Loading...
1/*
2 * Copyright (C) 2006 - 2007 Ivo van Doorn
3 * Copyright (C) 2007 Dmitry Torokhov
4 * Copyright 2009 Johannes Berg <johannes@sipsolutions.net>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20#include <linux/kernel.h>
21#include <linux/module.h>
22#include <linux/init.h>
23#include <linux/workqueue.h>
24#include <linux/capability.h>
25#include <linux/list.h>
26#include <linux/mutex.h>
27#include <linux/rfkill.h>
28#include <linux/sched.h>
29#include <linux/spinlock.h>
30#include <linux/device.h>
31#include <linux/miscdevice.h>
32#include <linux/wait.h>
33#include <linux/poll.h>
34#include <linux/fs.h>
35#include <linux/slab.h>
36
37#include "rfkill.h"
38
39#define POLL_INTERVAL (5 * HZ)
40
41#define RFKILL_BLOCK_HW BIT(0)
42#define RFKILL_BLOCK_SW BIT(1)
43#define RFKILL_BLOCK_SW_PREV BIT(2)
44#define RFKILL_BLOCK_ANY (RFKILL_BLOCK_HW |\
45 RFKILL_BLOCK_SW |\
46 RFKILL_BLOCK_SW_PREV)
47#define RFKILL_BLOCK_SW_SETCALL BIT(31)
48
49struct rfkill {
50 spinlock_t lock;
51
52 enum rfkill_type type;
53
54 unsigned long state;
55
56 u32 idx;
57
58 bool registered;
59 bool persistent;
60 bool polling_paused;
61 bool suspended;
62
63 const struct rfkill_ops *ops;
64 void *data;
65
66#ifdef CONFIG_RFKILL_LEDS
67 struct led_trigger led_trigger;
68 const char *ledtrigname;
69#endif
70
71 struct device dev;
72 struct list_head node;
73
74 struct delayed_work poll_work;
75 struct work_struct uevent_work;
76 struct work_struct sync_work;
77 char name[];
78};
79#define to_rfkill(d) container_of(d, struct rfkill, dev)
80
81struct rfkill_int_event {
82 struct list_head list;
83 struct rfkill_event ev;
84};
85
86struct rfkill_data {
87 struct list_head list;
88 struct list_head events;
89 struct mutex mtx;
90 wait_queue_head_t read_wait;
91 bool input_handler;
92};
93
94
95MODULE_AUTHOR("Ivo van Doorn <IvDoorn@gmail.com>");
96MODULE_AUTHOR("Johannes Berg <johannes@sipsolutions.net>");
97MODULE_DESCRIPTION("RF switch support");
98MODULE_LICENSE("GPL");
99
100
101/*
102 * The locking here should be made much smarter, we currently have
103 * a bit of a stupid situation because drivers might want to register
104 * the rfkill struct under their own lock, and take this lock during
105 * rfkill method calls -- which will cause an AB-BA deadlock situation.
106 *
107 * To fix that, we need to rework this code here to be mostly lock-free
108 * and only use the mutex for list manipulations, not to protect the
109 * various other global variables. Then we can avoid holding the mutex
110 * around driver operations, and all is happy.
111 */
112static LIST_HEAD(rfkill_list); /* list of registered rf switches */
113static DEFINE_MUTEX(rfkill_global_mutex);
114static LIST_HEAD(rfkill_fds); /* list of open fds of /dev/rfkill */
115
116static unsigned int rfkill_default_state = 1;
117module_param_named(default_state, rfkill_default_state, uint, 0444);
118MODULE_PARM_DESC(default_state,
119 "Default initial state for all radio types, 0 = radio off");
120
121static struct {
122 bool cur, sav;
123} rfkill_global_states[NUM_RFKILL_TYPES];
124
125static bool rfkill_epo_lock_active;
126
127
128#ifdef CONFIG_RFKILL_LEDS
129static void rfkill_led_trigger_event(struct rfkill *rfkill)
130{
131 struct led_trigger *trigger;
132
133 if (!rfkill->registered)
134 return;
135
136 trigger = &rfkill->led_trigger;
137
138 if (rfkill->state & RFKILL_BLOCK_ANY)
139 led_trigger_event(trigger, LED_OFF);
140 else
141 led_trigger_event(trigger, LED_FULL);
142}
143
144static void rfkill_led_trigger_activate(struct led_classdev *led)
145{
146 struct rfkill *rfkill;
147
148 rfkill = container_of(led->trigger, struct rfkill, led_trigger);
149
150 rfkill_led_trigger_event(rfkill);
151}
152
153const char *rfkill_get_led_trigger_name(struct rfkill *rfkill)
154{
155 return rfkill->led_trigger.name;
156}
157EXPORT_SYMBOL(rfkill_get_led_trigger_name);
158
159void rfkill_set_led_trigger_name(struct rfkill *rfkill, const char *name)
160{
161 BUG_ON(!rfkill);
162
163 rfkill->ledtrigname = name;
164}
165EXPORT_SYMBOL(rfkill_set_led_trigger_name);
166
167static int rfkill_led_trigger_register(struct rfkill *rfkill)
168{
169 rfkill->led_trigger.name = rfkill->ledtrigname
170 ? : dev_name(&rfkill->dev);
171 rfkill->led_trigger.activate = rfkill_led_trigger_activate;
172 return led_trigger_register(&rfkill->led_trigger);
173}
174
175static void rfkill_led_trigger_unregister(struct rfkill *rfkill)
176{
177 led_trigger_unregister(&rfkill->led_trigger);
178}
179#else
180static void rfkill_led_trigger_event(struct rfkill *rfkill)
181{
182}
183
184static inline int rfkill_led_trigger_register(struct rfkill *rfkill)
185{
186 return 0;
187}
188
189static inline void rfkill_led_trigger_unregister(struct rfkill *rfkill)
190{
191}
192#endif /* CONFIG_RFKILL_LEDS */
193
194static void rfkill_fill_event(struct rfkill_event *ev, struct rfkill *rfkill,
195 enum rfkill_operation op)
196{
197 unsigned long flags;
198
199 ev->idx = rfkill->idx;
200 ev->type = rfkill->type;
201 ev->op = op;
202
203 spin_lock_irqsave(&rfkill->lock, flags);
204 ev->hard = !!(rfkill->state & RFKILL_BLOCK_HW);
205 ev->soft = !!(rfkill->state & (RFKILL_BLOCK_SW |
206 RFKILL_BLOCK_SW_PREV));
207 spin_unlock_irqrestore(&rfkill->lock, flags);
208}
209
210static void rfkill_send_events(struct rfkill *rfkill, enum rfkill_operation op)
211{
212 struct rfkill_data *data;
213 struct rfkill_int_event *ev;
214
215 list_for_each_entry(data, &rfkill_fds, list) {
216 ev = kzalloc(sizeof(*ev), GFP_KERNEL);
217 if (!ev)
218 continue;
219 rfkill_fill_event(&ev->ev, rfkill, op);
220 mutex_lock(&data->mtx);
221 list_add_tail(&ev->list, &data->events);
222 mutex_unlock(&data->mtx);
223 wake_up_interruptible(&data->read_wait);
224 }
225}
226
227static void rfkill_event(struct rfkill *rfkill)
228{
229 if (!rfkill->registered)
230 return;
231
232 kobject_uevent(&rfkill->dev.kobj, KOBJ_CHANGE);
233
234 /* also send event to /dev/rfkill */
235 rfkill_send_events(rfkill, RFKILL_OP_CHANGE);
236}
237
238/**
239 * rfkill_set_block - wrapper for set_block method
240 *
241 * @rfkill: the rfkill struct to use
242 * @blocked: the new software state
243 *
244 * Calls the set_block method (when applicable) and handles notifications
245 * etc. as well.
246 */
247static void rfkill_set_block(struct rfkill *rfkill, bool blocked)
248{
249 unsigned long flags;
250 bool prev, curr;
251 int err;
252
253 if (unlikely(rfkill->dev.power.power_state.event & PM_EVENT_SLEEP))
254 return;
255
256 /*
257 * Some platforms (...!) generate input events which affect the
258 * _hard_ kill state -- whenever something tries to change the
259 * current software state query the hardware state too.
260 */
261 if (rfkill->ops->query)
262 rfkill->ops->query(rfkill, rfkill->data);
263
264 spin_lock_irqsave(&rfkill->lock, flags);
265 prev = rfkill->state & RFKILL_BLOCK_SW;
266
267 if (prev)
268 rfkill->state |= RFKILL_BLOCK_SW_PREV;
269 else
270 rfkill->state &= ~RFKILL_BLOCK_SW_PREV;
271
272 if (blocked)
273 rfkill->state |= RFKILL_BLOCK_SW;
274 else
275 rfkill->state &= ~RFKILL_BLOCK_SW;
276
277 rfkill->state |= RFKILL_BLOCK_SW_SETCALL;
278 spin_unlock_irqrestore(&rfkill->lock, flags);
279
280 err = rfkill->ops->set_block(rfkill->data, blocked);
281
282 spin_lock_irqsave(&rfkill->lock, flags);
283 if (err) {
284 /*
285 * Failed -- reset status to _PREV, which may be different
286 * from what we have set _PREV to earlier in this function
287 * if rfkill_set_sw_state was invoked.
288 */
289 if (rfkill->state & RFKILL_BLOCK_SW_PREV)
290 rfkill->state |= RFKILL_BLOCK_SW;
291 else
292 rfkill->state &= ~RFKILL_BLOCK_SW;
293 }
294 rfkill->state &= ~RFKILL_BLOCK_SW_SETCALL;
295 rfkill->state &= ~RFKILL_BLOCK_SW_PREV;
296 curr = rfkill->state & RFKILL_BLOCK_SW;
297 spin_unlock_irqrestore(&rfkill->lock, flags);
298
299 rfkill_led_trigger_event(rfkill);
300
301 if (prev != curr)
302 rfkill_event(rfkill);
303}
304
305static void rfkill_update_global_state(enum rfkill_type type, bool blocked)
306{
307 int i;
308
309 if (type != RFKILL_TYPE_ALL) {
310 rfkill_global_states[type].cur = blocked;
311 return;
312 }
313
314 for (i = 0; i < NUM_RFKILL_TYPES; i++)
315 rfkill_global_states[i].cur = blocked;
316}
317
318#ifdef CONFIG_RFKILL_INPUT
319static atomic_t rfkill_input_disabled = ATOMIC_INIT(0);
320
321/**
322 * __rfkill_switch_all - Toggle state of all switches of given type
323 * @type: type of interfaces to be affected
324 * @blocked: the new state
325 *
326 * This function sets the state of all switches of given type,
327 * unless a specific switch is suspended.
328 *
329 * Caller must have acquired rfkill_global_mutex.
330 */
331static void __rfkill_switch_all(const enum rfkill_type type, bool blocked)
332{
333 struct rfkill *rfkill;
334
335 rfkill_update_global_state(type, blocked);
336 list_for_each_entry(rfkill, &rfkill_list, node) {
337 if (rfkill->type != type && type != RFKILL_TYPE_ALL)
338 continue;
339
340 rfkill_set_block(rfkill, blocked);
341 }
342}
343
344/**
345 * rfkill_switch_all - Toggle state of all switches of given type
346 * @type: type of interfaces to be affected
347 * @blocked: the new state
348 *
349 * Acquires rfkill_global_mutex and calls __rfkill_switch_all(@type, @state).
350 * Please refer to __rfkill_switch_all() for details.
351 *
352 * Does nothing if the EPO lock is active.
353 */
354void rfkill_switch_all(enum rfkill_type type, bool blocked)
355{
356 if (atomic_read(&rfkill_input_disabled))
357 return;
358
359 mutex_lock(&rfkill_global_mutex);
360
361 if (!rfkill_epo_lock_active)
362 __rfkill_switch_all(type, blocked);
363
364 mutex_unlock(&rfkill_global_mutex);
365}
366
367/**
368 * rfkill_epo - emergency power off all transmitters
369 *
370 * This kicks all non-suspended rfkill devices to RFKILL_STATE_SOFT_BLOCKED,
371 * ignoring everything in its path but rfkill_global_mutex and rfkill->mutex.
372 *
373 * The global state before the EPO is saved and can be restored later
374 * using rfkill_restore_states().
375 */
376void rfkill_epo(void)
377{
378 struct rfkill *rfkill;
379 int i;
380
381 if (atomic_read(&rfkill_input_disabled))
382 return;
383
384 mutex_lock(&rfkill_global_mutex);
385
386 rfkill_epo_lock_active = true;
387 list_for_each_entry(rfkill, &rfkill_list, node)
388 rfkill_set_block(rfkill, true);
389
390 for (i = 0; i < NUM_RFKILL_TYPES; i++) {
391 rfkill_global_states[i].sav = rfkill_global_states[i].cur;
392 rfkill_global_states[i].cur = true;
393 }
394
395 mutex_unlock(&rfkill_global_mutex);
396}
397
398/**
399 * rfkill_restore_states - restore global states
400 *
401 * Restore (and sync switches to) the global state from the
402 * states in rfkill_default_states. This can undo the effects of
403 * a call to rfkill_epo().
404 */
405void rfkill_restore_states(void)
406{
407 int i;
408
409 if (atomic_read(&rfkill_input_disabled))
410 return;
411
412 mutex_lock(&rfkill_global_mutex);
413
414 rfkill_epo_lock_active = false;
415 for (i = 0; i < NUM_RFKILL_TYPES; i++)
416 __rfkill_switch_all(i, rfkill_global_states[i].sav);
417 mutex_unlock(&rfkill_global_mutex);
418}
419
420/**
421 * rfkill_remove_epo_lock - unlock state changes
422 *
423 * Used by rfkill-input manually unlock state changes, when
424 * the EPO switch is deactivated.
425 */
426void rfkill_remove_epo_lock(void)
427{
428 if (atomic_read(&rfkill_input_disabled))
429 return;
430
431 mutex_lock(&rfkill_global_mutex);
432 rfkill_epo_lock_active = false;
433 mutex_unlock(&rfkill_global_mutex);
434}
435
436/**
437 * rfkill_is_epo_lock_active - returns true EPO is active
438 *
439 * Returns 0 (false) if there is NOT an active EPO contidion,
440 * and 1 (true) if there is an active EPO contition, which
441 * locks all radios in one of the BLOCKED states.
442 *
443 * Can be called in atomic context.
444 */
445bool rfkill_is_epo_lock_active(void)
446{
447 return rfkill_epo_lock_active;
448}
449
450/**
451 * rfkill_get_global_sw_state - returns global state for a type
452 * @type: the type to get the global state of
453 *
454 * Returns the current global state for a given wireless
455 * device type.
456 */
457bool rfkill_get_global_sw_state(const enum rfkill_type type)
458{
459 return rfkill_global_states[type].cur;
460}
461#endif
462
463bool rfkill_set_hw_state(struct rfkill *rfkill, bool blocked)
464{
465 unsigned long flags;
466 bool ret, prev;
467
468 BUG_ON(!rfkill);
469
470 spin_lock_irqsave(&rfkill->lock, flags);
471 prev = !!(rfkill->state & RFKILL_BLOCK_HW);
472 if (blocked)
473 rfkill->state |= RFKILL_BLOCK_HW;
474 else
475 rfkill->state &= ~RFKILL_BLOCK_HW;
476 ret = !!(rfkill->state & RFKILL_BLOCK_ANY);
477 spin_unlock_irqrestore(&rfkill->lock, flags);
478
479 rfkill_led_trigger_event(rfkill);
480
481 if (!rfkill->registered)
482 return ret;
483
484 if (prev != blocked)
485 schedule_work(&rfkill->uevent_work);
486
487 return ret;
488}
489EXPORT_SYMBOL(rfkill_set_hw_state);
490
491static void __rfkill_set_sw_state(struct rfkill *rfkill, bool blocked)
492{
493 u32 bit = RFKILL_BLOCK_SW;
494
495 /* if in a ops->set_block right now, use other bit */
496 if (rfkill->state & RFKILL_BLOCK_SW_SETCALL)
497 bit = RFKILL_BLOCK_SW_PREV;
498
499 if (blocked)
500 rfkill->state |= bit;
501 else
502 rfkill->state &= ~bit;
503}
504
505bool rfkill_set_sw_state(struct rfkill *rfkill, bool blocked)
506{
507 unsigned long flags;
508 bool prev, hwblock;
509
510 BUG_ON(!rfkill);
511
512 spin_lock_irqsave(&rfkill->lock, flags);
513 prev = !!(rfkill->state & RFKILL_BLOCK_SW);
514 __rfkill_set_sw_state(rfkill, blocked);
515 hwblock = !!(rfkill->state & RFKILL_BLOCK_HW);
516 blocked = blocked || hwblock;
517 spin_unlock_irqrestore(&rfkill->lock, flags);
518
519 if (!rfkill->registered)
520 return blocked;
521
522 if (prev != blocked && !hwblock)
523 schedule_work(&rfkill->uevent_work);
524
525 rfkill_led_trigger_event(rfkill);
526
527 return blocked;
528}
529EXPORT_SYMBOL(rfkill_set_sw_state);
530
531void rfkill_init_sw_state(struct rfkill *rfkill, bool blocked)
532{
533 unsigned long flags;
534
535 BUG_ON(!rfkill);
536 BUG_ON(rfkill->registered);
537
538 spin_lock_irqsave(&rfkill->lock, flags);
539 __rfkill_set_sw_state(rfkill, blocked);
540 rfkill->persistent = true;
541 spin_unlock_irqrestore(&rfkill->lock, flags);
542}
543EXPORT_SYMBOL(rfkill_init_sw_state);
544
545void rfkill_set_states(struct rfkill *rfkill, bool sw, bool hw)
546{
547 unsigned long flags;
548 bool swprev, hwprev;
549
550 BUG_ON(!rfkill);
551
552 spin_lock_irqsave(&rfkill->lock, flags);
553
554 /*
555 * No need to care about prev/setblock ... this is for uevent only
556 * and that will get triggered by rfkill_set_block anyway.
557 */
558 swprev = !!(rfkill->state & RFKILL_BLOCK_SW);
559 hwprev = !!(rfkill->state & RFKILL_BLOCK_HW);
560 __rfkill_set_sw_state(rfkill, sw);
561 if (hw)
562 rfkill->state |= RFKILL_BLOCK_HW;
563 else
564 rfkill->state &= ~RFKILL_BLOCK_HW;
565
566 spin_unlock_irqrestore(&rfkill->lock, flags);
567
568 if (!rfkill->registered) {
569 rfkill->persistent = true;
570 } else {
571 if (swprev != sw || hwprev != hw)
572 schedule_work(&rfkill->uevent_work);
573
574 rfkill_led_trigger_event(rfkill);
575 }
576}
577EXPORT_SYMBOL(rfkill_set_states);
578
579static const char * const rfkill_types[] = {
580 NULL, /* RFKILL_TYPE_ALL */
581 "wlan",
582 "bluetooth",
583 "ultrawideband",
584 "wimax",
585 "wwan",
586 "gps",
587 "fm",
588 "nfc",
589};
590
591enum rfkill_type rfkill_find_type(const char *name)
592{
593 int i;
594
595 BUILD_BUG_ON(ARRAY_SIZE(rfkill_types) != NUM_RFKILL_TYPES);
596
597 if (!name)
598 return RFKILL_TYPE_ALL;
599
600 for (i = 1; i < NUM_RFKILL_TYPES; i++)
601 if (!strcmp(name, rfkill_types[i]))
602 return i;
603 return RFKILL_TYPE_ALL;
604}
605EXPORT_SYMBOL(rfkill_find_type);
606
607static ssize_t name_show(struct device *dev, struct device_attribute *attr,
608 char *buf)
609{
610 struct rfkill *rfkill = to_rfkill(dev);
611
612 return sprintf(buf, "%s\n", rfkill->name);
613}
614static DEVICE_ATTR_RO(name);
615
616static ssize_t type_show(struct device *dev, struct device_attribute *attr,
617 char *buf)
618{
619 struct rfkill *rfkill = to_rfkill(dev);
620
621 return sprintf(buf, "%s\n", rfkill_types[rfkill->type]);
622}
623static DEVICE_ATTR_RO(type);
624
625static ssize_t index_show(struct device *dev, struct device_attribute *attr,
626 char *buf)
627{
628 struct rfkill *rfkill = to_rfkill(dev);
629
630 return sprintf(buf, "%d\n", rfkill->idx);
631}
632static DEVICE_ATTR_RO(index);
633
634static ssize_t persistent_show(struct device *dev,
635 struct device_attribute *attr, char *buf)
636{
637 struct rfkill *rfkill = to_rfkill(dev);
638
639 return sprintf(buf, "%d\n", rfkill->persistent);
640}
641static DEVICE_ATTR_RO(persistent);
642
643static ssize_t hard_show(struct device *dev, struct device_attribute *attr,
644 char *buf)
645{
646 struct rfkill *rfkill = to_rfkill(dev);
647
648 return sprintf(buf, "%d\n", (rfkill->state & RFKILL_BLOCK_HW) ? 1 : 0 );
649}
650static DEVICE_ATTR_RO(hard);
651
652static ssize_t soft_show(struct device *dev, struct device_attribute *attr,
653 char *buf)
654{
655 struct rfkill *rfkill = to_rfkill(dev);
656
657 return sprintf(buf, "%d\n", (rfkill->state & RFKILL_BLOCK_SW) ? 1 : 0 );
658}
659
660static ssize_t soft_store(struct device *dev, struct device_attribute *attr,
661 const char *buf, size_t count)
662{
663 struct rfkill *rfkill = to_rfkill(dev);
664 unsigned long state;
665 int err;
666
667 if (!capable(CAP_NET_ADMIN))
668 return -EPERM;
669
670 err = kstrtoul(buf, 0, &state);
671 if (err)
672 return err;
673
674 if (state > 1 )
675 return -EINVAL;
676
677 mutex_lock(&rfkill_global_mutex);
678 rfkill_set_block(rfkill, state);
679 mutex_unlock(&rfkill_global_mutex);
680
681 return count;
682}
683static DEVICE_ATTR_RW(soft);
684
685static u8 user_state_from_blocked(unsigned long state)
686{
687 if (state & RFKILL_BLOCK_HW)
688 return RFKILL_USER_STATE_HARD_BLOCKED;
689 if (state & RFKILL_BLOCK_SW)
690 return RFKILL_USER_STATE_SOFT_BLOCKED;
691
692 return RFKILL_USER_STATE_UNBLOCKED;
693}
694
695static ssize_t state_show(struct device *dev, struct device_attribute *attr,
696 char *buf)
697{
698 struct rfkill *rfkill = to_rfkill(dev);
699
700 return sprintf(buf, "%d\n", user_state_from_blocked(rfkill->state));
701}
702
703static ssize_t state_store(struct device *dev, struct device_attribute *attr,
704 const char *buf, size_t count)
705{
706 struct rfkill *rfkill = to_rfkill(dev);
707 unsigned long state;
708 int err;
709
710 if (!capable(CAP_NET_ADMIN))
711 return -EPERM;
712
713 err = kstrtoul(buf, 0, &state);
714 if (err)
715 return err;
716
717 if (state != RFKILL_USER_STATE_SOFT_BLOCKED &&
718 state != RFKILL_USER_STATE_UNBLOCKED)
719 return -EINVAL;
720
721 mutex_lock(&rfkill_global_mutex);
722 rfkill_set_block(rfkill, state == RFKILL_USER_STATE_SOFT_BLOCKED);
723 mutex_unlock(&rfkill_global_mutex);
724
725 return count;
726}
727static DEVICE_ATTR_RW(state);
728
729static struct attribute *rfkill_dev_attrs[] = {
730 &dev_attr_name.attr,
731 &dev_attr_type.attr,
732 &dev_attr_index.attr,
733 &dev_attr_persistent.attr,
734 &dev_attr_state.attr,
735 &dev_attr_soft.attr,
736 &dev_attr_hard.attr,
737 NULL,
738};
739ATTRIBUTE_GROUPS(rfkill_dev);
740
741static void rfkill_release(struct device *dev)
742{
743 struct rfkill *rfkill = to_rfkill(dev);
744
745 kfree(rfkill);
746}
747
748static int rfkill_dev_uevent(struct device *dev, struct kobj_uevent_env *env)
749{
750 struct rfkill *rfkill = to_rfkill(dev);
751 unsigned long flags;
752 u32 state;
753 int error;
754
755 error = add_uevent_var(env, "RFKILL_NAME=%s", rfkill->name);
756 if (error)
757 return error;
758 error = add_uevent_var(env, "RFKILL_TYPE=%s",
759 rfkill_types[rfkill->type]);
760 if (error)
761 return error;
762 spin_lock_irqsave(&rfkill->lock, flags);
763 state = rfkill->state;
764 spin_unlock_irqrestore(&rfkill->lock, flags);
765 error = add_uevent_var(env, "RFKILL_STATE=%d",
766 user_state_from_blocked(state));
767 return error;
768}
769
770void rfkill_pause_polling(struct rfkill *rfkill)
771{
772 BUG_ON(!rfkill);
773
774 if (!rfkill->ops->poll)
775 return;
776
777 rfkill->polling_paused = true;
778 cancel_delayed_work_sync(&rfkill->poll_work);
779}
780EXPORT_SYMBOL(rfkill_pause_polling);
781
782void rfkill_resume_polling(struct rfkill *rfkill)
783{
784 BUG_ON(!rfkill);
785
786 if (!rfkill->ops->poll)
787 return;
788
789 rfkill->polling_paused = false;
790
791 if (rfkill->suspended)
792 return;
793
794 queue_delayed_work(system_power_efficient_wq,
795 &rfkill->poll_work, 0);
796}
797EXPORT_SYMBOL(rfkill_resume_polling);
798
799#ifdef CONFIG_PM_SLEEP
800static int rfkill_suspend(struct device *dev)
801{
802 struct rfkill *rfkill = to_rfkill(dev);
803
804 rfkill->suspended = true;
805 cancel_delayed_work_sync(&rfkill->poll_work);
806
807 return 0;
808}
809
810static int rfkill_resume(struct device *dev)
811{
812 struct rfkill *rfkill = to_rfkill(dev);
813 bool cur;
814
815 rfkill->suspended = false;
816
817 if (!rfkill->persistent) {
818 cur = !!(rfkill->state & RFKILL_BLOCK_SW);
819 rfkill_set_block(rfkill, cur);
820 }
821
822 if (rfkill->ops->poll && !rfkill->polling_paused)
823 queue_delayed_work(system_power_efficient_wq,
824 &rfkill->poll_work, 0);
825
826 return 0;
827}
828
829static SIMPLE_DEV_PM_OPS(rfkill_pm_ops, rfkill_suspend, rfkill_resume);
830#define RFKILL_PM_OPS (&rfkill_pm_ops)
831#else
832#define RFKILL_PM_OPS NULL
833#endif
834
835static struct class rfkill_class = {
836 .name = "rfkill",
837 .dev_release = rfkill_release,
838 .dev_groups = rfkill_dev_groups,
839 .dev_uevent = rfkill_dev_uevent,
840 .pm = RFKILL_PM_OPS,
841};
842
843bool rfkill_blocked(struct rfkill *rfkill)
844{
845 unsigned long flags;
846 u32 state;
847
848 spin_lock_irqsave(&rfkill->lock, flags);
849 state = rfkill->state;
850 spin_unlock_irqrestore(&rfkill->lock, flags);
851
852 return !!(state & RFKILL_BLOCK_ANY);
853}
854EXPORT_SYMBOL(rfkill_blocked);
855
856
857struct rfkill * __must_check rfkill_alloc(const char *name,
858 struct device *parent,
859 const enum rfkill_type type,
860 const struct rfkill_ops *ops,
861 void *ops_data)
862{
863 struct rfkill *rfkill;
864 struct device *dev;
865
866 if (WARN_ON(!ops))
867 return NULL;
868
869 if (WARN_ON(!ops->set_block))
870 return NULL;
871
872 if (WARN_ON(!name))
873 return NULL;
874
875 if (WARN_ON(type == RFKILL_TYPE_ALL || type >= NUM_RFKILL_TYPES))
876 return NULL;
877
878 rfkill = kzalloc(sizeof(*rfkill) + strlen(name) + 1, GFP_KERNEL);
879 if (!rfkill)
880 return NULL;
881
882 spin_lock_init(&rfkill->lock);
883 INIT_LIST_HEAD(&rfkill->node);
884 rfkill->type = type;
885 strcpy(rfkill->name, name);
886 rfkill->ops = ops;
887 rfkill->data = ops_data;
888
889 dev = &rfkill->dev;
890 dev->class = &rfkill_class;
891 dev->parent = parent;
892 device_initialize(dev);
893
894 return rfkill;
895}
896EXPORT_SYMBOL(rfkill_alloc);
897
898static void rfkill_poll(struct work_struct *work)
899{
900 struct rfkill *rfkill;
901
902 rfkill = container_of(work, struct rfkill, poll_work.work);
903
904 /*
905 * Poll hardware state -- driver will use one of the
906 * rfkill_set{,_hw,_sw}_state functions and use its
907 * return value to update the current status.
908 */
909 rfkill->ops->poll(rfkill, rfkill->data);
910
911 queue_delayed_work(system_power_efficient_wq,
912 &rfkill->poll_work,
913 round_jiffies_relative(POLL_INTERVAL));
914}
915
916static void rfkill_uevent_work(struct work_struct *work)
917{
918 struct rfkill *rfkill;
919
920 rfkill = container_of(work, struct rfkill, uevent_work);
921
922 mutex_lock(&rfkill_global_mutex);
923 rfkill_event(rfkill);
924 mutex_unlock(&rfkill_global_mutex);
925}
926
927static void rfkill_sync_work(struct work_struct *work)
928{
929 struct rfkill *rfkill;
930 bool cur;
931
932 rfkill = container_of(work, struct rfkill, sync_work);
933
934 mutex_lock(&rfkill_global_mutex);
935 cur = rfkill_global_states[rfkill->type].cur;
936 rfkill_set_block(rfkill, cur);
937 mutex_unlock(&rfkill_global_mutex);
938}
939
940int __must_check rfkill_register(struct rfkill *rfkill)
941{
942 static unsigned long rfkill_no;
943 struct device *dev = &rfkill->dev;
944 int error;
945
946 BUG_ON(!rfkill);
947
948 mutex_lock(&rfkill_global_mutex);
949
950 if (rfkill->registered) {
951 error = -EALREADY;
952 goto unlock;
953 }
954
955 rfkill->idx = rfkill_no;
956 dev_set_name(dev, "rfkill%lu", rfkill_no);
957 rfkill_no++;
958
959 list_add_tail(&rfkill->node, &rfkill_list);
960
961 error = device_add(dev);
962 if (error)
963 goto remove;
964
965 error = rfkill_led_trigger_register(rfkill);
966 if (error)
967 goto devdel;
968
969 rfkill->registered = true;
970
971 INIT_DELAYED_WORK(&rfkill->poll_work, rfkill_poll);
972 INIT_WORK(&rfkill->uevent_work, rfkill_uevent_work);
973 INIT_WORK(&rfkill->sync_work, rfkill_sync_work);
974
975 if (rfkill->ops->poll)
976 queue_delayed_work(system_power_efficient_wq,
977 &rfkill->poll_work,
978 round_jiffies_relative(POLL_INTERVAL));
979
980 if (!rfkill->persistent || rfkill_epo_lock_active) {
981 schedule_work(&rfkill->sync_work);
982 } else {
983#ifdef CONFIG_RFKILL_INPUT
984 bool soft_blocked = !!(rfkill->state & RFKILL_BLOCK_SW);
985
986 if (!atomic_read(&rfkill_input_disabled))
987 __rfkill_switch_all(rfkill->type, soft_blocked);
988#endif
989 }
990
991 rfkill_send_events(rfkill, RFKILL_OP_ADD);
992
993 mutex_unlock(&rfkill_global_mutex);
994 return 0;
995
996 devdel:
997 device_del(&rfkill->dev);
998 remove:
999 list_del_init(&rfkill->node);
1000 unlock:
1001 mutex_unlock(&rfkill_global_mutex);
1002 return error;
1003}
1004EXPORT_SYMBOL(rfkill_register);
1005
1006void rfkill_unregister(struct rfkill *rfkill)
1007{
1008 BUG_ON(!rfkill);
1009
1010 if (rfkill->ops->poll)
1011 cancel_delayed_work_sync(&rfkill->poll_work);
1012
1013 cancel_work_sync(&rfkill->uevent_work);
1014 cancel_work_sync(&rfkill->sync_work);
1015
1016 rfkill->registered = false;
1017
1018 device_del(&rfkill->dev);
1019
1020 mutex_lock(&rfkill_global_mutex);
1021 rfkill_send_events(rfkill, RFKILL_OP_DEL);
1022 list_del_init(&rfkill->node);
1023 mutex_unlock(&rfkill_global_mutex);
1024
1025 rfkill_led_trigger_unregister(rfkill);
1026}
1027EXPORT_SYMBOL(rfkill_unregister);
1028
1029void rfkill_destroy(struct rfkill *rfkill)
1030{
1031 if (rfkill)
1032 put_device(&rfkill->dev);
1033}
1034EXPORT_SYMBOL(rfkill_destroy);
1035
1036static int rfkill_fop_open(struct inode *inode, struct file *file)
1037{
1038 struct rfkill_data *data;
1039 struct rfkill *rfkill;
1040 struct rfkill_int_event *ev, *tmp;
1041
1042 data = kzalloc(sizeof(*data), GFP_KERNEL);
1043 if (!data)
1044 return -ENOMEM;
1045
1046 INIT_LIST_HEAD(&data->events);
1047 mutex_init(&data->mtx);
1048 init_waitqueue_head(&data->read_wait);
1049
1050 mutex_lock(&rfkill_global_mutex);
1051 mutex_lock(&data->mtx);
1052 /*
1053 * start getting events from elsewhere but hold mtx to get
1054 * startup events added first
1055 */
1056
1057 list_for_each_entry(rfkill, &rfkill_list, node) {
1058 ev = kzalloc(sizeof(*ev), GFP_KERNEL);
1059 if (!ev)
1060 goto free;
1061 rfkill_fill_event(&ev->ev, rfkill, RFKILL_OP_ADD);
1062 list_add_tail(&ev->list, &data->events);
1063 }
1064 list_add(&data->list, &rfkill_fds);
1065 mutex_unlock(&data->mtx);
1066 mutex_unlock(&rfkill_global_mutex);
1067
1068 file->private_data = data;
1069
1070 return nonseekable_open(inode, file);
1071
1072 free:
1073 mutex_unlock(&data->mtx);
1074 mutex_unlock(&rfkill_global_mutex);
1075 mutex_destroy(&data->mtx);
1076 list_for_each_entry_safe(ev, tmp, &data->events, list)
1077 kfree(ev);
1078 kfree(data);
1079 return -ENOMEM;
1080}
1081
1082static unsigned int rfkill_fop_poll(struct file *file, poll_table *wait)
1083{
1084 struct rfkill_data *data = file->private_data;
1085 unsigned int res = POLLOUT | POLLWRNORM;
1086
1087 poll_wait(file, &data->read_wait, wait);
1088
1089 mutex_lock(&data->mtx);
1090 if (!list_empty(&data->events))
1091 res = POLLIN | POLLRDNORM;
1092 mutex_unlock(&data->mtx);
1093
1094 return res;
1095}
1096
1097static ssize_t rfkill_fop_read(struct file *file, char __user *buf,
1098 size_t count, loff_t *pos)
1099{
1100 struct rfkill_data *data = file->private_data;
1101 struct rfkill_int_event *ev;
1102 unsigned long sz;
1103 int ret;
1104
1105 mutex_lock(&data->mtx);
1106
1107 while (list_empty(&data->events)) {
1108 if (file->f_flags & O_NONBLOCK) {
1109 ret = -EAGAIN;
1110 goto out;
1111 }
1112 mutex_unlock(&data->mtx);
1113 /* since we re-check and it just compares pointers,
1114 * using !list_empty() without locking isn't a problem
1115 */
1116 ret = wait_event_interruptible(data->read_wait,
1117 !list_empty(&data->events));
1118 mutex_lock(&data->mtx);
1119
1120 if (ret)
1121 goto out;
1122 }
1123
1124 ev = list_first_entry(&data->events, struct rfkill_int_event,
1125 list);
1126
1127 sz = min_t(unsigned long, sizeof(ev->ev), count);
1128 ret = sz;
1129 if (copy_to_user(buf, &ev->ev, sz))
1130 ret = -EFAULT;
1131
1132 list_del(&ev->list);
1133 kfree(ev);
1134 out:
1135 mutex_unlock(&data->mtx);
1136 return ret;
1137}
1138
1139static ssize_t rfkill_fop_write(struct file *file, const char __user *buf,
1140 size_t count, loff_t *pos)
1141{
1142 struct rfkill *rfkill;
1143 struct rfkill_event ev;
1144
1145 /* we don't need the 'hard' variable but accept it */
1146 if (count < RFKILL_EVENT_SIZE_V1 - 1)
1147 return -EINVAL;
1148
1149 /*
1150 * Copy as much data as we can accept into our 'ev' buffer,
1151 * but tell userspace how much we've copied so it can determine
1152 * our API version even in a write() call, if it cares.
1153 */
1154 count = min(count, sizeof(ev));
1155 if (copy_from_user(&ev, buf, count))
1156 return -EFAULT;
1157
1158 if (ev.op != RFKILL_OP_CHANGE && ev.op != RFKILL_OP_CHANGE_ALL)
1159 return -EINVAL;
1160
1161 if (ev.type >= NUM_RFKILL_TYPES)
1162 return -EINVAL;
1163
1164 mutex_lock(&rfkill_global_mutex);
1165
1166 if (ev.op == RFKILL_OP_CHANGE_ALL)
1167 rfkill_update_global_state(ev.type, ev.soft);
1168
1169 list_for_each_entry(rfkill, &rfkill_list, node) {
1170 if (rfkill->idx != ev.idx && ev.op != RFKILL_OP_CHANGE_ALL)
1171 continue;
1172
1173 if (rfkill->type != ev.type && ev.type != RFKILL_TYPE_ALL)
1174 continue;
1175
1176 rfkill_set_block(rfkill, ev.soft);
1177 }
1178 mutex_unlock(&rfkill_global_mutex);
1179
1180 return count;
1181}
1182
1183static int rfkill_fop_release(struct inode *inode, struct file *file)
1184{
1185 struct rfkill_data *data = file->private_data;
1186 struct rfkill_int_event *ev, *tmp;
1187
1188 mutex_lock(&rfkill_global_mutex);
1189 list_del(&data->list);
1190 mutex_unlock(&rfkill_global_mutex);
1191
1192 mutex_destroy(&data->mtx);
1193 list_for_each_entry_safe(ev, tmp, &data->events, list)
1194 kfree(ev);
1195
1196#ifdef CONFIG_RFKILL_INPUT
1197 if (data->input_handler)
1198 if (atomic_dec_return(&rfkill_input_disabled) == 0)
1199 printk(KERN_DEBUG "rfkill: input handler enabled\n");
1200#endif
1201
1202 kfree(data);
1203
1204 return 0;
1205}
1206
1207#ifdef CONFIG_RFKILL_INPUT
1208static long rfkill_fop_ioctl(struct file *file, unsigned int cmd,
1209 unsigned long arg)
1210{
1211 struct rfkill_data *data = file->private_data;
1212
1213 if (_IOC_TYPE(cmd) != RFKILL_IOC_MAGIC)
1214 return -ENOSYS;
1215
1216 if (_IOC_NR(cmd) != RFKILL_IOC_NOINPUT)
1217 return -ENOSYS;
1218
1219 mutex_lock(&data->mtx);
1220
1221 if (!data->input_handler) {
1222 if (atomic_inc_return(&rfkill_input_disabled) == 1)
1223 printk(KERN_DEBUG "rfkill: input handler disabled\n");
1224 data->input_handler = true;
1225 }
1226
1227 mutex_unlock(&data->mtx);
1228
1229 return 0;
1230}
1231#endif
1232
1233static const struct file_operations rfkill_fops = {
1234 .owner = THIS_MODULE,
1235 .open = rfkill_fop_open,
1236 .read = rfkill_fop_read,
1237 .write = rfkill_fop_write,
1238 .poll = rfkill_fop_poll,
1239 .release = rfkill_fop_release,
1240#ifdef CONFIG_RFKILL_INPUT
1241 .unlocked_ioctl = rfkill_fop_ioctl,
1242 .compat_ioctl = rfkill_fop_ioctl,
1243#endif
1244 .llseek = no_llseek,
1245};
1246
1247static struct miscdevice rfkill_miscdev = {
1248 .name = "rfkill",
1249 .fops = &rfkill_fops,
1250 .minor = MISC_DYNAMIC_MINOR,
1251};
1252
1253static int __init rfkill_init(void)
1254{
1255 int error;
1256
1257 rfkill_update_global_state(RFKILL_TYPE_ALL, !rfkill_default_state);
1258
1259 error = class_register(&rfkill_class);
1260 if (error)
1261 goto out;
1262
1263 error = misc_register(&rfkill_miscdev);
1264 if (error) {
1265 class_unregister(&rfkill_class);
1266 goto out;
1267 }
1268
1269#ifdef CONFIG_RFKILL_INPUT
1270 error = rfkill_handler_init();
1271 if (error) {
1272 misc_deregister(&rfkill_miscdev);
1273 class_unregister(&rfkill_class);
1274 goto out;
1275 }
1276#endif
1277
1278 out:
1279 return error;
1280}
1281subsys_initcall(rfkill_init);
1282
1283static void __exit rfkill_exit(void)
1284{
1285#ifdef CONFIG_RFKILL_INPUT
1286 rfkill_handler_exit();
1287#endif
1288 misc_deregister(&rfkill_miscdev);
1289 class_unregister(&rfkill_class);
1290}
1291module_exit(rfkill_exit);
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Copyright (C) 2006 - 2007 Ivo van Doorn
4 * Copyright (C) 2007 Dmitry Torokhov
5 * Copyright 2009 Johannes Berg <johannes@sipsolutions.net>
6 */
7
8#include <linux/kernel.h>
9#include <linux/module.h>
10#include <linux/init.h>
11#include <linux/workqueue.h>
12#include <linux/capability.h>
13#include <linux/list.h>
14#include <linux/mutex.h>
15#include <linux/rfkill.h>
16#include <linux/sched.h>
17#include <linux/spinlock.h>
18#include <linux/device.h>
19#include <linux/miscdevice.h>
20#include <linux/wait.h>
21#include <linux/poll.h>
22#include <linux/fs.h>
23#include <linux/slab.h>
24
25#include "rfkill.h"
26
27#define POLL_INTERVAL (5 * HZ)
28
29#define RFKILL_BLOCK_HW BIT(0)
30#define RFKILL_BLOCK_SW BIT(1)
31#define RFKILL_BLOCK_SW_PREV BIT(2)
32#define RFKILL_BLOCK_ANY (RFKILL_BLOCK_HW |\
33 RFKILL_BLOCK_SW |\
34 RFKILL_BLOCK_SW_PREV)
35#define RFKILL_BLOCK_SW_SETCALL BIT(31)
36
37struct rfkill {
38 spinlock_t lock;
39
40 enum rfkill_type type;
41
42 unsigned long state;
43 unsigned long hard_block_reasons;
44
45 u32 idx;
46
47 bool registered;
48 bool persistent;
49 bool polling_paused;
50 bool suspended;
51 bool need_sync;
52
53 const struct rfkill_ops *ops;
54 void *data;
55
56#ifdef CONFIG_RFKILL_LEDS
57 struct led_trigger led_trigger;
58 const char *ledtrigname;
59#endif
60
61 struct device dev;
62 struct list_head node;
63
64 struct delayed_work poll_work;
65 struct work_struct uevent_work;
66 struct work_struct sync_work;
67 char name[];
68};
69#define to_rfkill(d) container_of(d, struct rfkill, dev)
70
71struct rfkill_int_event {
72 struct list_head list;
73 struct rfkill_event_ext ev;
74};
75
76struct rfkill_data {
77 struct list_head list;
78 struct list_head events;
79 struct mutex mtx;
80 wait_queue_head_t read_wait;
81 bool input_handler;
82 u8 max_size;
83};
84
85
86MODULE_AUTHOR("Ivo van Doorn <IvDoorn@gmail.com>");
87MODULE_AUTHOR("Johannes Berg <johannes@sipsolutions.net>");
88MODULE_DESCRIPTION("RF switch support");
89MODULE_LICENSE("GPL");
90
91
92/*
93 * The locking here should be made much smarter, we currently have
94 * a bit of a stupid situation because drivers might want to register
95 * the rfkill struct under their own lock, and take this lock during
96 * rfkill method calls -- which will cause an AB-BA deadlock situation.
97 *
98 * To fix that, we need to rework this code here to be mostly lock-free
99 * and only use the mutex for list manipulations, not to protect the
100 * various other global variables. Then we can avoid holding the mutex
101 * around driver operations, and all is happy.
102 */
103static LIST_HEAD(rfkill_list); /* list of registered rf switches */
104static DEFINE_MUTEX(rfkill_global_mutex);
105static LIST_HEAD(rfkill_fds); /* list of open fds of /dev/rfkill */
106
107static unsigned int rfkill_default_state = 1;
108module_param_named(default_state, rfkill_default_state, uint, 0444);
109MODULE_PARM_DESC(default_state,
110 "Default initial state for all radio types, 0 = radio off");
111
112static struct {
113 bool cur, sav;
114} rfkill_global_states[NUM_RFKILL_TYPES];
115
116static bool rfkill_epo_lock_active;
117
118
119#ifdef CONFIG_RFKILL_LEDS
120static void rfkill_led_trigger_event(struct rfkill *rfkill)
121{
122 struct led_trigger *trigger;
123
124 if (!rfkill->registered)
125 return;
126
127 trigger = &rfkill->led_trigger;
128
129 if (rfkill->state & RFKILL_BLOCK_ANY)
130 led_trigger_event(trigger, LED_OFF);
131 else
132 led_trigger_event(trigger, LED_FULL);
133}
134
135static int rfkill_led_trigger_activate(struct led_classdev *led)
136{
137 struct rfkill *rfkill;
138
139 rfkill = container_of(led->trigger, struct rfkill, led_trigger);
140
141 rfkill_led_trigger_event(rfkill);
142
143 return 0;
144}
145
146const char *rfkill_get_led_trigger_name(struct rfkill *rfkill)
147{
148 return rfkill->led_trigger.name;
149}
150EXPORT_SYMBOL(rfkill_get_led_trigger_name);
151
152void rfkill_set_led_trigger_name(struct rfkill *rfkill, const char *name)
153{
154 BUG_ON(!rfkill);
155
156 rfkill->ledtrigname = name;
157}
158EXPORT_SYMBOL(rfkill_set_led_trigger_name);
159
160static int rfkill_led_trigger_register(struct rfkill *rfkill)
161{
162 rfkill->led_trigger.name = rfkill->ledtrigname
163 ? : dev_name(&rfkill->dev);
164 rfkill->led_trigger.activate = rfkill_led_trigger_activate;
165 return led_trigger_register(&rfkill->led_trigger);
166}
167
168static void rfkill_led_trigger_unregister(struct rfkill *rfkill)
169{
170 led_trigger_unregister(&rfkill->led_trigger);
171}
172
173static struct led_trigger rfkill_any_led_trigger;
174static struct led_trigger rfkill_none_led_trigger;
175static struct work_struct rfkill_global_led_trigger_work;
176
177static void rfkill_global_led_trigger_worker(struct work_struct *work)
178{
179 enum led_brightness brightness = LED_OFF;
180 struct rfkill *rfkill;
181
182 mutex_lock(&rfkill_global_mutex);
183 list_for_each_entry(rfkill, &rfkill_list, node) {
184 if (!(rfkill->state & RFKILL_BLOCK_ANY)) {
185 brightness = LED_FULL;
186 break;
187 }
188 }
189 mutex_unlock(&rfkill_global_mutex);
190
191 led_trigger_event(&rfkill_any_led_trigger, brightness);
192 led_trigger_event(&rfkill_none_led_trigger,
193 brightness == LED_OFF ? LED_FULL : LED_OFF);
194}
195
196static void rfkill_global_led_trigger_event(void)
197{
198 schedule_work(&rfkill_global_led_trigger_work);
199}
200
201static int rfkill_global_led_trigger_register(void)
202{
203 int ret;
204
205 INIT_WORK(&rfkill_global_led_trigger_work,
206 rfkill_global_led_trigger_worker);
207
208 rfkill_any_led_trigger.name = "rfkill-any";
209 ret = led_trigger_register(&rfkill_any_led_trigger);
210 if (ret)
211 return ret;
212
213 rfkill_none_led_trigger.name = "rfkill-none";
214 ret = led_trigger_register(&rfkill_none_led_trigger);
215 if (ret)
216 led_trigger_unregister(&rfkill_any_led_trigger);
217 else
218 /* Delay activation until all global triggers are registered */
219 rfkill_global_led_trigger_event();
220
221 return ret;
222}
223
224static void rfkill_global_led_trigger_unregister(void)
225{
226 led_trigger_unregister(&rfkill_none_led_trigger);
227 led_trigger_unregister(&rfkill_any_led_trigger);
228 cancel_work_sync(&rfkill_global_led_trigger_work);
229}
230#else
231static void rfkill_led_trigger_event(struct rfkill *rfkill)
232{
233}
234
235static inline int rfkill_led_trigger_register(struct rfkill *rfkill)
236{
237 return 0;
238}
239
240static inline void rfkill_led_trigger_unregister(struct rfkill *rfkill)
241{
242}
243
244static void rfkill_global_led_trigger_event(void)
245{
246}
247
248static int rfkill_global_led_trigger_register(void)
249{
250 return 0;
251}
252
253static void rfkill_global_led_trigger_unregister(void)
254{
255}
256#endif /* CONFIG_RFKILL_LEDS */
257
258static void rfkill_fill_event(struct rfkill_event_ext *ev,
259 struct rfkill *rfkill,
260 enum rfkill_operation op)
261{
262 unsigned long flags;
263
264 ev->idx = rfkill->idx;
265 ev->type = rfkill->type;
266 ev->op = op;
267
268 spin_lock_irqsave(&rfkill->lock, flags);
269 ev->hard = !!(rfkill->state & RFKILL_BLOCK_HW);
270 ev->soft = !!(rfkill->state & (RFKILL_BLOCK_SW |
271 RFKILL_BLOCK_SW_PREV));
272 ev->hard_block_reasons = rfkill->hard_block_reasons;
273 spin_unlock_irqrestore(&rfkill->lock, flags);
274}
275
276static void rfkill_send_events(struct rfkill *rfkill, enum rfkill_operation op)
277{
278 struct rfkill_data *data;
279 struct rfkill_int_event *ev;
280
281 list_for_each_entry(data, &rfkill_fds, list) {
282 ev = kzalloc(sizeof(*ev), GFP_KERNEL);
283 if (!ev)
284 continue;
285 rfkill_fill_event(&ev->ev, rfkill, op);
286 mutex_lock(&data->mtx);
287 list_add_tail(&ev->list, &data->events);
288 mutex_unlock(&data->mtx);
289 wake_up_interruptible(&data->read_wait);
290 }
291}
292
293static void rfkill_event(struct rfkill *rfkill)
294{
295 if (!rfkill->registered)
296 return;
297
298 kobject_uevent(&rfkill->dev.kobj, KOBJ_CHANGE);
299
300 /* also send event to /dev/rfkill */
301 rfkill_send_events(rfkill, RFKILL_OP_CHANGE);
302}
303
304/**
305 * rfkill_set_block - wrapper for set_block method
306 *
307 * @rfkill: the rfkill struct to use
308 * @blocked: the new software state
309 *
310 * Calls the set_block method (when applicable) and handles notifications
311 * etc. as well.
312 */
313static void rfkill_set_block(struct rfkill *rfkill, bool blocked)
314{
315 unsigned long flags;
316 bool prev, curr;
317 int err;
318
319 if (unlikely(rfkill->dev.power.power_state.event & PM_EVENT_SLEEP))
320 return;
321
322 /*
323 * Some platforms (...!) generate input events which affect the
324 * _hard_ kill state -- whenever something tries to change the
325 * current software state query the hardware state too.
326 */
327 if (rfkill->ops->query)
328 rfkill->ops->query(rfkill, rfkill->data);
329
330 spin_lock_irqsave(&rfkill->lock, flags);
331 prev = rfkill->state & RFKILL_BLOCK_SW;
332
333 if (prev)
334 rfkill->state |= RFKILL_BLOCK_SW_PREV;
335 else
336 rfkill->state &= ~RFKILL_BLOCK_SW_PREV;
337
338 if (blocked)
339 rfkill->state |= RFKILL_BLOCK_SW;
340 else
341 rfkill->state &= ~RFKILL_BLOCK_SW;
342
343 rfkill->state |= RFKILL_BLOCK_SW_SETCALL;
344 spin_unlock_irqrestore(&rfkill->lock, flags);
345
346 err = rfkill->ops->set_block(rfkill->data, blocked);
347
348 spin_lock_irqsave(&rfkill->lock, flags);
349 if (err) {
350 /*
351 * Failed -- reset status to _PREV, which may be different
352 * from what we have set _PREV to earlier in this function
353 * if rfkill_set_sw_state was invoked.
354 */
355 if (rfkill->state & RFKILL_BLOCK_SW_PREV)
356 rfkill->state |= RFKILL_BLOCK_SW;
357 else
358 rfkill->state &= ~RFKILL_BLOCK_SW;
359 }
360 rfkill->state &= ~RFKILL_BLOCK_SW_SETCALL;
361 rfkill->state &= ~RFKILL_BLOCK_SW_PREV;
362 curr = rfkill->state & RFKILL_BLOCK_SW;
363 spin_unlock_irqrestore(&rfkill->lock, flags);
364
365 rfkill_led_trigger_event(rfkill);
366 rfkill_global_led_trigger_event();
367
368 if (prev != curr)
369 rfkill_event(rfkill);
370}
371
372static void rfkill_sync(struct rfkill *rfkill)
373{
374 lockdep_assert_held(&rfkill_global_mutex);
375
376 if (!rfkill->need_sync)
377 return;
378
379 rfkill_set_block(rfkill, rfkill_global_states[rfkill->type].cur);
380 rfkill->need_sync = false;
381}
382
383static void rfkill_update_global_state(enum rfkill_type type, bool blocked)
384{
385 int i;
386
387 if (type != RFKILL_TYPE_ALL) {
388 rfkill_global_states[type].cur = blocked;
389 return;
390 }
391
392 for (i = 0; i < NUM_RFKILL_TYPES; i++)
393 rfkill_global_states[i].cur = blocked;
394}
395
396#ifdef CONFIG_RFKILL_INPUT
397static atomic_t rfkill_input_disabled = ATOMIC_INIT(0);
398
399/**
400 * __rfkill_switch_all - Toggle state of all switches of given type
401 * @type: type of interfaces to be affected
402 * @blocked: the new state
403 *
404 * This function sets the state of all switches of given type,
405 * unless a specific switch is suspended.
406 *
407 * Caller must have acquired rfkill_global_mutex.
408 */
409static void __rfkill_switch_all(const enum rfkill_type type, bool blocked)
410{
411 struct rfkill *rfkill;
412
413 rfkill_update_global_state(type, blocked);
414 list_for_each_entry(rfkill, &rfkill_list, node) {
415 if (rfkill->type != type && type != RFKILL_TYPE_ALL)
416 continue;
417
418 rfkill_set_block(rfkill, blocked);
419 }
420}
421
422/**
423 * rfkill_switch_all - Toggle state of all switches of given type
424 * @type: type of interfaces to be affected
425 * @blocked: the new state
426 *
427 * Acquires rfkill_global_mutex and calls __rfkill_switch_all(@type, @state).
428 * Please refer to __rfkill_switch_all() for details.
429 *
430 * Does nothing if the EPO lock is active.
431 */
432void rfkill_switch_all(enum rfkill_type type, bool blocked)
433{
434 if (atomic_read(&rfkill_input_disabled))
435 return;
436
437 mutex_lock(&rfkill_global_mutex);
438
439 if (!rfkill_epo_lock_active)
440 __rfkill_switch_all(type, blocked);
441
442 mutex_unlock(&rfkill_global_mutex);
443}
444
445/**
446 * rfkill_epo - emergency power off all transmitters
447 *
448 * This kicks all non-suspended rfkill devices to RFKILL_STATE_SOFT_BLOCKED,
449 * ignoring everything in its path but rfkill_global_mutex and rfkill->mutex.
450 *
451 * The global state before the EPO is saved and can be restored later
452 * using rfkill_restore_states().
453 */
454void rfkill_epo(void)
455{
456 struct rfkill *rfkill;
457 int i;
458
459 if (atomic_read(&rfkill_input_disabled))
460 return;
461
462 mutex_lock(&rfkill_global_mutex);
463
464 rfkill_epo_lock_active = true;
465 list_for_each_entry(rfkill, &rfkill_list, node)
466 rfkill_set_block(rfkill, true);
467
468 for (i = 0; i < NUM_RFKILL_TYPES; i++) {
469 rfkill_global_states[i].sav = rfkill_global_states[i].cur;
470 rfkill_global_states[i].cur = true;
471 }
472
473 mutex_unlock(&rfkill_global_mutex);
474}
475
476/**
477 * rfkill_restore_states - restore global states
478 *
479 * Restore (and sync switches to) the global state from the
480 * states in rfkill_default_states. This can undo the effects of
481 * a call to rfkill_epo().
482 */
483void rfkill_restore_states(void)
484{
485 int i;
486
487 if (atomic_read(&rfkill_input_disabled))
488 return;
489
490 mutex_lock(&rfkill_global_mutex);
491
492 rfkill_epo_lock_active = false;
493 for (i = 0; i < NUM_RFKILL_TYPES; i++)
494 __rfkill_switch_all(i, rfkill_global_states[i].sav);
495 mutex_unlock(&rfkill_global_mutex);
496}
497
498/**
499 * rfkill_remove_epo_lock - unlock state changes
500 *
501 * Used by rfkill-input manually unlock state changes, when
502 * the EPO switch is deactivated.
503 */
504void rfkill_remove_epo_lock(void)
505{
506 if (atomic_read(&rfkill_input_disabled))
507 return;
508
509 mutex_lock(&rfkill_global_mutex);
510 rfkill_epo_lock_active = false;
511 mutex_unlock(&rfkill_global_mutex);
512}
513
514/**
515 * rfkill_is_epo_lock_active - returns true EPO is active
516 *
517 * Returns 0 (false) if there is NOT an active EPO condition,
518 * and 1 (true) if there is an active EPO condition, which
519 * locks all radios in one of the BLOCKED states.
520 *
521 * Can be called in atomic context.
522 */
523bool rfkill_is_epo_lock_active(void)
524{
525 return rfkill_epo_lock_active;
526}
527
528/**
529 * rfkill_get_global_sw_state - returns global state for a type
530 * @type: the type to get the global state of
531 *
532 * Returns the current global state for a given wireless
533 * device type.
534 */
535bool rfkill_get_global_sw_state(const enum rfkill_type type)
536{
537 return rfkill_global_states[type].cur;
538}
539#endif
540
541bool rfkill_set_hw_state_reason(struct rfkill *rfkill,
542 bool blocked,
543 enum rfkill_hard_block_reasons reason)
544{
545 unsigned long flags;
546 bool ret, prev;
547
548 BUG_ON(!rfkill);
549
550 spin_lock_irqsave(&rfkill->lock, flags);
551 prev = !!(rfkill->hard_block_reasons & reason);
552 if (blocked) {
553 rfkill->state |= RFKILL_BLOCK_HW;
554 rfkill->hard_block_reasons |= reason;
555 } else {
556 rfkill->hard_block_reasons &= ~reason;
557 if (!rfkill->hard_block_reasons)
558 rfkill->state &= ~RFKILL_BLOCK_HW;
559 }
560 ret = !!(rfkill->state & RFKILL_BLOCK_ANY);
561 spin_unlock_irqrestore(&rfkill->lock, flags);
562
563 rfkill_led_trigger_event(rfkill);
564 rfkill_global_led_trigger_event();
565
566 if (rfkill->registered && prev != blocked)
567 schedule_work(&rfkill->uevent_work);
568
569 return ret;
570}
571EXPORT_SYMBOL(rfkill_set_hw_state_reason);
572
573static void __rfkill_set_sw_state(struct rfkill *rfkill, bool blocked)
574{
575 u32 bit = RFKILL_BLOCK_SW;
576
577 /* if in a ops->set_block right now, use other bit */
578 if (rfkill->state & RFKILL_BLOCK_SW_SETCALL)
579 bit = RFKILL_BLOCK_SW_PREV;
580
581 if (blocked)
582 rfkill->state |= bit;
583 else
584 rfkill->state &= ~bit;
585}
586
587bool rfkill_set_sw_state(struct rfkill *rfkill, bool blocked)
588{
589 unsigned long flags;
590 bool prev, hwblock;
591
592 BUG_ON(!rfkill);
593
594 spin_lock_irqsave(&rfkill->lock, flags);
595 prev = !!(rfkill->state & RFKILL_BLOCK_SW);
596 __rfkill_set_sw_state(rfkill, blocked);
597 hwblock = !!(rfkill->state & RFKILL_BLOCK_HW);
598 blocked = blocked || hwblock;
599 spin_unlock_irqrestore(&rfkill->lock, flags);
600
601 if (!rfkill->registered)
602 return blocked;
603
604 if (prev != blocked && !hwblock)
605 schedule_work(&rfkill->uevent_work);
606
607 rfkill_led_trigger_event(rfkill);
608 rfkill_global_led_trigger_event();
609
610 return blocked;
611}
612EXPORT_SYMBOL(rfkill_set_sw_state);
613
614void rfkill_init_sw_state(struct rfkill *rfkill, bool blocked)
615{
616 unsigned long flags;
617
618 BUG_ON(!rfkill);
619 BUG_ON(rfkill->registered);
620
621 spin_lock_irqsave(&rfkill->lock, flags);
622 __rfkill_set_sw_state(rfkill, blocked);
623 rfkill->persistent = true;
624 spin_unlock_irqrestore(&rfkill->lock, flags);
625}
626EXPORT_SYMBOL(rfkill_init_sw_state);
627
628void rfkill_set_states(struct rfkill *rfkill, bool sw, bool hw)
629{
630 unsigned long flags;
631 bool swprev, hwprev;
632
633 BUG_ON(!rfkill);
634
635 spin_lock_irqsave(&rfkill->lock, flags);
636
637 /*
638 * No need to care about prev/setblock ... this is for uevent only
639 * and that will get triggered by rfkill_set_block anyway.
640 */
641 swprev = !!(rfkill->state & RFKILL_BLOCK_SW);
642 hwprev = !!(rfkill->state & RFKILL_BLOCK_HW);
643 __rfkill_set_sw_state(rfkill, sw);
644 if (hw)
645 rfkill->state |= RFKILL_BLOCK_HW;
646 else
647 rfkill->state &= ~RFKILL_BLOCK_HW;
648
649 spin_unlock_irqrestore(&rfkill->lock, flags);
650
651 if (!rfkill->registered) {
652 rfkill->persistent = true;
653 } else {
654 if (swprev != sw || hwprev != hw)
655 schedule_work(&rfkill->uevent_work);
656
657 rfkill_led_trigger_event(rfkill);
658 rfkill_global_led_trigger_event();
659 }
660}
661EXPORT_SYMBOL(rfkill_set_states);
662
663static const char * const rfkill_types[] = {
664 NULL, /* RFKILL_TYPE_ALL */
665 "wlan",
666 "bluetooth",
667 "ultrawideband",
668 "wimax",
669 "wwan",
670 "gps",
671 "fm",
672 "nfc",
673};
674
675enum rfkill_type rfkill_find_type(const char *name)
676{
677 int i;
678
679 BUILD_BUG_ON(ARRAY_SIZE(rfkill_types) != NUM_RFKILL_TYPES);
680
681 if (!name)
682 return RFKILL_TYPE_ALL;
683
684 for (i = 1; i < NUM_RFKILL_TYPES; i++)
685 if (!strcmp(name, rfkill_types[i]))
686 return i;
687 return RFKILL_TYPE_ALL;
688}
689EXPORT_SYMBOL(rfkill_find_type);
690
691static ssize_t name_show(struct device *dev, struct device_attribute *attr,
692 char *buf)
693{
694 struct rfkill *rfkill = to_rfkill(dev);
695
696 return sysfs_emit(buf, "%s\n", rfkill->name);
697}
698static DEVICE_ATTR_RO(name);
699
700static ssize_t type_show(struct device *dev, struct device_attribute *attr,
701 char *buf)
702{
703 struct rfkill *rfkill = to_rfkill(dev);
704
705 return sysfs_emit(buf, "%s\n", rfkill_types[rfkill->type]);
706}
707static DEVICE_ATTR_RO(type);
708
709static ssize_t index_show(struct device *dev, struct device_attribute *attr,
710 char *buf)
711{
712 struct rfkill *rfkill = to_rfkill(dev);
713
714 return sysfs_emit(buf, "%d\n", rfkill->idx);
715}
716static DEVICE_ATTR_RO(index);
717
718static ssize_t persistent_show(struct device *dev,
719 struct device_attribute *attr, char *buf)
720{
721 struct rfkill *rfkill = to_rfkill(dev);
722
723 return sysfs_emit(buf, "%d\n", rfkill->persistent);
724}
725static DEVICE_ATTR_RO(persistent);
726
727static ssize_t hard_show(struct device *dev, struct device_attribute *attr,
728 char *buf)
729{
730 struct rfkill *rfkill = to_rfkill(dev);
731
732 return sysfs_emit(buf, "%d\n", (rfkill->state & RFKILL_BLOCK_HW) ? 1 : 0);
733}
734static DEVICE_ATTR_RO(hard);
735
736static ssize_t soft_show(struct device *dev, struct device_attribute *attr,
737 char *buf)
738{
739 struct rfkill *rfkill = to_rfkill(dev);
740
741 mutex_lock(&rfkill_global_mutex);
742 rfkill_sync(rfkill);
743 mutex_unlock(&rfkill_global_mutex);
744
745 return sysfs_emit(buf, "%d\n", (rfkill->state & RFKILL_BLOCK_SW) ? 1 : 0);
746}
747
748static ssize_t soft_store(struct device *dev, struct device_attribute *attr,
749 const char *buf, size_t count)
750{
751 struct rfkill *rfkill = to_rfkill(dev);
752 unsigned long state;
753 int err;
754
755 if (!capable(CAP_NET_ADMIN))
756 return -EPERM;
757
758 err = kstrtoul(buf, 0, &state);
759 if (err)
760 return err;
761
762 if (state > 1 )
763 return -EINVAL;
764
765 mutex_lock(&rfkill_global_mutex);
766 rfkill_sync(rfkill);
767 rfkill_set_block(rfkill, state);
768 mutex_unlock(&rfkill_global_mutex);
769
770 return count;
771}
772static DEVICE_ATTR_RW(soft);
773
774static ssize_t hard_block_reasons_show(struct device *dev,
775 struct device_attribute *attr,
776 char *buf)
777{
778 struct rfkill *rfkill = to_rfkill(dev);
779
780 return sysfs_emit(buf, "0x%lx\n", rfkill->hard_block_reasons);
781}
782static DEVICE_ATTR_RO(hard_block_reasons);
783
784static u8 user_state_from_blocked(unsigned long state)
785{
786 if (state & RFKILL_BLOCK_HW)
787 return RFKILL_USER_STATE_HARD_BLOCKED;
788 if (state & RFKILL_BLOCK_SW)
789 return RFKILL_USER_STATE_SOFT_BLOCKED;
790
791 return RFKILL_USER_STATE_UNBLOCKED;
792}
793
794static ssize_t state_show(struct device *dev, struct device_attribute *attr,
795 char *buf)
796{
797 struct rfkill *rfkill = to_rfkill(dev);
798
799 mutex_lock(&rfkill_global_mutex);
800 rfkill_sync(rfkill);
801 mutex_unlock(&rfkill_global_mutex);
802
803 return sysfs_emit(buf, "%d\n", user_state_from_blocked(rfkill->state));
804}
805
806static ssize_t state_store(struct device *dev, struct device_attribute *attr,
807 const char *buf, size_t count)
808{
809 struct rfkill *rfkill = to_rfkill(dev);
810 unsigned long state;
811 int err;
812
813 if (!capable(CAP_NET_ADMIN))
814 return -EPERM;
815
816 err = kstrtoul(buf, 0, &state);
817 if (err)
818 return err;
819
820 if (state != RFKILL_USER_STATE_SOFT_BLOCKED &&
821 state != RFKILL_USER_STATE_UNBLOCKED)
822 return -EINVAL;
823
824 mutex_lock(&rfkill_global_mutex);
825 rfkill_sync(rfkill);
826 rfkill_set_block(rfkill, state == RFKILL_USER_STATE_SOFT_BLOCKED);
827 mutex_unlock(&rfkill_global_mutex);
828
829 return count;
830}
831static DEVICE_ATTR_RW(state);
832
833static struct attribute *rfkill_dev_attrs[] = {
834 &dev_attr_name.attr,
835 &dev_attr_type.attr,
836 &dev_attr_index.attr,
837 &dev_attr_persistent.attr,
838 &dev_attr_state.attr,
839 &dev_attr_soft.attr,
840 &dev_attr_hard.attr,
841 &dev_attr_hard_block_reasons.attr,
842 NULL,
843};
844ATTRIBUTE_GROUPS(rfkill_dev);
845
846static void rfkill_release(struct device *dev)
847{
848 struct rfkill *rfkill = to_rfkill(dev);
849
850 kfree(rfkill);
851}
852
853static int rfkill_dev_uevent(const struct device *dev, struct kobj_uevent_env *env)
854{
855 struct rfkill *rfkill = to_rfkill(dev);
856 unsigned long flags;
857 unsigned long reasons;
858 u32 state;
859 int error;
860
861 error = add_uevent_var(env, "RFKILL_NAME=%s", rfkill->name);
862 if (error)
863 return error;
864 error = add_uevent_var(env, "RFKILL_TYPE=%s",
865 rfkill_types[rfkill->type]);
866 if (error)
867 return error;
868 spin_lock_irqsave(&rfkill->lock, flags);
869 state = rfkill->state;
870 reasons = rfkill->hard_block_reasons;
871 spin_unlock_irqrestore(&rfkill->lock, flags);
872 error = add_uevent_var(env, "RFKILL_STATE=%d",
873 user_state_from_blocked(state));
874 if (error)
875 return error;
876 return add_uevent_var(env, "RFKILL_HW_BLOCK_REASON=0x%lx", reasons);
877}
878
879void rfkill_pause_polling(struct rfkill *rfkill)
880{
881 BUG_ON(!rfkill);
882
883 if (!rfkill->ops->poll)
884 return;
885
886 rfkill->polling_paused = true;
887 cancel_delayed_work_sync(&rfkill->poll_work);
888}
889EXPORT_SYMBOL(rfkill_pause_polling);
890
891void rfkill_resume_polling(struct rfkill *rfkill)
892{
893 BUG_ON(!rfkill);
894
895 if (!rfkill->ops->poll)
896 return;
897
898 rfkill->polling_paused = false;
899
900 if (rfkill->suspended)
901 return;
902
903 queue_delayed_work(system_power_efficient_wq,
904 &rfkill->poll_work, 0);
905}
906EXPORT_SYMBOL(rfkill_resume_polling);
907
908#ifdef CONFIG_PM_SLEEP
909static int rfkill_suspend(struct device *dev)
910{
911 struct rfkill *rfkill = to_rfkill(dev);
912
913 rfkill->suspended = true;
914 cancel_delayed_work_sync(&rfkill->poll_work);
915
916 return 0;
917}
918
919static int rfkill_resume(struct device *dev)
920{
921 struct rfkill *rfkill = to_rfkill(dev);
922 bool cur;
923
924 rfkill->suspended = false;
925
926 if (!rfkill->registered)
927 return 0;
928
929 if (!rfkill->persistent) {
930 cur = !!(rfkill->state & RFKILL_BLOCK_SW);
931 rfkill_set_block(rfkill, cur);
932 }
933
934 if (rfkill->ops->poll && !rfkill->polling_paused)
935 queue_delayed_work(system_power_efficient_wq,
936 &rfkill->poll_work, 0);
937
938 return 0;
939}
940
941static SIMPLE_DEV_PM_OPS(rfkill_pm_ops, rfkill_suspend, rfkill_resume);
942#define RFKILL_PM_OPS (&rfkill_pm_ops)
943#else
944#define RFKILL_PM_OPS NULL
945#endif
946
947static struct class rfkill_class = {
948 .name = "rfkill",
949 .dev_release = rfkill_release,
950 .dev_groups = rfkill_dev_groups,
951 .dev_uevent = rfkill_dev_uevent,
952 .pm = RFKILL_PM_OPS,
953};
954
955bool rfkill_blocked(struct rfkill *rfkill)
956{
957 unsigned long flags;
958 u32 state;
959
960 spin_lock_irqsave(&rfkill->lock, flags);
961 state = rfkill->state;
962 spin_unlock_irqrestore(&rfkill->lock, flags);
963
964 return !!(state & RFKILL_BLOCK_ANY);
965}
966EXPORT_SYMBOL(rfkill_blocked);
967
968bool rfkill_soft_blocked(struct rfkill *rfkill)
969{
970 unsigned long flags;
971 u32 state;
972
973 spin_lock_irqsave(&rfkill->lock, flags);
974 state = rfkill->state;
975 spin_unlock_irqrestore(&rfkill->lock, flags);
976
977 return !!(state & RFKILL_BLOCK_SW);
978}
979EXPORT_SYMBOL(rfkill_soft_blocked);
980
981struct rfkill * __must_check rfkill_alloc(const char *name,
982 struct device *parent,
983 const enum rfkill_type type,
984 const struct rfkill_ops *ops,
985 void *ops_data)
986{
987 struct rfkill *rfkill;
988 struct device *dev;
989
990 if (WARN_ON(!ops))
991 return NULL;
992
993 if (WARN_ON(!ops->set_block))
994 return NULL;
995
996 if (WARN_ON(!name))
997 return NULL;
998
999 if (WARN_ON(type == RFKILL_TYPE_ALL || type >= NUM_RFKILL_TYPES))
1000 return NULL;
1001
1002 rfkill = kzalloc(sizeof(*rfkill) + strlen(name) + 1, GFP_KERNEL);
1003 if (!rfkill)
1004 return NULL;
1005
1006 spin_lock_init(&rfkill->lock);
1007 INIT_LIST_HEAD(&rfkill->node);
1008 rfkill->type = type;
1009 strcpy(rfkill->name, name);
1010 rfkill->ops = ops;
1011 rfkill->data = ops_data;
1012
1013 dev = &rfkill->dev;
1014 dev->class = &rfkill_class;
1015 dev->parent = parent;
1016 device_initialize(dev);
1017
1018 return rfkill;
1019}
1020EXPORT_SYMBOL(rfkill_alloc);
1021
1022static void rfkill_poll(struct work_struct *work)
1023{
1024 struct rfkill *rfkill;
1025
1026 rfkill = container_of(work, struct rfkill, poll_work.work);
1027
1028 /*
1029 * Poll hardware state -- driver will use one of the
1030 * rfkill_set{,_hw,_sw}_state functions and use its
1031 * return value to update the current status.
1032 */
1033 rfkill->ops->poll(rfkill, rfkill->data);
1034
1035 queue_delayed_work(system_power_efficient_wq,
1036 &rfkill->poll_work,
1037 round_jiffies_relative(POLL_INTERVAL));
1038}
1039
1040static void rfkill_uevent_work(struct work_struct *work)
1041{
1042 struct rfkill *rfkill;
1043
1044 rfkill = container_of(work, struct rfkill, uevent_work);
1045
1046 mutex_lock(&rfkill_global_mutex);
1047 rfkill_event(rfkill);
1048 mutex_unlock(&rfkill_global_mutex);
1049}
1050
1051static void rfkill_sync_work(struct work_struct *work)
1052{
1053 struct rfkill *rfkill = container_of(work, struct rfkill, sync_work);
1054
1055 mutex_lock(&rfkill_global_mutex);
1056 rfkill_sync(rfkill);
1057 mutex_unlock(&rfkill_global_mutex);
1058}
1059
1060int __must_check rfkill_register(struct rfkill *rfkill)
1061{
1062 static unsigned long rfkill_no;
1063 struct device *dev;
1064 int error;
1065
1066 if (!rfkill)
1067 return -EINVAL;
1068
1069 dev = &rfkill->dev;
1070
1071 mutex_lock(&rfkill_global_mutex);
1072
1073 if (rfkill->registered) {
1074 error = -EALREADY;
1075 goto unlock;
1076 }
1077
1078 rfkill->idx = rfkill_no;
1079 dev_set_name(dev, "rfkill%lu", rfkill_no);
1080 rfkill_no++;
1081
1082 list_add_tail(&rfkill->node, &rfkill_list);
1083
1084 error = device_add(dev);
1085 if (error)
1086 goto remove;
1087
1088 error = rfkill_led_trigger_register(rfkill);
1089 if (error)
1090 goto devdel;
1091
1092 rfkill->registered = true;
1093
1094 INIT_DELAYED_WORK(&rfkill->poll_work, rfkill_poll);
1095 INIT_WORK(&rfkill->uevent_work, rfkill_uevent_work);
1096 INIT_WORK(&rfkill->sync_work, rfkill_sync_work);
1097
1098 if (rfkill->ops->poll)
1099 queue_delayed_work(system_power_efficient_wq,
1100 &rfkill->poll_work,
1101 round_jiffies_relative(POLL_INTERVAL));
1102
1103 if (!rfkill->persistent || rfkill_epo_lock_active) {
1104 rfkill->need_sync = true;
1105 schedule_work(&rfkill->sync_work);
1106 } else {
1107#ifdef CONFIG_RFKILL_INPUT
1108 bool soft_blocked = !!(rfkill->state & RFKILL_BLOCK_SW);
1109
1110 if (!atomic_read(&rfkill_input_disabled))
1111 __rfkill_switch_all(rfkill->type, soft_blocked);
1112#endif
1113 }
1114
1115 rfkill_global_led_trigger_event();
1116 rfkill_send_events(rfkill, RFKILL_OP_ADD);
1117
1118 mutex_unlock(&rfkill_global_mutex);
1119 return 0;
1120
1121 devdel:
1122 device_del(&rfkill->dev);
1123 remove:
1124 list_del_init(&rfkill->node);
1125 unlock:
1126 mutex_unlock(&rfkill_global_mutex);
1127 return error;
1128}
1129EXPORT_SYMBOL(rfkill_register);
1130
1131void rfkill_unregister(struct rfkill *rfkill)
1132{
1133 BUG_ON(!rfkill);
1134
1135 if (rfkill->ops->poll)
1136 cancel_delayed_work_sync(&rfkill->poll_work);
1137
1138 cancel_work_sync(&rfkill->uevent_work);
1139 cancel_work_sync(&rfkill->sync_work);
1140
1141 rfkill->registered = false;
1142
1143 device_del(&rfkill->dev);
1144
1145 mutex_lock(&rfkill_global_mutex);
1146 rfkill_send_events(rfkill, RFKILL_OP_DEL);
1147 list_del_init(&rfkill->node);
1148 rfkill_global_led_trigger_event();
1149 mutex_unlock(&rfkill_global_mutex);
1150
1151 rfkill_led_trigger_unregister(rfkill);
1152}
1153EXPORT_SYMBOL(rfkill_unregister);
1154
1155void rfkill_destroy(struct rfkill *rfkill)
1156{
1157 if (rfkill)
1158 put_device(&rfkill->dev);
1159}
1160EXPORT_SYMBOL(rfkill_destroy);
1161
1162static int rfkill_fop_open(struct inode *inode, struct file *file)
1163{
1164 struct rfkill_data *data;
1165 struct rfkill *rfkill;
1166 struct rfkill_int_event *ev, *tmp;
1167
1168 data = kzalloc(sizeof(*data), GFP_KERNEL);
1169 if (!data)
1170 return -ENOMEM;
1171
1172 data->max_size = RFKILL_EVENT_SIZE_V1;
1173
1174 INIT_LIST_HEAD(&data->events);
1175 mutex_init(&data->mtx);
1176 init_waitqueue_head(&data->read_wait);
1177
1178 mutex_lock(&rfkill_global_mutex);
1179 /*
1180 * start getting events from elsewhere but hold mtx to get
1181 * startup events added first
1182 */
1183
1184 list_for_each_entry(rfkill, &rfkill_list, node) {
1185 ev = kzalloc(sizeof(*ev), GFP_KERNEL);
1186 if (!ev)
1187 goto free;
1188 rfkill_sync(rfkill);
1189 rfkill_fill_event(&ev->ev, rfkill, RFKILL_OP_ADD);
1190 mutex_lock(&data->mtx);
1191 list_add_tail(&ev->list, &data->events);
1192 mutex_unlock(&data->mtx);
1193 }
1194 list_add(&data->list, &rfkill_fds);
1195 mutex_unlock(&rfkill_global_mutex);
1196
1197 file->private_data = data;
1198
1199 return stream_open(inode, file);
1200
1201 free:
1202 mutex_unlock(&rfkill_global_mutex);
1203 mutex_destroy(&data->mtx);
1204 list_for_each_entry_safe(ev, tmp, &data->events, list)
1205 kfree(ev);
1206 kfree(data);
1207 return -ENOMEM;
1208}
1209
1210static __poll_t rfkill_fop_poll(struct file *file, poll_table *wait)
1211{
1212 struct rfkill_data *data = file->private_data;
1213 __poll_t res = EPOLLOUT | EPOLLWRNORM;
1214
1215 poll_wait(file, &data->read_wait, wait);
1216
1217 mutex_lock(&data->mtx);
1218 if (!list_empty(&data->events))
1219 res = EPOLLIN | EPOLLRDNORM;
1220 mutex_unlock(&data->mtx);
1221
1222 return res;
1223}
1224
1225static ssize_t rfkill_fop_read(struct file *file, char __user *buf,
1226 size_t count, loff_t *pos)
1227{
1228 struct rfkill_data *data = file->private_data;
1229 struct rfkill_int_event *ev;
1230 unsigned long sz;
1231 int ret;
1232
1233 mutex_lock(&data->mtx);
1234
1235 while (list_empty(&data->events)) {
1236 if (file->f_flags & O_NONBLOCK) {
1237 ret = -EAGAIN;
1238 goto out;
1239 }
1240 mutex_unlock(&data->mtx);
1241 /* since we re-check and it just compares pointers,
1242 * using !list_empty() without locking isn't a problem
1243 */
1244 ret = wait_event_interruptible(data->read_wait,
1245 !list_empty(&data->events));
1246 mutex_lock(&data->mtx);
1247
1248 if (ret)
1249 goto out;
1250 }
1251
1252 ev = list_first_entry(&data->events, struct rfkill_int_event,
1253 list);
1254
1255 sz = min_t(unsigned long, sizeof(ev->ev), count);
1256 sz = min_t(unsigned long, sz, data->max_size);
1257 ret = sz;
1258 if (copy_to_user(buf, &ev->ev, sz))
1259 ret = -EFAULT;
1260
1261 list_del(&ev->list);
1262 kfree(ev);
1263 out:
1264 mutex_unlock(&data->mtx);
1265 return ret;
1266}
1267
1268static ssize_t rfkill_fop_write(struct file *file, const char __user *buf,
1269 size_t count, loff_t *pos)
1270{
1271 struct rfkill_data *data = file->private_data;
1272 struct rfkill *rfkill;
1273 struct rfkill_event_ext ev;
1274 int ret;
1275
1276 /* we don't need the 'hard' variable but accept it */
1277 if (count < RFKILL_EVENT_SIZE_V1 - 1)
1278 return -EINVAL;
1279
1280 /*
1281 * Copy as much data as we can accept into our 'ev' buffer,
1282 * but tell userspace how much we've copied so it can determine
1283 * our API version even in a write() call, if it cares.
1284 */
1285 count = min(count, sizeof(ev));
1286 count = min_t(size_t, count, data->max_size);
1287 if (copy_from_user(&ev, buf, count))
1288 return -EFAULT;
1289
1290 if (ev.type >= NUM_RFKILL_TYPES)
1291 return -EINVAL;
1292
1293 mutex_lock(&rfkill_global_mutex);
1294
1295 switch (ev.op) {
1296 case RFKILL_OP_CHANGE_ALL:
1297 rfkill_update_global_state(ev.type, ev.soft);
1298 list_for_each_entry(rfkill, &rfkill_list, node)
1299 if (rfkill->type == ev.type ||
1300 ev.type == RFKILL_TYPE_ALL)
1301 rfkill_set_block(rfkill, ev.soft);
1302 ret = 0;
1303 break;
1304 case RFKILL_OP_CHANGE:
1305 list_for_each_entry(rfkill, &rfkill_list, node)
1306 if (rfkill->idx == ev.idx &&
1307 (rfkill->type == ev.type ||
1308 ev.type == RFKILL_TYPE_ALL))
1309 rfkill_set_block(rfkill, ev.soft);
1310 ret = 0;
1311 break;
1312 default:
1313 ret = -EINVAL;
1314 break;
1315 }
1316
1317 mutex_unlock(&rfkill_global_mutex);
1318
1319 return ret ?: count;
1320}
1321
1322static int rfkill_fop_release(struct inode *inode, struct file *file)
1323{
1324 struct rfkill_data *data = file->private_data;
1325 struct rfkill_int_event *ev, *tmp;
1326
1327 mutex_lock(&rfkill_global_mutex);
1328 list_del(&data->list);
1329 mutex_unlock(&rfkill_global_mutex);
1330
1331 mutex_destroy(&data->mtx);
1332 list_for_each_entry_safe(ev, tmp, &data->events, list)
1333 kfree(ev);
1334
1335#ifdef CONFIG_RFKILL_INPUT
1336 if (data->input_handler)
1337 if (atomic_dec_return(&rfkill_input_disabled) == 0)
1338 printk(KERN_DEBUG "rfkill: input handler enabled\n");
1339#endif
1340
1341 kfree(data);
1342
1343 return 0;
1344}
1345
1346static long rfkill_fop_ioctl(struct file *file, unsigned int cmd,
1347 unsigned long arg)
1348{
1349 struct rfkill_data *data = file->private_data;
1350 int ret = -ENOTTY;
1351 u32 size;
1352
1353 if (_IOC_TYPE(cmd) != RFKILL_IOC_MAGIC)
1354 return -ENOTTY;
1355
1356 mutex_lock(&data->mtx);
1357 switch (_IOC_NR(cmd)) {
1358#ifdef CONFIG_RFKILL_INPUT
1359 case RFKILL_IOC_NOINPUT:
1360 if (!data->input_handler) {
1361 if (atomic_inc_return(&rfkill_input_disabled) == 1)
1362 printk(KERN_DEBUG "rfkill: input handler disabled\n");
1363 data->input_handler = true;
1364 }
1365 ret = 0;
1366 break;
1367#endif
1368 case RFKILL_IOC_MAX_SIZE:
1369 if (get_user(size, (__u32 __user *)arg)) {
1370 ret = -EFAULT;
1371 break;
1372 }
1373 if (size < RFKILL_EVENT_SIZE_V1 || size > U8_MAX) {
1374 ret = -EINVAL;
1375 break;
1376 }
1377 data->max_size = size;
1378 ret = 0;
1379 break;
1380 default:
1381 break;
1382 }
1383 mutex_unlock(&data->mtx);
1384
1385 return ret;
1386}
1387
1388static const struct file_operations rfkill_fops = {
1389 .owner = THIS_MODULE,
1390 .open = rfkill_fop_open,
1391 .read = rfkill_fop_read,
1392 .write = rfkill_fop_write,
1393 .poll = rfkill_fop_poll,
1394 .release = rfkill_fop_release,
1395 .unlocked_ioctl = rfkill_fop_ioctl,
1396 .compat_ioctl = compat_ptr_ioctl,
1397};
1398
1399#define RFKILL_NAME "rfkill"
1400
1401static struct miscdevice rfkill_miscdev = {
1402 .fops = &rfkill_fops,
1403 .name = RFKILL_NAME,
1404 .minor = RFKILL_MINOR,
1405};
1406
1407static int __init rfkill_init(void)
1408{
1409 int error;
1410
1411 rfkill_update_global_state(RFKILL_TYPE_ALL, !rfkill_default_state);
1412
1413 error = class_register(&rfkill_class);
1414 if (error)
1415 goto error_class;
1416
1417 error = misc_register(&rfkill_miscdev);
1418 if (error)
1419 goto error_misc;
1420
1421 error = rfkill_global_led_trigger_register();
1422 if (error)
1423 goto error_led_trigger;
1424
1425#ifdef CONFIG_RFKILL_INPUT
1426 error = rfkill_handler_init();
1427 if (error)
1428 goto error_input;
1429#endif
1430
1431 return 0;
1432
1433#ifdef CONFIG_RFKILL_INPUT
1434error_input:
1435 rfkill_global_led_trigger_unregister();
1436#endif
1437error_led_trigger:
1438 misc_deregister(&rfkill_miscdev);
1439error_misc:
1440 class_unregister(&rfkill_class);
1441error_class:
1442 return error;
1443}
1444subsys_initcall(rfkill_init);
1445
1446static void __exit rfkill_exit(void)
1447{
1448#ifdef CONFIG_RFKILL_INPUT
1449 rfkill_handler_exit();
1450#endif
1451 rfkill_global_led_trigger_unregister();
1452 misc_deregister(&rfkill_miscdev);
1453 class_unregister(&rfkill_class);
1454}
1455module_exit(rfkill_exit);
1456
1457MODULE_ALIAS_MISCDEV(RFKILL_MINOR);
1458MODULE_ALIAS("devname:" RFKILL_NAME);