acquired continuation since we've looked at it -
 981	 * fine, it should all survive and (new) top doesn't belong to us.
 982	 */
 983	write_lock(&EXT2_I(inode)->i_meta_lock);
 984	if (!partial->key && *partial->p) {
 985		write_unlock(&EXT2_I(inode)->i_meta_lock);
 986		goto no_top;
 987	}
 988	for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
 989		;
 990	/*
 991	 * OK, we've found the last block that must survive. The rest of our
 992	 * branch should be detached before unlocking. However, if that rest
 993	 * of branch is all ours and does not grow immediately from the inode
 994	 * it's easier to cheat and just decrement partial->p.
 995	 */
 996	if (p == chain + k - 1 && p > chain) {
 997		p->p--;
 998	} else {
 999		*top = *p->p;
1000		*p->p = 0;
1001	}
1002	write_unlock(&EXT2_I(inode)->i_meta_lock);
1003
1004	while(partial > p)
1005	{
1006		brelse(partial->bh);
1007		partial--;
1008	}
1009no_top:
1010	return partial;
1011}
1012
1013/**
1014 *	ext2_free_data - free a list of data blocks
1015 *	@inode:	inode we are dealing with
1016 *	@p:	array of block numbers
1017 *	@q:	points immediately past the end of array
1018 *
1019 *	We are freeing all blocks referred from that array (numbers are
1020 *	stored as little-endian 32-bit) and updating @inode->i_blocks
1021 *	appropriately.
1022 */
1023static inline void ext2_free_data(struct inode *inode, __le32 *p, __le32 *q)
1024{
1025	unsigned long block_to_free = 0, count = 0;
1026	unsigned long nr;
1027
1028	for ( ; p < q ; p++) {
1029		nr = le32_to_cpu(*p);
1030		if (nr) {
1031			*p = 0;
1032			/* accumulate blocks to free if they're contiguous */
1033			if (count == 0)
1034				goto free_this;
1035			else if (block_to_free == nr - count)
1036				count++;
1037			else {
1038				ext2_free_blocks (inode, block_to_free, count);
1039				mark_inode_dirty(inode);
1040			free_this:
1041				block_to_free = nr;
1042				count = 1;
1043			}
1044		}
1045	}
1046	if (count > 0) {
1047		ext2_free_blocks (inode, block_to_free, count);
1048		mark_inode_dirty(inode);
1049	}
1050}
1051
1052/**
1053 *	ext2_free_branches - free an array of branches
1054 *	@inode:	inode we are dealing with
1055 *	@p:	array of block numbers
1056 *	@q:	pointer immediately past the end of array
1057 *	@depth:	depth of the branches to free
1058 *
1059 *	We are freeing all blocks referred from these branches (numbers are
1060 *	stored as little-endian 32-bit) and updating @inode->i_blocks
1061 *	appropriately.
1062 */
1063static void ext2_free_branches(struct inode *inode, __le32 *p, __le32 *q, int depth)
1064{
1065	struct buffer_head * bh;
1066	unsigned long nr;
1067
1068	if (depth--) {
1069		int addr_per_block = EXT2_ADDR_PER_BLOCK(inode->i_sb);
1070		for ( ; p < q ; p++) {
1071			nr = le32_to_cpu(*p);
1072			if (!nr)
1073				continue;
1074			*p = 0;
1075			bh = sb_bread(inode->i_sb, nr);
1076			/*
1077			 * A read failure? Report error and clear slot
1078			 * (should be rare).
1079			 */ 
1080			if (!bh) {
1081				ext2_error(inode->i_sb, "ext2_free_branches",
1082					"Read failure, inode=%ld, block=%ld",
1083					inode->i_ino, nr);
1084				continue;
1085			}
1086			ext2_free_branches(inode,
1087					   (__le32*)bh->b_data,
1088					   (__le32*)bh->b_data + addr_per_block,
1089					   depth);
1090			bforget(bh);
1091			ext2_free_blocks(inode, nr, 1);
1092			mark_inode_dirty(inode);
1093		}
1094	} else
1095		ext2_free_data(inode, p, q);
1096}
1097
1098/* dax_sem must be held when calling this function */
1099static void __ext2_truncate_blocks(struct inode *inode, loff_t offset)
1100{
1101	__le32 *i_data = EXT2_I(inode)->i_data;
1102	struct ext2_inode_info *ei = EXT2_I(inode);
1103	int addr_per_block = EXT2_ADDR_PER_BLOCK(inode->i_sb);
1104	int offsets[4];
1105	Indirect chain[4];
1106	Indirect *partial;
1107	__le32 nr = 0;
1108	int n;
1109	long iblock;
1110	unsigned blocksize;
1111	blocksize = inode->i_sb->s_blocksize;
1112	iblock = (offset + blocksize-1) >> EXT2_BLOCK_SIZE_BITS(inode->i_sb);
1113
1114#ifdef CONFIG_FS_DAX
1115	WARN_ON(!rwsem_is_locked(&ei->dax_sem));
1116#endif
1117
1118	n = ext2_block_to_path(inode, iblock, offsets, NULL);
1119	if (n == 0)
1120		return;
1121
1122	/*
1123	 * From here we block out all ext2_get_block() callers who want to
1124	 * modify the block allocation tree.
1125	 */
1126	mutex_lock(&ei->truncate_mutex);
1127
1128	if (n == 1) {
1129		ext2_free_data(inode, i_data+offsets[0],
1130					i_data + EXT2_NDIR_BLOCKS);
1131		goto do_indirects;
1132	}
1133
1134	partial = ext2_find_shared(inode, n, offsets, chain, &nr);
1135	/* Kill the top of shared branch (already detached) */
1136	if (nr) {
1137		if (partial == chain)
1138			mark_inode_dirty(inode);
1139		else
1140			mark_buffer_dirty_inode(partial->bh, inode);
1141		ext2_free_branches(inode, &nr, &nr+1, (chain+n-1) - partial);
1142	}
1143	/* Clear the ends of indirect blocks on the shared branch */
1144	while (partial > chain) {
1145		ext2_free_branches(inode,
1146				   partial->p + 1,
1147				   (__le32*)partial->bh->b_data+addr_per_block,
1148				   (chain+n-1) - partial);
1149		mark_buffer_dirty_inode(partial->bh, inode);
1150		brelse (partial->bh);
1151		partial--;
1152	}
1153do_indirects:
1154	/* Kill the remaining (whole) subtrees */
1155	switch (offsets[0]) {
1156		default:
1157			nr = i_data[EXT2_IND_BLOCK];
1158			if (nr) {
1159				i_data[EXT2_IND_BLOCK] = 0;
1160				mark_inode_dirty(inode);
1161				ext2_free_branches(inode, &nr, &nr+1, 1);
1162			}
 
1163		case EXT2_IND_BLOCK:
1164			nr = i_data[EXT2_DIND_BLOCK];
1165			if (nr) {
1166				i_data[EXT2_DIND_BLOCK] = 0;
1167				mark_inode_dirty(inode);
1168				ext2_free_branches(inode, &nr, &nr+1, 2);
1169			}
 
1170		case EXT2_DIND_BLOCK:
1171			nr = i_data[EXT2_TIND_BLOCK];
1172			if (nr) {
1173				i_data[EXT2_TIND_BLOCK] = 0;
1174				mark_inode_dirty(inode);
1175				ext2_free_branches(inode, &nr, &nr+1, 3);
1176			}
 
1177		case EXT2_TIND_BLOCK:
1178			;
1179	}
1180
1181	ext2_discard_reservation(inode);
1182
1183	mutex_unlock(&ei->truncate_mutex);
1184}
1185
1186static void ext2_truncate_blocks(struct inode *inode, loff_t offset)
1187{
1188	/*
1189	 * XXX: it seems like a bug here that we don't allow
1190	 * IS_APPEND inode to have blocks-past-i_size trimmed off.
1191	 * review and fix this.
1192	 *
1193	 * Also would be nice to be able to handle IO errors and such,
1194	 * but that's probably too much to ask.
1195	 */
1196	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1197	    S_ISLNK(inode->i_mode)))
1198		return;
1199	if (ext2_inode_is_fast_symlink(inode))
1200		return;
1201	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1202		return;
1203
1204	dax_sem_down_write(EXT2_I(inode));
1205	__ext2_truncate_blocks(inode, offset);
1206	dax_sem_up_write(EXT2_I(inode));
1207}
1208
1209static int ext2_setsize(struct inode *inode, loff_t newsize)
1210{
1211	int error;
1212
1213	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1214	    S_ISLNK(inode->i_mode)))
1215		return -EINVAL;
1216	if (ext2_inode_is_fast_symlink(inode))
1217		return -EINVAL;
1218	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1219		return -EPERM;
1220
1221	inode_dio_wait(inode);
1222
1223	if (IS_DAX(inode))
1224		error = dax_truncate_page(inode, newsize, ext2_get_block);
1225	else if (test_opt(inode->i_sb, NOBH))
1226		error = nobh_truncate_page(inode->i_mapping,
1227				newsize, ext2_get_block);
1228	else
1229		error = block_truncate_page(inode->i_mapping,
1230				newsize, ext2_get_block);
1231	if (error)
1232		return error;
1233
1234	dax_sem_down_write(EXT2_I(inode));
1235	truncate_setsize(inode, newsize);
1236	__ext2_truncate_blocks(inode, newsize);
1237	dax_sem_up_write(EXT2_I(inode));
1238
1239	inode->i_mtime = inode->i_ctime = CURRENT_TIME_SEC;
1240	if (inode_needs_sync(inode)) {
1241		sync_mapping_buffers(inode->i_mapping);
1242		sync_inode_metadata(inode, 1);
1243	} else {
1244		mark_inode_dirty(inode);
1245	}
1246
1247	return 0;
1248}
1249
1250static struct ext2_inode *ext2_get_inode(struct super_block *sb, ino_t ino,
1251					struct buffer_head **p)
1252{
1253	struct buffer_head * bh;
1254	unsigned long block_group;
1255	unsigned long block;
1256	unsigned long offset;
1257	struct ext2_group_desc * gdp;
1258
1259	*p = NULL;
1260	if ((ino != EXT2_ROOT_INO && ino < EXT2_FIRST_INO(sb)) ||
1261	    ino > le32_to_cpu(EXT2_SB(sb)->s_es->s_inodes_count))
1262		goto Einval;
1263
1264	block_group = (ino - 1) / EXT2_INODES_PER_GROUP(sb);
1265	gdp = ext2_get_group_desc(sb, block_group, NULL);
1266	if (!gdp)
1267		goto Egdp;
1268	/*
1269	 * Figure out the offset within the block group inode table
1270	 */
1271	offset = ((ino - 1) % EXT2_INODES_PER_GROUP(sb)) * EXT2_INODE_SIZE(sb);
1272	block = le32_to_cpu(gdp->bg_inode_table) +
1273		(offset >> EXT2_BLOCK_SIZE_BITS(sb));
1274	if (!(bh = sb_bread(sb, block)))
1275		goto Eio;
1276
1277	*p = bh;
1278	offset &= (EXT2_BLOCK_SIZE(sb) - 1);
1279	return (struct ext2_inode *) (bh->b_data + offset);
1280
1281Einval:
1282	ext2_error(sb, "ext2_get_inode", "bad inode number: %lu",
1283		   (unsigned long) ino);
1284	return ERR_PTR(-EINVAL);
1285Eio:
1286	ext2_error(sb, "ext2_get_inode",
1287		   "unable to read inode block - inode=%lu, block=%lu",
1288		   (unsigned long) ino, block);
1289Egdp:
1290	return ERR_PTR(-EIO);
1291}
1292
1293void ext2_set_inode_flags(struct inode *inode)
1294{
1295	unsigned int flags = EXT2_I(inode)->i_flags;
1296
1297	inode->i_flags &= ~(S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME |
1298				S_DIRSYNC | S_DAX);
1299	if (flags & EXT2_SYNC_FL)
1300		inode->i_flags |= S_SYNC;
1301	if (flags & EXT2_APPEND_FL)
1302		inode->i_flags |= S_APPEND;
1303	if (flags & EXT2_IMMUTABLE_FL)
1304		inode->i_flags |= S_IMMUTABLE;
1305	if (flags & EXT2_NOATIME_FL)
1306		inode->i_flags |= S_NOATIME;
1307	if (flags & EXT2_DIRSYNC_FL)
1308		inode->i_flags |= S_DIRSYNC;
1309	if (test_opt(inode->i_sb, DAX) && S_ISREG(inode->i_mode))
1310		inode->i_flags |= S_DAX;
1311}
1312
1313/* Propagate flags from i_flags to EXT2_I(inode)->i_flags */
1314void ext2_get_inode_flags(struct ext2_inode_info *ei)
1315{
1316	unsigned int flags = ei->vfs_inode.i_flags;
1317
1318	ei->i_flags &= ~(EXT2_SYNC_FL|EXT2_APPEND_FL|
1319			EXT2_IMMUTABLE_FL|EXT2_NOATIME_FL|EXT2_DIRSYNC_FL);
1320	if (flags & S_SYNC)
1321		ei->i_flags |= EXT2_SYNC_FL;
1322	if (flags & S_APPEND)
1323		ei->i_flags |= EXT2_APPEND_FL;
1324	if (flags & S_IMMUTABLE)
1325		ei->i_flags |= EXT2_IMMUTABLE_FL;
1326	if (flags & S_NOATIME)
1327		ei->i_flags |= EXT2_NOATIME_FL;
1328	if (flags & S_DIRSYNC)
1329		ei->i_flags |= EXT2_DIRSYNC_FL;
1330}
1331
1332struct inode *ext2_iget (struct super_block *sb, unsigned long ino)
1333{
1334	struct ext2_inode_info *ei;
1335	struct buffer_head * bh;
1336	struct ext2_inode *raw_inode;
1337	struct inode *inode;
1338	long ret = -EIO;
1339	int n;
1340	uid_t i_uid;
1341	gid_t i_gid;
1342
1343	inode = iget_locked(sb, ino);
1344	if (!inode)
1345		return ERR_PTR(-ENOMEM);
1346	if (!(inode->i_state & I_NEW))
1347		return inode;
1348
1349	ei = EXT2_I(inode);
1350	ei->i_block_alloc_info = NULL;
1351
1352	raw_inode = ext2_get_inode(inode->i_sb, ino, &bh);
1353	if (IS_ERR(raw_inode)) {
1354		ret = PTR_ERR(raw_inode);
1355 		goto bad_inode;
1356	}
1357
1358	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
1359	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
1360	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
1361	if (!(test_opt (inode->i_sb, NO_UID32))) {
1362		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
1363		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
1364	}
1365	i_uid_write(inode, i_uid);
1366	i_gid_write(inode, i_gid);
1367	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
1368	inode->i_size = le32_to_cpu(raw_inode->i_size);
1369	inode->i_atime.tv_sec = (signed)le32_to_cpu(raw_inode->i_atime);
1370	inode->i_ctime.tv_sec = (signed)le32_to_cpu(raw_inode->i_ctime);
1371	inode->i_mtime.tv_sec = (signed)le32_to_cpu(raw_inode->i_mtime);
1372	inode->i_atime.tv_nsec = inode->i_mtime.tv_nsec = inode->i_ctime.tv_nsec = 0;
1373	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
1374	/* We now have enough fields to check if the inode was active or not.
1375	 * This is needed because nfsd might try to access dead inodes
1376	 * the test is that same one that e2fsck uses
1377	 * NeilBrown 1999oct15
1378	 */
1379	if (inode->i_nlink == 0 && (inode->i_mode == 0 || ei->i_dtime)) {
1380		/* this inode is deleted */
1381		brelse (bh);
1382		ret = -ESTALE;
1383		goto bad_inode;
1384	}
1385	inode->i_blocks = le32_to_cpu(raw_inode->i_blocks);
1386	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
 
1387	ei->i_faddr = le32_to_cpu(raw_inode->i_faddr);
1388	ei->i_frag_no = raw_inode->i_frag;
1389	ei->i_frag_size = raw_inode->i_fsize;
1390	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
1391	ei->i_dir_acl = 0;
 
 
 
 
 
 
 
 
 
1392	if (S_ISREG(inode->i_mode))
1393		inode->i_size |= ((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32;
1394	else
1395		ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl);
 
 
 
 
1396	ei->i_dtime = 0;
1397	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
1398	ei->i_state = 0;
1399	ei->i_block_group = (ino - 1) / EXT2_INODES_PER_GROUP(inode->i_sb);
1400	ei->i_dir_start_lookup = 0;
1401
1402	/*
1403	 * NOTE! The in-memory inode i_data array is in little-endian order
1404	 * even on big-endian machines: we do NOT byteswap the block numbers!
1405	 */
1406	for (n = 0; n < EXT2_N_BLOCKS; n++)
1407		ei->i_data[n] = raw_inode->i_block[n];
1408
1409	if (S_ISREG(inode->i_mode)) {
1410		inode->i_op = &ext2_file_inode_operations;
1411		if (test_opt(inode->i_sb, NOBH)) {
1412			inode->i_mapping->a_ops = &ext2_nobh_aops;
1413			inode->i_fop = &ext2_file_operations;
1414		} else {
1415			inode->i_mapping->a_ops = &ext2_aops;
1416			inode->i_fop = &ext2_file_operations;
1417		}
1418	} else if (S_ISDIR(inode->i_mode)) {
1419		inode->i_op = &ext2_dir_inode_operations;
1420		inode->i_fop = &ext2_dir_operations;
1421		if (test_opt(inode->i_sb, NOBH))
1422			inode->i_mapping->a_ops = &ext2_nobh_aops;
1423		else
1424			inode->i_mapping->a_ops = &ext2_aops;
1425	} else if (S_ISLNK(inode->i_mode)) {
1426		if (ext2_inode_is_fast_symlink(inode)) {
1427			inode->i_link = (char *)ei->i_data;
1428			inode->i_op = &ext2_fast_symlink_inode_operations;
1429			nd_terminate_link(ei->i_data, inode->i_size,
1430				sizeof(ei->i_data) - 1);
1431		} else {
1432			inode->i_op = &ext2_symlink_inode_operations;
1433			inode_nohighmem(inode);
1434			if (test_opt(inode->i_sb, NOBH))
1435				inode->i_mapping->a_ops = &ext2_nobh_aops;
1436			else
1437				inode->i_mapping->a_ops = &ext2_aops;
1438		}
1439	} else {
1440		inode->i_op = &ext2_special_inode_operations;
1441		if (raw_inode->i_block[0])
1442			init_special_inode(inode, inode->i_mode,
1443			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
1444		else 
1445			init_special_inode(inode, inode->i_mode,
1446			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
1447	}
1448	brelse (bh);
1449	ext2_set_inode_flags(inode);
1450	unlock_new_inode(inode);
1451	return inode;
1452	
1453bad_inode:
 
1454	iget_failed(inode);
1455	return ERR_PTR(ret);
1456}
1457
1458static int __ext2_write_inode(struct inode *inode, int do_sync)
1459{
1460	struct ext2_inode_info *ei = EXT2_I(inode);
1461	struct super_block *sb = inode->i_sb;
1462	ino_t ino = inode->i_ino;
1463	uid_t uid = i_uid_read(inode);
1464	gid_t gid = i_gid_read(inode);
1465	struct buffer_head * bh;
1466	struct ext2_inode * raw_inode = ext2_get_inode(sb, ino, &bh);
1467	int n;
1468	int err = 0;
1469
1470	if (IS_ERR(raw_inode))
1471 		return -EIO;
1472
1473	/* For fields not not tracking in the in-memory inode,
1474	 * initialise them to zero for new inodes. */
1475	if (ei->i_state & EXT2_STATE_NEW)
1476		memset(raw_inode, 0, EXT2_SB(sb)->s_inode_size);
1477
1478	ext2_get_inode_flags(ei);
1479	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
1480	if (!(test_opt(sb, NO_UID32))) {
1481		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(uid));
1482		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(gid));
1483/*
1484 * Fix up interoperability with old kernels. Otherwise, old inodes get
1485 * re-used with the upper 16 bits of the uid/gid intact
1486 */
1487		if (!ei->i_dtime) {
1488			raw_inode->i_uid_high = cpu_to_le16(high_16_bits(uid));
1489			raw_inode->i_gid_high = cpu_to_le16(high_16_bits(gid));
1490		} else {
1491			raw_inode->i_uid_high = 0;
1492			raw_inode->i_gid_high = 0;
1493		}
1494	} else {
1495		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(uid));
1496		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(gid));
1497		raw_inode->i_uid_high = 0;
1498		raw_inode->i_gid_high = 0;
1499	}
1500	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
1501	raw_inode->i_size = cpu_to_le32(inode->i_size);
1502	raw_inode->i_atime = cpu_to_le32(inode->i_atime.tv_sec);
1503	raw_inode->i_ctime = cpu_to_le32(inode->i_ctime.tv_sec);
1504	raw_inode->i_mtime = cpu_to_le32(inode->i_mtime.tv_sec);
1505
1506	raw_inode->i_blocks = cpu_to_le32(inode->i_blocks);
1507	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
1508	raw_inode->i_flags = cpu_to_le32(ei->i_flags);
1509	raw_inode->i_faddr = cpu_to_le32(ei->i_faddr);
1510	raw_inode->i_frag = ei->i_frag_no;
1511	raw_inode->i_fsize = ei->i_frag_size;
1512	raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl);
1513	if (!S_ISREG(inode->i_mode))
1514		raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl);
1515	else {
1516		raw_inode->i_size_high = cpu_to_le32(inode->i_size >> 32);
1517		if (inode->i_size > 0x7fffffffULL) {
1518			if (!EXT2_HAS_RO_COMPAT_FEATURE(sb,
1519					EXT2_FEATURE_RO_COMPAT_LARGE_FILE) ||
1520			    EXT2_SB(sb)->s_es->s_rev_level ==
1521					cpu_to_le32(EXT2_GOOD_OLD_REV)) {
1522			       /* If this is the first large file
1523				* created, add a flag to the superblock.
1524				*/
1525				spin_lock(&EXT2_SB(sb)->s_lock);
1526				ext2_update_dynamic_rev(sb);
1527				EXT2_SET_RO_COMPAT_FEATURE(sb,
1528					EXT2_FEATURE_RO_COMPAT_LARGE_FILE);
1529				spin_unlock(&EXT2_SB(sb)->s_lock);
1530				ext2_write_super(sb);
1531			}
1532		}
1533	}
1534	
1535	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
1536	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1537		if (old_valid_dev(inode->i_rdev)) {
1538			raw_inode->i_block[0] =
1539				cpu_to_le32(old_encode_dev(inode->i_rdev));
1540			raw_inode->i_block[1] = 0;
1541		} else {
1542			raw_inode->i_block[0] = 0;
1543			raw_inode->i_block[1] =
1544				cpu_to_le32(new_encode_dev(inode->i_rdev));
1545			raw_inode->i_block[2] = 0;
1546		}
1547	} else for (n = 0; n < EXT2_N_BLOCKS; n++)
1548		raw_inode->i_block[n] = ei->i_data[n];
1549	mark_buffer_dirty(bh);
1550	if (do_sync) {
1551		sync_dirty_buffer(bh);
1552		if (buffer_req(bh) && !buffer_uptodate(bh)) {
1553			printk ("IO error syncing ext2 inode [%s:%08lx]\n",
1554				sb->s_id, (unsigned long) ino);
1555			err = -EIO;
1556		}
1557	}
1558	ei->i_state &= ~EXT2_STATE_NEW;
1559	brelse (bh);
1560	return err;
1561}
1562
1563int ext2_write_inode(struct inode *inode, struct writeback_control *wbc)
1564{
1565	return __ext2_write_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1566}
1567
1568int ext2_setattr(struct dentry *dentry, struct iattr *iattr)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1569{
1570	struct inode *inode = d_inode(dentry);
1571	int error;
1572
1573	error = inode_change_ok(inode, iattr);
1574	if (error)
1575		return error;
1576
1577	if (is_quota_modification(inode, iattr)) {
1578		error = dquot_initialize(inode);
1579		if (error)
1580			return error;
1581	}
1582	if ((iattr->ia_valid & ATTR_UID && !uid_eq(iattr->ia_uid, inode->i_uid)) ||
1583	    (iattr->ia_valid & ATTR_GID && !gid_eq(iattr->ia_gid, inode->i_gid))) {
1584		error = dquot_transfer(inode, iattr);
1585		if (error)
1586			return error;
1587	}
1588	if (iattr->ia_valid & ATTR_SIZE && iattr->ia_size != inode->i_size) {
1589		error = ext2_setsize(inode, iattr->ia_size);
1590		if (error)
1591			return error;
1592	}
1593	setattr_copy(inode, iattr);
1594	if (iattr->ia_valid & ATTR_MODE)
1595		error = posix_acl_chmod(inode, inode->i_mode);
1596	mark_inode_dirty(inode);
1597
1598	return error;
1599}
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  linux/fs/ext2/inode.c
   4 *
   5 * Copyright (C) 1992, 1993, 1994, 1995
   6 * Remy Card (card@masi.ibp.fr)
   7 * Laboratoire MASI - Institut Blaise Pascal
   8 * Universite Pierre et Marie Curie (Paris VI)
   9 *
  10 *  from
  11 *
  12 *  linux/fs/minix/inode.c
  13 *
  14 *  Copyright (C) 1991, 1992  Linus Torvalds
  15 *
  16 *  Goal-directed block allocation by Stephen Tweedie
  17 * 	(sct@dcs.ed.ac.uk), 1993, 1998
  18 *  Big-endian to little-endian byte-swapping/bitmaps by
  19 *        David S. Miller (davem@caip.rutgers.edu), 1995
  20 *  64-bit file support on 64-bit platforms by Jakub Jelinek
  21 * 	(jj@sunsite.ms.mff.cuni.cz)
  22 *
  23 *  Assorted race fixes, rewrite of ext2_get_block() by Al Viro, 2000
  24 */
  25
  26#include <linux/time.h>
  27#include <linux/highuid.h>
  28#include <linux/pagemap.h>
  29#include <linux/dax.h>
  30#include <linux/blkdev.h>
  31#include <linux/quotaops.h>
  32#include <linux/writeback.h>
  33#include <linux/buffer_head.h>
  34#include <linux/mpage.h>
  35#include <linux/fiemap.h>
  36#include <linux/iomap.h>
  37#include <linux/namei.h>
  38#include <linux/uio.h>
  39#include "ext2.h"
  40#include "acl.h"
  41#include "xattr.h"
  42
  43static int __ext2_write_inode(struct inode *inode, int do_sync);
  44
  45/*
  46 * Test whether an inode is a fast symlink.
  47 */
  48static inline int ext2_inode_is_fast_symlink(struct inode *inode)
  49{
  50	int ea_blocks = EXT2_I(inode)->i_file_acl ?
  51		(inode->i_sb->s_blocksize >> 9) : 0;
  52
  53	return (S_ISLNK(inode->i_mode) &&
  54		inode->i_blocks - ea_blocks == 0);
  55}
  56
  57static void ext2_truncate_blocks(struct inode *inode, loff_t offset);
  58
  59static void ext2_write_failed(struct address_space *mapping, loff_t to)
  60{
  61	struct inode *inode = mapping->host;
  62
  63	if (to > inode->i_size) {
  64		truncate_pagecache(inode, inode->i_size);
  65		ext2_truncate_blocks(inode, inode->i_size);
  66	}
  67}
  68
  69/*
  70 * Called at the last iput() if i_nlink is zero.
  71 */
  72void ext2_evict_inode(struct inode * inode)
  73{
  74	struct ext2_block_alloc_info *rsv;
  75	int want_delete = 0;
  76
  77	if (!inode->i_nlink && !is_bad_inode(inode)) {
  78		want_delete = 1;
  79		dquot_initialize(inode);
  80	} else {
  81		dquot_drop(inode);
  82	}
  83
  84	truncate_inode_pages_final(&inode->i_data);
  85
  86	if (want_delete) {
  87		sb_start_intwrite(inode->i_sb);
  88		/* set dtime */
  89		EXT2_I(inode)->i_dtime	= ktime_get_real_seconds();
  90		mark_inode_dirty(inode);
  91		__ext2_write_inode(inode, inode_needs_sync(inode));
  92		/* truncate to 0 */
  93		inode->i_size = 0;
  94		if (inode->i_blocks)
  95			ext2_truncate_blocks(inode, 0);
  96		ext2_xattr_delete_inode(inode);
  97	}
  98
  99	invalidate_inode_buffers(inode);
 100	clear_inode(inode);
 101
 102	ext2_discard_reservation(inode);
 103	rsv = EXT2_I(inode)->i_block_alloc_info;
 104	EXT2_I(inode)->i_block_alloc_info = NULL;
 105	if (unlikely(rsv))
 106		kfree(rsv);
 107
 108	if (want_delete) {
 109		ext2_free_inode(inode);
 110		sb_end_intwrite(inode->i_sb);
 111	}
 112}
 113
 114typedef struct {
 115	__le32	*p;
 116	__le32	key;
 117	struct buffer_head *bh;
 118} Indirect;
 119
 120static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
 121{
 122	p->key = *(p->p = v);
 123	p->bh = bh;
 124}
 125
 126static inline int verify_chain(Indirect *from, Indirect *to)
 127{
 128	while (from <= to && from->key == *from->p)
 129		from++;
 130	return (from > to);
 131}
 132
 133/**
 134 *	ext2_block_to_path - parse the block number into array of offsets
 135 *	@inode: inode in question (we are only interested in its superblock)
 136 *	@i_block: block number to be parsed
 137 *	@offsets: array to store the offsets in
 138 *      @boundary: set this non-zero if the referred-to block is likely to be
 139 *             followed (on disk) by an indirect block.
 140 *	To store the locations of file's data ext2 uses a data structure common
 141 *	for UNIX filesystems - tree of pointers anchored in the inode, with
 142 *	data blocks at leaves and indirect blocks in intermediate nodes.
 143 *	This function translates the block number into path in that tree -
 144 *	return value is the path length and @offsets[n] is the offset of
 145 *	pointer to (n+1)th node in the nth one. If @block is out of range
 146 *	(negative or too large) warning is printed and zero returned.
 147 *
 148 *	Note: function doesn't find node addresses, so no IO is needed. All
 149 *	we need to know is the capacity of indirect blocks (taken from the
 150 *	inode->i_sb).
 151 */
 152
 153/*
 154 * Portability note: the last comparison (check that we fit into triple
 155 * indirect block) is spelled differently, because otherwise on an
 156 * architecture with 32-bit longs and 8Kb pages we might get into trouble
 157 * if our filesystem had 8Kb blocks. We might use long long, but that would
 158 * kill us on x86. Oh, well, at least the sign propagation does not matter -
 159 * i_block would have to be negative in the very beginning, so we would not
 160 * get there at all.
 161 */
 162
 163static int ext2_block_to_path(struct inode *inode,
 164			long i_block, int offsets[4], int *boundary)
 165{
 166	int ptrs = EXT2_ADDR_PER_BLOCK(inode->i_sb);
 167	int ptrs_bits = EXT2_ADDR_PER_BLOCK_BITS(inode->i_sb);
 168	const long direct_blocks = EXT2_NDIR_BLOCKS,
 169		indirect_blocks = ptrs,
 170		double_blocks = (1 << (ptrs_bits * 2));
 171	int n = 0;
 172	int final = 0;
 173
 174	if (i_block < 0) {
 175		ext2_msg(inode->i_sb, KERN_WARNING,
 176			"warning: %s: block < 0", __func__);
 177	} else if (i_block < direct_blocks) {
 178		offsets[n++] = i_block;
 179		final = direct_blocks;
 180	} else if ( (i_block -= direct_blocks) < indirect_blocks) {
 181		offsets[n++] = EXT2_IND_BLOCK;
 182		offsets[n++] = i_block;
 183		final = ptrs;
 184	} else if ((i_block -= indirect_blocks) < double_blocks) {
 185		offsets[n++] = EXT2_DIND_BLOCK;
 186		offsets[n++] = i_block >> ptrs_bits;
 187		offsets[n++] = i_block & (ptrs - 1);
 188		final = ptrs;
 189	} else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
 190		offsets[n++] = EXT2_TIND_BLOCK;
 191		offsets[n++] = i_block >> (ptrs_bits * 2);
 192		offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
 193		offsets[n++] = i_block & (ptrs - 1);
 194		final = ptrs;
 195	} else {
 196		ext2_msg(inode->i_sb, KERN_WARNING,
 197			"warning: %s: block is too big", __func__);
 198	}
 199	if (boundary)
 200		*boundary = final - 1 - (i_block & (ptrs - 1));
 201
 202	return n;
 203}
 204
 205/**
 206 *	ext2_get_branch - read the chain of indirect blocks leading to data
 207 *	@inode: inode in question
 208 *	@depth: depth of the chain (1 - direct pointer, etc.)
 209 *	@offsets: offsets of pointers in inode/indirect blocks
 210 *	@chain: place to store the result
 211 *	@err: here we store the error value
 212 *
 213 *	Function fills the array of triples <key, p, bh> and returns %NULL
 214 *	if everything went OK or the pointer to the last filled triple
 215 *	(incomplete one) otherwise. Upon the return chain[i].key contains
 216 *	the number of (i+1)-th block in the chain (as it is stored in memory,
 217 *	i.e. little-endian 32-bit), chain[i].p contains the address of that
 218 *	number (it points into struct inode for i==0 and into the bh->b_data
 219 *	for i>0) and chain[i].bh points to the buffer_head of i-th indirect
 220 *	block for i>0 and NULL for i==0. In other words, it holds the block
 221 *	numbers of the chain, addresses they were taken from (and where we can
 222 *	verify that chain did not change) and buffer_heads hosting these
 223 *	numbers.
 224 *
 225 *	Function stops when it stumbles upon zero pointer (absent block)
 226 *		(pointer to last triple returned, *@err == 0)
 227 *	or when it gets an IO error reading an indirect block
 228 *		(ditto, *@err == -EIO)
 229 *	or when it notices that chain had been changed while it was reading
 230 *		(ditto, *@err == -EAGAIN)
 231 *	or when it reads all @depth-1 indirect blocks successfully and finds
 232 *	the whole chain, all way to the data (returns %NULL, *err == 0).
 233 */
 234static Indirect *ext2_get_branch(struct inode *inode,
 235				 int depth,
 236				 int *offsets,
 237				 Indirect chain[4],
 238				 int *err)
 239{
 240	struct super_block *sb = inode->i_sb;
 241	Indirect *p = chain;
 242	struct buffer_head *bh;
 243
 244	*err = 0;
 245	/* i_data is not going away, no lock needed */
 246	add_chain (chain, NULL, EXT2_I(inode)->i_data + *offsets);
 247	if (!p->key)
 248		goto no_block;
 249	while (--depth) {
 250		bh = sb_bread(sb, le32_to_cpu(p->key));
 251		if (!bh)
 252			goto failure;
 253		read_lock(&EXT2_I(inode)->i_meta_lock);
 254		if (!verify_chain(chain, p))
 255			goto changed;
 256		add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
 257		read_unlock(&EXT2_I(inode)->i_meta_lock);
 258		if (!p->key)
 259			goto no_block;
 260	}
 261	return NULL;
 262
 263changed:
 264	read_unlock(&EXT2_I(inode)->i_meta_lock);
 265	brelse(bh);
 266	*err = -EAGAIN;
 267	goto no_block;
 268failure:
 269	*err = -EIO;
 270no_block:
 271	return p;
 272}
 273
 274/**
 275 *	ext2_find_near - find a place for allocation with sufficient locality
 276 *	@inode: owner
 277 *	@ind: descriptor of indirect block.
 278 *
 279 *	This function returns the preferred place for block allocation.
 280 *	It is used when heuristic for sequential allocation fails.
 281 *	Rules are:
 282 *	  + if there is a block to the left of our position - allocate near it.
 283 *	  + if pointer will live in indirect block - allocate near that block.
 284 *	  + if pointer will live in inode - allocate in the same cylinder group.
 285 *
 286 * In the latter case we colour the starting block by the callers PID to
 287 * prevent it from clashing with concurrent allocations for a different inode
 288 * in the same block group.   The PID is used here so that functionally related
 289 * files will be close-by on-disk.
 290 *
 291 *	Caller must make sure that @ind is valid and will stay that way.
 292 */
 293
 294static ext2_fsblk_t ext2_find_near(struct inode *inode, Indirect *ind)
 295{
 296	struct ext2_inode_info *ei = EXT2_I(inode);
 297	__le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
 298	__le32 *p;
 299	ext2_fsblk_t bg_start;
 300	ext2_fsblk_t colour;
 301
 302	/* Try to find previous block */
 303	for (p = ind->p - 1; p >= start; p--)
 304		if (*p)
 305			return le32_to_cpu(*p);
 306
 307	/* No such thing, so let's try location of indirect block */
 308	if (ind->bh)
 309		return ind->bh->b_blocknr;
 310
 311	/*
 312	 * It is going to be referred from inode itself? OK, just put it into
 313	 * the same cylinder group then.
 314	 */
 315	bg_start = ext2_group_first_block_no(inode->i_sb, ei->i_block_group);
 316	colour = (current->pid % 16) *
 317			(EXT2_BLOCKS_PER_GROUP(inode->i_sb) / 16);
 318	return bg_start + colour;
 319}
 320
 321/**
 322 *	ext2_find_goal - find a preferred place for allocation.
 323 *	@inode: owner
 324 *	@block:  block we want
 325 *	@partial: pointer to the last triple within a chain
 326 *
 327 *	Returns preferred place for a block (the goal).
 328 */
 329
 330static inline ext2_fsblk_t ext2_find_goal(struct inode *inode, long block,
 331					  Indirect *partial)
 332{
 333	struct ext2_block_alloc_info *block_i;
 334
 335	block_i = EXT2_I(inode)->i_block_alloc_info;
 336
 337	/*
 338	 * try the heuristic for sequential allocation,
 339	 * failing that at least try to get decent locality.
 340	 */
 341	if (block_i && (block == block_i->last_alloc_logical_block + 1)
 342		&& (block_i->last_alloc_physical_block != 0)) {
 343		return block_i->last_alloc_physical_block + 1;
 344	}
 345
 346	return ext2_find_near(inode, partial);
 347}
 348
 349/**
 350 *	ext2_blks_to_allocate: Look up the block map and count the number
 351 *	of direct blocks need to be allocated for the given branch.
 352 *
 353 * 	@branch: chain of indirect blocks
 354 *	@k: number of blocks need for indirect blocks
 355 *	@blks: number of data blocks to be mapped.
 356 *	@blocks_to_boundary:  the offset in the indirect block
 357 *
 358 *	return the number of direct blocks to allocate.
 
 359 */
 360static int
 361ext2_blks_to_allocate(Indirect * branch, int k, unsigned long blks,
 362		int blocks_to_boundary)
 363{
 364	unsigned long count = 0;
 365
 366	/*
 367	 * Simple case, [t,d]Indirect block(s) has not allocated yet
 368	 * then it's clear blocks on that path have not allocated
 369	 */
 370	if (k > 0) {
 371		/* right now don't hanel cross boundary allocation */
 372		if (blks < blocks_to_boundary + 1)
 373			count += blks;
 374		else
 375			count += blocks_to_boundary + 1;
 376		return count;
 377	}
 378
 379	count++;
 380	while (count < blks && count <= blocks_to_boundary
 381		&& le32_to_cpu(*(branch[0].p + count)) == 0) {
 382		count++;
 383	}
 384	return count;
 385}
 386
 387/**
 388 *	ext2_alloc_blocks: multiple allocate blocks needed for a branch
 389 *	@indirect_blks: the number of blocks need to allocate for indirect
 390 *			blocks
 391 *	@blks: the number of blocks need to allocate for direct blocks
 392 *	@new_blocks: on return it will store the new block numbers for
 393 *	the indirect blocks(if needed) and the first direct block,
 
 
 394 */
 395static int ext2_alloc_blocks(struct inode *inode,
 396			ext2_fsblk_t goal, int indirect_blks, int blks,
 397			ext2_fsblk_t new_blocks[4], int *err)
 398{
 399	int target, i;
 400	unsigned long count = 0;
 401	int index = 0;
 402	ext2_fsblk_t current_block = 0;
 403	int ret = 0;
 404
 405	/*
 406	 * Here we try to allocate the requested multiple blocks at once,
 407	 * on a best-effort basis.
 408	 * To build a branch, we should allocate blocks for
 409	 * the indirect blocks(if not allocated yet), and at least
 410	 * the first direct block of this branch.  That's the
 411	 * minimum number of blocks need to allocate(required)
 412	 */
 413	target = blks + indirect_blks;
 414
 415	while (1) {
 416		count = target;
 417		/* allocating blocks for indirect blocks and direct blocks */
 418		current_block = ext2_new_blocks(inode,goal,&count,err);
 419		if (*err)
 420			goto failed_out;
 421
 422		target -= count;
 423		/* allocate blocks for indirect blocks */
 424		while (index < indirect_blks && count) {
 425			new_blocks[index++] = current_block++;
 426			count--;
 427		}
 428
 429		if (count > 0)
 430			break;
 431	}
 432
 433	/* save the new block number for the first direct block */
 434	new_blocks[index] = current_block;
 435
 436	/* total number of blocks allocated for direct blocks */
 437	ret = count;
 438	*err = 0;
 439	return ret;
 440failed_out:
 441	for (i = 0; i <index; i++)
 442		ext2_free_blocks(inode, new_blocks[i], 1);
 443	if (index)
 444		mark_inode_dirty(inode);
 445	return ret;
 446}
 447
 448/**
 449 *	ext2_alloc_branch - allocate and set up a chain of blocks.
 450 *	@inode: owner
 451 *	@indirect_blks: depth of the chain (number of blocks to allocate)
 452 *	@blks: number of allocated direct blocks
 453 *	@goal: preferred place for allocation
 454 *	@offsets: offsets (in the blocks) to store the pointers to next.
 455 *	@branch: place to store the chain in.
 456 *
 457 *	This function allocates @num blocks, zeroes out all but the last one,
 458 *	links them into chain and (if we are synchronous) writes them to disk.
 459 *	In other words, it prepares a branch that can be spliced onto the
 460 *	inode. It stores the information about that chain in the branch[], in
 461 *	the same format as ext2_get_branch() would do. We are calling it after
 462 *	we had read the existing part of chain and partial points to the last
 463 *	triple of that (one with zero ->key). Upon the exit we have the same
 464 *	picture as after the successful ext2_get_block(), except that in one
 465 *	place chain is disconnected - *branch->p is still zero (we did not
 466 *	set the last link), but branch->key contains the number that should
 467 *	be placed into *branch->p to fill that gap.
 468 *
 469 *	If allocation fails we free all blocks we've allocated (and forget
 470 *	their buffer_heads) and return the error value the from failed
 471 *	ext2_alloc_block() (normally -ENOSPC). Otherwise we set the chain
 472 *	as described above and return 0.
 473 */
 474
 475static int ext2_alloc_branch(struct inode *inode,
 476			int indirect_blks, int *blks, ext2_fsblk_t goal,
 477			int *offsets, Indirect *branch)
 478{
 479	int blocksize = inode->i_sb->s_blocksize;
 480	int i, n = 0;
 481	int err = 0;
 482	struct buffer_head *bh;
 483	int num;
 484	ext2_fsblk_t new_blocks[4];
 485	ext2_fsblk_t current_block;
 486
 487	num = ext2_alloc_blocks(inode, goal, indirect_blks,
 488				*blks, new_blocks, &err);
 489	if (err)
 490		return err;
 491
 492	branch[0].key = cpu_to_le32(new_blocks[0]);
 493	/*
 494	 * metadata blocks and data blocks are allocated.
 495	 */
 496	for (n = 1; n <= indirect_blks;  n++) {
 497		/*
 498		 * Get buffer_head for parent block, zero it out
 499		 * and set the pointer to new one, then send
 500		 * parent to disk.
 501		 */
 502		bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
 503		if (unlikely(!bh)) {
 504			err = -ENOMEM;
 505			goto failed;
 506		}
 507		branch[n].bh = bh;
 508		lock_buffer(bh);
 509		memset(bh->b_data, 0, blocksize);
 510		branch[n].p = (__le32 *) bh->b_data + offsets[n];
 511		branch[n].key = cpu_to_le32(new_blocks[n]);
 512		*branch[n].p = branch[n].key;
 513		if ( n == indirect_blks) {
 514			current_block = new_blocks[n];
 515			/*
 516			 * End of chain, update the last new metablock of
 517			 * the chain to point to the new allocated
 518			 * data blocks numbers
 519			 */
 520			for (i=1; i < num; i++)
 521				*(branch[n].p + i) = cpu_to_le32(++current_block);
 522		}
 523		set_buffer_uptodate(bh);
 524		unlock_buffer(bh);
 525		mark_buffer_dirty_inode(bh, inode);
 526		/* We used to sync bh here if IS_SYNC(inode).
 527		 * But we now rely upon generic_write_sync()
 528		 * and b_inode_buffers.  But not for directories.
 529		 */
 530		if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
 531			sync_dirty_buffer(bh);
 532	}
 533	*blks = num;
 534	return err;
 535
 536failed:
 537	for (i = 1; i < n; i++)
 538		bforget(branch[i].bh);
 539	for (i = 0; i < indirect_blks; i++)
 540		ext2_free_blocks(inode, new_blocks[i], 1);
 541	ext2_free_blocks(inode, new_blocks[i], num);
 542	return err;
 543}
 544
 545/**
 546 * ext2_splice_branch - splice the allocated branch onto inode.
 547 * @inode: owner
 548 * @block: (logical) number of block we are adding
 549 * @where: location of missing link
 550 * @num:   number of indirect blocks we are adding
 551 * @blks:  number of direct blocks we are adding
 552 *
 553 * This function fills the missing link and does all housekeeping needed in
 554 * inode (->i_blocks, etc.). In case of success we end up with the full
 555 * chain to new block and return 0.
 556 */
 557static void ext2_splice_branch(struct inode *inode,
 558			long block, Indirect *where, int num, int blks)
 559{
 560	int i;
 561	struct ext2_block_alloc_info *block_i;
 562	ext2_fsblk_t current_block;
 563
 564	block_i = EXT2_I(inode)->i_block_alloc_info;
 565
 566	/* XXX LOCKING probably should have i_meta_lock ?*/
 567	/* That's it */
 568
 569	*where->p = where->key;
 570
 571	/*
 572	 * Update the host buffer_head or inode to point to more just allocated
 573	 * direct blocks blocks
 574	 */
 575	if (num == 0 && blks > 1) {
 576		current_block = le32_to_cpu(where->key) + 1;
 577		for (i = 1; i < blks; i++)
 578			*(where->p + i ) = cpu_to_le32(current_block++);
 579	}
 580
 581	/*
 582	 * update the most recently allocated logical & physical block
 583	 * in i_block_alloc_info, to assist find the proper goal block for next
 584	 * allocation
 585	 */
 586	if (block_i) {
 587		block_i->last_alloc_logical_block = block + blks - 1;
 588		block_i->last_alloc_physical_block =
 589				le32_to_cpu(where[num].key) + blks - 1;
 590	}
 591
 592	/* We are done with atomic stuff, now do the rest of housekeeping */
 593
 594	/* had we spliced it onto indirect block? */
 595	if (where->bh)
 596		mark_buffer_dirty_inode(where->bh, inode);
 597
 598	inode->i_ctime = current_time(inode);
 599	mark_inode_dirty(inode);
 600}
 601
 602/*
 603 * Allocation strategy is simple: if we have to allocate something, we will
 604 * have to go the whole way to leaf. So let's do it before attaching anything
 605 * to tree, set linkage between the newborn blocks, write them if sync is
 606 * required, recheck the path, free and repeat if check fails, otherwise
 607 * set the last missing link (that will protect us from any truncate-generated
 608 * removals - all blocks on the path are immune now) and possibly force the
 609 * write on the parent block.
 610 * That has a nice additional property: no special recovery from the failed
 611 * allocations is needed - we simply release blocks and do not touch anything
 612 * reachable from inode.
 613 *
 614 * `handle' can be NULL if create == 0.
 615 *
 616 * return > 0, # of blocks mapped or allocated.
 617 * return = 0, if plain lookup failed.
 618 * return < 0, error case.
 619 */
 620static int ext2_get_blocks(struct inode *inode,
 621			   sector_t iblock, unsigned long maxblocks,
 622			   u32 *bno, bool *new, bool *boundary,
 623			   int create)
 624{
 625	int err;
 626	int offsets[4];
 627	Indirect chain[4];
 628	Indirect *partial;
 629	ext2_fsblk_t goal;
 630	int indirect_blks;
 631	int blocks_to_boundary = 0;
 632	int depth;
 633	struct ext2_inode_info *ei = EXT2_I(inode);
 634	int count = 0;
 635	ext2_fsblk_t first_block = 0;
 636
 637	BUG_ON(maxblocks == 0);
 638
 639	depth = ext2_block_to_path(inode,iblock,offsets,&blocks_to_boundary);
 640
 641	if (depth == 0)
 642		return -EIO;
 643
 644	partial = ext2_get_branch(inode, depth, offsets, chain, &err);
 645	/* Simplest case - block found, no allocation needed */
 646	if (!partial) {
 647		first_block = le32_to_cpu(chain[depth - 1].key);
 
 648		count++;
 649		/*map more blocks*/
 650		while (count < maxblocks && count <= blocks_to_boundary) {
 651			ext2_fsblk_t blk;
 652
 653			if (!verify_chain(chain, chain + depth - 1)) {
 654				/*
 655				 * Indirect block might be removed by
 656				 * truncate while we were reading it.
 657				 * Handling of that case: forget what we've
 658				 * got now, go to reread.
 659				 */
 660				err = -EAGAIN;
 661				count = 0;
 662				partial = chain + depth - 1;
 663				break;
 664			}
 665			blk = le32_to_cpu(*(chain[depth-1].p + count));
 666			if (blk == first_block + count)
 667				count++;
 668			else
 669				break;
 670		}
 671		if (err != -EAGAIN)
 672			goto got_it;
 673	}
 674
 675	/* Next simple case - plain lookup or failed read of indirect block */
 676	if (!create || err == -EIO)
 677		goto cleanup;
 678
 679	mutex_lock(&ei->truncate_mutex);
 680	/*
 681	 * If the indirect block is missing while we are reading
 682	 * the chain(ext2_get_branch() returns -EAGAIN err), or
 683	 * if the chain has been changed after we grab the semaphore,
 684	 * (either because another process truncated this branch, or
 685	 * another get_block allocated this branch) re-grab the chain to see if
 686	 * the request block has been allocated or not.
 687	 *
 688	 * Since we already block the truncate/other get_block
 689	 * at this point, we will have the current copy of the chain when we
 690	 * splice the branch into the tree.
 691	 */
 692	if (err == -EAGAIN || !verify_chain(chain, partial)) {
 693		while (partial > chain) {
 694			brelse(partial->bh);
 695			partial--;
 696		}
 697		partial = ext2_get_branch(inode, depth, offsets, chain, &err);
 698		if (!partial) {
 699			count++;
 700			mutex_unlock(&ei->truncate_mutex);
 
 
 
 701			goto got_it;
 702		}
 703
 704		if (err) {
 705			mutex_unlock(&ei->truncate_mutex);
 706			goto cleanup;
 707		}
 708	}
 709
 710	/*
 711	 * Okay, we need to do block allocation.  Lazily initialize the block
 712	 * allocation info here if necessary
 713	*/
 714	if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
 715		ext2_init_block_alloc_info(inode);
 716
 717	goal = ext2_find_goal(inode, iblock, partial);
 718
 719	/* the number of blocks need to allocate for [d,t]indirect blocks */
 720	indirect_blks = (chain + depth) - partial - 1;
 721	/*
 722	 * Next look up the indirect map to count the total number of
 723	 * direct blocks to allocate for this branch.
 724	 */
 725	count = ext2_blks_to_allocate(partial, indirect_blks,
 726					maxblocks, blocks_to_boundary);
 727	/*
 728	 * XXX ???? Block out ext2_truncate while we alter the tree
 729	 */
 730	err = ext2_alloc_branch(inode, indirect_blks, &count, goal,
 731				offsets + (partial - chain), partial);
 732
 733	if (err) {
 734		mutex_unlock(&ei->truncate_mutex);
 735		goto cleanup;
 736	}
 737
 738	if (IS_DAX(inode)) {
 739		/*
 740		 * We must unmap blocks before zeroing so that writeback cannot
 741		 * overwrite zeros with stale data from block device page cache.
 742		 */
 743		clean_bdev_aliases(inode->i_sb->s_bdev,
 744				   le32_to_cpu(chain[depth-1].key),
 745				   count);
 746		/*
 747		 * block must be initialised before we put it in the tree
 748		 * so that it's not found by another thread before it's
 749		 * initialised
 750		 */
 751		err = sb_issue_zeroout(inode->i_sb,
 752				le32_to_cpu(chain[depth-1].key), count,
 753				GFP_NOFS);
 
 754		if (err) {
 755			mutex_unlock(&ei->truncate_mutex);
 756			goto cleanup;
 757		}
 758	}
 759	*new = true;
 760
 761	ext2_splice_branch(inode, iblock, partial, indirect_blks, count);
 762	mutex_unlock(&ei->truncate_mutex);
 
 763got_it:
 
 764	if (count > blocks_to_boundary)
 765		*boundary = true;
 766	err = count;
 767	/* Clean up and exit */
 768	partial = chain + depth - 1;	/* the whole chain */
 769cleanup:
 770	while (partial > chain) {
 771		brelse(partial->bh);
 772		partial--;
 773	}
 774	if (err > 0)
 775		*bno = le32_to_cpu(chain[depth-1].key);
 776	return err;
 777}
 778
 779int ext2_get_block(struct inode *inode, sector_t iblock,
 780		struct buffer_head *bh_result, int create)
 781{
 782	unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
 783	bool new = false, boundary = false;
 784	u32 bno;
 785	int ret;
 786
 787	ret = ext2_get_blocks(inode, iblock, max_blocks, &bno, &new, &boundary,
 788			create);
 789	if (ret <= 0)
 790		return ret;
 791
 792	map_bh(bh_result, inode->i_sb, bno);
 793	bh_result->b_size = (ret << inode->i_blkbits);
 794	if (new)
 795		set_buffer_new(bh_result);
 796	if (boundary)
 797		set_buffer_boundary(bh_result);
 798	return 0;
 799
 800}
 801
 802static int ext2_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
 803		unsigned flags, struct iomap *iomap, struct iomap *srcmap)
 804{
 805	unsigned int blkbits = inode->i_blkbits;
 806	unsigned long first_block = offset >> blkbits;
 807	unsigned long max_blocks = (length + (1 << blkbits) - 1) >> blkbits;
 808	struct ext2_sb_info *sbi = EXT2_SB(inode->i_sb);
 809	bool new = false, boundary = false;
 810	u32 bno;
 811	int ret;
 812
 813	ret = ext2_get_blocks(inode, first_block, max_blocks,
 814			&bno, &new, &boundary, flags & IOMAP_WRITE);
 815	if (ret < 0)
 816		return ret;
 817
 818	iomap->flags = 0;
 819	iomap->offset = (u64)first_block << blkbits;
 820	if (flags & IOMAP_DAX)
 821		iomap->dax_dev = sbi->s_daxdev;
 822	else
 823		iomap->bdev = inode->i_sb->s_bdev;
 824
 825	if (ret == 0) {
 826		iomap->type = IOMAP_HOLE;
 827		iomap->addr = IOMAP_NULL_ADDR;
 828		iomap->length = 1 << blkbits;
 829	} else {
 830		iomap->type = IOMAP_MAPPED;
 831		iomap->addr = (u64)bno << blkbits;
 832		if (flags & IOMAP_DAX)
 833			iomap->addr += sbi->s_dax_part_off;
 834		iomap->length = (u64)ret << blkbits;
 835		iomap->flags |= IOMAP_F_MERGED;
 836	}
 
 837
 838	if (new)
 839		iomap->flags |= IOMAP_F_NEW;
 840	return 0;
 841}
 842
 843static int
 844ext2_iomap_end(struct inode *inode, loff_t offset, loff_t length,
 845		ssize_t written, unsigned flags, struct iomap *iomap)
 846{
 847	if (iomap->type == IOMAP_MAPPED &&
 848	    written < length &&
 849	    (flags & IOMAP_WRITE))
 850		ext2_write_failed(inode->i_mapping, offset + length);
 851	return 0;
 852}
 853
 854const struct iomap_ops ext2_iomap_ops = {
 855	.iomap_begin		= ext2_iomap_begin,
 856	.iomap_end		= ext2_iomap_end,
 857};
 858
 859int ext2_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
 860		u64 start, u64 len)
 861{
 862	int ret;
 863
 864	inode_lock(inode);
 865	len = min_t(u64, len, i_size_read(inode));
 866	ret = iomap_fiemap(inode, fieinfo, start, len, &ext2_iomap_ops);
 867	inode_unlock(inode);
 868
 869	return ret;
 870}
 871
 872static int ext2_read_folio(struct file *file, struct folio *folio)
 873{
 874	return mpage_read_folio(folio, ext2_get_block);
 875}
 876
 877static void ext2_readahead(struct readahead_control *rac)
 
 
 878{
 879	mpage_readahead(rac, ext2_get_block);
 880}
 881
 882static int
 883ext2_write_begin(struct file *file, struct address_space *mapping,
 884		loff_t pos, unsigned len, struct page **pagep, void **fsdata)
 
 885{
 886	int ret;
 887
 888	ret = block_write_begin(mapping, pos, len, pagep, ext2_get_block);
 
 889	if (ret < 0)
 890		ext2_write_failed(mapping, pos + len);
 891	return ret;
 892}
 893
 894static int ext2_write_end(struct file *file, struct address_space *mapping,
 895			loff_t pos, unsigned len, unsigned copied,
 896			struct page *page, void *fsdata)
 897{
 898	int ret;
 899
 900	ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
 901	if (ret < len)
 902		ext2_write_failed(mapping, pos + len);
 903	return ret;
 904}
 905
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 906static sector_t ext2_bmap(struct address_space *mapping, sector_t block)
 907{
 908	return generic_block_bmap(mapping,block,ext2_get_block);
 909}
 910
 911static ssize_t
 912ext2_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
 913{
 914	struct file *file = iocb->ki_filp;
 915	struct address_space *mapping = file->f_mapping;
 916	struct inode *inode = mapping->host;
 917	size_t count = iov_iter_count(iter);
 918	loff_t offset = iocb->ki_pos;
 919	ssize_t ret;
 920
 921	ret = blockdev_direct_IO(iocb, inode, iter, ext2_get_block);
 
 
 
 
 
 922	if (ret < 0 && iov_iter_rw(iter) == WRITE)
 923		ext2_write_failed(mapping, offset + count);
 924	return ret;
 925}
 926
 927static int
 928ext2_writepages(struct address_space *mapping, struct writeback_control *wbc)
 929{
 
 
 
 
 
 
 
 
 930	return mpage_writepages(mapping, wbc, ext2_get_block);
 931}
 932
 933static int
 934ext2_dax_writepages(struct address_space *mapping, struct writeback_control *wbc)
 935{
 936	struct ext2_sb_info *sbi = EXT2_SB(mapping->host->i_sb);
 937
 938	return dax_writeback_mapping_range(mapping, sbi->s_daxdev, wbc);
 939}
 940
 941const struct address_space_operations ext2_aops = {
 942	.dirty_folio		= block_dirty_folio,
 943	.invalidate_folio	= block_invalidate_folio,
 944	.read_folio		= ext2_read_folio,
 945	.readahead		= ext2_readahead,
 946	.write_begin		= ext2_write_begin,
 947	.write_end		= ext2_write_end,
 948	.bmap			= ext2_bmap,
 949	.direct_IO		= ext2_direct_IO,
 950	.writepages		= ext2_writepages,
 951	.migrate_folio		= buffer_migrate_folio,
 952	.is_partially_uptodate	= block_is_partially_uptodate,
 953	.error_remove_page	= generic_error_remove_page,
 954};
 955
 956static const struct address_space_operations ext2_dax_aops = {
 957	.writepages		= ext2_dax_writepages,
 958	.direct_IO		= noop_direct_IO,
 959	.dirty_folio		= noop_dirty_folio,
 
 
 
 
 
 
 
 960};
 961
 962/*
 963 * Probably it should be a library function... search for first non-zero word
 964 * or memcmp with zero_page, whatever is better for particular architecture.
 965 * Linus?
 966 */
 967static inline int all_zeroes(__le32 *p, __le32 *q)
 968{
 969	while (p < q)
 970		if (*p++)
 971			return 0;
 972	return 1;
 973}
 974
 975/**
 976 *	ext2_find_shared - find the indirect blocks for partial truncation.
 977 *	@inode:	  inode in question
 978 *	@depth:	  depth of the affected branch
 979 *	@offsets: offsets of pointers in that branch (see ext2_block_to_path)
 980 *	@chain:	  place to store the pointers to partial indirect blocks
 981 *	@top:	  place to the (detached) top of branch
 982 *
 983 *	This is a helper function used by ext2_truncate().
 984 *
 985 *	When we do truncate() we may have to clean the ends of several indirect
 986 *	blocks but leave the blocks themselves alive. Block is partially
 987 *	truncated if some data below the new i_size is referred from it (and
 988 *	it is on the path to the first completely truncated data block, indeed).
 989 *	We have to free the top of that path along with everything to the right
 990 *	of the path. Since no allocation past the truncation point is possible
 991 *	until ext2_truncate() finishes, we may safely do the latter, but top
 992 *	of branch may require special attention - pageout below the truncation
 993 *	point might try to populate it.
 994 *
 995 *	We atomically detach the top of branch from the tree, store the block
 996 *	number of its root in *@top, pointers to buffer_heads of partially
 997 *	truncated blocks - in @chain[].bh and pointers to their last elements
 998 *	that should not be removed - in @chain[].p. Return value is the pointer
 999 *	to last filled element of @chain.
1000 *
1001 *	The work left to caller to do the actual freeing of subtrees:
1002 *		a) free the subtree starting from *@top
1003 *		b) free the subtrees whose roots are stored in
1004 *			(@chain[i].p+1 .. end of @chain[i].bh->b_data)
1005 *		c) free the subtrees growing from the inode past the @chain[0].p
1006 *			(no partially truncated stuff there).
1007 */
1008
1009static Indirect *ext2_find_shared(struct inode *inode,
1010				int depth,
1011				int offsets[4],
1012				Indirect chain[4],
1013				__le32 *top)
1014{
1015	Indirect *partial, *p;
1016	int k, err;
1017
1018	*top = 0;
1019	for (k = depth; k > 1 && !offsets[k-1]; k--)
1020		;
1021	partial = ext2_get_branch(inode, k, offsets, chain, &err);
1022	if (!partial)
1023		partial = chain + k-1;
1024	/*
1025	 * If the branch acquired continuation since we've looked at it -
1026	 * fine, it should all survive and (new) top doesn't belong to us.
1027	 */
1028	write_lock(&EXT2_I(inode)->i_meta_lock);
1029	if (!partial->key && *partial->p) {
1030		write_unlock(&EXT2_I(inode)->i_meta_lock);
1031		goto no_top;
1032	}
1033	for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
1034		;
1035	/*
1036	 * OK, we've found the last block that must survive. The rest of our
1037	 * branch should be detached before unlocking. However, if that rest
1038	 * of branch is all ours and does not grow immediately from the inode
1039	 * it's easier to cheat and just decrement partial->p.
1040	 */
1041	if (p == chain + k - 1 && p > chain) {
1042		p->p--;
1043	} else {
1044		*top = *p->p;
1045		*p->p = 0;
1046	}
1047	write_unlock(&EXT2_I(inode)->i_meta_lock);
1048
1049	while(partial > p)
1050	{
1051		brelse(partial->bh);
1052		partial--;
1053	}
1054no_top:
1055	return partial;
1056}
1057
1058/**
1059 *	ext2_free_data - free a list of data blocks
1060 *	@inode:	inode we are dealing with
1061 *	@p:	array of block numbers
1062 *	@q:	points immediately past the end of array
1063 *
1064 *	We are freeing all blocks referred from that array (numbers are
1065 *	stored as little-endian 32-bit) and updating @inode->i_blocks
1066 *	appropriately.
1067 */
1068static inline void ext2_free_data(struct inode *inode, __le32 *p, __le32 *q)
1069{
1070	unsigned long block_to_free = 0, count = 0;
1071	unsigned long nr;
1072
1073	for ( ; p < q ; p++) {
1074		nr = le32_to_cpu(*p);
1075		if (nr) {
1076			*p = 0;
1077			/* accumulate blocks to free if they're contiguous */
1078			if (count == 0)
1079				goto free_this;
1080			else if (block_to_free == nr - count)
1081				count++;
1082			else {
1083				ext2_free_blocks (inode, block_to_free, count);
1084				mark_inode_dirty(inode);
1085			free_this:
1086				block_to_free = nr;
1087				count = 1;
1088			}
1089		}
1090	}
1091	if (count > 0) {
1092		ext2_free_blocks (inode, block_to_free, count);
1093		mark_inode_dirty(inode);
1094	}
1095}
1096
1097/**
1098 *	ext2_free_branches - free an array of branches
1099 *	@inode:	inode we are dealing with
1100 *	@p:	array of block numbers
1101 *	@q:	pointer immediately past the end of array
1102 *	@depth:	depth of the branches to free
1103 *
1104 *	We are freeing all blocks referred from these branches (numbers are
1105 *	stored as little-endian 32-bit) and updating @inode->i_blocks
1106 *	appropriately.
1107 */
1108static void ext2_free_branches(struct inode *inode, __le32 *p, __le32 *q, int depth)
1109{
1110	struct buffer_head * bh;
1111	unsigned long nr;
1112
1113	if (depth--) {
1114		int addr_per_block = EXT2_ADDR_PER_BLOCK(inode->i_sb);
1115		for ( ; p < q ; p++) {
1116			nr = le32_to_cpu(*p);
1117			if (!nr)
1118				continue;
1119			*p = 0;
1120			bh = sb_bread(inode->i_sb, nr);
1121			/*
1122			 * A read failure? Report error and clear slot
1123			 * (should be rare).
1124			 */ 
1125			if (!bh) {
1126				ext2_error(inode->i_sb, "ext2_free_branches",
1127					"Read failure, inode=%ld, block=%ld",
1128					inode->i_ino, nr);
1129				continue;
1130			}
1131			ext2_free_branches(inode,
1132					   (__le32*)bh->b_data,
1133					   (__le32*)bh->b_data + addr_per_block,
1134					   depth);
1135			bforget(bh);
1136			ext2_free_blocks(inode, nr, 1);
1137			mark_inode_dirty(inode);
1138		}
1139	} else
1140		ext2_free_data(inode, p, q);
1141}
1142
1143/* mapping->invalidate_lock must be held when calling this function */
1144static void __ext2_truncate_blocks(struct inode *inode, loff_t offset)
1145{
1146	__le32 *i_data = EXT2_I(inode)->i_data;
1147	struct ext2_inode_info *ei = EXT2_I(inode);
1148	int addr_per_block = EXT2_ADDR_PER_BLOCK(inode->i_sb);
1149	int offsets[4];
1150	Indirect chain[4];
1151	Indirect *partial;
1152	__le32 nr = 0;
1153	int n;
1154	long iblock;
1155	unsigned blocksize;
1156	blocksize = inode->i_sb->s_blocksize;
1157	iblock = (offset + blocksize-1) >> EXT2_BLOCK_SIZE_BITS(inode->i_sb);
1158
1159#ifdef CONFIG_FS_DAX
1160	WARN_ON(!rwsem_is_locked(&inode->i_mapping->invalidate_lock));
1161#endif
1162
1163	n = ext2_block_to_path(inode, iblock, offsets, NULL);
1164	if (n == 0)
1165		return;
1166
1167	/*
1168	 * From here we block out all ext2_get_block() callers who want to
1169	 * modify the block allocation tree.
1170	 */
1171	mutex_lock(&ei->truncate_mutex);
1172
1173	if (n == 1) {
1174		ext2_free_data(inode, i_data+offsets[0],
1175					i_data + EXT2_NDIR_BLOCKS);
1176		goto do_indirects;
1177	}
1178
1179	partial = ext2_find_shared(inode, n, offsets, chain, &nr);
1180	/* Kill the top of shared branch (already detached) */
1181	if (nr) {
1182		if (partial == chain)
1183			mark_inode_dirty(inode);
1184		else
1185			mark_buffer_dirty_inode(partial->bh, inode);
1186		ext2_free_branches(inode, &nr, &nr+1, (chain+n-1) - partial);
1187	}
1188	/* Clear the ends of indirect blocks on the shared branch */
1189	while (partial > chain) {
1190		ext2_free_branches(inode,
1191				   partial->p + 1,
1192				   (__le32*)partial->bh->b_data+addr_per_block,
1193				   (chain+n-1) - partial);
1194		mark_buffer_dirty_inode(partial->bh, inode);
1195		brelse (partial->bh);
1196		partial--;
1197	}
1198do_indirects:
1199	/* Kill the remaining (whole) subtrees */
1200	switch (offsets[0]) {
1201		default:
1202			nr = i_data[EXT2_IND_BLOCK];
1203			if (nr) {
1204				i_data[EXT2_IND_BLOCK] = 0;
1205				mark_inode_dirty(inode);
1206				ext2_free_branches(inode, &nr, &nr+1, 1);
1207			}
1208			fallthrough;
1209		case EXT2_IND_BLOCK:
1210			nr = i_data[EXT2_DIND_BLOCK];
1211			if (nr) {
1212				i_data[EXT2_DIND_BLOCK] = 0;
1213				mark_inode_dirty(inode);
1214				ext2_free_branches(inode, &nr, &nr+1, 2);
1215			}
1216			fallthrough;
1217		case EXT2_DIND_BLOCK:
1218			nr = i_data[EXT2_TIND_BLOCK];
1219			if (nr) {
1220				i_data[EXT2_TIND_BLOCK] = 0;
1221				mark_inode_dirty(inode);
1222				ext2_free_branches(inode, &nr, &nr+1, 3);
1223			}
1224			break;
1225		case EXT2_TIND_BLOCK:
1226			;
1227	}
1228
1229	ext2_discard_reservation(inode);
1230
1231	mutex_unlock(&ei->truncate_mutex);
1232}
1233
1234static void ext2_truncate_blocks(struct inode *inode, loff_t offset)
1235{
 
 
 
 
 
 
 
 
1236	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1237	    S_ISLNK(inode->i_mode)))
1238		return;
1239	if (ext2_inode_is_fast_symlink(inode))
1240		return;
 
 
1241
1242	filemap_invalidate_lock(inode->i_mapping);
1243	__ext2_truncate_blocks(inode, offset);
1244	filemap_invalidate_unlock(inode->i_mapping);
1245}
1246
1247static int ext2_setsize(struct inode *inode, loff_t newsize)
1248{
1249	int error;
1250
1251	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1252	    S_ISLNK(inode->i_mode)))
1253		return -EINVAL;
1254	if (ext2_inode_is_fast_symlink(inode))
1255		return -EINVAL;
1256	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1257		return -EPERM;
1258
1259	inode_dio_wait(inode);
1260
1261	if (IS_DAX(inode))
1262		error = dax_zero_range(inode, newsize,
1263				       PAGE_ALIGN(newsize) - newsize, NULL,
1264				       &ext2_iomap_ops);
 
1265	else
1266		error = block_truncate_page(inode->i_mapping,
1267				newsize, ext2_get_block);
1268	if (error)
1269		return error;
1270
1271	filemap_invalidate_lock(inode->i_mapping);
1272	truncate_setsize(inode, newsize);
1273	__ext2_truncate_blocks(inode, newsize);
1274	filemap_invalidate_unlock(inode->i_mapping);
1275
1276	inode->i_mtime = inode->i_ctime = current_time(inode);
1277	if (inode_needs_sync(inode)) {
1278		sync_mapping_buffers(inode->i_mapping);
1279		sync_inode_metadata(inode, 1);
1280	} else {
1281		mark_inode_dirty(inode);
1282	}
1283
1284	return 0;
1285}
1286
1287static struct ext2_inode *ext2_get_inode(struct super_block *sb, ino_t ino,
1288					struct buffer_head **p)
1289{
1290	struct buffer_head * bh;
1291	unsigned long block_group;
1292	unsigned long block;
1293	unsigned long offset;
1294	struct ext2_group_desc * gdp;
1295
1296	*p = NULL;
1297	if ((ino != EXT2_ROOT_INO && ino < EXT2_FIRST_INO(sb)) ||
1298	    ino > le32_to_cpu(EXT2_SB(sb)->s_es->s_inodes_count))
1299		goto Einval;
1300
1301	block_group = (ino - 1) / EXT2_INODES_PER_GROUP(sb);
1302	gdp = ext2_get_group_desc(sb, block_group, NULL);
1303	if (!gdp)
1304		goto Egdp;
1305	/*
1306	 * Figure out the offset within the block group inode table
1307	 */
1308	offset = ((ino - 1) % EXT2_INODES_PER_GROUP(sb)) * EXT2_INODE_SIZE(sb);
1309	block = le32_to_cpu(gdp->bg_inode_table) +
1310		(offset >> EXT2_BLOCK_SIZE_BITS(sb));
1311	if (!(bh = sb_bread(sb, block)))
1312		goto Eio;
1313
1314	*p = bh;
1315	offset &= (EXT2_BLOCK_SIZE(sb) - 1);
1316	return (struct ext2_inode *) (bh->b_data + offset);
1317
1318Einval:
1319	ext2_error(sb, "ext2_get_inode", "bad inode number: %lu",
1320		   (unsigned long) ino);
1321	return ERR_PTR(-EINVAL);
1322Eio:
1323	ext2_error(sb, "ext2_get_inode",
1324		   "unable to read inode block - inode=%lu, block=%lu",
1325		   (unsigned long) ino, block);
1326Egdp:
1327	return ERR_PTR(-EIO);
1328}
1329
1330void ext2_set_inode_flags(struct inode *inode)
1331{
1332	unsigned int flags = EXT2_I(inode)->i_flags;
1333
1334	inode->i_flags &= ~(S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME |
1335				S_DIRSYNC | S_DAX);
1336	if (flags & EXT2_SYNC_FL)
1337		inode->i_flags |= S_SYNC;
1338	if (flags & EXT2_APPEND_FL)
1339		inode->i_flags |= S_APPEND;
1340	if (flags & EXT2_IMMUTABLE_FL)
1341		inode->i_flags |= S_IMMUTABLE;
1342	if (flags & EXT2_NOATIME_FL)
1343		inode->i_flags |= S_NOATIME;
1344	if (flags & EXT2_DIRSYNC_FL)
1345		inode->i_flags |= S_DIRSYNC;
1346	if (test_opt(inode->i_sb, DAX) && S_ISREG(inode->i_mode))
1347		inode->i_flags |= S_DAX;
1348}
1349
1350void ext2_set_file_ops(struct inode *inode)
 
1351{
1352	inode->i_op = &ext2_file_inode_operations;
1353	inode->i_fop = &ext2_file_operations;
1354	if (IS_DAX(inode))
1355		inode->i_mapping->a_ops = &ext2_dax_aops;
1356	else
1357		inode->i_mapping->a_ops = &ext2_aops;
 
 
 
 
 
 
 
 
1358}
1359
1360struct inode *ext2_iget (struct super_block *sb, unsigned long ino)
1361{
1362	struct ext2_inode_info *ei;
1363	struct buffer_head * bh = NULL;
1364	struct ext2_inode *raw_inode;
1365	struct inode *inode;
1366	long ret = -EIO;
1367	int n;
1368	uid_t i_uid;
1369	gid_t i_gid;
1370
1371	inode = iget_locked(sb, ino);
1372	if (!inode)
1373		return ERR_PTR(-ENOMEM);
1374	if (!(inode->i_state & I_NEW))
1375		return inode;
1376
1377	ei = EXT2_I(inode);
1378	ei->i_block_alloc_info = NULL;
1379
1380	raw_inode = ext2_get_inode(inode->i_sb, ino, &bh);
1381	if (IS_ERR(raw_inode)) {
1382		ret = PTR_ERR(raw_inode);
1383 		goto bad_inode;
1384	}
1385
1386	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
1387	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
1388	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
1389	if (!(test_opt (inode->i_sb, NO_UID32))) {
1390		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
1391		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
1392	}
1393	i_uid_write(inode, i_uid);
1394	i_gid_write(inode, i_gid);
1395	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
1396	inode->i_size = le32_to_cpu(raw_inode->i_size);
1397	inode->i_atime.tv_sec = (signed)le32_to_cpu(raw_inode->i_atime);
1398	inode->i_ctime.tv_sec = (signed)le32_to_cpu(raw_inode->i_ctime);
1399	inode->i_mtime.tv_sec = (signed)le32_to_cpu(raw_inode->i_mtime);
1400	inode->i_atime.tv_nsec = inode->i_mtime.tv_nsec = inode->i_ctime.tv_nsec = 0;
1401	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
1402	/* We now have enough fields to check if the inode was active or not.
1403	 * This is needed because nfsd might try to access dead inodes
1404	 * the test is that same one that e2fsck uses
1405	 * NeilBrown 1999oct15
1406	 */
1407	if (inode->i_nlink == 0 && (inode->i_mode == 0 || ei->i_dtime)) {
1408		/* this inode is deleted */
 
1409		ret = -ESTALE;
1410		goto bad_inode;
1411	}
1412	inode->i_blocks = le32_to_cpu(raw_inode->i_blocks);
1413	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
1414	ext2_set_inode_flags(inode);
1415	ei->i_faddr = le32_to_cpu(raw_inode->i_faddr);
1416	ei->i_frag_no = raw_inode->i_frag;
1417	ei->i_frag_size = raw_inode->i_fsize;
1418	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
1419	ei->i_dir_acl = 0;
1420
1421	if (ei->i_file_acl &&
1422	    !ext2_data_block_valid(EXT2_SB(sb), ei->i_file_acl, 1)) {
1423		ext2_error(sb, "ext2_iget", "bad extended attribute block %u",
1424			   ei->i_file_acl);
1425		ret = -EFSCORRUPTED;
1426		goto bad_inode;
1427	}
1428
1429	if (S_ISREG(inode->i_mode))
1430		inode->i_size |= ((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32;
1431	else
1432		ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl);
1433	if (i_size_read(inode) < 0) {
1434		ret = -EFSCORRUPTED;
1435		goto bad_inode;
1436	}
1437	ei->i_dtime = 0;
1438	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
1439	ei->i_state = 0;
1440	ei->i_block_group = (ino - 1) / EXT2_INODES_PER_GROUP(inode->i_sb);
1441	ei->i_dir_start_lookup = 0;
1442
1443	/*
1444	 * NOTE! The in-memory inode i_data array is in little-endian order
1445	 * even on big-endian machines: we do NOT byteswap the block numbers!
1446	 */
1447	for (n = 0; n < EXT2_N_BLOCKS; n++)
1448		ei->i_data[n] = raw_inode->i_block[n];
1449
1450	if (S_ISREG(inode->i_mode)) {
1451		ext2_set_file_ops(inode);
 
 
 
 
 
 
 
1452	} else if (S_ISDIR(inode->i_mode)) {
1453		inode->i_op = &ext2_dir_inode_operations;
1454		inode->i_fop = &ext2_dir_operations;
1455		inode->i_mapping->a_ops = &ext2_aops;
 
 
 
1456	} else if (S_ISLNK(inode->i_mode)) {
1457		if (ext2_inode_is_fast_symlink(inode)) {
1458			inode->i_link = (char *)ei->i_data;
1459			inode->i_op = &ext2_fast_symlink_inode_operations;
1460			nd_terminate_link(ei->i_data, inode->i_size,
1461				sizeof(ei->i_data) - 1);
1462		} else {
1463			inode->i_op = &ext2_symlink_inode_operations;
1464			inode_nohighmem(inode);
1465			inode->i_mapping->a_ops = &ext2_aops;
 
 
 
1466		}
1467	} else {
1468		inode->i_op = &ext2_special_inode_operations;
1469		if (raw_inode->i_block[0])
1470			init_special_inode(inode, inode->i_mode,
1471			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
1472		else 
1473			init_special_inode(inode, inode->i_mode,
1474			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
1475	}
1476	brelse (bh);
 
1477	unlock_new_inode(inode);
1478	return inode;
1479	
1480bad_inode:
1481	brelse(bh);
1482	iget_failed(inode);
1483	return ERR_PTR(ret);
1484}
1485
1486static int __ext2_write_inode(struct inode *inode, int do_sync)
1487{
1488	struct ext2_inode_info *ei = EXT2_I(inode);
1489	struct super_block *sb = inode->i_sb;
1490	ino_t ino = inode->i_ino;
1491	uid_t uid = i_uid_read(inode);
1492	gid_t gid = i_gid_read(inode);
1493	struct buffer_head * bh;
1494	struct ext2_inode * raw_inode = ext2_get_inode(sb, ino, &bh);
1495	int n;
1496	int err = 0;
1497
1498	if (IS_ERR(raw_inode))
1499 		return -EIO;
1500
1501	/* For fields not tracking in the in-memory inode,
1502	 * initialise them to zero for new inodes. */
1503	if (ei->i_state & EXT2_STATE_NEW)
1504		memset(raw_inode, 0, EXT2_SB(sb)->s_inode_size);
1505
 
1506	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
1507	if (!(test_opt(sb, NO_UID32))) {
1508		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(uid));
1509		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(gid));
1510/*
1511 * Fix up interoperability with old kernels. Otherwise, old inodes get
1512 * re-used with the upper 16 bits of the uid/gid intact
1513 */
1514		if (!ei->i_dtime) {
1515			raw_inode->i_uid_high = cpu_to_le16(high_16_bits(uid));
1516			raw_inode->i_gid_high = cpu_to_le16(high_16_bits(gid));
1517		} else {
1518			raw_inode->i_uid_high = 0;
1519			raw_inode->i_gid_high = 0;
1520		}
1521	} else {
1522		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(uid));
1523		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(gid));
1524		raw_inode->i_uid_high = 0;
1525		raw_inode->i_gid_high = 0;
1526	}
1527	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
1528	raw_inode->i_size = cpu_to_le32(inode->i_size);
1529	raw_inode->i_atime = cpu_to_le32(inode->i_atime.tv_sec);
1530	raw_inode->i_ctime = cpu_to_le32(inode->i_ctime.tv_sec);
1531	raw_inode->i_mtime = cpu_to_le32(inode->i_mtime.tv_sec);
1532
1533	raw_inode->i_blocks = cpu_to_le32(inode->i_blocks);
1534	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
1535	raw_inode->i_flags = cpu_to_le32(ei->i_flags);
1536	raw_inode->i_faddr = cpu_to_le32(ei->i_faddr);
1537	raw_inode->i_frag = ei->i_frag_no;
1538	raw_inode->i_fsize = ei->i_frag_size;
1539	raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl);
1540	if (!S_ISREG(inode->i_mode))
1541		raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl);
1542	else {
1543		raw_inode->i_size_high = cpu_to_le32(inode->i_size >> 32);
1544		if (inode->i_size > 0x7fffffffULL) {
1545			if (!EXT2_HAS_RO_COMPAT_FEATURE(sb,
1546					EXT2_FEATURE_RO_COMPAT_LARGE_FILE) ||
1547			    EXT2_SB(sb)->s_es->s_rev_level ==
1548					cpu_to_le32(EXT2_GOOD_OLD_REV)) {
1549			       /* If this is the first large file
1550				* created, add a flag to the superblock.
1551				*/
1552				spin_lock(&EXT2_SB(sb)->s_lock);
1553				ext2_update_dynamic_rev(sb);
1554				EXT2_SET_RO_COMPAT_FEATURE(sb,
1555					EXT2_FEATURE_RO_COMPAT_LARGE_FILE);
1556				spin_unlock(&EXT2_SB(sb)->s_lock);
1557				ext2_sync_super(sb, EXT2_SB(sb)->s_es, 1);
1558			}
1559		}
1560	}
1561	
1562	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
1563	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1564		if (old_valid_dev(inode->i_rdev)) {
1565			raw_inode->i_block[0] =
1566				cpu_to_le32(old_encode_dev(inode->i_rdev));
1567			raw_inode->i_block[1] = 0;
1568		} else {
1569			raw_inode->i_block[0] = 0;
1570			raw_inode->i_block[1] =
1571				cpu_to_le32(new_encode_dev(inode->i_rdev));
1572			raw_inode->i_block[2] = 0;
1573		}
1574	} else for (n = 0; n < EXT2_N_BLOCKS; n++)
1575		raw_inode->i_block[n] = ei->i_data[n];
1576	mark_buffer_dirty(bh);
1577	if (do_sync) {
1578		sync_dirty_buffer(bh);
1579		if (buffer_req(bh) && !buffer_uptodate(bh)) {
1580			printk ("IO error syncing ext2 inode [%s:%08lx]\n",
1581				sb->s_id, (unsigned long) ino);
1582			err = -EIO;
1583		}
1584	}
1585	ei->i_state &= ~EXT2_STATE_NEW;
1586	brelse (bh);
1587	return err;
1588}
1589
1590int ext2_write_inode(struct inode *inode, struct writeback_control *wbc)
1591{
1592	return __ext2_write_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1593}
1594
1595int ext2_getattr(struct user_namespace *mnt_userns, const struct path *path,
1596		 struct kstat *stat, u32 request_mask, unsigned int query_flags)
1597{
1598	struct inode *inode = d_inode(path->dentry);
1599	struct ext2_inode_info *ei = EXT2_I(inode);
1600	unsigned int flags;
1601
1602	flags = ei->i_flags & EXT2_FL_USER_VISIBLE;
1603	if (flags & EXT2_APPEND_FL)
1604		stat->attributes |= STATX_ATTR_APPEND;
1605	if (flags & EXT2_COMPR_FL)
1606		stat->attributes |= STATX_ATTR_COMPRESSED;
1607	if (flags & EXT2_IMMUTABLE_FL)
1608		stat->attributes |= STATX_ATTR_IMMUTABLE;
1609	if (flags & EXT2_NODUMP_FL)
1610		stat->attributes |= STATX_ATTR_NODUMP;
1611	stat->attributes_mask |= (STATX_ATTR_APPEND |
1612			STATX_ATTR_COMPRESSED |
1613			STATX_ATTR_ENCRYPTED |
1614			STATX_ATTR_IMMUTABLE |
1615			STATX_ATTR_NODUMP);
1616
1617	generic_fillattr(&init_user_ns, inode, stat);
1618	return 0;
1619}
1620
1621int ext2_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
1622		 struct iattr *iattr)
1623{
1624	struct inode *inode = d_inode(dentry);
1625	int error;
1626
1627	error = setattr_prepare(&init_user_ns, dentry, iattr);
1628	if (error)
1629		return error;
1630
1631	if (is_quota_modification(mnt_userns, inode, iattr)) {
1632		error = dquot_initialize(inode);
1633		if (error)
1634			return error;
1635	}
1636	if (i_uid_needs_update(mnt_userns, iattr, inode) ||
1637	    i_gid_needs_update(mnt_userns, iattr, inode)) {
1638		error = dquot_transfer(mnt_userns, inode, iattr);
1639		if (error)
1640			return error;
1641	}
1642	if (iattr->ia_valid & ATTR_SIZE && iattr->ia_size != inode->i_size) {
1643		error = ext2_setsize(inode, iattr->ia_size);
1644		if (error)
1645			return error;
1646	}
1647	setattr_copy(&init_user_ns, inode, iattr);
1648	if (iattr->ia_valid & ATTR_MODE)
1649		error = posix_acl_chmod(&init_user_ns, dentry, inode->i_mode);
1650	mark_inode_dirty(inode);
1651
1652	return error;
1653}