Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.6.
  1// SPDX-License-Identifier: MIT
  2/*
  3 * Copyright © 2008-2015 Intel Corporation
  4 */
  5
  6#include "i915_drv.h"
  7#include "i915_scatterlist.h"
  8#include "i915_pvinfo.h"
  9#include "i915_vgpu.h"
 10
 11/**
 12 * DOC: fence register handling
 13 *
 14 * Important to avoid confusions: "fences" in the i915 driver are not execution
 15 * fences used to track command completion but hardware detiler objects which
 16 * wrap a given range of the global GTT. Each platform has only a fairly limited
 17 * set of these objects.
 18 *
 19 * Fences are used to detile GTT memory mappings. They're also connected to the
 20 * hardware frontbuffer render tracking and hence interact with frontbuffer
 21 * compression. Furthermore on older platforms fences are required for tiled
 22 * objects used by the display engine. They can also be used by the render
 23 * engine - they're required for blitter commands and are optional for render
 24 * commands. But on gen4+ both display (with the exception of fbc) and rendering
 25 * have their own tiling state bits and don't need fences.
 26 *
 27 * Also note that fences only support X and Y tiling and hence can't be used for
 28 * the fancier new tiling formats like W, Ys and Yf.
 29 *
 30 * Finally note that because fences are such a restricted resource they're
 31 * dynamically associated with objects. Furthermore fence state is committed to
 32 * the hardware lazily to avoid unnecessary stalls on gen2/3. Therefore code must
 33 * explicitly call i915_gem_object_get_fence() to synchronize fencing status
 34 * for cpu access. Also note that some code wants an unfenced view, for those
 35 * cases the fence can be removed forcefully with i915_gem_object_put_fence().
 36 *
 37 * Internally these functions will synchronize with userspace access by removing
 38 * CPU ptes into GTT mmaps (not the GTT ptes themselves) as needed.
 39 */
 40
 41#define pipelined 0
 42
 43static struct drm_i915_private *fence_to_i915(struct i915_fence_reg *fence)
 44{
 45	return fence->ggtt->vm.i915;
 46}
 47
 48static struct intel_uncore *fence_to_uncore(struct i915_fence_reg *fence)
 49{
 50	return fence->ggtt->vm.gt->uncore;
 51}
 52
 53static void i965_write_fence_reg(struct i915_fence_reg *fence)
 54{
 55	i915_reg_t fence_reg_lo, fence_reg_hi;
 56	int fence_pitch_shift;
 57	u64 val;
 58
 59	if (GRAPHICS_VER(fence_to_i915(fence)) >= 6) {
 60		fence_reg_lo = FENCE_REG_GEN6_LO(fence->id);
 61		fence_reg_hi = FENCE_REG_GEN6_HI(fence->id);
 62		fence_pitch_shift = GEN6_FENCE_PITCH_SHIFT;
 63
 64	} else {
 65		fence_reg_lo = FENCE_REG_965_LO(fence->id);
 66		fence_reg_hi = FENCE_REG_965_HI(fence->id);
 67		fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
 68	}
 69
 70	val = 0;
 71	if (fence->tiling) {
 72		unsigned int stride = fence->stride;
 73
 74		GEM_BUG_ON(!IS_ALIGNED(stride, 128));
 75
 76		val = fence->start + fence->size - I965_FENCE_PAGE;
 77		val <<= 32;
 78		val |= fence->start;
 79		val |= (u64)((stride / 128) - 1) << fence_pitch_shift;
 80		if (fence->tiling == I915_TILING_Y)
 81			val |= BIT(I965_FENCE_TILING_Y_SHIFT);
 82		val |= I965_FENCE_REG_VALID;
 83	}
 84
 85	if (!pipelined) {
 86		struct intel_uncore *uncore = fence_to_uncore(fence);
 87
 88		/*
 89		 * To w/a incoherency with non-atomic 64-bit register updates,
 90		 * we split the 64-bit update into two 32-bit writes. In order
 91		 * for a partial fence not to be evaluated between writes, we
 92		 * precede the update with write to turn off the fence register,
 93		 * and only enable the fence as the last step.
 94		 *
 95		 * For extra levels of paranoia, we make sure each step lands
 96		 * before applying the next step.
 97		 */
 98		intel_uncore_write_fw(uncore, fence_reg_lo, 0);
 99		intel_uncore_posting_read_fw(uncore, fence_reg_lo);
100
101		intel_uncore_write_fw(uncore, fence_reg_hi, upper_32_bits(val));
102		intel_uncore_write_fw(uncore, fence_reg_lo, lower_32_bits(val));
103		intel_uncore_posting_read_fw(uncore, fence_reg_lo);
104	}
105}
106
107static void i915_write_fence_reg(struct i915_fence_reg *fence)
108{
109	u32 val;
110
111	val = 0;
112	if (fence->tiling) {
113		unsigned int stride = fence->stride;
114		unsigned int tiling = fence->tiling;
115		bool is_y_tiled = tiling == I915_TILING_Y;
116
117		if (is_y_tiled && HAS_128_BYTE_Y_TILING(fence_to_i915(fence)))
118			stride /= 128;
119		else
120			stride /= 512;
121		GEM_BUG_ON(!is_power_of_2(stride));
122
123		val = fence->start;
124		if (is_y_tiled)
125			val |= BIT(I830_FENCE_TILING_Y_SHIFT);
126		val |= I915_FENCE_SIZE_BITS(fence->size);
127		val |= ilog2(stride) << I830_FENCE_PITCH_SHIFT;
128
129		val |= I830_FENCE_REG_VALID;
130	}
131
132	if (!pipelined) {
133		struct intel_uncore *uncore = fence_to_uncore(fence);
134		i915_reg_t reg = FENCE_REG(fence->id);
135
136		intel_uncore_write_fw(uncore, reg, val);
137		intel_uncore_posting_read_fw(uncore, reg);
138	}
139}
140
141static void i830_write_fence_reg(struct i915_fence_reg *fence)
142{
143	u32 val;
144
145	val = 0;
146	if (fence->tiling) {
147		unsigned int stride = fence->stride;
148
149		val = fence->start;
150		if (fence->tiling == I915_TILING_Y)
151			val |= BIT(I830_FENCE_TILING_Y_SHIFT);
152		val |= I830_FENCE_SIZE_BITS(fence->size);
153		val |= ilog2(stride / 128) << I830_FENCE_PITCH_SHIFT;
154		val |= I830_FENCE_REG_VALID;
155	}
156
157	if (!pipelined) {
158		struct intel_uncore *uncore = fence_to_uncore(fence);
159		i915_reg_t reg = FENCE_REG(fence->id);
160
161		intel_uncore_write_fw(uncore, reg, val);
162		intel_uncore_posting_read_fw(uncore, reg);
163	}
164}
165
166static void fence_write(struct i915_fence_reg *fence)
167{
168	struct drm_i915_private *i915 = fence_to_i915(fence);
169
170	/*
171	 * Previous access through the fence register is marshalled by
172	 * the mb() inside the fault handlers (i915_gem_release_mmaps)
173	 * and explicitly managed for internal users.
174	 */
175
176	if (GRAPHICS_VER(i915) == 2)
177		i830_write_fence_reg(fence);
178	else if (GRAPHICS_VER(i915) == 3)
179		i915_write_fence_reg(fence);
180	else
181		i965_write_fence_reg(fence);
182
183	/*
184	 * Access through the fenced region afterwards is
185	 * ordered by the posting reads whilst writing the registers.
186	 */
187}
188
189static bool gpu_uses_fence_registers(struct i915_fence_reg *fence)
190{
191	return GRAPHICS_VER(fence_to_i915(fence)) < 4;
192}
193
194static int fence_update(struct i915_fence_reg *fence,
195			struct i915_vma *vma)
196{
197	struct i915_ggtt *ggtt = fence->ggtt;
198	struct intel_uncore *uncore = fence_to_uncore(fence);
199	intel_wakeref_t wakeref;
200	struct i915_vma *old;
201	int ret;
202
203	fence->tiling = 0;
204	if (vma) {
205		GEM_BUG_ON(!i915_gem_object_get_stride(vma->obj) ||
206			   !i915_gem_object_get_tiling(vma->obj));
207
208		if (!i915_vma_is_map_and_fenceable(vma))
209			return -EINVAL;
210
211		if (gpu_uses_fence_registers(fence)) {
212			/* implicit 'unfenced' GPU blits */
213			ret = i915_vma_sync(vma);
214			if (ret)
215				return ret;
216		}
217
218		fence->start = vma->node.start;
219		fence->size = vma->fence_size;
220		fence->stride = i915_gem_object_get_stride(vma->obj);
221		fence->tiling = i915_gem_object_get_tiling(vma->obj);
222	}
223	WRITE_ONCE(fence->dirty, false);
224
225	old = xchg(&fence->vma, NULL);
226	if (old) {
227		/* XXX Ideally we would move the waiting to outside the mutex */
228		ret = i915_active_wait(&fence->active);
229		if (ret) {
230			fence->vma = old;
231			return ret;
232		}
233
234		i915_vma_flush_writes(old);
235
236		/*
237		 * Ensure that all userspace CPU access is completed before
238		 * stealing the fence.
239		 */
240		if (old != vma) {
241			GEM_BUG_ON(old->fence != fence);
242			i915_vma_revoke_mmap(old);
243			old->fence = NULL;
244		}
245
246		list_move(&fence->link, &ggtt->fence_list);
247	}
248
249	/*
250	 * We only need to update the register itself if the device is awake.
251	 * If the device is currently powered down, we will defer the write
252	 * to the runtime resume, see intel_ggtt_restore_fences().
253	 *
254	 * This only works for removing the fence register, on acquisition
255	 * the caller must hold the rpm wakeref. The fence register must
256	 * be cleared before we can use any other fences to ensure that
257	 * the new fences do not overlap the elided clears, confusing HW.
258	 */
259	wakeref = intel_runtime_pm_get_if_in_use(uncore->rpm);
260	if (!wakeref) {
261		GEM_BUG_ON(vma);
262		return 0;
263	}
264
265	WRITE_ONCE(fence->vma, vma);
266	fence_write(fence);
267
268	if (vma) {
269		vma->fence = fence;
270		list_move_tail(&fence->link, &ggtt->fence_list);
271	}
272
273	intel_runtime_pm_put(uncore->rpm, wakeref);
274	return 0;
275}
276
277/**
278 * i915_vma_revoke_fence - force-remove fence for a VMA
279 * @vma: vma to map linearly (not through a fence reg)
280 *
281 * This function force-removes any fence from the given object, which is useful
282 * if the kernel wants to do untiled GTT access.
283 */
284void i915_vma_revoke_fence(struct i915_vma *vma)
285{
286	struct i915_fence_reg *fence = vma->fence;
287	intel_wakeref_t wakeref;
288
289	lockdep_assert_held(&vma->vm->mutex);
290	if (!fence)
291		return;
292
293	GEM_BUG_ON(fence->vma != vma);
294	GEM_BUG_ON(!i915_active_is_idle(&fence->active));
295	GEM_BUG_ON(atomic_read(&fence->pin_count));
296
297	fence->tiling = 0;
298	WRITE_ONCE(fence->vma, NULL);
299	vma->fence = NULL;
300
301	/*
302	 * Skip the write to HW if and only if the device is currently
303	 * suspended.
304	 *
305	 * If the driver does not currently hold a wakeref (if_in_use == 0),
306	 * the device may currently be runtime suspended, or it may be woken
307	 * up before the suspend takes place. If the device is not suspended
308	 * (powered down) and we skip clearing the fence register, the HW is
309	 * left in an undefined state where we may end up with multiple
310	 * registers overlapping.
311	 */
312	with_intel_runtime_pm_if_active(fence_to_uncore(fence)->rpm, wakeref)
313		fence_write(fence);
314}
315
316static bool fence_is_active(const struct i915_fence_reg *fence)
317{
318	return fence->vma && i915_vma_is_active(fence->vma);
319}
320
321static struct i915_fence_reg *fence_find(struct i915_ggtt *ggtt)
322{
323	struct i915_fence_reg *active = NULL;
324	struct i915_fence_reg *fence, *fn;
325
326	list_for_each_entry_safe(fence, fn, &ggtt->fence_list, link) {
327		GEM_BUG_ON(fence->vma && fence->vma->fence != fence);
328
329		if (fence == active) /* now seen this fence twice */
330			active = ERR_PTR(-EAGAIN);
331
332		/* Prefer idle fences so we do not have to wait on the GPU */
333		if (active != ERR_PTR(-EAGAIN) && fence_is_active(fence)) {
334			if (!active)
335				active = fence;
336
337			list_move_tail(&fence->link, &ggtt->fence_list);
338			continue;
339		}
340
341		if (atomic_read(&fence->pin_count))
342			continue;
343
344		return fence;
345	}
346
347	/* Wait for completion of pending flips which consume fences */
348	if (intel_has_pending_fb_unpin(ggtt->vm.i915))
349		return ERR_PTR(-EAGAIN);
350
351	return ERR_PTR(-ENOBUFS);
352}
353
354int __i915_vma_pin_fence(struct i915_vma *vma)
355{
356	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vma->vm);
357	struct i915_fence_reg *fence;
358	struct i915_vma *set = i915_gem_object_is_tiled(vma->obj) ? vma : NULL;
359	int err;
360
361	lockdep_assert_held(&vma->vm->mutex);
362
363	/* Just update our place in the LRU if our fence is getting reused. */
364	if (vma->fence) {
365		fence = vma->fence;
366		GEM_BUG_ON(fence->vma != vma);
367		atomic_inc(&fence->pin_count);
368		if (!fence->dirty) {
369			list_move_tail(&fence->link, &ggtt->fence_list);
370			return 0;
371		}
372	} else if (set) {
373		fence = fence_find(ggtt);
374		if (IS_ERR(fence))
375			return PTR_ERR(fence);
376
377		GEM_BUG_ON(atomic_read(&fence->pin_count));
378		atomic_inc(&fence->pin_count);
379	} else {
380		return 0;
381	}
382
383	err = fence_update(fence, set);
384	if (err)
385		goto out_unpin;
386
387	GEM_BUG_ON(fence->vma != set);
388	GEM_BUG_ON(vma->fence != (set ? fence : NULL));
389
390	if (set)
391		return 0;
392
393out_unpin:
394	atomic_dec(&fence->pin_count);
395	return err;
396}
397
398/**
399 * i915_vma_pin_fence - set up fencing for a vma
400 * @vma: vma to map through a fence reg
401 *
402 * When mapping objects through the GTT, userspace wants to be able to write
403 * to them without having to worry about swizzling if the object is tiled.
404 * This function walks the fence regs looking for a free one for @obj,
405 * stealing one if it can't find any.
406 *
407 * It then sets up the reg based on the object's properties: address, pitch
408 * and tiling format.
409 *
410 * For an untiled surface, this removes any existing fence.
411 *
412 * Returns:
413 *
414 * 0 on success, negative error code on failure.
415 */
416int i915_vma_pin_fence(struct i915_vma *vma)
417{
418	int err;
419
420	if (!vma->fence && !i915_gem_object_is_tiled(vma->obj))
421		return 0;
422
423	/*
424	 * Note that we revoke fences on runtime suspend. Therefore the user
425	 * must keep the device awake whilst using the fence.
426	 */
427	assert_rpm_wakelock_held(vma->vm->gt->uncore->rpm);
428	GEM_BUG_ON(!i915_vma_is_pinned(vma));
429	GEM_BUG_ON(!i915_vma_is_ggtt(vma));
430
431	err = mutex_lock_interruptible(&vma->vm->mutex);
432	if (err)
433		return err;
434
435	err = __i915_vma_pin_fence(vma);
436	mutex_unlock(&vma->vm->mutex);
437
438	return err;
439}
440
441/**
442 * i915_reserve_fence - Reserve a fence for vGPU
443 * @ggtt: Global GTT
444 *
445 * This function walks the fence regs looking for a free one and remove
446 * it from the fence_list. It is used to reserve fence for vGPU to use.
447 */
448struct i915_fence_reg *i915_reserve_fence(struct i915_ggtt *ggtt)
449{
450	struct i915_fence_reg *fence;
451	int count;
452	int ret;
453
454	lockdep_assert_held(&ggtt->vm.mutex);
455
456	/* Keep at least one fence available for the display engine. */
457	count = 0;
458	list_for_each_entry(fence, &ggtt->fence_list, link)
459		count += !atomic_read(&fence->pin_count);
460	if (count <= 1)
461		return ERR_PTR(-ENOSPC);
462
463	fence = fence_find(ggtt);
464	if (IS_ERR(fence))
465		return fence;
466
467	if (fence->vma) {
468		/* Force-remove fence from VMA */
469		ret = fence_update(fence, NULL);
470		if (ret)
471			return ERR_PTR(ret);
472	}
473
474	list_del(&fence->link);
475
476	return fence;
477}
478
479/**
480 * i915_unreserve_fence - Reclaim a reserved fence
481 * @fence: the fence reg
482 *
483 * This function add a reserved fence register from vGPU to the fence_list.
484 */
485void i915_unreserve_fence(struct i915_fence_reg *fence)
486{
487	struct i915_ggtt *ggtt = fence->ggtt;
488
489	lockdep_assert_held(&ggtt->vm.mutex);
490
491	list_add(&fence->link, &ggtt->fence_list);
492}
493
494/**
495 * intel_ggtt_restore_fences - restore fence state
496 * @ggtt: Global GTT
497 *
498 * Restore the hw fence state to match the software tracking again, to be called
499 * after a gpu reset and on resume. Note that on runtime suspend we only cancel
500 * the fences, to be reacquired by the user later.
501 */
502void intel_ggtt_restore_fences(struct i915_ggtt *ggtt)
503{
504	int i;
505
506	for (i = 0; i < ggtt->num_fences; i++)
507		fence_write(&ggtt->fence_regs[i]);
508}
509
510/**
511 * DOC: tiling swizzling details
512 *
513 * The idea behind tiling is to increase cache hit rates by rearranging
514 * pixel data so that a group of pixel accesses are in the same cacheline.
515 * Performance improvement from doing this on the back/depth buffer are on
516 * the order of 30%.
517 *
518 * Intel architectures make this somewhat more complicated, though, by
519 * adjustments made to addressing of data when the memory is in interleaved
520 * mode (matched pairs of DIMMS) to improve memory bandwidth.
521 * For interleaved memory, the CPU sends every sequential 64 bytes
522 * to an alternate memory channel so it can get the bandwidth from both.
523 *
524 * The GPU also rearranges its accesses for increased bandwidth to interleaved
525 * memory, and it matches what the CPU does for non-tiled.  However, when tiled
526 * it does it a little differently, since one walks addresses not just in the
527 * X direction but also Y.  So, along with alternating channels when bit
528 * 6 of the address flips, it also alternates when other bits flip --  Bits 9
529 * (every 512 bytes, an X tile scanline) and 10 (every two X tile scanlines)
530 * are common to both the 915 and 965-class hardware.
531 *
532 * The CPU also sometimes XORs in higher bits as well, to improve
533 * bandwidth doing strided access like we do so frequently in graphics.  This
534 * is called "Channel XOR Randomization" in the MCH documentation.  The result
535 * is that the CPU is XORing in either bit 11 or bit 17 to bit 6 of its address
536 * decode.
537 *
538 * All of this bit 6 XORing has an effect on our memory management,
539 * as we need to make sure that the 3d driver can correctly address object
540 * contents.
541 *
542 * If we don't have interleaved memory, all tiling is safe and no swizzling is
543 * required.
544 *
545 * When bit 17 is XORed in, we simply refuse to tile at all.  Bit
546 * 17 is not just a page offset, so as we page an object out and back in,
547 * individual pages in it will have different bit 17 addresses, resulting in
548 * each 64 bytes being swapped with its neighbor!
549 *
550 * Otherwise, if interleaved, we have to tell the 3d driver what the address
551 * swizzling it needs to do is, since it's writing with the CPU to the pages
552 * (bit 6 and potentially bit 11 XORed in), and the GPU is reading from the
553 * pages (bit 6, 9, and 10 XORed in), resulting in a cumulative bit swizzling
554 * required by the CPU of XORing in bit 6, 9, 10, and potentially 11, in order
555 * to match what the GPU expects.
556 */
557
558/**
559 * detect_bit_6_swizzle - detect bit 6 swizzling pattern
560 * @ggtt: Global GGTT
561 *
562 * Detects bit 6 swizzling of address lookup between IGD access and CPU
563 * access through main memory.
564 */
565static void detect_bit_6_swizzle(struct i915_ggtt *ggtt)
566{
567	struct intel_uncore *uncore = ggtt->vm.gt->uncore;
568	struct drm_i915_private *i915 = ggtt->vm.i915;
569	u32 swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
570	u32 swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;
571
572	if (GRAPHICS_VER(i915) >= 8 || IS_VALLEYVIEW(i915)) {
573		/*
574		 * On BDW+, swizzling is not used. We leave the CPU memory
575		 * controller in charge of optimizing memory accesses without
576		 * the extra address manipulation GPU side.
577		 *
578		 * VLV and CHV don't have GPU swizzling.
579		 */
580		swizzle_x = I915_BIT_6_SWIZZLE_NONE;
581		swizzle_y = I915_BIT_6_SWIZZLE_NONE;
582	} else if (GRAPHICS_VER(i915) >= 6) {
583		if (i915->preserve_bios_swizzle) {
584			if (intel_uncore_read(uncore, DISP_ARB_CTL) &
585			    DISP_TILE_SURFACE_SWIZZLING) {
586				swizzle_x = I915_BIT_6_SWIZZLE_9_10;
587				swizzle_y = I915_BIT_6_SWIZZLE_9;
588			} else {
589				swizzle_x = I915_BIT_6_SWIZZLE_NONE;
590				swizzle_y = I915_BIT_6_SWIZZLE_NONE;
591			}
592		} else {
593			u32 dimm_c0, dimm_c1;
594
595			dimm_c0 = intel_uncore_read(uncore, MAD_DIMM_C0);
596			dimm_c1 = intel_uncore_read(uncore, MAD_DIMM_C1);
597			dimm_c0 &= MAD_DIMM_A_SIZE_MASK | MAD_DIMM_B_SIZE_MASK;
598			dimm_c1 &= MAD_DIMM_A_SIZE_MASK | MAD_DIMM_B_SIZE_MASK;
599			/*
600			 * Enable swizzling when the channels are populated
601			 * with identically sized dimms. We don't need to check
602			 * the 3rd channel because no cpu with gpu attached
603			 * ships in that configuration. Also, swizzling only
604			 * makes sense for 2 channels anyway.
605			 */
606			if (dimm_c0 == dimm_c1) {
607				swizzle_x = I915_BIT_6_SWIZZLE_9_10;
608				swizzle_y = I915_BIT_6_SWIZZLE_9;
609			} else {
610				swizzle_x = I915_BIT_6_SWIZZLE_NONE;
611				swizzle_y = I915_BIT_6_SWIZZLE_NONE;
612			}
613		}
614	} else if (GRAPHICS_VER(i915) == 5) {
615		/*
616		 * On Ironlake whatever DRAM config, GPU always do
617		 * same swizzling setup.
618		 */
619		swizzle_x = I915_BIT_6_SWIZZLE_9_10;
620		swizzle_y = I915_BIT_6_SWIZZLE_9;
621	} else if (GRAPHICS_VER(i915) == 2) {
622		/*
623		 * As far as we know, the 865 doesn't have these bit 6
624		 * swizzling issues.
625		 */
626		swizzle_x = I915_BIT_6_SWIZZLE_NONE;
627		swizzle_y = I915_BIT_6_SWIZZLE_NONE;
628	} else if (IS_G45(i915) || IS_I965G(i915) || IS_G33(i915)) {
629		/*
630		 * The 965, G33, and newer, have a very flexible memory
631		 * configuration.  It will enable dual-channel mode
632		 * (interleaving) on as much memory as it can, and the GPU
633		 * will additionally sometimes enable different bit 6
634		 * swizzling for tiled objects from the CPU.
635		 *
636		 * Here's what I found on the G965:
637		 *    slot fill         memory size  swizzling
638		 * 0A   0B   1A   1B    1-ch   2-ch
639		 * 512  0    0    0     512    0     O
640		 * 512  0    512  0     16     1008  X
641		 * 512  0    0    512   16     1008  X
642		 * 0    512  0    512   16     1008  X
643		 * 1024 1024 1024 0     2048   1024  O
644		 *
645		 * We could probably detect this based on either the DRB
646		 * matching, which was the case for the swizzling required in
647		 * the table above, or from the 1-ch value being less than
648		 * the minimum size of a rank.
649		 *
650		 * Reports indicate that the swizzling actually
651		 * varies depending upon page placement inside the
652		 * channels, i.e. we see swizzled pages where the
653		 * banks of memory are paired and unswizzled on the
654		 * uneven portion, so leave that as unknown.
655		 */
656		if (intel_uncore_read16(uncore, C0DRB3_BW) ==
657		    intel_uncore_read16(uncore, C1DRB3_BW)) {
658			swizzle_x = I915_BIT_6_SWIZZLE_9_10;
659			swizzle_y = I915_BIT_6_SWIZZLE_9;
660		}
661	} else {
662		u32 dcc = intel_uncore_read(uncore, DCC);
663
664		/*
665		 * On 9xx chipsets, channel interleave by the CPU is
666		 * determined by DCC.  For single-channel, neither the CPU
667		 * nor the GPU do swizzling.  For dual channel interleaved,
668		 * the GPU's interleave is bit 9 and 10 for X tiled, and bit
669		 * 9 for Y tiled.  The CPU's interleave is independent, and
670		 * can be based on either bit 11 (haven't seen this yet) or
671		 * bit 17 (common).
672		 */
673		switch (dcc & DCC_ADDRESSING_MODE_MASK) {
674		case DCC_ADDRESSING_MODE_SINGLE_CHANNEL:
675		case DCC_ADDRESSING_MODE_DUAL_CHANNEL_ASYMMETRIC:
676			swizzle_x = I915_BIT_6_SWIZZLE_NONE;
677			swizzle_y = I915_BIT_6_SWIZZLE_NONE;
678			break;
679		case DCC_ADDRESSING_MODE_DUAL_CHANNEL_INTERLEAVED:
680			if (dcc & DCC_CHANNEL_XOR_DISABLE) {
681				/*
682				 * This is the base swizzling by the GPU for
683				 * tiled buffers.
684				 */
685				swizzle_x = I915_BIT_6_SWIZZLE_9_10;
686				swizzle_y = I915_BIT_6_SWIZZLE_9;
687			} else if ((dcc & DCC_CHANNEL_XOR_BIT_17) == 0) {
688				/* Bit 11 swizzling by the CPU in addition. */
689				swizzle_x = I915_BIT_6_SWIZZLE_9_10_11;
690				swizzle_y = I915_BIT_6_SWIZZLE_9_11;
691			} else {
692				/* Bit 17 swizzling by the CPU in addition. */
693				swizzle_x = I915_BIT_6_SWIZZLE_9_10_17;
694				swizzle_y = I915_BIT_6_SWIZZLE_9_17;
695			}
696			break;
697		}
698
699		/* check for L-shaped memory aka modified enhanced addressing */
700		if (GRAPHICS_VER(i915) == 4 &&
701		    !(intel_uncore_read(uncore, DCC2) & DCC2_MODIFIED_ENHANCED_DISABLE)) {
702			swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
703			swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;
704		}
705
706		if (dcc == 0xffffffff) {
707			drm_err(&i915->drm, "Couldn't read from MCHBAR.  "
708				  "Disabling tiling.\n");
709			swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
710			swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;
711		}
712	}
713
714	if (swizzle_x == I915_BIT_6_SWIZZLE_UNKNOWN ||
715	    swizzle_y == I915_BIT_6_SWIZZLE_UNKNOWN) {
716		/*
717		 * Userspace likes to explode if it sees unknown swizzling,
718		 * so lie. We will finish the lie when reporting through
719		 * the get-tiling-ioctl by reporting the physical swizzle
720		 * mode as unknown instead.
721		 *
722		 * As we don't strictly know what the swizzling is, it may be
723		 * bit17 dependent, and so we need to also prevent the pages
724		 * from being moved.
725		 */
726		i915->quirks |= QUIRK_PIN_SWIZZLED_PAGES;
727		swizzle_x = I915_BIT_6_SWIZZLE_NONE;
728		swizzle_y = I915_BIT_6_SWIZZLE_NONE;
729	}
730
731	i915->ggtt.bit_6_swizzle_x = swizzle_x;
732	i915->ggtt.bit_6_swizzle_y = swizzle_y;
733}
734
735/*
736 * Swap every 64 bytes of this page around, to account for it having a new
737 * bit 17 of its physical address and therefore being interpreted differently
738 * by the GPU.
739 */
740static void swizzle_page(struct page *page)
741{
742	char temp[64];
743	char *vaddr;
744	int i;
745
746	vaddr = kmap(page);
747
748	for (i = 0; i < PAGE_SIZE; i += 128) {
749		memcpy(temp, &vaddr[i], 64);
750		memcpy(&vaddr[i], &vaddr[i + 64], 64);
751		memcpy(&vaddr[i + 64], temp, 64);
752	}
753
754	kunmap(page);
755}
756
757/**
758 * i915_gem_object_do_bit_17_swizzle - fixup bit 17 swizzling
759 * @obj: i915 GEM buffer object
760 * @pages: the scattergather list of physical pages
761 *
762 * This function fixes up the swizzling in case any page frame number for this
763 * object has changed in bit 17 since that state has been saved with
764 * i915_gem_object_save_bit_17_swizzle().
765 *
766 * This is called when pinning backing storage again, since the kernel is free
767 * to move unpinned backing storage around (either by directly moving pages or
768 * by swapping them out and back in again).
769 */
770void
771i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj,
772				  struct sg_table *pages)
773{
774	struct sgt_iter sgt_iter;
775	struct page *page;
776	int i;
777
778	if (obj->bit_17 == NULL)
779		return;
780
781	i = 0;
782	for_each_sgt_page(page, sgt_iter, pages) {
783		char new_bit_17 = page_to_phys(page) >> 17;
784
785		if ((new_bit_17 & 0x1) != (test_bit(i, obj->bit_17) != 0)) {
786			swizzle_page(page);
787			set_page_dirty(page);
788		}
789
790		i++;
791	}
792}
793
794/**
795 * i915_gem_object_save_bit_17_swizzle - save bit 17 swizzling
796 * @obj: i915 GEM buffer object
797 * @pages: the scattergather list of physical pages
798 *
799 * This function saves the bit 17 of each page frame number so that swizzling
800 * can be fixed up later on with i915_gem_object_do_bit_17_swizzle(). This must
801 * be called before the backing storage can be unpinned.
802 */
803void
804i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj,
805				    struct sg_table *pages)
806{
807	const unsigned int page_count = obj->base.size >> PAGE_SHIFT;
808	struct sgt_iter sgt_iter;
809	struct page *page;
810	int i;
811
812	if (obj->bit_17 == NULL) {
813		obj->bit_17 = bitmap_zalloc(page_count, GFP_KERNEL);
814		if (obj->bit_17 == NULL) {
815			DRM_ERROR("Failed to allocate memory for bit 17 "
816				  "record\n");
817			return;
818		}
819	}
820
821	i = 0;
822
823	for_each_sgt_page(page, sgt_iter, pages) {
824		if (page_to_phys(page) & (1 << 17))
825			__set_bit(i, obj->bit_17);
826		else
827			__clear_bit(i, obj->bit_17);
828		i++;
829	}
830}
831
832void intel_ggtt_init_fences(struct i915_ggtt *ggtt)
833{
834	struct drm_i915_private *i915 = ggtt->vm.i915;
835	struct intel_uncore *uncore = ggtt->vm.gt->uncore;
836	int num_fences;
837	int i;
838
839	INIT_LIST_HEAD(&ggtt->fence_list);
840	INIT_LIST_HEAD(&ggtt->userfault_list);
841	intel_wakeref_auto_init(&ggtt->userfault_wakeref, uncore->rpm);
842
843	detect_bit_6_swizzle(ggtt);
844
845	if (!i915_ggtt_has_aperture(ggtt))
846		num_fences = 0;
847	else if (GRAPHICS_VER(i915) >= 7 &&
848		 !(IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915)))
849		num_fences = 32;
850	else if (GRAPHICS_VER(i915) >= 4 ||
851		 IS_I945G(i915) || IS_I945GM(i915) ||
852		 IS_G33(i915) || IS_PINEVIEW(i915))
853		num_fences = 16;
854	else
855		num_fences = 8;
856
857	if (intel_vgpu_active(i915))
858		num_fences = intel_uncore_read(uncore,
859					       vgtif_reg(avail_rs.fence_num));
860	ggtt->fence_regs = kcalloc(num_fences,
861				   sizeof(*ggtt->fence_regs),
862				   GFP_KERNEL);
863	if (!ggtt->fence_regs)
864		num_fences = 0;
865
866	/* Initialize fence registers to zero */
867	for (i = 0; i < num_fences; i++) {
868		struct i915_fence_reg *fence = &ggtt->fence_regs[i];
869
870		i915_active_init(&fence->active, NULL, NULL, 0);
871		fence->ggtt = ggtt;
872		fence->id = i;
873		list_add_tail(&fence->link, &ggtt->fence_list);
874	}
875	ggtt->num_fences = num_fences;
876
877	intel_ggtt_restore_fences(ggtt);
878}
879
880void intel_ggtt_fini_fences(struct i915_ggtt *ggtt)
881{
882	int i;
883
884	for (i = 0; i < ggtt->num_fences; i++) {
885		struct i915_fence_reg *fence = &ggtt->fence_regs[i];
886
887		i915_active_fini(&fence->active);
888	}
889
890	kfree(ggtt->fence_regs);
891}
892
893void intel_gt_init_swizzling(struct intel_gt *gt)
894{
895	struct drm_i915_private *i915 = gt->i915;
896	struct intel_uncore *uncore = gt->uncore;
897
898	if (GRAPHICS_VER(i915) < 5 ||
899	    i915->ggtt.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
900		return;
901
902	intel_uncore_rmw(uncore, DISP_ARB_CTL, 0, DISP_TILE_SURFACE_SWIZZLING);
903
904	if (GRAPHICS_VER(i915) == 5)
905		return;
906
907	intel_uncore_rmw(uncore, TILECTL, 0, TILECTL_SWZCTL);
908
909	if (GRAPHICS_VER(i915) == 6)
910		intel_uncore_write(uncore,
911				   ARB_MODE,
912				   _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
913	else if (GRAPHICS_VER(i915) == 7)
914		intel_uncore_write(uncore,
915				   ARB_MODE,
916				   _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
917	else if (GRAPHICS_VER(i915) == 8)
918		intel_uncore_write(uncore,
919				   GAMTARBMODE,
920				   _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
921	else
922		MISSING_CASE(GRAPHICS_VER(i915));
923}