Linux Audio

Check our new training course

Loading...
v4.6
 
  1/*
  2 *  linux/arch/parisc/kernel/time.c
 
  3 *
  4 *  Copyright (C) 1991, 1992, 1995  Linus Torvalds
  5 *  Modifications for ARM (C) 1994, 1995, 1996,1997 Russell King
  6 *  Copyright (C) 1999 SuSE GmbH, (Philipp Rumpf, prumpf@tux.org)
  7 *
  8 * 1994-07-02  Alan Modra
  9 *             fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime
 10 * 1998-12-20  Updated NTP code according to technical memorandum Jan '96
 11 *             "A Kernel Model for Precision Timekeeping" by Dave Mills
 12 */
 13#include <linux/errno.h>
 14#include <linux/module.h>
 15#include <linux/sched.h>
 16#include <linux/kernel.h>
 17#include <linux/param.h>
 18#include <linux/string.h>
 19#include <linux/mm.h>
 20#include <linux/interrupt.h>
 21#include <linux/time.h>
 22#include <linux/init.h>
 23#include <linux/smp.h>
 24#include <linux/profile.h>
 25#include <linux/clocksource.h>
 
 
 26#include <linux/platform_device.h>
 27#include <linux/ftrace.h>
 28
 29#include <asm/uaccess.h>
 30#include <asm/io.h>
 31#include <asm/irq.h>
 32#include <asm/page.h>
 33#include <asm/param.h>
 34#include <asm/pdc.h>
 35#include <asm/led.h>
 36
 37#include <linux/timex.h>
 38
 39static unsigned long clocktick __read_mostly;	/* timer cycles per tick */
 40
 41/*
 42 * We keep time on PA-RISC Linux by using the Interval Timer which is
 43 * a pair of registers; one is read-only and one is write-only; both
 44 * accessed through CR16.  The read-only register is 32 or 64 bits wide,
 45 * and increments by 1 every CPU clock tick.  The architecture only
 46 * guarantees us a rate between 0.5 and 2, but all implementations use a
 47 * rate of 1.  The write-only register is 32-bits wide.  When the lowest
 48 * 32 bits of the read-only register compare equal to the write-only
 49 * register, it raises a maskable external interrupt.  Each processor has
 50 * an Interval Timer of its own and they are not synchronised.  
 51 *
 52 * We want to generate an interrupt every 1/HZ seconds.  So we program
 53 * CR16 to interrupt every @clocktick cycles.  The it_value in cpu_data
 54 * is programmed with the intended time of the next tick.  We can be
 55 * held off for an arbitrarily long period of time by interrupts being
 56 * disabled, so we may miss one or more ticks.
 57 */
 58irqreturn_t __irq_entry timer_interrupt(int irq, void *dev_id)
 59{
 60	unsigned long now, now2;
 61	unsigned long next_tick;
 62	unsigned long cycles_elapsed, ticks_elapsed = 1;
 63	unsigned long cycles_remainder;
 64	unsigned int cpu = smp_processor_id();
 65	struct cpuinfo_parisc *cpuinfo = &per_cpu(cpu_data, cpu);
 66
 67	/* gcc can optimize for "read-only" case with a local clocktick */
 68	unsigned long cpt = clocktick;
 
 69
 70	profile_tick(CPU_PROFILING);
 
 71
 72	/* Initialize next_tick to the expected tick time. */
 73	next_tick = cpuinfo->it_value;
 74
 75	/* Get current cycle counter (Control Register 16). */
 76	now = mfctl(16);
 77
 78	cycles_elapsed = now - next_tick;
 79
 80	if ((cycles_elapsed >> 6) < cpt) {
 81		/* use "cheap" math (add/subtract) instead
 82		 * of the more expensive div/mul method
 83		 */
 84		cycles_remainder = cycles_elapsed;
 85		while (cycles_remainder > cpt) {
 86			cycles_remainder -= cpt;
 87			ticks_elapsed++;
 88		}
 89	} else {
 90		/* TODO: Reduce this to one fdiv op */
 91		cycles_remainder = cycles_elapsed % cpt;
 92		ticks_elapsed += cycles_elapsed / cpt;
 93	}
 94
 95	/* convert from "division remainder" to "remainder of clock tick" */
 96	cycles_remainder = cpt - cycles_remainder;
 
 
 97
 98	/* Determine when (in CR16 cycles) next IT interrupt will fire.
 99	 * We want IT to fire modulo clocktick even if we miss/skip some.
100	 * But those interrupts don't in fact get delivered that regularly.
101	 */
102	next_tick = now + cycles_remainder;
103
104	cpuinfo->it_value = next_tick;
105
106	/* Program the IT when to deliver the next interrupt.
107	 * Only bottom 32-bits of next_tick are writable in CR16!
108	 */
109	mtctl(next_tick, 16);
110
111	/* Skip one clocktick on purpose if we missed next_tick.
112	 * The new CR16 must be "later" than current CR16 otherwise
113	 * itimer would not fire until CR16 wrapped - e.g 4 seconds
114	 * later on a 1Ghz processor. We'll account for the missed
115	 * tick on the next timer interrupt.
116	 *
117	 * "next_tick - now" will always give the difference regardless
118	 * if one or the other wrapped. If "now" is "bigger" we'll end up
119	 * with a very large unsigned number.
120	 */
121	now2 = mfctl(16);
122	if (next_tick - now2 > cpt)
123		mtctl(next_tick+cpt, 16);
124
125#if 1
126/*
127 * GGG: DEBUG code for how many cycles programming CR16 used.
128 */
129	if (unlikely(now2 - now > 0x3000)) 	/* 12K cycles */
130		printk (KERN_CRIT "timer_interrupt(CPU %d): SLOW! 0x%lx cycles!"
131			" cyc %lX rem %lX "
132			" next/now %lX/%lX\n",
133			cpu, now2 - now, cycles_elapsed, cycles_remainder,
134			next_tick, now );
135#endif
136
137	/* Can we differentiate between "early CR16" (aka Scenario 1) and
138	 * "long delay" (aka Scenario 3)? I don't think so.
139	 *
140	 * Timer_interrupt will be delivered at least a few hundred cycles
141	 * after the IT fires. But it's arbitrary how much time passes
142	 * before we call it "late". I've picked one second.
143	 *
144	 * It's important NO printk's are between reading CR16 and
145	 * setting up the next value. May introduce huge variance.
146	 */
147	if (unlikely(ticks_elapsed > HZ)) {
148		/* Scenario 3: very long delay?  bad in any case */
149		printk (KERN_CRIT "timer_interrupt(CPU %d): delayed!"
150			" cycles %lX rem %lX "
151			" next/now %lX/%lX\n",
152			cpu,
153			cycles_elapsed, cycles_remainder,
154			next_tick, now );
155	}
156
157	/* Done mucking with unreliable delivery of interrupts.
158	 * Go do system house keeping.
159	 */
160
161	if (!--cpuinfo->prof_counter) {
162		cpuinfo->prof_counter = cpuinfo->prof_multiplier;
163		update_process_times(user_mode(get_irq_regs()));
164	}
165
166	if (cpu == 0)
167		xtime_update(ticks_elapsed);
 
168
169	return IRQ_HANDLED;
170}
171
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
172
173unsigned long profile_pc(struct pt_regs *regs)
174{
175	unsigned long pc = instruction_pointer(regs);
176
177	if (regs->gr[0] & PSW_N)
178		pc -= 4;
179
180#ifdef CONFIG_SMP
181	if (in_lock_functions(pc))
182		pc = regs->gr[2];
183#endif
184
185	return pc;
186}
187EXPORT_SYMBOL(profile_pc);
188
189
190/* clock source code */
191
192static cycle_t read_cr16(struct clocksource *cs)
193{
194	return get_cycles();
195}
196
197static struct clocksource clocksource_cr16 = {
198	.name			= "cr16",
199	.rating			= 300,
200	.read			= read_cr16,
201	.mask			= CLOCKSOURCE_MASK(BITS_PER_LONG),
202	.flags			= CLOCK_SOURCE_IS_CONTINUOUS,
203};
204
205int update_cr16_clocksource(void)
206{
207	/* since the cr16 cycle counters are not synchronized across CPUs,
208	   we'll check if we should switch to a safe clocksource: */
209	if (clocksource_cr16.rating != 0 && num_online_cpus() > 1) {
210		clocksource_change_rating(&clocksource_cr16, 0);
211		return 1;
212	}
213
 
 
214	return 0;
215}
216
217void __init start_cpu_itimer(void)
218{
219	unsigned int cpu = smp_processor_id();
220	unsigned long next_tick = mfctl(16) + clocktick;
221
222	mtctl(next_tick, 16);		/* kick off Interval Timer (CR16) */
 
 
 
 
 
 
 
223
224	per_cpu(cpu_data, cpu).it_value = next_tick;
225}
226
 
 
 
 
 
227static int __init rtc_init(void)
228{
229	struct platform_device *pdev;
230
231	pdev = platform_device_register_simple("rtc-generic", -1, NULL, 0);
 
 
 
232	return PTR_ERR_OR_ZERO(pdev);
233}
234device_initcall(rtc_init);
 
235
236void read_persistent_clock(struct timespec *ts)
237{
238	static struct pdc_tod tod_data;
239	if (pdc_tod_read(&tod_data) == 0) {
240		ts->tv_sec = tod_data.tod_sec;
241		ts->tv_nsec = tod_data.tod_usec * 1000;
242	} else {
243		printk(KERN_ERR "Error reading tod clock\n");
244	        ts->tv_sec = 0;
245		ts->tv_nsec = 0;
246	}
247}
248
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
249void __init time_init(void)
250{
251	unsigned long current_cr16_khz;
 
252
253	clocktick = (100 * PAGE0->mem_10msec) / HZ;
 
254
255	start_cpu_itimer();	/* get CPU 0 started */
256
257	/* register at clocksource framework */
258	current_cr16_khz = PAGE0->mem_10msec/10;  /* kHz */
259	clocksource_register_khz(&clocksource_cr16, current_cr16_khz);
260}
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Common time service routines for parisc machines.
  4 * based on arch/loongarch/kernel/time.c
  5 *
  6 * Copyright (C) 2024 Helge Deller <deller@gmx.de>
 
 
 
 
 
 
 
  7 */
  8#include <linux/clockchips.h>
  9#include <linux/delay.h>
 10#include <linux/export.h>
 
 
 
 
 
 
 11#include <linux/init.h>
 12#include <linux/interrupt.h>
 13#include <linux/kernel.h>
 14#include <linux/sched_clock.h>
 15#include <linux/spinlock.h>
 16#include <linux/rtc.h>
 17#include <linux/platform_device.h>
 18#include <asm/processor.h>
 19
 20static u64 cr16_clock_freq;
 21static unsigned long clocktick;
 
 
 
 
 
 22
 23int time_keeper_id;	/* CPU used for timekeeping */
 24
 25static DEFINE_PER_CPU(struct clock_event_device, parisc_clockevent_device);
 26
 27static void parisc_event_handler(struct clock_event_device *dev)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 28{
 29}
 
 
 
 
 
 30
 31static int parisc_timer_next_event(unsigned long delta, struct clock_event_device *evt)
 32{
 33	unsigned long new_cr16;
 34
 35	new_cr16 = mfctl(16) + delta;
 36	mtctl(new_cr16, 16);
 37
 38	return 0;
 39}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 40
 41irqreturn_t timer_interrupt(int irq, void *data)
 42{
 43	struct clock_event_device *cd;
 44	int cpu = smp_processor_id();
 45
 46	cd = &per_cpu(parisc_clockevent_device, cpu);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 47
 48	if (clockevent_state_periodic(cd))
 49		parisc_timer_next_event(clocktick, cd);
 
 
 
 
 
 
 
 
 
 50
 51	if (clockevent_state_periodic(cd) || clockevent_state_oneshot(cd))
 52		cd->event_handler(cd);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 53
 54	return IRQ_HANDLED;
 55}
 
 
 
 
 
 
 56
 57static int parisc_set_state_oneshot(struct clock_event_device *evt)
 58{
 59	parisc_timer_next_event(clocktick, evt);
 60
 61	return 0;
 62}
 63
 64static int parisc_set_state_periodic(struct clock_event_device *evt)
 65{
 66	parisc_timer_next_event(clocktick, evt);
 67
 68	return 0;
 69}
 70
 71static int parisc_set_state_shutdown(struct clock_event_device *evt)
 72{
 73	return 0;
 74}
 75
 76void parisc_clockevent_init(void)
 77{
 78	unsigned int cpu = smp_processor_id();
 79	unsigned long min_delta = 0x600;	/* XXX */
 80	unsigned long max_delta = (1UL << (BITS_PER_LONG - 1));
 81	struct clock_event_device *cd;
 82
 83	cd = &per_cpu(parisc_clockevent_device, cpu);
 84
 85	cd->name = "cr16_clockevent";
 86	cd->features = CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_PERIODIC |
 87			CLOCK_EVT_FEAT_PERCPU;
 88
 89	cd->irq = TIMER_IRQ;
 90	cd->rating = 320;
 91	cd->cpumask = cpumask_of(cpu);
 92	cd->set_state_oneshot = parisc_set_state_oneshot;
 93	cd->set_state_oneshot_stopped = parisc_set_state_shutdown;
 94	cd->set_state_periodic = parisc_set_state_periodic;
 95	cd->set_state_shutdown = parisc_set_state_shutdown;
 96	cd->set_next_event = parisc_timer_next_event;
 97	cd->event_handler = parisc_event_handler;
 98
 99	clockevents_config_and_register(cd, cr16_clock_freq, min_delta, max_delta);
100}
101
102unsigned long notrace profile_pc(struct pt_regs *regs)
103{
104	unsigned long pc = instruction_pointer(regs);
105
106	if (regs->gr[0] & PSW_N)
107		pc -= 4;
108
109#ifdef CONFIG_SMP
110	if (in_lock_functions(pc))
111		pc = regs->gr[2];
112#endif
113
114	return pc;
115}
116EXPORT_SYMBOL(profile_pc);
117
118#if IS_ENABLED(CONFIG_RTC_DRV_GENERIC)
119static int rtc_generic_get_time(struct device *dev, struct rtc_time *tm)
 
 
120{
121	struct pdc_tod tod_data;
 
 
 
 
 
 
 
 
 
122
123	memset(tm, 0, sizeof(*tm));
124	if (pdc_tod_read(&tod_data) < 0)
125		return -EOPNOTSUPP;
 
 
 
 
 
126
127	/* we treat tod_sec as unsigned, so this can work until year 2106 */
128	rtc_time64_to_tm(tod_data.tod_sec, tm);
129	return 0;
130}
131
132static int rtc_generic_set_time(struct device *dev, struct rtc_time *tm)
133{
134	time64_t secs = rtc_tm_to_time64(tm);
135	int ret;
136
137	/* hppa has Y2K38 problem: pdc_tod_set() takes an u32 value! */
138	ret = pdc_tod_set(secs, 0);
139	if (ret != 0) {
140		pr_warn("pdc_tod_set(%lld) returned error %d\n", secs, ret);
141		if (ret == PDC_INVALID_ARG)
142			return -EINVAL;
143		return -EOPNOTSUPP;
144	}
145
146	return 0;
147}
148
149static const struct rtc_class_ops rtc_generic_ops = {
150	.read_time = rtc_generic_get_time,
151	.set_time = rtc_generic_set_time,
152};
153
154static int __init rtc_init(void)
155{
156	struct platform_device *pdev;
157
158	pdev = platform_device_register_data(NULL, "rtc-generic", -1,
159					     &rtc_generic_ops,
160					     sizeof(rtc_generic_ops));
161
162	return PTR_ERR_OR_ZERO(pdev);
163}
164device_initcall(rtc_init);
165#endif
166
167void read_persistent_clock64(struct timespec64 *ts)
168{
169	static struct pdc_tod tod_data;
170	if (pdc_tod_read(&tod_data) == 0) {
171		ts->tv_sec = tod_data.tod_sec;
172		ts->tv_nsec = tod_data.tod_usec * 1000;
173	} else {
174		printk(KERN_ERR "Error reading tod clock\n");
175	        ts->tv_sec = 0;
176		ts->tv_nsec = 0;
177	}
178}
179
180static u64 notrace read_cr16_sched_clock(void)
181{
182	return get_cycles();
183}
184
185static u64 notrace read_cr16(struct clocksource *cs)
186{
187	return get_cycles();
188}
189
190static struct clocksource clocksource_cr16 = {
191	.name			= "cr16",
192	.rating			= 300,
193	.read			= read_cr16,
194	.mask			= CLOCKSOURCE_MASK(BITS_PER_LONG),
195	.flags			= CLOCK_SOURCE_IS_CONTINUOUS |
196					CLOCK_SOURCE_VALID_FOR_HRES |
197					CLOCK_SOURCE_MUST_VERIFY |
198					CLOCK_SOURCE_VERIFY_PERCPU,
199};
200
201
202/*
203 * timer interrupt and sched_clock() initialization
204 */
205
206void __init time_init(void)
207{
208	cr16_clock_freq = 100 * PAGE0->mem_10msec;  /* Hz */
209	clocktick = cr16_clock_freq / HZ;
210
211	/* register as sched_clock source */
212	sched_clock_register(read_cr16_sched_clock, BITS_PER_LONG, cr16_clock_freq);
213
214	parisc_clockevent_init();
215
216	/* register at clocksource framework */
217	clocksource_register_hz(&clocksource_cr16, cr16_clock_freq);
 
218}