Linux Audio

Check our new training course

Loading...
v4.6
   1/*
   2 * Copyright (c) 2006 Oracle.  All rights reserved.
   3 *
   4 * This software is available to you under a choice of one of two
   5 * licenses.  You may choose to be licensed under the terms of the GNU
   6 * General Public License (GPL) Version 2, available from the file
   7 * COPYING in the main directory of this source tree, or the
   8 * OpenIB.org BSD license below:
   9 *
  10 *     Redistribution and use in source and binary forms, with or
  11 *     without modification, are permitted provided that the following
  12 *     conditions are met:
  13 *
  14 *      - Redistributions of source code must retain the above
  15 *        copyright notice, this list of conditions and the following
  16 *        disclaimer.
  17 *
  18 *      - Redistributions in binary form must reproduce the above
  19 *        copyright notice, this list of conditions and the following
  20 *        disclaimer in the documentation and/or other materials
  21 *        provided with the distribution.
  22 *
  23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  30 * SOFTWARE.
  31 *
  32 */
  33#include <linux/kernel.h>
 
  34#include <linux/slab.h>
  35#include <linux/pci.h>
  36#include <linux/dma-mapping.h>
  37#include <rdma/rdma_cm.h>
  38
 
  39#include "rds.h"
  40#include "ib.h"
  41
  42static struct kmem_cache *rds_ib_incoming_slab;
  43static struct kmem_cache *rds_ib_frag_slab;
  44static atomic_t	rds_ib_allocation = ATOMIC_INIT(0);
  45
  46void rds_ib_recv_init_ring(struct rds_ib_connection *ic)
  47{
  48	struct rds_ib_recv_work *recv;
  49	u32 i;
  50
  51	for (i = 0, recv = ic->i_recvs; i < ic->i_recv_ring.w_nr; i++, recv++) {
  52		struct ib_sge *sge;
  53
  54		recv->r_ibinc = NULL;
  55		recv->r_frag = NULL;
  56
  57		recv->r_wr.next = NULL;
  58		recv->r_wr.wr_id = i;
  59		recv->r_wr.sg_list = recv->r_sge;
  60		recv->r_wr.num_sge = RDS_IB_RECV_SGE;
  61
  62		sge = &recv->r_sge[0];
  63		sge->addr = ic->i_recv_hdrs_dma + (i * sizeof(struct rds_header));
  64		sge->length = sizeof(struct rds_header);
  65		sge->lkey = ic->i_pd->local_dma_lkey;
  66
  67		sge = &recv->r_sge[1];
  68		sge->addr = 0;
  69		sge->length = RDS_FRAG_SIZE;
  70		sge->lkey = ic->i_pd->local_dma_lkey;
  71	}
  72}
  73
  74/*
  75 * The entire 'from' list, including the from element itself, is put on
  76 * to the tail of the 'to' list.
  77 */
  78static void list_splice_entire_tail(struct list_head *from,
  79				    struct list_head *to)
  80{
  81	struct list_head *from_last = from->prev;
  82
  83	list_splice_tail(from_last, to);
  84	list_add_tail(from_last, to);
  85}
  86
  87static void rds_ib_cache_xfer_to_ready(struct rds_ib_refill_cache *cache)
  88{
  89	struct list_head *tmp;
  90
  91	tmp = xchg(&cache->xfer, NULL);
  92	if (tmp) {
  93		if (cache->ready)
  94			list_splice_entire_tail(tmp, cache->ready);
  95		else
  96			cache->ready = tmp;
  97	}
  98}
  99
 100static int rds_ib_recv_alloc_cache(struct rds_ib_refill_cache *cache)
 101{
 102	struct rds_ib_cache_head *head;
 103	int cpu;
 104
 105	cache->percpu = alloc_percpu(struct rds_ib_cache_head);
 106	if (!cache->percpu)
 107	       return -ENOMEM;
 108
 109	for_each_possible_cpu(cpu) {
 110		head = per_cpu_ptr(cache->percpu, cpu);
 111		head->first = NULL;
 112		head->count = 0;
 113	}
 114	cache->xfer = NULL;
 115	cache->ready = NULL;
 116
 117	return 0;
 118}
 119
 120int rds_ib_recv_alloc_caches(struct rds_ib_connection *ic)
 121{
 122	int ret;
 123
 124	ret = rds_ib_recv_alloc_cache(&ic->i_cache_incs);
 125	if (!ret) {
 126		ret = rds_ib_recv_alloc_cache(&ic->i_cache_frags);
 127		if (ret)
 128			free_percpu(ic->i_cache_incs.percpu);
 129	}
 130
 131	return ret;
 132}
 133
 134static void rds_ib_cache_splice_all_lists(struct rds_ib_refill_cache *cache,
 135					  struct list_head *caller_list)
 136{
 137	struct rds_ib_cache_head *head;
 138	int cpu;
 139
 140	for_each_possible_cpu(cpu) {
 141		head = per_cpu_ptr(cache->percpu, cpu);
 142		if (head->first) {
 143			list_splice_entire_tail(head->first, caller_list);
 144			head->first = NULL;
 145		}
 146	}
 147
 148	if (cache->ready) {
 149		list_splice_entire_tail(cache->ready, caller_list);
 150		cache->ready = NULL;
 151	}
 152}
 153
 154void rds_ib_recv_free_caches(struct rds_ib_connection *ic)
 155{
 156	struct rds_ib_incoming *inc;
 157	struct rds_ib_incoming *inc_tmp;
 158	struct rds_page_frag *frag;
 159	struct rds_page_frag *frag_tmp;
 160	LIST_HEAD(list);
 161
 162	rds_ib_cache_xfer_to_ready(&ic->i_cache_incs);
 163	rds_ib_cache_splice_all_lists(&ic->i_cache_incs, &list);
 164	free_percpu(ic->i_cache_incs.percpu);
 165
 166	list_for_each_entry_safe(inc, inc_tmp, &list, ii_cache_entry) {
 167		list_del(&inc->ii_cache_entry);
 168		WARN_ON(!list_empty(&inc->ii_frags));
 169		kmem_cache_free(rds_ib_incoming_slab, inc);
 
 170	}
 171
 172	rds_ib_cache_xfer_to_ready(&ic->i_cache_frags);
 173	rds_ib_cache_splice_all_lists(&ic->i_cache_frags, &list);
 174	free_percpu(ic->i_cache_frags.percpu);
 175
 176	list_for_each_entry_safe(frag, frag_tmp, &list, f_cache_entry) {
 177		list_del(&frag->f_cache_entry);
 178		WARN_ON(!list_empty(&frag->f_item));
 179		kmem_cache_free(rds_ib_frag_slab, frag);
 180	}
 181}
 182
 183/* fwd decl */
 184static void rds_ib_recv_cache_put(struct list_head *new_item,
 185				  struct rds_ib_refill_cache *cache);
 186static struct list_head *rds_ib_recv_cache_get(struct rds_ib_refill_cache *cache);
 187
 188
 189/* Recycle frag and attached recv buffer f_sg */
 190static void rds_ib_frag_free(struct rds_ib_connection *ic,
 191			     struct rds_page_frag *frag)
 192{
 193	rdsdebug("frag %p page %p\n", frag, sg_page(&frag->f_sg));
 194
 195	rds_ib_recv_cache_put(&frag->f_cache_entry, &ic->i_cache_frags);
 
 
 196}
 197
 198/* Recycle inc after freeing attached frags */
 199void rds_ib_inc_free(struct rds_incoming *inc)
 200{
 201	struct rds_ib_incoming *ibinc;
 202	struct rds_page_frag *frag;
 203	struct rds_page_frag *pos;
 204	struct rds_ib_connection *ic = inc->i_conn->c_transport_data;
 205
 206	ibinc = container_of(inc, struct rds_ib_incoming, ii_inc);
 207
 208	/* Free attached frags */
 209	list_for_each_entry_safe(frag, pos, &ibinc->ii_frags, f_item) {
 210		list_del_init(&frag->f_item);
 211		rds_ib_frag_free(ic, frag);
 212	}
 213	BUG_ON(!list_empty(&ibinc->ii_frags));
 214
 215	rdsdebug("freeing ibinc %p inc %p\n", ibinc, inc);
 216	rds_ib_recv_cache_put(&ibinc->ii_cache_entry, &ic->i_cache_incs);
 217}
 218
 219static void rds_ib_recv_clear_one(struct rds_ib_connection *ic,
 220				  struct rds_ib_recv_work *recv)
 221{
 222	if (recv->r_ibinc) {
 223		rds_inc_put(&recv->r_ibinc->ii_inc);
 224		recv->r_ibinc = NULL;
 225	}
 226	if (recv->r_frag) {
 227		ib_dma_unmap_sg(ic->i_cm_id->device, &recv->r_frag->f_sg, 1, DMA_FROM_DEVICE);
 228		rds_ib_frag_free(ic, recv->r_frag);
 229		recv->r_frag = NULL;
 230	}
 231}
 232
 233void rds_ib_recv_clear_ring(struct rds_ib_connection *ic)
 234{
 235	u32 i;
 236
 237	for (i = 0; i < ic->i_recv_ring.w_nr; i++)
 238		rds_ib_recv_clear_one(ic, &ic->i_recvs[i]);
 239}
 240
 241static struct rds_ib_incoming *rds_ib_refill_one_inc(struct rds_ib_connection *ic,
 242						     gfp_t slab_mask)
 243{
 244	struct rds_ib_incoming *ibinc;
 245	struct list_head *cache_item;
 246	int avail_allocs;
 247
 248	cache_item = rds_ib_recv_cache_get(&ic->i_cache_incs);
 249	if (cache_item) {
 250		ibinc = container_of(cache_item, struct rds_ib_incoming, ii_cache_entry);
 251	} else {
 252		avail_allocs = atomic_add_unless(&rds_ib_allocation,
 253						 1, rds_ib_sysctl_max_recv_allocation);
 254		if (!avail_allocs) {
 255			rds_ib_stats_inc(s_ib_rx_alloc_limit);
 256			return NULL;
 257		}
 258		ibinc = kmem_cache_alloc(rds_ib_incoming_slab, slab_mask);
 259		if (!ibinc) {
 260			atomic_dec(&rds_ib_allocation);
 261			return NULL;
 262		}
 
 263	}
 264	INIT_LIST_HEAD(&ibinc->ii_frags);
 265	rds_inc_init(&ibinc->ii_inc, ic->conn, ic->conn->c_faddr);
 266
 267	return ibinc;
 268}
 269
 270static struct rds_page_frag *rds_ib_refill_one_frag(struct rds_ib_connection *ic,
 271						    gfp_t slab_mask, gfp_t page_mask)
 272{
 273	struct rds_page_frag *frag;
 274	struct list_head *cache_item;
 275	int ret;
 276
 277	cache_item = rds_ib_recv_cache_get(&ic->i_cache_frags);
 278	if (cache_item) {
 279		frag = container_of(cache_item, struct rds_page_frag, f_cache_entry);
 
 
 280	} else {
 281		frag = kmem_cache_alloc(rds_ib_frag_slab, slab_mask);
 282		if (!frag)
 283			return NULL;
 284
 285		sg_init_table(&frag->f_sg, 1);
 286		ret = rds_page_remainder_alloc(&frag->f_sg,
 287					       RDS_FRAG_SIZE, page_mask);
 288		if (ret) {
 289			kmem_cache_free(rds_ib_frag_slab, frag);
 290			return NULL;
 291		}
 
 292	}
 293
 294	INIT_LIST_HEAD(&frag->f_item);
 295
 296	return frag;
 297}
 298
 299static int rds_ib_recv_refill_one(struct rds_connection *conn,
 300				  struct rds_ib_recv_work *recv, gfp_t gfp)
 301{
 302	struct rds_ib_connection *ic = conn->c_transport_data;
 303	struct ib_sge *sge;
 304	int ret = -ENOMEM;
 305	gfp_t slab_mask = GFP_NOWAIT;
 306	gfp_t page_mask = GFP_NOWAIT;
 307
 308	if (gfp & __GFP_DIRECT_RECLAIM) {
 309		slab_mask = GFP_KERNEL;
 310		page_mask = GFP_HIGHUSER;
 311	}
 312
 313	if (!ic->i_cache_incs.ready)
 314		rds_ib_cache_xfer_to_ready(&ic->i_cache_incs);
 315	if (!ic->i_cache_frags.ready)
 316		rds_ib_cache_xfer_to_ready(&ic->i_cache_frags);
 317
 318	/*
 319	 * ibinc was taken from recv if recv contained the start of a message.
 320	 * recvs that were continuations will still have this allocated.
 321	 */
 322	if (!recv->r_ibinc) {
 323		recv->r_ibinc = rds_ib_refill_one_inc(ic, slab_mask);
 324		if (!recv->r_ibinc)
 325			goto out;
 326	}
 327
 328	WARN_ON(recv->r_frag); /* leak! */
 329	recv->r_frag = rds_ib_refill_one_frag(ic, slab_mask, page_mask);
 330	if (!recv->r_frag)
 331		goto out;
 332
 333	ret = ib_dma_map_sg(ic->i_cm_id->device, &recv->r_frag->f_sg,
 334			    1, DMA_FROM_DEVICE);
 335	WARN_ON(ret != 1);
 336
 337	sge = &recv->r_sge[0];
 338	sge->addr = ic->i_recv_hdrs_dma + (recv - ic->i_recvs) * sizeof(struct rds_header);
 339	sge->length = sizeof(struct rds_header);
 340
 341	sge = &recv->r_sge[1];
 342	sge->addr = ib_sg_dma_address(ic->i_cm_id->device, &recv->r_frag->f_sg);
 343	sge->length = ib_sg_dma_len(ic->i_cm_id->device, &recv->r_frag->f_sg);
 344
 345	ret = 0;
 346out:
 347	return ret;
 348}
 349
 350static int acquire_refill(struct rds_connection *conn)
 351{
 352	return test_and_set_bit(RDS_RECV_REFILL, &conn->c_flags) == 0;
 353}
 354
 355static void release_refill(struct rds_connection *conn)
 356{
 357	clear_bit(RDS_RECV_REFILL, &conn->c_flags);
 
 358
 359	/* We don't use wait_on_bit()/wake_up_bit() because our waking is in a
 360	 * hot path and finding waiters is very rare.  We don't want to walk
 361	 * the system-wide hashed waitqueue buckets in the fast path only to
 362	 * almost never find waiters.
 363	 */
 364	if (waitqueue_active(&conn->c_waitq))
 365		wake_up_all(&conn->c_waitq);
 366}
 367
 368/*
 369 * This tries to allocate and post unused work requests after making sure that
 370 * they have all the allocations they need to queue received fragments into
 371 * sockets.
 372 *
 373 * -1 is returned if posting fails due to temporary resource exhaustion.
 374 */
 375void rds_ib_recv_refill(struct rds_connection *conn, int prefill, gfp_t gfp)
 376{
 377	struct rds_ib_connection *ic = conn->c_transport_data;
 378	struct rds_ib_recv_work *recv;
 379	struct ib_recv_wr *failed_wr;
 380	unsigned int posted = 0;
 381	int ret = 0;
 382	bool can_wait = !!(gfp & __GFP_DIRECT_RECLAIM);
 
 383	u32 pos;
 384
 385	/* the goal here is to just make sure that someone, somewhere
 386	 * is posting buffers.  If we can't get the refill lock,
 387	 * let them do their thing
 388	 */
 389	if (!acquire_refill(conn))
 390		return;
 391
 392	while ((prefill || rds_conn_up(conn)) &&
 393	       rds_ib_ring_alloc(&ic->i_recv_ring, 1, &pos)) {
 394		if (pos >= ic->i_recv_ring.w_nr) {
 395			printk(KERN_NOTICE "Argh - ring alloc returned pos=%u\n",
 396					pos);
 397			break;
 398		}
 399
 400		recv = &ic->i_recvs[pos];
 401		ret = rds_ib_recv_refill_one(conn, recv, gfp);
 402		if (ret) {
 
 403			break;
 404		}
 405
 406		/* XXX when can this fail? */
 407		ret = ib_post_recv(ic->i_cm_id->qp, &recv->r_wr, &failed_wr);
 408		rdsdebug("recv %p ibinc %p page %p addr %lu ret %d\n", recv,
 409			 recv->r_ibinc, sg_page(&recv->r_frag->f_sg),
 410			 (long) ib_sg_dma_address(
 411				ic->i_cm_id->device,
 412				&recv->r_frag->f_sg),
 413			ret);
 414		if (ret) {
 415			rds_ib_conn_error(conn, "recv post on "
 416			       "%pI4 returned %d, disconnecting and "
 417			       "reconnecting\n", &conn->c_faddr,
 418			       ret);
 419			break;
 420		}
 421
 422		posted++;
 
 
 
 
 
 423	}
 424
 425	/* We're doing flow control - update the window. */
 426	if (ic->i_flowctl && posted)
 427		rds_ib_advertise_credits(conn, posted);
 428
 429	if (ret)
 430		rds_ib_ring_unalloc(&ic->i_recv_ring, 1);
 431
 432	release_refill(conn);
 433
 434	/* if we're called from the softirq handler, we'll be GFP_NOWAIT.
 435	 * in this case the ring being low is going to lead to more interrupts
 436	 * and we can safely let the softirq code take care of it unless the
 437	 * ring is completely empty.
 438	 *
 439	 * if we're called from krdsd, we'll be GFP_KERNEL.  In this case
 440	 * we might have raced with the softirq code while we had the refill
 441	 * lock held.  Use rds_ib_ring_low() instead of ring_empty to decide
 442	 * if we should requeue.
 443	 */
 444	if (rds_conn_up(conn) &&
 445	    ((can_wait && rds_ib_ring_low(&ic->i_recv_ring)) ||
 
 446	    rds_ib_ring_empty(&ic->i_recv_ring))) {
 447		queue_delayed_work(rds_wq, &conn->c_recv_w, 1);
 448	}
 
 
 449}
 450
 451/*
 452 * We want to recycle several types of recv allocations, like incs and frags.
 453 * To use this, the *_free() function passes in the ptr to a list_head within
 454 * the recyclee, as well as the cache to put it on.
 455 *
 456 * First, we put the memory on a percpu list. When this reaches a certain size,
 457 * We move it to an intermediate non-percpu list in a lockless manner, with some
 458 * xchg/compxchg wizardry.
 459 *
 460 * N.B. Instead of a list_head as the anchor, we use a single pointer, which can
 461 * be NULL and xchg'd. The list is actually empty when the pointer is NULL, and
 462 * list_empty() will return true with one element is actually present.
 463 */
 464static void rds_ib_recv_cache_put(struct list_head *new_item,
 465				 struct rds_ib_refill_cache *cache)
 466{
 467	unsigned long flags;
 468	struct list_head *old, *chpfirst;
 469
 470	local_irq_save(flags);
 471
 472	chpfirst = __this_cpu_read(cache->percpu->first);
 473	if (!chpfirst)
 474		INIT_LIST_HEAD(new_item);
 475	else /* put on front */
 476		list_add_tail(new_item, chpfirst);
 477
 478	__this_cpu_write(cache->percpu->first, new_item);
 479	__this_cpu_inc(cache->percpu->count);
 480
 481	if (__this_cpu_read(cache->percpu->count) < RDS_IB_RECYCLE_BATCH_COUNT)
 482		goto end;
 483
 484	/*
 485	 * Return our per-cpu first list to the cache's xfer by atomically
 486	 * grabbing the current xfer list, appending it to our per-cpu list,
 487	 * and then atomically returning that entire list back to the
 488	 * cache's xfer list as long as it's still empty.
 489	 */
 490	do {
 491		old = xchg(&cache->xfer, NULL);
 492		if (old)
 493			list_splice_entire_tail(old, chpfirst);
 494		old = cmpxchg(&cache->xfer, NULL, chpfirst);
 495	} while (old);
 496
 497
 498	__this_cpu_write(cache->percpu->first, NULL);
 499	__this_cpu_write(cache->percpu->count, 0);
 500end:
 501	local_irq_restore(flags);
 502}
 503
 504static struct list_head *rds_ib_recv_cache_get(struct rds_ib_refill_cache *cache)
 505{
 506	struct list_head *head = cache->ready;
 507
 508	if (head) {
 509		if (!list_empty(head)) {
 510			cache->ready = head->next;
 511			list_del_init(head);
 512		} else
 513			cache->ready = NULL;
 514	}
 515
 516	return head;
 517}
 518
 519int rds_ib_inc_copy_to_user(struct rds_incoming *inc, struct iov_iter *to)
 520{
 521	struct rds_ib_incoming *ibinc;
 522	struct rds_page_frag *frag;
 523	unsigned long to_copy;
 524	unsigned long frag_off = 0;
 525	int copied = 0;
 526	int ret;
 527	u32 len;
 528
 529	ibinc = container_of(inc, struct rds_ib_incoming, ii_inc);
 530	frag = list_entry(ibinc->ii_frags.next, struct rds_page_frag, f_item);
 531	len = be32_to_cpu(inc->i_hdr.h_len);
 532
 533	while (iov_iter_count(to) && copied < len) {
 534		if (frag_off == RDS_FRAG_SIZE) {
 535			frag = list_entry(frag->f_item.next,
 536					  struct rds_page_frag, f_item);
 537			frag_off = 0;
 538		}
 539		to_copy = min_t(unsigned long, iov_iter_count(to),
 540				RDS_FRAG_SIZE - frag_off);
 541		to_copy = min_t(unsigned long, to_copy, len - copied);
 542
 543		/* XXX needs + offset for multiple recvs per page */
 544		rds_stats_add(s_copy_to_user, to_copy);
 545		ret = copy_page_to_iter(sg_page(&frag->f_sg),
 546					frag->f_sg.offset + frag_off,
 547					to_copy,
 548					to);
 549		if (ret != to_copy)
 550			return -EFAULT;
 551
 552		frag_off += to_copy;
 553		copied += to_copy;
 554	}
 555
 556	return copied;
 557}
 558
 559/* ic starts out kzalloc()ed */
 560void rds_ib_recv_init_ack(struct rds_ib_connection *ic)
 561{
 562	struct ib_send_wr *wr = &ic->i_ack_wr;
 563	struct ib_sge *sge = &ic->i_ack_sge;
 564
 565	sge->addr = ic->i_ack_dma;
 566	sge->length = sizeof(struct rds_header);
 567	sge->lkey = ic->i_pd->local_dma_lkey;
 568
 569	wr->sg_list = sge;
 570	wr->num_sge = 1;
 571	wr->opcode = IB_WR_SEND;
 572	wr->wr_id = RDS_IB_ACK_WR_ID;
 573	wr->send_flags = IB_SEND_SIGNALED | IB_SEND_SOLICITED;
 574}
 575
 576/*
 577 * You'd think that with reliable IB connections you wouldn't need to ack
 578 * messages that have been received.  The problem is that IB hardware generates
 579 * an ack message before it has DMAed the message into memory.  This creates a
 580 * potential message loss if the HCA is disabled for any reason between when it
 581 * sends the ack and before the message is DMAed and processed.  This is only a
 582 * potential issue if another HCA is available for fail-over.
 583 *
 584 * When the remote host receives our ack they'll free the sent message from
 585 * their send queue.  To decrease the latency of this we always send an ack
 586 * immediately after we've received messages.
 587 *
 588 * For simplicity, we only have one ack in flight at a time.  This puts
 589 * pressure on senders to have deep enough send queues to absorb the latency of
 590 * a single ack frame being in flight.  This might not be good enough.
 591 *
 592 * This is implemented by have a long-lived send_wr and sge which point to a
 593 * statically allocated ack frame.  This ack wr does not fall under the ring
 594 * accounting that the tx and rx wrs do.  The QP attribute specifically makes
 595 * room for it beyond the ring size.  Send completion notices its special
 596 * wr_id and avoids working with the ring in that case.
 597 */
 598#ifndef KERNEL_HAS_ATOMIC64
 599void rds_ib_set_ack(struct rds_ib_connection *ic, u64 seq, int ack_required)
 600{
 601	unsigned long flags;
 602
 603	spin_lock_irqsave(&ic->i_ack_lock, flags);
 604	ic->i_ack_next = seq;
 605	if (ack_required)
 606		set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
 607	spin_unlock_irqrestore(&ic->i_ack_lock, flags);
 608}
 609
 610static u64 rds_ib_get_ack(struct rds_ib_connection *ic)
 611{
 612	unsigned long flags;
 613	u64 seq;
 614
 615	clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
 616
 617	spin_lock_irqsave(&ic->i_ack_lock, flags);
 618	seq = ic->i_ack_next;
 619	spin_unlock_irqrestore(&ic->i_ack_lock, flags);
 620
 621	return seq;
 622}
 623#else
 624void rds_ib_set_ack(struct rds_ib_connection *ic, u64 seq, int ack_required)
 625{
 626	atomic64_set(&ic->i_ack_next, seq);
 627	if (ack_required) {
 628		smp_mb__before_atomic();
 629		set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
 630	}
 631}
 632
 633static u64 rds_ib_get_ack(struct rds_ib_connection *ic)
 634{
 635	clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
 636	smp_mb__after_atomic();
 637
 638	return atomic64_read(&ic->i_ack_next);
 639}
 640#endif
 641
 642
 643static void rds_ib_send_ack(struct rds_ib_connection *ic, unsigned int adv_credits)
 644{
 645	struct rds_header *hdr = ic->i_ack;
 646	struct ib_send_wr *failed_wr;
 647	u64 seq;
 648	int ret;
 649
 650	seq = rds_ib_get_ack(ic);
 651
 652	rdsdebug("send_ack: ic %p ack %llu\n", ic, (unsigned long long) seq);
 
 
 
 653	rds_message_populate_header(hdr, 0, 0, 0);
 654	hdr->h_ack = cpu_to_be64(seq);
 655	hdr->h_credit = adv_credits;
 656	rds_message_make_checksum(hdr);
 
 
 
 657	ic->i_ack_queued = jiffies;
 658
 659	ret = ib_post_send(ic->i_cm_id->qp, &ic->i_ack_wr, &failed_wr);
 660	if (unlikely(ret)) {
 661		/* Failed to send. Release the WR, and
 662		 * force another ACK.
 663		 */
 664		clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
 665		set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
 666
 667		rds_ib_stats_inc(s_ib_ack_send_failure);
 668
 669		rds_ib_conn_error(ic->conn, "sending ack failed\n");
 670	} else
 671		rds_ib_stats_inc(s_ib_ack_sent);
 672}
 673
 674/*
 675 * There are 3 ways of getting acknowledgements to the peer:
 676 *  1.	We call rds_ib_attempt_ack from the recv completion handler
 677 *	to send an ACK-only frame.
 678 *	However, there can be only one such frame in the send queue
 679 *	at any time, so we may have to postpone it.
 680 *  2.	When another (data) packet is transmitted while there's
 681 *	an ACK in the queue, we piggyback the ACK sequence number
 682 *	on the data packet.
 683 *  3.	If the ACK WR is done sending, we get called from the
 684 *	send queue completion handler, and check whether there's
 685 *	another ACK pending (postponed because the WR was on the
 686 *	queue). If so, we transmit it.
 687 *
 688 * We maintain 2 variables:
 689 *  -	i_ack_flags, which keeps track of whether the ACK WR
 690 *	is currently in the send queue or not (IB_ACK_IN_FLIGHT)
 691 *  -	i_ack_next, which is the last sequence number we received
 692 *
 693 * Potentially, send queue and receive queue handlers can run concurrently.
 694 * It would be nice to not have to use a spinlock to synchronize things,
 695 * but the one problem that rules this out is that 64bit updates are
 696 * not atomic on all platforms. Things would be a lot simpler if
 697 * we had atomic64 or maybe cmpxchg64 everywhere.
 698 *
 699 * Reconnecting complicates this picture just slightly. When we
 700 * reconnect, we may be seeing duplicate packets. The peer
 701 * is retransmitting them, because it hasn't seen an ACK for
 702 * them. It is important that we ACK these.
 703 *
 704 * ACK mitigation adds a header flag "ACK_REQUIRED"; any packet with
 705 * this flag set *MUST* be acknowledged immediately.
 706 */
 707
 708/*
 709 * When we get here, we're called from the recv queue handler.
 710 * Check whether we ought to transmit an ACK.
 711 */
 712void rds_ib_attempt_ack(struct rds_ib_connection *ic)
 713{
 714	unsigned int adv_credits;
 715
 716	if (!test_bit(IB_ACK_REQUESTED, &ic->i_ack_flags))
 717		return;
 718
 719	if (test_and_set_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags)) {
 720		rds_ib_stats_inc(s_ib_ack_send_delayed);
 721		return;
 722	}
 723
 724	/* Can we get a send credit? */
 725	if (!rds_ib_send_grab_credits(ic, 1, &adv_credits, 0, RDS_MAX_ADV_CREDIT)) {
 726		rds_ib_stats_inc(s_ib_tx_throttle);
 727		clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
 728		return;
 729	}
 730
 731	clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
 732	rds_ib_send_ack(ic, adv_credits);
 733}
 734
 735/*
 736 * We get here from the send completion handler, when the
 737 * adapter tells us the ACK frame was sent.
 738 */
 739void rds_ib_ack_send_complete(struct rds_ib_connection *ic)
 740{
 741	clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
 742	rds_ib_attempt_ack(ic);
 743}
 744
 745/*
 746 * This is called by the regular xmit code when it wants to piggyback
 747 * an ACK on an outgoing frame.
 748 */
 749u64 rds_ib_piggyb_ack(struct rds_ib_connection *ic)
 750{
 751	if (test_and_clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags))
 752		rds_ib_stats_inc(s_ib_ack_send_piggybacked);
 753	return rds_ib_get_ack(ic);
 754}
 755
 756/*
 757 * It's kind of lame that we're copying from the posted receive pages into
 758 * long-lived bitmaps.  We could have posted the bitmaps and rdma written into
 759 * them.  But receiving new congestion bitmaps should be a *rare* event, so
 760 * hopefully we won't need to invest that complexity in making it more
 761 * efficient.  By copying we can share a simpler core with TCP which has to
 762 * copy.
 763 */
 764static void rds_ib_cong_recv(struct rds_connection *conn,
 765			      struct rds_ib_incoming *ibinc)
 766{
 767	struct rds_cong_map *map;
 768	unsigned int map_off;
 769	unsigned int map_page;
 770	struct rds_page_frag *frag;
 771	unsigned long frag_off;
 772	unsigned long to_copy;
 773	unsigned long copied;
 774	uint64_t uncongested = 0;
 775	void *addr;
 776
 777	/* catch completely corrupt packets */
 778	if (be32_to_cpu(ibinc->ii_inc.i_hdr.h_len) != RDS_CONG_MAP_BYTES)
 779		return;
 780
 781	map = conn->c_fcong;
 782	map_page = 0;
 783	map_off = 0;
 784
 785	frag = list_entry(ibinc->ii_frags.next, struct rds_page_frag, f_item);
 786	frag_off = 0;
 787
 788	copied = 0;
 789
 790	while (copied < RDS_CONG_MAP_BYTES) {
 791		uint64_t *src, *dst;
 792		unsigned int k;
 793
 794		to_copy = min(RDS_FRAG_SIZE - frag_off, PAGE_SIZE - map_off);
 795		BUG_ON(to_copy & 7); /* Must be 64bit aligned. */
 796
 797		addr = kmap_atomic(sg_page(&frag->f_sg));
 798
 799		src = addr + frag->f_sg.offset + frag_off;
 800		dst = (void *)map->m_page_addrs[map_page] + map_off;
 801		for (k = 0; k < to_copy; k += 8) {
 802			/* Record ports that became uncongested, ie
 803			 * bits that changed from 0 to 1. */
 804			uncongested |= ~(*src) & *dst;
 805			*dst++ = *src++;
 806		}
 807		kunmap_atomic(addr);
 808
 809		copied += to_copy;
 810
 811		map_off += to_copy;
 812		if (map_off == PAGE_SIZE) {
 813			map_off = 0;
 814			map_page++;
 815		}
 816
 817		frag_off += to_copy;
 818		if (frag_off == RDS_FRAG_SIZE) {
 819			frag = list_entry(frag->f_item.next,
 820					  struct rds_page_frag, f_item);
 821			frag_off = 0;
 822		}
 823	}
 824
 825	/* the congestion map is in little endian order */
 826	uncongested = le64_to_cpu(uncongested);
 827
 828	rds_cong_map_updated(map, uncongested);
 829}
 830
 831static void rds_ib_process_recv(struct rds_connection *conn,
 832				struct rds_ib_recv_work *recv, u32 data_len,
 833				struct rds_ib_ack_state *state)
 834{
 835	struct rds_ib_connection *ic = conn->c_transport_data;
 836	struct rds_ib_incoming *ibinc = ic->i_ibinc;
 837	struct rds_header *ihdr, *hdr;
 
 838
 839	/* XXX shut down the connection if port 0,0 are seen? */
 840
 841	rdsdebug("ic %p ibinc %p recv %p byte len %u\n", ic, ibinc, recv,
 842		 data_len);
 843
 844	if (data_len < sizeof(struct rds_header)) {
 845		rds_ib_conn_error(conn, "incoming message "
 846		       "from %pI4 didn't include a "
 847		       "header, disconnecting and "
 848		       "reconnecting\n",
 849		       &conn->c_faddr);
 850		return;
 851	}
 852	data_len -= sizeof(struct rds_header);
 853
 854	ihdr = &ic->i_recv_hdrs[recv - ic->i_recvs];
 855
 
 
 856	/* Validate the checksum. */
 857	if (!rds_message_verify_checksum(ihdr)) {
 858		rds_ib_conn_error(conn, "incoming message "
 859		       "from %pI4 has corrupted header - "
 860		       "forcing a reconnect\n",
 861		       &conn->c_faddr);
 862		rds_stats_inc(s_recv_drop_bad_checksum);
 863		return;
 864	}
 865
 866	/* Process the ACK sequence which comes with every packet */
 867	state->ack_recv = be64_to_cpu(ihdr->h_ack);
 868	state->ack_recv_valid = 1;
 869
 870	/* Process the credits update if there was one */
 871	if (ihdr->h_credit)
 872		rds_ib_send_add_credits(conn, ihdr->h_credit);
 873
 874	if (ihdr->h_sport == 0 && ihdr->h_dport == 0 && data_len == 0) {
 875		/* This is an ACK-only packet. The fact that it gets
 876		 * special treatment here is that historically, ACKs
 877		 * were rather special beasts.
 878		 */
 879		rds_ib_stats_inc(s_ib_ack_received);
 880
 881		/*
 882		 * Usually the frags make their way on to incs and are then freed as
 883		 * the inc is freed.  We don't go that route, so we have to drop the
 884		 * page ref ourselves.  We can't just leave the page on the recv
 885		 * because that confuses the dma mapping of pages and each recv's use
 886		 * of a partial page.
 887		 *
 888		 * FIXME: Fold this into the code path below.
 889		 */
 890		rds_ib_frag_free(ic, recv->r_frag);
 891		recv->r_frag = NULL;
 892		return;
 893	}
 894
 895	/*
 896	 * If we don't already have an inc on the connection then this
 897	 * fragment has a header and starts a message.. copy its header
 898	 * into the inc and save the inc so we can hang upcoming fragments
 899	 * off its list.
 900	 */
 901	if (!ibinc) {
 902		ibinc = recv->r_ibinc;
 903		recv->r_ibinc = NULL;
 904		ic->i_ibinc = ibinc;
 905
 906		hdr = &ibinc->ii_inc.i_hdr;
 
 
 907		memcpy(hdr, ihdr, sizeof(*hdr));
 908		ic->i_recv_data_rem = be32_to_cpu(hdr->h_len);
 
 
 909
 910		rdsdebug("ic %p ibinc %p rem %u flag 0x%x\n", ic, ibinc,
 911			 ic->i_recv_data_rem, hdr->h_flags);
 912	} else {
 913		hdr = &ibinc->ii_inc.i_hdr;
 914		/* We can't just use memcmp here; fragments of a
 915		 * single message may carry different ACKs */
 916		if (hdr->h_sequence != ihdr->h_sequence ||
 917		    hdr->h_len != ihdr->h_len ||
 918		    hdr->h_sport != ihdr->h_sport ||
 919		    hdr->h_dport != ihdr->h_dport) {
 920			rds_ib_conn_error(conn,
 921				"fragment header mismatch; forcing reconnect\n");
 922			return;
 923		}
 924	}
 925
 926	list_add_tail(&recv->r_frag->f_item, &ibinc->ii_frags);
 927	recv->r_frag = NULL;
 928
 929	if (ic->i_recv_data_rem > RDS_FRAG_SIZE)
 930		ic->i_recv_data_rem -= RDS_FRAG_SIZE;
 931	else {
 932		ic->i_recv_data_rem = 0;
 933		ic->i_ibinc = NULL;
 934
 935		if (ibinc->ii_inc.i_hdr.h_flags == RDS_FLAG_CONG_BITMAP)
 936			rds_ib_cong_recv(conn, ibinc);
 937		else {
 938			rds_recv_incoming(conn, conn->c_faddr, conn->c_laddr,
 939					  &ibinc->ii_inc, GFP_ATOMIC);
 940			state->ack_next = be64_to_cpu(hdr->h_sequence);
 941			state->ack_next_valid = 1;
 942		}
 943
 944		/* Evaluate the ACK_REQUIRED flag *after* we received
 945		 * the complete frame, and after bumping the next_rx
 946		 * sequence. */
 947		if (hdr->h_flags & RDS_FLAG_ACK_REQUIRED) {
 948			rds_stats_inc(s_recv_ack_required);
 949			state->ack_required = 1;
 950		}
 951
 952		rds_inc_put(&ibinc->ii_inc);
 953	}
 
 
 
 954}
 955
 956void rds_ib_recv_cqe_handler(struct rds_ib_connection *ic,
 957			     struct ib_wc *wc,
 958			     struct rds_ib_ack_state *state)
 959{
 960	struct rds_connection *conn = ic->conn;
 961	struct rds_ib_recv_work *recv;
 962
 963	rdsdebug("wc wr_id 0x%llx status %u (%s) byte_len %u imm_data %u\n",
 964		 (unsigned long long)wc->wr_id, wc->status,
 965		 ib_wc_status_msg(wc->status), wc->byte_len,
 966		 be32_to_cpu(wc->ex.imm_data));
 967
 968	rds_ib_stats_inc(s_ib_rx_cq_event);
 969	recv = &ic->i_recvs[rds_ib_ring_oldest(&ic->i_recv_ring)];
 970	ib_dma_unmap_sg(ic->i_cm_id->device, &recv->r_frag->f_sg, 1,
 971			DMA_FROM_DEVICE);
 972
 973	/* Also process recvs in connecting state because it is possible
 974	 * to get a recv completion _before_ the rdmacm ESTABLISHED
 975	 * event is processed.
 976	 */
 977	if (wc->status == IB_WC_SUCCESS) {
 978		rds_ib_process_recv(conn, recv, wc->byte_len, state);
 979	} else {
 980		/* We expect errors as the qp is drained during shutdown */
 981		if (rds_conn_up(conn) || rds_conn_connecting(conn))
 982			rds_ib_conn_error(conn, "recv completion on %pI4 had status %u (%s), disconnecting and reconnecting\n",
 983					  &conn->c_faddr,
 984					  wc->status,
 985					  ib_wc_status_msg(wc->status));
 
 986	}
 987
 988	/* rds_ib_process_recv() doesn't always consume the frag, and
 989	 * we might not have called it at all if the wc didn't indicate
 990	 * success. We already unmapped the frag's pages, though, and
 991	 * the following rds_ib_ring_free() call tells the refill path
 992	 * that it will not find an allocated frag here. Make sure we
 993	 * keep that promise by freeing a frag that's still on the ring.
 994	 */
 995	if (recv->r_frag) {
 996		rds_ib_frag_free(ic, recv->r_frag);
 997		recv->r_frag = NULL;
 998	}
 999	rds_ib_ring_free(&ic->i_recv_ring, 1);
1000
1001	/* If we ever end up with a really empty receive ring, we're
1002	 * in deep trouble, as the sender will definitely see RNR
1003	 * timeouts. */
1004	if (rds_ib_ring_empty(&ic->i_recv_ring))
1005		rds_ib_stats_inc(s_ib_rx_ring_empty);
1006
1007	if (rds_ib_ring_low(&ic->i_recv_ring))
1008		rds_ib_recv_refill(conn, 0, GFP_NOWAIT);
 
 
1009}
1010
1011int rds_ib_recv(struct rds_connection *conn)
1012{
 
1013	struct rds_ib_connection *ic = conn->c_transport_data;
1014	int ret = 0;
1015
1016	rdsdebug("conn %p\n", conn);
1017	if (rds_conn_up(conn)) {
1018		rds_ib_attempt_ack(ic);
1019		rds_ib_recv_refill(conn, 0, GFP_KERNEL);
 
1020	}
1021
1022	return ret;
1023}
1024
1025int rds_ib_recv_init(void)
1026{
1027	struct sysinfo si;
1028	int ret = -ENOMEM;
1029
1030	/* Default to 30% of all available RAM for recv memory */
1031	si_meminfo(&si);
1032	rds_ib_sysctl_max_recv_allocation = si.totalram / 3 * PAGE_SIZE / RDS_FRAG_SIZE;
1033
1034	rds_ib_incoming_slab = kmem_cache_create("rds_ib_incoming",
1035					sizeof(struct rds_ib_incoming),
1036					0, SLAB_HWCACHE_ALIGN, NULL);
 
 
 
 
 
1037	if (!rds_ib_incoming_slab)
1038		goto out;
1039
1040	rds_ib_frag_slab = kmem_cache_create("rds_ib_frag",
1041					sizeof(struct rds_page_frag),
1042					0, SLAB_HWCACHE_ALIGN, NULL);
1043	if (!rds_ib_frag_slab) {
1044		kmem_cache_destroy(rds_ib_incoming_slab);
1045		rds_ib_incoming_slab = NULL;
1046	} else
1047		ret = 0;
1048out:
1049	return ret;
1050}
1051
1052void rds_ib_recv_exit(void)
1053{
 
 
1054	kmem_cache_destroy(rds_ib_incoming_slab);
1055	kmem_cache_destroy(rds_ib_frag_slab);
1056}
v6.13.7
   1/*
   2 * Copyright (c) 2006, 2019 Oracle and/or its affiliates. All rights reserved.
   3 *
   4 * This software is available to you under a choice of one of two
   5 * licenses.  You may choose to be licensed under the terms of the GNU
   6 * General Public License (GPL) Version 2, available from the file
   7 * COPYING in the main directory of this source tree, or the
   8 * OpenIB.org BSD license below:
   9 *
  10 *     Redistribution and use in source and binary forms, with or
  11 *     without modification, are permitted provided that the following
  12 *     conditions are met:
  13 *
  14 *      - Redistributions of source code must retain the above
  15 *        copyright notice, this list of conditions and the following
  16 *        disclaimer.
  17 *
  18 *      - Redistributions in binary form must reproduce the above
  19 *        copyright notice, this list of conditions and the following
  20 *        disclaimer in the documentation and/or other materials
  21 *        provided with the distribution.
  22 *
  23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  30 * SOFTWARE.
  31 *
  32 */
  33#include <linux/kernel.h>
  34#include <linux/sched/clock.h>
  35#include <linux/slab.h>
  36#include <linux/pci.h>
  37#include <linux/dma-mapping.h>
  38#include <rdma/rdma_cm.h>
  39
  40#include "rds_single_path.h"
  41#include "rds.h"
  42#include "ib.h"
  43
  44static struct kmem_cache *rds_ib_incoming_slab;
  45static struct kmem_cache *rds_ib_frag_slab;
  46static atomic_t	rds_ib_allocation = ATOMIC_INIT(0);
  47
  48void rds_ib_recv_init_ring(struct rds_ib_connection *ic)
  49{
  50	struct rds_ib_recv_work *recv;
  51	u32 i;
  52
  53	for (i = 0, recv = ic->i_recvs; i < ic->i_recv_ring.w_nr; i++, recv++) {
  54		struct ib_sge *sge;
  55
  56		recv->r_ibinc = NULL;
  57		recv->r_frag = NULL;
  58
  59		recv->r_wr.next = NULL;
  60		recv->r_wr.wr_id = i;
  61		recv->r_wr.sg_list = recv->r_sge;
  62		recv->r_wr.num_sge = RDS_IB_RECV_SGE;
  63
  64		sge = &recv->r_sge[0];
  65		sge->addr = ic->i_recv_hdrs_dma[i];
  66		sge->length = sizeof(struct rds_header);
  67		sge->lkey = ic->i_pd->local_dma_lkey;
  68
  69		sge = &recv->r_sge[1];
  70		sge->addr = 0;
  71		sge->length = RDS_FRAG_SIZE;
  72		sge->lkey = ic->i_pd->local_dma_lkey;
  73	}
  74}
  75
  76/*
  77 * The entire 'from' list, including the from element itself, is put on
  78 * to the tail of the 'to' list.
  79 */
  80static void list_splice_entire_tail(struct list_head *from,
  81				    struct list_head *to)
  82{
  83	struct list_head *from_last = from->prev;
  84
  85	list_splice_tail(from_last, to);
  86	list_add_tail(from_last, to);
  87}
  88
  89static void rds_ib_cache_xfer_to_ready(struct rds_ib_refill_cache *cache)
  90{
  91	struct list_head *tmp;
  92
  93	tmp = xchg(&cache->xfer, NULL);
  94	if (tmp) {
  95		if (cache->ready)
  96			list_splice_entire_tail(tmp, cache->ready);
  97		else
  98			cache->ready = tmp;
  99	}
 100}
 101
 102static int rds_ib_recv_alloc_cache(struct rds_ib_refill_cache *cache, gfp_t gfp)
 103{
 104	struct rds_ib_cache_head *head;
 105	int cpu;
 106
 107	cache->percpu = alloc_percpu_gfp(struct rds_ib_cache_head, gfp);
 108	if (!cache->percpu)
 109	       return -ENOMEM;
 110
 111	for_each_possible_cpu(cpu) {
 112		head = per_cpu_ptr(cache->percpu, cpu);
 113		head->first = NULL;
 114		head->count = 0;
 115	}
 116	cache->xfer = NULL;
 117	cache->ready = NULL;
 118
 119	return 0;
 120}
 121
 122int rds_ib_recv_alloc_caches(struct rds_ib_connection *ic, gfp_t gfp)
 123{
 124	int ret;
 125
 126	ret = rds_ib_recv_alloc_cache(&ic->i_cache_incs, gfp);
 127	if (!ret) {
 128		ret = rds_ib_recv_alloc_cache(&ic->i_cache_frags, gfp);
 129		if (ret)
 130			free_percpu(ic->i_cache_incs.percpu);
 131	}
 132
 133	return ret;
 134}
 135
 136static void rds_ib_cache_splice_all_lists(struct rds_ib_refill_cache *cache,
 137					  struct list_head *caller_list)
 138{
 139	struct rds_ib_cache_head *head;
 140	int cpu;
 141
 142	for_each_possible_cpu(cpu) {
 143		head = per_cpu_ptr(cache->percpu, cpu);
 144		if (head->first) {
 145			list_splice_entire_tail(head->first, caller_list);
 146			head->first = NULL;
 147		}
 148	}
 149
 150	if (cache->ready) {
 151		list_splice_entire_tail(cache->ready, caller_list);
 152		cache->ready = NULL;
 153	}
 154}
 155
 156void rds_ib_recv_free_caches(struct rds_ib_connection *ic)
 157{
 158	struct rds_ib_incoming *inc;
 159	struct rds_ib_incoming *inc_tmp;
 160	struct rds_page_frag *frag;
 161	struct rds_page_frag *frag_tmp;
 162	LIST_HEAD(list);
 163
 164	rds_ib_cache_xfer_to_ready(&ic->i_cache_incs);
 165	rds_ib_cache_splice_all_lists(&ic->i_cache_incs, &list);
 166	free_percpu(ic->i_cache_incs.percpu);
 167
 168	list_for_each_entry_safe(inc, inc_tmp, &list, ii_cache_entry) {
 169		list_del(&inc->ii_cache_entry);
 170		WARN_ON(!list_empty(&inc->ii_frags));
 171		kmem_cache_free(rds_ib_incoming_slab, inc);
 172		atomic_dec(&rds_ib_allocation);
 173	}
 174
 175	rds_ib_cache_xfer_to_ready(&ic->i_cache_frags);
 176	rds_ib_cache_splice_all_lists(&ic->i_cache_frags, &list);
 177	free_percpu(ic->i_cache_frags.percpu);
 178
 179	list_for_each_entry_safe(frag, frag_tmp, &list, f_cache_entry) {
 180		list_del(&frag->f_cache_entry);
 181		WARN_ON(!list_empty(&frag->f_item));
 182		kmem_cache_free(rds_ib_frag_slab, frag);
 183	}
 184}
 185
 186/* fwd decl */
 187static void rds_ib_recv_cache_put(struct list_head *new_item,
 188				  struct rds_ib_refill_cache *cache);
 189static struct list_head *rds_ib_recv_cache_get(struct rds_ib_refill_cache *cache);
 190
 191
 192/* Recycle frag and attached recv buffer f_sg */
 193static void rds_ib_frag_free(struct rds_ib_connection *ic,
 194			     struct rds_page_frag *frag)
 195{
 196	rdsdebug("frag %p page %p\n", frag, sg_page(&frag->f_sg));
 197
 198	rds_ib_recv_cache_put(&frag->f_cache_entry, &ic->i_cache_frags);
 199	atomic_add(RDS_FRAG_SIZE / SZ_1K, &ic->i_cache_allocs);
 200	rds_ib_stats_add(s_ib_recv_added_to_cache, RDS_FRAG_SIZE);
 201}
 202
 203/* Recycle inc after freeing attached frags */
 204void rds_ib_inc_free(struct rds_incoming *inc)
 205{
 206	struct rds_ib_incoming *ibinc;
 207	struct rds_page_frag *frag;
 208	struct rds_page_frag *pos;
 209	struct rds_ib_connection *ic = inc->i_conn->c_transport_data;
 210
 211	ibinc = container_of(inc, struct rds_ib_incoming, ii_inc);
 212
 213	/* Free attached frags */
 214	list_for_each_entry_safe(frag, pos, &ibinc->ii_frags, f_item) {
 215		list_del_init(&frag->f_item);
 216		rds_ib_frag_free(ic, frag);
 217	}
 218	BUG_ON(!list_empty(&ibinc->ii_frags));
 219
 220	rdsdebug("freeing ibinc %p inc %p\n", ibinc, inc);
 221	rds_ib_recv_cache_put(&ibinc->ii_cache_entry, &ic->i_cache_incs);
 222}
 223
 224static void rds_ib_recv_clear_one(struct rds_ib_connection *ic,
 225				  struct rds_ib_recv_work *recv)
 226{
 227	if (recv->r_ibinc) {
 228		rds_inc_put(&recv->r_ibinc->ii_inc);
 229		recv->r_ibinc = NULL;
 230	}
 231	if (recv->r_frag) {
 232		ib_dma_unmap_sg(ic->i_cm_id->device, &recv->r_frag->f_sg, 1, DMA_FROM_DEVICE);
 233		rds_ib_frag_free(ic, recv->r_frag);
 234		recv->r_frag = NULL;
 235	}
 236}
 237
 238void rds_ib_recv_clear_ring(struct rds_ib_connection *ic)
 239{
 240	u32 i;
 241
 242	for (i = 0; i < ic->i_recv_ring.w_nr; i++)
 243		rds_ib_recv_clear_one(ic, &ic->i_recvs[i]);
 244}
 245
 246static struct rds_ib_incoming *rds_ib_refill_one_inc(struct rds_ib_connection *ic,
 247						     gfp_t slab_mask)
 248{
 249	struct rds_ib_incoming *ibinc;
 250	struct list_head *cache_item;
 251	int avail_allocs;
 252
 253	cache_item = rds_ib_recv_cache_get(&ic->i_cache_incs);
 254	if (cache_item) {
 255		ibinc = container_of(cache_item, struct rds_ib_incoming, ii_cache_entry);
 256	} else {
 257		avail_allocs = atomic_add_unless(&rds_ib_allocation,
 258						 1, rds_ib_sysctl_max_recv_allocation);
 259		if (!avail_allocs) {
 260			rds_ib_stats_inc(s_ib_rx_alloc_limit);
 261			return NULL;
 262		}
 263		ibinc = kmem_cache_alloc(rds_ib_incoming_slab, slab_mask);
 264		if (!ibinc) {
 265			atomic_dec(&rds_ib_allocation);
 266			return NULL;
 267		}
 268		rds_ib_stats_inc(s_ib_rx_total_incs);
 269	}
 270	INIT_LIST_HEAD(&ibinc->ii_frags);
 271	rds_inc_init(&ibinc->ii_inc, ic->conn, &ic->conn->c_faddr);
 272
 273	return ibinc;
 274}
 275
 276static struct rds_page_frag *rds_ib_refill_one_frag(struct rds_ib_connection *ic,
 277						    gfp_t slab_mask, gfp_t page_mask)
 278{
 279	struct rds_page_frag *frag;
 280	struct list_head *cache_item;
 281	int ret;
 282
 283	cache_item = rds_ib_recv_cache_get(&ic->i_cache_frags);
 284	if (cache_item) {
 285		frag = container_of(cache_item, struct rds_page_frag, f_cache_entry);
 286		atomic_sub(RDS_FRAG_SIZE / SZ_1K, &ic->i_cache_allocs);
 287		rds_ib_stats_add(s_ib_recv_added_to_cache, RDS_FRAG_SIZE);
 288	} else {
 289		frag = kmem_cache_alloc(rds_ib_frag_slab, slab_mask);
 290		if (!frag)
 291			return NULL;
 292
 293		sg_init_table(&frag->f_sg, 1);
 294		ret = rds_page_remainder_alloc(&frag->f_sg,
 295					       RDS_FRAG_SIZE, page_mask);
 296		if (ret) {
 297			kmem_cache_free(rds_ib_frag_slab, frag);
 298			return NULL;
 299		}
 300		rds_ib_stats_inc(s_ib_rx_total_frags);
 301	}
 302
 303	INIT_LIST_HEAD(&frag->f_item);
 304
 305	return frag;
 306}
 307
 308static int rds_ib_recv_refill_one(struct rds_connection *conn,
 309				  struct rds_ib_recv_work *recv, gfp_t gfp)
 310{
 311	struct rds_ib_connection *ic = conn->c_transport_data;
 312	struct ib_sge *sge;
 313	int ret = -ENOMEM;
 314	gfp_t slab_mask = gfp;
 315	gfp_t page_mask = gfp;
 316
 317	if (gfp & __GFP_DIRECT_RECLAIM) {
 318		slab_mask = GFP_KERNEL;
 319		page_mask = GFP_HIGHUSER;
 320	}
 321
 322	if (!ic->i_cache_incs.ready)
 323		rds_ib_cache_xfer_to_ready(&ic->i_cache_incs);
 324	if (!ic->i_cache_frags.ready)
 325		rds_ib_cache_xfer_to_ready(&ic->i_cache_frags);
 326
 327	/*
 328	 * ibinc was taken from recv if recv contained the start of a message.
 329	 * recvs that were continuations will still have this allocated.
 330	 */
 331	if (!recv->r_ibinc) {
 332		recv->r_ibinc = rds_ib_refill_one_inc(ic, slab_mask);
 333		if (!recv->r_ibinc)
 334			goto out;
 335	}
 336
 337	WARN_ON(recv->r_frag); /* leak! */
 338	recv->r_frag = rds_ib_refill_one_frag(ic, slab_mask, page_mask);
 339	if (!recv->r_frag)
 340		goto out;
 341
 342	ret = ib_dma_map_sg(ic->i_cm_id->device, &recv->r_frag->f_sg,
 343			    1, DMA_FROM_DEVICE);
 344	WARN_ON(ret != 1);
 345
 346	sge = &recv->r_sge[0];
 347	sge->addr = ic->i_recv_hdrs_dma[recv - ic->i_recvs];
 348	sge->length = sizeof(struct rds_header);
 349
 350	sge = &recv->r_sge[1];
 351	sge->addr = sg_dma_address(&recv->r_frag->f_sg);
 352	sge->length = sg_dma_len(&recv->r_frag->f_sg);
 353
 354	ret = 0;
 355out:
 356	return ret;
 357}
 358
 359static int acquire_refill(struct rds_connection *conn)
 360{
 361	return test_and_set_bit(RDS_RECV_REFILL, &conn->c_flags) == 0;
 362}
 363
 364static void release_refill(struct rds_connection *conn)
 365{
 366	clear_bit(RDS_RECV_REFILL, &conn->c_flags);
 367	smp_mb__after_atomic();
 368
 369	/* We don't use wait_on_bit()/wake_up_bit() because our waking is in a
 370	 * hot path and finding waiters is very rare.  We don't want to walk
 371	 * the system-wide hashed waitqueue buckets in the fast path only to
 372	 * almost never find waiters.
 373	 */
 374	if (waitqueue_active(&conn->c_waitq))
 375		wake_up_all(&conn->c_waitq);
 376}
 377
 378/*
 379 * This tries to allocate and post unused work requests after making sure that
 380 * they have all the allocations they need to queue received fragments into
 381 * sockets.
 
 
 382 */
 383void rds_ib_recv_refill(struct rds_connection *conn, int prefill, gfp_t gfp)
 384{
 385	struct rds_ib_connection *ic = conn->c_transport_data;
 386	struct rds_ib_recv_work *recv;
 
 387	unsigned int posted = 0;
 388	int ret = 0;
 389	bool can_wait = !!(gfp & __GFP_DIRECT_RECLAIM);
 390	bool must_wake = false;
 391	u32 pos;
 392
 393	/* the goal here is to just make sure that someone, somewhere
 394	 * is posting buffers.  If we can't get the refill lock,
 395	 * let them do their thing
 396	 */
 397	if (!acquire_refill(conn))
 398		return;
 399
 400	while ((prefill || rds_conn_up(conn)) &&
 401	       rds_ib_ring_alloc(&ic->i_recv_ring, 1, &pos)) {
 402		if (pos >= ic->i_recv_ring.w_nr) {
 403			printk(KERN_NOTICE "Argh - ring alloc returned pos=%u\n",
 404					pos);
 405			break;
 406		}
 407
 408		recv = &ic->i_recvs[pos];
 409		ret = rds_ib_recv_refill_one(conn, recv, gfp);
 410		if (ret) {
 411			must_wake = true;
 412			break;
 413		}
 414
 415		rdsdebug("recv %p ibinc %p page %p addr %lu\n", recv,
 
 
 416			 recv->r_ibinc, sg_page(&recv->r_frag->f_sg),
 417			 (long)sg_dma_address(&recv->r_frag->f_sg));
 418
 419		/* XXX when can this fail? */
 420		ret = ib_post_recv(ic->i_cm_id->qp, &recv->r_wr, NULL);
 421		if (ret) {
 422			rds_ib_conn_error(conn, "recv post on "
 423			       "%pI6c returned %d, disconnecting and "
 424			       "reconnecting\n", &conn->c_faddr,
 425			       ret);
 426			break;
 427		}
 428
 429		posted++;
 430
 431		if ((posted > 128 && need_resched()) || posted > 8192) {
 432			must_wake = true;
 433			break;
 434		}
 435	}
 436
 437	/* We're doing flow control - update the window. */
 438	if (ic->i_flowctl && posted)
 439		rds_ib_advertise_credits(conn, posted);
 440
 441	if (ret)
 442		rds_ib_ring_unalloc(&ic->i_recv_ring, 1);
 443
 444	release_refill(conn);
 445
 446	/* if we're called from the softirq handler, we'll be GFP_NOWAIT.
 447	 * in this case the ring being low is going to lead to more interrupts
 448	 * and we can safely let the softirq code take care of it unless the
 449	 * ring is completely empty.
 450	 *
 451	 * if we're called from krdsd, we'll be GFP_KERNEL.  In this case
 452	 * we might have raced with the softirq code while we had the refill
 453	 * lock held.  Use rds_ib_ring_low() instead of ring_empty to decide
 454	 * if we should requeue.
 455	 */
 456	if (rds_conn_up(conn) &&
 457	    (must_wake ||
 458	    (can_wait && rds_ib_ring_low(&ic->i_recv_ring)) ||
 459	    rds_ib_ring_empty(&ic->i_recv_ring))) {
 460		queue_delayed_work(rds_wq, &conn->c_recv_w, 1);
 461	}
 462	if (can_wait)
 463		cond_resched();
 464}
 465
 466/*
 467 * We want to recycle several types of recv allocations, like incs and frags.
 468 * To use this, the *_free() function passes in the ptr to a list_head within
 469 * the recyclee, as well as the cache to put it on.
 470 *
 471 * First, we put the memory on a percpu list. When this reaches a certain size,
 472 * We move it to an intermediate non-percpu list in a lockless manner, with some
 473 * xchg/compxchg wizardry.
 474 *
 475 * N.B. Instead of a list_head as the anchor, we use a single pointer, which can
 476 * be NULL and xchg'd. The list is actually empty when the pointer is NULL, and
 477 * list_empty() will return true with one element is actually present.
 478 */
 479static void rds_ib_recv_cache_put(struct list_head *new_item,
 480				 struct rds_ib_refill_cache *cache)
 481{
 482	unsigned long flags;
 483	struct list_head *old, *chpfirst;
 484
 485	local_irq_save(flags);
 486
 487	chpfirst = __this_cpu_read(cache->percpu->first);
 488	if (!chpfirst)
 489		INIT_LIST_HEAD(new_item);
 490	else /* put on front */
 491		list_add_tail(new_item, chpfirst);
 492
 493	__this_cpu_write(cache->percpu->first, new_item);
 494	__this_cpu_inc(cache->percpu->count);
 495
 496	if (__this_cpu_read(cache->percpu->count) < RDS_IB_RECYCLE_BATCH_COUNT)
 497		goto end;
 498
 499	/*
 500	 * Return our per-cpu first list to the cache's xfer by atomically
 501	 * grabbing the current xfer list, appending it to our per-cpu list,
 502	 * and then atomically returning that entire list back to the
 503	 * cache's xfer list as long as it's still empty.
 504	 */
 505	do {
 506		old = xchg(&cache->xfer, NULL);
 507		if (old)
 508			list_splice_entire_tail(old, chpfirst);
 509		old = cmpxchg(&cache->xfer, NULL, chpfirst);
 510	} while (old);
 511
 512
 513	__this_cpu_write(cache->percpu->first, NULL);
 514	__this_cpu_write(cache->percpu->count, 0);
 515end:
 516	local_irq_restore(flags);
 517}
 518
 519static struct list_head *rds_ib_recv_cache_get(struct rds_ib_refill_cache *cache)
 520{
 521	struct list_head *head = cache->ready;
 522
 523	if (head) {
 524		if (!list_empty(head)) {
 525			cache->ready = head->next;
 526			list_del_init(head);
 527		} else
 528			cache->ready = NULL;
 529	}
 530
 531	return head;
 532}
 533
 534int rds_ib_inc_copy_to_user(struct rds_incoming *inc, struct iov_iter *to)
 535{
 536	struct rds_ib_incoming *ibinc;
 537	struct rds_page_frag *frag;
 538	unsigned long to_copy;
 539	unsigned long frag_off = 0;
 540	int copied = 0;
 541	int ret;
 542	u32 len;
 543
 544	ibinc = container_of(inc, struct rds_ib_incoming, ii_inc);
 545	frag = list_entry(ibinc->ii_frags.next, struct rds_page_frag, f_item);
 546	len = be32_to_cpu(inc->i_hdr.h_len);
 547
 548	while (iov_iter_count(to) && copied < len) {
 549		if (frag_off == RDS_FRAG_SIZE) {
 550			frag = list_entry(frag->f_item.next,
 551					  struct rds_page_frag, f_item);
 552			frag_off = 0;
 553		}
 554		to_copy = min_t(unsigned long, iov_iter_count(to),
 555				RDS_FRAG_SIZE - frag_off);
 556		to_copy = min_t(unsigned long, to_copy, len - copied);
 557
 558		/* XXX needs + offset for multiple recvs per page */
 559		rds_stats_add(s_copy_to_user, to_copy);
 560		ret = copy_page_to_iter(sg_page(&frag->f_sg),
 561					frag->f_sg.offset + frag_off,
 562					to_copy,
 563					to);
 564		if (ret != to_copy)
 565			return -EFAULT;
 566
 567		frag_off += to_copy;
 568		copied += to_copy;
 569	}
 570
 571	return copied;
 572}
 573
 574/* ic starts out kzalloc()ed */
 575void rds_ib_recv_init_ack(struct rds_ib_connection *ic)
 576{
 577	struct ib_send_wr *wr = &ic->i_ack_wr;
 578	struct ib_sge *sge = &ic->i_ack_sge;
 579
 580	sge->addr = ic->i_ack_dma;
 581	sge->length = sizeof(struct rds_header);
 582	sge->lkey = ic->i_pd->local_dma_lkey;
 583
 584	wr->sg_list = sge;
 585	wr->num_sge = 1;
 586	wr->opcode = IB_WR_SEND;
 587	wr->wr_id = RDS_IB_ACK_WR_ID;
 588	wr->send_flags = IB_SEND_SIGNALED | IB_SEND_SOLICITED;
 589}
 590
 591/*
 592 * You'd think that with reliable IB connections you wouldn't need to ack
 593 * messages that have been received.  The problem is that IB hardware generates
 594 * an ack message before it has DMAed the message into memory.  This creates a
 595 * potential message loss if the HCA is disabled for any reason between when it
 596 * sends the ack and before the message is DMAed and processed.  This is only a
 597 * potential issue if another HCA is available for fail-over.
 598 *
 599 * When the remote host receives our ack they'll free the sent message from
 600 * their send queue.  To decrease the latency of this we always send an ack
 601 * immediately after we've received messages.
 602 *
 603 * For simplicity, we only have one ack in flight at a time.  This puts
 604 * pressure on senders to have deep enough send queues to absorb the latency of
 605 * a single ack frame being in flight.  This might not be good enough.
 606 *
 607 * This is implemented by have a long-lived send_wr and sge which point to a
 608 * statically allocated ack frame.  This ack wr does not fall under the ring
 609 * accounting that the tx and rx wrs do.  The QP attribute specifically makes
 610 * room for it beyond the ring size.  Send completion notices its special
 611 * wr_id and avoids working with the ring in that case.
 612 */
 613#ifndef KERNEL_HAS_ATOMIC64
 614void rds_ib_set_ack(struct rds_ib_connection *ic, u64 seq, int ack_required)
 615{
 616	unsigned long flags;
 617
 618	spin_lock_irqsave(&ic->i_ack_lock, flags);
 619	ic->i_ack_next = seq;
 620	if (ack_required)
 621		set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
 622	spin_unlock_irqrestore(&ic->i_ack_lock, flags);
 623}
 624
 625static u64 rds_ib_get_ack(struct rds_ib_connection *ic)
 626{
 627	unsigned long flags;
 628	u64 seq;
 629
 630	clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
 631
 632	spin_lock_irqsave(&ic->i_ack_lock, flags);
 633	seq = ic->i_ack_next;
 634	spin_unlock_irqrestore(&ic->i_ack_lock, flags);
 635
 636	return seq;
 637}
 638#else
 639void rds_ib_set_ack(struct rds_ib_connection *ic, u64 seq, int ack_required)
 640{
 641	atomic64_set(&ic->i_ack_next, seq);
 642	if (ack_required) {
 643		smp_mb__before_atomic();
 644		set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
 645	}
 646}
 647
 648static u64 rds_ib_get_ack(struct rds_ib_connection *ic)
 649{
 650	clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
 651	smp_mb__after_atomic();
 652
 653	return atomic64_read(&ic->i_ack_next);
 654}
 655#endif
 656
 657
 658static void rds_ib_send_ack(struct rds_ib_connection *ic, unsigned int adv_credits)
 659{
 660	struct rds_header *hdr = ic->i_ack;
 
 661	u64 seq;
 662	int ret;
 663
 664	seq = rds_ib_get_ack(ic);
 665
 666	rdsdebug("send_ack: ic %p ack %llu\n", ic, (unsigned long long) seq);
 667
 668	ib_dma_sync_single_for_cpu(ic->rds_ibdev->dev, ic->i_ack_dma,
 669				   sizeof(*hdr), DMA_TO_DEVICE);
 670	rds_message_populate_header(hdr, 0, 0, 0);
 671	hdr->h_ack = cpu_to_be64(seq);
 672	hdr->h_credit = adv_credits;
 673	rds_message_make_checksum(hdr);
 674	ib_dma_sync_single_for_device(ic->rds_ibdev->dev, ic->i_ack_dma,
 675				      sizeof(*hdr), DMA_TO_DEVICE);
 676
 677	ic->i_ack_queued = jiffies;
 678
 679	ret = ib_post_send(ic->i_cm_id->qp, &ic->i_ack_wr, NULL);
 680	if (unlikely(ret)) {
 681		/* Failed to send. Release the WR, and
 682		 * force another ACK.
 683		 */
 684		clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
 685		set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
 686
 687		rds_ib_stats_inc(s_ib_ack_send_failure);
 688
 689		rds_ib_conn_error(ic->conn, "sending ack failed\n");
 690	} else
 691		rds_ib_stats_inc(s_ib_ack_sent);
 692}
 693
 694/*
 695 * There are 3 ways of getting acknowledgements to the peer:
 696 *  1.	We call rds_ib_attempt_ack from the recv completion handler
 697 *	to send an ACK-only frame.
 698 *	However, there can be only one such frame in the send queue
 699 *	at any time, so we may have to postpone it.
 700 *  2.	When another (data) packet is transmitted while there's
 701 *	an ACK in the queue, we piggyback the ACK sequence number
 702 *	on the data packet.
 703 *  3.	If the ACK WR is done sending, we get called from the
 704 *	send queue completion handler, and check whether there's
 705 *	another ACK pending (postponed because the WR was on the
 706 *	queue). If so, we transmit it.
 707 *
 708 * We maintain 2 variables:
 709 *  -	i_ack_flags, which keeps track of whether the ACK WR
 710 *	is currently in the send queue or not (IB_ACK_IN_FLIGHT)
 711 *  -	i_ack_next, which is the last sequence number we received
 712 *
 713 * Potentially, send queue and receive queue handlers can run concurrently.
 714 * It would be nice to not have to use a spinlock to synchronize things,
 715 * but the one problem that rules this out is that 64bit updates are
 716 * not atomic on all platforms. Things would be a lot simpler if
 717 * we had atomic64 or maybe cmpxchg64 everywhere.
 718 *
 719 * Reconnecting complicates this picture just slightly. When we
 720 * reconnect, we may be seeing duplicate packets. The peer
 721 * is retransmitting them, because it hasn't seen an ACK for
 722 * them. It is important that we ACK these.
 723 *
 724 * ACK mitigation adds a header flag "ACK_REQUIRED"; any packet with
 725 * this flag set *MUST* be acknowledged immediately.
 726 */
 727
 728/*
 729 * When we get here, we're called from the recv queue handler.
 730 * Check whether we ought to transmit an ACK.
 731 */
 732void rds_ib_attempt_ack(struct rds_ib_connection *ic)
 733{
 734	unsigned int adv_credits;
 735
 736	if (!test_bit(IB_ACK_REQUESTED, &ic->i_ack_flags))
 737		return;
 738
 739	if (test_and_set_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags)) {
 740		rds_ib_stats_inc(s_ib_ack_send_delayed);
 741		return;
 742	}
 743
 744	/* Can we get a send credit? */
 745	if (!rds_ib_send_grab_credits(ic, 1, &adv_credits, 0, RDS_MAX_ADV_CREDIT)) {
 746		rds_ib_stats_inc(s_ib_tx_throttle);
 747		clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
 748		return;
 749	}
 750
 751	clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
 752	rds_ib_send_ack(ic, adv_credits);
 753}
 754
 755/*
 756 * We get here from the send completion handler, when the
 757 * adapter tells us the ACK frame was sent.
 758 */
 759void rds_ib_ack_send_complete(struct rds_ib_connection *ic)
 760{
 761	clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
 762	rds_ib_attempt_ack(ic);
 763}
 764
 765/*
 766 * This is called by the regular xmit code when it wants to piggyback
 767 * an ACK on an outgoing frame.
 768 */
 769u64 rds_ib_piggyb_ack(struct rds_ib_connection *ic)
 770{
 771	if (test_and_clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags))
 772		rds_ib_stats_inc(s_ib_ack_send_piggybacked);
 773	return rds_ib_get_ack(ic);
 774}
 775
 776/*
 777 * It's kind of lame that we're copying from the posted receive pages into
 778 * long-lived bitmaps.  We could have posted the bitmaps and rdma written into
 779 * them.  But receiving new congestion bitmaps should be a *rare* event, so
 780 * hopefully we won't need to invest that complexity in making it more
 781 * efficient.  By copying we can share a simpler core with TCP which has to
 782 * copy.
 783 */
 784static void rds_ib_cong_recv(struct rds_connection *conn,
 785			      struct rds_ib_incoming *ibinc)
 786{
 787	struct rds_cong_map *map;
 788	unsigned int map_off;
 789	unsigned int map_page;
 790	struct rds_page_frag *frag;
 791	unsigned long frag_off;
 792	unsigned long to_copy;
 793	unsigned long copied;
 794	__le64 uncongested = 0;
 795	void *addr;
 796
 797	/* catch completely corrupt packets */
 798	if (be32_to_cpu(ibinc->ii_inc.i_hdr.h_len) != RDS_CONG_MAP_BYTES)
 799		return;
 800
 801	map = conn->c_fcong;
 802	map_page = 0;
 803	map_off = 0;
 804
 805	frag = list_entry(ibinc->ii_frags.next, struct rds_page_frag, f_item);
 806	frag_off = 0;
 807
 808	copied = 0;
 809
 810	while (copied < RDS_CONG_MAP_BYTES) {
 811		__le64 *src, *dst;
 812		unsigned int k;
 813
 814		to_copy = min(RDS_FRAG_SIZE - frag_off, PAGE_SIZE - map_off);
 815		BUG_ON(to_copy & 7); /* Must be 64bit aligned. */
 816
 817		addr = kmap_atomic(sg_page(&frag->f_sg));
 818
 819		src = addr + frag->f_sg.offset + frag_off;
 820		dst = (void *)map->m_page_addrs[map_page] + map_off;
 821		for (k = 0; k < to_copy; k += 8) {
 822			/* Record ports that became uncongested, ie
 823			 * bits that changed from 0 to 1. */
 824			uncongested |= ~(*src) & *dst;
 825			*dst++ = *src++;
 826		}
 827		kunmap_atomic(addr);
 828
 829		copied += to_copy;
 830
 831		map_off += to_copy;
 832		if (map_off == PAGE_SIZE) {
 833			map_off = 0;
 834			map_page++;
 835		}
 836
 837		frag_off += to_copy;
 838		if (frag_off == RDS_FRAG_SIZE) {
 839			frag = list_entry(frag->f_item.next,
 840					  struct rds_page_frag, f_item);
 841			frag_off = 0;
 842		}
 843	}
 844
 845	/* the congestion map is in little endian order */
 846	rds_cong_map_updated(map, le64_to_cpu(uncongested));
 
 
 847}
 848
 849static void rds_ib_process_recv(struct rds_connection *conn,
 850				struct rds_ib_recv_work *recv, u32 data_len,
 851				struct rds_ib_ack_state *state)
 852{
 853	struct rds_ib_connection *ic = conn->c_transport_data;
 854	struct rds_ib_incoming *ibinc = ic->i_ibinc;
 855	struct rds_header *ihdr, *hdr;
 856	dma_addr_t dma_addr = ic->i_recv_hdrs_dma[recv - ic->i_recvs];
 857
 858	/* XXX shut down the connection if port 0,0 are seen? */
 859
 860	rdsdebug("ic %p ibinc %p recv %p byte len %u\n", ic, ibinc, recv,
 861		 data_len);
 862
 863	if (data_len < sizeof(struct rds_header)) {
 864		rds_ib_conn_error(conn, "incoming message "
 865		       "from %pI6c didn't include a "
 866		       "header, disconnecting and "
 867		       "reconnecting\n",
 868		       &conn->c_faddr);
 869		return;
 870	}
 871	data_len -= sizeof(struct rds_header);
 872
 873	ihdr = ic->i_recv_hdrs[recv - ic->i_recvs];
 874
 875	ib_dma_sync_single_for_cpu(ic->rds_ibdev->dev, dma_addr,
 876				   sizeof(*ihdr), DMA_FROM_DEVICE);
 877	/* Validate the checksum. */
 878	if (!rds_message_verify_checksum(ihdr)) {
 879		rds_ib_conn_error(conn, "incoming message "
 880		       "from %pI6c has corrupted header - "
 881		       "forcing a reconnect\n",
 882		       &conn->c_faddr);
 883		rds_stats_inc(s_recv_drop_bad_checksum);
 884		goto done;
 885	}
 886
 887	/* Process the ACK sequence which comes with every packet */
 888	state->ack_recv = be64_to_cpu(ihdr->h_ack);
 889	state->ack_recv_valid = 1;
 890
 891	/* Process the credits update if there was one */
 892	if (ihdr->h_credit)
 893		rds_ib_send_add_credits(conn, ihdr->h_credit);
 894
 895	if (ihdr->h_sport == 0 && ihdr->h_dport == 0 && data_len == 0) {
 896		/* This is an ACK-only packet. The fact that it gets
 897		 * special treatment here is that historically, ACKs
 898		 * were rather special beasts.
 899		 */
 900		rds_ib_stats_inc(s_ib_ack_received);
 901
 902		/*
 903		 * Usually the frags make their way on to incs and are then freed as
 904		 * the inc is freed.  We don't go that route, so we have to drop the
 905		 * page ref ourselves.  We can't just leave the page on the recv
 906		 * because that confuses the dma mapping of pages and each recv's use
 907		 * of a partial page.
 908		 *
 909		 * FIXME: Fold this into the code path below.
 910		 */
 911		rds_ib_frag_free(ic, recv->r_frag);
 912		recv->r_frag = NULL;
 913		goto done;
 914	}
 915
 916	/*
 917	 * If we don't already have an inc on the connection then this
 918	 * fragment has a header and starts a message.. copy its header
 919	 * into the inc and save the inc so we can hang upcoming fragments
 920	 * off its list.
 921	 */
 922	if (!ibinc) {
 923		ibinc = recv->r_ibinc;
 924		recv->r_ibinc = NULL;
 925		ic->i_ibinc = ibinc;
 926
 927		hdr = &ibinc->ii_inc.i_hdr;
 928		ibinc->ii_inc.i_rx_lat_trace[RDS_MSG_RX_HDR] =
 929				local_clock();
 930		memcpy(hdr, ihdr, sizeof(*hdr));
 931		ic->i_recv_data_rem = be32_to_cpu(hdr->h_len);
 932		ibinc->ii_inc.i_rx_lat_trace[RDS_MSG_RX_START] =
 933				local_clock();
 934
 935		rdsdebug("ic %p ibinc %p rem %u flag 0x%x\n", ic, ibinc,
 936			 ic->i_recv_data_rem, hdr->h_flags);
 937	} else {
 938		hdr = &ibinc->ii_inc.i_hdr;
 939		/* We can't just use memcmp here; fragments of a
 940		 * single message may carry different ACKs */
 941		if (hdr->h_sequence != ihdr->h_sequence ||
 942		    hdr->h_len != ihdr->h_len ||
 943		    hdr->h_sport != ihdr->h_sport ||
 944		    hdr->h_dport != ihdr->h_dport) {
 945			rds_ib_conn_error(conn,
 946				"fragment header mismatch; forcing reconnect\n");
 947			goto done;
 948		}
 949	}
 950
 951	list_add_tail(&recv->r_frag->f_item, &ibinc->ii_frags);
 952	recv->r_frag = NULL;
 953
 954	if (ic->i_recv_data_rem > RDS_FRAG_SIZE)
 955		ic->i_recv_data_rem -= RDS_FRAG_SIZE;
 956	else {
 957		ic->i_recv_data_rem = 0;
 958		ic->i_ibinc = NULL;
 959
 960		if (ibinc->ii_inc.i_hdr.h_flags == RDS_FLAG_CONG_BITMAP) {
 961			rds_ib_cong_recv(conn, ibinc);
 962		} else {
 963			rds_recv_incoming(conn, &conn->c_faddr, &conn->c_laddr,
 964					  &ibinc->ii_inc, GFP_ATOMIC);
 965			state->ack_next = be64_to_cpu(hdr->h_sequence);
 966			state->ack_next_valid = 1;
 967		}
 968
 969		/* Evaluate the ACK_REQUIRED flag *after* we received
 970		 * the complete frame, and after bumping the next_rx
 971		 * sequence. */
 972		if (hdr->h_flags & RDS_FLAG_ACK_REQUIRED) {
 973			rds_stats_inc(s_recv_ack_required);
 974			state->ack_required = 1;
 975		}
 976
 977		rds_inc_put(&ibinc->ii_inc);
 978	}
 979done:
 980	ib_dma_sync_single_for_device(ic->rds_ibdev->dev, dma_addr,
 981				      sizeof(*ihdr), DMA_FROM_DEVICE);
 982}
 983
 984void rds_ib_recv_cqe_handler(struct rds_ib_connection *ic,
 985			     struct ib_wc *wc,
 986			     struct rds_ib_ack_state *state)
 987{
 988	struct rds_connection *conn = ic->conn;
 989	struct rds_ib_recv_work *recv;
 990
 991	rdsdebug("wc wr_id 0x%llx status %u (%s) byte_len %u imm_data %u\n",
 992		 (unsigned long long)wc->wr_id, wc->status,
 993		 ib_wc_status_msg(wc->status), wc->byte_len,
 994		 be32_to_cpu(wc->ex.imm_data));
 995
 996	rds_ib_stats_inc(s_ib_rx_cq_event);
 997	recv = &ic->i_recvs[rds_ib_ring_oldest(&ic->i_recv_ring)];
 998	ib_dma_unmap_sg(ic->i_cm_id->device, &recv->r_frag->f_sg, 1,
 999			DMA_FROM_DEVICE);
1000
1001	/* Also process recvs in connecting state because it is possible
1002	 * to get a recv completion _before_ the rdmacm ESTABLISHED
1003	 * event is processed.
1004	 */
1005	if (wc->status == IB_WC_SUCCESS) {
1006		rds_ib_process_recv(conn, recv, wc->byte_len, state);
1007	} else {
1008		/* We expect errors as the qp is drained during shutdown */
1009		if (rds_conn_up(conn) || rds_conn_connecting(conn))
1010			rds_ib_conn_error(conn, "recv completion on <%pI6c,%pI6c, %d> had status %u (%s), vendor err 0x%x, disconnecting and reconnecting\n",
1011					  &conn->c_laddr, &conn->c_faddr,
1012					  conn->c_tos, wc->status,
1013					  ib_wc_status_msg(wc->status),
1014					  wc->vendor_err);
1015	}
1016
1017	/* rds_ib_process_recv() doesn't always consume the frag, and
1018	 * we might not have called it at all if the wc didn't indicate
1019	 * success. We already unmapped the frag's pages, though, and
1020	 * the following rds_ib_ring_free() call tells the refill path
1021	 * that it will not find an allocated frag here. Make sure we
1022	 * keep that promise by freeing a frag that's still on the ring.
1023	 */
1024	if (recv->r_frag) {
1025		rds_ib_frag_free(ic, recv->r_frag);
1026		recv->r_frag = NULL;
1027	}
1028	rds_ib_ring_free(&ic->i_recv_ring, 1);
1029
1030	/* If we ever end up with a really empty receive ring, we're
1031	 * in deep trouble, as the sender will definitely see RNR
1032	 * timeouts. */
1033	if (rds_ib_ring_empty(&ic->i_recv_ring))
1034		rds_ib_stats_inc(s_ib_rx_ring_empty);
1035
1036	if (rds_ib_ring_low(&ic->i_recv_ring)) {
1037		rds_ib_recv_refill(conn, 0, GFP_NOWAIT | __GFP_NOWARN);
1038		rds_ib_stats_inc(s_ib_rx_refill_from_cq);
1039	}
1040}
1041
1042int rds_ib_recv_path(struct rds_conn_path *cp)
1043{
1044	struct rds_connection *conn = cp->cp_conn;
1045	struct rds_ib_connection *ic = conn->c_transport_data;
 
1046
1047	rdsdebug("conn %p\n", conn);
1048	if (rds_conn_up(conn)) {
1049		rds_ib_attempt_ack(ic);
1050		rds_ib_recv_refill(conn, 0, GFP_KERNEL);
1051		rds_ib_stats_inc(s_ib_rx_refill_from_thread);
1052	}
1053
1054	return 0;
1055}
1056
1057int rds_ib_recv_init(void)
1058{
1059	struct sysinfo si;
1060	int ret = -ENOMEM;
1061
1062	/* Default to 30% of all available RAM for recv memory */
1063	si_meminfo(&si);
1064	rds_ib_sysctl_max_recv_allocation = si.totalram / 3 * PAGE_SIZE / RDS_FRAG_SIZE;
1065
1066	rds_ib_incoming_slab =
1067		kmem_cache_create_usercopy("rds_ib_incoming",
1068					   sizeof(struct rds_ib_incoming),
1069					   0, SLAB_HWCACHE_ALIGN,
1070					   offsetof(struct rds_ib_incoming,
1071						    ii_inc.i_usercopy),
1072					   sizeof(struct rds_inc_usercopy),
1073					   NULL);
1074	if (!rds_ib_incoming_slab)
1075		goto out;
1076
1077	rds_ib_frag_slab = kmem_cache_create("rds_ib_frag",
1078					sizeof(struct rds_page_frag),
1079					0, SLAB_HWCACHE_ALIGN, NULL);
1080	if (!rds_ib_frag_slab) {
1081		kmem_cache_destroy(rds_ib_incoming_slab);
1082		rds_ib_incoming_slab = NULL;
1083	} else
1084		ret = 0;
1085out:
1086	return ret;
1087}
1088
1089void rds_ib_recv_exit(void)
1090{
1091	WARN_ON(atomic_read(&rds_ib_allocation));
1092
1093	kmem_cache_destroy(rds_ib_incoming_slab);
1094	kmem_cache_destroy(rds_ib_frag_slab);
1095}