Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.6.
  1// SPDX-License-Identifier: MIT
  2/*
  3 * Copyright © 2008-2015 Intel Corporation
  4 */
  5
  6#include <linux/highmem.h>
  7
  8#include "i915_drv.h"
  9#include "i915_reg.h"
 10#include "i915_scatterlist.h"
 11#include "i915_pvinfo.h"
 12#include "i915_vgpu.h"
 13#include "intel_gt_regs.h"
 14#include "intel_mchbar_regs.h"
 15
 16/**
 17 * DOC: fence register handling
 18 *
 19 * Important to avoid confusions: "fences" in the i915 driver are not execution
 20 * fences used to track command completion but hardware detiler objects which
 21 * wrap a given range of the global GTT. Each platform has only a fairly limited
 22 * set of these objects.
 23 *
 24 * Fences are used to detile GTT memory mappings. They're also connected to the
 25 * hardware frontbuffer render tracking and hence interact with frontbuffer
 26 * compression. Furthermore on older platforms fences are required for tiled
 27 * objects used by the display engine. They can also be used by the render
 28 * engine - they're required for blitter commands and are optional for render
 29 * commands. But on gen4+ both display (with the exception of fbc) and rendering
 30 * have their own tiling state bits and don't need fences.
 31 *
 32 * Also note that fences only support X and Y tiling and hence can't be used for
 33 * the fancier new tiling formats like W, Ys and Yf.
 34 *
 35 * Finally note that because fences are such a restricted resource they're
 36 * dynamically associated with objects. Furthermore fence state is committed to
 37 * the hardware lazily to avoid unnecessary stalls on gen2/3. Therefore code must
 38 * explicitly call i915_gem_object_get_fence() to synchronize fencing status
 39 * for cpu access. Also note that some code wants an unfenced view, for those
 40 * cases the fence can be removed forcefully with i915_gem_object_put_fence().
 41 *
 42 * Internally these functions will synchronize with userspace access by removing
 43 * CPU ptes into GTT mmaps (not the GTT ptes themselves) as needed.
 44 */
 45
 46#define pipelined 0
 47
 48static struct drm_i915_private *fence_to_i915(struct i915_fence_reg *fence)
 49{
 50	return fence->ggtt->vm.i915;
 51}
 52
 53static struct intel_uncore *fence_to_uncore(struct i915_fence_reg *fence)
 54{
 55	return fence->ggtt->vm.gt->uncore;
 56}
 57
 58static void i965_write_fence_reg(struct i915_fence_reg *fence)
 59{
 60	i915_reg_t fence_reg_lo, fence_reg_hi;
 61	int fence_pitch_shift;
 62	u64 val;
 63
 64	if (GRAPHICS_VER(fence_to_i915(fence)) >= 6) {
 65		fence_reg_lo = FENCE_REG_GEN6_LO(fence->id);
 66		fence_reg_hi = FENCE_REG_GEN6_HI(fence->id);
 67		fence_pitch_shift = GEN6_FENCE_PITCH_SHIFT;
 68
 69	} else {
 70		fence_reg_lo = FENCE_REG_965_LO(fence->id);
 71		fence_reg_hi = FENCE_REG_965_HI(fence->id);
 72		fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
 73	}
 74
 75	val = 0;
 76	if (fence->tiling) {
 77		unsigned int stride = fence->stride;
 78
 79		GEM_BUG_ON(!IS_ALIGNED(stride, 128));
 80
 81		val = fence->start + fence->size - I965_FENCE_PAGE;
 82		val <<= 32;
 83		val |= fence->start;
 84		val |= (u64)((stride / 128) - 1) << fence_pitch_shift;
 85		if (fence->tiling == I915_TILING_Y)
 86			val |= BIT(I965_FENCE_TILING_Y_SHIFT);
 87		val |= I965_FENCE_REG_VALID;
 88	}
 89
 90	if (!pipelined) {
 91		struct intel_uncore *uncore = fence_to_uncore(fence);
 92
 93		/*
 94		 * To w/a incoherency with non-atomic 64-bit register updates,
 95		 * we split the 64-bit update into two 32-bit writes. In order
 96		 * for a partial fence not to be evaluated between writes, we
 97		 * precede the update with write to turn off the fence register,
 98		 * and only enable the fence as the last step.
 99		 *
100		 * For extra levels of paranoia, we make sure each step lands
101		 * before applying the next step.
102		 */
103		intel_uncore_write_fw(uncore, fence_reg_lo, 0);
104		intel_uncore_posting_read_fw(uncore, fence_reg_lo);
105
106		intel_uncore_write_fw(uncore, fence_reg_hi, upper_32_bits(val));
107		intel_uncore_write_fw(uncore, fence_reg_lo, lower_32_bits(val));
108		intel_uncore_posting_read_fw(uncore, fence_reg_lo);
109	}
110}
111
112static void i915_write_fence_reg(struct i915_fence_reg *fence)
113{
114	u32 val;
115
116	val = 0;
117	if (fence->tiling) {
118		unsigned int stride = fence->stride;
119		unsigned int tiling = fence->tiling;
120		bool is_y_tiled = tiling == I915_TILING_Y;
121
122		if (is_y_tiled && HAS_128_BYTE_Y_TILING(fence_to_i915(fence)))
123			stride /= 128;
124		else
125			stride /= 512;
126		GEM_BUG_ON(!is_power_of_2(stride));
127
128		val = fence->start;
129		if (is_y_tiled)
130			val |= BIT(I830_FENCE_TILING_Y_SHIFT);
131		val |= I915_FENCE_SIZE_BITS(fence->size);
132		val |= ilog2(stride) << I830_FENCE_PITCH_SHIFT;
133
134		val |= I830_FENCE_REG_VALID;
135	}
136
137	if (!pipelined) {
138		struct intel_uncore *uncore = fence_to_uncore(fence);
139		i915_reg_t reg = FENCE_REG(fence->id);
140
141		intel_uncore_write_fw(uncore, reg, val);
142		intel_uncore_posting_read_fw(uncore, reg);
143	}
144}
145
146static void i830_write_fence_reg(struct i915_fence_reg *fence)
147{
148	u32 val;
149
150	val = 0;
151	if (fence->tiling) {
152		unsigned int stride = fence->stride;
153
154		val = fence->start;
155		if (fence->tiling == I915_TILING_Y)
156			val |= BIT(I830_FENCE_TILING_Y_SHIFT);
157		val |= I830_FENCE_SIZE_BITS(fence->size);
158		val |= ilog2(stride / 128) << I830_FENCE_PITCH_SHIFT;
159		val |= I830_FENCE_REG_VALID;
160	}
161
162	if (!pipelined) {
163		struct intel_uncore *uncore = fence_to_uncore(fence);
164		i915_reg_t reg = FENCE_REG(fence->id);
165
166		intel_uncore_write_fw(uncore, reg, val);
167		intel_uncore_posting_read_fw(uncore, reg);
168	}
169}
170
171static void fence_write(struct i915_fence_reg *fence)
172{
173	struct drm_i915_private *i915 = fence_to_i915(fence);
174
175	/*
176	 * Previous access through the fence register is marshalled by
177	 * the mb() inside the fault handlers (i915_gem_release_mmaps)
178	 * and explicitly managed for internal users.
179	 */
180
181	if (GRAPHICS_VER(i915) == 2)
182		i830_write_fence_reg(fence);
183	else if (GRAPHICS_VER(i915) == 3)
184		i915_write_fence_reg(fence);
185	else
186		i965_write_fence_reg(fence);
187
188	/*
189	 * Access through the fenced region afterwards is
190	 * ordered by the posting reads whilst writing the registers.
191	 */
192}
193
194static bool gpu_uses_fence_registers(struct i915_fence_reg *fence)
195{
196	return GRAPHICS_VER(fence_to_i915(fence)) < 4;
197}
198
199static int fence_update(struct i915_fence_reg *fence,
200			struct i915_vma *vma)
201{
202	struct i915_ggtt *ggtt = fence->ggtt;
203	struct intel_uncore *uncore = fence_to_uncore(fence);
204	intel_wakeref_t wakeref;
205	struct i915_vma *old;
206	int ret;
207
208	fence->tiling = 0;
209	if (vma) {
210		GEM_BUG_ON(!i915_gem_object_get_stride(vma->obj) ||
211			   !i915_gem_object_get_tiling(vma->obj));
212
213		if (!i915_vma_is_map_and_fenceable(vma))
214			return -EINVAL;
215
216		if (gpu_uses_fence_registers(fence)) {
217			/* implicit 'unfenced' GPU blits */
218			ret = i915_vma_sync(vma);
219			if (ret)
220				return ret;
221		}
222
223		fence->start = vma->node.start;
224		fence->size = vma->fence_size;
225		fence->stride = i915_gem_object_get_stride(vma->obj);
226		fence->tiling = i915_gem_object_get_tiling(vma->obj);
227	}
228	WRITE_ONCE(fence->dirty, false);
229
230	old = xchg(&fence->vma, NULL);
231	if (old) {
232		/* XXX Ideally we would move the waiting to outside the mutex */
233		ret = i915_active_wait(&fence->active);
234		if (ret) {
235			fence->vma = old;
236			return ret;
237		}
238
239		i915_vma_flush_writes(old);
240
241		/*
242		 * Ensure that all userspace CPU access is completed before
243		 * stealing the fence.
244		 */
245		if (old != vma) {
246			GEM_BUG_ON(old->fence != fence);
247			i915_vma_revoke_mmap(old);
248			old->fence = NULL;
249		}
250
251		list_move(&fence->link, &ggtt->fence_list);
252	}
253
254	/*
255	 * We only need to update the register itself if the device is awake.
256	 * If the device is currently powered down, we will defer the write
257	 * to the runtime resume, see intel_ggtt_restore_fences().
258	 *
259	 * This only works for removing the fence register, on acquisition
260	 * the caller must hold the rpm wakeref. The fence register must
261	 * be cleared before we can use any other fences to ensure that
262	 * the new fences do not overlap the elided clears, confusing HW.
263	 */
264	wakeref = intel_runtime_pm_get_if_in_use(uncore->rpm);
265	if (!wakeref) {
266		GEM_BUG_ON(vma);
267		return 0;
268	}
269
270	WRITE_ONCE(fence->vma, vma);
271	fence_write(fence);
272
273	if (vma) {
274		vma->fence = fence;
275		list_move_tail(&fence->link, &ggtt->fence_list);
276	}
277
278	intel_runtime_pm_put(uncore->rpm, wakeref);
279	return 0;
280}
281
282/**
283 * i915_vma_revoke_fence - force-remove fence for a VMA
284 * @vma: vma to map linearly (not through a fence reg)
285 *
286 * This function force-removes any fence from the given object, which is useful
287 * if the kernel wants to do untiled GTT access.
288 */
289void i915_vma_revoke_fence(struct i915_vma *vma)
290{
291	struct i915_fence_reg *fence = vma->fence;
292	intel_wakeref_t wakeref;
293
294	lockdep_assert_held(&vma->vm->mutex);
295	if (!fence)
296		return;
297
298	GEM_BUG_ON(fence->vma != vma);
299	GEM_BUG_ON(!i915_active_is_idle(&fence->active));
300	GEM_BUG_ON(atomic_read(&fence->pin_count));
301
302	fence->tiling = 0;
303	WRITE_ONCE(fence->vma, NULL);
304	vma->fence = NULL;
305
306	/*
307	 * Skip the write to HW if and only if the device is currently
308	 * suspended.
309	 *
310	 * If the driver does not currently hold a wakeref (if_in_use == 0),
311	 * the device may currently be runtime suspended, or it may be woken
312	 * up before the suspend takes place. If the device is not suspended
313	 * (powered down) and we skip clearing the fence register, the HW is
314	 * left in an undefined state where we may end up with multiple
315	 * registers overlapping.
316	 */
317	with_intel_runtime_pm_if_active(fence_to_uncore(fence)->rpm, wakeref)
318		fence_write(fence);
319}
320
321static bool fence_is_active(const struct i915_fence_reg *fence)
322{
323	return fence->vma && i915_vma_is_active(fence->vma);
324}
325
326static struct i915_fence_reg *fence_find(struct i915_ggtt *ggtt)
327{
328	struct i915_fence_reg *active = NULL;
329	struct i915_fence_reg *fence, *fn;
330
331	list_for_each_entry_safe(fence, fn, &ggtt->fence_list, link) {
332		GEM_BUG_ON(fence->vma && fence->vma->fence != fence);
333
334		if (fence == active) /* now seen this fence twice */
335			active = ERR_PTR(-EAGAIN);
336
337		/* Prefer idle fences so we do not have to wait on the GPU */
338		if (active != ERR_PTR(-EAGAIN) && fence_is_active(fence)) {
339			if (!active)
340				active = fence;
341
342			list_move_tail(&fence->link, &ggtt->fence_list);
343			continue;
344		}
345
346		if (atomic_read(&fence->pin_count))
347			continue;
348
349		return fence;
350	}
351
352	/* Wait for completion of pending flips which consume fences */
353	if (intel_has_pending_fb_unpin(ggtt->vm.i915))
354		return ERR_PTR(-EAGAIN);
355
356	return ERR_PTR(-ENOBUFS);
357}
358
359int __i915_vma_pin_fence(struct i915_vma *vma)
360{
361	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vma->vm);
362	struct i915_fence_reg *fence;
363	struct i915_vma *set = i915_gem_object_is_tiled(vma->obj) ? vma : NULL;
364	int err;
365
366	lockdep_assert_held(&vma->vm->mutex);
367
368	/* Just update our place in the LRU if our fence is getting reused. */
369	if (vma->fence) {
370		fence = vma->fence;
371		GEM_BUG_ON(fence->vma != vma);
372		atomic_inc(&fence->pin_count);
373		if (!fence->dirty) {
374			list_move_tail(&fence->link, &ggtt->fence_list);
375			return 0;
376		}
377	} else if (set) {
378		fence = fence_find(ggtt);
379		if (IS_ERR(fence))
380			return PTR_ERR(fence);
381
382		GEM_BUG_ON(atomic_read(&fence->pin_count));
383		atomic_inc(&fence->pin_count);
384	} else {
385		return 0;
386	}
387
388	err = fence_update(fence, set);
389	if (err)
390		goto out_unpin;
391
392	GEM_BUG_ON(fence->vma != set);
393	GEM_BUG_ON(vma->fence != (set ? fence : NULL));
394
395	if (set)
396		return 0;
397
398out_unpin:
399	atomic_dec(&fence->pin_count);
400	return err;
401}
402
403/**
404 * i915_vma_pin_fence - set up fencing for a vma
405 * @vma: vma to map through a fence reg
406 *
407 * When mapping objects through the GTT, userspace wants to be able to write
408 * to them without having to worry about swizzling if the object is tiled.
409 * This function walks the fence regs looking for a free one for @obj,
410 * stealing one if it can't find any.
411 *
412 * It then sets up the reg based on the object's properties: address, pitch
413 * and tiling format.
414 *
415 * For an untiled surface, this removes any existing fence.
416 *
417 * Returns:
418 *
419 * 0 on success, negative error code on failure.
420 */
421int i915_vma_pin_fence(struct i915_vma *vma)
422{
423	int err;
424
425	if (!vma->fence && !i915_gem_object_is_tiled(vma->obj))
426		return 0;
427
428	/*
429	 * Note that we revoke fences on runtime suspend. Therefore the user
430	 * must keep the device awake whilst using the fence.
431	 */
432	assert_rpm_wakelock_held(vma->vm->gt->uncore->rpm);
433	GEM_BUG_ON(!i915_vma_is_ggtt(vma));
434
435	err = mutex_lock_interruptible(&vma->vm->mutex);
436	if (err)
437		return err;
438
439	err = __i915_vma_pin_fence(vma);
440	mutex_unlock(&vma->vm->mutex);
441
442	return err;
443}
444
445/**
446 * i915_reserve_fence - Reserve a fence for vGPU
447 * @ggtt: Global GTT
448 *
449 * This function walks the fence regs looking for a free one and remove
450 * it from the fence_list. It is used to reserve fence for vGPU to use.
451 */
452struct i915_fence_reg *i915_reserve_fence(struct i915_ggtt *ggtt)
453{
454	struct i915_fence_reg *fence;
455	int count;
456	int ret;
457
458	lockdep_assert_held(&ggtt->vm.mutex);
459
460	/* Keep at least one fence available for the display engine. */
461	count = 0;
462	list_for_each_entry(fence, &ggtt->fence_list, link)
463		count += !atomic_read(&fence->pin_count);
464	if (count <= 1)
465		return ERR_PTR(-ENOSPC);
466
467	fence = fence_find(ggtt);
468	if (IS_ERR(fence))
469		return fence;
470
471	if (fence->vma) {
472		/* Force-remove fence from VMA */
473		ret = fence_update(fence, NULL);
474		if (ret)
475			return ERR_PTR(ret);
476	}
477
478	list_del(&fence->link);
479
480	return fence;
481}
482
483/**
484 * i915_unreserve_fence - Reclaim a reserved fence
485 * @fence: the fence reg
486 *
487 * This function add a reserved fence register from vGPU to the fence_list.
488 */
489void i915_unreserve_fence(struct i915_fence_reg *fence)
490{
491	struct i915_ggtt *ggtt = fence->ggtt;
492
493	lockdep_assert_held(&ggtt->vm.mutex);
494
495	list_add(&fence->link, &ggtt->fence_list);
496}
497
498/**
499 * intel_ggtt_restore_fences - restore fence state
500 * @ggtt: Global GTT
501 *
502 * Restore the hw fence state to match the software tracking again, to be called
503 * after a gpu reset and on resume. Note that on runtime suspend we only cancel
504 * the fences, to be reacquired by the user later.
505 */
506void intel_ggtt_restore_fences(struct i915_ggtt *ggtt)
507{
508	int i;
509
510	for (i = 0; i < ggtt->num_fences; i++)
511		fence_write(&ggtt->fence_regs[i]);
512}
513
514/**
515 * DOC: tiling swizzling details
516 *
517 * The idea behind tiling is to increase cache hit rates by rearranging
518 * pixel data so that a group of pixel accesses are in the same cacheline.
519 * Performance improvement from doing this on the back/depth buffer are on
520 * the order of 30%.
521 *
522 * Intel architectures make this somewhat more complicated, though, by
523 * adjustments made to addressing of data when the memory is in interleaved
524 * mode (matched pairs of DIMMS) to improve memory bandwidth.
525 * For interleaved memory, the CPU sends every sequential 64 bytes
526 * to an alternate memory channel so it can get the bandwidth from both.
527 *
528 * The GPU also rearranges its accesses for increased bandwidth to interleaved
529 * memory, and it matches what the CPU does for non-tiled.  However, when tiled
530 * it does it a little differently, since one walks addresses not just in the
531 * X direction but also Y.  So, along with alternating channels when bit
532 * 6 of the address flips, it also alternates when other bits flip --  Bits 9
533 * (every 512 bytes, an X tile scanline) and 10 (every two X tile scanlines)
534 * are common to both the 915 and 965-class hardware.
535 *
536 * The CPU also sometimes XORs in higher bits as well, to improve
537 * bandwidth doing strided access like we do so frequently in graphics.  This
538 * is called "Channel XOR Randomization" in the MCH documentation.  The result
539 * is that the CPU is XORing in either bit 11 or bit 17 to bit 6 of its address
540 * decode.
541 *
542 * All of this bit 6 XORing has an effect on our memory management,
543 * as we need to make sure that the 3d driver can correctly address object
544 * contents.
545 *
546 * If we don't have interleaved memory, all tiling is safe and no swizzling is
547 * required.
548 *
549 * When bit 17 is XORed in, we simply refuse to tile at all.  Bit
550 * 17 is not just a page offset, so as we page an object out and back in,
551 * individual pages in it will have different bit 17 addresses, resulting in
552 * each 64 bytes being swapped with its neighbor!
553 *
554 * Otherwise, if interleaved, we have to tell the 3d driver what the address
555 * swizzling it needs to do is, since it's writing with the CPU to the pages
556 * (bit 6 and potentially bit 11 XORed in), and the GPU is reading from the
557 * pages (bit 6, 9, and 10 XORed in), resulting in a cumulative bit swizzling
558 * required by the CPU of XORing in bit 6, 9, 10, and potentially 11, in order
559 * to match what the GPU expects.
560 */
561
562/**
563 * detect_bit_6_swizzle - detect bit 6 swizzling pattern
564 * @ggtt: Global GGTT
565 *
566 * Detects bit 6 swizzling of address lookup between IGD access and CPU
567 * access through main memory.
568 */
569static void detect_bit_6_swizzle(struct i915_ggtt *ggtt)
570{
571	struct intel_uncore *uncore = ggtt->vm.gt->uncore;
572	struct drm_i915_private *i915 = ggtt->vm.i915;
573	u32 swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
574	u32 swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;
575
576	if (GRAPHICS_VER(i915) >= 8 || IS_VALLEYVIEW(i915)) {
577		/*
578		 * On BDW+, swizzling is not used. We leave the CPU memory
579		 * controller in charge of optimizing memory accesses without
580		 * the extra address manipulation GPU side.
581		 *
582		 * VLV and CHV don't have GPU swizzling.
583		 */
584		swizzle_x = I915_BIT_6_SWIZZLE_NONE;
585		swizzle_y = I915_BIT_6_SWIZZLE_NONE;
586	} else if (GRAPHICS_VER(i915) >= 6) {
587		if (i915->preserve_bios_swizzle) {
588			if (intel_uncore_read(uncore, DISP_ARB_CTL) &
589			    DISP_TILE_SURFACE_SWIZZLING) {
590				swizzle_x = I915_BIT_6_SWIZZLE_9_10;
591				swizzle_y = I915_BIT_6_SWIZZLE_9;
592			} else {
593				swizzle_x = I915_BIT_6_SWIZZLE_NONE;
594				swizzle_y = I915_BIT_6_SWIZZLE_NONE;
595			}
596		} else {
597			u32 dimm_c0, dimm_c1;
598
599			dimm_c0 = intel_uncore_read(uncore, MAD_DIMM_C0);
600			dimm_c1 = intel_uncore_read(uncore, MAD_DIMM_C1);
601			dimm_c0 &= MAD_DIMM_A_SIZE_MASK | MAD_DIMM_B_SIZE_MASK;
602			dimm_c1 &= MAD_DIMM_A_SIZE_MASK | MAD_DIMM_B_SIZE_MASK;
603			/*
604			 * Enable swizzling when the channels are populated
605			 * with identically sized dimms. We don't need to check
606			 * the 3rd channel because no cpu with gpu attached
607			 * ships in that configuration. Also, swizzling only
608			 * makes sense for 2 channels anyway.
609			 */
610			if (dimm_c0 == dimm_c1) {
611				swizzle_x = I915_BIT_6_SWIZZLE_9_10;
612				swizzle_y = I915_BIT_6_SWIZZLE_9;
613			} else {
614				swizzle_x = I915_BIT_6_SWIZZLE_NONE;
615				swizzle_y = I915_BIT_6_SWIZZLE_NONE;
616			}
617		}
618	} else if (GRAPHICS_VER(i915) == 5) {
619		/*
620		 * On Ironlake whatever DRAM config, GPU always do
621		 * same swizzling setup.
622		 */
623		swizzle_x = I915_BIT_6_SWIZZLE_9_10;
624		swizzle_y = I915_BIT_6_SWIZZLE_9;
625	} else if (GRAPHICS_VER(i915) == 2) {
626		/*
627		 * As far as we know, the 865 doesn't have these bit 6
628		 * swizzling issues.
629		 */
630		swizzle_x = I915_BIT_6_SWIZZLE_NONE;
631		swizzle_y = I915_BIT_6_SWIZZLE_NONE;
632	} else if (IS_G45(i915) || IS_I965G(i915) || IS_G33(i915)) {
633		/*
634		 * The 965, G33, and newer, have a very flexible memory
635		 * configuration.  It will enable dual-channel mode
636		 * (interleaving) on as much memory as it can, and the GPU
637		 * will additionally sometimes enable different bit 6
638		 * swizzling for tiled objects from the CPU.
639		 *
640		 * Here's what I found on the G965:
641		 *    slot fill         memory size  swizzling
642		 * 0A   0B   1A   1B    1-ch   2-ch
643		 * 512  0    0    0     512    0     O
644		 * 512  0    512  0     16     1008  X
645		 * 512  0    0    512   16     1008  X
646		 * 0    512  0    512   16     1008  X
647		 * 1024 1024 1024 0     2048   1024  O
648		 *
649		 * We could probably detect this based on either the DRB
650		 * matching, which was the case for the swizzling required in
651		 * the table above, or from the 1-ch value being less than
652		 * the minimum size of a rank.
653		 *
654		 * Reports indicate that the swizzling actually
655		 * varies depending upon page placement inside the
656		 * channels, i.e. we see swizzled pages where the
657		 * banks of memory are paired and unswizzled on the
658		 * uneven portion, so leave that as unknown.
659		 */
660		if (intel_uncore_read16(uncore, C0DRB3_BW) ==
661		    intel_uncore_read16(uncore, C1DRB3_BW)) {
662			swizzle_x = I915_BIT_6_SWIZZLE_9_10;
663			swizzle_y = I915_BIT_6_SWIZZLE_9;
664		}
665	} else {
666		u32 dcc = intel_uncore_read(uncore, DCC);
667
668		/*
669		 * On 9xx chipsets, channel interleave by the CPU is
670		 * determined by DCC.  For single-channel, neither the CPU
671		 * nor the GPU do swizzling.  For dual channel interleaved,
672		 * the GPU's interleave is bit 9 and 10 for X tiled, and bit
673		 * 9 for Y tiled.  The CPU's interleave is independent, and
674		 * can be based on either bit 11 (haven't seen this yet) or
675		 * bit 17 (common).
676		 */
677		switch (dcc & DCC_ADDRESSING_MODE_MASK) {
678		case DCC_ADDRESSING_MODE_SINGLE_CHANNEL:
679		case DCC_ADDRESSING_MODE_DUAL_CHANNEL_ASYMMETRIC:
680			swizzle_x = I915_BIT_6_SWIZZLE_NONE;
681			swizzle_y = I915_BIT_6_SWIZZLE_NONE;
682			break;
683		case DCC_ADDRESSING_MODE_DUAL_CHANNEL_INTERLEAVED:
684			if (dcc & DCC_CHANNEL_XOR_DISABLE) {
685				/*
686				 * This is the base swizzling by the GPU for
687				 * tiled buffers.
688				 */
689				swizzle_x = I915_BIT_6_SWIZZLE_9_10;
690				swizzle_y = I915_BIT_6_SWIZZLE_9;
691			} else if ((dcc & DCC_CHANNEL_XOR_BIT_17) == 0) {
692				/* Bit 11 swizzling by the CPU in addition. */
693				swizzle_x = I915_BIT_6_SWIZZLE_9_10_11;
694				swizzle_y = I915_BIT_6_SWIZZLE_9_11;
695			} else {
696				/* Bit 17 swizzling by the CPU in addition. */
697				swizzle_x = I915_BIT_6_SWIZZLE_9_10_17;
698				swizzle_y = I915_BIT_6_SWIZZLE_9_17;
699			}
700			break;
701		}
702
703		/* check for L-shaped memory aka modified enhanced addressing */
704		if (GRAPHICS_VER(i915) == 4 &&
705		    !(intel_uncore_read(uncore, DCC2) & DCC2_MODIFIED_ENHANCED_DISABLE)) {
706			swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
707			swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;
708		}
709
710		if (dcc == 0xffffffff) {
711			drm_err(&i915->drm, "Couldn't read from MCHBAR.  "
712				  "Disabling tiling.\n");
713			swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
714			swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;
715		}
716	}
717
718	if (swizzle_x == I915_BIT_6_SWIZZLE_UNKNOWN ||
719	    swizzle_y == I915_BIT_6_SWIZZLE_UNKNOWN) {
720		/*
721		 * Userspace likes to explode if it sees unknown swizzling,
722		 * so lie. We will finish the lie when reporting through
723		 * the get-tiling-ioctl by reporting the physical swizzle
724		 * mode as unknown instead.
725		 *
726		 * As we don't strictly know what the swizzling is, it may be
727		 * bit17 dependent, and so we need to also prevent the pages
728		 * from being moved.
729		 */
730		i915->gem_quirks |= GEM_QUIRK_PIN_SWIZZLED_PAGES;
731		swizzle_x = I915_BIT_6_SWIZZLE_NONE;
732		swizzle_y = I915_BIT_6_SWIZZLE_NONE;
733	}
734
735	to_gt(i915)->ggtt->bit_6_swizzle_x = swizzle_x;
736	to_gt(i915)->ggtt->bit_6_swizzle_y = swizzle_y;
737}
738
739/*
740 * Swap every 64 bytes of this page around, to account for it having a new
741 * bit 17 of its physical address and therefore being interpreted differently
742 * by the GPU.
743 */
744static void swizzle_page(struct page *page)
745{
746	char temp[64];
747	char *vaddr;
748	int i;
749
750	vaddr = kmap(page);
751
752	for (i = 0; i < PAGE_SIZE; i += 128) {
753		memcpy(temp, &vaddr[i], 64);
754		memcpy(&vaddr[i], &vaddr[i + 64], 64);
755		memcpy(&vaddr[i + 64], temp, 64);
756	}
757
758	kunmap(page);
759}
760
761/**
762 * i915_gem_object_do_bit_17_swizzle - fixup bit 17 swizzling
763 * @obj: i915 GEM buffer object
764 * @pages: the scattergather list of physical pages
765 *
766 * This function fixes up the swizzling in case any page frame number for this
767 * object has changed in bit 17 since that state has been saved with
768 * i915_gem_object_save_bit_17_swizzle().
769 *
770 * This is called when pinning backing storage again, since the kernel is free
771 * to move unpinned backing storage around (either by directly moving pages or
772 * by swapping them out and back in again).
773 */
774void
775i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj,
776				  struct sg_table *pages)
777{
778	struct sgt_iter sgt_iter;
779	struct page *page;
780	int i;
781
782	if (obj->bit_17 == NULL)
783		return;
784
785	i = 0;
786	for_each_sgt_page(page, sgt_iter, pages) {
787		char new_bit_17 = page_to_phys(page) >> 17;
788
789		if ((new_bit_17 & 0x1) != (test_bit(i, obj->bit_17) != 0)) {
790			swizzle_page(page);
791			set_page_dirty(page);
792		}
793
794		i++;
795	}
796}
797
798/**
799 * i915_gem_object_save_bit_17_swizzle - save bit 17 swizzling
800 * @obj: i915 GEM buffer object
801 * @pages: the scattergather list of physical pages
802 *
803 * This function saves the bit 17 of each page frame number so that swizzling
804 * can be fixed up later on with i915_gem_object_do_bit_17_swizzle(). This must
805 * be called before the backing storage can be unpinned.
806 */
807void
808i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj,
809				    struct sg_table *pages)
810{
811	const unsigned int page_count = obj->base.size >> PAGE_SHIFT;
812	struct sgt_iter sgt_iter;
813	struct page *page;
814	int i;
815
816	if (obj->bit_17 == NULL) {
817		obj->bit_17 = bitmap_zalloc(page_count, GFP_KERNEL);
818		if (obj->bit_17 == NULL) {
819			drm_err(&to_i915(obj->base.dev)->drm,
820				"Failed to allocate memory for bit 17 record\n");
821			return;
822		}
823	}
824
825	i = 0;
826
827	for_each_sgt_page(page, sgt_iter, pages) {
828		if (page_to_phys(page) & (1 << 17))
829			__set_bit(i, obj->bit_17);
830		else
831			__clear_bit(i, obj->bit_17);
832		i++;
833	}
834}
835
836void intel_ggtt_init_fences(struct i915_ggtt *ggtt)
837{
838	struct drm_i915_private *i915 = ggtt->vm.i915;
839	struct intel_uncore *uncore = ggtt->vm.gt->uncore;
840	int num_fences;
841	int i;
842
843	INIT_LIST_HEAD(&ggtt->fence_list);
844	INIT_LIST_HEAD(&ggtt->userfault_list);
845
846	detect_bit_6_swizzle(ggtt);
847
848	if (!i915_ggtt_has_aperture(ggtt))
849		num_fences = 0;
850	else if (GRAPHICS_VER(i915) >= 7 &&
851		 !(IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915)))
852		num_fences = 32;
853	else if (GRAPHICS_VER(i915) >= 4 ||
854		 IS_I945G(i915) || IS_I945GM(i915) ||
855		 IS_G33(i915) || IS_PINEVIEW(i915))
856		num_fences = 16;
857	else
858		num_fences = 8;
859
860	if (intel_vgpu_active(i915))
861		num_fences = intel_uncore_read(uncore,
862					       vgtif_reg(avail_rs.fence_num));
863	ggtt->fence_regs = kcalloc(num_fences,
864				   sizeof(*ggtt->fence_regs),
865				   GFP_KERNEL);
866	if (!ggtt->fence_regs)
867		num_fences = 0;
868
869	/* Initialize fence registers to zero */
870	for (i = 0; i < num_fences; i++) {
871		struct i915_fence_reg *fence = &ggtt->fence_regs[i];
872
873		i915_active_init(&fence->active, NULL, NULL, 0);
874		fence->ggtt = ggtt;
875		fence->id = i;
876		list_add_tail(&fence->link, &ggtt->fence_list);
877	}
878	ggtt->num_fences = num_fences;
879
880	intel_ggtt_restore_fences(ggtt);
881}
882
883void intel_ggtt_fini_fences(struct i915_ggtt *ggtt)
884{
885	int i;
886
887	for (i = 0; i < ggtt->num_fences; i++) {
888		struct i915_fence_reg *fence = &ggtt->fence_regs[i];
889
890		i915_active_fini(&fence->active);
891	}
892
893	kfree(ggtt->fence_regs);
894}
895
896void intel_gt_init_swizzling(struct intel_gt *gt)
897{
898	struct drm_i915_private *i915 = gt->i915;
899	struct intel_uncore *uncore = gt->uncore;
900
901	if (GRAPHICS_VER(i915) < 5 ||
902	    to_gt(i915)->ggtt->bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
903		return;
904
905	intel_uncore_rmw(uncore, DISP_ARB_CTL, 0, DISP_TILE_SURFACE_SWIZZLING);
906
907	if (GRAPHICS_VER(i915) == 5)
908		return;
909
910	intel_uncore_rmw(uncore, TILECTL, 0, TILECTL_SWZCTL);
911
912	if (GRAPHICS_VER(i915) == 6)
913		intel_uncore_write(uncore,
914				   ARB_MODE,
915				   _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
916	else if (GRAPHICS_VER(i915) == 7)
917		intel_uncore_write(uncore,
918				   ARB_MODE,
919				   _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
920	else if (GRAPHICS_VER(i915) == 8)
921		intel_uncore_write(uncore,
922				   GAMTARBMODE,
923				   _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
924	else
925		MISSING_CASE(GRAPHICS_VER(i915));
926}