Linux Audio

Check our new training course

Loading...
v4.6
 
   1/*
   2 * Generic ring buffer
   3 *
   4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
   5 */
 
   6#include <linux/trace_events.h>
   7#include <linux/ring_buffer.h>
   8#include <linux/trace_clock.h>
 
 
   9#include <linux/trace_seq.h>
  10#include <linux/spinlock.h>
  11#include <linux/irq_work.h>
 
  12#include <linux/uaccess.h>
  13#include <linux/hardirq.h>
  14#include <linux/kthread.h>	/* for self test */
  15#include <linux/kmemcheck.h>
  16#include <linux/module.h>
  17#include <linux/percpu.h>
  18#include <linux/mutex.h>
  19#include <linux/delay.h>
  20#include <linux/slab.h>
  21#include <linux/init.h>
  22#include <linux/hash.h>
  23#include <linux/list.h>
  24#include <linux/cpu.h>
 
 
  25
 
  26#include <asm/local.h>
  27
 
 
 
 
 
 
 
 
 
 
  28static void update_pages_handler(struct work_struct *work);
  29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  30/*
  31 * The ring buffer header is special. We must manually up keep it.
  32 */
  33int ring_buffer_print_entry_header(struct trace_seq *s)
  34{
  35	trace_seq_puts(s, "# compressed entry header\n");
  36	trace_seq_puts(s, "\ttype_len    :    5 bits\n");
  37	trace_seq_puts(s, "\ttime_delta  :   27 bits\n");
  38	trace_seq_puts(s, "\tarray       :   32 bits\n");
  39	trace_seq_putc(s, '\n');
  40	trace_seq_printf(s, "\tpadding     : type == %d\n",
  41			 RINGBUF_TYPE_PADDING);
  42	trace_seq_printf(s, "\ttime_extend : type == %d\n",
  43			 RINGBUF_TYPE_TIME_EXTEND);
 
 
  44	trace_seq_printf(s, "\tdata max type_len  == %d\n",
  45			 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
  46
  47	return !trace_seq_has_overflowed(s);
  48}
  49
  50/*
  51 * The ring buffer is made up of a list of pages. A separate list of pages is
  52 * allocated for each CPU. A writer may only write to a buffer that is
  53 * associated with the CPU it is currently executing on.  A reader may read
  54 * from any per cpu buffer.
  55 *
  56 * The reader is special. For each per cpu buffer, the reader has its own
  57 * reader page. When a reader has read the entire reader page, this reader
  58 * page is swapped with another page in the ring buffer.
  59 *
  60 * Now, as long as the writer is off the reader page, the reader can do what
  61 * ever it wants with that page. The writer will never write to that page
  62 * again (as long as it is out of the ring buffer).
  63 *
  64 * Here's some silly ASCII art.
  65 *
  66 *   +------+
  67 *   |reader|          RING BUFFER
  68 *   |page  |
  69 *   +------+        +---+   +---+   +---+
  70 *                   |   |-->|   |-->|   |
  71 *                   +---+   +---+   +---+
  72 *                     ^               |
  73 *                     |               |
  74 *                     +---------------+
  75 *
  76 *
  77 *   +------+
  78 *   |reader|          RING BUFFER
  79 *   |page  |------------------v
  80 *   +------+        +---+   +---+   +---+
  81 *                   |   |-->|   |-->|   |
  82 *                   +---+   +---+   +---+
  83 *                     ^               |
  84 *                     |               |
  85 *                     +---------------+
  86 *
  87 *
  88 *   +------+
  89 *   |reader|          RING BUFFER
  90 *   |page  |------------------v
  91 *   +------+        +---+   +---+   +---+
  92 *      ^            |   |-->|   |-->|   |
  93 *      |            +---+   +---+   +---+
  94 *      |                              |
  95 *      |                              |
  96 *      +------------------------------+
  97 *
  98 *
  99 *   +------+
 100 *   |buffer|          RING BUFFER
 101 *   |page  |------------------v
 102 *   +------+        +---+   +---+   +---+
 103 *      ^            |   |   |   |-->|   |
 104 *      |   New      +---+   +---+   +---+
 105 *      |  Reader------^               |
 106 *      |   page                       |
 107 *      +------------------------------+
 108 *
 109 *
 110 * After we make this swap, the reader can hand this page off to the splice
 111 * code and be done with it. It can even allocate a new page if it needs to
 112 * and swap that into the ring buffer.
 113 *
 114 * We will be using cmpxchg soon to make all this lockless.
 115 *
 116 */
 117
 118/* Used for individual buffers (after the counter) */
 119#define RB_BUFFER_OFF		(1 << 20)
 120
 121#define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
 122
 123#define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
 124#define RB_ALIGNMENT		4U
 125#define RB_MAX_SMALL_DATA	(RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
 126#define RB_EVNT_MIN_SIZE	8U	/* two 32bit words */
 127
 128#ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
 129# define RB_FORCE_8BYTE_ALIGNMENT	0
 130# define RB_ARCH_ALIGNMENT		RB_ALIGNMENT
 131#else
 132# define RB_FORCE_8BYTE_ALIGNMENT	1
 133# define RB_ARCH_ALIGNMENT		8U
 134#endif
 135
 136#define RB_ALIGN_DATA		__aligned(RB_ARCH_ALIGNMENT)
 137
 138/* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
 139#define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
 140
 141enum {
 142	RB_LEN_TIME_EXTEND = 8,
 143	RB_LEN_TIME_STAMP = 16,
 144};
 145
 146#define skip_time_extend(event) \
 147	((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
 148
 149static inline int rb_null_event(struct ring_buffer_event *event)
 
 
 
 150{
 151	return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
 152}
 153
 154static void rb_event_set_padding(struct ring_buffer_event *event)
 155{
 156	/* padding has a NULL time_delta */
 157	event->type_len = RINGBUF_TYPE_PADDING;
 158	event->time_delta = 0;
 159}
 160
 161static unsigned
 162rb_event_data_length(struct ring_buffer_event *event)
 163{
 164	unsigned length;
 165
 166	if (event->type_len)
 167		length = event->type_len * RB_ALIGNMENT;
 168	else
 169		length = event->array[0];
 170	return length + RB_EVNT_HDR_SIZE;
 171}
 172
 173/*
 174 * Return the length of the given event. Will return
 175 * the length of the time extend if the event is a
 176 * time extend.
 177 */
 178static inline unsigned
 179rb_event_length(struct ring_buffer_event *event)
 180{
 181	switch (event->type_len) {
 182	case RINGBUF_TYPE_PADDING:
 183		if (rb_null_event(event))
 184			/* undefined */
 185			return -1;
 186		return  event->array[0] + RB_EVNT_HDR_SIZE;
 187
 188	case RINGBUF_TYPE_TIME_EXTEND:
 189		return RB_LEN_TIME_EXTEND;
 190
 191	case RINGBUF_TYPE_TIME_STAMP:
 192		return RB_LEN_TIME_STAMP;
 193
 194	case RINGBUF_TYPE_DATA:
 195		return rb_event_data_length(event);
 196	default:
 197		BUG();
 198	}
 199	/* not hit */
 200	return 0;
 201}
 202
 203/*
 204 * Return total length of time extend and data,
 205 *   or just the event length for all other events.
 206 */
 207static inline unsigned
 208rb_event_ts_length(struct ring_buffer_event *event)
 209{
 210	unsigned len = 0;
 211
 212	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
 213		/* time extends include the data event after it */
 214		len = RB_LEN_TIME_EXTEND;
 215		event = skip_time_extend(event);
 216	}
 217	return len + rb_event_length(event);
 218}
 219
 220/**
 221 * ring_buffer_event_length - return the length of the event
 222 * @event: the event to get the length of
 223 *
 224 * Returns the size of the data load of a data event.
 225 * If the event is something other than a data event, it
 226 * returns the size of the event itself. With the exception
 227 * of a TIME EXTEND, where it still returns the size of the
 228 * data load of the data event after it.
 229 */
 230unsigned ring_buffer_event_length(struct ring_buffer_event *event)
 231{
 232	unsigned length;
 233
 234	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
 235		event = skip_time_extend(event);
 236
 237	length = rb_event_length(event);
 238	if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
 239		return length;
 240	length -= RB_EVNT_HDR_SIZE;
 241	if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
 242                length -= sizeof(event->array[0]);
 243	return length;
 244}
 245EXPORT_SYMBOL_GPL(ring_buffer_event_length);
 246
 247/* inline for ring buffer fast paths */
 248static void *
 249rb_event_data(struct ring_buffer_event *event)
 250{
 251	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
 252		event = skip_time_extend(event);
 253	BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
 254	/* If length is in len field, then array[0] has the data */
 255	if (event->type_len)
 256		return (void *)&event->array[0];
 257	/* Otherwise length is in array[0] and array[1] has the data */
 258	return (void *)&event->array[1];
 259}
 260
 261/**
 262 * ring_buffer_event_data - return the data of the event
 263 * @event: the event to get the data from
 264 */
 265void *ring_buffer_event_data(struct ring_buffer_event *event)
 266{
 267	return rb_event_data(event);
 268}
 269EXPORT_SYMBOL_GPL(ring_buffer_event_data);
 270
 271#define for_each_buffer_cpu(buffer, cpu)		\
 272	for_each_cpu(cpu, buffer->cpumask)
 273
 
 
 
 274#define TS_SHIFT	27
 275#define TS_MASK		((1ULL << TS_SHIFT) - 1)
 276#define TS_DELTA_TEST	(~TS_MASK)
 277
 
 
 
 
 
 
 
 
 
 
 
 278/* Flag when events were overwritten */
 279#define RB_MISSED_EVENTS	(1 << 31)
 280/* Missed count stored at end */
 281#define RB_MISSED_STORED	(1 << 30)
 282
 
 
 283struct buffer_data_page {
 284	u64		 time_stamp;	/* page time stamp */
 285	local_t		 commit;	/* write committed index */
 286	unsigned char	 data[] RB_ALIGN_DATA;	/* data of buffer page */
 287};
 288
 
 
 
 
 
 289/*
 290 * Note, the buffer_page list must be first. The buffer pages
 291 * are allocated in cache lines, which means that each buffer
 292 * page will be at the beginning of a cache line, and thus
 293 * the least significant bits will be zero. We use this to
 294 * add flags in the list struct pointers, to make the ring buffer
 295 * lockless.
 296 */
 297struct buffer_page {
 298	struct list_head list;		/* list of buffer pages */
 299	local_t		 write;		/* index for next write */
 300	unsigned	 read;		/* index for next read */
 301	local_t		 entries;	/* entries on this page */
 302	unsigned long	 real_end;	/* real end of data */
 
 
 
 303	struct buffer_data_page *page;	/* Actual data page */
 304};
 305
 306/*
 307 * The buffer page counters, write and entries, must be reset
 308 * atomically when crossing page boundaries. To synchronize this
 309 * update, two counters are inserted into the number. One is
 310 * the actual counter for the write position or count on the page.
 311 *
 312 * The other is a counter of updaters. Before an update happens
 313 * the update partition of the counter is incremented. This will
 314 * allow the updater to update the counter atomically.
 315 *
 316 * The counter is 20 bits, and the state data is 12.
 317 */
 318#define RB_WRITE_MASK		0xfffff
 319#define RB_WRITE_INTCNT		(1 << 20)
 320
 321static void rb_init_page(struct buffer_data_page *bpage)
 322{
 323	local_set(&bpage->commit, 0);
 324}
 325
 326/**
 327 * ring_buffer_page_len - the size of data on the page.
 328 * @page: The page to read
 329 *
 330 * Returns the amount of data on the page, including buffer page header.
 331 */
 332size_t ring_buffer_page_len(void *page)
 333{
 334	return local_read(&((struct buffer_data_page *)page)->commit)
 335		+ BUF_PAGE_HDR_SIZE;
 336}
 337
 338/*
 339 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
 340 * this issue out.
 341 */
 342static void free_buffer_page(struct buffer_page *bpage)
 343{
 344	free_page((unsigned long)bpage->page);
 
 
 345	kfree(bpage);
 346}
 347
 348/*
 349 * We need to fit the time_stamp delta into 27 bits.
 350 */
 351static inline int test_time_stamp(u64 delta)
 352{
 353	if (delta & TS_DELTA_TEST)
 354		return 1;
 355	return 0;
 356}
 357
 358#define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
 359
 360/* Max payload is BUF_PAGE_SIZE - header (8bytes) */
 361#define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
 362
 363int ring_buffer_print_page_header(struct trace_seq *s)
 364{
 365	struct buffer_data_page field;
 366
 367	trace_seq_printf(s, "\tfield: u64 timestamp;\t"
 368			 "offset:0;\tsize:%u;\tsigned:%u;\n",
 369			 (unsigned int)sizeof(field.time_stamp),
 370			 (unsigned int)is_signed_type(u64));
 371
 372	trace_seq_printf(s, "\tfield: local_t commit;\t"
 373			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
 374			 (unsigned int)offsetof(typeof(field), commit),
 375			 (unsigned int)sizeof(field.commit),
 376			 (unsigned int)is_signed_type(long));
 377
 378	trace_seq_printf(s, "\tfield: int overwrite;\t"
 379			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
 380			 (unsigned int)offsetof(typeof(field), commit),
 381			 1,
 382			 (unsigned int)is_signed_type(long));
 383
 384	trace_seq_printf(s, "\tfield: char data;\t"
 385			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
 386			 (unsigned int)offsetof(typeof(field), data),
 387			 (unsigned int)BUF_PAGE_SIZE,
 388			 (unsigned int)is_signed_type(char));
 389
 390	return !trace_seq_has_overflowed(s);
 391}
 392
 393struct rb_irq_work {
 394	struct irq_work			work;
 395	wait_queue_head_t		waiters;
 396	wait_queue_head_t		full_waiters;
 
 397	bool				waiters_pending;
 398	bool				full_waiters_pending;
 399	bool				wakeup_full;
 400};
 401
 402/*
 403 * Structure to hold event state and handle nested events.
 404 */
 405struct rb_event_info {
 406	u64			ts;
 407	u64			delta;
 
 
 408	unsigned long		length;
 409	struct buffer_page	*tail_page;
 410	int			add_timestamp;
 411};
 412
 413/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 414 * Used for which event context the event is in.
 415 *  NMI     = 0
 416 *  IRQ     = 1
 417 *  SOFTIRQ = 2
 418 *  NORMAL  = 3
 
 419 *
 420 * See trace_recursive_lock() comment below for more details.
 421 */
 422enum {
 
 423	RB_CTX_NMI,
 424	RB_CTX_IRQ,
 425	RB_CTX_SOFTIRQ,
 426	RB_CTX_NORMAL,
 427	RB_CTX_MAX
 428};
 429
 
 
 
 
 
 
 
 430/*
 431 * head_page == tail_page && head == tail then buffer is empty.
 432 */
 433struct ring_buffer_per_cpu {
 434	int				cpu;
 435	atomic_t			record_disabled;
 436	struct ring_buffer		*buffer;
 
 437	raw_spinlock_t			reader_lock;	/* serialize readers */
 438	arch_spinlock_t			lock;
 439	struct lock_class_key		lock_key;
 440	unsigned int			nr_pages;
 
 441	unsigned int			current_context;
 442	struct list_head		*pages;
 
 
 443	struct buffer_page		*head_page;	/* read from head */
 444	struct buffer_page		*tail_page;	/* write to tail */
 445	struct buffer_page		*commit_page;	/* committed pages */
 446	struct buffer_page		*reader_page;
 447	unsigned long			lost_events;
 448	unsigned long			last_overrun;
 
 449	local_t				entries_bytes;
 450	local_t				entries;
 451	local_t				overrun;
 452	local_t				commit_overrun;
 453	local_t				dropped_events;
 454	local_t				committing;
 455	local_t				commits;
 
 
 
 
 
 456	unsigned long			read;
 457	unsigned long			read_bytes;
 458	u64				write_stamp;
 
 
 459	u64				read_stamp;
 
 
 
 
 
 
 
 
 
 
 460	/* ring buffer pages to update, > 0 to add, < 0 to remove */
 461	int				nr_pages_to_update;
 462	struct list_head		new_pages; /* new pages to add */
 463	struct work_struct		update_pages_work;
 464	struct completion		update_done;
 465
 466	struct rb_irq_work		irq_work;
 467};
 468
 469struct ring_buffer {
 470	unsigned			flags;
 471	int				cpus;
 472	atomic_t			record_disabled;
 473	atomic_t			resize_disabled;
 474	cpumask_var_t			cpumask;
 475
 476	struct lock_class_key		*reader_lock_key;
 477
 478	struct mutex			mutex;
 479
 480	struct ring_buffer_per_cpu	**buffers;
 481
 482#ifdef CONFIG_HOTPLUG_CPU
 483	struct notifier_block		cpu_notify;
 484#endif
 485	u64				(*clock)(void);
 486
 487	struct rb_irq_work		irq_work;
 
 
 
 
 
 
 
 
 
 
 
 488};
 489
 490struct ring_buffer_iter {
 491	struct ring_buffer_per_cpu	*cpu_buffer;
 492	unsigned long			head;
 
 493	struct buffer_page		*head_page;
 494	struct buffer_page		*cache_reader_page;
 495	unsigned long			cache_read;
 
 496	u64				read_stamp;
 
 
 
 
 497};
 498
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 499/*
 500 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
 501 *
 502 * Schedules a delayed work to wake up any task that is blocked on the
 503 * ring buffer waiters queue.
 504 */
 505static void rb_wake_up_waiters(struct irq_work *work)
 506{
 507	struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
 508
 
 
 
 509	wake_up_all(&rbwork->waiters);
 510	if (rbwork->wakeup_full) {
 
 
 
 
 
 
 511		rbwork->wakeup_full = false;
 
 
 
 
 
 
 512		wake_up_all(&rbwork->full_waiters);
 513	}
 514}
 515
 516/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 517 * ring_buffer_wait - wait for input to the ring buffer
 518 * @buffer: buffer to wait on
 519 * @cpu: the cpu buffer to wait on
 520 * @full: wait until a full page is available, if @cpu != RING_BUFFER_ALL_CPUS
 
 
 521 *
 522 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
 523 * as data is added to any of the @buffer's cpu buffers. Otherwise
 524 * it will wait for data to be added to a specific cpu buffer.
 525 */
 526int ring_buffer_wait(struct ring_buffer *buffer, int cpu, bool full)
 
 527{
 528	struct ring_buffer_per_cpu *uninitialized_var(cpu_buffer);
 529	DEFINE_WAIT(wait);
 530	struct rb_irq_work *work;
 
 531	int ret = 0;
 532
 533	/*
 534	 * Depending on what the caller is waiting for, either any
 535	 * data in any cpu buffer, or a specific buffer, put the
 536	 * caller on the appropriate wait queue.
 537	 */
 538	if (cpu == RING_BUFFER_ALL_CPUS) {
 539		work = &buffer->irq_work;
 540		/* Full only makes sense on per cpu reads */
 541		full = false;
 542	} else {
 543		if (!cpumask_test_cpu(cpu, buffer->cpumask))
 544			return -ENODEV;
 545		cpu_buffer = buffer->buffers[cpu];
 546		work = &cpu_buffer->irq_work;
 547	}
 548
 
 
 
 
 549
 550	while (true) {
 551		if (full)
 552			prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE);
 553		else
 554			prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
 555
 556		/*
 557		 * The events can happen in critical sections where
 558		 * checking a work queue can cause deadlocks.
 559		 * After adding a task to the queue, this flag is set
 560		 * only to notify events to try to wake up the queue
 561		 * using irq_work.
 562		 *
 563		 * We don't clear it even if the buffer is no longer
 564		 * empty. The flag only causes the next event to run
 565		 * irq_work to do the work queue wake up. The worse
 566		 * that can happen if we race with !trace_empty() is that
 567		 * an event will cause an irq_work to try to wake up
 568		 * an empty queue.
 569		 *
 570		 * There's no reason to protect this flag either, as
 571		 * the work queue and irq_work logic will do the necessary
 572		 * synchronization for the wake ups. The only thing
 573		 * that is necessary is that the wake up happens after
 574		 * a task has been queued. It's OK for spurious wake ups.
 575		 */
 576		if (full)
 577			work->full_waiters_pending = true;
 578		else
 579			work->waiters_pending = true;
 580
 581		if (signal_pending(current)) {
 582			ret = -EINTR;
 583			break;
 584		}
 585
 586		if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer))
 587			break;
 588
 589		if (cpu != RING_BUFFER_ALL_CPUS &&
 590		    !ring_buffer_empty_cpu(buffer, cpu)) {
 591			unsigned long flags;
 592			bool pagebusy;
 593
 594			if (!full)
 595				break;
 596
 597			raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
 598			pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
 599			raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
 600
 601			if (!pagebusy)
 602				break;
 603		}
 604
 605		schedule();
 606	}
 607
 608	if (full)
 609		finish_wait(&work->full_waiters, &wait);
 610	else
 611		finish_wait(&work->waiters, &wait);
 612
 613	return ret;
 614}
 615
 616/**
 617 * ring_buffer_poll_wait - poll on buffer input
 618 * @buffer: buffer to wait on
 619 * @cpu: the cpu buffer to wait on
 620 * @filp: the file descriptor
 621 * @poll_table: The poll descriptor
 
 622 *
 623 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
 624 * as data is added to any of the @buffer's cpu buffers. Otherwise
 625 * it will wait for data to be added to a specific cpu buffer.
 626 *
 627 * Returns POLLIN | POLLRDNORM if data exists in the buffers,
 628 * zero otherwise.
 629 */
 630int ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu,
 631			  struct file *filp, poll_table *poll_table)
 632{
 633	struct ring_buffer_per_cpu *cpu_buffer;
 634	struct rb_irq_work *work;
 635
 636	if (cpu == RING_BUFFER_ALL_CPUS)
 637		work = &buffer->irq_work;
 638	else {
 
 639		if (!cpumask_test_cpu(cpu, buffer->cpumask))
 640			return -EINVAL;
 641
 642		cpu_buffer = buffer->buffers[cpu];
 643		work = &cpu_buffer->irq_work;
 644	}
 645
 646	poll_wait(filp, &work->waiters, poll_table);
 647	work->waiters_pending = true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 648	/*
 649	 * There's a tight race between setting the waiters_pending and
 650	 * checking if the ring buffer is empty.  Once the waiters_pending bit
 651	 * is set, the next event will wake the task up, but we can get stuck
 652	 * if there's only a single event in.
 653	 *
 654	 * FIXME: Ideally, we need a memory barrier on the writer side as well,
 655	 * but adding a memory barrier to all events will cause too much of a
 656	 * performance hit in the fast path.  We only need a memory barrier when
 657	 * the buffer goes from empty to having content.  But as this race is
 658	 * extremely small, and it's not a problem if another event comes in, we
 659	 * will fix it later.
 660	 */
 661	smp_mb();
 662
 663	if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
 664	    (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
 665		return POLLIN | POLLRDNORM;
 666	return 0;
 667}
 668
 669/* buffer may be either ring_buffer or ring_buffer_per_cpu */
 670#define RB_WARN_ON(b, cond)						\
 671	({								\
 672		int _____ret = unlikely(cond);				\
 673		if (_____ret) {						\
 674			if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
 675				struct ring_buffer_per_cpu *__b =	\
 676					(void *)b;			\
 677				atomic_inc(&__b->buffer->record_disabled); \
 678			} else						\
 679				atomic_inc(&b->record_disabled);	\
 680			WARN_ON(1);					\
 681		}							\
 682		_____ret;						\
 683	})
 684
 685/* Up this if you want to test the TIME_EXTENTS and normalization */
 686#define DEBUG_SHIFT 0
 687
 688static inline u64 rb_time_stamp(struct ring_buffer *buffer)
 689{
 
 
 
 
 
 
 
 
 690	/* shift to debug/test normalization and TIME_EXTENTS */
 691	return buffer->clock() << DEBUG_SHIFT;
 692}
 693
 694u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
 695{
 696	u64 time;
 697
 698	preempt_disable_notrace();
 699	time = rb_time_stamp(buffer);
 700	preempt_enable_no_resched_notrace();
 701
 702	return time;
 703}
 704EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
 705
 706void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
 707				      int cpu, u64 *ts)
 708{
 709	/* Just stupid testing the normalize function and deltas */
 710	*ts >>= DEBUG_SHIFT;
 711}
 712EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
 713
 714/*
 715 * Making the ring buffer lockless makes things tricky.
 716 * Although writes only happen on the CPU that they are on,
 717 * and they only need to worry about interrupts. Reads can
 718 * happen on any CPU.
 719 *
 720 * The reader page is always off the ring buffer, but when the
 721 * reader finishes with a page, it needs to swap its page with
 722 * a new one from the buffer. The reader needs to take from
 723 * the head (writes go to the tail). But if a writer is in overwrite
 724 * mode and wraps, it must push the head page forward.
 725 *
 726 * Here lies the problem.
 727 *
 728 * The reader must be careful to replace only the head page, and
 729 * not another one. As described at the top of the file in the
 730 * ASCII art, the reader sets its old page to point to the next
 731 * page after head. It then sets the page after head to point to
 732 * the old reader page. But if the writer moves the head page
 733 * during this operation, the reader could end up with the tail.
 734 *
 735 * We use cmpxchg to help prevent this race. We also do something
 736 * special with the page before head. We set the LSB to 1.
 737 *
 738 * When the writer must push the page forward, it will clear the
 739 * bit that points to the head page, move the head, and then set
 740 * the bit that points to the new head page.
 741 *
 742 * We also don't want an interrupt coming in and moving the head
 743 * page on another writer. Thus we use the second LSB to catch
 744 * that too. Thus:
 745 *
 746 * head->list->prev->next        bit 1          bit 0
 747 *                              -------        -------
 748 * Normal page                     0              0
 749 * Points to head page             0              1
 750 * New head page                   1              0
 751 *
 752 * Note we can not trust the prev pointer of the head page, because:
 753 *
 754 * +----+       +-----+        +-----+
 755 * |    |------>|  T  |---X--->|  N  |
 756 * |    |<------|     |        |     |
 757 * +----+       +-----+        +-----+
 758 *   ^                           ^ |
 759 *   |          +-----+          | |
 760 *   +----------|  R  |----------+ |
 761 *              |     |<-----------+
 762 *              +-----+
 763 *
 764 * Key:  ---X-->  HEAD flag set in pointer
 765 *         T      Tail page
 766 *         R      Reader page
 767 *         N      Next page
 768 *
 769 * (see __rb_reserve_next() to see where this happens)
 770 *
 771 *  What the above shows is that the reader just swapped out
 772 *  the reader page with a page in the buffer, but before it
 773 *  could make the new header point back to the new page added
 774 *  it was preempted by a writer. The writer moved forward onto
 775 *  the new page added by the reader and is about to move forward
 776 *  again.
 777 *
 778 *  You can see, it is legitimate for the previous pointer of
 779 *  the head (or any page) not to point back to itself. But only
 780 *  temporarially.
 781 */
 782
 783#define RB_PAGE_NORMAL		0UL
 784#define RB_PAGE_HEAD		1UL
 785#define RB_PAGE_UPDATE		2UL
 786
 787
 788#define RB_FLAG_MASK		3UL
 789
 790/* PAGE_MOVED is not part of the mask */
 791#define RB_PAGE_MOVED		4UL
 792
 793/*
 794 * rb_list_head - remove any bit
 795 */
 796static struct list_head *rb_list_head(struct list_head *list)
 797{
 798	unsigned long val = (unsigned long)list;
 799
 800	return (struct list_head *)(val & ~RB_FLAG_MASK);
 801}
 802
 803/*
 804 * rb_is_head_page - test if the given page is the head page
 805 *
 806 * Because the reader may move the head_page pointer, we can
 807 * not trust what the head page is (it may be pointing to
 808 * the reader page). But if the next page is a header page,
 809 * its flags will be non zero.
 810 */
 811static inline int
 812rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
 813		struct buffer_page *page, struct list_head *list)
 814{
 815	unsigned long val;
 816
 817	val = (unsigned long)list->next;
 818
 819	if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
 820		return RB_PAGE_MOVED;
 821
 822	return val & RB_FLAG_MASK;
 823}
 824
 825/*
 826 * rb_is_reader_page
 827 *
 828 * The unique thing about the reader page, is that, if the
 829 * writer is ever on it, the previous pointer never points
 830 * back to the reader page.
 831 */
 832static bool rb_is_reader_page(struct buffer_page *page)
 833{
 834	struct list_head *list = page->list.prev;
 835
 836	return rb_list_head(list->next) != &page->list;
 837}
 838
 839/*
 840 * rb_set_list_to_head - set a list_head to be pointing to head.
 841 */
 842static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
 843				struct list_head *list)
 844{
 845	unsigned long *ptr;
 846
 847	ptr = (unsigned long *)&list->next;
 848	*ptr |= RB_PAGE_HEAD;
 849	*ptr &= ~RB_PAGE_UPDATE;
 850}
 851
 852/*
 853 * rb_head_page_activate - sets up head page
 854 */
 855static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
 856{
 857	struct buffer_page *head;
 858
 859	head = cpu_buffer->head_page;
 860	if (!head)
 861		return;
 862
 863	/*
 864	 * Set the previous list pointer to have the HEAD flag.
 865	 */
 866	rb_set_list_to_head(cpu_buffer, head->list.prev);
 
 
 
 
 
 867}
 868
 869static void rb_list_head_clear(struct list_head *list)
 870{
 871	unsigned long *ptr = (unsigned long *)&list->next;
 872
 873	*ptr &= ~RB_FLAG_MASK;
 874}
 875
 876/*
 877 * rb_head_page_dactivate - clears head page ptr (for free list)
 878 */
 879static void
 880rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
 881{
 882	struct list_head *hd;
 883
 884	/* Go through the whole list and clear any pointers found. */
 885	rb_list_head_clear(cpu_buffer->pages);
 886
 887	list_for_each(hd, cpu_buffer->pages)
 888		rb_list_head_clear(hd);
 889}
 890
 891static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
 892			    struct buffer_page *head,
 893			    struct buffer_page *prev,
 894			    int old_flag, int new_flag)
 895{
 896	struct list_head *list;
 897	unsigned long val = (unsigned long)&head->list;
 898	unsigned long ret;
 899
 900	list = &prev->list;
 901
 902	val &= ~RB_FLAG_MASK;
 903
 904	ret = cmpxchg((unsigned long *)&list->next,
 905		      val | old_flag, val | new_flag);
 906
 907	/* check if the reader took the page */
 908	if ((ret & ~RB_FLAG_MASK) != val)
 909		return RB_PAGE_MOVED;
 910
 911	return ret & RB_FLAG_MASK;
 912}
 913
 914static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
 915				   struct buffer_page *head,
 916				   struct buffer_page *prev,
 917				   int old_flag)
 918{
 919	return rb_head_page_set(cpu_buffer, head, prev,
 920				old_flag, RB_PAGE_UPDATE);
 921}
 922
 923static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
 924				 struct buffer_page *head,
 925				 struct buffer_page *prev,
 926				 int old_flag)
 927{
 928	return rb_head_page_set(cpu_buffer, head, prev,
 929				old_flag, RB_PAGE_HEAD);
 930}
 931
 932static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
 933				   struct buffer_page *head,
 934				   struct buffer_page *prev,
 935				   int old_flag)
 936{
 937	return rb_head_page_set(cpu_buffer, head, prev,
 938				old_flag, RB_PAGE_NORMAL);
 939}
 940
 941static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
 942			       struct buffer_page **bpage)
 943{
 944	struct list_head *p = rb_list_head((*bpage)->list.next);
 945
 946	*bpage = list_entry(p, struct buffer_page, list);
 947}
 948
 949static struct buffer_page *
 950rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
 951{
 952	struct buffer_page *head;
 953	struct buffer_page *page;
 954	struct list_head *list;
 955	int i;
 956
 957	if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
 958		return NULL;
 959
 960	/* sanity check */
 961	list = cpu_buffer->pages;
 962	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
 963		return NULL;
 964
 965	page = head = cpu_buffer->head_page;
 966	/*
 967	 * It is possible that the writer moves the header behind
 968	 * where we started, and we miss in one loop.
 969	 * A second loop should grab the header, but we'll do
 970	 * three loops just because I'm paranoid.
 971	 */
 972	for (i = 0; i < 3; i++) {
 973		do {
 974			if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
 975				cpu_buffer->head_page = page;
 976				return page;
 977			}
 978			rb_inc_page(cpu_buffer, &page);
 979		} while (page != head);
 980	}
 981
 982	RB_WARN_ON(cpu_buffer, 1);
 983
 984	return NULL;
 985}
 986
 987static int rb_head_page_replace(struct buffer_page *old,
 988				struct buffer_page *new)
 989{
 990	unsigned long *ptr = (unsigned long *)&old->list.prev->next;
 991	unsigned long val;
 992	unsigned long ret;
 993
 994	val = *ptr & ~RB_FLAG_MASK;
 995	val |= RB_PAGE_HEAD;
 996
 997	ret = cmpxchg(ptr, val, (unsigned long)&new->list);
 998
 999	return ret == val;
1000}
1001
1002/*
1003 * rb_tail_page_update - move the tail page forward
1004 */
1005static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1006			       struct buffer_page *tail_page,
1007			       struct buffer_page *next_page)
1008{
1009	unsigned long old_entries;
1010	unsigned long old_write;
1011
1012	/*
1013	 * The tail page now needs to be moved forward.
1014	 *
1015	 * We need to reset the tail page, but without messing
1016	 * with possible erasing of data brought in by interrupts
1017	 * that have moved the tail page and are currently on it.
1018	 *
1019	 * We add a counter to the write field to denote this.
1020	 */
1021	old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1022	old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1023
1024	/*
1025	 * Just make sure we have seen our old_write and synchronize
1026	 * with any interrupts that come in.
1027	 */
1028	barrier();
1029
1030	/*
1031	 * If the tail page is still the same as what we think
1032	 * it is, then it is up to us to update the tail
1033	 * pointer.
1034	 */
1035	if (tail_page == READ_ONCE(cpu_buffer->tail_page)) {
1036		/* Zero the write counter */
1037		unsigned long val = old_write & ~RB_WRITE_MASK;
1038		unsigned long eval = old_entries & ~RB_WRITE_MASK;
1039
1040		/*
1041		 * This will only succeed if an interrupt did
1042		 * not come in and change it. In which case, we
1043		 * do not want to modify it.
1044		 *
1045		 * We add (void) to let the compiler know that we do not care
1046		 * about the return value of these functions. We use the
1047		 * cmpxchg to only update if an interrupt did not already
1048		 * do it for us. If the cmpxchg fails, we don't care.
1049		 */
1050		(void)local_cmpxchg(&next_page->write, old_write, val);
1051		(void)local_cmpxchg(&next_page->entries, old_entries, eval);
1052
1053		/*
1054		 * No need to worry about races with clearing out the commit.
1055		 * it only can increment when a commit takes place. But that
1056		 * only happens in the outer most nested commit.
1057		 */
1058		local_set(&next_page->page->commit, 0);
1059
1060		/* Again, either we update tail_page or an interrupt does */
1061		(void)cmpxchg(&cpu_buffer->tail_page, tail_page, next_page);
 
1062	}
1063}
1064
1065static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1066			  struct buffer_page *bpage)
1067{
1068	unsigned long val = (unsigned long)bpage;
1069
1070	if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1071		return 1;
1072
1073	return 0;
1074}
1075
1076/**
1077 * rb_check_list - make sure a pointer to a list has the last bits zero
1078 */
1079static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1080			 struct list_head *list)
1081{
1082	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1083		return 1;
1084	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1085		return 1;
1086	return 0;
 
 
 
 
1087}
1088
1089/**
1090 * rb_check_pages - integrity check of buffer pages
1091 * @cpu_buffer: CPU buffer with pages to test
1092 *
1093 * As a safety measure we check to make sure the data pages have not
1094 * been corrupted.
1095 */
1096static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1097{
1098	struct list_head *head = cpu_buffer->pages;
1099	struct buffer_page *bpage, *tmp;
 
 
1100
1101	/* Reset the head page if it exists */
1102	if (cpu_buffer->head_page)
1103		rb_set_head_page(cpu_buffer);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1104
1105	rb_head_page_deactivate(cpu_buffer);
 
 
 
 
 
 
1106
1107	if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1108		return -1;
1109	if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1110		return -1;
1111
1112	if (rb_check_list(cpu_buffer, head))
1113		return -1;
 
 
 
1114
1115	list_for_each_entry_safe(bpage, tmp, head, list) {
1116		if (RB_WARN_ON(cpu_buffer,
1117			       bpage->list.next->prev != &bpage->list))
1118			return -1;
1119		if (RB_WARN_ON(cpu_buffer,
1120			       bpage->list.prev->next != &bpage->list))
1121			return -1;
1122		if (rb_check_list(cpu_buffer, &bpage->list))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1123			return -1;
 
1124	}
 
 
 
1125
1126	rb_head_page_activate(cpu_buffer);
 
 
 
 
1127
1128	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1129}
1130
1131static int __rb_allocate_pages(int nr_pages, struct list_head *pages, int cpu)
 
 
 
 
 
 
1132{
 
 
 
 
 
 
 
 
 
 
 
1133	int i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1134	struct buffer_page *bpage, *tmp;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1135
1136	for (i = 0; i < nr_pages; i++) {
1137		struct page *page;
1138		/*
1139		 * __GFP_NORETRY flag makes sure that the allocation fails
1140		 * gracefully without invoking oom-killer and the system is
1141		 * not destabilized.
1142		 */
1143		bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1144				    GFP_KERNEL | __GFP_NORETRY,
1145				    cpu_to_node(cpu));
1146		if (!bpage)
1147			goto free_pages;
1148
1149		list_add(&bpage->list, pages);
1150
1151		page = alloc_pages_node(cpu_to_node(cpu),
1152					GFP_KERNEL | __GFP_NORETRY, 0);
1153		if (!page)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1154			goto free_pages;
1155		bpage->page = page_address(page);
1156		rb_init_page(bpage->page);
1157	}
 
 
1158
1159	return 0;
1160
1161free_pages:
1162	list_for_each_entry_safe(bpage, tmp, pages, list) {
1163		list_del_init(&bpage->list);
1164		free_buffer_page(bpage);
1165	}
 
 
1166
1167	return -ENOMEM;
1168}
1169
1170static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1171			     unsigned nr_pages)
1172{
1173	LIST_HEAD(pages);
1174
1175	WARN_ON(!nr_pages);
1176
1177	if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1178		return -ENOMEM;
1179
1180	/*
1181	 * The ring buffer page list is a circular list that does not
1182	 * start and end with a list head. All page list items point to
1183	 * other pages.
1184	 */
1185	cpu_buffer->pages = pages.next;
1186	list_del(&pages);
1187
1188	cpu_buffer->nr_pages = nr_pages;
1189
1190	rb_check_pages(cpu_buffer);
1191
1192	return 0;
1193}
1194
1195static struct ring_buffer_per_cpu *
1196rb_allocate_cpu_buffer(struct ring_buffer *buffer, int nr_pages, int cpu)
1197{
1198	struct ring_buffer_per_cpu *cpu_buffer;
 
1199	struct buffer_page *bpage;
1200	struct page *page;
1201	int ret;
1202
1203	cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1204				  GFP_KERNEL, cpu_to_node(cpu));
1205	if (!cpu_buffer)
1206		return NULL;
1207
1208	cpu_buffer->cpu = cpu;
1209	cpu_buffer->buffer = buffer;
1210	raw_spin_lock_init(&cpu_buffer->reader_lock);
1211	lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1212	cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1213	INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1214	init_completion(&cpu_buffer->update_done);
1215	init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1216	init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1217	init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
 
1218
1219	bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1220			    GFP_KERNEL, cpu_to_node(cpu));
1221	if (!bpage)
1222		goto fail_free_buffer;
1223
1224	rb_check_bpage(cpu_buffer, bpage);
1225
1226	cpu_buffer->reader_page = bpage;
1227	page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1228	if (!page)
1229		goto fail_free_reader;
1230	bpage->page = page_address(page);
1231	rb_init_page(bpage->page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1232
1233	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1234	INIT_LIST_HEAD(&cpu_buffer->new_pages);
1235
1236	ret = rb_allocate_pages(cpu_buffer, nr_pages);
1237	if (ret < 0)
1238		goto fail_free_reader;
1239
1240	cpu_buffer->head_page
1241		= list_entry(cpu_buffer->pages, struct buffer_page, list);
1242	cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1243
1244	rb_head_page_activate(cpu_buffer);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1245
1246	return cpu_buffer;
1247
1248 fail_free_reader:
1249	free_buffer_page(cpu_buffer->reader_page);
1250
1251 fail_free_buffer:
1252	kfree(cpu_buffer);
1253	return NULL;
1254}
1255
1256static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1257{
1258	struct list_head *head = cpu_buffer->pages;
1259	struct buffer_page *bpage, *tmp;
1260
1261	free_buffer_page(cpu_buffer->reader_page);
1262
1263	rb_head_page_deactivate(cpu_buffer);
1264
1265	if (head) {
 
 
1266		list_for_each_entry_safe(bpage, tmp, head, list) {
1267			list_del_init(&bpage->list);
1268			free_buffer_page(bpage);
1269		}
1270		bpage = list_entry(head, struct buffer_page, list);
1271		free_buffer_page(bpage);
1272	}
1273
 
 
1274	kfree(cpu_buffer);
1275}
1276
1277#ifdef CONFIG_HOTPLUG_CPU
1278static int rb_cpu_notify(struct notifier_block *self,
1279			 unsigned long action, void *hcpu);
1280#endif
1281
1282/**
1283 * __ring_buffer_alloc - allocate a new ring_buffer
1284 * @size: the size in bytes per cpu that is needed.
1285 * @flags: attributes to set for the ring buffer.
1286 *
1287 * Currently the only flag that is available is the RB_FL_OVERWRITE
1288 * flag. This flag means that the buffer will overwrite old data
1289 * when the buffer wraps. If this flag is not set, the buffer will
1290 * drop data when the tail hits the head.
1291 */
1292struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1293					struct lock_class_key *key)
1294{
1295	struct ring_buffer *buffer;
1296	int bsize;
1297	int cpu, nr_pages;
 
1298
1299	/* keep it in its own cache line */
1300	buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1301			 GFP_KERNEL);
1302	if (!buffer)
1303		return NULL;
1304
1305	if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1306		goto fail_free_buffer;
1307
1308	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
 
 
 
 
 
 
1309	buffer->flags = flags;
1310	buffer->clock = trace_clock_local;
1311	buffer->reader_lock_key = key;
1312
1313	init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1314	init_waitqueue_head(&buffer->irq_work.waiters);
1315
1316	/* need at least two pages */
1317	if (nr_pages < 2)
1318		nr_pages = 2;
1319
1320	/*
1321	 * In case of non-hotplug cpu, if the ring-buffer is allocated
1322	 * in early initcall, it will not be notified of secondary cpus.
1323	 * In that off case, we need to allocate for all possible cpus.
1324	 */
1325#ifdef CONFIG_HOTPLUG_CPU
1326	cpu_notifier_register_begin();
1327	cpumask_copy(buffer->cpumask, cpu_online_mask);
1328#else
1329	cpumask_copy(buffer->cpumask, cpu_possible_mask);
1330#endif
1331	buffer->cpus = nr_cpu_ids;
1332
1333	bsize = sizeof(void *) * nr_cpu_ids;
1334	buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1335				  GFP_KERNEL);
1336	if (!buffer->buffers)
1337		goto fail_free_cpumask;
1338
1339	for_each_buffer_cpu(buffer, cpu) {
1340		buffer->buffers[cpu] =
1341			rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1342		if (!buffer->buffers[cpu])
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1343			goto fail_free_buffers;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1344	}
1345
1346#ifdef CONFIG_HOTPLUG_CPU
1347	buffer->cpu_notify.notifier_call = rb_cpu_notify;
1348	buffer->cpu_notify.priority = 0;
1349	__register_cpu_notifier(&buffer->cpu_notify);
1350	cpu_notifier_register_done();
1351#endif
 
 
 
1352
1353	mutex_init(&buffer->mutex);
1354
1355	return buffer;
1356
1357 fail_free_buffers:
1358	for_each_buffer_cpu(buffer, cpu) {
1359		if (buffer->buffers[cpu])
1360			rb_free_cpu_buffer(buffer->buffers[cpu]);
1361	}
1362	kfree(buffer->buffers);
1363
1364 fail_free_cpumask:
1365	free_cpumask_var(buffer->cpumask);
1366#ifdef CONFIG_HOTPLUG_CPU
1367	cpu_notifier_register_done();
1368#endif
1369
1370 fail_free_buffer:
1371	kfree(buffer);
1372	return NULL;
1373}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1374EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1375
1376/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1377 * ring_buffer_free - free a ring buffer.
1378 * @buffer: the buffer to free.
1379 */
1380void
1381ring_buffer_free(struct ring_buffer *buffer)
1382{
1383	int cpu;
1384
1385#ifdef CONFIG_HOTPLUG_CPU
1386	cpu_notifier_register_begin();
1387	__unregister_cpu_notifier(&buffer->cpu_notify);
1388#endif
1389
1390	for_each_buffer_cpu(buffer, cpu)
1391		rb_free_cpu_buffer(buffer->buffers[cpu]);
1392
1393#ifdef CONFIG_HOTPLUG_CPU
1394	cpu_notifier_register_done();
1395#endif
1396
1397	kfree(buffer->buffers);
1398	free_cpumask_var(buffer->cpumask);
1399
1400	kfree(buffer);
1401}
1402EXPORT_SYMBOL_GPL(ring_buffer_free);
1403
1404void ring_buffer_set_clock(struct ring_buffer *buffer,
1405			   u64 (*clock)(void))
1406{
1407	buffer->clock = clock;
1408}
1409
1410static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
 
 
 
 
 
 
 
 
1411
1412static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1413{
1414	return local_read(&bpage->entries) & RB_WRITE_MASK;
1415}
1416
1417static inline unsigned long rb_page_write(struct buffer_page *bpage)
1418{
1419	return local_read(&bpage->write) & RB_WRITE_MASK;
1420}
1421
1422static int
1423rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned int nr_pages)
1424{
1425	struct list_head *tail_page, *to_remove, *next_page;
1426	struct buffer_page *to_remove_page, *tmp_iter_page;
1427	struct buffer_page *last_page, *first_page;
1428	unsigned int nr_removed;
1429	unsigned long head_bit;
1430	int page_entries;
1431
1432	head_bit = 0;
1433
1434	raw_spin_lock_irq(&cpu_buffer->reader_lock);
1435	atomic_inc(&cpu_buffer->record_disabled);
1436	/*
1437	 * We don't race with the readers since we have acquired the reader
1438	 * lock. We also don't race with writers after disabling recording.
1439	 * This makes it easy to figure out the first and the last page to be
1440	 * removed from the list. We unlink all the pages in between including
1441	 * the first and last pages. This is done in a busy loop so that we
1442	 * lose the least number of traces.
1443	 * The pages are freed after we restart recording and unlock readers.
1444	 */
1445	tail_page = &cpu_buffer->tail_page->list;
1446
1447	/*
1448	 * tail page might be on reader page, we remove the next page
1449	 * from the ring buffer
1450	 */
1451	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1452		tail_page = rb_list_head(tail_page->next);
1453	to_remove = tail_page;
1454
1455	/* start of pages to remove */
1456	first_page = list_entry(rb_list_head(to_remove->next),
1457				struct buffer_page, list);
1458
1459	for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1460		to_remove = rb_list_head(to_remove)->next;
1461		head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1462	}
 
 
1463
1464	next_page = rb_list_head(to_remove)->next;
1465
1466	/*
1467	 * Now we remove all pages between tail_page and next_page.
1468	 * Make sure that we have head_bit value preserved for the
1469	 * next page
1470	 */
1471	tail_page->next = (struct list_head *)((unsigned long)next_page |
1472						head_bit);
1473	next_page = rb_list_head(next_page);
1474	next_page->prev = tail_page;
1475
1476	/* make sure pages points to a valid page in the ring buffer */
1477	cpu_buffer->pages = next_page;
 
1478
1479	/* update head page */
1480	if (head_bit)
1481		cpu_buffer->head_page = list_entry(next_page,
1482						struct buffer_page, list);
1483
1484	/*
1485	 * change read pointer to make sure any read iterators reset
1486	 * themselves
1487	 */
1488	cpu_buffer->read = 0;
1489
1490	/* pages are removed, resume tracing and then free the pages */
1491	atomic_dec(&cpu_buffer->record_disabled);
1492	raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1493
1494	RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1495
1496	/* last buffer page to remove */
1497	last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1498				list);
1499	tmp_iter_page = first_page;
1500
1501	do {
 
 
1502		to_remove_page = tmp_iter_page;
1503		rb_inc_page(cpu_buffer, &tmp_iter_page);
1504
1505		/* update the counters */
1506		page_entries = rb_page_entries(to_remove_page);
1507		if (page_entries) {
1508			/*
1509			 * If something was added to this page, it was full
1510			 * since it is not the tail page. So we deduct the
1511			 * bytes consumed in ring buffer from here.
1512			 * Increment overrun to account for the lost events.
1513			 */
1514			local_add(page_entries, &cpu_buffer->overrun);
1515			local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
 
1516		}
1517
1518		/*
1519		 * We have already removed references to this list item, just
1520		 * free up the buffer_page and its page
1521		 */
1522		free_buffer_page(to_remove_page);
1523		nr_removed--;
1524
1525	} while (to_remove_page != last_page);
1526
1527	RB_WARN_ON(cpu_buffer, nr_removed);
1528
1529	return nr_removed == 0;
1530}
1531
1532static int
1533rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1534{
1535	struct list_head *pages = &cpu_buffer->new_pages;
1536	int retries, success;
 
 
1537
1538	raw_spin_lock_irq(&cpu_buffer->reader_lock);
 
1539	/*
1540	 * We are holding the reader lock, so the reader page won't be swapped
1541	 * in the ring buffer. Now we are racing with the writer trying to
1542	 * move head page and the tail page.
1543	 * We are going to adapt the reader page update process where:
1544	 * 1. We first splice the start and end of list of new pages between
1545	 *    the head page and its previous page.
1546	 * 2. We cmpxchg the prev_page->next to point from head page to the
1547	 *    start of new pages list.
1548	 * 3. Finally, we update the head->prev to the end of new list.
1549	 *
1550	 * We will try this process 10 times, to make sure that we don't keep
1551	 * spinning.
1552	 */
1553	retries = 10;
1554	success = 0;
1555	while (retries--) {
1556		struct list_head *head_page, *prev_page, *r;
1557		struct list_head *last_page, *first_page;
1558		struct list_head *head_page_with_bit;
 
1559
1560		head_page = &rb_set_head_page(cpu_buffer)->list;
1561		if (!head_page)
1562			break;
 
1563		prev_page = head_page->prev;
1564
1565		first_page = pages->next;
1566		last_page  = pages->prev;
1567
1568		head_page_with_bit = (struct list_head *)
1569				     ((unsigned long)head_page | RB_PAGE_HEAD);
1570
1571		last_page->next = head_page_with_bit;
1572		first_page->prev = prev_page;
1573
1574		r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1575
1576		if (r == head_page_with_bit) {
1577			/*
1578			 * yay, we replaced the page pointer to our new list,
1579			 * now, we just have to update to head page's prev
1580			 * pointer to point to end of list
1581			 */
1582			head_page->prev = last_page;
1583			success = 1;
 
1584			break;
1585		}
1586	}
1587
1588	if (success)
1589		INIT_LIST_HEAD(pages);
1590	/*
1591	 * If we weren't successful in adding in new pages, warn and stop
1592	 * tracing
1593	 */
1594	RB_WARN_ON(cpu_buffer, !success);
1595	raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1596
1597	/* free pages if they weren't inserted */
1598	if (!success) {
1599		struct buffer_page *bpage, *tmp;
1600		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1601					 list) {
1602			list_del_init(&bpage->list);
1603			free_buffer_page(bpage);
1604		}
1605	}
1606	return success;
1607}
1608
1609static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1610{
1611	int success;
1612
1613	if (cpu_buffer->nr_pages_to_update > 0)
1614		success = rb_insert_pages(cpu_buffer);
1615	else
1616		success = rb_remove_pages(cpu_buffer,
1617					-cpu_buffer->nr_pages_to_update);
1618
1619	if (success)
1620		cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
1621}
1622
1623static void update_pages_handler(struct work_struct *work)
1624{
1625	struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1626			struct ring_buffer_per_cpu, update_pages_work);
1627	rb_update_pages(cpu_buffer);
1628	complete(&cpu_buffer->update_done);
1629}
1630
1631/**
1632 * ring_buffer_resize - resize the ring buffer
1633 * @buffer: the buffer to resize.
1634 * @size: the new size.
1635 * @cpu_id: the cpu buffer to resize
1636 *
1637 * Minimum size is 2 * BUF_PAGE_SIZE.
1638 *
1639 * Returns 0 on success and < 0 on failure.
1640 */
1641int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1642			int cpu_id)
1643{
1644	struct ring_buffer_per_cpu *cpu_buffer;
1645	unsigned nr_pages;
1646	int cpu, err = 0;
1647
1648	/*
1649	 * Always succeed at resizing a non-existent buffer:
1650	 */
1651	if (!buffer)
1652		return size;
1653
1654	/* Make sure the requested buffer exists */
1655	if (cpu_id != RING_BUFFER_ALL_CPUS &&
1656	    !cpumask_test_cpu(cpu_id, buffer->cpumask))
1657		return size;
1658
1659	size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1660	size *= BUF_PAGE_SIZE;
1661
1662	/* we need a minimum of two pages */
1663	if (size < BUF_PAGE_SIZE * 2)
1664		size = BUF_PAGE_SIZE * 2;
1665
1666	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1667
1668	/*
1669	 * Don't succeed if resizing is disabled, as a reader might be
1670	 * manipulating the ring buffer and is expecting a sane state while
1671	 * this is true.
1672	 */
1673	if (atomic_read(&buffer->resize_disabled))
1674		return -EBUSY;
1675
1676	/* prevent another thread from changing buffer sizes */
1677	mutex_lock(&buffer->mutex);
 
1678
1679	if (cpu_id == RING_BUFFER_ALL_CPUS) {
 
 
 
 
 
 
 
 
 
 
 
 
 
1680		/* calculate the pages to update */
1681		for_each_buffer_cpu(buffer, cpu) {
1682			cpu_buffer = buffer->buffers[cpu];
1683
1684			cpu_buffer->nr_pages_to_update = nr_pages -
1685							cpu_buffer->nr_pages;
1686			/*
1687			 * nothing more to do for removing pages or no update
1688			 */
1689			if (cpu_buffer->nr_pages_to_update <= 0)
1690				continue;
1691			/*
1692			 * to add pages, make sure all new pages can be
1693			 * allocated without receiving ENOMEM
1694			 */
1695			INIT_LIST_HEAD(&cpu_buffer->new_pages);
1696			if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1697						&cpu_buffer->new_pages, cpu)) {
1698				/* not enough memory for new pages */
1699				err = -ENOMEM;
1700				goto out_err;
1701			}
 
 
1702		}
1703
1704		get_online_cpus();
1705		/*
1706		 * Fire off all the required work handlers
1707		 * We can't schedule on offline CPUs, but it's not necessary
1708		 * since we can change their buffer sizes without any race.
1709		 */
1710		for_each_buffer_cpu(buffer, cpu) {
1711			cpu_buffer = buffer->buffers[cpu];
1712			if (!cpu_buffer->nr_pages_to_update)
1713				continue;
1714
1715			/* Can't run something on an offline CPU. */
1716			if (!cpu_online(cpu)) {
1717				rb_update_pages(cpu_buffer);
1718				cpu_buffer->nr_pages_to_update = 0;
1719			} else {
1720				schedule_work_on(cpu,
1721						&cpu_buffer->update_pages_work);
 
 
 
 
 
 
 
 
1722			}
1723		}
1724
1725		/* wait for all the updates to complete */
1726		for_each_buffer_cpu(buffer, cpu) {
1727			cpu_buffer = buffer->buffers[cpu];
1728			if (!cpu_buffer->nr_pages_to_update)
1729				continue;
1730
1731			if (cpu_online(cpu))
1732				wait_for_completion(&cpu_buffer->update_done);
1733			cpu_buffer->nr_pages_to_update = 0;
1734		}
1735
1736		put_online_cpus();
1737	} else {
1738		/* Make sure this CPU has been intitialized */
1739		if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
1740			goto out;
1741
1742		cpu_buffer = buffer->buffers[cpu_id];
1743
1744		if (nr_pages == cpu_buffer->nr_pages)
1745			goto out;
1746
 
 
 
 
 
 
 
 
 
 
1747		cpu_buffer->nr_pages_to_update = nr_pages -
1748						cpu_buffer->nr_pages;
1749
1750		INIT_LIST_HEAD(&cpu_buffer->new_pages);
1751		if (cpu_buffer->nr_pages_to_update > 0 &&
1752			__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1753					    &cpu_buffer->new_pages, cpu_id)) {
1754			err = -ENOMEM;
1755			goto out_err;
1756		}
1757
1758		get_online_cpus();
1759
1760		/* Can't run something on an offline CPU. */
1761		if (!cpu_online(cpu_id))
1762			rb_update_pages(cpu_buffer);
1763		else {
1764			schedule_work_on(cpu_id,
1765					 &cpu_buffer->update_pages_work);
1766			wait_for_completion(&cpu_buffer->update_done);
 
 
 
 
 
 
 
 
1767		}
1768
1769		cpu_buffer->nr_pages_to_update = 0;
1770		put_online_cpus();
1771	}
1772
1773 out:
1774	/*
1775	 * The ring buffer resize can happen with the ring buffer
1776	 * enabled, so that the update disturbs the tracing as little
1777	 * as possible. But if the buffer is disabled, we do not need
1778	 * to worry about that, and we can take the time to verify
1779	 * that the buffer is not corrupt.
1780	 */
1781	if (atomic_read(&buffer->record_disabled)) {
1782		atomic_inc(&buffer->record_disabled);
1783		/*
1784		 * Even though the buffer was disabled, we must make sure
1785		 * that it is truly disabled before calling rb_check_pages.
1786		 * There could have been a race between checking
1787		 * record_disable and incrementing it.
1788		 */
1789		synchronize_sched();
1790		for_each_buffer_cpu(buffer, cpu) {
1791			cpu_buffer = buffer->buffers[cpu];
1792			rb_check_pages(cpu_buffer);
1793		}
1794		atomic_dec(&buffer->record_disabled);
1795	}
1796
 
1797	mutex_unlock(&buffer->mutex);
1798	return size;
1799
1800 out_err:
1801	for_each_buffer_cpu(buffer, cpu) {
1802		struct buffer_page *bpage, *tmp;
1803
1804		cpu_buffer = buffer->buffers[cpu];
1805		cpu_buffer->nr_pages_to_update = 0;
1806
1807		if (list_empty(&cpu_buffer->new_pages))
1808			continue;
1809
1810		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1811					list) {
1812			list_del_init(&bpage->list);
1813			free_buffer_page(bpage);
1814		}
1815	}
 
 
1816	mutex_unlock(&buffer->mutex);
1817	return err;
1818}
1819EXPORT_SYMBOL_GPL(ring_buffer_resize);
1820
1821void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1822{
1823	mutex_lock(&buffer->mutex);
1824	if (val)
1825		buffer->flags |= RB_FL_OVERWRITE;
1826	else
1827		buffer->flags &= ~RB_FL_OVERWRITE;
1828	mutex_unlock(&buffer->mutex);
1829}
1830EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1831
1832static inline void *
1833__rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
1834{
1835	return bpage->data + index;
1836}
1837
1838static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1839{
1840	return bpage->page->data + index;
1841}
1842
1843static inline struct ring_buffer_event *
1844rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1845{
1846	return __rb_page_index(cpu_buffer->reader_page,
1847			       cpu_buffer->reader_page->read);
1848}
1849
1850static inline struct ring_buffer_event *
1851rb_iter_head_event(struct ring_buffer_iter *iter)
1852{
1853	return __rb_page_index(iter->head_page, iter->head);
1854}
 
 
1855
1856static inline unsigned rb_page_commit(struct buffer_page *bpage)
1857{
1858	return local_read(&bpage->page->commit);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1859}
1860
1861/* Size is determined by what has been committed */
1862static inline unsigned rb_page_size(struct buffer_page *bpage)
1863{
1864	return rb_page_commit(bpage);
1865}
1866
1867static inline unsigned
1868rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1869{
1870	return rb_page_commit(cpu_buffer->commit_page);
1871}
1872
1873static inline unsigned
1874rb_event_index(struct ring_buffer_event *event)
1875{
1876	unsigned long addr = (unsigned long)event;
1877
1878	return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
 
 
1879}
1880
1881static void rb_inc_iter(struct ring_buffer_iter *iter)
1882{
1883	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1884
1885	/*
1886	 * The iterator could be on the reader page (it starts there).
1887	 * But the head could have moved, since the reader was
1888	 * found. Check for this case and assign the iterator
1889	 * to the head page instead of next.
1890	 */
1891	if (iter->head_page == cpu_buffer->reader_page)
1892		iter->head_page = rb_set_head_page(cpu_buffer);
1893	else
1894		rb_inc_page(cpu_buffer, &iter->head_page);
1895
1896	iter->read_stamp = iter->head_page->page->time_stamp;
1897	iter->head = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1898}
1899
1900/*
1901 * rb_handle_head_page - writer hit the head page
1902 *
1903 * Returns: +1 to retry page
1904 *           0 to continue
1905 *          -1 on error
1906 */
1907static int
1908rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1909		    struct buffer_page *tail_page,
1910		    struct buffer_page *next_page)
1911{
1912	struct buffer_page *new_head;
1913	int entries;
1914	int type;
1915	int ret;
1916
1917	entries = rb_page_entries(next_page);
1918
1919	/*
1920	 * The hard part is here. We need to move the head
1921	 * forward, and protect against both readers on
1922	 * other CPUs and writers coming in via interrupts.
1923	 */
1924	type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
1925				       RB_PAGE_HEAD);
1926
1927	/*
1928	 * type can be one of four:
1929	 *  NORMAL - an interrupt already moved it for us
1930	 *  HEAD   - we are the first to get here.
1931	 *  UPDATE - we are the interrupt interrupting
1932	 *           a current move.
1933	 *  MOVED  - a reader on another CPU moved the next
1934	 *           pointer to its reader page. Give up
1935	 *           and try again.
1936	 */
1937
1938	switch (type) {
1939	case RB_PAGE_HEAD:
1940		/*
1941		 * We changed the head to UPDATE, thus
1942		 * it is our responsibility to update
1943		 * the counters.
1944		 */
1945		local_add(entries, &cpu_buffer->overrun);
1946		local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
 
1947
 
 
1948		/*
1949		 * The entries will be zeroed out when we move the
1950		 * tail page.
1951		 */
1952
1953		/* still more to do */
1954		break;
1955
1956	case RB_PAGE_UPDATE:
1957		/*
1958		 * This is an interrupt that interrupt the
1959		 * previous update. Still more to do.
1960		 */
1961		break;
1962	case RB_PAGE_NORMAL:
1963		/*
1964		 * An interrupt came in before the update
1965		 * and processed this for us.
1966		 * Nothing left to do.
1967		 */
1968		return 1;
1969	case RB_PAGE_MOVED:
1970		/*
1971		 * The reader is on another CPU and just did
1972		 * a swap with our next_page.
1973		 * Try again.
1974		 */
1975		return 1;
1976	default:
1977		RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
1978		return -1;
1979	}
1980
1981	/*
1982	 * Now that we are here, the old head pointer is
1983	 * set to UPDATE. This will keep the reader from
1984	 * swapping the head page with the reader page.
1985	 * The reader (on another CPU) will spin till
1986	 * we are finished.
1987	 *
1988	 * We just need to protect against interrupts
1989	 * doing the job. We will set the next pointer
1990	 * to HEAD. After that, we set the old pointer
1991	 * to NORMAL, but only if it was HEAD before.
1992	 * otherwise we are an interrupt, and only
1993	 * want the outer most commit to reset it.
1994	 */
1995	new_head = next_page;
1996	rb_inc_page(cpu_buffer, &new_head);
1997
1998	ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
1999				    RB_PAGE_NORMAL);
2000
2001	/*
2002	 * Valid returns are:
2003	 *  HEAD   - an interrupt came in and already set it.
2004	 *  NORMAL - One of two things:
2005	 *            1) We really set it.
2006	 *            2) A bunch of interrupts came in and moved
2007	 *               the page forward again.
2008	 */
2009	switch (ret) {
2010	case RB_PAGE_HEAD:
2011	case RB_PAGE_NORMAL:
2012		/* OK */
2013		break;
2014	default:
2015		RB_WARN_ON(cpu_buffer, 1);
2016		return -1;
2017	}
2018
2019	/*
2020	 * It is possible that an interrupt came in,
2021	 * set the head up, then more interrupts came in
2022	 * and moved it again. When we get back here,
2023	 * the page would have been set to NORMAL but we
2024	 * just set it back to HEAD.
2025	 *
2026	 * How do you detect this? Well, if that happened
2027	 * the tail page would have moved.
2028	 */
2029	if (ret == RB_PAGE_NORMAL) {
2030		struct buffer_page *buffer_tail_page;
2031
2032		buffer_tail_page = READ_ONCE(cpu_buffer->tail_page);
2033		/*
2034		 * If the tail had moved passed next, then we need
2035		 * to reset the pointer.
2036		 */
2037		if (buffer_tail_page != tail_page &&
2038		    buffer_tail_page != next_page)
2039			rb_head_page_set_normal(cpu_buffer, new_head,
2040						next_page,
2041						RB_PAGE_HEAD);
2042	}
2043
2044	/*
2045	 * If this was the outer most commit (the one that
2046	 * changed the original pointer from HEAD to UPDATE),
2047	 * then it is up to us to reset it to NORMAL.
2048	 */
2049	if (type == RB_PAGE_HEAD) {
2050		ret = rb_head_page_set_normal(cpu_buffer, next_page,
2051					      tail_page,
2052					      RB_PAGE_UPDATE);
2053		if (RB_WARN_ON(cpu_buffer,
2054			       ret != RB_PAGE_UPDATE))
2055			return -1;
2056	}
2057
2058	return 0;
2059}
2060
2061static inline void
2062rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2063	      unsigned long tail, struct rb_event_info *info)
2064{
 
2065	struct buffer_page *tail_page = info->tail_page;
2066	struct ring_buffer_event *event;
2067	unsigned long length = info->length;
2068
2069	/*
2070	 * Only the event that crossed the page boundary
2071	 * must fill the old tail_page with padding.
2072	 */
2073	if (tail >= BUF_PAGE_SIZE) {
2074		/*
2075		 * If the page was filled, then we still need
2076		 * to update the real_end. Reset it to zero
2077		 * and the reader will ignore it.
2078		 */
2079		if (tail == BUF_PAGE_SIZE)
2080			tail_page->real_end = 0;
2081
2082		local_sub(length, &tail_page->write);
2083		return;
2084	}
2085
2086	event = __rb_page_index(tail_page, tail);
2087	kmemcheck_annotate_bitfield(event, bitfield);
2088
2089	/* account for padding bytes */
2090	local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2091
2092	/*
2093	 * Save the original length to the meta data.
2094	 * This will be used by the reader to add lost event
2095	 * counter.
2096	 */
2097	tail_page->real_end = tail;
2098
2099	/*
2100	 * If this event is bigger than the minimum size, then
2101	 * we need to be careful that we don't subtract the
2102	 * write counter enough to allow another writer to slip
2103	 * in on this page.
2104	 * We put in a discarded commit instead, to make sure
2105	 * that this space is not used again.
 
2106	 *
2107	 * If we are less than the minimum size, we don't need to
2108	 * worry about it.
2109	 */
2110	if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2111		/* No room for any events */
2112
2113		/* Mark the rest of the page with padding */
2114		rb_event_set_padding(event);
2115
 
 
 
2116		/* Set the write back to the previous setting */
2117		local_sub(length, &tail_page->write);
2118		return;
2119	}
2120
2121	/* Put in a discarded event */
2122	event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2123	event->type_len = RINGBUF_TYPE_PADDING;
2124	/* time delta must be non zero */
2125	event->time_delta = 1;
2126
 
 
 
 
 
 
2127	/* Set write to end of buffer */
2128	length = (tail + length) - BUF_PAGE_SIZE;
2129	local_sub(length, &tail_page->write);
2130}
2131
2132static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer);
2133
2134/*
2135 * This is the slow path, force gcc not to inline it.
2136 */
2137static noinline struct ring_buffer_event *
2138rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2139	     unsigned long tail, struct rb_event_info *info)
2140{
2141	struct buffer_page *tail_page = info->tail_page;
2142	struct buffer_page *commit_page = cpu_buffer->commit_page;
2143	struct ring_buffer *buffer = cpu_buffer->buffer;
2144	struct buffer_page *next_page;
2145	int ret;
2146
2147	next_page = tail_page;
2148
2149	rb_inc_page(cpu_buffer, &next_page);
2150
2151	/*
2152	 * If for some reason, we had an interrupt storm that made
2153	 * it all the way around the buffer, bail, and warn
2154	 * about it.
2155	 */
2156	if (unlikely(next_page == commit_page)) {
2157		local_inc(&cpu_buffer->commit_overrun);
2158		goto out_reset;
2159	}
2160
2161	/*
2162	 * This is where the fun begins!
2163	 *
2164	 * We are fighting against races between a reader that
2165	 * could be on another CPU trying to swap its reader
2166	 * page with the buffer head.
2167	 *
2168	 * We are also fighting against interrupts coming in and
2169	 * moving the head or tail on us as well.
2170	 *
2171	 * If the next page is the head page then we have filled
2172	 * the buffer, unless the commit page is still on the
2173	 * reader page.
2174	 */
2175	if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
2176
2177		/*
2178		 * If the commit is not on the reader page, then
2179		 * move the header page.
2180		 */
2181		if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2182			/*
2183			 * If we are not in overwrite mode,
2184			 * this is easy, just stop here.
2185			 */
2186			if (!(buffer->flags & RB_FL_OVERWRITE)) {
2187				local_inc(&cpu_buffer->dropped_events);
2188				goto out_reset;
2189			}
2190
2191			ret = rb_handle_head_page(cpu_buffer,
2192						  tail_page,
2193						  next_page);
2194			if (ret < 0)
2195				goto out_reset;
2196			if (ret)
2197				goto out_again;
2198		} else {
2199			/*
2200			 * We need to be careful here too. The
2201			 * commit page could still be on the reader
2202			 * page. We could have a small buffer, and
2203			 * have filled up the buffer with events
2204			 * from interrupts and such, and wrapped.
2205			 *
2206			 * Note, if the tail page is also the on the
2207			 * reader_page, we let it move out.
2208			 */
2209			if (unlikely((cpu_buffer->commit_page !=
2210				      cpu_buffer->tail_page) &&
2211				     (cpu_buffer->commit_page ==
2212				      cpu_buffer->reader_page))) {
2213				local_inc(&cpu_buffer->commit_overrun);
2214				goto out_reset;
2215			}
2216		}
2217	}
2218
2219	rb_tail_page_update(cpu_buffer, tail_page, next_page);
2220
2221 out_again:
2222
2223	rb_reset_tail(cpu_buffer, tail, info);
2224
2225	/* Commit what we have for now. */
2226	rb_end_commit(cpu_buffer);
2227	/* rb_end_commit() decs committing */
2228	local_inc(&cpu_buffer->committing);
2229
2230	/* fail and let the caller try again */
2231	return ERR_PTR(-EAGAIN);
2232
2233 out_reset:
2234	/* reset write */
2235	rb_reset_tail(cpu_buffer, tail, info);
2236
2237	return NULL;
2238}
2239
2240/* Slow path, do not inline */
2241static noinline struct ring_buffer_event *
2242rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
 
2243{
2244	event->type_len = RINGBUF_TYPE_TIME_EXTEND;
 
 
 
2245
2246	/* Not the first event on the page? */
2247	if (rb_event_index(event)) {
2248		event->time_delta = delta & TS_MASK;
2249		event->array[0] = delta >> TS_SHIFT;
2250	} else {
2251		/* nope, just zero it */
2252		event->time_delta = 0;
2253		event->array[0] = 0;
2254	}
2255
2256	return skip_time_extend(event);
2257}
2258
2259static inline bool rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2260				     struct ring_buffer_event *event);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2261
2262/**
2263 * rb_update_event - update event type and data
 
2264 * @event: the event to update
2265 * @type: the type of event
2266 * @length: the size of the event field in the ring buffer
2267 *
2268 * Update the type and data fields of the event. The length
2269 * is the actual size that is written to the ring buffer,
2270 * and with this, we can determine what to place into the
2271 * data field.
2272 */
2273static void
2274rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2275		struct ring_buffer_event *event,
2276		struct rb_event_info *info)
2277{
2278	unsigned length = info->length;
2279	u64 delta = info->delta;
 
2280
2281	/* Only a commit updates the timestamp */
2282	if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
2283		delta = 0;
2284
2285	/*
2286	 * If we need to add a timestamp, then we
2287	 * add it to the start of the resevered space.
2288	 */
2289	if (unlikely(info->add_timestamp)) {
2290		event = rb_add_time_stamp(event, delta);
2291		length -= RB_LEN_TIME_EXTEND;
2292		delta = 0;
2293	}
2294
2295	event->time_delta = delta;
2296	length -= RB_EVNT_HDR_SIZE;
2297	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2298		event->type_len = 0;
2299		event->array[0] = length;
2300	} else
2301		event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2302}
2303
2304static unsigned rb_calculate_event_length(unsigned length)
2305{
2306	struct ring_buffer_event event; /* Used only for sizeof array */
2307
2308	/* zero length can cause confusions */
2309	if (!length)
2310		length++;
2311
2312	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2313		length += sizeof(event.array[0]);
2314
2315	length += RB_EVNT_HDR_SIZE;
2316	length = ALIGN(length, RB_ARCH_ALIGNMENT);
2317
2318	/*
2319	 * In case the time delta is larger than the 27 bits for it
2320	 * in the header, we need to add a timestamp. If another
2321	 * event comes in when trying to discard this one to increase
2322	 * the length, then the timestamp will be added in the allocated
2323	 * space of this event. If length is bigger than the size needed
2324	 * for the TIME_EXTEND, then padding has to be used. The events
2325	 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
2326	 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
2327	 * As length is a multiple of 4, we only need to worry if it
2328	 * is 12 (RB_LEN_TIME_EXTEND + 4).
2329	 */
2330	if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
2331		length += RB_ALIGNMENT;
2332
2333	return length;
2334}
2335
2336#ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2337static inline bool sched_clock_stable(void)
2338{
2339	return true;
2340}
2341#endif
2342
2343static inline int
2344rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2345		  struct ring_buffer_event *event)
2346{
2347	unsigned long new_index, old_index;
2348	struct buffer_page *bpage;
2349	unsigned long index;
2350	unsigned long addr;
2351
2352	new_index = rb_event_index(event);
2353	old_index = new_index + rb_event_ts_length(event);
2354	addr = (unsigned long)event;
2355	addr &= PAGE_MASK;
2356
2357	bpage = READ_ONCE(cpu_buffer->tail_page);
2358
 
 
 
 
2359	if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2360		unsigned long write_mask =
2361			local_read(&bpage->write) & ~RB_WRITE_MASK;
2362		unsigned long event_length = rb_event_length(event);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2363		/*
2364		 * This is on the tail page. It is possible that
2365		 * a write could come in and move the tail page
2366		 * and write to the next page. That is fine
2367		 * because we just shorten what is on this page.
2368		 */
2369		old_index += write_mask;
2370		new_index += write_mask;
2371		index = local_cmpxchg(&bpage->write, old_index, new_index);
2372		if (index == old_index) {
 
2373			/* update counters */
2374			local_sub(event_length, &cpu_buffer->entries_bytes);
2375			return 1;
2376		}
2377	}
2378
2379	/* could not discard */
2380	return 0;
2381}
2382
2383static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2384{
2385	local_inc(&cpu_buffer->committing);
2386	local_inc(&cpu_buffer->commits);
2387}
2388
2389static void
2390rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
2391{
2392	unsigned long max_count;
2393
2394	/*
2395	 * We only race with interrupts and NMIs on this CPU.
2396	 * If we own the commit event, then we can commit
2397	 * all others that interrupted us, since the interruptions
2398	 * are in stack format (they finish before they come
2399	 * back to us). This allows us to do a simple loop to
2400	 * assign the commit to the tail.
2401	 */
2402 again:
2403	max_count = cpu_buffer->nr_pages * 100;
2404
2405	while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) {
2406		if (RB_WARN_ON(cpu_buffer, !(--max_count)))
2407			return;
2408		if (RB_WARN_ON(cpu_buffer,
2409			       rb_is_reader_page(cpu_buffer->tail_page)))
2410			return;
 
 
 
 
2411		local_set(&cpu_buffer->commit_page->page->commit,
2412			  rb_page_write(cpu_buffer->commit_page));
2413		rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
2414		/* Only update the write stamp if the page has an event */
2415		if (rb_page_write(cpu_buffer->commit_page))
2416			cpu_buffer->write_stamp =
2417				cpu_buffer->commit_page->page->time_stamp;
2418		/* add barrier to keep gcc from optimizing too much */
2419		barrier();
2420	}
2421	while (rb_commit_index(cpu_buffer) !=
2422	       rb_page_write(cpu_buffer->commit_page)) {
2423
 
 
2424		local_set(&cpu_buffer->commit_page->page->commit,
2425			  rb_page_write(cpu_buffer->commit_page));
2426		RB_WARN_ON(cpu_buffer,
2427			   local_read(&cpu_buffer->commit_page->page->commit) &
2428			   ~RB_WRITE_MASK);
2429		barrier();
2430	}
2431
2432	/* again, keep gcc from optimizing */
2433	barrier();
2434
2435	/*
2436	 * If an interrupt came in just after the first while loop
2437	 * and pushed the tail page forward, we will be left with
2438	 * a dangling commit that will never go forward.
2439	 */
2440	if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)))
2441		goto again;
2442}
2443
2444static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2445{
2446	unsigned long commits;
2447
2448	if (RB_WARN_ON(cpu_buffer,
2449		       !local_read(&cpu_buffer->committing)))
2450		return;
2451
2452 again:
2453	commits = local_read(&cpu_buffer->commits);
2454	/* synchronize with interrupts */
2455	barrier();
2456	if (local_read(&cpu_buffer->committing) == 1)
2457		rb_set_commit_to_write(cpu_buffer);
2458
2459	local_dec(&cpu_buffer->committing);
2460
2461	/* synchronize with interrupts */
2462	barrier();
2463
2464	/*
2465	 * Need to account for interrupts coming in between the
2466	 * updating of the commit page and the clearing of the
2467	 * committing counter.
2468	 */
2469	if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2470	    !local_read(&cpu_buffer->committing)) {
2471		local_inc(&cpu_buffer->committing);
2472		goto again;
2473	}
2474}
2475
2476static inline void rb_event_discard(struct ring_buffer_event *event)
2477{
2478	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
2479		event = skip_time_extend(event);
2480
2481	/* array[0] holds the actual length for the discarded event */
2482	event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2483	event->type_len = RINGBUF_TYPE_PADDING;
2484	/* time delta must be non zero */
2485	if (!event->time_delta)
2486		event->time_delta = 1;
2487}
2488
2489static inline bool
2490rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2491		   struct ring_buffer_event *event)
2492{
2493	unsigned long addr = (unsigned long)event;
2494	unsigned long index;
2495
2496	index = rb_event_index(event);
2497	addr &= PAGE_MASK;
2498
2499	return cpu_buffer->commit_page->page == (void *)addr &&
2500		rb_commit_index(cpu_buffer) == index;
2501}
2502
2503static void
2504rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2505		      struct ring_buffer_event *event)
2506{
2507	u64 delta;
2508
2509	/*
2510	 * The event first in the commit queue updates the
2511	 * time stamp.
2512	 */
2513	if (rb_event_is_commit(cpu_buffer, event)) {
2514		/*
2515		 * A commit event that is first on a page
2516		 * updates the write timestamp with the page stamp
2517		 */
2518		if (!rb_event_index(event))
2519			cpu_buffer->write_stamp =
2520				cpu_buffer->commit_page->page->time_stamp;
2521		else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2522			delta = event->array[0];
2523			delta <<= TS_SHIFT;
2524			delta += event->time_delta;
2525			cpu_buffer->write_stamp += delta;
2526		} else
2527			cpu_buffer->write_stamp += event->time_delta;
2528	}
2529}
2530
2531static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2532		      struct ring_buffer_event *event)
2533{
2534	local_inc(&cpu_buffer->entries);
2535	rb_update_write_stamp(cpu_buffer, event);
2536	rb_end_commit(cpu_buffer);
2537}
2538
2539static __always_inline void
2540rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
2541{
2542	bool pagebusy;
2543
2544	if (buffer->irq_work.waiters_pending) {
2545		buffer->irq_work.waiters_pending = false;
2546		/* irq_work_queue() supplies it's own memory barriers */
2547		irq_work_queue(&buffer->irq_work.work);
2548	}
2549
2550	if (cpu_buffer->irq_work.waiters_pending) {
2551		cpu_buffer->irq_work.waiters_pending = false;
2552		/* irq_work_queue() supplies it's own memory barriers */
2553		irq_work_queue(&cpu_buffer->irq_work.work);
2554	}
2555
2556	pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
 
2557
2558	if (!pagebusy && cpu_buffer->irq_work.full_waiters_pending) {
2559		cpu_buffer->irq_work.wakeup_full = true;
2560		cpu_buffer->irq_work.full_waiters_pending = false;
2561		/* irq_work_queue() supplies it's own memory barriers */
2562		irq_work_queue(&cpu_buffer->irq_work.work);
2563	}
 
 
 
 
 
 
 
 
 
2564}
2565
 
 
 
 
 
 
 
2566/*
2567 * The lock and unlock are done within a preempt disable section.
2568 * The current_context per_cpu variable can only be modified
2569 * by the current task between lock and unlock. But it can
2570 * be modified more than once via an interrupt. To pass this
2571 * information from the lock to the unlock without having to
2572 * access the 'in_interrupt()' functions again (which do show
2573 * a bit of overhead in something as critical as function tracing,
2574 * we use a bitmask trick.
2575 *
2576 *  bit 0 =  NMI context
2577 *  bit 1 =  IRQ context
2578 *  bit 2 =  SoftIRQ context
2579 *  bit 3 =  normal context.
2580 *
2581 * This works because this is the order of contexts that can
2582 * preempt other contexts. A SoftIRQ never preempts an IRQ
2583 * context.
2584 *
2585 * When the context is determined, the corresponding bit is
2586 * checked and set (if it was set, then a recursion of that context
2587 * happened).
2588 *
2589 * On unlock, we need to clear this bit. To do so, just subtract
2590 * 1 from the current_context and AND it to itself.
2591 *
2592 * (binary)
2593 *  101 - 1 = 100
2594 *  101 & 100 = 100 (clearing bit zero)
2595 *
2596 *  1010 - 1 = 1001
2597 *  1010 & 1001 = 1000 (clearing bit 1)
2598 *
2599 * The least significant bit can be cleared this way, and it
2600 * just so happens that it is the same bit corresponding to
2601 * the current context.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2602 */
2603
2604static __always_inline int
2605trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
2606{
2607	unsigned int val = cpu_buffer->current_context;
2608	int bit;
2609
2610	if (in_interrupt()) {
2611		if (in_nmi())
2612			bit = RB_CTX_NMI;
2613		else if (in_irq())
2614			bit = RB_CTX_IRQ;
2615		else
2616			bit = RB_CTX_SOFTIRQ;
2617	} else
2618		bit = RB_CTX_NORMAL;
2619
2620	if (unlikely(val & (1 << bit)))
2621		return 1;
 
 
 
 
 
 
 
 
 
 
2622
2623	val |= (1 << bit);
2624	cpu_buffer->current_context = val;
2625
2626	return 0;
2627}
2628
2629static __always_inline void
2630trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
2631{
2632	cpu_buffer->current_context &= cpu_buffer->current_context - 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2633}
2634
2635/**
2636 * ring_buffer_unlock_commit - commit a reserved
2637 * @buffer: The buffer to commit to
2638 * @event: The event pointer to commit.
2639 *
2640 * This commits the data to the ring buffer, and releases any locks held.
2641 *
2642 * Must be paired with ring_buffer_lock_reserve.
2643 */
2644int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2645			      struct ring_buffer_event *event)
2646{
2647	struct ring_buffer_per_cpu *cpu_buffer;
2648	int cpu = raw_smp_processor_id();
2649
2650	cpu_buffer = buffer->buffers[cpu];
2651
2652	rb_commit(cpu_buffer, event);
2653
2654	rb_wakeups(buffer, cpu_buffer);
2655
2656	trace_recursive_unlock(cpu_buffer);
2657
2658	preempt_enable_notrace();
2659
2660	return 0;
2661}
2662EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2663
2664static noinline void
2665rb_handle_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2666		    struct rb_event_info *info)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2667{
2668	WARN_ONCE(info->delta > (1ULL << 59),
2669		  KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2670		  (unsigned long long)info->delta,
2671		  (unsigned long long)info->ts,
2672		  (unsigned long long)cpu_buffer->write_stamp,
2673		  sched_clock_stable() ? "" :
2674		  "If you just came from a suspend/resume,\n"
2675		  "please switch to the trace global clock:\n"
2676		  "  echo global > /sys/kernel/debug/tracing/trace_clock\n");
2677	info->add_timestamp = 1;
2678}
 
2679
2680static struct ring_buffer_event *
2681__rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
2682		  struct rb_event_info *info)
2683{
2684	struct ring_buffer_event *event;
2685	struct buffer_page *tail_page;
2686	unsigned long tail, write;
2687
2688	/*
2689	 * If the time delta since the last event is too big to
2690	 * hold in the time field of the event, then we append a
2691	 * TIME EXTEND event ahead of the data event.
2692	 */
2693	if (unlikely(info->add_timestamp))
2694		info->length += RB_LEN_TIME_EXTEND;
2695
2696	/* Don't let the compiler play games with cpu_buffer->tail_page */
2697	tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page);
2698	write = local_add_return(info->length, &tail_page->write);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2699
2700	/* set write to only the index of the write */
2701	write &= RB_WRITE_MASK;
 
2702	tail = write - info->length;
2703
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2704	/*
2705	 * If this is the first commit on the page, then it has the same
2706	 * timestamp as the page itself.
2707	 */
2708	if (!tail)
 
2709		info->delta = 0;
2710
2711	/* See if we shot pass the end of this buffer page */
2712	if (unlikely(write > BUF_PAGE_SIZE))
2713		return rb_move_tail(cpu_buffer, tail, info);
2714
2715	/* We reserved something on the buffer */
2716
2717	event = __rb_page_index(tail_page, tail);
2718	kmemcheck_annotate_bitfield(event, bitfield);
2719	rb_update_event(cpu_buffer, event, info);
2720
2721	local_inc(&tail_page->entries);
2722
2723	/*
2724	 * If this is the first commit on the page, then update
2725	 * its timestamp.
2726	 */
2727	if (!tail)
2728		tail_page->page->time_stamp = info->ts;
2729
2730	/* account for these added bytes */
2731	local_add(info->length, &cpu_buffer->entries_bytes);
2732
2733	return event;
2734}
2735
2736static struct ring_buffer_event *
2737rb_reserve_next_event(struct ring_buffer *buffer,
2738		      struct ring_buffer_per_cpu *cpu_buffer,
2739		      unsigned long length)
2740{
2741	struct ring_buffer_event *event;
2742	struct rb_event_info info;
2743	int nr_loops = 0;
2744	u64 diff;
 
 
 
 
 
 
 
 
 
 
 
2745
2746	rb_start_commit(cpu_buffer);
 
2747
2748#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2749	/*
2750	 * Due to the ability to swap a cpu buffer from a buffer
2751	 * it is possible it was swapped before we committed.
2752	 * (committing stops a swap). We check for it here and
2753	 * if it happened, we have to fail the write.
2754	 */
2755	barrier();
2756	if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2757		local_dec(&cpu_buffer->committing);
2758		local_dec(&cpu_buffer->commits);
2759		return NULL;
2760	}
2761#endif
2762
2763	info.length = rb_calculate_event_length(length);
 
 
 
 
 
 
 
 
 
 
2764 again:
2765	info.add_timestamp = 0;
2766	info.delta = 0;
2767
2768	/*
2769	 * We allow for interrupts to reenter here and do a trace.
2770	 * If one does, it will cause this original code to loop
2771	 * back here. Even with heavy interrupts happening, this
2772	 * should only happen a few times in a row. If this happens
2773	 * 1000 times in a row, there must be either an interrupt
2774	 * storm or we have something buggy.
2775	 * Bail!
2776	 */
2777	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2778		goto out_fail;
2779
2780	info.ts = rb_time_stamp(cpu_buffer->buffer);
2781	diff = info.ts - cpu_buffer->write_stamp;
2782
2783	/* make sure this diff is calculated here */
2784	barrier();
2785
2786	/* Did the write stamp get updated already? */
2787	if (likely(info.ts >= cpu_buffer->write_stamp)) {
2788		info.delta = diff;
2789		if (unlikely(test_time_stamp(info.delta)))
2790			rb_handle_timestamp(cpu_buffer, &info);
2791	}
2792
2793	event = __rb_reserve_next(cpu_buffer, &info);
2794
2795	if (unlikely(PTR_ERR(event) == -EAGAIN)) {
2796		if (info.add_timestamp)
2797			info.length -= RB_LEN_TIME_EXTEND;
2798		goto again;
2799	}
2800
2801	if (!event)
2802		goto out_fail;
2803
2804	return event;
2805
2806 out_fail:
2807	rb_end_commit(cpu_buffer);
2808	return NULL;
2809}
2810
2811/**
2812 * ring_buffer_lock_reserve - reserve a part of the buffer
2813 * @buffer: the ring buffer to reserve from
2814 * @length: the length of the data to reserve (excluding event header)
2815 *
2816 * Returns a reseverd event on the ring buffer to copy directly to.
2817 * The user of this interface will need to get the body to write into
2818 * and can use the ring_buffer_event_data() interface.
2819 *
2820 * The length is the length of the data needed, not the event length
2821 * which also includes the event header.
2822 *
2823 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2824 * If NULL is returned, then nothing has been allocated or locked.
2825 */
2826struct ring_buffer_event *
2827ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2828{
2829	struct ring_buffer_per_cpu *cpu_buffer;
2830	struct ring_buffer_event *event;
2831	int cpu;
2832
2833	/* If we are tracing schedule, we don't want to recurse */
2834	preempt_disable_notrace();
2835
2836	if (unlikely(atomic_read(&buffer->record_disabled)))
2837		goto out;
2838
2839	cpu = raw_smp_processor_id();
2840
2841	if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
2842		goto out;
2843
2844	cpu_buffer = buffer->buffers[cpu];
2845
2846	if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
2847		goto out;
2848
2849	if (unlikely(length > BUF_MAX_DATA_SIZE))
2850		goto out;
2851
2852	if (unlikely(trace_recursive_lock(cpu_buffer)))
2853		goto out;
2854
2855	event = rb_reserve_next_event(buffer, cpu_buffer, length);
2856	if (!event)
2857		goto out_unlock;
2858
2859	return event;
2860
2861 out_unlock:
2862	trace_recursive_unlock(cpu_buffer);
2863 out:
2864	preempt_enable_notrace();
2865	return NULL;
2866}
2867EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2868
2869/*
2870 * Decrement the entries to the page that an event is on.
2871 * The event does not even need to exist, only the pointer
2872 * to the page it is on. This may only be called before the commit
2873 * takes place.
2874 */
2875static inline void
2876rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2877		   struct ring_buffer_event *event)
2878{
2879	unsigned long addr = (unsigned long)event;
2880	struct buffer_page *bpage = cpu_buffer->commit_page;
2881	struct buffer_page *start;
2882
2883	addr &= PAGE_MASK;
2884
2885	/* Do the likely case first */
2886	if (likely(bpage->page == (void *)addr)) {
2887		local_dec(&bpage->entries);
2888		return;
2889	}
2890
2891	/*
2892	 * Because the commit page may be on the reader page we
2893	 * start with the next page and check the end loop there.
2894	 */
2895	rb_inc_page(cpu_buffer, &bpage);
2896	start = bpage;
2897	do {
2898		if (bpage->page == (void *)addr) {
2899			local_dec(&bpage->entries);
2900			return;
2901		}
2902		rb_inc_page(cpu_buffer, &bpage);
2903	} while (bpage != start);
2904
2905	/* commit not part of this buffer?? */
2906	RB_WARN_ON(cpu_buffer, 1);
2907}
2908
2909/**
2910 * ring_buffer_commit_discard - discard an event that has not been committed
2911 * @buffer: the ring buffer
2912 * @event: non committed event to discard
2913 *
2914 * Sometimes an event that is in the ring buffer needs to be ignored.
2915 * This function lets the user discard an event in the ring buffer
2916 * and then that event will not be read later.
2917 *
2918 * This function only works if it is called before the the item has been
2919 * committed. It will try to free the event from the ring buffer
2920 * if another event has not been added behind it.
2921 *
2922 * If another event has been added behind it, it will set the event
2923 * up as discarded, and perform the commit.
2924 *
2925 * If this function is called, do not call ring_buffer_unlock_commit on
2926 * the event.
2927 */
2928void ring_buffer_discard_commit(struct ring_buffer *buffer,
2929				struct ring_buffer_event *event)
2930{
2931	struct ring_buffer_per_cpu *cpu_buffer;
2932	int cpu;
2933
2934	/* The event is discarded regardless */
2935	rb_event_discard(event);
2936
2937	cpu = smp_processor_id();
2938	cpu_buffer = buffer->buffers[cpu];
2939
2940	/*
2941	 * This must only be called if the event has not been
2942	 * committed yet. Thus we can assume that preemption
2943	 * is still disabled.
2944	 */
2945	RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
2946
2947	rb_decrement_entry(cpu_buffer, event);
2948	if (rb_try_to_discard(cpu_buffer, event))
2949		goto out;
2950
2951	/*
2952	 * The commit is still visible by the reader, so we
2953	 * must still update the timestamp.
2954	 */
2955	rb_update_write_stamp(cpu_buffer, event);
2956 out:
2957	rb_end_commit(cpu_buffer);
2958
2959	trace_recursive_unlock(cpu_buffer);
2960
2961	preempt_enable_notrace();
2962
2963}
2964EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2965
2966/**
2967 * ring_buffer_write - write data to the buffer without reserving
2968 * @buffer: The ring buffer to write to.
2969 * @length: The length of the data being written (excluding the event header)
2970 * @data: The data to write to the buffer.
2971 *
2972 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2973 * one function. If you already have the data to write to the buffer, it
2974 * may be easier to simply call this function.
2975 *
2976 * Note, like ring_buffer_lock_reserve, the length is the length of the data
2977 * and not the length of the event which would hold the header.
2978 */
2979int ring_buffer_write(struct ring_buffer *buffer,
2980		      unsigned long length,
2981		      void *data)
2982{
2983	struct ring_buffer_per_cpu *cpu_buffer;
2984	struct ring_buffer_event *event;
2985	void *body;
2986	int ret = -EBUSY;
2987	int cpu;
2988
2989	preempt_disable_notrace();
2990
2991	if (atomic_read(&buffer->record_disabled))
2992		goto out;
2993
2994	cpu = raw_smp_processor_id();
2995
2996	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2997		goto out;
2998
2999	cpu_buffer = buffer->buffers[cpu];
3000
3001	if (atomic_read(&cpu_buffer->record_disabled))
3002		goto out;
3003
3004	if (length > BUF_MAX_DATA_SIZE)
3005		goto out;
3006
3007	if (unlikely(trace_recursive_lock(cpu_buffer)))
3008		goto out;
3009
3010	event = rb_reserve_next_event(buffer, cpu_buffer, length);
3011	if (!event)
3012		goto out_unlock;
3013
3014	body = rb_event_data(event);
3015
3016	memcpy(body, data, length);
3017
3018	rb_commit(cpu_buffer, event);
3019
3020	rb_wakeups(buffer, cpu_buffer);
3021
3022	ret = 0;
3023
3024 out_unlock:
3025	trace_recursive_unlock(cpu_buffer);
3026
3027 out:
3028	preempt_enable_notrace();
3029
3030	return ret;
3031}
3032EXPORT_SYMBOL_GPL(ring_buffer_write);
3033
3034static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
3035{
3036	struct buffer_page *reader = cpu_buffer->reader_page;
3037	struct buffer_page *head = rb_set_head_page(cpu_buffer);
3038	struct buffer_page *commit = cpu_buffer->commit_page;
3039
3040	/* In case of error, head will be NULL */
3041	if (unlikely(!head))
3042		return true;
3043
3044	return reader->read == rb_page_commit(reader) &&
3045		(commit == reader ||
3046		 (commit == head &&
3047		  head->read == rb_page_commit(commit)));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3048}
3049
3050/**
3051 * ring_buffer_record_disable - stop all writes into the buffer
3052 * @buffer: The ring buffer to stop writes to.
3053 *
3054 * This prevents all writes to the buffer. Any attempt to write
3055 * to the buffer after this will fail and return NULL.
3056 *
3057 * The caller should call synchronize_sched() after this.
3058 */
3059void ring_buffer_record_disable(struct ring_buffer *buffer)
3060{
3061	atomic_inc(&buffer->record_disabled);
3062}
3063EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
3064
3065/**
3066 * ring_buffer_record_enable - enable writes to the buffer
3067 * @buffer: The ring buffer to enable writes
3068 *
3069 * Note, multiple disables will need the same number of enables
3070 * to truly enable the writing (much like preempt_disable).
3071 */
3072void ring_buffer_record_enable(struct ring_buffer *buffer)
3073{
3074	atomic_dec(&buffer->record_disabled);
3075}
3076EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
3077
3078/**
3079 * ring_buffer_record_off - stop all writes into the buffer
3080 * @buffer: The ring buffer to stop writes to.
3081 *
3082 * This prevents all writes to the buffer. Any attempt to write
3083 * to the buffer after this will fail and return NULL.
3084 *
3085 * This is different than ring_buffer_record_disable() as
3086 * it works like an on/off switch, where as the disable() version
3087 * must be paired with a enable().
3088 */
3089void ring_buffer_record_off(struct ring_buffer *buffer)
3090{
3091	unsigned int rd;
3092	unsigned int new_rd;
3093
 
3094	do {
3095		rd = atomic_read(&buffer->record_disabled);
3096		new_rd = rd | RB_BUFFER_OFF;
3097	} while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3098}
3099EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3100
3101/**
3102 * ring_buffer_record_on - restart writes into the buffer
3103 * @buffer: The ring buffer to start writes to.
3104 *
3105 * This enables all writes to the buffer that was disabled by
3106 * ring_buffer_record_off().
3107 *
3108 * This is different than ring_buffer_record_enable() as
3109 * it works like an on/off switch, where as the enable() version
3110 * must be paired with a disable().
3111 */
3112void ring_buffer_record_on(struct ring_buffer *buffer)
3113{
3114	unsigned int rd;
3115	unsigned int new_rd;
3116
 
3117	do {
3118		rd = atomic_read(&buffer->record_disabled);
3119		new_rd = rd & ~RB_BUFFER_OFF;
3120	} while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3121}
3122EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3123
3124/**
3125 * ring_buffer_record_is_on - return true if the ring buffer can write
3126 * @buffer: The ring buffer to see if write is enabled
3127 *
3128 * Returns true if the ring buffer is in a state that it accepts writes.
3129 */
3130int ring_buffer_record_is_on(struct ring_buffer *buffer)
3131{
3132	return !atomic_read(&buffer->record_disabled);
3133}
3134
3135/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3136 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3137 * @buffer: The ring buffer to stop writes to.
3138 * @cpu: The CPU buffer to stop
3139 *
3140 * This prevents all writes to the buffer. Any attempt to write
3141 * to the buffer after this will fail and return NULL.
3142 *
3143 * The caller should call synchronize_sched() after this.
3144 */
3145void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
3146{
3147	struct ring_buffer_per_cpu *cpu_buffer;
3148
3149	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3150		return;
3151
3152	cpu_buffer = buffer->buffers[cpu];
3153	atomic_inc(&cpu_buffer->record_disabled);
3154}
3155EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
3156
3157/**
3158 * ring_buffer_record_enable_cpu - enable writes to the buffer
3159 * @buffer: The ring buffer to enable writes
3160 * @cpu: The CPU to enable.
3161 *
3162 * Note, multiple disables will need the same number of enables
3163 * to truly enable the writing (much like preempt_disable).
3164 */
3165void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
3166{
3167	struct ring_buffer_per_cpu *cpu_buffer;
3168
3169	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3170		return;
3171
3172	cpu_buffer = buffer->buffers[cpu];
3173	atomic_dec(&cpu_buffer->record_disabled);
3174}
3175EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
3176
3177/*
3178 * The total entries in the ring buffer is the running counter
3179 * of entries entered into the ring buffer, minus the sum of
3180 * the entries read from the ring buffer and the number of
3181 * entries that were overwritten.
3182 */
3183static inline unsigned long
3184rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3185{
3186	return local_read(&cpu_buffer->entries) -
3187		(local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3188}
3189
3190/**
3191 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3192 * @buffer: The ring buffer
3193 * @cpu: The per CPU buffer to read from.
3194 */
3195u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
3196{
3197	unsigned long flags;
3198	struct ring_buffer_per_cpu *cpu_buffer;
3199	struct buffer_page *bpage;
3200	u64 ret = 0;
3201
3202	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3203		return 0;
3204
3205	cpu_buffer = buffer->buffers[cpu];
3206	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3207	/*
3208	 * if the tail is on reader_page, oldest time stamp is on the reader
3209	 * page
3210	 */
3211	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3212		bpage = cpu_buffer->reader_page;
3213	else
3214		bpage = rb_set_head_page(cpu_buffer);
3215	if (bpage)
3216		ret = bpage->page->time_stamp;
3217	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3218
3219	return ret;
3220}
3221EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3222
3223/**
3224 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3225 * @buffer: The ring buffer
3226 * @cpu: The per CPU buffer to read from.
3227 */
3228unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
3229{
3230	struct ring_buffer_per_cpu *cpu_buffer;
3231	unsigned long ret;
3232
3233	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3234		return 0;
3235
3236	cpu_buffer = buffer->buffers[cpu];
3237	ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3238
3239	return ret;
3240}
3241EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3242
3243/**
3244 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3245 * @buffer: The ring buffer
3246 * @cpu: The per CPU buffer to get the entries from.
3247 */
3248unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
3249{
3250	struct ring_buffer_per_cpu *cpu_buffer;
3251
3252	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3253		return 0;
3254
3255	cpu_buffer = buffer->buffers[cpu];
3256
3257	return rb_num_of_entries(cpu_buffer);
3258}
3259EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
3260
3261/**
3262 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3263 * buffer wrapping around (only if RB_FL_OVERWRITE is on).
3264 * @buffer: The ring buffer
3265 * @cpu: The per CPU buffer to get the number of overruns from
3266 */
3267unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
3268{
3269	struct ring_buffer_per_cpu *cpu_buffer;
3270	unsigned long ret;
3271
3272	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3273		return 0;
3274
3275	cpu_buffer = buffer->buffers[cpu];
3276	ret = local_read(&cpu_buffer->overrun);
3277
3278	return ret;
3279}
3280EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
3281
3282/**
3283 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3284 * commits failing due to the buffer wrapping around while there are uncommitted
3285 * events, such as during an interrupt storm.
3286 * @buffer: The ring buffer
3287 * @cpu: The per CPU buffer to get the number of overruns from
3288 */
3289unsigned long
3290ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
3291{
3292	struct ring_buffer_per_cpu *cpu_buffer;
3293	unsigned long ret;
3294
3295	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3296		return 0;
3297
3298	cpu_buffer = buffer->buffers[cpu];
3299	ret = local_read(&cpu_buffer->commit_overrun);
3300
3301	return ret;
3302}
3303EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3304
3305/**
3306 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3307 * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3308 * @buffer: The ring buffer
3309 * @cpu: The per CPU buffer to get the number of overruns from
3310 */
3311unsigned long
3312ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu)
3313{
3314	struct ring_buffer_per_cpu *cpu_buffer;
3315	unsigned long ret;
3316
3317	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3318		return 0;
3319
3320	cpu_buffer = buffer->buffers[cpu];
3321	ret = local_read(&cpu_buffer->dropped_events);
3322
3323	return ret;
3324}
3325EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3326
3327/**
3328 * ring_buffer_read_events_cpu - get the number of events successfully read
3329 * @buffer: The ring buffer
3330 * @cpu: The per CPU buffer to get the number of events read
3331 */
3332unsigned long
3333ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu)
3334{
3335	struct ring_buffer_per_cpu *cpu_buffer;
3336
3337	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3338		return 0;
3339
3340	cpu_buffer = buffer->buffers[cpu];
3341	return cpu_buffer->read;
3342}
3343EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
3344
3345/**
3346 * ring_buffer_entries - get the number of entries in a buffer
3347 * @buffer: The ring buffer
3348 *
3349 * Returns the total number of entries in the ring buffer
3350 * (all CPU entries)
3351 */
3352unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3353{
3354	struct ring_buffer_per_cpu *cpu_buffer;
3355	unsigned long entries = 0;
3356	int cpu;
3357
3358	/* if you care about this being correct, lock the buffer */
3359	for_each_buffer_cpu(buffer, cpu) {
3360		cpu_buffer = buffer->buffers[cpu];
3361		entries += rb_num_of_entries(cpu_buffer);
3362	}
3363
3364	return entries;
3365}
3366EXPORT_SYMBOL_GPL(ring_buffer_entries);
3367
3368/**
3369 * ring_buffer_overruns - get the number of overruns in buffer
3370 * @buffer: The ring buffer
3371 *
3372 * Returns the total number of overruns in the ring buffer
3373 * (all CPU entries)
3374 */
3375unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3376{
3377	struct ring_buffer_per_cpu *cpu_buffer;
3378	unsigned long overruns = 0;
3379	int cpu;
3380
3381	/* if you care about this being correct, lock the buffer */
3382	for_each_buffer_cpu(buffer, cpu) {
3383		cpu_buffer = buffer->buffers[cpu];
3384		overruns += local_read(&cpu_buffer->overrun);
3385	}
3386
3387	return overruns;
3388}
3389EXPORT_SYMBOL_GPL(ring_buffer_overruns);
3390
3391static void rb_iter_reset(struct ring_buffer_iter *iter)
3392{
3393	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3394
3395	/* Iterator usage is expected to have record disabled */
3396	iter->head_page = cpu_buffer->reader_page;
3397	iter->head = cpu_buffer->reader_page->read;
 
3398
3399	iter->cache_reader_page = iter->head_page;
3400	iter->cache_read = cpu_buffer->read;
 
3401
3402	if (iter->head)
3403		iter->read_stamp = cpu_buffer->read_stamp;
3404	else
 
3405		iter->read_stamp = iter->head_page->page->time_stamp;
 
 
3406}
3407
3408/**
3409 * ring_buffer_iter_reset - reset an iterator
3410 * @iter: The iterator to reset
3411 *
3412 * Resets the iterator, so that it will start from the beginning
3413 * again.
3414 */
3415void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3416{
3417	struct ring_buffer_per_cpu *cpu_buffer;
3418	unsigned long flags;
3419
3420	if (!iter)
3421		return;
3422
3423	cpu_buffer = iter->cpu_buffer;
3424
3425	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3426	rb_iter_reset(iter);
3427	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3428}
3429EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
3430
3431/**
3432 * ring_buffer_iter_empty - check if an iterator has no more to read
3433 * @iter: The iterator to check
3434 */
3435int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3436{
3437	struct ring_buffer_per_cpu *cpu_buffer;
 
 
 
 
 
 
 
3438
3439	cpu_buffer = iter->cpu_buffer;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3440
3441	return iter->head_page == cpu_buffer->commit_page &&
3442		iter->head == rb_commit_index(cpu_buffer);
 
 
 
 
 
 
 
 
 
 
 
 
3443}
3444EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
3445
3446static void
3447rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3448		     struct ring_buffer_event *event)
3449{
3450	u64 delta;
3451
3452	switch (event->type_len) {
3453	case RINGBUF_TYPE_PADDING:
3454		return;
3455
3456	case RINGBUF_TYPE_TIME_EXTEND:
3457		delta = event->array[0];
3458		delta <<= TS_SHIFT;
3459		delta += event->time_delta;
3460		cpu_buffer->read_stamp += delta;
3461		return;
3462
3463	case RINGBUF_TYPE_TIME_STAMP:
3464		/* FIXME: not implemented */
 
 
3465		return;
3466
3467	case RINGBUF_TYPE_DATA:
3468		cpu_buffer->read_stamp += event->time_delta;
3469		return;
3470
3471	default:
3472		BUG();
3473	}
3474	return;
3475}
3476
3477static void
3478rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3479			  struct ring_buffer_event *event)
3480{
3481	u64 delta;
3482
3483	switch (event->type_len) {
3484	case RINGBUF_TYPE_PADDING:
3485		return;
3486
3487	case RINGBUF_TYPE_TIME_EXTEND:
3488		delta = event->array[0];
3489		delta <<= TS_SHIFT;
3490		delta += event->time_delta;
3491		iter->read_stamp += delta;
3492		return;
3493
3494	case RINGBUF_TYPE_TIME_STAMP:
3495		/* FIXME: not implemented */
 
 
3496		return;
3497
3498	case RINGBUF_TYPE_DATA:
3499		iter->read_stamp += event->time_delta;
3500		return;
3501
3502	default:
3503		BUG();
3504	}
3505	return;
3506}
3507
3508static struct buffer_page *
3509rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
3510{
3511	struct buffer_page *reader = NULL;
 
3512	unsigned long overwrite;
3513	unsigned long flags;
3514	int nr_loops = 0;
3515	int ret;
3516
3517	local_irq_save(flags);
3518	arch_spin_lock(&cpu_buffer->lock);
3519
3520 again:
3521	/*
3522	 * This should normally only loop twice. But because the
3523	 * start of the reader inserts an empty page, it causes
3524	 * a case where we will loop three times. There should be no
3525	 * reason to loop four times (that I know of).
3526	 */
3527	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
3528		reader = NULL;
3529		goto out;
3530	}
3531
3532	reader = cpu_buffer->reader_page;
3533
3534	/* If there's more to read, return this page */
3535	if (cpu_buffer->reader_page->read < rb_page_size(reader))
3536		goto out;
3537
3538	/* Never should we have an index greater than the size */
3539	if (RB_WARN_ON(cpu_buffer,
3540		       cpu_buffer->reader_page->read > rb_page_size(reader)))
3541		goto out;
3542
3543	/* check if we caught up to the tail */
3544	reader = NULL;
3545	if (cpu_buffer->commit_page == cpu_buffer->reader_page)
3546		goto out;
3547
3548	/* Don't bother swapping if the ring buffer is empty */
3549	if (rb_num_of_entries(cpu_buffer) == 0)
3550		goto out;
3551
3552	/*
3553	 * Reset the reader page to size zero.
3554	 */
3555	local_set(&cpu_buffer->reader_page->write, 0);
3556	local_set(&cpu_buffer->reader_page->entries, 0);
3557	local_set(&cpu_buffer->reader_page->page->commit, 0);
3558	cpu_buffer->reader_page->real_end = 0;
3559
3560 spin:
3561	/*
3562	 * Splice the empty reader page into the list around the head.
3563	 */
3564	reader = rb_set_head_page(cpu_buffer);
3565	if (!reader)
3566		goto out;
3567	cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
3568	cpu_buffer->reader_page->list.prev = reader->list.prev;
3569
3570	/*
3571	 * cpu_buffer->pages just needs to point to the buffer, it
3572	 *  has no specific buffer page to point to. Lets move it out
3573	 *  of our way so we don't accidentally swap it.
3574	 */
3575	cpu_buffer->pages = reader->list.prev;
3576
3577	/* The reader page will be pointing to the new head */
3578	rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
3579
3580	/*
3581	 * We want to make sure we read the overruns after we set up our
3582	 * pointers to the next object. The writer side does a
3583	 * cmpxchg to cross pages which acts as the mb on the writer
3584	 * side. Note, the reader will constantly fail the swap
3585	 * while the writer is updating the pointers, so this
3586	 * guarantees that the overwrite recorded here is the one we
3587	 * want to compare with the last_overrun.
3588	 */
3589	smp_mb();
3590	overwrite = local_read(&(cpu_buffer->overrun));
3591
3592	/*
3593	 * Here's the tricky part.
3594	 *
3595	 * We need to move the pointer past the header page.
3596	 * But we can only do that if a writer is not currently
3597	 * moving it. The page before the header page has the
3598	 * flag bit '1' set if it is pointing to the page we want.
3599	 * but if the writer is in the process of moving it
3600	 * than it will be '2' or already moved '0'.
3601	 */
3602
3603	ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
3604
3605	/*
3606	 * If we did not convert it, then we must try again.
3607	 */
3608	if (!ret)
3609		goto spin;
3610
 
 
 
3611	/*
3612	 * Yeah! We succeeded in replacing the page.
3613	 *
3614	 * Now make the new head point back to the reader page.
3615	 */
3616	rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
3617	rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
 
 
 
3618
3619	/* Finally update the reader page to the new head */
3620	cpu_buffer->reader_page = reader;
3621	cpu_buffer->reader_page->read = 0;
3622
3623	if (overwrite != cpu_buffer->last_overrun) {
3624		cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3625		cpu_buffer->last_overrun = overwrite;
3626	}
3627
3628	goto again;
3629
3630 out:
3631	/* Update the read_stamp on the first event */
3632	if (reader && reader->read == 0)
3633		cpu_buffer->read_stamp = reader->page->time_stamp;
3634
3635	arch_spin_unlock(&cpu_buffer->lock);
3636	local_irq_restore(flags);
3637
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3638	return reader;
3639}
3640
3641static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3642{
3643	struct ring_buffer_event *event;
3644	struct buffer_page *reader;
3645	unsigned length;
3646
3647	reader = rb_get_reader_page(cpu_buffer);
3648
3649	/* This function should not be called when buffer is empty */
3650	if (RB_WARN_ON(cpu_buffer, !reader))
3651		return;
3652
3653	event = rb_reader_event(cpu_buffer);
3654
3655	if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
3656		cpu_buffer->read++;
3657
3658	rb_update_read_stamp(cpu_buffer, event);
3659
3660	length = rb_event_length(event);
3661	cpu_buffer->reader_page->read += length;
 
3662}
3663
3664static void rb_advance_iter(struct ring_buffer_iter *iter)
3665{
3666	struct ring_buffer_per_cpu *cpu_buffer;
3667	struct ring_buffer_event *event;
3668	unsigned length;
3669
3670	cpu_buffer = iter->cpu_buffer;
3671
 
 
 
 
 
 
 
 
 
3672	/*
3673	 * Check if we are at the end of the buffer.
3674	 */
3675	if (iter->head >= rb_page_size(iter->head_page)) {
3676		/* discarded commits can make the page empty */
3677		if (iter->head_page == cpu_buffer->commit_page)
3678			return;
3679		rb_inc_iter(iter);
3680		return;
3681	}
3682
3683	event = rb_iter_head_event(iter);
3684
3685	length = rb_event_length(event);
3686
3687	/*
3688	 * This should not be called to advance the header if we are
3689	 * at the tail of the buffer.
3690	 */
3691	if (RB_WARN_ON(cpu_buffer,
3692		       (iter->head_page == cpu_buffer->commit_page) &&
3693		       (iter->head + length > rb_commit_index(cpu_buffer))))
3694		return;
3695
3696	rb_update_iter_read_stamp(iter, event);
3697
3698	iter->head += length;
3699
3700	/* check for end of page padding */
3701	if ((iter->head >= rb_page_size(iter->head_page)) &&
3702	    (iter->head_page != cpu_buffer->commit_page))
3703		rb_inc_iter(iter);
3704}
3705
3706static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3707{
3708	return cpu_buffer->lost_events;
3709}
3710
3711static struct ring_buffer_event *
3712rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3713	       unsigned long *lost_events)
3714{
3715	struct ring_buffer_event *event;
3716	struct buffer_page *reader;
3717	int nr_loops = 0;
3718
 
 
3719 again:
3720	/*
3721	 * We repeat when a time extend is encountered.
3722	 * Since the time extend is always attached to a data event,
3723	 * we should never loop more than once.
3724	 * (We never hit the following condition more than twice).
3725	 */
3726	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3727		return NULL;
3728
3729	reader = rb_get_reader_page(cpu_buffer);
3730	if (!reader)
3731		return NULL;
3732
3733	event = rb_reader_event(cpu_buffer);
3734
3735	switch (event->type_len) {
3736	case RINGBUF_TYPE_PADDING:
3737		if (rb_null_event(event))
3738			RB_WARN_ON(cpu_buffer, 1);
3739		/*
3740		 * Because the writer could be discarding every
3741		 * event it creates (which would probably be bad)
3742		 * if we were to go back to "again" then we may never
3743		 * catch up, and will trigger the warn on, or lock
3744		 * the box. Return the padding, and we will release
3745		 * the current locks, and try again.
3746		 */
3747		return event;
3748
3749	case RINGBUF_TYPE_TIME_EXTEND:
3750		/* Internal data, OK to advance */
3751		rb_advance_reader(cpu_buffer);
3752		goto again;
3753
3754	case RINGBUF_TYPE_TIME_STAMP:
3755		/* FIXME: not implemented */
 
 
 
 
 
 
3756		rb_advance_reader(cpu_buffer);
3757		goto again;
3758
3759	case RINGBUF_TYPE_DATA:
3760		if (ts) {
3761			*ts = cpu_buffer->read_stamp + event->time_delta;
3762			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3763							 cpu_buffer->cpu, ts);
3764		}
3765		if (lost_events)
3766			*lost_events = rb_lost_events(cpu_buffer);
3767		return event;
3768
3769	default:
3770		BUG();
3771	}
3772
3773	return NULL;
3774}
3775EXPORT_SYMBOL_GPL(ring_buffer_peek);
3776
3777static struct ring_buffer_event *
3778rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3779{
3780	struct ring_buffer *buffer;
3781	struct ring_buffer_per_cpu *cpu_buffer;
3782	struct ring_buffer_event *event;
3783	int nr_loops = 0;
3784
 
 
 
3785	cpu_buffer = iter->cpu_buffer;
3786	buffer = cpu_buffer->buffer;
3787
3788	/*
3789	 * Check if someone performed a consuming read to
3790	 * the buffer. A consuming read invalidates the iterator
3791	 * and we need to reset the iterator in this case.
3792	 */
3793	if (unlikely(iter->cache_read != cpu_buffer->read ||
3794		     iter->cache_reader_page != cpu_buffer->reader_page))
 
3795		rb_iter_reset(iter);
3796
3797 again:
3798	if (ring_buffer_iter_empty(iter))
3799		return NULL;
3800
3801	/*
3802	 * We repeat when a time extend is encountered or we hit
3803	 * the end of the page. Since the time extend is always attached
3804	 * to a data event, we should never loop more than three times.
3805	 * Once for going to next page, once on time extend, and
3806	 * finally once to get the event.
3807	 * (We never hit the following condition more than thrice).
3808	 */
3809	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3))
3810		return NULL;
3811
3812	if (rb_per_cpu_empty(cpu_buffer))
3813		return NULL;
3814
3815	if (iter->head >= rb_page_size(iter->head_page)) {
3816		rb_inc_iter(iter);
3817		goto again;
3818	}
3819
3820	event = rb_iter_head_event(iter);
 
 
3821
3822	switch (event->type_len) {
3823	case RINGBUF_TYPE_PADDING:
3824		if (rb_null_event(event)) {
3825			rb_inc_iter(iter);
3826			goto again;
3827		}
3828		rb_advance_iter(iter);
3829		return event;
3830
3831	case RINGBUF_TYPE_TIME_EXTEND:
3832		/* Internal data, OK to advance */
3833		rb_advance_iter(iter);
3834		goto again;
3835
3836	case RINGBUF_TYPE_TIME_STAMP:
3837		/* FIXME: not implemented */
 
 
 
 
 
 
3838		rb_advance_iter(iter);
3839		goto again;
3840
3841	case RINGBUF_TYPE_DATA:
3842		if (ts) {
3843			*ts = iter->read_stamp + event->time_delta;
3844			ring_buffer_normalize_time_stamp(buffer,
3845							 cpu_buffer->cpu, ts);
3846		}
3847		return event;
3848
3849	default:
3850		BUG();
3851	}
3852
3853	return NULL;
3854}
3855EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
3856
3857static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
3858{
3859	if (likely(!in_nmi())) {
3860		raw_spin_lock(&cpu_buffer->reader_lock);
3861		return true;
3862	}
3863
3864	/*
3865	 * If an NMI die dumps out the content of the ring buffer
3866	 * trylock must be used to prevent a deadlock if the NMI
3867	 * preempted a task that holds the ring buffer locks. If
3868	 * we get the lock then all is fine, if not, then continue
3869	 * to do the read, but this can corrupt the ring buffer,
3870	 * so it must be permanently disabled from future writes.
3871	 * Reading from NMI is a oneshot deal.
3872	 */
3873	if (raw_spin_trylock(&cpu_buffer->reader_lock))
3874		return true;
3875
3876	/* Continue without locking, but disable the ring buffer */
3877	atomic_inc(&cpu_buffer->record_disabled);
3878	return false;
3879}
3880
3881static inline void
3882rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
3883{
3884	if (likely(locked))
3885		raw_spin_unlock(&cpu_buffer->reader_lock);
3886	return;
3887}
3888
3889/**
3890 * ring_buffer_peek - peek at the next event to be read
3891 * @buffer: The ring buffer to read
3892 * @cpu: The cpu to peak at
3893 * @ts: The timestamp counter of this event.
3894 * @lost_events: a variable to store if events were lost (may be NULL)
3895 *
3896 * This will return the event that will be read next, but does
3897 * not consume the data.
3898 */
3899struct ring_buffer_event *
3900ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3901		 unsigned long *lost_events)
3902{
3903	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3904	struct ring_buffer_event *event;
3905	unsigned long flags;
3906	bool dolock;
3907
3908	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3909		return NULL;
3910
3911 again:
3912	local_irq_save(flags);
3913	dolock = rb_reader_lock(cpu_buffer);
3914	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3915	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3916		rb_advance_reader(cpu_buffer);
3917	rb_reader_unlock(cpu_buffer, dolock);
3918	local_irq_restore(flags);
3919
3920	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3921		goto again;
3922
3923	return event;
3924}
3925
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3926/**
3927 * ring_buffer_iter_peek - peek at the next event to be read
3928 * @iter: The ring buffer iterator
3929 * @ts: The timestamp counter of this event.
3930 *
3931 * This will return the event that will be read next, but does
3932 * not increment the iterator.
3933 */
3934struct ring_buffer_event *
3935ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3936{
3937	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3938	struct ring_buffer_event *event;
3939	unsigned long flags;
3940
3941 again:
3942	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3943	event = rb_iter_peek(iter, ts);
3944	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3945
3946	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3947		goto again;
3948
3949	return event;
3950}
3951
3952/**
3953 * ring_buffer_consume - return an event and consume it
3954 * @buffer: The ring buffer to get the next event from
3955 * @cpu: the cpu to read the buffer from
3956 * @ts: a variable to store the timestamp (may be NULL)
3957 * @lost_events: a variable to store if events were lost (may be NULL)
3958 *
3959 * Returns the next event in the ring buffer, and that event is consumed.
3960 * Meaning, that sequential reads will keep returning a different event,
3961 * and eventually empty the ring buffer if the producer is slower.
3962 */
3963struct ring_buffer_event *
3964ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
3965		    unsigned long *lost_events)
3966{
3967	struct ring_buffer_per_cpu *cpu_buffer;
3968	struct ring_buffer_event *event = NULL;
3969	unsigned long flags;
3970	bool dolock;
3971
3972 again:
3973	/* might be called in atomic */
3974	preempt_disable();
3975
3976	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3977		goto out;
3978
3979	cpu_buffer = buffer->buffers[cpu];
3980	local_irq_save(flags);
3981	dolock = rb_reader_lock(cpu_buffer);
3982
3983	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3984	if (event) {
3985		cpu_buffer->lost_events = 0;
3986		rb_advance_reader(cpu_buffer);
3987	}
3988
3989	rb_reader_unlock(cpu_buffer, dolock);
3990	local_irq_restore(flags);
3991
3992 out:
3993	preempt_enable();
3994
3995	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3996		goto again;
3997
3998	return event;
3999}
4000EXPORT_SYMBOL_GPL(ring_buffer_consume);
4001
4002/**
4003 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
4004 * @buffer: The ring buffer to read from
4005 * @cpu: The cpu buffer to iterate over
 
4006 *
4007 * This performs the initial preparations necessary to iterate
4008 * through the buffer.  Memory is allocated, buffer recording
4009 * is disabled, and the iterator pointer is returned to the caller.
4010 *
4011 * Disabling buffer recordng prevents the reading from being
4012 * corrupted. This is not a consuming read, so a producer is not
4013 * expected.
4014 *
4015 * After a sequence of ring_buffer_read_prepare calls, the user is
4016 * expected to make at least one call to ring_buffer_read_prepare_sync.
4017 * Afterwards, ring_buffer_read_start is invoked to get things going
4018 * for real.
4019 *
4020 * This overall must be paired with ring_buffer_read_finish.
4021 */
4022struct ring_buffer_iter *
4023ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
4024{
4025	struct ring_buffer_per_cpu *cpu_buffer;
4026	struct ring_buffer_iter *iter;
4027
4028	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4029		return NULL;
4030
4031	iter = kmalloc(sizeof(*iter), GFP_KERNEL);
4032	if (!iter)
4033		return NULL;
4034
 
 
 
 
 
 
 
 
4035	cpu_buffer = buffer->buffers[cpu];
4036
4037	iter->cpu_buffer = cpu_buffer;
4038
4039	atomic_inc(&buffer->resize_disabled);
4040	atomic_inc(&cpu_buffer->record_disabled);
4041
4042	return iter;
4043}
4044EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
4045
4046/**
4047 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
4048 *
4049 * All previously invoked ring_buffer_read_prepare calls to prepare
4050 * iterators will be synchronized.  Afterwards, read_buffer_read_start
4051 * calls on those iterators are allowed.
4052 */
4053void
4054ring_buffer_read_prepare_sync(void)
4055{
4056	synchronize_sched();
4057}
4058EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
4059
4060/**
4061 * ring_buffer_read_start - start a non consuming read of the buffer
4062 * @iter: The iterator returned by ring_buffer_read_prepare
4063 *
4064 * This finalizes the startup of an iteration through the buffer.
4065 * The iterator comes from a call to ring_buffer_read_prepare and
4066 * an intervening ring_buffer_read_prepare_sync must have been
4067 * performed.
4068 *
4069 * Must be paired with ring_buffer_read_finish.
4070 */
4071void
4072ring_buffer_read_start(struct ring_buffer_iter *iter)
4073{
4074	struct ring_buffer_per_cpu *cpu_buffer;
4075	unsigned long flags;
4076
4077	if (!iter)
4078		return;
4079
4080	cpu_buffer = iter->cpu_buffer;
4081
4082	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4083	arch_spin_lock(&cpu_buffer->lock);
4084	rb_iter_reset(iter);
4085	arch_spin_unlock(&cpu_buffer->lock);
4086	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4087}
4088EXPORT_SYMBOL_GPL(ring_buffer_read_start);
4089
4090/**
4091 * ring_buffer_read_finish - finish reading the iterator of the buffer
4092 * @iter: The iterator retrieved by ring_buffer_start
4093 *
4094 * This re-enables the recording to the buffer, and frees the
4095 * iterator.
4096 */
4097void
4098ring_buffer_read_finish(struct ring_buffer_iter *iter)
4099{
4100	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4101	unsigned long flags;
4102
4103	/*
4104	 * Ring buffer is disabled from recording, here's a good place
4105	 * to check the integrity of the ring buffer.
4106	 * Must prevent readers from trying to read, as the check
4107	 * clears the HEAD page and readers require it.
4108	 */
4109	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4110	rb_check_pages(cpu_buffer);
4111	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4112
4113	atomic_dec(&cpu_buffer->record_disabled);
4114	atomic_dec(&cpu_buffer->buffer->resize_disabled);
4115	kfree(iter);
4116}
4117EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
4118
4119/**
4120 * ring_buffer_read - read the next item in the ring buffer by the iterator
4121 * @iter: The ring buffer iterator
4122 * @ts: The time stamp of the event read.
4123 *
4124 * This reads the next event in the ring buffer and increments the iterator.
 
4125 */
4126struct ring_buffer_event *
4127ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
4128{
4129	struct ring_buffer_event *event;
4130	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4131	unsigned long flags;
4132
4133	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4134 again:
4135	event = rb_iter_peek(iter, ts);
4136	if (!event)
4137		goto out;
4138
4139	if (event->type_len == RINGBUF_TYPE_PADDING)
4140		goto again;
4141
4142	rb_advance_iter(iter);
4143 out:
4144	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4145
4146	return event;
4147}
4148EXPORT_SYMBOL_GPL(ring_buffer_read);
4149
4150/**
4151 * ring_buffer_size - return the size of the ring buffer (in bytes)
4152 * @buffer: The ring buffer.
 
4153 */
4154unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
4155{
4156	/*
4157	 * Earlier, this method returned
4158	 *	BUF_PAGE_SIZE * buffer->nr_pages
4159	 * Since the nr_pages field is now removed, we have converted this to
4160	 * return the per cpu buffer value.
4161	 */
4162	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4163		return 0;
4164
4165	return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
4166}
4167EXPORT_SYMBOL_GPL(ring_buffer_size);
4168
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4169static void
4170rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4171{
 
 
4172	rb_head_page_deactivate(cpu_buffer);
4173
4174	cpu_buffer->head_page
4175		= list_entry(cpu_buffer->pages, struct buffer_page, list);
4176	local_set(&cpu_buffer->head_page->write, 0);
4177	local_set(&cpu_buffer->head_page->entries, 0);
4178	local_set(&cpu_buffer->head_page->page->commit, 0);
4179
4180	cpu_buffer->head_page->read = 0;
4181
4182	cpu_buffer->tail_page = cpu_buffer->head_page;
4183	cpu_buffer->commit_page = cpu_buffer->head_page;
4184
4185	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
4186	INIT_LIST_HEAD(&cpu_buffer->new_pages);
4187	local_set(&cpu_buffer->reader_page->write, 0);
4188	local_set(&cpu_buffer->reader_page->entries, 0);
4189	local_set(&cpu_buffer->reader_page->page->commit, 0);
4190	cpu_buffer->reader_page->read = 0;
4191
4192	local_set(&cpu_buffer->entries_bytes, 0);
4193	local_set(&cpu_buffer->overrun, 0);
4194	local_set(&cpu_buffer->commit_overrun, 0);
4195	local_set(&cpu_buffer->dropped_events, 0);
4196	local_set(&cpu_buffer->entries, 0);
4197	local_set(&cpu_buffer->committing, 0);
4198	local_set(&cpu_buffer->commits, 0);
 
 
 
 
 
4199	cpu_buffer->read = 0;
4200	cpu_buffer->read_bytes = 0;
4201
4202	cpu_buffer->write_stamp = 0;
4203	cpu_buffer->read_stamp = 0;
 
 
4204
4205	cpu_buffer->lost_events = 0;
4206	cpu_buffer->last_overrun = 0;
4207
4208	rb_head_page_activate(cpu_buffer);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4209}
4210
4211/**
4212 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4213 * @buffer: The ring buffer to reset a per cpu buffer of
4214 * @cpu: The CPU buffer to be reset
4215 */
4216void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
4217{
4218	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4219	unsigned long flags;
4220
4221	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4222		return;
4223
4224	atomic_inc(&buffer->resize_disabled);
 
 
 
4225	atomic_inc(&cpu_buffer->record_disabled);
4226
4227	/* Make sure all commits have finished */
4228	synchronize_sched();
4229
4230	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4231
4232	if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
4233		goto out;
4234
4235	arch_spin_lock(&cpu_buffer->lock);
 
 
 
4236
4237	rb_reset_cpu(cpu_buffer);
 
 
4238
4239	arch_spin_unlock(&cpu_buffer->lock);
 
4240
4241 out:
4242	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
 
 
 
 
 
 
 
4243
4244	atomic_dec(&cpu_buffer->record_disabled);
4245	atomic_dec(&buffer->resize_disabled);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4246}
4247EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
4248
4249/**
4250 * ring_buffer_reset - reset a ring buffer
4251 * @buffer: The ring buffer to reset all cpu buffers
4252 */
4253void ring_buffer_reset(struct ring_buffer *buffer)
4254{
 
4255	int cpu;
4256
4257	for_each_buffer_cpu(buffer, cpu)
4258		ring_buffer_reset_cpu(buffer, cpu);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4259}
4260EXPORT_SYMBOL_GPL(ring_buffer_reset);
4261
4262/**
4263 * rind_buffer_empty - is the ring buffer empty?
4264 * @buffer: The ring buffer to test
4265 */
4266bool ring_buffer_empty(struct ring_buffer *buffer)
4267{
4268	struct ring_buffer_per_cpu *cpu_buffer;
4269	unsigned long flags;
4270	bool dolock;
 
4271	int cpu;
4272	int ret;
4273
4274	/* yes this is racy, but if you don't like the race, lock the buffer */
4275	for_each_buffer_cpu(buffer, cpu) {
4276		cpu_buffer = buffer->buffers[cpu];
4277		local_irq_save(flags);
4278		dolock = rb_reader_lock(cpu_buffer);
4279		ret = rb_per_cpu_empty(cpu_buffer);
4280		rb_reader_unlock(cpu_buffer, dolock);
4281		local_irq_restore(flags);
4282
4283		if (!ret)
4284			return false;
4285	}
4286
4287	return true;
4288}
4289EXPORT_SYMBOL_GPL(ring_buffer_empty);
4290
4291/**
4292 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4293 * @buffer: The ring buffer
4294 * @cpu: The CPU buffer to test
4295 */
4296bool ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
4297{
4298	struct ring_buffer_per_cpu *cpu_buffer;
4299	unsigned long flags;
4300	bool dolock;
4301	int ret;
4302
4303	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4304		return true;
4305
4306	cpu_buffer = buffer->buffers[cpu];
4307	local_irq_save(flags);
4308	dolock = rb_reader_lock(cpu_buffer);
4309	ret = rb_per_cpu_empty(cpu_buffer);
4310	rb_reader_unlock(cpu_buffer, dolock);
4311	local_irq_restore(flags);
4312
4313	return ret;
4314}
4315EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
4316
4317#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4318/**
4319 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4320 * @buffer_a: One buffer to swap with
4321 * @buffer_b: The other buffer to swap with
 
4322 *
4323 * This function is useful for tracers that want to take a "snapshot"
4324 * of a CPU buffer and has another back up buffer lying around.
4325 * it is expected that the tracer handles the cpu buffer not being
4326 * used at the moment.
4327 */
4328int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
4329			 struct ring_buffer *buffer_b, int cpu)
4330{
4331	struct ring_buffer_per_cpu *cpu_buffer_a;
4332	struct ring_buffer_per_cpu *cpu_buffer_b;
4333	int ret = -EINVAL;
4334
4335	if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4336	    !cpumask_test_cpu(cpu, buffer_b->cpumask))
4337		goto out;
4338
4339	cpu_buffer_a = buffer_a->buffers[cpu];
4340	cpu_buffer_b = buffer_b->buffers[cpu];
4341
 
 
 
 
 
 
4342	/* At least make sure the two buffers are somewhat the same */
4343	if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
4344		goto out;
4345
 
 
 
4346	ret = -EAGAIN;
4347
4348	if (atomic_read(&buffer_a->record_disabled))
4349		goto out;
4350
4351	if (atomic_read(&buffer_b->record_disabled))
4352		goto out;
4353
4354	if (atomic_read(&cpu_buffer_a->record_disabled))
4355		goto out;
4356
4357	if (atomic_read(&cpu_buffer_b->record_disabled))
4358		goto out;
4359
4360	/*
4361	 * We can't do a synchronize_sched here because this
4362	 * function can be called in atomic context.
4363	 * Normally this will be called from the same CPU as cpu.
4364	 * If not it's up to the caller to protect this.
4365	 */
4366	atomic_inc(&cpu_buffer_a->record_disabled);
4367	atomic_inc(&cpu_buffer_b->record_disabled);
4368
4369	ret = -EBUSY;
4370	if (local_read(&cpu_buffer_a->committing))
4371		goto out_dec;
4372	if (local_read(&cpu_buffer_b->committing))
4373		goto out_dec;
4374
 
 
 
 
 
 
 
 
 
4375	buffer_a->buffers[cpu] = cpu_buffer_b;
4376	buffer_b->buffers[cpu] = cpu_buffer_a;
4377
4378	cpu_buffer_b->buffer = buffer_a;
4379	cpu_buffer_a->buffer = buffer_b;
4380
4381	ret = 0;
4382
4383out_dec:
4384	atomic_dec(&cpu_buffer_a->record_disabled);
4385	atomic_dec(&cpu_buffer_b->record_disabled);
4386out:
4387	return ret;
4388}
4389EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
4390#endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
4391
4392/**
4393 * ring_buffer_alloc_read_page - allocate a page to read from buffer
4394 * @buffer: the buffer to allocate for.
4395 * @cpu: the cpu buffer to allocate.
4396 *
4397 * This function is used in conjunction with ring_buffer_read_page.
4398 * When reading a full page from the ring buffer, these functions
4399 * can be used to speed up the process. The calling function should
4400 * allocate a few pages first with this function. Then when it
4401 * needs to get pages from the ring buffer, it passes the result
4402 * of this function into ring_buffer_read_page, which will swap
4403 * the page that was allocated, with the read page of the buffer.
4404 *
4405 * Returns:
4406 *  The page allocated, or NULL on error.
4407 */
4408void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
 
4409{
4410	struct buffer_data_page *bpage;
 
 
4411	struct page *page;
4412
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4413	page = alloc_pages_node(cpu_to_node(cpu),
4414				GFP_KERNEL | __GFP_NORETRY, 0);
4415	if (!page)
4416		return NULL;
 
 
 
4417
4418	bpage = page_address(page);
4419
4420	rb_init_page(bpage);
 
4421
4422	return bpage;
4423}
4424EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
4425
4426/**
4427 * ring_buffer_free_read_page - free an allocated read page
4428 * @buffer: the buffer the page was allocate for
4429 * @data: the page to free
 
4430 *
4431 * Free a page allocated from ring_buffer_alloc_read_page.
4432 */
4433void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
 
4434{
4435	free_page((unsigned long)data);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4436}
4437EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
4438
4439/**
4440 * ring_buffer_read_page - extract a page from the ring buffer
4441 * @buffer: buffer to extract from
4442 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
4443 * @len: amount to extract
4444 * @cpu: the cpu of the buffer to extract
4445 * @full: should the extraction only happen when the page is full.
4446 *
4447 * This function will pull out a page from the ring buffer and consume it.
4448 * @data_page must be the address of the variable that was returned
4449 * from ring_buffer_alloc_read_page. This is because the page might be used
4450 * to swap with a page in the ring buffer.
4451 *
4452 * for example:
4453 *	rpage = ring_buffer_alloc_read_page(buffer, cpu);
4454 *	if (!rpage)
4455 *		return error;
4456 *	ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
4457 *	if (ret >= 0)
4458 *		process_page(rpage, ret);
 
4459 *
4460 * When @full is set, the function will not return true unless
4461 * the writer is off the reader page.
4462 *
4463 * Note: it is up to the calling functions to handle sleeps and wakeups.
4464 *  The ring buffer can be used anywhere in the kernel and can not
4465 *  blindly call wake_up. The layer that uses the ring buffer must be
4466 *  responsible for that.
4467 *
4468 * Returns:
4469 *  >=0 if data has been transferred, returns the offset of consumed data.
4470 *  <0 if no data has been transferred.
4471 */
4472int ring_buffer_read_page(struct ring_buffer *buffer,
4473			  void **data_page, size_t len, int cpu, int full)
 
4474{
4475	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4476	struct ring_buffer_event *event;
4477	struct buffer_data_page *bpage;
4478	struct buffer_page *reader;
4479	unsigned long missed_events;
4480	unsigned long flags;
4481	unsigned int commit;
4482	unsigned int read;
4483	u64 save_timestamp;
4484	int ret = -1;
4485
4486	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4487		goto out;
4488
4489	/*
4490	 * If len is not big enough to hold the page header, then
4491	 * we can not copy anything.
4492	 */
4493	if (len <= BUF_PAGE_HDR_SIZE)
4494		goto out;
4495
4496	len -= BUF_PAGE_HDR_SIZE;
4497
4498	if (!data_page)
 
 
4499		goto out;
4500
4501	bpage = *data_page;
4502	if (!bpage)
4503		goto out;
4504
4505	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4506
4507	reader = rb_get_reader_page(cpu_buffer);
4508	if (!reader)
4509		goto out_unlock;
4510
4511	event = rb_reader_event(cpu_buffer);
4512
4513	read = reader->read;
4514	commit = rb_page_commit(reader);
4515
4516	/* Check if any events were dropped */
4517	missed_events = cpu_buffer->lost_events;
4518
4519	/*
4520	 * If this page has been partially read or
4521	 * if len is not big enough to read the rest of the page or
4522	 * a writer is still on the page, then
4523	 * we must copy the data from the page to the buffer.
4524	 * Otherwise, we can simply swap the page with the one passed in.
4525	 */
4526	if (read || (len < (commit - read)) ||
4527	    cpu_buffer->reader_page == cpu_buffer->commit_page) {
 
4528		struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
4529		unsigned int rpos = read;
4530		unsigned int pos = 0;
4531		unsigned int size;
4532
4533		if (full)
 
 
 
 
 
 
 
 
4534			goto out_unlock;
4535
4536		if (len > (commit - read))
4537			len = (commit - read);
4538
4539		/* Always keep the time extend and data together */
4540		size = rb_event_ts_length(event);
4541
4542		if (len < size)
4543			goto out_unlock;
4544
4545		/* save the current timestamp, since the user will need it */
4546		save_timestamp = cpu_buffer->read_stamp;
4547
4548		/* Need to copy one event at a time */
4549		do {
4550			/* We need the size of one event, because
4551			 * rb_advance_reader only advances by one event,
4552			 * whereas rb_event_ts_length may include the size of
4553			 * one or two events.
4554			 * We have already ensured there's enough space if this
4555			 * is a time extend. */
4556			size = rb_event_length(event);
4557			memcpy(bpage->data + pos, rpage->data + rpos, size);
4558
4559			len -= size;
4560
4561			rb_advance_reader(cpu_buffer);
4562			rpos = reader->read;
4563			pos += size;
4564
4565			if (rpos >= commit)
4566				break;
4567
4568			event = rb_reader_event(cpu_buffer);
4569			/* Always keep the time extend and data together */
4570			size = rb_event_ts_length(event);
4571		} while (len >= size);
4572
4573		/* update bpage */
4574		local_set(&bpage->commit, pos);
4575		bpage->time_stamp = save_timestamp;
4576
4577		/* we copied everything to the beginning */
4578		read = 0;
4579	} else {
4580		/* update the entry counter */
4581		cpu_buffer->read += rb_page_entries(reader);
4582		cpu_buffer->read_bytes += BUF_PAGE_SIZE;
4583
4584		/* swap the pages */
4585		rb_init_page(bpage);
4586		bpage = reader->page;
4587		reader->page = *data_page;
4588		local_set(&reader->write, 0);
4589		local_set(&reader->entries, 0);
4590		reader->read = 0;
4591		*data_page = bpage;
4592
4593		/*
4594		 * Use the real_end for the data size,
4595		 * This gives us a chance to store the lost events
4596		 * on the page.
4597		 */
4598		if (reader->real_end)
4599			local_set(&bpage->commit, reader->real_end);
4600	}
4601	ret = read;
4602
4603	cpu_buffer->lost_events = 0;
4604
4605	commit = local_read(&bpage->commit);
4606	/*
4607	 * Set a flag in the commit field if we lost events
4608	 */
4609	if (missed_events) {
4610		/* If there is room at the end of the page to save the
4611		 * missed events, then record it there.
4612		 */
4613		if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4614			memcpy(&bpage->data[commit], &missed_events,
4615			       sizeof(missed_events));
4616			local_add(RB_MISSED_STORED, &bpage->commit);
4617			commit += sizeof(missed_events);
4618		}
4619		local_add(RB_MISSED_EVENTS, &bpage->commit);
4620	}
4621
4622	/*
4623	 * This page may be off to user land. Zero it out here.
4624	 */
4625	if (commit < BUF_PAGE_SIZE)
4626		memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4627
4628 out_unlock:
4629	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4630
4631 out:
4632	return ret;
4633}
4634EXPORT_SYMBOL_GPL(ring_buffer_read_page);
4635
4636#ifdef CONFIG_HOTPLUG_CPU
4637static int rb_cpu_notify(struct notifier_block *self,
4638			 unsigned long action, void *hcpu)
4639{
4640	struct ring_buffer *buffer =
4641		container_of(self, struct ring_buffer, cpu_notify);
4642	long cpu = (long)hcpu;
4643	int cpu_i, nr_pages_same;
4644	unsigned int nr_pages;
4645
4646	switch (action) {
4647	case CPU_UP_PREPARE:
4648	case CPU_UP_PREPARE_FROZEN:
4649		if (cpumask_test_cpu(cpu, buffer->cpumask))
4650			return NOTIFY_OK;
4651
4652		nr_pages = 0;
4653		nr_pages_same = 1;
4654		/* check if all cpu sizes are same */
4655		for_each_buffer_cpu(buffer, cpu_i) {
4656			/* fill in the size from first enabled cpu */
4657			if (nr_pages == 0)
4658				nr_pages = buffer->buffers[cpu_i]->nr_pages;
4659			if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4660				nr_pages_same = 0;
4661				break;
4662			}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4663		}
4664		/* allocate minimum pages, user can later expand it */
4665		if (!nr_pages_same)
 
 
 
 
 
4666			nr_pages = 2;
4667		buffer->buffers[cpu] =
4668			rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
4669		if (!buffer->buffers[cpu]) {
4670			WARN(1, "failed to allocate ring buffer on CPU %ld\n",
4671			     cpu);
4672			return NOTIFY_OK;
 
 
 
 
 
 
 
4673		}
4674		smp_wmb();
4675		cpumask_set_cpu(cpu, buffer->cpumask);
4676		break;
4677	case CPU_DOWN_PREPARE:
4678	case CPU_DOWN_PREPARE_FROZEN:
 
 
 
 
 
 
 
 
 
 
 
 
4679		/*
4680		 * Do nothing.
4681		 *  If we were to free the buffer, then the user would
4682		 *  lose any trace that was in the buffer.
 
 
4683		 */
4684		break;
4685	default:
4686		break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4687	}
4688	return NOTIFY_OK;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4689}
4690#endif
4691
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4692#ifdef CONFIG_RING_BUFFER_STARTUP_TEST
4693/*
4694 * This is a basic integrity check of the ring buffer.
4695 * Late in the boot cycle this test will run when configured in.
4696 * It will kick off a thread per CPU that will go into a loop
4697 * writing to the per cpu ring buffer various sizes of data.
4698 * Some of the data will be large items, some small.
4699 *
4700 * Another thread is created that goes into a spin, sending out
4701 * IPIs to the other CPUs to also write into the ring buffer.
4702 * this is to test the nesting ability of the buffer.
4703 *
4704 * Basic stats are recorded and reported. If something in the
4705 * ring buffer should happen that's not expected, a big warning
4706 * is displayed and all ring buffers are disabled.
4707 */
4708static struct task_struct *rb_threads[NR_CPUS] __initdata;
4709
4710struct rb_test_data {
4711	struct ring_buffer	*buffer;
4712	unsigned long		events;
4713	unsigned long		bytes_written;
4714	unsigned long		bytes_alloc;
4715	unsigned long		bytes_dropped;
4716	unsigned long		events_nested;
4717	unsigned long		bytes_written_nested;
4718	unsigned long		bytes_alloc_nested;
4719	unsigned long		bytes_dropped_nested;
4720	int			min_size_nested;
4721	int			max_size_nested;
4722	int			max_size;
4723	int			min_size;
4724	int			cpu;
4725	int			cnt;
4726};
4727
4728static struct rb_test_data rb_data[NR_CPUS] __initdata;
4729
4730/* 1 meg per cpu */
4731#define RB_TEST_BUFFER_SIZE	1048576
4732
4733static char rb_string[] __initdata =
4734	"abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
4735	"?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
4736	"!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
4737
4738static bool rb_test_started __initdata;
4739
4740struct rb_item {
4741	int size;
4742	char str[];
4743};
4744
4745static __init int rb_write_something(struct rb_test_data *data, bool nested)
4746{
4747	struct ring_buffer_event *event;
4748	struct rb_item *item;
4749	bool started;
4750	int event_len;
4751	int size;
4752	int len;
4753	int cnt;
4754
4755	/* Have nested writes different that what is written */
4756	cnt = data->cnt + (nested ? 27 : 0);
4757
4758	/* Multiply cnt by ~e, to make some unique increment */
4759	size = (data->cnt * 68 / 25) % (sizeof(rb_string) - 1);
4760
4761	len = size + sizeof(struct rb_item);
4762
4763	started = rb_test_started;
4764	/* read rb_test_started before checking buffer enabled */
4765	smp_rmb();
4766
4767	event = ring_buffer_lock_reserve(data->buffer, len);
4768	if (!event) {
4769		/* Ignore dropped events before test starts. */
4770		if (started) {
4771			if (nested)
4772				data->bytes_dropped += len;
4773			else
4774				data->bytes_dropped_nested += len;
4775		}
4776		return len;
4777	}
4778
4779	event_len = ring_buffer_event_length(event);
4780
4781	if (RB_WARN_ON(data->buffer, event_len < len))
4782		goto out;
4783
4784	item = ring_buffer_event_data(event);
4785	item->size = size;
4786	memcpy(item->str, rb_string, size);
4787
4788	if (nested) {
4789		data->bytes_alloc_nested += event_len;
4790		data->bytes_written_nested += len;
4791		data->events_nested++;
4792		if (!data->min_size_nested || len < data->min_size_nested)
4793			data->min_size_nested = len;
4794		if (len > data->max_size_nested)
4795			data->max_size_nested = len;
4796	} else {
4797		data->bytes_alloc += event_len;
4798		data->bytes_written += len;
4799		data->events++;
4800		if (!data->min_size || len < data->min_size)
4801			data->max_size = len;
4802		if (len > data->max_size)
4803			data->max_size = len;
4804	}
4805
4806 out:
4807	ring_buffer_unlock_commit(data->buffer, event);
4808
4809	return 0;
4810}
4811
4812static __init int rb_test(void *arg)
4813{
4814	struct rb_test_data *data = arg;
4815
4816	while (!kthread_should_stop()) {
4817		rb_write_something(data, false);
4818		data->cnt++;
4819
4820		set_current_state(TASK_INTERRUPTIBLE);
4821		/* Now sleep between a min of 100-300us and a max of 1ms */
4822		usleep_range(((data->cnt % 3) + 1) * 100, 1000);
4823	}
4824
4825	return 0;
4826}
4827
4828static __init void rb_ipi(void *ignore)
4829{
4830	struct rb_test_data *data;
4831	int cpu = smp_processor_id();
4832
4833	data = &rb_data[cpu];
4834	rb_write_something(data, true);
4835}
4836
4837static __init int rb_hammer_test(void *arg)
4838{
4839	while (!kthread_should_stop()) {
4840
4841		/* Send an IPI to all cpus to write data! */
4842		smp_call_function(rb_ipi, NULL, 1);
4843		/* No sleep, but for non preempt, let others run */
4844		schedule();
4845	}
4846
4847	return 0;
4848}
4849
4850static __init int test_ringbuffer(void)
4851{
4852	struct task_struct *rb_hammer;
4853	struct ring_buffer *buffer;
4854	int cpu;
4855	int ret = 0;
4856
 
 
 
 
 
4857	pr_info("Running ring buffer tests...\n");
4858
4859	buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
4860	if (WARN_ON(!buffer))
4861		return 0;
4862
4863	/* Disable buffer so that threads can't write to it yet */
4864	ring_buffer_record_off(buffer);
4865
4866	for_each_online_cpu(cpu) {
4867		rb_data[cpu].buffer = buffer;
4868		rb_data[cpu].cpu = cpu;
4869		rb_data[cpu].cnt = cpu;
4870		rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
4871						 "rbtester/%d", cpu);
4872		if (WARN_ON(!rb_threads[cpu])) {
4873			pr_cont("FAILED\n");
4874			ret = -1;
4875			goto out_free;
4876		}
4877
4878		kthread_bind(rb_threads[cpu], cpu);
4879 		wake_up_process(rb_threads[cpu]);
4880	}
4881
4882	/* Now create the rb hammer! */
4883	rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
4884	if (WARN_ON(!rb_hammer)) {
4885		pr_cont("FAILED\n");
4886		ret = -1;
4887		goto out_free;
4888	}
4889
4890	ring_buffer_record_on(buffer);
4891	/*
4892	 * Show buffer is enabled before setting rb_test_started.
4893	 * Yes there's a small race window where events could be
4894	 * dropped and the thread wont catch it. But when a ring
4895	 * buffer gets enabled, there will always be some kind of
4896	 * delay before other CPUs see it. Thus, we don't care about
4897	 * those dropped events. We care about events dropped after
4898	 * the threads see that the buffer is active.
4899	 */
4900	smp_wmb();
4901	rb_test_started = true;
4902
4903	set_current_state(TASK_INTERRUPTIBLE);
4904	/* Just run for 10 seconds */;
4905	schedule_timeout(10 * HZ);
4906
4907	kthread_stop(rb_hammer);
4908
4909 out_free:
4910	for_each_online_cpu(cpu) {
4911		if (!rb_threads[cpu])
4912			break;
4913		kthread_stop(rb_threads[cpu]);
4914	}
4915	if (ret) {
4916		ring_buffer_free(buffer);
4917		return ret;
4918	}
4919
4920	/* Report! */
4921	pr_info("finished\n");
4922	for_each_online_cpu(cpu) {
4923		struct ring_buffer_event *event;
4924		struct rb_test_data *data = &rb_data[cpu];
4925		struct rb_item *item;
4926		unsigned long total_events;
4927		unsigned long total_dropped;
4928		unsigned long total_written;
4929		unsigned long total_alloc;
4930		unsigned long total_read = 0;
4931		unsigned long total_size = 0;
4932		unsigned long total_len = 0;
4933		unsigned long total_lost = 0;
4934		unsigned long lost;
4935		int big_event_size;
4936		int small_event_size;
4937
4938		ret = -1;
4939
4940		total_events = data->events + data->events_nested;
4941		total_written = data->bytes_written + data->bytes_written_nested;
4942		total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
4943		total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
4944
4945		big_event_size = data->max_size + data->max_size_nested;
4946		small_event_size = data->min_size + data->min_size_nested;
4947
4948		pr_info("CPU %d:\n", cpu);
4949		pr_info("              events:    %ld\n", total_events);
4950		pr_info("       dropped bytes:    %ld\n", total_dropped);
4951		pr_info("       alloced bytes:    %ld\n", total_alloc);
4952		pr_info("       written bytes:    %ld\n", total_written);
4953		pr_info("       biggest event:    %d\n", big_event_size);
4954		pr_info("      smallest event:    %d\n", small_event_size);
4955
4956		if (RB_WARN_ON(buffer, total_dropped))
4957			break;
4958
4959		ret = 0;
4960
4961		while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
4962			total_lost += lost;
4963			item = ring_buffer_event_data(event);
4964			total_len += ring_buffer_event_length(event);
4965			total_size += item->size + sizeof(struct rb_item);
4966			if (memcmp(&item->str[0], rb_string, item->size) != 0) {
4967				pr_info("FAILED!\n");
4968				pr_info("buffer had: %.*s\n", item->size, item->str);
4969				pr_info("expected:   %.*s\n", item->size, rb_string);
4970				RB_WARN_ON(buffer, 1);
4971				ret = -1;
4972				break;
4973			}
4974			total_read++;
4975		}
4976		if (ret)
4977			break;
4978
4979		ret = -1;
4980
4981		pr_info("         read events:   %ld\n", total_read);
4982		pr_info("         lost events:   %ld\n", total_lost);
4983		pr_info("        total events:   %ld\n", total_lost + total_read);
4984		pr_info("  recorded len bytes:   %ld\n", total_len);
4985		pr_info(" recorded size bytes:   %ld\n", total_size);
4986		if (total_lost)
4987			pr_info(" With dropped events, record len and size may not match\n"
4988				" alloced and written from above\n");
4989		if (!total_lost) {
4990			if (RB_WARN_ON(buffer, total_len != total_alloc ||
4991				       total_size != total_written))
4992				break;
4993		}
4994		if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
4995			break;
4996
4997		ret = 0;
4998	}
4999	if (!ret)
5000		pr_info("Ring buffer PASSED!\n");
5001
5002	ring_buffer_free(buffer);
5003	return 0;
5004}
5005
5006late_initcall(test_ringbuffer);
5007#endif /* CONFIG_RING_BUFFER_STARTUP_TEST */
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Generic ring buffer
   4 *
   5 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
   6 */
   7#include <linux/trace_recursion.h>
   8#include <linux/trace_events.h>
   9#include <linux/ring_buffer.h>
  10#include <linux/trace_clock.h>
  11#include <linux/sched/clock.h>
  12#include <linux/cacheflush.h>
  13#include <linux/trace_seq.h>
  14#include <linux/spinlock.h>
  15#include <linux/irq_work.h>
  16#include <linux/security.h>
  17#include <linux/uaccess.h>
  18#include <linux/hardirq.h>
  19#include <linux/kthread.h>	/* for self test */
 
  20#include <linux/module.h>
  21#include <linux/percpu.h>
  22#include <linux/mutex.h>
  23#include <linux/delay.h>
  24#include <linux/slab.h>
  25#include <linux/init.h>
  26#include <linux/hash.h>
  27#include <linux/list.h>
  28#include <linux/cpu.h>
  29#include <linux/oom.h>
  30#include <linux/mm.h>
  31
  32#include <asm/local64.h>
  33#include <asm/local.h>
  34
  35#include "trace.h"
  36
  37/*
  38 * The "absolute" timestamp in the buffer is only 59 bits.
  39 * If a clock has the 5 MSBs set, it needs to be saved and
  40 * reinserted.
  41 */
  42#define TS_MSB		(0xf8ULL << 56)
  43#define ABS_TS_MASK	(~TS_MSB)
  44
  45static void update_pages_handler(struct work_struct *work);
  46
  47#define RING_BUFFER_META_MAGIC	0xBADFEED
  48
  49struct ring_buffer_meta {
  50	int		magic;
  51	int		struct_size;
  52	unsigned long	text_addr;
  53	unsigned long	data_addr;
  54	unsigned long	first_buffer;
  55	unsigned long	head_buffer;
  56	unsigned long	commit_buffer;
  57	__u32		subbuf_size;
  58	__u32		nr_subbufs;
  59	int		buffers[];
  60};
  61
  62/*
  63 * The ring buffer header is special. We must manually up keep it.
  64 */
  65int ring_buffer_print_entry_header(struct trace_seq *s)
  66{
  67	trace_seq_puts(s, "# compressed entry header\n");
  68	trace_seq_puts(s, "\ttype_len    :    5 bits\n");
  69	trace_seq_puts(s, "\ttime_delta  :   27 bits\n");
  70	trace_seq_puts(s, "\tarray       :   32 bits\n");
  71	trace_seq_putc(s, '\n');
  72	trace_seq_printf(s, "\tpadding     : type == %d\n",
  73			 RINGBUF_TYPE_PADDING);
  74	trace_seq_printf(s, "\ttime_extend : type == %d\n",
  75			 RINGBUF_TYPE_TIME_EXTEND);
  76	trace_seq_printf(s, "\ttime_stamp : type == %d\n",
  77			 RINGBUF_TYPE_TIME_STAMP);
  78	trace_seq_printf(s, "\tdata max type_len  == %d\n",
  79			 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
  80
  81	return !trace_seq_has_overflowed(s);
  82}
  83
  84/*
  85 * The ring buffer is made up of a list of pages. A separate list of pages is
  86 * allocated for each CPU. A writer may only write to a buffer that is
  87 * associated with the CPU it is currently executing on.  A reader may read
  88 * from any per cpu buffer.
  89 *
  90 * The reader is special. For each per cpu buffer, the reader has its own
  91 * reader page. When a reader has read the entire reader page, this reader
  92 * page is swapped with another page in the ring buffer.
  93 *
  94 * Now, as long as the writer is off the reader page, the reader can do what
  95 * ever it wants with that page. The writer will never write to that page
  96 * again (as long as it is out of the ring buffer).
  97 *
  98 * Here's some silly ASCII art.
  99 *
 100 *   +------+
 101 *   |reader|          RING BUFFER
 102 *   |page  |
 103 *   +------+        +---+   +---+   +---+
 104 *                   |   |-->|   |-->|   |
 105 *                   +---+   +---+   +---+
 106 *                     ^               |
 107 *                     |               |
 108 *                     +---------------+
 109 *
 110 *
 111 *   +------+
 112 *   |reader|          RING BUFFER
 113 *   |page  |------------------v
 114 *   +------+        +---+   +---+   +---+
 115 *                   |   |-->|   |-->|   |
 116 *                   +---+   +---+   +---+
 117 *                     ^               |
 118 *                     |               |
 119 *                     +---------------+
 120 *
 121 *
 122 *   +------+
 123 *   |reader|          RING BUFFER
 124 *   |page  |------------------v
 125 *   +------+        +---+   +---+   +---+
 126 *      ^            |   |-->|   |-->|   |
 127 *      |            +---+   +---+   +---+
 128 *      |                              |
 129 *      |                              |
 130 *      +------------------------------+
 131 *
 132 *
 133 *   +------+
 134 *   |buffer|          RING BUFFER
 135 *   |page  |------------------v
 136 *   +------+        +---+   +---+   +---+
 137 *      ^            |   |   |   |-->|   |
 138 *      |   New      +---+   +---+   +---+
 139 *      |  Reader------^               |
 140 *      |   page                       |
 141 *      +------------------------------+
 142 *
 143 *
 144 * After we make this swap, the reader can hand this page off to the splice
 145 * code and be done with it. It can even allocate a new page if it needs to
 146 * and swap that into the ring buffer.
 147 *
 148 * We will be using cmpxchg soon to make all this lockless.
 149 *
 150 */
 151
 152/* Used for individual buffers (after the counter) */
 153#define RB_BUFFER_OFF		(1 << 20)
 154
 155#define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
 156
 157#define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
 158#define RB_ALIGNMENT		4U
 159#define RB_MAX_SMALL_DATA	(RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
 160#define RB_EVNT_MIN_SIZE	8U	/* two 32bit words */
 161
 162#ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
 163# define RB_FORCE_8BYTE_ALIGNMENT	0
 164# define RB_ARCH_ALIGNMENT		RB_ALIGNMENT
 165#else
 166# define RB_FORCE_8BYTE_ALIGNMENT	1
 167# define RB_ARCH_ALIGNMENT		8U
 168#endif
 169
 170#define RB_ALIGN_DATA		__aligned(RB_ARCH_ALIGNMENT)
 171
 172/* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
 173#define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
 174
 175enum {
 176	RB_LEN_TIME_EXTEND = 8,
 177	RB_LEN_TIME_STAMP =  8,
 178};
 179
 180#define skip_time_extend(event) \
 181	((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
 182
 183#define extended_time(event) \
 184	(event->type_len >= RINGBUF_TYPE_TIME_EXTEND)
 185
 186static inline bool rb_null_event(struct ring_buffer_event *event)
 187{
 188	return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
 189}
 190
 191static void rb_event_set_padding(struct ring_buffer_event *event)
 192{
 193	/* padding has a NULL time_delta */
 194	event->type_len = RINGBUF_TYPE_PADDING;
 195	event->time_delta = 0;
 196}
 197
 198static unsigned
 199rb_event_data_length(struct ring_buffer_event *event)
 200{
 201	unsigned length;
 202
 203	if (event->type_len)
 204		length = event->type_len * RB_ALIGNMENT;
 205	else
 206		length = event->array[0];
 207	return length + RB_EVNT_HDR_SIZE;
 208}
 209
 210/*
 211 * Return the length of the given event. Will return
 212 * the length of the time extend if the event is a
 213 * time extend.
 214 */
 215static inline unsigned
 216rb_event_length(struct ring_buffer_event *event)
 217{
 218	switch (event->type_len) {
 219	case RINGBUF_TYPE_PADDING:
 220		if (rb_null_event(event))
 221			/* undefined */
 222			return -1;
 223		return  event->array[0] + RB_EVNT_HDR_SIZE;
 224
 225	case RINGBUF_TYPE_TIME_EXTEND:
 226		return RB_LEN_TIME_EXTEND;
 227
 228	case RINGBUF_TYPE_TIME_STAMP:
 229		return RB_LEN_TIME_STAMP;
 230
 231	case RINGBUF_TYPE_DATA:
 232		return rb_event_data_length(event);
 233	default:
 234		WARN_ON_ONCE(1);
 235	}
 236	/* not hit */
 237	return 0;
 238}
 239
 240/*
 241 * Return total length of time extend and data,
 242 *   or just the event length for all other events.
 243 */
 244static inline unsigned
 245rb_event_ts_length(struct ring_buffer_event *event)
 246{
 247	unsigned len = 0;
 248
 249	if (extended_time(event)) {
 250		/* time extends include the data event after it */
 251		len = RB_LEN_TIME_EXTEND;
 252		event = skip_time_extend(event);
 253	}
 254	return len + rb_event_length(event);
 255}
 256
 257/**
 258 * ring_buffer_event_length - return the length of the event
 259 * @event: the event to get the length of
 260 *
 261 * Returns the size of the data load of a data event.
 262 * If the event is something other than a data event, it
 263 * returns the size of the event itself. With the exception
 264 * of a TIME EXTEND, where it still returns the size of the
 265 * data load of the data event after it.
 266 */
 267unsigned ring_buffer_event_length(struct ring_buffer_event *event)
 268{
 269	unsigned length;
 270
 271	if (extended_time(event))
 272		event = skip_time_extend(event);
 273
 274	length = rb_event_length(event);
 275	if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
 276		return length;
 277	length -= RB_EVNT_HDR_SIZE;
 278	if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
 279                length -= sizeof(event->array[0]);
 280	return length;
 281}
 282EXPORT_SYMBOL_GPL(ring_buffer_event_length);
 283
 284/* inline for ring buffer fast paths */
 285static __always_inline void *
 286rb_event_data(struct ring_buffer_event *event)
 287{
 288	if (extended_time(event))
 289		event = skip_time_extend(event);
 290	WARN_ON_ONCE(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
 291	/* If length is in len field, then array[0] has the data */
 292	if (event->type_len)
 293		return (void *)&event->array[0];
 294	/* Otherwise length is in array[0] and array[1] has the data */
 295	return (void *)&event->array[1];
 296}
 297
 298/**
 299 * ring_buffer_event_data - return the data of the event
 300 * @event: the event to get the data from
 301 */
 302void *ring_buffer_event_data(struct ring_buffer_event *event)
 303{
 304	return rb_event_data(event);
 305}
 306EXPORT_SYMBOL_GPL(ring_buffer_event_data);
 307
 308#define for_each_buffer_cpu(buffer, cpu)		\
 309	for_each_cpu(cpu, buffer->cpumask)
 310
 311#define for_each_online_buffer_cpu(buffer, cpu)		\
 312	for_each_cpu_and(cpu, buffer->cpumask, cpu_online_mask)
 313
 314#define TS_SHIFT	27
 315#define TS_MASK		((1ULL << TS_SHIFT) - 1)
 316#define TS_DELTA_TEST	(~TS_MASK)
 317
 318static u64 rb_event_time_stamp(struct ring_buffer_event *event)
 319{
 320	u64 ts;
 321
 322	ts = event->array[0];
 323	ts <<= TS_SHIFT;
 324	ts += event->time_delta;
 325
 326	return ts;
 327}
 328
 329/* Flag when events were overwritten */
 330#define RB_MISSED_EVENTS	(1 << 31)
 331/* Missed count stored at end */
 332#define RB_MISSED_STORED	(1 << 30)
 333
 334#define RB_MISSED_MASK		(3 << 30)
 335
 336struct buffer_data_page {
 337	u64		 time_stamp;	/* page time stamp */
 338	local_t		 commit;	/* write committed index */
 339	unsigned char	 data[] RB_ALIGN_DATA;	/* data of buffer page */
 340};
 341
 342struct buffer_data_read_page {
 343	unsigned		order;	/* order of the page */
 344	struct buffer_data_page	*data;	/* actual data, stored in this page */
 345};
 346
 347/*
 348 * Note, the buffer_page list must be first. The buffer pages
 349 * are allocated in cache lines, which means that each buffer
 350 * page will be at the beginning of a cache line, and thus
 351 * the least significant bits will be zero. We use this to
 352 * add flags in the list struct pointers, to make the ring buffer
 353 * lockless.
 354 */
 355struct buffer_page {
 356	struct list_head list;		/* list of buffer pages */
 357	local_t		 write;		/* index for next write */
 358	unsigned	 read;		/* index for next read */
 359	local_t		 entries;	/* entries on this page */
 360	unsigned long	 real_end;	/* real end of data */
 361	unsigned	 order;		/* order of the page */
 362	u32		 id:30;		/* ID for external mapping */
 363	u32		 range:1;	/* Mapped via a range */
 364	struct buffer_data_page *page;	/* Actual data page */
 365};
 366
 367/*
 368 * The buffer page counters, write and entries, must be reset
 369 * atomically when crossing page boundaries. To synchronize this
 370 * update, two counters are inserted into the number. One is
 371 * the actual counter for the write position or count on the page.
 372 *
 373 * The other is a counter of updaters. Before an update happens
 374 * the update partition of the counter is incremented. This will
 375 * allow the updater to update the counter atomically.
 376 *
 377 * The counter is 20 bits, and the state data is 12.
 378 */
 379#define RB_WRITE_MASK		0xfffff
 380#define RB_WRITE_INTCNT		(1 << 20)
 381
 382static void rb_init_page(struct buffer_data_page *bpage)
 383{
 384	local_set(&bpage->commit, 0);
 385}
 386
 387static __always_inline unsigned int rb_page_commit(struct buffer_page *bpage)
 
 
 
 
 
 
 388{
 389	return local_read(&bpage->page->commit);
 
 390}
 391
 
 
 
 
 392static void free_buffer_page(struct buffer_page *bpage)
 393{
 394	/* Range pages are not to be freed */
 395	if (!bpage->range)
 396		free_pages((unsigned long)bpage->page, bpage->order);
 397	kfree(bpage);
 398}
 399
 400/*
 401 * We need to fit the time_stamp delta into 27 bits.
 402 */
 403static inline bool test_time_stamp(u64 delta)
 404{
 405	return !!(delta & TS_DELTA_TEST);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 406}
 407
 408struct rb_irq_work {
 409	struct irq_work			work;
 410	wait_queue_head_t		waiters;
 411	wait_queue_head_t		full_waiters;
 412	atomic_t			seq;
 413	bool				waiters_pending;
 414	bool				full_waiters_pending;
 415	bool				wakeup_full;
 416};
 417
 418/*
 419 * Structure to hold event state and handle nested events.
 420 */
 421struct rb_event_info {
 422	u64			ts;
 423	u64			delta;
 424	u64			before;
 425	u64			after;
 426	unsigned long		length;
 427	struct buffer_page	*tail_page;
 428	int			add_timestamp;
 429};
 430
 431/*
 432 * Used for the add_timestamp
 433 *  NONE
 434 *  EXTEND - wants a time extend
 435 *  ABSOLUTE - the buffer requests all events to have absolute time stamps
 436 *  FORCE - force a full time stamp.
 437 */
 438enum {
 439	RB_ADD_STAMP_NONE		= 0,
 440	RB_ADD_STAMP_EXTEND		= BIT(1),
 441	RB_ADD_STAMP_ABSOLUTE		= BIT(2),
 442	RB_ADD_STAMP_FORCE		= BIT(3)
 443};
 444/*
 445 * Used for which event context the event is in.
 446 *  TRANSITION = 0
 447 *  NMI     = 1
 448 *  IRQ     = 2
 449 *  SOFTIRQ = 3
 450 *  NORMAL  = 4
 451 *
 452 * See trace_recursive_lock() comment below for more details.
 453 */
 454enum {
 455	RB_CTX_TRANSITION,
 456	RB_CTX_NMI,
 457	RB_CTX_IRQ,
 458	RB_CTX_SOFTIRQ,
 459	RB_CTX_NORMAL,
 460	RB_CTX_MAX
 461};
 462
 463struct rb_time_struct {
 464	local64_t	time;
 465};
 466typedef struct rb_time_struct rb_time_t;
 467
 468#define MAX_NEST	5
 469
 470/*
 471 * head_page == tail_page && head == tail then buffer is empty.
 472 */
 473struct ring_buffer_per_cpu {
 474	int				cpu;
 475	atomic_t			record_disabled;
 476	atomic_t			resize_disabled;
 477	struct trace_buffer	*buffer;
 478	raw_spinlock_t			reader_lock;	/* serialize readers */
 479	arch_spinlock_t			lock;
 480	struct lock_class_key		lock_key;
 481	struct buffer_data_page		*free_page;
 482	unsigned long			nr_pages;
 483	unsigned int			current_context;
 484	struct list_head		*pages;
 485	/* pages generation counter, incremented when the list changes */
 486	unsigned long			cnt;
 487	struct buffer_page		*head_page;	/* read from head */
 488	struct buffer_page		*tail_page;	/* write to tail */
 489	struct buffer_page		*commit_page;	/* committed pages */
 490	struct buffer_page		*reader_page;
 491	unsigned long			lost_events;
 492	unsigned long			last_overrun;
 493	unsigned long			nest;
 494	local_t				entries_bytes;
 495	local_t				entries;
 496	local_t				overrun;
 497	local_t				commit_overrun;
 498	local_t				dropped_events;
 499	local_t				committing;
 500	local_t				commits;
 501	local_t				pages_touched;
 502	local_t				pages_lost;
 503	local_t				pages_read;
 504	long				last_pages_touch;
 505	size_t				shortest_full;
 506	unsigned long			read;
 507	unsigned long			read_bytes;
 508	rb_time_t			write_stamp;
 509	rb_time_t			before_stamp;
 510	u64				event_stamp[MAX_NEST];
 511	u64				read_stamp;
 512	/* pages removed since last reset */
 513	unsigned long			pages_removed;
 514
 515	unsigned int			mapped;
 516	unsigned int			user_mapped;	/* user space mapping */
 517	struct mutex			mapping_lock;
 518	unsigned long			*subbuf_ids;	/* ID to subbuf VA */
 519	struct trace_buffer_meta	*meta_page;
 520	struct ring_buffer_meta		*ring_meta;
 521
 522	/* ring buffer pages to update, > 0 to add, < 0 to remove */
 523	long				nr_pages_to_update;
 524	struct list_head		new_pages; /* new pages to add */
 525	struct work_struct		update_pages_work;
 526	struct completion		update_done;
 527
 528	struct rb_irq_work		irq_work;
 529};
 530
 531struct trace_buffer {
 532	unsigned			flags;
 533	int				cpus;
 534	atomic_t			record_disabled;
 535	atomic_t			resizing;
 536	cpumask_var_t			cpumask;
 537
 538	struct lock_class_key		*reader_lock_key;
 539
 540	struct mutex			mutex;
 541
 542	struct ring_buffer_per_cpu	**buffers;
 543
 544	struct hlist_node		node;
 
 
 545	u64				(*clock)(void);
 546
 547	struct rb_irq_work		irq_work;
 548	bool				time_stamp_abs;
 549
 550	unsigned long			range_addr_start;
 551	unsigned long			range_addr_end;
 552
 553	long				last_text_delta;
 554	long				last_data_delta;
 555
 556	unsigned int			subbuf_size;
 557	unsigned int			subbuf_order;
 558	unsigned int			max_data_size;
 559};
 560
 561struct ring_buffer_iter {
 562	struct ring_buffer_per_cpu	*cpu_buffer;
 563	unsigned long			head;
 564	unsigned long			next_event;
 565	struct buffer_page		*head_page;
 566	struct buffer_page		*cache_reader_page;
 567	unsigned long			cache_read;
 568	unsigned long			cache_pages_removed;
 569	u64				read_stamp;
 570	u64				page_stamp;
 571	struct ring_buffer_event	*event;
 572	size_t				event_size;
 573	int				missed_events;
 574};
 575
 576int ring_buffer_print_page_header(struct trace_buffer *buffer, struct trace_seq *s)
 577{
 578	struct buffer_data_page field;
 579
 580	trace_seq_printf(s, "\tfield: u64 timestamp;\t"
 581			 "offset:0;\tsize:%u;\tsigned:%u;\n",
 582			 (unsigned int)sizeof(field.time_stamp),
 583			 (unsigned int)is_signed_type(u64));
 584
 585	trace_seq_printf(s, "\tfield: local_t commit;\t"
 586			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
 587			 (unsigned int)offsetof(typeof(field), commit),
 588			 (unsigned int)sizeof(field.commit),
 589			 (unsigned int)is_signed_type(long));
 590
 591	trace_seq_printf(s, "\tfield: int overwrite;\t"
 592			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
 593			 (unsigned int)offsetof(typeof(field), commit),
 594			 1,
 595			 (unsigned int)is_signed_type(long));
 596
 597	trace_seq_printf(s, "\tfield: char data;\t"
 598			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
 599			 (unsigned int)offsetof(typeof(field), data),
 600			 (unsigned int)buffer->subbuf_size,
 601			 (unsigned int)is_signed_type(char));
 602
 603	return !trace_seq_has_overflowed(s);
 604}
 605
 606static inline void rb_time_read(rb_time_t *t, u64 *ret)
 607{
 608	*ret = local64_read(&t->time);
 609}
 610static void rb_time_set(rb_time_t *t, u64 val)
 611{
 612	local64_set(&t->time, val);
 613}
 614
 615/*
 616 * Enable this to make sure that the event passed to
 617 * ring_buffer_event_time_stamp() is not committed and also
 618 * is on the buffer that it passed in.
 619 */
 620//#define RB_VERIFY_EVENT
 621#ifdef RB_VERIFY_EVENT
 622static struct list_head *rb_list_head(struct list_head *list);
 623static void verify_event(struct ring_buffer_per_cpu *cpu_buffer,
 624			 void *event)
 625{
 626	struct buffer_page *page = cpu_buffer->commit_page;
 627	struct buffer_page *tail_page = READ_ONCE(cpu_buffer->tail_page);
 628	struct list_head *next;
 629	long commit, write;
 630	unsigned long addr = (unsigned long)event;
 631	bool done = false;
 632	int stop = 0;
 633
 634	/* Make sure the event exists and is not committed yet */
 635	do {
 636		if (page == tail_page || WARN_ON_ONCE(stop++ > 100))
 637			done = true;
 638		commit = local_read(&page->page->commit);
 639		write = local_read(&page->write);
 640		if (addr >= (unsigned long)&page->page->data[commit] &&
 641		    addr < (unsigned long)&page->page->data[write])
 642			return;
 643
 644		next = rb_list_head(page->list.next);
 645		page = list_entry(next, struct buffer_page, list);
 646	} while (!done);
 647	WARN_ON_ONCE(1);
 648}
 649#else
 650static inline void verify_event(struct ring_buffer_per_cpu *cpu_buffer,
 651			 void *event)
 652{
 653}
 654#endif
 655
 656/*
 657 * The absolute time stamp drops the 5 MSBs and some clocks may
 658 * require them. The rb_fix_abs_ts() will take a previous full
 659 * time stamp, and add the 5 MSB of that time stamp on to the
 660 * saved absolute time stamp. Then they are compared in case of
 661 * the unlikely event that the latest time stamp incremented
 662 * the 5 MSB.
 663 */
 664static inline u64 rb_fix_abs_ts(u64 abs, u64 save_ts)
 665{
 666	if (save_ts & TS_MSB) {
 667		abs |= save_ts & TS_MSB;
 668		/* Check for overflow */
 669		if (unlikely(abs < save_ts))
 670			abs += 1ULL << 59;
 671	}
 672	return abs;
 673}
 674
 675static inline u64 rb_time_stamp(struct trace_buffer *buffer);
 676
 677/**
 678 * ring_buffer_event_time_stamp - return the event's current time stamp
 679 * @buffer: The buffer that the event is on
 680 * @event: the event to get the time stamp of
 681 *
 682 * Note, this must be called after @event is reserved, and before it is
 683 * committed to the ring buffer. And must be called from the same
 684 * context where the event was reserved (normal, softirq, irq, etc).
 685 *
 686 * Returns the time stamp associated with the current event.
 687 * If the event has an extended time stamp, then that is used as
 688 * the time stamp to return.
 689 * In the highly unlikely case that the event was nested more than
 690 * the max nesting, then the write_stamp of the buffer is returned,
 691 * otherwise  current time is returned, but that really neither of
 692 * the last two cases should ever happen.
 693 */
 694u64 ring_buffer_event_time_stamp(struct trace_buffer *buffer,
 695				 struct ring_buffer_event *event)
 696{
 697	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[smp_processor_id()];
 698	unsigned int nest;
 699	u64 ts;
 700
 701	/* If the event includes an absolute time, then just use that */
 702	if (event->type_len == RINGBUF_TYPE_TIME_STAMP) {
 703		ts = rb_event_time_stamp(event);
 704		return rb_fix_abs_ts(ts, cpu_buffer->tail_page->page->time_stamp);
 705	}
 706
 707	nest = local_read(&cpu_buffer->committing);
 708	verify_event(cpu_buffer, event);
 709	if (WARN_ON_ONCE(!nest))
 710		goto fail;
 711
 712	/* Read the current saved nesting level time stamp */
 713	if (likely(--nest < MAX_NEST))
 714		return cpu_buffer->event_stamp[nest];
 715
 716	/* Shouldn't happen, warn if it does */
 717	WARN_ONCE(1, "nest (%d) greater than max", nest);
 718
 719 fail:
 720	rb_time_read(&cpu_buffer->write_stamp, &ts);
 721
 722	return ts;
 723}
 724
 725/**
 726 * ring_buffer_nr_dirty_pages - get the number of used pages in the ring buffer
 727 * @buffer: The ring_buffer to get the number of pages from
 728 * @cpu: The cpu of the ring_buffer to get the number of pages from
 729 *
 730 * Returns the number of pages that have content in the ring buffer.
 731 */
 732size_t ring_buffer_nr_dirty_pages(struct trace_buffer *buffer, int cpu)
 733{
 734	size_t read;
 735	size_t lost;
 736	size_t cnt;
 737
 738	read = local_read(&buffer->buffers[cpu]->pages_read);
 739	lost = local_read(&buffer->buffers[cpu]->pages_lost);
 740	cnt = local_read(&buffer->buffers[cpu]->pages_touched);
 741
 742	if (WARN_ON_ONCE(cnt < lost))
 743		return 0;
 744
 745	cnt -= lost;
 746
 747	/* The reader can read an empty page, but not more than that */
 748	if (cnt < read) {
 749		WARN_ON_ONCE(read > cnt + 1);
 750		return 0;
 751	}
 752
 753	return cnt - read;
 754}
 755
 756static __always_inline bool full_hit(struct trace_buffer *buffer, int cpu, int full)
 757{
 758	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
 759	size_t nr_pages;
 760	size_t dirty;
 761
 762	nr_pages = cpu_buffer->nr_pages;
 763	if (!nr_pages || !full)
 764		return true;
 765
 766	/*
 767	 * Add one as dirty will never equal nr_pages, as the sub-buffer
 768	 * that the writer is on is not counted as dirty.
 769	 * This is needed if "buffer_percent" is set to 100.
 770	 */
 771	dirty = ring_buffer_nr_dirty_pages(buffer, cpu) + 1;
 772
 773	return (dirty * 100) >= (full * nr_pages);
 774}
 775
 776/*
 777 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
 778 *
 779 * Schedules a delayed work to wake up any task that is blocked on the
 780 * ring buffer waiters queue.
 781 */
 782static void rb_wake_up_waiters(struct irq_work *work)
 783{
 784	struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
 785
 786	/* For waiters waiting for the first wake up */
 787	(void)atomic_fetch_inc_release(&rbwork->seq);
 788
 789	wake_up_all(&rbwork->waiters);
 790	if (rbwork->full_waiters_pending || rbwork->wakeup_full) {
 791		/* Only cpu_buffer sets the above flags */
 792		struct ring_buffer_per_cpu *cpu_buffer =
 793			container_of(rbwork, struct ring_buffer_per_cpu, irq_work);
 794
 795		/* Called from interrupt context */
 796		raw_spin_lock(&cpu_buffer->reader_lock);
 797		rbwork->wakeup_full = false;
 798		rbwork->full_waiters_pending = false;
 799
 800		/* Waking up all waiters, they will reset the shortest full */
 801		cpu_buffer->shortest_full = 0;
 802		raw_spin_unlock(&cpu_buffer->reader_lock);
 803
 804		wake_up_all(&rbwork->full_waiters);
 805	}
 806}
 807
 808/**
 809 * ring_buffer_wake_waiters - wake up any waiters on this ring buffer
 810 * @buffer: The ring buffer to wake waiters on
 811 * @cpu: The CPU buffer to wake waiters on
 812 *
 813 * In the case of a file that represents a ring buffer is closing,
 814 * it is prudent to wake up any waiters that are on this.
 815 */
 816void ring_buffer_wake_waiters(struct trace_buffer *buffer, int cpu)
 817{
 818	struct ring_buffer_per_cpu *cpu_buffer;
 819	struct rb_irq_work *rbwork;
 820
 821	if (!buffer)
 822		return;
 823
 824	if (cpu == RING_BUFFER_ALL_CPUS) {
 825
 826		/* Wake up individual ones too. One level recursion */
 827		for_each_buffer_cpu(buffer, cpu)
 828			ring_buffer_wake_waiters(buffer, cpu);
 829
 830		rbwork = &buffer->irq_work;
 831	} else {
 832		if (WARN_ON_ONCE(!buffer->buffers))
 833			return;
 834		if (WARN_ON_ONCE(cpu >= nr_cpu_ids))
 835			return;
 836
 837		cpu_buffer = buffer->buffers[cpu];
 838		/* The CPU buffer may not have been initialized yet */
 839		if (!cpu_buffer)
 840			return;
 841		rbwork = &cpu_buffer->irq_work;
 842	}
 843
 844	/* This can be called in any context */
 845	irq_work_queue(&rbwork->work);
 846}
 847
 848static bool rb_watermark_hit(struct trace_buffer *buffer, int cpu, int full)
 849{
 850	struct ring_buffer_per_cpu *cpu_buffer;
 851	bool ret = false;
 852
 853	/* Reads of all CPUs always waits for any data */
 854	if (cpu == RING_BUFFER_ALL_CPUS)
 855		return !ring_buffer_empty(buffer);
 856
 857	cpu_buffer = buffer->buffers[cpu];
 858
 859	if (!ring_buffer_empty_cpu(buffer, cpu)) {
 860		unsigned long flags;
 861		bool pagebusy;
 862
 863		if (!full)
 864			return true;
 865
 866		raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
 867		pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
 868		ret = !pagebusy && full_hit(buffer, cpu, full);
 869
 870		if (!ret && (!cpu_buffer->shortest_full ||
 871			     cpu_buffer->shortest_full > full)) {
 872		    cpu_buffer->shortest_full = full;
 873		}
 874		raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
 875	}
 876	return ret;
 877}
 878
 879static inline bool
 880rb_wait_cond(struct rb_irq_work *rbwork, struct trace_buffer *buffer,
 881	     int cpu, int full, ring_buffer_cond_fn cond, void *data)
 882{
 883	if (rb_watermark_hit(buffer, cpu, full))
 884		return true;
 885
 886	if (cond(data))
 887		return true;
 888
 889	/*
 890	 * The events can happen in critical sections where
 891	 * checking a work queue can cause deadlocks.
 892	 * After adding a task to the queue, this flag is set
 893	 * only to notify events to try to wake up the queue
 894	 * using irq_work.
 895	 *
 896	 * We don't clear it even if the buffer is no longer
 897	 * empty. The flag only causes the next event to run
 898	 * irq_work to do the work queue wake up. The worse
 899	 * that can happen if we race with !trace_empty() is that
 900	 * an event will cause an irq_work to try to wake up
 901	 * an empty queue.
 902	 *
 903	 * There's no reason to protect this flag either, as
 904	 * the work queue and irq_work logic will do the necessary
 905	 * synchronization for the wake ups. The only thing
 906	 * that is necessary is that the wake up happens after
 907	 * a task has been queued. It's OK for spurious wake ups.
 908	 */
 909	if (full)
 910		rbwork->full_waiters_pending = true;
 911	else
 912		rbwork->waiters_pending = true;
 913
 914	return false;
 915}
 916
 917struct rb_wait_data {
 918	struct rb_irq_work		*irq_work;
 919	int				seq;
 920};
 921
 922/*
 923 * The default wait condition for ring_buffer_wait() is to just to exit the
 924 * wait loop the first time it is woken up.
 925 */
 926static bool rb_wait_once(void *data)
 927{
 928	struct rb_wait_data *rdata = data;
 929	struct rb_irq_work *rbwork = rdata->irq_work;
 930
 931	return atomic_read_acquire(&rbwork->seq) != rdata->seq;
 932}
 933
 934/**
 935 * ring_buffer_wait - wait for input to the ring buffer
 936 * @buffer: buffer to wait on
 937 * @cpu: the cpu buffer to wait on
 938 * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS
 939 * @cond: condition function to break out of wait (NULL to run once)
 940 * @data: the data to pass to @cond.
 941 *
 942 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
 943 * as data is added to any of the @buffer's cpu buffers. Otherwise
 944 * it will wait for data to be added to a specific cpu buffer.
 945 */
 946int ring_buffer_wait(struct trace_buffer *buffer, int cpu, int full,
 947		     ring_buffer_cond_fn cond, void *data)
 948{
 949	struct ring_buffer_per_cpu *cpu_buffer;
 950	struct wait_queue_head *waitq;
 951	struct rb_irq_work *rbwork;
 952	struct rb_wait_data rdata;
 953	int ret = 0;
 954
 955	/*
 956	 * Depending on what the caller is waiting for, either any
 957	 * data in any cpu buffer, or a specific buffer, put the
 958	 * caller on the appropriate wait queue.
 959	 */
 960	if (cpu == RING_BUFFER_ALL_CPUS) {
 961		rbwork = &buffer->irq_work;
 962		/* Full only makes sense on per cpu reads */
 963		full = 0;
 964	} else {
 965		if (!cpumask_test_cpu(cpu, buffer->cpumask))
 966			return -ENODEV;
 967		cpu_buffer = buffer->buffers[cpu];
 968		rbwork = &cpu_buffer->irq_work;
 969	}
 970
 971	if (full)
 972		waitq = &rbwork->full_waiters;
 973	else
 974		waitq = &rbwork->waiters;
 975
 976	/* Set up to exit loop as soon as it is woken */
 977	if (!cond) {
 978		cond = rb_wait_once;
 979		rdata.irq_work = rbwork;
 980		rdata.seq = atomic_read_acquire(&rbwork->seq);
 981		data = &rdata;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 982	}
 983
 984	ret = wait_event_interruptible((*waitq),
 985				rb_wait_cond(rbwork, buffer, cpu, full, cond, data));
 
 
 986
 987	return ret;
 988}
 989
 990/**
 991 * ring_buffer_poll_wait - poll on buffer input
 992 * @buffer: buffer to wait on
 993 * @cpu: the cpu buffer to wait on
 994 * @filp: the file descriptor
 995 * @poll_table: The poll descriptor
 996 * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS
 997 *
 998 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
 999 * as data is added to any of the @buffer's cpu buffers. Otherwise
1000 * it will wait for data to be added to a specific cpu buffer.
1001 *
1002 * Returns EPOLLIN | EPOLLRDNORM if data exists in the buffers,
1003 * zero otherwise.
1004 */
1005__poll_t ring_buffer_poll_wait(struct trace_buffer *buffer, int cpu,
1006			  struct file *filp, poll_table *poll_table, int full)
1007{
1008	struct ring_buffer_per_cpu *cpu_buffer;
1009	struct rb_irq_work *rbwork;
1010
1011	if (cpu == RING_BUFFER_ALL_CPUS) {
1012		rbwork = &buffer->irq_work;
1013		full = 0;
1014	} else {
1015		if (!cpumask_test_cpu(cpu, buffer->cpumask))
1016			return EPOLLERR;
1017
1018		cpu_buffer = buffer->buffers[cpu];
1019		rbwork = &cpu_buffer->irq_work;
1020	}
1021
1022	if (full) {
1023		poll_wait(filp, &rbwork->full_waiters, poll_table);
1024
1025		if (rb_watermark_hit(buffer, cpu, full))
1026			return EPOLLIN | EPOLLRDNORM;
1027		/*
1028		 * Only allow full_waiters_pending update to be seen after
1029		 * the shortest_full is set (in rb_watermark_hit). If the
1030		 * writer sees the full_waiters_pending flag set, it will
1031		 * compare the amount in the ring buffer to shortest_full.
1032		 * If the amount in the ring buffer is greater than the
1033		 * shortest_full percent, it will call the irq_work handler
1034		 * to wake up this list. The irq_handler will reset shortest_full
1035		 * back to zero. That's done under the reader_lock, but
1036		 * the below smp_mb() makes sure that the update to
1037		 * full_waiters_pending doesn't leak up into the above.
1038		 */
1039		smp_mb();
1040		rbwork->full_waiters_pending = true;
1041		return 0;
1042	}
1043
1044	poll_wait(filp, &rbwork->waiters, poll_table);
1045	rbwork->waiters_pending = true;
1046
1047	/*
1048	 * There's a tight race between setting the waiters_pending and
1049	 * checking if the ring buffer is empty.  Once the waiters_pending bit
1050	 * is set, the next event will wake the task up, but we can get stuck
1051	 * if there's only a single event in.
1052	 *
1053	 * FIXME: Ideally, we need a memory barrier on the writer side as well,
1054	 * but adding a memory barrier to all events will cause too much of a
1055	 * performance hit in the fast path.  We only need a memory barrier when
1056	 * the buffer goes from empty to having content.  But as this race is
1057	 * extremely small, and it's not a problem if another event comes in, we
1058	 * will fix it later.
1059	 */
1060	smp_mb();
1061
1062	if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
1063	    (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
1064		return EPOLLIN | EPOLLRDNORM;
1065	return 0;
1066}
1067
1068/* buffer may be either ring_buffer or ring_buffer_per_cpu */
1069#define RB_WARN_ON(b, cond)						\
1070	({								\
1071		int _____ret = unlikely(cond);				\
1072		if (_____ret) {						\
1073			if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
1074				struct ring_buffer_per_cpu *__b =	\
1075					(void *)b;			\
1076				atomic_inc(&__b->buffer->record_disabled); \
1077			} else						\
1078				atomic_inc(&b->record_disabled);	\
1079			WARN_ON(1);					\
1080		}							\
1081		_____ret;						\
1082	})
1083
1084/* Up this if you want to test the TIME_EXTENTS and normalization */
1085#define DEBUG_SHIFT 0
1086
1087static inline u64 rb_time_stamp(struct trace_buffer *buffer)
1088{
1089	u64 ts;
1090
1091	/* Skip retpolines :-( */
1092	if (IS_ENABLED(CONFIG_MITIGATION_RETPOLINE) && likely(buffer->clock == trace_clock_local))
1093		ts = trace_clock_local();
1094	else
1095		ts = buffer->clock();
1096
1097	/* shift to debug/test normalization and TIME_EXTENTS */
1098	return ts << DEBUG_SHIFT;
1099}
1100
1101u64 ring_buffer_time_stamp(struct trace_buffer *buffer)
1102{
1103	u64 time;
1104
1105	preempt_disable_notrace();
1106	time = rb_time_stamp(buffer);
1107	preempt_enable_notrace();
1108
1109	return time;
1110}
1111EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
1112
1113void ring_buffer_normalize_time_stamp(struct trace_buffer *buffer,
1114				      int cpu, u64 *ts)
1115{
1116	/* Just stupid testing the normalize function and deltas */
1117	*ts >>= DEBUG_SHIFT;
1118}
1119EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
1120
1121/*
1122 * Making the ring buffer lockless makes things tricky.
1123 * Although writes only happen on the CPU that they are on,
1124 * and they only need to worry about interrupts. Reads can
1125 * happen on any CPU.
1126 *
1127 * The reader page is always off the ring buffer, but when the
1128 * reader finishes with a page, it needs to swap its page with
1129 * a new one from the buffer. The reader needs to take from
1130 * the head (writes go to the tail). But if a writer is in overwrite
1131 * mode and wraps, it must push the head page forward.
1132 *
1133 * Here lies the problem.
1134 *
1135 * The reader must be careful to replace only the head page, and
1136 * not another one. As described at the top of the file in the
1137 * ASCII art, the reader sets its old page to point to the next
1138 * page after head. It then sets the page after head to point to
1139 * the old reader page. But if the writer moves the head page
1140 * during this operation, the reader could end up with the tail.
1141 *
1142 * We use cmpxchg to help prevent this race. We also do something
1143 * special with the page before head. We set the LSB to 1.
1144 *
1145 * When the writer must push the page forward, it will clear the
1146 * bit that points to the head page, move the head, and then set
1147 * the bit that points to the new head page.
1148 *
1149 * We also don't want an interrupt coming in and moving the head
1150 * page on another writer. Thus we use the second LSB to catch
1151 * that too. Thus:
1152 *
1153 * head->list->prev->next        bit 1          bit 0
1154 *                              -------        -------
1155 * Normal page                     0              0
1156 * Points to head page             0              1
1157 * New head page                   1              0
1158 *
1159 * Note we can not trust the prev pointer of the head page, because:
1160 *
1161 * +----+       +-----+        +-----+
1162 * |    |------>|  T  |---X--->|  N  |
1163 * |    |<------|     |        |     |
1164 * +----+       +-----+        +-----+
1165 *   ^                           ^ |
1166 *   |          +-----+          | |
1167 *   +----------|  R  |----------+ |
1168 *              |     |<-----------+
1169 *              +-----+
1170 *
1171 * Key:  ---X-->  HEAD flag set in pointer
1172 *         T      Tail page
1173 *         R      Reader page
1174 *         N      Next page
1175 *
1176 * (see __rb_reserve_next() to see where this happens)
1177 *
1178 *  What the above shows is that the reader just swapped out
1179 *  the reader page with a page in the buffer, but before it
1180 *  could make the new header point back to the new page added
1181 *  it was preempted by a writer. The writer moved forward onto
1182 *  the new page added by the reader and is about to move forward
1183 *  again.
1184 *
1185 *  You can see, it is legitimate for the previous pointer of
1186 *  the head (or any page) not to point back to itself. But only
1187 *  temporarily.
1188 */
1189
1190#define RB_PAGE_NORMAL		0UL
1191#define RB_PAGE_HEAD		1UL
1192#define RB_PAGE_UPDATE		2UL
1193
1194
1195#define RB_FLAG_MASK		3UL
1196
1197/* PAGE_MOVED is not part of the mask */
1198#define RB_PAGE_MOVED		4UL
1199
1200/*
1201 * rb_list_head - remove any bit
1202 */
1203static struct list_head *rb_list_head(struct list_head *list)
1204{
1205	unsigned long val = (unsigned long)list;
1206
1207	return (struct list_head *)(val & ~RB_FLAG_MASK);
1208}
1209
1210/*
1211 * rb_is_head_page - test if the given page is the head page
1212 *
1213 * Because the reader may move the head_page pointer, we can
1214 * not trust what the head page is (it may be pointing to
1215 * the reader page). But if the next page is a header page,
1216 * its flags will be non zero.
1217 */
1218static inline int
1219rb_is_head_page(struct buffer_page *page, struct list_head *list)
 
1220{
1221	unsigned long val;
1222
1223	val = (unsigned long)list->next;
1224
1225	if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
1226		return RB_PAGE_MOVED;
1227
1228	return val & RB_FLAG_MASK;
1229}
1230
1231/*
1232 * rb_is_reader_page
1233 *
1234 * The unique thing about the reader page, is that, if the
1235 * writer is ever on it, the previous pointer never points
1236 * back to the reader page.
1237 */
1238static bool rb_is_reader_page(struct buffer_page *page)
1239{
1240	struct list_head *list = page->list.prev;
1241
1242	return rb_list_head(list->next) != &page->list;
1243}
1244
1245/*
1246 * rb_set_list_to_head - set a list_head to be pointing to head.
1247 */
1248static void rb_set_list_to_head(struct list_head *list)
 
1249{
1250	unsigned long *ptr;
1251
1252	ptr = (unsigned long *)&list->next;
1253	*ptr |= RB_PAGE_HEAD;
1254	*ptr &= ~RB_PAGE_UPDATE;
1255}
1256
1257/*
1258 * rb_head_page_activate - sets up head page
1259 */
1260static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
1261{
1262	struct buffer_page *head;
1263
1264	head = cpu_buffer->head_page;
1265	if (!head)
1266		return;
1267
1268	/*
1269	 * Set the previous list pointer to have the HEAD flag.
1270	 */
1271	rb_set_list_to_head(head->list.prev);
1272
1273	if (cpu_buffer->ring_meta) {
1274		struct ring_buffer_meta *meta = cpu_buffer->ring_meta;
1275		meta->head_buffer = (unsigned long)head->page;
1276	}
1277}
1278
1279static void rb_list_head_clear(struct list_head *list)
1280{
1281	unsigned long *ptr = (unsigned long *)&list->next;
1282
1283	*ptr &= ~RB_FLAG_MASK;
1284}
1285
1286/*
1287 * rb_head_page_deactivate - clears head page ptr (for free list)
1288 */
1289static void
1290rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
1291{
1292	struct list_head *hd;
1293
1294	/* Go through the whole list and clear any pointers found. */
1295	rb_list_head_clear(cpu_buffer->pages);
1296
1297	list_for_each(hd, cpu_buffer->pages)
1298		rb_list_head_clear(hd);
1299}
1300
1301static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
1302			    struct buffer_page *head,
1303			    struct buffer_page *prev,
1304			    int old_flag, int new_flag)
1305{
1306	struct list_head *list;
1307	unsigned long val = (unsigned long)&head->list;
1308	unsigned long ret;
1309
1310	list = &prev->list;
1311
1312	val &= ~RB_FLAG_MASK;
1313
1314	ret = cmpxchg((unsigned long *)&list->next,
1315		      val | old_flag, val | new_flag);
1316
1317	/* check if the reader took the page */
1318	if ((ret & ~RB_FLAG_MASK) != val)
1319		return RB_PAGE_MOVED;
1320
1321	return ret & RB_FLAG_MASK;
1322}
1323
1324static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
1325				   struct buffer_page *head,
1326				   struct buffer_page *prev,
1327				   int old_flag)
1328{
1329	return rb_head_page_set(cpu_buffer, head, prev,
1330				old_flag, RB_PAGE_UPDATE);
1331}
1332
1333static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
1334				 struct buffer_page *head,
1335				 struct buffer_page *prev,
1336				 int old_flag)
1337{
1338	return rb_head_page_set(cpu_buffer, head, prev,
1339				old_flag, RB_PAGE_HEAD);
1340}
1341
1342static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
1343				   struct buffer_page *head,
1344				   struct buffer_page *prev,
1345				   int old_flag)
1346{
1347	return rb_head_page_set(cpu_buffer, head, prev,
1348				old_flag, RB_PAGE_NORMAL);
1349}
1350
1351static inline void rb_inc_page(struct buffer_page **bpage)
 
1352{
1353	struct list_head *p = rb_list_head((*bpage)->list.next);
1354
1355	*bpage = list_entry(p, struct buffer_page, list);
1356}
1357
1358static struct buffer_page *
1359rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
1360{
1361	struct buffer_page *head;
1362	struct buffer_page *page;
1363	struct list_head *list;
1364	int i;
1365
1366	if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
1367		return NULL;
1368
1369	/* sanity check */
1370	list = cpu_buffer->pages;
1371	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
1372		return NULL;
1373
1374	page = head = cpu_buffer->head_page;
1375	/*
1376	 * It is possible that the writer moves the header behind
1377	 * where we started, and we miss in one loop.
1378	 * A second loop should grab the header, but we'll do
1379	 * three loops just because I'm paranoid.
1380	 */
1381	for (i = 0; i < 3; i++) {
1382		do {
1383			if (rb_is_head_page(page, page->list.prev)) {
1384				cpu_buffer->head_page = page;
1385				return page;
1386			}
1387			rb_inc_page(&page);
1388		} while (page != head);
1389	}
1390
1391	RB_WARN_ON(cpu_buffer, 1);
1392
1393	return NULL;
1394}
1395
1396static bool rb_head_page_replace(struct buffer_page *old,
1397				struct buffer_page *new)
1398{
1399	unsigned long *ptr = (unsigned long *)&old->list.prev->next;
1400	unsigned long val;
 
1401
1402	val = *ptr & ~RB_FLAG_MASK;
1403	val |= RB_PAGE_HEAD;
1404
1405	return try_cmpxchg(ptr, &val, (unsigned long)&new->list);
 
 
1406}
1407
1408/*
1409 * rb_tail_page_update - move the tail page forward
1410 */
1411static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1412			       struct buffer_page *tail_page,
1413			       struct buffer_page *next_page)
1414{
1415	unsigned long old_entries;
1416	unsigned long old_write;
1417
1418	/*
1419	 * The tail page now needs to be moved forward.
1420	 *
1421	 * We need to reset the tail page, but without messing
1422	 * with possible erasing of data brought in by interrupts
1423	 * that have moved the tail page and are currently on it.
1424	 *
1425	 * We add a counter to the write field to denote this.
1426	 */
1427	old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1428	old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1429
1430	/*
1431	 * Just make sure we have seen our old_write and synchronize
1432	 * with any interrupts that come in.
1433	 */
1434	barrier();
1435
1436	/*
1437	 * If the tail page is still the same as what we think
1438	 * it is, then it is up to us to update the tail
1439	 * pointer.
1440	 */
1441	if (tail_page == READ_ONCE(cpu_buffer->tail_page)) {
1442		/* Zero the write counter */
1443		unsigned long val = old_write & ~RB_WRITE_MASK;
1444		unsigned long eval = old_entries & ~RB_WRITE_MASK;
1445
1446		/*
1447		 * This will only succeed if an interrupt did
1448		 * not come in and change it. In which case, we
1449		 * do not want to modify it.
1450		 *
1451		 * We add (void) to let the compiler know that we do not care
1452		 * about the return value of these functions. We use the
1453		 * cmpxchg to only update if an interrupt did not already
1454		 * do it for us. If the cmpxchg fails, we don't care.
1455		 */
1456		(void)local_cmpxchg(&next_page->write, old_write, val);
1457		(void)local_cmpxchg(&next_page->entries, old_entries, eval);
1458
1459		/*
1460		 * No need to worry about races with clearing out the commit.
1461		 * it only can increment when a commit takes place. But that
1462		 * only happens in the outer most nested commit.
1463		 */
1464		local_set(&next_page->page->commit, 0);
1465
1466		/* Either we update tail_page or an interrupt does */
1467		if (try_cmpxchg(&cpu_buffer->tail_page, &tail_page, next_page))
1468			local_inc(&cpu_buffer->pages_touched);
1469	}
1470}
1471
1472static void rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1473			  struct buffer_page *bpage)
1474{
1475	unsigned long val = (unsigned long)bpage;
1476
1477	RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK);
 
 
 
1478}
1479
1480static bool rb_check_links(struct ring_buffer_per_cpu *cpu_buffer,
1481			   struct list_head *list)
 
 
 
1482{
1483	if (RB_WARN_ON(cpu_buffer,
1484		       rb_list_head(rb_list_head(list->next)->prev) != list))
1485		return false;
1486
1487	if (RB_WARN_ON(cpu_buffer,
1488		       rb_list_head(rb_list_head(list->prev)->next) != list))
1489		return false;
1490
1491	return true;
1492}
1493
1494/**
1495 * rb_check_pages - integrity check of buffer pages
1496 * @cpu_buffer: CPU buffer with pages to test
1497 *
1498 * As a safety measure we check to make sure the data pages have not
1499 * been corrupted.
1500 */
1501static void rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1502{
1503	struct list_head *head, *tmp;
1504	unsigned long buffer_cnt;
1505	unsigned long flags;
1506	int nr_loops = 0;
1507
1508	/*
1509	 * Walk the linked list underpinning the ring buffer and validate all
1510	 * its next and prev links.
1511	 *
1512	 * The check acquires the reader_lock to avoid concurrent processing
1513	 * with code that could be modifying the list. However, the lock cannot
1514	 * be held for the entire duration of the walk, as this would make the
1515	 * time when interrupts are disabled non-deterministic, dependent on the
1516	 * ring buffer size. Therefore, the code releases and re-acquires the
1517	 * lock after checking each page. The ring_buffer_per_cpu.cnt variable
1518	 * is then used to detect if the list was modified while the lock was
1519	 * not held, in which case the check needs to be restarted.
1520	 *
1521	 * The code attempts to perform the check at most three times before
1522	 * giving up. This is acceptable because this is only a self-validation
1523	 * to detect problems early on. In practice, the list modification
1524	 * operations are fairly spaced, and so this check typically succeeds at
1525	 * most on the second try.
1526	 */
1527again:
1528	if (++nr_loops > 3)
1529		return;
1530
1531	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
1532	head = rb_list_head(cpu_buffer->pages);
1533	if (!rb_check_links(cpu_buffer, head))
1534		goto out_locked;
1535	buffer_cnt = cpu_buffer->cnt;
1536	tmp = head;
1537	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1538
1539	while (true) {
1540		raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
 
 
1541
1542		if (buffer_cnt != cpu_buffer->cnt) {
1543			/* The list was updated, try again. */
1544			raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1545			goto again;
1546		}
1547
1548		tmp = rb_list_head(tmp->next);
1549		if (tmp == head)
1550			/* The iteration circled back, all is done. */
1551			goto out_locked;
1552
1553		if (!rb_check_links(cpu_buffer, tmp))
1554			goto out_locked;
1555
1556		raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1557	}
1558
1559out_locked:
1560	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1561}
1562
1563/*
1564 * Take an address, add the meta data size as well as the array of
1565 * array subbuffer indexes, then align it to a subbuffer size.
1566 *
1567 * This is used to help find the next per cpu subbuffer within a mapped range.
1568 */
1569static unsigned long
1570rb_range_align_subbuf(unsigned long addr, int subbuf_size, int nr_subbufs)
1571{
1572	addr += sizeof(struct ring_buffer_meta) +
1573		sizeof(int) * nr_subbufs;
1574	return ALIGN(addr, subbuf_size);
1575}
1576
1577/*
1578 * Return the ring_buffer_meta for a given @cpu.
1579 */
1580static void *rb_range_meta(struct trace_buffer *buffer, int nr_pages, int cpu)
1581{
1582	int subbuf_size = buffer->subbuf_size + BUF_PAGE_HDR_SIZE;
1583	unsigned long ptr = buffer->range_addr_start;
1584	struct ring_buffer_meta *meta;
1585	int nr_subbufs;
1586
1587	if (!ptr)
1588		return NULL;
1589
1590	/* When nr_pages passed in is zero, the first meta has already been initialized */
1591	if (!nr_pages) {
1592		meta = (struct ring_buffer_meta *)ptr;
1593		nr_subbufs = meta->nr_subbufs;
1594	} else {
1595		meta = NULL;
1596		/* Include the reader page */
1597		nr_subbufs = nr_pages + 1;
1598	}
1599
1600	/*
1601	 * The first chunk may not be subbuffer aligned, where as
1602	 * the rest of the chunks are.
1603	 */
1604	if (cpu) {
1605		ptr = rb_range_align_subbuf(ptr, subbuf_size, nr_subbufs);
1606		ptr += subbuf_size * nr_subbufs;
1607
1608		/* We can use multiplication to find chunks greater than 1 */
1609		if (cpu > 1) {
1610			unsigned long size;
1611			unsigned long p;
1612
1613			/* Save the beginning of this CPU chunk */
1614			p = ptr;
1615			ptr = rb_range_align_subbuf(ptr, subbuf_size, nr_subbufs);
1616			ptr += subbuf_size * nr_subbufs;
1617
1618			/* Now all chunks after this are the same size */
1619			size = ptr - p;
1620			ptr += size * (cpu - 2);
1621		}
1622	}
1623	return (void *)ptr;
1624}
1625
1626/* Return the start of subbufs given the meta pointer */
1627static void *rb_subbufs_from_meta(struct ring_buffer_meta *meta)
1628{
1629	int subbuf_size = meta->subbuf_size;
1630	unsigned long ptr;
1631
1632	ptr = (unsigned long)meta;
1633	ptr = rb_range_align_subbuf(ptr, subbuf_size, meta->nr_subbufs);
1634
1635	return (void *)ptr;
1636}
1637
1638/*
1639 * Return a specific sub-buffer for a given @cpu defined by @idx.
1640 */
1641static void *rb_range_buffer(struct ring_buffer_per_cpu *cpu_buffer, int idx)
1642{
1643	struct ring_buffer_meta *meta;
1644	unsigned long ptr;
1645	int subbuf_size;
1646
1647	meta = rb_range_meta(cpu_buffer->buffer, 0, cpu_buffer->cpu);
1648	if (!meta)
1649		return NULL;
1650
1651	if (WARN_ON_ONCE(idx >= meta->nr_subbufs))
1652		return NULL;
1653
1654	subbuf_size = meta->subbuf_size;
1655
1656	/* Map this buffer to the order that's in meta->buffers[] */
1657	idx = meta->buffers[idx];
1658
1659	ptr = (unsigned long)rb_subbufs_from_meta(meta);
1660
1661	ptr += subbuf_size * idx;
1662	if (ptr + subbuf_size > cpu_buffer->buffer->range_addr_end)
1663		return NULL;
1664
1665	return (void *)ptr;
1666}
1667
1668/*
1669 * See if the existing memory contains valid ring buffer data.
1670 * As the previous kernel must be the same as this kernel, all
1671 * the calculations (size of buffers and number of buffers)
1672 * must be the same.
1673 */
1674static bool rb_meta_valid(struct ring_buffer_meta *meta, int cpu,
1675			  struct trace_buffer *buffer, int nr_pages,
1676			  unsigned long *subbuf_mask)
1677{
1678	int subbuf_size = PAGE_SIZE;
1679	struct buffer_data_page *subbuf;
1680	unsigned long buffers_start;
1681	unsigned long buffers_end;
1682	int i;
1683
1684	if (!subbuf_mask)
1685		return false;
1686
1687	/* Check the meta magic and meta struct size */
1688	if (meta->magic != RING_BUFFER_META_MAGIC ||
1689	    meta->struct_size != sizeof(*meta)) {
1690		pr_info("Ring buffer boot meta[%d] mismatch of magic or struct size\n", cpu);
1691		return false;
1692	}
1693
1694	/* The subbuffer's size and number of subbuffers must match */
1695	if (meta->subbuf_size != subbuf_size ||
1696	    meta->nr_subbufs != nr_pages + 1) {
1697		pr_info("Ring buffer boot meta [%d] mismatch of subbuf_size/nr_pages\n", cpu);
1698		return false;
1699	}
1700
1701	buffers_start = meta->first_buffer;
1702	buffers_end = meta->first_buffer + (subbuf_size * meta->nr_subbufs);
1703
1704	/* Is the head and commit buffers within the range of buffers? */
1705	if (meta->head_buffer < buffers_start ||
1706	    meta->head_buffer >= buffers_end) {
1707		pr_info("Ring buffer boot meta [%d] head buffer out of range\n", cpu);
1708		return false;
1709	}
1710
1711	if (meta->commit_buffer < buffers_start ||
1712	    meta->commit_buffer >= buffers_end) {
1713		pr_info("Ring buffer boot meta [%d] commit buffer out of range\n", cpu);
1714		return false;
1715	}
1716
1717	subbuf = rb_subbufs_from_meta(meta);
1718
1719	bitmap_clear(subbuf_mask, 0, meta->nr_subbufs);
1720
1721	/* Is the meta buffers and the subbufs themselves have correct data? */
1722	for (i = 0; i < meta->nr_subbufs; i++) {
1723		if (meta->buffers[i] < 0 ||
1724		    meta->buffers[i] >= meta->nr_subbufs) {
1725			pr_info("Ring buffer boot meta [%d] array out of range\n", cpu);
1726			return false;
1727		}
1728
1729		if ((unsigned)local_read(&subbuf->commit) > subbuf_size) {
1730			pr_info("Ring buffer boot meta [%d] buffer invalid commit\n", cpu);
1731			return false;
1732		}
1733
1734		if (test_bit(meta->buffers[i], subbuf_mask)) {
1735			pr_info("Ring buffer boot meta [%d] array has duplicates\n", cpu);
1736			return false;
1737		}
1738
1739		set_bit(meta->buffers[i], subbuf_mask);
1740		subbuf = (void *)subbuf + subbuf_size;
1741	}
1742
1743	return true;
1744}
1745
1746static int rb_meta_subbuf_idx(struct ring_buffer_meta *meta, void *subbuf);
1747
1748static int rb_read_data_buffer(struct buffer_data_page *dpage, int tail, int cpu,
1749			       unsigned long long *timestamp, u64 *delta_ptr)
1750{
1751	struct ring_buffer_event *event;
1752	u64 ts, delta;
1753	int events = 0;
1754	int e;
1755
1756	*delta_ptr = 0;
1757	*timestamp = 0;
1758
1759	ts = dpage->time_stamp;
1760
1761	for (e = 0; e < tail; e += rb_event_length(event)) {
1762
1763		event = (struct ring_buffer_event *)(dpage->data + e);
1764
1765		switch (event->type_len) {
1766
1767		case RINGBUF_TYPE_TIME_EXTEND:
1768			delta = rb_event_time_stamp(event);
1769			ts += delta;
1770			break;
1771
1772		case RINGBUF_TYPE_TIME_STAMP:
1773			delta = rb_event_time_stamp(event);
1774			delta = rb_fix_abs_ts(delta, ts);
1775			if (delta < ts) {
1776				*delta_ptr = delta;
1777				*timestamp = ts;
1778				return -1;
1779			}
1780			ts = delta;
1781			break;
1782
1783		case RINGBUF_TYPE_PADDING:
1784			if (event->time_delta == 1)
1785				break;
1786			fallthrough;
1787		case RINGBUF_TYPE_DATA:
1788			events++;
1789			ts += event->time_delta;
1790			break;
1791
1792		default:
1793			return -1;
1794		}
1795	}
1796	*timestamp = ts;
1797	return events;
1798}
1799
1800static int rb_validate_buffer(struct buffer_data_page *dpage, int cpu)
1801{
1802	unsigned long long ts;
1803	u64 delta;
1804	int tail;
1805
1806	tail = local_read(&dpage->commit);
1807	return rb_read_data_buffer(dpage, tail, cpu, &ts, &delta);
1808}
1809
1810/* If the meta data has been validated, now validate the events */
1811static void rb_meta_validate_events(struct ring_buffer_per_cpu *cpu_buffer)
1812{
1813	struct ring_buffer_meta *meta = cpu_buffer->ring_meta;
1814	struct buffer_page *head_page;
1815	unsigned long entry_bytes = 0;
1816	unsigned long entries = 0;
1817	int ret;
1818	int i;
1819
1820	if (!meta || !meta->head_buffer)
1821		return;
1822
1823	/* Do the reader page first */
1824	ret = rb_validate_buffer(cpu_buffer->reader_page->page, cpu_buffer->cpu);
1825	if (ret < 0) {
1826		pr_info("Ring buffer reader page is invalid\n");
1827		goto invalid;
1828	}
1829	entries += ret;
1830	entry_bytes += local_read(&cpu_buffer->reader_page->page->commit);
1831	local_set(&cpu_buffer->reader_page->entries, ret);
1832
1833	head_page = cpu_buffer->head_page;
1834
1835	/* If both the head and commit are on the reader_page then we are done. */
1836	if (head_page == cpu_buffer->reader_page &&
1837	    head_page == cpu_buffer->commit_page)
1838		goto done;
1839
1840	/* Iterate until finding the commit page */
1841	for (i = 0; i < meta->nr_subbufs + 1; i++, rb_inc_page(&head_page)) {
1842
1843		/* Reader page has already been done */
1844		if (head_page == cpu_buffer->reader_page)
1845			continue;
1846
1847		ret = rb_validate_buffer(head_page->page, cpu_buffer->cpu);
1848		if (ret < 0) {
1849			pr_info("Ring buffer meta [%d] invalid buffer page\n",
1850				cpu_buffer->cpu);
1851			goto invalid;
1852		}
1853
1854		/* If the buffer has content, update pages_touched */
1855		if (ret)
1856			local_inc(&cpu_buffer->pages_touched);
1857
1858		entries += ret;
1859		entry_bytes += local_read(&head_page->page->commit);
1860		local_set(&cpu_buffer->head_page->entries, ret);
1861
1862		if (head_page == cpu_buffer->commit_page)
1863			break;
1864	}
1865
1866	if (head_page != cpu_buffer->commit_page) {
1867		pr_info("Ring buffer meta [%d] commit page not found\n",
1868			cpu_buffer->cpu);
1869		goto invalid;
1870	}
1871 done:
1872	local_set(&cpu_buffer->entries, entries);
1873	local_set(&cpu_buffer->entries_bytes, entry_bytes);
1874
1875	pr_info("Ring buffer meta [%d] is from previous boot!\n", cpu_buffer->cpu);
1876	return;
1877
1878 invalid:
1879	/* The content of the buffers are invalid, reset the meta data */
1880	meta->head_buffer = 0;
1881	meta->commit_buffer = 0;
1882
1883	/* Reset the reader page */
1884	local_set(&cpu_buffer->reader_page->entries, 0);
1885	local_set(&cpu_buffer->reader_page->page->commit, 0);
1886
1887	/* Reset all the subbuffers */
1888	for (i = 0; i < meta->nr_subbufs - 1; i++, rb_inc_page(&head_page)) {
1889		local_set(&head_page->entries, 0);
1890		local_set(&head_page->page->commit, 0);
1891	}
1892}
1893
1894/* Used to calculate data delta */
1895static char rb_data_ptr[] = "";
1896
1897#define THIS_TEXT_PTR		((unsigned long)rb_meta_init_text_addr)
1898#define THIS_DATA_PTR		((unsigned long)rb_data_ptr)
1899
1900static void rb_meta_init_text_addr(struct ring_buffer_meta *meta)
1901{
1902	meta->text_addr = THIS_TEXT_PTR;
1903	meta->data_addr = THIS_DATA_PTR;
1904}
1905
1906static void rb_range_meta_init(struct trace_buffer *buffer, int nr_pages)
1907{
1908	struct ring_buffer_meta *meta;
1909	unsigned long *subbuf_mask;
1910	unsigned long delta;
1911	void *subbuf;
1912	int cpu;
1913	int i;
1914
1915	/* Create a mask to test the subbuf array */
1916	subbuf_mask = bitmap_alloc(nr_pages + 1, GFP_KERNEL);
1917	/* If subbuf_mask fails to allocate, then rb_meta_valid() will return false */
1918
1919	for (cpu = 0; cpu < nr_cpu_ids; cpu++) {
1920		void *next_meta;
1921
1922		meta = rb_range_meta(buffer, nr_pages, cpu);
1923
1924		if (rb_meta_valid(meta, cpu, buffer, nr_pages, subbuf_mask)) {
1925			/* Make the mappings match the current address */
1926			subbuf = rb_subbufs_from_meta(meta);
1927			delta = (unsigned long)subbuf - meta->first_buffer;
1928			meta->first_buffer += delta;
1929			meta->head_buffer += delta;
1930			meta->commit_buffer += delta;
1931			buffer->last_text_delta = THIS_TEXT_PTR - meta->text_addr;
1932			buffer->last_data_delta = THIS_DATA_PTR - meta->data_addr;
1933			continue;
1934		}
1935
1936		if (cpu < nr_cpu_ids - 1)
1937			next_meta = rb_range_meta(buffer, nr_pages, cpu + 1);
1938		else
1939			next_meta = (void *)buffer->range_addr_end;
1940
1941		memset(meta, 0, next_meta - (void *)meta);
1942
1943		meta->magic = RING_BUFFER_META_MAGIC;
1944		meta->struct_size = sizeof(*meta);
1945
1946		meta->nr_subbufs = nr_pages + 1;
1947		meta->subbuf_size = PAGE_SIZE;
1948
1949		subbuf = rb_subbufs_from_meta(meta);
1950
1951		meta->first_buffer = (unsigned long)subbuf;
1952		rb_meta_init_text_addr(meta);
1953
1954		/*
1955		 * The buffers[] array holds the order of the sub-buffers
1956		 * that are after the meta data. The sub-buffers may
1957		 * be swapped out when read and inserted into a different
1958		 * location of the ring buffer. Although their addresses
1959		 * remain the same, the buffers[] array contains the
1960		 * index into the sub-buffers holding their actual order.
1961		 */
1962		for (i = 0; i < meta->nr_subbufs; i++) {
1963			meta->buffers[i] = i;
1964			rb_init_page(subbuf);
1965			subbuf += meta->subbuf_size;
1966		}
1967	}
1968	bitmap_free(subbuf_mask);
1969}
1970
1971static void *rbm_start(struct seq_file *m, loff_t *pos)
1972{
1973	struct ring_buffer_per_cpu *cpu_buffer = m->private;
1974	struct ring_buffer_meta *meta = cpu_buffer->ring_meta;
1975	unsigned long val;
1976
1977	if (!meta)
1978		return NULL;
1979
1980	if (*pos > meta->nr_subbufs)
1981		return NULL;
1982
1983	val = *pos;
1984	val++;
1985
1986	return (void *)val;
1987}
1988
1989static void *rbm_next(struct seq_file *m, void *v, loff_t *pos)
1990{
1991	(*pos)++;
1992
1993	return rbm_start(m, pos);
1994}
1995
1996static int rbm_show(struct seq_file *m, void *v)
1997{
1998	struct ring_buffer_per_cpu *cpu_buffer = m->private;
1999	struct ring_buffer_meta *meta = cpu_buffer->ring_meta;
2000	unsigned long val = (unsigned long)v;
2001
2002	if (val == 1) {
2003		seq_printf(m, "head_buffer:   %d\n",
2004			   rb_meta_subbuf_idx(meta, (void *)meta->head_buffer));
2005		seq_printf(m, "commit_buffer: %d\n",
2006			   rb_meta_subbuf_idx(meta, (void *)meta->commit_buffer));
2007		seq_printf(m, "subbuf_size:   %d\n", meta->subbuf_size);
2008		seq_printf(m, "nr_subbufs:    %d\n", meta->nr_subbufs);
2009		return 0;
2010	}
2011
2012	val -= 2;
2013	seq_printf(m, "buffer[%ld]:    %d\n", val, meta->buffers[val]);
2014
2015	return 0;
2016}
2017
2018static void rbm_stop(struct seq_file *m, void *p)
2019{
2020}
2021
2022static const struct seq_operations rb_meta_seq_ops = {
2023	.start		= rbm_start,
2024	.next		= rbm_next,
2025	.show		= rbm_show,
2026	.stop		= rbm_stop,
2027};
2028
2029int ring_buffer_meta_seq_init(struct file *file, struct trace_buffer *buffer, int cpu)
2030{
2031	struct seq_file *m;
2032	int ret;
2033
2034	ret = seq_open(file, &rb_meta_seq_ops);
2035	if (ret)
2036		return ret;
2037
2038	m = file->private_data;
2039	m->private = buffer->buffers[cpu];
2040
2041	return 0;
2042}
2043
2044/* Map the buffer_pages to the previous head and commit pages */
2045static void rb_meta_buffer_update(struct ring_buffer_per_cpu *cpu_buffer,
2046				  struct buffer_page *bpage)
2047{
2048	struct ring_buffer_meta *meta = cpu_buffer->ring_meta;
2049
2050	if (meta->head_buffer == (unsigned long)bpage->page)
2051		cpu_buffer->head_page = bpage;
2052
2053	if (meta->commit_buffer == (unsigned long)bpage->page) {
2054		cpu_buffer->commit_page = bpage;
2055		cpu_buffer->tail_page = bpage;
2056	}
2057}
2058
2059static int __rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
2060		long nr_pages, struct list_head *pages)
2061{
2062	struct trace_buffer *buffer = cpu_buffer->buffer;
2063	struct ring_buffer_meta *meta = NULL;
2064	struct buffer_page *bpage, *tmp;
2065	bool user_thread = current->mm != NULL;
2066	gfp_t mflags;
2067	long i;
2068
2069	/*
2070	 * Check if the available memory is there first.
2071	 * Note, si_mem_available() only gives us a rough estimate of available
2072	 * memory. It may not be accurate. But we don't care, we just want
2073	 * to prevent doing any allocation when it is obvious that it is
2074	 * not going to succeed.
2075	 */
2076	i = si_mem_available();
2077	if (i < nr_pages)
2078		return -ENOMEM;
2079
2080	/*
2081	 * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails
2082	 * gracefully without invoking oom-killer and the system is not
2083	 * destabilized.
2084	 */
2085	mflags = GFP_KERNEL | __GFP_RETRY_MAYFAIL;
2086
2087	/*
2088	 * If a user thread allocates too much, and si_mem_available()
2089	 * reports there's enough memory, even though there is not.
2090	 * Make sure the OOM killer kills this thread. This can happen
2091	 * even with RETRY_MAYFAIL because another task may be doing
2092	 * an allocation after this task has taken all memory.
2093	 * This is the task the OOM killer needs to take out during this
2094	 * loop, even if it was triggered by an allocation somewhere else.
2095	 */
2096	if (user_thread)
2097		set_current_oom_origin();
2098
2099	if (buffer->range_addr_start)
2100		meta = rb_range_meta(buffer, nr_pages, cpu_buffer->cpu);
2101
2102	for (i = 0; i < nr_pages; i++) {
2103		struct page *page;
2104
 
 
 
 
2105		bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
2106				    mflags, cpu_to_node(cpu_buffer->cpu));
 
2107		if (!bpage)
2108			goto free_pages;
2109
2110		rb_check_bpage(cpu_buffer, bpage);
2111
2112		/*
2113		 * Append the pages as for mapped buffers we want to keep
2114		 * the order
2115		 */
2116		list_add_tail(&bpage->list, pages);
2117
2118		if (meta) {
2119			/* A range was given. Use that for the buffer page */
2120			bpage->page = rb_range_buffer(cpu_buffer, i + 1);
2121			if (!bpage->page)
2122				goto free_pages;
2123			/* If this is valid from a previous boot */
2124			if (meta->head_buffer)
2125				rb_meta_buffer_update(cpu_buffer, bpage);
2126			bpage->range = 1;
2127			bpage->id = i + 1;
2128		} else {
2129			page = alloc_pages_node(cpu_to_node(cpu_buffer->cpu),
2130						mflags | __GFP_COMP | __GFP_ZERO,
2131						cpu_buffer->buffer->subbuf_order);
2132			if (!page)
2133				goto free_pages;
2134			bpage->page = page_address(page);
2135			rb_init_page(bpage->page);
2136		}
2137		bpage->order = cpu_buffer->buffer->subbuf_order;
2138
2139		if (user_thread && fatal_signal_pending(current))
2140			goto free_pages;
 
 
2141	}
2142	if (user_thread)
2143		clear_current_oom_origin();
2144
2145	return 0;
2146
2147free_pages:
2148	list_for_each_entry_safe(bpage, tmp, pages, list) {
2149		list_del_init(&bpage->list);
2150		free_buffer_page(bpage);
2151	}
2152	if (user_thread)
2153		clear_current_oom_origin();
2154
2155	return -ENOMEM;
2156}
2157
2158static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
2159			     unsigned long nr_pages)
2160{
2161	LIST_HEAD(pages);
2162
2163	WARN_ON(!nr_pages);
2164
2165	if (__rb_allocate_pages(cpu_buffer, nr_pages, &pages))
2166		return -ENOMEM;
2167
2168	/*
2169	 * The ring buffer page list is a circular list that does not
2170	 * start and end with a list head. All page list items point to
2171	 * other pages.
2172	 */
2173	cpu_buffer->pages = pages.next;
2174	list_del(&pages);
2175
2176	cpu_buffer->nr_pages = nr_pages;
2177
2178	rb_check_pages(cpu_buffer);
2179
2180	return 0;
2181}
2182
2183static struct ring_buffer_per_cpu *
2184rb_allocate_cpu_buffer(struct trace_buffer *buffer, long nr_pages, int cpu)
2185{
2186	struct ring_buffer_per_cpu *cpu_buffer;
2187	struct ring_buffer_meta *meta;
2188	struct buffer_page *bpage;
2189	struct page *page;
2190	int ret;
2191
2192	cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
2193				  GFP_KERNEL, cpu_to_node(cpu));
2194	if (!cpu_buffer)
2195		return NULL;
2196
2197	cpu_buffer->cpu = cpu;
2198	cpu_buffer->buffer = buffer;
2199	raw_spin_lock_init(&cpu_buffer->reader_lock);
2200	lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
2201	cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
2202	INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
2203	init_completion(&cpu_buffer->update_done);
2204	init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
2205	init_waitqueue_head(&cpu_buffer->irq_work.waiters);
2206	init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
2207	mutex_init(&cpu_buffer->mapping_lock);
2208
2209	bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
2210			    GFP_KERNEL, cpu_to_node(cpu));
2211	if (!bpage)
2212		goto fail_free_buffer;
2213
2214	rb_check_bpage(cpu_buffer, bpage);
2215
2216	cpu_buffer->reader_page = bpage;
2217
2218	if (buffer->range_addr_start) {
2219		/*
2220		 * Range mapped buffers have the same restrictions as memory
2221		 * mapped ones do.
2222		 */
2223		cpu_buffer->mapped = 1;
2224		cpu_buffer->ring_meta = rb_range_meta(buffer, nr_pages, cpu);
2225		bpage->page = rb_range_buffer(cpu_buffer, 0);
2226		if (!bpage->page)
2227			goto fail_free_reader;
2228		if (cpu_buffer->ring_meta->head_buffer)
2229			rb_meta_buffer_update(cpu_buffer, bpage);
2230		bpage->range = 1;
2231	} else {
2232		page = alloc_pages_node(cpu_to_node(cpu),
2233					GFP_KERNEL | __GFP_COMP | __GFP_ZERO,
2234					cpu_buffer->buffer->subbuf_order);
2235		if (!page)
2236			goto fail_free_reader;
2237		bpage->page = page_address(page);
2238		rb_init_page(bpage->page);
2239	}
2240
2241	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
2242	INIT_LIST_HEAD(&cpu_buffer->new_pages);
2243
2244	ret = rb_allocate_pages(cpu_buffer, nr_pages);
2245	if (ret < 0)
2246		goto fail_free_reader;
2247
2248	rb_meta_validate_events(cpu_buffer);
 
 
2249
2250	/* If the boot meta was valid then this has already been updated */
2251	meta = cpu_buffer->ring_meta;
2252	if (!meta || !meta->head_buffer ||
2253	    !cpu_buffer->head_page || !cpu_buffer->commit_page || !cpu_buffer->tail_page) {
2254		if (meta && meta->head_buffer &&
2255		    (cpu_buffer->head_page || cpu_buffer->commit_page || cpu_buffer->tail_page)) {
2256			pr_warn("Ring buffer meta buffers not all mapped\n");
2257			if (!cpu_buffer->head_page)
2258				pr_warn("   Missing head_page\n");
2259			if (!cpu_buffer->commit_page)
2260				pr_warn("   Missing commit_page\n");
2261			if (!cpu_buffer->tail_page)
2262				pr_warn("   Missing tail_page\n");
2263		}
2264
2265		cpu_buffer->head_page
2266			= list_entry(cpu_buffer->pages, struct buffer_page, list);
2267		cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
2268
2269		rb_head_page_activate(cpu_buffer);
2270
2271		if (cpu_buffer->ring_meta)
2272			meta->commit_buffer = meta->head_buffer;
2273	} else {
2274		/* The valid meta buffer still needs to activate the head page */
2275		rb_head_page_activate(cpu_buffer);
2276	}
2277
2278	return cpu_buffer;
2279
2280 fail_free_reader:
2281	free_buffer_page(cpu_buffer->reader_page);
2282
2283 fail_free_buffer:
2284	kfree(cpu_buffer);
2285	return NULL;
2286}
2287
2288static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
2289{
2290	struct list_head *head = cpu_buffer->pages;
2291	struct buffer_page *bpage, *tmp;
2292
2293	irq_work_sync(&cpu_buffer->irq_work.work);
2294
2295	free_buffer_page(cpu_buffer->reader_page);
2296
2297	if (head) {
2298		rb_head_page_deactivate(cpu_buffer);
2299
2300		list_for_each_entry_safe(bpage, tmp, head, list) {
2301			list_del_init(&bpage->list);
2302			free_buffer_page(bpage);
2303		}
2304		bpage = list_entry(head, struct buffer_page, list);
2305		free_buffer_page(bpage);
2306	}
2307
2308	free_page((unsigned long)cpu_buffer->free_page);
2309
2310	kfree(cpu_buffer);
2311}
2312
2313static struct trace_buffer *alloc_buffer(unsigned long size, unsigned flags,
2314					 int order, unsigned long start,
2315					 unsigned long end,
2316					 struct lock_class_key *key)
2317{
2318	struct trace_buffer *buffer;
2319	long nr_pages;
2320	int subbuf_size;
 
 
 
 
 
 
 
 
 
 
 
2321	int bsize;
2322	int cpu;
2323	int ret;
2324
2325	/* keep it in its own cache line */
2326	buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
2327			 GFP_KERNEL);
2328	if (!buffer)
2329		return NULL;
2330
2331	if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
2332		goto fail_free_buffer;
2333
2334	buffer->subbuf_order = order;
2335	subbuf_size = (PAGE_SIZE << order);
2336	buffer->subbuf_size = subbuf_size - BUF_PAGE_HDR_SIZE;
2337
2338	/* Max payload is buffer page size - header (8bytes) */
2339	buffer->max_data_size = buffer->subbuf_size - (sizeof(u32) * 2);
2340
2341	buffer->flags = flags;
2342	buffer->clock = trace_clock_local;
2343	buffer->reader_lock_key = key;
2344
2345	init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
2346	init_waitqueue_head(&buffer->irq_work.waiters);
2347
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2348	buffer->cpus = nr_cpu_ids;
2349
2350	bsize = sizeof(void *) * nr_cpu_ids;
2351	buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
2352				  GFP_KERNEL);
2353	if (!buffer->buffers)
2354		goto fail_free_cpumask;
2355
2356	/* If start/end are specified, then that overrides size */
2357	if (start && end) {
2358		unsigned long ptr;
2359		int n;
2360
2361		size = end - start;
2362		size = size / nr_cpu_ids;
2363
2364		/*
2365		 * The number of sub-buffers (nr_pages) is determined by the
2366		 * total size allocated minus the meta data size.
2367		 * Then that is divided by the number of per CPU buffers
2368		 * needed, plus account for the integer array index that
2369		 * will be appended to the meta data.
2370		 */
2371		nr_pages = (size - sizeof(struct ring_buffer_meta)) /
2372			(subbuf_size + sizeof(int));
2373		/* Need at least two pages plus the reader page */
2374		if (nr_pages < 3)
2375			goto fail_free_buffers;
2376
2377 again:
2378		/* Make sure that the size fits aligned */
2379		for (n = 0, ptr = start; n < nr_cpu_ids; n++) {
2380			ptr += sizeof(struct ring_buffer_meta) +
2381				sizeof(int) * nr_pages;
2382			ptr = ALIGN(ptr, subbuf_size);
2383			ptr += subbuf_size * nr_pages;
2384		}
2385		if (ptr > end) {
2386			if (nr_pages <= 3)
2387				goto fail_free_buffers;
2388			nr_pages--;
2389			goto again;
2390		}
2391
2392		/* nr_pages should not count the reader page */
2393		nr_pages--;
2394		buffer->range_addr_start = start;
2395		buffer->range_addr_end = end;
2396
2397		rb_range_meta_init(buffer, nr_pages);
2398	} else {
2399
2400		/* need at least two pages */
2401		nr_pages = DIV_ROUND_UP(size, buffer->subbuf_size);
2402		if (nr_pages < 2)
2403			nr_pages = 2;
2404	}
2405
2406	cpu = raw_smp_processor_id();
2407	cpumask_set_cpu(cpu, buffer->cpumask);
2408	buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
2409	if (!buffer->buffers[cpu])
2410		goto fail_free_buffers;
2411
2412	ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
2413	if (ret < 0)
2414		goto fail_free_buffers;
2415
2416	mutex_init(&buffer->mutex);
2417
2418	return buffer;
2419
2420 fail_free_buffers:
2421	for_each_buffer_cpu(buffer, cpu) {
2422		if (buffer->buffers[cpu])
2423			rb_free_cpu_buffer(buffer->buffers[cpu]);
2424	}
2425	kfree(buffer->buffers);
2426
2427 fail_free_cpumask:
2428	free_cpumask_var(buffer->cpumask);
 
 
 
2429
2430 fail_free_buffer:
2431	kfree(buffer);
2432	return NULL;
2433}
2434
2435/**
2436 * __ring_buffer_alloc - allocate a new ring_buffer
2437 * @size: the size in bytes per cpu that is needed.
2438 * @flags: attributes to set for the ring buffer.
2439 * @key: ring buffer reader_lock_key.
2440 *
2441 * Currently the only flag that is available is the RB_FL_OVERWRITE
2442 * flag. This flag means that the buffer will overwrite old data
2443 * when the buffer wraps. If this flag is not set, the buffer will
2444 * drop data when the tail hits the head.
2445 */
2446struct trace_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
2447					struct lock_class_key *key)
2448{
2449	/* Default buffer page size - one system page */
2450	return alloc_buffer(size, flags, 0, 0, 0,key);
2451
2452}
2453EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
2454
2455/**
2456 * __ring_buffer_alloc_range - allocate a new ring_buffer from existing memory
2457 * @size: the size in bytes per cpu that is needed.
2458 * @flags: attributes to set for the ring buffer.
2459 * @order: sub-buffer order
2460 * @start: start of allocated range
2461 * @range_size: size of allocated range
2462 * @key: ring buffer reader_lock_key.
2463 *
2464 * Currently the only flag that is available is the RB_FL_OVERWRITE
2465 * flag. This flag means that the buffer will overwrite old data
2466 * when the buffer wraps. If this flag is not set, the buffer will
2467 * drop data when the tail hits the head.
2468 */
2469struct trace_buffer *__ring_buffer_alloc_range(unsigned long size, unsigned flags,
2470					       int order, unsigned long start,
2471					       unsigned long range_size,
2472					       struct lock_class_key *key)
2473{
2474	return alloc_buffer(size, flags, order, start, start + range_size, key);
2475}
2476
2477/**
2478 * ring_buffer_last_boot_delta - return the delta offset from last boot
2479 * @buffer: The buffer to return the delta from
2480 * @text: Return text delta
2481 * @data: Return data delta
2482 *
2483 * Returns: The true if the delta is non zero
2484 */
2485bool ring_buffer_last_boot_delta(struct trace_buffer *buffer, long *text,
2486				 long *data)
2487{
2488	if (!buffer)
2489		return false;
2490
2491	if (!buffer->last_text_delta)
2492		return false;
2493
2494	*text = buffer->last_text_delta;
2495	*data = buffer->last_data_delta;
2496
2497	return true;
2498}
2499
2500/**
2501 * ring_buffer_free - free a ring buffer.
2502 * @buffer: the buffer to free.
2503 */
2504void
2505ring_buffer_free(struct trace_buffer *buffer)
2506{
2507	int cpu;
2508
2509	cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
2510
2511	irq_work_sync(&buffer->irq_work.work);
 
2512
2513	for_each_buffer_cpu(buffer, cpu)
2514		rb_free_cpu_buffer(buffer->buffers[cpu]);
2515
 
 
 
 
2516	kfree(buffer->buffers);
2517	free_cpumask_var(buffer->cpumask);
2518
2519	kfree(buffer);
2520}
2521EXPORT_SYMBOL_GPL(ring_buffer_free);
2522
2523void ring_buffer_set_clock(struct trace_buffer *buffer,
2524			   u64 (*clock)(void))
2525{
2526	buffer->clock = clock;
2527}
2528
2529void ring_buffer_set_time_stamp_abs(struct trace_buffer *buffer, bool abs)
2530{
2531	buffer->time_stamp_abs = abs;
2532}
2533
2534bool ring_buffer_time_stamp_abs(struct trace_buffer *buffer)
2535{
2536	return buffer->time_stamp_abs;
2537}
2538
2539static inline unsigned long rb_page_entries(struct buffer_page *bpage)
2540{
2541	return local_read(&bpage->entries) & RB_WRITE_MASK;
2542}
2543
2544static inline unsigned long rb_page_write(struct buffer_page *bpage)
2545{
2546	return local_read(&bpage->write) & RB_WRITE_MASK;
2547}
2548
2549static bool
2550rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
2551{
2552	struct list_head *tail_page, *to_remove, *next_page;
2553	struct buffer_page *to_remove_page, *tmp_iter_page;
2554	struct buffer_page *last_page, *first_page;
2555	unsigned long nr_removed;
2556	unsigned long head_bit;
2557	int page_entries;
2558
2559	head_bit = 0;
2560
2561	raw_spin_lock_irq(&cpu_buffer->reader_lock);
2562	atomic_inc(&cpu_buffer->record_disabled);
2563	/*
2564	 * We don't race with the readers since we have acquired the reader
2565	 * lock. We also don't race with writers after disabling recording.
2566	 * This makes it easy to figure out the first and the last page to be
2567	 * removed from the list. We unlink all the pages in between including
2568	 * the first and last pages. This is done in a busy loop so that we
2569	 * lose the least number of traces.
2570	 * The pages are freed after we restart recording and unlock readers.
2571	 */
2572	tail_page = &cpu_buffer->tail_page->list;
2573
2574	/*
2575	 * tail page might be on reader page, we remove the next page
2576	 * from the ring buffer
2577	 */
2578	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
2579		tail_page = rb_list_head(tail_page->next);
2580	to_remove = tail_page;
2581
2582	/* start of pages to remove */
2583	first_page = list_entry(rb_list_head(to_remove->next),
2584				struct buffer_page, list);
2585
2586	for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
2587		to_remove = rb_list_head(to_remove)->next;
2588		head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
2589	}
2590	/* Read iterators need to reset themselves when some pages removed */
2591	cpu_buffer->pages_removed += nr_removed;
2592
2593	next_page = rb_list_head(to_remove)->next;
2594
2595	/*
2596	 * Now we remove all pages between tail_page and next_page.
2597	 * Make sure that we have head_bit value preserved for the
2598	 * next page
2599	 */
2600	tail_page->next = (struct list_head *)((unsigned long)next_page |
2601						head_bit);
2602	next_page = rb_list_head(next_page);
2603	next_page->prev = tail_page;
2604
2605	/* make sure pages points to a valid page in the ring buffer */
2606	cpu_buffer->pages = next_page;
2607	cpu_buffer->cnt++;
2608
2609	/* update head page */
2610	if (head_bit)
2611		cpu_buffer->head_page = list_entry(next_page,
2612						struct buffer_page, list);
2613
 
 
 
 
 
 
2614	/* pages are removed, resume tracing and then free the pages */
2615	atomic_dec(&cpu_buffer->record_disabled);
2616	raw_spin_unlock_irq(&cpu_buffer->reader_lock);
2617
2618	RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
2619
2620	/* last buffer page to remove */
2621	last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
2622				list);
2623	tmp_iter_page = first_page;
2624
2625	do {
2626		cond_resched();
2627
2628		to_remove_page = tmp_iter_page;
2629		rb_inc_page(&tmp_iter_page);
2630
2631		/* update the counters */
2632		page_entries = rb_page_entries(to_remove_page);
2633		if (page_entries) {
2634			/*
2635			 * If something was added to this page, it was full
2636			 * since it is not the tail page. So we deduct the
2637			 * bytes consumed in ring buffer from here.
2638			 * Increment overrun to account for the lost events.
2639			 */
2640			local_add(page_entries, &cpu_buffer->overrun);
2641			local_sub(rb_page_commit(to_remove_page), &cpu_buffer->entries_bytes);
2642			local_inc(&cpu_buffer->pages_lost);
2643		}
2644
2645		/*
2646		 * We have already removed references to this list item, just
2647		 * free up the buffer_page and its page
2648		 */
2649		free_buffer_page(to_remove_page);
2650		nr_removed--;
2651
2652	} while (to_remove_page != last_page);
2653
2654	RB_WARN_ON(cpu_buffer, nr_removed);
2655
2656	return nr_removed == 0;
2657}
2658
2659static bool
2660rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
2661{
2662	struct list_head *pages = &cpu_buffer->new_pages;
2663	unsigned long flags;
2664	bool success;
2665	int retries;
2666
2667	/* Can be called at early boot up, where interrupts must not been enabled */
2668	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2669	/*
2670	 * We are holding the reader lock, so the reader page won't be swapped
2671	 * in the ring buffer. Now we are racing with the writer trying to
2672	 * move head page and the tail page.
2673	 * We are going to adapt the reader page update process where:
2674	 * 1. We first splice the start and end of list of new pages between
2675	 *    the head page and its previous page.
2676	 * 2. We cmpxchg the prev_page->next to point from head page to the
2677	 *    start of new pages list.
2678	 * 3. Finally, we update the head->prev to the end of new list.
2679	 *
2680	 * We will try this process 10 times, to make sure that we don't keep
2681	 * spinning.
2682	 */
2683	retries = 10;
2684	success = false;
2685	while (retries--) {
2686		struct list_head *head_page, *prev_page;
2687		struct list_head *last_page, *first_page;
2688		struct list_head *head_page_with_bit;
2689		struct buffer_page *hpage = rb_set_head_page(cpu_buffer);
2690
2691		if (!hpage)
 
2692			break;
2693		head_page = &hpage->list;
2694		prev_page = head_page->prev;
2695
2696		first_page = pages->next;
2697		last_page  = pages->prev;
2698
2699		head_page_with_bit = (struct list_head *)
2700				     ((unsigned long)head_page | RB_PAGE_HEAD);
2701
2702		last_page->next = head_page_with_bit;
2703		first_page->prev = prev_page;
2704
2705		/* caution: head_page_with_bit gets updated on cmpxchg failure */
2706		if (try_cmpxchg(&prev_page->next,
2707				&head_page_with_bit, first_page)) {
2708			/*
2709			 * yay, we replaced the page pointer to our new list,
2710			 * now, we just have to update to head page's prev
2711			 * pointer to point to end of list
2712			 */
2713			head_page->prev = last_page;
2714			cpu_buffer->cnt++;
2715			success = true;
2716			break;
2717		}
2718	}
2719
2720	if (success)
2721		INIT_LIST_HEAD(pages);
2722	/*
2723	 * If we weren't successful in adding in new pages, warn and stop
2724	 * tracing
2725	 */
2726	RB_WARN_ON(cpu_buffer, !success);
2727	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2728
2729	/* free pages if they weren't inserted */
2730	if (!success) {
2731		struct buffer_page *bpage, *tmp;
2732		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
2733					 list) {
2734			list_del_init(&bpage->list);
2735			free_buffer_page(bpage);
2736		}
2737	}
2738	return success;
2739}
2740
2741static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
2742{
2743	bool success;
2744
2745	if (cpu_buffer->nr_pages_to_update > 0)
2746		success = rb_insert_pages(cpu_buffer);
2747	else
2748		success = rb_remove_pages(cpu_buffer,
2749					-cpu_buffer->nr_pages_to_update);
2750
2751	if (success)
2752		cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
2753}
2754
2755static void update_pages_handler(struct work_struct *work)
2756{
2757	struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
2758			struct ring_buffer_per_cpu, update_pages_work);
2759	rb_update_pages(cpu_buffer);
2760	complete(&cpu_buffer->update_done);
2761}
2762
2763/**
2764 * ring_buffer_resize - resize the ring buffer
2765 * @buffer: the buffer to resize.
2766 * @size: the new size.
2767 * @cpu_id: the cpu buffer to resize
2768 *
2769 * Minimum size is 2 * buffer->subbuf_size.
2770 *
2771 * Returns 0 on success and < 0 on failure.
2772 */
2773int ring_buffer_resize(struct trace_buffer *buffer, unsigned long size,
2774			int cpu_id)
2775{
2776	struct ring_buffer_per_cpu *cpu_buffer;
2777	unsigned long nr_pages;
2778	int cpu, err;
2779
2780	/*
2781	 * Always succeed at resizing a non-existent buffer:
2782	 */
2783	if (!buffer)
2784		return 0;
2785
2786	/* Make sure the requested buffer exists */
2787	if (cpu_id != RING_BUFFER_ALL_CPUS &&
2788	    !cpumask_test_cpu(cpu_id, buffer->cpumask))
2789		return 0;
2790
2791	nr_pages = DIV_ROUND_UP(size, buffer->subbuf_size);
 
2792
2793	/* we need a minimum of two pages */
2794	if (nr_pages < 2)
2795		nr_pages = 2;
 
 
 
 
 
 
 
 
 
 
2796
2797	/* prevent another thread from changing buffer sizes */
2798	mutex_lock(&buffer->mutex);
2799	atomic_inc(&buffer->resizing);
2800
2801	if (cpu_id == RING_BUFFER_ALL_CPUS) {
2802		/*
2803		 * Don't succeed if resizing is disabled, as a reader might be
2804		 * manipulating the ring buffer and is expecting a sane state while
2805		 * this is true.
2806		 */
2807		for_each_buffer_cpu(buffer, cpu) {
2808			cpu_buffer = buffer->buffers[cpu];
2809			if (atomic_read(&cpu_buffer->resize_disabled)) {
2810				err = -EBUSY;
2811				goto out_err_unlock;
2812			}
2813		}
2814
2815		/* calculate the pages to update */
2816		for_each_buffer_cpu(buffer, cpu) {
2817			cpu_buffer = buffer->buffers[cpu];
2818
2819			cpu_buffer->nr_pages_to_update = nr_pages -
2820							cpu_buffer->nr_pages;
2821			/*
2822			 * nothing more to do for removing pages or no update
2823			 */
2824			if (cpu_buffer->nr_pages_to_update <= 0)
2825				continue;
2826			/*
2827			 * to add pages, make sure all new pages can be
2828			 * allocated without receiving ENOMEM
2829			 */
2830			INIT_LIST_HEAD(&cpu_buffer->new_pages);
2831			if (__rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update,
2832						&cpu_buffer->new_pages)) {
2833				/* not enough memory for new pages */
2834				err = -ENOMEM;
2835				goto out_err;
2836			}
2837
2838			cond_resched();
2839		}
2840
2841		cpus_read_lock();
2842		/*
2843		 * Fire off all the required work handlers
2844		 * We can't schedule on offline CPUs, but it's not necessary
2845		 * since we can change their buffer sizes without any race.
2846		 */
2847		for_each_buffer_cpu(buffer, cpu) {
2848			cpu_buffer = buffer->buffers[cpu];
2849			if (!cpu_buffer->nr_pages_to_update)
2850				continue;
2851
2852			/* Can't run something on an offline CPU. */
2853			if (!cpu_online(cpu)) {
2854				rb_update_pages(cpu_buffer);
2855				cpu_buffer->nr_pages_to_update = 0;
2856			} else {
2857				/* Run directly if possible. */
2858				migrate_disable();
2859				if (cpu != smp_processor_id()) {
2860					migrate_enable();
2861					schedule_work_on(cpu,
2862							 &cpu_buffer->update_pages_work);
2863				} else {
2864					update_pages_handler(&cpu_buffer->update_pages_work);
2865					migrate_enable();
2866				}
2867			}
2868		}
2869
2870		/* wait for all the updates to complete */
2871		for_each_buffer_cpu(buffer, cpu) {
2872			cpu_buffer = buffer->buffers[cpu];
2873			if (!cpu_buffer->nr_pages_to_update)
2874				continue;
2875
2876			if (cpu_online(cpu))
2877				wait_for_completion(&cpu_buffer->update_done);
2878			cpu_buffer->nr_pages_to_update = 0;
2879		}
2880
2881		cpus_read_unlock();
2882	} else {
 
 
 
 
2883		cpu_buffer = buffer->buffers[cpu_id];
2884
2885		if (nr_pages == cpu_buffer->nr_pages)
2886			goto out;
2887
2888		/*
2889		 * Don't succeed if resizing is disabled, as a reader might be
2890		 * manipulating the ring buffer and is expecting a sane state while
2891		 * this is true.
2892		 */
2893		if (atomic_read(&cpu_buffer->resize_disabled)) {
2894			err = -EBUSY;
2895			goto out_err_unlock;
2896		}
2897
2898		cpu_buffer->nr_pages_to_update = nr_pages -
2899						cpu_buffer->nr_pages;
2900
2901		INIT_LIST_HEAD(&cpu_buffer->new_pages);
2902		if (cpu_buffer->nr_pages_to_update > 0 &&
2903			__rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update,
2904					    &cpu_buffer->new_pages)) {
2905			err = -ENOMEM;
2906			goto out_err;
2907		}
2908
2909		cpus_read_lock();
2910
2911		/* Can't run something on an offline CPU. */
2912		if (!cpu_online(cpu_id))
2913			rb_update_pages(cpu_buffer);
2914		else {
2915			/* Run directly if possible. */
2916			migrate_disable();
2917			if (cpu_id == smp_processor_id()) {
2918				rb_update_pages(cpu_buffer);
2919				migrate_enable();
2920			} else {
2921				migrate_enable();
2922				schedule_work_on(cpu_id,
2923						 &cpu_buffer->update_pages_work);
2924				wait_for_completion(&cpu_buffer->update_done);
2925			}
2926		}
2927
2928		cpu_buffer->nr_pages_to_update = 0;
2929		cpus_read_unlock();
2930	}
2931
2932 out:
2933	/*
2934	 * The ring buffer resize can happen with the ring buffer
2935	 * enabled, so that the update disturbs the tracing as little
2936	 * as possible. But if the buffer is disabled, we do not need
2937	 * to worry about that, and we can take the time to verify
2938	 * that the buffer is not corrupt.
2939	 */
2940	if (atomic_read(&buffer->record_disabled)) {
2941		atomic_inc(&buffer->record_disabled);
2942		/*
2943		 * Even though the buffer was disabled, we must make sure
2944		 * that it is truly disabled before calling rb_check_pages.
2945		 * There could have been a race between checking
2946		 * record_disable and incrementing it.
2947		 */
2948		synchronize_rcu();
2949		for_each_buffer_cpu(buffer, cpu) {
2950			cpu_buffer = buffer->buffers[cpu];
2951			rb_check_pages(cpu_buffer);
2952		}
2953		atomic_dec(&buffer->record_disabled);
2954	}
2955
2956	atomic_dec(&buffer->resizing);
2957	mutex_unlock(&buffer->mutex);
2958	return 0;
2959
2960 out_err:
2961	for_each_buffer_cpu(buffer, cpu) {
2962		struct buffer_page *bpage, *tmp;
2963
2964		cpu_buffer = buffer->buffers[cpu];
2965		cpu_buffer->nr_pages_to_update = 0;
2966
2967		if (list_empty(&cpu_buffer->new_pages))
2968			continue;
2969
2970		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
2971					list) {
2972			list_del_init(&bpage->list);
2973			free_buffer_page(bpage);
2974		}
2975	}
2976 out_err_unlock:
2977	atomic_dec(&buffer->resizing);
2978	mutex_unlock(&buffer->mutex);
2979	return err;
2980}
2981EXPORT_SYMBOL_GPL(ring_buffer_resize);
2982
2983void ring_buffer_change_overwrite(struct trace_buffer *buffer, int val)
2984{
2985	mutex_lock(&buffer->mutex);
2986	if (val)
2987		buffer->flags |= RB_FL_OVERWRITE;
2988	else
2989		buffer->flags &= ~RB_FL_OVERWRITE;
2990	mutex_unlock(&buffer->mutex);
2991}
2992EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
2993
2994static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
 
 
 
 
 
 
2995{
2996	return bpage->page->data + index;
2997}
2998
2999static __always_inline struct ring_buffer_event *
3000rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
3001{
3002	return __rb_page_index(cpu_buffer->reader_page,
3003			       cpu_buffer->reader_page->read);
3004}
3005
3006static struct ring_buffer_event *
3007rb_iter_head_event(struct ring_buffer_iter *iter)
3008{
3009	struct ring_buffer_event *event;
3010	struct buffer_page *iter_head_page = iter->head_page;
3011	unsigned long commit;
3012	unsigned length;
3013
3014	if (iter->head != iter->next_event)
3015		return iter->event;
3016
3017	/*
3018	 * When the writer goes across pages, it issues a cmpxchg which
3019	 * is a mb(), which will synchronize with the rmb here.
3020	 * (see rb_tail_page_update() and __rb_reserve_next())
3021	 */
3022	commit = rb_page_commit(iter_head_page);
3023	smp_rmb();
3024
3025	/* An event needs to be at least 8 bytes in size */
3026	if (iter->head > commit - 8)
3027		goto reset;
3028
3029	event = __rb_page_index(iter_head_page, iter->head);
3030	length = rb_event_length(event);
3031
3032	/*
3033	 * READ_ONCE() doesn't work on functions and we don't want the
3034	 * compiler doing any crazy optimizations with length.
3035	 */
3036	barrier();
3037
3038	if ((iter->head + length) > commit || length > iter->event_size)
3039		/* Writer corrupted the read? */
3040		goto reset;
3041
3042	memcpy(iter->event, event, length);
3043	/*
3044	 * If the page stamp is still the same after this rmb() then the
3045	 * event was safely copied without the writer entering the page.
3046	 */
3047	smp_rmb();
3048
3049	/* Make sure the page didn't change since we read this */
3050	if (iter->page_stamp != iter_head_page->page->time_stamp ||
3051	    commit > rb_page_commit(iter_head_page))
3052		goto reset;
3053
3054	iter->next_event = iter->head + length;
3055	return iter->event;
3056 reset:
3057	/* Reset to the beginning */
3058	iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
3059	iter->head = 0;
3060	iter->next_event = 0;
3061	iter->missed_events = 1;
3062	return NULL;
3063}
3064
3065/* Size is determined by what has been committed */
3066static __always_inline unsigned rb_page_size(struct buffer_page *bpage)
3067{
3068	return rb_page_commit(bpage) & ~RB_MISSED_MASK;
3069}
3070
3071static __always_inline unsigned
3072rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
3073{
3074	return rb_page_commit(cpu_buffer->commit_page);
3075}
3076
3077static __always_inline unsigned
3078rb_event_index(struct ring_buffer_per_cpu *cpu_buffer, struct ring_buffer_event *event)
3079{
3080	unsigned long addr = (unsigned long)event;
3081
3082	addr &= (PAGE_SIZE << cpu_buffer->buffer->subbuf_order) - 1;
3083
3084	return addr - BUF_PAGE_HDR_SIZE;
3085}
3086
3087static void rb_inc_iter(struct ring_buffer_iter *iter)
3088{
3089	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3090
3091	/*
3092	 * The iterator could be on the reader page (it starts there).
3093	 * But the head could have moved, since the reader was
3094	 * found. Check for this case and assign the iterator
3095	 * to the head page instead of next.
3096	 */
3097	if (iter->head_page == cpu_buffer->reader_page)
3098		iter->head_page = rb_set_head_page(cpu_buffer);
3099	else
3100		rb_inc_page(&iter->head_page);
3101
3102	iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
3103	iter->head = 0;
3104	iter->next_event = 0;
3105}
3106
3107/* Return the index into the sub-buffers for a given sub-buffer */
3108static int rb_meta_subbuf_idx(struct ring_buffer_meta *meta, void *subbuf)
3109{
3110	void *subbuf_array;
3111
3112	subbuf_array = (void *)meta + sizeof(int) * meta->nr_subbufs;
3113	subbuf_array = (void *)ALIGN((unsigned long)subbuf_array, meta->subbuf_size);
3114	return (subbuf - subbuf_array) / meta->subbuf_size;
3115}
3116
3117static void rb_update_meta_head(struct ring_buffer_per_cpu *cpu_buffer,
3118				struct buffer_page *next_page)
3119{
3120	struct ring_buffer_meta *meta = cpu_buffer->ring_meta;
3121	unsigned long old_head = (unsigned long)next_page->page;
3122	unsigned long new_head;
3123
3124	rb_inc_page(&next_page);
3125	new_head = (unsigned long)next_page->page;
3126
3127	/*
3128	 * Only move it forward once, if something else came in and
3129	 * moved it forward, then we don't want to touch it.
3130	 */
3131	(void)cmpxchg(&meta->head_buffer, old_head, new_head);
3132}
3133
3134static void rb_update_meta_reader(struct ring_buffer_per_cpu *cpu_buffer,
3135				  struct buffer_page *reader)
3136{
3137	struct ring_buffer_meta *meta = cpu_buffer->ring_meta;
3138	void *old_reader = cpu_buffer->reader_page->page;
3139	void *new_reader = reader->page;
3140	int id;
3141
3142	id = reader->id;
3143	cpu_buffer->reader_page->id = id;
3144	reader->id = 0;
3145
3146	meta->buffers[0] = rb_meta_subbuf_idx(meta, new_reader);
3147	meta->buffers[id] = rb_meta_subbuf_idx(meta, old_reader);
3148
3149	/* The head pointer is the one after the reader */
3150	rb_update_meta_head(cpu_buffer, reader);
3151}
3152
3153/*
3154 * rb_handle_head_page - writer hit the head page
3155 *
3156 * Returns: +1 to retry page
3157 *           0 to continue
3158 *          -1 on error
3159 */
3160static int
3161rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
3162		    struct buffer_page *tail_page,
3163		    struct buffer_page *next_page)
3164{
3165	struct buffer_page *new_head;
3166	int entries;
3167	int type;
3168	int ret;
3169
3170	entries = rb_page_entries(next_page);
3171
3172	/*
3173	 * The hard part is here. We need to move the head
3174	 * forward, and protect against both readers on
3175	 * other CPUs and writers coming in via interrupts.
3176	 */
3177	type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
3178				       RB_PAGE_HEAD);
3179
3180	/*
3181	 * type can be one of four:
3182	 *  NORMAL - an interrupt already moved it for us
3183	 *  HEAD   - we are the first to get here.
3184	 *  UPDATE - we are the interrupt interrupting
3185	 *           a current move.
3186	 *  MOVED  - a reader on another CPU moved the next
3187	 *           pointer to its reader page. Give up
3188	 *           and try again.
3189	 */
3190
3191	switch (type) {
3192	case RB_PAGE_HEAD:
3193		/*
3194		 * We changed the head to UPDATE, thus
3195		 * it is our responsibility to update
3196		 * the counters.
3197		 */
3198		local_add(entries, &cpu_buffer->overrun);
3199		local_sub(rb_page_commit(next_page), &cpu_buffer->entries_bytes);
3200		local_inc(&cpu_buffer->pages_lost);
3201
3202		if (cpu_buffer->ring_meta)
3203			rb_update_meta_head(cpu_buffer, next_page);
3204		/*
3205		 * The entries will be zeroed out when we move the
3206		 * tail page.
3207		 */
3208
3209		/* still more to do */
3210		break;
3211
3212	case RB_PAGE_UPDATE:
3213		/*
3214		 * This is an interrupt that interrupt the
3215		 * previous update. Still more to do.
3216		 */
3217		break;
3218	case RB_PAGE_NORMAL:
3219		/*
3220		 * An interrupt came in before the update
3221		 * and processed this for us.
3222		 * Nothing left to do.
3223		 */
3224		return 1;
3225	case RB_PAGE_MOVED:
3226		/*
3227		 * The reader is on another CPU and just did
3228		 * a swap with our next_page.
3229		 * Try again.
3230		 */
3231		return 1;
3232	default:
3233		RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
3234		return -1;
3235	}
3236
3237	/*
3238	 * Now that we are here, the old head pointer is
3239	 * set to UPDATE. This will keep the reader from
3240	 * swapping the head page with the reader page.
3241	 * The reader (on another CPU) will spin till
3242	 * we are finished.
3243	 *
3244	 * We just need to protect against interrupts
3245	 * doing the job. We will set the next pointer
3246	 * to HEAD. After that, we set the old pointer
3247	 * to NORMAL, but only if it was HEAD before.
3248	 * otherwise we are an interrupt, and only
3249	 * want the outer most commit to reset it.
3250	 */
3251	new_head = next_page;
3252	rb_inc_page(&new_head);
3253
3254	ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
3255				    RB_PAGE_NORMAL);
3256
3257	/*
3258	 * Valid returns are:
3259	 *  HEAD   - an interrupt came in and already set it.
3260	 *  NORMAL - One of two things:
3261	 *            1) We really set it.
3262	 *            2) A bunch of interrupts came in and moved
3263	 *               the page forward again.
3264	 */
3265	switch (ret) {
3266	case RB_PAGE_HEAD:
3267	case RB_PAGE_NORMAL:
3268		/* OK */
3269		break;
3270	default:
3271		RB_WARN_ON(cpu_buffer, 1);
3272		return -1;
3273	}
3274
3275	/*
3276	 * It is possible that an interrupt came in,
3277	 * set the head up, then more interrupts came in
3278	 * and moved it again. When we get back here,
3279	 * the page would have been set to NORMAL but we
3280	 * just set it back to HEAD.
3281	 *
3282	 * How do you detect this? Well, if that happened
3283	 * the tail page would have moved.
3284	 */
3285	if (ret == RB_PAGE_NORMAL) {
3286		struct buffer_page *buffer_tail_page;
3287
3288		buffer_tail_page = READ_ONCE(cpu_buffer->tail_page);
3289		/*
3290		 * If the tail had moved passed next, then we need
3291		 * to reset the pointer.
3292		 */
3293		if (buffer_tail_page != tail_page &&
3294		    buffer_tail_page != next_page)
3295			rb_head_page_set_normal(cpu_buffer, new_head,
3296						next_page,
3297						RB_PAGE_HEAD);
3298	}
3299
3300	/*
3301	 * If this was the outer most commit (the one that
3302	 * changed the original pointer from HEAD to UPDATE),
3303	 * then it is up to us to reset it to NORMAL.
3304	 */
3305	if (type == RB_PAGE_HEAD) {
3306		ret = rb_head_page_set_normal(cpu_buffer, next_page,
3307					      tail_page,
3308					      RB_PAGE_UPDATE);
3309		if (RB_WARN_ON(cpu_buffer,
3310			       ret != RB_PAGE_UPDATE))
3311			return -1;
3312	}
3313
3314	return 0;
3315}
3316
3317static inline void
3318rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
3319	      unsigned long tail, struct rb_event_info *info)
3320{
3321	unsigned long bsize = READ_ONCE(cpu_buffer->buffer->subbuf_size);
3322	struct buffer_page *tail_page = info->tail_page;
3323	struct ring_buffer_event *event;
3324	unsigned long length = info->length;
3325
3326	/*
3327	 * Only the event that crossed the page boundary
3328	 * must fill the old tail_page with padding.
3329	 */
3330	if (tail >= bsize) {
3331		/*
3332		 * If the page was filled, then we still need
3333		 * to update the real_end. Reset it to zero
3334		 * and the reader will ignore it.
3335		 */
3336		if (tail == bsize)
3337			tail_page->real_end = 0;
3338
3339		local_sub(length, &tail_page->write);
3340		return;
3341	}
3342
3343	event = __rb_page_index(tail_page, tail);
 
 
 
 
3344
3345	/*
3346	 * Save the original length to the meta data.
3347	 * This will be used by the reader to add lost event
3348	 * counter.
3349	 */
3350	tail_page->real_end = tail;
3351
3352	/*
3353	 * If this event is bigger than the minimum size, then
3354	 * we need to be careful that we don't subtract the
3355	 * write counter enough to allow another writer to slip
3356	 * in on this page.
3357	 * We put in a discarded commit instead, to make sure
3358	 * that this space is not used again, and this space will
3359	 * not be accounted into 'entries_bytes'.
3360	 *
3361	 * If we are less than the minimum size, we don't need to
3362	 * worry about it.
3363	 */
3364	if (tail > (bsize - RB_EVNT_MIN_SIZE)) {
3365		/* No room for any events */
3366
3367		/* Mark the rest of the page with padding */
3368		rb_event_set_padding(event);
3369
3370		/* Make sure the padding is visible before the write update */
3371		smp_wmb();
3372
3373		/* Set the write back to the previous setting */
3374		local_sub(length, &tail_page->write);
3375		return;
3376	}
3377
3378	/* Put in a discarded event */
3379	event->array[0] = (bsize - tail) - RB_EVNT_HDR_SIZE;
3380	event->type_len = RINGBUF_TYPE_PADDING;
3381	/* time delta must be non zero */
3382	event->time_delta = 1;
3383
3384	/* account for padding bytes */
3385	local_add(bsize - tail, &cpu_buffer->entries_bytes);
3386
3387	/* Make sure the padding is visible before the tail_page->write update */
3388	smp_wmb();
3389
3390	/* Set write to end of buffer */
3391	length = (tail + length) - bsize;
3392	local_sub(length, &tail_page->write);
3393}
3394
3395static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer);
3396
3397/*
3398 * This is the slow path, force gcc not to inline it.
3399 */
3400static noinline struct ring_buffer_event *
3401rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
3402	     unsigned long tail, struct rb_event_info *info)
3403{
3404	struct buffer_page *tail_page = info->tail_page;
3405	struct buffer_page *commit_page = cpu_buffer->commit_page;
3406	struct trace_buffer *buffer = cpu_buffer->buffer;
3407	struct buffer_page *next_page;
3408	int ret;
3409
3410	next_page = tail_page;
3411
3412	rb_inc_page(&next_page);
3413
3414	/*
3415	 * If for some reason, we had an interrupt storm that made
3416	 * it all the way around the buffer, bail, and warn
3417	 * about it.
3418	 */
3419	if (unlikely(next_page == commit_page)) {
3420		local_inc(&cpu_buffer->commit_overrun);
3421		goto out_reset;
3422	}
3423
3424	/*
3425	 * This is where the fun begins!
3426	 *
3427	 * We are fighting against races between a reader that
3428	 * could be on another CPU trying to swap its reader
3429	 * page with the buffer head.
3430	 *
3431	 * We are also fighting against interrupts coming in and
3432	 * moving the head or tail on us as well.
3433	 *
3434	 * If the next page is the head page then we have filled
3435	 * the buffer, unless the commit page is still on the
3436	 * reader page.
3437	 */
3438	if (rb_is_head_page(next_page, &tail_page->list)) {
3439
3440		/*
3441		 * If the commit is not on the reader page, then
3442		 * move the header page.
3443		 */
3444		if (!rb_is_reader_page(cpu_buffer->commit_page)) {
3445			/*
3446			 * If we are not in overwrite mode,
3447			 * this is easy, just stop here.
3448			 */
3449			if (!(buffer->flags & RB_FL_OVERWRITE)) {
3450				local_inc(&cpu_buffer->dropped_events);
3451				goto out_reset;
3452			}
3453
3454			ret = rb_handle_head_page(cpu_buffer,
3455						  tail_page,
3456						  next_page);
3457			if (ret < 0)
3458				goto out_reset;
3459			if (ret)
3460				goto out_again;
3461		} else {
3462			/*
3463			 * We need to be careful here too. The
3464			 * commit page could still be on the reader
3465			 * page. We could have a small buffer, and
3466			 * have filled up the buffer with events
3467			 * from interrupts and such, and wrapped.
3468			 *
3469			 * Note, if the tail page is also on the
3470			 * reader_page, we let it move out.
3471			 */
3472			if (unlikely((cpu_buffer->commit_page !=
3473				      cpu_buffer->tail_page) &&
3474				     (cpu_buffer->commit_page ==
3475				      cpu_buffer->reader_page))) {
3476				local_inc(&cpu_buffer->commit_overrun);
3477				goto out_reset;
3478			}
3479		}
3480	}
3481
3482	rb_tail_page_update(cpu_buffer, tail_page, next_page);
3483
3484 out_again:
3485
3486	rb_reset_tail(cpu_buffer, tail, info);
3487
3488	/* Commit what we have for now. */
3489	rb_end_commit(cpu_buffer);
3490	/* rb_end_commit() decs committing */
3491	local_inc(&cpu_buffer->committing);
3492
3493	/* fail and let the caller try again */
3494	return ERR_PTR(-EAGAIN);
3495
3496 out_reset:
3497	/* reset write */
3498	rb_reset_tail(cpu_buffer, tail, info);
3499
3500	return NULL;
3501}
3502
3503/* Slow path */
3504static struct ring_buffer_event *
3505rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3506		  struct ring_buffer_event *event, u64 delta, bool abs)
3507{
3508	if (abs)
3509		event->type_len = RINGBUF_TYPE_TIME_STAMP;
3510	else
3511		event->type_len = RINGBUF_TYPE_TIME_EXTEND;
3512
3513	/* Not the first event on the page, or not delta? */
3514	if (abs || rb_event_index(cpu_buffer, event)) {
3515		event->time_delta = delta & TS_MASK;
3516		event->array[0] = delta >> TS_SHIFT;
3517	} else {
3518		/* nope, just zero it */
3519		event->time_delta = 0;
3520		event->array[0] = 0;
3521	}
3522
3523	return skip_time_extend(event);
3524}
3525
3526#ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
3527static inline bool sched_clock_stable(void)
3528{
3529	return true;
3530}
3531#endif
3532
3533static void
3534rb_check_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
3535		   struct rb_event_info *info)
3536{
3537	u64 write_stamp;
3538
3539	WARN_ONCE(1, "Delta way too big! %llu ts=%llu before=%llu after=%llu write stamp=%llu\n%s",
3540		  (unsigned long long)info->delta,
3541		  (unsigned long long)info->ts,
3542		  (unsigned long long)info->before,
3543		  (unsigned long long)info->after,
3544		  (unsigned long long)({rb_time_read(&cpu_buffer->write_stamp, &write_stamp); write_stamp;}),
3545		  sched_clock_stable() ? "" :
3546		  "If you just came from a suspend/resume,\n"
3547		  "please switch to the trace global clock:\n"
3548		  "  echo global > /sys/kernel/tracing/trace_clock\n"
3549		  "or add trace_clock=global to the kernel command line\n");
3550}
3551
3552static void rb_add_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
3553				      struct ring_buffer_event **event,
3554				      struct rb_event_info *info,
3555				      u64 *delta,
3556				      unsigned int *length)
3557{
3558	bool abs = info->add_timestamp &
3559		(RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE);
3560
3561	if (unlikely(info->delta > (1ULL << 59))) {
3562		/*
3563		 * Some timers can use more than 59 bits, and when a timestamp
3564		 * is added to the buffer, it will lose those bits.
3565		 */
3566		if (abs && (info->ts & TS_MSB)) {
3567			info->delta &= ABS_TS_MASK;
3568
3569		/* did the clock go backwards */
3570		} else if (info->before == info->after && info->before > info->ts) {
3571			/* not interrupted */
3572			static int once;
3573
3574			/*
3575			 * This is possible with a recalibrating of the TSC.
3576			 * Do not produce a call stack, but just report it.
3577			 */
3578			if (!once) {
3579				once++;
3580				pr_warn("Ring buffer clock went backwards: %llu -> %llu\n",
3581					info->before, info->ts);
3582			}
3583		} else
3584			rb_check_timestamp(cpu_buffer, info);
3585		if (!abs)
3586			info->delta = 0;
3587	}
3588	*event = rb_add_time_stamp(cpu_buffer, *event, info->delta, abs);
3589	*length -= RB_LEN_TIME_EXTEND;
3590	*delta = 0;
3591}
3592
3593/**
3594 * rb_update_event - update event type and data
3595 * @cpu_buffer: The per cpu buffer of the @event
3596 * @event: the event to update
3597 * @info: The info to update the @event with (contains length and delta)
 
3598 *
3599 * Update the type and data fields of the @event. The length
3600 * is the actual size that is written to the ring buffer,
3601 * and with this, we can determine what to place into the
3602 * data field.
3603 */
3604static void
3605rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
3606		struct ring_buffer_event *event,
3607		struct rb_event_info *info)
3608{
3609	unsigned length = info->length;
3610	u64 delta = info->delta;
3611	unsigned int nest = local_read(&cpu_buffer->committing) - 1;
3612
3613	if (!WARN_ON_ONCE(nest >= MAX_NEST))
3614		cpu_buffer->event_stamp[nest] = info->ts;
 
3615
3616	/*
3617	 * If we need to add a timestamp, then we
3618	 * add it to the start of the reserved space.
3619	 */
3620	if (unlikely(info->add_timestamp))
3621		rb_add_timestamp(cpu_buffer, &event, info, &delta, &length);
 
 
 
3622
3623	event->time_delta = delta;
3624	length -= RB_EVNT_HDR_SIZE;
3625	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
3626		event->type_len = 0;
3627		event->array[0] = length;
3628	} else
3629		event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
3630}
3631
3632static unsigned rb_calculate_event_length(unsigned length)
3633{
3634	struct ring_buffer_event event; /* Used only for sizeof array */
3635
3636	/* zero length can cause confusions */
3637	if (!length)
3638		length++;
3639
3640	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
3641		length += sizeof(event.array[0]);
3642
3643	length += RB_EVNT_HDR_SIZE;
3644	length = ALIGN(length, RB_ARCH_ALIGNMENT);
3645
3646	/*
3647	 * In case the time delta is larger than the 27 bits for it
3648	 * in the header, we need to add a timestamp. If another
3649	 * event comes in when trying to discard this one to increase
3650	 * the length, then the timestamp will be added in the allocated
3651	 * space of this event. If length is bigger than the size needed
3652	 * for the TIME_EXTEND, then padding has to be used. The events
3653	 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
3654	 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
3655	 * As length is a multiple of 4, we only need to worry if it
3656	 * is 12 (RB_LEN_TIME_EXTEND + 4).
3657	 */
3658	if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
3659		length += RB_ALIGNMENT;
3660
3661	return length;
3662}
3663
3664static inline bool
 
 
 
 
 
 
 
3665rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
3666		  struct ring_buffer_event *event)
3667{
3668	unsigned long new_index, old_index;
3669	struct buffer_page *bpage;
 
3670	unsigned long addr;
3671
3672	new_index = rb_event_index(cpu_buffer, event);
3673	old_index = new_index + rb_event_ts_length(event);
3674	addr = (unsigned long)event;
3675	addr &= ~((PAGE_SIZE << cpu_buffer->buffer->subbuf_order) - 1);
3676
3677	bpage = READ_ONCE(cpu_buffer->tail_page);
3678
3679	/*
3680	 * Make sure the tail_page is still the same and
3681	 * the next write location is the end of this event
3682	 */
3683	if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
3684		unsigned long write_mask =
3685			local_read(&bpage->write) & ~RB_WRITE_MASK;
3686		unsigned long event_length = rb_event_length(event);
3687
3688		/*
3689		 * For the before_stamp to be different than the write_stamp
3690		 * to make sure that the next event adds an absolute
3691		 * value and does not rely on the saved write stamp, which
3692		 * is now going to be bogus.
3693		 *
3694		 * By setting the before_stamp to zero, the next event
3695		 * is not going to use the write_stamp and will instead
3696		 * create an absolute timestamp. This means there's no
3697		 * reason to update the wirte_stamp!
3698		 */
3699		rb_time_set(&cpu_buffer->before_stamp, 0);
3700
3701		/*
3702		 * If an event were to come in now, it would see that the
3703		 * write_stamp and the before_stamp are different, and assume
3704		 * that this event just added itself before updating
3705		 * the write stamp. The interrupting event will fix the
3706		 * write stamp for us, and use an absolute timestamp.
3707		 */
3708
3709		/*
3710		 * This is on the tail page. It is possible that
3711		 * a write could come in and move the tail page
3712		 * and write to the next page. That is fine
3713		 * because we just shorten what is on this page.
3714		 */
3715		old_index += write_mask;
3716		new_index += write_mask;
3717
3718		/* caution: old_index gets updated on cmpxchg failure */
3719		if (local_try_cmpxchg(&bpage->write, &old_index, new_index)) {
3720			/* update counters */
3721			local_sub(event_length, &cpu_buffer->entries_bytes);
3722			return true;
3723		}
3724	}
3725
3726	/* could not discard */
3727	return false;
3728}
3729
3730static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
3731{
3732	local_inc(&cpu_buffer->committing);
3733	local_inc(&cpu_buffer->commits);
3734}
3735
3736static __always_inline void
3737rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
3738{
3739	unsigned long max_count;
3740
3741	/*
3742	 * We only race with interrupts and NMIs on this CPU.
3743	 * If we own the commit event, then we can commit
3744	 * all others that interrupted us, since the interruptions
3745	 * are in stack format (they finish before they come
3746	 * back to us). This allows us to do a simple loop to
3747	 * assign the commit to the tail.
3748	 */
3749 again:
3750	max_count = cpu_buffer->nr_pages * 100;
3751
3752	while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) {
3753		if (RB_WARN_ON(cpu_buffer, !(--max_count)))
3754			return;
3755		if (RB_WARN_ON(cpu_buffer,
3756			       rb_is_reader_page(cpu_buffer->tail_page)))
3757			return;
3758		/*
3759		 * No need for a memory barrier here, as the update
3760		 * of the tail_page did it for this page.
3761		 */
3762		local_set(&cpu_buffer->commit_page->page->commit,
3763			  rb_page_write(cpu_buffer->commit_page));
3764		rb_inc_page(&cpu_buffer->commit_page);
3765		if (cpu_buffer->ring_meta) {
3766			struct ring_buffer_meta *meta = cpu_buffer->ring_meta;
3767			meta->commit_buffer = (unsigned long)cpu_buffer->commit_page->page;
3768		}
3769		/* add barrier to keep gcc from optimizing too much */
3770		barrier();
3771	}
3772	while (rb_commit_index(cpu_buffer) !=
3773	       rb_page_write(cpu_buffer->commit_page)) {
3774
3775		/* Make sure the readers see the content of what is committed. */
3776		smp_wmb();
3777		local_set(&cpu_buffer->commit_page->page->commit,
3778			  rb_page_write(cpu_buffer->commit_page));
3779		RB_WARN_ON(cpu_buffer,
3780			   local_read(&cpu_buffer->commit_page->page->commit) &
3781			   ~RB_WRITE_MASK);
3782		barrier();
3783	}
3784
3785	/* again, keep gcc from optimizing */
3786	barrier();
3787
3788	/*
3789	 * If an interrupt came in just after the first while loop
3790	 * and pushed the tail page forward, we will be left with
3791	 * a dangling commit that will never go forward.
3792	 */
3793	if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)))
3794		goto again;
3795}
3796
3797static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
3798{
3799	unsigned long commits;
3800
3801	if (RB_WARN_ON(cpu_buffer,
3802		       !local_read(&cpu_buffer->committing)))
3803		return;
3804
3805 again:
3806	commits = local_read(&cpu_buffer->commits);
3807	/* synchronize with interrupts */
3808	barrier();
3809	if (local_read(&cpu_buffer->committing) == 1)
3810		rb_set_commit_to_write(cpu_buffer);
3811
3812	local_dec(&cpu_buffer->committing);
3813
3814	/* synchronize with interrupts */
3815	barrier();
3816
3817	/*
3818	 * Need to account for interrupts coming in between the
3819	 * updating of the commit page and the clearing of the
3820	 * committing counter.
3821	 */
3822	if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
3823	    !local_read(&cpu_buffer->committing)) {
3824		local_inc(&cpu_buffer->committing);
3825		goto again;
3826	}
3827}
3828
3829static inline void rb_event_discard(struct ring_buffer_event *event)
3830{
3831	if (extended_time(event))
3832		event = skip_time_extend(event);
3833
3834	/* array[0] holds the actual length for the discarded event */
3835	event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
3836	event->type_len = RINGBUF_TYPE_PADDING;
3837	/* time delta must be non zero */
3838	if (!event->time_delta)
3839		event->time_delta = 1;
3840}
3841
3842static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3843{
3844	local_inc(&cpu_buffer->entries);
 
3845	rb_end_commit(cpu_buffer);
3846}
3847
3848static __always_inline void
3849rb_wakeups(struct trace_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
3850{
 
 
3851	if (buffer->irq_work.waiters_pending) {
3852		buffer->irq_work.waiters_pending = false;
3853		/* irq_work_queue() supplies it's own memory barriers */
3854		irq_work_queue(&buffer->irq_work.work);
3855	}
3856
3857	if (cpu_buffer->irq_work.waiters_pending) {
3858		cpu_buffer->irq_work.waiters_pending = false;
3859		/* irq_work_queue() supplies it's own memory barriers */
3860		irq_work_queue(&cpu_buffer->irq_work.work);
3861	}
3862
3863	if (cpu_buffer->last_pages_touch == local_read(&cpu_buffer->pages_touched))
3864		return;
3865
3866	if (cpu_buffer->reader_page == cpu_buffer->commit_page)
3867		return;
3868
3869	if (!cpu_buffer->irq_work.full_waiters_pending)
3870		return;
3871
3872	cpu_buffer->last_pages_touch = local_read(&cpu_buffer->pages_touched);
3873
3874	if (!full_hit(buffer, cpu_buffer->cpu, cpu_buffer->shortest_full))
3875		return;
3876
3877	cpu_buffer->irq_work.wakeup_full = true;
3878	cpu_buffer->irq_work.full_waiters_pending = false;
3879	/* irq_work_queue() supplies it's own memory barriers */
3880	irq_work_queue(&cpu_buffer->irq_work.work);
3881}
3882
3883#ifdef CONFIG_RING_BUFFER_RECORD_RECURSION
3884# define do_ring_buffer_record_recursion()	\
3885	do_ftrace_record_recursion(_THIS_IP_, _RET_IP_)
3886#else
3887# define do_ring_buffer_record_recursion() do { } while (0)
3888#endif
3889
3890/*
3891 * The lock and unlock are done within a preempt disable section.
3892 * The current_context per_cpu variable can only be modified
3893 * by the current task between lock and unlock. But it can
3894 * be modified more than once via an interrupt. To pass this
3895 * information from the lock to the unlock without having to
3896 * access the 'in_interrupt()' functions again (which do show
3897 * a bit of overhead in something as critical as function tracing,
3898 * we use a bitmask trick.
3899 *
3900 *  bit 1 =  NMI context
3901 *  bit 2 =  IRQ context
3902 *  bit 3 =  SoftIRQ context
3903 *  bit 4 =  normal context.
3904 *
3905 * This works because this is the order of contexts that can
3906 * preempt other contexts. A SoftIRQ never preempts an IRQ
3907 * context.
3908 *
3909 * When the context is determined, the corresponding bit is
3910 * checked and set (if it was set, then a recursion of that context
3911 * happened).
3912 *
3913 * On unlock, we need to clear this bit. To do so, just subtract
3914 * 1 from the current_context and AND it to itself.
3915 *
3916 * (binary)
3917 *  101 - 1 = 100
3918 *  101 & 100 = 100 (clearing bit zero)
3919 *
3920 *  1010 - 1 = 1001
3921 *  1010 & 1001 = 1000 (clearing bit 1)
3922 *
3923 * The least significant bit can be cleared this way, and it
3924 * just so happens that it is the same bit corresponding to
3925 * the current context.
3926 *
3927 * Now the TRANSITION bit breaks the above slightly. The TRANSITION bit
3928 * is set when a recursion is detected at the current context, and if
3929 * the TRANSITION bit is already set, it will fail the recursion.
3930 * This is needed because there's a lag between the changing of
3931 * interrupt context and updating the preempt count. In this case,
3932 * a false positive will be found. To handle this, one extra recursion
3933 * is allowed, and this is done by the TRANSITION bit. If the TRANSITION
3934 * bit is already set, then it is considered a recursion and the function
3935 * ends. Otherwise, the TRANSITION bit is set, and that bit is returned.
3936 *
3937 * On the trace_recursive_unlock(), the TRANSITION bit will be the first
3938 * to be cleared. Even if it wasn't the context that set it. That is,
3939 * if an interrupt comes in while NORMAL bit is set and the ring buffer
3940 * is called before preempt_count() is updated, since the check will
3941 * be on the NORMAL bit, the TRANSITION bit will then be set. If an
3942 * NMI then comes in, it will set the NMI bit, but when the NMI code
3943 * does the trace_recursive_unlock() it will clear the TRANSITION bit
3944 * and leave the NMI bit set. But this is fine, because the interrupt
3945 * code that set the TRANSITION bit will then clear the NMI bit when it
3946 * calls trace_recursive_unlock(). If another NMI comes in, it will
3947 * set the TRANSITION bit and continue.
3948 *
3949 * Note: The TRANSITION bit only handles a single transition between context.
3950 */
3951
3952static __always_inline bool
3953trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
3954{
3955	unsigned int val = cpu_buffer->current_context;
3956	int bit = interrupt_context_level();
3957
3958	bit = RB_CTX_NORMAL - bit;
 
 
 
 
 
 
 
 
3959
3960	if (unlikely(val & (1 << (bit + cpu_buffer->nest)))) {
3961		/*
3962		 * It is possible that this was called by transitioning
3963		 * between interrupt context, and preempt_count() has not
3964		 * been updated yet. In this case, use the TRANSITION bit.
3965		 */
3966		bit = RB_CTX_TRANSITION;
3967		if (val & (1 << (bit + cpu_buffer->nest))) {
3968			do_ring_buffer_record_recursion();
3969			return true;
3970		}
3971	}
3972
3973	val |= (1 << (bit + cpu_buffer->nest));
3974	cpu_buffer->current_context = val;
3975
3976	return false;
3977}
3978
3979static __always_inline void
3980trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
3981{
3982	cpu_buffer->current_context &=
3983		cpu_buffer->current_context - (1 << cpu_buffer->nest);
3984}
3985
3986/* The recursive locking above uses 5 bits */
3987#define NESTED_BITS 5
3988
3989/**
3990 * ring_buffer_nest_start - Allow to trace while nested
3991 * @buffer: The ring buffer to modify
3992 *
3993 * The ring buffer has a safety mechanism to prevent recursion.
3994 * But there may be a case where a trace needs to be done while
3995 * tracing something else. In this case, calling this function
3996 * will allow this function to nest within a currently active
3997 * ring_buffer_lock_reserve().
3998 *
3999 * Call this function before calling another ring_buffer_lock_reserve() and
4000 * call ring_buffer_nest_end() after the nested ring_buffer_unlock_commit().
4001 */
4002void ring_buffer_nest_start(struct trace_buffer *buffer)
4003{
4004	struct ring_buffer_per_cpu *cpu_buffer;
4005	int cpu;
4006
4007	/* Enabled by ring_buffer_nest_end() */
4008	preempt_disable_notrace();
4009	cpu = raw_smp_processor_id();
4010	cpu_buffer = buffer->buffers[cpu];
4011	/* This is the shift value for the above recursive locking */
4012	cpu_buffer->nest += NESTED_BITS;
4013}
4014
4015/**
4016 * ring_buffer_nest_end - Allow to trace while nested
4017 * @buffer: The ring buffer to modify
4018 *
4019 * Must be called after ring_buffer_nest_start() and after the
4020 * ring_buffer_unlock_commit().
4021 */
4022void ring_buffer_nest_end(struct trace_buffer *buffer)
4023{
4024	struct ring_buffer_per_cpu *cpu_buffer;
4025	int cpu;
4026
4027	/* disabled by ring_buffer_nest_start() */
4028	cpu = raw_smp_processor_id();
4029	cpu_buffer = buffer->buffers[cpu];
4030	/* This is the shift value for the above recursive locking */
4031	cpu_buffer->nest -= NESTED_BITS;
4032	preempt_enable_notrace();
4033}
4034
4035/**
4036 * ring_buffer_unlock_commit - commit a reserved
4037 * @buffer: The buffer to commit to
 
4038 *
4039 * This commits the data to the ring buffer, and releases any locks held.
4040 *
4041 * Must be paired with ring_buffer_lock_reserve.
4042 */
4043int ring_buffer_unlock_commit(struct trace_buffer *buffer)
 
4044{
4045	struct ring_buffer_per_cpu *cpu_buffer;
4046	int cpu = raw_smp_processor_id();
4047
4048	cpu_buffer = buffer->buffers[cpu];
4049
4050	rb_commit(cpu_buffer);
4051
4052	rb_wakeups(buffer, cpu_buffer);
4053
4054	trace_recursive_unlock(cpu_buffer);
4055
4056	preempt_enable_notrace();
4057
4058	return 0;
4059}
4060EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
4061
4062/* Special value to validate all deltas on a page. */
4063#define CHECK_FULL_PAGE		1L
4064
4065#ifdef CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS
4066
4067static const char *show_irq_str(int bits)
4068{
4069	const char *type[] = {
4070		".",	// 0
4071		"s",	// 1
4072		"h",	// 2
4073		"Hs",	// 3
4074		"n",	// 4
4075		"Ns",	// 5
4076		"Nh",	// 6
4077		"NHs",	// 7
4078	};
4079
4080	return type[bits];
4081}
4082
4083/* Assume this is a trace event */
4084static const char *show_flags(struct ring_buffer_event *event)
4085{
4086	struct trace_entry *entry;
4087	int bits = 0;
4088
4089	if (rb_event_data_length(event) - RB_EVNT_HDR_SIZE < sizeof(*entry))
4090		return "X";
4091
4092	entry = ring_buffer_event_data(event);
4093
4094	if (entry->flags & TRACE_FLAG_SOFTIRQ)
4095		bits |= 1;
4096
4097	if (entry->flags & TRACE_FLAG_HARDIRQ)
4098		bits |= 2;
4099
4100	if (entry->flags & TRACE_FLAG_NMI)
4101		bits |= 4;
4102
4103	return show_irq_str(bits);
4104}
4105
4106static const char *show_irq(struct ring_buffer_event *event)
4107{
4108	struct trace_entry *entry;
4109
4110	if (rb_event_data_length(event) - RB_EVNT_HDR_SIZE < sizeof(*entry))
4111		return "";
4112
4113	entry = ring_buffer_event_data(event);
4114	if (entry->flags & TRACE_FLAG_IRQS_OFF)
4115		return "d";
4116	return "";
4117}
4118
4119static const char *show_interrupt_level(void)
4120{
4121	unsigned long pc = preempt_count();
4122	unsigned char level = 0;
4123
4124	if (pc & SOFTIRQ_OFFSET)
4125		level |= 1;
4126
4127	if (pc & HARDIRQ_MASK)
4128		level |= 2;
4129
4130	if (pc & NMI_MASK)
4131		level |= 4;
4132
4133	return show_irq_str(level);
4134}
4135
4136static void dump_buffer_page(struct buffer_data_page *bpage,
4137			     struct rb_event_info *info,
4138			     unsigned long tail)
4139{
4140	struct ring_buffer_event *event;
4141	u64 ts, delta;
4142	int e;
4143
4144	ts = bpage->time_stamp;
4145	pr_warn("  [%lld] PAGE TIME STAMP\n", ts);
4146
4147	for (e = 0; e < tail; e += rb_event_length(event)) {
4148
4149		event = (struct ring_buffer_event *)(bpage->data + e);
4150
4151		switch (event->type_len) {
4152
4153		case RINGBUF_TYPE_TIME_EXTEND:
4154			delta = rb_event_time_stamp(event);
4155			ts += delta;
4156			pr_warn(" 0x%x: [%lld] delta:%lld TIME EXTEND\n",
4157				e, ts, delta);
4158			break;
4159
4160		case RINGBUF_TYPE_TIME_STAMP:
4161			delta = rb_event_time_stamp(event);
4162			ts = rb_fix_abs_ts(delta, ts);
4163			pr_warn(" 0x%x:  [%lld] absolute:%lld TIME STAMP\n",
4164				e, ts, delta);
4165			break;
4166
4167		case RINGBUF_TYPE_PADDING:
4168			ts += event->time_delta;
4169			pr_warn(" 0x%x:  [%lld] delta:%d PADDING\n",
4170				e, ts, event->time_delta);
4171			break;
4172
4173		case RINGBUF_TYPE_DATA:
4174			ts += event->time_delta;
4175			pr_warn(" 0x%x:  [%lld] delta:%d %s%s\n",
4176				e, ts, event->time_delta,
4177				show_flags(event), show_irq(event));
4178			break;
4179
4180		default:
4181			break;
4182		}
4183	}
4184	pr_warn("expected end:0x%lx last event actually ended at:0x%x\n", tail, e);
4185}
4186
4187static DEFINE_PER_CPU(atomic_t, checking);
4188static atomic_t ts_dump;
4189
4190#define buffer_warn_return(fmt, ...)					\
4191	do {								\
4192		/* If another report is happening, ignore this one */	\
4193		if (atomic_inc_return(&ts_dump) != 1) {			\
4194			atomic_dec(&ts_dump);				\
4195			goto out;					\
4196		}							\
4197		atomic_inc(&cpu_buffer->record_disabled);		\
4198		pr_warn(fmt, ##__VA_ARGS__);				\
4199		dump_buffer_page(bpage, info, tail);			\
4200		atomic_dec(&ts_dump);					\
4201		/* There's some cases in boot up that this can happen */ \
4202		if (WARN_ON_ONCE(system_state != SYSTEM_BOOTING))	\
4203			/* Do not re-enable checking */			\
4204			return;						\
4205	} while (0)
4206
4207/*
4208 * Check if the current event time stamp matches the deltas on
4209 * the buffer page.
4210 */
4211static void check_buffer(struct ring_buffer_per_cpu *cpu_buffer,
4212			 struct rb_event_info *info,
4213			 unsigned long tail)
4214{
4215	struct buffer_data_page *bpage;
4216	u64 ts, delta;
4217	bool full = false;
4218	int ret;
4219
4220	bpage = info->tail_page->page;
4221
4222	if (tail == CHECK_FULL_PAGE) {
4223		full = true;
4224		tail = local_read(&bpage->commit);
4225	} else if (info->add_timestamp &
4226		   (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE)) {
4227		/* Ignore events with absolute time stamps */
4228		return;
4229	}
4230
4231	/*
4232	 * Do not check the first event (skip possible extends too).
4233	 * Also do not check if previous events have not been committed.
4234	 */
4235	if (tail <= 8 || tail > local_read(&bpage->commit))
4236		return;
4237
4238	/*
4239	 * If this interrupted another event,
4240	 */
4241	if (atomic_inc_return(this_cpu_ptr(&checking)) != 1)
4242		goto out;
4243
4244	ret = rb_read_data_buffer(bpage, tail, cpu_buffer->cpu, &ts, &delta);
4245	if (ret < 0) {
4246		if (delta < ts) {
4247			buffer_warn_return("[CPU: %d]ABSOLUTE TIME WENT BACKWARDS: last ts: %lld absolute ts: %lld\n",
4248					   cpu_buffer->cpu, ts, delta);
4249			goto out;
4250		}
4251	}
4252	if ((full && ts > info->ts) ||
4253	    (!full && ts + info->delta != info->ts)) {
4254		buffer_warn_return("[CPU: %d]TIME DOES NOT MATCH expected:%lld actual:%lld delta:%lld before:%lld after:%lld%s context:%s\n",
4255				   cpu_buffer->cpu,
4256				   ts + info->delta, info->ts, info->delta,
4257				   info->before, info->after,
4258				   full ? " (full)" : "", show_interrupt_level());
4259	}
4260out:
4261	atomic_dec(this_cpu_ptr(&checking));
4262}
4263#else
4264static inline void check_buffer(struct ring_buffer_per_cpu *cpu_buffer,
4265			 struct rb_event_info *info,
4266			 unsigned long tail)
4267{
 
 
 
 
 
 
 
 
 
 
4268}
4269#endif /* CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS */
4270
4271static struct ring_buffer_event *
4272__rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
4273		  struct rb_event_info *info)
4274{
4275	struct ring_buffer_event *event;
4276	struct buffer_page *tail_page;
4277	unsigned long tail, write, w;
 
 
 
 
 
 
 
 
4278
4279	/* Don't let the compiler play games with cpu_buffer->tail_page */
4280	tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page);
4281
4282 /*A*/	w = local_read(&tail_page->write) & RB_WRITE_MASK;
4283	barrier();
4284	rb_time_read(&cpu_buffer->before_stamp, &info->before);
4285	rb_time_read(&cpu_buffer->write_stamp, &info->after);
4286	barrier();
4287	info->ts = rb_time_stamp(cpu_buffer->buffer);
4288
4289	if ((info->add_timestamp & RB_ADD_STAMP_ABSOLUTE)) {
4290		info->delta = info->ts;
4291	} else {
4292		/*
4293		 * If interrupting an event time update, we may need an
4294		 * absolute timestamp.
4295		 * Don't bother if this is the start of a new page (w == 0).
4296		 */
4297		if (!w) {
4298			/* Use the sub-buffer timestamp */
4299			info->delta = 0;
4300		} else if (unlikely(info->before != info->after)) {
4301			info->add_timestamp |= RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND;
4302			info->length += RB_LEN_TIME_EXTEND;
4303		} else {
4304			info->delta = info->ts - info->after;
4305			if (unlikely(test_time_stamp(info->delta))) {
4306				info->add_timestamp |= RB_ADD_STAMP_EXTEND;
4307				info->length += RB_LEN_TIME_EXTEND;
4308			}
4309		}
4310	}
4311
4312 /*B*/	rb_time_set(&cpu_buffer->before_stamp, info->ts);
4313
4314 /*C*/	write = local_add_return(info->length, &tail_page->write);
4315
4316	/* set write to only the index of the write */
4317	write &= RB_WRITE_MASK;
4318
4319	tail = write - info->length;
4320
4321	/* See if we shot pass the end of this buffer page */
4322	if (unlikely(write > cpu_buffer->buffer->subbuf_size)) {
4323		check_buffer(cpu_buffer, info, CHECK_FULL_PAGE);
4324		return rb_move_tail(cpu_buffer, tail, info);
4325	}
4326
4327	if (likely(tail == w)) {
4328		/* Nothing interrupted us between A and C */
4329 /*D*/		rb_time_set(&cpu_buffer->write_stamp, info->ts);
4330		/*
4331		 * If something came in between C and D, the write stamp
4332		 * may now not be in sync. But that's fine as the before_stamp
4333		 * will be different and then next event will just be forced
4334		 * to use an absolute timestamp.
4335		 */
4336		if (likely(!(info->add_timestamp &
4337			     (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
4338			/* This did not interrupt any time update */
4339			info->delta = info->ts - info->after;
4340		else
4341			/* Just use full timestamp for interrupting event */
4342			info->delta = info->ts;
4343		check_buffer(cpu_buffer, info, tail);
4344	} else {
4345		u64 ts;
4346		/* SLOW PATH - Interrupted between A and C */
4347
4348		/* Save the old before_stamp */
4349		rb_time_read(&cpu_buffer->before_stamp, &info->before);
4350
4351		/*
4352		 * Read a new timestamp and update the before_stamp to make
4353		 * the next event after this one force using an absolute
4354		 * timestamp. This is in case an interrupt were to come in
4355		 * between E and F.
4356		 */
4357		ts = rb_time_stamp(cpu_buffer->buffer);
4358		rb_time_set(&cpu_buffer->before_stamp, ts);
4359
4360		barrier();
4361 /*E*/		rb_time_read(&cpu_buffer->write_stamp, &info->after);
4362		barrier();
4363 /*F*/		if (write == (local_read(&tail_page->write) & RB_WRITE_MASK) &&
4364		    info->after == info->before && info->after < ts) {
4365			/*
4366			 * Nothing came after this event between C and F, it is
4367			 * safe to use info->after for the delta as it
4368			 * matched info->before and is still valid.
4369			 */
4370			info->delta = ts - info->after;
4371		} else {
4372			/*
4373			 * Interrupted between C and F:
4374			 * Lost the previous events time stamp. Just set the
4375			 * delta to zero, and this will be the same time as
4376			 * the event this event interrupted. And the events that
4377			 * came after this will still be correct (as they would
4378			 * have built their delta on the previous event.
4379			 */
4380			info->delta = 0;
4381		}
4382		info->ts = ts;
4383		info->add_timestamp &= ~RB_ADD_STAMP_FORCE;
4384	}
4385
4386	/*
4387	 * If this is the first commit on the page, then it has the same
4388	 * timestamp as the page itself.
4389	 */
4390	if (unlikely(!tail && !(info->add_timestamp &
4391				(RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
4392		info->delta = 0;
4393
 
 
 
 
4394	/* We reserved something on the buffer */
4395
4396	event = __rb_page_index(tail_page, tail);
 
4397	rb_update_event(cpu_buffer, event, info);
4398
4399	local_inc(&tail_page->entries);
4400
4401	/*
4402	 * If this is the first commit on the page, then update
4403	 * its timestamp.
4404	 */
4405	if (unlikely(!tail))
4406		tail_page->page->time_stamp = info->ts;
4407
4408	/* account for these added bytes */
4409	local_add(info->length, &cpu_buffer->entries_bytes);
4410
4411	return event;
4412}
4413
4414static __always_inline struct ring_buffer_event *
4415rb_reserve_next_event(struct trace_buffer *buffer,
4416		      struct ring_buffer_per_cpu *cpu_buffer,
4417		      unsigned long length)
4418{
4419	struct ring_buffer_event *event;
4420	struct rb_event_info info;
4421	int nr_loops = 0;
4422	int add_ts_default;
4423
4424	/*
4425	 * ring buffer does cmpxchg as well as atomic64 operations
4426	 * (which some archs use locking for atomic64), make sure this
4427	 * is safe in NMI context
4428	 */
4429	if ((!IS_ENABLED(CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG) ||
4430	     IS_ENABLED(CONFIG_GENERIC_ATOMIC64)) &&
4431	    (unlikely(in_nmi()))) {
4432		return NULL;
4433	}
4434
4435	rb_start_commit(cpu_buffer);
4436	/* The commit page can not change after this */
4437
4438#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4439	/*
4440	 * Due to the ability to swap a cpu buffer from a buffer
4441	 * it is possible it was swapped before we committed.
4442	 * (committing stops a swap). We check for it here and
4443	 * if it happened, we have to fail the write.
4444	 */
4445	barrier();
4446	if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) {
4447		local_dec(&cpu_buffer->committing);
4448		local_dec(&cpu_buffer->commits);
4449		return NULL;
4450	}
4451#endif
4452
4453	info.length = rb_calculate_event_length(length);
4454
4455	if (ring_buffer_time_stamp_abs(cpu_buffer->buffer)) {
4456		add_ts_default = RB_ADD_STAMP_ABSOLUTE;
4457		info.length += RB_LEN_TIME_EXTEND;
4458		if (info.length > cpu_buffer->buffer->max_data_size)
4459			goto out_fail;
4460	} else {
4461		add_ts_default = RB_ADD_STAMP_NONE;
4462	}
4463
4464 again:
4465	info.add_timestamp = add_ts_default;
4466	info.delta = 0;
4467
4468	/*
4469	 * We allow for interrupts to reenter here and do a trace.
4470	 * If one does, it will cause this original code to loop
4471	 * back here. Even with heavy interrupts happening, this
4472	 * should only happen a few times in a row. If this happens
4473	 * 1000 times in a row, there must be either an interrupt
4474	 * storm or we have something buggy.
4475	 * Bail!
4476	 */
4477	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
4478		goto out_fail;
4479
 
 
 
 
 
 
 
 
 
 
 
 
 
4480	event = __rb_reserve_next(cpu_buffer, &info);
4481
4482	if (unlikely(PTR_ERR(event) == -EAGAIN)) {
4483		if (info.add_timestamp & (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND))
4484			info.length -= RB_LEN_TIME_EXTEND;
4485		goto again;
4486	}
4487
4488	if (likely(event))
4489		return event;
 
 
 
4490 out_fail:
4491	rb_end_commit(cpu_buffer);
4492	return NULL;
4493}
4494
4495/**
4496 * ring_buffer_lock_reserve - reserve a part of the buffer
4497 * @buffer: the ring buffer to reserve from
4498 * @length: the length of the data to reserve (excluding event header)
4499 *
4500 * Returns a reserved event on the ring buffer to copy directly to.
4501 * The user of this interface will need to get the body to write into
4502 * and can use the ring_buffer_event_data() interface.
4503 *
4504 * The length is the length of the data needed, not the event length
4505 * which also includes the event header.
4506 *
4507 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
4508 * If NULL is returned, then nothing has been allocated or locked.
4509 */
4510struct ring_buffer_event *
4511ring_buffer_lock_reserve(struct trace_buffer *buffer, unsigned long length)
4512{
4513	struct ring_buffer_per_cpu *cpu_buffer;
4514	struct ring_buffer_event *event;
4515	int cpu;
4516
4517	/* If we are tracing schedule, we don't want to recurse */
4518	preempt_disable_notrace();
4519
4520	if (unlikely(atomic_read(&buffer->record_disabled)))
4521		goto out;
4522
4523	cpu = raw_smp_processor_id();
4524
4525	if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
4526		goto out;
4527
4528	cpu_buffer = buffer->buffers[cpu];
4529
4530	if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
4531		goto out;
4532
4533	if (unlikely(length > buffer->max_data_size))
4534		goto out;
4535
4536	if (unlikely(trace_recursive_lock(cpu_buffer)))
4537		goto out;
4538
4539	event = rb_reserve_next_event(buffer, cpu_buffer, length);
4540	if (!event)
4541		goto out_unlock;
4542
4543	return event;
4544
4545 out_unlock:
4546	trace_recursive_unlock(cpu_buffer);
4547 out:
4548	preempt_enable_notrace();
4549	return NULL;
4550}
4551EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
4552
4553/*
4554 * Decrement the entries to the page that an event is on.
4555 * The event does not even need to exist, only the pointer
4556 * to the page it is on. This may only be called before the commit
4557 * takes place.
4558 */
4559static inline void
4560rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
4561		   struct ring_buffer_event *event)
4562{
4563	unsigned long addr = (unsigned long)event;
4564	struct buffer_page *bpage = cpu_buffer->commit_page;
4565	struct buffer_page *start;
4566
4567	addr &= ~((PAGE_SIZE << cpu_buffer->buffer->subbuf_order) - 1);
4568
4569	/* Do the likely case first */
4570	if (likely(bpage->page == (void *)addr)) {
4571		local_dec(&bpage->entries);
4572		return;
4573	}
4574
4575	/*
4576	 * Because the commit page may be on the reader page we
4577	 * start with the next page and check the end loop there.
4578	 */
4579	rb_inc_page(&bpage);
4580	start = bpage;
4581	do {
4582		if (bpage->page == (void *)addr) {
4583			local_dec(&bpage->entries);
4584			return;
4585		}
4586		rb_inc_page(&bpage);
4587	} while (bpage != start);
4588
4589	/* commit not part of this buffer?? */
4590	RB_WARN_ON(cpu_buffer, 1);
4591}
4592
4593/**
4594 * ring_buffer_discard_commit - discard an event that has not been committed
4595 * @buffer: the ring buffer
4596 * @event: non committed event to discard
4597 *
4598 * Sometimes an event that is in the ring buffer needs to be ignored.
4599 * This function lets the user discard an event in the ring buffer
4600 * and then that event will not be read later.
4601 *
4602 * This function only works if it is called before the item has been
4603 * committed. It will try to free the event from the ring buffer
4604 * if another event has not been added behind it.
4605 *
4606 * If another event has been added behind it, it will set the event
4607 * up as discarded, and perform the commit.
4608 *
4609 * If this function is called, do not call ring_buffer_unlock_commit on
4610 * the event.
4611 */
4612void ring_buffer_discard_commit(struct trace_buffer *buffer,
4613				struct ring_buffer_event *event)
4614{
4615	struct ring_buffer_per_cpu *cpu_buffer;
4616	int cpu;
4617
4618	/* The event is discarded regardless */
4619	rb_event_discard(event);
4620
4621	cpu = smp_processor_id();
4622	cpu_buffer = buffer->buffers[cpu];
4623
4624	/*
4625	 * This must only be called if the event has not been
4626	 * committed yet. Thus we can assume that preemption
4627	 * is still disabled.
4628	 */
4629	RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
4630
4631	rb_decrement_entry(cpu_buffer, event);
4632	if (rb_try_to_discard(cpu_buffer, event))
4633		goto out;
4634
 
 
 
 
 
4635 out:
4636	rb_end_commit(cpu_buffer);
4637
4638	trace_recursive_unlock(cpu_buffer);
4639
4640	preempt_enable_notrace();
4641
4642}
4643EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
4644
4645/**
4646 * ring_buffer_write - write data to the buffer without reserving
4647 * @buffer: The ring buffer to write to.
4648 * @length: The length of the data being written (excluding the event header)
4649 * @data: The data to write to the buffer.
4650 *
4651 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
4652 * one function. If you already have the data to write to the buffer, it
4653 * may be easier to simply call this function.
4654 *
4655 * Note, like ring_buffer_lock_reserve, the length is the length of the data
4656 * and not the length of the event which would hold the header.
4657 */
4658int ring_buffer_write(struct trace_buffer *buffer,
4659		      unsigned long length,
4660		      void *data)
4661{
4662	struct ring_buffer_per_cpu *cpu_buffer;
4663	struct ring_buffer_event *event;
4664	void *body;
4665	int ret = -EBUSY;
4666	int cpu;
4667
4668	preempt_disable_notrace();
4669
4670	if (atomic_read(&buffer->record_disabled))
4671		goto out;
4672
4673	cpu = raw_smp_processor_id();
4674
4675	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4676		goto out;
4677
4678	cpu_buffer = buffer->buffers[cpu];
4679
4680	if (atomic_read(&cpu_buffer->record_disabled))
4681		goto out;
4682
4683	if (length > buffer->max_data_size)
4684		goto out;
4685
4686	if (unlikely(trace_recursive_lock(cpu_buffer)))
4687		goto out;
4688
4689	event = rb_reserve_next_event(buffer, cpu_buffer, length);
4690	if (!event)
4691		goto out_unlock;
4692
4693	body = rb_event_data(event);
4694
4695	memcpy(body, data, length);
4696
4697	rb_commit(cpu_buffer);
4698
4699	rb_wakeups(buffer, cpu_buffer);
4700
4701	ret = 0;
4702
4703 out_unlock:
4704	trace_recursive_unlock(cpu_buffer);
4705
4706 out:
4707	preempt_enable_notrace();
4708
4709	return ret;
4710}
4711EXPORT_SYMBOL_GPL(ring_buffer_write);
4712
4713static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
4714{
4715	struct buffer_page *reader = cpu_buffer->reader_page;
4716	struct buffer_page *head = rb_set_head_page(cpu_buffer);
4717	struct buffer_page *commit = cpu_buffer->commit_page;
4718
4719	/* In case of error, head will be NULL */
4720	if (unlikely(!head))
4721		return true;
4722
4723	/* Reader should exhaust content in reader page */
4724	if (reader->read != rb_page_size(reader))
4725		return false;
4726
4727	/*
4728	 * If writers are committing on the reader page, knowing all
4729	 * committed content has been read, the ring buffer is empty.
4730	 */
4731	if (commit == reader)
4732		return true;
4733
4734	/*
4735	 * If writers are committing on a page other than reader page
4736	 * and head page, there should always be content to read.
4737	 */
4738	if (commit != head)
4739		return false;
4740
4741	/*
4742	 * Writers are committing on the head page, we just need
4743	 * to care about there're committed data, and the reader will
4744	 * swap reader page with head page when it is to read data.
4745	 */
4746	return rb_page_commit(commit) == 0;
4747}
4748
4749/**
4750 * ring_buffer_record_disable - stop all writes into the buffer
4751 * @buffer: The ring buffer to stop writes to.
4752 *
4753 * This prevents all writes to the buffer. Any attempt to write
4754 * to the buffer after this will fail and return NULL.
4755 *
4756 * The caller should call synchronize_rcu() after this.
4757 */
4758void ring_buffer_record_disable(struct trace_buffer *buffer)
4759{
4760	atomic_inc(&buffer->record_disabled);
4761}
4762EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
4763
4764/**
4765 * ring_buffer_record_enable - enable writes to the buffer
4766 * @buffer: The ring buffer to enable writes
4767 *
4768 * Note, multiple disables will need the same number of enables
4769 * to truly enable the writing (much like preempt_disable).
4770 */
4771void ring_buffer_record_enable(struct trace_buffer *buffer)
4772{
4773	atomic_dec(&buffer->record_disabled);
4774}
4775EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
4776
4777/**
4778 * ring_buffer_record_off - stop all writes into the buffer
4779 * @buffer: The ring buffer to stop writes to.
4780 *
4781 * This prevents all writes to the buffer. Any attempt to write
4782 * to the buffer after this will fail and return NULL.
4783 *
4784 * This is different than ring_buffer_record_disable() as
4785 * it works like an on/off switch, where as the disable() version
4786 * must be paired with a enable().
4787 */
4788void ring_buffer_record_off(struct trace_buffer *buffer)
4789{
4790	unsigned int rd;
4791	unsigned int new_rd;
4792
4793	rd = atomic_read(&buffer->record_disabled);
4794	do {
 
4795		new_rd = rd | RB_BUFFER_OFF;
4796	} while (!atomic_try_cmpxchg(&buffer->record_disabled, &rd, new_rd));
4797}
4798EXPORT_SYMBOL_GPL(ring_buffer_record_off);
4799
4800/**
4801 * ring_buffer_record_on - restart writes into the buffer
4802 * @buffer: The ring buffer to start writes to.
4803 *
4804 * This enables all writes to the buffer that was disabled by
4805 * ring_buffer_record_off().
4806 *
4807 * This is different than ring_buffer_record_enable() as
4808 * it works like an on/off switch, where as the enable() version
4809 * must be paired with a disable().
4810 */
4811void ring_buffer_record_on(struct trace_buffer *buffer)
4812{
4813	unsigned int rd;
4814	unsigned int new_rd;
4815
4816	rd = atomic_read(&buffer->record_disabled);
4817	do {
 
4818		new_rd = rd & ~RB_BUFFER_OFF;
4819	} while (!atomic_try_cmpxchg(&buffer->record_disabled, &rd, new_rd));
4820}
4821EXPORT_SYMBOL_GPL(ring_buffer_record_on);
4822
4823/**
4824 * ring_buffer_record_is_on - return true if the ring buffer can write
4825 * @buffer: The ring buffer to see if write is enabled
4826 *
4827 * Returns true if the ring buffer is in a state that it accepts writes.
4828 */
4829bool ring_buffer_record_is_on(struct trace_buffer *buffer)
4830{
4831	return !atomic_read(&buffer->record_disabled);
4832}
4833
4834/**
4835 * ring_buffer_record_is_set_on - return true if the ring buffer is set writable
4836 * @buffer: The ring buffer to see if write is set enabled
4837 *
4838 * Returns true if the ring buffer is set writable by ring_buffer_record_on().
4839 * Note that this does NOT mean it is in a writable state.
4840 *
4841 * It may return true when the ring buffer has been disabled by
4842 * ring_buffer_record_disable(), as that is a temporary disabling of
4843 * the ring buffer.
4844 */
4845bool ring_buffer_record_is_set_on(struct trace_buffer *buffer)
4846{
4847	return !(atomic_read(&buffer->record_disabled) & RB_BUFFER_OFF);
4848}
4849
4850/**
4851 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
4852 * @buffer: The ring buffer to stop writes to.
4853 * @cpu: The CPU buffer to stop
4854 *
4855 * This prevents all writes to the buffer. Any attempt to write
4856 * to the buffer after this will fail and return NULL.
4857 *
4858 * The caller should call synchronize_rcu() after this.
4859 */
4860void ring_buffer_record_disable_cpu(struct trace_buffer *buffer, int cpu)
4861{
4862	struct ring_buffer_per_cpu *cpu_buffer;
4863
4864	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4865		return;
4866
4867	cpu_buffer = buffer->buffers[cpu];
4868	atomic_inc(&cpu_buffer->record_disabled);
4869}
4870EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
4871
4872/**
4873 * ring_buffer_record_enable_cpu - enable writes to the buffer
4874 * @buffer: The ring buffer to enable writes
4875 * @cpu: The CPU to enable.
4876 *
4877 * Note, multiple disables will need the same number of enables
4878 * to truly enable the writing (much like preempt_disable).
4879 */
4880void ring_buffer_record_enable_cpu(struct trace_buffer *buffer, int cpu)
4881{
4882	struct ring_buffer_per_cpu *cpu_buffer;
4883
4884	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4885		return;
4886
4887	cpu_buffer = buffer->buffers[cpu];
4888	atomic_dec(&cpu_buffer->record_disabled);
4889}
4890EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
4891
4892/*
4893 * The total entries in the ring buffer is the running counter
4894 * of entries entered into the ring buffer, minus the sum of
4895 * the entries read from the ring buffer and the number of
4896 * entries that were overwritten.
4897 */
4898static inline unsigned long
4899rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
4900{
4901	return local_read(&cpu_buffer->entries) -
4902		(local_read(&cpu_buffer->overrun) + cpu_buffer->read);
4903}
4904
4905/**
4906 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
4907 * @buffer: The ring buffer
4908 * @cpu: The per CPU buffer to read from.
4909 */
4910u64 ring_buffer_oldest_event_ts(struct trace_buffer *buffer, int cpu)
4911{
4912	unsigned long flags;
4913	struct ring_buffer_per_cpu *cpu_buffer;
4914	struct buffer_page *bpage;
4915	u64 ret = 0;
4916
4917	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4918		return 0;
4919
4920	cpu_buffer = buffer->buffers[cpu];
4921	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4922	/*
4923	 * if the tail is on reader_page, oldest time stamp is on the reader
4924	 * page
4925	 */
4926	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
4927		bpage = cpu_buffer->reader_page;
4928	else
4929		bpage = rb_set_head_page(cpu_buffer);
4930	if (bpage)
4931		ret = bpage->page->time_stamp;
4932	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4933
4934	return ret;
4935}
4936EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
4937
4938/**
4939 * ring_buffer_bytes_cpu - get the number of bytes unconsumed in a cpu buffer
4940 * @buffer: The ring buffer
4941 * @cpu: The per CPU buffer to read from.
4942 */
4943unsigned long ring_buffer_bytes_cpu(struct trace_buffer *buffer, int cpu)
4944{
4945	struct ring_buffer_per_cpu *cpu_buffer;
4946	unsigned long ret;
4947
4948	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4949		return 0;
4950
4951	cpu_buffer = buffer->buffers[cpu];
4952	ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
4953
4954	return ret;
4955}
4956EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
4957
4958/**
4959 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
4960 * @buffer: The ring buffer
4961 * @cpu: The per CPU buffer to get the entries from.
4962 */
4963unsigned long ring_buffer_entries_cpu(struct trace_buffer *buffer, int cpu)
4964{
4965	struct ring_buffer_per_cpu *cpu_buffer;
4966
4967	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4968		return 0;
4969
4970	cpu_buffer = buffer->buffers[cpu];
4971
4972	return rb_num_of_entries(cpu_buffer);
4973}
4974EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
4975
4976/**
4977 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
4978 * buffer wrapping around (only if RB_FL_OVERWRITE is on).
4979 * @buffer: The ring buffer
4980 * @cpu: The per CPU buffer to get the number of overruns from
4981 */
4982unsigned long ring_buffer_overrun_cpu(struct trace_buffer *buffer, int cpu)
4983{
4984	struct ring_buffer_per_cpu *cpu_buffer;
4985	unsigned long ret;
4986
4987	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4988		return 0;
4989
4990	cpu_buffer = buffer->buffers[cpu];
4991	ret = local_read(&cpu_buffer->overrun);
4992
4993	return ret;
4994}
4995EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
4996
4997/**
4998 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
4999 * commits failing due to the buffer wrapping around while there are uncommitted
5000 * events, such as during an interrupt storm.
5001 * @buffer: The ring buffer
5002 * @cpu: The per CPU buffer to get the number of overruns from
5003 */
5004unsigned long
5005ring_buffer_commit_overrun_cpu(struct trace_buffer *buffer, int cpu)
5006{
5007	struct ring_buffer_per_cpu *cpu_buffer;
5008	unsigned long ret;
5009
5010	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5011		return 0;
5012
5013	cpu_buffer = buffer->buffers[cpu];
5014	ret = local_read(&cpu_buffer->commit_overrun);
5015
5016	return ret;
5017}
5018EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
5019
5020/**
5021 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
5022 * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
5023 * @buffer: The ring buffer
5024 * @cpu: The per CPU buffer to get the number of overruns from
5025 */
5026unsigned long
5027ring_buffer_dropped_events_cpu(struct trace_buffer *buffer, int cpu)
5028{
5029	struct ring_buffer_per_cpu *cpu_buffer;
5030	unsigned long ret;
5031
5032	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5033		return 0;
5034
5035	cpu_buffer = buffer->buffers[cpu];
5036	ret = local_read(&cpu_buffer->dropped_events);
5037
5038	return ret;
5039}
5040EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
5041
5042/**
5043 * ring_buffer_read_events_cpu - get the number of events successfully read
5044 * @buffer: The ring buffer
5045 * @cpu: The per CPU buffer to get the number of events read
5046 */
5047unsigned long
5048ring_buffer_read_events_cpu(struct trace_buffer *buffer, int cpu)
5049{
5050	struct ring_buffer_per_cpu *cpu_buffer;
5051
5052	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5053		return 0;
5054
5055	cpu_buffer = buffer->buffers[cpu];
5056	return cpu_buffer->read;
5057}
5058EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
5059
5060/**
5061 * ring_buffer_entries - get the number of entries in a buffer
5062 * @buffer: The ring buffer
5063 *
5064 * Returns the total number of entries in the ring buffer
5065 * (all CPU entries)
5066 */
5067unsigned long ring_buffer_entries(struct trace_buffer *buffer)
5068{
5069	struct ring_buffer_per_cpu *cpu_buffer;
5070	unsigned long entries = 0;
5071	int cpu;
5072
5073	/* if you care about this being correct, lock the buffer */
5074	for_each_buffer_cpu(buffer, cpu) {
5075		cpu_buffer = buffer->buffers[cpu];
5076		entries += rb_num_of_entries(cpu_buffer);
5077	}
5078
5079	return entries;
5080}
5081EXPORT_SYMBOL_GPL(ring_buffer_entries);
5082
5083/**
5084 * ring_buffer_overruns - get the number of overruns in buffer
5085 * @buffer: The ring buffer
5086 *
5087 * Returns the total number of overruns in the ring buffer
5088 * (all CPU entries)
5089 */
5090unsigned long ring_buffer_overruns(struct trace_buffer *buffer)
5091{
5092	struct ring_buffer_per_cpu *cpu_buffer;
5093	unsigned long overruns = 0;
5094	int cpu;
5095
5096	/* if you care about this being correct, lock the buffer */
5097	for_each_buffer_cpu(buffer, cpu) {
5098		cpu_buffer = buffer->buffers[cpu];
5099		overruns += local_read(&cpu_buffer->overrun);
5100	}
5101
5102	return overruns;
5103}
5104EXPORT_SYMBOL_GPL(ring_buffer_overruns);
5105
5106static void rb_iter_reset(struct ring_buffer_iter *iter)
5107{
5108	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5109
5110	/* Iterator usage is expected to have record disabled */
5111	iter->head_page = cpu_buffer->reader_page;
5112	iter->head = cpu_buffer->reader_page->read;
5113	iter->next_event = iter->head;
5114
5115	iter->cache_reader_page = iter->head_page;
5116	iter->cache_read = cpu_buffer->read;
5117	iter->cache_pages_removed = cpu_buffer->pages_removed;
5118
5119	if (iter->head) {
5120		iter->read_stamp = cpu_buffer->read_stamp;
5121		iter->page_stamp = cpu_buffer->reader_page->page->time_stamp;
5122	} else {
5123		iter->read_stamp = iter->head_page->page->time_stamp;
5124		iter->page_stamp = iter->read_stamp;
5125	}
5126}
5127
5128/**
5129 * ring_buffer_iter_reset - reset an iterator
5130 * @iter: The iterator to reset
5131 *
5132 * Resets the iterator, so that it will start from the beginning
5133 * again.
5134 */
5135void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
5136{
5137	struct ring_buffer_per_cpu *cpu_buffer;
5138	unsigned long flags;
5139
5140	if (!iter)
5141		return;
5142
5143	cpu_buffer = iter->cpu_buffer;
5144
5145	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5146	rb_iter_reset(iter);
5147	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5148}
5149EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
5150
5151/**
5152 * ring_buffer_iter_empty - check if an iterator has no more to read
5153 * @iter: The iterator to check
5154 */
5155int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
5156{
5157	struct ring_buffer_per_cpu *cpu_buffer;
5158	struct buffer_page *reader;
5159	struct buffer_page *head_page;
5160	struct buffer_page *commit_page;
5161	struct buffer_page *curr_commit_page;
5162	unsigned commit;
5163	u64 curr_commit_ts;
5164	u64 commit_ts;
5165
5166	cpu_buffer = iter->cpu_buffer;
5167	reader = cpu_buffer->reader_page;
5168	head_page = cpu_buffer->head_page;
5169	commit_page = READ_ONCE(cpu_buffer->commit_page);
5170	commit_ts = commit_page->page->time_stamp;
5171
5172	/*
5173	 * When the writer goes across pages, it issues a cmpxchg which
5174	 * is a mb(), which will synchronize with the rmb here.
5175	 * (see rb_tail_page_update())
5176	 */
5177	smp_rmb();
5178	commit = rb_page_commit(commit_page);
5179	/* We want to make sure that the commit page doesn't change */
5180	smp_rmb();
5181
5182	/* Make sure commit page didn't change */
5183	curr_commit_page = READ_ONCE(cpu_buffer->commit_page);
5184	curr_commit_ts = READ_ONCE(curr_commit_page->page->time_stamp);
5185
5186	/* If the commit page changed, then there's more data */
5187	if (curr_commit_page != commit_page ||
5188	    curr_commit_ts != commit_ts)
5189		return 0;
5190
5191	/* Still racy, as it may return a false positive, but that's OK */
5192	return ((iter->head_page == commit_page && iter->head >= commit) ||
5193		(iter->head_page == reader && commit_page == head_page &&
5194		 head_page->read == commit &&
5195		 iter->head == rb_page_size(cpu_buffer->reader_page)));
5196}
5197EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
5198
5199static void
5200rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
5201		     struct ring_buffer_event *event)
5202{
5203	u64 delta;
5204
5205	switch (event->type_len) {
5206	case RINGBUF_TYPE_PADDING:
5207		return;
5208
5209	case RINGBUF_TYPE_TIME_EXTEND:
5210		delta = rb_event_time_stamp(event);
 
 
5211		cpu_buffer->read_stamp += delta;
5212		return;
5213
5214	case RINGBUF_TYPE_TIME_STAMP:
5215		delta = rb_event_time_stamp(event);
5216		delta = rb_fix_abs_ts(delta, cpu_buffer->read_stamp);
5217		cpu_buffer->read_stamp = delta;
5218		return;
5219
5220	case RINGBUF_TYPE_DATA:
5221		cpu_buffer->read_stamp += event->time_delta;
5222		return;
5223
5224	default:
5225		RB_WARN_ON(cpu_buffer, 1);
5226	}
 
5227}
5228
5229static void
5230rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
5231			  struct ring_buffer_event *event)
5232{
5233	u64 delta;
5234
5235	switch (event->type_len) {
5236	case RINGBUF_TYPE_PADDING:
5237		return;
5238
5239	case RINGBUF_TYPE_TIME_EXTEND:
5240		delta = rb_event_time_stamp(event);
 
 
5241		iter->read_stamp += delta;
5242		return;
5243
5244	case RINGBUF_TYPE_TIME_STAMP:
5245		delta = rb_event_time_stamp(event);
5246		delta = rb_fix_abs_ts(delta, iter->read_stamp);
5247		iter->read_stamp = delta;
5248		return;
5249
5250	case RINGBUF_TYPE_DATA:
5251		iter->read_stamp += event->time_delta;
5252		return;
5253
5254	default:
5255		RB_WARN_ON(iter->cpu_buffer, 1);
5256	}
 
5257}
5258
5259static struct buffer_page *
5260rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
5261{
5262	struct buffer_page *reader = NULL;
5263	unsigned long bsize = READ_ONCE(cpu_buffer->buffer->subbuf_size);
5264	unsigned long overwrite;
5265	unsigned long flags;
5266	int nr_loops = 0;
5267	bool ret;
5268
5269	local_irq_save(flags);
5270	arch_spin_lock(&cpu_buffer->lock);
5271
5272 again:
5273	/*
5274	 * This should normally only loop twice. But because the
5275	 * start of the reader inserts an empty page, it causes
5276	 * a case where we will loop three times. There should be no
5277	 * reason to loop four times (that I know of).
5278	 */
5279	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
5280		reader = NULL;
5281		goto out;
5282	}
5283
5284	reader = cpu_buffer->reader_page;
5285
5286	/* If there's more to read, return this page */
5287	if (cpu_buffer->reader_page->read < rb_page_size(reader))
5288		goto out;
5289
5290	/* Never should we have an index greater than the size */
5291	if (RB_WARN_ON(cpu_buffer,
5292		       cpu_buffer->reader_page->read > rb_page_size(reader)))
5293		goto out;
5294
5295	/* check if we caught up to the tail */
5296	reader = NULL;
5297	if (cpu_buffer->commit_page == cpu_buffer->reader_page)
5298		goto out;
5299
5300	/* Don't bother swapping if the ring buffer is empty */
5301	if (rb_num_of_entries(cpu_buffer) == 0)
5302		goto out;
5303
5304	/*
5305	 * Reset the reader page to size zero.
5306	 */
5307	local_set(&cpu_buffer->reader_page->write, 0);
5308	local_set(&cpu_buffer->reader_page->entries, 0);
5309	local_set(&cpu_buffer->reader_page->page->commit, 0);
5310	cpu_buffer->reader_page->real_end = 0;
5311
5312 spin:
5313	/*
5314	 * Splice the empty reader page into the list around the head.
5315	 */
5316	reader = rb_set_head_page(cpu_buffer);
5317	if (!reader)
5318		goto out;
5319	cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
5320	cpu_buffer->reader_page->list.prev = reader->list.prev;
5321
5322	/*
5323	 * cpu_buffer->pages just needs to point to the buffer, it
5324	 *  has no specific buffer page to point to. Lets move it out
5325	 *  of our way so we don't accidentally swap it.
5326	 */
5327	cpu_buffer->pages = reader->list.prev;
5328
5329	/* The reader page will be pointing to the new head */
5330	rb_set_list_to_head(&cpu_buffer->reader_page->list);
5331
5332	/*
5333	 * We want to make sure we read the overruns after we set up our
5334	 * pointers to the next object. The writer side does a
5335	 * cmpxchg to cross pages which acts as the mb on the writer
5336	 * side. Note, the reader will constantly fail the swap
5337	 * while the writer is updating the pointers, so this
5338	 * guarantees that the overwrite recorded here is the one we
5339	 * want to compare with the last_overrun.
5340	 */
5341	smp_mb();
5342	overwrite = local_read(&(cpu_buffer->overrun));
5343
5344	/*
5345	 * Here's the tricky part.
5346	 *
5347	 * We need to move the pointer past the header page.
5348	 * But we can only do that if a writer is not currently
5349	 * moving it. The page before the header page has the
5350	 * flag bit '1' set if it is pointing to the page we want.
5351	 * but if the writer is in the process of moving it
5352	 * than it will be '2' or already moved '0'.
5353	 */
5354
5355	ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
5356
5357	/*
5358	 * If we did not convert it, then we must try again.
5359	 */
5360	if (!ret)
5361		goto spin;
5362
5363	if (cpu_buffer->ring_meta)
5364		rb_update_meta_reader(cpu_buffer, reader);
5365
5366	/*
5367	 * Yay! We succeeded in replacing the page.
5368	 *
5369	 * Now make the new head point back to the reader page.
5370	 */
5371	rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
5372	rb_inc_page(&cpu_buffer->head_page);
5373
5374	cpu_buffer->cnt++;
5375	local_inc(&cpu_buffer->pages_read);
5376
5377	/* Finally update the reader page to the new head */
5378	cpu_buffer->reader_page = reader;
5379	cpu_buffer->reader_page->read = 0;
5380
5381	if (overwrite != cpu_buffer->last_overrun) {
5382		cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
5383		cpu_buffer->last_overrun = overwrite;
5384	}
5385
5386	goto again;
5387
5388 out:
5389	/* Update the read_stamp on the first event */
5390	if (reader && reader->read == 0)
5391		cpu_buffer->read_stamp = reader->page->time_stamp;
5392
5393	arch_spin_unlock(&cpu_buffer->lock);
5394	local_irq_restore(flags);
5395
5396	/*
5397	 * The writer has preempt disable, wait for it. But not forever
5398	 * Although, 1 second is pretty much "forever"
5399	 */
5400#define USECS_WAIT	1000000
5401        for (nr_loops = 0; nr_loops < USECS_WAIT; nr_loops++) {
5402		/* If the write is past the end of page, a writer is still updating it */
5403		if (likely(!reader || rb_page_write(reader) <= bsize))
5404			break;
5405
5406		udelay(1);
5407
5408		/* Get the latest version of the reader write value */
5409		smp_rmb();
5410	}
5411
5412	/* The writer is not moving forward? Something is wrong */
5413	if (RB_WARN_ON(cpu_buffer, nr_loops == USECS_WAIT))
5414		reader = NULL;
5415
5416	/*
5417	 * Make sure we see any padding after the write update
5418	 * (see rb_reset_tail()).
5419	 *
5420	 * In addition, a writer may be writing on the reader page
5421	 * if the page has not been fully filled, so the read barrier
5422	 * is also needed to make sure we see the content of what is
5423	 * committed by the writer (see rb_set_commit_to_write()).
5424	 */
5425	smp_rmb();
5426
5427
5428	return reader;
5429}
5430
5431static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
5432{
5433	struct ring_buffer_event *event;
5434	struct buffer_page *reader;
5435	unsigned length;
5436
5437	reader = rb_get_reader_page(cpu_buffer);
5438
5439	/* This function should not be called when buffer is empty */
5440	if (RB_WARN_ON(cpu_buffer, !reader))
5441		return;
5442
5443	event = rb_reader_event(cpu_buffer);
5444
5445	if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
5446		cpu_buffer->read++;
5447
5448	rb_update_read_stamp(cpu_buffer, event);
5449
5450	length = rb_event_length(event);
5451	cpu_buffer->reader_page->read += length;
5452	cpu_buffer->read_bytes += length;
5453}
5454
5455static void rb_advance_iter(struct ring_buffer_iter *iter)
5456{
5457	struct ring_buffer_per_cpu *cpu_buffer;
 
 
5458
5459	cpu_buffer = iter->cpu_buffer;
5460
5461	/* If head == next_event then we need to jump to the next event */
5462	if (iter->head == iter->next_event) {
5463		/* If the event gets overwritten again, there's nothing to do */
5464		if (rb_iter_head_event(iter) == NULL)
5465			return;
5466	}
5467
5468	iter->head = iter->next_event;
5469
5470	/*
5471	 * Check if we are at the end of the buffer.
5472	 */
5473	if (iter->next_event >= rb_page_size(iter->head_page)) {
5474		/* discarded commits can make the page empty */
5475		if (iter->head_page == cpu_buffer->commit_page)
5476			return;
5477		rb_inc_iter(iter);
5478		return;
5479	}
5480
5481	rb_update_iter_read_stamp(iter, iter->event);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5482}
5483
5484static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
5485{
5486	return cpu_buffer->lost_events;
5487}
5488
5489static struct ring_buffer_event *
5490rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
5491	       unsigned long *lost_events)
5492{
5493	struct ring_buffer_event *event;
5494	struct buffer_page *reader;
5495	int nr_loops = 0;
5496
5497	if (ts)
5498		*ts = 0;
5499 again:
5500	/*
5501	 * We repeat when a time extend is encountered.
5502	 * Since the time extend is always attached to a data event,
5503	 * we should never loop more than once.
5504	 * (We never hit the following condition more than twice).
5505	 */
5506	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
5507		return NULL;
5508
5509	reader = rb_get_reader_page(cpu_buffer);
5510	if (!reader)
5511		return NULL;
5512
5513	event = rb_reader_event(cpu_buffer);
5514
5515	switch (event->type_len) {
5516	case RINGBUF_TYPE_PADDING:
5517		if (rb_null_event(event))
5518			RB_WARN_ON(cpu_buffer, 1);
5519		/*
5520		 * Because the writer could be discarding every
5521		 * event it creates (which would probably be bad)
5522		 * if we were to go back to "again" then we may never
5523		 * catch up, and will trigger the warn on, or lock
5524		 * the box. Return the padding, and we will release
5525		 * the current locks, and try again.
5526		 */
5527		return event;
5528
5529	case RINGBUF_TYPE_TIME_EXTEND:
5530		/* Internal data, OK to advance */
5531		rb_advance_reader(cpu_buffer);
5532		goto again;
5533
5534	case RINGBUF_TYPE_TIME_STAMP:
5535		if (ts) {
5536			*ts = rb_event_time_stamp(event);
5537			*ts = rb_fix_abs_ts(*ts, reader->page->time_stamp);
5538			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
5539							 cpu_buffer->cpu, ts);
5540		}
5541		/* Internal data, OK to advance */
5542		rb_advance_reader(cpu_buffer);
5543		goto again;
5544
5545	case RINGBUF_TYPE_DATA:
5546		if (ts && !(*ts)) {
5547			*ts = cpu_buffer->read_stamp + event->time_delta;
5548			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
5549							 cpu_buffer->cpu, ts);
5550		}
5551		if (lost_events)
5552			*lost_events = rb_lost_events(cpu_buffer);
5553		return event;
5554
5555	default:
5556		RB_WARN_ON(cpu_buffer, 1);
5557	}
5558
5559	return NULL;
5560}
5561EXPORT_SYMBOL_GPL(ring_buffer_peek);
5562
5563static struct ring_buffer_event *
5564rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
5565{
5566	struct trace_buffer *buffer;
5567	struct ring_buffer_per_cpu *cpu_buffer;
5568	struct ring_buffer_event *event;
5569	int nr_loops = 0;
5570
5571	if (ts)
5572		*ts = 0;
5573
5574	cpu_buffer = iter->cpu_buffer;
5575	buffer = cpu_buffer->buffer;
5576
5577	/*
5578	 * Check if someone performed a consuming read to the buffer
5579	 * or removed some pages from the buffer. In these cases,
5580	 * iterator was invalidated and we need to reset it.
5581	 */
5582	if (unlikely(iter->cache_read != cpu_buffer->read ||
5583		     iter->cache_reader_page != cpu_buffer->reader_page ||
5584		     iter->cache_pages_removed != cpu_buffer->pages_removed))
5585		rb_iter_reset(iter);
5586
5587 again:
5588	if (ring_buffer_iter_empty(iter))
5589		return NULL;
5590
5591	/*
5592	 * As the writer can mess with what the iterator is trying
5593	 * to read, just give up if we fail to get an event after
5594	 * three tries. The iterator is not as reliable when reading
5595	 * the ring buffer with an active write as the consumer is.
5596	 * Do not warn if the three failures is reached.
 
5597	 */
5598	if (++nr_loops > 3)
5599		return NULL;
5600
5601	if (rb_per_cpu_empty(cpu_buffer))
5602		return NULL;
5603
5604	if (iter->head >= rb_page_size(iter->head_page)) {
5605		rb_inc_iter(iter);
5606		goto again;
5607	}
5608
5609	event = rb_iter_head_event(iter);
5610	if (!event)
5611		goto again;
5612
5613	switch (event->type_len) {
5614	case RINGBUF_TYPE_PADDING:
5615		if (rb_null_event(event)) {
5616			rb_inc_iter(iter);
5617			goto again;
5618		}
5619		rb_advance_iter(iter);
5620		return event;
5621
5622	case RINGBUF_TYPE_TIME_EXTEND:
5623		/* Internal data, OK to advance */
5624		rb_advance_iter(iter);
5625		goto again;
5626
5627	case RINGBUF_TYPE_TIME_STAMP:
5628		if (ts) {
5629			*ts = rb_event_time_stamp(event);
5630			*ts = rb_fix_abs_ts(*ts, iter->head_page->page->time_stamp);
5631			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
5632							 cpu_buffer->cpu, ts);
5633		}
5634		/* Internal data, OK to advance */
5635		rb_advance_iter(iter);
5636		goto again;
5637
5638	case RINGBUF_TYPE_DATA:
5639		if (ts && !(*ts)) {
5640			*ts = iter->read_stamp + event->time_delta;
5641			ring_buffer_normalize_time_stamp(buffer,
5642							 cpu_buffer->cpu, ts);
5643		}
5644		return event;
5645
5646	default:
5647		RB_WARN_ON(cpu_buffer, 1);
5648	}
5649
5650	return NULL;
5651}
5652EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
5653
5654static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
5655{
5656	if (likely(!in_nmi())) {
5657		raw_spin_lock(&cpu_buffer->reader_lock);
5658		return true;
5659	}
5660
5661	/*
5662	 * If an NMI die dumps out the content of the ring buffer
5663	 * trylock must be used to prevent a deadlock if the NMI
5664	 * preempted a task that holds the ring buffer locks. If
5665	 * we get the lock then all is fine, if not, then continue
5666	 * to do the read, but this can corrupt the ring buffer,
5667	 * so it must be permanently disabled from future writes.
5668	 * Reading from NMI is a oneshot deal.
5669	 */
5670	if (raw_spin_trylock(&cpu_buffer->reader_lock))
5671		return true;
5672
5673	/* Continue without locking, but disable the ring buffer */
5674	atomic_inc(&cpu_buffer->record_disabled);
5675	return false;
5676}
5677
5678static inline void
5679rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
5680{
5681	if (likely(locked))
5682		raw_spin_unlock(&cpu_buffer->reader_lock);
 
5683}
5684
5685/**
5686 * ring_buffer_peek - peek at the next event to be read
5687 * @buffer: The ring buffer to read
5688 * @cpu: The cpu to peak at
5689 * @ts: The timestamp counter of this event.
5690 * @lost_events: a variable to store if events were lost (may be NULL)
5691 *
5692 * This will return the event that will be read next, but does
5693 * not consume the data.
5694 */
5695struct ring_buffer_event *
5696ring_buffer_peek(struct trace_buffer *buffer, int cpu, u64 *ts,
5697		 unsigned long *lost_events)
5698{
5699	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5700	struct ring_buffer_event *event;
5701	unsigned long flags;
5702	bool dolock;
5703
5704	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5705		return NULL;
5706
5707 again:
5708	local_irq_save(flags);
5709	dolock = rb_reader_lock(cpu_buffer);
5710	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
5711	if (event && event->type_len == RINGBUF_TYPE_PADDING)
5712		rb_advance_reader(cpu_buffer);
5713	rb_reader_unlock(cpu_buffer, dolock);
5714	local_irq_restore(flags);
5715
5716	if (event && event->type_len == RINGBUF_TYPE_PADDING)
5717		goto again;
5718
5719	return event;
5720}
5721
5722/** ring_buffer_iter_dropped - report if there are dropped events
5723 * @iter: The ring buffer iterator
5724 *
5725 * Returns true if there was dropped events since the last peek.
5726 */
5727bool ring_buffer_iter_dropped(struct ring_buffer_iter *iter)
5728{
5729	bool ret = iter->missed_events != 0;
5730
5731	iter->missed_events = 0;
5732	return ret;
5733}
5734EXPORT_SYMBOL_GPL(ring_buffer_iter_dropped);
5735
5736/**
5737 * ring_buffer_iter_peek - peek at the next event to be read
5738 * @iter: The ring buffer iterator
5739 * @ts: The timestamp counter of this event.
5740 *
5741 * This will return the event that will be read next, but does
5742 * not increment the iterator.
5743 */
5744struct ring_buffer_event *
5745ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
5746{
5747	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5748	struct ring_buffer_event *event;
5749	unsigned long flags;
5750
5751 again:
5752	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5753	event = rb_iter_peek(iter, ts);
5754	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5755
5756	if (event && event->type_len == RINGBUF_TYPE_PADDING)
5757		goto again;
5758
5759	return event;
5760}
5761
5762/**
5763 * ring_buffer_consume - return an event and consume it
5764 * @buffer: The ring buffer to get the next event from
5765 * @cpu: the cpu to read the buffer from
5766 * @ts: a variable to store the timestamp (may be NULL)
5767 * @lost_events: a variable to store if events were lost (may be NULL)
5768 *
5769 * Returns the next event in the ring buffer, and that event is consumed.
5770 * Meaning, that sequential reads will keep returning a different event,
5771 * and eventually empty the ring buffer if the producer is slower.
5772 */
5773struct ring_buffer_event *
5774ring_buffer_consume(struct trace_buffer *buffer, int cpu, u64 *ts,
5775		    unsigned long *lost_events)
5776{
5777	struct ring_buffer_per_cpu *cpu_buffer;
5778	struct ring_buffer_event *event = NULL;
5779	unsigned long flags;
5780	bool dolock;
5781
5782 again:
5783	/* might be called in atomic */
5784	preempt_disable();
5785
5786	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5787		goto out;
5788
5789	cpu_buffer = buffer->buffers[cpu];
5790	local_irq_save(flags);
5791	dolock = rb_reader_lock(cpu_buffer);
5792
5793	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
5794	if (event) {
5795		cpu_buffer->lost_events = 0;
5796		rb_advance_reader(cpu_buffer);
5797	}
5798
5799	rb_reader_unlock(cpu_buffer, dolock);
5800	local_irq_restore(flags);
5801
5802 out:
5803	preempt_enable();
5804
5805	if (event && event->type_len == RINGBUF_TYPE_PADDING)
5806		goto again;
5807
5808	return event;
5809}
5810EXPORT_SYMBOL_GPL(ring_buffer_consume);
5811
5812/**
5813 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
5814 * @buffer: The ring buffer to read from
5815 * @cpu: The cpu buffer to iterate over
5816 * @flags: gfp flags to use for memory allocation
5817 *
5818 * This performs the initial preparations necessary to iterate
5819 * through the buffer.  Memory is allocated, buffer resizing
5820 * is disabled, and the iterator pointer is returned to the caller.
5821 *
 
 
 
 
5822 * After a sequence of ring_buffer_read_prepare calls, the user is
5823 * expected to make at least one call to ring_buffer_read_prepare_sync.
5824 * Afterwards, ring_buffer_read_start is invoked to get things going
5825 * for real.
5826 *
5827 * This overall must be paired with ring_buffer_read_finish.
5828 */
5829struct ring_buffer_iter *
5830ring_buffer_read_prepare(struct trace_buffer *buffer, int cpu, gfp_t flags)
5831{
5832	struct ring_buffer_per_cpu *cpu_buffer;
5833	struct ring_buffer_iter *iter;
5834
5835	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5836		return NULL;
5837
5838	iter = kzalloc(sizeof(*iter), flags);
5839	if (!iter)
5840		return NULL;
5841
5842	/* Holds the entire event: data and meta data */
5843	iter->event_size = buffer->subbuf_size;
5844	iter->event = kmalloc(iter->event_size, flags);
5845	if (!iter->event) {
5846		kfree(iter);
5847		return NULL;
5848	}
5849
5850	cpu_buffer = buffer->buffers[cpu];
5851
5852	iter->cpu_buffer = cpu_buffer;
5853
5854	atomic_inc(&cpu_buffer->resize_disabled);
 
5855
5856	return iter;
5857}
5858EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
5859
5860/**
5861 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
5862 *
5863 * All previously invoked ring_buffer_read_prepare calls to prepare
5864 * iterators will be synchronized.  Afterwards, read_buffer_read_start
5865 * calls on those iterators are allowed.
5866 */
5867void
5868ring_buffer_read_prepare_sync(void)
5869{
5870	synchronize_rcu();
5871}
5872EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
5873
5874/**
5875 * ring_buffer_read_start - start a non consuming read of the buffer
5876 * @iter: The iterator returned by ring_buffer_read_prepare
5877 *
5878 * This finalizes the startup of an iteration through the buffer.
5879 * The iterator comes from a call to ring_buffer_read_prepare and
5880 * an intervening ring_buffer_read_prepare_sync must have been
5881 * performed.
5882 *
5883 * Must be paired with ring_buffer_read_finish.
5884 */
5885void
5886ring_buffer_read_start(struct ring_buffer_iter *iter)
5887{
5888	struct ring_buffer_per_cpu *cpu_buffer;
5889	unsigned long flags;
5890
5891	if (!iter)
5892		return;
5893
5894	cpu_buffer = iter->cpu_buffer;
5895
5896	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5897	arch_spin_lock(&cpu_buffer->lock);
5898	rb_iter_reset(iter);
5899	arch_spin_unlock(&cpu_buffer->lock);
5900	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5901}
5902EXPORT_SYMBOL_GPL(ring_buffer_read_start);
5903
5904/**
5905 * ring_buffer_read_finish - finish reading the iterator of the buffer
5906 * @iter: The iterator retrieved by ring_buffer_start
5907 *
5908 * This re-enables resizing of the buffer, and frees the iterator.
 
5909 */
5910void
5911ring_buffer_read_finish(struct ring_buffer_iter *iter)
5912{
5913	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
 
5914
5915	/* Use this opportunity to check the integrity of the ring buffer. */
 
 
 
 
 
 
5916	rb_check_pages(cpu_buffer);
 
5917
5918	atomic_dec(&cpu_buffer->resize_disabled);
5919	kfree(iter->event);
5920	kfree(iter);
5921}
5922EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
5923
5924/**
5925 * ring_buffer_iter_advance - advance the iterator to the next location
5926 * @iter: The ring buffer iterator
 
5927 *
5928 * Move the location of the iterator such that the next read will
5929 * be the next location of the iterator.
5930 */
5931void ring_buffer_iter_advance(struct ring_buffer_iter *iter)
 
5932{
 
5933	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5934	unsigned long flags;
5935
5936	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
 
 
 
 
 
 
 
5937
5938	rb_advance_iter(iter);
 
 
5939
5940	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5941}
5942EXPORT_SYMBOL_GPL(ring_buffer_iter_advance);
5943
5944/**
5945 * ring_buffer_size - return the size of the ring buffer (in bytes)
5946 * @buffer: The ring buffer.
5947 * @cpu: The CPU to get ring buffer size from.
5948 */
5949unsigned long ring_buffer_size(struct trace_buffer *buffer, int cpu)
5950{
 
 
 
 
 
 
5951	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5952		return 0;
5953
5954	return buffer->subbuf_size * buffer->buffers[cpu]->nr_pages;
5955}
5956EXPORT_SYMBOL_GPL(ring_buffer_size);
5957
5958/**
5959 * ring_buffer_max_event_size - return the max data size of an event
5960 * @buffer: The ring buffer.
5961 *
5962 * Returns the maximum size an event can be.
5963 */
5964unsigned long ring_buffer_max_event_size(struct trace_buffer *buffer)
5965{
5966	/* If abs timestamp is requested, events have a timestamp too */
5967	if (ring_buffer_time_stamp_abs(buffer))
5968		return buffer->max_data_size - RB_LEN_TIME_EXTEND;
5969	return buffer->max_data_size;
5970}
5971EXPORT_SYMBOL_GPL(ring_buffer_max_event_size);
5972
5973static void rb_clear_buffer_page(struct buffer_page *page)
5974{
5975	local_set(&page->write, 0);
5976	local_set(&page->entries, 0);
5977	rb_init_page(page->page);
5978	page->read = 0;
5979}
5980
5981static void rb_update_meta_page(struct ring_buffer_per_cpu *cpu_buffer)
5982{
5983	struct trace_buffer_meta *meta = cpu_buffer->meta_page;
5984
5985	if (!meta)
5986		return;
5987
5988	meta->reader.read = cpu_buffer->reader_page->read;
5989	meta->reader.id = cpu_buffer->reader_page->id;
5990	meta->reader.lost_events = cpu_buffer->lost_events;
5991
5992	meta->entries = local_read(&cpu_buffer->entries);
5993	meta->overrun = local_read(&cpu_buffer->overrun);
5994	meta->read = cpu_buffer->read;
5995
5996	/* Some archs do not have data cache coherency between kernel and user-space */
5997	flush_dcache_folio(virt_to_folio(cpu_buffer->meta_page));
5998}
5999
6000static void
6001rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
6002{
6003	struct buffer_page *page;
6004
6005	rb_head_page_deactivate(cpu_buffer);
6006
6007	cpu_buffer->head_page
6008		= list_entry(cpu_buffer->pages, struct buffer_page, list);
6009	rb_clear_buffer_page(cpu_buffer->head_page);
6010	list_for_each_entry(page, cpu_buffer->pages, list) {
6011		rb_clear_buffer_page(page);
6012	}
 
6013
6014	cpu_buffer->tail_page = cpu_buffer->head_page;
6015	cpu_buffer->commit_page = cpu_buffer->head_page;
6016
6017	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
6018	INIT_LIST_HEAD(&cpu_buffer->new_pages);
6019	rb_clear_buffer_page(cpu_buffer->reader_page);
 
 
 
6020
6021	local_set(&cpu_buffer->entries_bytes, 0);
6022	local_set(&cpu_buffer->overrun, 0);
6023	local_set(&cpu_buffer->commit_overrun, 0);
6024	local_set(&cpu_buffer->dropped_events, 0);
6025	local_set(&cpu_buffer->entries, 0);
6026	local_set(&cpu_buffer->committing, 0);
6027	local_set(&cpu_buffer->commits, 0);
6028	local_set(&cpu_buffer->pages_touched, 0);
6029	local_set(&cpu_buffer->pages_lost, 0);
6030	local_set(&cpu_buffer->pages_read, 0);
6031	cpu_buffer->last_pages_touch = 0;
6032	cpu_buffer->shortest_full = 0;
6033	cpu_buffer->read = 0;
6034	cpu_buffer->read_bytes = 0;
6035
6036	rb_time_set(&cpu_buffer->write_stamp, 0);
6037	rb_time_set(&cpu_buffer->before_stamp, 0);
6038
6039	memset(cpu_buffer->event_stamp, 0, sizeof(cpu_buffer->event_stamp));
6040
6041	cpu_buffer->lost_events = 0;
6042	cpu_buffer->last_overrun = 0;
6043
6044	rb_head_page_activate(cpu_buffer);
6045	cpu_buffer->pages_removed = 0;
6046
6047	if (cpu_buffer->mapped) {
6048		rb_update_meta_page(cpu_buffer);
6049		if (cpu_buffer->ring_meta) {
6050			struct ring_buffer_meta *meta = cpu_buffer->ring_meta;
6051			meta->commit_buffer = meta->head_buffer;
6052		}
6053	}
6054}
6055
6056/* Must have disabled the cpu buffer then done a synchronize_rcu */
6057static void reset_disabled_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
6058{
6059	unsigned long flags;
6060
6061	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
6062
6063	if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
6064		goto out;
6065
6066	arch_spin_lock(&cpu_buffer->lock);
6067
6068	rb_reset_cpu(cpu_buffer);
6069
6070	arch_spin_unlock(&cpu_buffer->lock);
6071
6072 out:
6073	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
6074}
6075
6076/**
6077 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
6078 * @buffer: The ring buffer to reset a per cpu buffer of
6079 * @cpu: The CPU buffer to be reset
6080 */
6081void ring_buffer_reset_cpu(struct trace_buffer *buffer, int cpu)
6082{
6083	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
6084	struct ring_buffer_meta *meta;
6085
6086	if (!cpumask_test_cpu(cpu, buffer->cpumask))
6087		return;
6088
6089	/* prevent another thread from changing buffer sizes */
6090	mutex_lock(&buffer->mutex);
6091
6092	atomic_inc(&cpu_buffer->resize_disabled);
6093	atomic_inc(&cpu_buffer->record_disabled);
6094
6095	/* Make sure all commits have finished */
6096	synchronize_rcu();
6097
6098	reset_disabled_cpu_buffer(cpu_buffer);
6099
6100	atomic_dec(&cpu_buffer->record_disabled);
6101	atomic_dec(&cpu_buffer->resize_disabled);
6102
6103	/* Make sure persistent meta now uses this buffer's addresses */
6104	meta = rb_range_meta(buffer, 0, cpu_buffer->cpu);
6105	if (meta)
6106		rb_meta_init_text_addr(meta);
6107
6108	mutex_unlock(&buffer->mutex);
6109}
6110EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
6111
6112/* Flag to ensure proper resetting of atomic variables */
6113#define RESET_BIT	(1 << 30)
6114
6115/**
6116 * ring_buffer_reset_online_cpus - reset a ring buffer per CPU buffer
6117 * @buffer: The ring buffer to reset a per cpu buffer of
6118 */
6119void ring_buffer_reset_online_cpus(struct trace_buffer *buffer)
6120{
6121	struct ring_buffer_per_cpu *cpu_buffer;
6122	struct ring_buffer_meta *meta;
6123	int cpu;
6124
6125	/* prevent another thread from changing buffer sizes */
6126	mutex_lock(&buffer->mutex);
6127
6128	for_each_online_buffer_cpu(buffer, cpu) {
6129		cpu_buffer = buffer->buffers[cpu];
6130
6131		atomic_add(RESET_BIT, &cpu_buffer->resize_disabled);
6132		atomic_inc(&cpu_buffer->record_disabled);
6133	}
6134
6135	/* Make sure all commits have finished */
6136	synchronize_rcu();
6137
6138	for_each_buffer_cpu(buffer, cpu) {
6139		cpu_buffer = buffer->buffers[cpu];
6140
6141		/*
6142		 * If a CPU came online during the synchronize_rcu(), then
6143		 * ignore it.
6144		 */
6145		if (!(atomic_read(&cpu_buffer->resize_disabled) & RESET_BIT))
6146			continue;
6147
6148		reset_disabled_cpu_buffer(cpu_buffer);
6149
6150		/* Make sure persistent meta now uses this buffer's addresses */
6151		meta = rb_range_meta(buffer, 0, cpu_buffer->cpu);
6152		if (meta)
6153			rb_meta_init_text_addr(meta);
6154
6155		atomic_dec(&cpu_buffer->record_disabled);
6156		atomic_sub(RESET_BIT, &cpu_buffer->resize_disabled);
6157	}
6158
6159	mutex_unlock(&buffer->mutex);
6160}
 
6161
6162/**
6163 * ring_buffer_reset - reset a ring buffer
6164 * @buffer: The ring buffer to reset all cpu buffers
6165 */
6166void ring_buffer_reset(struct trace_buffer *buffer)
6167{
6168	struct ring_buffer_per_cpu *cpu_buffer;
6169	int cpu;
6170
6171	/* prevent another thread from changing buffer sizes */
6172	mutex_lock(&buffer->mutex);
6173
6174	for_each_buffer_cpu(buffer, cpu) {
6175		cpu_buffer = buffer->buffers[cpu];
6176
6177		atomic_inc(&cpu_buffer->resize_disabled);
6178		atomic_inc(&cpu_buffer->record_disabled);
6179	}
6180
6181	/* Make sure all commits have finished */
6182	synchronize_rcu();
6183
6184	for_each_buffer_cpu(buffer, cpu) {
6185		cpu_buffer = buffer->buffers[cpu];
6186
6187		reset_disabled_cpu_buffer(cpu_buffer);
6188
6189		atomic_dec(&cpu_buffer->record_disabled);
6190		atomic_dec(&cpu_buffer->resize_disabled);
6191	}
6192
6193	mutex_unlock(&buffer->mutex);
6194}
6195EXPORT_SYMBOL_GPL(ring_buffer_reset);
6196
6197/**
6198 * ring_buffer_empty - is the ring buffer empty?
6199 * @buffer: The ring buffer to test
6200 */
6201bool ring_buffer_empty(struct trace_buffer *buffer)
6202{
6203	struct ring_buffer_per_cpu *cpu_buffer;
6204	unsigned long flags;
6205	bool dolock;
6206	bool ret;
6207	int cpu;
 
6208
6209	/* yes this is racy, but if you don't like the race, lock the buffer */
6210	for_each_buffer_cpu(buffer, cpu) {
6211		cpu_buffer = buffer->buffers[cpu];
6212		local_irq_save(flags);
6213		dolock = rb_reader_lock(cpu_buffer);
6214		ret = rb_per_cpu_empty(cpu_buffer);
6215		rb_reader_unlock(cpu_buffer, dolock);
6216		local_irq_restore(flags);
6217
6218		if (!ret)
6219			return false;
6220	}
6221
6222	return true;
6223}
6224EXPORT_SYMBOL_GPL(ring_buffer_empty);
6225
6226/**
6227 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
6228 * @buffer: The ring buffer
6229 * @cpu: The CPU buffer to test
6230 */
6231bool ring_buffer_empty_cpu(struct trace_buffer *buffer, int cpu)
6232{
6233	struct ring_buffer_per_cpu *cpu_buffer;
6234	unsigned long flags;
6235	bool dolock;
6236	bool ret;
6237
6238	if (!cpumask_test_cpu(cpu, buffer->cpumask))
6239		return true;
6240
6241	cpu_buffer = buffer->buffers[cpu];
6242	local_irq_save(flags);
6243	dolock = rb_reader_lock(cpu_buffer);
6244	ret = rb_per_cpu_empty(cpu_buffer);
6245	rb_reader_unlock(cpu_buffer, dolock);
6246	local_irq_restore(flags);
6247
6248	return ret;
6249}
6250EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
6251
6252#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
6253/**
6254 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
6255 * @buffer_a: One buffer to swap with
6256 * @buffer_b: The other buffer to swap with
6257 * @cpu: the CPU of the buffers to swap
6258 *
6259 * This function is useful for tracers that want to take a "snapshot"
6260 * of a CPU buffer and has another back up buffer lying around.
6261 * it is expected that the tracer handles the cpu buffer not being
6262 * used at the moment.
6263 */
6264int ring_buffer_swap_cpu(struct trace_buffer *buffer_a,
6265			 struct trace_buffer *buffer_b, int cpu)
6266{
6267	struct ring_buffer_per_cpu *cpu_buffer_a;
6268	struct ring_buffer_per_cpu *cpu_buffer_b;
6269	int ret = -EINVAL;
6270
6271	if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
6272	    !cpumask_test_cpu(cpu, buffer_b->cpumask))
6273		goto out;
6274
6275	cpu_buffer_a = buffer_a->buffers[cpu];
6276	cpu_buffer_b = buffer_b->buffers[cpu];
6277
6278	/* It's up to the callers to not try to swap mapped buffers */
6279	if (WARN_ON_ONCE(cpu_buffer_a->mapped || cpu_buffer_b->mapped)) {
6280		ret = -EBUSY;
6281		goto out;
6282	}
6283
6284	/* At least make sure the two buffers are somewhat the same */
6285	if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
6286		goto out;
6287
6288	if (buffer_a->subbuf_order != buffer_b->subbuf_order)
6289		goto out;
6290
6291	ret = -EAGAIN;
6292
6293	if (atomic_read(&buffer_a->record_disabled))
6294		goto out;
6295
6296	if (atomic_read(&buffer_b->record_disabled))
6297		goto out;
6298
6299	if (atomic_read(&cpu_buffer_a->record_disabled))
6300		goto out;
6301
6302	if (atomic_read(&cpu_buffer_b->record_disabled))
6303		goto out;
6304
6305	/*
6306	 * We can't do a synchronize_rcu here because this
6307	 * function can be called in atomic context.
6308	 * Normally this will be called from the same CPU as cpu.
6309	 * If not it's up to the caller to protect this.
6310	 */
6311	atomic_inc(&cpu_buffer_a->record_disabled);
6312	atomic_inc(&cpu_buffer_b->record_disabled);
6313
6314	ret = -EBUSY;
6315	if (local_read(&cpu_buffer_a->committing))
6316		goto out_dec;
6317	if (local_read(&cpu_buffer_b->committing))
6318		goto out_dec;
6319
6320	/*
6321	 * When resize is in progress, we cannot swap it because
6322	 * it will mess the state of the cpu buffer.
6323	 */
6324	if (atomic_read(&buffer_a->resizing))
6325		goto out_dec;
6326	if (atomic_read(&buffer_b->resizing))
6327		goto out_dec;
6328
6329	buffer_a->buffers[cpu] = cpu_buffer_b;
6330	buffer_b->buffers[cpu] = cpu_buffer_a;
6331
6332	cpu_buffer_b->buffer = buffer_a;
6333	cpu_buffer_a->buffer = buffer_b;
6334
6335	ret = 0;
6336
6337out_dec:
6338	atomic_dec(&cpu_buffer_a->record_disabled);
6339	atomic_dec(&cpu_buffer_b->record_disabled);
6340out:
6341	return ret;
6342}
6343EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
6344#endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
6345
6346/**
6347 * ring_buffer_alloc_read_page - allocate a page to read from buffer
6348 * @buffer: the buffer to allocate for.
6349 * @cpu: the cpu buffer to allocate.
6350 *
6351 * This function is used in conjunction with ring_buffer_read_page.
6352 * When reading a full page from the ring buffer, these functions
6353 * can be used to speed up the process. The calling function should
6354 * allocate a few pages first with this function. Then when it
6355 * needs to get pages from the ring buffer, it passes the result
6356 * of this function into ring_buffer_read_page, which will swap
6357 * the page that was allocated, with the read page of the buffer.
6358 *
6359 * Returns:
6360 *  The page allocated, or ERR_PTR
6361 */
6362struct buffer_data_read_page *
6363ring_buffer_alloc_read_page(struct trace_buffer *buffer, int cpu)
6364{
6365	struct ring_buffer_per_cpu *cpu_buffer;
6366	struct buffer_data_read_page *bpage = NULL;
6367	unsigned long flags;
6368	struct page *page;
6369
6370	if (!cpumask_test_cpu(cpu, buffer->cpumask))
6371		return ERR_PTR(-ENODEV);
6372
6373	bpage = kzalloc(sizeof(*bpage), GFP_KERNEL);
6374	if (!bpage)
6375		return ERR_PTR(-ENOMEM);
6376
6377	bpage->order = buffer->subbuf_order;
6378	cpu_buffer = buffer->buffers[cpu];
6379	local_irq_save(flags);
6380	arch_spin_lock(&cpu_buffer->lock);
6381
6382	if (cpu_buffer->free_page) {
6383		bpage->data = cpu_buffer->free_page;
6384		cpu_buffer->free_page = NULL;
6385	}
6386
6387	arch_spin_unlock(&cpu_buffer->lock);
6388	local_irq_restore(flags);
6389
6390	if (bpage->data)
6391		goto out;
6392
6393	page = alloc_pages_node(cpu_to_node(cpu),
6394				GFP_KERNEL | __GFP_NORETRY | __GFP_COMP | __GFP_ZERO,
6395				cpu_buffer->buffer->subbuf_order);
6396	if (!page) {
6397		kfree(bpage);
6398		return ERR_PTR(-ENOMEM);
6399	}
6400
6401	bpage->data = page_address(page);
6402
6403 out:
6404	rb_init_page(bpage->data);
6405
6406	return bpage;
6407}
6408EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
6409
6410/**
6411 * ring_buffer_free_read_page - free an allocated read page
6412 * @buffer: the buffer the page was allocate for
6413 * @cpu: the cpu buffer the page came from
6414 * @data_page: the page to free
6415 *
6416 * Free a page allocated from ring_buffer_alloc_read_page.
6417 */
6418void ring_buffer_free_read_page(struct trace_buffer *buffer, int cpu,
6419				struct buffer_data_read_page *data_page)
6420{
6421	struct ring_buffer_per_cpu *cpu_buffer;
6422	struct buffer_data_page *bpage = data_page->data;
6423	struct page *page = virt_to_page(bpage);
6424	unsigned long flags;
6425
6426	if (!buffer || !buffer->buffers || !buffer->buffers[cpu])
6427		return;
6428
6429	cpu_buffer = buffer->buffers[cpu];
6430
6431	/*
6432	 * If the page is still in use someplace else, or order of the page
6433	 * is different from the subbuffer order of the buffer -
6434	 * we can't reuse it
6435	 */
6436	if (page_ref_count(page) > 1 || data_page->order != buffer->subbuf_order)
6437		goto out;
6438
6439	local_irq_save(flags);
6440	arch_spin_lock(&cpu_buffer->lock);
6441
6442	if (!cpu_buffer->free_page) {
6443		cpu_buffer->free_page = bpage;
6444		bpage = NULL;
6445	}
6446
6447	arch_spin_unlock(&cpu_buffer->lock);
6448	local_irq_restore(flags);
6449
6450 out:
6451	free_pages((unsigned long)bpage, data_page->order);
6452	kfree(data_page);
6453}
6454EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
6455
6456/**
6457 * ring_buffer_read_page - extract a page from the ring buffer
6458 * @buffer: buffer to extract from
6459 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
6460 * @len: amount to extract
6461 * @cpu: the cpu of the buffer to extract
6462 * @full: should the extraction only happen when the page is full.
6463 *
6464 * This function will pull out a page from the ring buffer and consume it.
6465 * @data_page must be the address of the variable that was returned
6466 * from ring_buffer_alloc_read_page. This is because the page might be used
6467 * to swap with a page in the ring buffer.
6468 *
6469 * for example:
6470 *	rpage = ring_buffer_alloc_read_page(buffer, cpu);
6471 *	if (IS_ERR(rpage))
6472 *		return PTR_ERR(rpage);
6473 *	ret = ring_buffer_read_page(buffer, rpage, len, cpu, 0);
6474 *	if (ret >= 0)
6475 *		process_page(ring_buffer_read_page_data(rpage), ret);
6476 *	ring_buffer_free_read_page(buffer, cpu, rpage);
6477 *
6478 * When @full is set, the function will not return true unless
6479 * the writer is off the reader page.
6480 *
6481 * Note: it is up to the calling functions to handle sleeps and wakeups.
6482 *  The ring buffer can be used anywhere in the kernel and can not
6483 *  blindly call wake_up. The layer that uses the ring buffer must be
6484 *  responsible for that.
6485 *
6486 * Returns:
6487 *  >=0 if data has been transferred, returns the offset of consumed data.
6488 *  <0 if no data has been transferred.
6489 */
6490int ring_buffer_read_page(struct trace_buffer *buffer,
6491			  struct buffer_data_read_page *data_page,
6492			  size_t len, int cpu, int full)
6493{
6494	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
6495	struct ring_buffer_event *event;
6496	struct buffer_data_page *bpage;
6497	struct buffer_page *reader;
6498	unsigned long missed_events;
6499	unsigned long flags;
6500	unsigned int commit;
6501	unsigned int read;
6502	u64 save_timestamp;
6503	int ret = -1;
6504
6505	if (!cpumask_test_cpu(cpu, buffer->cpumask))
6506		goto out;
6507
6508	/*
6509	 * If len is not big enough to hold the page header, then
6510	 * we can not copy anything.
6511	 */
6512	if (len <= BUF_PAGE_HDR_SIZE)
6513		goto out;
6514
6515	len -= BUF_PAGE_HDR_SIZE;
6516
6517	if (!data_page || !data_page->data)
6518		goto out;
6519	if (data_page->order != buffer->subbuf_order)
6520		goto out;
6521
6522	bpage = data_page->data;
6523	if (!bpage)
6524		goto out;
6525
6526	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
6527
6528	reader = rb_get_reader_page(cpu_buffer);
6529	if (!reader)
6530		goto out_unlock;
6531
6532	event = rb_reader_event(cpu_buffer);
6533
6534	read = reader->read;
6535	commit = rb_page_size(reader);
6536
6537	/* Check if any events were dropped */
6538	missed_events = cpu_buffer->lost_events;
6539
6540	/*
6541	 * If this page has been partially read or
6542	 * if len is not big enough to read the rest of the page or
6543	 * a writer is still on the page, then
6544	 * we must copy the data from the page to the buffer.
6545	 * Otherwise, we can simply swap the page with the one passed in.
6546	 */
6547	if (read || (len < (commit - read)) ||
6548	    cpu_buffer->reader_page == cpu_buffer->commit_page ||
6549	    cpu_buffer->mapped) {
6550		struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
6551		unsigned int rpos = read;
6552		unsigned int pos = 0;
6553		unsigned int size;
6554
6555		/*
6556		 * If a full page is expected, this can still be returned
6557		 * if there's been a previous partial read and the
6558		 * rest of the page can be read and the commit page is off
6559		 * the reader page.
6560		 */
6561		if (full &&
6562		    (!read || (len < (commit - read)) ||
6563		     cpu_buffer->reader_page == cpu_buffer->commit_page))
6564			goto out_unlock;
6565
6566		if (len > (commit - read))
6567			len = (commit - read);
6568
6569		/* Always keep the time extend and data together */
6570		size = rb_event_ts_length(event);
6571
6572		if (len < size)
6573			goto out_unlock;
6574
6575		/* save the current timestamp, since the user will need it */
6576		save_timestamp = cpu_buffer->read_stamp;
6577
6578		/* Need to copy one event at a time */
6579		do {
6580			/* We need the size of one event, because
6581			 * rb_advance_reader only advances by one event,
6582			 * whereas rb_event_ts_length may include the size of
6583			 * one or two events.
6584			 * We have already ensured there's enough space if this
6585			 * is a time extend. */
6586			size = rb_event_length(event);
6587			memcpy(bpage->data + pos, rpage->data + rpos, size);
6588
6589			len -= size;
6590
6591			rb_advance_reader(cpu_buffer);
6592			rpos = reader->read;
6593			pos += size;
6594
6595			if (rpos >= commit)
6596				break;
6597
6598			event = rb_reader_event(cpu_buffer);
6599			/* Always keep the time extend and data together */
6600			size = rb_event_ts_length(event);
6601		} while (len >= size);
6602
6603		/* update bpage */
6604		local_set(&bpage->commit, pos);
6605		bpage->time_stamp = save_timestamp;
6606
6607		/* we copied everything to the beginning */
6608		read = 0;
6609	} else {
6610		/* update the entry counter */
6611		cpu_buffer->read += rb_page_entries(reader);
6612		cpu_buffer->read_bytes += rb_page_size(reader);
6613
6614		/* swap the pages */
6615		rb_init_page(bpage);
6616		bpage = reader->page;
6617		reader->page = data_page->data;
6618		local_set(&reader->write, 0);
6619		local_set(&reader->entries, 0);
6620		reader->read = 0;
6621		data_page->data = bpage;
6622
6623		/*
6624		 * Use the real_end for the data size,
6625		 * This gives us a chance to store the lost events
6626		 * on the page.
6627		 */
6628		if (reader->real_end)
6629			local_set(&bpage->commit, reader->real_end);
6630	}
6631	ret = read;
6632
6633	cpu_buffer->lost_events = 0;
6634
6635	commit = local_read(&bpage->commit);
6636	/*
6637	 * Set a flag in the commit field if we lost events
6638	 */
6639	if (missed_events) {
6640		/* If there is room at the end of the page to save the
6641		 * missed events, then record it there.
6642		 */
6643		if (buffer->subbuf_size - commit >= sizeof(missed_events)) {
6644			memcpy(&bpage->data[commit], &missed_events,
6645			       sizeof(missed_events));
6646			local_add(RB_MISSED_STORED, &bpage->commit);
6647			commit += sizeof(missed_events);
6648		}
6649		local_add(RB_MISSED_EVENTS, &bpage->commit);
6650	}
6651
6652	/*
6653	 * This page may be off to user land. Zero it out here.
6654	 */
6655	if (commit < buffer->subbuf_size)
6656		memset(&bpage->data[commit], 0, buffer->subbuf_size - commit);
6657
6658 out_unlock:
6659	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
6660
6661 out:
6662	return ret;
6663}
6664EXPORT_SYMBOL_GPL(ring_buffer_read_page);
6665
6666/**
6667 * ring_buffer_read_page_data - get pointer to the data in the page.
6668 * @page:  the page to get the data from
6669 *
6670 * Returns pointer to the actual data in this page.
6671 */
6672void *ring_buffer_read_page_data(struct buffer_data_read_page *page)
6673{
6674	return page->data;
6675}
6676EXPORT_SYMBOL_GPL(ring_buffer_read_page_data);
6677
6678/**
6679 * ring_buffer_subbuf_size_get - get size of the sub buffer.
6680 * @buffer: the buffer to get the sub buffer size from
6681 *
6682 * Returns size of the sub buffer, in bytes.
6683 */
6684int ring_buffer_subbuf_size_get(struct trace_buffer *buffer)
6685{
6686	return buffer->subbuf_size + BUF_PAGE_HDR_SIZE;
6687}
6688EXPORT_SYMBOL_GPL(ring_buffer_subbuf_size_get);
6689
6690/**
6691 * ring_buffer_subbuf_order_get - get order of system sub pages in one buffer page.
6692 * @buffer: The ring_buffer to get the system sub page order from
6693 *
6694 * By default, one ring buffer sub page equals to one system page. This parameter
6695 * is configurable, per ring buffer. The size of the ring buffer sub page can be
6696 * extended, but must be an order of system page size.
6697 *
6698 * Returns the order of buffer sub page size, in system pages:
6699 * 0 means the sub buffer size is 1 system page and so forth.
6700 * In case of an error < 0 is returned.
6701 */
6702int ring_buffer_subbuf_order_get(struct trace_buffer *buffer)
6703{
6704	if (!buffer)
6705		return -EINVAL;
6706
6707	return buffer->subbuf_order;
6708}
6709EXPORT_SYMBOL_GPL(ring_buffer_subbuf_order_get);
6710
6711/**
6712 * ring_buffer_subbuf_order_set - set the size of ring buffer sub page.
6713 * @buffer: The ring_buffer to set the new page size.
6714 * @order: Order of the system pages in one sub buffer page
6715 *
6716 * By default, one ring buffer pages equals to one system page. This API can be
6717 * used to set new size of the ring buffer page. The size must be order of
6718 * system page size, that's why the input parameter @order is the order of
6719 * system pages that are allocated for one ring buffer page:
6720 *  0 - 1 system page
6721 *  1 - 2 system pages
6722 *  3 - 4 system pages
6723 *  ...
6724 *
6725 * Returns 0 on success or < 0 in case of an error.
6726 */
6727int ring_buffer_subbuf_order_set(struct trace_buffer *buffer, int order)
6728{
6729	struct ring_buffer_per_cpu *cpu_buffer;
6730	struct buffer_page *bpage, *tmp;
6731	int old_order, old_size;
6732	int nr_pages;
6733	int psize;
6734	int err;
6735	int cpu;
6736
6737	if (!buffer || order < 0)
6738		return -EINVAL;
6739
6740	if (buffer->subbuf_order == order)
6741		return 0;
6742
6743	psize = (1 << order) * PAGE_SIZE;
6744	if (psize <= BUF_PAGE_HDR_SIZE)
6745		return -EINVAL;
6746
6747	/* Size of a subbuf cannot be greater than the write counter */
6748	if (psize > RB_WRITE_MASK + 1)
6749		return -EINVAL;
6750
6751	old_order = buffer->subbuf_order;
6752	old_size = buffer->subbuf_size;
6753
6754	/* prevent another thread from changing buffer sizes */
6755	mutex_lock(&buffer->mutex);
6756	atomic_inc(&buffer->record_disabled);
6757
6758	/* Make sure all commits have finished */
6759	synchronize_rcu();
6760
6761	buffer->subbuf_order = order;
6762	buffer->subbuf_size = psize - BUF_PAGE_HDR_SIZE;
6763
6764	/* Make sure all new buffers are allocated, before deleting the old ones */
6765	for_each_buffer_cpu(buffer, cpu) {
6766
6767		if (!cpumask_test_cpu(cpu, buffer->cpumask))
6768			continue;
6769
6770		cpu_buffer = buffer->buffers[cpu];
6771
6772		if (cpu_buffer->mapped) {
6773			err = -EBUSY;
6774			goto error;
6775		}
6776
6777		/* Update the number of pages to match the new size */
6778		nr_pages = old_size * buffer->buffers[cpu]->nr_pages;
6779		nr_pages = DIV_ROUND_UP(nr_pages, buffer->subbuf_size);
6780
6781		/* we need a minimum of two pages */
6782		if (nr_pages < 2)
6783			nr_pages = 2;
6784
6785		cpu_buffer->nr_pages_to_update = nr_pages;
6786
6787		/* Include the reader page */
6788		nr_pages++;
6789
6790		/* Allocate the new size buffer */
6791		INIT_LIST_HEAD(&cpu_buffer->new_pages);
6792		if (__rb_allocate_pages(cpu_buffer, nr_pages,
6793					&cpu_buffer->new_pages)) {
6794			/* not enough memory for new pages */
6795			err = -ENOMEM;
6796			goto error;
6797		}
6798	}
6799
6800	for_each_buffer_cpu(buffer, cpu) {
6801		struct buffer_data_page *old_free_data_page;
6802		struct list_head old_pages;
6803		unsigned long flags;
6804
6805		if (!cpumask_test_cpu(cpu, buffer->cpumask))
6806			continue;
6807
6808		cpu_buffer = buffer->buffers[cpu];
6809
6810		raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
6811
6812		/* Clear the head bit to make the link list normal to read */
6813		rb_head_page_deactivate(cpu_buffer);
6814
6815		/*
6816		 * Collect buffers from the cpu_buffer pages list and the
6817		 * reader_page on old_pages, so they can be freed later when not
6818		 * under a spinlock. The pages list is a linked list with no
6819		 * head, adding old_pages turns it into a regular list with
6820		 * old_pages being the head.
6821		 */
6822		list_add(&old_pages, cpu_buffer->pages);
6823		list_add(&cpu_buffer->reader_page->list, &old_pages);
6824
6825		/* One page was allocated for the reader page */
6826		cpu_buffer->reader_page = list_entry(cpu_buffer->new_pages.next,
6827						     struct buffer_page, list);
6828		list_del_init(&cpu_buffer->reader_page->list);
6829
6830		/* Install the new pages, remove the head from the list */
6831		cpu_buffer->pages = cpu_buffer->new_pages.next;
6832		list_del_init(&cpu_buffer->new_pages);
6833		cpu_buffer->cnt++;
6834
6835		cpu_buffer->head_page
6836			= list_entry(cpu_buffer->pages, struct buffer_page, list);
6837		cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
6838
6839		cpu_buffer->nr_pages = cpu_buffer->nr_pages_to_update;
6840		cpu_buffer->nr_pages_to_update = 0;
6841
6842		old_free_data_page = cpu_buffer->free_page;
6843		cpu_buffer->free_page = NULL;
6844
6845		rb_head_page_activate(cpu_buffer);
6846
6847		raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
6848
6849		/* Free old sub buffers */
6850		list_for_each_entry_safe(bpage, tmp, &old_pages, list) {
6851			list_del_init(&bpage->list);
6852			free_buffer_page(bpage);
6853		}
6854		free_pages((unsigned long)old_free_data_page, old_order);
6855
6856		rb_check_pages(cpu_buffer);
6857	}
6858
6859	atomic_dec(&buffer->record_disabled);
6860	mutex_unlock(&buffer->mutex);
6861
6862	return 0;
6863
6864error:
6865	buffer->subbuf_order = old_order;
6866	buffer->subbuf_size = old_size;
6867
6868	atomic_dec(&buffer->record_disabled);
6869	mutex_unlock(&buffer->mutex);
6870
6871	for_each_buffer_cpu(buffer, cpu) {
6872		cpu_buffer = buffer->buffers[cpu];
6873
6874		if (!cpu_buffer->nr_pages_to_update)
6875			continue;
6876
6877		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, list) {
6878			list_del_init(&bpage->list);
6879			free_buffer_page(bpage);
6880		}
6881	}
6882
6883	return err;
6884}
6885EXPORT_SYMBOL_GPL(ring_buffer_subbuf_order_set);
6886
6887static int rb_alloc_meta_page(struct ring_buffer_per_cpu *cpu_buffer)
6888{
6889	struct page *page;
6890
6891	if (cpu_buffer->meta_page)
6892		return 0;
6893
6894	page = alloc_page(GFP_USER | __GFP_ZERO);
6895	if (!page)
6896		return -ENOMEM;
6897
6898	cpu_buffer->meta_page = page_to_virt(page);
6899
6900	return 0;
6901}
6902
6903static void rb_free_meta_page(struct ring_buffer_per_cpu *cpu_buffer)
6904{
6905	unsigned long addr = (unsigned long)cpu_buffer->meta_page;
6906
6907	free_page(addr);
6908	cpu_buffer->meta_page = NULL;
6909}
6910
6911static void rb_setup_ids_meta_page(struct ring_buffer_per_cpu *cpu_buffer,
6912				   unsigned long *subbuf_ids)
6913{
6914	struct trace_buffer_meta *meta = cpu_buffer->meta_page;
6915	unsigned int nr_subbufs = cpu_buffer->nr_pages + 1;
6916	struct buffer_page *first_subbuf, *subbuf;
6917	int id = 0;
6918
6919	subbuf_ids[id] = (unsigned long)cpu_buffer->reader_page->page;
6920	cpu_buffer->reader_page->id = id++;
6921
6922	first_subbuf = subbuf = rb_set_head_page(cpu_buffer);
6923	do {
6924		if (WARN_ON(id >= nr_subbufs))
6925			break;
6926
6927		subbuf_ids[id] = (unsigned long)subbuf->page;
6928		subbuf->id = id;
6929
6930		rb_inc_page(&subbuf);
6931		id++;
6932	} while (subbuf != first_subbuf);
6933
6934	/* install subbuf ID to kern VA translation */
6935	cpu_buffer->subbuf_ids = subbuf_ids;
6936
6937	meta->meta_struct_len = sizeof(*meta);
6938	meta->nr_subbufs = nr_subbufs;
6939	meta->subbuf_size = cpu_buffer->buffer->subbuf_size + BUF_PAGE_HDR_SIZE;
6940	meta->meta_page_size = meta->subbuf_size;
6941
6942	rb_update_meta_page(cpu_buffer);
6943}
6944
6945static struct ring_buffer_per_cpu *
6946rb_get_mapped_buffer(struct trace_buffer *buffer, int cpu)
6947{
6948	struct ring_buffer_per_cpu *cpu_buffer;
6949
6950	if (!cpumask_test_cpu(cpu, buffer->cpumask))
6951		return ERR_PTR(-EINVAL);
6952
6953	cpu_buffer = buffer->buffers[cpu];
6954
6955	mutex_lock(&cpu_buffer->mapping_lock);
6956
6957	if (!cpu_buffer->user_mapped) {
6958		mutex_unlock(&cpu_buffer->mapping_lock);
6959		return ERR_PTR(-ENODEV);
6960	}
6961
6962	return cpu_buffer;
6963}
6964
6965static void rb_put_mapped_buffer(struct ring_buffer_per_cpu *cpu_buffer)
6966{
6967	mutex_unlock(&cpu_buffer->mapping_lock);
6968}
6969
6970/*
6971 * Fast-path for rb_buffer_(un)map(). Called whenever the meta-page doesn't need
6972 * to be set-up or torn-down.
6973 */
6974static int __rb_inc_dec_mapped(struct ring_buffer_per_cpu *cpu_buffer,
6975			       bool inc)
6976{
6977	unsigned long flags;
6978
6979	lockdep_assert_held(&cpu_buffer->mapping_lock);
6980
6981	/* mapped is always greater or equal to user_mapped */
6982	if (WARN_ON(cpu_buffer->mapped < cpu_buffer->user_mapped))
6983		return -EINVAL;
6984
6985	if (inc && cpu_buffer->mapped == UINT_MAX)
6986		return -EBUSY;
6987
6988	if (WARN_ON(!inc && cpu_buffer->user_mapped == 0))
6989		return -EINVAL;
6990
6991	mutex_lock(&cpu_buffer->buffer->mutex);
6992	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
6993
6994	if (inc) {
6995		cpu_buffer->user_mapped++;
6996		cpu_buffer->mapped++;
6997	} else {
6998		cpu_buffer->user_mapped--;
6999		cpu_buffer->mapped--;
7000	}
7001
7002	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7003	mutex_unlock(&cpu_buffer->buffer->mutex);
7004
7005	return 0;
7006}
7007
7008/*
7009 *   +--------------+  pgoff == 0
7010 *   |   meta page  |
7011 *   +--------------+  pgoff == 1
7012 *   | subbuffer 0  |
7013 *   |              |
7014 *   +--------------+  pgoff == (1 + (1 << subbuf_order))
7015 *   | subbuffer 1  |
7016 *   |              |
7017 *         ...
7018 */
7019#ifdef CONFIG_MMU
7020static int __rb_map_vma(struct ring_buffer_per_cpu *cpu_buffer,
7021			struct vm_area_struct *vma)
7022{
7023	unsigned long nr_subbufs, nr_pages, nr_vma_pages, pgoff = vma->vm_pgoff;
7024	unsigned int subbuf_pages, subbuf_order;
7025	struct page **pages;
7026	int p = 0, s = 0;
7027	int err;
7028
7029	/* Refuse MP_PRIVATE or writable mappings */
7030	if (vma->vm_flags & VM_WRITE || vma->vm_flags & VM_EXEC ||
7031	    !(vma->vm_flags & VM_MAYSHARE))
7032		return -EPERM;
7033
7034	subbuf_order = cpu_buffer->buffer->subbuf_order;
7035	subbuf_pages = 1 << subbuf_order;
7036
7037	if (subbuf_order && pgoff % subbuf_pages)
7038		return -EINVAL;
7039
7040	/*
7041	 * Make sure the mapping cannot become writable later. Also tell the VM
7042	 * to not touch these pages (VM_DONTCOPY | VM_DONTEXPAND).
7043	 */
7044	vm_flags_mod(vma, VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP,
7045		     VM_MAYWRITE);
7046
7047	lockdep_assert_held(&cpu_buffer->mapping_lock);
7048
7049	nr_subbufs = cpu_buffer->nr_pages + 1; /* + reader-subbuf */
7050	nr_pages = ((nr_subbufs + 1) << subbuf_order); /* + meta-page */
7051	if (nr_pages <= pgoff)
7052		return -EINVAL;
7053
7054	nr_pages -= pgoff;
7055
7056	nr_vma_pages = vma_pages(vma);
7057	if (!nr_vma_pages || nr_vma_pages > nr_pages)
7058		return -EINVAL;
7059
7060	nr_pages = nr_vma_pages;
7061
7062	pages = kcalloc(nr_pages, sizeof(*pages), GFP_KERNEL);
7063	if (!pages)
7064		return -ENOMEM;
7065
7066	if (!pgoff) {
7067		unsigned long meta_page_padding;
7068
7069		pages[p++] = virt_to_page(cpu_buffer->meta_page);
7070
7071		/*
7072		 * Pad with the zero-page to align the meta-page with the
7073		 * sub-buffers.
7074		 */
7075		meta_page_padding = subbuf_pages - 1;
7076		while (meta_page_padding-- && p < nr_pages) {
7077			unsigned long __maybe_unused zero_addr =
7078				vma->vm_start + (PAGE_SIZE * p);
7079
7080			pages[p++] = ZERO_PAGE(zero_addr);
7081		}
7082	} else {
7083		/* Skip the meta-page */
7084		pgoff -= subbuf_pages;
7085
7086		s += pgoff / subbuf_pages;
7087	}
7088
7089	while (p < nr_pages) {
7090		struct page *page;
7091		int off = 0;
7092
7093		if (WARN_ON_ONCE(s >= nr_subbufs)) {
7094			err = -EINVAL;
7095			goto out;
7096		}
7097
7098		page = virt_to_page((void *)cpu_buffer->subbuf_ids[s]);
7099
7100		for (; off < (1 << (subbuf_order)); off++, page++) {
7101			if (p >= nr_pages)
7102				break;
7103
7104			pages[p++] = page;
7105		}
7106		s++;
7107	}
7108
7109	err = vm_insert_pages(vma, vma->vm_start, pages, &nr_pages);
7110
7111out:
7112	kfree(pages);
7113
7114	return err;
7115}
7116#else
7117static int __rb_map_vma(struct ring_buffer_per_cpu *cpu_buffer,
7118			struct vm_area_struct *vma)
7119{
7120	return -EOPNOTSUPP;
7121}
7122#endif
7123
7124int ring_buffer_map(struct trace_buffer *buffer, int cpu,
7125		    struct vm_area_struct *vma)
7126{
7127	struct ring_buffer_per_cpu *cpu_buffer;
7128	unsigned long flags, *subbuf_ids;
7129	int err = 0;
7130
7131	if (!cpumask_test_cpu(cpu, buffer->cpumask))
7132		return -EINVAL;
7133
7134	cpu_buffer = buffer->buffers[cpu];
7135
7136	mutex_lock(&cpu_buffer->mapping_lock);
7137
7138	if (cpu_buffer->user_mapped) {
7139		err = __rb_map_vma(cpu_buffer, vma);
7140		if (!err)
7141			err = __rb_inc_dec_mapped(cpu_buffer, true);
7142		mutex_unlock(&cpu_buffer->mapping_lock);
7143		return err;
7144	}
7145
7146	/* prevent another thread from changing buffer/sub-buffer sizes */
7147	mutex_lock(&buffer->mutex);
7148
7149	err = rb_alloc_meta_page(cpu_buffer);
7150	if (err)
7151		goto unlock;
7152
7153	/* subbuf_ids include the reader while nr_pages does not */
7154	subbuf_ids = kcalloc(cpu_buffer->nr_pages + 1, sizeof(*subbuf_ids), GFP_KERNEL);
7155	if (!subbuf_ids) {
7156		rb_free_meta_page(cpu_buffer);
7157		err = -ENOMEM;
7158		goto unlock;
7159	}
7160
7161	atomic_inc(&cpu_buffer->resize_disabled);
7162
7163	/*
7164	 * Lock all readers to block any subbuf swap until the subbuf IDs are
7165	 * assigned.
7166	 */
7167	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
7168	rb_setup_ids_meta_page(cpu_buffer, subbuf_ids);
7169
7170	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7171
7172	err = __rb_map_vma(cpu_buffer, vma);
7173	if (!err) {
7174		raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
7175		/* This is the first time it is mapped by user */
7176		cpu_buffer->mapped++;
7177		cpu_buffer->user_mapped = 1;
7178		raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7179	} else {
7180		kfree(cpu_buffer->subbuf_ids);
7181		cpu_buffer->subbuf_ids = NULL;
7182		rb_free_meta_page(cpu_buffer);
7183		atomic_dec(&cpu_buffer->resize_disabled);
7184	}
7185
7186unlock:
7187	mutex_unlock(&buffer->mutex);
7188	mutex_unlock(&cpu_buffer->mapping_lock);
7189
7190	return err;
7191}
7192
7193int ring_buffer_unmap(struct trace_buffer *buffer, int cpu)
7194{
7195	struct ring_buffer_per_cpu *cpu_buffer;
7196	unsigned long flags;
7197	int err = 0;
7198
7199	if (!cpumask_test_cpu(cpu, buffer->cpumask))
7200		return -EINVAL;
7201
7202	cpu_buffer = buffer->buffers[cpu];
7203
7204	mutex_lock(&cpu_buffer->mapping_lock);
7205
7206	if (!cpu_buffer->user_mapped) {
7207		err = -ENODEV;
7208		goto out;
7209	} else if (cpu_buffer->user_mapped > 1) {
7210		__rb_inc_dec_mapped(cpu_buffer, false);
7211		goto out;
7212	}
7213
7214	mutex_lock(&buffer->mutex);
7215	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
7216
7217	/* This is the last user space mapping */
7218	if (!WARN_ON_ONCE(cpu_buffer->mapped < cpu_buffer->user_mapped))
7219		cpu_buffer->mapped--;
7220	cpu_buffer->user_mapped = 0;
7221
7222	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7223
7224	kfree(cpu_buffer->subbuf_ids);
7225	cpu_buffer->subbuf_ids = NULL;
7226	rb_free_meta_page(cpu_buffer);
7227	atomic_dec(&cpu_buffer->resize_disabled);
7228
7229	mutex_unlock(&buffer->mutex);
7230
7231out:
7232	mutex_unlock(&cpu_buffer->mapping_lock);
7233
7234	return err;
7235}
7236
7237int ring_buffer_map_get_reader(struct trace_buffer *buffer, int cpu)
7238{
7239	struct ring_buffer_per_cpu *cpu_buffer;
7240	struct buffer_page *reader;
7241	unsigned long missed_events;
7242	unsigned long reader_size;
7243	unsigned long flags;
7244
7245	cpu_buffer = rb_get_mapped_buffer(buffer, cpu);
7246	if (IS_ERR(cpu_buffer))
7247		return (int)PTR_ERR(cpu_buffer);
7248
7249	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
7250
7251consume:
7252	if (rb_per_cpu_empty(cpu_buffer))
7253		goto out;
7254
7255	reader_size = rb_page_size(cpu_buffer->reader_page);
7256
7257	/*
7258	 * There are data to be read on the current reader page, we can
7259	 * return to the caller. But before that, we assume the latter will read
7260	 * everything. Let's update the kernel reader accordingly.
7261	 */
7262	if (cpu_buffer->reader_page->read < reader_size) {
7263		while (cpu_buffer->reader_page->read < reader_size)
7264			rb_advance_reader(cpu_buffer);
7265		goto out;
7266	}
7267
7268	reader = rb_get_reader_page(cpu_buffer);
7269	if (WARN_ON(!reader))
7270		goto out;
7271
7272	/* Check if any events were dropped */
7273	missed_events = cpu_buffer->lost_events;
7274
7275	if (cpu_buffer->reader_page != cpu_buffer->commit_page) {
7276		if (missed_events) {
7277			struct buffer_data_page *bpage = reader->page;
7278			unsigned int commit;
7279			/*
7280			 * Use the real_end for the data size,
7281			 * This gives us a chance to store the lost events
7282			 * on the page.
7283			 */
7284			if (reader->real_end)
7285				local_set(&bpage->commit, reader->real_end);
7286			/*
7287			 * If there is room at the end of the page to save the
7288			 * missed events, then record it there.
7289			 */
7290			commit = rb_page_size(reader);
7291			if (buffer->subbuf_size - commit >= sizeof(missed_events)) {
7292				memcpy(&bpage->data[commit], &missed_events,
7293				       sizeof(missed_events));
7294				local_add(RB_MISSED_STORED, &bpage->commit);
7295			}
7296			local_add(RB_MISSED_EVENTS, &bpage->commit);
7297		}
7298	} else {
7299		/*
7300		 * There really shouldn't be any missed events if the commit
7301		 * is on the reader page.
7302		 */
7303		WARN_ON_ONCE(missed_events);
7304	}
7305
7306	cpu_buffer->lost_events = 0;
7307
7308	goto consume;
7309
7310out:
7311	/* Some archs do not have data cache coherency between kernel and user-space */
7312	flush_dcache_folio(virt_to_folio(cpu_buffer->reader_page->page));
7313
7314	rb_update_meta_page(cpu_buffer);
7315
7316	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7317	rb_put_mapped_buffer(cpu_buffer);
7318
7319	return 0;
7320}
7321
7322/*
7323 * We only allocate new buffers, never free them if the CPU goes down.
7324 * If we were to free the buffer, then the user would lose any trace that was in
7325 * the buffer.
7326 */
7327int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node)
7328{
7329	struct trace_buffer *buffer;
7330	long nr_pages_same;
7331	int cpu_i;
7332	unsigned long nr_pages;
7333
7334	buffer = container_of(node, struct trace_buffer, node);
7335	if (cpumask_test_cpu(cpu, buffer->cpumask))
7336		return 0;
7337
7338	nr_pages = 0;
7339	nr_pages_same = 1;
7340	/* check if all cpu sizes are same */
7341	for_each_buffer_cpu(buffer, cpu_i) {
7342		/* fill in the size from first enabled cpu */
7343		if (nr_pages == 0)
7344			nr_pages = buffer->buffers[cpu_i]->nr_pages;
7345		if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
7346			nr_pages_same = 0;
7347			break;
7348		}
7349	}
7350	/* allocate minimum pages, user can later expand it */
7351	if (!nr_pages_same)
7352		nr_pages = 2;
7353	buffer->buffers[cpu] =
7354		rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
7355	if (!buffer->buffers[cpu]) {
7356		WARN(1, "failed to allocate ring buffer on CPU %u\n",
7357		     cpu);
7358		return -ENOMEM;
7359	}
7360	smp_wmb();
7361	cpumask_set_cpu(cpu, buffer->cpumask);
7362	return 0;
7363}
7364
7365#ifdef CONFIG_RING_BUFFER_STARTUP_TEST
7366/*
7367 * This is a basic integrity check of the ring buffer.
7368 * Late in the boot cycle this test will run when configured in.
7369 * It will kick off a thread per CPU that will go into a loop
7370 * writing to the per cpu ring buffer various sizes of data.
7371 * Some of the data will be large items, some small.
7372 *
7373 * Another thread is created that goes into a spin, sending out
7374 * IPIs to the other CPUs to also write into the ring buffer.
7375 * this is to test the nesting ability of the buffer.
7376 *
7377 * Basic stats are recorded and reported. If something in the
7378 * ring buffer should happen that's not expected, a big warning
7379 * is displayed and all ring buffers are disabled.
7380 */
7381static struct task_struct *rb_threads[NR_CPUS] __initdata;
7382
7383struct rb_test_data {
7384	struct trace_buffer *buffer;
7385	unsigned long		events;
7386	unsigned long		bytes_written;
7387	unsigned long		bytes_alloc;
7388	unsigned long		bytes_dropped;
7389	unsigned long		events_nested;
7390	unsigned long		bytes_written_nested;
7391	unsigned long		bytes_alloc_nested;
7392	unsigned long		bytes_dropped_nested;
7393	int			min_size_nested;
7394	int			max_size_nested;
7395	int			max_size;
7396	int			min_size;
7397	int			cpu;
7398	int			cnt;
7399};
7400
7401static struct rb_test_data rb_data[NR_CPUS] __initdata;
7402
7403/* 1 meg per cpu */
7404#define RB_TEST_BUFFER_SIZE	1048576
7405
7406static char rb_string[] __initdata =
7407	"abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
7408	"?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
7409	"!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
7410
7411static bool rb_test_started __initdata;
7412
7413struct rb_item {
7414	int size;
7415	char str[];
7416};
7417
7418static __init int rb_write_something(struct rb_test_data *data, bool nested)
7419{
7420	struct ring_buffer_event *event;
7421	struct rb_item *item;
7422	bool started;
7423	int event_len;
7424	int size;
7425	int len;
7426	int cnt;
7427
7428	/* Have nested writes different that what is written */
7429	cnt = data->cnt + (nested ? 27 : 0);
7430
7431	/* Multiply cnt by ~e, to make some unique increment */
7432	size = (cnt * 68 / 25) % (sizeof(rb_string) - 1);
7433
7434	len = size + sizeof(struct rb_item);
7435
7436	started = rb_test_started;
7437	/* read rb_test_started before checking buffer enabled */
7438	smp_rmb();
7439
7440	event = ring_buffer_lock_reserve(data->buffer, len);
7441	if (!event) {
7442		/* Ignore dropped events before test starts. */
7443		if (started) {
7444			if (nested)
7445				data->bytes_dropped += len;
7446			else
7447				data->bytes_dropped_nested += len;
7448		}
7449		return len;
7450	}
7451
7452	event_len = ring_buffer_event_length(event);
7453
7454	if (RB_WARN_ON(data->buffer, event_len < len))
7455		goto out;
7456
7457	item = ring_buffer_event_data(event);
7458	item->size = size;
7459	memcpy(item->str, rb_string, size);
7460
7461	if (nested) {
7462		data->bytes_alloc_nested += event_len;
7463		data->bytes_written_nested += len;
7464		data->events_nested++;
7465		if (!data->min_size_nested || len < data->min_size_nested)
7466			data->min_size_nested = len;
7467		if (len > data->max_size_nested)
7468			data->max_size_nested = len;
7469	} else {
7470		data->bytes_alloc += event_len;
7471		data->bytes_written += len;
7472		data->events++;
7473		if (!data->min_size || len < data->min_size)
7474			data->max_size = len;
7475		if (len > data->max_size)
7476			data->max_size = len;
7477	}
7478
7479 out:
7480	ring_buffer_unlock_commit(data->buffer);
7481
7482	return 0;
7483}
7484
7485static __init int rb_test(void *arg)
7486{
7487	struct rb_test_data *data = arg;
7488
7489	while (!kthread_should_stop()) {
7490		rb_write_something(data, false);
7491		data->cnt++;
7492
7493		set_current_state(TASK_INTERRUPTIBLE);
7494		/* Now sleep between a min of 100-300us and a max of 1ms */
7495		usleep_range(((data->cnt % 3) + 1) * 100, 1000);
7496	}
7497
7498	return 0;
7499}
7500
7501static __init void rb_ipi(void *ignore)
7502{
7503	struct rb_test_data *data;
7504	int cpu = smp_processor_id();
7505
7506	data = &rb_data[cpu];
7507	rb_write_something(data, true);
7508}
7509
7510static __init int rb_hammer_test(void *arg)
7511{
7512	while (!kthread_should_stop()) {
7513
7514		/* Send an IPI to all cpus to write data! */
7515		smp_call_function(rb_ipi, NULL, 1);
7516		/* No sleep, but for non preempt, let others run */
7517		schedule();
7518	}
7519
7520	return 0;
7521}
7522
7523static __init int test_ringbuffer(void)
7524{
7525	struct task_struct *rb_hammer;
7526	struct trace_buffer *buffer;
7527	int cpu;
7528	int ret = 0;
7529
7530	if (security_locked_down(LOCKDOWN_TRACEFS)) {
7531		pr_warn("Lockdown is enabled, skipping ring buffer tests\n");
7532		return 0;
7533	}
7534
7535	pr_info("Running ring buffer tests...\n");
7536
7537	buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
7538	if (WARN_ON(!buffer))
7539		return 0;
7540
7541	/* Disable buffer so that threads can't write to it yet */
7542	ring_buffer_record_off(buffer);
7543
7544	for_each_online_cpu(cpu) {
7545		rb_data[cpu].buffer = buffer;
7546		rb_data[cpu].cpu = cpu;
7547		rb_data[cpu].cnt = cpu;
7548		rb_threads[cpu] = kthread_run_on_cpu(rb_test, &rb_data[cpu],
7549						     cpu, "rbtester/%u");
7550		if (WARN_ON(IS_ERR(rb_threads[cpu]))) {
7551			pr_cont("FAILED\n");
7552			ret = PTR_ERR(rb_threads[cpu]);
7553			goto out_free;
7554		}
 
 
 
7555	}
7556
7557	/* Now create the rb hammer! */
7558	rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
7559	if (WARN_ON(IS_ERR(rb_hammer))) {
7560		pr_cont("FAILED\n");
7561		ret = PTR_ERR(rb_hammer);
7562		goto out_free;
7563	}
7564
7565	ring_buffer_record_on(buffer);
7566	/*
7567	 * Show buffer is enabled before setting rb_test_started.
7568	 * Yes there's a small race window where events could be
7569	 * dropped and the thread wont catch it. But when a ring
7570	 * buffer gets enabled, there will always be some kind of
7571	 * delay before other CPUs see it. Thus, we don't care about
7572	 * those dropped events. We care about events dropped after
7573	 * the threads see that the buffer is active.
7574	 */
7575	smp_wmb();
7576	rb_test_started = true;
7577
7578	set_current_state(TASK_INTERRUPTIBLE);
7579	/* Just run for 10 seconds */;
7580	schedule_timeout(10 * HZ);
7581
7582	kthread_stop(rb_hammer);
7583
7584 out_free:
7585	for_each_online_cpu(cpu) {
7586		if (!rb_threads[cpu])
7587			break;
7588		kthread_stop(rb_threads[cpu]);
7589	}
7590	if (ret) {
7591		ring_buffer_free(buffer);
7592		return ret;
7593	}
7594
7595	/* Report! */
7596	pr_info("finished\n");
7597	for_each_online_cpu(cpu) {
7598		struct ring_buffer_event *event;
7599		struct rb_test_data *data = &rb_data[cpu];
7600		struct rb_item *item;
7601		unsigned long total_events;
7602		unsigned long total_dropped;
7603		unsigned long total_written;
7604		unsigned long total_alloc;
7605		unsigned long total_read = 0;
7606		unsigned long total_size = 0;
7607		unsigned long total_len = 0;
7608		unsigned long total_lost = 0;
7609		unsigned long lost;
7610		int big_event_size;
7611		int small_event_size;
7612
7613		ret = -1;
7614
7615		total_events = data->events + data->events_nested;
7616		total_written = data->bytes_written + data->bytes_written_nested;
7617		total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
7618		total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
7619
7620		big_event_size = data->max_size + data->max_size_nested;
7621		small_event_size = data->min_size + data->min_size_nested;
7622
7623		pr_info("CPU %d:\n", cpu);
7624		pr_info("              events:    %ld\n", total_events);
7625		pr_info("       dropped bytes:    %ld\n", total_dropped);
7626		pr_info("       alloced bytes:    %ld\n", total_alloc);
7627		pr_info("       written bytes:    %ld\n", total_written);
7628		pr_info("       biggest event:    %d\n", big_event_size);
7629		pr_info("      smallest event:    %d\n", small_event_size);
7630
7631		if (RB_WARN_ON(buffer, total_dropped))
7632			break;
7633
7634		ret = 0;
7635
7636		while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
7637			total_lost += lost;
7638			item = ring_buffer_event_data(event);
7639			total_len += ring_buffer_event_length(event);
7640			total_size += item->size + sizeof(struct rb_item);
7641			if (memcmp(&item->str[0], rb_string, item->size) != 0) {
7642				pr_info("FAILED!\n");
7643				pr_info("buffer had: %.*s\n", item->size, item->str);
7644				pr_info("expected:   %.*s\n", item->size, rb_string);
7645				RB_WARN_ON(buffer, 1);
7646				ret = -1;
7647				break;
7648			}
7649			total_read++;
7650		}
7651		if (ret)
7652			break;
7653
7654		ret = -1;
7655
7656		pr_info("         read events:   %ld\n", total_read);
7657		pr_info("         lost events:   %ld\n", total_lost);
7658		pr_info("        total events:   %ld\n", total_lost + total_read);
7659		pr_info("  recorded len bytes:   %ld\n", total_len);
7660		pr_info(" recorded size bytes:   %ld\n", total_size);
7661		if (total_lost) {
7662			pr_info(" With dropped events, record len and size may not match\n"
7663				" alloced and written from above\n");
7664		} else {
7665			if (RB_WARN_ON(buffer, total_len != total_alloc ||
7666				       total_size != total_written))
7667				break;
7668		}
7669		if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
7670			break;
7671
7672		ret = 0;
7673	}
7674	if (!ret)
7675		pr_info("Ring buffer PASSED!\n");
7676
7677	ring_buffer_free(buffer);
7678	return 0;
7679}
7680
7681late_initcall(test_ringbuffer);
7682#endif /* CONFIG_RING_BUFFER_STARTUP_TEST */