Linux Audio

Check our new training course

Open-source upstreaming

Need help get the support for your hardware in upstream Linux?
Loading...
v4.6
 
 
 
 
 
 
   1#include "callchain.h"
   2#include "debug.h"
 
 
   3#include "event.h"
   4#include "evsel.h"
   5#include "hist.h"
   6#include "machine.h"
   7#include "map.h"
 
 
 
 
 
 
 
   8#include "sort.h"
   9#include "strlist.h"
 
  10#include "thread.h"
 
  11#include "vdso.h"
  12#include <stdbool.h>
  13#include <symbol/kallsyms.h>
 
 
  14#include "unwind.h"
  15#include "linux/hash.h"
 
 
 
 
 
  16
  17static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock);
 
 
 
 
  18
  19static void dsos__init(struct dsos *dsos)
  20{
  21	INIT_LIST_HEAD(&dsos->head);
  22	dsos->root = RB_ROOT;
  23	pthread_rwlock_init(&dsos->lock, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  24}
  25
  26int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
  27{
 
 
  28	memset(machine, 0, sizeof(*machine));
  29	map_groups__init(&machine->kmaps, machine);
 
 
 
  30	RB_CLEAR_NODE(&machine->rb_node);
  31	dsos__init(&machine->dsos);
  32
  33	machine->threads = RB_ROOT;
  34	pthread_rwlock_init(&machine->threads_lock, NULL);
  35	INIT_LIST_HEAD(&machine->dead_threads);
  36	machine->last_match = NULL;
  37
  38	machine->vdso_info = NULL;
  39	machine->env = NULL;
  40
  41	machine->pid = pid;
  42
  43	machine->symbol_filter = NULL;
  44	machine->id_hdr_size = 0;
 
  45	machine->comm_exec = false;
  46	machine->kernel_start = 0;
  47
  48	memset(machine->vmlinux_maps, 0, sizeof(machine->vmlinux_maps));
  49
  50	machine->root_dir = strdup(root_dir);
  51	if (machine->root_dir == NULL)
  52		return -ENOMEM;
 
 
 
  53
  54	if (pid != HOST_KERNEL_ID) {
  55		struct thread *thread = machine__findnew_thread(machine, -1,
  56								pid);
  57		char comm[64];
  58
  59		if (thread == NULL)
  60			return -ENOMEM;
  61
  62		snprintf(comm, sizeof(comm), "[guest/%d]", pid);
  63		thread__set_comm(thread, comm, 0);
  64		thread__put(thread);
  65	}
  66
  67	machine->current_tid = NULL;
 
  68
 
 
 
 
 
 
  69	return 0;
  70}
  71
  72struct machine *machine__new_host(void)
  73{
  74	struct machine *machine = malloc(sizeof(*machine));
  75
  76	if (machine != NULL) {
  77		machine__init(machine, "", HOST_KERNEL_ID);
  78
  79		if (machine__create_kernel_maps(machine) < 0)
  80			goto out_delete;
 
 
  81	}
  82
  83	return machine;
  84out_delete:
  85	free(machine);
  86	return NULL;
  87}
  88
  89static void dsos__purge(struct dsos *dsos)
  90{
  91	struct dso *pos, *n;
  92
  93	pthread_rwlock_wrlock(&dsos->lock);
  94
  95	list_for_each_entry_safe(pos, n, &dsos->head, node) {
  96		RB_CLEAR_NODE(&pos->rb_node);
  97		pos->root = NULL;
  98		list_del_init(&pos->node);
  99		dso__put(pos);
 
 100	}
 101
 102	pthread_rwlock_unlock(&dsos->lock);
 103}
 104
 105static void dsos__exit(struct dsos *dsos)
 106{
 107	dsos__purge(dsos);
 108	pthread_rwlock_destroy(&dsos->lock);
 109}
 110
 111void machine__delete_threads(struct machine *machine)
 112{
 113	struct rb_node *nd;
 114
 115	pthread_rwlock_wrlock(&machine->threads_lock);
 116	nd = rb_first(&machine->threads);
 117	while (nd) {
 118		struct thread *t = rb_entry(nd, struct thread, rb_node);
 119
 120		nd = rb_next(nd);
 121		__machine__remove_thread(machine, t, false);
 122	}
 123	pthread_rwlock_unlock(&machine->threads_lock);
 124}
 125
 126void machine__exit(struct machine *machine)
 127{
 
 
 
 128	machine__destroy_kernel_maps(machine);
 129	map_groups__exit(&machine->kmaps);
 130	dsos__exit(&machine->dsos);
 131	machine__exit_vdso(machine);
 132	zfree(&machine->root_dir);
 
 133	zfree(&machine->current_tid);
 134	pthread_rwlock_destroy(&machine->threads_lock);
 
 
 135}
 136
 137void machine__delete(struct machine *machine)
 138{
 139	machine__exit(machine);
 140	free(machine);
 
 
 141}
 142
 143void machines__init(struct machines *machines)
 144{
 145	machine__init(&machines->host, "", HOST_KERNEL_ID);
 146	machines->guests = RB_ROOT;
 147	machines->symbol_filter = NULL;
 148}
 149
 150void machines__exit(struct machines *machines)
 151{
 152	machine__exit(&machines->host);
 153	/* XXX exit guest */
 154}
 155
 156struct machine *machines__add(struct machines *machines, pid_t pid,
 157			      const char *root_dir)
 158{
 159	struct rb_node **p = &machines->guests.rb_node;
 160	struct rb_node *parent = NULL;
 161	struct machine *pos, *machine = malloc(sizeof(*machine));
 
 162
 163	if (machine == NULL)
 164		return NULL;
 165
 166	if (machine__init(machine, root_dir, pid) != 0) {
 167		free(machine);
 168		return NULL;
 169	}
 170
 171	machine->symbol_filter = machines->symbol_filter;
 172
 173	while (*p != NULL) {
 174		parent = *p;
 175		pos = rb_entry(parent, struct machine, rb_node);
 176		if (pid < pos->pid)
 177			p = &(*p)->rb_left;
 178		else
 179			p = &(*p)->rb_right;
 
 
 180	}
 181
 182	rb_link_node(&machine->rb_node, parent, p);
 183	rb_insert_color(&machine->rb_node, &machines->guests);
 184
 185	return machine;
 186}
 187
 188void machines__set_symbol_filter(struct machines *machines,
 189				 symbol_filter_t symbol_filter)
 190{
 191	struct rb_node *nd;
 192
 193	machines->symbol_filter = symbol_filter;
 194	machines->host.symbol_filter = symbol_filter;
 195
 196	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
 197		struct machine *machine = rb_entry(nd, struct machine, rb_node);
 198
 199		machine->symbol_filter = symbol_filter;
 200	}
 201}
 202
 203void machines__set_comm_exec(struct machines *machines, bool comm_exec)
 204{
 205	struct rb_node *nd;
 206
 207	machines->host.comm_exec = comm_exec;
 208
 209	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
 210		struct machine *machine = rb_entry(nd, struct machine, rb_node);
 211
 212		machine->comm_exec = comm_exec;
 213	}
 214}
 215
 216struct machine *machines__find(struct machines *machines, pid_t pid)
 217{
 218	struct rb_node **p = &machines->guests.rb_node;
 219	struct rb_node *parent = NULL;
 220	struct machine *machine;
 221	struct machine *default_machine = NULL;
 222
 223	if (pid == HOST_KERNEL_ID)
 224		return &machines->host;
 225
 226	while (*p != NULL) {
 227		parent = *p;
 228		machine = rb_entry(parent, struct machine, rb_node);
 229		if (pid < machine->pid)
 230			p = &(*p)->rb_left;
 231		else if (pid > machine->pid)
 232			p = &(*p)->rb_right;
 233		else
 234			return machine;
 235		if (!machine->pid)
 236			default_machine = machine;
 237	}
 238
 239	return default_machine;
 240}
 241
 242struct machine *machines__findnew(struct machines *machines, pid_t pid)
 243{
 244	char path[PATH_MAX];
 245	const char *root_dir = "";
 246	struct machine *machine = machines__find(machines, pid);
 247
 248	if (machine && (machine->pid == pid))
 249		goto out;
 250
 251	if ((pid != HOST_KERNEL_ID) &&
 252	    (pid != DEFAULT_GUEST_KERNEL_ID) &&
 253	    (symbol_conf.guestmount)) {
 254		sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
 255		if (access(path, R_OK)) {
 256			static struct strlist *seen;
 257
 258			if (!seen)
 259				seen = strlist__new(NULL, NULL);
 260
 261			if (!strlist__has_entry(seen, path)) {
 262				pr_err("Can't access file %s\n", path);
 263				strlist__add(seen, path);
 264			}
 265			machine = NULL;
 266			goto out;
 267		}
 268		root_dir = path;
 269	}
 270
 271	machine = machines__add(machines, pid, root_dir);
 272out:
 273	return machine;
 274}
 275
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 276void machines__process_guests(struct machines *machines,
 277			      machine__process_t process, void *data)
 278{
 279	struct rb_node *nd;
 280
 281	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
 282		struct machine *pos = rb_entry(nd, struct machine, rb_node);
 283		process(pos, data);
 284	}
 285}
 286
 287char *machine__mmap_name(struct machine *machine, char *bf, size_t size)
 288{
 289	if (machine__is_host(machine))
 290		snprintf(bf, size, "[%s]", "kernel.kallsyms");
 291	else if (machine__is_default_guest(machine))
 292		snprintf(bf, size, "[%s]", "guest.kernel.kallsyms");
 293	else {
 294		snprintf(bf, size, "[%s.%d]", "guest.kernel.kallsyms",
 295			 machine->pid);
 296	}
 297
 298	return bf;
 299}
 300
 301void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
 302{
 303	struct rb_node *node;
 304	struct machine *machine;
 305
 306	machines->host.id_hdr_size = id_hdr_size;
 307
 308	for (node = rb_first(&machines->guests); node; node = rb_next(node)) {
 
 309		machine = rb_entry(node, struct machine, rb_node);
 310		machine->id_hdr_size = id_hdr_size;
 311	}
 312
 313	return;
 314}
 315
 316static void machine__update_thread_pid(struct machine *machine,
 317				       struct thread *th, pid_t pid)
 318{
 319	struct thread *leader;
 320
 321	if (pid == th->pid_ || pid == -1 || th->pid_ != -1)
 322		return;
 323
 324	th->pid_ = pid;
 325
 326	if (th->pid_ == th->tid)
 327		return;
 328
 329	leader = __machine__findnew_thread(machine, th->pid_, th->pid_);
 330	if (!leader)
 331		goto out_err;
 332
 333	if (!leader->mg)
 334		leader->mg = map_groups__new(machine);
 335
 336	if (!leader->mg)
 337		goto out_err;
 338
 339	if (th->mg == leader->mg)
 340		return;
 341
 342	if (th->mg) {
 343		/*
 344		 * Maps are created from MMAP events which provide the pid and
 345		 * tid.  Consequently there never should be any maps on a thread
 346		 * with an unknown pid.  Just print an error if there are.
 347		 */
 348		if (!map_groups__empty(th->mg))
 349			pr_err("Discarding thread maps for %d:%d\n",
 350			       th->pid_, th->tid);
 351		map_groups__put(th->mg);
 352	}
 353
 354	th->mg = map_groups__get(leader->mg);
 355out_put:
 356	thread__put(leader);
 357	return;
 358out_err:
 359	pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid);
 360	goto out_put;
 361}
 362
 363/*
 364 * Caller must eventually drop thread->refcnt returned with a successfull
 365 * lookup/new thread inserted.
 366 */
 367static struct thread *____machine__findnew_thread(struct machine *machine,
 368						  pid_t pid, pid_t tid,
 369						  bool create)
 370{
 371	struct rb_node **p = &machine->threads.rb_node;
 372	struct rb_node *parent = NULL;
 373	struct thread *th;
 374
 375	/*
 376	 * Front-end cache - TID lookups come in blocks,
 377	 * so most of the time we dont have to look up
 378	 * the full rbtree:
 379	 */
 380	th = machine->last_match;
 381	if (th != NULL) {
 382		if (th->tid == tid) {
 383			machine__update_thread_pid(machine, th, pid);
 384			return thread__get(th);
 385		}
 386
 387		machine->last_match = NULL;
 388	}
 389
 390	while (*p != NULL) {
 391		parent = *p;
 392		th = rb_entry(parent, struct thread, rb_node);
 393
 394		if (th->tid == tid) {
 395			machine->last_match = th;
 396			machine__update_thread_pid(machine, th, pid);
 397			return thread__get(th);
 398		}
 399
 400		if (tid < th->tid)
 401			p = &(*p)->rb_left;
 402		else
 403			p = &(*p)->rb_right;
 404	}
 405
 406	if (!create)
 407		return NULL;
 408
 409	th = thread__new(pid, tid);
 410	if (th != NULL) {
 411		rb_link_node(&th->rb_node, parent, p);
 412		rb_insert_color(&th->rb_node, &machine->threads);
 413
 414		/*
 415		 * We have to initialize map_groups separately
 416		 * after rb tree is updated.
 417		 *
 418		 * The reason is that we call machine__findnew_thread
 419		 * within thread__init_map_groups to find the thread
 420		 * leader and that would screwed the rb tree.
 421		 */
 422		if (thread__init_map_groups(th, machine)) {
 423			rb_erase_init(&th->rb_node, &machine->threads);
 424			RB_CLEAR_NODE(&th->rb_node);
 425			thread__put(th);
 426			return NULL;
 427		}
 428		/*
 429		 * It is now in the rbtree, get a ref
 430		 */
 431		thread__get(th);
 432		machine->last_match = th;
 433	}
 434
 435	return th;
 436}
 437
 438struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
 439{
 440	return ____machine__findnew_thread(machine, pid, tid, true);
 441}
 442
 443struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
 444				       pid_t tid)
 445{
 446	struct thread *th;
 447
 448	pthread_rwlock_wrlock(&machine->threads_lock);
 449	th = __machine__findnew_thread(machine, pid, tid);
 450	pthread_rwlock_unlock(&machine->threads_lock);
 451	return th;
 452}
 453
 454struct thread *machine__find_thread(struct machine *machine, pid_t pid,
 455				    pid_t tid)
 
 
 
 
 
 
 456{
 457	struct thread *th;
 458	pthread_rwlock_rdlock(&machine->threads_lock);
 459	th =  ____machine__findnew_thread(machine, pid, tid, false);
 460	pthread_rwlock_unlock(&machine->threads_lock);
 461	return th;
 
 
 462}
 463
 464struct comm *machine__thread_exec_comm(struct machine *machine,
 465				       struct thread *thread)
 466{
 467	if (machine->comm_exec)
 468		return thread__exec_comm(thread);
 469	else
 470		return thread__comm(thread);
 471}
 472
 473int machine__process_comm_event(struct machine *machine, union perf_event *event,
 474				struct perf_sample *sample)
 475{
 476	struct thread *thread = machine__findnew_thread(machine,
 477							event->comm.pid,
 478							event->comm.tid);
 479	bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
 480	int err = 0;
 481
 482	if (exec)
 483		machine->comm_exec = true;
 484
 485	if (dump_trace)
 486		perf_event__fprintf_comm(event, stdout);
 487
 488	if (thread == NULL ||
 489	    __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
 490		dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
 491		err = -1;
 492	}
 493
 494	thread__put(thread);
 495
 496	return err;
 497}
 498
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 499int machine__process_lost_event(struct machine *machine __maybe_unused,
 500				union perf_event *event, struct perf_sample *sample __maybe_unused)
 501{
 502	dump_printf(": id:%" PRIu64 ": lost:%" PRIu64 "\n",
 503		    event->lost.id, event->lost.lost);
 504	return 0;
 505}
 506
 507int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
 508					union perf_event *event, struct perf_sample *sample)
 509{
 510	dump_printf(": id:%" PRIu64 ": lost samples :%" PRIu64 "\n",
 511		    sample->id, event->lost_samples.lost);
 
 512	return 0;
 513}
 514
 515static struct dso *machine__findnew_module_dso(struct machine *machine,
 516					       struct kmod_path *m,
 517					       const char *filename)
 518{
 519	struct dso *dso;
 520
 521	pthread_rwlock_wrlock(&machine->dsos.lock);
 522
 523	dso = __dsos__find(&machine->dsos, m->name, true);
 524	if (!dso) {
 525		dso = __dsos__addnew(&machine->dsos, m->name);
 526		if (dso == NULL)
 527			goto out_unlock;
 528
 529		if (machine__is_host(machine))
 530			dso->symtab_type = DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE;
 531		else
 532			dso->symtab_type = DSO_BINARY_TYPE__GUEST_KMODULE;
 533
 534		/* _KMODULE_COMP should be next to _KMODULE */
 535		if (m->kmod && m->comp)
 536			dso->symtab_type++;
 537
 538		dso__set_short_name(dso, strdup(m->name), true);
 539		dso__set_long_name(dso, strdup(filename), true);
 540	}
 541
 542	dso__get(dso);
 543out_unlock:
 544	pthread_rwlock_unlock(&machine->dsos.lock);
 545	return dso;
 546}
 547
 548int machine__process_aux_event(struct machine *machine __maybe_unused,
 549			       union perf_event *event)
 550{
 551	if (dump_trace)
 552		perf_event__fprintf_aux(event, stdout);
 553	return 0;
 554}
 555
 556int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
 557					union perf_event *event)
 558{
 559	if (dump_trace)
 560		perf_event__fprintf_itrace_start(event, stdout);
 561	return 0;
 562}
 563
 
 
 
 
 
 
 
 
 564int machine__process_switch_event(struct machine *machine __maybe_unused,
 565				  union perf_event *event)
 566{
 567	if (dump_trace)
 568		perf_event__fprintf_switch(event, stdout);
 569	return 0;
 570}
 571
 572static void dso__adjust_kmod_long_name(struct dso *dso, const char *filename)
 
 
 573{
 574	const char *dup_filename;
 
 
 
 575
 576	if (!filename || !dso || !dso->long_name)
 577		return;
 578	if (dso->long_name[0] != '[')
 579		return;
 580	if (!strchr(filename, '/'))
 581		return;
 582
 583	dup_filename = strdup(filename);
 584	if (!dup_filename)
 585		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 586
 587	dso__set_long_name(dso, dup_filename, true);
 
 
 
 
 
 588}
 589
 590struct map *machine__findnew_module_map(struct machine *machine, u64 start,
 591					const char *filename)
 
 592{
 593	struct map *map = NULL;
 594	struct dso *dso = NULL;
 595	struct kmod_path m;
 596
 597	if (kmod_path__parse_name(&m, filename))
 598		return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 599
 600	map = map_groups__find_by_name(&machine->kmaps, MAP__FUNCTION,
 601				       m.name);
 602	if (map) {
 603		/*
 604		 * If the map's dso is an offline module, give dso__load()
 605		 * a chance to find the file path of that module by fixing
 606		 * long_name.
 607		 */
 608		dso__adjust_kmod_long_name(map->dso, filename);
 609		goto out;
 
 
 
 
 
 
 
 
 
 610	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 611
 612	dso = machine__findnew_module_dso(machine, &m, filename);
 613	if (dso == NULL)
 614		goto out;
 615
 616	map = map__new2(start, dso, MAP__FUNCTION);
 617	if (map == NULL)
 618		goto out;
 619
 620	map_groups__insert(&machine->kmaps, map);
 621
 622	/* Put the map here because map_groups__insert alread got it */
 623	map__put(map);
 
 
 624out:
 625	/* put the dso here, corresponding to  machine__findnew_module_dso */
 626	dso__put(dso);
 627	free(m.name);
 628	return map;
 629}
 630
 631size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
 632{
 633	struct rb_node *nd;
 634	size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
 635
 636	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
 637		struct machine *pos = rb_entry(nd, struct machine, rb_node);
 638		ret += __dsos__fprintf(&pos->dsos.head, fp);
 639	}
 640
 641	return ret;
 642}
 643
 644size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
 645				     bool (skip)(struct dso *dso, int parm), int parm)
 646{
 647	return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
 648}
 649
 650size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
 651				     bool (skip)(struct dso *dso, int parm), int parm)
 652{
 653	struct rb_node *nd;
 654	size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
 655
 656	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
 657		struct machine *pos = rb_entry(nd, struct machine, rb_node);
 658		ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
 659	}
 660	return ret;
 661}
 662
 663size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
 664{
 665	int i;
 666	size_t printed = 0;
 667	struct dso *kdso = machine__kernel_map(machine)->dso;
 668
 669	if (kdso->has_build_id) {
 670		char filename[PATH_MAX];
 671		if (dso__build_id_filename(kdso, filename, sizeof(filename)))
 
 672			printed += fprintf(fp, "[0] %s\n", filename);
 673	}
 674
 675	for (i = 0; i < vmlinux_path__nr_entries; ++i)
 676		printed += fprintf(fp, "[%d] %s\n",
 677				   i + kdso->has_build_id, vmlinux_path[i]);
 678
 679	return printed;
 680}
 681
 682size_t machine__fprintf(struct machine *machine, FILE *fp)
 683{
 684	size_t ret = 0;
 685	struct rb_node *nd;
 686
 687	pthread_rwlock_rdlock(&machine->threads_lock);
 688
 689	for (nd = rb_first(&machine->threads); nd; nd = rb_next(nd)) {
 690		struct thread *pos = rb_entry(nd, struct thread, rb_node);
 
 691
 692		ret += thread__fprintf(pos, fp);
 693	}
 
 
 694
 695	pthread_rwlock_unlock(&machine->threads_lock);
 
 
 
 
 
 
 696
 697	return ret;
 
 698}
 699
 700static struct dso *machine__get_kernel(struct machine *machine)
 701{
 702	const char *vmlinux_name = NULL;
 703	struct dso *kernel;
 704
 705	if (machine__is_host(machine)) {
 706		vmlinux_name = symbol_conf.vmlinux_name;
 707		if (!vmlinux_name)
 708			vmlinux_name = "[kernel.kallsyms]";
 709
 710		kernel = machine__findnew_kernel(machine, vmlinux_name,
 711						 "[kernel]", DSO_TYPE_KERNEL);
 712	} else {
 713		char bf[PATH_MAX];
 714
 715		if (machine__is_default_guest(machine))
 716			vmlinux_name = symbol_conf.default_guest_vmlinux_name;
 717		if (!vmlinux_name)
 718			vmlinux_name = machine__mmap_name(machine, bf,
 719							  sizeof(bf));
 720
 721		kernel = machine__findnew_kernel(machine, vmlinux_name,
 722						 "[guest.kernel]",
 723						 DSO_TYPE_GUEST_KERNEL);
 724	}
 725
 726	if (kernel != NULL && (!kernel->has_build_id))
 727		dso__read_running_kernel_build_id(kernel, machine);
 728
 729	return kernel;
 730}
 731
 732struct process_args {
 733	u64 start;
 734};
 735
 736static void machine__get_kallsyms_filename(struct machine *machine, char *buf,
 737					   size_t bufsz)
 738{
 739	if (machine__is_default_guest(machine))
 740		scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
 741	else
 742		scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
 743}
 744
 745const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};
 746
 747/* Figure out the start address of kernel map from /proc/kallsyms.
 748 * Returns the name of the start symbol in *symbol_name. Pass in NULL as
 749 * symbol_name if it's not that important.
 750 */
 751static u64 machine__get_running_kernel_start(struct machine *machine,
 752					     const char **symbol_name)
 
 753{
 754	char filename[PATH_MAX];
 755	int i;
 756	const char *name;
 757	u64 addr = 0;
 758
 759	machine__get_kallsyms_filename(machine, filename, PATH_MAX);
 760
 761	if (symbol__restricted_filename(filename, "/proc/kallsyms"))
 762		return 0;
 763
 764	for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
 765		addr = kallsyms__get_function_start(filename, name);
 766		if (addr)
 767			break;
 768	}
 769
 
 
 
 770	if (symbol_name)
 771		*symbol_name = name;
 772
 773	return addr;
 
 
 
 
 
 
 
 
 774}
 775
 776int __machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
 
 
 777{
 778	enum map_type type;
 779	u64 start = machine__get_running_kernel_start(machine, NULL);
 
 780
 781	/* In case of renewal the kernel map, destroy previous one */
 782	machine__destroy_kernel_maps(machine);
 
 783
 784	for (type = 0; type < MAP__NR_TYPES; ++type) {
 785		struct kmap *kmap;
 786		struct map *map;
 787
 788		machine->vmlinux_maps[type] = map__new2(start, kernel, type);
 789		if (machine->vmlinux_maps[type] == NULL)
 790			return -1;
 791
 792		machine->vmlinux_maps[type]->map_ip =
 793			machine->vmlinux_maps[type]->unmap_ip =
 794				identity__map_ip;
 795		map = __machine__kernel_map(machine, type);
 796		kmap = map__kmap(map);
 797		if (!kmap)
 798			return -1;
 799
 800		kmap->kmaps = &machine->kmaps;
 801		map_groups__insert(&machine->kmaps, map);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 802	}
 803
 804	return 0;
 805}
 806
 807void machine__destroy_kernel_maps(struct machine *machine)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 808{
 809	enum map_type type;
 
 
 
 
 
 810
 811	for (type = 0; type < MAP__NR_TYPES; ++type) {
 812		struct kmap *kmap;
 813		struct map *map = __machine__kernel_map(machine, type);
 
 
 814
 815		if (map == NULL)
 816			continue;
 817
 818		kmap = map__kmap(map);
 819		map_groups__remove(&machine->kmaps, map);
 820		if (kmap && kmap->ref_reloc_sym) {
 821			/*
 822			 * ref_reloc_sym is shared among all maps, so free just
 823			 * on one of them.
 824			 */
 825			if (type == MAP__FUNCTION) {
 826				zfree((char **)&kmap->ref_reloc_sym->name);
 827				zfree(&kmap->ref_reloc_sym);
 828			} else
 829				kmap->ref_reloc_sym = NULL;
 830		}
 
 
 
 
 
 831
 832		map__put(machine->vmlinux_maps[type]);
 833		machine->vmlinux_maps[type] = NULL;
 834	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 835}
 836
 837int machines__create_guest_kernel_maps(struct machines *machines)
 838{
 839	int ret = 0;
 840	struct dirent **namelist = NULL;
 841	int i, items = 0;
 842	char path[PATH_MAX];
 843	pid_t pid;
 844	char *endp;
 845
 846	if (symbol_conf.default_guest_vmlinux_name ||
 847	    symbol_conf.default_guest_modules ||
 848	    symbol_conf.default_guest_kallsyms) {
 849		machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
 850	}
 851
 852	if (symbol_conf.guestmount) {
 853		items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
 854		if (items <= 0)
 855			return -ENOENT;
 856		for (i = 0; i < items; i++) {
 857			if (!isdigit(namelist[i]->d_name[0])) {
 858				/* Filter out . and .. */
 859				continue;
 860			}
 861			pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
 862			if ((*endp != '\0') ||
 863			    (endp == namelist[i]->d_name) ||
 864			    (errno == ERANGE)) {
 865				pr_debug("invalid directory (%s). Skipping.\n",
 866					 namelist[i]->d_name);
 867				continue;
 868			}
 869			sprintf(path, "%s/%s/proc/kallsyms",
 870				symbol_conf.guestmount,
 871				namelist[i]->d_name);
 872			ret = access(path, R_OK);
 873			if (ret) {
 874				pr_debug("Can't access file %s\n", path);
 875				goto failure;
 876			}
 877			machines__create_kernel_maps(machines, pid);
 878		}
 879failure:
 880		free(namelist);
 881	}
 882
 883	return ret;
 884}
 885
 886void machines__destroy_kernel_maps(struct machines *machines)
 887{
 888	struct rb_node *next = rb_first(&machines->guests);
 889
 890	machine__destroy_kernel_maps(&machines->host);
 891
 892	while (next) {
 893		struct machine *pos = rb_entry(next, struct machine, rb_node);
 894
 895		next = rb_next(&pos->rb_node);
 896		rb_erase(&pos->rb_node, &machines->guests);
 897		machine__delete(pos);
 898	}
 899}
 900
 901int machines__create_kernel_maps(struct machines *machines, pid_t pid)
 902{
 903	struct machine *machine = machines__findnew(machines, pid);
 904
 905	if (machine == NULL)
 906		return -1;
 907
 908	return machine__create_kernel_maps(machine);
 909}
 910
 911int machine__load_kallsyms(struct machine *machine, const char *filename,
 912			   enum map_type type, symbol_filter_t filter)
 913{
 914	struct map *map = machine__kernel_map(machine);
 915	int ret = dso__load_kallsyms(map->dso, filename, map, filter);
 
 916
 917	if (ret > 0) {
 918		dso__set_loaded(map->dso, type);
 919		/*
 920		 * Since /proc/kallsyms will have multiple sessions for the
 921		 * kernel, with modules between them, fixup the end of all
 922		 * sections.
 923		 */
 924		__map_groups__fixup_end(&machine->kmaps, type);
 925	}
 926
 927	return ret;
 928}
 929
 930int machine__load_vmlinux_path(struct machine *machine, enum map_type type,
 931			       symbol_filter_t filter)
 932{
 933	struct map *map = machine__kernel_map(machine);
 934	int ret = dso__load_vmlinux_path(map->dso, map, filter);
 
 935
 936	if (ret > 0)
 937		dso__set_loaded(map->dso, type);
 938
 939	return ret;
 940}
 941
 942static void map_groups__fixup_end(struct map_groups *mg)
 943{
 944	int i;
 945	for (i = 0; i < MAP__NR_TYPES; ++i)
 946		__map_groups__fixup_end(mg, i);
 947}
 948
 949static char *get_kernel_version(const char *root_dir)
 950{
 951	char version[PATH_MAX];
 952	FILE *file;
 953	char *name, *tmp;
 954	const char *prefix = "Linux version ";
 955
 956	sprintf(version, "%s/proc/version", root_dir);
 957	file = fopen(version, "r");
 958	if (!file)
 959		return NULL;
 960
 961	version[0] = '\0';
 962	tmp = fgets(version, sizeof(version), file);
 963	fclose(file);
 
 
 964
 965	name = strstr(version, prefix);
 966	if (!name)
 967		return NULL;
 968	name += strlen(prefix);
 969	tmp = strchr(name, ' ');
 970	if (tmp)
 971		*tmp = '\0';
 972
 973	return strdup(name);
 974}
 975
 976static bool is_kmod_dso(struct dso *dso)
 977{
 978	return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
 979	       dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
 980}
 981
 982static int map_groups__set_module_path(struct map_groups *mg, const char *path,
 983				       struct kmod_path *m)
 984{
 985	struct map *map;
 986	char *long_name;
 
 
 987
 988	map = map_groups__find_by_name(mg, MAP__FUNCTION, m->name);
 989	if (map == NULL)
 990		return 0;
 991
 992	long_name = strdup(path);
 993	if (long_name == NULL)
 
 994		return -ENOMEM;
 
 995
 996	dso__set_long_name(map->dso, long_name, true);
 997	dso__kernel_module_get_build_id(map->dso, "");
 
 998
 999	/*
1000	 * Full name could reveal us kmod compression, so
1001	 * we need to update the symtab_type if needed.
1002	 */
1003	if (m->comp && is_kmod_dso(map->dso))
1004		map->dso->symtab_type++;
1005
 
 
1006	return 0;
1007}
1008
1009static int map_groups__set_modules_path_dir(struct map_groups *mg,
1010				const char *dir_name, int depth)
1011{
1012	struct dirent *dent;
1013	DIR *dir = opendir(dir_name);
1014	int ret = 0;
1015
1016	if (!dir) {
1017		pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
1018		return -1;
1019	}
1020
1021	while ((dent = readdir(dir)) != NULL) {
1022		char path[PATH_MAX];
1023		struct stat st;
1024
1025		/*sshfs might return bad dent->d_type, so we have to stat*/
1026		snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name);
1027		if (stat(path, &st))
1028			continue;
1029
1030		if (S_ISDIR(st.st_mode)) {
1031			if (!strcmp(dent->d_name, ".") ||
1032			    !strcmp(dent->d_name, ".."))
1033				continue;
1034
1035			/* Do not follow top-level source and build symlinks */
1036			if (depth == 0) {
1037				if (!strcmp(dent->d_name, "source") ||
1038				    !strcmp(dent->d_name, "build"))
1039					continue;
1040			}
1041
1042			ret = map_groups__set_modules_path_dir(mg, path,
1043							       depth + 1);
1044			if (ret < 0)
1045				goto out;
1046		} else {
1047			struct kmod_path m;
1048
1049			ret = kmod_path__parse_name(&m, dent->d_name);
1050			if (ret)
1051				goto out;
1052
1053			if (m.kmod)
1054				ret = map_groups__set_module_path(mg, path, &m);
1055
1056			free(m.name);
1057
1058			if (ret)
1059				goto out;
1060		}
1061	}
1062
1063out:
1064	closedir(dir);
1065	return ret;
1066}
1067
1068static int machine__set_modules_path(struct machine *machine)
1069{
1070	char *version;
1071	char modules_path[PATH_MAX];
1072
1073	version = get_kernel_version(machine->root_dir);
1074	if (!version)
1075		return -1;
1076
1077	snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1078		 machine->root_dir, version);
1079	free(version);
1080
1081	return map_groups__set_modules_path_dir(&machine->kmaps, modules_path, 0);
 
 
 
 
 
 
1082}
1083
1084static int machine__create_module(void *arg, const char *name, u64 start)
 
1085{
1086	struct machine *machine = arg;
1087	struct map *map;
1088
1089	map = machine__findnew_module_map(machine, start, name);
1090	if (map == NULL)
1091		return -1;
1092
1093	dso__kernel_module_get_build_id(map->dso, machine->root_dir);
 
 
 
1094
 
 
1095	return 0;
1096}
1097
1098static int machine__create_modules(struct machine *machine)
1099{
1100	const char *modules;
1101	char path[PATH_MAX];
1102
1103	if (machine__is_default_guest(machine)) {
1104		modules = symbol_conf.default_guest_modules;
1105	} else {
1106		snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1107		modules = path;
1108	}
1109
1110	if (symbol__restricted_filename(modules, "/proc/modules"))
1111		return -1;
1112
1113	if (modules__parse(modules, machine, machine__create_module))
1114		return -1;
1115
1116	if (!machine__set_modules_path(machine))
1117		return 0;
1118
1119	pr_debug("Problems setting modules path maps, continuing anyway...\n");
1120
1121	return 0;
1122}
1123
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1124int machine__create_kernel_maps(struct machine *machine)
1125{
1126	struct dso *kernel = machine__get_kernel(machine);
1127	const char *name;
1128	u64 addr = machine__get_running_kernel_start(machine, &name);
1129	int ret;
1130
1131	if (!addr || kernel == NULL)
1132		return -1;
1133
1134	ret = __machine__create_kernel_maps(machine, kernel);
1135	dso__put(kernel);
1136	if (ret < 0)
1137		return -1;
1138
1139	if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
1140		if (machine__is_host(machine))
1141			pr_debug("Problems creating module maps, "
1142				 "continuing anyway...\n");
1143		else
1144			pr_debug("Problems creating module maps for guest %d, "
1145				 "continuing anyway...\n", machine->pid);
1146	}
1147
1148	/*
1149	 * Now that we have all the maps created, just set the ->end of them:
1150	 */
1151	map_groups__fixup_end(&machine->kmaps);
 
 
 
1152
1153	if (maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps, name,
1154					     addr)) {
1155		machine__destroy_kernel_maps(machine);
1156		return -1;
 
 
 
1157	}
1158
1159	return 0;
1160}
1161
1162static void machine__set_kernel_mmap_len(struct machine *machine,
1163					 union perf_event *event)
1164{
1165	int i;
1166
1167	for (i = 0; i < MAP__NR_TYPES; i++) {
1168		machine->vmlinux_maps[i]->start = event->mmap.start;
1169		machine->vmlinux_maps[i]->end   = (event->mmap.start +
1170						   event->mmap.len);
1171		/*
1172		 * Be a bit paranoid here, some perf.data file came with
1173		 * a zero sized synthesized MMAP event for the kernel.
1174		 */
1175		if (machine->vmlinux_maps[i]->end == 0)
1176			machine->vmlinux_maps[i]->end = ~0ULL;
1177	}
 
 
 
 
 
 
 
 
 
1178}
1179
1180static bool machine__uses_kcore(struct machine *machine)
1181{
1182	struct dso *dso;
 
1183
1184	list_for_each_entry(dso, &machine->dsos.head, node) {
1185		if (dso__is_kcore(dso))
1186			return true;
1187	}
 
 
1188
1189	return false;
 
 
 
 
 
 
 
 
1190}
1191
1192static int machine__process_kernel_mmap_event(struct machine *machine,
1193					      union perf_event *event)
 
1194{
1195	struct map *map;
1196	char kmmap_prefix[PATH_MAX];
1197	enum dso_kernel_type kernel_type;
1198	bool is_kernel_mmap;
 
1199
1200	/* If we have maps from kcore then we do not need or want any others */
1201	if (machine__uses_kcore(machine))
1202		return 0;
1203
1204	machine__mmap_name(machine, kmmap_prefix, sizeof(kmmap_prefix));
1205	if (machine__is_host(machine))
1206		kernel_type = DSO_TYPE_KERNEL;
1207	else
1208		kernel_type = DSO_TYPE_GUEST_KERNEL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1209
1210	is_kernel_mmap = memcmp(event->mmap.filename,
1211				kmmap_prefix,
1212				strlen(kmmap_prefix) - 1) == 0;
1213	if (event->mmap.filename[0] == '/' ||
1214	    (!is_kernel_mmap && event->mmap.filename[0] == '[')) {
1215		map = machine__findnew_module_map(machine, event->mmap.start,
1216						  event->mmap.filename);
1217		if (map == NULL)
1218			goto out_problem;
1219
1220		map->end = map->start + event->mmap.len;
 
 
 
 
 
1221	} else if (is_kernel_mmap) {
1222		const char *symbol_name = (event->mmap.filename +
1223				strlen(kmmap_prefix));
1224		/*
1225		 * Should be there already, from the build-id table in
1226		 * the header.
1227		 */
1228		struct dso *kernel = NULL;
1229		struct dso *dso;
1230
1231		pthread_rwlock_rdlock(&machine->dsos.lock);
1232
1233		list_for_each_entry(dso, &machine->dsos.head, node) {
1234
1235			/*
1236			 * The cpumode passed to is_kernel_module is not the
1237			 * cpumode of *this* event. If we insist on passing
1238			 * correct cpumode to is_kernel_module, we should
1239			 * record the cpumode when we adding this dso to the
1240			 * linked list.
1241			 *
1242			 * However we don't really need passing correct
1243			 * cpumode.  We know the correct cpumode must be kernel
1244			 * mode (if not, we should not link it onto kernel_dsos
1245			 * list).
1246			 *
1247			 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
1248			 * is_kernel_module() treats it as a kernel cpumode.
1249			 */
1250
1251			if (!dso->kernel ||
1252			    is_kernel_module(dso->long_name,
1253					     PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1254				continue;
1255
1256
1257			kernel = dso;
1258			break;
1259		}
1260
1261		pthread_rwlock_unlock(&machine->dsos.lock);
1262
1263		if (kernel == NULL)
1264			kernel = machine__findnew_dso(machine, kmmap_prefix);
1265		if (kernel == NULL)
1266			goto out_problem;
1267
1268		kernel->kernel = kernel_type;
1269		if (__machine__create_kernel_maps(machine, kernel) < 0) {
1270			dso__put(kernel);
1271			goto out_problem;
1272		}
1273
1274		if (strstr(kernel->long_name, "vmlinux"))
1275			dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1276
1277		machine__set_kernel_mmap_len(machine, event);
 
 
 
 
 
 
1278
1279		/*
1280		 * Avoid using a zero address (kptr_restrict) for the ref reloc
1281		 * symbol. Effectively having zero here means that at record
1282		 * time /proc/sys/kernel/kptr_restrict was non zero.
1283		 */
1284		if (event->mmap.pgoff != 0) {
1285			maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps,
1286							 symbol_name,
1287							 event->mmap.pgoff);
1288		}
1289
1290		if (machine__is_default_guest(machine)) {
1291			/*
1292			 * preload dso of guest kernel and modules
1293			 */
1294			dso__load(kernel, machine__kernel_map(machine), NULL);
1295		}
 
 
 
1296	}
1297	return 0;
1298out_problem:
1299	return -1;
1300}
1301
1302int machine__process_mmap2_event(struct machine *machine,
1303				 union perf_event *event,
1304				 struct perf_sample *sample)
1305{
1306	struct thread *thread;
1307	struct map *map;
1308	enum map_type type;
 
 
 
 
 
 
1309	int ret = 0;
1310
1311	if (dump_trace)
1312		perf_event__fprintf_mmap2(event, stdout);
1313
 
 
 
 
 
1314	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1315	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1316		ret = machine__process_kernel_mmap_event(machine, event);
 
 
 
 
 
 
 
1317		if (ret < 0)
1318			goto out_problem;
1319		return 0;
1320	}
1321
1322	thread = machine__findnew_thread(machine, event->mmap2.pid,
1323					event->mmap2.tid);
1324	if (thread == NULL)
1325		goto out_problem;
1326
1327	if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA)
1328		type = MAP__VARIABLE;
1329	else
1330		type = MAP__FUNCTION;
1331
1332	map = map__new(machine, event->mmap2.start,
1333			event->mmap2.len, event->mmap2.pgoff,
1334			event->mmap2.pid, event->mmap2.maj,
1335			event->mmap2.min, event->mmap2.ino,
1336			event->mmap2.ino_generation,
1337			event->mmap2.prot,
1338			event->mmap2.flags,
1339			event->mmap2.filename, type, thread);
1340
1341	if (map == NULL)
1342		goto out_problem_map;
1343
1344	thread__insert_map(thread, map);
 
 
 
1345	thread__put(thread);
1346	map__put(map);
1347	return 0;
1348
 
 
1349out_problem_map:
1350	thread__put(thread);
1351out_problem:
1352	dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
1353	return 0;
1354}
1355
1356int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1357				struct perf_sample *sample)
1358{
1359	struct thread *thread;
1360	struct map *map;
1361	enum map_type type;
1362	int ret = 0;
1363
1364	if (dump_trace)
1365		perf_event__fprintf_mmap(event, stdout);
1366
1367	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1368	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1369		ret = machine__process_kernel_mmap_event(machine, event);
 
 
 
 
 
 
 
1370		if (ret < 0)
1371			goto out_problem;
1372		return 0;
1373	}
1374
1375	thread = machine__findnew_thread(machine, event->mmap.pid,
1376					 event->mmap.tid);
1377	if (thread == NULL)
1378		goto out_problem;
1379
1380	if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA)
1381		type = MAP__VARIABLE;
1382	else
1383		type = MAP__FUNCTION;
1384
1385	map = map__new(machine, event->mmap.start,
1386			event->mmap.len, event->mmap.pgoff,
1387			event->mmap.pid, 0, 0, 0, 0, 0, 0,
1388			event->mmap.filename,
1389			type, thread);
1390
1391	if (map == NULL)
1392		goto out_problem_map;
1393
1394	thread__insert_map(thread, map);
 
 
 
1395	thread__put(thread);
1396	map__put(map);
1397	return 0;
1398
 
 
1399out_problem_map:
1400	thread__put(thread);
1401out_problem:
1402	dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
1403	return 0;
1404}
1405
1406static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock)
1407{
1408	if (machine->last_match == th)
1409		machine->last_match = NULL;
1410
1411	BUG_ON(atomic_read(&th->refcnt) == 0);
1412	if (lock)
1413		pthread_rwlock_wrlock(&machine->threads_lock);
1414	rb_erase_init(&th->rb_node, &machine->threads);
1415	RB_CLEAR_NODE(&th->rb_node);
1416	/*
1417	 * Move it first to the dead_threads list, then drop the reference,
1418	 * if this is the last reference, then the thread__delete destructor
1419	 * will be called and we will remove it from the dead_threads list.
1420	 */
1421	list_add_tail(&th->node, &machine->dead_threads);
1422	if (lock)
1423		pthread_rwlock_unlock(&machine->threads_lock);
1424	thread__put(th);
1425}
1426
1427void machine__remove_thread(struct machine *machine, struct thread *th)
1428{
1429	return __machine__remove_thread(machine, th, true);
1430}
1431
1432int machine__process_fork_event(struct machine *machine, union perf_event *event,
1433				struct perf_sample *sample)
1434{
1435	struct thread *thread = machine__find_thread(machine,
1436						     event->fork.pid,
1437						     event->fork.tid);
1438	struct thread *parent = machine__findnew_thread(machine,
1439							event->fork.ppid,
1440							event->fork.ptid);
 
1441	int err = 0;
1442
1443	if (dump_trace)
1444		perf_event__fprintf_task(event, stdout);
1445
1446	/*
1447	 * There may be an existing thread that is not actually the parent,
1448	 * either because we are processing events out of order, or because the
1449	 * (fork) event that would have removed the thread was lost. Assume the
1450	 * latter case and continue on as best we can.
1451	 */
1452	if (parent->pid_ != (pid_t)event->fork.ppid) {
1453		dump_printf("removing erroneous parent thread %d/%d\n",
1454			    parent->pid_, parent->tid);
1455		machine__remove_thread(machine, parent);
1456		thread__put(parent);
1457		parent = machine__findnew_thread(machine, event->fork.ppid,
1458						 event->fork.ptid);
1459	}
1460
1461	/* if a thread currently exists for the thread id remove it */
1462	if (thread != NULL) {
1463		machine__remove_thread(machine, thread);
1464		thread__put(thread);
1465	}
1466
1467	thread = machine__findnew_thread(machine, event->fork.pid,
1468					 event->fork.tid);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1469
1470	if (thread == NULL || parent == NULL ||
1471	    thread__fork(thread, parent, sample->time) < 0) {
1472		dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1473		err = -1;
1474	}
1475	thread__put(thread);
1476	thread__put(parent);
1477
1478	return err;
1479}
1480
1481int machine__process_exit_event(struct machine *machine, union perf_event *event,
1482				struct perf_sample *sample __maybe_unused)
1483{
1484	struct thread *thread = machine__find_thread(machine,
1485						     event->fork.pid,
1486						     event->fork.tid);
1487
1488	if (dump_trace)
1489		perf_event__fprintf_task(event, stdout);
1490
1491	if (thread != NULL) {
1492		thread__exited(thread);
1493		thread__put(thread);
 
 
1494	}
1495
1496	return 0;
1497}
1498
1499int machine__process_event(struct machine *machine, union perf_event *event,
1500			   struct perf_sample *sample)
1501{
1502	int ret;
1503
1504	switch (event->header.type) {
1505	case PERF_RECORD_COMM:
1506		ret = machine__process_comm_event(machine, event, sample); break;
1507	case PERF_RECORD_MMAP:
1508		ret = machine__process_mmap_event(machine, event, sample); break;
 
 
 
 
1509	case PERF_RECORD_MMAP2:
1510		ret = machine__process_mmap2_event(machine, event, sample); break;
1511	case PERF_RECORD_FORK:
1512		ret = machine__process_fork_event(machine, event, sample); break;
1513	case PERF_RECORD_EXIT:
1514		ret = machine__process_exit_event(machine, event, sample); break;
1515	case PERF_RECORD_LOST:
1516		ret = machine__process_lost_event(machine, event, sample); break;
1517	case PERF_RECORD_AUX:
1518		ret = machine__process_aux_event(machine, event); break;
1519	case PERF_RECORD_ITRACE_START:
1520		ret = machine__process_itrace_start_event(machine, event); break;
1521	case PERF_RECORD_LOST_SAMPLES:
1522		ret = machine__process_lost_samples_event(machine, event, sample); break;
1523	case PERF_RECORD_SWITCH:
1524	case PERF_RECORD_SWITCH_CPU_WIDE:
1525		ret = machine__process_switch_event(machine, event); break;
 
 
 
 
 
 
 
 
1526	default:
1527		ret = -1;
1528		break;
1529	}
1530
1531	return ret;
1532}
1533
1534static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
1535{
1536	if (sym->name && !regexec(regex, sym->name, 0, NULL, 0))
1537		return 1;
1538	return 0;
1539}
1540
1541static void ip__resolve_ams(struct thread *thread,
1542			    struct addr_map_symbol *ams,
1543			    u64 ip)
1544{
1545	struct addr_location al;
1546
1547	memset(&al, 0, sizeof(al));
1548	/*
1549	 * We cannot use the header.misc hint to determine whether a
1550	 * branch stack address is user, kernel, guest, hypervisor.
1551	 * Branches may straddle the kernel/user/hypervisor boundaries.
1552	 * Thus, we have to try consecutively until we find a match
1553	 * or else, the symbol is unknown
1554	 */
1555	thread__find_cpumode_addr_location(thread, MAP__FUNCTION, ip, &al);
1556
1557	ams->addr = ip;
1558	ams->al_addr = al.addr;
1559	ams->sym = al.sym;
1560	ams->map = al.map;
 
 
 
 
 
1561}
1562
1563static void ip__resolve_data(struct thread *thread,
1564			     u8 m, struct addr_map_symbol *ams, u64 addr)
 
1565{
1566	struct addr_location al;
1567
1568	memset(&al, 0, sizeof(al));
1569
1570	thread__find_addr_location(thread, m, MAP__VARIABLE, addr, &al);
1571	if (al.map == NULL) {
1572		/*
1573		 * some shared data regions have execute bit set which puts
1574		 * their mapping in the MAP__FUNCTION type array.
1575		 * Check there as a fallback option before dropping the sample.
1576		 */
1577		thread__find_addr_location(thread, m, MAP__FUNCTION, addr, &al);
1578	}
1579
1580	ams->addr = addr;
1581	ams->al_addr = al.addr;
1582	ams->sym = al.sym;
1583	ams->map = al.map;
 
 
 
 
 
1584}
1585
1586struct mem_info *sample__resolve_mem(struct perf_sample *sample,
1587				     struct addr_location *al)
1588{
1589	struct mem_info *mi = zalloc(sizeof(*mi));
1590
1591	if (!mi)
1592		return NULL;
1593
1594	ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
1595	ip__resolve_data(al->thread, al->cpumode, &mi->daddr, sample->addr);
1596	mi->data_src.val = sample->data_src;
 
 
1597
1598	return mi;
1599}
1600
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1601static int add_callchain_ip(struct thread *thread,
 
1602			    struct symbol **parent,
1603			    struct addr_location *root_al,
1604			    u8 *cpumode,
1605			    u64 ip)
 
 
 
 
 
1606{
 
1607	struct addr_location al;
 
 
 
1608
 
1609	al.filtered = 0;
1610	al.sym = NULL;
 
1611	if (!cpumode) {
1612		thread__find_cpumode_addr_location(thread, MAP__FUNCTION,
1613						   ip, &al);
1614	} else {
1615		if (ip >= PERF_CONTEXT_MAX) {
1616			switch (ip) {
1617			case PERF_CONTEXT_HV:
1618				*cpumode = PERF_RECORD_MISC_HYPERVISOR;
1619				break;
1620			case PERF_CONTEXT_KERNEL:
1621				*cpumode = PERF_RECORD_MISC_KERNEL;
1622				break;
1623			case PERF_CONTEXT_USER:
1624				*cpumode = PERF_RECORD_MISC_USER;
1625				break;
1626			default:
1627				pr_debug("invalid callchain context: "
1628					 "%"PRId64"\n", (s64) ip);
1629				/*
1630				 * It seems the callchain is corrupted.
1631				 * Discard all.
1632				 */
1633				callchain_cursor_reset(&callchain_cursor);
1634				return 1;
 
1635			}
1636			return 0;
1637		}
1638		thread__find_addr_location(thread, *cpumode, MAP__FUNCTION,
1639					   ip, &al);
1640	}
1641
1642	if (al.sym != NULL) {
1643		if (sort__has_parent && !*parent &&
1644		    symbol__match_regex(al.sym, &parent_regex))
1645			*parent = al.sym;
1646		else if (have_ignore_callees && root_al &&
1647		  symbol__match_regex(al.sym, &ignore_callees_regex)) {
1648			/* Treat this symbol as the root,
1649			   forgetting its callees. */
1650			*root_al = al;
1651			callchain_cursor_reset(&callchain_cursor);
1652		}
1653	}
1654
1655	if (symbol_conf.hide_unresolved && al.sym == NULL)
1656		return 0;
1657	return callchain_cursor_append(&callchain_cursor, al.addr, al.map, al.sym);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1658}
1659
1660struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
1661					   struct addr_location *al)
1662{
1663	unsigned int i;
1664	const struct branch_stack *bs = sample->branch_stack;
 
 
1665	struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
1666
1667	if (!bi)
1668		return NULL;
1669
1670	for (i = 0; i < bs->nr; i++) {
1671		ip__resolve_ams(al->thread, &bi[i].to, bs->entries[i].to);
1672		ip__resolve_ams(al->thread, &bi[i].from, bs->entries[i].from);
1673		bi[i].flags = bs->entries[i].flags;
 
 
1674	}
1675	return bi;
1676}
1677
 
 
 
 
 
 
 
 
 
 
 
 
1678#define CHASHSZ 127
1679#define CHASHBITS 7
1680#define NO_ENTRY 0xff
1681
1682#define PERF_MAX_BRANCH_DEPTH 127
1683
1684/* Remove loops. */
1685static int remove_loops(struct branch_entry *l, int nr)
 
1686{
1687	int i, j, off;
1688	unsigned char chash[CHASHSZ];
1689
1690	memset(chash, NO_ENTRY, sizeof(chash));
1691
1692	BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);
1693
1694	for (i = 0; i < nr; i++) {
1695		int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;
1696
1697		/* no collision handling for now */
1698		if (chash[h] == NO_ENTRY) {
1699			chash[h] = i;
1700		} else if (l[chash[h]].from == l[i].from) {
1701			bool is_loop = true;
1702			/* check if it is a real loop */
1703			off = 0;
1704			for (j = chash[h]; j < i && i + off < nr; j++, off++)
1705				if (l[j].from != l[i + off].from) {
1706					is_loop = false;
1707					break;
1708				}
1709			if (is_loop) {
1710				memmove(l + i, l + i + off,
1711					(nr - (i + off)) * sizeof(*l));
 
 
 
 
 
 
 
 
 
 
1712				nr -= off;
1713			}
1714		}
1715	}
1716	return nr;
1717}
1718
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1719/*
1720 * Recolve LBR callstack chain sample
1721 * Return:
1722 * 1 on success get LBR callchain information
1723 * 0 no available LBR callchain information, should try fp
1724 * negative error code on other errors.
1725 */
1726static int resolve_lbr_callchain_sample(struct thread *thread,
 
1727					struct perf_sample *sample,
1728					struct symbol **parent,
1729					struct addr_location *root_al,
1730					int max_stack)
 
 
1731{
 
1732	struct ip_callchain *chain = sample->callchain;
1733	int chain_nr = min(max_stack, (int)chain->nr);
1734	u8 cpumode = PERF_RECORD_MISC_USER;
1735	int i, j, err;
1736	u64 ip;
 
1737
1738	for (i = 0; i < chain_nr; i++) {
1739		if (chain->ips[i] == PERF_CONTEXT_USER)
1740			break;
1741	}
1742
1743	/* LBR only affects the user callchain */
1744	if (i != chain_nr) {
1745		struct branch_stack *lbr_stack = sample->branch_stack;
1746		int lbr_nr = lbr_stack->nr;
1747		/*
1748		 * LBR callstack can only get user call chain.
1749		 * The mix_chain_nr is kernel call chain
1750		 * number plus LBR user call chain number.
1751		 * i is kernel call chain number,
1752		 * 1 is PERF_CONTEXT_USER,
1753		 * lbr_nr + 1 is the user call chain number.
1754		 * For details, please refer to the comments
1755		 * in callchain__printf
1756		 */
1757		int mix_chain_nr = i + 1 + lbr_nr + 1;
1758
1759		if (mix_chain_nr > PERF_MAX_STACK_DEPTH + PERF_MAX_BRANCH_DEPTH) {
1760			pr_warning("corrupted callchain. skipping...\n");
1761			return 0;
 
 
 
 
 
 
 
 
 
 
 
 
1762		}
 
 
1763
1764		for (j = 0; j < mix_chain_nr; j++) {
1765			if (callchain_param.order == ORDER_CALLEE) {
1766				if (j < i + 1)
1767					ip = chain->ips[j];
1768				else if (j > i + 1)
1769					ip = lbr_stack->entries[j - i - 2].from;
1770				else
1771					ip = lbr_stack->entries[0].to;
1772			} else {
1773				if (j < lbr_nr)
1774					ip = lbr_stack->entries[lbr_nr - j - 1].from;
1775				else if (j > lbr_nr)
1776					ip = chain->ips[i + 1 - (j - lbr_nr)];
1777				else
1778					ip = lbr_stack->entries[0].to;
1779			}
1780
1781			err = add_callchain_ip(thread, parent, root_al, &cpumode, ip);
 
1782			if (err)
1783				return (err < 0) ? err : 0;
1784		}
1785		return 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1786	}
 
1787
1788	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1789}
1790
1791static int thread__resolve_callchain_sample(struct thread *thread,
1792					    struct perf_evsel *evsel,
 
1793					    struct perf_sample *sample,
1794					    struct symbol **parent,
1795					    struct addr_location *root_al,
1796					    int max_stack)
 
1797{
1798	struct branch_stack *branch = sample->branch_stack;
 
1799	struct ip_callchain *chain = sample->callchain;
1800	int chain_nr = min(max_stack, (int)chain->nr);
1801	u8 cpumode = PERF_RECORD_MISC_USER;
1802	int i, j, err;
1803	int skip_idx = -1;
1804	int first_call = 0;
 
1805
1806	callchain_cursor_reset(&callchain_cursor);
 
1807
1808	if (has_branch_callstack(evsel)) {
1809		err = resolve_lbr_callchain_sample(thread, sample, parent,
1810						   root_al, max_stack);
 
 
 
 
1811		if (err)
1812			return (err < 0) ? err : 0;
1813	}
1814
1815	/*
1816	 * Based on DWARF debug information, some architectures skip
1817	 * a callchain entry saved by the kernel.
1818	 */
1819	if (chain->nr < PERF_MAX_STACK_DEPTH)
1820		skip_idx = arch_skip_callchain_idx(thread, chain);
1821
1822	/*
1823	 * Add branches to call stack for easier browsing. This gives
1824	 * more context for a sample than just the callers.
1825	 *
1826	 * This uses individual histograms of paths compared to the
1827	 * aggregated histograms the normal LBR mode uses.
1828	 *
1829	 * Limitations for now:
1830	 * - No extra filters
1831	 * - No annotations (should annotate somehow)
1832	 */
1833
1834	if (branch && callchain_param.branch_callstack) {
1835		int nr = min(max_stack, (int)branch->nr);
1836		struct branch_entry be[nr];
 
1837
1838		if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
1839			pr_warning("corrupted branch chain. skipping...\n");
1840			goto check_calls;
1841		}
1842
1843		for (i = 0; i < nr; i++) {
1844			if (callchain_param.order == ORDER_CALLEE) {
1845				be[i] = branch->entries[i];
 
 
 
 
1846				/*
1847				 * Check for overlap into the callchain.
1848				 * The return address is one off compared to
1849				 * the branch entry. To adjust for this
1850				 * assume the calling instruction is not longer
1851				 * than 8 bytes.
1852				 */
1853				if (i == skip_idx ||
1854				    chain->ips[first_call] >= PERF_CONTEXT_MAX)
1855					first_call++;
1856				else if (be[i].from < chain->ips[first_call] &&
1857				    be[i].from >= chain->ips[first_call] - 8)
1858					first_call++;
1859			} else
1860				be[i] = branch->entries[branch->nr - i - 1];
1861		}
1862
1863		nr = remove_loops(be, nr);
 
1864
1865		for (i = 0; i < nr; i++) {
1866			err = add_callchain_ip(thread, parent, root_al,
1867					       NULL, be[i].to);
1868			if (!err)
1869				err = add_callchain_ip(thread, parent, root_al,
1870						       NULL, be[i].from);
 
 
 
 
 
 
 
1871			if (err == -EINVAL)
1872				break;
1873			if (err)
1874				return err;
1875		}
 
 
 
 
1876		chain_nr -= nr;
1877	}
1878
1879check_calls:
1880	if (chain->nr > PERF_MAX_STACK_DEPTH && (int)chain->nr > max_stack) {
1881		pr_warning("corrupted callchain. skipping...\n");
1882		return 0;
 
 
1883	}
1884
1885	for (i = first_call; i < chain_nr; i++) {
1886		u64 ip;
1887
1888		if (callchain_param.order == ORDER_CALLEE)
1889			j = i;
1890		else
1891			j = chain->nr - i - 1;
1892
1893#ifdef HAVE_SKIP_CALLCHAIN_IDX
1894		if (j == skip_idx)
1895			continue;
1896#endif
1897		ip = chain->ips[j];
 
 
 
 
 
 
 
 
 
1898
1899		err = add_callchain_ip(thread, parent, root_al, &cpumode, ip);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1900
1901		if (err)
1902			return (err < 0) ? err : 0;
1903	}
1904
1905	return 0;
1906}
1907
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1908static int unwind_entry(struct unwind_entry *entry, void *arg)
1909{
1910	struct callchain_cursor *cursor = arg;
 
 
1911
1912	if (symbol_conf.hide_unresolved && entry->sym == NULL)
1913		return 0;
1914	return callchain_cursor_append(cursor, entry->ip,
1915				       entry->map, entry->sym);
1916}
1917
1918int thread__resolve_callchain(struct thread *thread,
1919			      struct perf_evsel *evsel,
1920			      struct perf_sample *sample,
1921			      struct symbol **parent,
1922			      struct addr_location *root_al,
1923			      int max_stack)
1924{
1925	int ret = thread__resolve_callchain_sample(thread, evsel,
1926						   sample, parent,
1927						   root_al, max_stack);
1928	if (ret)
1929		return ret;
1930
 
 
 
 
 
 
 
 
 
 
 
1931	/* Can we do dwarf post unwind? */
1932	if (!((evsel->attr.sample_type & PERF_SAMPLE_REGS_USER) &&
1933	      (evsel->attr.sample_type & PERF_SAMPLE_STACK_USER)))
1934		return 0;
1935
1936	/* Bail out if nothing was captured. */
1937	if ((!sample->user_regs.regs) ||
1938	    (!sample->user_stack.size))
1939		return 0;
1940
1941	return unwind__get_entries(unwind_entry, &callchain_cursor,
1942				   thread, sample, max_stack);
1943
 
 
1944}
1945
1946int machine__for_each_thread(struct machine *machine,
1947			     int (*fn)(struct thread *thread, void *p),
1948			     void *priv)
 
 
 
 
 
1949{
1950	struct rb_node *nd;
1951	struct thread *thread;
1952	int rc = 0;
1953
1954	for (nd = rb_first(&machine->threads); nd; nd = rb_next(nd)) {
1955		thread = rb_entry(nd, struct thread, rb_node);
1956		rc = fn(thread, priv);
1957		if (rc != 0)
1958			return rc;
1959	}
1960
1961	list_for_each_entry(thread, &machine->dead_threads, node) {
1962		rc = fn(thread, priv);
1963		if (rc != 0)
1964			return rc;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1965	}
1966	return rc;
 
 
 
 
 
 
 
 
1967}
1968
1969int machines__for_each_thread(struct machines *machines,
1970			      int (*fn)(struct thread *thread, void *p),
1971			      void *priv)
1972{
1973	struct rb_node *nd;
1974	int rc = 0;
1975
1976	rc = machine__for_each_thread(&machines->host, fn, priv);
1977	if (rc != 0)
1978		return rc;
1979
1980	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
1981		struct machine *machine = rb_entry(nd, struct machine, rb_node);
1982
1983		rc = machine__for_each_thread(machine, fn, priv);
1984		if (rc != 0)
1985			return rc;
1986	}
1987	return rc;
1988}
1989
1990int __machine__synthesize_threads(struct machine *machine, struct perf_tool *tool,
1991				  struct target *target, struct thread_map *threads,
1992				  perf_event__handler_t process, bool data_mmap,
1993				  unsigned int proc_map_timeout)
1994{
1995	if (target__has_task(target))
1996		return perf_event__synthesize_thread_map(tool, threads, process, machine, data_mmap, proc_map_timeout);
1997	else if (target__has_cpu(target))
1998		return perf_event__synthesize_threads(tool, process, machine, data_mmap, proc_map_timeout);
1999	/* command specified */
 
2000	return 0;
2001}
2002
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2003pid_t machine__get_current_tid(struct machine *machine, int cpu)
2004{
2005	if (cpu < 0 || cpu >= MAX_NR_CPUS || !machine->current_tid)
2006		return -1;
2007
2008	return machine->current_tid[cpu];
2009}
2010
2011int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
2012			     pid_t tid)
2013{
2014	struct thread *thread;
 
2015
2016	if (cpu < 0)
2017		return -EINVAL;
2018
2019	if (!machine->current_tid) {
2020		int i;
2021
2022		machine->current_tid = calloc(MAX_NR_CPUS, sizeof(pid_t));
2023		if (!machine->current_tid)
2024			return -ENOMEM;
2025		for (i = 0; i < MAX_NR_CPUS; i++)
2026			machine->current_tid[i] = -1;
2027	}
2028
2029	if (cpu >= MAX_NR_CPUS) {
2030		pr_err("Requested CPU %d too large. ", cpu);
2031		pr_err("Consider raising MAX_NR_CPUS\n");
2032		return -EINVAL;
2033	}
2034
2035	machine->current_tid[cpu] = tid;
2036
2037	thread = machine__findnew_thread(machine, pid, tid);
2038	if (!thread)
2039		return -ENOMEM;
2040
2041	thread->cpu = cpu;
2042	thread__put(thread);
2043
2044	return 0;
2045}
2046
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2047int machine__get_kernel_start(struct machine *machine)
2048{
2049	struct map *map = machine__kernel_map(machine);
2050	int err = 0;
2051
2052	/*
2053	 * The only addresses above 2^63 are kernel addresses of a 64-bit
2054	 * kernel.  Note that addresses are unsigned so that on a 32-bit system
2055	 * all addresses including kernel addresses are less than 2^32.  In
2056	 * that case (32-bit system), if the kernel mapping is unknown, all
2057	 * addresses will be assumed to be in user space - see
2058	 * machine__kernel_ip().
2059	 */
2060	machine->kernel_start = 1ULL << 63;
2061	if (map) {
2062		err = map__load(map, machine->symbol_filter);
2063		if (map->start)
2064			machine->kernel_start = map->start;
 
 
 
 
 
2065	}
2066	return err;
2067}
2068
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2069struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
2070{
2071	return dsos__findnew(&machine->dsos, filename);
2072}
2073
2074char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
2075{
2076	struct machine *machine = vmachine;
2077	struct map *map;
2078	struct symbol *sym = map_groups__find_symbol(&machine->kmaps, MAP__FUNCTION, *addrp, &map,  NULL);
2079
2080	if (sym == NULL)
2081		return NULL;
2082
2083	*modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL;
2084	*addrp = map->unmap_ip(map, sym->start);
2085	return sym->name;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2086}
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2#include <dirent.h>
   3#include <errno.h>
   4#include <inttypes.h>
   5#include <regex.h>
   6#include <stdlib.h>
   7#include "callchain.h"
   8#include "debug.h"
   9#include "dso.h"
  10#include "env.h"
  11#include "event.h"
  12#include "evsel.h"
  13#include "hist.h"
  14#include "machine.h"
  15#include "map.h"
  16#include "map_symbol.h"
  17#include "branch.h"
  18#include "mem-events.h"
  19#include "mem-info.h"
  20#include "path.h"
  21#include "srcline.h"
  22#include "symbol.h"
  23#include "sort.h"
  24#include "strlist.h"
  25#include "target.h"
  26#include "thread.h"
  27#include "util.h"
  28#include "vdso.h"
  29#include <stdbool.h>
  30#include <sys/types.h>
  31#include <sys/stat.h>
  32#include <unistd.h>
  33#include "unwind.h"
  34#include "linux/hash.h"
  35#include "asm/bug.h"
  36#include "bpf-event.h"
  37#include <internal/lib.h> // page_size
  38#include "cgroup.h"
  39#include "arm64-frame-pointer-unwind-support.h"
  40
  41#include <linux/ctype.h>
  42#include <symbol/kallsyms.h>
  43#include <linux/mman.h>
  44#include <linux/string.h>
  45#include <linux/zalloc.h>
  46
  47static struct dso *machine__kernel_dso(struct machine *machine)
  48{
  49	return map__dso(machine->vmlinux_map);
  50}
  51
  52static int machine__set_mmap_name(struct machine *machine)
  53{
  54	if (machine__is_host(machine))
  55		machine->mmap_name = strdup("[kernel.kallsyms]");
  56	else if (machine__is_default_guest(machine))
  57		machine->mmap_name = strdup("[guest.kernel.kallsyms]");
  58	else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]",
  59			  machine->pid) < 0)
  60		machine->mmap_name = NULL;
  61
  62	return machine->mmap_name ? 0 : -ENOMEM;
  63}
  64
  65static void thread__set_guest_comm(struct thread *thread, pid_t pid)
  66{
  67	char comm[64];
  68
  69	snprintf(comm, sizeof(comm), "[guest/%d]", pid);
  70	thread__set_comm(thread, comm, 0);
  71}
  72
  73int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
  74{
  75	int err = -ENOMEM;
  76
  77	memset(machine, 0, sizeof(*machine));
  78	machine->kmaps = maps__new(machine);
  79	if (machine->kmaps == NULL)
  80		return -ENOMEM;
  81
  82	RB_CLEAR_NODE(&machine->rb_node);
  83	dsos__init(&machine->dsos);
  84
  85	threads__init(&machine->threads);
 
 
 
  86
  87	machine->vdso_info = NULL;
  88	machine->env = NULL;
  89
  90	machine->pid = pid;
  91
 
  92	machine->id_hdr_size = 0;
  93	machine->kptr_restrict_warned = false;
  94	machine->comm_exec = false;
  95	machine->kernel_start = 0;
  96	machine->vmlinux_map = NULL;
 
  97
  98	machine->root_dir = strdup(root_dir);
  99	if (machine->root_dir == NULL)
 100		goto out;
 101
 102	if (machine__set_mmap_name(machine))
 103		goto out;
 104
 105	if (pid != HOST_KERNEL_ID) {
 106		struct thread *thread = machine__findnew_thread(machine, -1,
 107								pid);
 
 108
 109		if (thread == NULL)
 110			goto out;
 111
 112		thread__set_guest_comm(thread, pid);
 
 113		thread__put(thread);
 114	}
 115
 116	machine->current_tid = NULL;
 117	err = 0;
 118
 119out:
 120	if (err) {
 121		zfree(&machine->kmaps);
 122		zfree(&machine->root_dir);
 123		zfree(&machine->mmap_name);
 124	}
 125	return 0;
 126}
 127
 128struct machine *machine__new_host(void)
 129{
 130	struct machine *machine = malloc(sizeof(*machine));
 131
 132	if (machine != NULL) {
 133		machine__init(machine, "", HOST_KERNEL_ID);
 134
 135		if (machine__create_kernel_maps(machine) < 0)
 136			goto out_delete;
 137
 138		machine->env = &perf_env;
 139	}
 140
 141	return machine;
 142out_delete:
 143	free(machine);
 144	return NULL;
 145}
 146
 147struct machine *machine__new_kallsyms(void)
 148{
 149	struct machine *machine = machine__new_host();
 150	/*
 151	 * FIXME:
 152	 * 1) We should switch to machine__load_kallsyms(), i.e. not explicitly
 153	 *    ask for not using the kcore parsing code, once this one is fixed
 154	 *    to create a map per module.
 155	 */
 156	if (machine && machine__load_kallsyms(machine, "/proc/kallsyms") <= 0) {
 157		machine__delete(machine);
 158		machine = NULL;
 159	}
 160
 161	return machine;
 
 
 
 
 
 
 162}
 163
 164void machine__delete_threads(struct machine *machine)
 165{
 166	threads__remove_all_threads(&machine->threads);
 
 
 
 
 
 
 
 
 
 
 167}
 168
 169void machine__exit(struct machine *machine)
 170{
 171	if (machine == NULL)
 172		return;
 173
 174	machine__destroy_kernel_maps(machine);
 175	maps__zput(machine->kmaps);
 176	dsos__exit(&machine->dsos);
 177	machine__exit_vdso(machine);
 178	zfree(&machine->root_dir);
 179	zfree(&machine->mmap_name);
 180	zfree(&machine->current_tid);
 181	zfree(&machine->kallsyms_filename);
 182
 183	threads__exit(&machine->threads);
 184}
 185
 186void machine__delete(struct machine *machine)
 187{
 188	if (machine) {
 189		machine__exit(machine);
 190		free(machine);
 191	}
 192}
 193
 194void machines__init(struct machines *machines)
 195{
 196	machine__init(&machines->host, "", HOST_KERNEL_ID);
 197	machines->guests = RB_ROOT_CACHED;
 
 198}
 199
 200void machines__exit(struct machines *machines)
 201{
 202	machine__exit(&machines->host);
 203	/* XXX exit guest */
 204}
 205
 206struct machine *machines__add(struct machines *machines, pid_t pid,
 207			      const char *root_dir)
 208{
 209	struct rb_node **p = &machines->guests.rb_root.rb_node;
 210	struct rb_node *parent = NULL;
 211	struct machine *pos, *machine = malloc(sizeof(*machine));
 212	bool leftmost = true;
 213
 214	if (machine == NULL)
 215		return NULL;
 216
 217	if (machine__init(machine, root_dir, pid) != 0) {
 218		free(machine);
 219		return NULL;
 220	}
 221
 
 
 222	while (*p != NULL) {
 223		parent = *p;
 224		pos = rb_entry(parent, struct machine, rb_node);
 225		if (pid < pos->pid)
 226			p = &(*p)->rb_left;
 227		else {
 228			p = &(*p)->rb_right;
 229			leftmost = false;
 230		}
 231	}
 232
 233	rb_link_node(&machine->rb_node, parent, p);
 234	rb_insert_color_cached(&machine->rb_node, &machines->guests, leftmost);
 
 
 
 235
 236	machine->machines = machines;
 
 
 
 237
 238	return machine;
 
 
 
 
 
 
 
 239}
 240
 241void machines__set_comm_exec(struct machines *machines, bool comm_exec)
 242{
 243	struct rb_node *nd;
 244
 245	machines->host.comm_exec = comm_exec;
 246
 247	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
 248		struct machine *machine = rb_entry(nd, struct machine, rb_node);
 249
 250		machine->comm_exec = comm_exec;
 251	}
 252}
 253
 254struct machine *machines__find(struct machines *machines, pid_t pid)
 255{
 256	struct rb_node **p = &machines->guests.rb_root.rb_node;
 257	struct rb_node *parent = NULL;
 258	struct machine *machine;
 259	struct machine *default_machine = NULL;
 260
 261	if (pid == HOST_KERNEL_ID)
 262		return &machines->host;
 263
 264	while (*p != NULL) {
 265		parent = *p;
 266		machine = rb_entry(parent, struct machine, rb_node);
 267		if (pid < machine->pid)
 268			p = &(*p)->rb_left;
 269		else if (pid > machine->pid)
 270			p = &(*p)->rb_right;
 271		else
 272			return machine;
 273		if (!machine->pid)
 274			default_machine = machine;
 275	}
 276
 277	return default_machine;
 278}
 279
 280struct machine *machines__findnew(struct machines *machines, pid_t pid)
 281{
 282	char path[PATH_MAX];
 283	const char *root_dir = "";
 284	struct machine *machine = machines__find(machines, pid);
 285
 286	if (machine && (machine->pid == pid))
 287		goto out;
 288
 289	if ((pid != HOST_KERNEL_ID) &&
 290	    (pid != DEFAULT_GUEST_KERNEL_ID) &&
 291	    (symbol_conf.guestmount)) {
 292		sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
 293		if (access(path, R_OK)) {
 294			static struct strlist *seen;
 295
 296			if (!seen)
 297				seen = strlist__new(NULL, NULL);
 298
 299			if (!strlist__has_entry(seen, path)) {
 300				pr_err("Can't access file %s\n", path);
 301				strlist__add(seen, path);
 302			}
 303			machine = NULL;
 304			goto out;
 305		}
 306		root_dir = path;
 307	}
 308
 309	machine = machines__add(machines, pid, root_dir);
 310out:
 311	return machine;
 312}
 313
 314struct machine *machines__find_guest(struct machines *machines, pid_t pid)
 315{
 316	struct machine *machine = machines__find(machines, pid);
 317
 318	if (!machine)
 319		machine = machines__findnew(machines, DEFAULT_GUEST_KERNEL_ID);
 320	return machine;
 321}
 322
 323/*
 324 * A common case for KVM test programs is that the test program acts as the
 325 * hypervisor, creating, running and destroying the virtual machine, and
 326 * providing the guest object code from its own object code. In this case,
 327 * the VM is not running an OS, but only the functions loaded into it by the
 328 * hypervisor test program, and conveniently, loaded at the same virtual
 329 * addresses.
 330 *
 331 * Normally to resolve addresses, MMAP events are needed to map addresses
 332 * back to the object code and debug symbols for that object code.
 333 *
 334 * Currently, there is no way to get such mapping information from guests
 335 * but, in the scenario described above, the guest has the same mappings
 336 * as the hypervisor, so support for that scenario can be achieved.
 337 *
 338 * To support that, copy the host thread's maps to the guest thread's maps.
 339 * Note, we do not discover the guest until we encounter a guest event,
 340 * which works well because it is not until then that we know that the host
 341 * thread's maps have been set up.
 342 *
 343 * This function returns the guest thread. Apart from keeping the data
 344 * structures sane, using a thread belonging to the guest machine, instead
 345 * of the host thread, allows it to have its own comm (refer
 346 * thread__set_guest_comm()).
 347 */
 348static struct thread *findnew_guest_code(struct machine *machine,
 349					 struct machine *host_machine,
 350					 pid_t pid)
 351{
 352	struct thread *host_thread;
 353	struct thread *thread;
 354	int err;
 355
 356	if (!machine)
 357		return NULL;
 358
 359	thread = machine__findnew_thread(machine, -1, pid);
 360	if (!thread)
 361		return NULL;
 362
 363	/* Assume maps are set up if there are any */
 364	if (!maps__empty(thread__maps(thread)))
 365		return thread;
 366
 367	host_thread = machine__find_thread(host_machine, -1, pid);
 368	if (!host_thread)
 369		goto out_err;
 370
 371	thread__set_guest_comm(thread, pid);
 372
 373	/*
 374	 * Guest code can be found in hypervisor process at the same address
 375	 * so copy host maps.
 376	 */
 377	err = maps__copy_from(thread__maps(thread), thread__maps(host_thread));
 378	thread__put(host_thread);
 379	if (err)
 380		goto out_err;
 381
 382	return thread;
 383
 384out_err:
 385	thread__zput(thread);
 386	return NULL;
 387}
 388
 389struct thread *machines__findnew_guest_code(struct machines *machines, pid_t pid)
 390{
 391	struct machine *host_machine = machines__find(machines, HOST_KERNEL_ID);
 392	struct machine *machine = machines__findnew(machines, pid);
 393
 394	return findnew_guest_code(machine, host_machine, pid);
 395}
 396
 397struct thread *machine__findnew_guest_code(struct machine *machine, pid_t pid)
 398{
 399	struct machines *machines = machine->machines;
 400	struct machine *host_machine;
 401
 402	if (!machines)
 403		return NULL;
 404
 405	host_machine = machines__find(machines, HOST_KERNEL_ID);
 406
 407	return findnew_guest_code(machine, host_machine, pid);
 408}
 409
 410void machines__process_guests(struct machines *machines,
 411			      machine__process_t process, void *data)
 412{
 413	struct rb_node *nd;
 414
 415	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
 416		struct machine *pos = rb_entry(nd, struct machine, rb_node);
 417		process(pos, data);
 418	}
 419}
 420
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 421void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
 422{
 423	struct rb_node *node;
 424	struct machine *machine;
 425
 426	machines->host.id_hdr_size = id_hdr_size;
 427
 428	for (node = rb_first_cached(&machines->guests); node;
 429	     node = rb_next(node)) {
 430		machine = rb_entry(node, struct machine, rb_node);
 431		machine->id_hdr_size = id_hdr_size;
 432	}
 433
 434	return;
 435}
 436
 437static void machine__update_thread_pid(struct machine *machine,
 438				       struct thread *th, pid_t pid)
 439{
 440	struct thread *leader;
 441
 442	if (pid == thread__pid(th) || pid == -1 || thread__pid(th) != -1)
 443		return;
 444
 445	thread__set_pid(th, pid);
 446
 447	if (thread__pid(th) == thread__tid(th))
 448		return;
 449
 450	leader = machine__findnew_thread(machine, thread__pid(th), thread__pid(th));
 451	if (!leader)
 452		goto out_err;
 453
 454	if (!thread__maps(leader))
 455		thread__set_maps(leader, maps__new(machine));
 456
 457	if (!thread__maps(leader))
 458		goto out_err;
 459
 460	if (thread__maps(th) == thread__maps(leader))
 461		goto out_put;
 462
 463	if (thread__maps(th)) {
 464		/*
 465		 * Maps are created from MMAP events which provide the pid and
 466		 * tid.  Consequently there never should be any maps on a thread
 467		 * with an unknown pid.  Just print an error if there are.
 468		 */
 469		if (!maps__empty(thread__maps(th)))
 470			pr_err("Discarding thread maps for %d:%d\n",
 471				thread__pid(th), thread__tid(th));
 472		maps__put(thread__maps(th));
 473	}
 474
 475	thread__set_maps(th, maps__get(thread__maps(leader)));
 476out_put:
 477	thread__put(leader);
 478	return;
 479out_err:
 480	pr_err("Failed to join map groups for %d:%d\n", thread__pid(th), thread__tid(th));
 481	goto out_put;
 482}
 483
 484/*
 485 * Caller must eventually drop thread->refcnt returned with a successful
 486 * lookup/new thread inserted.
 487 */
 488static struct thread *__machine__findnew_thread(struct machine *machine,
 489						pid_t pid,
 490						pid_t tid,
 491						bool create)
 492{
 493	struct thread *th = threads__find(&machine->threads, tid);
 494	bool created;
 495
 496	if (th) {
 497		machine__update_thread_pid(machine, th, pid);
 498		return th;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 499	}
 
 500	if (!create)
 501		return NULL;
 502
 503	th = threads__findnew(&machine->threads, pid, tid, &created);
 504	if (created) {
 
 
 
 505		/*
 506		 * We have to initialize maps separately after rb tree is
 507		 * updated.
 508		 *
 509		 * The reason is that we call machine__findnew_thread within
 510		 * thread__init_maps to find the thread leader and that would
 511		 * screwed the rb tree.
 512		 */
 513		if (thread__init_maps(th, machine)) {
 514			pr_err("Thread init failed thread %d\n", pid);
 515			threads__remove(&machine->threads, th);
 516			thread__put(th);
 517			return NULL;
 518		}
 519	} else
 520		machine__update_thread_pid(machine, th, pid);
 
 
 
 
 521
 522	return th;
 523}
 524
 525struct thread *machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
 526{
 527	return __machine__findnew_thread(machine, pid, tid, /*create=*/true);
 528}
 529
 530struct thread *machine__find_thread(struct machine *machine, pid_t pid,
 531				    pid_t tid)
 532{
 533	return __machine__findnew_thread(machine, pid, tid, /*create=*/false);
 
 
 
 
 
 534}
 535
 536/*
 537 * Threads are identified by pid and tid, and the idle task has pid == tid == 0.
 538 * So here a single thread is created for that, but actually there is a separate
 539 * idle task per cpu, so there should be one 'struct thread' per cpu, but there
 540 * is only 1. That causes problems for some tools, requiring workarounds. For
 541 * example get_idle_thread() in builtin-sched.c, or thread_stack__per_cpu().
 542 */
 543struct thread *machine__idle_thread(struct machine *machine)
 544{
 545	struct thread *thread = machine__findnew_thread(machine, 0, 0);
 546
 547	if (!thread || thread__set_comm(thread, "swapper", 0) ||
 548	    thread__set_namespaces(thread, 0, NULL))
 549		pr_err("problem inserting idle task for machine pid %d\n", machine->pid);
 550
 551	return thread;
 552}
 553
 554struct comm *machine__thread_exec_comm(struct machine *machine,
 555				       struct thread *thread)
 556{
 557	if (machine->comm_exec)
 558		return thread__exec_comm(thread);
 559	else
 560		return thread__comm(thread);
 561}
 562
 563int machine__process_comm_event(struct machine *machine, union perf_event *event,
 564				struct perf_sample *sample)
 565{
 566	struct thread *thread = machine__findnew_thread(machine,
 567							event->comm.pid,
 568							event->comm.tid);
 569	bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
 570	int err = 0;
 571
 572	if (exec)
 573		machine->comm_exec = true;
 574
 575	if (dump_trace)
 576		perf_event__fprintf_comm(event, stdout);
 577
 578	if (thread == NULL ||
 579	    __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
 580		dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
 581		err = -1;
 582	}
 583
 584	thread__put(thread);
 585
 586	return err;
 587}
 588
 589int machine__process_namespaces_event(struct machine *machine __maybe_unused,
 590				      union perf_event *event,
 591				      struct perf_sample *sample __maybe_unused)
 592{
 593	struct thread *thread = machine__findnew_thread(machine,
 594							event->namespaces.pid,
 595							event->namespaces.tid);
 596	int err = 0;
 597
 598	WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES,
 599		  "\nWARNING: kernel seems to support more namespaces than perf"
 600		  " tool.\nTry updating the perf tool..\n\n");
 601
 602	WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES,
 603		  "\nWARNING: perf tool seems to support more namespaces than"
 604		  " the kernel.\nTry updating the kernel..\n\n");
 605
 606	if (dump_trace)
 607		perf_event__fprintf_namespaces(event, stdout);
 608
 609	if (thread == NULL ||
 610	    thread__set_namespaces(thread, sample->time, &event->namespaces)) {
 611		dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n");
 612		err = -1;
 613	}
 614
 615	thread__put(thread);
 616
 617	return err;
 618}
 619
 620int machine__process_cgroup_event(struct machine *machine,
 621				  union perf_event *event,
 622				  struct perf_sample *sample __maybe_unused)
 623{
 624	struct cgroup *cgrp;
 625
 626	if (dump_trace)
 627		perf_event__fprintf_cgroup(event, stdout);
 628
 629	cgrp = cgroup__findnew(machine->env, event->cgroup.id, event->cgroup.path);
 630	if (cgrp == NULL)
 631		return -ENOMEM;
 632
 633	return 0;
 634}
 635
 636int machine__process_lost_event(struct machine *machine __maybe_unused,
 637				union perf_event *event, struct perf_sample *sample __maybe_unused)
 638{
 639	dump_printf(": id:%" PRI_lu64 ": lost:%" PRI_lu64 "\n",
 640		    event->lost.id, event->lost.lost);
 641	return 0;
 642}
 643
 644int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
 645					union perf_event *event, struct perf_sample *sample)
 646{
 647	dump_printf(": id:%" PRIu64 ": lost samples :%" PRI_lu64 "%s\n",
 648		    sample->id, event->lost_samples.lost,
 649		    event->header.misc & PERF_RECORD_MISC_LOST_SAMPLES_BPF ? " (BPF)" : "");
 650	return 0;
 651}
 652
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 653int machine__process_aux_event(struct machine *machine __maybe_unused,
 654			       union perf_event *event)
 655{
 656	if (dump_trace)
 657		perf_event__fprintf_aux(event, stdout);
 658	return 0;
 659}
 660
 661int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
 662					union perf_event *event)
 663{
 664	if (dump_trace)
 665		perf_event__fprintf_itrace_start(event, stdout);
 666	return 0;
 667}
 668
 669int machine__process_aux_output_hw_id_event(struct machine *machine __maybe_unused,
 670					    union perf_event *event)
 671{
 672	if (dump_trace)
 673		perf_event__fprintf_aux_output_hw_id(event, stdout);
 674	return 0;
 675}
 676
 677int machine__process_switch_event(struct machine *machine __maybe_unused,
 678				  union perf_event *event)
 679{
 680	if (dump_trace)
 681		perf_event__fprintf_switch(event, stdout);
 682	return 0;
 683}
 684
 685static int machine__process_ksymbol_register(struct machine *machine,
 686					     union perf_event *event,
 687					     struct perf_sample *sample __maybe_unused)
 688{
 689	struct symbol *sym;
 690	struct dso *dso = NULL;
 691	struct map *map = maps__find(machine__kernel_maps(machine), event->ksymbol.addr);
 692	int err = 0;
 693
 694	if (!map) {
 695		dso = dso__new(event->ksymbol.name);
 
 
 
 
 696
 697		if (!dso) {
 698			err = -ENOMEM;
 699			goto out;
 700		}
 701		dso__set_kernel(dso, DSO_SPACE__KERNEL);
 702		map = map__new2(0, dso);
 703		if (!map) {
 704			err = -ENOMEM;
 705			goto out;
 706		}
 707		if (event->ksymbol.ksym_type == PERF_RECORD_KSYMBOL_TYPE_OOL) {
 708			dso__set_binary_type(dso, DSO_BINARY_TYPE__OOL);
 709			dso__data(dso)->file_size = event->ksymbol.len;
 710			dso__set_loaded(dso);
 711		}
 712
 713		map__set_start(map, event->ksymbol.addr);
 714		map__set_end(map, map__start(map) + event->ksymbol.len);
 715		err = maps__insert(machine__kernel_maps(machine), map);
 716		if (err) {
 717			err = -ENOMEM;
 718			goto out;
 719		}
 720
 721		dso__set_loaded(dso);
 722
 723		if (is_bpf_image(event->ksymbol.name)) {
 724			dso__set_binary_type(dso, DSO_BINARY_TYPE__BPF_IMAGE);
 725			dso__set_long_name(dso, "", false);
 726		}
 727	} else {
 728		dso = dso__get(map__dso(map));
 729	}
 730
 731	sym = symbol__new(map__map_ip(map, map__start(map)),
 732			  event->ksymbol.len,
 733			  0, 0, event->ksymbol.name);
 734	if (!sym) {
 735		err = -ENOMEM;
 736		goto out;
 737	}
 738	dso__insert_symbol(dso, sym);
 739out:
 740	map__put(map);
 741	dso__put(dso);
 742	return err;
 743}
 744
 745static int machine__process_ksymbol_unregister(struct machine *machine,
 746					       union perf_event *event,
 747					       struct perf_sample *sample __maybe_unused)
 748{
 749	struct symbol *sym;
 750	struct map *map;
 751
 752	map = maps__find(machine__kernel_maps(machine), event->ksymbol.addr);
 753	if (!map)
 754		return 0;
 755
 756	if (!RC_CHK_EQUAL(map, machine->vmlinux_map))
 757		maps__remove(machine__kernel_maps(machine), map);
 758	else {
 759		struct dso *dso = map__dso(map);
 760
 761		sym = dso__find_symbol(dso, map__map_ip(map, map__start(map)));
 762		if (sym)
 763			dso__delete_symbol(dso, sym);
 764	}
 765	map__put(map);
 766	return 0;
 767}
 768
 769int machine__process_ksymbol(struct machine *machine __maybe_unused,
 770			     union perf_event *event,
 771			     struct perf_sample *sample)
 772{
 773	if (dump_trace)
 774		perf_event__fprintf_ksymbol(event, stdout);
 
 775
 776	if (event->ksymbol.flags & PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER)
 777		return machine__process_ksymbol_unregister(machine, event,
 778							   sample);
 779	return machine__process_ksymbol_register(machine, event, sample);
 780}
 781
 782int machine__process_text_poke(struct machine *machine, union perf_event *event,
 783			       struct perf_sample *sample __maybe_unused)
 784{
 785	struct map *map = maps__find(machine__kernel_maps(machine), event->text_poke.addr);
 786	u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
 787	struct dso *dso = map ? map__dso(map) : NULL;
 788
 789	if (dump_trace)
 790		perf_event__fprintf_text_poke(event, machine, stdout);
 791
 792	if (!event->text_poke.new_len)
 793		goto out;
 794
 795	if (cpumode != PERF_RECORD_MISC_KERNEL) {
 796		pr_debug("%s: unsupported cpumode - ignoring\n", __func__);
 797		goto out;
 798	}
 799
 800	if (dso) {
 801		u8 *new_bytes = event->text_poke.bytes + event->text_poke.old_len;
 802		int ret;
 803
 
 
 
 804		/*
 805		 * Kernel maps might be changed when loading symbols so loading
 806		 * must be done prior to using kernel maps.
 
 807		 */
 808		map__load(map);
 809		ret = dso__data_write_cache_addr(dso, map, machine,
 810						 event->text_poke.addr,
 811						 new_bytes,
 812						 event->text_poke.new_len);
 813		if (ret != event->text_poke.new_len)
 814			pr_debug("Failed to write kernel text poke at %#" PRI_lx64 "\n",
 815				 event->text_poke.addr);
 816	} else {
 817		pr_debug("Failed to find kernel text poke address map for %#" PRI_lx64 "\n",
 818			 event->text_poke.addr);
 819	}
 820out:
 821	map__put(map);
 822	return 0;
 823}
 824
 825static struct map *machine__addnew_module_map(struct machine *machine, u64 start,
 826					      const char *filename)
 827{
 828	struct map *map = NULL;
 829	struct kmod_path m;
 830	struct dso *dso;
 831	int err;
 832
 833	if (kmod_path__parse_name(&m, filename))
 834		return NULL;
 835
 836	dso = dsos__findnew_module_dso(&machine->dsos, machine, &m, filename);
 837	if (dso == NULL)
 838		goto out;
 839
 840	map = map__new2(start, dso);
 841	if (map == NULL)
 842		goto out;
 843
 844	err = maps__insert(machine__kernel_maps(machine), map);
 845	/* If maps__insert failed, return NULL. */
 846	if (err) {
 847		map__put(map);
 848		map = NULL;
 849	}
 850out:
 851	/* put the dso here, corresponding to  machine__findnew_module_dso */
 852	dso__put(dso);
 853	zfree(&m.name);
 854	return map;
 855}
 856
 857size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
 858{
 859	struct rb_node *nd;
 860	size_t ret = dsos__fprintf(&machines->host.dsos, fp);
 861
 862	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
 863		struct machine *pos = rb_entry(nd, struct machine, rb_node);
 864		ret += dsos__fprintf(&pos->dsos, fp);
 865	}
 866
 867	return ret;
 868}
 869
 870size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
 871				     bool (skip)(struct dso *dso, int parm), int parm)
 872{
 873	return dsos__fprintf_buildid(&m->dsos, fp, skip, parm);
 874}
 875
 876size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
 877				     bool (skip)(struct dso *dso, int parm), int parm)
 878{
 879	struct rb_node *nd;
 880	size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
 881
 882	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
 883		struct machine *pos = rb_entry(nd, struct machine, rb_node);
 884		ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
 885	}
 886	return ret;
 887}
 888
 889size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
 890{
 891	int i;
 892	size_t printed = 0;
 893	struct dso *kdso = machine__kernel_dso(machine);
 894
 895	if (dso__has_build_id(kdso)) {
 896		char filename[PATH_MAX];
 897
 898		if (dso__build_id_filename(kdso, filename, sizeof(filename), false))
 899			printed += fprintf(fp, "[0] %s\n", filename);
 900	}
 901
 902	for (i = 0; i < vmlinux_path__nr_entries; ++i) {
 903		printed += fprintf(fp, "[%d] %s\n", i + dso__has_build_id(kdso),
 904				   vmlinux_path[i]);
 905	}
 906	return printed;
 907}
 908
 909struct machine_fprintf_cb_args {
 910	FILE *fp;
 911	size_t printed;
 912};
 
 
 913
 914static int machine_fprintf_cb(struct thread *thread, void *data)
 915{
 916	struct machine_fprintf_cb_args *args = data;
 917
 918	/* TODO: handle fprintf errors. */
 919	args->printed += thread__fprintf(thread, args->fp);
 920	return 0;
 921}
 922
 923size_t machine__fprintf(struct machine *machine, FILE *fp)
 924{
 925	struct machine_fprintf_cb_args args = {
 926		.fp = fp,
 927		.printed = 0,
 928	};
 929	size_t ret = fprintf(fp, "Threads: %zu\n", threads__nr(&machine->threads));
 930
 931	machine__for_each_thread(machine, machine_fprintf_cb, &args);
 932	return ret + args.printed;
 933}
 934
 935static struct dso *machine__get_kernel(struct machine *machine)
 936{
 937	const char *vmlinux_name = machine->mmap_name;
 938	struct dso *kernel;
 939
 940	if (machine__is_host(machine)) {
 941		if (symbol_conf.vmlinux_name)
 942			vmlinux_name = symbol_conf.vmlinux_name;
 
 943
 944		kernel = machine__findnew_kernel(machine, vmlinux_name,
 945						 "[kernel]", DSO_SPACE__KERNEL);
 946	} else {
 947		if (symbol_conf.default_guest_vmlinux_name)
 
 
 948			vmlinux_name = symbol_conf.default_guest_vmlinux_name;
 
 
 
 949
 950		kernel = machine__findnew_kernel(machine, vmlinux_name,
 951						 "[guest.kernel]",
 952						 DSO_SPACE__KERNEL_GUEST);
 953	}
 954
 955	if (kernel != NULL && (!dso__has_build_id(kernel)))
 956		dso__read_running_kernel_build_id(kernel, machine);
 957
 958	return kernel;
 959}
 960
 961void machine__get_kallsyms_filename(struct machine *machine, char *buf,
 962				    size_t bufsz)
 
 
 
 
 963{
 964	if (machine__is_default_guest(machine))
 965		scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
 966	else
 967		scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
 968}
 969
 970const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};
 971
 972/* Figure out the start address of kernel map from /proc/kallsyms.
 973 * Returns the name of the start symbol in *symbol_name. Pass in NULL as
 974 * symbol_name if it's not that important.
 975 */
 976static int machine__get_running_kernel_start(struct machine *machine,
 977					     const char **symbol_name,
 978					     u64 *start, u64 *end)
 979{
 980	char filename[PATH_MAX];
 981	int i, err = -1;
 982	const char *name;
 983	u64 addr = 0;
 984
 985	machine__get_kallsyms_filename(machine, filename, PATH_MAX);
 986
 987	if (symbol__restricted_filename(filename, "/proc/kallsyms"))
 988		return 0;
 989
 990	for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
 991		err = kallsyms__get_function_start(filename, name, &addr);
 992		if (!err)
 993			break;
 994	}
 995
 996	if (err)
 997		return -1;
 998
 999	if (symbol_name)
1000		*symbol_name = name;
1001
1002	*start = addr;
1003
1004	err = kallsyms__get_symbol_start(filename, "_edata", &addr);
1005	if (err)
1006		err = kallsyms__get_symbol_start(filename, "_etext", &addr);
1007	if (!err)
1008		*end = addr;
1009
1010	return 0;
1011}
1012
1013int machine__create_extra_kernel_map(struct machine *machine,
1014				     struct dso *kernel,
1015				     struct extra_kernel_map *xm)
1016{
1017	struct kmap *kmap;
1018	struct map *map;
1019	int err;
1020
1021	map = map__new2(xm->start, kernel);
1022	if (!map)
1023		return -ENOMEM;
1024
1025	map__set_end(map, xm->end);
1026	map__set_pgoff(map, xm->pgoff);
 
1027
1028	kmap = map__kmap(map);
 
 
1029
1030	strlcpy(kmap->name, xm->name, KMAP_NAME_LEN);
1031
1032	err = maps__insert(machine__kernel_maps(machine), map);
 
 
 
 
1033
1034	if (!err) {
1035		pr_debug2("Added extra kernel map %s %" PRIx64 "-%" PRIx64 "\n",
1036			kmap->name, map__start(map), map__end(map));
1037	}
1038
1039	map__put(map);
1040
1041	return err;
1042}
1043
1044static u64 find_entry_trampoline(struct dso *dso)
1045{
1046	/* Duplicates are removed so lookup all aliases */
1047	const char *syms[] = {
1048		"_entry_trampoline",
1049		"__entry_trampoline_start",
1050		"entry_SYSCALL_64_trampoline",
1051	};
1052	struct symbol *sym = dso__first_symbol(dso);
1053	unsigned int i;
1054
1055	for (; sym; sym = dso__next_symbol(sym)) {
1056		if (sym->binding != STB_GLOBAL)
1057			continue;
1058		for (i = 0; i < ARRAY_SIZE(syms); i++) {
1059			if (!strcmp(sym->name, syms[i]))
1060				return sym->start;
1061		}
1062	}
1063
1064	return 0;
1065}
1066
1067/*
1068 * These values can be used for kernels that do not have symbols for the entry
1069 * trampolines in kallsyms.
1070 */
1071#define X86_64_CPU_ENTRY_AREA_PER_CPU	0xfffffe0000000000ULL
1072#define X86_64_CPU_ENTRY_AREA_SIZE	0x2c000
1073#define X86_64_ENTRY_TRAMPOLINE		0x6000
1074
1075struct machine__map_x86_64_entry_trampolines_args {
1076	struct maps *kmaps;
1077	bool found;
1078};
1079
1080static int machine__map_x86_64_entry_trampolines_cb(struct map *map, void *data)
1081{
1082	struct machine__map_x86_64_entry_trampolines_args *args = data;
1083	struct map *dest_map;
1084	struct kmap *kmap = __map__kmap(map);
1085
1086	if (!kmap || !is_entry_trampoline(kmap->name))
1087		return 0;
1088
1089	dest_map = maps__find(args->kmaps, map__pgoff(map));
1090	if (RC_CHK_ACCESS(dest_map) != RC_CHK_ACCESS(map))
1091		map__set_pgoff(map, map__map_ip(dest_map, map__pgoff(map)));
1092
1093	map__put(dest_map);
1094	args->found = true;
1095	return 0;
1096}
1097
1098/* Map x86_64 PTI entry trampolines */
1099int machine__map_x86_64_entry_trampolines(struct machine *machine,
1100					  struct dso *kernel)
1101{
1102	struct machine__map_x86_64_entry_trampolines_args args = {
1103		.kmaps = machine__kernel_maps(machine),
1104		.found = false,
1105	};
1106	int nr_cpus_avail, cpu;
1107	u64 pgoff;
1108
1109	/*
1110	 * In the vmlinux case, pgoff is a virtual address which must now be
1111	 * mapped to a vmlinux offset.
1112	 */
1113	maps__for_each_map(args.kmaps, machine__map_x86_64_entry_trampolines_cb, &args);
1114
1115	if (args.found || machine->trampolines_mapped)
1116		return 0;
1117
1118	pgoff = find_entry_trampoline(kernel);
1119	if (!pgoff)
1120		return 0;
1121
1122	nr_cpus_avail = machine__nr_cpus_avail(machine);
1123
1124	/* Add a 1 page map for each CPU's entry trampoline */
1125	for (cpu = 0; cpu < nr_cpus_avail; cpu++) {
1126		u64 va = X86_64_CPU_ENTRY_AREA_PER_CPU +
1127			 cpu * X86_64_CPU_ENTRY_AREA_SIZE +
1128			 X86_64_ENTRY_TRAMPOLINE;
1129		struct extra_kernel_map xm = {
1130			.start = va,
1131			.end   = va + page_size,
1132			.pgoff = pgoff,
1133		};
1134
1135		strlcpy(xm.name, ENTRY_TRAMPOLINE_NAME, KMAP_NAME_LEN);
1136
1137		if (machine__create_extra_kernel_map(machine, kernel, &xm) < 0)
1138			return -1;
1139	}
1140
1141	machine->trampolines_mapped = nr_cpus_avail;
1142
1143	return 0;
1144}
1145
1146int __weak machine__create_extra_kernel_maps(struct machine *machine __maybe_unused,
1147					     struct dso *kernel __maybe_unused)
1148{
1149	return 0;
1150}
1151
1152static int
1153__machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
1154{
1155	/* In case of renewal the kernel map, destroy previous one */
1156	machine__destroy_kernel_maps(machine);
1157
1158	map__put(machine->vmlinux_map);
1159	machine->vmlinux_map = map__new2(0, kernel);
1160	if (machine->vmlinux_map == NULL)
1161		return -ENOMEM;
1162
1163	map__set_mapping_type(machine->vmlinux_map, MAPPING_TYPE__IDENTITY);
1164	return maps__insert(machine__kernel_maps(machine), machine->vmlinux_map);
1165}
1166
1167void machine__destroy_kernel_maps(struct machine *machine)
1168{
1169	struct kmap *kmap;
1170	struct map *map = machine__kernel_map(machine);
1171
1172	if (map == NULL)
1173		return;
1174
1175	kmap = map__kmap(map);
1176	maps__remove(machine__kernel_maps(machine), map);
1177	if (kmap && kmap->ref_reloc_sym) {
1178		zfree((char **)&kmap->ref_reloc_sym->name);
1179		zfree(&kmap->ref_reloc_sym);
1180	}
1181
1182	map__zput(machine->vmlinux_map);
1183}
1184
1185int machines__create_guest_kernel_maps(struct machines *machines)
1186{
1187	int ret = 0;
1188	struct dirent **namelist = NULL;
1189	int i, items = 0;
1190	char path[PATH_MAX];
1191	pid_t pid;
1192	char *endp;
1193
1194	if (symbol_conf.default_guest_vmlinux_name ||
1195	    symbol_conf.default_guest_modules ||
1196	    symbol_conf.default_guest_kallsyms) {
1197		machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
1198	}
1199
1200	if (symbol_conf.guestmount) {
1201		items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
1202		if (items <= 0)
1203			return -ENOENT;
1204		for (i = 0; i < items; i++) {
1205			if (!isdigit(namelist[i]->d_name[0])) {
1206				/* Filter out . and .. */
1207				continue;
1208			}
1209			pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
1210			if ((*endp != '\0') ||
1211			    (endp == namelist[i]->d_name) ||
1212			    (errno == ERANGE)) {
1213				pr_debug("invalid directory (%s). Skipping.\n",
1214					 namelist[i]->d_name);
1215				continue;
1216			}
1217			sprintf(path, "%s/%s/proc/kallsyms",
1218				symbol_conf.guestmount,
1219				namelist[i]->d_name);
1220			ret = access(path, R_OK);
1221			if (ret) {
1222				pr_debug("Can't access file %s\n", path);
1223				goto failure;
1224			}
1225			machines__create_kernel_maps(machines, pid);
1226		}
1227failure:
1228		free(namelist);
1229	}
1230
1231	return ret;
1232}
1233
1234void machines__destroy_kernel_maps(struct machines *machines)
1235{
1236	struct rb_node *next = rb_first_cached(&machines->guests);
1237
1238	machine__destroy_kernel_maps(&machines->host);
1239
1240	while (next) {
1241		struct machine *pos = rb_entry(next, struct machine, rb_node);
1242
1243		next = rb_next(&pos->rb_node);
1244		rb_erase_cached(&pos->rb_node, &machines->guests);
1245		machine__delete(pos);
1246	}
1247}
1248
1249int machines__create_kernel_maps(struct machines *machines, pid_t pid)
1250{
1251	struct machine *machine = machines__findnew(machines, pid);
1252
1253	if (machine == NULL)
1254		return -1;
1255
1256	return machine__create_kernel_maps(machine);
1257}
1258
1259int machine__load_kallsyms(struct machine *machine, const char *filename)
 
1260{
1261	struct map *map = machine__kernel_map(machine);
1262	struct dso *dso = map__dso(map);
1263	int ret = __dso__load_kallsyms(dso, filename, map, true);
1264
1265	if (ret > 0) {
1266		dso__set_loaded(dso);
1267		/*
1268		 * Since /proc/kallsyms will have multiple sessions for the
1269		 * kernel, with modules between them, fixup the end of all
1270		 * sections.
1271		 */
1272		maps__fixup_end(machine__kernel_maps(machine));
1273	}
1274
1275	return ret;
1276}
1277
1278int machine__load_vmlinux_path(struct machine *machine)
 
1279{
1280	struct map *map = machine__kernel_map(machine);
1281	struct dso *dso = map__dso(map);
1282	int ret = dso__load_vmlinux_path(dso, map);
1283
1284	if (ret > 0)
1285		dso__set_loaded(dso);
1286
1287	return ret;
1288}
1289
 
 
 
 
 
 
 
1290static char *get_kernel_version(const char *root_dir)
1291{
1292	char version[PATH_MAX];
1293	FILE *file;
1294	char *name, *tmp;
1295	const char *prefix = "Linux version ";
1296
1297	sprintf(version, "%s/proc/version", root_dir);
1298	file = fopen(version, "r");
1299	if (!file)
1300		return NULL;
1301
 
1302	tmp = fgets(version, sizeof(version), file);
1303	fclose(file);
1304	if (!tmp)
1305		return NULL;
1306
1307	name = strstr(version, prefix);
1308	if (!name)
1309		return NULL;
1310	name += strlen(prefix);
1311	tmp = strchr(name, ' ');
1312	if (tmp)
1313		*tmp = '\0';
1314
1315	return strdup(name);
1316}
1317
1318static bool is_kmod_dso(struct dso *dso)
1319{
1320	return dso__symtab_type(dso) == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
1321	       dso__symtab_type(dso) == DSO_BINARY_TYPE__GUEST_KMODULE;
1322}
1323
1324static int maps__set_module_path(struct maps *maps, const char *path, struct kmod_path *m)
 
1325{
 
1326	char *long_name;
1327	struct dso *dso;
1328	struct map *map = maps__find_by_name(maps, m->name);
1329
 
1330	if (map == NULL)
1331		return 0;
1332
1333	long_name = strdup(path);
1334	if (long_name == NULL) {
1335		map__put(map);
1336		return -ENOMEM;
1337	}
1338
1339	dso = map__dso(map);
1340	dso__set_long_name(dso, long_name, true);
1341	dso__kernel_module_get_build_id(dso, "");
1342
1343	/*
1344	 * Full name could reveal us kmod compression, so
1345	 * we need to update the symtab_type if needed.
1346	 */
1347	if (m->comp && is_kmod_dso(dso)) {
1348		dso__set_symtab_type(dso, dso__symtab_type(dso)+1);
1349		dso__set_comp(dso, m->comp);
1350	}
1351	map__put(map);
1352	return 0;
1353}
1354
1355static int maps__set_modules_path_dir(struct maps *maps, const char *dir_name, int depth)
 
1356{
1357	struct dirent *dent;
1358	DIR *dir = opendir(dir_name);
1359	int ret = 0;
1360
1361	if (!dir) {
1362		pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
1363		return -1;
1364	}
1365
1366	while ((dent = readdir(dir)) != NULL) {
1367		char path[PATH_MAX];
1368		struct stat st;
1369
1370		/*sshfs might return bad dent->d_type, so we have to stat*/
1371		path__join(path, sizeof(path), dir_name, dent->d_name);
1372		if (stat(path, &st))
1373			continue;
1374
1375		if (S_ISDIR(st.st_mode)) {
1376			if (!strcmp(dent->d_name, ".") ||
1377			    !strcmp(dent->d_name, ".."))
1378				continue;
1379
1380			/* Do not follow top-level source and build symlinks */
1381			if (depth == 0) {
1382				if (!strcmp(dent->d_name, "source") ||
1383				    !strcmp(dent->d_name, "build"))
1384					continue;
1385			}
1386
1387			ret = maps__set_modules_path_dir(maps, path, depth + 1);
 
1388			if (ret < 0)
1389				goto out;
1390		} else {
1391			struct kmod_path m;
1392
1393			ret = kmod_path__parse_name(&m, dent->d_name);
1394			if (ret)
1395				goto out;
1396
1397			if (m.kmod)
1398				ret = maps__set_module_path(maps, path, &m);
1399
1400			zfree(&m.name);
1401
1402			if (ret)
1403				goto out;
1404		}
1405	}
1406
1407out:
1408	closedir(dir);
1409	return ret;
1410}
1411
1412static int machine__set_modules_path(struct machine *machine)
1413{
1414	char *version;
1415	char modules_path[PATH_MAX];
1416
1417	version = get_kernel_version(machine->root_dir);
1418	if (!version)
1419		return -1;
1420
1421	snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1422		 machine->root_dir, version);
1423	free(version);
1424
1425	return maps__set_modules_path_dir(machine__kernel_maps(machine), modules_path, 0);
1426}
1427int __weak arch__fix_module_text_start(u64 *start __maybe_unused,
1428				u64 *size __maybe_unused,
1429				const char *name __maybe_unused)
1430{
1431	return 0;
1432}
1433
1434static int machine__create_module(void *arg, const char *name, u64 start,
1435				  u64 size)
1436{
1437	struct machine *machine = arg;
1438	struct map *map;
1439
1440	if (arch__fix_module_text_start(&start, &size, name) < 0)
 
1441		return -1;
1442
1443	map = machine__addnew_module_map(machine, start, name);
1444	if (map == NULL)
1445		return -1;
1446	map__set_end(map, start + size);
1447
1448	dso__kernel_module_get_build_id(map__dso(map), machine->root_dir);
1449	map__put(map);
1450	return 0;
1451}
1452
1453static int machine__create_modules(struct machine *machine)
1454{
1455	const char *modules;
1456	char path[PATH_MAX];
1457
1458	if (machine__is_default_guest(machine)) {
1459		modules = symbol_conf.default_guest_modules;
1460	} else {
1461		snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1462		modules = path;
1463	}
1464
1465	if (symbol__restricted_filename(modules, "/proc/modules"))
1466		return -1;
1467
1468	if (modules__parse(modules, machine, machine__create_module))
1469		return -1;
1470
1471	if (!machine__set_modules_path(machine))
1472		return 0;
1473
1474	pr_debug("Problems setting modules path maps, continuing anyway...\n");
1475
1476	return 0;
1477}
1478
1479static void machine__set_kernel_mmap(struct machine *machine,
1480				     u64 start, u64 end)
1481{
1482	map__set_start(machine->vmlinux_map, start);
1483	map__set_end(machine->vmlinux_map, end);
1484	/*
1485	 * Be a bit paranoid here, some perf.data file came with
1486	 * a zero sized synthesized MMAP event for the kernel.
1487	 */
1488	if (start == 0 && end == 0)
1489		map__set_end(machine->vmlinux_map, ~0ULL);
1490}
1491
1492static int machine__update_kernel_mmap(struct machine *machine,
1493				     u64 start, u64 end)
1494{
1495	struct map *orig, *updated;
1496	int err;
1497
1498	orig = machine->vmlinux_map;
1499	updated = map__get(orig);
1500
1501	machine->vmlinux_map = updated;
1502	maps__remove(machine__kernel_maps(machine), orig);
1503	machine__set_kernel_mmap(machine, start, end);
1504	err = maps__insert(machine__kernel_maps(machine), updated);
1505	map__put(orig);
1506
1507	return err;
1508}
1509
1510int machine__create_kernel_maps(struct machine *machine)
1511{
1512	struct dso *kernel = machine__get_kernel(machine);
1513	const char *name = NULL;
1514	u64 start = 0, end = ~0ULL;
1515	int ret;
1516
1517	if (kernel == NULL)
1518		return -1;
1519
1520	ret = __machine__create_kernel_maps(machine, kernel);
 
1521	if (ret < 0)
1522		goto out_put;
1523
1524	if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
1525		if (machine__is_host(machine))
1526			pr_debug("Problems creating module maps, "
1527				 "continuing anyway...\n");
1528		else
1529			pr_debug("Problems creating module maps for guest %d, "
1530				 "continuing anyway...\n", machine->pid);
1531	}
1532
1533	if (!machine__get_running_kernel_start(machine, &name, &start, &end)) {
1534		if (name &&
1535		    map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, name, start)) {
1536			machine__destroy_kernel_maps(machine);
1537			ret = -1;
1538			goto out_put;
1539		}
1540
1541		/*
1542		 * we have a real start address now, so re-order the kmaps
1543		 * assume it's the last in the kmaps
1544		 */
1545		ret = machine__update_kernel_mmap(machine, start, end);
1546		if (ret < 0)
1547			goto out_put;
1548	}
1549
1550	if (machine__create_extra_kernel_maps(machine, kernel))
1551		pr_debug("Problems creating extra kernel maps, continuing anyway...\n");
1552
1553	if (end == ~0ULL) {
1554		/* update end address of the kernel map using adjacent module address */
1555		struct map *next = maps__find_next_entry(machine__kernel_maps(machine),
1556							 machine__kernel_map(machine));
1557
1558		if (next) {
1559			machine__set_kernel_mmap(machine, start, map__start(next));
1560			map__put(next);
1561		}
 
 
 
 
 
 
1562	}
1563
1564out_put:
1565	dso__put(kernel);
1566	return ret;
1567}
1568
1569static int machine__uses_kcore_cb(struct dso *dso, void *data __maybe_unused)
1570{
1571	return dso__is_kcore(dso) ? 1 : 0;
1572}
1573
1574static bool machine__uses_kcore(struct machine *machine)
1575{
1576	return dsos__for_each_dso(&machine->dsos, machine__uses_kcore_cb, NULL) != 0 ? true : false;
1577}
1578
1579static bool perf_event__is_extra_kernel_mmap(struct machine *machine,
1580					     struct extra_kernel_map *xm)
1581{
1582	return machine__is(machine, "x86_64") &&
1583	       is_entry_trampoline(xm->name);
1584}
1585
1586static int machine__process_extra_kernel_map(struct machine *machine,
1587					     struct extra_kernel_map *xm)
1588{
1589	struct dso *kernel = machine__kernel_dso(machine);
1590
1591	if (kernel == NULL)
1592		return -1;
1593
1594	return machine__create_extra_kernel_map(machine, kernel, xm);
1595}
1596
1597static int machine__process_kernel_mmap_event(struct machine *machine,
1598					      struct extra_kernel_map *xm,
1599					      struct build_id *bid)
1600{
1601	enum dso_space_type dso_space;
 
 
1602	bool is_kernel_mmap;
1603	const char *mmap_name = machine->mmap_name;
1604
1605	/* If we have maps from kcore then we do not need or want any others */
1606	if (machine__uses_kcore(machine))
1607		return 0;
1608
 
1609	if (machine__is_host(machine))
1610		dso_space = DSO_SPACE__KERNEL;
1611	else
1612		dso_space = DSO_SPACE__KERNEL_GUEST;
1613
1614	is_kernel_mmap = memcmp(xm->name, mmap_name, strlen(mmap_name) - 1) == 0;
1615	if (!is_kernel_mmap && !machine__is_host(machine)) {
1616		/*
1617		 * If the event was recorded inside the guest and injected into
1618		 * the host perf.data file, then it will match a host mmap_name,
1619		 * so try that - see machine__set_mmap_name().
1620		 */
1621		mmap_name = "[kernel.kallsyms]";
1622		is_kernel_mmap = memcmp(xm->name, mmap_name, strlen(mmap_name) - 1) == 0;
1623	}
1624	if (xm->name[0] == '/' ||
1625	    (!is_kernel_mmap && xm->name[0] == '[')) {
1626		struct map *map = machine__addnew_module_map(machine, xm->start, xm->name);
1627
 
 
 
 
 
 
 
1628		if (map == NULL)
1629			goto out_problem;
1630
1631		map__set_end(map, map__start(map) + xm->end - xm->start);
1632
1633		if (build_id__is_defined(bid))
1634			dso__set_build_id(map__dso(map), bid);
1635
1636		map__put(map);
1637	} else if (is_kernel_mmap) {
1638		const char *symbol_name = xm->name + strlen(mmap_name);
 
1639		/*
1640		 * Should be there already, from the build-id table in
1641		 * the header.
1642		 */
1643		struct dso *kernel = dsos__find_kernel_dso(&machine->dsos);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1644
1645		if (kernel == NULL)
1646			kernel = machine__findnew_dso(machine, machine->mmap_name);
1647		if (kernel == NULL)
1648			goto out_problem;
1649
1650		dso__set_kernel(kernel, dso_space);
1651		if (__machine__create_kernel_maps(machine, kernel) < 0) {
1652			dso__put(kernel);
1653			goto out_problem;
1654		}
1655
1656		if (strstr(dso__long_name(kernel), "vmlinux"))
1657			dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1658
1659		if (machine__update_kernel_mmap(machine, xm->start, xm->end) < 0) {
1660			dso__put(kernel);
1661			goto out_problem;
1662		}
1663
1664		if (build_id__is_defined(bid))
1665			dso__set_build_id(kernel, bid);
1666
1667		/*
1668		 * Avoid using a zero address (kptr_restrict) for the ref reloc
1669		 * symbol. Effectively having zero here means that at record
1670		 * time /proc/sys/kernel/kptr_restrict was non zero.
1671		 */
1672		if (xm->pgoff != 0) {
1673			map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map,
1674							symbol_name,
1675							xm->pgoff);
1676		}
1677
1678		if (machine__is_default_guest(machine)) {
1679			/*
1680			 * preload dso of guest kernel and modules
1681			 */
1682			dso__load(kernel, machine__kernel_map(machine));
1683		}
1684		dso__put(kernel);
1685	} else if (perf_event__is_extra_kernel_mmap(machine, xm)) {
1686		return machine__process_extra_kernel_map(machine, xm);
1687	}
1688	return 0;
1689out_problem:
1690	return -1;
1691}
1692
1693int machine__process_mmap2_event(struct machine *machine,
1694				 union perf_event *event,
1695				 struct perf_sample *sample)
1696{
1697	struct thread *thread;
1698	struct map *map;
1699	struct dso_id dso_id = {
1700		.maj = event->mmap2.maj,
1701		.min = event->mmap2.min,
1702		.ino = event->mmap2.ino,
1703		.ino_generation = event->mmap2.ino_generation,
1704	};
1705	struct build_id __bid, *bid = NULL;
1706	int ret = 0;
1707
1708	if (dump_trace)
1709		perf_event__fprintf_mmap2(event, stdout);
1710
1711	if (event->header.misc & PERF_RECORD_MISC_MMAP_BUILD_ID) {
1712		bid = &__bid;
1713		build_id__init(bid, event->mmap2.build_id, event->mmap2.build_id_size);
1714	}
1715
1716	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1717	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1718		struct extra_kernel_map xm = {
1719			.start = event->mmap2.start,
1720			.end   = event->mmap2.start + event->mmap2.len,
1721			.pgoff = event->mmap2.pgoff,
1722		};
1723
1724		strlcpy(xm.name, event->mmap2.filename, KMAP_NAME_LEN);
1725		ret = machine__process_kernel_mmap_event(machine, &xm, bid);
1726		if (ret < 0)
1727			goto out_problem;
1728		return 0;
1729	}
1730
1731	thread = machine__findnew_thread(machine, event->mmap2.pid,
1732					event->mmap2.tid);
1733	if (thread == NULL)
1734		goto out_problem;
1735
 
 
 
 
 
1736	map = map__new(machine, event->mmap2.start,
1737			event->mmap2.len, event->mmap2.pgoff,
1738			&dso_id, event->mmap2.prot,
1739			event->mmap2.flags, bid,
1740			event->mmap2.filename, thread);
 
 
 
1741
1742	if (map == NULL)
1743		goto out_problem_map;
1744
1745	ret = thread__insert_map(thread, map);
1746	if (ret)
1747		goto out_problem_insert;
1748
1749	thread__put(thread);
1750	map__put(map);
1751	return 0;
1752
1753out_problem_insert:
1754	map__put(map);
1755out_problem_map:
1756	thread__put(thread);
1757out_problem:
1758	dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
1759	return 0;
1760}
1761
1762int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1763				struct perf_sample *sample)
1764{
1765	struct thread *thread;
1766	struct map *map;
1767	u32 prot = 0;
1768	int ret = 0;
1769
1770	if (dump_trace)
1771		perf_event__fprintf_mmap(event, stdout);
1772
1773	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1774	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1775		struct extra_kernel_map xm = {
1776			.start = event->mmap.start,
1777			.end   = event->mmap.start + event->mmap.len,
1778			.pgoff = event->mmap.pgoff,
1779		};
1780
1781		strlcpy(xm.name, event->mmap.filename, KMAP_NAME_LEN);
1782		ret = machine__process_kernel_mmap_event(machine, &xm, NULL);
1783		if (ret < 0)
1784			goto out_problem;
1785		return 0;
1786	}
1787
1788	thread = machine__findnew_thread(machine, event->mmap.pid,
1789					 event->mmap.tid);
1790	if (thread == NULL)
1791		goto out_problem;
1792
1793	if (!(event->header.misc & PERF_RECORD_MISC_MMAP_DATA))
1794		prot = PROT_EXEC;
 
 
1795
1796	map = map__new(machine, event->mmap.start,
1797			event->mmap.len, event->mmap.pgoff,
1798			NULL, prot, 0, NULL, event->mmap.filename, thread);
 
 
1799
1800	if (map == NULL)
1801		goto out_problem_map;
1802
1803	ret = thread__insert_map(thread, map);
1804	if (ret)
1805		goto out_problem_insert;
1806
1807	thread__put(thread);
1808	map__put(map);
1809	return 0;
1810
1811out_problem_insert:
1812	map__put(map);
1813out_problem_map:
1814	thread__put(thread);
1815out_problem:
1816	dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
1817	return 0;
1818}
1819
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1820void machine__remove_thread(struct machine *machine, struct thread *th)
1821{
1822	return threads__remove(&machine->threads, th);
1823}
1824
1825int machine__process_fork_event(struct machine *machine, union perf_event *event,
1826				struct perf_sample *sample)
1827{
1828	struct thread *thread = machine__find_thread(machine,
1829						     event->fork.pid,
1830						     event->fork.tid);
1831	struct thread *parent = machine__findnew_thread(machine,
1832							event->fork.ppid,
1833							event->fork.ptid);
1834	bool do_maps_clone = true;
1835	int err = 0;
1836
1837	if (dump_trace)
1838		perf_event__fprintf_task(event, stdout);
1839
1840	/*
1841	 * There may be an existing thread that is not actually the parent,
1842	 * either because we are processing events out of order, or because the
1843	 * (fork) event that would have removed the thread was lost. Assume the
1844	 * latter case and continue on as best we can.
1845	 */
1846	if (thread__pid(parent) != (pid_t)event->fork.ppid) {
1847		dump_printf("removing erroneous parent thread %d/%d\n",
1848			    thread__pid(parent), thread__tid(parent));
1849		machine__remove_thread(machine, parent);
1850		thread__put(parent);
1851		parent = machine__findnew_thread(machine, event->fork.ppid,
1852						 event->fork.ptid);
1853	}
1854
1855	/* if a thread currently exists for the thread id remove it */
1856	if (thread != NULL) {
1857		machine__remove_thread(machine, thread);
1858		thread__put(thread);
1859	}
1860
1861	thread = machine__findnew_thread(machine, event->fork.pid,
1862					 event->fork.tid);
1863	/*
1864	 * When synthesizing FORK events, we are trying to create thread
1865	 * objects for the already running tasks on the machine.
1866	 *
1867	 * Normally, for a kernel FORK event, we want to clone the parent's
1868	 * maps because that is what the kernel just did.
1869	 *
1870	 * But when synthesizing, this should not be done.  If we do, we end up
1871	 * with overlapping maps as we process the synthesized MMAP2 events that
1872	 * get delivered shortly thereafter.
1873	 *
1874	 * Use the FORK event misc flags in an internal way to signal this
1875	 * situation, so we can elide the map clone when appropriate.
1876	 */
1877	if (event->fork.header.misc & PERF_RECORD_MISC_FORK_EXEC)
1878		do_maps_clone = false;
1879
1880	if (thread == NULL || parent == NULL ||
1881	    thread__fork(thread, parent, sample->time, do_maps_clone) < 0) {
1882		dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1883		err = -1;
1884	}
1885	thread__put(thread);
1886	thread__put(parent);
1887
1888	return err;
1889}
1890
1891int machine__process_exit_event(struct machine *machine, union perf_event *event,
1892				struct perf_sample *sample __maybe_unused)
1893{
1894	struct thread *thread = machine__find_thread(machine,
1895						     event->fork.pid,
1896						     event->fork.tid);
1897
1898	if (dump_trace)
1899		perf_event__fprintf_task(event, stdout);
1900
1901	if (thread != NULL) {
1902		if (symbol_conf.keep_exited_threads)
1903			thread__set_exited(thread, /*exited=*/true);
1904		else
1905			machine__remove_thread(machine, thread);
1906	}
1907	thread__put(thread);
1908	return 0;
1909}
1910
1911int machine__process_event(struct machine *machine, union perf_event *event,
1912			   struct perf_sample *sample)
1913{
1914	int ret;
1915
1916	switch (event->header.type) {
1917	case PERF_RECORD_COMM:
1918		ret = machine__process_comm_event(machine, event, sample); break;
1919	case PERF_RECORD_MMAP:
1920		ret = machine__process_mmap_event(machine, event, sample); break;
1921	case PERF_RECORD_NAMESPACES:
1922		ret = machine__process_namespaces_event(machine, event, sample); break;
1923	case PERF_RECORD_CGROUP:
1924		ret = machine__process_cgroup_event(machine, event, sample); break;
1925	case PERF_RECORD_MMAP2:
1926		ret = machine__process_mmap2_event(machine, event, sample); break;
1927	case PERF_RECORD_FORK:
1928		ret = machine__process_fork_event(machine, event, sample); break;
1929	case PERF_RECORD_EXIT:
1930		ret = machine__process_exit_event(machine, event, sample); break;
1931	case PERF_RECORD_LOST:
1932		ret = machine__process_lost_event(machine, event, sample); break;
1933	case PERF_RECORD_AUX:
1934		ret = machine__process_aux_event(machine, event); break;
1935	case PERF_RECORD_ITRACE_START:
1936		ret = machine__process_itrace_start_event(machine, event); break;
1937	case PERF_RECORD_LOST_SAMPLES:
1938		ret = machine__process_lost_samples_event(machine, event, sample); break;
1939	case PERF_RECORD_SWITCH:
1940	case PERF_RECORD_SWITCH_CPU_WIDE:
1941		ret = machine__process_switch_event(machine, event); break;
1942	case PERF_RECORD_KSYMBOL:
1943		ret = machine__process_ksymbol(machine, event, sample); break;
1944	case PERF_RECORD_BPF_EVENT:
1945		ret = machine__process_bpf(machine, event, sample); break;
1946	case PERF_RECORD_TEXT_POKE:
1947		ret = machine__process_text_poke(machine, event, sample); break;
1948	case PERF_RECORD_AUX_OUTPUT_HW_ID:
1949		ret = machine__process_aux_output_hw_id_event(machine, event); break;
1950	default:
1951		ret = -1;
1952		break;
1953	}
1954
1955	return ret;
1956}
1957
1958static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
1959{
1960	return regexec(regex, sym->name, 0, NULL, 0) == 0;
 
 
1961}
1962
1963static void ip__resolve_ams(struct thread *thread,
1964			    struct addr_map_symbol *ams,
1965			    u64 ip)
1966{
1967	struct addr_location al;
1968
1969	addr_location__init(&al);
1970	/*
1971	 * We cannot use the header.misc hint to determine whether a
1972	 * branch stack address is user, kernel, guest, hypervisor.
1973	 * Branches may straddle the kernel/user/hypervisor boundaries.
1974	 * Thus, we have to try consecutively until we find a match
1975	 * or else, the symbol is unknown
1976	 */
1977	thread__find_cpumode_addr_location(thread, ip, &al);
1978
1979	ams->addr = ip;
1980	ams->al_addr = al.addr;
1981	ams->al_level = al.level;
1982	ams->ms.maps = maps__get(al.maps);
1983	ams->ms.sym = al.sym;
1984	ams->ms.map = map__get(al.map);
1985	ams->phys_addr = 0;
1986	ams->data_page_size = 0;
1987	addr_location__exit(&al);
1988}
1989
1990static void ip__resolve_data(struct thread *thread,
1991			     u8 m, struct addr_map_symbol *ams,
1992			     u64 addr, u64 phys_addr, u64 daddr_page_size)
1993{
1994	struct addr_location al;
1995
1996	addr_location__init(&al);
1997
1998	thread__find_symbol(thread, m, addr, &al);
 
 
 
 
 
 
 
 
1999
2000	ams->addr = addr;
2001	ams->al_addr = al.addr;
2002	ams->al_level = al.level;
2003	ams->ms.maps = maps__get(al.maps);
2004	ams->ms.sym = al.sym;
2005	ams->ms.map = map__get(al.map);
2006	ams->phys_addr = phys_addr;
2007	ams->data_page_size = daddr_page_size;
2008	addr_location__exit(&al);
2009}
2010
2011struct mem_info *sample__resolve_mem(struct perf_sample *sample,
2012				     struct addr_location *al)
2013{
2014	struct mem_info *mi = mem_info__new();
2015
2016	if (!mi)
2017		return NULL;
2018
2019	ip__resolve_ams(al->thread, mem_info__iaddr(mi), sample->ip);
2020	ip__resolve_data(al->thread, al->cpumode, mem_info__daddr(mi),
2021			 sample->addr, sample->phys_addr,
2022			 sample->data_page_size);
2023	mem_info__data_src(mi)->val = sample->data_src;
2024
2025	return mi;
2026}
2027
2028static char *callchain_srcline(struct map_symbol *ms, u64 ip)
2029{
2030	struct map *map = ms->map;
2031	char *srcline = NULL;
2032	struct dso *dso;
2033
2034	if (!map || callchain_param.key == CCKEY_FUNCTION)
2035		return srcline;
2036
2037	dso = map__dso(map);
2038	srcline = srcline__tree_find(dso__srclines(dso), ip);
2039	if (!srcline) {
2040		bool show_sym = false;
2041		bool show_addr = callchain_param.key == CCKEY_ADDRESS;
2042
2043		srcline = get_srcline(dso, map__rip_2objdump(map, ip),
2044				      ms->sym, show_sym, show_addr, ip);
2045		srcline__tree_insert(dso__srclines(dso), ip, srcline);
2046	}
2047
2048	return srcline;
2049}
2050
2051struct iterations {
2052	int nr_loop_iter;
2053	u64 cycles;
2054};
2055
2056static int add_callchain_ip(struct thread *thread,
2057			    struct callchain_cursor *cursor,
2058			    struct symbol **parent,
2059			    struct addr_location *root_al,
2060			    u8 *cpumode,
2061			    u64 ip,
2062			    bool branch,
2063			    struct branch_flags *flags,
2064			    struct iterations *iter,
2065			    u64 branch_from,
2066			    bool symbols)
2067{
2068	struct map_symbol ms = {};
2069	struct addr_location al;
2070	int nr_loop_iter = 0, err = 0;
2071	u64 iter_cycles = 0;
2072	const char *srcline = NULL;
2073
2074	addr_location__init(&al);
2075	al.filtered = 0;
2076	al.sym = NULL;
2077	al.srcline = NULL;
2078	if (!cpumode) {
2079		thread__find_cpumode_addr_location(thread, ip, &al);
 
2080	} else {
2081		if (ip >= PERF_CONTEXT_MAX) {
2082			switch (ip) {
2083			case PERF_CONTEXT_HV:
2084				*cpumode = PERF_RECORD_MISC_HYPERVISOR;
2085				break;
2086			case PERF_CONTEXT_KERNEL:
2087				*cpumode = PERF_RECORD_MISC_KERNEL;
2088				break;
2089			case PERF_CONTEXT_USER:
2090				*cpumode = PERF_RECORD_MISC_USER;
2091				break;
2092			default:
2093				pr_debug("invalid callchain context: "
2094					 "%"PRId64"\n", (s64) ip);
2095				/*
2096				 * It seems the callchain is corrupted.
2097				 * Discard all.
2098				 */
2099				callchain_cursor_reset(cursor);
2100				err = 1;
2101				goto out;
2102			}
2103			goto out;
2104		}
2105		if (symbols)
2106			thread__find_symbol(thread, *cpumode, ip, &al);
2107	}
2108
2109	if (al.sym != NULL) {
2110		if (perf_hpp_list.parent && !*parent &&
2111		    symbol__match_regex(al.sym, &parent_regex))
2112			*parent = al.sym;
2113		else if (have_ignore_callees && root_al &&
2114		  symbol__match_regex(al.sym, &ignore_callees_regex)) {
2115			/* Treat this symbol as the root,
2116			   forgetting its callees. */
2117			addr_location__copy(root_al, &al);
2118			callchain_cursor_reset(cursor);
2119		}
2120	}
2121
2122	if (symbol_conf.hide_unresolved && al.sym == NULL)
2123		goto out;
2124
2125	if (iter) {
2126		nr_loop_iter = iter->nr_loop_iter;
2127		iter_cycles = iter->cycles;
2128	}
2129
2130	ms.maps = maps__get(al.maps);
2131	ms.map = map__get(al.map);
2132	ms.sym = al.sym;
2133	srcline = callchain_srcline(&ms, al.addr);
2134	err = callchain_cursor_append(cursor, ip, &ms,
2135				      branch, flags, nr_loop_iter,
2136				      iter_cycles, branch_from, srcline);
2137out:
2138	addr_location__exit(&al);
2139	map_symbol__exit(&ms);
2140	return err;
2141}
2142
2143struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
2144					   struct addr_location *al)
2145{
2146	unsigned int i;
2147	const struct branch_stack *bs = sample->branch_stack;
2148	struct branch_entry *entries = perf_sample__branch_entries(sample);
2149	u64 *branch_stack_cntr = sample->branch_stack_cntr;
2150	struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
2151
2152	if (!bi)
2153		return NULL;
2154
2155	for (i = 0; i < bs->nr; i++) {
2156		ip__resolve_ams(al->thread, &bi[i].to, entries[i].to);
2157		ip__resolve_ams(al->thread, &bi[i].from, entries[i].from);
2158		bi[i].flags = entries[i].flags;
2159		if (branch_stack_cntr)
2160			bi[i].branch_stack_cntr  = branch_stack_cntr[i];
2161	}
2162	return bi;
2163}
2164
2165static void save_iterations(struct iterations *iter,
2166			    struct branch_entry *be, int nr)
2167{
2168	int i;
2169
2170	iter->nr_loop_iter++;
2171	iter->cycles = 0;
2172
2173	for (i = 0; i < nr; i++)
2174		iter->cycles += be[i].flags.cycles;
2175}
2176
2177#define CHASHSZ 127
2178#define CHASHBITS 7
2179#define NO_ENTRY 0xff
2180
2181#define PERF_MAX_BRANCH_DEPTH 127
2182
2183/* Remove loops. */
2184static int remove_loops(struct branch_entry *l, int nr,
2185			struct iterations *iter)
2186{
2187	int i, j, off;
2188	unsigned char chash[CHASHSZ];
2189
2190	memset(chash, NO_ENTRY, sizeof(chash));
2191
2192	BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);
2193
2194	for (i = 0; i < nr; i++) {
2195		int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;
2196
2197		/* no collision handling for now */
2198		if (chash[h] == NO_ENTRY) {
2199			chash[h] = i;
2200		} else if (l[chash[h]].from == l[i].from) {
2201			bool is_loop = true;
2202			/* check if it is a real loop */
2203			off = 0;
2204			for (j = chash[h]; j < i && i + off < nr; j++, off++)
2205				if (l[j].from != l[i + off].from) {
2206					is_loop = false;
2207					break;
2208				}
2209			if (is_loop) {
2210				j = nr - (i + off);
2211				if (j > 0) {
2212					save_iterations(iter + i + off,
2213						l + i, off);
2214
2215					memmove(iter + i, iter + i + off,
2216						j * sizeof(*iter));
2217
2218					memmove(l + i, l + i + off,
2219						j * sizeof(*l));
2220				}
2221
2222				nr -= off;
2223			}
2224		}
2225	}
2226	return nr;
2227}
2228
2229static int lbr_callchain_add_kernel_ip(struct thread *thread,
2230				       struct callchain_cursor *cursor,
2231				       struct perf_sample *sample,
2232				       struct symbol **parent,
2233				       struct addr_location *root_al,
2234				       u64 branch_from,
2235				       bool callee, int end,
2236				       bool symbols)
2237{
2238	struct ip_callchain *chain = sample->callchain;
2239	u8 cpumode = PERF_RECORD_MISC_USER;
2240	int err, i;
2241
2242	if (callee) {
2243		for (i = 0; i < end + 1; i++) {
2244			err = add_callchain_ip(thread, cursor, parent,
2245					       root_al, &cpumode, chain->ips[i],
2246					       false, NULL, NULL, branch_from,
2247					       symbols);
2248			if (err)
2249				return err;
2250		}
2251		return 0;
2252	}
2253
2254	for (i = end; i >= 0; i--) {
2255		err = add_callchain_ip(thread, cursor, parent,
2256				       root_al, &cpumode, chain->ips[i],
2257				       false, NULL, NULL, branch_from,
2258				       symbols);
2259		if (err)
2260			return err;
2261	}
2262
2263	return 0;
2264}
2265
2266static void save_lbr_cursor_node(struct thread *thread,
2267				 struct callchain_cursor *cursor,
2268				 int idx)
2269{
2270	struct lbr_stitch *lbr_stitch = thread__lbr_stitch(thread);
2271
2272	if (!lbr_stitch)
2273		return;
2274
2275	if (cursor->pos == cursor->nr) {
2276		lbr_stitch->prev_lbr_cursor[idx].valid = false;
2277		return;
2278	}
2279
2280	if (!cursor->curr)
2281		cursor->curr = cursor->first;
2282	else
2283		cursor->curr = cursor->curr->next;
2284
2285	map_symbol__exit(&lbr_stitch->prev_lbr_cursor[idx].ms);
2286	memcpy(&lbr_stitch->prev_lbr_cursor[idx], cursor->curr,
2287	       sizeof(struct callchain_cursor_node));
2288	lbr_stitch->prev_lbr_cursor[idx].ms.maps = maps__get(cursor->curr->ms.maps);
2289	lbr_stitch->prev_lbr_cursor[idx].ms.map = map__get(cursor->curr->ms.map);
2290
2291	lbr_stitch->prev_lbr_cursor[idx].valid = true;
2292	cursor->pos++;
2293}
2294
2295static int lbr_callchain_add_lbr_ip(struct thread *thread,
2296				    struct callchain_cursor *cursor,
2297				    struct perf_sample *sample,
2298				    struct symbol **parent,
2299				    struct addr_location *root_al,
2300				    u64 *branch_from,
2301				    bool callee,
2302				    bool symbols)
2303{
2304	struct branch_stack *lbr_stack = sample->branch_stack;
2305	struct branch_entry *entries = perf_sample__branch_entries(sample);
2306	u8 cpumode = PERF_RECORD_MISC_USER;
2307	int lbr_nr = lbr_stack->nr;
2308	struct branch_flags *flags;
2309	int err, i;
2310	u64 ip;
2311
2312	/*
2313	 * The curr and pos are not used in writing session. They are cleared
2314	 * in callchain_cursor_commit() when the writing session is closed.
2315	 * Using curr and pos to track the current cursor node.
2316	 */
2317	if (thread__lbr_stitch(thread)) {
2318		cursor->curr = NULL;
2319		cursor->pos = cursor->nr;
2320		if (cursor->nr) {
2321			cursor->curr = cursor->first;
2322			for (i = 0; i < (int)(cursor->nr - 1); i++)
2323				cursor->curr = cursor->curr->next;
2324		}
2325	}
2326
2327	if (callee) {
2328		/* Add LBR ip from first entries.to */
2329		ip = entries[0].to;
2330		flags = &entries[0].flags;
2331		*branch_from = entries[0].from;
2332		err = add_callchain_ip(thread, cursor, parent,
2333				       root_al, &cpumode, ip,
2334				       true, flags, NULL,
2335				       *branch_from, symbols);
2336		if (err)
2337			return err;
2338
2339		/*
2340		 * The number of cursor node increases.
2341		 * Move the current cursor node.
2342		 * But does not need to save current cursor node for entry 0.
2343		 * It's impossible to stitch the whole LBRs of previous sample.
2344		 */
2345		if (thread__lbr_stitch(thread) && (cursor->pos != cursor->nr)) {
2346			if (!cursor->curr)
2347				cursor->curr = cursor->first;
2348			else
2349				cursor->curr = cursor->curr->next;
2350			cursor->pos++;
2351		}
2352
2353		/* Add LBR ip from entries.from one by one. */
2354		for (i = 0; i < lbr_nr; i++) {
2355			ip = entries[i].from;
2356			flags = &entries[i].flags;
2357			err = add_callchain_ip(thread, cursor, parent,
2358					       root_al, &cpumode, ip,
2359					       true, flags, NULL,
2360					       *branch_from, symbols);
2361			if (err)
2362				return err;
2363			save_lbr_cursor_node(thread, cursor, i);
2364		}
2365		return 0;
2366	}
2367
2368	/* Add LBR ip from entries.from one by one. */
2369	for (i = lbr_nr - 1; i >= 0; i--) {
2370		ip = entries[i].from;
2371		flags = &entries[i].flags;
2372		err = add_callchain_ip(thread, cursor, parent,
2373				       root_al, &cpumode, ip,
2374				       true, flags, NULL,
2375				       *branch_from, symbols);
2376		if (err)
2377			return err;
2378		save_lbr_cursor_node(thread, cursor, i);
2379	}
2380
2381	if (lbr_nr > 0) {
2382		/* Add LBR ip from first entries.to */
2383		ip = entries[0].to;
2384		flags = &entries[0].flags;
2385		*branch_from = entries[0].from;
2386		err = add_callchain_ip(thread, cursor, parent,
2387				root_al, &cpumode, ip,
2388				true, flags, NULL,
2389				*branch_from, symbols);
2390		if (err)
2391			return err;
2392	}
2393
2394	return 0;
2395}
2396
2397static int lbr_callchain_add_stitched_lbr_ip(struct thread *thread,
2398					     struct callchain_cursor *cursor)
2399{
2400	struct lbr_stitch *lbr_stitch = thread__lbr_stitch(thread);
2401	struct callchain_cursor_node *cnode;
2402	struct stitch_list *stitch_node;
2403	int err;
2404
2405	list_for_each_entry(stitch_node, &lbr_stitch->lists, node) {
2406		cnode = &stitch_node->cursor;
2407
2408		err = callchain_cursor_append(cursor, cnode->ip,
2409					      &cnode->ms,
2410					      cnode->branch,
2411					      &cnode->branch_flags,
2412					      cnode->nr_loop_iter,
2413					      cnode->iter_cycles,
2414					      cnode->branch_from,
2415					      cnode->srcline);
2416		if (err)
2417			return err;
2418	}
2419	return 0;
2420}
2421
2422static struct stitch_list *get_stitch_node(struct thread *thread)
2423{
2424	struct lbr_stitch *lbr_stitch = thread__lbr_stitch(thread);
2425	struct stitch_list *stitch_node;
2426
2427	if (!list_empty(&lbr_stitch->free_lists)) {
2428		stitch_node = list_first_entry(&lbr_stitch->free_lists,
2429					       struct stitch_list, node);
2430		list_del(&stitch_node->node);
2431
2432		return stitch_node;
2433	}
2434
2435	return malloc(sizeof(struct stitch_list));
2436}
2437
2438static bool has_stitched_lbr(struct thread *thread,
2439			     struct perf_sample *cur,
2440			     struct perf_sample *prev,
2441			     unsigned int max_lbr,
2442			     bool callee)
2443{
2444	struct branch_stack *cur_stack = cur->branch_stack;
2445	struct branch_entry *cur_entries = perf_sample__branch_entries(cur);
2446	struct branch_stack *prev_stack = prev->branch_stack;
2447	struct branch_entry *prev_entries = perf_sample__branch_entries(prev);
2448	struct lbr_stitch *lbr_stitch = thread__lbr_stitch(thread);
2449	int i, j, nr_identical_branches = 0;
2450	struct stitch_list *stitch_node;
2451	u64 cur_base, distance;
2452
2453	if (!cur_stack || !prev_stack)
2454		return false;
2455
2456	/* Find the physical index of the base-of-stack for current sample. */
2457	cur_base = max_lbr - cur_stack->nr + cur_stack->hw_idx + 1;
2458
2459	distance = (prev_stack->hw_idx > cur_base) ? (prev_stack->hw_idx - cur_base) :
2460						     (max_lbr + prev_stack->hw_idx - cur_base);
2461	/* Previous sample has shorter stack. Nothing can be stitched. */
2462	if (distance + 1 > prev_stack->nr)
2463		return false;
2464
2465	/*
2466	 * Check if there are identical LBRs between two samples.
2467	 * Identical LBRs must have same from, to and flags values. Also,
2468	 * they have to be saved in the same LBR registers (same physical
2469	 * index).
2470	 *
2471	 * Starts from the base-of-stack of current sample.
2472	 */
2473	for (i = distance, j = cur_stack->nr - 1; (i >= 0) && (j >= 0); i--, j--) {
2474		if ((prev_entries[i].from != cur_entries[j].from) ||
2475		    (prev_entries[i].to != cur_entries[j].to) ||
2476		    (prev_entries[i].flags.value != cur_entries[j].flags.value))
2477			break;
2478		nr_identical_branches++;
2479	}
2480
2481	if (!nr_identical_branches)
2482		return false;
2483
2484	/*
2485	 * Save the LBRs between the base-of-stack of previous sample
2486	 * and the base-of-stack of current sample into lbr_stitch->lists.
2487	 * These LBRs will be stitched later.
2488	 */
2489	for (i = prev_stack->nr - 1; i > (int)distance; i--) {
2490
2491		if (!lbr_stitch->prev_lbr_cursor[i].valid)
2492			continue;
2493
2494		stitch_node = get_stitch_node(thread);
2495		if (!stitch_node)
2496			return false;
2497
2498		memcpy(&stitch_node->cursor, &lbr_stitch->prev_lbr_cursor[i],
2499		       sizeof(struct callchain_cursor_node));
2500
2501		stitch_node->cursor.ms.maps = maps__get(lbr_stitch->prev_lbr_cursor[i].ms.maps);
2502		stitch_node->cursor.ms.map = map__get(lbr_stitch->prev_lbr_cursor[i].ms.map);
2503
2504		if (callee)
2505			list_add(&stitch_node->node, &lbr_stitch->lists);
2506		else
2507			list_add_tail(&stitch_node->node, &lbr_stitch->lists);
2508	}
2509
2510	return true;
2511}
2512
2513static bool alloc_lbr_stitch(struct thread *thread, unsigned int max_lbr)
2514{
2515	if (thread__lbr_stitch(thread))
2516		return true;
2517
2518	thread__set_lbr_stitch(thread, zalloc(sizeof(struct lbr_stitch)));
2519	if (!thread__lbr_stitch(thread))
2520		goto err;
2521
2522	thread__lbr_stitch(thread)->prev_lbr_cursor =
2523		calloc(max_lbr + 1, sizeof(struct callchain_cursor_node));
2524	if (!thread__lbr_stitch(thread)->prev_lbr_cursor)
2525		goto free_lbr_stitch;
2526
2527	thread__lbr_stitch(thread)->prev_lbr_cursor_size = max_lbr + 1;
2528
2529	INIT_LIST_HEAD(&thread__lbr_stitch(thread)->lists);
2530	INIT_LIST_HEAD(&thread__lbr_stitch(thread)->free_lists);
2531
2532	return true;
2533
2534free_lbr_stitch:
2535	free(thread__lbr_stitch(thread));
2536	thread__set_lbr_stitch(thread, NULL);
2537err:
2538	pr_warning("Failed to allocate space for stitched LBRs. Disable LBR stitch\n");
2539	thread__set_lbr_stitch_enable(thread, false);
2540	return false;
2541}
2542
2543/*
2544 * Resolve LBR callstack chain sample
2545 * Return:
2546 * 1 on success get LBR callchain information
2547 * 0 no available LBR callchain information, should try fp
2548 * negative error code on other errors.
2549 */
2550static int resolve_lbr_callchain_sample(struct thread *thread,
2551					struct callchain_cursor *cursor,
2552					struct perf_sample *sample,
2553					struct symbol **parent,
2554					struct addr_location *root_al,
2555					int max_stack,
2556					unsigned int max_lbr,
2557					bool symbols)
2558{
2559	bool callee = (callchain_param.order == ORDER_CALLEE);
2560	struct ip_callchain *chain = sample->callchain;
2561	int chain_nr = min(max_stack, (int)chain->nr), i;
2562	struct lbr_stitch *lbr_stitch;
2563	bool stitched_lbr = false;
2564	u64 branch_from = 0;
2565	int err;
2566
2567	for (i = 0; i < chain_nr; i++) {
2568		if (chain->ips[i] == PERF_CONTEXT_USER)
2569			break;
2570	}
2571
2572	/* LBR only affects the user callchain */
2573	if (i == chain_nr)
2574		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
2575
2576	if (thread__lbr_stitch_enable(thread) && !sample->no_hw_idx &&
2577	    (max_lbr > 0) && alloc_lbr_stitch(thread, max_lbr)) {
2578		lbr_stitch = thread__lbr_stitch(thread);
2579
2580		stitched_lbr = has_stitched_lbr(thread, sample,
2581						&lbr_stitch->prev_sample,
2582						max_lbr, callee);
2583
2584		if (!stitched_lbr && !list_empty(&lbr_stitch->lists)) {
2585			struct stitch_list *stitch_node;
2586
2587			list_for_each_entry(stitch_node, &lbr_stitch->lists, node)
2588				map_symbol__exit(&stitch_node->cursor.ms);
2589
2590			list_splice_init(&lbr_stitch->lists, &lbr_stitch->free_lists);
2591		}
2592		memcpy(&lbr_stitch->prev_sample, sample, sizeof(*sample));
2593	}
2594
2595	if (callee) {
2596		/* Add kernel ip */
2597		err = lbr_callchain_add_kernel_ip(thread, cursor, sample,
2598						  parent, root_al, branch_from,
2599						  true, i, symbols);
2600		if (err)
2601			goto error;
2602
2603		err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent,
2604					       root_al, &branch_from, true, symbols);
2605		if (err)
2606			goto error;
 
 
 
 
2607
2608		if (stitched_lbr) {
2609			err = lbr_callchain_add_stitched_lbr_ip(thread, cursor);
2610			if (err)
2611				goto error;
2612		}
2613
2614	} else {
2615		if (stitched_lbr) {
2616			err = lbr_callchain_add_stitched_lbr_ip(thread, cursor);
2617			if (err)
2618				goto error;
2619		}
2620		err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent,
2621					       root_al, &branch_from, false, symbols);
2622		if (err)
2623			goto error;
2624
2625		/* Add kernel ip */
2626		err = lbr_callchain_add_kernel_ip(thread, cursor, sample,
2627						  parent, root_al, branch_from,
2628						  false, i, symbols);
2629		if (err)
2630			goto error;
2631	}
2632	return 1;
2633
2634error:
2635	return (err < 0) ? err : 0;
2636}
2637
2638static int find_prev_cpumode(struct ip_callchain *chain, struct thread *thread,
2639			     struct callchain_cursor *cursor,
2640			     struct symbol **parent,
2641			     struct addr_location *root_al,
2642			     u8 *cpumode, int ent, bool symbols)
2643{
2644	int err = 0;
2645
2646	while (--ent >= 0) {
2647		u64 ip = chain->ips[ent];
2648
2649		if (ip >= PERF_CONTEXT_MAX) {
2650			err = add_callchain_ip(thread, cursor, parent,
2651					       root_al, cpumode, ip,
2652					       false, NULL, NULL, 0, symbols);
2653			break;
2654		}
2655	}
2656	return err;
2657}
2658
2659static u64 get_leaf_frame_caller(struct perf_sample *sample,
2660		struct thread *thread, int usr_idx)
2661{
2662	if (machine__normalized_is(maps__machine(thread__maps(thread)), "arm64"))
2663		return get_leaf_frame_caller_aarch64(sample, thread, usr_idx);
2664	else
2665		return 0;
2666}
2667
2668static int thread__resolve_callchain_sample(struct thread *thread,
2669					    struct callchain_cursor *cursor,
2670					    struct evsel *evsel,
2671					    struct perf_sample *sample,
2672					    struct symbol **parent,
2673					    struct addr_location *root_al,
2674					    int max_stack,
2675					    bool symbols)
2676{
2677	struct branch_stack *branch = sample->branch_stack;
2678	struct branch_entry *entries = perf_sample__branch_entries(sample);
2679	struct ip_callchain *chain = sample->callchain;
2680	int chain_nr = 0;
2681	u8 cpumode = PERF_RECORD_MISC_USER;
2682	int i, j, err, nr_entries, usr_idx;
2683	int skip_idx = -1;
2684	int first_call = 0;
2685	u64 leaf_frame_caller;
2686
2687	if (chain)
2688		chain_nr = chain->nr;
2689
2690	if (evsel__has_branch_callstack(evsel)) {
2691		struct perf_env *env = evsel__env(evsel);
2692
2693		err = resolve_lbr_callchain_sample(thread, cursor, sample, parent,
2694						   root_al, max_stack,
2695						   !env ? 0 : env->max_branches,
2696						   symbols);
2697		if (err)
2698			return (err < 0) ? err : 0;
2699	}
2700
2701	/*
2702	 * Based on DWARF debug information, some architectures skip
2703	 * a callchain entry saved by the kernel.
2704	 */
2705	skip_idx = arch_skip_callchain_idx(thread, chain);
 
2706
2707	/*
2708	 * Add branches to call stack for easier browsing. This gives
2709	 * more context for a sample than just the callers.
2710	 *
2711	 * This uses individual histograms of paths compared to the
2712	 * aggregated histograms the normal LBR mode uses.
2713	 *
2714	 * Limitations for now:
2715	 * - No extra filters
2716	 * - No annotations (should annotate somehow)
2717	 */
2718
2719	if (branch && callchain_param.branch_callstack) {
2720		int nr = min(max_stack, (int)branch->nr);
2721		struct branch_entry be[nr];
2722		struct iterations iter[nr];
2723
2724		if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
2725			pr_warning("corrupted branch chain. skipping...\n");
2726			goto check_calls;
2727		}
2728
2729		for (i = 0; i < nr; i++) {
2730			if (callchain_param.order == ORDER_CALLEE) {
2731				be[i] = entries[i];
2732
2733				if (chain == NULL)
2734					continue;
2735
2736				/*
2737				 * Check for overlap into the callchain.
2738				 * The return address is one off compared to
2739				 * the branch entry. To adjust for this
2740				 * assume the calling instruction is not longer
2741				 * than 8 bytes.
2742				 */
2743				if (i == skip_idx ||
2744				    chain->ips[first_call] >= PERF_CONTEXT_MAX)
2745					first_call++;
2746				else if (be[i].from < chain->ips[first_call] &&
2747				    be[i].from >= chain->ips[first_call] - 8)
2748					first_call++;
2749			} else
2750				be[i] = entries[branch->nr - i - 1];
2751		}
2752
2753		memset(iter, 0, sizeof(struct iterations) * nr);
2754		nr = remove_loops(be, nr, iter);
2755
2756		for (i = 0; i < nr; i++) {
2757			err = add_callchain_ip(thread, cursor, parent,
2758					       root_al,
2759					       NULL, be[i].to,
2760					       true, &be[i].flags,
2761					       NULL, be[i].from, symbols);
2762
2763			if (!err) {
2764				err = add_callchain_ip(thread, cursor, parent, root_al,
2765						       NULL, be[i].from,
2766						       true, &be[i].flags,
2767						       &iter[i], 0, symbols);
2768			}
2769			if (err == -EINVAL)
2770				break;
2771			if (err)
2772				return err;
2773		}
2774
2775		if (chain_nr == 0)
2776			return 0;
2777
2778		chain_nr -= nr;
2779	}
2780
2781check_calls:
2782	if (chain && callchain_param.order != ORDER_CALLEE) {
2783		err = find_prev_cpumode(chain, thread, cursor, parent, root_al,
2784					&cpumode, chain->nr - first_call, symbols);
2785		if (err)
2786			return (err < 0) ? err : 0;
2787	}
2788	for (i = first_call, nr_entries = 0;
2789	     i < chain_nr && nr_entries < max_stack; i++) {
2790		u64 ip;
2791
2792		if (callchain_param.order == ORDER_CALLEE)
2793			j = i;
2794		else
2795			j = chain->nr - i - 1;
2796
2797#ifdef HAVE_SKIP_CALLCHAIN_IDX
2798		if (j == skip_idx)
2799			continue;
2800#endif
2801		ip = chain->ips[j];
2802		if (ip < PERF_CONTEXT_MAX)
2803                       ++nr_entries;
2804		else if (callchain_param.order != ORDER_CALLEE) {
2805			err = find_prev_cpumode(chain, thread, cursor, parent,
2806						root_al, &cpumode, j, symbols);
2807			if (err)
2808				return (err < 0) ? err : 0;
2809			continue;
2810		}
2811
2812		/*
2813		 * PERF_CONTEXT_USER allows us to locate where the user stack ends.
2814		 * Depending on callchain_param.order and the position of PERF_CONTEXT_USER,
2815		 * the index will be different in order to add the missing frame
2816		 * at the right place.
2817		 */
2818
2819		usr_idx = callchain_param.order == ORDER_CALLEE ? j-2 : j-1;
2820
2821		if (usr_idx >= 0 && chain->ips[usr_idx] == PERF_CONTEXT_USER) {
2822
2823			leaf_frame_caller = get_leaf_frame_caller(sample, thread, usr_idx);
2824
2825			/*
2826			 * check if leaf_frame_Caller != ip to not add the same
2827			 * value twice.
2828			 */
2829
2830			if (leaf_frame_caller && leaf_frame_caller != ip) {
2831
2832				err = add_callchain_ip(thread, cursor, parent,
2833						root_al, &cpumode, leaf_frame_caller,
2834						false, NULL, NULL, 0, symbols);
2835				if (err)
2836					return (err < 0) ? err : 0;
2837			}
2838		}
2839
2840		err = add_callchain_ip(thread, cursor, parent,
2841				       root_al, &cpumode, ip,
2842				       false, NULL, NULL, 0, symbols);
2843
2844		if (err)
2845			return (err < 0) ? err : 0;
2846	}
2847
2848	return 0;
2849}
2850
2851static int append_inlines(struct callchain_cursor *cursor, struct map_symbol *ms, u64 ip)
2852{
2853	struct symbol *sym = ms->sym;
2854	struct map *map = ms->map;
2855	struct inline_node *inline_node;
2856	struct inline_list *ilist;
2857	struct dso *dso;
2858	u64 addr;
2859	int ret = 1;
2860	struct map_symbol ilist_ms;
2861
2862	if (!symbol_conf.inline_name || !map || !sym)
2863		return ret;
2864
2865	addr = map__dso_map_ip(map, ip);
2866	addr = map__rip_2objdump(map, addr);
2867	dso = map__dso(map);
2868
2869	inline_node = inlines__tree_find(dso__inlined_nodes(dso), addr);
2870	if (!inline_node) {
2871		inline_node = dso__parse_addr_inlines(dso, addr, sym);
2872		if (!inline_node)
2873			return ret;
2874		inlines__tree_insert(dso__inlined_nodes(dso), inline_node);
2875	}
2876
2877	ilist_ms = (struct map_symbol) {
2878		.maps = maps__get(ms->maps),
2879		.map = map__get(map),
2880	};
2881	list_for_each_entry(ilist, &inline_node->val, list) {
2882		ilist_ms.sym = ilist->symbol;
2883		ret = callchain_cursor_append(cursor, ip, &ilist_ms, false,
2884					      NULL, 0, 0, 0, ilist->srcline);
2885
2886		if (ret != 0)
2887			return ret;
2888	}
2889	map_symbol__exit(&ilist_ms);
2890
2891	return ret;
2892}
2893
2894static int unwind_entry(struct unwind_entry *entry, void *arg)
2895{
2896	struct callchain_cursor *cursor = arg;
2897	const char *srcline = NULL;
2898	u64 addr = entry->ip;
2899
2900	if (symbol_conf.hide_unresolved && entry->ms.sym == NULL)
2901		return 0;
 
 
 
2902
2903	if (append_inlines(cursor, &entry->ms, entry->ip) == 0)
2904		return 0;
2905
2906	/*
2907	 * Convert entry->ip from a virtual address to an offset in
2908	 * its corresponding binary.
2909	 */
2910	if (entry->ms.map)
2911		addr = map__dso_map_ip(entry->ms.map, entry->ip);
 
 
 
2912
2913	srcline = callchain_srcline(&entry->ms, addr);
2914	return callchain_cursor_append(cursor, entry->ip, &entry->ms,
2915				       false, NULL, 0, 0, 0, srcline);
2916}
2917
2918static int thread__resolve_callchain_unwind(struct thread *thread,
2919					    struct callchain_cursor *cursor,
2920					    struct evsel *evsel,
2921					    struct perf_sample *sample,
2922					    int max_stack, bool symbols)
2923{
2924	/* Can we do dwarf post unwind? */
2925	if (!((evsel->core.attr.sample_type & PERF_SAMPLE_REGS_USER) &&
2926	      (evsel->core.attr.sample_type & PERF_SAMPLE_STACK_USER)))
2927		return 0;
2928
2929	/* Bail out if nothing was captured. */
2930	if ((!sample->user_regs.regs) ||
2931	    (!sample->user_stack.size))
2932		return 0;
2933
2934	if (!symbols)
2935		pr_debug("Not resolving symbols with an unwinder isn't currently supported\n");
2936
2937	return unwind__get_entries(unwind_entry, cursor,
2938				   thread, sample, max_stack, false);
2939}
2940
2941int __thread__resolve_callchain(struct thread *thread,
2942				struct callchain_cursor *cursor,
2943				struct evsel *evsel,
2944				struct perf_sample *sample,
2945				struct symbol **parent,
2946				struct addr_location *root_al,
2947				int max_stack,
2948				bool symbols)
2949{
2950	int ret = 0;
 
 
2951
2952	if (cursor == NULL)
2953		return -ENOMEM;
 
 
 
 
2954
2955	callchain_cursor_reset(cursor);
2956
2957	if (callchain_param.order == ORDER_CALLEE) {
2958		ret = thread__resolve_callchain_sample(thread, cursor,
2959						       evsel, sample,
2960						       parent, root_al,
2961						       max_stack, symbols);
2962		if (ret)
2963			return ret;
2964		ret = thread__resolve_callchain_unwind(thread, cursor,
2965						       evsel, sample,
2966						       max_stack, symbols);
2967	} else {
2968		ret = thread__resolve_callchain_unwind(thread, cursor,
2969						       evsel, sample,
2970						       max_stack, symbols);
2971		if (ret)
2972			return ret;
2973		ret = thread__resolve_callchain_sample(thread, cursor,
2974						       evsel, sample,
2975						       parent, root_al,
2976						       max_stack, symbols);
2977	}
2978
2979	return ret;
2980}
2981
2982int machine__for_each_thread(struct machine *machine,
2983			     int (*fn)(struct thread *thread, void *p),
2984			     void *priv)
2985{
2986	return threads__for_each_thread(&machine->threads, fn, priv);
2987}
2988
2989int machines__for_each_thread(struct machines *machines,
2990			      int (*fn)(struct thread *thread, void *p),
2991			      void *priv)
2992{
2993	struct rb_node *nd;
2994	int rc = 0;
2995
2996	rc = machine__for_each_thread(&machines->host, fn, priv);
2997	if (rc != 0)
2998		return rc;
2999
3000	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
3001		struct machine *machine = rb_entry(nd, struct machine, rb_node);
3002
3003		rc = machine__for_each_thread(machine, fn, priv);
3004		if (rc != 0)
3005			return rc;
3006	}
3007	return rc;
3008}
3009
3010
3011static int thread_list_cb(struct thread *thread, void *data)
3012{
3013	struct list_head *list = data;
3014	struct thread_list *entry = malloc(sizeof(*entry));
3015
3016	if (!entry)
3017		return -ENOMEM;
3018
3019	entry->thread = thread__get(thread);
3020	list_add_tail(&entry->list, list);
3021	return 0;
3022}
3023
3024int machine__thread_list(struct machine *machine, struct list_head *list)
3025{
3026	return machine__for_each_thread(machine, thread_list_cb, list);
3027}
3028
3029void thread_list__delete(struct list_head *list)
3030{
3031	struct thread_list *pos, *next;
3032
3033	list_for_each_entry_safe(pos, next, list, list) {
3034		thread__zput(pos->thread);
3035		list_del(&pos->list);
3036		free(pos);
3037	}
3038}
3039
3040pid_t machine__get_current_tid(struct machine *machine, int cpu)
3041{
3042	if (cpu < 0 || (size_t)cpu >= machine->current_tid_sz)
3043		return -1;
3044
3045	return machine->current_tid[cpu];
3046}
3047
3048int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
3049			     pid_t tid)
3050{
3051	struct thread *thread;
3052	const pid_t init_val = -1;
3053
3054	if (cpu < 0)
3055		return -EINVAL;
3056
3057	if (realloc_array_as_needed(machine->current_tid,
3058				    machine->current_tid_sz,
3059				    (unsigned int)cpu,
3060				    &init_val))
3061		return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
3062
3063	machine->current_tid[cpu] = tid;
3064
3065	thread = machine__findnew_thread(machine, pid, tid);
3066	if (!thread)
3067		return -ENOMEM;
3068
3069	thread__set_cpu(thread, cpu);
3070	thread__put(thread);
3071
3072	return 0;
3073}
3074
3075/*
3076 * Compares the raw arch string. N.B. see instead perf_env__arch() or
3077 * machine__normalized_is() if a normalized arch is needed.
3078 */
3079bool machine__is(struct machine *machine, const char *arch)
3080{
3081	return machine && !strcmp(perf_env__raw_arch(machine->env), arch);
3082}
3083
3084bool machine__normalized_is(struct machine *machine, const char *arch)
3085{
3086	return machine && !strcmp(perf_env__arch(machine->env), arch);
3087}
3088
3089int machine__nr_cpus_avail(struct machine *machine)
3090{
3091	return machine ? perf_env__nr_cpus_avail(machine->env) : 0;
3092}
3093
3094int machine__get_kernel_start(struct machine *machine)
3095{
3096	struct map *map = machine__kernel_map(machine);
3097	int err = 0;
3098
3099	/*
3100	 * The only addresses above 2^63 are kernel addresses of a 64-bit
3101	 * kernel.  Note that addresses are unsigned so that on a 32-bit system
3102	 * all addresses including kernel addresses are less than 2^32.  In
3103	 * that case (32-bit system), if the kernel mapping is unknown, all
3104	 * addresses will be assumed to be in user space - see
3105	 * machine__kernel_ip().
3106	 */
3107	machine->kernel_start = 1ULL << 63;
3108	if (map) {
3109		err = map__load(map);
3110		/*
3111		 * On x86_64, PTI entry trampolines are less than the
3112		 * start of kernel text, but still above 2^63. So leave
3113		 * kernel_start = 1ULL << 63 for x86_64.
3114		 */
3115		if (!err && !machine__is(machine, "x86_64"))
3116			machine->kernel_start = map__start(map);
3117	}
3118	return err;
3119}
3120
3121u8 machine__addr_cpumode(struct machine *machine, u8 cpumode, u64 addr)
3122{
3123	u8 addr_cpumode = cpumode;
3124	bool kernel_ip;
3125
3126	if (!machine->single_address_space)
3127		goto out;
3128
3129	kernel_ip = machine__kernel_ip(machine, addr);
3130	switch (cpumode) {
3131	case PERF_RECORD_MISC_KERNEL:
3132	case PERF_RECORD_MISC_USER:
3133		addr_cpumode = kernel_ip ? PERF_RECORD_MISC_KERNEL :
3134					   PERF_RECORD_MISC_USER;
3135		break;
3136	case PERF_RECORD_MISC_GUEST_KERNEL:
3137	case PERF_RECORD_MISC_GUEST_USER:
3138		addr_cpumode = kernel_ip ? PERF_RECORD_MISC_GUEST_KERNEL :
3139					   PERF_RECORD_MISC_GUEST_USER;
3140		break;
3141	default:
3142		break;
3143	}
3144out:
3145	return addr_cpumode;
3146}
3147
3148struct dso *machine__findnew_dso_id(struct machine *machine, const char *filename,
3149				    const struct dso_id *id)
3150{
3151	return dsos__findnew_id(&machine->dsos, filename, id);
3152}
3153
3154struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
3155{
3156	return machine__findnew_dso_id(machine, filename, NULL);
3157}
3158
3159char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
3160{
3161	struct machine *machine = vmachine;
3162	struct map *map;
3163	struct symbol *sym = machine__find_kernel_symbol(machine, *addrp, &map);
3164
3165	if (sym == NULL)
3166		return NULL;
3167
3168	*modp = __map__is_kmodule(map) ? (char *)dso__short_name(map__dso(map)) : NULL;
3169	*addrp = map__unmap_ip(map, sym->start);
3170	return sym->name;
3171}
3172
3173struct machine__for_each_dso_cb_args {
3174	struct machine *machine;
3175	machine__dso_t fn;
3176	void *priv;
3177};
3178
3179static int machine__for_each_dso_cb(struct dso *dso, void *data)
3180{
3181	struct machine__for_each_dso_cb_args *args = data;
3182
3183	return args->fn(dso, args->machine, args->priv);
3184}
3185
3186int machine__for_each_dso(struct machine *machine, machine__dso_t fn, void *priv)
3187{
3188	struct machine__for_each_dso_cb_args args = {
3189		.machine = machine,
3190		.fn = fn,
3191		.priv = priv,
3192	};
3193
3194	return dsos__for_each_dso(&machine->dsos, machine__for_each_dso_cb, &args);
3195}
3196
3197int machine__for_each_kernel_map(struct machine *machine, machine__map_t fn, void *priv)
3198{
3199	struct maps *maps = machine__kernel_maps(machine);
3200
3201	return maps__for_each_map(maps, fn, priv);
3202}
3203
3204bool machine__is_lock_function(struct machine *machine, u64 addr)
3205{
3206	if (!machine->sched.text_start) {
3207		struct map *kmap;
3208		struct symbol *sym = machine__find_kernel_symbol_by_name(machine, "__sched_text_start", &kmap);
3209
3210		if (!sym) {
3211			/* to avoid retry */
3212			machine->sched.text_start = 1;
3213			return false;
3214		}
3215
3216		machine->sched.text_start = map__unmap_ip(kmap, sym->start);
3217
3218		/* should not fail from here */
3219		sym = machine__find_kernel_symbol_by_name(machine, "__sched_text_end", &kmap);
3220		machine->sched.text_end = map__unmap_ip(kmap, sym->start);
3221
3222		sym = machine__find_kernel_symbol_by_name(machine, "__lock_text_start", &kmap);
3223		machine->lock.text_start = map__unmap_ip(kmap, sym->start);
3224
3225		sym = machine__find_kernel_symbol_by_name(machine, "__lock_text_end", &kmap);
3226		machine->lock.text_end = map__unmap_ip(kmap, sym->start);
3227
3228		sym = machine__find_kernel_symbol_by_name(machine, "__traceiter_contention_begin", &kmap);
3229		if (sym) {
3230			machine->traceiter.text_start = map__unmap_ip(kmap, sym->start);
3231			machine->traceiter.text_end = map__unmap_ip(kmap, sym->end);
3232		}
3233		sym = machine__find_kernel_symbol_by_name(machine, "trace_contention_begin", &kmap);
3234		if (sym) {
3235			machine->trace.text_start = map__unmap_ip(kmap, sym->start);
3236			machine->trace.text_end = map__unmap_ip(kmap, sym->end);
3237		}
3238	}
3239
3240	/* failed to get kernel symbols */
3241	if (machine->sched.text_start == 1)
3242		return false;
3243
3244	/* mutex and rwsem functions are in sched text section */
3245	if (machine->sched.text_start <= addr && addr < machine->sched.text_end)
3246		return true;
3247
3248	/* spinlock functions are in lock text section */
3249	if (machine->lock.text_start <= addr && addr < machine->lock.text_end)
3250		return true;
3251
3252	/* traceiter functions currently don't have their own section
3253	 * but we consider them lock functions
3254	 */
3255	if (machine->traceiter.text_start != 0) {
3256		if (machine->traceiter.text_start <= addr && addr < machine->traceiter.text_end)
3257			return true;
3258	}
3259
3260	if (machine->trace.text_start != 0) {
3261		if (machine->trace.text_start <= addr && addr < machine->trace.text_end)
3262			return true;
3263	}
3264
3265	return false;
3266}
3267
3268int machine__hit_all_dsos(struct machine *machine)
3269{
3270	return dsos__hit_all(&machine->dsos);
3271}