Linux Audio

Check our new training course

Loading...
v4.6
   1/*
   2 * Copyright (c) 2006 Oracle.  All rights reserved.
   3 *
   4 * This software is available to you under a choice of one of two
   5 * licenses.  You may choose to be licensed under the terms of the GNU
   6 * General Public License (GPL) Version 2, available from the file
   7 * COPYING in the main directory of this source tree, or the
   8 * OpenIB.org BSD license below:
   9 *
  10 *     Redistribution and use in source and binary forms, with or
  11 *     without modification, are permitted provided that the following
  12 *     conditions are met:
  13 *
  14 *      - Redistributions of source code must retain the above
  15 *        copyright notice, this list of conditions and the following
  16 *        disclaimer.
  17 *
  18 *      - Redistributions in binary form must reproduce the above
  19 *        copyright notice, this list of conditions and the following
  20 *        disclaimer in the documentation and/or other materials
  21 *        provided with the distribution.
  22 *
  23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  30 * SOFTWARE.
  31 *
  32 */
  33#include <linux/kernel.h>
  34#include <linux/slab.h>
  35#include <linux/pci.h>
  36#include <linux/dma-mapping.h>
  37#include <rdma/rdma_cm.h>
  38
 
  39#include "rds.h"
  40#include "ib.h"
  41
  42static struct kmem_cache *rds_ib_incoming_slab;
  43static struct kmem_cache *rds_ib_frag_slab;
  44static atomic_t	rds_ib_allocation = ATOMIC_INIT(0);
  45
  46void rds_ib_recv_init_ring(struct rds_ib_connection *ic)
  47{
  48	struct rds_ib_recv_work *recv;
  49	u32 i;
  50
  51	for (i = 0, recv = ic->i_recvs; i < ic->i_recv_ring.w_nr; i++, recv++) {
  52		struct ib_sge *sge;
  53
  54		recv->r_ibinc = NULL;
  55		recv->r_frag = NULL;
  56
  57		recv->r_wr.next = NULL;
  58		recv->r_wr.wr_id = i;
  59		recv->r_wr.sg_list = recv->r_sge;
  60		recv->r_wr.num_sge = RDS_IB_RECV_SGE;
  61
  62		sge = &recv->r_sge[0];
  63		sge->addr = ic->i_recv_hdrs_dma + (i * sizeof(struct rds_header));
  64		sge->length = sizeof(struct rds_header);
  65		sge->lkey = ic->i_pd->local_dma_lkey;
  66
  67		sge = &recv->r_sge[1];
  68		sge->addr = 0;
  69		sge->length = RDS_FRAG_SIZE;
  70		sge->lkey = ic->i_pd->local_dma_lkey;
  71	}
  72}
  73
  74/*
  75 * The entire 'from' list, including the from element itself, is put on
  76 * to the tail of the 'to' list.
  77 */
  78static void list_splice_entire_tail(struct list_head *from,
  79				    struct list_head *to)
  80{
  81	struct list_head *from_last = from->prev;
  82
  83	list_splice_tail(from_last, to);
  84	list_add_tail(from_last, to);
  85}
  86
  87static void rds_ib_cache_xfer_to_ready(struct rds_ib_refill_cache *cache)
  88{
  89	struct list_head *tmp;
  90
  91	tmp = xchg(&cache->xfer, NULL);
  92	if (tmp) {
  93		if (cache->ready)
  94			list_splice_entire_tail(tmp, cache->ready);
  95		else
  96			cache->ready = tmp;
  97	}
  98}
  99
 100static int rds_ib_recv_alloc_cache(struct rds_ib_refill_cache *cache)
 101{
 102	struct rds_ib_cache_head *head;
 103	int cpu;
 104
 105	cache->percpu = alloc_percpu(struct rds_ib_cache_head);
 106	if (!cache->percpu)
 107	       return -ENOMEM;
 108
 109	for_each_possible_cpu(cpu) {
 110		head = per_cpu_ptr(cache->percpu, cpu);
 111		head->first = NULL;
 112		head->count = 0;
 113	}
 114	cache->xfer = NULL;
 115	cache->ready = NULL;
 116
 117	return 0;
 118}
 119
 120int rds_ib_recv_alloc_caches(struct rds_ib_connection *ic)
 121{
 122	int ret;
 123
 124	ret = rds_ib_recv_alloc_cache(&ic->i_cache_incs);
 125	if (!ret) {
 126		ret = rds_ib_recv_alloc_cache(&ic->i_cache_frags);
 127		if (ret)
 128			free_percpu(ic->i_cache_incs.percpu);
 129	}
 130
 131	return ret;
 132}
 133
 134static void rds_ib_cache_splice_all_lists(struct rds_ib_refill_cache *cache,
 135					  struct list_head *caller_list)
 136{
 137	struct rds_ib_cache_head *head;
 138	int cpu;
 139
 140	for_each_possible_cpu(cpu) {
 141		head = per_cpu_ptr(cache->percpu, cpu);
 142		if (head->first) {
 143			list_splice_entire_tail(head->first, caller_list);
 144			head->first = NULL;
 145		}
 146	}
 147
 148	if (cache->ready) {
 149		list_splice_entire_tail(cache->ready, caller_list);
 150		cache->ready = NULL;
 151	}
 152}
 153
 154void rds_ib_recv_free_caches(struct rds_ib_connection *ic)
 155{
 156	struct rds_ib_incoming *inc;
 157	struct rds_ib_incoming *inc_tmp;
 158	struct rds_page_frag *frag;
 159	struct rds_page_frag *frag_tmp;
 160	LIST_HEAD(list);
 161
 162	rds_ib_cache_xfer_to_ready(&ic->i_cache_incs);
 163	rds_ib_cache_splice_all_lists(&ic->i_cache_incs, &list);
 164	free_percpu(ic->i_cache_incs.percpu);
 165
 166	list_for_each_entry_safe(inc, inc_tmp, &list, ii_cache_entry) {
 167		list_del(&inc->ii_cache_entry);
 168		WARN_ON(!list_empty(&inc->ii_frags));
 169		kmem_cache_free(rds_ib_incoming_slab, inc);
 
 170	}
 171
 172	rds_ib_cache_xfer_to_ready(&ic->i_cache_frags);
 173	rds_ib_cache_splice_all_lists(&ic->i_cache_frags, &list);
 174	free_percpu(ic->i_cache_frags.percpu);
 175
 176	list_for_each_entry_safe(frag, frag_tmp, &list, f_cache_entry) {
 177		list_del(&frag->f_cache_entry);
 178		WARN_ON(!list_empty(&frag->f_item));
 179		kmem_cache_free(rds_ib_frag_slab, frag);
 180	}
 181}
 182
 183/* fwd decl */
 184static void rds_ib_recv_cache_put(struct list_head *new_item,
 185				  struct rds_ib_refill_cache *cache);
 186static struct list_head *rds_ib_recv_cache_get(struct rds_ib_refill_cache *cache);
 187
 188
 189/* Recycle frag and attached recv buffer f_sg */
 190static void rds_ib_frag_free(struct rds_ib_connection *ic,
 191			     struct rds_page_frag *frag)
 192{
 193	rdsdebug("frag %p page %p\n", frag, sg_page(&frag->f_sg));
 194
 195	rds_ib_recv_cache_put(&frag->f_cache_entry, &ic->i_cache_frags);
 
 
 196}
 197
 198/* Recycle inc after freeing attached frags */
 199void rds_ib_inc_free(struct rds_incoming *inc)
 200{
 201	struct rds_ib_incoming *ibinc;
 202	struct rds_page_frag *frag;
 203	struct rds_page_frag *pos;
 204	struct rds_ib_connection *ic = inc->i_conn->c_transport_data;
 205
 206	ibinc = container_of(inc, struct rds_ib_incoming, ii_inc);
 207
 208	/* Free attached frags */
 209	list_for_each_entry_safe(frag, pos, &ibinc->ii_frags, f_item) {
 210		list_del_init(&frag->f_item);
 211		rds_ib_frag_free(ic, frag);
 212	}
 213	BUG_ON(!list_empty(&ibinc->ii_frags));
 214
 215	rdsdebug("freeing ibinc %p inc %p\n", ibinc, inc);
 216	rds_ib_recv_cache_put(&ibinc->ii_cache_entry, &ic->i_cache_incs);
 217}
 218
 219static void rds_ib_recv_clear_one(struct rds_ib_connection *ic,
 220				  struct rds_ib_recv_work *recv)
 221{
 222	if (recv->r_ibinc) {
 223		rds_inc_put(&recv->r_ibinc->ii_inc);
 224		recv->r_ibinc = NULL;
 225	}
 226	if (recv->r_frag) {
 227		ib_dma_unmap_sg(ic->i_cm_id->device, &recv->r_frag->f_sg, 1, DMA_FROM_DEVICE);
 228		rds_ib_frag_free(ic, recv->r_frag);
 229		recv->r_frag = NULL;
 230	}
 231}
 232
 233void rds_ib_recv_clear_ring(struct rds_ib_connection *ic)
 234{
 235	u32 i;
 236
 237	for (i = 0; i < ic->i_recv_ring.w_nr; i++)
 238		rds_ib_recv_clear_one(ic, &ic->i_recvs[i]);
 239}
 240
 241static struct rds_ib_incoming *rds_ib_refill_one_inc(struct rds_ib_connection *ic,
 242						     gfp_t slab_mask)
 243{
 244	struct rds_ib_incoming *ibinc;
 245	struct list_head *cache_item;
 246	int avail_allocs;
 247
 248	cache_item = rds_ib_recv_cache_get(&ic->i_cache_incs);
 249	if (cache_item) {
 250		ibinc = container_of(cache_item, struct rds_ib_incoming, ii_cache_entry);
 251	} else {
 252		avail_allocs = atomic_add_unless(&rds_ib_allocation,
 253						 1, rds_ib_sysctl_max_recv_allocation);
 254		if (!avail_allocs) {
 255			rds_ib_stats_inc(s_ib_rx_alloc_limit);
 256			return NULL;
 257		}
 258		ibinc = kmem_cache_alloc(rds_ib_incoming_slab, slab_mask);
 259		if (!ibinc) {
 260			atomic_dec(&rds_ib_allocation);
 261			return NULL;
 262		}
 
 263	}
 264	INIT_LIST_HEAD(&ibinc->ii_frags);
 265	rds_inc_init(&ibinc->ii_inc, ic->conn, ic->conn->c_faddr);
 266
 267	return ibinc;
 268}
 269
 270static struct rds_page_frag *rds_ib_refill_one_frag(struct rds_ib_connection *ic,
 271						    gfp_t slab_mask, gfp_t page_mask)
 272{
 273	struct rds_page_frag *frag;
 274	struct list_head *cache_item;
 275	int ret;
 276
 277	cache_item = rds_ib_recv_cache_get(&ic->i_cache_frags);
 278	if (cache_item) {
 279		frag = container_of(cache_item, struct rds_page_frag, f_cache_entry);
 
 
 280	} else {
 281		frag = kmem_cache_alloc(rds_ib_frag_slab, slab_mask);
 282		if (!frag)
 283			return NULL;
 284
 285		sg_init_table(&frag->f_sg, 1);
 286		ret = rds_page_remainder_alloc(&frag->f_sg,
 287					       RDS_FRAG_SIZE, page_mask);
 288		if (ret) {
 289			kmem_cache_free(rds_ib_frag_slab, frag);
 290			return NULL;
 291		}
 
 292	}
 293
 294	INIT_LIST_HEAD(&frag->f_item);
 295
 296	return frag;
 297}
 298
 299static int rds_ib_recv_refill_one(struct rds_connection *conn,
 300				  struct rds_ib_recv_work *recv, gfp_t gfp)
 301{
 302	struct rds_ib_connection *ic = conn->c_transport_data;
 303	struct ib_sge *sge;
 304	int ret = -ENOMEM;
 305	gfp_t slab_mask = GFP_NOWAIT;
 306	gfp_t page_mask = GFP_NOWAIT;
 307
 308	if (gfp & __GFP_DIRECT_RECLAIM) {
 309		slab_mask = GFP_KERNEL;
 310		page_mask = GFP_HIGHUSER;
 311	}
 312
 313	if (!ic->i_cache_incs.ready)
 314		rds_ib_cache_xfer_to_ready(&ic->i_cache_incs);
 315	if (!ic->i_cache_frags.ready)
 316		rds_ib_cache_xfer_to_ready(&ic->i_cache_frags);
 317
 318	/*
 319	 * ibinc was taken from recv if recv contained the start of a message.
 320	 * recvs that were continuations will still have this allocated.
 321	 */
 322	if (!recv->r_ibinc) {
 323		recv->r_ibinc = rds_ib_refill_one_inc(ic, slab_mask);
 324		if (!recv->r_ibinc)
 325			goto out;
 326	}
 327
 328	WARN_ON(recv->r_frag); /* leak! */
 329	recv->r_frag = rds_ib_refill_one_frag(ic, slab_mask, page_mask);
 330	if (!recv->r_frag)
 331		goto out;
 332
 333	ret = ib_dma_map_sg(ic->i_cm_id->device, &recv->r_frag->f_sg,
 334			    1, DMA_FROM_DEVICE);
 335	WARN_ON(ret != 1);
 336
 337	sge = &recv->r_sge[0];
 338	sge->addr = ic->i_recv_hdrs_dma + (recv - ic->i_recvs) * sizeof(struct rds_header);
 339	sge->length = sizeof(struct rds_header);
 340
 341	sge = &recv->r_sge[1];
 342	sge->addr = ib_sg_dma_address(ic->i_cm_id->device, &recv->r_frag->f_sg);
 343	sge->length = ib_sg_dma_len(ic->i_cm_id->device, &recv->r_frag->f_sg);
 344
 345	ret = 0;
 346out:
 347	return ret;
 348}
 349
 350static int acquire_refill(struct rds_connection *conn)
 351{
 352	return test_and_set_bit(RDS_RECV_REFILL, &conn->c_flags) == 0;
 353}
 354
 355static void release_refill(struct rds_connection *conn)
 356{
 357	clear_bit(RDS_RECV_REFILL, &conn->c_flags);
 
 358
 359	/* We don't use wait_on_bit()/wake_up_bit() because our waking is in a
 360	 * hot path and finding waiters is very rare.  We don't want to walk
 361	 * the system-wide hashed waitqueue buckets in the fast path only to
 362	 * almost never find waiters.
 363	 */
 364	if (waitqueue_active(&conn->c_waitq))
 365		wake_up_all(&conn->c_waitq);
 366}
 367
 368/*
 369 * This tries to allocate and post unused work requests after making sure that
 370 * they have all the allocations they need to queue received fragments into
 371 * sockets.
 372 *
 373 * -1 is returned if posting fails due to temporary resource exhaustion.
 374 */
 375void rds_ib_recv_refill(struct rds_connection *conn, int prefill, gfp_t gfp)
 376{
 377	struct rds_ib_connection *ic = conn->c_transport_data;
 378	struct rds_ib_recv_work *recv;
 379	struct ib_recv_wr *failed_wr;
 380	unsigned int posted = 0;
 381	int ret = 0;
 382	bool can_wait = !!(gfp & __GFP_DIRECT_RECLAIM);
 
 383	u32 pos;
 384
 385	/* the goal here is to just make sure that someone, somewhere
 386	 * is posting buffers.  If we can't get the refill lock,
 387	 * let them do their thing
 388	 */
 389	if (!acquire_refill(conn))
 390		return;
 391
 392	while ((prefill || rds_conn_up(conn)) &&
 393	       rds_ib_ring_alloc(&ic->i_recv_ring, 1, &pos)) {
 394		if (pos >= ic->i_recv_ring.w_nr) {
 395			printk(KERN_NOTICE "Argh - ring alloc returned pos=%u\n",
 396					pos);
 397			break;
 398		}
 399
 400		recv = &ic->i_recvs[pos];
 401		ret = rds_ib_recv_refill_one(conn, recv, gfp);
 402		if (ret) {
 
 403			break;
 404		}
 405
 406		/* XXX when can this fail? */
 407		ret = ib_post_recv(ic->i_cm_id->qp, &recv->r_wr, &failed_wr);
 408		rdsdebug("recv %p ibinc %p page %p addr %lu ret %d\n", recv,
 409			 recv->r_ibinc, sg_page(&recv->r_frag->f_sg),
 410			 (long) ib_sg_dma_address(
 411				ic->i_cm_id->device,
 412				&recv->r_frag->f_sg),
 413			ret);
 414		if (ret) {
 415			rds_ib_conn_error(conn, "recv post on "
 416			       "%pI4 returned %d, disconnecting and "
 417			       "reconnecting\n", &conn->c_faddr,
 418			       ret);
 419			break;
 420		}
 421
 422		posted++;
 
 
 
 
 
 423	}
 424
 425	/* We're doing flow control - update the window. */
 426	if (ic->i_flowctl && posted)
 427		rds_ib_advertise_credits(conn, posted);
 428
 429	if (ret)
 430		rds_ib_ring_unalloc(&ic->i_recv_ring, 1);
 431
 432	release_refill(conn);
 433
 434	/* if we're called from the softirq handler, we'll be GFP_NOWAIT.
 435	 * in this case the ring being low is going to lead to more interrupts
 436	 * and we can safely let the softirq code take care of it unless the
 437	 * ring is completely empty.
 438	 *
 439	 * if we're called from krdsd, we'll be GFP_KERNEL.  In this case
 440	 * we might have raced with the softirq code while we had the refill
 441	 * lock held.  Use rds_ib_ring_low() instead of ring_empty to decide
 442	 * if we should requeue.
 443	 */
 444	if (rds_conn_up(conn) &&
 445	    ((can_wait && rds_ib_ring_low(&ic->i_recv_ring)) ||
 
 446	    rds_ib_ring_empty(&ic->i_recv_ring))) {
 447		queue_delayed_work(rds_wq, &conn->c_recv_w, 1);
 448	}
 
 
 449}
 450
 451/*
 452 * We want to recycle several types of recv allocations, like incs and frags.
 453 * To use this, the *_free() function passes in the ptr to a list_head within
 454 * the recyclee, as well as the cache to put it on.
 455 *
 456 * First, we put the memory on a percpu list. When this reaches a certain size,
 457 * We move it to an intermediate non-percpu list in a lockless manner, with some
 458 * xchg/compxchg wizardry.
 459 *
 460 * N.B. Instead of a list_head as the anchor, we use a single pointer, which can
 461 * be NULL and xchg'd. The list is actually empty when the pointer is NULL, and
 462 * list_empty() will return true with one element is actually present.
 463 */
 464static void rds_ib_recv_cache_put(struct list_head *new_item,
 465				 struct rds_ib_refill_cache *cache)
 466{
 467	unsigned long flags;
 468	struct list_head *old, *chpfirst;
 469
 470	local_irq_save(flags);
 471
 472	chpfirst = __this_cpu_read(cache->percpu->first);
 473	if (!chpfirst)
 474		INIT_LIST_HEAD(new_item);
 475	else /* put on front */
 476		list_add_tail(new_item, chpfirst);
 477
 478	__this_cpu_write(cache->percpu->first, new_item);
 479	__this_cpu_inc(cache->percpu->count);
 480
 481	if (__this_cpu_read(cache->percpu->count) < RDS_IB_RECYCLE_BATCH_COUNT)
 482		goto end;
 483
 484	/*
 485	 * Return our per-cpu first list to the cache's xfer by atomically
 486	 * grabbing the current xfer list, appending it to our per-cpu list,
 487	 * and then atomically returning that entire list back to the
 488	 * cache's xfer list as long as it's still empty.
 489	 */
 490	do {
 491		old = xchg(&cache->xfer, NULL);
 492		if (old)
 493			list_splice_entire_tail(old, chpfirst);
 494		old = cmpxchg(&cache->xfer, NULL, chpfirst);
 495	} while (old);
 496
 497
 498	__this_cpu_write(cache->percpu->first, NULL);
 499	__this_cpu_write(cache->percpu->count, 0);
 500end:
 501	local_irq_restore(flags);
 502}
 503
 504static struct list_head *rds_ib_recv_cache_get(struct rds_ib_refill_cache *cache)
 505{
 506	struct list_head *head = cache->ready;
 507
 508	if (head) {
 509		if (!list_empty(head)) {
 510			cache->ready = head->next;
 511			list_del_init(head);
 512		} else
 513			cache->ready = NULL;
 514	}
 515
 516	return head;
 517}
 518
 519int rds_ib_inc_copy_to_user(struct rds_incoming *inc, struct iov_iter *to)
 520{
 521	struct rds_ib_incoming *ibinc;
 522	struct rds_page_frag *frag;
 523	unsigned long to_copy;
 524	unsigned long frag_off = 0;
 525	int copied = 0;
 526	int ret;
 527	u32 len;
 528
 529	ibinc = container_of(inc, struct rds_ib_incoming, ii_inc);
 530	frag = list_entry(ibinc->ii_frags.next, struct rds_page_frag, f_item);
 531	len = be32_to_cpu(inc->i_hdr.h_len);
 532
 533	while (iov_iter_count(to) && copied < len) {
 534		if (frag_off == RDS_FRAG_SIZE) {
 535			frag = list_entry(frag->f_item.next,
 536					  struct rds_page_frag, f_item);
 537			frag_off = 0;
 538		}
 539		to_copy = min_t(unsigned long, iov_iter_count(to),
 540				RDS_FRAG_SIZE - frag_off);
 541		to_copy = min_t(unsigned long, to_copy, len - copied);
 542
 543		/* XXX needs + offset for multiple recvs per page */
 544		rds_stats_add(s_copy_to_user, to_copy);
 545		ret = copy_page_to_iter(sg_page(&frag->f_sg),
 546					frag->f_sg.offset + frag_off,
 547					to_copy,
 548					to);
 549		if (ret != to_copy)
 550			return -EFAULT;
 551
 552		frag_off += to_copy;
 553		copied += to_copy;
 554	}
 555
 556	return copied;
 557}
 558
 559/* ic starts out kzalloc()ed */
 560void rds_ib_recv_init_ack(struct rds_ib_connection *ic)
 561{
 562	struct ib_send_wr *wr = &ic->i_ack_wr;
 563	struct ib_sge *sge = &ic->i_ack_sge;
 564
 565	sge->addr = ic->i_ack_dma;
 566	sge->length = sizeof(struct rds_header);
 567	sge->lkey = ic->i_pd->local_dma_lkey;
 568
 569	wr->sg_list = sge;
 570	wr->num_sge = 1;
 571	wr->opcode = IB_WR_SEND;
 572	wr->wr_id = RDS_IB_ACK_WR_ID;
 573	wr->send_flags = IB_SEND_SIGNALED | IB_SEND_SOLICITED;
 574}
 575
 576/*
 577 * You'd think that with reliable IB connections you wouldn't need to ack
 578 * messages that have been received.  The problem is that IB hardware generates
 579 * an ack message before it has DMAed the message into memory.  This creates a
 580 * potential message loss if the HCA is disabled for any reason between when it
 581 * sends the ack and before the message is DMAed and processed.  This is only a
 582 * potential issue if another HCA is available for fail-over.
 583 *
 584 * When the remote host receives our ack they'll free the sent message from
 585 * their send queue.  To decrease the latency of this we always send an ack
 586 * immediately after we've received messages.
 587 *
 588 * For simplicity, we only have one ack in flight at a time.  This puts
 589 * pressure on senders to have deep enough send queues to absorb the latency of
 590 * a single ack frame being in flight.  This might not be good enough.
 591 *
 592 * This is implemented by have a long-lived send_wr and sge which point to a
 593 * statically allocated ack frame.  This ack wr does not fall under the ring
 594 * accounting that the tx and rx wrs do.  The QP attribute specifically makes
 595 * room for it beyond the ring size.  Send completion notices its special
 596 * wr_id and avoids working with the ring in that case.
 597 */
 598#ifndef KERNEL_HAS_ATOMIC64
 599void rds_ib_set_ack(struct rds_ib_connection *ic, u64 seq, int ack_required)
 600{
 601	unsigned long flags;
 602
 603	spin_lock_irqsave(&ic->i_ack_lock, flags);
 604	ic->i_ack_next = seq;
 605	if (ack_required)
 606		set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
 607	spin_unlock_irqrestore(&ic->i_ack_lock, flags);
 608}
 609
 610static u64 rds_ib_get_ack(struct rds_ib_connection *ic)
 611{
 612	unsigned long flags;
 613	u64 seq;
 614
 615	clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
 616
 617	spin_lock_irqsave(&ic->i_ack_lock, flags);
 618	seq = ic->i_ack_next;
 619	spin_unlock_irqrestore(&ic->i_ack_lock, flags);
 620
 621	return seq;
 622}
 623#else
 624void rds_ib_set_ack(struct rds_ib_connection *ic, u64 seq, int ack_required)
 625{
 626	atomic64_set(&ic->i_ack_next, seq);
 627	if (ack_required) {
 628		smp_mb__before_atomic();
 629		set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
 630	}
 631}
 632
 633static u64 rds_ib_get_ack(struct rds_ib_connection *ic)
 634{
 635	clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
 636	smp_mb__after_atomic();
 637
 638	return atomic64_read(&ic->i_ack_next);
 639}
 640#endif
 641
 642
 643static void rds_ib_send_ack(struct rds_ib_connection *ic, unsigned int adv_credits)
 644{
 645	struct rds_header *hdr = ic->i_ack;
 646	struct ib_send_wr *failed_wr;
 647	u64 seq;
 648	int ret;
 649
 650	seq = rds_ib_get_ack(ic);
 651
 652	rdsdebug("send_ack: ic %p ack %llu\n", ic, (unsigned long long) seq);
 
 
 
 653	rds_message_populate_header(hdr, 0, 0, 0);
 654	hdr->h_ack = cpu_to_be64(seq);
 655	hdr->h_credit = adv_credits;
 656	rds_message_make_checksum(hdr);
 
 
 
 657	ic->i_ack_queued = jiffies;
 658
 659	ret = ib_post_send(ic->i_cm_id->qp, &ic->i_ack_wr, &failed_wr);
 660	if (unlikely(ret)) {
 661		/* Failed to send. Release the WR, and
 662		 * force another ACK.
 663		 */
 664		clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
 665		set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
 666
 667		rds_ib_stats_inc(s_ib_ack_send_failure);
 668
 669		rds_ib_conn_error(ic->conn, "sending ack failed\n");
 670	} else
 671		rds_ib_stats_inc(s_ib_ack_sent);
 672}
 673
 674/*
 675 * There are 3 ways of getting acknowledgements to the peer:
 676 *  1.	We call rds_ib_attempt_ack from the recv completion handler
 677 *	to send an ACK-only frame.
 678 *	However, there can be only one such frame in the send queue
 679 *	at any time, so we may have to postpone it.
 680 *  2.	When another (data) packet is transmitted while there's
 681 *	an ACK in the queue, we piggyback the ACK sequence number
 682 *	on the data packet.
 683 *  3.	If the ACK WR is done sending, we get called from the
 684 *	send queue completion handler, and check whether there's
 685 *	another ACK pending (postponed because the WR was on the
 686 *	queue). If so, we transmit it.
 687 *
 688 * We maintain 2 variables:
 689 *  -	i_ack_flags, which keeps track of whether the ACK WR
 690 *	is currently in the send queue or not (IB_ACK_IN_FLIGHT)
 691 *  -	i_ack_next, which is the last sequence number we received
 692 *
 693 * Potentially, send queue and receive queue handlers can run concurrently.
 694 * It would be nice to not have to use a spinlock to synchronize things,
 695 * but the one problem that rules this out is that 64bit updates are
 696 * not atomic on all platforms. Things would be a lot simpler if
 697 * we had atomic64 or maybe cmpxchg64 everywhere.
 698 *
 699 * Reconnecting complicates this picture just slightly. When we
 700 * reconnect, we may be seeing duplicate packets. The peer
 701 * is retransmitting them, because it hasn't seen an ACK for
 702 * them. It is important that we ACK these.
 703 *
 704 * ACK mitigation adds a header flag "ACK_REQUIRED"; any packet with
 705 * this flag set *MUST* be acknowledged immediately.
 706 */
 707
 708/*
 709 * When we get here, we're called from the recv queue handler.
 710 * Check whether we ought to transmit an ACK.
 711 */
 712void rds_ib_attempt_ack(struct rds_ib_connection *ic)
 713{
 714	unsigned int adv_credits;
 715
 716	if (!test_bit(IB_ACK_REQUESTED, &ic->i_ack_flags))
 717		return;
 718
 719	if (test_and_set_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags)) {
 720		rds_ib_stats_inc(s_ib_ack_send_delayed);
 721		return;
 722	}
 723
 724	/* Can we get a send credit? */
 725	if (!rds_ib_send_grab_credits(ic, 1, &adv_credits, 0, RDS_MAX_ADV_CREDIT)) {
 726		rds_ib_stats_inc(s_ib_tx_throttle);
 727		clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
 728		return;
 729	}
 730
 731	clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
 732	rds_ib_send_ack(ic, adv_credits);
 733}
 734
 735/*
 736 * We get here from the send completion handler, when the
 737 * adapter tells us the ACK frame was sent.
 738 */
 739void rds_ib_ack_send_complete(struct rds_ib_connection *ic)
 740{
 741	clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
 742	rds_ib_attempt_ack(ic);
 743}
 744
 745/*
 746 * This is called by the regular xmit code when it wants to piggyback
 747 * an ACK on an outgoing frame.
 748 */
 749u64 rds_ib_piggyb_ack(struct rds_ib_connection *ic)
 750{
 751	if (test_and_clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags))
 752		rds_ib_stats_inc(s_ib_ack_send_piggybacked);
 753	return rds_ib_get_ack(ic);
 754}
 755
 756/*
 757 * It's kind of lame that we're copying from the posted receive pages into
 758 * long-lived bitmaps.  We could have posted the bitmaps and rdma written into
 759 * them.  But receiving new congestion bitmaps should be a *rare* event, so
 760 * hopefully we won't need to invest that complexity in making it more
 761 * efficient.  By copying we can share a simpler core with TCP which has to
 762 * copy.
 763 */
 764static void rds_ib_cong_recv(struct rds_connection *conn,
 765			      struct rds_ib_incoming *ibinc)
 766{
 767	struct rds_cong_map *map;
 768	unsigned int map_off;
 769	unsigned int map_page;
 770	struct rds_page_frag *frag;
 771	unsigned long frag_off;
 772	unsigned long to_copy;
 773	unsigned long copied;
 774	uint64_t uncongested = 0;
 775	void *addr;
 776
 777	/* catch completely corrupt packets */
 778	if (be32_to_cpu(ibinc->ii_inc.i_hdr.h_len) != RDS_CONG_MAP_BYTES)
 779		return;
 780
 781	map = conn->c_fcong;
 782	map_page = 0;
 783	map_off = 0;
 784
 785	frag = list_entry(ibinc->ii_frags.next, struct rds_page_frag, f_item);
 786	frag_off = 0;
 787
 788	copied = 0;
 789
 790	while (copied < RDS_CONG_MAP_BYTES) {
 791		uint64_t *src, *dst;
 792		unsigned int k;
 793
 794		to_copy = min(RDS_FRAG_SIZE - frag_off, PAGE_SIZE - map_off);
 795		BUG_ON(to_copy & 7); /* Must be 64bit aligned. */
 796
 797		addr = kmap_atomic(sg_page(&frag->f_sg));
 798
 799		src = addr + frag->f_sg.offset + frag_off;
 800		dst = (void *)map->m_page_addrs[map_page] + map_off;
 801		for (k = 0; k < to_copy; k += 8) {
 802			/* Record ports that became uncongested, ie
 803			 * bits that changed from 0 to 1. */
 804			uncongested |= ~(*src) & *dst;
 805			*dst++ = *src++;
 806		}
 807		kunmap_atomic(addr);
 808
 809		copied += to_copy;
 810
 811		map_off += to_copy;
 812		if (map_off == PAGE_SIZE) {
 813			map_off = 0;
 814			map_page++;
 815		}
 816
 817		frag_off += to_copy;
 818		if (frag_off == RDS_FRAG_SIZE) {
 819			frag = list_entry(frag->f_item.next,
 820					  struct rds_page_frag, f_item);
 821			frag_off = 0;
 822		}
 823	}
 824
 825	/* the congestion map is in little endian order */
 826	uncongested = le64_to_cpu(uncongested);
 827
 828	rds_cong_map_updated(map, uncongested);
 829}
 830
 831static void rds_ib_process_recv(struct rds_connection *conn,
 832				struct rds_ib_recv_work *recv, u32 data_len,
 833				struct rds_ib_ack_state *state)
 834{
 835	struct rds_ib_connection *ic = conn->c_transport_data;
 836	struct rds_ib_incoming *ibinc = ic->i_ibinc;
 837	struct rds_header *ihdr, *hdr;
 
 838
 839	/* XXX shut down the connection if port 0,0 are seen? */
 840
 841	rdsdebug("ic %p ibinc %p recv %p byte len %u\n", ic, ibinc, recv,
 842		 data_len);
 843
 844	if (data_len < sizeof(struct rds_header)) {
 845		rds_ib_conn_error(conn, "incoming message "
 846		       "from %pI4 didn't include a "
 847		       "header, disconnecting and "
 848		       "reconnecting\n",
 849		       &conn->c_faddr);
 850		return;
 851	}
 852	data_len -= sizeof(struct rds_header);
 853
 854	ihdr = &ic->i_recv_hdrs[recv - ic->i_recvs];
 855
 
 
 856	/* Validate the checksum. */
 857	if (!rds_message_verify_checksum(ihdr)) {
 858		rds_ib_conn_error(conn, "incoming message "
 859		       "from %pI4 has corrupted header - "
 860		       "forcing a reconnect\n",
 861		       &conn->c_faddr);
 862		rds_stats_inc(s_recv_drop_bad_checksum);
 863		return;
 864	}
 865
 866	/* Process the ACK sequence which comes with every packet */
 867	state->ack_recv = be64_to_cpu(ihdr->h_ack);
 868	state->ack_recv_valid = 1;
 869
 870	/* Process the credits update if there was one */
 871	if (ihdr->h_credit)
 872		rds_ib_send_add_credits(conn, ihdr->h_credit);
 873
 874	if (ihdr->h_sport == 0 && ihdr->h_dport == 0 && data_len == 0) {
 875		/* This is an ACK-only packet. The fact that it gets
 876		 * special treatment here is that historically, ACKs
 877		 * were rather special beasts.
 878		 */
 879		rds_ib_stats_inc(s_ib_ack_received);
 880
 881		/*
 882		 * Usually the frags make their way on to incs and are then freed as
 883		 * the inc is freed.  We don't go that route, so we have to drop the
 884		 * page ref ourselves.  We can't just leave the page on the recv
 885		 * because that confuses the dma mapping of pages and each recv's use
 886		 * of a partial page.
 887		 *
 888		 * FIXME: Fold this into the code path below.
 889		 */
 890		rds_ib_frag_free(ic, recv->r_frag);
 891		recv->r_frag = NULL;
 892		return;
 893	}
 894
 895	/*
 896	 * If we don't already have an inc on the connection then this
 897	 * fragment has a header and starts a message.. copy its header
 898	 * into the inc and save the inc so we can hang upcoming fragments
 899	 * off its list.
 900	 */
 901	if (!ibinc) {
 902		ibinc = recv->r_ibinc;
 903		recv->r_ibinc = NULL;
 904		ic->i_ibinc = ibinc;
 905
 906		hdr = &ibinc->ii_inc.i_hdr;
 
 
 907		memcpy(hdr, ihdr, sizeof(*hdr));
 908		ic->i_recv_data_rem = be32_to_cpu(hdr->h_len);
 
 
 909
 910		rdsdebug("ic %p ibinc %p rem %u flag 0x%x\n", ic, ibinc,
 911			 ic->i_recv_data_rem, hdr->h_flags);
 912	} else {
 913		hdr = &ibinc->ii_inc.i_hdr;
 914		/* We can't just use memcmp here; fragments of a
 915		 * single message may carry different ACKs */
 916		if (hdr->h_sequence != ihdr->h_sequence ||
 917		    hdr->h_len != ihdr->h_len ||
 918		    hdr->h_sport != ihdr->h_sport ||
 919		    hdr->h_dport != ihdr->h_dport) {
 920			rds_ib_conn_error(conn,
 921				"fragment header mismatch; forcing reconnect\n");
 922			return;
 923		}
 924	}
 925
 926	list_add_tail(&recv->r_frag->f_item, &ibinc->ii_frags);
 927	recv->r_frag = NULL;
 928
 929	if (ic->i_recv_data_rem > RDS_FRAG_SIZE)
 930		ic->i_recv_data_rem -= RDS_FRAG_SIZE;
 931	else {
 932		ic->i_recv_data_rem = 0;
 933		ic->i_ibinc = NULL;
 934
 935		if (ibinc->ii_inc.i_hdr.h_flags == RDS_FLAG_CONG_BITMAP)
 936			rds_ib_cong_recv(conn, ibinc);
 937		else {
 938			rds_recv_incoming(conn, conn->c_faddr, conn->c_laddr,
 939					  &ibinc->ii_inc, GFP_ATOMIC);
 940			state->ack_next = be64_to_cpu(hdr->h_sequence);
 941			state->ack_next_valid = 1;
 942		}
 943
 944		/* Evaluate the ACK_REQUIRED flag *after* we received
 945		 * the complete frame, and after bumping the next_rx
 946		 * sequence. */
 947		if (hdr->h_flags & RDS_FLAG_ACK_REQUIRED) {
 948			rds_stats_inc(s_recv_ack_required);
 949			state->ack_required = 1;
 950		}
 951
 952		rds_inc_put(&ibinc->ii_inc);
 953	}
 
 
 
 954}
 955
 956void rds_ib_recv_cqe_handler(struct rds_ib_connection *ic,
 957			     struct ib_wc *wc,
 958			     struct rds_ib_ack_state *state)
 959{
 960	struct rds_connection *conn = ic->conn;
 961	struct rds_ib_recv_work *recv;
 962
 963	rdsdebug("wc wr_id 0x%llx status %u (%s) byte_len %u imm_data %u\n",
 964		 (unsigned long long)wc->wr_id, wc->status,
 965		 ib_wc_status_msg(wc->status), wc->byte_len,
 966		 be32_to_cpu(wc->ex.imm_data));
 967
 968	rds_ib_stats_inc(s_ib_rx_cq_event);
 969	recv = &ic->i_recvs[rds_ib_ring_oldest(&ic->i_recv_ring)];
 970	ib_dma_unmap_sg(ic->i_cm_id->device, &recv->r_frag->f_sg, 1,
 971			DMA_FROM_DEVICE);
 972
 973	/* Also process recvs in connecting state because it is possible
 974	 * to get a recv completion _before_ the rdmacm ESTABLISHED
 975	 * event is processed.
 976	 */
 977	if (wc->status == IB_WC_SUCCESS) {
 978		rds_ib_process_recv(conn, recv, wc->byte_len, state);
 979	} else {
 980		/* We expect errors as the qp is drained during shutdown */
 981		if (rds_conn_up(conn) || rds_conn_connecting(conn))
 982			rds_ib_conn_error(conn, "recv completion on %pI4 had status %u (%s), disconnecting and reconnecting\n",
 983					  &conn->c_faddr,
 984					  wc->status,
 985					  ib_wc_status_msg(wc->status));
 
 986	}
 987
 988	/* rds_ib_process_recv() doesn't always consume the frag, and
 989	 * we might not have called it at all if the wc didn't indicate
 990	 * success. We already unmapped the frag's pages, though, and
 991	 * the following rds_ib_ring_free() call tells the refill path
 992	 * that it will not find an allocated frag here. Make sure we
 993	 * keep that promise by freeing a frag that's still on the ring.
 994	 */
 995	if (recv->r_frag) {
 996		rds_ib_frag_free(ic, recv->r_frag);
 997		recv->r_frag = NULL;
 998	}
 999	rds_ib_ring_free(&ic->i_recv_ring, 1);
1000
1001	/* If we ever end up with a really empty receive ring, we're
1002	 * in deep trouble, as the sender will definitely see RNR
1003	 * timeouts. */
1004	if (rds_ib_ring_empty(&ic->i_recv_ring))
1005		rds_ib_stats_inc(s_ib_rx_ring_empty);
1006
1007	if (rds_ib_ring_low(&ic->i_recv_ring))
1008		rds_ib_recv_refill(conn, 0, GFP_NOWAIT);
 
 
1009}
1010
1011int rds_ib_recv(struct rds_connection *conn)
1012{
 
1013	struct rds_ib_connection *ic = conn->c_transport_data;
1014	int ret = 0;
1015
1016	rdsdebug("conn %p\n", conn);
1017	if (rds_conn_up(conn)) {
1018		rds_ib_attempt_ack(ic);
1019		rds_ib_recv_refill(conn, 0, GFP_KERNEL);
 
1020	}
1021
1022	return ret;
1023}
1024
1025int rds_ib_recv_init(void)
1026{
1027	struct sysinfo si;
1028	int ret = -ENOMEM;
1029
1030	/* Default to 30% of all available RAM for recv memory */
1031	si_meminfo(&si);
1032	rds_ib_sysctl_max_recv_allocation = si.totalram / 3 * PAGE_SIZE / RDS_FRAG_SIZE;
1033
1034	rds_ib_incoming_slab = kmem_cache_create("rds_ib_incoming",
1035					sizeof(struct rds_ib_incoming),
1036					0, SLAB_HWCACHE_ALIGN, NULL);
 
 
 
 
 
1037	if (!rds_ib_incoming_slab)
1038		goto out;
1039
1040	rds_ib_frag_slab = kmem_cache_create("rds_ib_frag",
1041					sizeof(struct rds_page_frag),
1042					0, SLAB_HWCACHE_ALIGN, NULL);
1043	if (!rds_ib_frag_slab) {
1044		kmem_cache_destroy(rds_ib_incoming_slab);
1045		rds_ib_incoming_slab = NULL;
1046	} else
1047		ret = 0;
1048out:
1049	return ret;
1050}
1051
1052void rds_ib_recv_exit(void)
1053{
 
 
1054	kmem_cache_destroy(rds_ib_incoming_slab);
1055	kmem_cache_destroy(rds_ib_frag_slab);
1056}
v6.2
   1/*
   2 * Copyright (c) 2006, 2019 Oracle and/or its affiliates. All rights reserved.
   3 *
   4 * This software is available to you under a choice of one of two
   5 * licenses.  You may choose to be licensed under the terms of the GNU
   6 * General Public License (GPL) Version 2, available from the file
   7 * COPYING in the main directory of this source tree, or the
   8 * OpenIB.org BSD license below:
   9 *
  10 *     Redistribution and use in source and binary forms, with or
  11 *     without modification, are permitted provided that the following
  12 *     conditions are met:
  13 *
  14 *      - Redistributions of source code must retain the above
  15 *        copyright notice, this list of conditions and the following
  16 *        disclaimer.
  17 *
  18 *      - Redistributions in binary form must reproduce the above
  19 *        copyright notice, this list of conditions and the following
  20 *        disclaimer in the documentation and/or other materials
  21 *        provided with the distribution.
  22 *
  23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  30 * SOFTWARE.
  31 *
  32 */
  33#include <linux/kernel.h>
  34#include <linux/slab.h>
  35#include <linux/pci.h>
  36#include <linux/dma-mapping.h>
  37#include <rdma/rdma_cm.h>
  38
  39#include "rds_single_path.h"
  40#include "rds.h"
  41#include "ib.h"
  42
  43static struct kmem_cache *rds_ib_incoming_slab;
  44static struct kmem_cache *rds_ib_frag_slab;
  45static atomic_t	rds_ib_allocation = ATOMIC_INIT(0);
  46
  47void rds_ib_recv_init_ring(struct rds_ib_connection *ic)
  48{
  49	struct rds_ib_recv_work *recv;
  50	u32 i;
  51
  52	for (i = 0, recv = ic->i_recvs; i < ic->i_recv_ring.w_nr; i++, recv++) {
  53		struct ib_sge *sge;
  54
  55		recv->r_ibinc = NULL;
  56		recv->r_frag = NULL;
  57
  58		recv->r_wr.next = NULL;
  59		recv->r_wr.wr_id = i;
  60		recv->r_wr.sg_list = recv->r_sge;
  61		recv->r_wr.num_sge = RDS_IB_RECV_SGE;
  62
  63		sge = &recv->r_sge[0];
  64		sge->addr = ic->i_recv_hdrs_dma[i];
  65		sge->length = sizeof(struct rds_header);
  66		sge->lkey = ic->i_pd->local_dma_lkey;
  67
  68		sge = &recv->r_sge[1];
  69		sge->addr = 0;
  70		sge->length = RDS_FRAG_SIZE;
  71		sge->lkey = ic->i_pd->local_dma_lkey;
  72	}
  73}
  74
  75/*
  76 * The entire 'from' list, including the from element itself, is put on
  77 * to the tail of the 'to' list.
  78 */
  79static void list_splice_entire_tail(struct list_head *from,
  80				    struct list_head *to)
  81{
  82	struct list_head *from_last = from->prev;
  83
  84	list_splice_tail(from_last, to);
  85	list_add_tail(from_last, to);
  86}
  87
  88static void rds_ib_cache_xfer_to_ready(struct rds_ib_refill_cache *cache)
  89{
  90	struct list_head *tmp;
  91
  92	tmp = xchg(&cache->xfer, NULL);
  93	if (tmp) {
  94		if (cache->ready)
  95			list_splice_entire_tail(tmp, cache->ready);
  96		else
  97			cache->ready = tmp;
  98	}
  99}
 100
 101static int rds_ib_recv_alloc_cache(struct rds_ib_refill_cache *cache, gfp_t gfp)
 102{
 103	struct rds_ib_cache_head *head;
 104	int cpu;
 105
 106	cache->percpu = alloc_percpu_gfp(struct rds_ib_cache_head, gfp);
 107	if (!cache->percpu)
 108	       return -ENOMEM;
 109
 110	for_each_possible_cpu(cpu) {
 111		head = per_cpu_ptr(cache->percpu, cpu);
 112		head->first = NULL;
 113		head->count = 0;
 114	}
 115	cache->xfer = NULL;
 116	cache->ready = NULL;
 117
 118	return 0;
 119}
 120
 121int rds_ib_recv_alloc_caches(struct rds_ib_connection *ic, gfp_t gfp)
 122{
 123	int ret;
 124
 125	ret = rds_ib_recv_alloc_cache(&ic->i_cache_incs, gfp);
 126	if (!ret) {
 127		ret = rds_ib_recv_alloc_cache(&ic->i_cache_frags, gfp);
 128		if (ret)
 129			free_percpu(ic->i_cache_incs.percpu);
 130	}
 131
 132	return ret;
 133}
 134
 135static void rds_ib_cache_splice_all_lists(struct rds_ib_refill_cache *cache,
 136					  struct list_head *caller_list)
 137{
 138	struct rds_ib_cache_head *head;
 139	int cpu;
 140
 141	for_each_possible_cpu(cpu) {
 142		head = per_cpu_ptr(cache->percpu, cpu);
 143		if (head->first) {
 144			list_splice_entire_tail(head->first, caller_list);
 145			head->first = NULL;
 146		}
 147	}
 148
 149	if (cache->ready) {
 150		list_splice_entire_tail(cache->ready, caller_list);
 151		cache->ready = NULL;
 152	}
 153}
 154
 155void rds_ib_recv_free_caches(struct rds_ib_connection *ic)
 156{
 157	struct rds_ib_incoming *inc;
 158	struct rds_ib_incoming *inc_tmp;
 159	struct rds_page_frag *frag;
 160	struct rds_page_frag *frag_tmp;
 161	LIST_HEAD(list);
 162
 163	rds_ib_cache_xfer_to_ready(&ic->i_cache_incs);
 164	rds_ib_cache_splice_all_lists(&ic->i_cache_incs, &list);
 165	free_percpu(ic->i_cache_incs.percpu);
 166
 167	list_for_each_entry_safe(inc, inc_tmp, &list, ii_cache_entry) {
 168		list_del(&inc->ii_cache_entry);
 169		WARN_ON(!list_empty(&inc->ii_frags));
 170		kmem_cache_free(rds_ib_incoming_slab, inc);
 171		atomic_dec(&rds_ib_allocation);
 172	}
 173
 174	rds_ib_cache_xfer_to_ready(&ic->i_cache_frags);
 175	rds_ib_cache_splice_all_lists(&ic->i_cache_frags, &list);
 176	free_percpu(ic->i_cache_frags.percpu);
 177
 178	list_for_each_entry_safe(frag, frag_tmp, &list, f_cache_entry) {
 179		list_del(&frag->f_cache_entry);
 180		WARN_ON(!list_empty(&frag->f_item));
 181		kmem_cache_free(rds_ib_frag_slab, frag);
 182	}
 183}
 184
 185/* fwd decl */
 186static void rds_ib_recv_cache_put(struct list_head *new_item,
 187				  struct rds_ib_refill_cache *cache);
 188static struct list_head *rds_ib_recv_cache_get(struct rds_ib_refill_cache *cache);
 189
 190
 191/* Recycle frag and attached recv buffer f_sg */
 192static void rds_ib_frag_free(struct rds_ib_connection *ic,
 193			     struct rds_page_frag *frag)
 194{
 195	rdsdebug("frag %p page %p\n", frag, sg_page(&frag->f_sg));
 196
 197	rds_ib_recv_cache_put(&frag->f_cache_entry, &ic->i_cache_frags);
 198	atomic_add(RDS_FRAG_SIZE / SZ_1K, &ic->i_cache_allocs);
 199	rds_ib_stats_add(s_ib_recv_added_to_cache, RDS_FRAG_SIZE);
 200}
 201
 202/* Recycle inc after freeing attached frags */
 203void rds_ib_inc_free(struct rds_incoming *inc)
 204{
 205	struct rds_ib_incoming *ibinc;
 206	struct rds_page_frag *frag;
 207	struct rds_page_frag *pos;
 208	struct rds_ib_connection *ic = inc->i_conn->c_transport_data;
 209
 210	ibinc = container_of(inc, struct rds_ib_incoming, ii_inc);
 211
 212	/* Free attached frags */
 213	list_for_each_entry_safe(frag, pos, &ibinc->ii_frags, f_item) {
 214		list_del_init(&frag->f_item);
 215		rds_ib_frag_free(ic, frag);
 216	}
 217	BUG_ON(!list_empty(&ibinc->ii_frags));
 218
 219	rdsdebug("freeing ibinc %p inc %p\n", ibinc, inc);
 220	rds_ib_recv_cache_put(&ibinc->ii_cache_entry, &ic->i_cache_incs);
 221}
 222
 223static void rds_ib_recv_clear_one(struct rds_ib_connection *ic,
 224				  struct rds_ib_recv_work *recv)
 225{
 226	if (recv->r_ibinc) {
 227		rds_inc_put(&recv->r_ibinc->ii_inc);
 228		recv->r_ibinc = NULL;
 229	}
 230	if (recv->r_frag) {
 231		ib_dma_unmap_sg(ic->i_cm_id->device, &recv->r_frag->f_sg, 1, DMA_FROM_DEVICE);
 232		rds_ib_frag_free(ic, recv->r_frag);
 233		recv->r_frag = NULL;
 234	}
 235}
 236
 237void rds_ib_recv_clear_ring(struct rds_ib_connection *ic)
 238{
 239	u32 i;
 240
 241	for (i = 0; i < ic->i_recv_ring.w_nr; i++)
 242		rds_ib_recv_clear_one(ic, &ic->i_recvs[i]);
 243}
 244
 245static struct rds_ib_incoming *rds_ib_refill_one_inc(struct rds_ib_connection *ic,
 246						     gfp_t slab_mask)
 247{
 248	struct rds_ib_incoming *ibinc;
 249	struct list_head *cache_item;
 250	int avail_allocs;
 251
 252	cache_item = rds_ib_recv_cache_get(&ic->i_cache_incs);
 253	if (cache_item) {
 254		ibinc = container_of(cache_item, struct rds_ib_incoming, ii_cache_entry);
 255	} else {
 256		avail_allocs = atomic_add_unless(&rds_ib_allocation,
 257						 1, rds_ib_sysctl_max_recv_allocation);
 258		if (!avail_allocs) {
 259			rds_ib_stats_inc(s_ib_rx_alloc_limit);
 260			return NULL;
 261		}
 262		ibinc = kmem_cache_alloc(rds_ib_incoming_slab, slab_mask);
 263		if (!ibinc) {
 264			atomic_dec(&rds_ib_allocation);
 265			return NULL;
 266		}
 267		rds_ib_stats_inc(s_ib_rx_total_incs);
 268	}
 269	INIT_LIST_HEAD(&ibinc->ii_frags);
 270	rds_inc_init(&ibinc->ii_inc, ic->conn, &ic->conn->c_faddr);
 271
 272	return ibinc;
 273}
 274
 275static struct rds_page_frag *rds_ib_refill_one_frag(struct rds_ib_connection *ic,
 276						    gfp_t slab_mask, gfp_t page_mask)
 277{
 278	struct rds_page_frag *frag;
 279	struct list_head *cache_item;
 280	int ret;
 281
 282	cache_item = rds_ib_recv_cache_get(&ic->i_cache_frags);
 283	if (cache_item) {
 284		frag = container_of(cache_item, struct rds_page_frag, f_cache_entry);
 285		atomic_sub(RDS_FRAG_SIZE / SZ_1K, &ic->i_cache_allocs);
 286		rds_ib_stats_add(s_ib_recv_added_to_cache, RDS_FRAG_SIZE);
 287	} else {
 288		frag = kmem_cache_alloc(rds_ib_frag_slab, slab_mask);
 289		if (!frag)
 290			return NULL;
 291
 292		sg_init_table(&frag->f_sg, 1);
 293		ret = rds_page_remainder_alloc(&frag->f_sg,
 294					       RDS_FRAG_SIZE, page_mask);
 295		if (ret) {
 296			kmem_cache_free(rds_ib_frag_slab, frag);
 297			return NULL;
 298		}
 299		rds_ib_stats_inc(s_ib_rx_total_frags);
 300	}
 301
 302	INIT_LIST_HEAD(&frag->f_item);
 303
 304	return frag;
 305}
 306
 307static int rds_ib_recv_refill_one(struct rds_connection *conn,
 308				  struct rds_ib_recv_work *recv, gfp_t gfp)
 309{
 310	struct rds_ib_connection *ic = conn->c_transport_data;
 311	struct ib_sge *sge;
 312	int ret = -ENOMEM;
 313	gfp_t slab_mask = gfp;
 314	gfp_t page_mask = gfp;
 315
 316	if (gfp & __GFP_DIRECT_RECLAIM) {
 317		slab_mask = GFP_KERNEL;
 318		page_mask = GFP_HIGHUSER;
 319	}
 320
 321	if (!ic->i_cache_incs.ready)
 322		rds_ib_cache_xfer_to_ready(&ic->i_cache_incs);
 323	if (!ic->i_cache_frags.ready)
 324		rds_ib_cache_xfer_to_ready(&ic->i_cache_frags);
 325
 326	/*
 327	 * ibinc was taken from recv if recv contained the start of a message.
 328	 * recvs that were continuations will still have this allocated.
 329	 */
 330	if (!recv->r_ibinc) {
 331		recv->r_ibinc = rds_ib_refill_one_inc(ic, slab_mask);
 332		if (!recv->r_ibinc)
 333			goto out;
 334	}
 335
 336	WARN_ON(recv->r_frag); /* leak! */
 337	recv->r_frag = rds_ib_refill_one_frag(ic, slab_mask, page_mask);
 338	if (!recv->r_frag)
 339		goto out;
 340
 341	ret = ib_dma_map_sg(ic->i_cm_id->device, &recv->r_frag->f_sg,
 342			    1, DMA_FROM_DEVICE);
 343	WARN_ON(ret != 1);
 344
 345	sge = &recv->r_sge[0];
 346	sge->addr = ic->i_recv_hdrs_dma[recv - ic->i_recvs];
 347	sge->length = sizeof(struct rds_header);
 348
 349	sge = &recv->r_sge[1];
 350	sge->addr = sg_dma_address(&recv->r_frag->f_sg);
 351	sge->length = sg_dma_len(&recv->r_frag->f_sg);
 352
 353	ret = 0;
 354out:
 355	return ret;
 356}
 357
 358static int acquire_refill(struct rds_connection *conn)
 359{
 360	return test_and_set_bit(RDS_RECV_REFILL, &conn->c_flags) == 0;
 361}
 362
 363static void release_refill(struct rds_connection *conn)
 364{
 365	clear_bit(RDS_RECV_REFILL, &conn->c_flags);
 366	smp_mb__after_atomic();
 367
 368	/* We don't use wait_on_bit()/wake_up_bit() because our waking is in a
 369	 * hot path and finding waiters is very rare.  We don't want to walk
 370	 * the system-wide hashed waitqueue buckets in the fast path only to
 371	 * almost never find waiters.
 372	 */
 373	if (waitqueue_active(&conn->c_waitq))
 374		wake_up_all(&conn->c_waitq);
 375}
 376
 377/*
 378 * This tries to allocate and post unused work requests after making sure that
 379 * they have all the allocations they need to queue received fragments into
 380 * sockets.
 
 
 381 */
 382void rds_ib_recv_refill(struct rds_connection *conn, int prefill, gfp_t gfp)
 383{
 384	struct rds_ib_connection *ic = conn->c_transport_data;
 385	struct rds_ib_recv_work *recv;
 
 386	unsigned int posted = 0;
 387	int ret = 0;
 388	bool can_wait = !!(gfp & __GFP_DIRECT_RECLAIM);
 389	bool must_wake = false;
 390	u32 pos;
 391
 392	/* the goal here is to just make sure that someone, somewhere
 393	 * is posting buffers.  If we can't get the refill lock,
 394	 * let them do their thing
 395	 */
 396	if (!acquire_refill(conn))
 397		return;
 398
 399	while ((prefill || rds_conn_up(conn)) &&
 400	       rds_ib_ring_alloc(&ic->i_recv_ring, 1, &pos)) {
 401		if (pos >= ic->i_recv_ring.w_nr) {
 402			printk(KERN_NOTICE "Argh - ring alloc returned pos=%u\n",
 403					pos);
 404			break;
 405		}
 406
 407		recv = &ic->i_recvs[pos];
 408		ret = rds_ib_recv_refill_one(conn, recv, gfp);
 409		if (ret) {
 410			must_wake = true;
 411			break;
 412		}
 413
 414		rdsdebug("recv %p ibinc %p page %p addr %lu\n", recv,
 
 
 415			 recv->r_ibinc, sg_page(&recv->r_frag->f_sg),
 416			 (long)sg_dma_address(&recv->r_frag->f_sg));
 417
 418		/* XXX when can this fail? */
 419		ret = ib_post_recv(ic->i_cm_id->qp, &recv->r_wr, NULL);
 420		if (ret) {
 421			rds_ib_conn_error(conn, "recv post on "
 422			       "%pI6c returned %d, disconnecting and "
 423			       "reconnecting\n", &conn->c_faddr,
 424			       ret);
 425			break;
 426		}
 427
 428		posted++;
 429
 430		if ((posted > 128 && need_resched()) || posted > 8192) {
 431			must_wake = true;
 432			break;
 433		}
 434	}
 435
 436	/* We're doing flow control - update the window. */
 437	if (ic->i_flowctl && posted)
 438		rds_ib_advertise_credits(conn, posted);
 439
 440	if (ret)
 441		rds_ib_ring_unalloc(&ic->i_recv_ring, 1);
 442
 443	release_refill(conn);
 444
 445	/* if we're called from the softirq handler, we'll be GFP_NOWAIT.
 446	 * in this case the ring being low is going to lead to more interrupts
 447	 * and we can safely let the softirq code take care of it unless the
 448	 * ring is completely empty.
 449	 *
 450	 * if we're called from krdsd, we'll be GFP_KERNEL.  In this case
 451	 * we might have raced with the softirq code while we had the refill
 452	 * lock held.  Use rds_ib_ring_low() instead of ring_empty to decide
 453	 * if we should requeue.
 454	 */
 455	if (rds_conn_up(conn) &&
 456	    (must_wake ||
 457	    (can_wait && rds_ib_ring_low(&ic->i_recv_ring)) ||
 458	    rds_ib_ring_empty(&ic->i_recv_ring))) {
 459		queue_delayed_work(rds_wq, &conn->c_recv_w, 1);
 460	}
 461	if (can_wait)
 462		cond_resched();
 463}
 464
 465/*
 466 * We want to recycle several types of recv allocations, like incs and frags.
 467 * To use this, the *_free() function passes in the ptr to a list_head within
 468 * the recyclee, as well as the cache to put it on.
 469 *
 470 * First, we put the memory on a percpu list. When this reaches a certain size,
 471 * We move it to an intermediate non-percpu list in a lockless manner, with some
 472 * xchg/compxchg wizardry.
 473 *
 474 * N.B. Instead of a list_head as the anchor, we use a single pointer, which can
 475 * be NULL and xchg'd. The list is actually empty when the pointer is NULL, and
 476 * list_empty() will return true with one element is actually present.
 477 */
 478static void rds_ib_recv_cache_put(struct list_head *new_item,
 479				 struct rds_ib_refill_cache *cache)
 480{
 481	unsigned long flags;
 482	struct list_head *old, *chpfirst;
 483
 484	local_irq_save(flags);
 485
 486	chpfirst = __this_cpu_read(cache->percpu->first);
 487	if (!chpfirst)
 488		INIT_LIST_HEAD(new_item);
 489	else /* put on front */
 490		list_add_tail(new_item, chpfirst);
 491
 492	__this_cpu_write(cache->percpu->first, new_item);
 493	__this_cpu_inc(cache->percpu->count);
 494
 495	if (__this_cpu_read(cache->percpu->count) < RDS_IB_RECYCLE_BATCH_COUNT)
 496		goto end;
 497
 498	/*
 499	 * Return our per-cpu first list to the cache's xfer by atomically
 500	 * grabbing the current xfer list, appending it to our per-cpu list,
 501	 * and then atomically returning that entire list back to the
 502	 * cache's xfer list as long as it's still empty.
 503	 */
 504	do {
 505		old = xchg(&cache->xfer, NULL);
 506		if (old)
 507			list_splice_entire_tail(old, chpfirst);
 508		old = cmpxchg(&cache->xfer, NULL, chpfirst);
 509	} while (old);
 510
 511
 512	__this_cpu_write(cache->percpu->first, NULL);
 513	__this_cpu_write(cache->percpu->count, 0);
 514end:
 515	local_irq_restore(flags);
 516}
 517
 518static struct list_head *rds_ib_recv_cache_get(struct rds_ib_refill_cache *cache)
 519{
 520	struct list_head *head = cache->ready;
 521
 522	if (head) {
 523		if (!list_empty(head)) {
 524			cache->ready = head->next;
 525			list_del_init(head);
 526		} else
 527			cache->ready = NULL;
 528	}
 529
 530	return head;
 531}
 532
 533int rds_ib_inc_copy_to_user(struct rds_incoming *inc, struct iov_iter *to)
 534{
 535	struct rds_ib_incoming *ibinc;
 536	struct rds_page_frag *frag;
 537	unsigned long to_copy;
 538	unsigned long frag_off = 0;
 539	int copied = 0;
 540	int ret;
 541	u32 len;
 542
 543	ibinc = container_of(inc, struct rds_ib_incoming, ii_inc);
 544	frag = list_entry(ibinc->ii_frags.next, struct rds_page_frag, f_item);
 545	len = be32_to_cpu(inc->i_hdr.h_len);
 546
 547	while (iov_iter_count(to) && copied < len) {
 548		if (frag_off == RDS_FRAG_SIZE) {
 549			frag = list_entry(frag->f_item.next,
 550					  struct rds_page_frag, f_item);
 551			frag_off = 0;
 552		}
 553		to_copy = min_t(unsigned long, iov_iter_count(to),
 554				RDS_FRAG_SIZE - frag_off);
 555		to_copy = min_t(unsigned long, to_copy, len - copied);
 556
 557		/* XXX needs + offset for multiple recvs per page */
 558		rds_stats_add(s_copy_to_user, to_copy);
 559		ret = copy_page_to_iter(sg_page(&frag->f_sg),
 560					frag->f_sg.offset + frag_off,
 561					to_copy,
 562					to);
 563		if (ret != to_copy)
 564			return -EFAULT;
 565
 566		frag_off += to_copy;
 567		copied += to_copy;
 568	}
 569
 570	return copied;
 571}
 572
 573/* ic starts out kzalloc()ed */
 574void rds_ib_recv_init_ack(struct rds_ib_connection *ic)
 575{
 576	struct ib_send_wr *wr = &ic->i_ack_wr;
 577	struct ib_sge *sge = &ic->i_ack_sge;
 578
 579	sge->addr = ic->i_ack_dma;
 580	sge->length = sizeof(struct rds_header);
 581	sge->lkey = ic->i_pd->local_dma_lkey;
 582
 583	wr->sg_list = sge;
 584	wr->num_sge = 1;
 585	wr->opcode = IB_WR_SEND;
 586	wr->wr_id = RDS_IB_ACK_WR_ID;
 587	wr->send_flags = IB_SEND_SIGNALED | IB_SEND_SOLICITED;
 588}
 589
 590/*
 591 * You'd think that with reliable IB connections you wouldn't need to ack
 592 * messages that have been received.  The problem is that IB hardware generates
 593 * an ack message before it has DMAed the message into memory.  This creates a
 594 * potential message loss if the HCA is disabled for any reason between when it
 595 * sends the ack and before the message is DMAed and processed.  This is only a
 596 * potential issue if another HCA is available for fail-over.
 597 *
 598 * When the remote host receives our ack they'll free the sent message from
 599 * their send queue.  To decrease the latency of this we always send an ack
 600 * immediately after we've received messages.
 601 *
 602 * For simplicity, we only have one ack in flight at a time.  This puts
 603 * pressure on senders to have deep enough send queues to absorb the latency of
 604 * a single ack frame being in flight.  This might not be good enough.
 605 *
 606 * This is implemented by have a long-lived send_wr and sge which point to a
 607 * statically allocated ack frame.  This ack wr does not fall under the ring
 608 * accounting that the tx and rx wrs do.  The QP attribute specifically makes
 609 * room for it beyond the ring size.  Send completion notices its special
 610 * wr_id and avoids working with the ring in that case.
 611 */
 612#ifndef KERNEL_HAS_ATOMIC64
 613void rds_ib_set_ack(struct rds_ib_connection *ic, u64 seq, int ack_required)
 614{
 615	unsigned long flags;
 616
 617	spin_lock_irqsave(&ic->i_ack_lock, flags);
 618	ic->i_ack_next = seq;
 619	if (ack_required)
 620		set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
 621	spin_unlock_irqrestore(&ic->i_ack_lock, flags);
 622}
 623
 624static u64 rds_ib_get_ack(struct rds_ib_connection *ic)
 625{
 626	unsigned long flags;
 627	u64 seq;
 628
 629	clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
 630
 631	spin_lock_irqsave(&ic->i_ack_lock, flags);
 632	seq = ic->i_ack_next;
 633	spin_unlock_irqrestore(&ic->i_ack_lock, flags);
 634
 635	return seq;
 636}
 637#else
 638void rds_ib_set_ack(struct rds_ib_connection *ic, u64 seq, int ack_required)
 639{
 640	atomic64_set(&ic->i_ack_next, seq);
 641	if (ack_required) {
 642		smp_mb__before_atomic();
 643		set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
 644	}
 645}
 646
 647static u64 rds_ib_get_ack(struct rds_ib_connection *ic)
 648{
 649	clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
 650	smp_mb__after_atomic();
 651
 652	return atomic64_read(&ic->i_ack_next);
 653}
 654#endif
 655
 656
 657static void rds_ib_send_ack(struct rds_ib_connection *ic, unsigned int adv_credits)
 658{
 659	struct rds_header *hdr = ic->i_ack;
 
 660	u64 seq;
 661	int ret;
 662
 663	seq = rds_ib_get_ack(ic);
 664
 665	rdsdebug("send_ack: ic %p ack %llu\n", ic, (unsigned long long) seq);
 666
 667	ib_dma_sync_single_for_cpu(ic->rds_ibdev->dev, ic->i_ack_dma,
 668				   sizeof(*hdr), DMA_TO_DEVICE);
 669	rds_message_populate_header(hdr, 0, 0, 0);
 670	hdr->h_ack = cpu_to_be64(seq);
 671	hdr->h_credit = adv_credits;
 672	rds_message_make_checksum(hdr);
 673	ib_dma_sync_single_for_device(ic->rds_ibdev->dev, ic->i_ack_dma,
 674				      sizeof(*hdr), DMA_TO_DEVICE);
 675
 676	ic->i_ack_queued = jiffies;
 677
 678	ret = ib_post_send(ic->i_cm_id->qp, &ic->i_ack_wr, NULL);
 679	if (unlikely(ret)) {
 680		/* Failed to send. Release the WR, and
 681		 * force another ACK.
 682		 */
 683		clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
 684		set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
 685
 686		rds_ib_stats_inc(s_ib_ack_send_failure);
 687
 688		rds_ib_conn_error(ic->conn, "sending ack failed\n");
 689	} else
 690		rds_ib_stats_inc(s_ib_ack_sent);
 691}
 692
 693/*
 694 * There are 3 ways of getting acknowledgements to the peer:
 695 *  1.	We call rds_ib_attempt_ack from the recv completion handler
 696 *	to send an ACK-only frame.
 697 *	However, there can be only one such frame in the send queue
 698 *	at any time, so we may have to postpone it.
 699 *  2.	When another (data) packet is transmitted while there's
 700 *	an ACK in the queue, we piggyback the ACK sequence number
 701 *	on the data packet.
 702 *  3.	If the ACK WR is done sending, we get called from the
 703 *	send queue completion handler, and check whether there's
 704 *	another ACK pending (postponed because the WR was on the
 705 *	queue). If so, we transmit it.
 706 *
 707 * We maintain 2 variables:
 708 *  -	i_ack_flags, which keeps track of whether the ACK WR
 709 *	is currently in the send queue or not (IB_ACK_IN_FLIGHT)
 710 *  -	i_ack_next, which is the last sequence number we received
 711 *
 712 * Potentially, send queue and receive queue handlers can run concurrently.
 713 * It would be nice to not have to use a spinlock to synchronize things,
 714 * but the one problem that rules this out is that 64bit updates are
 715 * not atomic on all platforms. Things would be a lot simpler if
 716 * we had atomic64 or maybe cmpxchg64 everywhere.
 717 *
 718 * Reconnecting complicates this picture just slightly. When we
 719 * reconnect, we may be seeing duplicate packets. The peer
 720 * is retransmitting them, because it hasn't seen an ACK for
 721 * them. It is important that we ACK these.
 722 *
 723 * ACK mitigation adds a header flag "ACK_REQUIRED"; any packet with
 724 * this flag set *MUST* be acknowledged immediately.
 725 */
 726
 727/*
 728 * When we get here, we're called from the recv queue handler.
 729 * Check whether we ought to transmit an ACK.
 730 */
 731void rds_ib_attempt_ack(struct rds_ib_connection *ic)
 732{
 733	unsigned int adv_credits;
 734
 735	if (!test_bit(IB_ACK_REQUESTED, &ic->i_ack_flags))
 736		return;
 737
 738	if (test_and_set_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags)) {
 739		rds_ib_stats_inc(s_ib_ack_send_delayed);
 740		return;
 741	}
 742
 743	/* Can we get a send credit? */
 744	if (!rds_ib_send_grab_credits(ic, 1, &adv_credits, 0, RDS_MAX_ADV_CREDIT)) {
 745		rds_ib_stats_inc(s_ib_tx_throttle);
 746		clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
 747		return;
 748	}
 749
 750	clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
 751	rds_ib_send_ack(ic, adv_credits);
 752}
 753
 754/*
 755 * We get here from the send completion handler, when the
 756 * adapter tells us the ACK frame was sent.
 757 */
 758void rds_ib_ack_send_complete(struct rds_ib_connection *ic)
 759{
 760	clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
 761	rds_ib_attempt_ack(ic);
 762}
 763
 764/*
 765 * This is called by the regular xmit code when it wants to piggyback
 766 * an ACK on an outgoing frame.
 767 */
 768u64 rds_ib_piggyb_ack(struct rds_ib_connection *ic)
 769{
 770	if (test_and_clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags))
 771		rds_ib_stats_inc(s_ib_ack_send_piggybacked);
 772	return rds_ib_get_ack(ic);
 773}
 774
 775/*
 776 * It's kind of lame that we're copying from the posted receive pages into
 777 * long-lived bitmaps.  We could have posted the bitmaps and rdma written into
 778 * them.  But receiving new congestion bitmaps should be a *rare* event, so
 779 * hopefully we won't need to invest that complexity in making it more
 780 * efficient.  By copying we can share a simpler core with TCP which has to
 781 * copy.
 782 */
 783static void rds_ib_cong_recv(struct rds_connection *conn,
 784			      struct rds_ib_incoming *ibinc)
 785{
 786	struct rds_cong_map *map;
 787	unsigned int map_off;
 788	unsigned int map_page;
 789	struct rds_page_frag *frag;
 790	unsigned long frag_off;
 791	unsigned long to_copy;
 792	unsigned long copied;
 793	__le64 uncongested = 0;
 794	void *addr;
 795
 796	/* catch completely corrupt packets */
 797	if (be32_to_cpu(ibinc->ii_inc.i_hdr.h_len) != RDS_CONG_MAP_BYTES)
 798		return;
 799
 800	map = conn->c_fcong;
 801	map_page = 0;
 802	map_off = 0;
 803
 804	frag = list_entry(ibinc->ii_frags.next, struct rds_page_frag, f_item);
 805	frag_off = 0;
 806
 807	copied = 0;
 808
 809	while (copied < RDS_CONG_MAP_BYTES) {
 810		__le64 *src, *dst;
 811		unsigned int k;
 812
 813		to_copy = min(RDS_FRAG_SIZE - frag_off, PAGE_SIZE - map_off);
 814		BUG_ON(to_copy & 7); /* Must be 64bit aligned. */
 815
 816		addr = kmap_atomic(sg_page(&frag->f_sg));
 817
 818		src = addr + frag->f_sg.offset + frag_off;
 819		dst = (void *)map->m_page_addrs[map_page] + map_off;
 820		for (k = 0; k < to_copy; k += 8) {
 821			/* Record ports that became uncongested, ie
 822			 * bits that changed from 0 to 1. */
 823			uncongested |= ~(*src) & *dst;
 824			*dst++ = *src++;
 825		}
 826		kunmap_atomic(addr);
 827
 828		copied += to_copy;
 829
 830		map_off += to_copy;
 831		if (map_off == PAGE_SIZE) {
 832			map_off = 0;
 833			map_page++;
 834		}
 835
 836		frag_off += to_copy;
 837		if (frag_off == RDS_FRAG_SIZE) {
 838			frag = list_entry(frag->f_item.next,
 839					  struct rds_page_frag, f_item);
 840			frag_off = 0;
 841		}
 842	}
 843
 844	/* the congestion map is in little endian order */
 845	rds_cong_map_updated(map, le64_to_cpu(uncongested));
 
 
 846}
 847
 848static void rds_ib_process_recv(struct rds_connection *conn,
 849				struct rds_ib_recv_work *recv, u32 data_len,
 850				struct rds_ib_ack_state *state)
 851{
 852	struct rds_ib_connection *ic = conn->c_transport_data;
 853	struct rds_ib_incoming *ibinc = ic->i_ibinc;
 854	struct rds_header *ihdr, *hdr;
 855	dma_addr_t dma_addr = ic->i_recv_hdrs_dma[recv - ic->i_recvs];
 856
 857	/* XXX shut down the connection if port 0,0 are seen? */
 858
 859	rdsdebug("ic %p ibinc %p recv %p byte len %u\n", ic, ibinc, recv,
 860		 data_len);
 861
 862	if (data_len < sizeof(struct rds_header)) {
 863		rds_ib_conn_error(conn, "incoming message "
 864		       "from %pI6c didn't include a "
 865		       "header, disconnecting and "
 866		       "reconnecting\n",
 867		       &conn->c_faddr);
 868		return;
 869	}
 870	data_len -= sizeof(struct rds_header);
 871
 872	ihdr = ic->i_recv_hdrs[recv - ic->i_recvs];
 873
 874	ib_dma_sync_single_for_cpu(ic->rds_ibdev->dev, dma_addr,
 875				   sizeof(*ihdr), DMA_FROM_DEVICE);
 876	/* Validate the checksum. */
 877	if (!rds_message_verify_checksum(ihdr)) {
 878		rds_ib_conn_error(conn, "incoming message "
 879		       "from %pI6c has corrupted header - "
 880		       "forcing a reconnect\n",
 881		       &conn->c_faddr);
 882		rds_stats_inc(s_recv_drop_bad_checksum);
 883		goto done;
 884	}
 885
 886	/* Process the ACK sequence which comes with every packet */
 887	state->ack_recv = be64_to_cpu(ihdr->h_ack);
 888	state->ack_recv_valid = 1;
 889
 890	/* Process the credits update if there was one */
 891	if (ihdr->h_credit)
 892		rds_ib_send_add_credits(conn, ihdr->h_credit);
 893
 894	if (ihdr->h_sport == 0 && ihdr->h_dport == 0 && data_len == 0) {
 895		/* This is an ACK-only packet. The fact that it gets
 896		 * special treatment here is that historically, ACKs
 897		 * were rather special beasts.
 898		 */
 899		rds_ib_stats_inc(s_ib_ack_received);
 900
 901		/*
 902		 * Usually the frags make their way on to incs and are then freed as
 903		 * the inc is freed.  We don't go that route, so we have to drop the
 904		 * page ref ourselves.  We can't just leave the page on the recv
 905		 * because that confuses the dma mapping of pages and each recv's use
 906		 * of a partial page.
 907		 *
 908		 * FIXME: Fold this into the code path below.
 909		 */
 910		rds_ib_frag_free(ic, recv->r_frag);
 911		recv->r_frag = NULL;
 912		goto done;
 913	}
 914
 915	/*
 916	 * If we don't already have an inc on the connection then this
 917	 * fragment has a header and starts a message.. copy its header
 918	 * into the inc and save the inc so we can hang upcoming fragments
 919	 * off its list.
 920	 */
 921	if (!ibinc) {
 922		ibinc = recv->r_ibinc;
 923		recv->r_ibinc = NULL;
 924		ic->i_ibinc = ibinc;
 925
 926		hdr = &ibinc->ii_inc.i_hdr;
 927		ibinc->ii_inc.i_rx_lat_trace[RDS_MSG_RX_HDR] =
 928				local_clock();
 929		memcpy(hdr, ihdr, sizeof(*hdr));
 930		ic->i_recv_data_rem = be32_to_cpu(hdr->h_len);
 931		ibinc->ii_inc.i_rx_lat_trace[RDS_MSG_RX_START] =
 932				local_clock();
 933
 934		rdsdebug("ic %p ibinc %p rem %u flag 0x%x\n", ic, ibinc,
 935			 ic->i_recv_data_rem, hdr->h_flags);
 936	} else {
 937		hdr = &ibinc->ii_inc.i_hdr;
 938		/* We can't just use memcmp here; fragments of a
 939		 * single message may carry different ACKs */
 940		if (hdr->h_sequence != ihdr->h_sequence ||
 941		    hdr->h_len != ihdr->h_len ||
 942		    hdr->h_sport != ihdr->h_sport ||
 943		    hdr->h_dport != ihdr->h_dport) {
 944			rds_ib_conn_error(conn,
 945				"fragment header mismatch; forcing reconnect\n");
 946			goto done;
 947		}
 948	}
 949
 950	list_add_tail(&recv->r_frag->f_item, &ibinc->ii_frags);
 951	recv->r_frag = NULL;
 952
 953	if (ic->i_recv_data_rem > RDS_FRAG_SIZE)
 954		ic->i_recv_data_rem -= RDS_FRAG_SIZE;
 955	else {
 956		ic->i_recv_data_rem = 0;
 957		ic->i_ibinc = NULL;
 958
 959		if (ibinc->ii_inc.i_hdr.h_flags == RDS_FLAG_CONG_BITMAP) {
 960			rds_ib_cong_recv(conn, ibinc);
 961		} else {
 962			rds_recv_incoming(conn, &conn->c_faddr, &conn->c_laddr,
 963					  &ibinc->ii_inc, GFP_ATOMIC);
 964			state->ack_next = be64_to_cpu(hdr->h_sequence);
 965			state->ack_next_valid = 1;
 966		}
 967
 968		/* Evaluate the ACK_REQUIRED flag *after* we received
 969		 * the complete frame, and after bumping the next_rx
 970		 * sequence. */
 971		if (hdr->h_flags & RDS_FLAG_ACK_REQUIRED) {
 972			rds_stats_inc(s_recv_ack_required);
 973			state->ack_required = 1;
 974		}
 975
 976		rds_inc_put(&ibinc->ii_inc);
 977	}
 978done:
 979	ib_dma_sync_single_for_device(ic->rds_ibdev->dev, dma_addr,
 980				      sizeof(*ihdr), DMA_FROM_DEVICE);
 981}
 982
 983void rds_ib_recv_cqe_handler(struct rds_ib_connection *ic,
 984			     struct ib_wc *wc,
 985			     struct rds_ib_ack_state *state)
 986{
 987	struct rds_connection *conn = ic->conn;
 988	struct rds_ib_recv_work *recv;
 989
 990	rdsdebug("wc wr_id 0x%llx status %u (%s) byte_len %u imm_data %u\n",
 991		 (unsigned long long)wc->wr_id, wc->status,
 992		 ib_wc_status_msg(wc->status), wc->byte_len,
 993		 be32_to_cpu(wc->ex.imm_data));
 994
 995	rds_ib_stats_inc(s_ib_rx_cq_event);
 996	recv = &ic->i_recvs[rds_ib_ring_oldest(&ic->i_recv_ring)];
 997	ib_dma_unmap_sg(ic->i_cm_id->device, &recv->r_frag->f_sg, 1,
 998			DMA_FROM_DEVICE);
 999
1000	/* Also process recvs in connecting state because it is possible
1001	 * to get a recv completion _before_ the rdmacm ESTABLISHED
1002	 * event is processed.
1003	 */
1004	if (wc->status == IB_WC_SUCCESS) {
1005		rds_ib_process_recv(conn, recv, wc->byte_len, state);
1006	} else {
1007		/* We expect errors as the qp is drained during shutdown */
1008		if (rds_conn_up(conn) || rds_conn_connecting(conn))
1009			rds_ib_conn_error(conn, "recv completion on <%pI6c,%pI6c, %d> had status %u (%s), vendor err 0x%x, disconnecting and reconnecting\n",
1010					  &conn->c_laddr, &conn->c_faddr,
1011					  conn->c_tos, wc->status,
1012					  ib_wc_status_msg(wc->status),
1013					  wc->vendor_err);
1014	}
1015
1016	/* rds_ib_process_recv() doesn't always consume the frag, and
1017	 * we might not have called it at all if the wc didn't indicate
1018	 * success. We already unmapped the frag's pages, though, and
1019	 * the following rds_ib_ring_free() call tells the refill path
1020	 * that it will not find an allocated frag here. Make sure we
1021	 * keep that promise by freeing a frag that's still on the ring.
1022	 */
1023	if (recv->r_frag) {
1024		rds_ib_frag_free(ic, recv->r_frag);
1025		recv->r_frag = NULL;
1026	}
1027	rds_ib_ring_free(&ic->i_recv_ring, 1);
1028
1029	/* If we ever end up with a really empty receive ring, we're
1030	 * in deep trouble, as the sender will definitely see RNR
1031	 * timeouts. */
1032	if (rds_ib_ring_empty(&ic->i_recv_ring))
1033		rds_ib_stats_inc(s_ib_rx_ring_empty);
1034
1035	if (rds_ib_ring_low(&ic->i_recv_ring)) {
1036		rds_ib_recv_refill(conn, 0, GFP_NOWAIT | __GFP_NOWARN);
1037		rds_ib_stats_inc(s_ib_rx_refill_from_cq);
1038	}
1039}
1040
1041int rds_ib_recv_path(struct rds_conn_path *cp)
1042{
1043	struct rds_connection *conn = cp->cp_conn;
1044	struct rds_ib_connection *ic = conn->c_transport_data;
 
1045
1046	rdsdebug("conn %p\n", conn);
1047	if (rds_conn_up(conn)) {
1048		rds_ib_attempt_ack(ic);
1049		rds_ib_recv_refill(conn, 0, GFP_KERNEL);
1050		rds_ib_stats_inc(s_ib_rx_refill_from_thread);
1051	}
1052
1053	return 0;
1054}
1055
1056int rds_ib_recv_init(void)
1057{
1058	struct sysinfo si;
1059	int ret = -ENOMEM;
1060
1061	/* Default to 30% of all available RAM for recv memory */
1062	si_meminfo(&si);
1063	rds_ib_sysctl_max_recv_allocation = si.totalram / 3 * PAGE_SIZE / RDS_FRAG_SIZE;
1064
1065	rds_ib_incoming_slab =
1066		kmem_cache_create_usercopy("rds_ib_incoming",
1067					   sizeof(struct rds_ib_incoming),
1068					   0, SLAB_HWCACHE_ALIGN,
1069					   offsetof(struct rds_ib_incoming,
1070						    ii_inc.i_usercopy),
1071					   sizeof(struct rds_inc_usercopy),
1072					   NULL);
1073	if (!rds_ib_incoming_slab)
1074		goto out;
1075
1076	rds_ib_frag_slab = kmem_cache_create("rds_ib_frag",
1077					sizeof(struct rds_page_frag),
1078					0, SLAB_HWCACHE_ALIGN, NULL);
1079	if (!rds_ib_frag_slab) {
1080		kmem_cache_destroy(rds_ib_incoming_slab);
1081		rds_ib_incoming_slab = NULL;
1082	} else
1083		ret = 0;
1084out:
1085	return ret;
1086}
1087
1088void rds_ib_recv_exit(void)
1089{
1090	WARN_ON(atomic_read(&rds_ib_allocation));
1091
1092	kmem_cache_destroy(rds_ib_incoming_slab);
1093	kmem_cache_destroy(rds_ib_frag_slab);
1094}