Linux Audio

Check our new training course

Loading...
v4.6
 
  1/*
  2 *  Driver for A2 audio system used in SGI machines
  3 *  Copyright (c) 2008 Thomas Bogendoerfer <tsbogend@alpha.fanken.de>
  4 *
  5 *  Based on OSS code from Ladislav Michl <ladis@linux-mips.org>, which
  6 *  was based on code from Ulf Carlsson
  7 *
  8 *  This program is free software; you can redistribute it and/or modify
  9 *  it under the terms of the GNU General Public License version 2 as
 10 *  published by the Free Software Foundation.
 11 *
 12 *  This program is distributed in the hope that it will be useful,
 13 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 14 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 15 *  GNU General Public License for more details.
 16 *
 17 *  You should have received a copy of the GNU General Public License
 18 *  along with this program; if not, write to the Free Software
 19 *  Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 20 *
 21 */
 22#include <linux/kernel.h>
 23#include <linux/init.h>
 24#include <linux/interrupt.h>
 25#include <linux/dma-mapping.h>
 26#include <linux/platform_device.h>
 27#include <linux/io.h>
 28#include <linux/slab.h>
 29#include <linux/module.h>
 30
 31#include <asm/sgi/hpc3.h>
 32#include <asm/sgi/ip22.h>
 33
 34#include <sound/core.h>
 35#include <sound/control.h>
 36#include <sound/pcm.h>
 37#include <sound/pcm-indirect.h>
 38#include <sound/initval.h>
 39
 40#include "hal2.h"
 41
 42static int index = SNDRV_DEFAULT_IDX1;  /* Index 0-MAX */
 43static char *id = SNDRV_DEFAULT_STR1;   /* ID for this card */
 44
 45module_param(index, int, 0444);
 46MODULE_PARM_DESC(index, "Index value for SGI HAL2 soundcard.");
 47module_param(id, charp, 0444);
 48MODULE_PARM_DESC(id, "ID string for SGI HAL2 soundcard.");
 49MODULE_DESCRIPTION("ALSA driver for SGI HAL2 audio");
 50MODULE_AUTHOR("Thomas Bogendoerfer");
 51MODULE_LICENSE("GPL");
 52
 53
 54#define H2_BLOCK_SIZE	1024
 55#define H2_BUF_SIZE	16384
 56
 57struct hal2_pbus {
 58	struct hpc3_pbus_dmacregs *pbus;
 59	int pbusnr;
 60	unsigned int ctrl;		/* Current state of pbus->pbdma_ctrl */
 61};
 62
 63struct hal2_desc {
 64	struct hpc_dma_desc desc;
 65	u32 pad;			/* padding */
 66};
 67
 68struct hal2_codec {
 69	struct snd_pcm_indirect pcm_indirect;
 70	struct snd_pcm_substream *substream;
 71
 72	unsigned char *buffer;
 73	dma_addr_t buffer_dma;
 74	struct hal2_desc *desc;
 75	dma_addr_t desc_dma;
 76	int desc_count;
 77	struct hal2_pbus pbus;
 78	int voices;			/* mono/stereo */
 79	unsigned int sample_rate;
 80	unsigned int master;		/* Master frequency */
 81	unsigned short mod;		/* MOD value */
 82	unsigned short inc;		/* INC value */
 83};
 84
 85#define H2_MIX_OUTPUT_ATT	0
 86#define H2_MIX_INPUT_GAIN	1
 87
 88struct snd_hal2 {
 89	struct snd_card *card;
 90
 91	struct hal2_ctl_regs *ctl_regs;	/* HAL2 ctl registers */
 92	struct hal2_aes_regs *aes_regs;	/* HAL2 aes registers */
 93	struct hal2_vol_regs *vol_regs;	/* HAL2 vol registers */
 94	struct hal2_syn_regs *syn_regs;	/* HAL2 syn registers */
 95
 96	struct hal2_codec dac;
 97	struct hal2_codec adc;
 98};
 99
100#define H2_INDIRECT_WAIT(regs)	while (hal2_read(&regs->isr) & H2_ISR_TSTATUS);
101
102#define H2_READ_ADDR(addr)	(addr | (1<<7))
103#define H2_WRITE_ADDR(addr)	(addr)
104
105static inline u32 hal2_read(u32 *reg)
106{
107	return __raw_readl(reg);
108}
109
110static inline void hal2_write(u32 val, u32 *reg)
111{
112	__raw_writel(val, reg);
113}
114
115
116static u32 hal2_i_read32(struct snd_hal2 *hal2, u16 addr)
117{
118	u32 ret;
119	struct hal2_ctl_regs *regs = hal2->ctl_regs;
120
121	hal2_write(H2_READ_ADDR(addr), &regs->iar);
122	H2_INDIRECT_WAIT(regs);
123	ret = hal2_read(&regs->idr0) & 0xffff;
124	hal2_write(H2_READ_ADDR(addr) | 0x1, &regs->iar);
125	H2_INDIRECT_WAIT(regs);
126	ret |= (hal2_read(&regs->idr0) & 0xffff) << 16;
127	return ret;
128}
129
130static void hal2_i_write16(struct snd_hal2 *hal2, u16 addr, u16 val)
131{
132	struct hal2_ctl_regs *regs = hal2->ctl_regs;
133
134	hal2_write(val, &regs->idr0);
135	hal2_write(0, &regs->idr1);
136	hal2_write(0, &regs->idr2);
137	hal2_write(0, &regs->idr3);
138	hal2_write(H2_WRITE_ADDR(addr), &regs->iar);
139	H2_INDIRECT_WAIT(regs);
140}
141
142static void hal2_i_write32(struct snd_hal2 *hal2, u16 addr, u32 val)
143{
144	struct hal2_ctl_regs *regs = hal2->ctl_regs;
145
146	hal2_write(val & 0xffff, &regs->idr0);
147	hal2_write(val >> 16, &regs->idr1);
148	hal2_write(0, &regs->idr2);
149	hal2_write(0, &regs->idr3);
150	hal2_write(H2_WRITE_ADDR(addr), &regs->iar);
151	H2_INDIRECT_WAIT(regs);
152}
153
154static void hal2_i_setbit16(struct snd_hal2 *hal2, u16 addr, u16 bit)
155{
156	struct hal2_ctl_regs *regs = hal2->ctl_regs;
157
158	hal2_write(H2_READ_ADDR(addr), &regs->iar);
159	H2_INDIRECT_WAIT(regs);
160	hal2_write((hal2_read(&regs->idr0) & 0xffff) | bit, &regs->idr0);
161	hal2_write(0, &regs->idr1);
162	hal2_write(0, &regs->idr2);
163	hal2_write(0, &regs->idr3);
164	hal2_write(H2_WRITE_ADDR(addr), &regs->iar);
165	H2_INDIRECT_WAIT(regs);
166}
167
168static void hal2_i_clearbit16(struct snd_hal2 *hal2, u16 addr, u16 bit)
169{
170	struct hal2_ctl_regs *regs = hal2->ctl_regs;
171
172	hal2_write(H2_READ_ADDR(addr), &regs->iar);
173	H2_INDIRECT_WAIT(regs);
174	hal2_write((hal2_read(&regs->idr0) & 0xffff) & ~bit, &regs->idr0);
175	hal2_write(0, &regs->idr1);
176	hal2_write(0, &regs->idr2);
177	hal2_write(0, &regs->idr3);
178	hal2_write(H2_WRITE_ADDR(addr), &regs->iar);
179	H2_INDIRECT_WAIT(regs);
180}
181
182static int hal2_gain_info(struct snd_kcontrol *kcontrol,
183			       struct snd_ctl_elem_info *uinfo)
184{
185	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
186	uinfo->count = 2;
187	uinfo->value.integer.min = 0;
188	switch ((int)kcontrol->private_value) {
189	case H2_MIX_OUTPUT_ATT:
190		uinfo->value.integer.max = 31;
191		break;
192	case H2_MIX_INPUT_GAIN:
193		uinfo->value.integer.max = 15;
194		break;
195	}
196	return 0;
197}
198
199static int hal2_gain_get(struct snd_kcontrol *kcontrol,
200			       struct snd_ctl_elem_value *ucontrol)
201{
202	struct snd_hal2 *hal2 = snd_kcontrol_chip(kcontrol);
203	u32 tmp;
204	int l, r;
205
206	switch ((int)kcontrol->private_value) {
207	case H2_MIX_OUTPUT_ATT:
208		tmp = hal2_i_read32(hal2, H2I_DAC_C2);
209		if (tmp & H2I_C2_MUTE) {
210			l = 0;
211			r = 0;
212		} else {
213			l = 31 - ((tmp >> H2I_C2_L_ATT_SHIFT) & 31);
214			r = 31 - ((tmp >> H2I_C2_R_ATT_SHIFT) & 31);
215		}
216		break;
217	case H2_MIX_INPUT_GAIN:
218		tmp = hal2_i_read32(hal2, H2I_ADC_C2);
219		l = (tmp >> H2I_C2_L_GAIN_SHIFT) & 15;
220		r = (tmp >> H2I_C2_R_GAIN_SHIFT) & 15;
221		break;
 
 
222	}
223	ucontrol->value.integer.value[0] = l;
224	ucontrol->value.integer.value[1] = r;
225
226	return 0;
227}
228
229static int hal2_gain_put(struct snd_kcontrol *kcontrol,
230			 struct snd_ctl_elem_value *ucontrol)
231{
232	struct snd_hal2 *hal2 = snd_kcontrol_chip(kcontrol);
233	u32 old, new;
234	int l, r;
235
236	l = ucontrol->value.integer.value[0];
237	r = ucontrol->value.integer.value[1];
238
239	switch ((int)kcontrol->private_value) {
240	case H2_MIX_OUTPUT_ATT:
241		old = hal2_i_read32(hal2, H2I_DAC_C2);
242		new = old & ~(H2I_C2_L_ATT_M | H2I_C2_R_ATT_M | H2I_C2_MUTE);
243		if (l | r) {
244			l = 31 - l;
245			r = 31 - r;
246			new |= (l << H2I_C2_L_ATT_SHIFT);
247			new |= (r << H2I_C2_R_ATT_SHIFT);
248		} else
249			new |= H2I_C2_L_ATT_M | H2I_C2_R_ATT_M | H2I_C2_MUTE;
250		hal2_i_write32(hal2, H2I_DAC_C2, new);
251		break;
252	case H2_MIX_INPUT_GAIN:
253		old = hal2_i_read32(hal2, H2I_ADC_C2);
254		new = old & ~(H2I_C2_L_GAIN_M | H2I_C2_R_GAIN_M);
255		new |= (l << H2I_C2_L_GAIN_SHIFT);
256		new |= (r << H2I_C2_R_GAIN_SHIFT);
257		hal2_i_write32(hal2, H2I_ADC_C2, new);
258		break;
 
 
259	}
260	return old != new;
261}
262
263static struct snd_kcontrol_new hal2_ctrl_headphone = {
264	.iface          = SNDRV_CTL_ELEM_IFACE_MIXER,
265	.name           = "Headphone Playback Volume",
266	.access         = SNDRV_CTL_ELEM_ACCESS_READWRITE,
267	.private_value  = H2_MIX_OUTPUT_ATT,
268	.info           = hal2_gain_info,
269	.get            = hal2_gain_get,
270	.put            = hal2_gain_put,
271};
272
273static struct snd_kcontrol_new hal2_ctrl_mic = {
274	.iface          = SNDRV_CTL_ELEM_IFACE_MIXER,
275	.name           = "Mic Capture Volume",
276	.access         = SNDRV_CTL_ELEM_ACCESS_READWRITE,
277	.private_value  = H2_MIX_INPUT_GAIN,
278	.info           = hal2_gain_info,
279	.get            = hal2_gain_get,
280	.put            = hal2_gain_put,
281};
282
283static int hal2_mixer_create(struct snd_hal2 *hal2)
284{
285	int err;
286
287	/* mute DAC */
288	hal2_i_write32(hal2, H2I_DAC_C2,
289		       H2I_C2_L_ATT_M | H2I_C2_R_ATT_M | H2I_C2_MUTE);
290	/* mute ADC */
291	hal2_i_write32(hal2, H2I_ADC_C2, 0);
292
293	err = snd_ctl_add(hal2->card,
294			  snd_ctl_new1(&hal2_ctrl_headphone, hal2));
295	if (err < 0)
296		return err;
297
298	err = snd_ctl_add(hal2->card,
299			  snd_ctl_new1(&hal2_ctrl_mic, hal2));
300	if (err < 0)
301		return err;
302
303	return 0;
304}
305
306static irqreturn_t hal2_interrupt(int irq, void *dev_id)
307{
308	struct snd_hal2 *hal2 = dev_id;
309	irqreturn_t ret = IRQ_NONE;
310
311	/* decide what caused this interrupt */
312	if (hal2->dac.pbus.pbus->pbdma_ctrl & HPC3_PDMACTRL_INT) {
313		snd_pcm_period_elapsed(hal2->dac.substream);
314		ret = IRQ_HANDLED;
315	}
316	if (hal2->adc.pbus.pbus->pbdma_ctrl & HPC3_PDMACTRL_INT) {
317		snd_pcm_period_elapsed(hal2->adc.substream);
318		ret = IRQ_HANDLED;
319	}
320	return ret;
321}
322
323static int hal2_compute_rate(struct hal2_codec *codec, unsigned int rate)
324{
325	unsigned short mod;
326
327	if (44100 % rate < 48000 % rate) {
328		mod = 4 * 44100 / rate;
329		codec->master = 44100;
330	} else {
331		mod = 4 * 48000 / rate;
332		codec->master = 48000;
333	}
334
335	codec->inc = 4;
336	codec->mod = mod;
337	rate = 4 * codec->master / mod;
338
339	return rate;
340}
341
342static void hal2_set_dac_rate(struct snd_hal2 *hal2)
343{
344	unsigned int master = hal2->dac.master;
345	int inc = hal2->dac.inc;
346	int mod = hal2->dac.mod;
347
348	hal2_i_write16(hal2, H2I_BRES1_C1, (master == 44100) ? 1 : 0);
349	hal2_i_write32(hal2, H2I_BRES1_C2,
350		       ((0xffff & (inc - mod - 1)) << 16) | inc);
351}
352
353static void hal2_set_adc_rate(struct snd_hal2 *hal2)
354{
355	unsigned int master = hal2->adc.master;
356	int inc = hal2->adc.inc;
357	int mod = hal2->adc.mod;
358
359	hal2_i_write16(hal2, H2I_BRES2_C1, (master == 44100) ? 1 : 0);
360	hal2_i_write32(hal2, H2I_BRES2_C2,
361		       ((0xffff & (inc - mod - 1)) << 16) | inc);
362}
363
364static void hal2_setup_dac(struct snd_hal2 *hal2)
365{
366	unsigned int fifobeg, fifoend, highwater, sample_size;
367	struct hal2_pbus *pbus = &hal2->dac.pbus;
368
369	/* Now we set up some PBUS information. The PBUS needs information about
370	 * what portion of the fifo it will use. If it's receiving or
371	 * transmitting, and finally whether the stream is little endian or big
372	 * endian. The information is written later, on the start call.
373	 */
374	sample_size = 2 * hal2->dac.voices;
375	/* Fifo should be set to hold exactly four samples. Highwater mark
376	 * should be set to two samples. */
377	highwater = (sample_size * 2) >> 1;	/* halfwords */
378	fifobeg = 0;				/* playback is first */
379	fifoend = (sample_size * 4) >> 3;	/* doublewords */
380	pbus->ctrl = HPC3_PDMACTRL_RT | HPC3_PDMACTRL_LD |
381		     (highwater << 8) | (fifobeg << 16) | (fifoend << 24);
382	/* We disable everything before we do anything at all */
383	pbus->pbus->pbdma_ctrl = HPC3_PDMACTRL_LD;
384	hal2_i_clearbit16(hal2, H2I_DMA_PORT_EN, H2I_DMA_PORT_EN_CODECTX);
385	/* Setup the HAL2 for playback */
386	hal2_set_dac_rate(hal2);
387	/* Set endianess */
388	hal2_i_clearbit16(hal2, H2I_DMA_END, H2I_DMA_END_CODECTX);
389	/* Set DMA bus */
390	hal2_i_setbit16(hal2, H2I_DMA_DRV, (1 << pbus->pbusnr));
391	/* We are using 1st Bresenham clock generator for playback */
392	hal2_i_write16(hal2, H2I_DAC_C1, (pbus->pbusnr << H2I_C1_DMA_SHIFT)
393			| (1 << H2I_C1_CLKID_SHIFT)
394			| (hal2->dac.voices << H2I_C1_DATAT_SHIFT));
395}
396
397static void hal2_setup_adc(struct snd_hal2 *hal2)
398{
399	unsigned int fifobeg, fifoend, highwater, sample_size;
400	struct hal2_pbus *pbus = &hal2->adc.pbus;
401
402	sample_size = 2 * hal2->adc.voices;
403	highwater = (sample_size * 2) >> 1;		/* halfwords */
404	fifobeg = (4 * 4) >> 3;				/* record is second */
405	fifoend = (4 * 4 + sample_size * 4) >> 3;	/* doublewords */
406	pbus->ctrl = HPC3_PDMACTRL_RT | HPC3_PDMACTRL_RCV | HPC3_PDMACTRL_LD |
407		     (highwater << 8) | (fifobeg << 16) | (fifoend << 24);
408	pbus->pbus->pbdma_ctrl = HPC3_PDMACTRL_LD;
409	hal2_i_clearbit16(hal2, H2I_DMA_PORT_EN, H2I_DMA_PORT_EN_CODECR);
410	/* Setup the HAL2 for record */
411	hal2_set_adc_rate(hal2);
412	/* Set endianess */
413	hal2_i_clearbit16(hal2, H2I_DMA_END, H2I_DMA_END_CODECR);
414	/* Set DMA bus */
415	hal2_i_setbit16(hal2, H2I_DMA_DRV, (1 << pbus->pbusnr));
416	/* We are using 2nd Bresenham clock generator for record */
417	hal2_i_write16(hal2, H2I_ADC_C1, (pbus->pbusnr << H2I_C1_DMA_SHIFT)
418			| (2 << H2I_C1_CLKID_SHIFT)
419			| (hal2->adc.voices << H2I_C1_DATAT_SHIFT));
420}
421
422static void hal2_start_dac(struct snd_hal2 *hal2)
423{
424	struct hal2_pbus *pbus = &hal2->dac.pbus;
425
426	pbus->pbus->pbdma_dptr = hal2->dac.desc_dma;
427	pbus->pbus->pbdma_ctrl = pbus->ctrl | HPC3_PDMACTRL_ACT;
428	/* enable DAC */
429	hal2_i_setbit16(hal2, H2I_DMA_PORT_EN, H2I_DMA_PORT_EN_CODECTX);
430}
431
432static void hal2_start_adc(struct snd_hal2 *hal2)
433{
434	struct hal2_pbus *pbus = &hal2->adc.pbus;
435
436	pbus->pbus->pbdma_dptr = hal2->adc.desc_dma;
437	pbus->pbus->pbdma_ctrl = pbus->ctrl | HPC3_PDMACTRL_ACT;
438	/* enable ADC */
439	hal2_i_setbit16(hal2, H2I_DMA_PORT_EN, H2I_DMA_PORT_EN_CODECR);
440}
441
442static inline void hal2_stop_dac(struct snd_hal2 *hal2)
443{
444	hal2->dac.pbus.pbus->pbdma_ctrl = HPC3_PDMACTRL_LD;
445	/* The HAL2 itself may remain enabled safely */
446}
447
448static inline void hal2_stop_adc(struct snd_hal2 *hal2)
449{
450	hal2->adc.pbus.pbus->pbdma_ctrl = HPC3_PDMACTRL_LD;
451}
452
453static int hal2_alloc_dmabuf(struct hal2_codec *codec)
 
454{
 
455	struct hal2_desc *desc;
456	dma_addr_t desc_dma, buffer_dma;
457	int count = H2_BUF_SIZE / H2_BLOCK_SIZE;
458	int i;
459
460	codec->buffer = dma_alloc_noncoherent(NULL, H2_BUF_SIZE,
461					      &buffer_dma, GFP_KERNEL);
462	if (!codec->buffer)
463		return -ENOMEM;
464	desc = dma_alloc_noncoherent(NULL, count * sizeof(struct hal2_desc),
465				     &desc_dma, GFP_KERNEL);
466	if (!desc) {
467		dma_free_noncoherent(NULL, H2_BUF_SIZE,
468				     codec->buffer, buffer_dma);
469		return -ENOMEM;
470	}
471	codec->buffer_dma = buffer_dma;
472	codec->desc_dma = desc_dma;
473	codec->desc = desc;
474	for (i = 0; i < count; i++) {
475		desc->desc.pbuf = buffer_dma + i * H2_BLOCK_SIZE;
476		desc->desc.cntinfo = HPCDMA_XIE | H2_BLOCK_SIZE;
477		desc->desc.pnext = (i == count - 1) ?
478		      desc_dma : desc_dma + (i + 1) * sizeof(struct hal2_desc);
479		desc++;
480	}
481	dma_cache_sync(NULL, codec->desc, count * sizeof(struct hal2_desc),
482		       DMA_TO_DEVICE);
 
483	codec->desc_count = count;
484	return 0;
485}
486
487static void hal2_free_dmabuf(struct hal2_codec *codec)
 
488{
489	dma_free_noncoherent(NULL, codec->desc_count * sizeof(struct hal2_desc),
490			     codec->desc, codec->desc_dma);
491	dma_free_noncoherent(NULL, H2_BUF_SIZE, codec->buffer,
492			     codec->buffer_dma);
 
 
493}
494
495static struct snd_pcm_hardware hal2_pcm_hw = {
496	.info = (SNDRV_PCM_INFO_MMAP |
497		 SNDRV_PCM_INFO_MMAP_VALID |
498		 SNDRV_PCM_INFO_INTERLEAVED |
499		 SNDRV_PCM_INFO_BLOCK_TRANSFER),
 
500	.formats =          SNDRV_PCM_FMTBIT_S16_BE,
501	.rates =            SNDRV_PCM_RATE_8000_48000,
502	.rate_min =         8000,
503	.rate_max =         48000,
504	.channels_min =     2,
505	.channels_max =     2,
506	.buffer_bytes_max = 65536,
507	.period_bytes_min = 1024,
508	.period_bytes_max = 65536,
509	.periods_min =      2,
510	.periods_max =      1024,
511};
512
513static int hal2_pcm_hw_params(struct snd_pcm_substream *substream,
514			      struct snd_pcm_hw_params *params)
515{
516	int err;
517
518	err = snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(params));
519	if (err < 0)
520		return err;
521
522	return 0;
523}
524
525static int hal2_pcm_hw_free(struct snd_pcm_substream *substream)
526{
527	return snd_pcm_lib_free_pages(substream);
528}
529
530static int hal2_playback_open(struct snd_pcm_substream *substream)
531{
532	struct snd_pcm_runtime *runtime = substream->runtime;
533	struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
534	int err;
535
536	runtime->hw = hal2_pcm_hw;
537
538	err = hal2_alloc_dmabuf(&hal2->dac);
539	if (err)
540		return err;
541	return 0;
542}
543
544static int hal2_playback_close(struct snd_pcm_substream *substream)
545{
546	struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
547
548	hal2_free_dmabuf(&hal2->dac);
549	return 0;
550}
551
552static int hal2_playback_prepare(struct snd_pcm_substream *substream)
553{
554	struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
555	struct snd_pcm_runtime *runtime = substream->runtime;
556	struct hal2_codec *dac = &hal2->dac;
557
558	dac->voices = runtime->channels;
559	dac->sample_rate = hal2_compute_rate(dac, runtime->rate);
560	memset(&dac->pcm_indirect, 0, sizeof(dac->pcm_indirect));
561	dac->pcm_indirect.hw_buffer_size = H2_BUF_SIZE;
 
 
562	dac->pcm_indirect.sw_buffer_size = snd_pcm_lib_buffer_bytes(substream);
563	dac->substream = substream;
564	hal2_setup_dac(hal2);
565	return 0;
566}
567
568static int hal2_playback_trigger(struct snd_pcm_substream *substream, int cmd)
569{
570	struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
571
572	switch (cmd) {
573	case SNDRV_PCM_TRIGGER_START:
574		hal2->dac.pcm_indirect.hw_io = hal2->dac.buffer_dma;
575		hal2->dac.pcm_indirect.hw_data = 0;
576		substream->ops->ack(substream);
577		hal2_start_dac(hal2);
578		break;
579	case SNDRV_PCM_TRIGGER_STOP:
580		hal2_stop_dac(hal2);
581		break;
582	default:
583		return -EINVAL;
584	}
585	return 0;
586}
587
588static snd_pcm_uframes_t
589hal2_playback_pointer(struct snd_pcm_substream *substream)
590{
591	struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
592	struct hal2_codec *dac = &hal2->dac;
593
594	return snd_pcm_indirect_playback_pointer(substream, &dac->pcm_indirect,
595						 dac->pbus.pbus->pbdma_bptr);
596}
597
598static void hal2_playback_transfer(struct snd_pcm_substream *substream,
599				   struct snd_pcm_indirect *rec, size_t bytes)
600{
601	struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
602	unsigned char *buf = hal2->dac.buffer + rec->hw_data;
603
604	memcpy(buf, substream->runtime->dma_area + rec->sw_data, bytes);
605	dma_cache_sync(NULL, buf, bytes, DMA_TO_DEVICE);
 
 
606
607}
608
609static int hal2_playback_ack(struct snd_pcm_substream *substream)
610{
611	struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
612	struct hal2_codec *dac = &hal2->dac;
613
614	dac->pcm_indirect.hw_queue_size = H2_BUF_SIZE / 2;
615	snd_pcm_indirect_playback_transfer(substream,
616					   &dac->pcm_indirect,
617					   hal2_playback_transfer);
618	return 0;
619}
620
621static int hal2_capture_open(struct snd_pcm_substream *substream)
622{
623	struct snd_pcm_runtime *runtime = substream->runtime;
624	struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
625	struct hal2_codec *adc = &hal2->adc;
626	int err;
627
628	runtime->hw = hal2_pcm_hw;
629
630	err = hal2_alloc_dmabuf(adc);
631	if (err)
632		return err;
633	return 0;
634}
635
636static int hal2_capture_close(struct snd_pcm_substream *substream)
637{
638	struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
639
640	hal2_free_dmabuf(&hal2->adc);
641	return 0;
642}
643
644static int hal2_capture_prepare(struct snd_pcm_substream *substream)
645{
646	struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
647	struct snd_pcm_runtime *runtime = substream->runtime;
648	struct hal2_codec *adc = &hal2->adc;
649
650	adc->voices = runtime->channels;
651	adc->sample_rate = hal2_compute_rate(adc, runtime->rate);
652	memset(&adc->pcm_indirect, 0, sizeof(adc->pcm_indirect));
653	adc->pcm_indirect.hw_buffer_size = H2_BUF_SIZE;
654	adc->pcm_indirect.hw_queue_size = H2_BUF_SIZE / 2;
 
655	adc->pcm_indirect.sw_buffer_size = snd_pcm_lib_buffer_bytes(substream);
656	adc->substream = substream;
657	hal2_setup_adc(hal2);
658	return 0;
659}
660
661static int hal2_capture_trigger(struct snd_pcm_substream *substream, int cmd)
662{
663	struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
664
665	switch (cmd) {
666	case SNDRV_PCM_TRIGGER_START:
667		hal2->adc.pcm_indirect.hw_io = hal2->adc.buffer_dma;
668		hal2->adc.pcm_indirect.hw_data = 0;
669		printk(KERN_DEBUG "buffer_dma %x\n", hal2->adc.buffer_dma);
670		hal2_start_adc(hal2);
671		break;
672	case SNDRV_PCM_TRIGGER_STOP:
673		hal2_stop_adc(hal2);
674		break;
675	default:
676		return -EINVAL;
677	}
678	return 0;
679}
680
681static snd_pcm_uframes_t
682hal2_capture_pointer(struct snd_pcm_substream *substream)
683{
684	struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
685	struct hal2_codec *adc = &hal2->adc;
686
687	return snd_pcm_indirect_capture_pointer(substream, &adc->pcm_indirect,
688						adc->pbus.pbus->pbdma_bptr);
689}
690
691static void hal2_capture_transfer(struct snd_pcm_substream *substream,
692				  struct snd_pcm_indirect *rec, size_t bytes)
693{
694	struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
695	unsigned char *buf = hal2->adc.buffer + rec->hw_data;
696
697	dma_cache_sync(NULL, buf, bytes, DMA_FROM_DEVICE);
 
 
698	memcpy(substream->runtime->dma_area + rec->sw_data, buf, bytes);
699}
700
701static int hal2_capture_ack(struct snd_pcm_substream *substream)
702{
703	struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
704	struct hal2_codec *adc = &hal2->adc;
705
706	snd_pcm_indirect_capture_transfer(substream,
707					  &adc->pcm_indirect,
708					  hal2_capture_transfer);
709	return 0;
710}
711
712static struct snd_pcm_ops hal2_playback_ops = {
713	.open =        hal2_playback_open,
714	.close =       hal2_playback_close,
715	.ioctl =       snd_pcm_lib_ioctl,
716	.hw_params =   hal2_pcm_hw_params,
717	.hw_free =     hal2_pcm_hw_free,
718	.prepare =     hal2_playback_prepare,
719	.trigger =     hal2_playback_trigger,
720	.pointer =     hal2_playback_pointer,
721	.ack =         hal2_playback_ack,
722};
723
724static struct snd_pcm_ops hal2_capture_ops = {
725	.open =        hal2_capture_open,
726	.close =       hal2_capture_close,
727	.ioctl =       snd_pcm_lib_ioctl,
728	.hw_params =   hal2_pcm_hw_params,
729	.hw_free =     hal2_pcm_hw_free,
730	.prepare =     hal2_capture_prepare,
731	.trigger =     hal2_capture_trigger,
732	.pointer =     hal2_capture_pointer,
733	.ack =         hal2_capture_ack,
734};
735
736static int hal2_pcm_create(struct snd_hal2 *hal2)
737{
738	struct snd_pcm *pcm;
739	int err;
740
741	/* create first pcm device with one outputs and one input */
742	err = snd_pcm_new(hal2->card, "SGI HAL2 Audio", 0, 1, 1, &pcm);
743	if (err < 0)
744		return err;
745
746	pcm->private_data = hal2;
747	strcpy(pcm->name, "SGI HAL2");
748
749	/* set operators */
750	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK,
751			&hal2_playback_ops);
752	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE,
753			&hal2_capture_ops);
754	snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_CONTINUOUS,
755					   snd_dma_continuous_data(GFP_KERNEL),
756					   0, 1024 * 1024);
757
758	return 0;
759}
760
761static int hal2_dev_free(struct snd_device *device)
762{
763	struct snd_hal2 *hal2 = device->device_data;
764
765	free_irq(SGI_HPCDMA_IRQ, hal2);
766	kfree(hal2);
767	return 0;
768}
769
770static struct snd_device_ops hal2_ops = {
771	.dev_free = hal2_dev_free,
772};
773
774static void hal2_init_codec(struct hal2_codec *codec, struct hpc3_regs *hpc3,
775			    int index)
776{
777	codec->pbus.pbusnr = index;
778	codec->pbus.pbus = &hpc3->pbdma[index];
779}
780
781static int hal2_detect(struct snd_hal2 *hal2)
782{
783	unsigned short board, major, minor;
784	unsigned short rev;
785
786	/* reset HAL2 */
787	hal2_write(0, &hal2->ctl_regs->isr);
788
789	/* release reset */
790	hal2_write(H2_ISR_GLOBAL_RESET_N | H2_ISR_CODEC_RESET_N,
791		   &hal2->ctl_regs->isr);
792
793
794	hal2_i_write16(hal2, H2I_RELAY_C, H2I_RELAY_C_STATE);
795	rev = hal2_read(&hal2->ctl_regs->rev);
796	if (rev & H2_REV_AUDIO_PRESENT)
797		return -ENODEV;
798
799	board = (rev & H2_REV_BOARD_M) >> 12;
800	major = (rev & H2_REV_MAJOR_CHIP_M) >> 4;
801	minor = (rev & H2_REV_MINOR_CHIP_M);
802
803	printk(KERN_INFO "SGI HAL2 revision %i.%i.%i\n",
804	       board, major, minor);
805
806	return 0;
807}
808
809static int hal2_create(struct snd_card *card, struct snd_hal2 **rchip)
810{
811	struct snd_hal2 *hal2;
812	struct hpc3_regs *hpc3 = hpc3c0;
813	int err;
814
815	hal2 = kzalloc(sizeof(struct snd_hal2), GFP_KERNEL);
816	if (!hal2)
817		return -ENOMEM;
818
819	hal2->card = card;
820
821	if (request_irq(SGI_HPCDMA_IRQ, hal2_interrupt, IRQF_SHARED,
822			"SGI HAL2", hal2)) {
823		printk(KERN_ERR "HAL2: Can't get irq %d\n", SGI_HPCDMA_IRQ);
824		kfree(hal2);
825		return -EAGAIN;
826	}
827
828	hal2->ctl_regs = (struct hal2_ctl_regs *)hpc3->pbus_extregs[0];
829	hal2->aes_regs = (struct hal2_aes_regs *)hpc3->pbus_extregs[1];
830	hal2->vol_regs = (struct hal2_vol_regs *)hpc3->pbus_extregs[2];
831	hal2->syn_regs = (struct hal2_syn_regs *)hpc3->pbus_extregs[3];
832
833	if (hal2_detect(hal2) < 0) {
834		kfree(hal2);
835		return -ENODEV;
836	}
837
838	hal2_init_codec(&hal2->dac, hpc3, 0);
839	hal2_init_codec(&hal2->adc, hpc3, 1);
840
841	/*
842	 * All DMA channel interfaces in HAL2 are designed to operate with
843	 * PBUS programmed for 2 cycles in D3, 2 cycles in D4 and 2 cycles
844	 * in D5. HAL2 is a 16-bit device which can accept both big and little
845	 * endian format. It assumes that even address bytes are on high
846	 * portion of PBUS (15:8) and assumes that HPC3 is programmed to
847	 * accept a live (unsynchronized) version of P_DREQ_N from HAL2.
848	 */
849#define HAL2_PBUS_DMACFG ((0 << HPC3_DMACFG_D3R_SHIFT) | \
850			  (2 << HPC3_DMACFG_D4R_SHIFT) | \
851			  (2 << HPC3_DMACFG_D5R_SHIFT) | \
852			  (0 << HPC3_DMACFG_D3W_SHIFT) | \
853			  (2 << HPC3_DMACFG_D4W_SHIFT) | \
854			  (2 << HPC3_DMACFG_D5W_SHIFT) | \
855				HPC3_DMACFG_DS16 | \
856				HPC3_DMACFG_EVENHI | \
857				HPC3_DMACFG_RTIME | \
858			  (8 << HPC3_DMACFG_BURST_SHIFT) | \
859				HPC3_DMACFG_DRQLIVE)
860	/*
861	 * Ignore what's mentioned in the specification and write value which
862	 * works in The Real World (TM)
863	 */
864	hpc3->pbus_dmacfg[hal2->dac.pbus.pbusnr][0] = 0x8208844;
865	hpc3->pbus_dmacfg[hal2->adc.pbus.pbusnr][0] = 0x8208844;
866
867	err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, hal2, &hal2_ops);
868	if (err < 0) {
869		free_irq(SGI_HPCDMA_IRQ, hal2);
870		kfree(hal2);
871		return err;
872	}
873	*rchip = hal2;
874	return 0;
875}
876
877static int hal2_probe(struct platform_device *pdev)
878{
879	struct snd_card *card;
880	struct snd_hal2 *chip;
881	int err;
882
883	err = snd_card_new(&pdev->dev, index, id, THIS_MODULE, 0, &card);
884	if (err < 0)
885		return err;
886
887	err = hal2_create(card, &chip);
888	if (err < 0) {
889		snd_card_free(card);
890		return err;
891	}
892
893	err = hal2_pcm_create(chip);
894	if (err < 0) {
895		snd_card_free(card);
896		return err;
897	}
898	err = hal2_mixer_create(chip);
899	if (err < 0) {
900		snd_card_free(card);
901		return err;
902	}
903
904	strcpy(card->driver, "SGI HAL2 Audio");
905	strcpy(card->shortname, "SGI HAL2 Audio");
906	sprintf(card->longname, "%s irq %i",
907		card->shortname,
908		SGI_HPCDMA_IRQ);
909
910	err = snd_card_register(card);
911	if (err < 0) {
912		snd_card_free(card);
913		return err;
914	}
915	platform_set_drvdata(pdev, card);
916	return 0;
917}
918
919static int hal2_remove(struct platform_device *pdev)
920{
921	struct snd_card *card = platform_get_drvdata(pdev);
922
923	snd_card_free(card);
924	return 0;
925}
926
927static struct platform_driver hal2_driver = {
928	.probe	= hal2_probe,
929	.remove	= hal2_remove,
930	.driver = {
931		.name	= "sgihal2",
932	}
933};
934
935module_platform_driver(hal2_driver);
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 *  Driver for A2 audio system used in SGI machines
  4 *  Copyright (c) 2008 Thomas Bogendoerfer <tsbogend@alpha.fanken.de>
  5 *
  6 *  Based on OSS code from Ladislav Michl <ladis@linux-mips.org>, which
  7 *  was based on code from Ulf Carlsson
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  8 */
  9#include <linux/kernel.h>
 10#include <linux/init.h>
 11#include <linux/interrupt.h>
 12#include <linux/dma-mapping.h>
 13#include <linux/platform_device.h>
 14#include <linux/io.h>
 15#include <linux/slab.h>
 16#include <linux/module.h>
 17
 18#include <asm/sgi/hpc3.h>
 19#include <asm/sgi/ip22.h>
 20
 21#include <sound/core.h>
 22#include <sound/control.h>
 23#include <sound/pcm.h>
 24#include <sound/pcm-indirect.h>
 25#include <sound/initval.h>
 26
 27#include "hal2.h"
 28
 29static int index = SNDRV_DEFAULT_IDX1;  /* Index 0-MAX */
 30static char *id = SNDRV_DEFAULT_STR1;   /* ID for this card */
 31
 32module_param(index, int, 0444);
 33MODULE_PARM_DESC(index, "Index value for SGI HAL2 soundcard.");
 34module_param(id, charp, 0444);
 35MODULE_PARM_DESC(id, "ID string for SGI HAL2 soundcard.");
 36MODULE_DESCRIPTION("ALSA driver for SGI HAL2 audio");
 37MODULE_AUTHOR("Thomas Bogendoerfer");
 38MODULE_LICENSE("GPL");
 39
 40
 41#define H2_BLOCK_SIZE	1024
 42#define H2_BUF_SIZE	16384
 43
 44struct hal2_pbus {
 45	struct hpc3_pbus_dmacregs *pbus;
 46	int pbusnr;
 47	unsigned int ctrl;		/* Current state of pbus->pbdma_ctrl */
 48};
 49
 50struct hal2_desc {
 51	struct hpc_dma_desc desc;
 52	u32 pad;			/* padding */
 53};
 54
 55struct hal2_codec {
 56	struct snd_pcm_indirect pcm_indirect;
 57	struct snd_pcm_substream *substream;
 58
 59	unsigned char *buffer;
 60	dma_addr_t buffer_dma;
 61	struct hal2_desc *desc;
 62	dma_addr_t desc_dma;
 63	int desc_count;
 64	struct hal2_pbus pbus;
 65	int voices;			/* mono/stereo */
 66	unsigned int sample_rate;
 67	unsigned int master;		/* Master frequency */
 68	unsigned short mod;		/* MOD value */
 69	unsigned short inc;		/* INC value */
 70};
 71
 72#define H2_MIX_OUTPUT_ATT	0
 73#define H2_MIX_INPUT_GAIN	1
 74
 75struct snd_hal2 {
 76	struct snd_card *card;
 77
 78	struct hal2_ctl_regs *ctl_regs;	/* HAL2 ctl registers */
 79	struct hal2_aes_regs *aes_regs;	/* HAL2 aes registers */
 80	struct hal2_vol_regs *vol_regs;	/* HAL2 vol registers */
 81	struct hal2_syn_regs *syn_regs;	/* HAL2 syn registers */
 82
 83	struct hal2_codec dac;
 84	struct hal2_codec adc;
 85};
 86
 87#define H2_INDIRECT_WAIT(regs)	while (hal2_read(&regs->isr) & H2_ISR_TSTATUS);
 88
 89#define H2_READ_ADDR(addr)	(addr | (1<<7))
 90#define H2_WRITE_ADDR(addr)	(addr)
 91
 92static inline u32 hal2_read(u32 *reg)
 93{
 94	return __raw_readl(reg);
 95}
 96
 97static inline void hal2_write(u32 val, u32 *reg)
 98{
 99	__raw_writel(val, reg);
100}
101
102
103static u32 hal2_i_read32(struct snd_hal2 *hal2, u16 addr)
104{
105	u32 ret;
106	struct hal2_ctl_regs *regs = hal2->ctl_regs;
107
108	hal2_write(H2_READ_ADDR(addr), &regs->iar);
109	H2_INDIRECT_WAIT(regs);
110	ret = hal2_read(&regs->idr0) & 0xffff;
111	hal2_write(H2_READ_ADDR(addr) | 0x1, &regs->iar);
112	H2_INDIRECT_WAIT(regs);
113	ret |= (hal2_read(&regs->idr0) & 0xffff) << 16;
114	return ret;
115}
116
117static void hal2_i_write16(struct snd_hal2 *hal2, u16 addr, u16 val)
118{
119	struct hal2_ctl_regs *regs = hal2->ctl_regs;
120
121	hal2_write(val, &regs->idr0);
122	hal2_write(0, &regs->idr1);
123	hal2_write(0, &regs->idr2);
124	hal2_write(0, &regs->idr3);
125	hal2_write(H2_WRITE_ADDR(addr), &regs->iar);
126	H2_INDIRECT_WAIT(regs);
127}
128
129static void hal2_i_write32(struct snd_hal2 *hal2, u16 addr, u32 val)
130{
131	struct hal2_ctl_regs *regs = hal2->ctl_regs;
132
133	hal2_write(val & 0xffff, &regs->idr0);
134	hal2_write(val >> 16, &regs->idr1);
135	hal2_write(0, &regs->idr2);
136	hal2_write(0, &regs->idr3);
137	hal2_write(H2_WRITE_ADDR(addr), &regs->iar);
138	H2_INDIRECT_WAIT(regs);
139}
140
141static void hal2_i_setbit16(struct snd_hal2 *hal2, u16 addr, u16 bit)
142{
143	struct hal2_ctl_regs *regs = hal2->ctl_regs;
144
145	hal2_write(H2_READ_ADDR(addr), &regs->iar);
146	H2_INDIRECT_WAIT(regs);
147	hal2_write((hal2_read(&regs->idr0) & 0xffff) | bit, &regs->idr0);
148	hal2_write(0, &regs->idr1);
149	hal2_write(0, &regs->idr2);
150	hal2_write(0, &regs->idr3);
151	hal2_write(H2_WRITE_ADDR(addr), &regs->iar);
152	H2_INDIRECT_WAIT(regs);
153}
154
155static void hal2_i_clearbit16(struct snd_hal2 *hal2, u16 addr, u16 bit)
156{
157	struct hal2_ctl_regs *regs = hal2->ctl_regs;
158
159	hal2_write(H2_READ_ADDR(addr), &regs->iar);
160	H2_INDIRECT_WAIT(regs);
161	hal2_write((hal2_read(&regs->idr0) & 0xffff) & ~bit, &regs->idr0);
162	hal2_write(0, &regs->idr1);
163	hal2_write(0, &regs->idr2);
164	hal2_write(0, &regs->idr3);
165	hal2_write(H2_WRITE_ADDR(addr), &regs->iar);
166	H2_INDIRECT_WAIT(regs);
167}
168
169static int hal2_gain_info(struct snd_kcontrol *kcontrol,
170			       struct snd_ctl_elem_info *uinfo)
171{
172	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
173	uinfo->count = 2;
174	uinfo->value.integer.min = 0;
175	switch ((int)kcontrol->private_value) {
176	case H2_MIX_OUTPUT_ATT:
177		uinfo->value.integer.max = 31;
178		break;
179	case H2_MIX_INPUT_GAIN:
180		uinfo->value.integer.max = 15;
181		break;
182	}
183	return 0;
184}
185
186static int hal2_gain_get(struct snd_kcontrol *kcontrol,
187			       struct snd_ctl_elem_value *ucontrol)
188{
189	struct snd_hal2 *hal2 = snd_kcontrol_chip(kcontrol);
190	u32 tmp;
191	int l, r;
192
193	switch ((int)kcontrol->private_value) {
194	case H2_MIX_OUTPUT_ATT:
195		tmp = hal2_i_read32(hal2, H2I_DAC_C2);
196		if (tmp & H2I_C2_MUTE) {
197			l = 0;
198			r = 0;
199		} else {
200			l = 31 - ((tmp >> H2I_C2_L_ATT_SHIFT) & 31);
201			r = 31 - ((tmp >> H2I_C2_R_ATT_SHIFT) & 31);
202		}
203		break;
204	case H2_MIX_INPUT_GAIN:
205		tmp = hal2_i_read32(hal2, H2I_ADC_C2);
206		l = (tmp >> H2I_C2_L_GAIN_SHIFT) & 15;
207		r = (tmp >> H2I_C2_R_GAIN_SHIFT) & 15;
208		break;
209	default:
210		return -EINVAL;
211	}
212	ucontrol->value.integer.value[0] = l;
213	ucontrol->value.integer.value[1] = r;
214
215	return 0;
216}
217
218static int hal2_gain_put(struct snd_kcontrol *kcontrol,
219			 struct snd_ctl_elem_value *ucontrol)
220{
221	struct snd_hal2 *hal2 = snd_kcontrol_chip(kcontrol);
222	u32 old, new;
223	int l, r;
224
225	l = ucontrol->value.integer.value[0];
226	r = ucontrol->value.integer.value[1];
227
228	switch ((int)kcontrol->private_value) {
229	case H2_MIX_OUTPUT_ATT:
230		old = hal2_i_read32(hal2, H2I_DAC_C2);
231		new = old & ~(H2I_C2_L_ATT_M | H2I_C2_R_ATT_M | H2I_C2_MUTE);
232		if (l | r) {
233			l = 31 - l;
234			r = 31 - r;
235			new |= (l << H2I_C2_L_ATT_SHIFT);
236			new |= (r << H2I_C2_R_ATT_SHIFT);
237		} else
238			new |= H2I_C2_L_ATT_M | H2I_C2_R_ATT_M | H2I_C2_MUTE;
239		hal2_i_write32(hal2, H2I_DAC_C2, new);
240		break;
241	case H2_MIX_INPUT_GAIN:
242		old = hal2_i_read32(hal2, H2I_ADC_C2);
243		new = old & ~(H2I_C2_L_GAIN_M | H2I_C2_R_GAIN_M);
244		new |= (l << H2I_C2_L_GAIN_SHIFT);
245		new |= (r << H2I_C2_R_GAIN_SHIFT);
246		hal2_i_write32(hal2, H2I_ADC_C2, new);
247		break;
248	default:
249		return -EINVAL;
250	}
251	return old != new;
252}
253
254static const struct snd_kcontrol_new hal2_ctrl_headphone = {
255	.iface          = SNDRV_CTL_ELEM_IFACE_MIXER,
256	.name           = "Headphone Playback Volume",
257	.access         = SNDRV_CTL_ELEM_ACCESS_READWRITE,
258	.private_value  = H2_MIX_OUTPUT_ATT,
259	.info           = hal2_gain_info,
260	.get            = hal2_gain_get,
261	.put            = hal2_gain_put,
262};
263
264static const struct snd_kcontrol_new hal2_ctrl_mic = {
265	.iface          = SNDRV_CTL_ELEM_IFACE_MIXER,
266	.name           = "Mic Capture Volume",
267	.access         = SNDRV_CTL_ELEM_ACCESS_READWRITE,
268	.private_value  = H2_MIX_INPUT_GAIN,
269	.info           = hal2_gain_info,
270	.get            = hal2_gain_get,
271	.put            = hal2_gain_put,
272};
273
274static int hal2_mixer_create(struct snd_hal2 *hal2)
275{
276	int err;
277
278	/* mute DAC */
279	hal2_i_write32(hal2, H2I_DAC_C2,
280		       H2I_C2_L_ATT_M | H2I_C2_R_ATT_M | H2I_C2_MUTE);
281	/* mute ADC */
282	hal2_i_write32(hal2, H2I_ADC_C2, 0);
283
284	err = snd_ctl_add(hal2->card,
285			  snd_ctl_new1(&hal2_ctrl_headphone, hal2));
286	if (err < 0)
287		return err;
288
289	err = snd_ctl_add(hal2->card,
290			  snd_ctl_new1(&hal2_ctrl_mic, hal2));
291	if (err < 0)
292		return err;
293
294	return 0;
295}
296
297static irqreturn_t hal2_interrupt(int irq, void *dev_id)
298{
299	struct snd_hal2 *hal2 = dev_id;
300	irqreturn_t ret = IRQ_NONE;
301
302	/* decide what caused this interrupt */
303	if (hal2->dac.pbus.pbus->pbdma_ctrl & HPC3_PDMACTRL_INT) {
304		snd_pcm_period_elapsed(hal2->dac.substream);
305		ret = IRQ_HANDLED;
306	}
307	if (hal2->adc.pbus.pbus->pbdma_ctrl & HPC3_PDMACTRL_INT) {
308		snd_pcm_period_elapsed(hal2->adc.substream);
309		ret = IRQ_HANDLED;
310	}
311	return ret;
312}
313
314static int hal2_compute_rate(struct hal2_codec *codec, unsigned int rate)
315{
316	unsigned short mod;
317
318	if (44100 % rate < 48000 % rate) {
319		mod = 4 * 44100 / rate;
320		codec->master = 44100;
321	} else {
322		mod = 4 * 48000 / rate;
323		codec->master = 48000;
324	}
325
326	codec->inc = 4;
327	codec->mod = mod;
328	rate = 4 * codec->master / mod;
329
330	return rate;
331}
332
333static void hal2_set_dac_rate(struct snd_hal2 *hal2)
334{
335	unsigned int master = hal2->dac.master;
336	int inc = hal2->dac.inc;
337	int mod = hal2->dac.mod;
338
339	hal2_i_write16(hal2, H2I_BRES1_C1, (master == 44100) ? 1 : 0);
340	hal2_i_write32(hal2, H2I_BRES1_C2,
341		       ((0xffff & (inc - mod - 1)) << 16) | inc);
342}
343
344static void hal2_set_adc_rate(struct snd_hal2 *hal2)
345{
346	unsigned int master = hal2->adc.master;
347	int inc = hal2->adc.inc;
348	int mod = hal2->adc.mod;
349
350	hal2_i_write16(hal2, H2I_BRES2_C1, (master == 44100) ? 1 : 0);
351	hal2_i_write32(hal2, H2I_BRES2_C2,
352		       ((0xffff & (inc - mod - 1)) << 16) | inc);
353}
354
355static void hal2_setup_dac(struct snd_hal2 *hal2)
356{
357	unsigned int fifobeg, fifoend, highwater, sample_size;
358	struct hal2_pbus *pbus = &hal2->dac.pbus;
359
360	/* Now we set up some PBUS information. The PBUS needs information about
361	 * what portion of the fifo it will use. If it's receiving or
362	 * transmitting, and finally whether the stream is little endian or big
363	 * endian. The information is written later, on the start call.
364	 */
365	sample_size = 2 * hal2->dac.voices;
366	/* Fifo should be set to hold exactly four samples. Highwater mark
367	 * should be set to two samples. */
368	highwater = (sample_size * 2) >> 1;	/* halfwords */
369	fifobeg = 0;				/* playback is first */
370	fifoend = (sample_size * 4) >> 3;	/* doublewords */
371	pbus->ctrl = HPC3_PDMACTRL_RT | HPC3_PDMACTRL_LD |
372		     (highwater << 8) | (fifobeg << 16) | (fifoend << 24);
373	/* We disable everything before we do anything at all */
374	pbus->pbus->pbdma_ctrl = HPC3_PDMACTRL_LD;
375	hal2_i_clearbit16(hal2, H2I_DMA_PORT_EN, H2I_DMA_PORT_EN_CODECTX);
376	/* Setup the HAL2 for playback */
377	hal2_set_dac_rate(hal2);
378	/* Set endianess */
379	hal2_i_clearbit16(hal2, H2I_DMA_END, H2I_DMA_END_CODECTX);
380	/* Set DMA bus */
381	hal2_i_setbit16(hal2, H2I_DMA_DRV, (1 << pbus->pbusnr));
382	/* We are using 1st Bresenham clock generator for playback */
383	hal2_i_write16(hal2, H2I_DAC_C1, (pbus->pbusnr << H2I_C1_DMA_SHIFT)
384			| (1 << H2I_C1_CLKID_SHIFT)
385			| (hal2->dac.voices << H2I_C1_DATAT_SHIFT));
386}
387
388static void hal2_setup_adc(struct snd_hal2 *hal2)
389{
390	unsigned int fifobeg, fifoend, highwater, sample_size;
391	struct hal2_pbus *pbus = &hal2->adc.pbus;
392
393	sample_size = 2 * hal2->adc.voices;
394	highwater = (sample_size * 2) >> 1;		/* halfwords */
395	fifobeg = (4 * 4) >> 3;				/* record is second */
396	fifoend = (4 * 4 + sample_size * 4) >> 3;	/* doublewords */
397	pbus->ctrl = HPC3_PDMACTRL_RT | HPC3_PDMACTRL_RCV | HPC3_PDMACTRL_LD |
398		     (highwater << 8) | (fifobeg << 16) | (fifoend << 24);
399	pbus->pbus->pbdma_ctrl = HPC3_PDMACTRL_LD;
400	hal2_i_clearbit16(hal2, H2I_DMA_PORT_EN, H2I_DMA_PORT_EN_CODECR);
401	/* Setup the HAL2 for record */
402	hal2_set_adc_rate(hal2);
403	/* Set endianess */
404	hal2_i_clearbit16(hal2, H2I_DMA_END, H2I_DMA_END_CODECR);
405	/* Set DMA bus */
406	hal2_i_setbit16(hal2, H2I_DMA_DRV, (1 << pbus->pbusnr));
407	/* We are using 2nd Bresenham clock generator for record */
408	hal2_i_write16(hal2, H2I_ADC_C1, (pbus->pbusnr << H2I_C1_DMA_SHIFT)
409			| (2 << H2I_C1_CLKID_SHIFT)
410			| (hal2->adc.voices << H2I_C1_DATAT_SHIFT));
411}
412
413static void hal2_start_dac(struct snd_hal2 *hal2)
414{
415	struct hal2_pbus *pbus = &hal2->dac.pbus;
416
417	pbus->pbus->pbdma_dptr = hal2->dac.desc_dma;
418	pbus->pbus->pbdma_ctrl = pbus->ctrl | HPC3_PDMACTRL_ACT;
419	/* enable DAC */
420	hal2_i_setbit16(hal2, H2I_DMA_PORT_EN, H2I_DMA_PORT_EN_CODECTX);
421}
422
423static void hal2_start_adc(struct snd_hal2 *hal2)
424{
425	struct hal2_pbus *pbus = &hal2->adc.pbus;
426
427	pbus->pbus->pbdma_dptr = hal2->adc.desc_dma;
428	pbus->pbus->pbdma_ctrl = pbus->ctrl | HPC3_PDMACTRL_ACT;
429	/* enable ADC */
430	hal2_i_setbit16(hal2, H2I_DMA_PORT_EN, H2I_DMA_PORT_EN_CODECR);
431}
432
433static inline void hal2_stop_dac(struct snd_hal2 *hal2)
434{
435	hal2->dac.pbus.pbus->pbdma_ctrl = HPC3_PDMACTRL_LD;
436	/* The HAL2 itself may remain enabled safely */
437}
438
439static inline void hal2_stop_adc(struct snd_hal2 *hal2)
440{
441	hal2->adc.pbus.pbus->pbdma_ctrl = HPC3_PDMACTRL_LD;
442}
443
444static int hal2_alloc_dmabuf(struct snd_hal2 *hal2, struct hal2_codec *codec,
445		enum dma_data_direction buffer_dir)
446{
447	struct device *dev = hal2->card->dev;
448	struct hal2_desc *desc;
449	dma_addr_t desc_dma, buffer_dma;
450	int count = H2_BUF_SIZE / H2_BLOCK_SIZE;
451	int i;
452
453	codec->buffer = dma_alloc_noncoherent(dev, H2_BUF_SIZE, &buffer_dma,
454					buffer_dir, GFP_KERNEL);
455	if (!codec->buffer)
456		return -ENOMEM;
457	desc = dma_alloc_noncoherent(dev, count * sizeof(struct hal2_desc),
458			&desc_dma, DMA_BIDIRECTIONAL, GFP_KERNEL);
459	if (!desc) {
460		dma_free_noncoherent(dev, H2_BUF_SIZE, codec->buffer, buffer_dma,
461				buffer_dir);
462		return -ENOMEM;
463	}
464	codec->buffer_dma = buffer_dma;
465	codec->desc_dma = desc_dma;
466	codec->desc = desc;
467	for (i = 0; i < count; i++) {
468		desc->desc.pbuf = buffer_dma + i * H2_BLOCK_SIZE;
469		desc->desc.cntinfo = HPCDMA_XIE | H2_BLOCK_SIZE;
470		desc->desc.pnext = (i == count - 1) ?
471		      desc_dma : desc_dma + (i + 1) * sizeof(struct hal2_desc);
472		desc++;
473	}
474	dma_sync_single_for_device(dev, codec->desc_dma,
475				   count * sizeof(struct hal2_desc),
476				   DMA_BIDIRECTIONAL);
477	codec->desc_count = count;
478	return 0;
479}
480
481static void hal2_free_dmabuf(struct snd_hal2 *hal2, struct hal2_codec *codec,
482		enum dma_data_direction buffer_dir)
483{
484	struct device *dev = hal2->card->dev;
485
486	dma_free_noncoherent(dev, codec->desc_count * sizeof(struct hal2_desc),
487		       codec->desc, codec->desc_dma, DMA_BIDIRECTIONAL);
488	dma_free_noncoherent(dev, H2_BUF_SIZE, codec->buffer, codec->buffer_dma,
489			buffer_dir);
490}
491
492static const struct snd_pcm_hardware hal2_pcm_hw = {
493	.info = (SNDRV_PCM_INFO_MMAP |
494		 SNDRV_PCM_INFO_MMAP_VALID |
495		 SNDRV_PCM_INFO_INTERLEAVED |
496		 SNDRV_PCM_INFO_BLOCK_TRANSFER |
497		 SNDRV_PCM_INFO_SYNC_APPLPTR),
498	.formats =          SNDRV_PCM_FMTBIT_S16_BE,
499	.rates =            SNDRV_PCM_RATE_8000_48000,
500	.rate_min =         8000,
501	.rate_max =         48000,
502	.channels_min =     2,
503	.channels_max =     2,
504	.buffer_bytes_max = 65536,
505	.period_bytes_min = 1024,
506	.period_bytes_max = 65536,
507	.periods_min =      2,
508	.periods_max =      1024,
509};
510
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
511static int hal2_playback_open(struct snd_pcm_substream *substream)
512{
513	struct snd_pcm_runtime *runtime = substream->runtime;
514	struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
 
515
516	runtime->hw = hal2_pcm_hw;
517	return hal2_alloc_dmabuf(hal2, &hal2->dac, DMA_TO_DEVICE);
 
 
 
 
518}
519
520static int hal2_playback_close(struct snd_pcm_substream *substream)
521{
522	struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
523
524	hal2_free_dmabuf(hal2, &hal2->dac, DMA_TO_DEVICE);
525	return 0;
526}
527
528static int hal2_playback_prepare(struct snd_pcm_substream *substream)
529{
530	struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
531	struct snd_pcm_runtime *runtime = substream->runtime;
532	struct hal2_codec *dac = &hal2->dac;
533
534	dac->voices = runtime->channels;
535	dac->sample_rate = hal2_compute_rate(dac, runtime->rate);
536	memset(&dac->pcm_indirect, 0, sizeof(dac->pcm_indirect));
537	dac->pcm_indirect.hw_buffer_size = H2_BUF_SIZE;
538	dac->pcm_indirect.hw_queue_size = H2_BUF_SIZE / 2;
539	dac->pcm_indirect.hw_io = dac->buffer_dma;
540	dac->pcm_indirect.sw_buffer_size = snd_pcm_lib_buffer_bytes(substream);
541	dac->substream = substream;
542	hal2_setup_dac(hal2);
543	return 0;
544}
545
546static int hal2_playback_trigger(struct snd_pcm_substream *substream, int cmd)
547{
548	struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
549
550	switch (cmd) {
551	case SNDRV_PCM_TRIGGER_START:
 
 
 
552		hal2_start_dac(hal2);
553		break;
554	case SNDRV_PCM_TRIGGER_STOP:
555		hal2_stop_dac(hal2);
556		break;
557	default:
558		return -EINVAL;
559	}
560	return 0;
561}
562
563static snd_pcm_uframes_t
564hal2_playback_pointer(struct snd_pcm_substream *substream)
565{
566	struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
567	struct hal2_codec *dac = &hal2->dac;
568
569	return snd_pcm_indirect_playback_pointer(substream, &dac->pcm_indirect,
570						 dac->pbus.pbus->pbdma_bptr);
571}
572
573static void hal2_playback_transfer(struct snd_pcm_substream *substream,
574				   struct snd_pcm_indirect *rec, size_t bytes)
575{
576	struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
577	unsigned char *buf = hal2->dac.buffer + rec->hw_data;
578
579	memcpy(buf, substream->runtime->dma_area + rec->sw_data, bytes);
580	dma_sync_single_for_device(hal2->card->dev,
581			hal2->dac.buffer_dma + rec->hw_data, bytes,
582			DMA_TO_DEVICE);
583
584}
585
586static int hal2_playback_ack(struct snd_pcm_substream *substream)
587{
588	struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
589	struct hal2_codec *dac = &hal2->dac;
590
591	return snd_pcm_indirect_playback_transfer(substream,
592						  &dac->pcm_indirect,
593						  hal2_playback_transfer);
 
 
594}
595
596static int hal2_capture_open(struct snd_pcm_substream *substream)
597{
598	struct snd_pcm_runtime *runtime = substream->runtime;
599	struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
 
 
600
601	runtime->hw = hal2_pcm_hw;
602	return hal2_alloc_dmabuf(hal2, &hal2->adc, DMA_FROM_DEVICE);
 
 
 
 
603}
604
605static int hal2_capture_close(struct snd_pcm_substream *substream)
606{
607	struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
608
609	hal2_free_dmabuf(hal2, &hal2->adc, DMA_FROM_DEVICE);
610	return 0;
611}
612
613static int hal2_capture_prepare(struct snd_pcm_substream *substream)
614{
615	struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
616	struct snd_pcm_runtime *runtime = substream->runtime;
617	struct hal2_codec *adc = &hal2->adc;
618
619	adc->voices = runtime->channels;
620	adc->sample_rate = hal2_compute_rate(adc, runtime->rate);
621	memset(&adc->pcm_indirect, 0, sizeof(adc->pcm_indirect));
622	adc->pcm_indirect.hw_buffer_size = H2_BUF_SIZE;
623	adc->pcm_indirect.hw_queue_size = H2_BUF_SIZE / 2;
624	adc->pcm_indirect.hw_io = adc->buffer_dma;
625	adc->pcm_indirect.sw_buffer_size = snd_pcm_lib_buffer_bytes(substream);
626	adc->substream = substream;
627	hal2_setup_adc(hal2);
628	return 0;
629}
630
631static int hal2_capture_trigger(struct snd_pcm_substream *substream, int cmd)
632{
633	struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
634
635	switch (cmd) {
636	case SNDRV_PCM_TRIGGER_START:
 
 
 
637		hal2_start_adc(hal2);
638		break;
639	case SNDRV_PCM_TRIGGER_STOP:
640		hal2_stop_adc(hal2);
641		break;
642	default:
643		return -EINVAL;
644	}
645	return 0;
646}
647
648static snd_pcm_uframes_t
649hal2_capture_pointer(struct snd_pcm_substream *substream)
650{
651	struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
652	struct hal2_codec *adc = &hal2->adc;
653
654	return snd_pcm_indirect_capture_pointer(substream, &adc->pcm_indirect,
655						adc->pbus.pbus->pbdma_bptr);
656}
657
658static void hal2_capture_transfer(struct snd_pcm_substream *substream,
659				  struct snd_pcm_indirect *rec, size_t bytes)
660{
661	struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
662	unsigned char *buf = hal2->adc.buffer + rec->hw_data;
663
664	dma_sync_single_for_cpu(hal2->card->dev,
665			hal2->adc.buffer_dma + rec->hw_data, bytes,
666			DMA_FROM_DEVICE);
667	memcpy(substream->runtime->dma_area + rec->sw_data, buf, bytes);
668}
669
670static int hal2_capture_ack(struct snd_pcm_substream *substream)
671{
672	struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
673	struct hal2_codec *adc = &hal2->adc;
674
675	return snd_pcm_indirect_capture_transfer(substream,
676						 &adc->pcm_indirect,
677						 hal2_capture_transfer);
 
678}
679
680static const struct snd_pcm_ops hal2_playback_ops = {
681	.open =        hal2_playback_open,
682	.close =       hal2_playback_close,
 
 
 
683	.prepare =     hal2_playback_prepare,
684	.trigger =     hal2_playback_trigger,
685	.pointer =     hal2_playback_pointer,
686	.ack =         hal2_playback_ack,
687};
688
689static const struct snd_pcm_ops hal2_capture_ops = {
690	.open =        hal2_capture_open,
691	.close =       hal2_capture_close,
 
 
 
692	.prepare =     hal2_capture_prepare,
693	.trigger =     hal2_capture_trigger,
694	.pointer =     hal2_capture_pointer,
695	.ack =         hal2_capture_ack,
696};
697
698static int hal2_pcm_create(struct snd_hal2 *hal2)
699{
700	struct snd_pcm *pcm;
701	int err;
702
703	/* create first pcm device with one outputs and one input */
704	err = snd_pcm_new(hal2->card, "SGI HAL2 Audio", 0, 1, 1, &pcm);
705	if (err < 0)
706		return err;
707
708	pcm->private_data = hal2;
709	strcpy(pcm->name, "SGI HAL2");
710
711	/* set operators */
712	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK,
713			&hal2_playback_ops);
714	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE,
715			&hal2_capture_ops);
716	snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_CONTINUOUS,
717				       NULL, 0, 1024 * 1024);
 
718
719	return 0;
720}
721
722static int hal2_dev_free(struct snd_device *device)
723{
724	struct snd_hal2 *hal2 = device->device_data;
725
726	free_irq(SGI_HPCDMA_IRQ, hal2);
727	kfree(hal2);
728	return 0;
729}
730
731static const struct snd_device_ops hal2_ops = {
732	.dev_free = hal2_dev_free,
733};
734
735static void hal2_init_codec(struct hal2_codec *codec, struct hpc3_regs *hpc3,
736			    int index)
737{
738	codec->pbus.pbusnr = index;
739	codec->pbus.pbus = &hpc3->pbdma[index];
740}
741
742static int hal2_detect(struct snd_hal2 *hal2)
743{
744	unsigned short board, major, minor;
745	unsigned short rev;
746
747	/* reset HAL2 */
748	hal2_write(0, &hal2->ctl_regs->isr);
749
750	/* release reset */
751	hal2_write(H2_ISR_GLOBAL_RESET_N | H2_ISR_CODEC_RESET_N,
752		   &hal2->ctl_regs->isr);
753
754
755	hal2_i_write16(hal2, H2I_RELAY_C, H2I_RELAY_C_STATE);
756	rev = hal2_read(&hal2->ctl_regs->rev);
757	if (rev & H2_REV_AUDIO_PRESENT)
758		return -ENODEV;
759
760	board = (rev & H2_REV_BOARD_M) >> 12;
761	major = (rev & H2_REV_MAJOR_CHIP_M) >> 4;
762	minor = (rev & H2_REV_MINOR_CHIP_M);
763
764	printk(KERN_INFO "SGI HAL2 revision %i.%i.%i\n",
765	       board, major, minor);
766
767	return 0;
768}
769
770static int hal2_create(struct snd_card *card, struct snd_hal2 **rchip)
771{
772	struct snd_hal2 *hal2;
773	struct hpc3_regs *hpc3 = hpc3c0;
774	int err;
775
776	hal2 = kzalloc(sizeof(*hal2), GFP_KERNEL);
777	if (!hal2)
778		return -ENOMEM;
779
780	hal2->card = card;
781
782	if (request_irq(SGI_HPCDMA_IRQ, hal2_interrupt, IRQF_SHARED,
783			"SGI HAL2", hal2)) {
784		printk(KERN_ERR "HAL2: Can't get irq %d\n", SGI_HPCDMA_IRQ);
785		kfree(hal2);
786		return -EAGAIN;
787	}
788
789	hal2->ctl_regs = (struct hal2_ctl_regs *)hpc3->pbus_extregs[0];
790	hal2->aes_regs = (struct hal2_aes_regs *)hpc3->pbus_extregs[1];
791	hal2->vol_regs = (struct hal2_vol_regs *)hpc3->pbus_extregs[2];
792	hal2->syn_regs = (struct hal2_syn_regs *)hpc3->pbus_extregs[3];
793
794	if (hal2_detect(hal2) < 0) {
795		kfree(hal2);
796		return -ENODEV;
797	}
798
799	hal2_init_codec(&hal2->dac, hpc3, 0);
800	hal2_init_codec(&hal2->adc, hpc3, 1);
801
802	/*
803	 * All DMA channel interfaces in HAL2 are designed to operate with
804	 * PBUS programmed for 2 cycles in D3, 2 cycles in D4 and 2 cycles
805	 * in D5. HAL2 is a 16-bit device which can accept both big and little
806	 * endian format. It assumes that even address bytes are on high
807	 * portion of PBUS (15:8) and assumes that HPC3 is programmed to
808	 * accept a live (unsynchronized) version of P_DREQ_N from HAL2.
809	 */
810#define HAL2_PBUS_DMACFG ((0 << HPC3_DMACFG_D3R_SHIFT) | \
811			  (2 << HPC3_DMACFG_D4R_SHIFT) | \
812			  (2 << HPC3_DMACFG_D5R_SHIFT) | \
813			  (0 << HPC3_DMACFG_D3W_SHIFT) | \
814			  (2 << HPC3_DMACFG_D4W_SHIFT) | \
815			  (2 << HPC3_DMACFG_D5W_SHIFT) | \
816				HPC3_DMACFG_DS16 | \
817				HPC3_DMACFG_EVENHI | \
818				HPC3_DMACFG_RTIME | \
819			  (8 << HPC3_DMACFG_BURST_SHIFT) | \
820				HPC3_DMACFG_DRQLIVE)
821	/*
822	 * Ignore what's mentioned in the specification and write value which
823	 * works in The Real World (TM)
824	 */
825	hpc3->pbus_dmacfg[hal2->dac.pbus.pbusnr][0] = 0x8208844;
826	hpc3->pbus_dmacfg[hal2->adc.pbus.pbusnr][0] = 0x8208844;
827
828	err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, hal2, &hal2_ops);
829	if (err < 0) {
830		free_irq(SGI_HPCDMA_IRQ, hal2);
831		kfree(hal2);
832		return err;
833	}
834	*rchip = hal2;
835	return 0;
836}
837
838static int hal2_probe(struct platform_device *pdev)
839{
840	struct snd_card *card;
841	struct snd_hal2 *chip;
842	int err;
843
844	err = snd_card_new(&pdev->dev, index, id, THIS_MODULE, 0, &card);
845	if (err < 0)
846		return err;
847
848	err = hal2_create(card, &chip);
849	if (err < 0) {
850		snd_card_free(card);
851		return err;
852	}
853
854	err = hal2_pcm_create(chip);
855	if (err < 0) {
856		snd_card_free(card);
857		return err;
858	}
859	err = hal2_mixer_create(chip);
860	if (err < 0) {
861		snd_card_free(card);
862		return err;
863	}
864
865	strcpy(card->driver, "SGI HAL2 Audio");
866	strcpy(card->shortname, "SGI HAL2 Audio");
867	sprintf(card->longname, "%s irq %i",
868		card->shortname,
869		SGI_HPCDMA_IRQ);
870
871	err = snd_card_register(card);
872	if (err < 0) {
873		snd_card_free(card);
874		return err;
875	}
876	platform_set_drvdata(pdev, card);
877	return 0;
878}
879
880static void hal2_remove(struct platform_device *pdev)
881{
882	struct snd_card *card = platform_get_drvdata(pdev);
883
884	snd_card_free(card);
 
885}
886
887static struct platform_driver hal2_driver = {
888	.probe	= hal2_probe,
889	.remove = hal2_remove,
890	.driver = {
891		.name	= "sgihal2",
892	}
893};
894
895module_platform_driver(hal2_driver);