Linux Audio

Check our new training course

Loading...
v4.6
 
   1/*
   2 * Copyright (C) 2006 - 2007 Ivo van Doorn
   3 * Copyright (C) 2007 Dmitry Torokhov
   4 * Copyright 2009 Johannes Berg <johannes@sipsolutions.net>
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License as published by
   8 * the Free Software Foundation; either version 2 of the License, or
   9 * (at your option) any later version.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14 * GNU General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * along with this program; if not, see <http://www.gnu.org/licenses/>.
  18 */
  19
  20#include <linux/kernel.h>
  21#include <linux/module.h>
  22#include <linux/init.h>
  23#include <linux/workqueue.h>
  24#include <linux/capability.h>
  25#include <linux/list.h>
  26#include <linux/mutex.h>
  27#include <linux/rfkill.h>
  28#include <linux/sched.h>
  29#include <linux/spinlock.h>
  30#include <linux/device.h>
  31#include <linux/miscdevice.h>
  32#include <linux/wait.h>
  33#include <linux/poll.h>
  34#include <linux/fs.h>
  35#include <linux/slab.h>
  36
  37#include "rfkill.h"
  38
  39#define POLL_INTERVAL		(5 * HZ)
  40
  41#define RFKILL_BLOCK_HW		BIT(0)
  42#define RFKILL_BLOCK_SW		BIT(1)
  43#define RFKILL_BLOCK_SW_PREV	BIT(2)
  44#define RFKILL_BLOCK_ANY	(RFKILL_BLOCK_HW |\
  45				 RFKILL_BLOCK_SW |\
  46				 RFKILL_BLOCK_SW_PREV)
  47#define RFKILL_BLOCK_SW_SETCALL	BIT(31)
  48
  49struct rfkill {
  50	spinlock_t		lock;
  51
  52	enum rfkill_type	type;
  53
  54	unsigned long		state;
  55
  56	u32			idx;
  57
  58	bool			registered;
  59	bool			persistent;
  60	bool			polling_paused;
  61	bool			suspended;
  62
  63	const struct rfkill_ops	*ops;
  64	void			*data;
  65
  66#ifdef CONFIG_RFKILL_LEDS
  67	struct led_trigger	led_trigger;
  68	const char		*ledtrigname;
  69#endif
  70
  71	struct device		dev;
  72	struct list_head	node;
  73
  74	struct delayed_work	poll_work;
  75	struct work_struct	uevent_work;
  76	struct work_struct	sync_work;
  77	char			name[];
  78};
  79#define to_rfkill(d)	container_of(d, struct rfkill, dev)
  80
  81struct rfkill_int_event {
  82	struct list_head	list;
  83	struct rfkill_event	ev;
  84};
  85
  86struct rfkill_data {
  87	struct list_head	list;
  88	struct list_head	events;
  89	struct mutex		mtx;
  90	wait_queue_head_t	read_wait;
  91	bool			input_handler;
  92};
  93
  94
  95MODULE_AUTHOR("Ivo van Doorn <IvDoorn@gmail.com>");
  96MODULE_AUTHOR("Johannes Berg <johannes@sipsolutions.net>");
  97MODULE_DESCRIPTION("RF switch support");
  98MODULE_LICENSE("GPL");
  99
 100
 101/*
 102 * The locking here should be made much smarter, we currently have
 103 * a bit of a stupid situation because drivers might want to register
 104 * the rfkill struct under their own lock, and take this lock during
 105 * rfkill method calls -- which will cause an AB-BA deadlock situation.
 106 *
 107 * To fix that, we need to rework this code here to be mostly lock-free
 108 * and only use the mutex for list manipulations, not to protect the
 109 * various other global variables. Then we can avoid holding the mutex
 110 * around driver operations, and all is happy.
 111 */
 112static LIST_HEAD(rfkill_list);	/* list of registered rf switches */
 113static DEFINE_MUTEX(rfkill_global_mutex);
 114static LIST_HEAD(rfkill_fds);	/* list of open fds of /dev/rfkill */
 115
 116static unsigned int rfkill_default_state = 1;
 117module_param_named(default_state, rfkill_default_state, uint, 0444);
 118MODULE_PARM_DESC(default_state,
 119		 "Default initial state for all radio types, 0 = radio off");
 120
 121static struct {
 122	bool cur, sav;
 123} rfkill_global_states[NUM_RFKILL_TYPES];
 124
 125static bool rfkill_epo_lock_active;
 126
 127
 128#ifdef CONFIG_RFKILL_LEDS
 129static void rfkill_led_trigger_event(struct rfkill *rfkill)
 130{
 131	struct led_trigger *trigger;
 132
 133	if (!rfkill->registered)
 134		return;
 135
 136	trigger = &rfkill->led_trigger;
 137
 138	if (rfkill->state & RFKILL_BLOCK_ANY)
 139		led_trigger_event(trigger, LED_OFF);
 140	else
 141		led_trigger_event(trigger, LED_FULL);
 142}
 143
 144static void rfkill_led_trigger_activate(struct led_classdev *led)
 145{
 146	struct rfkill *rfkill;
 147
 148	rfkill = container_of(led->trigger, struct rfkill, led_trigger);
 149
 150	rfkill_led_trigger_event(rfkill);
 
 
 151}
 152
 153const char *rfkill_get_led_trigger_name(struct rfkill *rfkill)
 154{
 155	return rfkill->led_trigger.name;
 156}
 157EXPORT_SYMBOL(rfkill_get_led_trigger_name);
 158
 159void rfkill_set_led_trigger_name(struct rfkill *rfkill, const char *name)
 160{
 161	BUG_ON(!rfkill);
 162
 163	rfkill->ledtrigname = name;
 164}
 165EXPORT_SYMBOL(rfkill_set_led_trigger_name);
 166
 167static int rfkill_led_trigger_register(struct rfkill *rfkill)
 168{
 169	rfkill->led_trigger.name = rfkill->ledtrigname
 170					? : dev_name(&rfkill->dev);
 171	rfkill->led_trigger.activate = rfkill_led_trigger_activate;
 172	return led_trigger_register(&rfkill->led_trigger);
 173}
 174
 175static void rfkill_led_trigger_unregister(struct rfkill *rfkill)
 176{
 177	led_trigger_unregister(&rfkill->led_trigger);
 178}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 179#else
 180static void rfkill_led_trigger_event(struct rfkill *rfkill)
 181{
 182}
 183
 184static inline int rfkill_led_trigger_register(struct rfkill *rfkill)
 185{
 186	return 0;
 187}
 188
 189static inline void rfkill_led_trigger_unregister(struct rfkill *rfkill)
 190{
 191}
 
 
 
 
 
 
 
 
 
 
 
 
 
 192#endif /* CONFIG_RFKILL_LEDS */
 193
 194static void rfkill_fill_event(struct rfkill_event *ev, struct rfkill *rfkill,
 195			      enum rfkill_operation op)
 196{
 197	unsigned long flags;
 198
 199	ev->idx = rfkill->idx;
 200	ev->type = rfkill->type;
 201	ev->op = op;
 202
 203	spin_lock_irqsave(&rfkill->lock, flags);
 204	ev->hard = !!(rfkill->state & RFKILL_BLOCK_HW);
 205	ev->soft = !!(rfkill->state & (RFKILL_BLOCK_SW |
 206					RFKILL_BLOCK_SW_PREV));
 207	spin_unlock_irqrestore(&rfkill->lock, flags);
 208}
 209
 210static void rfkill_send_events(struct rfkill *rfkill, enum rfkill_operation op)
 211{
 212	struct rfkill_data *data;
 213	struct rfkill_int_event *ev;
 214
 215	list_for_each_entry(data, &rfkill_fds, list) {
 216		ev = kzalloc(sizeof(*ev), GFP_KERNEL);
 217		if (!ev)
 218			continue;
 219		rfkill_fill_event(&ev->ev, rfkill, op);
 220		mutex_lock(&data->mtx);
 221		list_add_tail(&ev->list, &data->events);
 222		mutex_unlock(&data->mtx);
 223		wake_up_interruptible(&data->read_wait);
 224	}
 225}
 226
 227static void rfkill_event(struct rfkill *rfkill)
 228{
 229	if (!rfkill->registered)
 230		return;
 231
 232	kobject_uevent(&rfkill->dev.kobj, KOBJ_CHANGE);
 233
 234	/* also send event to /dev/rfkill */
 235	rfkill_send_events(rfkill, RFKILL_OP_CHANGE);
 236}
 237
 238/**
 239 * rfkill_set_block - wrapper for set_block method
 240 *
 241 * @rfkill: the rfkill struct to use
 242 * @blocked: the new software state
 243 *
 244 * Calls the set_block method (when applicable) and handles notifications
 245 * etc. as well.
 246 */
 247static void rfkill_set_block(struct rfkill *rfkill, bool blocked)
 248{
 249	unsigned long flags;
 250	bool prev, curr;
 251	int err;
 252
 253	if (unlikely(rfkill->dev.power.power_state.event & PM_EVENT_SLEEP))
 254		return;
 255
 256	/*
 257	 * Some platforms (...!) generate input events which affect the
 258	 * _hard_ kill state -- whenever something tries to change the
 259	 * current software state query the hardware state too.
 260	 */
 261	if (rfkill->ops->query)
 262		rfkill->ops->query(rfkill, rfkill->data);
 263
 264	spin_lock_irqsave(&rfkill->lock, flags);
 265	prev = rfkill->state & RFKILL_BLOCK_SW;
 266
 267	if (prev)
 268		rfkill->state |= RFKILL_BLOCK_SW_PREV;
 269	else
 270		rfkill->state &= ~RFKILL_BLOCK_SW_PREV;
 271
 272	if (blocked)
 273		rfkill->state |= RFKILL_BLOCK_SW;
 274	else
 275		rfkill->state &= ~RFKILL_BLOCK_SW;
 276
 277	rfkill->state |= RFKILL_BLOCK_SW_SETCALL;
 278	spin_unlock_irqrestore(&rfkill->lock, flags);
 279
 280	err = rfkill->ops->set_block(rfkill->data, blocked);
 281
 282	spin_lock_irqsave(&rfkill->lock, flags);
 283	if (err) {
 284		/*
 285		 * Failed -- reset status to _PREV, which may be different
 286		 * from what we have set _PREV to earlier in this function
 287		 * if rfkill_set_sw_state was invoked.
 288		 */
 289		if (rfkill->state & RFKILL_BLOCK_SW_PREV)
 290			rfkill->state |= RFKILL_BLOCK_SW;
 291		else
 292			rfkill->state &= ~RFKILL_BLOCK_SW;
 293	}
 294	rfkill->state &= ~RFKILL_BLOCK_SW_SETCALL;
 295	rfkill->state &= ~RFKILL_BLOCK_SW_PREV;
 296	curr = rfkill->state & RFKILL_BLOCK_SW;
 297	spin_unlock_irqrestore(&rfkill->lock, flags);
 298
 299	rfkill_led_trigger_event(rfkill);
 
 300
 301	if (prev != curr)
 302		rfkill_event(rfkill);
 303}
 304
 305static void rfkill_update_global_state(enum rfkill_type type, bool blocked)
 306{
 307	int i;
 308
 309	if (type != RFKILL_TYPE_ALL) {
 310		rfkill_global_states[type].cur = blocked;
 311		return;
 312	}
 313
 314	for (i = 0; i < NUM_RFKILL_TYPES; i++)
 315		rfkill_global_states[i].cur = blocked;
 316}
 317
 318#ifdef CONFIG_RFKILL_INPUT
 319static atomic_t rfkill_input_disabled = ATOMIC_INIT(0);
 320
 321/**
 322 * __rfkill_switch_all - Toggle state of all switches of given type
 323 * @type: type of interfaces to be affected
 324 * @blocked: the new state
 325 *
 326 * This function sets the state of all switches of given type,
 327 * unless a specific switch is suspended.
 328 *
 329 * Caller must have acquired rfkill_global_mutex.
 330 */
 331static void __rfkill_switch_all(const enum rfkill_type type, bool blocked)
 332{
 333	struct rfkill *rfkill;
 334
 335	rfkill_update_global_state(type, blocked);
 336	list_for_each_entry(rfkill, &rfkill_list, node) {
 337		if (rfkill->type != type && type != RFKILL_TYPE_ALL)
 338			continue;
 339
 340		rfkill_set_block(rfkill, blocked);
 341	}
 342}
 343
 344/**
 345 * rfkill_switch_all - Toggle state of all switches of given type
 346 * @type: type of interfaces to be affected
 347 * @blocked: the new state
 348 *
 349 * Acquires rfkill_global_mutex and calls __rfkill_switch_all(@type, @state).
 350 * Please refer to __rfkill_switch_all() for details.
 351 *
 352 * Does nothing if the EPO lock is active.
 353 */
 354void rfkill_switch_all(enum rfkill_type type, bool blocked)
 355{
 356	if (atomic_read(&rfkill_input_disabled))
 357		return;
 358
 359	mutex_lock(&rfkill_global_mutex);
 360
 361	if (!rfkill_epo_lock_active)
 362		__rfkill_switch_all(type, blocked);
 363
 364	mutex_unlock(&rfkill_global_mutex);
 365}
 366
 367/**
 368 * rfkill_epo - emergency power off all transmitters
 369 *
 370 * This kicks all non-suspended rfkill devices to RFKILL_STATE_SOFT_BLOCKED,
 371 * ignoring everything in its path but rfkill_global_mutex and rfkill->mutex.
 372 *
 373 * The global state before the EPO is saved and can be restored later
 374 * using rfkill_restore_states().
 375 */
 376void rfkill_epo(void)
 377{
 378	struct rfkill *rfkill;
 379	int i;
 380
 381	if (atomic_read(&rfkill_input_disabled))
 382		return;
 383
 384	mutex_lock(&rfkill_global_mutex);
 385
 386	rfkill_epo_lock_active = true;
 387	list_for_each_entry(rfkill, &rfkill_list, node)
 388		rfkill_set_block(rfkill, true);
 389
 390	for (i = 0; i < NUM_RFKILL_TYPES; i++) {
 391		rfkill_global_states[i].sav = rfkill_global_states[i].cur;
 392		rfkill_global_states[i].cur = true;
 393	}
 394
 395	mutex_unlock(&rfkill_global_mutex);
 396}
 397
 398/**
 399 * rfkill_restore_states - restore global states
 400 *
 401 * Restore (and sync switches to) the global state from the
 402 * states in rfkill_default_states.  This can undo the effects of
 403 * a call to rfkill_epo().
 404 */
 405void rfkill_restore_states(void)
 406{
 407	int i;
 408
 409	if (atomic_read(&rfkill_input_disabled))
 410		return;
 411
 412	mutex_lock(&rfkill_global_mutex);
 413
 414	rfkill_epo_lock_active = false;
 415	for (i = 0; i < NUM_RFKILL_TYPES; i++)
 416		__rfkill_switch_all(i, rfkill_global_states[i].sav);
 417	mutex_unlock(&rfkill_global_mutex);
 418}
 419
 420/**
 421 * rfkill_remove_epo_lock - unlock state changes
 422 *
 423 * Used by rfkill-input manually unlock state changes, when
 424 * the EPO switch is deactivated.
 425 */
 426void rfkill_remove_epo_lock(void)
 427{
 428	if (atomic_read(&rfkill_input_disabled))
 429		return;
 430
 431	mutex_lock(&rfkill_global_mutex);
 432	rfkill_epo_lock_active = false;
 433	mutex_unlock(&rfkill_global_mutex);
 434}
 435
 436/**
 437 * rfkill_is_epo_lock_active - returns true EPO is active
 438 *
 439 * Returns 0 (false) if there is NOT an active EPO contidion,
 440 * and 1 (true) if there is an active EPO contition, which
 441 * locks all radios in one of the BLOCKED states.
 442 *
 443 * Can be called in atomic context.
 444 */
 445bool rfkill_is_epo_lock_active(void)
 446{
 447	return rfkill_epo_lock_active;
 448}
 449
 450/**
 451 * rfkill_get_global_sw_state - returns global state for a type
 452 * @type: the type to get the global state of
 453 *
 454 * Returns the current global state for a given wireless
 455 * device type.
 456 */
 457bool rfkill_get_global_sw_state(const enum rfkill_type type)
 458{
 459	return rfkill_global_states[type].cur;
 460}
 461#endif
 462
 463bool rfkill_set_hw_state(struct rfkill *rfkill, bool blocked)
 464{
 465	unsigned long flags;
 466	bool ret, prev;
 467
 468	BUG_ON(!rfkill);
 469
 470	spin_lock_irqsave(&rfkill->lock, flags);
 471	prev = !!(rfkill->state & RFKILL_BLOCK_HW);
 472	if (blocked)
 473		rfkill->state |= RFKILL_BLOCK_HW;
 474	else
 475		rfkill->state &= ~RFKILL_BLOCK_HW;
 476	ret = !!(rfkill->state & RFKILL_BLOCK_ANY);
 477	spin_unlock_irqrestore(&rfkill->lock, flags);
 478
 479	rfkill_led_trigger_event(rfkill);
 
 480
 481	if (!rfkill->registered)
 482		return ret;
 483
 484	if (prev != blocked)
 485		schedule_work(&rfkill->uevent_work);
 486
 487	return ret;
 488}
 489EXPORT_SYMBOL(rfkill_set_hw_state);
 490
 491static void __rfkill_set_sw_state(struct rfkill *rfkill, bool blocked)
 492{
 493	u32 bit = RFKILL_BLOCK_SW;
 494
 495	/* if in a ops->set_block right now, use other bit */
 496	if (rfkill->state & RFKILL_BLOCK_SW_SETCALL)
 497		bit = RFKILL_BLOCK_SW_PREV;
 498
 499	if (blocked)
 500		rfkill->state |= bit;
 501	else
 502		rfkill->state &= ~bit;
 503}
 504
 505bool rfkill_set_sw_state(struct rfkill *rfkill, bool blocked)
 506{
 507	unsigned long flags;
 508	bool prev, hwblock;
 509
 510	BUG_ON(!rfkill);
 511
 512	spin_lock_irqsave(&rfkill->lock, flags);
 513	prev = !!(rfkill->state & RFKILL_BLOCK_SW);
 514	__rfkill_set_sw_state(rfkill, blocked);
 515	hwblock = !!(rfkill->state & RFKILL_BLOCK_HW);
 516	blocked = blocked || hwblock;
 517	spin_unlock_irqrestore(&rfkill->lock, flags);
 518
 519	if (!rfkill->registered)
 520		return blocked;
 521
 522	if (prev != blocked && !hwblock)
 523		schedule_work(&rfkill->uevent_work);
 524
 525	rfkill_led_trigger_event(rfkill);
 
 526
 527	return blocked;
 528}
 529EXPORT_SYMBOL(rfkill_set_sw_state);
 530
 531void rfkill_init_sw_state(struct rfkill *rfkill, bool blocked)
 532{
 533	unsigned long flags;
 534
 535	BUG_ON(!rfkill);
 536	BUG_ON(rfkill->registered);
 537
 538	spin_lock_irqsave(&rfkill->lock, flags);
 539	__rfkill_set_sw_state(rfkill, blocked);
 540	rfkill->persistent = true;
 541	spin_unlock_irqrestore(&rfkill->lock, flags);
 542}
 543EXPORT_SYMBOL(rfkill_init_sw_state);
 544
 545void rfkill_set_states(struct rfkill *rfkill, bool sw, bool hw)
 546{
 547	unsigned long flags;
 548	bool swprev, hwprev;
 549
 550	BUG_ON(!rfkill);
 551
 552	spin_lock_irqsave(&rfkill->lock, flags);
 553
 554	/*
 555	 * No need to care about prev/setblock ... this is for uevent only
 556	 * and that will get triggered by rfkill_set_block anyway.
 557	 */
 558	swprev = !!(rfkill->state & RFKILL_BLOCK_SW);
 559	hwprev = !!(rfkill->state & RFKILL_BLOCK_HW);
 560	__rfkill_set_sw_state(rfkill, sw);
 561	if (hw)
 562		rfkill->state |= RFKILL_BLOCK_HW;
 563	else
 564		rfkill->state &= ~RFKILL_BLOCK_HW;
 565
 566	spin_unlock_irqrestore(&rfkill->lock, flags);
 567
 568	if (!rfkill->registered) {
 569		rfkill->persistent = true;
 570	} else {
 571		if (swprev != sw || hwprev != hw)
 572			schedule_work(&rfkill->uevent_work);
 573
 574		rfkill_led_trigger_event(rfkill);
 
 575	}
 576}
 577EXPORT_SYMBOL(rfkill_set_states);
 578
 579static const char * const rfkill_types[] = {
 580	NULL, /* RFKILL_TYPE_ALL */
 581	"wlan",
 582	"bluetooth",
 583	"ultrawideband",
 584	"wimax",
 585	"wwan",
 586	"gps",
 587	"fm",
 588	"nfc",
 589};
 590
 591enum rfkill_type rfkill_find_type(const char *name)
 592{
 593	int i;
 594
 595	BUILD_BUG_ON(ARRAY_SIZE(rfkill_types) != NUM_RFKILL_TYPES);
 596
 597	if (!name)
 598		return RFKILL_TYPE_ALL;
 599
 600	for (i = 1; i < NUM_RFKILL_TYPES; i++)
 601		if (!strcmp(name, rfkill_types[i]))
 602			return i;
 603	return RFKILL_TYPE_ALL;
 604}
 605EXPORT_SYMBOL(rfkill_find_type);
 606
 607static ssize_t name_show(struct device *dev, struct device_attribute *attr,
 608			 char *buf)
 609{
 610	struct rfkill *rfkill = to_rfkill(dev);
 611
 612	return sprintf(buf, "%s\n", rfkill->name);
 613}
 614static DEVICE_ATTR_RO(name);
 615
 616static ssize_t type_show(struct device *dev, struct device_attribute *attr,
 617			 char *buf)
 618{
 619	struct rfkill *rfkill = to_rfkill(dev);
 620
 621	return sprintf(buf, "%s\n", rfkill_types[rfkill->type]);
 622}
 623static DEVICE_ATTR_RO(type);
 624
 625static ssize_t index_show(struct device *dev, struct device_attribute *attr,
 626			  char *buf)
 627{
 628	struct rfkill *rfkill = to_rfkill(dev);
 629
 630	return sprintf(buf, "%d\n", rfkill->idx);
 631}
 632static DEVICE_ATTR_RO(index);
 633
 634static ssize_t persistent_show(struct device *dev,
 635			       struct device_attribute *attr, char *buf)
 636{
 637	struct rfkill *rfkill = to_rfkill(dev);
 638
 639	return sprintf(buf, "%d\n", rfkill->persistent);
 640}
 641static DEVICE_ATTR_RO(persistent);
 642
 643static ssize_t hard_show(struct device *dev, struct device_attribute *attr,
 644			 char *buf)
 645{
 646	struct rfkill *rfkill = to_rfkill(dev);
 647
 648	return sprintf(buf, "%d\n", (rfkill->state & RFKILL_BLOCK_HW) ? 1 : 0 );
 649}
 650static DEVICE_ATTR_RO(hard);
 651
 652static ssize_t soft_show(struct device *dev, struct device_attribute *attr,
 653			 char *buf)
 654{
 655	struct rfkill *rfkill = to_rfkill(dev);
 656
 657	return sprintf(buf, "%d\n", (rfkill->state & RFKILL_BLOCK_SW) ? 1 : 0 );
 658}
 659
 660static ssize_t soft_store(struct device *dev, struct device_attribute *attr,
 661			  const char *buf, size_t count)
 662{
 663	struct rfkill *rfkill = to_rfkill(dev);
 664	unsigned long state;
 665	int err;
 666
 667	if (!capable(CAP_NET_ADMIN))
 668		return -EPERM;
 669
 670	err = kstrtoul(buf, 0, &state);
 671	if (err)
 672		return err;
 673
 674	if (state > 1 )
 675		return -EINVAL;
 676
 677	mutex_lock(&rfkill_global_mutex);
 678	rfkill_set_block(rfkill, state);
 679	mutex_unlock(&rfkill_global_mutex);
 680
 681	return count;
 682}
 683static DEVICE_ATTR_RW(soft);
 684
 685static u8 user_state_from_blocked(unsigned long state)
 686{
 687	if (state & RFKILL_BLOCK_HW)
 688		return RFKILL_USER_STATE_HARD_BLOCKED;
 689	if (state & RFKILL_BLOCK_SW)
 690		return RFKILL_USER_STATE_SOFT_BLOCKED;
 691
 692	return RFKILL_USER_STATE_UNBLOCKED;
 693}
 694
 695static ssize_t state_show(struct device *dev, struct device_attribute *attr,
 696			  char *buf)
 697{
 698	struct rfkill *rfkill = to_rfkill(dev);
 699
 700	return sprintf(buf, "%d\n", user_state_from_blocked(rfkill->state));
 701}
 702
 703static ssize_t state_store(struct device *dev, struct device_attribute *attr,
 704			   const char *buf, size_t count)
 705{
 706	struct rfkill *rfkill = to_rfkill(dev);
 707	unsigned long state;
 708	int err;
 709
 710	if (!capable(CAP_NET_ADMIN))
 711		return -EPERM;
 712
 713	err = kstrtoul(buf, 0, &state);
 714	if (err)
 715		return err;
 716
 717	if (state != RFKILL_USER_STATE_SOFT_BLOCKED &&
 718	    state != RFKILL_USER_STATE_UNBLOCKED)
 719		return -EINVAL;
 720
 721	mutex_lock(&rfkill_global_mutex);
 722	rfkill_set_block(rfkill, state == RFKILL_USER_STATE_SOFT_BLOCKED);
 723	mutex_unlock(&rfkill_global_mutex);
 724
 725	return count;
 726}
 727static DEVICE_ATTR_RW(state);
 728
 729static struct attribute *rfkill_dev_attrs[] = {
 730	&dev_attr_name.attr,
 731	&dev_attr_type.attr,
 732	&dev_attr_index.attr,
 733	&dev_attr_persistent.attr,
 734	&dev_attr_state.attr,
 735	&dev_attr_soft.attr,
 736	&dev_attr_hard.attr,
 737	NULL,
 738};
 739ATTRIBUTE_GROUPS(rfkill_dev);
 740
 741static void rfkill_release(struct device *dev)
 742{
 743	struct rfkill *rfkill = to_rfkill(dev);
 744
 745	kfree(rfkill);
 746}
 747
 748static int rfkill_dev_uevent(struct device *dev, struct kobj_uevent_env *env)
 749{
 750	struct rfkill *rfkill = to_rfkill(dev);
 751	unsigned long flags;
 752	u32 state;
 753	int error;
 754
 755	error = add_uevent_var(env, "RFKILL_NAME=%s", rfkill->name);
 756	if (error)
 757		return error;
 758	error = add_uevent_var(env, "RFKILL_TYPE=%s",
 759			       rfkill_types[rfkill->type]);
 760	if (error)
 761		return error;
 762	spin_lock_irqsave(&rfkill->lock, flags);
 763	state = rfkill->state;
 764	spin_unlock_irqrestore(&rfkill->lock, flags);
 765	error = add_uevent_var(env, "RFKILL_STATE=%d",
 766			       user_state_from_blocked(state));
 767	return error;
 768}
 769
 770void rfkill_pause_polling(struct rfkill *rfkill)
 771{
 772	BUG_ON(!rfkill);
 773
 774	if (!rfkill->ops->poll)
 775		return;
 776
 777	rfkill->polling_paused = true;
 778	cancel_delayed_work_sync(&rfkill->poll_work);
 779}
 780EXPORT_SYMBOL(rfkill_pause_polling);
 781
 782void rfkill_resume_polling(struct rfkill *rfkill)
 783{
 784	BUG_ON(!rfkill);
 785
 786	if (!rfkill->ops->poll)
 787		return;
 788
 789	rfkill->polling_paused = false;
 790
 791	if (rfkill->suspended)
 792		return;
 793
 794	queue_delayed_work(system_power_efficient_wq,
 795			   &rfkill->poll_work, 0);
 796}
 797EXPORT_SYMBOL(rfkill_resume_polling);
 798
 799#ifdef CONFIG_PM_SLEEP
 800static int rfkill_suspend(struct device *dev)
 801{
 802	struct rfkill *rfkill = to_rfkill(dev);
 803
 804	rfkill->suspended = true;
 805	cancel_delayed_work_sync(&rfkill->poll_work);
 806
 807	return 0;
 808}
 809
 810static int rfkill_resume(struct device *dev)
 811{
 812	struct rfkill *rfkill = to_rfkill(dev);
 813	bool cur;
 814
 815	rfkill->suspended = false;
 816
 817	if (!rfkill->persistent) {
 818		cur = !!(rfkill->state & RFKILL_BLOCK_SW);
 819		rfkill_set_block(rfkill, cur);
 820	}
 821
 822	if (rfkill->ops->poll && !rfkill->polling_paused)
 823		queue_delayed_work(system_power_efficient_wq,
 824				   &rfkill->poll_work, 0);
 825
 826	return 0;
 827}
 828
 829static SIMPLE_DEV_PM_OPS(rfkill_pm_ops, rfkill_suspend, rfkill_resume);
 830#define RFKILL_PM_OPS (&rfkill_pm_ops)
 831#else
 832#define RFKILL_PM_OPS NULL
 833#endif
 834
 835static struct class rfkill_class = {
 836	.name		= "rfkill",
 837	.dev_release	= rfkill_release,
 838	.dev_groups	= rfkill_dev_groups,
 839	.dev_uevent	= rfkill_dev_uevent,
 840	.pm		= RFKILL_PM_OPS,
 841};
 842
 843bool rfkill_blocked(struct rfkill *rfkill)
 844{
 845	unsigned long flags;
 846	u32 state;
 847
 848	spin_lock_irqsave(&rfkill->lock, flags);
 849	state = rfkill->state;
 850	spin_unlock_irqrestore(&rfkill->lock, flags);
 851
 852	return !!(state & RFKILL_BLOCK_ANY);
 853}
 854EXPORT_SYMBOL(rfkill_blocked);
 855
 856
 857struct rfkill * __must_check rfkill_alloc(const char *name,
 858					  struct device *parent,
 859					  const enum rfkill_type type,
 860					  const struct rfkill_ops *ops,
 861					  void *ops_data)
 862{
 863	struct rfkill *rfkill;
 864	struct device *dev;
 865
 866	if (WARN_ON(!ops))
 867		return NULL;
 868
 869	if (WARN_ON(!ops->set_block))
 870		return NULL;
 871
 872	if (WARN_ON(!name))
 873		return NULL;
 874
 875	if (WARN_ON(type == RFKILL_TYPE_ALL || type >= NUM_RFKILL_TYPES))
 876		return NULL;
 877
 878	rfkill = kzalloc(sizeof(*rfkill) + strlen(name) + 1, GFP_KERNEL);
 879	if (!rfkill)
 880		return NULL;
 881
 882	spin_lock_init(&rfkill->lock);
 883	INIT_LIST_HEAD(&rfkill->node);
 884	rfkill->type = type;
 885	strcpy(rfkill->name, name);
 886	rfkill->ops = ops;
 887	rfkill->data = ops_data;
 888
 889	dev = &rfkill->dev;
 890	dev->class = &rfkill_class;
 891	dev->parent = parent;
 892	device_initialize(dev);
 893
 894	return rfkill;
 895}
 896EXPORT_SYMBOL(rfkill_alloc);
 897
 898static void rfkill_poll(struct work_struct *work)
 899{
 900	struct rfkill *rfkill;
 901
 902	rfkill = container_of(work, struct rfkill, poll_work.work);
 903
 904	/*
 905	 * Poll hardware state -- driver will use one of the
 906	 * rfkill_set{,_hw,_sw}_state functions and use its
 907	 * return value to update the current status.
 908	 */
 909	rfkill->ops->poll(rfkill, rfkill->data);
 910
 911	queue_delayed_work(system_power_efficient_wq,
 912		&rfkill->poll_work,
 913		round_jiffies_relative(POLL_INTERVAL));
 914}
 915
 916static void rfkill_uevent_work(struct work_struct *work)
 917{
 918	struct rfkill *rfkill;
 919
 920	rfkill = container_of(work, struct rfkill, uevent_work);
 921
 922	mutex_lock(&rfkill_global_mutex);
 923	rfkill_event(rfkill);
 924	mutex_unlock(&rfkill_global_mutex);
 925}
 926
 927static void rfkill_sync_work(struct work_struct *work)
 928{
 929	struct rfkill *rfkill;
 930	bool cur;
 931
 932	rfkill = container_of(work, struct rfkill, sync_work);
 933
 934	mutex_lock(&rfkill_global_mutex);
 935	cur = rfkill_global_states[rfkill->type].cur;
 936	rfkill_set_block(rfkill, cur);
 937	mutex_unlock(&rfkill_global_mutex);
 938}
 939
 940int __must_check rfkill_register(struct rfkill *rfkill)
 941{
 942	static unsigned long rfkill_no;
 943	struct device *dev = &rfkill->dev;
 944	int error;
 945
 946	BUG_ON(!rfkill);
 
 
 
 947
 948	mutex_lock(&rfkill_global_mutex);
 949
 950	if (rfkill->registered) {
 951		error = -EALREADY;
 952		goto unlock;
 953	}
 954
 955	rfkill->idx = rfkill_no;
 956	dev_set_name(dev, "rfkill%lu", rfkill_no);
 957	rfkill_no++;
 958
 959	list_add_tail(&rfkill->node, &rfkill_list);
 960
 961	error = device_add(dev);
 962	if (error)
 963		goto remove;
 964
 965	error = rfkill_led_trigger_register(rfkill);
 966	if (error)
 967		goto devdel;
 968
 969	rfkill->registered = true;
 970
 971	INIT_DELAYED_WORK(&rfkill->poll_work, rfkill_poll);
 972	INIT_WORK(&rfkill->uevent_work, rfkill_uevent_work);
 973	INIT_WORK(&rfkill->sync_work, rfkill_sync_work);
 974
 975	if (rfkill->ops->poll)
 976		queue_delayed_work(system_power_efficient_wq,
 977			&rfkill->poll_work,
 978			round_jiffies_relative(POLL_INTERVAL));
 979
 980	if (!rfkill->persistent || rfkill_epo_lock_active) {
 981		schedule_work(&rfkill->sync_work);
 982	} else {
 983#ifdef CONFIG_RFKILL_INPUT
 984		bool soft_blocked = !!(rfkill->state & RFKILL_BLOCK_SW);
 985
 986		if (!atomic_read(&rfkill_input_disabled))
 987			__rfkill_switch_all(rfkill->type, soft_blocked);
 988#endif
 989	}
 990
 
 991	rfkill_send_events(rfkill, RFKILL_OP_ADD);
 992
 993	mutex_unlock(&rfkill_global_mutex);
 994	return 0;
 995
 996 devdel:
 997	device_del(&rfkill->dev);
 998 remove:
 999	list_del_init(&rfkill->node);
1000 unlock:
1001	mutex_unlock(&rfkill_global_mutex);
1002	return error;
1003}
1004EXPORT_SYMBOL(rfkill_register);
1005
1006void rfkill_unregister(struct rfkill *rfkill)
1007{
1008	BUG_ON(!rfkill);
1009
1010	if (rfkill->ops->poll)
1011		cancel_delayed_work_sync(&rfkill->poll_work);
1012
1013	cancel_work_sync(&rfkill->uevent_work);
1014	cancel_work_sync(&rfkill->sync_work);
1015
1016	rfkill->registered = false;
1017
1018	device_del(&rfkill->dev);
1019
1020	mutex_lock(&rfkill_global_mutex);
1021	rfkill_send_events(rfkill, RFKILL_OP_DEL);
1022	list_del_init(&rfkill->node);
 
1023	mutex_unlock(&rfkill_global_mutex);
1024
1025	rfkill_led_trigger_unregister(rfkill);
1026}
1027EXPORT_SYMBOL(rfkill_unregister);
1028
1029void rfkill_destroy(struct rfkill *rfkill)
1030{
1031	if (rfkill)
1032		put_device(&rfkill->dev);
1033}
1034EXPORT_SYMBOL(rfkill_destroy);
1035
1036static int rfkill_fop_open(struct inode *inode, struct file *file)
1037{
1038	struct rfkill_data *data;
1039	struct rfkill *rfkill;
1040	struct rfkill_int_event *ev, *tmp;
1041
1042	data = kzalloc(sizeof(*data), GFP_KERNEL);
1043	if (!data)
1044		return -ENOMEM;
1045
1046	INIT_LIST_HEAD(&data->events);
1047	mutex_init(&data->mtx);
1048	init_waitqueue_head(&data->read_wait);
1049
1050	mutex_lock(&rfkill_global_mutex);
1051	mutex_lock(&data->mtx);
1052	/*
1053	 * start getting events from elsewhere but hold mtx to get
1054	 * startup events added first
1055	 */
1056
1057	list_for_each_entry(rfkill, &rfkill_list, node) {
1058		ev = kzalloc(sizeof(*ev), GFP_KERNEL);
1059		if (!ev)
1060			goto free;
1061		rfkill_fill_event(&ev->ev, rfkill, RFKILL_OP_ADD);
1062		list_add_tail(&ev->list, &data->events);
1063	}
1064	list_add(&data->list, &rfkill_fds);
1065	mutex_unlock(&data->mtx);
1066	mutex_unlock(&rfkill_global_mutex);
1067
1068	file->private_data = data;
1069
1070	return nonseekable_open(inode, file);
1071
1072 free:
1073	mutex_unlock(&data->mtx);
1074	mutex_unlock(&rfkill_global_mutex);
1075	mutex_destroy(&data->mtx);
1076	list_for_each_entry_safe(ev, tmp, &data->events, list)
1077		kfree(ev);
1078	kfree(data);
1079	return -ENOMEM;
1080}
1081
1082static unsigned int rfkill_fop_poll(struct file *file, poll_table *wait)
1083{
1084	struct rfkill_data *data = file->private_data;
1085	unsigned int res = POLLOUT | POLLWRNORM;
1086
1087	poll_wait(file, &data->read_wait, wait);
1088
1089	mutex_lock(&data->mtx);
1090	if (!list_empty(&data->events))
1091		res = POLLIN | POLLRDNORM;
1092	mutex_unlock(&data->mtx);
1093
1094	return res;
1095}
1096
1097static ssize_t rfkill_fop_read(struct file *file, char __user *buf,
1098			       size_t count, loff_t *pos)
1099{
1100	struct rfkill_data *data = file->private_data;
1101	struct rfkill_int_event *ev;
1102	unsigned long sz;
1103	int ret;
1104
1105	mutex_lock(&data->mtx);
1106
1107	while (list_empty(&data->events)) {
1108		if (file->f_flags & O_NONBLOCK) {
1109			ret = -EAGAIN;
1110			goto out;
1111		}
1112		mutex_unlock(&data->mtx);
1113		/* since we re-check and it just compares pointers,
1114		 * using !list_empty() without locking isn't a problem
1115		 */
1116		ret = wait_event_interruptible(data->read_wait,
1117					       !list_empty(&data->events));
1118		mutex_lock(&data->mtx);
1119
1120		if (ret)
1121			goto out;
1122	}
1123
1124	ev = list_first_entry(&data->events, struct rfkill_int_event,
1125				list);
1126
1127	sz = min_t(unsigned long, sizeof(ev->ev), count);
1128	ret = sz;
1129	if (copy_to_user(buf, &ev->ev, sz))
1130		ret = -EFAULT;
1131
1132	list_del(&ev->list);
1133	kfree(ev);
1134 out:
1135	mutex_unlock(&data->mtx);
1136	return ret;
1137}
1138
1139static ssize_t rfkill_fop_write(struct file *file, const char __user *buf,
1140				size_t count, loff_t *pos)
1141{
1142	struct rfkill *rfkill;
1143	struct rfkill_event ev;
 
1144
1145	/* we don't need the 'hard' variable but accept it */
1146	if (count < RFKILL_EVENT_SIZE_V1 - 1)
1147		return -EINVAL;
1148
1149	/*
1150	 * Copy as much data as we can accept into our 'ev' buffer,
1151	 * but tell userspace how much we've copied so it can determine
1152	 * our API version even in a write() call, if it cares.
1153	 */
1154	count = min(count, sizeof(ev));
1155	if (copy_from_user(&ev, buf, count))
1156		return -EFAULT;
1157
1158	if (ev.op != RFKILL_OP_CHANGE && ev.op != RFKILL_OP_CHANGE_ALL)
1159		return -EINVAL;
1160
1161	if (ev.type >= NUM_RFKILL_TYPES)
1162		return -EINVAL;
1163
1164	mutex_lock(&rfkill_global_mutex);
1165
1166	if (ev.op == RFKILL_OP_CHANGE_ALL)
 
1167		rfkill_update_global_state(ev.type, ev.soft);
1168
1169	list_for_each_entry(rfkill, &rfkill_list, node) {
1170		if (rfkill->idx != ev.idx && ev.op != RFKILL_OP_CHANGE_ALL)
1171			continue;
1172
1173		if (rfkill->type != ev.type && ev.type != RFKILL_TYPE_ALL)
1174			continue;
1175
1176		rfkill_set_block(rfkill, ev.soft);
 
 
 
 
 
 
 
 
1177	}
 
1178	mutex_unlock(&rfkill_global_mutex);
1179
1180	return count;
1181}
1182
1183static int rfkill_fop_release(struct inode *inode, struct file *file)
1184{
1185	struct rfkill_data *data = file->private_data;
1186	struct rfkill_int_event *ev, *tmp;
1187
1188	mutex_lock(&rfkill_global_mutex);
1189	list_del(&data->list);
1190	mutex_unlock(&rfkill_global_mutex);
1191
1192	mutex_destroy(&data->mtx);
1193	list_for_each_entry_safe(ev, tmp, &data->events, list)
1194		kfree(ev);
1195
1196#ifdef CONFIG_RFKILL_INPUT
1197	if (data->input_handler)
1198		if (atomic_dec_return(&rfkill_input_disabled) == 0)
1199			printk(KERN_DEBUG "rfkill: input handler enabled\n");
1200#endif
1201
1202	kfree(data);
1203
1204	return 0;
1205}
1206
1207#ifdef CONFIG_RFKILL_INPUT
1208static long rfkill_fop_ioctl(struct file *file, unsigned int cmd,
1209			     unsigned long arg)
1210{
1211	struct rfkill_data *data = file->private_data;
1212
1213	if (_IOC_TYPE(cmd) != RFKILL_IOC_MAGIC)
1214		return -ENOSYS;
1215
1216	if (_IOC_NR(cmd) != RFKILL_IOC_NOINPUT)
1217		return -ENOSYS;
1218
1219	mutex_lock(&data->mtx);
1220
1221	if (!data->input_handler) {
1222		if (atomic_inc_return(&rfkill_input_disabled) == 1)
1223			printk(KERN_DEBUG "rfkill: input handler disabled\n");
1224		data->input_handler = true;
1225	}
1226
1227	mutex_unlock(&data->mtx);
1228
1229	return 0;
1230}
1231#endif
1232
1233static const struct file_operations rfkill_fops = {
1234	.owner		= THIS_MODULE,
1235	.open		= rfkill_fop_open,
1236	.read		= rfkill_fop_read,
1237	.write		= rfkill_fop_write,
1238	.poll		= rfkill_fop_poll,
1239	.release	= rfkill_fop_release,
1240#ifdef CONFIG_RFKILL_INPUT
1241	.unlocked_ioctl	= rfkill_fop_ioctl,
1242	.compat_ioctl	= rfkill_fop_ioctl,
1243#endif
1244	.llseek		= no_llseek,
1245};
1246
 
 
1247static struct miscdevice rfkill_miscdev = {
1248	.name	= "rfkill",
1249	.fops	= &rfkill_fops,
1250	.minor	= MISC_DYNAMIC_MINOR,
 
1251};
1252
1253static int __init rfkill_init(void)
1254{
1255	int error;
1256
1257	rfkill_update_global_state(RFKILL_TYPE_ALL, !rfkill_default_state);
1258
1259	error = class_register(&rfkill_class);
1260	if (error)
1261		goto out;
1262
1263	error = misc_register(&rfkill_miscdev);
1264	if (error) {
1265		class_unregister(&rfkill_class);
1266		goto out;
1267	}
 
 
1268
1269#ifdef CONFIG_RFKILL_INPUT
1270	error = rfkill_handler_init();
1271	if (error) {
1272		misc_deregister(&rfkill_miscdev);
1273		class_unregister(&rfkill_class);
1274		goto out;
1275	}
1276#endif
1277
1278 out:
 
 
 
 
 
 
 
 
 
 
1279	return error;
1280}
1281subsys_initcall(rfkill_init);
1282
1283static void __exit rfkill_exit(void)
1284{
1285#ifdef CONFIG_RFKILL_INPUT
1286	rfkill_handler_exit();
1287#endif
 
1288	misc_deregister(&rfkill_miscdev);
1289	class_unregister(&rfkill_class);
1290}
1291module_exit(rfkill_exit);
v5.9
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Copyright (C) 2006 - 2007 Ivo van Doorn
   4 * Copyright (C) 2007 Dmitry Torokhov
   5 * Copyright 2009 Johannes Berg <johannes@sipsolutions.net>
 
 
 
 
 
 
 
 
 
 
 
 
 
   6 */
   7
   8#include <linux/kernel.h>
   9#include <linux/module.h>
  10#include <linux/init.h>
  11#include <linux/workqueue.h>
  12#include <linux/capability.h>
  13#include <linux/list.h>
  14#include <linux/mutex.h>
  15#include <linux/rfkill.h>
  16#include <linux/sched.h>
  17#include <linux/spinlock.h>
  18#include <linux/device.h>
  19#include <linux/miscdevice.h>
  20#include <linux/wait.h>
  21#include <linux/poll.h>
  22#include <linux/fs.h>
  23#include <linux/slab.h>
  24
  25#include "rfkill.h"
  26
  27#define POLL_INTERVAL		(5 * HZ)
  28
  29#define RFKILL_BLOCK_HW		BIT(0)
  30#define RFKILL_BLOCK_SW		BIT(1)
  31#define RFKILL_BLOCK_SW_PREV	BIT(2)
  32#define RFKILL_BLOCK_ANY	(RFKILL_BLOCK_HW |\
  33				 RFKILL_BLOCK_SW |\
  34				 RFKILL_BLOCK_SW_PREV)
  35#define RFKILL_BLOCK_SW_SETCALL	BIT(31)
  36
  37struct rfkill {
  38	spinlock_t		lock;
  39
  40	enum rfkill_type	type;
  41
  42	unsigned long		state;
  43
  44	u32			idx;
  45
  46	bool			registered;
  47	bool			persistent;
  48	bool			polling_paused;
  49	bool			suspended;
  50
  51	const struct rfkill_ops	*ops;
  52	void			*data;
  53
  54#ifdef CONFIG_RFKILL_LEDS
  55	struct led_trigger	led_trigger;
  56	const char		*ledtrigname;
  57#endif
  58
  59	struct device		dev;
  60	struct list_head	node;
  61
  62	struct delayed_work	poll_work;
  63	struct work_struct	uevent_work;
  64	struct work_struct	sync_work;
  65	char			name[];
  66};
  67#define to_rfkill(d)	container_of(d, struct rfkill, dev)
  68
  69struct rfkill_int_event {
  70	struct list_head	list;
  71	struct rfkill_event	ev;
  72};
  73
  74struct rfkill_data {
  75	struct list_head	list;
  76	struct list_head	events;
  77	struct mutex		mtx;
  78	wait_queue_head_t	read_wait;
  79	bool			input_handler;
  80};
  81
  82
  83MODULE_AUTHOR("Ivo van Doorn <IvDoorn@gmail.com>");
  84MODULE_AUTHOR("Johannes Berg <johannes@sipsolutions.net>");
  85MODULE_DESCRIPTION("RF switch support");
  86MODULE_LICENSE("GPL");
  87
  88
  89/*
  90 * The locking here should be made much smarter, we currently have
  91 * a bit of a stupid situation because drivers might want to register
  92 * the rfkill struct under their own lock, and take this lock during
  93 * rfkill method calls -- which will cause an AB-BA deadlock situation.
  94 *
  95 * To fix that, we need to rework this code here to be mostly lock-free
  96 * and only use the mutex for list manipulations, not to protect the
  97 * various other global variables. Then we can avoid holding the mutex
  98 * around driver operations, and all is happy.
  99 */
 100static LIST_HEAD(rfkill_list);	/* list of registered rf switches */
 101static DEFINE_MUTEX(rfkill_global_mutex);
 102static LIST_HEAD(rfkill_fds);	/* list of open fds of /dev/rfkill */
 103
 104static unsigned int rfkill_default_state = 1;
 105module_param_named(default_state, rfkill_default_state, uint, 0444);
 106MODULE_PARM_DESC(default_state,
 107		 "Default initial state for all radio types, 0 = radio off");
 108
 109static struct {
 110	bool cur, sav;
 111} rfkill_global_states[NUM_RFKILL_TYPES];
 112
 113static bool rfkill_epo_lock_active;
 114
 115
 116#ifdef CONFIG_RFKILL_LEDS
 117static void rfkill_led_trigger_event(struct rfkill *rfkill)
 118{
 119	struct led_trigger *trigger;
 120
 121	if (!rfkill->registered)
 122		return;
 123
 124	trigger = &rfkill->led_trigger;
 125
 126	if (rfkill->state & RFKILL_BLOCK_ANY)
 127		led_trigger_event(trigger, LED_OFF);
 128	else
 129		led_trigger_event(trigger, LED_FULL);
 130}
 131
 132static int rfkill_led_trigger_activate(struct led_classdev *led)
 133{
 134	struct rfkill *rfkill;
 135
 136	rfkill = container_of(led->trigger, struct rfkill, led_trigger);
 137
 138	rfkill_led_trigger_event(rfkill);
 139
 140	return 0;
 141}
 142
 143const char *rfkill_get_led_trigger_name(struct rfkill *rfkill)
 144{
 145	return rfkill->led_trigger.name;
 146}
 147EXPORT_SYMBOL(rfkill_get_led_trigger_name);
 148
 149void rfkill_set_led_trigger_name(struct rfkill *rfkill, const char *name)
 150{
 151	BUG_ON(!rfkill);
 152
 153	rfkill->ledtrigname = name;
 154}
 155EXPORT_SYMBOL(rfkill_set_led_trigger_name);
 156
 157static int rfkill_led_trigger_register(struct rfkill *rfkill)
 158{
 159	rfkill->led_trigger.name = rfkill->ledtrigname
 160					? : dev_name(&rfkill->dev);
 161	rfkill->led_trigger.activate = rfkill_led_trigger_activate;
 162	return led_trigger_register(&rfkill->led_trigger);
 163}
 164
 165static void rfkill_led_trigger_unregister(struct rfkill *rfkill)
 166{
 167	led_trigger_unregister(&rfkill->led_trigger);
 168}
 169
 170static struct led_trigger rfkill_any_led_trigger;
 171static struct led_trigger rfkill_none_led_trigger;
 172static struct work_struct rfkill_global_led_trigger_work;
 173
 174static void rfkill_global_led_trigger_worker(struct work_struct *work)
 175{
 176	enum led_brightness brightness = LED_OFF;
 177	struct rfkill *rfkill;
 178
 179	mutex_lock(&rfkill_global_mutex);
 180	list_for_each_entry(rfkill, &rfkill_list, node) {
 181		if (!(rfkill->state & RFKILL_BLOCK_ANY)) {
 182			brightness = LED_FULL;
 183			break;
 184		}
 185	}
 186	mutex_unlock(&rfkill_global_mutex);
 187
 188	led_trigger_event(&rfkill_any_led_trigger, brightness);
 189	led_trigger_event(&rfkill_none_led_trigger,
 190			  brightness == LED_OFF ? LED_FULL : LED_OFF);
 191}
 192
 193static void rfkill_global_led_trigger_event(void)
 194{
 195	schedule_work(&rfkill_global_led_trigger_work);
 196}
 197
 198static int rfkill_global_led_trigger_register(void)
 199{
 200	int ret;
 201
 202	INIT_WORK(&rfkill_global_led_trigger_work,
 203			rfkill_global_led_trigger_worker);
 204
 205	rfkill_any_led_trigger.name = "rfkill-any";
 206	ret = led_trigger_register(&rfkill_any_led_trigger);
 207	if (ret)
 208		return ret;
 209
 210	rfkill_none_led_trigger.name = "rfkill-none";
 211	ret = led_trigger_register(&rfkill_none_led_trigger);
 212	if (ret)
 213		led_trigger_unregister(&rfkill_any_led_trigger);
 214	else
 215		/* Delay activation until all global triggers are registered */
 216		rfkill_global_led_trigger_event();
 217
 218	return ret;
 219}
 220
 221static void rfkill_global_led_trigger_unregister(void)
 222{
 223	led_trigger_unregister(&rfkill_none_led_trigger);
 224	led_trigger_unregister(&rfkill_any_led_trigger);
 225	cancel_work_sync(&rfkill_global_led_trigger_work);
 226}
 227#else
 228static void rfkill_led_trigger_event(struct rfkill *rfkill)
 229{
 230}
 231
 232static inline int rfkill_led_trigger_register(struct rfkill *rfkill)
 233{
 234	return 0;
 235}
 236
 237static inline void rfkill_led_trigger_unregister(struct rfkill *rfkill)
 238{
 239}
 240
 241static void rfkill_global_led_trigger_event(void)
 242{
 243}
 244
 245static int rfkill_global_led_trigger_register(void)
 246{
 247	return 0;
 248}
 249
 250static void rfkill_global_led_trigger_unregister(void)
 251{
 252}
 253#endif /* CONFIG_RFKILL_LEDS */
 254
 255static void rfkill_fill_event(struct rfkill_event *ev, struct rfkill *rfkill,
 256			      enum rfkill_operation op)
 257{
 258	unsigned long flags;
 259
 260	ev->idx = rfkill->idx;
 261	ev->type = rfkill->type;
 262	ev->op = op;
 263
 264	spin_lock_irqsave(&rfkill->lock, flags);
 265	ev->hard = !!(rfkill->state & RFKILL_BLOCK_HW);
 266	ev->soft = !!(rfkill->state & (RFKILL_BLOCK_SW |
 267					RFKILL_BLOCK_SW_PREV));
 268	spin_unlock_irqrestore(&rfkill->lock, flags);
 269}
 270
 271static void rfkill_send_events(struct rfkill *rfkill, enum rfkill_operation op)
 272{
 273	struct rfkill_data *data;
 274	struct rfkill_int_event *ev;
 275
 276	list_for_each_entry(data, &rfkill_fds, list) {
 277		ev = kzalloc(sizeof(*ev), GFP_KERNEL);
 278		if (!ev)
 279			continue;
 280		rfkill_fill_event(&ev->ev, rfkill, op);
 281		mutex_lock(&data->mtx);
 282		list_add_tail(&ev->list, &data->events);
 283		mutex_unlock(&data->mtx);
 284		wake_up_interruptible(&data->read_wait);
 285	}
 286}
 287
 288static void rfkill_event(struct rfkill *rfkill)
 289{
 290	if (!rfkill->registered)
 291		return;
 292
 293	kobject_uevent(&rfkill->dev.kobj, KOBJ_CHANGE);
 294
 295	/* also send event to /dev/rfkill */
 296	rfkill_send_events(rfkill, RFKILL_OP_CHANGE);
 297}
 298
 299/**
 300 * rfkill_set_block - wrapper for set_block method
 301 *
 302 * @rfkill: the rfkill struct to use
 303 * @blocked: the new software state
 304 *
 305 * Calls the set_block method (when applicable) and handles notifications
 306 * etc. as well.
 307 */
 308static void rfkill_set_block(struct rfkill *rfkill, bool blocked)
 309{
 310	unsigned long flags;
 311	bool prev, curr;
 312	int err;
 313
 314	if (unlikely(rfkill->dev.power.power_state.event & PM_EVENT_SLEEP))
 315		return;
 316
 317	/*
 318	 * Some platforms (...!) generate input events which affect the
 319	 * _hard_ kill state -- whenever something tries to change the
 320	 * current software state query the hardware state too.
 321	 */
 322	if (rfkill->ops->query)
 323		rfkill->ops->query(rfkill, rfkill->data);
 324
 325	spin_lock_irqsave(&rfkill->lock, flags);
 326	prev = rfkill->state & RFKILL_BLOCK_SW;
 327
 328	if (prev)
 329		rfkill->state |= RFKILL_BLOCK_SW_PREV;
 330	else
 331		rfkill->state &= ~RFKILL_BLOCK_SW_PREV;
 332
 333	if (blocked)
 334		rfkill->state |= RFKILL_BLOCK_SW;
 335	else
 336		rfkill->state &= ~RFKILL_BLOCK_SW;
 337
 338	rfkill->state |= RFKILL_BLOCK_SW_SETCALL;
 339	spin_unlock_irqrestore(&rfkill->lock, flags);
 340
 341	err = rfkill->ops->set_block(rfkill->data, blocked);
 342
 343	spin_lock_irqsave(&rfkill->lock, flags);
 344	if (err) {
 345		/*
 346		 * Failed -- reset status to _PREV, which may be different
 347		 * from what we have set _PREV to earlier in this function
 348		 * if rfkill_set_sw_state was invoked.
 349		 */
 350		if (rfkill->state & RFKILL_BLOCK_SW_PREV)
 351			rfkill->state |= RFKILL_BLOCK_SW;
 352		else
 353			rfkill->state &= ~RFKILL_BLOCK_SW;
 354	}
 355	rfkill->state &= ~RFKILL_BLOCK_SW_SETCALL;
 356	rfkill->state &= ~RFKILL_BLOCK_SW_PREV;
 357	curr = rfkill->state & RFKILL_BLOCK_SW;
 358	spin_unlock_irqrestore(&rfkill->lock, flags);
 359
 360	rfkill_led_trigger_event(rfkill);
 361	rfkill_global_led_trigger_event();
 362
 363	if (prev != curr)
 364		rfkill_event(rfkill);
 365}
 366
 367static void rfkill_update_global_state(enum rfkill_type type, bool blocked)
 368{
 369	int i;
 370
 371	if (type != RFKILL_TYPE_ALL) {
 372		rfkill_global_states[type].cur = blocked;
 373		return;
 374	}
 375
 376	for (i = 0; i < NUM_RFKILL_TYPES; i++)
 377		rfkill_global_states[i].cur = blocked;
 378}
 379
 380#ifdef CONFIG_RFKILL_INPUT
 381static atomic_t rfkill_input_disabled = ATOMIC_INIT(0);
 382
 383/**
 384 * __rfkill_switch_all - Toggle state of all switches of given type
 385 * @type: type of interfaces to be affected
 386 * @blocked: the new state
 387 *
 388 * This function sets the state of all switches of given type,
 389 * unless a specific switch is suspended.
 390 *
 391 * Caller must have acquired rfkill_global_mutex.
 392 */
 393static void __rfkill_switch_all(const enum rfkill_type type, bool blocked)
 394{
 395	struct rfkill *rfkill;
 396
 397	rfkill_update_global_state(type, blocked);
 398	list_for_each_entry(rfkill, &rfkill_list, node) {
 399		if (rfkill->type != type && type != RFKILL_TYPE_ALL)
 400			continue;
 401
 402		rfkill_set_block(rfkill, blocked);
 403	}
 404}
 405
 406/**
 407 * rfkill_switch_all - Toggle state of all switches of given type
 408 * @type: type of interfaces to be affected
 409 * @blocked: the new state
 410 *
 411 * Acquires rfkill_global_mutex and calls __rfkill_switch_all(@type, @state).
 412 * Please refer to __rfkill_switch_all() for details.
 413 *
 414 * Does nothing if the EPO lock is active.
 415 */
 416void rfkill_switch_all(enum rfkill_type type, bool blocked)
 417{
 418	if (atomic_read(&rfkill_input_disabled))
 419		return;
 420
 421	mutex_lock(&rfkill_global_mutex);
 422
 423	if (!rfkill_epo_lock_active)
 424		__rfkill_switch_all(type, blocked);
 425
 426	mutex_unlock(&rfkill_global_mutex);
 427}
 428
 429/**
 430 * rfkill_epo - emergency power off all transmitters
 431 *
 432 * This kicks all non-suspended rfkill devices to RFKILL_STATE_SOFT_BLOCKED,
 433 * ignoring everything in its path but rfkill_global_mutex and rfkill->mutex.
 434 *
 435 * The global state before the EPO is saved and can be restored later
 436 * using rfkill_restore_states().
 437 */
 438void rfkill_epo(void)
 439{
 440	struct rfkill *rfkill;
 441	int i;
 442
 443	if (atomic_read(&rfkill_input_disabled))
 444		return;
 445
 446	mutex_lock(&rfkill_global_mutex);
 447
 448	rfkill_epo_lock_active = true;
 449	list_for_each_entry(rfkill, &rfkill_list, node)
 450		rfkill_set_block(rfkill, true);
 451
 452	for (i = 0; i < NUM_RFKILL_TYPES; i++) {
 453		rfkill_global_states[i].sav = rfkill_global_states[i].cur;
 454		rfkill_global_states[i].cur = true;
 455	}
 456
 457	mutex_unlock(&rfkill_global_mutex);
 458}
 459
 460/**
 461 * rfkill_restore_states - restore global states
 462 *
 463 * Restore (and sync switches to) the global state from the
 464 * states in rfkill_default_states.  This can undo the effects of
 465 * a call to rfkill_epo().
 466 */
 467void rfkill_restore_states(void)
 468{
 469	int i;
 470
 471	if (atomic_read(&rfkill_input_disabled))
 472		return;
 473
 474	mutex_lock(&rfkill_global_mutex);
 475
 476	rfkill_epo_lock_active = false;
 477	for (i = 0; i < NUM_RFKILL_TYPES; i++)
 478		__rfkill_switch_all(i, rfkill_global_states[i].sav);
 479	mutex_unlock(&rfkill_global_mutex);
 480}
 481
 482/**
 483 * rfkill_remove_epo_lock - unlock state changes
 484 *
 485 * Used by rfkill-input manually unlock state changes, when
 486 * the EPO switch is deactivated.
 487 */
 488void rfkill_remove_epo_lock(void)
 489{
 490	if (atomic_read(&rfkill_input_disabled))
 491		return;
 492
 493	mutex_lock(&rfkill_global_mutex);
 494	rfkill_epo_lock_active = false;
 495	mutex_unlock(&rfkill_global_mutex);
 496}
 497
 498/**
 499 * rfkill_is_epo_lock_active - returns true EPO is active
 500 *
 501 * Returns 0 (false) if there is NOT an active EPO condition,
 502 * and 1 (true) if there is an active EPO condition, which
 503 * locks all radios in one of the BLOCKED states.
 504 *
 505 * Can be called in atomic context.
 506 */
 507bool rfkill_is_epo_lock_active(void)
 508{
 509	return rfkill_epo_lock_active;
 510}
 511
 512/**
 513 * rfkill_get_global_sw_state - returns global state for a type
 514 * @type: the type to get the global state of
 515 *
 516 * Returns the current global state for a given wireless
 517 * device type.
 518 */
 519bool rfkill_get_global_sw_state(const enum rfkill_type type)
 520{
 521	return rfkill_global_states[type].cur;
 522}
 523#endif
 524
 525bool rfkill_set_hw_state(struct rfkill *rfkill, bool blocked)
 526{
 527	unsigned long flags;
 528	bool ret, prev;
 529
 530	BUG_ON(!rfkill);
 531
 532	spin_lock_irqsave(&rfkill->lock, flags);
 533	prev = !!(rfkill->state & RFKILL_BLOCK_HW);
 534	if (blocked)
 535		rfkill->state |= RFKILL_BLOCK_HW;
 536	else
 537		rfkill->state &= ~RFKILL_BLOCK_HW;
 538	ret = !!(rfkill->state & RFKILL_BLOCK_ANY);
 539	spin_unlock_irqrestore(&rfkill->lock, flags);
 540
 541	rfkill_led_trigger_event(rfkill);
 542	rfkill_global_led_trigger_event();
 543
 544	if (rfkill->registered && prev != blocked)
 
 
 
 545		schedule_work(&rfkill->uevent_work);
 546
 547	return ret;
 548}
 549EXPORT_SYMBOL(rfkill_set_hw_state);
 550
 551static void __rfkill_set_sw_state(struct rfkill *rfkill, bool blocked)
 552{
 553	u32 bit = RFKILL_BLOCK_SW;
 554
 555	/* if in a ops->set_block right now, use other bit */
 556	if (rfkill->state & RFKILL_BLOCK_SW_SETCALL)
 557		bit = RFKILL_BLOCK_SW_PREV;
 558
 559	if (blocked)
 560		rfkill->state |= bit;
 561	else
 562		rfkill->state &= ~bit;
 563}
 564
 565bool rfkill_set_sw_state(struct rfkill *rfkill, bool blocked)
 566{
 567	unsigned long flags;
 568	bool prev, hwblock;
 569
 570	BUG_ON(!rfkill);
 571
 572	spin_lock_irqsave(&rfkill->lock, flags);
 573	prev = !!(rfkill->state & RFKILL_BLOCK_SW);
 574	__rfkill_set_sw_state(rfkill, blocked);
 575	hwblock = !!(rfkill->state & RFKILL_BLOCK_HW);
 576	blocked = blocked || hwblock;
 577	spin_unlock_irqrestore(&rfkill->lock, flags);
 578
 579	if (!rfkill->registered)
 580		return blocked;
 581
 582	if (prev != blocked && !hwblock)
 583		schedule_work(&rfkill->uevent_work);
 584
 585	rfkill_led_trigger_event(rfkill);
 586	rfkill_global_led_trigger_event();
 587
 588	return blocked;
 589}
 590EXPORT_SYMBOL(rfkill_set_sw_state);
 591
 592void rfkill_init_sw_state(struct rfkill *rfkill, bool blocked)
 593{
 594	unsigned long flags;
 595
 596	BUG_ON(!rfkill);
 597	BUG_ON(rfkill->registered);
 598
 599	spin_lock_irqsave(&rfkill->lock, flags);
 600	__rfkill_set_sw_state(rfkill, blocked);
 601	rfkill->persistent = true;
 602	spin_unlock_irqrestore(&rfkill->lock, flags);
 603}
 604EXPORT_SYMBOL(rfkill_init_sw_state);
 605
 606void rfkill_set_states(struct rfkill *rfkill, bool sw, bool hw)
 607{
 608	unsigned long flags;
 609	bool swprev, hwprev;
 610
 611	BUG_ON(!rfkill);
 612
 613	spin_lock_irqsave(&rfkill->lock, flags);
 614
 615	/*
 616	 * No need to care about prev/setblock ... this is for uevent only
 617	 * and that will get triggered by rfkill_set_block anyway.
 618	 */
 619	swprev = !!(rfkill->state & RFKILL_BLOCK_SW);
 620	hwprev = !!(rfkill->state & RFKILL_BLOCK_HW);
 621	__rfkill_set_sw_state(rfkill, sw);
 622	if (hw)
 623		rfkill->state |= RFKILL_BLOCK_HW;
 624	else
 625		rfkill->state &= ~RFKILL_BLOCK_HW;
 626
 627	spin_unlock_irqrestore(&rfkill->lock, flags);
 628
 629	if (!rfkill->registered) {
 630		rfkill->persistent = true;
 631	} else {
 632		if (swprev != sw || hwprev != hw)
 633			schedule_work(&rfkill->uevent_work);
 634
 635		rfkill_led_trigger_event(rfkill);
 636		rfkill_global_led_trigger_event();
 637	}
 638}
 639EXPORT_SYMBOL(rfkill_set_states);
 640
 641static const char * const rfkill_types[] = {
 642	NULL, /* RFKILL_TYPE_ALL */
 643	"wlan",
 644	"bluetooth",
 645	"ultrawideband",
 646	"wimax",
 647	"wwan",
 648	"gps",
 649	"fm",
 650	"nfc",
 651};
 652
 653enum rfkill_type rfkill_find_type(const char *name)
 654{
 655	int i;
 656
 657	BUILD_BUG_ON(ARRAY_SIZE(rfkill_types) != NUM_RFKILL_TYPES);
 658
 659	if (!name)
 660		return RFKILL_TYPE_ALL;
 661
 662	for (i = 1; i < NUM_RFKILL_TYPES; i++)
 663		if (!strcmp(name, rfkill_types[i]))
 664			return i;
 665	return RFKILL_TYPE_ALL;
 666}
 667EXPORT_SYMBOL(rfkill_find_type);
 668
 669static ssize_t name_show(struct device *dev, struct device_attribute *attr,
 670			 char *buf)
 671{
 672	struct rfkill *rfkill = to_rfkill(dev);
 673
 674	return sprintf(buf, "%s\n", rfkill->name);
 675}
 676static DEVICE_ATTR_RO(name);
 677
 678static ssize_t type_show(struct device *dev, struct device_attribute *attr,
 679			 char *buf)
 680{
 681	struct rfkill *rfkill = to_rfkill(dev);
 682
 683	return sprintf(buf, "%s\n", rfkill_types[rfkill->type]);
 684}
 685static DEVICE_ATTR_RO(type);
 686
 687static ssize_t index_show(struct device *dev, struct device_attribute *attr,
 688			  char *buf)
 689{
 690	struct rfkill *rfkill = to_rfkill(dev);
 691
 692	return sprintf(buf, "%d\n", rfkill->idx);
 693}
 694static DEVICE_ATTR_RO(index);
 695
 696static ssize_t persistent_show(struct device *dev,
 697			       struct device_attribute *attr, char *buf)
 698{
 699	struct rfkill *rfkill = to_rfkill(dev);
 700
 701	return sprintf(buf, "%d\n", rfkill->persistent);
 702}
 703static DEVICE_ATTR_RO(persistent);
 704
 705static ssize_t hard_show(struct device *dev, struct device_attribute *attr,
 706			 char *buf)
 707{
 708	struct rfkill *rfkill = to_rfkill(dev);
 709
 710	return sprintf(buf, "%d\n", (rfkill->state & RFKILL_BLOCK_HW) ? 1 : 0 );
 711}
 712static DEVICE_ATTR_RO(hard);
 713
 714static ssize_t soft_show(struct device *dev, struct device_attribute *attr,
 715			 char *buf)
 716{
 717	struct rfkill *rfkill = to_rfkill(dev);
 718
 719	return sprintf(buf, "%d\n", (rfkill->state & RFKILL_BLOCK_SW) ? 1 : 0 );
 720}
 721
 722static ssize_t soft_store(struct device *dev, struct device_attribute *attr,
 723			  const char *buf, size_t count)
 724{
 725	struct rfkill *rfkill = to_rfkill(dev);
 726	unsigned long state;
 727	int err;
 728
 729	if (!capable(CAP_NET_ADMIN))
 730		return -EPERM;
 731
 732	err = kstrtoul(buf, 0, &state);
 733	if (err)
 734		return err;
 735
 736	if (state > 1 )
 737		return -EINVAL;
 738
 739	mutex_lock(&rfkill_global_mutex);
 740	rfkill_set_block(rfkill, state);
 741	mutex_unlock(&rfkill_global_mutex);
 742
 743	return count;
 744}
 745static DEVICE_ATTR_RW(soft);
 746
 747static u8 user_state_from_blocked(unsigned long state)
 748{
 749	if (state & RFKILL_BLOCK_HW)
 750		return RFKILL_USER_STATE_HARD_BLOCKED;
 751	if (state & RFKILL_BLOCK_SW)
 752		return RFKILL_USER_STATE_SOFT_BLOCKED;
 753
 754	return RFKILL_USER_STATE_UNBLOCKED;
 755}
 756
 757static ssize_t state_show(struct device *dev, struct device_attribute *attr,
 758			  char *buf)
 759{
 760	struct rfkill *rfkill = to_rfkill(dev);
 761
 762	return sprintf(buf, "%d\n", user_state_from_blocked(rfkill->state));
 763}
 764
 765static ssize_t state_store(struct device *dev, struct device_attribute *attr,
 766			   const char *buf, size_t count)
 767{
 768	struct rfkill *rfkill = to_rfkill(dev);
 769	unsigned long state;
 770	int err;
 771
 772	if (!capable(CAP_NET_ADMIN))
 773		return -EPERM;
 774
 775	err = kstrtoul(buf, 0, &state);
 776	if (err)
 777		return err;
 778
 779	if (state != RFKILL_USER_STATE_SOFT_BLOCKED &&
 780	    state != RFKILL_USER_STATE_UNBLOCKED)
 781		return -EINVAL;
 782
 783	mutex_lock(&rfkill_global_mutex);
 784	rfkill_set_block(rfkill, state == RFKILL_USER_STATE_SOFT_BLOCKED);
 785	mutex_unlock(&rfkill_global_mutex);
 786
 787	return count;
 788}
 789static DEVICE_ATTR_RW(state);
 790
 791static struct attribute *rfkill_dev_attrs[] = {
 792	&dev_attr_name.attr,
 793	&dev_attr_type.attr,
 794	&dev_attr_index.attr,
 795	&dev_attr_persistent.attr,
 796	&dev_attr_state.attr,
 797	&dev_attr_soft.attr,
 798	&dev_attr_hard.attr,
 799	NULL,
 800};
 801ATTRIBUTE_GROUPS(rfkill_dev);
 802
 803static void rfkill_release(struct device *dev)
 804{
 805	struct rfkill *rfkill = to_rfkill(dev);
 806
 807	kfree(rfkill);
 808}
 809
 810static int rfkill_dev_uevent(struct device *dev, struct kobj_uevent_env *env)
 811{
 812	struct rfkill *rfkill = to_rfkill(dev);
 813	unsigned long flags;
 814	u32 state;
 815	int error;
 816
 817	error = add_uevent_var(env, "RFKILL_NAME=%s", rfkill->name);
 818	if (error)
 819		return error;
 820	error = add_uevent_var(env, "RFKILL_TYPE=%s",
 821			       rfkill_types[rfkill->type]);
 822	if (error)
 823		return error;
 824	spin_lock_irqsave(&rfkill->lock, flags);
 825	state = rfkill->state;
 826	spin_unlock_irqrestore(&rfkill->lock, flags);
 827	error = add_uevent_var(env, "RFKILL_STATE=%d",
 828			       user_state_from_blocked(state));
 829	return error;
 830}
 831
 832void rfkill_pause_polling(struct rfkill *rfkill)
 833{
 834	BUG_ON(!rfkill);
 835
 836	if (!rfkill->ops->poll)
 837		return;
 838
 839	rfkill->polling_paused = true;
 840	cancel_delayed_work_sync(&rfkill->poll_work);
 841}
 842EXPORT_SYMBOL(rfkill_pause_polling);
 843
 844void rfkill_resume_polling(struct rfkill *rfkill)
 845{
 846	BUG_ON(!rfkill);
 847
 848	if (!rfkill->ops->poll)
 849		return;
 850
 851	rfkill->polling_paused = false;
 852
 853	if (rfkill->suspended)
 854		return;
 855
 856	queue_delayed_work(system_power_efficient_wq,
 857			   &rfkill->poll_work, 0);
 858}
 859EXPORT_SYMBOL(rfkill_resume_polling);
 860
 861#ifdef CONFIG_PM_SLEEP
 862static int rfkill_suspend(struct device *dev)
 863{
 864	struct rfkill *rfkill = to_rfkill(dev);
 865
 866	rfkill->suspended = true;
 867	cancel_delayed_work_sync(&rfkill->poll_work);
 868
 869	return 0;
 870}
 871
 872static int rfkill_resume(struct device *dev)
 873{
 874	struct rfkill *rfkill = to_rfkill(dev);
 875	bool cur;
 876
 877	rfkill->suspended = false;
 878
 879	if (!rfkill->persistent) {
 880		cur = !!(rfkill->state & RFKILL_BLOCK_SW);
 881		rfkill_set_block(rfkill, cur);
 882	}
 883
 884	if (rfkill->ops->poll && !rfkill->polling_paused)
 885		queue_delayed_work(system_power_efficient_wq,
 886				   &rfkill->poll_work, 0);
 887
 888	return 0;
 889}
 890
 891static SIMPLE_DEV_PM_OPS(rfkill_pm_ops, rfkill_suspend, rfkill_resume);
 892#define RFKILL_PM_OPS (&rfkill_pm_ops)
 893#else
 894#define RFKILL_PM_OPS NULL
 895#endif
 896
 897static struct class rfkill_class = {
 898	.name		= "rfkill",
 899	.dev_release	= rfkill_release,
 900	.dev_groups	= rfkill_dev_groups,
 901	.dev_uevent	= rfkill_dev_uevent,
 902	.pm		= RFKILL_PM_OPS,
 903};
 904
 905bool rfkill_blocked(struct rfkill *rfkill)
 906{
 907	unsigned long flags;
 908	u32 state;
 909
 910	spin_lock_irqsave(&rfkill->lock, flags);
 911	state = rfkill->state;
 912	spin_unlock_irqrestore(&rfkill->lock, flags);
 913
 914	return !!(state & RFKILL_BLOCK_ANY);
 915}
 916EXPORT_SYMBOL(rfkill_blocked);
 917
 918
 919struct rfkill * __must_check rfkill_alloc(const char *name,
 920					  struct device *parent,
 921					  const enum rfkill_type type,
 922					  const struct rfkill_ops *ops,
 923					  void *ops_data)
 924{
 925	struct rfkill *rfkill;
 926	struct device *dev;
 927
 928	if (WARN_ON(!ops))
 929		return NULL;
 930
 931	if (WARN_ON(!ops->set_block))
 932		return NULL;
 933
 934	if (WARN_ON(!name))
 935		return NULL;
 936
 937	if (WARN_ON(type == RFKILL_TYPE_ALL || type >= NUM_RFKILL_TYPES))
 938		return NULL;
 939
 940	rfkill = kzalloc(sizeof(*rfkill) + strlen(name) + 1, GFP_KERNEL);
 941	if (!rfkill)
 942		return NULL;
 943
 944	spin_lock_init(&rfkill->lock);
 945	INIT_LIST_HEAD(&rfkill->node);
 946	rfkill->type = type;
 947	strcpy(rfkill->name, name);
 948	rfkill->ops = ops;
 949	rfkill->data = ops_data;
 950
 951	dev = &rfkill->dev;
 952	dev->class = &rfkill_class;
 953	dev->parent = parent;
 954	device_initialize(dev);
 955
 956	return rfkill;
 957}
 958EXPORT_SYMBOL(rfkill_alloc);
 959
 960static void rfkill_poll(struct work_struct *work)
 961{
 962	struct rfkill *rfkill;
 963
 964	rfkill = container_of(work, struct rfkill, poll_work.work);
 965
 966	/*
 967	 * Poll hardware state -- driver will use one of the
 968	 * rfkill_set{,_hw,_sw}_state functions and use its
 969	 * return value to update the current status.
 970	 */
 971	rfkill->ops->poll(rfkill, rfkill->data);
 972
 973	queue_delayed_work(system_power_efficient_wq,
 974		&rfkill->poll_work,
 975		round_jiffies_relative(POLL_INTERVAL));
 976}
 977
 978static void rfkill_uevent_work(struct work_struct *work)
 979{
 980	struct rfkill *rfkill;
 981
 982	rfkill = container_of(work, struct rfkill, uevent_work);
 983
 984	mutex_lock(&rfkill_global_mutex);
 985	rfkill_event(rfkill);
 986	mutex_unlock(&rfkill_global_mutex);
 987}
 988
 989static void rfkill_sync_work(struct work_struct *work)
 990{
 991	struct rfkill *rfkill;
 992	bool cur;
 993
 994	rfkill = container_of(work, struct rfkill, sync_work);
 995
 996	mutex_lock(&rfkill_global_mutex);
 997	cur = rfkill_global_states[rfkill->type].cur;
 998	rfkill_set_block(rfkill, cur);
 999	mutex_unlock(&rfkill_global_mutex);
1000}
1001
1002int __must_check rfkill_register(struct rfkill *rfkill)
1003{
1004	static unsigned long rfkill_no;
1005	struct device *dev;
1006	int error;
1007
1008	if (!rfkill)
1009		return -EINVAL;
1010
1011	dev = &rfkill->dev;
1012
1013	mutex_lock(&rfkill_global_mutex);
1014
1015	if (rfkill->registered) {
1016		error = -EALREADY;
1017		goto unlock;
1018	}
1019
1020	rfkill->idx = rfkill_no;
1021	dev_set_name(dev, "rfkill%lu", rfkill_no);
1022	rfkill_no++;
1023
1024	list_add_tail(&rfkill->node, &rfkill_list);
1025
1026	error = device_add(dev);
1027	if (error)
1028		goto remove;
1029
1030	error = rfkill_led_trigger_register(rfkill);
1031	if (error)
1032		goto devdel;
1033
1034	rfkill->registered = true;
1035
1036	INIT_DELAYED_WORK(&rfkill->poll_work, rfkill_poll);
1037	INIT_WORK(&rfkill->uevent_work, rfkill_uevent_work);
1038	INIT_WORK(&rfkill->sync_work, rfkill_sync_work);
1039
1040	if (rfkill->ops->poll)
1041		queue_delayed_work(system_power_efficient_wq,
1042			&rfkill->poll_work,
1043			round_jiffies_relative(POLL_INTERVAL));
1044
1045	if (!rfkill->persistent || rfkill_epo_lock_active) {
1046		schedule_work(&rfkill->sync_work);
1047	} else {
1048#ifdef CONFIG_RFKILL_INPUT
1049		bool soft_blocked = !!(rfkill->state & RFKILL_BLOCK_SW);
1050
1051		if (!atomic_read(&rfkill_input_disabled))
1052			__rfkill_switch_all(rfkill->type, soft_blocked);
1053#endif
1054	}
1055
1056	rfkill_global_led_trigger_event();
1057	rfkill_send_events(rfkill, RFKILL_OP_ADD);
1058
1059	mutex_unlock(&rfkill_global_mutex);
1060	return 0;
1061
1062 devdel:
1063	device_del(&rfkill->dev);
1064 remove:
1065	list_del_init(&rfkill->node);
1066 unlock:
1067	mutex_unlock(&rfkill_global_mutex);
1068	return error;
1069}
1070EXPORT_SYMBOL(rfkill_register);
1071
1072void rfkill_unregister(struct rfkill *rfkill)
1073{
1074	BUG_ON(!rfkill);
1075
1076	if (rfkill->ops->poll)
1077		cancel_delayed_work_sync(&rfkill->poll_work);
1078
1079	cancel_work_sync(&rfkill->uevent_work);
1080	cancel_work_sync(&rfkill->sync_work);
1081
1082	rfkill->registered = false;
1083
1084	device_del(&rfkill->dev);
1085
1086	mutex_lock(&rfkill_global_mutex);
1087	rfkill_send_events(rfkill, RFKILL_OP_DEL);
1088	list_del_init(&rfkill->node);
1089	rfkill_global_led_trigger_event();
1090	mutex_unlock(&rfkill_global_mutex);
1091
1092	rfkill_led_trigger_unregister(rfkill);
1093}
1094EXPORT_SYMBOL(rfkill_unregister);
1095
1096void rfkill_destroy(struct rfkill *rfkill)
1097{
1098	if (rfkill)
1099		put_device(&rfkill->dev);
1100}
1101EXPORT_SYMBOL(rfkill_destroy);
1102
1103static int rfkill_fop_open(struct inode *inode, struct file *file)
1104{
1105	struct rfkill_data *data;
1106	struct rfkill *rfkill;
1107	struct rfkill_int_event *ev, *tmp;
1108
1109	data = kzalloc(sizeof(*data), GFP_KERNEL);
1110	if (!data)
1111		return -ENOMEM;
1112
1113	INIT_LIST_HEAD(&data->events);
1114	mutex_init(&data->mtx);
1115	init_waitqueue_head(&data->read_wait);
1116
1117	mutex_lock(&rfkill_global_mutex);
1118	mutex_lock(&data->mtx);
1119	/*
1120	 * start getting events from elsewhere but hold mtx to get
1121	 * startup events added first
1122	 */
1123
1124	list_for_each_entry(rfkill, &rfkill_list, node) {
1125		ev = kzalloc(sizeof(*ev), GFP_KERNEL);
1126		if (!ev)
1127			goto free;
1128		rfkill_fill_event(&ev->ev, rfkill, RFKILL_OP_ADD);
1129		list_add_tail(&ev->list, &data->events);
1130	}
1131	list_add(&data->list, &rfkill_fds);
1132	mutex_unlock(&data->mtx);
1133	mutex_unlock(&rfkill_global_mutex);
1134
1135	file->private_data = data;
1136
1137	return stream_open(inode, file);
1138
1139 free:
1140	mutex_unlock(&data->mtx);
1141	mutex_unlock(&rfkill_global_mutex);
1142	mutex_destroy(&data->mtx);
1143	list_for_each_entry_safe(ev, tmp, &data->events, list)
1144		kfree(ev);
1145	kfree(data);
1146	return -ENOMEM;
1147}
1148
1149static __poll_t rfkill_fop_poll(struct file *file, poll_table *wait)
1150{
1151	struct rfkill_data *data = file->private_data;
1152	__poll_t res = EPOLLOUT | EPOLLWRNORM;
1153
1154	poll_wait(file, &data->read_wait, wait);
1155
1156	mutex_lock(&data->mtx);
1157	if (!list_empty(&data->events))
1158		res = EPOLLIN | EPOLLRDNORM;
1159	mutex_unlock(&data->mtx);
1160
1161	return res;
1162}
1163
1164static ssize_t rfkill_fop_read(struct file *file, char __user *buf,
1165			       size_t count, loff_t *pos)
1166{
1167	struct rfkill_data *data = file->private_data;
1168	struct rfkill_int_event *ev;
1169	unsigned long sz;
1170	int ret;
1171
1172	mutex_lock(&data->mtx);
1173
1174	while (list_empty(&data->events)) {
1175		if (file->f_flags & O_NONBLOCK) {
1176			ret = -EAGAIN;
1177			goto out;
1178		}
1179		mutex_unlock(&data->mtx);
1180		/* since we re-check and it just compares pointers,
1181		 * using !list_empty() without locking isn't a problem
1182		 */
1183		ret = wait_event_interruptible(data->read_wait,
1184					       !list_empty(&data->events));
1185		mutex_lock(&data->mtx);
1186
1187		if (ret)
1188			goto out;
1189	}
1190
1191	ev = list_first_entry(&data->events, struct rfkill_int_event,
1192				list);
1193
1194	sz = min_t(unsigned long, sizeof(ev->ev), count);
1195	ret = sz;
1196	if (copy_to_user(buf, &ev->ev, sz))
1197		ret = -EFAULT;
1198
1199	list_del(&ev->list);
1200	kfree(ev);
1201 out:
1202	mutex_unlock(&data->mtx);
1203	return ret;
1204}
1205
1206static ssize_t rfkill_fop_write(struct file *file, const char __user *buf,
1207				size_t count, loff_t *pos)
1208{
1209	struct rfkill *rfkill;
1210	struct rfkill_event ev;
1211	int ret;
1212
1213	/* we don't need the 'hard' variable but accept it */
1214	if (count < RFKILL_EVENT_SIZE_V1 - 1)
1215		return -EINVAL;
1216
1217	/*
1218	 * Copy as much data as we can accept into our 'ev' buffer,
1219	 * but tell userspace how much we've copied so it can determine
1220	 * our API version even in a write() call, if it cares.
1221	 */
1222	count = min(count, sizeof(ev));
1223	if (copy_from_user(&ev, buf, count))
1224		return -EFAULT;
1225
 
 
 
1226	if (ev.type >= NUM_RFKILL_TYPES)
1227		return -EINVAL;
1228
1229	mutex_lock(&rfkill_global_mutex);
1230
1231	switch (ev.op) {
1232	case RFKILL_OP_CHANGE_ALL:
1233		rfkill_update_global_state(ev.type, ev.soft);
1234		list_for_each_entry(rfkill, &rfkill_list, node)
1235			if (rfkill->type == ev.type ||
1236			    ev.type == RFKILL_TYPE_ALL)
1237				rfkill_set_block(rfkill, ev.soft);
1238		ret = 0;
1239		break;
1240	case RFKILL_OP_CHANGE:
1241		list_for_each_entry(rfkill, &rfkill_list, node)
1242			if (rfkill->idx == ev.idx &&
1243			    (rfkill->type == ev.type ||
1244			     ev.type == RFKILL_TYPE_ALL))
1245				rfkill_set_block(rfkill, ev.soft);
1246		ret = 0;
1247		break;
1248	default:
1249		ret = -EINVAL;
1250		break;
1251	}
1252
1253	mutex_unlock(&rfkill_global_mutex);
1254
1255	return ret ?: count;
1256}
1257
1258static int rfkill_fop_release(struct inode *inode, struct file *file)
1259{
1260	struct rfkill_data *data = file->private_data;
1261	struct rfkill_int_event *ev, *tmp;
1262
1263	mutex_lock(&rfkill_global_mutex);
1264	list_del(&data->list);
1265	mutex_unlock(&rfkill_global_mutex);
1266
1267	mutex_destroy(&data->mtx);
1268	list_for_each_entry_safe(ev, tmp, &data->events, list)
1269		kfree(ev);
1270
1271#ifdef CONFIG_RFKILL_INPUT
1272	if (data->input_handler)
1273		if (atomic_dec_return(&rfkill_input_disabled) == 0)
1274			printk(KERN_DEBUG "rfkill: input handler enabled\n");
1275#endif
1276
1277	kfree(data);
1278
1279	return 0;
1280}
1281
1282#ifdef CONFIG_RFKILL_INPUT
1283static long rfkill_fop_ioctl(struct file *file, unsigned int cmd,
1284			     unsigned long arg)
1285{
1286	struct rfkill_data *data = file->private_data;
1287
1288	if (_IOC_TYPE(cmd) != RFKILL_IOC_MAGIC)
1289		return -ENOSYS;
1290
1291	if (_IOC_NR(cmd) != RFKILL_IOC_NOINPUT)
1292		return -ENOSYS;
1293
1294	mutex_lock(&data->mtx);
1295
1296	if (!data->input_handler) {
1297		if (atomic_inc_return(&rfkill_input_disabled) == 1)
1298			printk(KERN_DEBUG "rfkill: input handler disabled\n");
1299		data->input_handler = true;
1300	}
1301
1302	mutex_unlock(&data->mtx);
1303
1304	return 0;
1305}
1306#endif
1307
1308static const struct file_operations rfkill_fops = {
1309	.owner		= THIS_MODULE,
1310	.open		= rfkill_fop_open,
1311	.read		= rfkill_fop_read,
1312	.write		= rfkill_fop_write,
1313	.poll		= rfkill_fop_poll,
1314	.release	= rfkill_fop_release,
1315#ifdef CONFIG_RFKILL_INPUT
1316	.unlocked_ioctl	= rfkill_fop_ioctl,
1317	.compat_ioctl	= compat_ptr_ioctl,
1318#endif
1319	.llseek		= no_llseek,
1320};
1321
1322#define RFKILL_NAME "rfkill"
1323
1324static struct miscdevice rfkill_miscdev = {
 
1325	.fops	= &rfkill_fops,
1326	.name	= RFKILL_NAME,
1327	.minor	= RFKILL_MINOR,
1328};
1329
1330static int __init rfkill_init(void)
1331{
1332	int error;
1333
1334	rfkill_update_global_state(RFKILL_TYPE_ALL, !rfkill_default_state);
1335
1336	error = class_register(&rfkill_class);
1337	if (error)
1338		goto error_class;
1339
1340	error = misc_register(&rfkill_miscdev);
1341	if (error)
1342		goto error_misc;
1343
1344	error = rfkill_global_led_trigger_register();
1345	if (error)
1346		goto error_led_trigger;
1347
1348#ifdef CONFIG_RFKILL_INPUT
1349	error = rfkill_handler_init();
1350	if (error)
1351		goto error_input;
 
 
 
1352#endif
1353
1354	return 0;
1355
1356#ifdef CONFIG_RFKILL_INPUT
1357error_input:
1358	rfkill_global_led_trigger_unregister();
1359#endif
1360error_led_trigger:
1361	misc_deregister(&rfkill_miscdev);
1362error_misc:
1363	class_unregister(&rfkill_class);
1364error_class:
1365	return error;
1366}
1367subsys_initcall(rfkill_init);
1368
1369static void __exit rfkill_exit(void)
1370{
1371#ifdef CONFIG_RFKILL_INPUT
1372	rfkill_handler_exit();
1373#endif
1374	rfkill_global_led_trigger_unregister();
1375	misc_deregister(&rfkill_miscdev);
1376	class_unregister(&rfkill_class);
1377}
1378module_exit(rfkill_exit);
1379
1380MODULE_ALIAS_MISCDEV(RFKILL_MINOR);
1381MODULE_ALIAS("devname:" RFKILL_NAME);