Linux Audio

Check our new training course

Loading...
v4.6
   1#include "callchain.h"
   2#include "debug.h"
   3#include "event.h"
   4#include "evsel.h"
   5#include "hist.h"
   6#include "machine.h"
   7#include "map.h"
   8#include "sort.h"
   9#include "strlist.h"
  10#include "thread.h"
  11#include "vdso.h"
  12#include <stdbool.h>
  13#include <symbol/kallsyms.h>
  14#include "unwind.h"
  15#include "linux/hash.h"
  16
  17static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock);
  18
  19static void dsos__init(struct dsos *dsos)
  20{
  21	INIT_LIST_HEAD(&dsos->head);
  22	dsos->root = RB_ROOT;
  23	pthread_rwlock_init(&dsos->lock, NULL);
  24}
  25
  26int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
  27{
  28	memset(machine, 0, sizeof(*machine));
  29	map_groups__init(&machine->kmaps, machine);
  30	RB_CLEAR_NODE(&machine->rb_node);
  31	dsos__init(&machine->dsos);
  32
  33	machine->threads = RB_ROOT;
  34	pthread_rwlock_init(&machine->threads_lock, NULL);
 
  35	INIT_LIST_HEAD(&machine->dead_threads);
  36	machine->last_match = NULL;
  37
  38	machine->vdso_info = NULL;
  39	machine->env = NULL;
  40
  41	machine->pid = pid;
  42
  43	machine->symbol_filter = NULL;
  44	machine->id_hdr_size = 0;
 
  45	machine->comm_exec = false;
  46	machine->kernel_start = 0;
  47
  48	memset(machine->vmlinux_maps, 0, sizeof(machine->vmlinux_maps));
  49
  50	machine->root_dir = strdup(root_dir);
  51	if (machine->root_dir == NULL)
  52		return -ENOMEM;
  53
  54	if (pid != HOST_KERNEL_ID) {
  55		struct thread *thread = machine__findnew_thread(machine, -1,
  56								pid);
  57		char comm[64];
  58
  59		if (thread == NULL)
  60			return -ENOMEM;
  61
  62		snprintf(comm, sizeof(comm), "[guest/%d]", pid);
  63		thread__set_comm(thread, comm, 0);
  64		thread__put(thread);
  65	}
  66
  67	machine->current_tid = NULL;
  68
  69	return 0;
  70}
  71
  72struct machine *machine__new_host(void)
  73{
  74	struct machine *machine = malloc(sizeof(*machine));
  75
  76	if (machine != NULL) {
  77		machine__init(machine, "", HOST_KERNEL_ID);
  78
  79		if (machine__create_kernel_maps(machine) < 0)
  80			goto out_delete;
  81	}
  82
  83	return machine;
  84out_delete:
  85	free(machine);
  86	return NULL;
  87}
  88
  89static void dsos__purge(struct dsos *dsos)
  90{
  91	struct dso *pos, *n;
  92
  93	pthread_rwlock_wrlock(&dsos->lock);
  94
  95	list_for_each_entry_safe(pos, n, &dsos->head, node) {
  96		RB_CLEAR_NODE(&pos->rb_node);
  97		pos->root = NULL;
  98		list_del_init(&pos->node);
  99		dso__put(pos);
 100	}
 101
 102	pthread_rwlock_unlock(&dsos->lock);
 103}
 104
 105static void dsos__exit(struct dsos *dsos)
 106{
 107	dsos__purge(dsos);
 108	pthread_rwlock_destroy(&dsos->lock);
 109}
 110
 111void machine__delete_threads(struct machine *machine)
 112{
 113	struct rb_node *nd;
 114
 115	pthread_rwlock_wrlock(&machine->threads_lock);
 116	nd = rb_first(&machine->threads);
 117	while (nd) {
 118		struct thread *t = rb_entry(nd, struct thread, rb_node);
 119
 120		nd = rb_next(nd);
 121		__machine__remove_thread(machine, t, false);
 122	}
 123	pthread_rwlock_unlock(&machine->threads_lock);
 124}
 125
 126void machine__exit(struct machine *machine)
 127{
 128	machine__destroy_kernel_maps(machine);
 129	map_groups__exit(&machine->kmaps);
 130	dsos__exit(&machine->dsos);
 131	machine__exit_vdso(machine);
 132	zfree(&machine->root_dir);
 133	zfree(&machine->current_tid);
 134	pthread_rwlock_destroy(&machine->threads_lock);
 135}
 136
 137void machine__delete(struct machine *machine)
 138{
 139	machine__exit(machine);
 140	free(machine);
 
 
 141}
 142
 143void machines__init(struct machines *machines)
 144{
 145	machine__init(&machines->host, "", HOST_KERNEL_ID);
 146	machines->guests = RB_ROOT;
 147	machines->symbol_filter = NULL;
 148}
 149
 150void machines__exit(struct machines *machines)
 151{
 152	machine__exit(&machines->host);
 153	/* XXX exit guest */
 154}
 155
 156struct machine *machines__add(struct machines *machines, pid_t pid,
 157			      const char *root_dir)
 158{
 159	struct rb_node **p = &machines->guests.rb_node;
 160	struct rb_node *parent = NULL;
 161	struct machine *pos, *machine = malloc(sizeof(*machine));
 162
 163	if (machine == NULL)
 164		return NULL;
 165
 166	if (machine__init(machine, root_dir, pid) != 0) {
 167		free(machine);
 168		return NULL;
 169	}
 170
 171	machine->symbol_filter = machines->symbol_filter;
 172
 173	while (*p != NULL) {
 174		parent = *p;
 175		pos = rb_entry(parent, struct machine, rb_node);
 176		if (pid < pos->pid)
 177			p = &(*p)->rb_left;
 178		else
 179			p = &(*p)->rb_right;
 180	}
 181
 182	rb_link_node(&machine->rb_node, parent, p);
 183	rb_insert_color(&machine->rb_node, &machines->guests);
 184
 185	return machine;
 186}
 187
 188void machines__set_symbol_filter(struct machines *machines,
 189				 symbol_filter_t symbol_filter)
 190{
 191	struct rb_node *nd;
 192
 193	machines->symbol_filter = symbol_filter;
 194	machines->host.symbol_filter = symbol_filter;
 195
 196	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
 197		struct machine *machine = rb_entry(nd, struct machine, rb_node);
 198
 199		machine->symbol_filter = symbol_filter;
 200	}
 201}
 202
 203void machines__set_comm_exec(struct machines *machines, bool comm_exec)
 204{
 205	struct rb_node *nd;
 206
 207	machines->host.comm_exec = comm_exec;
 208
 209	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
 210		struct machine *machine = rb_entry(nd, struct machine, rb_node);
 211
 212		machine->comm_exec = comm_exec;
 213	}
 214}
 215
 216struct machine *machines__find(struct machines *machines, pid_t pid)
 217{
 218	struct rb_node **p = &machines->guests.rb_node;
 219	struct rb_node *parent = NULL;
 220	struct machine *machine;
 221	struct machine *default_machine = NULL;
 222
 223	if (pid == HOST_KERNEL_ID)
 224		return &machines->host;
 225
 226	while (*p != NULL) {
 227		parent = *p;
 228		machine = rb_entry(parent, struct machine, rb_node);
 229		if (pid < machine->pid)
 230			p = &(*p)->rb_left;
 231		else if (pid > machine->pid)
 232			p = &(*p)->rb_right;
 233		else
 234			return machine;
 235		if (!machine->pid)
 236			default_machine = machine;
 237	}
 238
 239	return default_machine;
 240}
 241
 242struct machine *machines__findnew(struct machines *machines, pid_t pid)
 243{
 244	char path[PATH_MAX];
 245	const char *root_dir = "";
 246	struct machine *machine = machines__find(machines, pid);
 247
 248	if (machine && (machine->pid == pid))
 249		goto out;
 250
 251	if ((pid != HOST_KERNEL_ID) &&
 252	    (pid != DEFAULT_GUEST_KERNEL_ID) &&
 253	    (symbol_conf.guestmount)) {
 254		sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
 255		if (access(path, R_OK)) {
 256			static struct strlist *seen;
 257
 258			if (!seen)
 259				seen = strlist__new(NULL, NULL);
 260
 261			if (!strlist__has_entry(seen, path)) {
 262				pr_err("Can't access file %s\n", path);
 263				strlist__add(seen, path);
 264			}
 265			machine = NULL;
 266			goto out;
 267		}
 268		root_dir = path;
 269	}
 270
 271	machine = machines__add(machines, pid, root_dir);
 272out:
 273	return machine;
 274}
 275
 276void machines__process_guests(struct machines *machines,
 277			      machine__process_t process, void *data)
 278{
 279	struct rb_node *nd;
 280
 281	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
 282		struct machine *pos = rb_entry(nd, struct machine, rb_node);
 283		process(pos, data);
 284	}
 285}
 286
 287char *machine__mmap_name(struct machine *machine, char *bf, size_t size)
 288{
 289	if (machine__is_host(machine))
 290		snprintf(bf, size, "[%s]", "kernel.kallsyms");
 291	else if (machine__is_default_guest(machine))
 292		snprintf(bf, size, "[%s]", "guest.kernel.kallsyms");
 293	else {
 294		snprintf(bf, size, "[%s.%d]", "guest.kernel.kallsyms",
 295			 machine->pid);
 296	}
 297
 298	return bf;
 299}
 300
 301void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
 302{
 303	struct rb_node *node;
 304	struct machine *machine;
 305
 306	machines->host.id_hdr_size = id_hdr_size;
 307
 308	for (node = rb_first(&machines->guests); node; node = rb_next(node)) {
 309		machine = rb_entry(node, struct machine, rb_node);
 310		machine->id_hdr_size = id_hdr_size;
 311	}
 312
 313	return;
 314}
 315
 316static void machine__update_thread_pid(struct machine *machine,
 317				       struct thread *th, pid_t pid)
 318{
 319	struct thread *leader;
 320
 321	if (pid == th->pid_ || pid == -1 || th->pid_ != -1)
 322		return;
 323
 324	th->pid_ = pid;
 325
 326	if (th->pid_ == th->tid)
 327		return;
 328
 329	leader = __machine__findnew_thread(machine, th->pid_, th->pid_);
 330	if (!leader)
 331		goto out_err;
 332
 333	if (!leader->mg)
 334		leader->mg = map_groups__new(machine);
 335
 336	if (!leader->mg)
 337		goto out_err;
 338
 339	if (th->mg == leader->mg)
 340		return;
 341
 342	if (th->mg) {
 343		/*
 344		 * Maps are created from MMAP events which provide the pid and
 345		 * tid.  Consequently there never should be any maps on a thread
 346		 * with an unknown pid.  Just print an error if there are.
 347		 */
 348		if (!map_groups__empty(th->mg))
 349			pr_err("Discarding thread maps for %d:%d\n",
 350			       th->pid_, th->tid);
 351		map_groups__put(th->mg);
 352	}
 353
 354	th->mg = map_groups__get(leader->mg);
 355out_put:
 356	thread__put(leader);
 357	return;
 358out_err:
 359	pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid);
 360	goto out_put;
 361}
 362
 363/*
 364 * Caller must eventually drop thread->refcnt returned with a successfull
 365 * lookup/new thread inserted.
 366 */
 367static struct thread *____machine__findnew_thread(struct machine *machine,
 368						  pid_t pid, pid_t tid,
 369						  bool create)
 370{
 371	struct rb_node **p = &machine->threads.rb_node;
 372	struct rb_node *parent = NULL;
 373	struct thread *th;
 374
 375	/*
 376	 * Front-end cache - TID lookups come in blocks,
 377	 * so most of the time we dont have to look up
 378	 * the full rbtree:
 379	 */
 380	th = machine->last_match;
 381	if (th != NULL) {
 382		if (th->tid == tid) {
 383			machine__update_thread_pid(machine, th, pid);
 384			return thread__get(th);
 385		}
 386
 387		machine->last_match = NULL;
 388	}
 389
 390	while (*p != NULL) {
 391		parent = *p;
 392		th = rb_entry(parent, struct thread, rb_node);
 393
 394		if (th->tid == tid) {
 395			machine->last_match = th;
 396			machine__update_thread_pid(machine, th, pid);
 397			return thread__get(th);
 398		}
 399
 400		if (tid < th->tid)
 401			p = &(*p)->rb_left;
 402		else
 403			p = &(*p)->rb_right;
 404	}
 405
 406	if (!create)
 407		return NULL;
 408
 409	th = thread__new(pid, tid);
 410	if (th != NULL) {
 411		rb_link_node(&th->rb_node, parent, p);
 412		rb_insert_color(&th->rb_node, &machine->threads);
 413
 414		/*
 415		 * We have to initialize map_groups separately
 416		 * after rb tree is updated.
 417		 *
 418		 * The reason is that we call machine__findnew_thread
 419		 * within thread__init_map_groups to find the thread
 420		 * leader and that would screwed the rb tree.
 421		 */
 422		if (thread__init_map_groups(th, machine)) {
 423			rb_erase_init(&th->rb_node, &machine->threads);
 424			RB_CLEAR_NODE(&th->rb_node);
 425			thread__put(th);
 426			return NULL;
 427		}
 428		/*
 429		 * It is now in the rbtree, get a ref
 430		 */
 431		thread__get(th);
 432		machine->last_match = th;
 
 433	}
 434
 435	return th;
 436}
 437
 438struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
 439{
 440	return ____machine__findnew_thread(machine, pid, tid, true);
 441}
 442
 443struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
 444				       pid_t tid)
 445{
 446	struct thread *th;
 447
 448	pthread_rwlock_wrlock(&machine->threads_lock);
 449	th = __machine__findnew_thread(machine, pid, tid);
 450	pthread_rwlock_unlock(&machine->threads_lock);
 451	return th;
 452}
 453
 454struct thread *machine__find_thread(struct machine *machine, pid_t pid,
 455				    pid_t tid)
 456{
 457	struct thread *th;
 458	pthread_rwlock_rdlock(&machine->threads_lock);
 459	th =  ____machine__findnew_thread(machine, pid, tid, false);
 460	pthread_rwlock_unlock(&machine->threads_lock);
 461	return th;
 462}
 463
 464struct comm *machine__thread_exec_comm(struct machine *machine,
 465				       struct thread *thread)
 466{
 467	if (machine->comm_exec)
 468		return thread__exec_comm(thread);
 469	else
 470		return thread__comm(thread);
 471}
 472
 473int machine__process_comm_event(struct machine *machine, union perf_event *event,
 474				struct perf_sample *sample)
 475{
 476	struct thread *thread = machine__findnew_thread(machine,
 477							event->comm.pid,
 478							event->comm.tid);
 479	bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
 480	int err = 0;
 481
 482	if (exec)
 483		machine->comm_exec = true;
 484
 485	if (dump_trace)
 486		perf_event__fprintf_comm(event, stdout);
 487
 488	if (thread == NULL ||
 489	    __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
 490		dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
 491		err = -1;
 492	}
 493
 494	thread__put(thread);
 495
 496	return err;
 497}
 498
 499int machine__process_lost_event(struct machine *machine __maybe_unused,
 500				union perf_event *event, struct perf_sample *sample __maybe_unused)
 501{
 502	dump_printf(": id:%" PRIu64 ": lost:%" PRIu64 "\n",
 503		    event->lost.id, event->lost.lost);
 504	return 0;
 505}
 506
 507int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
 508					union perf_event *event, struct perf_sample *sample)
 509{
 510	dump_printf(": id:%" PRIu64 ": lost samples :%" PRIu64 "\n",
 511		    sample->id, event->lost_samples.lost);
 512	return 0;
 513}
 514
 515static struct dso *machine__findnew_module_dso(struct machine *machine,
 516					       struct kmod_path *m,
 517					       const char *filename)
 518{
 519	struct dso *dso;
 520
 521	pthread_rwlock_wrlock(&machine->dsos.lock);
 522
 523	dso = __dsos__find(&machine->dsos, m->name, true);
 524	if (!dso) {
 525		dso = __dsos__addnew(&machine->dsos, m->name);
 526		if (dso == NULL)
 527			goto out_unlock;
 528
 529		if (machine__is_host(machine))
 530			dso->symtab_type = DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE;
 531		else
 532			dso->symtab_type = DSO_BINARY_TYPE__GUEST_KMODULE;
 533
 534		/* _KMODULE_COMP should be next to _KMODULE */
 535		if (m->kmod && m->comp)
 536			dso->symtab_type++;
 537
 538		dso__set_short_name(dso, strdup(m->name), true);
 539		dso__set_long_name(dso, strdup(filename), true);
 540	}
 541
 542	dso__get(dso);
 543out_unlock:
 544	pthread_rwlock_unlock(&machine->dsos.lock);
 545	return dso;
 546}
 547
 548int machine__process_aux_event(struct machine *machine __maybe_unused,
 549			       union perf_event *event)
 550{
 551	if (dump_trace)
 552		perf_event__fprintf_aux(event, stdout);
 553	return 0;
 554}
 555
 556int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
 557					union perf_event *event)
 558{
 559	if (dump_trace)
 560		perf_event__fprintf_itrace_start(event, stdout);
 561	return 0;
 562}
 563
 564int machine__process_switch_event(struct machine *machine __maybe_unused,
 565				  union perf_event *event)
 566{
 567	if (dump_trace)
 568		perf_event__fprintf_switch(event, stdout);
 569	return 0;
 570}
 571
 572static void dso__adjust_kmod_long_name(struct dso *dso, const char *filename)
 573{
 574	const char *dup_filename;
 575
 576	if (!filename || !dso || !dso->long_name)
 577		return;
 578	if (dso->long_name[0] != '[')
 579		return;
 580	if (!strchr(filename, '/'))
 581		return;
 582
 583	dup_filename = strdup(filename);
 584	if (!dup_filename)
 585		return;
 586
 587	dso__set_long_name(dso, dup_filename, true);
 588}
 589
 590struct map *machine__findnew_module_map(struct machine *machine, u64 start,
 591					const char *filename)
 592{
 593	struct map *map = NULL;
 594	struct dso *dso = NULL;
 595	struct kmod_path m;
 596
 597	if (kmod_path__parse_name(&m, filename))
 598		return NULL;
 599
 600	map = map_groups__find_by_name(&machine->kmaps, MAP__FUNCTION,
 601				       m.name);
 602	if (map) {
 603		/*
 604		 * If the map's dso is an offline module, give dso__load()
 605		 * a chance to find the file path of that module by fixing
 606		 * long_name.
 607		 */
 608		dso__adjust_kmod_long_name(map->dso, filename);
 609		goto out;
 610	}
 611
 612	dso = machine__findnew_module_dso(machine, &m, filename);
 613	if (dso == NULL)
 614		goto out;
 615
 616	map = map__new2(start, dso, MAP__FUNCTION);
 617	if (map == NULL)
 618		goto out;
 619
 620	map_groups__insert(&machine->kmaps, map);
 621
 622	/* Put the map here because map_groups__insert alread got it */
 623	map__put(map);
 624out:
 625	/* put the dso here, corresponding to  machine__findnew_module_dso */
 626	dso__put(dso);
 627	free(m.name);
 628	return map;
 629}
 630
 631size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
 632{
 633	struct rb_node *nd;
 634	size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
 635
 636	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
 637		struct machine *pos = rb_entry(nd, struct machine, rb_node);
 638		ret += __dsos__fprintf(&pos->dsos.head, fp);
 639	}
 640
 641	return ret;
 642}
 643
 644size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
 645				     bool (skip)(struct dso *dso, int parm), int parm)
 646{
 647	return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
 648}
 649
 650size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
 651				     bool (skip)(struct dso *dso, int parm), int parm)
 652{
 653	struct rb_node *nd;
 654	size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
 655
 656	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
 657		struct machine *pos = rb_entry(nd, struct machine, rb_node);
 658		ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
 659	}
 660	return ret;
 661}
 662
 663size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
 664{
 665	int i;
 666	size_t printed = 0;
 667	struct dso *kdso = machine__kernel_map(machine)->dso;
 668
 669	if (kdso->has_build_id) {
 670		char filename[PATH_MAX];
 671		if (dso__build_id_filename(kdso, filename, sizeof(filename)))
 672			printed += fprintf(fp, "[0] %s\n", filename);
 673	}
 674
 675	for (i = 0; i < vmlinux_path__nr_entries; ++i)
 676		printed += fprintf(fp, "[%d] %s\n",
 677				   i + kdso->has_build_id, vmlinux_path[i]);
 678
 679	return printed;
 680}
 681
 682size_t machine__fprintf(struct machine *machine, FILE *fp)
 683{
 684	size_t ret = 0;
 685	struct rb_node *nd;
 686
 687	pthread_rwlock_rdlock(&machine->threads_lock);
 688
 
 
 689	for (nd = rb_first(&machine->threads); nd; nd = rb_next(nd)) {
 690		struct thread *pos = rb_entry(nd, struct thread, rb_node);
 691
 692		ret += thread__fprintf(pos, fp);
 693	}
 694
 695	pthread_rwlock_unlock(&machine->threads_lock);
 696
 697	return ret;
 698}
 699
 700static struct dso *machine__get_kernel(struct machine *machine)
 701{
 702	const char *vmlinux_name = NULL;
 703	struct dso *kernel;
 704
 705	if (machine__is_host(machine)) {
 706		vmlinux_name = symbol_conf.vmlinux_name;
 707		if (!vmlinux_name)
 708			vmlinux_name = "[kernel.kallsyms]";
 709
 710		kernel = machine__findnew_kernel(machine, vmlinux_name,
 711						 "[kernel]", DSO_TYPE_KERNEL);
 712	} else {
 713		char bf[PATH_MAX];
 714
 715		if (machine__is_default_guest(machine))
 716			vmlinux_name = symbol_conf.default_guest_vmlinux_name;
 717		if (!vmlinux_name)
 718			vmlinux_name = machine__mmap_name(machine, bf,
 719							  sizeof(bf));
 720
 721		kernel = machine__findnew_kernel(machine, vmlinux_name,
 722						 "[guest.kernel]",
 723						 DSO_TYPE_GUEST_KERNEL);
 724	}
 725
 726	if (kernel != NULL && (!kernel->has_build_id))
 727		dso__read_running_kernel_build_id(kernel, machine);
 728
 729	return kernel;
 730}
 731
 732struct process_args {
 733	u64 start;
 734};
 735
 736static void machine__get_kallsyms_filename(struct machine *machine, char *buf,
 737					   size_t bufsz)
 738{
 739	if (machine__is_default_guest(machine))
 740		scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
 741	else
 742		scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
 743}
 744
 745const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};
 746
 747/* Figure out the start address of kernel map from /proc/kallsyms.
 748 * Returns the name of the start symbol in *symbol_name. Pass in NULL as
 749 * symbol_name if it's not that important.
 750 */
 751static u64 machine__get_running_kernel_start(struct machine *machine,
 752					     const char **symbol_name)
 753{
 754	char filename[PATH_MAX];
 755	int i;
 756	const char *name;
 757	u64 addr = 0;
 758
 759	machine__get_kallsyms_filename(machine, filename, PATH_MAX);
 760
 761	if (symbol__restricted_filename(filename, "/proc/kallsyms"))
 762		return 0;
 763
 764	for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
 765		addr = kallsyms__get_function_start(filename, name);
 766		if (addr)
 767			break;
 768	}
 769
 770	if (symbol_name)
 771		*symbol_name = name;
 772
 773	return addr;
 774}
 775
 776int __machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
 777{
 778	enum map_type type;
 779	u64 start = machine__get_running_kernel_start(machine, NULL);
 780
 781	/* In case of renewal the kernel map, destroy previous one */
 782	machine__destroy_kernel_maps(machine);
 783
 784	for (type = 0; type < MAP__NR_TYPES; ++type) {
 785		struct kmap *kmap;
 786		struct map *map;
 787
 788		machine->vmlinux_maps[type] = map__new2(start, kernel, type);
 789		if (machine->vmlinux_maps[type] == NULL)
 790			return -1;
 791
 792		machine->vmlinux_maps[type]->map_ip =
 793			machine->vmlinux_maps[type]->unmap_ip =
 794				identity__map_ip;
 795		map = __machine__kernel_map(machine, type);
 796		kmap = map__kmap(map);
 797		if (!kmap)
 798			return -1;
 799
 800		kmap->kmaps = &machine->kmaps;
 801		map_groups__insert(&machine->kmaps, map);
 802	}
 803
 804	return 0;
 805}
 806
 807void machine__destroy_kernel_maps(struct machine *machine)
 808{
 809	enum map_type type;
 810
 811	for (type = 0; type < MAP__NR_TYPES; ++type) {
 812		struct kmap *kmap;
 813		struct map *map = __machine__kernel_map(machine, type);
 814
 815		if (map == NULL)
 816			continue;
 817
 818		kmap = map__kmap(map);
 819		map_groups__remove(&machine->kmaps, map);
 820		if (kmap && kmap->ref_reloc_sym) {
 821			/*
 822			 * ref_reloc_sym is shared among all maps, so free just
 823			 * on one of them.
 824			 */
 825			if (type == MAP__FUNCTION) {
 826				zfree((char **)&kmap->ref_reloc_sym->name);
 827				zfree(&kmap->ref_reloc_sym);
 828			} else
 829				kmap->ref_reloc_sym = NULL;
 830		}
 831
 832		map__put(machine->vmlinux_maps[type]);
 833		machine->vmlinux_maps[type] = NULL;
 834	}
 835}
 836
 837int machines__create_guest_kernel_maps(struct machines *machines)
 838{
 839	int ret = 0;
 840	struct dirent **namelist = NULL;
 841	int i, items = 0;
 842	char path[PATH_MAX];
 843	pid_t pid;
 844	char *endp;
 845
 846	if (symbol_conf.default_guest_vmlinux_name ||
 847	    symbol_conf.default_guest_modules ||
 848	    symbol_conf.default_guest_kallsyms) {
 849		machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
 850	}
 851
 852	if (symbol_conf.guestmount) {
 853		items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
 854		if (items <= 0)
 855			return -ENOENT;
 856		for (i = 0; i < items; i++) {
 857			if (!isdigit(namelist[i]->d_name[0])) {
 858				/* Filter out . and .. */
 859				continue;
 860			}
 861			pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
 862			if ((*endp != '\0') ||
 863			    (endp == namelist[i]->d_name) ||
 864			    (errno == ERANGE)) {
 865				pr_debug("invalid directory (%s). Skipping.\n",
 866					 namelist[i]->d_name);
 867				continue;
 868			}
 869			sprintf(path, "%s/%s/proc/kallsyms",
 870				symbol_conf.guestmount,
 871				namelist[i]->d_name);
 872			ret = access(path, R_OK);
 873			if (ret) {
 874				pr_debug("Can't access file %s\n", path);
 875				goto failure;
 876			}
 877			machines__create_kernel_maps(machines, pid);
 878		}
 879failure:
 880		free(namelist);
 881	}
 882
 883	return ret;
 884}
 885
 886void machines__destroy_kernel_maps(struct machines *machines)
 887{
 888	struct rb_node *next = rb_first(&machines->guests);
 889
 890	machine__destroy_kernel_maps(&machines->host);
 891
 892	while (next) {
 893		struct machine *pos = rb_entry(next, struct machine, rb_node);
 894
 895		next = rb_next(&pos->rb_node);
 896		rb_erase(&pos->rb_node, &machines->guests);
 897		machine__delete(pos);
 898	}
 899}
 900
 901int machines__create_kernel_maps(struct machines *machines, pid_t pid)
 902{
 903	struct machine *machine = machines__findnew(machines, pid);
 904
 905	if (machine == NULL)
 906		return -1;
 907
 908	return machine__create_kernel_maps(machine);
 909}
 910
 911int machine__load_kallsyms(struct machine *machine, const char *filename,
 912			   enum map_type type, symbol_filter_t filter)
 913{
 914	struct map *map = machine__kernel_map(machine);
 915	int ret = dso__load_kallsyms(map->dso, filename, map, filter);
 916
 917	if (ret > 0) {
 918		dso__set_loaded(map->dso, type);
 919		/*
 920		 * Since /proc/kallsyms will have multiple sessions for the
 921		 * kernel, with modules between them, fixup the end of all
 922		 * sections.
 923		 */
 924		__map_groups__fixup_end(&machine->kmaps, type);
 925	}
 926
 927	return ret;
 928}
 929
 930int machine__load_vmlinux_path(struct machine *machine, enum map_type type,
 931			       symbol_filter_t filter)
 
 
 
 
 
 932{
 933	struct map *map = machine__kernel_map(machine);
 934	int ret = dso__load_vmlinux_path(map->dso, map, filter);
 935
 936	if (ret > 0)
 937		dso__set_loaded(map->dso, type);
 938
 939	return ret;
 940}
 941
 942static void map_groups__fixup_end(struct map_groups *mg)
 943{
 944	int i;
 945	for (i = 0; i < MAP__NR_TYPES; ++i)
 946		__map_groups__fixup_end(mg, i);
 947}
 948
 949static char *get_kernel_version(const char *root_dir)
 950{
 951	char version[PATH_MAX];
 952	FILE *file;
 953	char *name, *tmp;
 954	const char *prefix = "Linux version ";
 955
 956	sprintf(version, "%s/proc/version", root_dir);
 957	file = fopen(version, "r");
 958	if (!file)
 959		return NULL;
 960
 961	version[0] = '\0';
 962	tmp = fgets(version, sizeof(version), file);
 963	fclose(file);
 964
 965	name = strstr(version, prefix);
 966	if (!name)
 967		return NULL;
 968	name += strlen(prefix);
 969	tmp = strchr(name, ' ');
 970	if (tmp)
 971		*tmp = '\0';
 972
 973	return strdup(name);
 974}
 975
 976static bool is_kmod_dso(struct dso *dso)
 977{
 978	return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
 979	       dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
 980}
 981
 982static int map_groups__set_module_path(struct map_groups *mg, const char *path,
 983				       struct kmod_path *m)
 984{
 985	struct map *map;
 986	char *long_name;
 987
 988	map = map_groups__find_by_name(mg, MAP__FUNCTION, m->name);
 989	if (map == NULL)
 990		return 0;
 991
 992	long_name = strdup(path);
 993	if (long_name == NULL)
 994		return -ENOMEM;
 995
 996	dso__set_long_name(map->dso, long_name, true);
 997	dso__kernel_module_get_build_id(map->dso, "");
 998
 999	/*
1000	 * Full name could reveal us kmod compression, so
1001	 * we need to update the symtab_type if needed.
1002	 */
1003	if (m->comp && is_kmod_dso(map->dso))
1004		map->dso->symtab_type++;
1005
1006	return 0;
1007}
1008
1009static int map_groups__set_modules_path_dir(struct map_groups *mg,
1010				const char *dir_name, int depth)
1011{
1012	struct dirent *dent;
1013	DIR *dir = opendir(dir_name);
1014	int ret = 0;
1015
1016	if (!dir) {
1017		pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
1018		return -1;
1019	}
1020
1021	while ((dent = readdir(dir)) != NULL) {
1022		char path[PATH_MAX];
1023		struct stat st;
1024
1025		/*sshfs might return bad dent->d_type, so we have to stat*/
1026		snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name);
1027		if (stat(path, &st))
1028			continue;
1029
1030		if (S_ISDIR(st.st_mode)) {
1031			if (!strcmp(dent->d_name, ".") ||
1032			    !strcmp(dent->d_name, ".."))
1033				continue;
1034
1035			/* Do not follow top-level source and build symlinks */
1036			if (depth == 0) {
1037				if (!strcmp(dent->d_name, "source") ||
1038				    !strcmp(dent->d_name, "build"))
1039					continue;
1040			}
1041
1042			ret = map_groups__set_modules_path_dir(mg, path,
1043							       depth + 1);
1044			if (ret < 0)
1045				goto out;
1046		} else {
1047			struct kmod_path m;
1048
1049			ret = kmod_path__parse_name(&m, dent->d_name);
1050			if (ret)
1051				goto out;
1052
1053			if (m.kmod)
1054				ret = map_groups__set_module_path(mg, path, &m);
1055
1056			free(m.name);
1057
1058			if (ret)
1059				goto out;
1060		}
1061	}
1062
1063out:
1064	closedir(dir);
1065	return ret;
1066}
1067
1068static int machine__set_modules_path(struct machine *machine)
1069{
1070	char *version;
1071	char modules_path[PATH_MAX];
1072
1073	version = get_kernel_version(machine->root_dir);
1074	if (!version)
1075		return -1;
1076
1077	snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1078		 machine->root_dir, version);
1079	free(version);
1080
1081	return map_groups__set_modules_path_dir(&machine->kmaps, modules_path, 0);
1082}
 
 
 
 
 
1083
1084static int machine__create_module(void *arg, const char *name, u64 start)
1085{
1086	struct machine *machine = arg;
1087	struct map *map;
1088
 
 
 
1089	map = machine__findnew_module_map(machine, start, name);
1090	if (map == NULL)
1091		return -1;
1092
1093	dso__kernel_module_get_build_id(map->dso, machine->root_dir);
1094
1095	return 0;
1096}
1097
1098static int machine__create_modules(struct machine *machine)
1099{
1100	const char *modules;
1101	char path[PATH_MAX];
1102
1103	if (machine__is_default_guest(machine)) {
1104		modules = symbol_conf.default_guest_modules;
1105	} else {
1106		snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1107		modules = path;
1108	}
1109
1110	if (symbol__restricted_filename(modules, "/proc/modules"))
1111		return -1;
1112
1113	if (modules__parse(modules, machine, machine__create_module))
1114		return -1;
1115
1116	if (!machine__set_modules_path(machine))
1117		return 0;
1118
1119	pr_debug("Problems setting modules path maps, continuing anyway...\n");
1120
1121	return 0;
1122}
1123
1124int machine__create_kernel_maps(struct machine *machine)
1125{
1126	struct dso *kernel = machine__get_kernel(machine);
1127	const char *name;
1128	u64 addr = machine__get_running_kernel_start(machine, &name);
1129	int ret;
1130
1131	if (!addr || kernel == NULL)
1132		return -1;
1133
1134	ret = __machine__create_kernel_maps(machine, kernel);
1135	dso__put(kernel);
1136	if (ret < 0)
1137		return -1;
1138
1139	if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
1140		if (machine__is_host(machine))
1141			pr_debug("Problems creating module maps, "
1142				 "continuing anyway...\n");
1143		else
1144			pr_debug("Problems creating module maps for guest %d, "
1145				 "continuing anyway...\n", machine->pid);
1146	}
1147
1148	/*
1149	 * Now that we have all the maps created, just set the ->end of them:
1150	 */
1151	map_groups__fixup_end(&machine->kmaps);
1152
1153	if (maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps, name,
1154					     addr)) {
 
1155		machine__destroy_kernel_maps(machine);
1156		return -1;
1157	}
1158
1159	return 0;
1160}
1161
1162static void machine__set_kernel_mmap_len(struct machine *machine,
1163					 union perf_event *event)
1164{
1165	int i;
1166
1167	for (i = 0; i < MAP__NR_TYPES; i++) {
1168		machine->vmlinux_maps[i]->start = event->mmap.start;
1169		machine->vmlinux_maps[i]->end   = (event->mmap.start +
1170						   event->mmap.len);
1171		/*
1172		 * Be a bit paranoid here, some perf.data file came with
1173		 * a zero sized synthesized MMAP event for the kernel.
1174		 */
1175		if (machine->vmlinux_maps[i]->end == 0)
1176			machine->vmlinux_maps[i]->end = ~0ULL;
1177	}
1178}
1179
1180static bool machine__uses_kcore(struct machine *machine)
1181{
1182	struct dso *dso;
1183
1184	list_for_each_entry(dso, &machine->dsos.head, node) {
1185		if (dso__is_kcore(dso))
1186			return true;
1187	}
1188
1189	return false;
1190}
1191
1192static int machine__process_kernel_mmap_event(struct machine *machine,
1193					      union perf_event *event)
1194{
1195	struct map *map;
1196	char kmmap_prefix[PATH_MAX];
1197	enum dso_kernel_type kernel_type;
1198	bool is_kernel_mmap;
1199
1200	/* If we have maps from kcore then we do not need or want any others */
1201	if (machine__uses_kcore(machine))
1202		return 0;
1203
1204	machine__mmap_name(machine, kmmap_prefix, sizeof(kmmap_prefix));
1205	if (machine__is_host(machine))
1206		kernel_type = DSO_TYPE_KERNEL;
1207	else
1208		kernel_type = DSO_TYPE_GUEST_KERNEL;
1209
1210	is_kernel_mmap = memcmp(event->mmap.filename,
1211				kmmap_prefix,
1212				strlen(kmmap_prefix) - 1) == 0;
1213	if (event->mmap.filename[0] == '/' ||
1214	    (!is_kernel_mmap && event->mmap.filename[0] == '[')) {
1215		map = machine__findnew_module_map(machine, event->mmap.start,
1216						  event->mmap.filename);
1217		if (map == NULL)
1218			goto out_problem;
1219
1220		map->end = map->start + event->mmap.len;
1221	} else if (is_kernel_mmap) {
1222		const char *symbol_name = (event->mmap.filename +
1223				strlen(kmmap_prefix));
1224		/*
1225		 * Should be there already, from the build-id table in
1226		 * the header.
1227		 */
1228		struct dso *kernel = NULL;
1229		struct dso *dso;
1230
1231		pthread_rwlock_rdlock(&machine->dsos.lock);
1232
1233		list_for_each_entry(dso, &machine->dsos.head, node) {
1234
1235			/*
1236			 * The cpumode passed to is_kernel_module is not the
1237			 * cpumode of *this* event. If we insist on passing
1238			 * correct cpumode to is_kernel_module, we should
1239			 * record the cpumode when we adding this dso to the
1240			 * linked list.
1241			 *
1242			 * However we don't really need passing correct
1243			 * cpumode.  We know the correct cpumode must be kernel
1244			 * mode (if not, we should not link it onto kernel_dsos
1245			 * list).
1246			 *
1247			 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
1248			 * is_kernel_module() treats it as a kernel cpumode.
1249			 */
1250
1251			if (!dso->kernel ||
1252			    is_kernel_module(dso->long_name,
1253					     PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1254				continue;
1255
1256
1257			kernel = dso;
1258			break;
1259		}
1260
1261		pthread_rwlock_unlock(&machine->dsos.lock);
1262
1263		if (kernel == NULL)
1264			kernel = machine__findnew_dso(machine, kmmap_prefix);
1265		if (kernel == NULL)
1266			goto out_problem;
1267
1268		kernel->kernel = kernel_type;
1269		if (__machine__create_kernel_maps(machine, kernel) < 0) {
1270			dso__put(kernel);
1271			goto out_problem;
1272		}
1273
1274		if (strstr(kernel->long_name, "vmlinux"))
1275			dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1276
1277		machine__set_kernel_mmap_len(machine, event);
1278
1279		/*
1280		 * Avoid using a zero address (kptr_restrict) for the ref reloc
1281		 * symbol. Effectively having zero here means that at record
1282		 * time /proc/sys/kernel/kptr_restrict was non zero.
1283		 */
1284		if (event->mmap.pgoff != 0) {
1285			maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps,
1286							 symbol_name,
1287							 event->mmap.pgoff);
1288		}
1289
1290		if (machine__is_default_guest(machine)) {
1291			/*
1292			 * preload dso of guest kernel and modules
1293			 */
1294			dso__load(kernel, machine__kernel_map(machine), NULL);
1295		}
1296	}
1297	return 0;
1298out_problem:
1299	return -1;
1300}
1301
1302int machine__process_mmap2_event(struct machine *machine,
1303				 union perf_event *event,
1304				 struct perf_sample *sample)
1305{
1306	struct thread *thread;
1307	struct map *map;
1308	enum map_type type;
1309	int ret = 0;
1310
1311	if (dump_trace)
1312		perf_event__fprintf_mmap2(event, stdout);
1313
1314	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1315	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1316		ret = machine__process_kernel_mmap_event(machine, event);
1317		if (ret < 0)
1318			goto out_problem;
1319		return 0;
1320	}
1321
1322	thread = machine__findnew_thread(machine, event->mmap2.pid,
1323					event->mmap2.tid);
1324	if (thread == NULL)
1325		goto out_problem;
1326
1327	if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA)
1328		type = MAP__VARIABLE;
1329	else
1330		type = MAP__FUNCTION;
1331
1332	map = map__new(machine, event->mmap2.start,
1333			event->mmap2.len, event->mmap2.pgoff,
1334			event->mmap2.pid, event->mmap2.maj,
1335			event->mmap2.min, event->mmap2.ino,
1336			event->mmap2.ino_generation,
1337			event->mmap2.prot,
1338			event->mmap2.flags,
1339			event->mmap2.filename, type, thread);
1340
1341	if (map == NULL)
1342		goto out_problem_map;
1343
1344	thread__insert_map(thread, map);
 
 
 
1345	thread__put(thread);
1346	map__put(map);
1347	return 0;
1348
 
 
1349out_problem_map:
1350	thread__put(thread);
1351out_problem:
1352	dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
1353	return 0;
1354}
1355
1356int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1357				struct perf_sample *sample)
1358{
1359	struct thread *thread;
1360	struct map *map;
1361	enum map_type type;
1362	int ret = 0;
1363
1364	if (dump_trace)
1365		perf_event__fprintf_mmap(event, stdout);
1366
1367	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1368	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1369		ret = machine__process_kernel_mmap_event(machine, event);
1370		if (ret < 0)
1371			goto out_problem;
1372		return 0;
1373	}
1374
1375	thread = machine__findnew_thread(machine, event->mmap.pid,
1376					 event->mmap.tid);
1377	if (thread == NULL)
1378		goto out_problem;
1379
1380	if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA)
1381		type = MAP__VARIABLE;
1382	else
1383		type = MAP__FUNCTION;
1384
1385	map = map__new(machine, event->mmap.start,
1386			event->mmap.len, event->mmap.pgoff,
1387			event->mmap.pid, 0, 0, 0, 0, 0, 0,
1388			event->mmap.filename,
1389			type, thread);
1390
1391	if (map == NULL)
1392		goto out_problem_map;
1393
1394	thread__insert_map(thread, map);
 
 
 
1395	thread__put(thread);
1396	map__put(map);
1397	return 0;
1398
 
 
1399out_problem_map:
1400	thread__put(thread);
1401out_problem:
1402	dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
1403	return 0;
1404}
1405
1406static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock)
1407{
1408	if (machine->last_match == th)
1409		machine->last_match = NULL;
1410
1411	BUG_ON(atomic_read(&th->refcnt) == 0);
1412	if (lock)
1413		pthread_rwlock_wrlock(&machine->threads_lock);
1414	rb_erase_init(&th->rb_node, &machine->threads);
1415	RB_CLEAR_NODE(&th->rb_node);
 
1416	/*
1417	 * Move it first to the dead_threads list, then drop the reference,
1418	 * if this is the last reference, then the thread__delete destructor
1419	 * will be called and we will remove it from the dead_threads list.
1420	 */
1421	list_add_tail(&th->node, &machine->dead_threads);
1422	if (lock)
1423		pthread_rwlock_unlock(&machine->threads_lock);
1424	thread__put(th);
1425}
1426
1427void machine__remove_thread(struct machine *machine, struct thread *th)
1428{
1429	return __machine__remove_thread(machine, th, true);
1430}
1431
1432int machine__process_fork_event(struct machine *machine, union perf_event *event,
1433				struct perf_sample *sample)
1434{
1435	struct thread *thread = machine__find_thread(machine,
1436						     event->fork.pid,
1437						     event->fork.tid);
1438	struct thread *parent = machine__findnew_thread(machine,
1439							event->fork.ppid,
1440							event->fork.ptid);
1441	int err = 0;
1442
1443	if (dump_trace)
1444		perf_event__fprintf_task(event, stdout);
1445
1446	/*
1447	 * There may be an existing thread that is not actually the parent,
1448	 * either because we are processing events out of order, or because the
1449	 * (fork) event that would have removed the thread was lost. Assume the
1450	 * latter case and continue on as best we can.
1451	 */
1452	if (parent->pid_ != (pid_t)event->fork.ppid) {
1453		dump_printf("removing erroneous parent thread %d/%d\n",
1454			    parent->pid_, parent->tid);
1455		machine__remove_thread(machine, parent);
1456		thread__put(parent);
1457		parent = machine__findnew_thread(machine, event->fork.ppid,
1458						 event->fork.ptid);
1459	}
1460
1461	/* if a thread currently exists for the thread id remove it */
1462	if (thread != NULL) {
1463		machine__remove_thread(machine, thread);
1464		thread__put(thread);
1465	}
1466
1467	thread = machine__findnew_thread(machine, event->fork.pid,
1468					 event->fork.tid);
1469
1470	if (thread == NULL || parent == NULL ||
1471	    thread__fork(thread, parent, sample->time) < 0) {
1472		dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1473		err = -1;
1474	}
1475	thread__put(thread);
1476	thread__put(parent);
1477
1478	return err;
1479}
1480
1481int machine__process_exit_event(struct machine *machine, union perf_event *event,
1482				struct perf_sample *sample __maybe_unused)
1483{
1484	struct thread *thread = machine__find_thread(machine,
1485						     event->fork.pid,
1486						     event->fork.tid);
1487
1488	if (dump_trace)
1489		perf_event__fprintf_task(event, stdout);
1490
1491	if (thread != NULL) {
1492		thread__exited(thread);
1493		thread__put(thread);
1494	}
1495
1496	return 0;
1497}
1498
1499int machine__process_event(struct machine *machine, union perf_event *event,
1500			   struct perf_sample *sample)
1501{
1502	int ret;
1503
1504	switch (event->header.type) {
1505	case PERF_RECORD_COMM:
1506		ret = machine__process_comm_event(machine, event, sample); break;
1507	case PERF_RECORD_MMAP:
1508		ret = machine__process_mmap_event(machine, event, sample); break;
1509	case PERF_RECORD_MMAP2:
1510		ret = machine__process_mmap2_event(machine, event, sample); break;
1511	case PERF_RECORD_FORK:
1512		ret = machine__process_fork_event(machine, event, sample); break;
1513	case PERF_RECORD_EXIT:
1514		ret = machine__process_exit_event(machine, event, sample); break;
1515	case PERF_RECORD_LOST:
1516		ret = machine__process_lost_event(machine, event, sample); break;
1517	case PERF_RECORD_AUX:
1518		ret = machine__process_aux_event(machine, event); break;
1519	case PERF_RECORD_ITRACE_START:
1520		ret = machine__process_itrace_start_event(machine, event); break;
1521	case PERF_RECORD_LOST_SAMPLES:
1522		ret = machine__process_lost_samples_event(machine, event, sample); break;
1523	case PERF_RECORD_SWITCH:
1524	case PERF_RECORD_SWITCH_CPU_WIDE:
1525		ret = machine__process_switch_event(machine, event); break;
1526	default:
1527		ret = -1;
1528		break;
1529	}
1530
1531	return ret;
1532}
1533
1534static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
1535{
1536	if (sym->name && !regexec(regex, sym->name, 0, NULL, 0))
1537		return 1;
1538	return 0;
1539}
1540
1541static void ip__resolve_ams(struct thread *thread,
1542			    struct addr_map_symbol *ams,
1543			    u64 ip)
1544{
1545	struct addr_location al;
1546
1547	memset(&al, 0, sizeof(al));
1548	/*
1549	 * We cannot use the header.misc hint to determine whether a
1550	 * branch stack address is user, kernel, guest, hypervisor.
1551	 * Branches may straddle the kernel/user/hypervisor boundaries.
1552	 * Thus, we have to try consecutively until we find a match
1553	 * or else, the symbol is unknown
1554	 */
1555	thread__find_cpumode_addr_location(thread, MAP__FUNCTION, ip, &al);
1556
1557	ams->addr = ip;
1558	ams->al_addr = al.addr;
1559	ams->sym = al.sym;
1560	ams->map = al.map;
1561}
1562
1563static void ip__resolve_data(struct thread *thread,
1564			     u8 m, struct addr_map_symbol *ams, u64 addr)
1565{
1566	struct addr_location al;
1567
1568	memset(&al, 0, sizeof(al));
1569
1570	thread__find_addr_location(thread, m, MAP__VARIABLE, addr, &al);
1571	if (al.map == NULL) {
1572		/*
1573		 * some shared data regions have execute bit set which puts
1574		 * their mapping in the MAP__FUNCTION type array.
1575		 * Check there as a fallback option before dropping the sample.
1576		 */
1577		thread__find_addr_location(thread, m, MAP__FUNCTION, addr, &al);
1578	}
1579
1580	ams->addr = addr;
1581	ams->al_addr = al.addr;
1582	ams->sym = al.sym;
1583	ams->map = al.map;
1584}
1585
1586struct mem_info *sample__resolve_mem(struct perf_sample *sample,
1587				     struct addr_location *al)
1588{
1589	struct mem_info *mi = zalloc(sizeof(*mi));
1590
1591	if (!mi)
1592		return NULL;
1593
1594	ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
1595	ip__resolve_data(al->thread, al->cpumode, &mi->daddr, sample->addr);
1596	mi->data_src.val = sample->data_src;
1597
1598	return mi;
1599}
1600
1601static int add_callchain_ip(struct thread *thread,
 
1602			    struct symbol **parent,
1603			    struct addr_location *root_al,
1604			    u8 *cpumode,
1605			    u64 ip)
 
 
 
 
1606{
1607	struct addr_location al;
1608
1609	al.filtered = 0;
1610	al.sym = NULL;
1611	if (!cpumode) {
1612		thread__find_cpumode_addr_location(thread, MAP__FUNCTION,
1613						   ip, &al);
1614	} else {
1615		if (ip >= PERF_CONTEXT_MAX) {
1616			switch (ip) {
1617			case PERF_CONTEXT_HV:
1618				*cpumode = PERF_RECORD_MISC_HYPERVISOR;
1619				break;
1620			case PERF_CONTEXT_KERNEL:
1621				*cpumode = PERF_RECORD_MISC_KERNEL;
1622				break;
1623			case PERF_CONTEXT_USER:
1624				*cpumode = PERF_RECORD_MISC_USER;
1625				break;
1626			default:
1627				pr_debug("invalid callchain context: "
1628					 "%"PRId64"\n", (s64) ip);
1629				/*
1630				 * It seems the callchain is corrupted.
1631				 * Discard all.
1632				 */
1633				callchain_cursor_reset(&callchain_cursor);
1634				return 1;
1635			}
1636			return 0;
1637		}
1638		thread__find_addr_location(thread, *cpumode, MAP__FUNCTION,
1639					   ip, &al);
1640	}
1641
1642	if (al.sym != NULL) {
1643		if (sort__has_parent && !*parent &&
1644		    symbol__match_regex(al.sym, &parent_regex))
1645			*parent = al.sym;
1646		else if (have_ignore_callees && root_al &&
1647		  symbol__match_regex(al.sym, &ignore_callees_regex)) {
1648			/* Treat this symbol as the root,
1649			   forgetting its callees. */
1650			*root_al = al;
1651			callchain_cursor_reset(&callchain_cursor);
1652		}
1653	}
1654
1655	if (symbol_conf.hide_unresolved && al.sym == NULL)
1656		return 0;
1657	return callchain_cursor_append(&callchain_cursor, al.addr, al.map, al.sym);
 
1658}
1659
1660struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
1661					   struct addr_location *al)
1662{
1663	unsigned int i;
1664	const struct branch_stack *bs = sample->branch_stack;
1665	struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
1666
1667	if (!bi)
1668		return NULL;
1669
1670	for (i = 0; i < bs->nr; i++) {
1671		ip__resolve_ams(al->thread, &bi[i].to, bs->entries[i].to);
1672		ip__resolve_ams(al->thread, &bi[i].from, bs->entries[i].from);
1673		bi[i].flags = bs->entries[i].flags;
1674	}
1675	return bi;
1676}
1677
1678#define CHASHSZ 127
1679#define CHASHBITS 7
1680#define NO_ENTRY 0xff
1681
1682#define PERF_MAX_BRANCH_DEPTH 127
1683
1684/* Remove loops. */
1685static int remove_loops(struct branch_entry *l, int nr)
1686{
1687	int i, j, off;
1688	unsigned char chash[CHASHSZ];
1689
1690	memset(chash, NO_ENTRY, sizeof(chash));
1691
1692	BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);
1693
1694	for (i = 0; i < nr; i++) {
1695		int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;
1696
1697		/* no collision handling for now */
1698		if (chash[h] == NO_ENTRY) {
1699			chash[h] = i;
1700		} else if (l[chash[h]].from == l[i].from) {
1701			bool is_loop = true;
1702			/* check if it is a real loop */
1703			off = 0;
1704			for (j = chash[h]; j < i && i + off < nr; j++, off++)
1705				if (l[j].from != l[i + off].from) {
1706					is_loop = false;
1707					break;
1708				}
1709			if (is_loop) {
1710				memmove(l + i, l + i + off,
1711					(nr - (i + off)) * sizeof(*l));
1712				nr -= off;
1713			}
1714		}
1715	}
1716	return nr;
1717}
1718
1719/*
1720 * Recolve LBR callstack chain sample
1721 * Return:
1722 * 1 on success get LBR callchain information
1723 * 0 no available LBR callchain information, should try fp
1724 * negative error code on other errors.
1725 */
1726static int resolve_lbr_callchain_sample(struct thread *thread,
 
1727					struct perf_sample *sample,
1728					struct symbol **parent,
1729					struct addr_location *root_al,
1730					int max_stack)
1731{
1732	struct ip_callchain *chain = sample->callchain;
1733	int chain_nr = min(max_stack, (int)chain->nr);
1734	u8 cpumode = PERF_RECORD_MISC_USER;
1735	int i, j, err;
1736	u64 ip;
1737
1738	for (i = 0; i < chain_nr; i++) {
1739		if (chain->ips[i] == PERF_CONTEXT_USER)
1740			break;
1741	}
1742
1743	/* LBR only affects the user callchain */
1744	if (i != chain_nr) {
1745		struct branch_stack *lbr_stack = sample->branch_stack;
1746		int lbr_nr = lbr_stack->nr;
 
 
1747		/*
1748		 * LBR callstack can only get user call chain.
1749		 * The mix_chain_nr is kernel call chain
1750		 * number plus LBR user call chain number.
1751		 * i is kernel call chain number,
1752		 * 1 is PERF_CONTEXT_USER,
1753		 * lbr_nr + 1 is the user call chain number.
1754		 * For details, please refer to the comments
1755		 * in callchain__printf
1756		 */
1757		int mix_chain_nr = i + 1 + lbr_nr + 1;
1758
1759		if (mix_chain_nr > PERF_MAX_STACK_DEPTH + PERF_MAX_BRANCH_DEPTH) {
1760			pr_warning("corrupted callchain. skipping...\n");
1761			return 0;
1762		}
1763
1764		for (j = 0; j < mix_chain_nr; j++) {
 
 
 
 
1765			if (callchain_param.order == ORDER_CALLEE) {
1766				if (j < i + 1)
1767					ip = chain->ips[j];
1768				else if (j > i + 1)
1769					ip = lbr_stack->entries[j - i - 2].from;
1770				else
 
 
 
1771					ip = lbr_stack->entries[0].to;
 
 
 
1772			} else {
1773				if (j < lbr_nr)
1774					ip = lbr_stack->entries[lbr_nr - j - 1].from;
 
 
 
 
1775				else if (j > lbr_nr)
1776					ip = chain->ips[i + 1 - (j - lbr_nr)];
1777				else
1778					ip = lbr_stack->entries[0].to;
 
 
 
1779			}
1780
1781			err = add_callchain_ip(thread, parent, root_al, &cpumode, ip);
 
 
1782			if (err)
1783				return (err < 0) ? err : 0;
1784		}
1785		return 1;
1786	}
1787
1788	return 0;
1789}
1790
1791static int thread__resolve_callchain_sample(struct thread *thread,
 
1792					    struct perf_evsel *evsel,
1793					    struct perf_sample *sample,
1794					    struct symbol **parent,
1795					    struct addr_location *root_al,
1796					    int max_stack)
1797{
1798	struct branch_stack *branch = sample->branch_stack;
1799	struct ip_callchain *chain = sample->callchain;
1800	int chain_nr = min(max_stack, (int)chain->nr);
1801	u8 cpumode = PERF_RECORD_MISC_USER;
1802	int i, j, err;
1803	int skip_idx = -1;
1804	int first_call = 0;
 
1805
1806	callchain_cursor_reset(&callchain_cursor);
1807
1808	if (has_branch_callstack(evsel)) {
1809		err = resolve_lbr_callchain_sample(thread, sample, parent,
1810						   root_al, max_stack);
1811		if (err)
1812			return (err < 0) ? err : 0;
1813	}
1814
1815	/*
1816	 * Based on DWARF debug information, some architectures skip
1817	 * a callchain entry saved by the kernel.
1818	 */
1819	if (chain->nr < PERF_MAX_STACK_DEPTH)
1820		skip_idx = arch_skip_callchain_idx(thread, chain);
1821
1822	/*
1823	 * Add branches to call stack for easier browsing. This gives
1824	 * more context for a sample than just the callers.
1825	 *
1826	 * This uses individual histograms of paths compared to the
1827	 * aggregated histograms the normal LBR mode uses.
1828	 *
1829	 * Limitations for now:
1830	 * - No extra filters
1831	 * - No annotations (should annotate somehow)
1832	 */
1833
1834	if (branch && callchain_param.branch_callstack) {
1835		int nr = min(max_stack, (int)branch->nr);
1836		struct branch_entry be[nr];
1837
1838		if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
1839			pr_warning("corrupted branch chain. skipping...\n");
1840			goto check_calls;
1841		}
1842
1843		for (i = 0; i < nr; i++) {
1844			if (callchain_param.order == ORDER_CALLEE) {
1845				be[i] = branch->entries[i];
1846				/*
1847				 * Check for overlap into the callchain.
1848				 * The return address is one off compared to
1849				 * the branch entry. To adjust for this
1850				 * assume the calling instruction is not longer
1851				 * than 8 bytes.
1852				 */
1853				if (i == skip_idx ||
1854				    chain->ips[first_call] >= PERF_CONTEXT_MAX)
1855					first_call++;
1856				else if (be[i].from < chain->ips[first_call] &&
1857				    be[i].from >= chain->ips[first_call] - 8)
1858					first_call++;
1859			} else
1860				be[i] = branch->entries[branch->nr - i - 1];
1861		}
1862
 
1863		nr = remove_loops(be, nr);
1864
 
 
 
 
 
 
 
 
 
1865		for (i = 0; i < nr; i++) {
1866			err = add_callchain_ip(thread, parent, root_al,
1867					       NULL, be[i].to);
 
 
 
 
 
 
 
 
 
 
 
1868			if (!err)
1869				err = add_callchain_ip(thread, parent, root_al,
1870						       NULL, be[i].from);
 
 
1871			if (err == -EINVAL)
1872				break;
1873			if (err)
1874				return err;
1875		}
1876		chain_nr -= nr;
1877	}
1878
1879check_calls:
1880	if (chain->nr > PERF_MAX_STACK_DEPTH && (int)chain->nr > max_stack) {
1881		pr_warning("corrupted callchain. skipping...\n");
1882		return 0;
1883	}
1884
1885	for (i = first_call; i < chain_nr; i++) {
1886		u64 ip;
1887
1888		if (callchain_param.order == ORDER_CALLEE)
1889			j = i;
1890		else
1891			j = chain->nr - i - 1;
1892
1893#ifdef HAVE_SKIP_CALLCHAIN_IDX
1894		if (j == skip_idx)
1895			continue;
1896#endif
1897		ip = chain->ips[j];
1898
1899		err = add_callchain_ip(thread, parent, root_al, &cpumode, ip);
 
 
 
 
 
1900
1901		if (err)
1902			return (err < 0) ? err : 0;
1903	}
1904
1905	return 0;
1906}
1907
1908static int unwind_entry(struct unwind_entry *entry, void *arg)
1909{
1910	struct callchain_cursor *cursor = arg;
1911
1912	if (symbol_conf.hide_unresolved && entry->sym == NULL)
1913		return 0;
1914	return callchain_cursor_append(cursor, entry->ip,
1915				       entry->map, entry->sym);
 
1916}
1917
1918int thread__resolve_callchain(struct thread *thread,
1919			      struct perf_evsel *evsel,
1920			      struct perf_sample *sample,
1921			      struct symbol **parent,
1922			      struct addr_location *root_al,
1923			      int max_stack)
1924{
1925	int ret = thread__resolve_callchain_sample(thread, evsel,
1926						   sample, parent,
1927						   root_al, max_stack);
1928	if (ret)
1929		return ret;
1930
1931	/* Can we do dwarf post unwind? */
1932	if (!((evsel->attr.sample_type & PERF_SAMPLE_REGS_USER) &&
1933	      (evsel->attr.sample_type & PERF_SAMPLE_STACK_USER)))
1934		return 0;
1935
1936	/* Bail out if nothing was captured. */
1937	if ((!sample->user_regs.regs) ||
1938	    (!sample->user_stack.size))
1939		return 0;
1940
1941	return unwind__get_entries(unwind_entry, &callchain_cursor,
1942				   thread, sample, max_stack);
 
1943
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1944}
1945
1946int machine__for_each_thread(struct machine *machine,
1947			     int (*fn)(struct thread *thread, void *p),
1948			     void *priv)
1949{
1950	struct rb_node *nd;
1951	struct thread *thread;
1952	int rc = 0;
1953
1954	for (nd = rb_first(&machine->threads); nd; nd = rb_next(nd)) {
1955		thread = rb_entry(nd, struct thread, rb_node);
1956		rc = fn(thread, priv);
1957		if (rc != 0)
1958			return rc;
1959	}
1960
1961	list_for_each_entry(thread, &machine->dead_threads, node) {
1962		rc = fn(thread, priv);
1963		if (rc != 0)
1964			return rc;
1965	}
1966	return rc;
1967}
1968
1969int machines__for_each_thread(struct machines *machines,
1970			      int (*fn)(struct thread *thread, void *p),
1971			      void *priv)
1972{
1973	struct rb_node *nd;
1974	int rc = 0;
1975
1976	rc = machine__for_each_thread(&machines->host, fn, priv);
1977	if (rc != 0)
1978		return rc;
1979
1980	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
1981		struct machine *machine = rb_entry(nd, struct machine, rb_node);
1982
1983		rc = machine__for_each_thread(machine, fn, priv);
1984		if (rc != 0)
1985			return rc;
1986	}
1987	return rc;
1988}
1989
1990int __machine__synthesize_threads(struct machine *machine, struct perf_tool *tool,
1991				  struct target *target, struct thread_map *threads,
1992				  perf_event__handler_t process, bool data_mmap,
1993				  unsigned int proc_map_timeout)
1994{
1995	if (target__has_task(target))
1996		return perf_event__synthesize_thread_map(tool, threads, process, machine, data_mmap, proc_map_timeout);
1997	else if (target__has_cpu(target))
1998		return perf_event__synthesize_threads(tool, process, machine, data_mmap, proc_map_timeout);
1999	/* command specified */
2000	return 0;
2001}
2002
2003pid_t machine__get_current_tid(struct machine *machine, int cpu)
2004{
2005	if (cpu < 0 || cpu >= MAX_NR_CPUS || !machine->current_tid)
2006		return -1;
2007
2008	return machine->current_tid[cpu];
2009}
2010
2011int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
2012			     pid_t tid)
2013{
2014	struct thread *thread;
2015
2016	if (cpu < 0)
2017		return -EINVAL;
2018
2019	if (!machine->current_tid) {
2020		int i;
2021
2022		machine->current_tid = calloc(MAX_NR_CPUS, sizeof(pid_t));
2023		if (!machine->current_tid)
2024			return -ENOMEM;
2025		for (i = 0; i < MAX_NR_CPUS; i++)
2026			machine->current_tid[i] = -1;
2027	}
2028
2029	if (cpu >= MAX_NR_CPUS) {
2030		pr_err("Requested CPU %d too large. ", cpu);
2031		pr_err("Consider raising MAX_NR_CPUS\n");
2032		return -EINVAL;
2033	}
2034
2035	machine->current_tid[cpu] = tid;
2036
2037	thread = machine__findnew_thread(machine, pid, tid);
2038	if (!thread)
2039		return -ENOMEM;
2040
2041	thread->cpu = cpu;
2042	thread__put(thread);
2043
2044	return 0;
2045}
2046
2047int machine__get_kernel_start(struct machine *machine)
2048{
2049	struct map *map = machine__kernel_map(machine);
2050	int err = 0;
2051
2052	/*
2053	 * The only addresses above 2^63 are kernel addresses of a 64-bit
2054	 * kernel.  Note that addresses are unsigned so that on a 32-bit system
2055	 * all addresses including kernel addresses are less than 2^32.  In
2056	 * that case (32-bit system), if the kernel mapping is unknown, all
2057	 * addresses will be assumed to be in user space - see
2058	 * machine__kernel_ip().
2059	 */
2060	machine->kernel_start = 1ULL << 63;
2061	if (map) {
2062		err = map__load(map, machine->symbol_filter);
2063		if (map->start)
2064			machine->kernel_start = map->start;
2065	}
2066	return err;
2067}
2068
2069struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
2070{
2071	return dsos__findnew(&machine->dsos, filename);
2072}
2073
2074char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
2075{
2076	struct machine *machine = vmachine;
2077	struct map *map;
2078	struct symbol *sym = map_groups__find_symbol(&machine->kmaps, MAP__FUNCTION, *addrp, &map,  NULL);
2079
2080	if (sym == NULL)
2081		return NULL;
2082
2083	*modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL;
2084	*addrp = map->unmap_ip(map, sym->start);
2085	return sym->name;
2086}
v4.10.11
   1#include "callchain.h"
   2#include "debug.h"
   3#include "event.h"
   4#include "evsel.h"
   5#include "hist.h"
   6#include "machine.h"
   7#include "map.h"
   8#include "sort.h"
   9#include "strlist.h"
  10#include "thread.h"
  11#include "vdso.h"
  12#include <stdbool.h>
  13#include <symbol/kallsyms.h>
  14#include "unwind.h"
  15#include "linux/hash.h"
  16
  17static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock);
  18
  19static void dsos__init(struct dsos *dsos)
  20{
  21	INIT_LIST_HEAD(&dsos->head);
  22	dsos->root = RB_ROOT;
  23	pthread_rwlock_init(&dsos->lock, NULL);
  24}
  25
  26int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
  27{
  28	memset(machine, 0, sizeof(*machine));
  29	map_groups__init(&machine->kmaps, machine);
  30	RB_CLEAR_NODE(&machine->rb_node);
  31	dsos__init(&machine->dsos);
  32
  33	machine->threads = RB_ROOT;
  34	pthread_rwlock_init(&machine->threads_lock, NULL);
  35	machine->nr_threads = 0;
  36	INIT_LIST_HEAD(&machine->dead_threads);
  37	machine->last_match = NULL;
  38
  39	machine->vdso_info = NULL;
  40	machine->env = NULL;
  41
  42	machine->pid = pid;
  43
 
  44	machine->id_hdr_size = 0;
  45	machine->kptr_restrict_warned = false;
  46	machine->comm_exec = false;
  47	machine->kernel_start = 0;
  48
  49	memset(machine->vmlinux_maps, 0, sizeof(machine->vmlinux_maps));
  50
  51	machine->root_dir = strdup(root_dir);
  52	if (machine->root_dir == NULL)
  53		return -ENOMEM;
  54
  55	if (pid != HOST_KERNEL_ID) {
  56		struct thread *thread = machine__findnew_thread(machine, -1,
  57								pid);
  58		char comm[64];
  59
  60		if (thread == NULL)
  61			return -ENOMEM;
  62
  63		snprintf(comm, sizeof(comm), "[guest/%d]", pid);
  64		thread__set_comm(thread, comm, 0);
  65		thread__put(thread);
  66	}
  67
  68	machine->current_tid = NULL;
  69
  70	return 0;
  71}
  72
  73struct machine *machine__new_host(void)
  74{
  75	struct machine *machine = malloc(sizeof(*machine));
  76
  77	if (machine != NULL) {
  78		machine__init(machine, "", HOST_KERNEL_ID);
  79
  80		if (machine__create_kernel_maps(machine) < 0)
  81			goto out_delete;
  82	}
  83
  84	return machine;
  85out_delete:
  86	free(machine);
  87	return NULL;
  88}
  89
  90static void dsos__purge(struct dsos *dsos)
  91{
  92	struct dso *pos, *n;
  93
  94	pthread_rwlock_wrlock(&dsos->lock);
  95
  96	list_for_each_entry_safe(pos, n, &dsos->head, node) {
  97		RB_CLEAR_NODE(&pos->rb_node);
  98		pos->root = NULL;
  99		list_del_init(&pos->node);
 100		dso__put(pos);
 101	}
 102
 103	pthread_rwlock_unlock(&dsos->lock);
 104}
 105
 106static void dsos__exit(struct dsos *dsos)
 107{
 108	dsos__purge(dsos);
 109	pthread_rwlock_destroy(&dsos->lock);
 110}
 111
 112void machine__delete_threads(struct machine *machine)
 113{
 114	struct rb_node *nd;
 115
 116	pthread_rwlock_wrlock(&machine->threads_lock);
 117	nd = rb_first(&machine->threads);
 118	while (nd) {
 119		struct thread *t = rb_entry(nd, struct thread, rb_node);
 120
 121		nd = rb_next(nd);
 122		__machine__remove_thread(machine, t, false);
 123	}
 124	pthread_rwlock_unlock(&machine->threads_lock);
 125}
 126
 127void machine__exit(struct machine *machine)
 128{
 129	machine__destroy_kernel_maps(machine);
 130	map_groups__exit(&machine->kmaps);
 131	dsos__exit(&machine->dsos);
 132	machine__exit_vdso(machine);
 133	zfree(&machine->root_dir);
 134	zfree(&machine->current_tid);
 135	pthread_rwlock_destroy(&machine->threads_lock);
 136}
 137
 138void machine__delete(struct machine *machine)
 139{
 140	if (machine) {
 141		machine__exit(machine);
 142		free(machine);
 143	}
 144}
 145
 146void machines__init(struct machines *machines)
 147{
 148	machine__init(&machines->host, "", HOST_KERNEL_ID);
 149	machines->guests = RB_ROOT;
 
 150}
 151
 152void machines__exit(struct machines *machines)
 153{
 154	machine__exit(&machines->host);
 155	/* XXX exit guest */
 156}
 157
 158struct machine *machines__add(struct machines *machines, pid_t pid,
 159			      const char *root_dir)
 160{
 161	struct rb_node **p = &machines->guests.rb_node;
 162	struct rb_node *parent = NULL;
 163	struct machine *pos, *machine = malloc(sizeof(*machine));
 164
 165	if (machine == NULL)
 166		return NULL;
 167
 168	if (machine__init(machine, root_dir, pid) != 0) {
 169		free(machine);
 170		return NULL;
 171	}
 172
 
 
 173	while (*p != NULL) {
 174		parent = *p;
 175		pos = rb_entry(parent, struct machine, rb_node);
 176		if (pid < pos->pid)
 177			p = &(*p)->rb_left;
 178		else
 179			p = &(*p)->rb_right;
 180	}
 181
 182	rb_link_node(&machine->rb_node, parent, p);
 183	rb_insert_color(&machine->rb_node, &machines->guests);
 184
 185	return machine;
 186}
 187
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 188void machines__set_comm_exec(struct machines *machines, bool comm_exec)
 189{
 190	struct rb_node *nd;
 191
 192	machines->host.comm_exec = comm_exec;
 193
 194	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
 195		struct machine *machine = rb_entry(nd, struct machine, rb_node);
 196
 197		machine->comm_exec = comm_exec;
 198	}
 199}
 200
 201struct machine *machines__find(struct machines *machines, pid_t pid)
 202{
 203	struct rb_node **p = &machines->guests.rb_node;
 204	struct rb_node *parent = NULL;
 205	struct machine *machine;
 206	struct machine *default_machine = NULL;
 207
 208	if (pid == HOST_KERNEL_ID)
 209		return &machines->host;
 210
 211	while (*p != NULL) {
 212		parent = *p;
 213		machine = rb_entry(parent, struct machine, rb_node);
 214		if (pid < machine->pid)
 215			p = &(*p)->rb_left;
 216		else if (pid > machine->pid)
 217			p = &(*p)->rb_right;
 218		else
 219			return machine;
 220		if (!machine->pid)
 221			default_machine = machine;
 222	}
 223
 224	return default_machine;
 225}
 226
 227struct machine *machines__findnew(struct machines *machines, pid_t pid)
 228{
 229	char path[PATH_MAX];
 230	const char *root_dir = "";
 231	struct machine *machine = machines__find(machines, pid);
 232
 233	if (machine && (machine->pid == pid))
 234		goto out;
 235
 236	if ((pid != HOST_KERNEL_ID) &&
 237	    (pid != DEFAULT_GUEST_KERNEL_ID) &&
 238	    (symbol_conf.guestmount)) {
 239		sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
 240		if (access(path, R_OK)) {
 241			static struct strlist *seen;
 242
 243			if (!seen)
 244				seen = strlist__new(NULL, NULL);
 245
 246			if (!strlist__has_entry(seen, path)) {
 247				pr_err("Can't access file %s\n", path);
 248				strlist__add(seen, path);
 249			}
 250			machine = NULL;
 251			goto out;
 252		}
 253		root_dir = path;
 254	}
 255
 256	machine = machines__add(machines, pid, root_dir);
 257out:
 258	return machine;
 259}
 260
 261void machines__process_guests(struct machines *machines,
 262			      machine__process_t process, void *data)
 263{
 264	struct rb_node *nd;
 265
 266	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
 267		struct machine *pos = rb_entry(nd, struct machine, rb_node);
 268		process(pos, data);
 269	}
 270}
 271
 272char *machine__mmap_name(struct machine *machine, char *bf, size_t size)
 273{
 274	if (machine__is_host(machine))
 275		snprintf(bf, size, "[%s]", "kernel.kallsyms");
 276	else if (machine__is_default_guest(machine))
 277		snprintf(bf, size, "[%s]", "guest.kernel.kallsyms");
 278	else {
 279		snprintf(bf, size, "[%s.%d]", "guest.kernel.kallsyms",
 280			 machine->pid);
 281	}
 282
 283	return bf;
 284}
 285
 286void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
 287{
 288	struct rb_node *node;
 289	struct machine *machine;
 290
 291	machines->host.id_hdr_size = id_hdr_size;
 292
 293	for (node = rb_first(&machines->guests); node; node = rb_next(node)) {
 294		machine = rb_entry(node, struct machine, rb_node);
 295		machine->id_hdr_size = id_hdr_size;
 296	}
 297
 298	return;
 299}
 300
 301static void machine__update_thread_pid(struct machine *machine,
 302				       struct thread *th, pid_t pid)
 303{
 304	struct thread *leader;
 305
 306	if (pid == th->pid_ || pid == -1 || th->pid_ != -1)
 307		return;
 308
 309	th->pid_ = pid;
 310
 311	if (th->pid_ == th->tid)
 312		return;
 313
 314	leader = __machine__findnew_thread(machine, th->pid_, th->pid_);
 315	if (!leader)
 316		goto out_err;
 317
 318	if (!leader->mg)
 319		leader->mg = map_groups__new(machine);
 320
 321	if (!leader->mg)
 322		goto out_err;
 323
 324	if (th->mg == leader->mg)
 325		return;
 326
 327	if (th->mg) {
 328		/*
 329		 * Maps are created from MMAP events which provide the pid and
 330		 * tid.  Consequently there never should be any maps on a thread
 331		 * with an unknown pid.  Just print an error if there are.
 332		 */
 333		if (!map_groups__empty(th->mg))
 334			pr_err("Discarding thread maps for %d:%d\n",
 335			       th->pid_, th->tid);
 336		map_groups__put(th->mg);
 337	}
 338
 339	th->mg = map_groups__get(leader->mg);
 340out_put:
 341	thread__put(leader);
 342	return;
 343out_err:
 344	pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid);
 345	goto out_put;
 346}
 347
 348/*
 349 * Caller must eventually drop thread->refcnt returned with a successful
 350 * lookup/new thread inserted.
 351 */
 352static struct thread *____machine__findnew_thread(struct machine *machine,
 353						  pid_t pid, pid_t tid,
 354						  bool create)
 355{
 356	struct rb_node **p = &machine->threads.rb_node;
 357	struct rb_node *parent = NULL;
 358	struct thread *th;
 359
 360	/*
 361	 * Front-end cache - TID lookups come in blocks,
 362	 * so most of the time we dont have to look up
 363	 * the full rbtree:
 364	 */
 365	th = machine->last_match;
 366	if (th != NULL) {
 367		if (th->tid == tid) {
 368			machine__update_thread_pid(machine, th, pid);
 369			return thread__get(th);
 370		}
 371
 372		machine->last_match = NULL;
 373	}
 374
 375	while (*p != NULL) {
 376		parent = *p;
 377		th = rb_entry(parent, struct thread, rb_node);
 378
 379		if (th->tid == tid) {
 380			machine->last_match = th;
 381			machine__update_thread_pid(machine, th, pid);
 382			return thread__get(th);
 383		}
 384
 385		if (tid < th->tid)
 386			p = &(*p)->rb_left;
 387		else
 388			p = &(*p)->rb_right;
 389	}
 390
 391	if (!create)
 392		return NULL;
 393
 394	th = thread__new(pid, tid);
 395	if (th != NULL) {
 396		rb_link_node(&th->rb_node, parent, p);
 397		rb_insert_color(&th->rb_node, &machine->threads);
 398
 399		/*
 400		 * We have to initialize map_groups separately
 401		 * after rb tree is updated.
 402		 *
 403		 * The reason is that we call machine__findnew_thread
 404		 * within thread__init_map_groups to find the thread
 405		 * leader and that would screwed the rb tree.
 406		 */
 407		if (thread__init_map_groups(th, machine)) {
 408			rb_erase_init(&th->rb_node, &machine->threads);
 409			RB_CLEAR_NODE(&th->rb_node);
 410			thread__put(th);
 411			return NULL;
 412		}
 413		/*
 414		 * It is now in the rbtree, get a ref
 415		 */
 416		thread__get(th);
 417		machine->last_match = th;
 418		++machine->nr_threads;
 419	}
 420
 421	return th;
 422}
 423
 424struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
 425{
 426	return ____machine__findnew_thread(machine, pid, tid, true);
 427}
 428
 429struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
 430				       pid_t tid)
 431{
 432	struct thread *th;
 433
 434	pthread_rwlock_wrlock(&machine->threads_lock);
 435	th = __machine__findnew_thread(machine, pid, tid);
 436	pthread_rwlock_unlock(&machine->threads_lock);
 437	return th;
 438}
 439
 440struct thread *machine__find_thread(struct machine *machine, pid_t pid,
 441				    pid_t tid)
 442{
 443	struct thread *th;
 444	pthread_rwlock_rdlock(&machine->threads_lock);
 445	th =  ____machine__findnew_thread(machine, pid, tid, false);
 446	pthread_rwlock_unlock(&machine->threads_lock);
 447	return th;
 448}
 449
 450struct comm *machine__thread_exec_comm(struct machine *machine,
 451				       struct thread *thread)
 452{
 453	if (machine->comm_exec)
 454		return thread__exec_comm(thread);
 455	else
 456		return thread__comm(thread);
 457}
 458
 459int machine__process_comm_event(struct machine *machine, union perf_event *event,
 460				struct perf_sample *sample)
 461{
 462	struct thread *thread = machine__findnew_thread(machine,
 463							event->comm.pid,
 464							event->comm.tid);
 465	bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
 466	int err = 0;
 467
 468	if (exec)
 469		machine->comm_exec = true;
 470
 471	if (dump_trace)
 472		perf_event__fprintf_comm(event, stdout);
 473
 474	if (thread == NULL ||
 475	    __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
 476		dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
 477		err = -1;
 478	}
 479
 480	thread__put(thread);
 481
 482	return err;
 483}
 484
 485int machine__process_lost_event(struct machine *machine __maybe_unused,
 486				union perf_event *event, struct perf_sample *sample __maybe_unused)
 487{
 488	dump_printf(": id:%" PRIu64 ": lost:%" PRIu64 "\n",
 489		    event->lost.id, event->lost.lost);
 490	return 0;
 491}
 492
 493int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
 494					union perf_event *event, struct perf_sample *sample)
 495{
 496	dump_printf(": id:%" PRIu64 ": lost samples :%" PRIu64 "\n",
 497		    sample->id, event->lost_samples.lost);
 498	return 0;
 499}
 500
 501static struct dso *machine__findnew_module_dso(struct machine *machine,
 502					       struct kmod_path *m,
 503					       const char *filename)
 504{
 505	struct dso *dso;
 506
 507	pthread_rwlock_wrlock(&machine->dsos.lock);
 508
 509	dso = __dsos__find(&machine->dsos, m->name, true);
 510	if (!dso) {
 511		dso = __dsos__addnew(&machine->dsos, m->name);
 512		if (dso == NULL)
 513			goto out_unlock;
 514
 515		if (machine__is_host(machine))
 516			dso->symtab_type = DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE;
 517		else
 518			dso->symtab_type = DSO_BINARY_TYPE__GUEST_KMODULE;
 519
 520		/* _KMODULE_COMP should be next to _KMODULE */
 521		if (m->kmod && m->comp)
 522			dso->symtab_type++;
 523
 524		dso__set_short_name(dso, strdup(m->name), true);
 525		dso__set_long_name(dso, strdup(filename), true);
 526	}
 527
 528	dso__get(dso);
 529out_unlock:
 530	pthread_rwlock_unlock(&machine->dsos.lock);
 531	return dso;
 532}
 533
 534int machine__process_aux_event(struct machine *machine __maybe_unused,
 535			       union perf_event *event)
 536{
 537	if (dump_trace)
 538		perf_event__fprintf_aux(event, stdout);
 539	return 0;
 540}
 541
 542int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
 543					union perf_event *event)
 544{
 545	if (dump_trace)
 546		perf_event__fprintf_itrace_start(event, stdout);
 547	return 0;
 548}
 549
 550int machine__process_switch_event(struct machine *machine __maybe_unused,
 551				  union perf_event *event)
 552{
 553	if (dump_trace)
 554		perf_event__fprintf_switch(event, stdout);
 555	return 0;
 556}
 557
 558static void dso__adjust_kmod_long_name(struct dso *dso, const char *filename)
 559{
 560	const char *dup_filename;
 561
 562	if (!filename || !dso || !dso->long_name)
 563		return;
 564	if (dso->long_name[0] != '[')
 565		return;
 566	if (!strchr(filename, '/'))
 567		return;
 568
 569	dup_filename = strdup(filename);
 570	if (!dup_filename)
 571		return;
 572
 573	dso__set_long_name(dso, dup_filename, true);
 574}
 575
 576struct map *machine__findnew_module_map(struct machine *machine, u64 start,
 577					const char *filename)
 578{
 579	struct map *map = NULL;
 580	struct dso *dso = NULL;
 581	struct kmod_path m;
 582
 583	if (kmod_path__parse_name(&m, filename))
 584		return NULL;
 585
 586	map = map_groups__find_by_name(&machine->kmaps, MAP__FUNCTION,
 587				       m.name);
 588	if (map) {
 589		/*
 590		 * If the map's dso is an offline module, give dso__load()
 591		 * a chance to find the file path of that module by fixing
 592		 * long_name.
 593		 */
 594		dso__adjust_kmod_long_name(map->dso, filename);
 595		goto out;
 596	}
 597
 598	dso = machine__findnew_module_dso(machine, &m, filename);
 599	if (dso == NULL)
 600		goto out;
 601
 602	map = map__new2(start, dso, MAP__FUNCTION);
 603	if (map == NULL)
 604		goto out;
 605
 606	map_groups__insert(&machine->kmaps, map);
 607
 608	/* Put the map here because map_groups__insert alread got it */
 609	map__put(map);
 610out:
 611	/* put the dso here, corresponding to  machine__findnew_module_dso */
 612	dso__put(dso);
 613	free(m.name);
 614	return map;
 615}
 616
 617size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
 618{
 619	struct rb_node *nd;
 620	size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
 621
 622	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
 623		struct machine *pos = rb_entry(nd, struct machine, rb_node);
 624		ret += __dsos__fprintf(&pos->dsos.head, fp);
 625	}
 626
 627	return ret;
 628}
 629
 630size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
 631				     bool (skip)(struct dso *dso, int parm), int parm)
 632{
 633	return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
 634}
 635
 636size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
 637				     bool (skip)(struct dso *dso, int parm), int parm)
 638{
 639	struct rb_node *nd;
 640	size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
 641
 642	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
 643		struct machine *pos = rb_entry(nd, struct machine, rb_node);
 644		ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
 645	}
 646	return ret;
 647}
 648
 649size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
 650{
 651	int i;
 652	size_t printed = 0;
 653	struct dso *kdso = machine__kernel_map(machine)->dso;
 654
 655	if (kdso->has_build_id) {
 656		char filename[PATH_MAX];
 657		if (dso__build_id_filename(kdso, filename, sizeof(filename)))
 658			printed += fprintf(fp, "[0] %s\n", filename);
 659	}
 660
 661	for (i = 0; i < vmlinux_path__nr_entries; ++i)
 662		printed += fprintf(fp, "[%d] %s\n",
 663				   i + kdso->has_build_id, vmlinux_path[i]);
 664
 665	return printed;
 666}
 667
 668size_t machine__fprintf(struct machine *machine, FILE *fp)
 669{
 670	size_t ret;
 671	struct rb_node *nd;
 672
 673	pthread_rwlock_rdlock(&machine->threads_lock);
 674
 675	ret = fprintf(fp, "Threads: %u\n", machine->nr_threads);
 676
 677	for (nd = rb_first(&machine->threads); nd; nd = rb_next(nd)) {
 678		struct thread *pos = rb_entry(nd, struct thread, rb_node);
 679
 680		ret += thread__fprintf(pos, fp);
 681	}
 682
 683	pthread_rwlock_unlock(&machine->threads_lock);
 684
 685	return ret;
 686}
 687
 688static struct dso *machine__get_kernel(struct machine *machine)
 689{
 690	const char *vmlinux_name = NULL;
 691	struct dso *kernel;
 692
 693	if (machine__is_host(machine)) {
 694		vmlinux_name = symbol_conf.vmlinux_name;
 695		if (!vmlinux_name)
 696			vmlinux_name = DSO__NAME_KALLSYMS;
 697
 698		kernel = machine__findnew_kernel(machine, vmlinux_name,
 699						 "[kernel]", DSO_TYPE_KERNEL);
 700	} else {
 701		char bf[PATH_MAX];
 702
 703		if (machine__is_default_guest(machine))
 704			vmlinux_name = symbol_conf.default_guest_vmlinux_name;
 705		if (!vmlinux_name)
 706			vmlinux_name = machine__mmap_name(machine, bf,
 707							  sizeof(bf));
 708
 709		kernel = machine__findnew_kernel(machine, vmlinux_name,
 710						 "[guest.kernel]",
 711						 DSO_TYPE_GUEST_KERNEL);
 712	}
 713
 714	if (kernel != NULL && (!kernel->has_build_id))
 715		dso__read_running_kernel_build_id(kernel, machine);
 716
 717	return kernel;
 718}
 719
 720struct process_args {
 721	u64 start;
 722};
 723
 724static void machine__get_kallsyms_filename(struct machine *machine, char *buf,
 725					   size_t bufsz)
 726{
 727	if (machine__is_default_guest(machine))
 728		scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
 729	else
 730		scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
 731}
 732
 733const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};
 734
 735/* Figure out the start address of kernel map from /proc/kallsyms.
 736 * Returns the name of the start symbol in *symbol_name. Pass in NULL as
 737 * symbol_name if it's not that important.
 738 */
 739static u64 machine__get_running_kernel_start(struct machine *machine,
 740					     const char **symbol_name)
 741{
 742	char filename[PATH_MAX];
 743	int i;
 744	const char *name;
 745	u64 addr = 0;
 746
 747	machine__get_kallsyms_filename(machine, filename, PATH_MAX);
 748
 749	if (symbol__restricted_filename(filename, "/proc/kallsyms"))
 750		return 0;
 751
 752	for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
 753		addr = kallsyms__get_function_start(filename, name);
 754		if (addr)
 755			break;
 756	}
 757
 758	if (symbol_name)
 759		*symbol_name = name;
 760
 761	return addr;
 762}
 763
 764int __machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
 765{
 766	enum map_type type;
 767	u64 start = machine__get_running_kernel_start(machine, NULL);
 768
 769	/* In case of renewal the kernel map, destroy previous one */
 770	machine__destroy_kernel_maps(machine);
 771
 772	for (type = 0; type < MAP__NR_TYPES; ++type) {
 773		struct kmap *kmap;
 774		struct map *map;
 775
 776		machine->vmlinux_maps[type] = map__new2(start, kernel, type);
 777		if (machine->vmlinux_maps[type] == NULL)
 778			return -1;
 779
 780		machine->vmlinux_maps[type]->map_ip =
 781			machine->vmlinux_maps[type]->unmap_ip =
 782				identity__map_ip;
 783		map = __machine__kernel_map(machine, type);
 784		kmap = map__kmap(map);
 785		if (!kmap)
 786			return -1;
 787
 788		kmap->kmaps = &machine->kmaps;
 789		map_groups__insert(&machine->kmaps, map);
 790	}
 791
 792	return 0;
 793}
 794
 795void machine__destroy_kernel_maps(struct machine *machine)
 796{
 797	enum map_type type;
 798
 799	for (type = 0; type < MAP__NR_TYPES; ++type) {
 800		struct kmap *kmap;
 801		struct map *map = __machine__kernel_map(machine, type);
 802
 803		if (map == NULL)
 804			continue;
 805
 806		kmap = map__kmap(map);
 807		map_groups__remove(&machine->kmaps, map);
 808		if (kmap && kmap->ref_reloc_sym) {
 809			/*
 810			 * ref_reloc_sym is shared among all maps, so free just
 811			 * on one of them.
 812			 */
 813			if (type == MAP__FUNCTION) {
 814				zfree((char **)&kmap->ref_reloc_sym->name);
 815				zfree(&kmap->ref_reloc_sym);
 816			} else
 817				kmap->ref_reloc_sym = NULL;
 818		}
 819
 820		map__put(machine->vmlinux_maps[type]);
 821		machine->vmlinux_maps[type] = NULL;
 822	}
 823}
 824
 825int machines__create_guest_kernel_maps(struct machines *machines)
 826{
 827	int ret = 0;
 828	struct dirent **namelist = NULL;
 829	int i, items = 0;
 830	char path[PATH_MAX];
 831	pid_t pid;
 832	char *endp;
 833
 834	if (symbol_conf.default_guest_vmlinux_name ||
 835	    symbol_conf.default_guest_modules ||
 836	    symbol_conf.default_guest_kallsyms) {
 837		machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
 838	}
 839
 840	if (symbol_conf.guestmount) {
 841		items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
 842		if (items <= 0)
 843			return -ENOENT;
 844		for (i = 0; i < items; i++) {
 845			if (!isdigit(namelist[i]->d_name[0])) {
 846				/* Filter out . and .. */
 847				continue;
 848			}
 849			pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
 850			if ((*endp != '\0') ||
 851			    (endp == namelist[i]->d_name) ||
 852			    (errno == ERANGE)) {
 853				pr_debug("invalid directory (%s). Skipping.\n",
 854					 namelist[i]->d_name);
 855				continue;
 856			}
 857			sprintf(path, "%s/%s/proc/kallsyms",
 858				symbol_conf.guestmount,
 859				namelist[i]->d_name);
 860			ret = access(path, R_OK);
 861			if (ret) {
 862				pr_debug("Can't access file %s\n", path);
 863				goto failure;
 864			}
 865			machines__create_kernel_maps(machines, pid);
 866		}
 867failure:
 868		free(namelist);
 869	}
 870
 871	return ret;
 872}
 873
 874void machines__destroy_kernel_maps(struct machines *machines)
 875{
 876	struct rb_node *next = rb_first(&machines->guests);
 877
 878	machine__destroy_kernel_maps(&machines->host);
 879
 880	while (next) {
 881		struct machine *pos = rb_entry(next, struct machine, rb_node);
 882
 883		next = rb_next(&pos->rb_node);
 884		rb_erase(&pos->rb_node, &machines->guests);
 885		machine__delete(pos);
 886	}
 887}
 888
 889int machines__create_kernel_maps(struct machines *machines, pid_t pid)
 890{
 891	struct machine *machine = machines__findnew(machines, pid);
 892
 893	if (machine == NULL)
 894		return -1;
 895
 896	return machine__create_kernel_maps(machine);
 897}
 898
 899int __machine__load_kallsyms(struct machine *machine, const char *filename,
 900			     enum map_type type, bool no_kcore)
 901{
 902	struct map *map = machine__kernel_map(machine);
 903	int ret = __dso__load_kallsyms(map->dso, filename, map, no_kcore);
 904
 905	if (ret > 0) {
 906		dso__set_loaded(map->dso, type);
 907		/*
 908		 * Since /proc/kallsyms will have multiple sessions for the
 909		 * kernel, with modules between them, fixup the end of all
 910		 * sections.
 911		 */
 912		__map_groups__fixup_end(&machine->kmaps, type);
 913	}
 914
 915	return ret;
 916}
 917
 918int machine__load_kallsyms(struct machine *machine, const char *filename,
 919			   enum map_type type)
 920{
 921	return __machine__load_kallsyms(machine, filename, type, false);
 922}
 923
 924int machine__load_vmlinux_path(struct machine *machine, enum map_type type)
 925{
 926	struct map *map = machine__kernel_map(machine);
 927	int ret = dso__load_vmlinux_path(map->dso, map);
 928
 929	if (ret > 0)
 930		dso__set_loaded(map->dso, type);
 931
 932	return ret;
 933}
 934
 935static void map_groups__fixup_end(struct map_groups *mg)
 936{
 937	int i;
 938	for (i = 0; i < MAP__NR_TYPES; ++i)
 939		__map_groups__fixup_end(mg, i);
 940}
 941
 942static char *get_kernel_version(const char *root_dir)
 943{
 944	char version[PATH_MAX];
 945	FILE *file;
 946	char *name, *tmp;
 947	const char *prefix = "Linux version ";
 948
 949	sprintf(version, "%s/proc/version", root_dir);
 950	file = fopen(version, "r");
 951	if (!file)
 952		return NULL;
 953
 954	version[0] = '\0';
 955	tmp = fgets(version, sizeof(version), file);
 956	fclose(file);
 957
 958	name = strstr(version, prefix);
 959	if (!name)
 960		return NULL;
 961	name += strlen(prefix);
 962	tmp = strchr(name, ' ');
 963	if (tmp)
 964		*tmp = '\0';
 965
 966	return strdup(name);
 967}
 968
 969static bool is_kmod_dso(struct dso *dso)
 970{
 971	return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
 972	       dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
 973}
 974
 975static int map_groups__set_module_path(struct map_groups *mg, const char *path,
 976				       struct kmod_path *m)
 977{
 978	struct map *map;
 979	char *long_name;
 980
 981	map = map_groups__find_by_name(mg, MAP__FUNCTION, m->name);
 982	if (map == NULL)
 983		return 0;
 984
 985	long_name = strdup(path);
 986	if (long_name == NULL)
 987		return -ENOMEM;
 988
 989	dso__set_long_name(map->dso, long_name, true);
 990	dso__kernel_module_get_build_id(map->dso, "");
 991
 992	/*
 993	 * Full name could reveal us kmod compression, so
 994	 * we need to update the symtab_type if needed.
 995	 */
 996	if (m->comp && is_kmod_dso(map->dso))
 997		map->dso->symtab_type++;
 998
 999	return 0;
1000}
1001
1002static int map_groups__set_modules_path_dir(struct map_groups *mg,
1003				const char *dir_name, int depth)
1004{
1005	struct dirent *dent;
1006	DIR *dir = opendir(dir_name);
1007	int ret = 0;
1008
1009	if (!dir) {
1010		pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
1011		return -1;
1012	}
1013
1014	while ((dent = readdir(dir)) != NULL) {
1015		char path[PATH_MAX];
1016		struct stat st;
1017
1018		/*sshfs might return bad dent->d_type, so we have to stat*/
1019		snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name);
1020		if (stat(path, &st))
1021			continue;
1022
1023		if (S_ISDIR(st.st_mode)) {
1024			if (!strcmp(dent->d_name, ".") ||
1025			    !strcmp(dent->d_name, ".."))
1026				continue;
1027
1028			/* Do not follow top-level source and build symlinks */
1029			if (depth == 0) {
1030				if (!strcmp(dent->d_name, "source") ||
1031				    !strcmp(dent->d_name, "build"))
1032					continue;
1033			}
1034
1035			ret = map_groups__set_modules_path_dir(mg, path,
1036							       depth + 1);
1037			if (ret < 0)
1038				goto out;
1039		} else {
1040			struct kmod_path m;
1041
1042			ret = kmod_path__parse_name(&m, dent->d_name);
1043			if (ret)
1044				goto out;
1045
1046			if (m.kmod)
1047				ret = map_groups__set_module_path(mg, path, &m);
1048
1049			free(m.name);
1050
1051			if (ret)
1052				goto out;
1053		}
1054	}
1055
1056out:
1057	closedir(dir);
1058	return ret;
1059}
1060
1061static int machine__set_modules_path(struct machine *machine)
1062{
1063	char *version;
1064	char modules_path[PATH_MAX];
1065
1066	version = get_kernel_version(machine->root_dir);
1067	if (!version)
1068		return -1;
1069
1070	snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1071		 machine->root_dir, version);
1072	free(version);
1073
1074	return map_groups__set_modules_path_dir(&machine->kmaps, modules_path, 0);
1075}
1076int __weak arch__fix_module_text_start(u64 *start __maybe_unused,
1077				const char *name __maybe_unused)
1078{
1079	return 0;
1080}
1081
1082static int machine__create_module(void *arg, const char *name, u64 start)
1083{
1084	struct machine *machine = arg;
1085	struct map *map;
1086
1087	if (arch__fix_module_text_start(&start, name) < 0)
1088		return -1;
1089
1090	map = machine__findnew_module_map(machine, start, name);
1091	if (map == NULL)
1092		return -1;
1093
1094	dso__kernel_module_get_build_id(map->dso, machine->root_dir);
1095
1096	return 0;
1097}
1098
1099static int machine__create_modules(struct machine *machine)
1100{
1101	const char *modules;
1102	char path[PATH_MAX];
1103
1104	if (machine__is_default_guest(machine)) {
1105		modules = symbol_conf.default_guest_modules;
1106	} else {
1107		snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1108		modules = path;
1109	}
1110
1111	if (symbol__restricted_filename(modules, "/proc/modules"))
1112		return -1;
1113
1114	if (modules__parse(modules, machine, machine__create_module))
1115		return -1;
1116
1117	if (!machine__set_modules_path(machine))
1118		return 0;
1119
1120	pr_debug("Problems setting modules path maps, continuing anyway...\n");
1121
1122	return 0;
1123}
1124
1125int machine__create_kernel_maps(struct machine *machine)
1126{
1127	struct dso *kernel = machine__get_kernel(machine);
1128	const char *name;
1129	u64 addr;
1130	int ret;
1131
1132	if (kernel == NULL)
1133		return -1;
1134
1135	ret = __machine__create_kernel_maps(machine, kernel);
1136	dso__put(kernel);
1137	if (ret < 0)
1138		return -1;
1139
1140	if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
1141		if (machine__is_host(machine))
1142			pr_debug("Problems creating module maps, "
1143				 "continuing anyway...\n");
1144		else
1145			pr_debug("Problems creating module maps for guest %d, "
1146				 "continuing anyway...\n", machine->pid);
1147	}
1148
1149	/*
1150	 * Now that we have all the maps created, just set the ->end of them:
1151	 */
1152	map_groups__fixup_end(&machine->kmaps);
1153
1154	addr = machine__get_running_kernel_start(machine, &name);
1155	if (!addr) {
1156	} else if (maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps, name, addr)) {
1157		machine__destroy_kernel_maps(machine);
1158		return -1;
1159	}
1160
1161	return 0;
1162}
1163
1164static void machine__set_kernel_mmap_len(struct machine *machine,
1165					 union perf_event *event)
1166{
1167	int i;
1168
1169	for (i = 0; i < MAP__NR_TYPES; i++) {
1170		machine->vmlinux_maps[i]->start = event->mmap.start;
1171		machine->vmlinux_maps[i]->end   = (event->mmap.start +
1172						   event->mmap.len);
1173		/*
1174		 * Be a bit paranoid here, some perf.data file came with
1175		 * a zero sized synthesized MMAP event for the kernel.
1176		 */
1177		if (machine->vmlinux_maps[i]->end == 0)
1178			machine->vmlinux_maps[i]->end = ~0ULL;
1179	}
1180}
1181
1182static bool machine__uses_kcore(struct machine *machine)
1183{
1184	struct dso *dso;
1185
1186	list_for_each_entry(dso, &machine->dsos.head, node) {
1187		if (dso__is_kcore(dso))
1188			return true;
1189	}
1190
1191	return false;
1192}
1193
1194static int machine__process_kernel_mmap_event(struct machine *machine,
1195					      union perf_event *event)
1196{
1197	struct map *map;
1198	char kmmap_prefix[PATH_MAX];
1199	enum dso_kernel_type kernel_type;
1200	bool is_kernel_mmap;
1201
1202	/* If we have maps from kcore then we do not need or want any others */
1203	if (machine__uses_kcore(machine))
1204		return 0;
1205
1206	machine__mmap_name(machine, kmmap_prefix, sizeof(kmmap_prefix));
1207	if (machine__is_host(machine))
1208		kernel_type = DSO_TYPE_KERNEL;
1209	else
1210		kernel_type = DSO_TYPE_GUEST_KERNEL;
1211
1212	is_kernel_mmap = memcmp(event->mmap.filename,
1213				kmmap_prefix,
1214				strlen(kmmap_prefix) - 1) == 0;
1215	if (event->mmap.filename[0] == '/' ||
1216	    (!is_kernel_mmap && event->mmap.filename[0] == '[')) {
1217		map = machine__findnew_module_map(machine, event->mmap.start,
1218						  event->mmap.filename);
1219		if (map == NULL)
1220			goto out_problem;
1221
1222		map->end = map->start + event->mmap.len;
1223	} else if (is_kernel_mmap) {
1224		const char *symbol_name = (event->mmap.filename +
1225				strlen(kmmap_prefix));
1226		/*
1227		 * Should be there already, from the build-id table in
1228		 * the header.
1229		 */
1230		struct dso *kernel = NULL;
1231		struct dso *dso;
1232
1233		pthread_rwlock_rdlock(&machine->dsos.lock);
1234
1235		list_for_each_entry(dso, &machine->dsos.head, node) {
1236
1237			/*
1238			 * The cpumode passed to is_kernel_module is not the
1239			 * cpumode of *this* event. If we insist on passing
1240			 * correct cpumode to is_kernel_module, we should
1241			 * record the cpumode when we adding this dso to the
1242			 * linked list.
1243			 *
1244			 * However we don't really need passing correct
1245			 * cpumode.  We know the correct cpumode must be kernel
1246			 * mode (if not, we should not link it onto kernel_dsos
1247			 * list).
1248			 *
1249			 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
1250			 * is_kernel_module() treats it as a kernel cpumode.
1251			 */
1252
1253			if (!dso->kernel ||
1254			    is_kernel_module(dso->long_name,
1255					     PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1256				continue;
1257
1258
1259			kernel = dso;
1260			break;
1261		}
1262
1263		pthread_rwlock_unlock(&machine->dsos.lock);
1264
1265		if (kernel == NULL)
1266			kernel = machine__findnew_dso(machine, kmmap_prefix);
1267		if (kernel == NULL)
1268			goto out_problem;
1269
1270		kernel->kernel = kernel_type;
1271		if (__machine__create_kernel_maps(machine, kernel) < 0) {
1272			dso__put(kernel);
1273			goto out_problem;
1274		}
1275
1276		if (strstr(kernel->long_name, "vmlinux"))
1277			dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1278
1279		machine__set_kernel_mmap_len(machine, event);
1280
1281		/*
1282		 * Avoid using a zero address (kptr_restrict) for the ref reloc
1283		 * symbol. Effectively having zero here means that at record
1284		 * time /proc/sys/kernel/kptr_restrict was non zero.
1285		 */
1286		if (event->mmap.pgoff != 0) {
1287			maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps,
1288							 symbol_name,
1289							 event->mmap.pgoff);
1290		}
1291
1292		if (machine__is_default_guest(machine)) {
1293			/*
1294			 * preload dso of guest kernel and modules
1295			 */
1296			dso__load(kernel, machine__kernel_map(machine));
1297		}
1298	}
1299	return 0;
1300out_problem:
1301	return -1;
1302}
1303
1304int machine__process_mmap2_event(struct machine *machine,
1305				 union perf_event *event,
1306				 struct perf_sample *sample)
1307{
1308	struct thread *thread;
1309	struct map *map;
1310	enum map_type type;
1311	int ret = 0;
1312
1313	if (dump_trace)
1314		perf_event__fprintf_mmap2(event, stdout);
1315
1316	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1317	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1318		ret = machine__process_kernel_mmap_event(machine, event);
1319		if (ret < 0)
1320			goto out_problem;
1321		return 0;
1322	}
1323
1324	thread = machine__findnew_thread(machine, event->mmap2.pid,
1325					event->mmap2.tid);
1326	if (thread == NULL)
1327		goto out_problem;
1328
1329	if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA)
1330		type = MAP__VARIABLE;
1331	else
1332		type = MAP__FUNCTION;
1333
1334	map = map__new(machine, event->mmap2.start,
1335			event->mmap2.len, event->mmap2.pgoff,
1336			event->mmap2.pid, event->mmap2.maj,
1337			event->mmap2.min, event->mmap2.ino,
1338			event->mmap2.ino_generation,
1339			event->mmap2.prot,
1340			event->mmap2.flags,
1341			event->mmap2.filename, type, thread);
1342
1343	if (map == NULL)
1344		goto out_problem_map;
1345
1346	ret = thread__insert_map(thread, map);
1347	if (ret)
1348		goto out_problem_insert;
1349
1350	thread__put(thread);
1351	map__put(map);
1352	return 0;
1353
1354out_problem_insert:
1355	map__put(map);
1356out_problem_map:
1357	thread__put(thread);
1358out_problem:
1359	dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
1360	return 0;
1361}
1362
1363int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1364				struct perf_sample *sample)
1365{
1366	struct thread *thread;
1367	struct map *map;
1368	enum map_type type;
1369	int ret = 0;
1370
1371	if (dump_trace)
1372		perf_event__fprintf_mmap(event, stdout);
1373
1374	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1375	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1376		ret = machine__process_kernel_mmap_event(machine, event);
1377		if (ret < 0)
1378			goto out_problem;
1379		return 0;
1380	}
1381
1382	thread = machine__findnew_thread(machine, event->mmap.pid,
1383					 event->mmap.tid);
1384	if (thread == NULL)
1385		goto out_problem;
1386
1387	if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA)
1388		type = MAP__VARIABLE;
1389	else
1390		type = MAP__FUNCTION;
1391
1392	map = map__new(machine, event->mmap.start,
1393			event->mmap.len, event->mmap.pgoff,
1394			event->mmap.pid, 0, 0, 0, 0, 0, 0,
1395			event->mmap.filename,
1396			type, thread);
1397
1398	if (map == NULL)
1399		goto out_problem_map;
1400
1401	ret = thread__insert_map(thread, map);
1402	if (ret)
1403		goto out_problem_insert;
1404
1405	thread__put(thread);
1406	map__put(map);
1407	return 0;
1408
1409out_problem_insert:
1410	map__put(map);
1411out_problem_map:
1412	thread__put(thread);
1413out_problem:
1414	dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
1415	return 0;
1416}
1417
1418static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock)
1419{
1420	if (machine->last_match == th)
1421		machine->last_match = NULL;
1422
1423	BUG_ON(atomic_read(&th->refcnt) == 0);
1424	if (lock)
1425		pthread_rwlock_wrlock(&machine->threads_lock);
1426	rb_erase_init(&th->rb_node, &machine->threads);
1427	RB_CLEAR_NODE(&th->rb_node);
1428	--machine->nr_threads;
1429	/*
1430	 * Move it first to the dead_threads list, then drop the reference,
1431	 * if this is the last reference, then the thread__delete destructor
1432	 * will be called and we will remove it from the dead_threads list.
1433	 */
1434	list_add_tail(&th->node, &machine->dead_threads);
1435	if (lock)
1436		pthread_rwlock_unlock(&machine->threads_lock);
1437	thread__put(th);
1438}
1439
1440void machine__remove_thread(struct machine *machine, struct thread *th)
1441{
1442	return __machine__remove_thread(machine, th, true);
1443}
1444
1445int machine__process_fork_event(struct machine *machine, union perf_event *event,
1446				struct perf_sample *sample)
1447{
1448	struct thread *thread = machine__find_thread(machine,
1449						     event->fork.pid,
1450						     event->fork.tid);
1451	struct thread *parent = machine__findnew_thread(machine,
1452							event->fork.ppid,
1453							event->fork.ptid);
1454	int err = 0;
1455
1456	if (dump_trace)
1457		perf_event__fprintf_task(event, stdout);
1458
1459	/*
1460	 * There may be an existing thread that is not actually the parent,
1461	 * either because we are processing events out of order, or because the
1462	 * (fork) event that would have removed the thread was lost. Assume the
1463	 * latter case and continue on as best we can.
1464	 */
1465	if (parent->pid_ != (pid_t)event->fork.ppid) {
1466		dump_printf("removing erroneous parent thread %d/%d\n",
1467			    parent->pid_, parent->tid);
1468		machine__remove_thread(machine, parent);
1469		thread__put(parent);
1470		parent = machine__findnew_thread(machine, event->fork.ppid,
1471						 event->fork.ptid);
1472	}
1473
1474	/* if a thread currently exists for the thread id remove it */
1475	if (thread != NULL) {
1476		machine__remove_thread(machine, thread);
1477		thread__put(thread);
1478	}
1479
1480	thread = machine__findnew_thread(machine, event->fork.pid,
1481					 event->fork.tid);
1482
1483	if (thread == NULL || parent == NULL ||
1484	    thread__fork(thread, parent, sample->time) < 0) {
1485		dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1486		err = -1;
1487	}
1488	thread__put(thread);
1489	thread__put(parent);
1490
1491	return err;
1492}
1493
1494int machine__process_exit_event(struct machine *machine, union perf_event *event,
1495				struct perf_sample *sample __maybe_unused)
1496{
1497	struct thread *thread = machine__find_thread(machine,
1498						     event->fork.pid,
1499						     event->fork.tid);
1500
1501	if (dump_trace)
1502		perf_event__fprintf_task(event, stdout);
1503
1504	if (thread != NULL) {
1505		thread__exited(thread);
1506		thread__put(thread);
1507	}
1508
1509	return 0;
1510}
1511
1512int machine__process_event(struct machine *machine, union perf_event *event,
1513			   struct perf_sample *sample)
1514{
1515	int ret;
1516
1517	switch (event->header.type) {
1518	case PERF_RECORD_COMM:
1519		ret = machine__process_comm_event(machine, event, sample); break;
1520	case PERF_RECORD_MMAP:
1521		ret = machine__process_mmap_event(machine, event, sample); break;
1522	case PERF_RECORD_MMAP2:
1523		ret = machine__process_mmap2_event(machine, event, sample); break;
1524	case PERF_RECORD_FORK:
1525		ret = machine__process_fork_event(machine, event, sample); break;
1526	case PERF_RECORD_EXIT:
1527		ret = machine__process_exit_event(machine, event, sample); break;
1528	case PERF_RECORD_LOST:
1529		ret = machine__process_lost_event(machine, event, sample); break;
1530	case PERF_RECORD_AUX:
1531		ret = machine__process_aux_event(machine, event); break;
1532	case PERF_RECORD_ITRACE_START:
1533		ret = machine__process_itrace_start_event(machine, event); break;
1534	case PERF_RECORD_LOST_SAMPLES:
1535		ret = machine__process_lost_samples_event(machine, event, sample); break;
1536	case PERF_RECORD_SWITCH:
1537	case PERF_RECORD_SWITCH_CPU_WIDE:
1538		ret = machine__process_switch_event(machine, event); break;
1539	default:
1540		ret = -1;
1541		break;
1542	}
1543
1544	return ret;
1545}
1546
1547static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
1548{
1549	if (sym->name && !regexec(regex, sym->name, 0, NULL, 0))
1550		return 1;
1551	return 0;
1552}
1553
1554static void ip__resolve_ams(struct thread *thread,
1555			    struct addr_map_symbol *ams,
1556			    u64 ip)
1557{
1558	struct addr_location al;
1559
1560	memset(&al, 0, sizeof(al));
1561	/*
1562	 * We cannot use the header.misc hint to determine whether a
1563	 * branch stack address is user, kernel, guest, hypervisor.
1564	 * Branches may straddle the kernel/user/hypervisor boundaries.
1565	 * Thus, we have to try consecutively until we find a match
1566	 * or else, the symbol is unknown
1567	 */
1568	thread__find_cpumode_addr_location(thread, MAP__FUNCTION, ip, &al);
1569
1570	ams->addr = ip;
1571	ams->al_addr = al.addr;
1572	ams->sym = al.sym;
1573	ams->map = al.map;
1574}
1575
1576static void ip__resolve_data(struct thread *thread,
1577			     u8 m, struct addr_map_symbol *ams, u64 addr)
1578{
1579	struct addr_location al;
1580
1581	memset(&al, 0, sizeof(al));
1582
1583	thread__find_addr_location(thread, m, MAP__VARIABLE, addr, &al);
1584	if (al.map == NULL) {
1585		/*
1586		 * some shared data regions have execute bit set which puts
1587		 * their mapping in the MAP__FUNCTION type array.
1588		 * Check there as a fallback option before dropping the sample.
1589		 */
1590		thread__find_addr_location(thread, m, MAP__FUNCTION, addr, &al);
1591	}
1592
1593	ams->addr = addr;
1594	ams->al_addr = al.addr;
1595	ams->sym = al.sym;
1596	ams->map = al.map;
1597}
1598
1599struct mem_info *sample__resolve_mem(struct perf_sample *sample,
1600				     struct addr_location *al)
1601{
1602	struct mem_info *mi = zalloc(sizeof(*mi));
1603
1604	if (!mi)
1605		return NULL;
1606
1607	ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
1608	ip__resolve_data(al->thread, al->cpumode, &mi->daddr, sample->addr);
1609	mi->data_src.val = sample->data_src;
1610
1611	return mi;
1612}
1613
1614static int add_callchain_ip(struct thread *thread,
1615			    struct callchain_cursor *cursor,
1616			    struct symbol **parent,
1617			    struct addr_location *root_al,
1618			    u8 *cpumode,
1619			    u64 ip,
1620			    bool branch,
1621			    struct branch_flags *flags,
1622			    int nr_loop_iter,
1623			    int samples)
1624{
1625	struct addr_location al;
1626
1627	al.filtered = 0;
1628	al.sym = NULL;
1629	if (!cpumode) {
1630		thread__find_cpumode_addr_location(thread, MAP__FUNCTION,
1631						   ip, &al);
1632	} else {
1633		if (ip >= PERF_CONTEXT_MAX) {
1634			switch (ip) {
1635			case PERF_CONTEXT_HV:
1636				*cpumode = PERF_RECORD_MISC_HYPERVISOR;
1637				break;
1638			case PERF_CONTEXT_KERNEL:
1639				*cpumode = PERF_RECORD_MISC_KERNEL;
1640				break;
1641			case PERF_CONTEXT_USER:
1642				*cpumode = PERF_RECORD_MISC_USER;
1643				break;
1644			default:
1645				pr_debug("invalid callchain context: "
1646					 "%"PRId64"\n", (s64) ip);
1647				/*
1648				 * It seems the callchain is corrupted.
1649				 * Discard all.
1650				 */
1651				callchain_cursor_reset(cursor);
1652				return 1;
1653			}
1654			return 0;
1655		}
1656		thread__find_addr_location(thread, *cpumode, MAP__FUNCTION,
1657					   ip, &al);
1658	}
1659
1660	if (al.sym != NULL) {
1661		if (perf_hpp_list.parent && !*parent &&
1662		    symbol__match_regex(al.sym, &parent_regex))
1663			*parent = al.sym;
1664		else if (have_ignore_callees && root_al &&
1665		  symbol__match_regex(al.sym, &ignore_callees_regex)) {
1666			/* Treat this symbol as the root,
1667			   forgetting its callees. */
1668			*root_al = al;
1669			callchain_cursor_reset(cursor);
1670		}
1671	}
1672
1673	if (symbol_conf.hide_unresolved && al.sym == NULL)
1674		return 0;
1675	return callchain_cursor_append(cursor, al.addr, al.map, al.sym,
1676				       branch, flags, nr_loop_iter, samples);
1677}
1678
1679struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
1680					   struct addr_location *al)
1681{
1682	unsigned int i;
1683	const struct branch_stack *bs = sample->branch_stack;
1684	struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
1685
1686	if (!bi)
1687		return NULL;
1688
1689	for (i = 0; i < bs->nr; i++) {
1690		ip__resolve_ams(al->thread, &bi[i].to, bs->entries[i].to);
1691		ip__resolve_ams(al->thread, &bi[i].from, bs->entries[i].from);
1692		bi[i].flags = bs->entries[i].flags;
1693	}
1694	return bi;
1695}
1696
1697#define CHASHSZ 127
1698#define CHASHBITS 7
1699#define NO_ENTRY 0xff
1700
1701#define PERF_MAX_BRANCH_DEPTH 127
1702
1703/* Remove loops. */
1704static int remove_loops(struct branch_entry *l, int nr)
1705{
1706	int i, j, off;
1707	unsigned char chash[CHASHSZ];
1708
1709	memset(chash, NO_ENTRY, sizeof(chash));
1710
1711	BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);
1712
1713	for (i = 0; i < nr; i++) {
1714		int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;
1715
1716		/* no collision handling for now */
1717		if (chash[h] == NO_ENTRY) {
1718			chash[h] = i;
1719		} else if (l[chash[h]].from == l[i].from) {
1720			bool is_loop = true;
1721			/* check if it is a real loop */
1722			off = 0;
1723			for (j = chash[h]; j < i && i + off < nr; j++, off++)
1724				if (l[j].from != l[i + off].from) {
1725					is_loop = false;
1726					break;
1727				}
1728			if (is_loop) {
1729				memmove(l + i, l + i + off,
1730					(nr - (i + off)) * sizeof(*l));
1731				nr -= off;
1732			}
1733		}
1734	}
1735	return nr;
1736}
1737
1738/*
1739 * Recolve LBR callstack chain sample
1740 * Return:
1741 * 1 on success get LBR callchain information
1742 * 0 no available LBR callchain information, should try fp
1743 * negative error code on other errors.
1744 */
1745static int resolve_lbr_callchain_sample(struct thread *thread,
1746					struct callchain_cursor *cursor,
1747					struct perf_sample *sample,
1748					struct symbol **parent,
1749					struct addr_location *root_al,
1750					int max_stack)
1751{
1752	struct ip_callchain *chain = sample->callchain;
1753	int chain_nr = min(max_stack, (int)chain->nr), i;
1754	u8 cpumode = PERF_RECORD_MISC_USER;
 
1755	u64 ip;
1756
1757	for (i = 0; i < chain_nr; i++) {
1758		if (chain->ips[i] == PERF_CONTEXT_USER)
1759			break;
1760	}
1761
1762	/* LBR only affects the user callchain */
1763	if (i != chain_nr) {
1764		struct branch_stack *lbr_stack = sample->branch_stack;
1765		int lbr_nr = lbr_stack->nr, j, k;
1766		bool branch;
1767		struct branch_flags *flags;
1768		/*
1769		 * LBR callstack can only get user call chain.
1770		 * The mix_chain_nr is kernel call chain
1771		 * number plus LBR user call chain number.
1772		 * i is kernel call chain number,
1773		 * 1 is PERF_CONTEXT_USER,
1774		 * lbr_nr + 1 is the user call chain number.
1775		 * For details, please refer to the comments
1776		 * in callchain__printf
1777		 */
1778		int mix_chain_nr = i + 1 + lbr_nr + 1;
1779
 
 
 
 
 
1780		for (j = 0; j < mix_chain_nr; j++) {
1781			int err;
1782			branch = false;
1783			flags = NULL;
1784
1785			if (callchain_param.order == ORDER_CALLEE) {
1786				if (j < i + 1)
1787					ip = chain->ips[j];
1788				else if (j > i + 1) {
1789					k = j - i - 2;
1790					ip = lbr_stack->entries[k].from;
1791					branch = true;
1792					flags = &lbr_stack->entries[k].flags;
1793				} else {
1794					ip = lbr_stack->entries[0].to;
1795					branch = true;
1796					flags = &lbr_stack->entries[0].flags;
1797				}
1798			} else {
1799				if (j < lbr_nr) {
1800					k = lbr_nr - j - 1;
1801					ip = lbr_stack->entries[k].from;
1802					branch = true;
1803					flags = &lbr_stack->entries[k].flags;
1804				}
1805				else if (j > lbr_nr)
1806					ip = chain->ips[i + 1 - (j - lbr_nr)];
1807				else {
1808					ip = lbr_stack->entries[0].to;
1809					branch = true;
1810					flags = &lbr_stack->entries[0].flags;
1811				}
1812			}
1813
1814			err = add_callchain_ip(thread, cursor, parent,
1815					       root_al, &cpumode, ip,
1816					       branch, flags, 0, 0);
1817			if (err)
1818				return (err < 0) ? err : 0;
1819		}
1820		return 1;
1821	}
1822
1823	return 0;
1824}
1825
1826static int thread__resolve_callchain_sample(struct thread *thread,
1827					    struct callchain_cursor *cursor,
1828					    struct perf_evsel *evsel,
1829					    struct perf_sample *sample,
1830					    struct symbol **parent,
1831					    struct addr_location *root_al,
1832					    int max_stack)
1833{
1834	struct branch_stack *branch = sample->branch_stack;
1835	struct ip_callchain *chain = sample->callchain;
1836	int chain_nr = chain->nr;
1837	u8 cpumode = PERF_RECORD_MISC_USER;
1838	int i, j, err, nr_entries;
1839	int skip_idx = -1;
1840	int first_call = 0;
1841	int nr_loop_iter;
1842
1843	if (perf_evsel__has_branch_callstack(evsel)) {
1844		err = resolve_lbr_callchain_sample(thread, cursor, sample, parent,
 
 
1845						   root_al, max_stack);
1846		if (err)
1847			return (err < 0) ? err : 0;
1848	}
1849
1850	/*
1851	 * Based on DWARF debug information, some architectures skip
1852	 * a callchain entry saved by the kernel.
1853	 */
1854	skip_idx = arch_skip_callchain_idx(thread, chain);
 
1855
1856	/*
1857	 * Add branches to call stack for easier browsing. This gives
1858	 * more context for a sample than just the callers.
1859	 *
1860	 * This uses individual histograms of paths compared to the
1861	 * aggregated histograms the normal LBR mode uses.
1862	 *
1863	 * Limitations for now:
1864	 * - No extra filters
1865	 * - No annotations (should annotate somehow)
1866	 */
1867
1868	if (branch && callchain_param.branch_callstack) {
1869		int nr = min(max_stack, (int)branch->nr);
1870		struct branch_entry be[nr];
1871
1872		if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
1873			pr_warning("corrupted branch chain. skipping...\n");
1874			goto check_calls;
1875		}
1876
1877		for (i = 0; i < nr; i++) {
1878			if (callchain_param.order == ORDER_CALLEE) {
1879				be[i] = branch->entries[i];
1880				/*
1881				 * Check for overlap into the callchain.
1882				 * The return address is one off compared to
1883				 * the branch entry. To adjust for this
1884				 * assume the calling instruction is not longer
1885				 * than 8 bytes.
1886				 */
1887				if (i == skip_idx ||
1888				    chain->ips[first_call] >= PERF_CONTEXT_MAX)
1889					first_call++;
1890				else if (be[i].from < chain->ips[first_call] &&
1891				    be[i].from >= chain->ips[first_call] - 8)
1892					first_call++;
1893			} else
1894				be[i] = branch->entries[branch->nr - i - 1];
1895		}
1896
1897		nr_loop_iter = nr;
1898		nr = remove_loops(be, nr);
1899
1900		/*
1901		 * Get the number of iterations.
1902		 * It's only approximation, but good enough in practice.
1903		 */
1904		if (nr_loop_iter > nr)
1905			nr_loop_iter = nr_loop_iter - nr + 1;
1906		else
1907			nr_loop_iter = 0;
1908
1909		for (i = 0; i < nr; i++) {
1910			if (i == nr - 1)
1911				err = add_callchain_ip(thread, cursor, parent,
1912						       root_al,
1913						       NULL, be[i].to,
1914						       true, &be[i].flags,
1915						       nr_loop_iter, 1);
1916			else
1917				err = add_callchain_ip(thread, cursor, parent,
1918						       root_al,
1919						       NULL, be[i].to,
1920						       true, &be[i].flags,
1921						       0, 0);
1922
1923			if (!err)
1924				err = add_callchain_ip(thread, cursor, parent, root_al,
1925						       NULL, be[i].from,
1926						       true, &be[i].flags,
1927						       0, 0);
1928			if (err == -EINVAL)
1929				break;
1930			if (err)
1931				return err;
1932		}
1933		chain_nr -= nr;
1934	}
1935
1936check_calls:
1937	for (i = first_call, nr_entries = 0;
1938	     i < chain_nr && nr_entries < max_stack; i++) {
 
 
 
 
1939		u64 ip;
1940
1941		if (callchain_param.order == ORDER_CALLEE)
1942			j = i;
1943		else
1944			j = chain->nr - i - 1;
1945
1946#ifdef HAVE_SKIP_CALLCHAIN_IDX
1947		if (j == skip_idx)
1948			continue;
1949#endif
1950		ip = chain->ips[j];
1951
1952		if (ip < PERF_CONTEXT_MAX)
1953                       ++nr_entries;
1954
1955		err = add_callchain_ip(thread, cursor, parent,
1956				       root_al, &cpumode, ip,
1957				       false, NULL, 0, 0);
1958
1959		if (err)
1960			return (err < 0) ? err : 0;
1961	}
1962
1963	return 0;
1964}
1965
1966static int unwind_entry(struct unwind_entry *entry, void *arg)
1967{
1968	struct callchain_cursor *cursor = arg;
1969
1970	if (symbol_conf.hide_unresolved && entry->sym == NULL)
1971		return 0;
1972	return callchain_cursor_append(cursor, entry->ip,
1973				       entry->map, entry->sym,
1974				       false, NULL, 0, 0);
1975}
1976
1977static int thread__resolve_callchain_unwind(struct thread *thread,
1978					    struct callchain_cursor *cursor,
1979					    struct perf_evsel *evsel,
1980					    struct perf_sample *sample,
1981					    int max_stack)
 
1982{
 
 
 
 
 
 
1983	/* Can we do dwarf post unwind? */
1984	if (!((evsel->attr.sample_type & PERF_SAMPLE_REGS_USER) &&
1985	      (evsel->attr.sample_type & PERF_SAMPLE_STACK_USER)))
1986		return 0;
1987
1988	/* Bail out if nothing was captured. */
1989	if ((!sample->user_regs.regs) ||
1990	    (!sample->user_stack.size))
1991		return 0;
1992
1993	return unwind__get_entries(unwind_entry, cursor,
1994				   thread, sample, max_stack);
1995}
1996
1997int thread__resolve_callchain(struct thread *thread,
1998			      struct callchain_cursor *cursor,
1999			      struct perf_evsel *evsel,
2000			      struct perf_sample *sample,
2001			      struct symbol **parent,
2002			      struct addr_location *root_al,
2003			      int max_stack)
2004{
2005	int ret = 0;
2006
2007	callchain_cursor_reset(&callchain_cursor);
2008
2009	if (callchain_param.order == ORDER_CALLEE) {
2010		ret = thread__resolve_callchain_sample(thread, cursor,
2011						       evsel, sample,
2012						       parent, root_al,
2013						       max_stack);
2014		if (ret)
2015			return ret;
2016		ret = thread__resolve_callchain_unwind(thread, cursor,
2017						       evsel, sample,
2018						       max_stack);
2019	} else {
2020		ret = thread__resolve_callchain_unwind(thread, cursor,
2021						       evsel, sample,
2022						       max_stack);
2023		if (ret)
2024			return ret;
2025		ret = thread__resolve_callchain_sample(thread, cursor,
2026						       evsel, sample,
2027						       parent, root_al,
2028						       max_stack);
2029	}
2030
2031	return ret;
2032}
2033
2034int machine__for_each_thread(struct machine *machine,
2035			     int (*fn)(struct thread *thread, void *p),
2036			     void *priv)
2037{
2038	struct rb_node *nd;
2039	struct thread *thread;
2040	int rc = 0;
2041
2042	for (nd = rb_first(&machine->threads); nd; nd = rb_next(nd)) {
2043		thread = rb_entry(nd, struct thread, rb_node);
2044		rc = fn(thread, priv);
2045		if (rc != 0)
2046			return rc;
2047	}
2048
2049	list_for_each_entry(thread, &machine->dead_threads, node) {
2050		rc = fn(thread, priv);
2051		if (rc != 0)
2052			return rc;
2053	}
2054	return rc;
2055}
2056
2057int machines__for_each_thread(struct machines *machines,
2058			      int (*fn)(struct thread *thread, void *p),
2059			      void *priv)
2060{
2061	struct rb_node *nd;
2062	int rc = 0;
2063
2064	rc = machine__for_each_thread(&machines->host, fn, priv);
2065	if (rc != 0)
2066		return rc;
2067
2068	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
2069		struct machine *machine = rb_entry(nd, struct machine, rb_node);
2070
2071		rc = machine__for_each_thread(machine, fn, priv);
2072		if (rc != 0)
2073			return rc;
2074	}
2075	return rc;
2076}
2077
2078int __machine__synthesize_threads(struct machine *machine, struct perf_tool *tool,
2079				  struct target *target, struct thread_map *threads,
2080				  perf_event__handler_t process, bool data_mmap,
2081				  unsigned int proc_map_timeout)
2082{
2083	if (target__has_task(target))
2084		return perf_event__synthesize_thread_map(tool, threads, process, machine, data_mmap, proc_map_timeout);
2085	else if (target__has_cpu(target))
2086		return perf_event__synthesize_threads(tool, process, machine, data_mmap, proc_map_timeout);
2087	/* command specified */
2088	return 0;
2089}
2090
2091pid_t machine__get_current_tid(struct machine *machine, int cpu)
2092{
2093	if (cpu < 0 || cpu >= MAX_NR_CPUS || !machine->current_tid)
2094		return -1;
2095
2096	return machine->current_tid[cpu];
2097}
2098
2099int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
2100			     pid_t tid)
2101{
2102	struct thread *thread;
2103
2104	if (cpu < 0)
2105		return -EINVAL;
2106
2107	if (!machine->current_tid) {
2108		int i;
2109
2110		machine->current_tid = calloc(MAX_NR_CPUS, sizeof(pid_t));
2111		if (!machine->current_tid)
2112			return -ENOMEM;
2113		for (i = 0; i < MAX_NR_CPUS; i++)
2114			machine->current_tid[i] = -1;
2115	}
2116
2117	if (cpu >= MAX_NR_CPUS) {
2118		pr_err("Requested CPU %d too large. ", cpu);
2119		pr_err("Consider raising MAX_NR_CPUS\n");
2120		return -EINVAL;
2121	}
2122
2123	machine->current_tid[cpu] = tid;
2124
2125	thread = machine__findnew_thread(machine, pid, tid);
2126	if (!thread)
2127		return -ENOMEM;
2128
2129	thread->cpu = cpu;
2130	thread__put(thread);
2131
2132	return 0;
2133}
2134
2135int machine__get_kernel_start(struct machine *machine)
2136{
2137	struct map *map = machine__kernel_map(machine);
2138	int err = 0;
2139
2140	/*
2141	 * The only addresses above 2^63 are kernel addresses of a 64-bit
2142	 * kernel.  Note that addresses are unsigned so that on a 32-bit system
2143	 * all addresses including kernel addresses are less than 2^32.  In
2144	 * that case (32-bit system), if the kernel mapping is unknown, all
2145	 * addresses will be assumed to be in user space - see
2146	 * machine__kernel_ip().
2147	 */
2148	machine->kernel_start = 1ULL << 63;
2149	if (map) {
2150		err = map__load(map);
2151		if (map->start)
2152			machine->kernel_start = map->start;
2153	}
2154	return err;
2155}
2156
2157struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
2158{
2159	return dsos__findnew(&machine->dsos, filename);
2160}
2161
2162char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
2163{
2164	struct machine *machine = vmachine;
2165	struct map *map;
2166	struct symbol *sym = map_groups__find_symbol(&machine->kmaps, MAP__FUNCTION, *addrp, &map);
2167
2168	if (sym == NULL)
2169		return NULL;
2170
2171	*modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL;
2172	*addrp = map->unmap_ip(map, sym->start);
2173	return sym->name;
2174}