Linux Audio

Check our new training course

Loading...
v4.6
 
  1/*
  2 * latencytop.c: Latency display infrastructure
  3 *
  4 * (C) Copyright 2008 Intel Corporation
  5 * Author: Arjan van de Ven <arjan@linux.intel.com>
  6 *
  7 * This program is free software; you can redistribute it and/or
  8 * modify it under the terms of the GNU General Public License
  9 * as published by the Free Software Foundation; version 2
 10 * of the License.
 11 */
 12
 13/*
 14 * CONFIG_LATENCYTOP enables a kernel latency tracking infrastructure that is
 15 * used by the "latencytop" userspace tool. The latency that is tracked is not
 16 * the 'traditional' interrupt latency (which is primarily caused by something
 17 * else consuming CPU), but instead, it is the latency an application encounters
 18 * because the kernel sleeps on its behalf for various reasons.
 19 *
 20 * This code tracks 2 levels of statistics:
 21 * 1) System level latency
 22 * 2) Per process latency
 23 *
 24 * The latency is stored in fixed sized data structures in an accumulated form;
 25 * if the "same" latency cause is hit twice, this will be tracked as one entry
 26 * in the data structure. Both the count, total accumulated latency and maximum
 27 * latency are tracked in this data structure. When the fixed size structure is
 28 * full, no new causes are tracked until the buffer is flushed by writing to
 29 * the /proc file; the userspace tool does this on a regular basis.
 30 *
 31 * A latency cause is identified by a stringified backtrace at the point that
 32 * the scheduler gets invoked. The userland tool will use this string to
 33 * identify the cause of the latency in human readable form.
 34 *
 35 * The information is exported via /proc/latency_stats and /proc/<pid>/latency.
 36 * These files look like this:
 37 *
 38 * Latency Top version : v0.1
 39 * 70 59433 4897 i915_irq_wait drm_ioctl vfs_ioctl do_vfs_ioctl sys_ioctl
 40 * |    |    |    |
 41 * |    |    |    +----> the stringified backtrace
 42 * |    |    +---------> The maximum latency for this entry in microseconds
 43 * |    +--------------> The accumulated latency for this entry (microseconds)
 44 * +-------------------> The number of times this entry is hit
 45 *
 46 * (note: the average latency is the accumulated latency divided by the number
 47 * of times)
 48 */
 49
 50#include <linux/kallsyms.h>
 51#include <linux/seq_file.h>
 52#include <linux/notifier.h>
 53#include <linux/spinlock.h>
 54#include <linux/proc_fs.h>
 55#include <linux/latencytop.h>
 56#include <linux/export.h>
 57#include <linux/sched.h>
 
 
 58#include <linux/list.h>
 59#include <linux/stacktrace.h>
 
 60
 61static DEFINE_RAW_SPINLOCK(latency_lock);
 62
 63#define MAXLR 128
 64static struct latency_record latency_record[MAXLR];
 65
 66int latencytop_enabled;
 67
 68void clear_all_latency_tracing(struct task_struct *p)
 
 
 69{
 70	unsigned long flags;
 71
 72	if (!latencytop_enabled)
 73		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 74
 75	raw_spin_lock_irqsave(&latency_lock, flags);
 76	memset(&p->latency_record, 0, sizeof(p->latency_record));
 77	p->latency_record_count = 0;
 78	raw_spin_unlock_irqrestore(&latency_lock, flags);
 79}
 80
 81static void clear_global_latency_tracing(void)
 82{
 83	unsigned long flags;
 84
 85	raw_spin_lock_irqsave(&latency_lock, flags);
 86	memset(&latency_record, 0, sizeof(latency_record));
 87	raw_spin_unlock_irqrestore(&latency_lock, flags);
 88}
 89
 90static void __sched
 91account_global_scheduler_latency(struct task_struct *tsk,
 92				 struct latency_record *lat)
 93{
 94	int firstnonnull = MAXLR + 1;
 95	int i;
 96
 97	if (!latencytop_enabled)
 98		return;
 99
100	/* skip kernel threads for now */
101	if (!tsk->mm)
102		return;
103
104	for (i = 0; i < MAXLR; i++) {
105		int q, same = 1;
106
107		/* Nothing stored: */
108		if (!latency_record[i].backtrace[0]) {
109			if (firstnonnull > i)
110				firstnonnull = i;
111			continue;
112		}
113		for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
114			unsigned long record = lat->backtrace[q];
115
116			if (latency_record[i].backtrace[q] != record) {
117				same = 0;
118				break;
119			}
120
121			/* 0 and ULONG_MAX entries mean end of backtrace: */
122			if (record == 0 || record == ULONG_MAX)
123				break;
124		}
125		if (same) {
126			latency_record[i].count++;
127			latency_record[i].time += lat->time;
128			if (lat->time > latency_record[i].max)
129				latency_record[i].max = lat->time;
130			return;
131		}
132	}
133
134	i = firstnonnull;
135	if (i >= MAXLR - 1)
136		return;
137
138	/* Allocted a new one: */
139	memcpy(&latency_record[i], lat, sizeof(struct latency_record));
140}
141
142/*
143 * Iterator to store a backtrace into a latency record entry
144 */
145static inline void store_stacktrace(struct task_struct *tsk,
146					struct latency_record *lat)
147{
148	struct stack_trace trace;
149
150	memset(&trace, 0, sizeof(trace));
151	trace.max_entries = LT_BACKTRACEDEPTH;
152	trace.entries = &lat->backtrace[0];
153	save_stack_trace_tsk(tsk, &trace);
154}
155
156/**
157 * __account_scheduler_latency - record an occurred latency
158 * @tsk - the task struct of the task hitting the latency
159 * @usecs - the duration of the latency in microseconds
160 * @inter - 1 if the sleep was interruptible, 0 if uninterruptible
161 *
162 * This function is the main entry point for recording latency entries
163 * as called by the scheduler.
164 *
165 * This function has a few special cases to deal with normal 'non-latency'
166 * sleeps: specifically, interruptible sleep longer than 5 msec is skipped
167 * since this usually is caused by waiting for events via select() and co.
168 *
169 * Negative latencies (caused by time going backwards) are also explicitly
170 * skipped.
171 */
172void __sched
173__account_scheduler_latency(struct task_struct *tsk, int usecs, int inter)
174{
175	unsigned long flags;
176	int i, q;
177	struct latency_record lat;
178
179	/* Long interruptible waits are generally user requested... */
180	if (inter && usecs > 5000)
181		return;
182
183	/* Negative sleeps are time going backwards */
184	/* Zero-time sleeps are non-interesting */
185	if (usecs <= 0)
186		return;
187
188	memset(&lat, 0, sizeof(lat));
189	lat.count = 1;
190	lat.time = usecs;
191	lat.max = usecs;
192	store_stacktrace(tsk, &lat);
 
193
194	raw_spin_lock_irqsave(&latency_lock, flags);
195
196	account_global_scheduler_latency(tsk, &lat);
197
198	for (i = 0; i < tsk->latency_record_count; i++) {
199		struct latency_record *mylat;
200		int same = 1;
201
202		mylat = &tsk->latency_record[i];
203		for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
204			unsigned long record = lat.backtrace[q];
205
206			if (mylat->backtrace[q] != record) {
207				same = 0;
208				break;
209			}
210
211			/* 0 and ULONG_MAX entries mean end of backtrace: */
212			if (record == 0 || record == ULONG_MAX)
213				break;
214		}
215		if (same) {
216			mylat->count++;
217			mylat->time += lat.time;
218			if (lat.time > mylat->max)
219				mylat->max = lat.time;
220			goto out_unlock;
221		}
222	}
223
224	/*
225	 * short term hack; if we're > 32 we stop; future we recycle:
226	 */
227	if (tsk->latency_record_count >= LT_SAVECOUNT)
228		goto out_unlock;
229
230	/* Allocated a new one: */
231	i = tsk->latency_record_count++;
232	memcpy(&tsk->latency_record[i], &lat, sizeof(struct latency_record));
233
234out_unlock:
235	raw_spin_unlock_irqrestore(&latency_lock, flags);
236}
237
238static int lstats_show(struct seq_file *m, void *v)
239{
240	int i;
241
242	seq_puts(m, "Latency Top version : v0.1\n");
243
244	for (i = 0; i < MAXLR; i++) {
245		struct latency_record *lr = &latency_record[i];
246
247		if (lr->backtrace[0]) {
248			int q;
249			seq_printf(m, "%i %lu %lu",
250				   lr->count, lr->time, lr->max);
251			for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
252				unsigned long bt = lr->backtrace[q];
 
253				if (!bt)
254					break;
255				if (bt == ULONG_MAX)
256					break;
257				seq_printf(m, " %ps", (void *)bt);
258			}
259			seq_puts(m, "\n");
260		}
261	}
262	return 0;
263}
264
265static ssize_t
266lstats_write(struct file *file, const char __user *buf, size_t count,
267	     loff_t *offs)
268{
269	clear_global_latency_tracing();
270
271	return count;
272}
273
274static int lstats_open(struct inode *inode, struct file *filp)
275{
276	return single_open(filp, lstats_show, NULL);
277}
278
279static const struct file_operations lstats_fops = {
280	.open		= lstats_open,
281	.read		= seq_read,
282	.write		= lstats_write,
283	.llseek		= seq_lseek,
284	.release	= single_release,
285};
286
287static int __init init_lstats_procfs(void)
288{
289	proc_create("latency_stats", 0644, NULL, &lstats_fops);
 
 
 
290	return 0;
291}
292
293int sysctl_latencytop(struct ctl_table *table, int write,
294			void __user *buffer, size_t *lenp, loff_t *ppos)
295{
296	int err;
297
298	err = proc_dointvec(table, write, buffer, lenp, ppos);
299	if (latencytop_enabled)
300		force_schedstat_enabled();
301
302	return err;
303}
304device_initcall(init_lstats_procfs);
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * latencytop.c: Latency display infrastructure
  4 *
  5 * (C) Copyright 2008 Intel Corporation
  6 * Author: Arjan van de Ven <arjan@linux.intel.com>
 
 
 
 
 
  7 */
  8
  9/*
 10 * CONFIG_LATENCYTOP enables a kernel latency tracking infrastructure that is
 11 * used by the "latencytop" userspace tool. The latency that is tracked is not
 12 * the 'traditional' interrupt latency (which is primarily caused by something
 13 * else consuming CPU), but instead, it is the latency an application encounters
 14 * because the kernel sleeps on its behalf for various reasons.
 15 *
 16 * This code tracks 2 levels of statistics:
 17 * 1) System level latency
 18 * 2) Per process latency
 19 *
 20 * The latency is stored in fixed sized data structures in an accumulated form;
 21 * if the "same" latency cause is hit twice, this will be tracked as one entry
 22 * in the data structure. Both the count, total accumulated latency and maximum
 23 * latency are tracked in this data structure. When the fixed size structure is
 24 * full, no new causes are tracked until the buffer is flushed by writing to
 25 * the /proc file; the userspace tool does this on a regular basis.
 26 *
 27 * A latency cause is identified by a stringified backtrace at the point that
 28 * the scheduler gets invoked. The userland tool will use this string to
 29 * identify the cause of the latency in human readable form.
 30 *
 31 * The information is exported via /proc/latency_stats and /proc/<pid>/latency.
 32 * These files look like this:
 33 *
 34 * Latency Top version : v0.1
 35 * 70 59433 4897 i915_irq_wait drm_ioctl vfs_ioctl do_vfs_ioctl sys_ioctl
 36 * |    |    |    |
 37 * |    |    |    +----> the stringified backtrace
 38 * |    |    +---------> The maximum latency for this entry in microseconds
 39 * |    +--------------> The accumulated latency for this entry (microseconds)
 40 * +-------------------> The number of times this entry is hit
 41 *
 42 * (note: the average latency is the accumulated latency divided by the number
 43 * of times)
 44 */
 45
 46#include <linux/kallsyms.h>
 47#include <linux/seq_file.h>
 48#include <linux/notifier.h>
 49#include <linux/spinlock.h>
 50#include <linux/proc_fs.h>
 51#include <linux/latencytop.h>
 52#include <linux/export.h>
 53#include <linux/sched.h>
 54#include <linux/sched/debug.h>
 55#include <linux/sched/stat.h>
 56#include <linux/list.h>
 57#include <linux/stacktrace.h>
 58#include <linux/sysctl.h>
 59
 60static DEFINE_RAW_SPINLOCK(latency_lock);
 61
 62#define MAXLR 128
 63static struct latency_record latency_record[MAXLR];
 64
 65int latencytop_enabled;
 66
 67#ifdef CONFIG_SYSCTL
 68static int sysctl_latencytop(const struct ctl_table *table, int write, void *buffer,
 69		size_t *lenp, loff_t *ppos)
 70{
 71	int err;
 72
 73	err = proc_dointvec(table, write, buffer, lenp, ppos);
 74	if (latencytop_enabled)
 75		force_schedstat_enabled();
 76
 77	return err;
 78}
 79
 80static struct ctl_table latencytop_sysctl[] = {
 81	{
 82		.procname   = "latencytop",
 83		.data       = &latencytop_enabled,
 84		.maxlen     = sizeof(int),
 85		.mode       = 0644,
 86		.proc_handler   = sysctl_latencytop,
 87	},
 88};
 89#endif
 90
 91void clear_tsk_latency_tracing(struct task_struct *p)
 92{
 93	unsigned long flags;
 94
 95	raw_spin_lock_irqsave(&latency_lock, flags);
 96	memset(&p->latency_record, 0, sizeof(p->latency_record));
 97	p->latency_record_count = 0;
 98	raw_spin_unlock_irqrestore(&latency_lock, flags);
 99}
100
101static void clear_global_latency_tracing(void)
102{
103	unsigned long flags;
104
105	raw_spin_lock_irqsave(&latency_lock, flags);
106	memset(&latency_record, 0, sizeof(latency_record));
107	raw_spin_unlock_irqrestore(&latency_lock, flags);
108}
109
110static void __sched
111account_global_scheduler_latency(struct task_struct *tsk,
112				 struct latency_record *lat)
113{
114	int firstnonnull = MAXLR;
115	int i;
116
 
 
 
117	/* skip kernel threads for now */
118	if (!tsk->mm)
119		return;
120
121	for (i = 0; i < MAXLR; i++) {
122		int q, same = 1;
123
124		/* Nothing stored: */
125		if (!latency_record[i].backtrace[0]) {
126			if (firstnonnull > i)
127				firstnonnull = i;
128			continue;
129		}
130		for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
131			unsigned long record = lat->backtrace[q];
132
133			if (latency_record[i].backtrace[q] != record) {
134				same = 0;
135				break;
136			}
137
138			/* 0 entry marks end of backtrace: */
139			if (!record)
140				break;
141		}
142		if (same) {
143			latency_record[i].count++;
144			latency_record[i].time += lat->time;
145			if (lat->time > latency_record[i].max)
146				latency_record[i].max = lat->time;
147			return;
148		}
149	}
150
151	i = firstnonnull;
152	if (i >= MAXLR)
153		return;
154
155	/* Allocted a new one: */
156	memcpy(&latency_record[i], lat, sizeof(struct latency_record));
157}
158
 
 
 
 
 
 
 
 
 
 
 
 
 
 
159/**
160 * __account_scheduler_latency - record an occurred latency
161 * @tsk - the task struct of the task hitting the latency
162 * @usecs - the duration of the latency in microseconds
163 * @inter - 1 if the sleep was interruptible, 0 if uninterruptible
164 *
165 * This function is the main entry point for recording latency entries
166 * as called by the scheduler.
167 *
168 * This function has a few special cases to deal with normal 'non-latency'
169 * sleeps: specifically, interruptible sleep longer than 5 msec is skipped
170 * since this usually is caused by waiting for events via select() and co.
171 *
172 * Negative latencies (caused by time going backwards) are also explicitly
173 * skipped.
174 */
175void __sched
176__account_scheduler_latency(struct task_struct *tsk, int usecs, int inter)
177{
178	unsigned long flags;
179	int i, q;
180	struct latency_record lat;
181
182	/* Long interruptible waits are generally user requested... */
183	if (inter && usecs > 5000)
184		return;
185
186	/* Negative sleeps are time going backwards */
187	/* Zero-time sleeps are non-interesting */
188	if (usecs <= 0)
189		return;
190
191	memset(&lat, 0, sizeof(lat));
192	lat.count = 1;
193	lat.time = usecs;
194	lat.max = usecs;
195
196	stack_trace_save_tsk(tsk, lat.backtrace, LT_BACKTRACEDEPTH, 0);
197
198	raw_spin_lock_irqsave(&latency_lock, flags);
199
200	account_global_scheduler_latency(tsk, &lat);
201
202	for (i = 0; i < tsk->latency_record_count; i++) {
203		struct latency_record *mylat;
204		int same = 1;
205
206		mylat = &tsk->latency_record[i];
207		for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
208			unsigned long record = lat.backtrace[q];
209
210			if (mylat->backtrace[q] != record) {
211				same = 0;
212				break;
213			}
214
215			/* 0 entry is end of backtrace */
216			if (!record)
217				break;
218		}
219		if (same) {
220			mylat->count++;
221			mylat->time += lat.time;
222			if (lat.time > mylat->max)
223				mylat->max = lat.time;
224			goto out_unlock;
225		}
226	}
227
228	/*
229	 * short term hack; if we're > 32 we stop; future we recycle:
230	 */
231	if (tsk->latency_record_count >= LT_SAVECOUNT)
232		goto out_unlock;
233
234	/* Allocated a new one: */
235	i = tsk->latency_record_count++;
236	memcpy(&tsk->latency_record[i], &lat, sizeof(struct latency_record));
237
238out_unlock:
239	raw_spin_unlock_irqrestore(&latency_lock, flags);
240}
241
242static int lstats_show(struct seq_file *m, void *v)
243{
244	int i;
245
246	seq_puts(m, "Latency Top version : v0.1\n");
247
248	for (i = 0; i < MAXLR; i++) {
249		struct latency_record *lr = &latency_record[i];
250
251		if (lr->backtrace[0]) {
252			int q;
253			seq_printf(m, "%i %lu %lu",
254				   lr->count, lr->time, lr->max);
255			for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
256				unsigned long bt = lr->backtrace[q];
257
258				if (!bt)
259					break;
260
 
261				seq_printf(m, " %ps", (void *)bt);
262			}
263			seq_puts(m, "\n");
264		}
265	}
266	return 0;
267}
268
269static ssize_t
270lstats_write(struct file *file, const char __user *buf, size_t count,
271	     loff_t *offs)
272{
273	clear_global_latency_tracing();
274
275	return count;
276}
277
278static int lstats_open(struct inode *inode, struct file *filp)
279{
280	return single_open(filp, lstats_show, NULL);
281}
282
283static const struct proc_ops lstats_proc_ops = {
284	.proc_open	= lstats_open,
285	.proc_read	= seq_read,
286	.proc_write	= lstats_write,
287	.proc_lseek	= seq_lseek,
288	.proc_release	= single_release,
289};
290
291static int __init init_lstats_procfs(void)
292{
293	proc_create("latency_stats", 0644, NULL, &lstats_proc_ops);
294#ifdef CONFIG_SYSCTL
295	register_sysctl_init("kernel", latencytop_sysctl);
296#endif
297	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
298}
299device_initcall(init_lstats_procfs);