Linux Audio

Check our new training course

Loading...
v4.6
  1/*
  2 * latencytop.c: Latency display infrastructure
  3 *
  4 * (C) Copyright 2008 Intel Corporation
  5 * Author: Arjan van de Ven <arjan@linux.intel.com>
  6 *
  7 * This program is free software; you can redistribute it and/or
  8 * modify it under the terms of the GNU General Public License
  9 * as published by the Free Software Foundation; version 2
 10 * of the License.
 11 */
 12
 13/*
 14 * CONFIG_LATENCYTOP enables a kernel latency tracking infrastructure that is
 15 * used by the "latencytop" userspace tool. The latency that is tracked is not
 16 * the 'traditional' interrupt latency (which is primarily caused by something
 17 * else consuming CPU), but instead, it is the latency an application encounters
 18 * because the kernel sleeps on its behalf for various reasons.
 19 *
 20 * This code tracks 2 levels of statistics:
 21 * 1) System level latency
 22 * 2) Per process latency
 23 *
 24 * The latency is stored in fixed sized data structures in an accumulated form;
 25 * if the "same" latency cause is hit twice, this will be tracked as one entry
 26 * in the data structure. Both the count, total accumulated latency and maximum
 27 * latency are tracked in this data structure. When the fixed size structure is
 28 * full, no new causes are tracked until the buffer is flushed by writing to
 29 * the /proc file; the userspace tool does this on a regular basis.
 30 *
 31 * A latency cause is identified by a stringified backtrace at the point that
 32 * the scheduler gets invoked. The userland tool will use this string to
 33 * identify the cause of the latency in human readable form.
 34 *
 35 * The information is exported via /proc/latency_stats and /proc/<pid>/latency.
 36 * These files look like this:
 37 *
 38 * Latency Top version : v0.1
 39 * 70 59433 4897 i915_irq_wait drm_ioctl vfs_ioctl do_vfs_ioctl sys_ioctl
 40 * |    |    |    |
 41 * |    |    |    +----> the stringified backtrace
 42 * |    |    +---------> The maximum latency for this entry in microseconds
 43 * |    +--------------> The accumulated latency for this entry (microseconds)
 44 * +-------------------> The number of times this entry is hit
 45 *
 46 * (note: the average latency is the accumulated latency divided by the number
 47 * of times)
 48 */
 49
 
 50#include <linux/kallsyms.h>
 51#include <linux/seq_file.h>
 52#include <linux/notifier.h>
 53#include <linux/spinlock.h>
 54#include <linux/proc_fs.h>
 55#include <linux/latencytop.h>
 56#include <linux/export.h>
 57#include <linux/sched.h>
 58#include <linux/list.h>
 59#include <linux/stacktrace.h>
 60
 61static DEFINE_RAW_SPINLOCK(latency_lock);
 62
 63#define MAXLR 128
 64static struct latency_record latency_record[MAXLR];
 65
 66int latencytop_enabled;
 67
 68void clear_all_latency_tracing(struct task_struct *p)
 69{
 70	unsigned long flags;
 71
 72	if (!latencytop_enabled)
 73		return;
 74
 75	raw_spin_lock_irqsave(&latency_lock, flags);
 76	memset(&p->latency_record, 0, sizeof(p->latency_record));
 77	p->latency_record_count = 0;
 78	raw_spin_unlock_irqrestore(&latency_lock, flags);
 79}
 80
 81static void clear_global_latency_tracing(void)
 82{
 83	unsigned long flags;
 84
 85	raw_spin_lock_irqsave(&latency_lock, flags);
 86	memset(&latency_record, 0, sizeof(latency_record));
 87	raw_spin_unlock_irqrestore(&latency_lock, flags);
 88}
 89
 90static void __sched
 91account_global_scheduler_latency(struct task_struct *tsk,
 92				 struct latency_record *lat)
 93{
 94	int firstnonnull = MAXLR + 1;
 95	int i;
 96
 97	if (!latencytop_enabled)
 98		return;
 99
100	/* skip kernel threads for now */
101	if (!tsk->mm)
102		return;
103
104	for (i = 0; i < MAXLR; i++) {
105		int q, same = 1;
106
107		/* Nothing stored: */
108		if (!latency_record[i].backtrace[0]) {
109			if (firstnonnull > i)
110				firstnonnull = i;
111			continue;
112		}
113		for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
114			unsigned long record = lat->backtrace[q];
115
116			if (latency_record[i].backtrace[q] != record) {
117				same = 0;
118				break;
119			}
120
121			/* 0 and ULONG_MAX entries mean end of backtrace: */
122			if (record == 0 || record == ULONG_MAX)
123				break;
124		}
125		if (same) {
126			latency_record[i].count++;
127			latency_record[i].time += lat->time;
128			if (lat->time > latency_record[i].max)
129				latency_record[i].max = lat->time;
130			return;
131		}
132	}
133
134	i = firstnonnull;
135	if (i >= MAXLR - 1)
136		return;
137
138	/* Allocted a new one: */
139	memcpy(&latency_record[i], lat, sizeof(struct latency_record));
140}
141
142/*
143 * Iterator to store a backtrace into a latency record entry
144 */
145static inline void store_stacktrace(struct task_struct *tsk,
146					struct latency_record *lat)
147{
148	struct stack_trace trace;
149
150	memset(&trace, 0, sizeof(trace));
151	trace.max_entries = LT_BACKTRACEDEPTH;
152	trace.entries = &lat->backtrace[0];
153	save_stack_trace_tsk(tsk, &trace);
154}
155
156/**
157 * __account_scheduler_latency - record an occurred latency
158 * @tsk - the task struct of the task hitting the latency
159 * @usecs - the duration of the latency in microseconds
160 * @inter - 1 if the sleep was interruptible, 0 if uninterruptible
161 *
162 * This function is the main entry point for recording latency entries
163 * as called by the scheduler.
164 *
165 * This function has a few special cases to deal with normal 'non-latency'
166 * sleeps: specifically, interruptible sleep longer than 5 msec is skipped
167 * since this usually is caused by waiting for events via select() and co.
168 *
169 * Negative latencies (caused by time going backwards) are also explicitly
170 * skipped.
171 */
172void __sched
173__account_scheduler_latency(struct task_struct *tsk, int usecs, int inter)
174{
175	unsigned long flags;
176	int i, q;
177	struct latency_record lat;
178
179	/* Long interruptible waits are generally user requested... */
180	if (inter && usecs > 5000)
181		return;
182
183	/* Negative sleeps are time going backwards */
184	/* Zero-time sleeps are non-interesting */
185	if (usecs <= 0)
186		return;
187
188	memset(&lat, 0, sizeof(lat));
189	lat.count = 1;
190	lat.time = usecs;
191	lat.max = usecs;
192	store_stacktrace(tsk, &lat);
193
194	raw_spin_lock_irqsave(&latency_lock, flags);
195
196	account_global_scheduler_latency(tsk, &lat);
197
198	for (i = 0; i < tsk->latency_record_count; i++) {
199		struct latency_record *mylat;
200		int same = 1;
201
202		mylat = &tsk->latency_record[i];
203		for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
204			unsigned long record = lat.backtrace[q];
205
206			if (mylat->backtrace[q] != record) {
207				same = 0;
208				break;
209			}
210
211			/* 0 and ULONG_MAX entries mean end of backtrace: */
212			if (record == 0 || record == ULONG_MAX)
213				break;
214		}
215		if (same) {
216			mylat->count++;
217			mylat->time += lat.time;
218			if (lat.time > mylat->max)
219				mylat->max = lat.time;
220			goto out_unlock;
221		}
222	}
223
224	/*
225	 * short term hack; if we're > 32 we stop; future we recycle:
226	 */
227	if (tsk->latency_record_count >= LT_SAVECOUNT)
228		goto out_unlock;
229
230	/* Allocated a new one: */
231	i = tsk->latency_record_count++;
232	memcpy(&tsk->latency_record[i], &lat, sizeof(struct latency_record));
233
234out_unlock:
235	raw_spin_unlock_irqrestore(&latency_lock, flags);
236}
237
238static int lstats_show(struct seq_file *m, void *v)
239{
240	int i;
241
242	seq_puts(m, "Latency Top version : v0.1\n");
243
244	for (i = 0; i < MAXLR; i++) {
245		struct latency_record *lr = &latency_record[i];
246
247		if (lr->backtrace[0]) {
248			int q;
249			seq_printf(m, "%i %lu %lu",
250				   lr->count, lr->time, lr->max);
251			for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
252				unsigned long bt = lr->backtrace[q];
253				if (!bt)
254					break;
255				if (bt == ULONG_MAX)
256					break;
257				seq_printf(m, " %ps", (void *)bt);
258			}
259			seq_puts(m, "\n");
260		}
261	}
262	return 0;
263}
264
265static ssize_t
266lstats_write(struct file *file, const char __user *buf, size_t count,
267	     loff_t *offs)
268{
269	clear_global_latency_tracing();
270
271	return count;
272}
273
274static int lstats_open(struct inode *inode, struct file *filp)
275{
276	return single_open(filp, lstats_show, NULL);
277}
278
279static const struct file_operations lstats_fops = {
280	.open		= lstats_open,
281	.read		= seq_read,
282	.write		= lstats_write,
283	.llseek		= seq_lseek,
284	.release	= single_release,
285};
286
287static int __init init_lstats_procfs(void)
288{
289	proc_create("latency_stats", 0644, NULL, &lstats_fops);
290	return 0;
291}
292
293int sysctl_latencytop(struct ctl_table *table, int write,
294			void __user *buffer, size_t *lenp, loff_t *ppos)
295{
296	int err;
297
298	err = proc_dointvec(table, write, buffer, lenp, ppos);
299	if (latencytop_enabled)
300		force_schedstat_enabled();
301
302	return err;
303}
304device_initcall(init_lstats_procfs);
v3.1
  1/*
  2 * latencytop.c: Latency display infrastructure
  3 *
  4 * (C) Copyright 2008 Intel Corporation
  5 * Author: Arjan van de Ven <arjan@linux.intel.com>
  6 *
  7 * This program is free software; you can redistribute it and/or
  8 * modify it under the terms of the GNU General Public License
  9 * as published by the Free Software Foundation; version 2
 10 * of the License.
 11 */
 12
 13/*
 14 * CONFIG_LATENCYTOP enables a kernel latency tracking infrastructure that is
 15 * used by the "latencytop" userspace tool. The latency that is tracked is not
 16 * the 'traditional' interrupt latency (which is primarily caused by something
 17 * else consuming CPU), but instead, it is the latency an application encounters
 18 * because the kernel sleeps on its behalf for various reasons.
 19 *
 20 * This code tracks 2 levels of statistics:
 21 * 1) System level latency
 22 * 2) Per process latency
 23 *
 24 * The latency is stored in fixed sized data structures in an accumulated form;
 25 * if the "same" latency cause is hit twice, this will be tracked as one entry
 26 * in the data structure. Both the count, total accumulated latency and maximum
 27 * latency are tracked in this data structure. When the fixed size structure is
 28 * full, no new causes are tracked until the buffer is flushed by writing to
 29 * the /proc file; the userspace tool does this on a regular basis.
 30 *
 31 * A latency cause is identified by a stringified backtrace at the point that
 32 * the scheduler gets invoked. The userland tool will use this string to
 33 * identify the cause of the latency in human readable form.
 34 *
 35 * The information is exported via /proc/latency_stats and /proc/<pid>/latency.
 36 * These files look like this:
 37 *
 38 * Latency Top version : v0.1
 39 * 70 59433 4897 i915_irq_wait drm_ioctl vfs_ioctl do_vfs_ioctl sys_ioctl
 40 * |    |    |    |
 41 * |    |    |    +----> the stringified backtrace
 42 * |    |    +---------> The maximum latency for this entry in microseconds
 43 * |    +--------------> The accumulated latency for this entry (microseconds)
 44 * +-------------------> The number of times this entry is hit
 45 *
 46 * (note: the average latency is the accumulated latency divided by the number
 47 * of times)
 48 */
 49
 50#include <linux/latencytop.h>
 51#include <linux/kallsyms.h>
 52#include <linux/seq_file.h>
 53#include <linux/notifier.h>
 54#include <linux/spinlock.h>
 55#include <linux/proc_fs.h>
 56#include <linux/module.h>
 
 57#include <linux/sched.h>
 58#include <linux/list.h>
 59#include <linux/stacktrace.h>
 60
 61static DEFINE_SPINLOCK(latency_lock);
 62
 63#define MAXLR 128
 64static struct latency_record latency_record[MAXLR];
 65
 66int latencytop_enabled;
 67
 68void clear_all_latency_tracing(struct task_struct *p)
 69{
 70	unsigned long flags;
 71
 72	if (!latencytop_enabled)
 73		return;
 74
 75	spin_lock_irqsave(&latency_lock, flags);
 76	memset(&p->latency_record, 0, sizeof(p->latency_record));
 77	p->latency_record_count = 0;
 78	spin_unlock_irqrestore(&latency_lock, flags);
 79}
 80
 81static void clear_global_latency_tracing(void)
 82{
 83	unsigned long flags;
 84
 85	spin_lock_irqsave(&latency_lock, flags);
 86	memset(&latency_record, 0, sizeof(latency_record));
 87	spin_unlock_irqrestore(&latency_lock, flags);
 88}
 89
 90static void __sched
 91account_global_scheduler_latency(struct task_struct *tsk, struct latency_record *lat)
 
 92{
 93	int firstnonnull = MAXLR + 1;
 94	int i;
 95
 96	if (!latencytop_enabled)
 97		return;
 98
 99	/* skip kernel threads for now */
100	if (!tsk->mm)
101		return;
102
103	for (i = 0; i < MAXLR; i++) {
104		int q, same = 1;
105
106		/* Nothing stored: */
107		if (!latency_record[i].backtrace[0]) {
108			if (firstnonnull > i)
109				firstnonnull = i;
110			continue;
111		}
112		for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
113			unsigned long record = lat->backtrace[q];
114
115			if (latency_record[i].backtrace[q] != record) {
116				same = 0;
117				break;
118			}
119
120			/* 0 and ULONG_MAX entries mean end of backtrace: */
121			if (record == 0 || record == ULONG_MAX)
122				break;
123		}
124		if (same) {
125			latency_record[i].count++;
126			latency_record[i].time += lat->time;
127			if (lat->time > latency_record[i].max)
128				latency_record[i].max = lat->time;
129			return;
130		}
131	}
132
133	i = firstnonnull;
134	if (i >= MAXLR - 1)
135		return;
136
137	/* Allocted a new one: */
138	memcpy(&latency_record[i], lat, sizeof(struct latency_record));
139}
140
141/*
142 * Iterator to store a backtrace into a latency record entry
143 */
144static inline void store_stacktrace(struct task_struct *tsk,
145					struct latency_record *lat)
146{
147	struct stack_trace trace;
148
149	memset(&trace, 0, sizeof(trace));
150	trace.max_entries = LT_BACKTRACEDEPTH;
151	trace.entries = &lat->backtrace[0];
152	save_stack_trace_tsk(tsk, &trace);
153}
154
155/**
156 * __account_scheduler_latency - record an occurred latency
157 * @tsk - the task struct of the task hitting the latency
158 * @usecs - the duration of the latency in microseconds
159 * @inter - 1 if the sleep was interruptible, 0 if uninterruptible
160 *
161 * This function is the main entry point for recording latency entries
162 * as called by the scheduler.
163 *
164 * This function has a few special cases to deal with normal 'non-latency'
165 * sleeps: specifically, interruptible sleep longer than 5 msec is skipped
166 * since this usually is caused by waiting for events via select() and co.
167 *
168 * Negative latencies (caused by time going backwards) are also explicitly
169 * skipped.
170 */
171void __sched
172__account_scheduler_latency(struct task_struct *tsk, int usecs, int inter)
173{
174	unsigned long flags;
175	int i, q;
176	struct latency_record lat;
177
178	/* Long interruptible waits are generally user requested... */
179	if (inter && usecs > 5000)
180		return;
181
182	/* Negative sleeps are time going backwards */
183	/* Zero-time sleeps are non-interesting */
184	if (usecs <= 0)
185		return;
186
187	memset(&lat, 0, sizeof(lat));
188	lat.count = 1;
189	lat.time = usecs;
190	lat.max = usecs;
191	store_stacktrace(tsk, &lat);
192
193	spin_lock_irqsave(&latency_lock, flags);
194
195	account_global_scheduler_latency(tsk, &lat);
196
197	for (i = 0; i < tsk->latency_record_count; i++) {
198		struct latency_record *mylat;
199		int same = 1;
200
201		mylat = &tsk->latency_record[i];
202		for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
203			unsigned long record = lat.backtrace[q];
204
205			if (mylat->backtrace[q] != record) {
206				same = 0;
207				break;
208			}
209
210			/* 0 and ULONG_MAX entries mean end of backtrace: */
211			if (record == 0 || record == ULONG_MAX)
212				break;
213		}
214		if (same) {
215			mylat->count++;
216			mylat->time += lat.time;
217			if (lat.time > mylat->max)
218				mylat->max = lat.time;
219			goto out_unlock;
220		}
221	}
222
223	/*
224	 * short term hack; if we're > 32 we stop; future we recycle:
225	 */
226	if (tsk->latency_record_count >= LT_SAVECOUNT)
227		goto out_unlock;
228
229	/* Allocated a new one: */
230	i = tsk->latency_record_count++;
231	memcpy(&tsk->latency_record[i], &lat, sizeof(struct latency_record));
232
233out_unlock:
234	spin_unlock_irqrestore(&latency_lock, flags);
235}
236
237static int lstats_show(struct seq_file *m, void *v)
238{
239	int i;
240
241	seq_puts(m, "Latency Top version : v0.1\n");
242
243	for (i = 0; i < MAXLR; i++) {
244		struct latency_record *lr = &latency_record[i];
245
246		if (lr->backtrace[0]) {
247			int q;
248			seq_printf(m, "%i %lu %lu",
249				   lr->count, lr->time, lr->max);
250			for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
251				unsigned long bt = lr->backtrace[q];
252				if (!bt)
253					break;
254				if (bt == ULONG_MAX)
255					break;
256				seq_printf(m, " %ps", (void *)bt);
257			}
258			seq_printf(m, "\n");
259		}
260	}
261	return 0;
262}
263
264static ssize_t
265lstats_write(struct file *file, const char __user *buf, size_t count,
266	     loff_t *offs)
267{
268	clear_global_latency_tracing();
269
270	return count;
271}
272
273static int lstats_open(struct inode *inode, struct file *filp)
274{
275	return single_open(filp, lstats_show, NULL);
276}
277
278static const struct file_operations lstats_fops = {
279	.open		= lstats_open,
280	.read		= seq_read,
281	.write		= lstats_write,
282	.llseek		= seq_lseek,
283	.release	= single_release,
284};
285
286static int __init init_lstats_procfs(void)
287{
288	proc_create("latency_stats", 0644, NULL, &lstats_fops);
289	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
290}
291device_initcall(init_lstats_procfs);