Linux Audio

Check our new training course

Loading...
v4.6
   1/*
   2 * Generic ring buffer
   3 *
   4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
   5 */
   6#include <linux/trace_events.h>
   7#include <linux/ring_buffer.h>
   8#include <linux/trace_clock.h>
   9#include <linux/trace_seq.h>
  10#include <linux/spinlock.h>
  11#include <linux/irq_work.h>
  12#include <linux/uaccess.h>
  13#include <linux/hardirq.h>
  14#include <linux/kthread.h>	/* for self test */
  15#include <linux/kmemcheck.h>
  16#include <linux/module.h>
  17#include <linux/percpu.h>
  18#include <linux/mutex.h>
  19#include <linux/delay.h>
  20#include <linux/slab.h>
  21#include <linux/init.h>
  22#include <linux/hash.h>
  23#include <linux/list.h>
  24#include <linux/cpu.h>
 
  25
  26#include <asm/local.h>
 
  27
  28static void update_pages_handler(struct work_struct *work);
  29
  30/*
  31 * The ring buffer header is special. We must manually up keep it.
  32 */
  33int ring_buffer_print_entry_header(struct trace_seq *s)
  34{
  35	trace_seq_puts(s, "# compressed entry header\n");
  36	trace_seq_puts(s, "\ttype_len    :    5 bits\n");
  37	trace_seq_puts(s, "\ttime_delta  :   27 bits\n");
  38	trace_seq_puts(s, "\tarray       :   32 bits\n");
  39	trace_seq_putc(s, '\n');
  40	trace_seq_printf(s, "\tpadding     : type == %d\n",
  41			 RINGBUF_TYPE_PADDING);
  42	trace_seq_printf(s, "\ttime_extend : type == %d\n",
  43			 RINGBUF_TYPE_TIME_EXTEND);
  44	trace_seq_printf(s, "\tdata max type_len  == %d\n",
  45			 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
 
 
  46
  47	return !trace_seq_has_overflowed(s);
  48}
  49
  50/*
  51 * The ring buffer is made up of a list of pages. A separate list of pages is
  52 * allocated for each CPU. A writer may only write to a buffer that is
  53 * associated with the CPU it is currently executing on.  A reader may read
  54 * from any per cpu buffer.
  55 *
  56 * The reader is special. For each per cpu buffer, the reader has its own
  57 * reader page. When a reader has read the entire reader page, this reader
  58 * page is swapped with another page in the ring buffer.
  59 *
  60 * Now, as long as the writer is off the reader page, the reader can do what
  61 * ever it wants with that page. The writer will never write to that page
  62 * again (as long as it is out of the ring buffer).
  63 *
  64 * Here's some silly ASCII art.
  65 *
  66 *   +------+
  67 *   |reader|          RING BUFFER
  68 *   |page  |
  69 *   +------+        +---+   +---+   +---+
  70 *                   |   |-->|   |-->|   |
  71 *                   +---+   +---+   +---+
  72 *                     ^               |
  73 *                     |               |
  74 *                     +---------------+
  75 *
  76 *
  77 *   +------+
  78 *   |reader|          RING BUFFER
  79 *   |page  |------------------v
  80 *   +------+        +---+   +---+   +---+
  81 *                   |   |-->|   |-->|   |
  82 *                   +---+   +---+   +---+
  83 *                     ^               |
  84 *                     |               |
  85 *                     +---------------+
  86 *
  87 *
  88 *   +------+
  89 *   |reader|          RING BUFFER
  90 *   |page  |------------------v
  91 *   +------+        +---+   +---+   +---+
  92 *      ^            |   |-->|   |-->|   |
  93 *      |            +---+   +---+   +---+
  94 *      |                              |
  95 *      |                              |
  96 *      +------------------------------+
  97 *
  98 *
  99 *   +------+
 100 *   |buffer|          RING BUFFER
 101 *   |page  |------------------v
 102 *   +------+        +---+   +---+   +---+
 103 *      ^            |   |   |   |-->|   |
 104 *      |   New      +---+   +---+   +---+
 105 *      |  Reader------^               |
 106 *      |   page                       |
 107 *      +------------------------------+
 108 *
 109 *
 110 * After we make this swap, the reader can hand this page off to the splice
 111 * code and be done with it. It can even allocate a new page if it needs to
 112 * and swap that into the ring buffer.
 113 *
 114 * We will be using cmpxchg soon to make all this lockless.
 115 *
 116 */
 117
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 118/* Used for individual buffers (after the counter) */
 119#define RB_BUFFER_OFF		(1 << 20)
 120
 121#define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
 122
 
 
 
 
 
 
 
 
 
 
 
 123#define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
 124#define RB_ALIGNMENT		4U
 125#define RB_MAX_SMALL_DATA	(RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
 126#define RB_EVNT_MIN_SIZE	8U	/* two 32bit words */
 127
 128#ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
 129# define RB_FORCE_8BYTE_ALIGNMENT	0
 130# define RB_ARCH_ALIGNMENT		RB_ALIGNMENT
 131#else
 132# define RB_FORCE_8BYTE_ALIGNMENT	1
 133# define RB_ARCH_ALIGNMENT		8U
 134#endif
 135
 136#define RB_ALIGN_DATA		__aligned(RB_ARCH_ALIGNMENT)
 137
 138/* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
 139#define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
 140
 141enum {
 142	RB_LEN_TIME_EXTEND = 8,
 143	RB_LEN_TIME_STAMP = 16,
 144};
 145
 146#define skip_time_extend(event) \
 147	((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
 148
 149static inline int rb_null_event(struct ring_buffer_event *event)
 150{
 151	return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
 152}
 153
 154static void rb_event_set_padding(struct ring_buffer_event *event)
 155{
 156	/* padding has a NULL time_delta */
 157	event->type_len = RINGBUF_TYPE_PADDING;
 158	event->time_delta = 0;
 159}
 160
 161static unsigned
 162rb_event_data_length(struct ring_buffer_event *event)
 163{
 164	unsigned length;
 165
 166	if (event->type_len)
 167		length = event->type_len * RB_ALIGNMENT;
 168	else
 169		length = event->array[0];
 170	return length + RB_EVNT_HDR_SIZE;
 171}
 172
 173/*
 174 * Return the length of the given event. Will return
 175 * the length of the time extend if the event is a
 176 * time extend.
 177 */
 178static inline unsigned
 179rb_event_length(struct ring_buffer_event *event)
 180{
 181	switch (event->type_len) {
 182	case RINGBUF_TYPE_PADDING:
 183		if (rb_null_event(event))
 184			/* undefined */
 185			return -1;
 186		return  event->array[0] + RB_EVNT_HDR_SIZE;
 187
 188	case RINGBUF_TYPE_TIME_EXTEND:
 189		return RB_LEN_TIME_EXTEND;
 190
 191	case RINGBUF_TYPE_TIME_STAMP:
 192		return RB_LEN_TIME_STAMP;
 193
 194	case RINGBUF_TYPE_DATA:
 195		return rb_event_data_length(event);
 196	default:
 197		BUG();
 198	}
 199	/* not hit */
 200	return 0;
 201}
 202
 203/*
 204 * Return total length of time extend and data,
 205 *   or just the event length for all other events.
 206 */
 207static inline unsigned
 208rb_event_ts_length(struct ring_buffer_event *event)
 209{
 210	unsigned len = 0;
 211
 212	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
 213		/* time extends include the data event after it */
 214		len = RB_LEN_TIME_EXTEND;
 215		event = skip_time_extend(event);
 216	}
 217	return len + rb_event_length(event);
 218}
 219
 220/**
 221 * ring_buffer_event_length - return the length of the event
 222 * @event: the event to get the length of
 223 *
 224 * Returns the size of the data load of a data event.
 225 * If the event is something other than a data event, it
 226 * returns the size of the event itself. With the exception
 227 * of a TIME EXTEND, where it still returns the size of the
 228 * data load of the data event after it.
 229 */
 230unsigned ring_buffer_event_length(struct ring_buffer_event *event)
 231{
 232	unsigned length;
 233
 234	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
 235		event = skip_time_extend(event);
 236
 237	length = rb_event_length(event);
 238	if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
 239		return length;
 240	length -= RB_EVNT_HDR_SIZE;
 241	if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
 242                length -= sizeof(event->array[0]);
 243	return length;
 244}
 245EXPORT_SYMBOL_GPL(ring_buffer_event_length);
 246
 247/* inline for ring buffer fast paths */
 248static void *
 249rb_event_data(struct ring_buffer_event *event)
 250{
 251	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
 252		event = skip_time_extend(event);
 253	BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
 254	/* If length is in len field, then array[0] has the data */
 255	if (event->type_len)
 256		return (void *)&event->array[0];
 257	/* Otherwise length is in array[0] and array[1] has the data */
 258	return (void *)&event->array[1];
 259}
 260
 261/**
 262 * ring_buffer_event_data - return the data of the event
 263 * @event: the event to get the data from
 264 */
 265void *ring_buffer_event_data(struct ring_buffer_event *event)
 266{
 267	return rb_event_data(event);
 268}
 269EXPORT_SYMBOL_GPL(ring_buffer_event_data);
 270
 271#define for_each_buffer_cpu(buffer, cpu)		\
 272	for_each_cpu(cpu, buffer->cpumask)
 273
 274#define TS_SHIFT	27
 275#define TS_MASK		((1ULL << TS_SHIFT) - 1)
 276#define TS_DELTA_TEST	(~TS_MASK)
 277
 278/* Flag when events were overwritten */
 279#define RB_MISSED_EVENTS	(1 << 31)
 280/* Missed count stored at end */
 281#define RB_MISSED_STORED	(1 << 30)
 282
 283struct buffer_data_page {
 284	u64		 time_stamp;	/* page time stamp */
 285	local_t		 commit;	/* write committed index */
 286	unsigned char	 data[] RB_ALIGN_DATA;	/* data of buffer page */
 287};
 288
 289/*
 290 * Note, the buffer_page list must be first. The buffer pages
 291 * are allocated in cache lines, which means that each buffer
 292 * page will be at the beginning of a cache line, and thus
 293 * the least significant bits will be zero. We use this to
 294 * add flags in the list struct pointers, to make the ring buffer
 295 * lockless.
 296 */
 297struct buffer_page {
 298	struct list_head list;		/* list of buffer pages */
 299	local_t		 write;		/* index for next write */
 300	unsigned	 read;		/* index for next read */
 301	local_t		 entries;	/* entries on this page */
 302	unsigned long	 real_end;	/* real end of data */
 303	struct buffer_data_page *page;	/* Actual data page */
 304};
 305
 306/*
 307 * The buffer page counters, write and entries, must be reset
 308 * atomically when crossing page boundaries. To synchronize this
 309 * update, two counters are inserted into the number. One is
 310 * the actual counter for the write position or count on the page.
 311 *
 312 * The other is a counter of updaters. Before an update happens
 313 * the update partition of the counter is incremented. This will
 314 * allow the updater to update the counter atomically.
 315 *
 316 * The counter is 20 bits, and the state data is 12.
 317 */
 318#define RB_WRITE_MASK		0xfffff
 319#define RB_WRITE_INTCNT		(1 << 20)
 320
 321static void rb_init_page(struct buffer_data_page *bpage)
 322{
 323	local_set(&bpage->commit, 0);
 324}
 325
 326/**
 327 * ring_buffer_page_len - the size of data on the page.
 328 * @page: The page to read
 329 *
 330 * Returns the amount of data on the page, including buffer page header.
 331 */
 332size_t ring_buffer_page_len(void *page)
 333{
 334	return local_read(&((struct buffer_data_page *)page)->commit)
 335		+ BUF_PAGE_HDR_SIZE;
 336}
 337
 338/*
 339 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
 340 * this issue out.
 341 */
 342static void free_buffer_page(struct buffer_page *bpage)
 343{
 344	free_page((unsigned long)bpage->page);
 345	kfree(bpage);
 346}
 347
 348/*
 349 * We need to fit the time_stamp delta into 27 bits.
 350 */
 351static inline int test_time_stamp(u64 delta)
 352{
 353	if (delta & TS_DELTA_TEST)
 354		return 1;
 355	return 0;
 356}
 357
 358#define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
 359
 360/* Max payload is BUF_PAGE_SIZE - header (8bytes) */
 361#define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
 362
 363int ring_buffer_print_page_header(struct trace_seq *s)
 364{
 365	struct buffer_data_page field;
 
 366
 367	trace_seq_printf(s, "\tfield: u64 timestamp;\t"
 368			 "offset:0;\tsize:%u;\tsigned:%u;\n",
 369			 (unsigned int)sizeof(field.time_stamp),
 370			 (unsigned int)is_signed_type(u64));
 371
 372	trace_seq_printf(s, "\tfield: local_t commit;\t"
 373			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
 374			 (unsigned int)offsetof(typeof(field), commit),
 375			 (unsigned int)sizeof(field.commit),
 376			 (unsigned int)is_signed_type(long));
 377
 378	trace_seq_printf(s, "\tfield: int overwrite;\t"
 379			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
 380			 (unsigned int)offsetof(typeof(field), commit),
 381			 1,
 382			 (unsigned int)is_signed_type(long));
 383
 384	trace_seq_printf(s, "\tfield: char data;\t"
 385			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
 386			 (unsigned int)offsetof(typeof(field), data),
 387			 (unsigned int)BUF_PAGE_SIZE,
 388			 (unsigned int)is_signed_type(char));
 389
 390	return !trace_seq_has_overflowed(s);
 391}
 392
 393struct rb_irq_work {
 394	struct irq_work			work;
 395	wait_queue_head_t		waiters;
 396	wait_queue_head_t		full_waiters;
 397	bool				waiters_pending;
 398	bool				full_waiters_pending;
 399	bool				wakeup_full;
 400};
 401
 402/*
 403 * Structure to hold event state and handle nested events.
 404 */
 405struct rb_event_info {
 406	u64			ts;
 407	u64			delta;
 408	unsigned long		length;
 409	struct buffer_page	*tail_page;
 410	int			add_timestamp;
 411};
 412
 413/*
 414 * Used for which event context the event is in.
 415 *  NMI     = 0
 416 *  IRQ     = 1
 417 *  SOFTIRQ = 2
 418 *  NORMAL  = 3
 419 *
 420 * See trace_recursive_lock() comment below for more details.
 421 */
 422enum {
 423	RB_CTX_NMI,
 424	RB_CTX_IRQ,
 425	RB_CTX_SOFTIRQ,
 426	RB_CTX_NORMAL,
 427	RB_CTX_MAX
 428};
 429
 430/*
 431 * head_page == tail_page && head == tail then buffer is empty.
 432 */
 433struct ring_buffer_per_cpu {
 434	int				cpu;
 435	atomic_t			record_disabled;
 436	struct ring_buffer		*buffer;
 437	raw_spinlock_t			reader_lock;	/* serialize readers */
 438	arch_spinlock_t			lock;
 439	struct lock_class_key		lock_key;
 440	unsigned int			nr_pages;
 441	unsigned int			current_context;
 442	struct list_head		*pages;
 443	struct buffer_page		*head_page;	/* read from head */
 444	struct buffer_page		*tail_page;	/* write to tail */
 445	struct buffer_page		*commit_page;	/* committed pages */
 446	struct buffer_page		*reader_page;
 447	unsigned long			lost_events;
 448	unsigned long			last_overrun;
 449	local_t				entries_bytes;
 450	local_t				entries;
 451	local_t				overrun;
 452	local_t				commit_overrun;
 453	local_t				dropped_events;
 
 454	local_t				committing;
 455	local_t				commits;
 456	unsigned long			read;
 457	unsigned long			read_bytes;
 458	u64				write_stamp;
 459	u64				read_stamp;
 460	/* ring buffer pages to update, > 0 to add, < 0 to remove */
 461	int				nr_pages_to_update;
 462	struct list_head		new_pages; /* new pages to add */
 463	struct work_struct		update_pages_work;
 464	struct completion		update_done;
 465
 466	struct rb_irq_work		irq_work;
 467};
 468
 469struct ring_buffer {
 470	unsigned			flags;
 471	int				cpus;
 472	atomic_t			record_disabled;
 473	atomic_t			resize_disabled;
 474	cpumask_var_t			cpumask;
 475
 476	struct lock_class_key		*reader_lock_key;
 477
 478	struct mutex			mutex;
 479
 480	struct ring_buffer_per_cpu	**buffers;
 481
 482#ifdef CONFIG_HOTPLUG_CPU
 483	struct notifier_block		cpu_notify;
 484#endif
 485	u64				(*clock)(void);
 486
 487	struct rb_irq_work		irq_work;
 488};
 489
 490struct ring_buffer_iter {
 491	struct ring_buffer_per_cpu	*cpu_buffer;
 492	unsigned long			head;
 493	struct buffer_page		*head_page;
 494	struct buffer_page		*cache_reader_page;
 495	unsigned long			cache_read;
 496	u64				read_stamp;
 497};
 498
 499/*
 500 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
 501 *
 502 * Schedules a delayed work to wake up any task that is blocked on the
 503 * ring buffer waiters queue.
 504 */
 505static void rb_wake_up_waiters(struct irq_work *work)
 506{
 507	struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
 508
 509	wake_up_all(&rbwork->waiters);
 510	if (rbwork->wakeup_full) {
 511		rbwork->wakeup_full = false;
 512		wake_up_all(&rbwork->full_waiters);
 513	}
 514}
 515
 516/**
 517 * ring_buffer_wait - wait for input to the ring buffer
 518 * @buffer: buffer to wait on
 519 * @cpu: the cpu buffer to wait on
 520 * @full: wait until a full page is available, if @cpu != RING_BUFFER_ALL_CPUS
 521 *
 522 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
 523 * as data is added to any of the @buffer's cpu buffers. Otherwise
 524 * it will wait for data to be added to a specific cpu buffer.
 525 */
 526int ring_buffer_wait(struct ring_buffer *buffer, int cpu, bool full)
 527{
 528	struct ring_buffer_per_cpu *uninitialized_var(cpu_buffer);
 529	DEFINE_WAIT(wait);
 530	struct rb_irq_work *work;
 531	int ret = 0;
 532
 533	/*
 534	 * Depending on what the caller is waiting for, either any
 535	 * data in any cpu buffer, or a specific buffer, put the
 536	 * caller on the appropriate wait queue.
 537	 */
 538	if (cpu == RING_BUFFER_ALL_CPUS) {
 539		work = &buffer->irq_work;
 540		/* Full only makes sense on per cpu reads */
 541		full = false;
 542	} else {
 543		if (!cpumask_test_cpu(cpu, buffer->cpumask))
 544			return -ENODEV;
 545		cpu_buffer = buffer->buffers[cpu];
 546		work = &cpu_buffer->irq_work;
 547	}
 548
 549
 550	while (true) {
 551		if (full)
 552			prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE);
 553		else
 554			prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
 555
 556		/*
 557		 * The events can happen in critical sections where
 558		 * checking a work queue can cause deadlocks.
 559		 * After adding a task to the queue, this flag is set
 560		 * only to notify events to try to wake up the queue
 561		 * using irq_work.
 562		 *
 563		 * We don't clear it even if the buffer is no longer
 564		 * empty. The flag only causes the next event to run
 565		 * irq_work to do the work queue wake up. The worse
 566		 * that can happen if we race with !trace_empty() is that
 567		 * an event will cause an irq_work to try to wake up
 568		 * an empty queue.
 569		 *
 570		 * There's no reason to protect this flag either, as
 571		 * the work queue and irq_work logic will do the necessary
 572		 * synchronization for the wake ups. The only thing
 573		 * that is necessary is that the wake up happens after
 574		 * a task has been queued. It's OK for spurious wake ups.
 575		 */
 576		if (full)
 577			work->full_waiters_pending = true;
 578		else
 579			work->waiters_pending = true;
 580
 581		if (signal_pending(current)) {
 582			ret = -EINTR;
 583			break;
 584		}
 585
 586		if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer))
 587			break;
 588
 589		if (cpu != RING_BUFFER_ALL_CPUS &&
 590		    !ring_buffer_empty_cpu(buffer, cpu)) {
 591			unsigned long flags;
 592			bool pagebusy;
 593
 594			if (!full)
 595				break;
 596
 597			raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
 598			pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
 599			raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
 600
 601			if (!pagebusy)
 602				break;
 603		}
 604
 605		schedule();
 606	}
 607
 608	if (full)
 609		finish_wait(&work->full_waiters, &wait);
 610	else
 611		finish_wait(&work->waiters, &wait);
 612
 613	return ret;
 614}
 615
 616/**
 617 * ring_buffer_poll_wait - poll on buffer input
 618 * @buffer: buffer to wait on
 619 * @cpu: the cpu buffer to wait on
 620 * @filp: the file descriptor
 621 * @poll_table: The poll descriptor
 622 *
 623 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
 624 * as data is added to any of the @buffer's cpu buffers. Otherwise
 625 * it will wait for data to be added to a specific cpu buffer.
 626 *
 627 * Returns POLLIN | POLLRDNORM if data exists in the buffers,
 628 * zero otherwise.
 629 */
 630int ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu,
 631			  struct file *filp, poll_table *poll_table)
 632{
 633	struct ring_buffer_per_cpu *cpu_buffer;
 634	struct rb_irq_work *work;
 635
 636	if (cpu == RING_BUFFER_ALL_CPUS)
 637		work = &buffer->irq_work;
 638	else {
 639		if (!cpumask_test_cpu(cpu, buffer->cpumask))
 640			return -EINVAL;
 641
 642		cpu_buffer = buffer->buffers[cpu];
 643		work = &cpu_buffer->irq_work;
 644	}
 645
 646	poll_wait(filp, &work->waiters, poll_table);
 647	work->waiters_pending = true;
 648	/*
 649	 * There's a tight race between setting the waiters_pending and
 650	 * checking if the ring buffer is empty.  Once the waiters_pending bit
 651	 * is set, the next event will wake the task up, but we can get stuck
 652	 * if there's only a single event in.
 653	 *
 654	 * FIXME: Ideally, we need a memory barrier on the writer side as well,
 655	 * but adding a memory barrier to all events will cause too much of a
 656	 * performance hit in the fast path.  We only need a memory barrier when
 657	 * the buffer goes from empty to having content.  But as this race is
 658	 * extremely small, and it's not a problem if another event comes in, we
 659	 * will fix it later.
 660	 */
 661	smp_mb();
 662
 663	if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
 664	    (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
 665		return POLLIN | POLLRDNORM;
 666	return 0;
 667}
 668
 669/* buffer may be either ring_buffer or ring_buffer_per_cpu */
 670#define RB_WARN_ON(b, cond)						\
 671	({								\
 672		int _____ret = unlikely(cond);				\
 673		if (_____ret) {						\
 674			if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
 675				struct ring_buffer_per_cpu *__b =	\
 676					(void *)b;			\
 677				atomic_inc(&__b->buffer->record_disabled); \
 678			} else						\
 679				atomic_inc(&b->record_disabled);	\
 680			WARN_ON(1);					\
 681		}							\
 682		_____ret;						\
 683	})
 684
 685/* Up this if you want to test the TIME_EXTENTS and normalization */
 686#define DEBUG_SHIFT 0
 687
 688static inline u64 rb_time_stamp(struct ring_buffer *buffer)
 689{
 690	/* shift to debug/test normalization and TIME_EXTENTS */
 691	return buffer->clock() << DEBUG_SHIFT;
 692}
 693
 694u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
 695{
 696	u64 time;
 697
 698	preempt_disable_notrace();
 699	time = rb_time_stamp(buffer);
 700	preempt_enable_no_resched_notrace();
 701
 702	return time;
 703}
 704EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
 705
 706void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
 707				      int cpu, u64 *ts)
 708{
 709	/* Just stupid testing the normalize function and deltas */
 710	*ts >>= DEBUG_SHIFT;
 711}
 712EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
 713
 714/*
 715 * Making the ring buffer lockless makes things tricky.
 716 * Although writes only happen on the CPU that they are on,
 717 * and they only need to worry about interrupts. Reads can
 718 * happen on any CPU.
 719 *
 720 * The reader page is always off the ring buffer, but when the
 721 * reader finishes with a page, it needs to swap its page with
 722 * a new one from the buffer. The reader needs to take from
 723 * the head (writes go to the tail). But if a writer is in overwrite
 724 * mode and wraps, it must push the head page forward.
 725 *
 726 * Here lies the problem.
 727 *
 728 * The reader must be careful to replace only the head page, and
 729 * not another one. As described at the top of the file in the
 730 * ASCII art, the reader sets its old page to point to the next
 731 * page after head. It then sets the page after head to point to
 732 * the old reader page. But if the writer moves the head page
 733 * during this operation, the reader could end up with the tail.
 734 *
 735 * We use cmpxchg to help prevent this race. We also do something
 736 * special with the page before head. We set the LSB to 1.
 737 *
 738 * When the writer must push the page forward, it will clear the
 739 * bit that points to the head page, move the head, and then set
 740 * the bit that points to the new head page.
 741 *
 742 * We also don't want an interrupt coming in and moving the head
 743 * page on another writer. Thus we use the second LSB to catch
 744 * that too. Thus:
 745 *
 746 * head->list->prev->next        bit 1          bit 0
 747 *                              -------        -------
 748 * Normal page                     0              0
 749 * Points to head page             0              1
 750 * New head page                   1              0
 751 *
 752 * Note we can not trust the prev pointer of the head page, because:
 753 *
 754 * +----+       +-----+        +-----+
 755 * |    |------>|  T  |---X--->|  N  |
 756 * |    |<------|     |        |     |
 757 * +----+       +-----+        +-----+
 758 *   ^                           ^ |
 759 *   |          +-----+          | |
 760 *   +----------|  R  |----------+ |
 761 *              |     |<-----------+
 762 *              +-----+
 763 *
 764 * Key:  ---X-->  HEAD flag set in pointer
 765 *         T      Tail page
 766 *         R      Reader page
 767 *         N      Next page
 768 *
 769 * (see __rb_reserve_next() to see where this happens)
 770 *
 771 *  What the above shows is that the reader just swapped out
 772 *  the reader page with a page in the buffer, but before it
 773 *  could make the new header point back to the new page added
 774 *  it was preempted by a writer. The writer moved forward onto
 775 *  the new page added by the reader and is about to move forward
 776 *  again.
 777 *
 778 *  You can see, it is legitimate for the previous pointer of
 779 *  the head (or any page) not to point back to itself. But only
 780 *  temporarially.
 781 */
 782
 783#define RB_PAGE_NORMAL		0UL
 784#define RB_PAGE_HEAD		1UL
 785#define RB_PAGE_UPDATE		2UL
 786
 787
 788#define RB_FLAG_MASK		3UL
 789
 790/* PAGE_MOVED is not part of the mask */
 791#define RB_PAGE_MOVED		4UL
 792
 793/*
 794 * rb_list_head - remove any bit
 795 */
 796static struct list_head *rb_list_head(struct list_head *list)
 797{
 798	unsigned long val = (unsigned long)list;
 799
 800	return (struct list_head *)(val & ~RB_FLAG_MASK);
 801}
 802
 803/*
 804 * rb_is_head_page - test if the given page is the head page
 805 *
 806 * Because the reader may move the head_page pointer, we can
 807 * not trust what the head page is (it may be pointing to
 808 * the reader page). But if the next page is a header page,
 809 * its flags will be non zero.
 810 */
 811static inline int
 812rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
 813		struct buffer_page *page, struct list_head *list)
 814{
 815	unsigned long val;
 816
 817	val = (unsigned long)list->next;
 818
 819	if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
 820		return RB_PAGE_MOVED;
 821
 822	return val & RB_FLAG_MASK;
 823}
 824
 825/*
 826 * rb_is_reader_page
 827 *
 828 * The unique thing about the reader page, is that, if the
 829 * writer is ever on it, the previous pointer never points
 830 * back to the reader page.
 831 */
 832static bool rb_is_reader_page(struct buffer_page *page)
 833{
 834	struct list_head *list = page->list.prev;
 835
 836	return rb_list_head(list->next) != &page->list;
 837}
 838
 839/*
 840 * rb_set_list_to_head - set a list_head to be pointing to head.
 841 */
 842static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
 843				struct list_head *list)
 844{
 845	unsigned long *ptr;
 846
 847	ptr = (unsigned long *)&list->next;
 848	*ptr |= RB_PAGE_HEAD;
 849	*ptr &= ~RB_PAGE_UPDATE;
 850}
 851
 852/*
 853 * rb_head_page_activate - sets up head page
 854 */
 855static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
 856{
 857	struct buffer_page *head;
 858
 859	head = cpu_buffer->head_page;
 860	if (!head)
 861		return;
 862
 863	/*
 864	 * Set the previous list pointer to have the HEAD flag.
 865	 */
 866	rb_set_list_to_head(cpu_buffer, head->list.prev);
 867}
 868
 869static void rb_list_head_clear(struct list_head *list)
 870{
 871	unsigned long *ptr = (unsigned long *)&list->next;
 872
 873	*ptr &= ~RB_FLAG_MASK;
 874}
 875
 876/*
 877 * rb_head_page_dactivate - clears head page ptr (for free list)
 878 */
 879static void
 880rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
 881{
 882	struct list_head *hd;
 883
 884	/* Go through the whole list and clear any pointers found. */
 885	rb_list_head_clear(cpu_buffer->pages);
 886
 887	list_for_each(hd, cpu_buffer->pages)
 888		rb_list_head_clear(hd);
 889}
 890
 891static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
 892			    struct buffer_page *head,
 893			    struct buffer_page *prev,
 894			    int old_flag, int new_flag)
 895{
 896	struct list_head *list;
 897	unsigned long val = (unsigned long)&head->list;
 898	unsigned long ret;
 899
 900	list = &prev->list;
 901
 902	val &= ~RB_FLAG_MASK;
 903
 904	ret = cmpxchg((unsigned long *)&list->next,
 905		      val | old_flag, val | new_flag);
 906
 907	/* check if the reader took the page */
 908	if ((ret & ~RB_FLAG_MASK) != val)
 909		return RB_PAGE_MOVED;
 910
 911	return ret & RB_FLAG_MASK;
 912}
 913
 914static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
 915				   struct buffer_page *head,
 916				   struct buffer_page *prev,
 917				   int old_flag)
 918{
 919	return rb_head_page_set(cpu_buffer, head, prev,
 920				old_flag, RB_PAGE_UPDATE);
 921}
 922
 923static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
 924				 struct buffer_page *head,
 925				 struct buffer_page *prev,
 926				 int old_flag)
 927{
 928	return rb_head_page_set(cpu_buffer, head, prev,
 929				old_flag, RB_PAGE_HEAD);
 930}
 931
 932static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
 933				   struct buffer_page *head,
 934				   struct buffer_page *prev,
 935				   int old_flag)
 936{
 937	return rb_head_page_set(cpu_buffer, head, prev,
 938				old_flag, RB_PAGE_NORMAL);
 939}
 940
 941static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
 942			       struct buffer_page **bpage)
 943{
 944	struct list_head *p = rb_list_head((*bpage)->list.next);
 945
 946	*bpage = list_entry(p, struct buffer_page, list);
 947}
 948
 949static struct buffer_page *
 950rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
 951{
 952	struct buffer_page *head;
 953	struct buffer_page *page;
 954	struct list_head *list;
 955	int i;
 956
 957	if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
 958		return NULL;
 959
 960	/* sanity check */
 961	list = cpu_buffer->pages;
 962	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
 963		return NULL;
 964
 965	page = head = cpu_buffer->head_page;
 966	/*
 967	 * It is possible that the writer moves the header behind
 968	 * where we started, and we miss in one loop.
 969	 * A second loop should grab the header, but we'll do
 970	 * three loops just because I'm paranoid.
 971	 */
 972	for (i = 0; i < 3; i++) {
 973		do {
 974			if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
 975				cpu_buffer->head_page = page;
 976				return page;
 977			}
 978			rb_inc_page(cpu_buffer, &page);
 979		} while (page != head);
 980	}
 981
 982	RB_WARN_ON(cpu_buffer, 1);
 983
 984	return NULL;
 985}
 986
 987static int rb_head_page_replace(struct buffer_page *old,
 988				struct buffer_page *new)
 989{
 990	unsigned long *ptr = (unsigned long *)&old->list.prev->next;
 991	unsigned long val;
 992	unsigned long ret;
 993
 994	val = *ptr & ~RB_FLAG_MASK;
 995	val |= RB_PAGE_HEAD;
 996
 997	ret = cmpxchg(ptr, val, (unsigned long)&new->list);
 998
 999	return ret == val;
1000}
1001
1002/*
1003 * rb_tail_page_update - move the tail page forward
 
 
1004 */
1005static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1006			       struct buffer_page *tail_page,
1007			       struct buffer_page *next_page)
1008{
 
1009	unsigned long old_entries;
1010	unsigned long old_write;
 
1011
1012	/*
1013	 * The tail page now needs to be moved forward.
1014	 *
1015	 * We need to reset the tail page, but without messing
1016	 * with possible erasing of data brought in by interrupts
1017	 * that have moved the tail page and are currently on it.
1018	 *
1019	 * We add a counter to the write field to denote this.
1020	 */
1021	old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1022	old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1023
1024	/*
1025	 * Just make sure we have seen our old_write and synchronize
1026	 * with any interrupts that come in.
1027	 */
1028	barrier();
1029
1030	/*
1031	 * If the tail page is still the same as what we think
1032	 * it is, then it is up to us to update the tail
1033	 * pointer.
1034	 */
1035	if (tail_page == READ_ONCE(cpu_buffer->tail_page)) {
1036		/* Zero the write counter */
1037		unsigned long val = old_write & ~RB_WRITE_MASK;
1038		unsigned long eval = old_entries & ~RB_WRITE_MASK;
1039
1040		/*
1041		 * This will only succeed if an interrupt did
1042		 * not come in and change it. In which case, we
1043		 * do not want to modify it.
1044		 *
1045		 * We add (void) to let the compiler know that we do not care
1046		 * about the return value of these functions. We use the
1047		 * cmpxchg to only update if an interrupt did not already
1048		 * do it for us. If the cmpxchg fails, we don't care.
1049		 */
1050		(void)local_cmpxchg(&next_page->write, old_write, val);
1051		(void)local_cmpxchg(&next_page->entries, old_entries, eval);
1052
1053		/*
1054		 * No need to worry about races with clearing out the commit.
1055		 * it only can increment when a commit takes place. But that
1056		 * only happens in the outer most nested commit.
1057		 */
1058		local_set(&next_page->page->commit, 0);
1059
1060		/* Again, either we update tail_page or an interrupt does */
1061		(void)cmpxchg(&cpu_buffer->tail_page, tail_page, next_page);
 
 
 
1062	}
 
 
1063}
1064
1065static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1066			  struct buffer_page *bpage)
1067{
1068	unsigned long val = (unsigned long)bpage;
1069
1070	if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1071		return 1;
1072
1073	return 0;
1074}
1075
1076/**
1077 * rb_check_list - make sure a pointer to a list has the last bits zero
1078 */
1079static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1080			 struct list_head *list)
1081{
1082	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1083		return 1;
1084	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1085		return 1;
1086	return 0;
1087}
1088
1089/**
1090 * rb_check_pages - integrity check of buffer pages
1091 * @cpu_buffer: CPU buffer with pages to test
1092 *
1093 * As a safety measure we check to make sure the data pages have not
1094 * been corrupted.
1095 */
1096static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1097{
1098	struct list_head *head = cpu_buffer->pages;
1099	struct buffer_page *bpage, *tmp;
1100
1101	/* Reset the head page if it exists */
1102	if (cpu_buffer->head_page)
1103		rb_set_head_page(cpu_buffer);
1104
1105	rb_head_page_deactivate(cpu_buffer);
1106
1107	if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1108		return -1;
1109	if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1110		return -1;
1111
1112	if (rb_check_list(cpu_buffer, head))
1113		return -1;
1114
1115	list_for_each_entry_safe(bpage, tmp, head, list) {
1116		if (RB_WARN_ON(cpu_buffer,
1117			       bpage->list.next->prev != &bpage->list))
1118			return -1;
1119		if (RB_WARN_ON(cpu_buffer,
1120			       bpage->list.prev->next != &bpage->list))
1121			return -1;
1122		if (rb_check_list(cpu_buffer, &bpage->list))
1123			return -1;
1124	}
1125
1126	rb_head_page_activate(cpu_buffer);
1127
1128	return 0;
1129}
1130
1131static int __rb_allocate_pages(int nr_pages, struct list_head *pages, int cpu)
1132{
1133	int i;
1134	struct buffer_page *bpage, *tmp;
1135
1136	for (i = 0; i < nr_pages; i++) {
1137		struct page *page;
1138		/*
1139		 * __GFP_NORETRY flag makes sure that the allocation fails
1140		 * gracefully without invoking oom-killer and the system is
1141		 * not destabilized.
1142		 */
1143		bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1144				    GFP_KERNEL | __GFP_NORETRY,
1145				    cpu_to_node(cpu));
1146		if (!bpage)
1147			goto free_pages;
1148
1149		list_add(&bpage->list, pages);
1150
1151		page = alloc_pages_node(cpu_to_node(cpu),
1152					GFP_KERNEL | __GFP_NORETRY, 0);
1153		if (!page)
1154			goto free_pages;
1155		bpage->page = page_address(page);
1156		rb_init_page(bpage->page);
1157	}
1158
1159	return 0;
1160
1161free_pages:
1162	list_for_each_entry_safe(bpage, tmp, pages, list) {
1163		list_del_init(&bpage->list);
1164		free_buffer_page(bpage);
1165	}
1166
1167	return -ENOMEM;
1168}
1169
1170static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1171			     unsigned nr_pages)
1172{
1173	LIST_HEAD(pages);
1174
1175	WARN_ON(!nr_pages);
1176
1177	if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1178		return -ENOMEM;
1179
1180	/*
1181	 * The ring buffer page list is a circular list that does not
1182	 * start and end with a list head. All page list items point to
1183	 * other pages.
1184	 */
1185	cpu_buffer->pages = pages.next;
1186	list_del(&pages);
1187
1188	cpu_buffer->nr_pages = nr_pages;
1189
1190	rb_check_pages(cpu_buffer);
1191
1192	return 0;
1193}
1194
1195static struct ring_buffer_per_cpu *
1196rb_allocate_cpu_buffer(struct ring_buffer *buffer, int nr_pages, int cpu)
1197{
1198	struct ring_buffer_per_cpu *cpu_buffer;
1199	struct buffer_page *bpage;
1200	struct page *page;
1201	int ret;
1202
1203	cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1204				  GFP_KERNEL, cpu_to_node(cpu));
1205	if (!cpu_buffer)
1206		return NULL;
1207
1208	cpu_buffer->cpu = cpu;
1209	cpu_buffer->buffer = buffer;
1210	raw_spin_lock_init(&cpu_buffer->reader_lock);
1211	lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1212	cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1213	INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1214	init_completion(&cpu_buffer->update_done);
1215	init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1216	init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1217	init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
1218
1219	bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1220			    GFP_KERNEL, cpu_to_node(cpu));
1221	if (!bpage)
1222		goto fail_free_buffer;
1223
1224	rb_check_bpage(cpu_buffer, bpage);
1225
1226	cpu_buffer->reader_page = bpage;
1227	page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1228	if (!page)
1229		goto fail_free_reader;
1230	bpage->page = page_address(page);
1231	rb_init_page(bpage->page);
1232
1233	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1234	INIT_LIST_HEAD(&cpu_buffer->new_pages);
1235
1236	ret = rb_allocate_pages(cpu_buffer, nr_pages);
1237	if (ret < 0)
1238		goto fail_free_reader;
1239
1240	cpu_buffer->head_page
1241		= list_entry(cpu_buffer->pages, struct buffer_page, list);
1242	cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1243
1244	rb_head_page_activate(cpu_buffer);
1245
1246	return cpu_buffer;
1247
1248 fail_free_reader:
1249	free_buffer_page(cpu_buffer->reader_page);
1250
1251 fail_free_buffer:
1252	kfree(cpu_buffer);
1253	return NULL;
1254}
1255
1256static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1257{
1258	struct list_head *head = cpu_buffer->pages;
1259	struct buffer_page *bpage, *tmp;
1260
1261	free_buffer_page(cpu_buffer->reader_page);
1262
1263	rb_head_page_deactivate(cpu_buffer);
1264
1265	if (head) {
1266		list_for_each_entry_safe(bpage, tmp, head, list) {
1267			list_del_init(&bpage->list);
1268			free_buffer_page(bpage);
1269		}
1270		bpage = list_entry(head, struct buffer_page, list);
1271		free_buffer_page(bpage);
1272	}
1273
1274	kfree(cpu_buffer);
1275}
1276
1277#ifdef CONFIG_HOTPLUG_CPU
1278static int rb_cpu_notify(struct notifier_block *self,
1279			 unsigned long action, void *hcpu);
1280#endif
1281
1282/**
1283 * __ring_buffer_alloc - allocate a new ring_buffer
1284 * @size: the size in bytes per cpu that is needed.
1285 * @flags: attributes to set for the ring buffer.
1286 *
1287 * Currently the only flag that is available is the RB_FL_OVERWRITE
1288 * flag. This flag means that the buffer will overwrite old data
1289 * when the buffer wraps. If this flag is not set, the buffer will
1290 * drop data when the tail hits the head.
1291 */
1292struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1293					struct lock_class_key *key)
1294{
1295	struct ring_buffer *buffer;
1296	int bsize;
1297	int cpu, nr_pages;
1298
1299	/* keep it in its own cache line */
1300	buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1301			 GFP_KERNEL);
1302	if (!buffer)
1303		return NULL;
1304
1305	if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1306		goto fail_free_buffer;
1307
1308	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1309	buffer->flags = flags;
1310	buffer->clock = trace_clock_local;
1311	buffer->reader_lock_key = key;
1312
1313	init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1314	init_waitqueue_head(&buffer->irq_work.waiters);
1315
1316	/* need at least two pages */
1317	if (nr_pages < 2)
1318		nr_pages = 2;
1319
1320	/*
1321	 * In case of non-hotplug cpu, if the ring-buffer is allocated
1322	 * in early initcall, it will not be notified of secondary cpus.
1323	 * In that off case, we need to allocate for all possible cpus.
1324	 */
1325#ifdef CONFIG_HOTPLUG_CPU
1326	cpu_notifier_register_begin();
1327	cpumask_copy(buffer->cpumask, cpu_online_mask);
1328#else
1329	cpumask_copy(buffer->cpumask, cpu_possible_mask);
1330#endif
1331	buffer->cpus = nr_cpu_ids;
1332
1333	bsize = sizeof(void *) * nr_cpu_ids;
1334	buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1335				  GFP_KERNEL);
1336	if (!buffer->buffers)
1337		goto fail_free_cpumask;
1338
1339	for_each_buffer_cpu(buffer, cpu) {
1340		buffer->buffers[cpu] =
1341			rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1342		if (!buffer->buffers[cpu])
1343			goto fail_free_buffers;
1344	}
1345
1346#ifdef CONFIG_HOTPLUG_CPU
1347	buffer->cpu_notify.notifier_call = rb_cpu_notify;
1348	buffer->cpu_notify.priority = 0;
1349	__register_cpu_notifier(&buffer->cpu_notify);
1350	cpu_notifier_register_done();
1351#endif
1352
 
1353	mutex_init(&buffer->mutex);
1354
1355	return buffer;
1356
1357 fail_free_buffers:
1358	for_each_buffer_cpu(buffer, cpu) {
1359		if (buffer->buffers[cpu])
1360			rb_free_cpu_buffer(buffer->buffers[cpu]);
1361	}
1362	kfree(buffer->buffers);
1363
1364 fail_free_cpumask:
1365	free_cpumask_var(buffer->cpumask);
1366#ifdef CONFIG_HOTPLUG_CPU
1367	cpu_notifier_register_done();
1368#endif
1369
1370 fail_free_buffer:
1371	kfree(buffer);
1372	return NULL;
1373}
1374EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1375
1376/**
1377 * ring_buffer_free - free a ring buffer.
1378 * @buffer: the buffer to free.
1379 */
1380void
1381ring_buffer_free(struct ring_buffer *buffer)
1382{
1383	int cpu;
1384
 
 
1385#ifdef CONFIG_HOTPLUG_CPU
1386	cpu_notifier_register_begin();
1387	__unregister_cpu_notifier(&buffer->cpu_notify);
1388#endif
1389
1390	for_each_buffer_cpu(buffer, cpu)
1391		rb_free_cpu_buffer(buffer->buffers[cpu]);
1392
1393#ifdef CONFIG_HOTPLUG_CPU
1394	cpu_notifier_register_done();
1395#endif
1396
1397	kfree(buffer->buffers);
1398	free_cpumask_var(buffer->cpumask);
1399
1400	kfree(buffer);
1401}
1402EXPORT_SYMBOL_GPL(ring_buffer_free);
1403
1404void ring_buffer_set_clock(struct ring_buffer *buffer,
1405			   u64 (*clock)(void))
1406{
1407	buffer->clock = clock;
1408}
1409
1410static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1411
1412static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1413{
1414	return local_read(&bpage->entries) & RB_WRITE_MASK;
1415}
1416
1417static inline unsigned long rb_page_write(struct buffer_page *bpage)
1418{
1419	return local_read(&bpage->write) & RB_WRITE_MASK;
1420}
1421
1422static int
1423rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned int nr_pages)
1424{
1425	struct list_head *tail_page, *to_remove, *next_page;
1426	struct buffer_page *to_remove_page, *tmp_iter_page;
1427	struct buffer_page *last_page, *first_page;
1428	unsigned int nr_removed;
1429	unsigned long head_bit;
1430	int page_entries;
1431
1432	head_bit = 0;
1433
1434	raw_spin_lock_irq(&cpu_buffer->reader_lock);
1435	atomic_inc(&cpu_buffer->record_disabled);
1436	/*
1437	 * We don't race with the readers since we have acquired the reader
1438	 * lock. We also don't race with writers after disabling recording.
1439	 * This makes it easy to figure out the first and the last page to be
1440	 * removed from the list. We unlink all the pages in between including
1441	 * the first and last pages. This is done in a busy loop so that we
1442	 * lose the least number of traces.
1443	 * The pages are freed after we restart recording and unlock readers.
1444	 */
1445	tail_page = &cpu_buffer->tail_page->list;
1446
1447	/*
1448	 * tail page might be on reader page, we remove the next page
1449	 * from the ring buffer
1450	 */
1451	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1452		tail_page = rb_list_head(tail_page->next);
1453	to_remove = tail_page;
1454
1455	/* start of pages to remove */
1456	first_page = list_entry(rb_list_head(to_remove->next),
1457				struct buffer_page, list);
1458
1459	for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1460		to_remove = rb_list_head(to_remove)->next;
1461		head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1462	}
1463
1464	next_page = rb_list_head(to_remove)->next;
1465
1466	/*
1467	 * Now we remove all pages between tail_page and next_page.
1468	 * Make sure that we have head_bit value preserved for the
1469	 * next page
1470	 */
1471	tail_page->next = (struct list_head *)((unsigned long)next_page |
1472						head_bit);
1473	next_page = rb_list_head(next_page);
1474	next_page->prev = tail_page;
1475
1476	/* make sure pages points to a valid page in the ring buffer */
1477	cpu_buffer->pages = next_page;
1478
1479	/* update head page */
1480	if (head_bit)
1481		cpu_buffer->head_page = list_entry(next_page,
1482						struct buffer_page, list);
1483
1484	/*
1485	 * change read pointer to make sure any read iterators reset
1486	 * themselves
1487	 */
1488	cpu_buffer->read = 0;
1489
1490	/* pages are removed, resume tracing and then free the pages */
1491	atomic_dec(&cpu_buffer->record_disabled);
1492	raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1493
1494	RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1495
1496	/* last buffer page to remove */
1497	last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1498				list);
1499	tmp_iter_page = first_page;
1500
1501	do {
1502		to_remove_page = tmp_iter_page;
1503		rb_inc_page(cpu_buffer, &tmp_iter_page);
1504
1505		/* update the counters */
1506		page_entries = rb_page_entries(to_remove_page);
1507		if (page_entries) {
1508			/*
1509			 * If something was added to this page, it was full
1510			 * since it is not the tail page. So we deduct the
1511			 * bytes consumed in ring buffer from here.
1512			 * Increment overrun to account for the lost events.
1513			 */
1514			local_add(page_entries, &cpu_buffer->overrun);
1515			local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1516		}
1517
1518		/*
1519		 * We have already removed references to this list item, just
1520		 * free up the buffer_page and its page
1521		 */
1522		free_buffer_page(to_remove_page);
1523		nr_removed--;
1524
1525	} while (to_remove_page != last_page);
1526
1527	RB_WARN_ON(cpu_buffer, nr_removed);
1528
1529	return nr_removed == 0;
1530}
1531
1532static int
1533rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1534{
1535	struct list_head *pages = &cpu_buffer->new_pages;
1536	int retries, success;
1537
1538	raw_spin_lock_irq(&cpu_buffer->reader_lock);
1539	/*
1540	 * We are holding the reader lock, so the reader page won't be swapped
1541	 * in the ring buffer. Now we are racing with the writer trying to
1542	 * move head page and the tail page.
1543	 * We are going to adapt the reader page update process where:
1544	 * 1. We first splice the start and end of list of new pages between
1545	 *    the head page and its previous page.
1546	 * 2. We cmpxchg the prev_page->next to point from head page to the
1547	 *    start of new pages list.
1548	 * 3. Finally, we update the head->prev to the end of new list.
1549	 *
1550	 * We will try this process 10 times, to make sure that we don't keep
1551	 * spinning.
1552	 */
1553	retries = 10;
1554	success = 0;
1555	while (retries--) {
1556		struct list_head *head_page, *prev_page, *r;
1557		struct list_head *last_page, *first_page;
1558		struct list_head *head_page_with_bit;
1559
1560		head_page = &rb_set_head_page(cpu_buffer)->list;
1561		if (!head_page)
1562			break;
1563		prev_page = head_page->prev;
1564
1565		first_page = pages->next;
1566		last_page  = pages->prev;
1567
1568		head_page_with_bit = (struct list_head *)
1569				     ((unsigned long)head_page | RB_PAGE_HEAD);
1570
1571		last_page->next = head_page_with_bit;
1572		first_page->prev = prev_page;
1573
1574		r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1575
1576		if (r == head_page_with_bit) {
1577			/*
1578			 * yay, we replaced the page pointer to our new list,
1579			 * now, we just have to update to head page's prev
1580			 * pointer to point to end of list
1581			 */
1582			head_page->prev = last_page;
1583			success = 1;
1584			break;
1585		}
1586	}
1587
1588	if (success)
1589		INIT_LIST_HEAD(pages);
1590	/*
1591	 * If we weren't successful in adding in new pages, warn and stop
1592	 * tracing
1593	 */
1594	RB_WARN_ON(cpu_buffer, !success);
1595	raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1596
1597	/* free pages if they weren't inserted */
1598	if (!success) {
1599		struct buffer_page *bpage, *tmp;
1600		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1601					 list) {
1602			list_del_init(&bpage->list);
1603			free_buffer_page(bpage);
1604		}
1605	}
1606	return success;
1607}
1608
1609static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1610{
1611	int success;
1612
1613	if (cpu_buffer->nr_pages_to_update > 0)
1614		success = rb_insert_pages(cpu_buffer);
1615	else
1616		success = rb_remove_pages(cpu_buffer,
1617					-cpu_buffer->nr_pages_to_update);
1618
1619	if (success)
1620		cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
1621}
1622
1623static void update_pages_handler(struct work_struct *work)
1624{
1625	struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1626			struct ring_buffer_per_cpu, update_pages_work);
1627	rb_update_pages(cpu_buffer);
1628	complete(&cpu_buffer->update_done);
1629}
1630
1631/**
1632 * ring_buffer_resize - resize the ring buffer
1633 * @buffer: the buffer to resize.
1634 * @size: the new size.
1635 * @cpu_id: the cpu buffer to resize
1636 *
1637 * Minimum size is 2 * BUF_PAGE_SIZE.
1638 *
1639 * Returns 0 on success and < 0 on failure.
1640 */
1641int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1642			int cpu_id)
1643{
1644	struct ring_buffer_per_cpu *cpu_buffer;
1645	unsigned nr_pages;
1646	int cpu, err = 0;
1647
1648	/*
1649	 * Always succeed at resizing a non-existent buffer:
1650	 */
1651	if (!buffer)
1652		return size;
1653
1654	/* Make sure the requested buffer exists */
1655	if (cpu_id != RING_BUFFER_ALL_CPUS &&
1656	    !cpumask_test_cpu(cpu_id, buffer->cpumask))
1657		return size;
1658
1659	size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1660	size *= BUF_PAGE_SIZE;
1661
1662	/* we need a minimum of two pages */
1663	if (size < BUF_PAGE_SIZE * 2)
1664		size = BUF_PAGE_SIZE * 2;
1665
1666	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1667
1668	/*
1669	 * Don't succeed if resizing is disabled, as a reader might be
1670	 * manipulating the ring buffer and is expecting a sane state while
1671	 * this is true.
1672	 */
1673	if (atomic_read(&buffer->resize_disabled))
1674		return -EBUSY;
1675
1676	/* prevent another thread from changing buffer sizes */
1677	mutex_lock(&buffer->mutex);
1678
1679	if (cpu_id == RING_BUFFER_ALL_CPUS) {
1680		/* calculate the pages to update */
1681		for_each_buffer_cpu(buffer, cpu) {
1682			cpu_buffer = buffer->buffers[cpu];
1683
1684			cpu_buffer->nr_pages_to_update = nr_pages -
1685							cpu_buffer->nr_pages;
1686			/*
1687			 * nothing more to do for removing pages or no update
1688			 */
1689			if (cpu_buffer->nr_pages_to_update <= 0)
1690				continue;
1691			/*
1692			 * to add pages, make sure all new pages can be
1693			 * allocated without receiving ENOMEM
1694			 */
1695			INIT_LIST_HEAD(&cpu_buffer->new_pages);
1696			if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1697						&cpu_buffer->new_pages, cpu)) {
1698				/* not enough memory for new pages */
1699				err = -ENOMEM;
1700				goto out_err;
1701			}
1702		}
1703
1704		get_online_cpus();
1705		/*
1706		 * Fire off all the required work handlers
1707		 * We can't schedule on offline CPUs, but it's not necessary
1708		 * since we can change their buffer sizes without any race.
1709		 */
1710		for_each_buffer_cpu(buffer, cpu) {
1711			cpu_buffer = buffer->buffers[cpu];
1712			if (!cpu_buffer->nr_pages_to_update)
1713				continue;
1714
1715			/* Can't run something on an offline CPU. */
1716			if (!cpu_online(cpu)) {
1717				rb_update_pages(cpu_buffer);
1718				cpu_buffer->nr_pages_to_update = 0;
1719			} else {
1720				schedule_work_on(cpu,
1721						&cpu_buffer->update_pages_work);
1722			}
 
1723		}
1724
1725		/* wait for all the updates to complete */
1726		for_each_buffer_cpu(buffer, cpu) {
1727			cpu_buffer = buffer->buffers[cpu];
1728			if (!cpu_buffer->nr_pages_to_update)
1729				continue;
1730
1731			if (cpu_online(cpu))
1732				wait_for_completion(&cpu_buffer->update_done);
1733			cpu_buffer->nr_pages_to_update = 0;
1734		}
1735
1736		put_online_cpus();
1737	} else {
1738		/* Make sure this CPU has been intitialized */
1739		if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
1740			goto out;
1741
1742		cpu_buffer = buffer->buffers[cpu_id];
1743
1744		if (nr_pages == cpu_buffer->nr_pages)
1745			goto out;
1746
1747		cpu_buffer->nr_pages_to_update = nr_pages -
1748						cpu_buffer->nr_pages;
1749
1750		INIT_LIST_HEAD(&cpu_buffer->new_pages);
1751		if (cpu_buffer->nr_pages_to_update > 0 &&
1752			__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1753					    &cpu_buffer->new_pages, cpu_id)) {
1754			err = -ENOMEM;
1755			goto out_err;
1756		}
1757
1758		get_online_cpus();
1759
1760		/* Can't run something on an offline CPU. */
1761		if (!cpu_online(cpu_id))
1762			rb_update_pages(cpu_buffer);
1763		else {
1764			schedule_work_on(cpu_id,
1765					 &cpu_buffer->update_pages_work);
1766			wait_for_completion(&cpu_buffer->update_done);
1767		}
 
1768
1769		cpu_buffer->nr_pages_to_update = 0;
1770		put_online_cpus();
1771	}
1772
1773 out:
1774	/*
1775	 * The ring buffer resize can happen with the ring buffer
1776	 * enabled, so that the update disturbs the tracing as little
1777	 * as possible. But if the buffer is disabled, we do not need
1778	 * to worry about that, and we can take the time to verify
1779	 * that the buffer is not corrupt.
1780	 */
1781	if (atomic_read(&buffer->record_disabled)) {
1782		atomic_inc(&buffer->record_disabled);
1783		/*
1784		 * Even though the buffer was disabled, we must make sure
1785		 * that it is truly disabled before calling rb_check_pages.
1786		 * There could have been a race between checking
1787		 * record_disable and incrementing it.
1788		 */
1789		synchronize_sched();
1790		for_each_buffer_cpu(buffer, cpu) {
1791			cpu_buffer = buffer->buffers[cpu];
1792			rb_check_pages(cpu_buffer);
1793		}
1794		atomic_dec(&buffer->record_disabled);
1795	}
1796
1797	mutex_unlock(&buffer->mutex);
1798	return size;
1799
1800 out_err:
1801	for_each_buffer_cpu(buffer, cpu) {
1802		struct buffer_page *bpage, *tmp;
1803
1804		cpu_buffer = buffer->buffers[cpu];
1805		cpu_buffer->nr_pages_to_update = 0;
1806
1807		if (list_empty(&cpu_buffer->new_pages))
1808			continue;
1809
1810		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1811					list) {
1812			list_del_init(&bpage->list);
1813			free_buffer_page(bpage);
1814		}
1815	}
1816	mutex_unlock(&buffer->mutex);
1817	return err;
1818}
1819EXPORT_SYMBOL_GPL(ring_buffer_resize);
1820
1821void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1822{
1823	mutex_lock(&buffer->mutex);
1824	if (val)
1825		buffer->flags |= RB_FL_OVERWRITE;
1826	else
1827		buffer->flags &= ~RB_FL_OVERWRITE;
1828	mutex_unlock(&buffer->mutex);
1829}
1830EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1831
1832static inline void *
1833__rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
1834{
1835	return bpage->data + index;
1836}
1837
1838static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1839{
1840	return bpage->page->data + index;
1841}
1842
1843static inline struct ring_buffer_event *
1844rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1845{
1846	return __rb_page_index(cpu_buffer->reader_page,
1847			       cpu_buffer->reader_page->read);
1848}
1849
1850static inline struct ring_buffer_event *
1851rb_iter_head_event(struct ring_buffer_iter *iter)
1852{
1853	return __rb_page_index(iter->head_page, iter->head);
1854}
1855
1856static inline unsigned rb_page_commit(struct buffer_page *bpage)
1857{
1858	return local_read(&bpage->page->commit);
1859}
1860
1861/* Size is determined by what has been committed */
1862static inline unsigned rb_page_size(struct buffer_page *bpage)
1863{
1864	return rb_page_commit(bpage);
1865}
1866
1867static inline unsigned
1868rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1869{
1870	return rb_page_commit(cpu_buffer->commit_page);
1871}
1872
1873static inline unsigned
1874rb_event_index(struct ring_buffer_event *event)
1875{
1876	unsigned long addr = (unsigned long)event;
1877
1878	return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1879}
1880
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1881static void rb_inc_iter(struct ring_buffer_iter *iter)
1882{
1883	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1884
1885	/*
1886	 * The iterator could be on the reader page (it starts there).
1887	 * But the head could have moved, since the reader was
1888	 * found. Check for this case and assign the iterator
1889	 * to the head page instead of next.
1890	 */
1891	if (iter->head_page == cpu_buffer->reader_page)
1892		iter->head_page = rb_set_head_page(cpu_buffer);
1893	else
1894		rb_inc_page(cpu_buffer, &iter->head_page);
1895
1896	iter->read_stamp = iter->head_page->page->time_stamp;
1897	iter->head = 0;
1898}
1899
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1900/*
1901 * rb_handle_head_page - writer hit the head page
1902 *
1903 * Returns: +1 to retry page
1904 *           0 to continue
1905 *          -1 on error
1906 */
1907static int
1908rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1909		    struct buffer_page *tail_page,
1910		    struct buffer_page *next_page)
1911{
1912	struct buffer_page *new_head;
1913	int entries;
1914	int type;
1915	int ret;
1916
1917	entries = rb_page_entries(next_page);
1918
1919	/*
1920	 * The hard part is here. We need to move the head
1921	 * forward, and protect against both readers on
1922	 * other CPUs and writers coming in via interrupts.
1923	 */
1924	type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
1925				       RB_PAGE_HEAD);
1926
1927	/*
1928	 * type can be one of four:
1929	 *  NORMAL - an interrupt already moved it for us
1930	 *  HEAD   - we are the first to get here.
1931	 *  UPDATE - we are the interrupt interrupting
1932	 *           a current move.
1933	 *  MOVED  - a reader on another CPU moved the next
1934	 *           pointer to its reader page. Give up
1935	 *           and try again.
1936	 */
1937
1938	switch (type) {
1939	case RB_PAGE_HEAD:
1940		/*
1941		 * We changed the head to UPDATE, thus
1942		 * it is our responsibility to update
1943		 * the counters.
1944		 */
1945		local_add(entries, &cpu_buffer->overrun);
1946		local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1947
1948		/*
1949		 * The entries will be zeroed out when we move the
1950		 * tail page.
1951		 */
1952
1953		/* still more to do */
1954		break;
1955
1956	case RB_PAGE_UPDATE:
1957		/*
1958		 * This is an interrupt that interrupt the
1959		 * previous update. Still more to do.
1960		 */
1961		break;
1962	case RB_PAGE_NORMAL:
1963		/*
1964		 * An interrupt came in before the update
1965		 * and processed this for us.
1966		 * Nothing left to do.
1967		 */
1968		return 1;
1969	case RB_PAGE_MOVED:
1970		/*
1971		 * The reader is on another CPU and just did
1972		 * a swap with our next_page.
1973		 * Try again.
1974		 */
1975		return 1;
1976	default:
1977		RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
1978		return -1;
1979	}
1980
1981	/*
1982	 * Now that we are here, the old head pointer is
1983	 * set to UPDATE. This will keep the reader from
1984	 * swapping the head page with the reader page.
1985	 * The reader (on another CPU) will spin till
1986	 * we are finished.
1987	 *
1988	 * We just need to protect against interrupts
1989	 * doing the job. We will set the next pointer
1990	 * to HEAD. After that, we set the old pointer
1991	 * to NORMAL, but only if it was HEAD before.
1992	 * otherwise we are an interrupt, and only
1993	 * want the outer most commit to reset it.
1994	 */
1995	new_head = next_page;
1996	rb_inc_page(cpu_buffer, &new_head);
1997
1998	ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
1999				    RB_PAGE_NORMAL);
2000
2001	/*
2002	 * Valid returns are:
2003	 *  HEAD   - an interrupt came in and already set it.
2004	 *  NORMAL - One of two things:
2005	 *            1) We really set it.
2006	 *            2) A bunch of interrupts came in and moved
2007	 *               the page forward again.
2008	 */
2009	switch (ret) {
2010	case RB_PAGE_HEAD:
2011	case RB_PAGE_NORMAL:
2012		/* OK */
2013		break;
2014	default:
2015		RB_WARN_ON(cpu_buffer, 1);
2016		return -1;
2017	}
2018
2019	/*
2020	 * It is possible that an interrupt came in,
2021	 * set the head up, then more interrupts came in
2022	 * and moved it again. When we get back here,
2023	 * the page would have been set to NORMAL but we
2024	 * just set it back to HEAD.
2025	 *
2026	 * How do you detect this? Well, if that happened
2027	 * the tail page would have moved.
2028	 */
2029	if (ret == RB_PAGE_NORMAL) {
2030		struct buffer_page *buffer_tail_page;
2031
2032		buffer_tail_page = READ_ONCE(cpu_buffer->tail_page);
2033		/*
2034		 * If the tail had moved passed next, then we need
2035		 * to reset the pointer.
2036		 */
2037		if (buffer_tail_page != tail_page &&
2038		    buffer_tail_page != next_page)
2039			rb_head_page_set_normal(cpu_buffer, new_head,
2040						next_page,
2041						RB_PAGE_HEAD);
2042	}
2043
2044	/*
2045	 * If this was the outer most commit (the one that
2046	 * changed the original pointer from HEAD to UPDATE),
2047	 * then it is up to us to reset it to NORMAL.
2048	 */
2049	if (type == RB_PAGE_HEAD) {
2050		ret = rb_head_page_set_normal(cpu_buffer, next_page,
2051					      tail_page,
2052					      RB_PAGE_UPDATE);
2053		if (RB_WARN_ON(cpu_buffer,
2054			       ret != RB_PAGE_UPDATE))
2055			return -1;
2056	}
2057
2058	return 0;
2059}
2060
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2061static inline void
2062rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2063	      unsigned long tail, struct rb_event_info *info)
 
2064{
2065	struct buffer_page *tail_page = info->tail_page;
2066	struct ring_buffer_event *event;
2067	unsigned long length = info->length;
2068
2069	/*
2070	 * Only the event that crossed the page boundary
2071	 * must fill the old tail_page with padding.
2072	 */
2073	if (tail >= BUF_PAGE_SIZE) {
2074		/*
2075		 * If the page was filled, then we still need
2076		 * to update the real_end. Reset it to zero
2077		 * and the reader will ignore it.
2078		 */
2079		if (tail == BUF_PAGE_SIZE)
2080			tail_page->real_end = 0;
2081
2082		local_sub(length, &tail_page->write);
2083		return;
2084	}
2085
2086	event = __rb_page_index(tail_page, tail);
2087	kmemcheck_annotate_bitfield(event, bitfield);
2088
2089	/* account for padding bytes */
2090	local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2091
2092	/*
2093	 * Save the original length to the meta data.
2094	 * This will be used by the reader to add lost event
2095	 * counter.
2096	 */
2097	tail_page->real_end = tail;
2098
2099	/*
2100	 * If this event is bigger than the minimum size, then
2101	 * we need to be careful that we don't subtract the
2102	 * write counter enough to allow another writer to slip
2103	 * in on this page.
2104	 * We put in a discarded commit instead, to make sure
2105	 * that this space is not used again.
2106	 *
2107	 * If we are less than the minimum size, we don't need to
2108	 * worry about it.
2109	 */
2110	if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2111		/* No room for any events */
2112
2113		/* Mark the rest of the page with padding */
2114		rb_event_set_padding(event);
2115
2116		/* Set the write back to the previous setting */
2117		local_sub(length, &tail_page->write);
2118		return;
2119	}
2120
2121	/* Put in a discarded event */
2122	event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2123	event->type_len = RINGBUF_TYPE_PADDING;
2124	/* time delta must be non zero */
2125	event->time_delta = 1;
2126
2127	/* Set write to end of buffer */
2128	length = (tail + length) - BUF_PAGE_SIZE;
2129	local_sub(length, &tail_page->write);
2130}
2131
2132static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer);
2133
2134/*
2135 * This is the slow path, force gcc not to inline it.
2136 */
2137static noinline struct ring_buffer_event *
2138rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2139	     unsigned long tail, struct rb_event_info *info)
 
2140{
2141	struct buffer_page *tail_page = info->tail_page;
2142	struct buffer_page *commit_page = cpu_buffer->commit_page;
2143	struct ring_buffer *buffer = cpu_buffer->buffer;
2144	struct buffer_page *next_page;
2145	int ret;
2146
2147	next_page = tail_page;
2148
2149	rb_inc_page(cpu_buffer, &next_page);
2150
2151	/*
2152	 * If for some reason, we had an interrupt storm that made
2153	 * it all the way around the buffer, bail, and warn
2154	 * about it.
2155	 */
2156	if (unlikely(next_page == commit_page)) {
2157		local_inc(&cpu_buffer->commit_overrun);
2158		goto out_reset;
2159	}
2160
2161	/*
2162	 * This is where the fun begins!
2163	 *
2164	 * We are fighting against races between a reader that
2165	 * could be on another CPU trying to swap its reader
2166	 * page with the buffer head.
2167	 *
2168	 * We are also fighting against interrupts coming in and
2169	 * moving the head or tail on us as well.
2170	 *
2171	 * If the next page is the head page then we have filled
2172	 * the buffer, unless the commit page is still on the
2173	 * reader page.
2174	 */
2175	if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
2176
2177		/*
2178		 * If the commit is not on the reader page, then
2179		 * move the header page.
2180		 */
2181		if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2182			/*
2183			 * If we are not in overwrite mode,
2184			 * this is easy, just stop here.
2185			 */
2186			if (!(buffer->flags & RB_FL_OVERWRITE)) {
2187				local_inc(&cpu_buffer->dropped_events);
2188				goto out_reset;
2189			}
2190
2191			ret = rb_handle_head_page(cpu_buffer,
2192						  tail_page,
2193						  next_page);
2194			if (ret < 0)
2195				goto out_reset;
2196			if (ret)
2197				goto out_again;
2198		} else {
2199			/*
2200			 * We need to be careful here too. The
2201			 * commit page could still be on the reader
2202			 * page. We could have a small buffer, and
2203			 * have filled up the buffer with events
2204			 * from interrupts and such, and wrapped.
2205			 *
2206			 * Note, if the tail page is also the on the
2207			 * reader_page, we let it move out.
2208			 */
2209			if (unlikely((cpu_buffer->commit_page !=
2210				      cpu_buffer->tail_page) &&
2211				     (cpu_buffer->commit_page ==
2212				      cpu_buffer->reader_page))) {
2213				local_inc(&cpu_buffer->commit_overrun);
2214				goto out_reset;
2215			}
2216		}
2217	}
2218
2219	rb_tail_page_update(cpu_buffer, tail_page, next_page);
 
 
 
 
 
 
 
 
2220
2221 out_again:
2222
2223	rb_reset_tail(cpu_buffer, tail, info);
2224
2225	/* Commit what we have for now. */
2226	rb_end_commit(cpu_buffer);
2227	/* rb_end_commit() decs committing */
2228	local_inc(&cpu_buffer->committing);
2229
2230	/* fail and let the caller try again */
2231	return ERR_PTR(-EAGAIN);
2232
2233 out_reset:
2234	/* reset write */
2235	rb_reset_tail(cpu_buffer, tail, info);
2236
2237	return NULL;
2238}
2239
2240/* Slow path, do not inline */
2241static noinline struct ring_buffer_event *
2242rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
2243{
2244	event->type_len = RINGBUF_TYPE_TIME_EXTEND;
2245
2246	/* Not the first event on the page? */
2247	if (rb_event_index(event)) {
2248		event->time_delta = delta & TS_MASK;
2249		event->array[0] = delta >> TS_SHIFT;
2250	} else {
2251		/* nope, just zero it */
2252		event->time_delta = 0;
2253		event->array[0] = 0;
2254	}
2255
2256	return skip_time_extend(event);
2257}
2258
2259static inline bool rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2260				     struct ring_buffer_event *event);
2261
2262/**
2263 * rb_update_event - update event type and data
2264 * @event: the event to update
2265 * @type: the type of event
2266 * @length: the size of the event field in the ring buffer
2267 *
2268 * Update the type and data fields of the event. The length
2269 * is the actual size that is written to the ring buffer,
2270 * and with this, we can determine what to place into the
2271 * data field.
2272 */
2273static void
2274rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2275		struct ring_buffer_event *event,
2276		struct rb_event_info *info)
2277{
2278	unsigned length = info->length;
2279	u64 delta = info->delta;
2280
2281	/* Only a commit updates the timestamp */
2282	if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
2283		delta = 0;
2284
2285	/*
2286	 * If we need to add a timestamp, then we
2287	 * add it to the start of the resevered space.
 
2288	 */
2289	if (unlikely(info->add_timestamp)) {
2290		event = rb_add_time_stamp(event, delta);
2291		length -= RB_LEN_TIME_EXTEND;
2292		delta = 0;
2293	}
2294
2295	event->time_delta = delta;
2296	length -= RB_EVNT_HDR_SIZE;
2297	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2298		event->type_len = 0;
2299		event->array[0] = length;
2300	} else
2301		event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2302}
2303
2304static unsigned rb_calculate_event_length(unsigned length)
2305{
2306	struct ring_buffer_event event; /* Used only for sizeof array */
2307
2308	/* zero length can cause confusions */
2309	if (!length)
2310		length++;
 
2311
2312	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2313		length += sizeof(event.array[0]);
2314
2315	length += RB_EVNT_HDR_SIZE;
2316	length = ALIGN(length, RB_ARCH_ALIGNMENT);
 
 
 
2317
2318	/*
2319	 * In case the time delta is larger than the 27 bits for it
2320	 * in the header, we need to add a timestamp. If another
2321	 * event comes in when trying to discard this one to increase
2322	 * the length, then the timestamp will be added in the allocated
2323	 * space of this event. If length is bigger than the size needed
2324	 * for the TIME_EXTEND, then padding has to be used. The events
2325	 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
2326	 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
2327	 * As length is a multiple of 4, we only need to worry if it
2328	 * is 12 (RB_LEN_TIME_EXTEND + 4).
2329	 */
2330	if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
2331		length += RB_ALIGNMENT;
2332
2333	return length;
2334}
2335
2336#ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2337static inline bool sched_clock_stable(void)
2338{
2339	return true;
2340}
2341#endif
2342
2343static inline int
2344rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2345		  struct ring_buffer_event *event)
2346{
2347	unsigned long new_index, old_index;
2348	struct buffer_page *bpage;
2349	unsigned long index;
2350	unsigned long addr;
2351
2352	new_index = rb_event_index(event);
2353	old_index = new_index + rb_event_ts_length(event);
2354	addr = (unsigned long)event;
2355	addr &= PAGE_MASK;
2356
2357	bpage = READ_ONCE(cpu_buffer->tail_page);
2358
2359	if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2360		unsigned long write_mask =
2361			local_read(&bpage->write) & ~RB_WRITE_MASK;
2362		unsigned long event_length = rb_event_length(event);
2363		/*
2364		 * This is on the tail page. It is possible that
2365		 * a write could come in and move the tail page
2366		 * and write to the next page. That is fine
2367		 * because we just shorten what is on this page.
2368		 */
2369		old_index += write_mask;
2370		new_index += write_mask;
2371		index = local_cmpxchg(&bpage->write, old_index, new_index);
2372		if (index == old_index) {
2373			/* update counters */
2374			local_sub(event_length, &cpu_buffer->entries_bytes);
2375			return 1;
2376		}
2377	}
2378
2379	/* could not discard */
2380	return 0;
2381}
2382
2383static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2384{
2385	local_inc(&cpu_buffer->committing);
2386	local_inc(&cpu_buffer->commits);
2387}
2388
2389static void
2390rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
2391{
2392	unsigned long max_count;
2393
2394	/*
2395	 * We only race with interrupts and NMIs on this CPU.
2396	 * If we own the commit event, then we can commit
2397	 * all others that interrupted us, since the interruptions
2398	 * are in stack format (they finish before they come
2399	 * back to us). This allows us to do a simple loop to
2400	 * assign the commit to the tail.
2401	 */
2402 again:
2403	max_count = cpu_buffer->nr_pages * 100;
2404
2405	while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) {
2406		if (RB_WARN_ON(cpu_buffer, !(--max_count)))
2407			return;
2408		if (RB_WARN_ON(cpu_buffer,
2409			       rb_is_reader_page(cpu_buffer->tail_page)))
2410			return;
2411		local_set(&cpu_buffer->commit_page->page->commit,
2412			  rb_page_write(cpu_buffer->commit_page));
2413		rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
2414		/* Only update the write stamp if the page has an event */
2415		if (rb_page_write(cpu_buffer->commit_page))
2416			cpu_buffer->write_stamp =
2417				cpu_buffer->commit_page->page->time_stamp;
2418		/* add barrier to keep gcc from optimizing too much */
2419		barrier();
2420	}
2421	while (rb_commit_index(cpu_buffer) !=
2422	       rb_page_write(cpu_buffer->commit_page)) {
2423
2424		local_set(&cpu_buffer->commit_page->page->commit,
2425			  rb_page_write(cpu_buffer->commit_page));
2426		RB_WARN_ON(cpu_buffer,
2427			   local_read(&cpu_buffer->commit_page->page->commit) &
2428			   ~RB_WRITE_MASK);
2429		barrier();
2430	}
2431
2432	/* again, keep gcc from optimizing */
2433	barrier();
2434
2435	/*
2436	 * If an interrupt came in just after the first while loop
2437	 * and pushed the tail page forward, we will be left with
2438	 * a dangling commit that will never go forward.
2439	 */
2440	if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)))
2441		goto again;
2442}
2443
2444static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2445{
2446	unsigned long commits;
2447
2448	if (RB_WARN_ON(cpu_buffer,
2449		       !local_read(&cpu_buffer->committing)))
2450		return;
2451
2452 again:
2453	commits = local_read(&cpu_buffer->commits);
2454	/* synchronize with interrupts */
2455	barrier();
2456	if (local_read(&cpu_buffer->committing) == 1)
2457		rb_set_commit_to_write(cpu_buffer);
2458
2459	local_dec(&cpu_buffer->committing);
2460
2461	/* synchronize with interrupts */
2462	barrier();
2463
2464	/*
2465	 * Need to account for interrupts coming in between the
2466	 * updating of the commit page and the clearing of the
2467	 * committing counter.
2468	 */
2469	if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2470	    !local_read(&cpu_buffer->committing)) {
2471		local_inc(&cpu_buffer->committing);
2472		goto again;
2473	}
2474}
2475
2476static inline void rb_event_discard(struct ring_buffer_event *event)
2477{
2478	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
2479		event = skip_time_extend(event);
2480
2481	/* array[0] holds the actual length for the discarded event */
2482	event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2483	event->type_len = RINGBUF_TYPE_PADDING;
2484	/* time delta must be non zero */
2485	if (!event->time_delta)
2486		event->time_delta = 1;
2487}
2488
2489static inline bool
2490rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2491		   struct ring_buffer_event *event)
2492{
2493	unsigned long addr = (unsigned long)event;
2494	unsigned long index;
2495
2496	index = rb_event_index(event);
2497	addr &= PAGE_MASK;
2498
2499	return cpu_buffer->commit_page->page == (void *)addr &&
2500		rb_commit_index(cpu_buffer) == index;
2501}
2502
2503static void
2504rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2505		      struct ring_buffer_event *event)
2506{
2507	u64 delta;
2508
2509	/*
2510	 * The event first in the commit queue updates the
2511	 * time stamp.
2512	 */
2513	if (rb_event_is_commit(cpu_buffer, event)) {
2514		/*
2515		 * A commit event that is first on a page
2516		 * updates the write timestamp with the page stamp
2517		 */
2518		if (!rb_event_index(event))
2519			cpu_buffer->write_stamp =
2520				cpu_buffer->commit_page->page->time_stamp;
2521		else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2522			delta = event->array[0];
2523			delta <<= TS_SHIFT;
2524			delta += event->time_delta;
2525			cpu_buffer->write_stamp += delta;
2526		} else
2527			cpu_buffer->write_stamp += event->time_delta;
2528	}
2529}
2530
2531static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2532		      struct ring_buffer_event *event)
2533{
2534	local_inc(&cpu_buffer->entries);
2535	rb_update_write_stamp(cpu_buffer, event);
2536	rb_end_commit(cpu_buffer);
2537}
2538
2539static __always_inline void
2540rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
2541{
2542	bool pagebusy;
2543
2544	if (buffer->irq_work.waiters_pending) {
2545		buffer->irq_work.waiters_pending = false;
2546		/* irq_work_queue() supplies it's own memory barriers */
2547		irq_work_queue(&buffer->irq_work.work);
2548	}
2549
2550	if (cpu_buffer->irq_work.waiters_pending) {
2551		cpu_buffer->irq_work.waiters_pending = false;
2552		/* irq_work_queue() supplies it's own memory barriers */
2553		irq_work_queue(&cpu_buffer->irq_work.work);
2554	}
2555
2556	pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
2557
2558	if (!pagebusy && cpu_buffer->irq_work.full_waiters_pending) {
2559		cpu_buffer->irq_work.wakeup_full = true;
2560		cpu_buffer->irq_work.full_waiters_pending = false;
2561		/* irq_work_queue() supplies it's own memory barriers */
2562		irq_work_queue(&cpu_buffer->irq_work.work);
2563	}
2564}
2565
2566/*
2567 * The lock and unlock are done within a preempt disable section.
2568 * The current_context per_cpu variable can only be modified
2569 * by the current task between lock and unlock. But it can
2570 * be modified more than once via an interrupt. To pass this
2571 * information from the lock to the unlock without having to
2572 * access the 'in_interrupt()' functions again (which do show
2573 * a bit of overhead in something as critical as function tracing,
2574 * we use a bitmask trick.
2575 *
2576 *  bit 0 =  NMI context
2577 *  bit 1 =  IRQ context
2578 *  bit 2 =  SoftIRQ context
2579 *  bit 3 =  normal context.
2580 *
2581 * This works because this is the order of contexts that can
2582 * preempt other contexts. A SoftIRQ never preempts an IRQ
2583 * context.
2584 *
2585 * When the context is determined, the corresponding bit is
2586 * checked and set (if it was set, then a recursion of that context
2587 * happened).
2588 *
2589 * On unlock, we need to clear this bit. To do so, just subtract
2590 * 1 from the current_context and AND it to itself.
2591 *
2592 * (binary)
2593 *  101 - 1 = 100
2594 *  101 & 100 = 100 (clearing bit zero)
2595 *
2596 *  1010 - 1 = 1001
2597 *  1010 & 1001 = 1000 (clearing bit 1)
2598 *
2599 * The least significant bit can be cleared this way, and it
2600 * just so happens that it is the same bit corresponding to
2601 * the current context.
2602 */
2603
2604static __always_inline int
2605trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
2606{
2607	unsigned int val = cpu_buffer->current_context;
2608	int bit;
2609
2610	if (in_interrupt()) {
2611		if (in_nmi())
2612			bit = RB_CTX_NMI;
2613		else if (in_irq())
2614			bit = RB_CTX_IRQ;
2615		else
2616			bit = RB_CTX_SOFTIRQ;
2617	} else
2618		bit = RB_CTX_NORMAL;
2619
2620	if (unlikely(val & (1 << bit)))
2621		return 1;
2622
2623	val |= (1 << bit);
2624	cpu_buffer->current_context = val;
2625
2626	return 0;
2627}
2628
2629static __always_inline void
2630trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
2631{
2632	cpu_buffer->current_context &= cpu_buffer->current_context - 1;
2633}
2634
2635/**
2636 * ring_buffer_unlock_commit - commit a reserved
2637 * @buffer: The buffer to commit to
2638 * @event: The event pointer to commit.
2639 *
2640 * This commits the data to the ring buffer, and releases any locks held.
2641 *
2642 * Must be paired with ring_buffer_lock_reserve.
2643 */
2644int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2645			      struct ring_buffer_event *event)
2646{
2647	struct ring_buffer_per_cpu *cpu_buffer;
2648	int cpu = raw_smp_processor_id();
2649
2650	cpu_buffer = buffer->buffers[cpu];
2651
2652	rb_commit(cpu_buffer, event);
2653
2654	rb_wakeups(buffer, cpu_buffer);
2655
2656	trace_recursive_unlock(cpu_buffer);
2657
2658	preempt_enable_notrace();
2659
2660	return 0;
2661}
2662EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2663
2664static noinline void
2665rb_handle_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2666		    struct rb_event_info *info)
2667{
2668	WARN_ONCE(info->delta > (1ULL << 59),
2669		  KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2670		  (unsigned long long)info->delta,
2671		  (unsigned long long)info->ts,
2672		  (unsigned long long)cpu_buffer->write_stamp,
2673		  sched_clock_stable() ? "" :
2674		  "If you just came from a suspend/resume,\n"
2675		  "please switch to the trace global clock:\n"
2676		  "  echo global > /sys/kernel/debug/tracing/trace_clock\n");
2677	info->add_timestamp = 1;
2678}
2679
2680static struct ring_buffer_event *
2681__rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
2682		  struct rb_event_info *info)
2683{
2684	struct ring_buffer_event *event;
2685	struct buffer_page *tail_page;
2686	unsigned long tail, write;
2687
2688	/*
2689	 * If the time delta since the last event is too big to
2690	 * hold in the time field of the event, then we append a
2691	 * TIME EXTEND event ahead of the data event.
2692	 */
2693	if (unlikely(info->add_timestamp))
2694		info->length += RB_LEN_TIME_EXTEND;
2695
2696	/* Don't let the compiler play games with cpu_buffer->tail_page */
2697	tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page);
2698	write = local_add_return(info->length, &tail_page->write);
2699
2700	/* set write to only the index of the write */
2701	write &= RB_WRITE_MASK;
2702	tail = write - info->length;
2703
2704	/*
2705	 * If this is the first commit on the page, then it has the same
2706	 * timestamp as the page itself.
2707	 */
2708	if (!tail)
2709		info->delta = 0;
2710
2711	/* See if we shot pass the end of this buffer page */
2712	if (unlikely(write > BUF_PAGE_SIZE))
2713		return rb_move_tail(cpu_buffer, tail, info);
2714
2715	/* We reserved something on the buffer */
2716
2717	event = __rb_page_index(tail_page, tail);
2718	kmemcheck_annotate_bitfield(event, bitfield);
2719	rb_update_event(cpu_buffer, event, info);
2720
2721	local_inc(&tail_page->entries);
2722
2723	/*
2724	 * If this is the first commit on the page, then update
2725	 * its timestamp.
2726	 */
2727	if (!tail)
2728		tail_page->page->time_stamp = info->ts;
2729
2730	/* account for these added bytes */
2731	local_add(info->length, &cpu_buffer->entries_bytes);
2732
2733	return event;
2734}
2735
2736static struct ring_buffer_event *
2737rb_reserve_next_event(struct ring_buffer *buffer,
2738		      struct ring_buffer_per_cpu *cpu_buffer,
2739		      unsigned long length)
2740{
2741	struct ring_buffer_event *event;
2742	struct rb_event_info info;
2743	int nr_loops = 0;
 
2744	u64 diff;
2745
2746	rb_start_commit(cpu_buffer);
2747
2748#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2749	/*
2750	 * Due to the ability to swap a cpu buffer from a buffer
2751	 * it is possible it was swapped before we committed.
2752	 * (committing stops a swap). We check for it here and
2753	 * if it happened, we have to fail the write.
2754	 */
2755	barrier();
2756	if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2757		local_dec(&cpu_buffer->committing);
2758		local_dec(&cpu_buffer->commits);
2759		return NULL;
2760	}
2761#endif
2762
2763	info.length = rb_calculate_event_length(length);
2764 again:
2765	info.add_timestamp = 0;
2766	info.delta = 0;
2767
2768	/*
2769	 * We allow for interrupts to reenter here and do a trace.
2770	 * If one does, it will cause this original code to loop
2771	 * back here. Even with heavy interrupts happening, this
2772	 * should only happen a few times in a row. If this happens
2773	 * 1000 times in a row, there must be either an interrupt
2774	 * storm or we have something buggy.
2775	 * Bail!
2776	 */
2777	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2778		goto out_fail;
2779
2780	info.ts = rb_time_stamp(cpu_buffer->buffer);
2781	diff = info.ts - cpu_buffer->write_stamp;
2782
2783	/* make sure this diff is calculated here */
2784	barrier();
2785
2786	/* Did the write stamp get updated already? */
2787	if (likely(info.ts >= cpu_buffer->write_stamp)) {
2788		info.delta = diff;
2789		if (unlikely(test_time_stamp(info.delta)))
2790			rb_handle_timestamp(cpu_buffer, &info);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2791	}
2792
2793	event = __rb_reserve_next(cpu_buffer, &info);
2794
2795	if (unlikely(PTR_ERR(event) == -EAGAIN)) {
2796		if (info.add_timestamp)
2797			info.length -= RB_LEN_TIME_EXTEND;
2798		goto again;
2799	}
2800
2801	if (!event)
2802		goto out_fail;
2803
2804	return event;
2805
2806 out_fail:
2807	rb_end_commit(cpu_buffer);
2808	return NULL;
2809}
2810
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2811/**
2812 * ring_buffer_lock_reserve - reserve a part of the buffer
2813 * @buffer: the ring buffer to reserve from
2814 * @length: the length of the data to reserve (excluding event header)
2815 *
2816 * Returns a reseverd event on the ring buffer to copy directly to.
2817 * The user of this interface will need to get the body to write into
2818 * and can use the ring_buffer_event_data() interface.
2819 *
2820 * The length is the length of the data needed, not the event length
2821 * which also includes the event header.
2822 *
2823 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2824 * If NULL is returned, then nothing has been allocated or locked.
2825 */
2826struct ring_buffer_event *
2827ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2828{
2829	struct ring_buffer_per_cpu *cpu_buffer;
2830	struct ring_buffer_event *event;
2831	int cpu;
2832
 
 
 
2833	/* If we are tracing schedule, we don't want to recurse */
2834	preempt_disable_notrace();
2835
2836	if (unlikely(atomic_read(&buffer->record_disabled)))
2837		goto out;
 
 
 
2838
2839	cpu = raw_smp_processor_id();
2840
2841	if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
2842		goto out;
2843
2844	cpu_buffer = buffer->buffers[cpu];
2845
2846	if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
2847		goto out;
2848
2849	if (unlikely(length > BUF_MAX_DATA_SIZE))
2850		goto out;
2851
2852	if (unlikely(trace_recursive_lock(cpu_buffer)))
2853		goto out;
2854
2855	event = rb_reserve_next_event(buffer, cpu_buffer, length);
2856	if (!event)
2857		goto out_unlock;
2858
2859	return event;
2860
2861 out_unlock:
2862	trace_recursive_unlock(cpu_buffer);
2863 out:
 
 
 
2864	preempt_enable_notrace();
2865	return NULL;
2866}
2867EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2868
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2869/*
2870 * Decrement the entries to the page that an event is on.
2871 * The event does not even need to exist, only the pointer
2872 * to the page it is on. This may only be called before the commit
2873 * takes place.
2874 */
2875static inline void
2876rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2877		   struct ring_buffer_event *event)
2878{
2879	unsigned long addr = (unsigned long)event;
2880	struct buffer_page *bpage = cpu_buffer->commit_page;
2881	struct buffer_page *start;
2882
2883	addr &= PAGE_MASK;
2884
2885	/* Do the likely case first */
2886	if (likely(bpage->page == (void *)addr)) {
2887		local_dec(&bpage->entries);
2888		return;
2889	}
2890
2891	/*
2892	 * Because the commit page may be on the reader page we
2893	 * start with the next page and check the end loop there.
2894	 */
2895	rb_inc_page(cpu_buffer, &bpage);
2896	start = bpage;
2897	do {
2898		if (bpage->page == (void *)addr) {
2899			local_dec(&bpage->entries);
2900			return;
2901		}
2902		rb_inc_page(cpu_buffer, &bpage);
2903	} while (bpage != start);
2904
2905	/* commit not part of this buffer?? */
2906	RB_WARN_ON(cpu_buffer, 1);
2907}
2908
2909/**
2910 * ring_buffer_commit_discard - discard an event that has not been committed
2911 * @buffer: the ring buffer
2912 * @event: non committed event to discard
2913 *
2914 * Sometimes an event that is in the ring buffer needs to be ignored.
2915 * This function lets the user discard an event in the ring buffer
2916 * and then that event will not be read later.
2917 *
2918 * This function only works if it is called before the the item has been
2919 * committed. It will try to free the event from the ring buffer
2920 * if another event has not been added behind it.
2921 *
2922 * If another event has been added behind it, it will set the event
2923 * up as discarded, and perform the commit.
2924 *
2925 * If this function is called, do not call ring_buffer_unlock_commit on
2926 * the event.
2927 */
2928void ring_buffer_discard_commit(struct ring_buffer *buffer,
2929				struct ring_buffer_event *event)
2930{
2931	struct ring_buffer_per_cpu *cpu_buffer;
2932	int cpu;
2933
2934	/* The event is discarded regardless */
2935	rb_event_discard(event);
2936
2937	cpu = smp_processor_id();
2938	cpu_buffer = buffer->buffers[cpu];
2939
2940	/*
2941	 * This must only be called if the event has not been
2942	 * committed yet. Thus we can assume that preemption
2943	 * is still disabled.
2944	 */
2945	RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
2946
2947	rb_decrement_entry(cpu_buffer, event);
2948	if (rb_try_to_discard(cpu_buffer, event))
2949		goto out;
2950
2951	/*
2952	 * The commit is still visible by the reader, so we
2953	 * must still update the timestamp.
2954	 */
2955	rb_update_write_stamp(cpu_buffer, event);
2956 out:
2957	rb_end_commit(cpu_buffer);
2958
2959	trace_recursive_unlock(cpu_buffer);
2960
2961	preempt_enable_notrace();
2962
2963}
2964EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2965
2966/**
2967 * ring_buffer_write - write data to the buffer without reserving
2968 * @buffer: The ring buffer to write to.
2969 * @length: The length of the data being written (excluding the event header)
2970 * @data: The data to write to the buffer.
2971 *
2972 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2973 * one function. If you already have the data to write to the buffer, it
2974 * may be easier to simply call this function.
2975 *
2976 * Note, like ring_buffer_lock_reserve, the length is the length of the data
2977 * and not the length of the event which would hold the header.
2978 */
2979int ring_buffer_write(struct ring_buffer *buffer,
2980		      unsigned long length,
2981		      void *data)
2982{
2983	struct ring_buffer_per_cpu *cpu_buffer;
2984	struct ring_buffer_event *event;
2985	void *body;
2986	int ret = -EBUSY;
2987	int cpu;
2988
 
 
 
2989	preempt_disable_notrace();
2990
2991	if (atomic_read(&buffer->record_disabled))
2992		goto out;
2993
2994	cpu = raw_smp_processor_id();
2995
2996	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2997		goto out;
2998
2999	cpu_buffer = buffer->buffers[cpu];
3000
3001	if (atomic_read(&cpu_buffer->record_disabled))
3002		goto out;
3003
3004	if (length > BUF_MAX_DATA_SIZE)
3005		goto out;
3006
3007	if (unlikely(trace_recursive_lock(cpu_buffer)))
3008		goto out;
3009
3010	event = rb_reserve_next_event(buffer, cpu_buffer, length);
3011	if (!event)
3012		goto out_unlock;
3013
3014	body = rb_event_data(event);
3015
3016	memcpy(body, data, length);
3017
3018	rb_commit(cpu_buffer, event);
3019
3020	rb_wakeups(buffer, cpu_buffer);
3021
3022	ret = 0;
3023
3024 out_unlock:
3025	trace_recursive_unlock(cpu_buffer);
3026
3027 out:
3028	preempt_enable_notrace();
3029
3030	return ret;
3031}
3032EXPORT_SYMBOL_GPL(ring_buffer_write);
3033
3034static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
3035{
3036	struct buffer_page *reader = cpu_buffer->reader_page;
3037	struct buffer_page *head = rb_set_head_page(cpu_buffer);
3038	struct buffer_page *commit = cpu_buffer->commit_page;
3039
3040	/* In case of error, head will be NULL */
3041	if (unlikely(!head))
3042		return true;
3043
3044	return reader->read == rb_page_commit(reader) &&
3045		(commit == reader ||
3046		 (commit == head &&
3047		  head->read == rb_page_commit(commit)));
3048}
3049
3050/**
3051 * ring_buffer_record_disable - stop all writes into the buffer
3052 * @buffer: The ring buffer to stop writes to.
3053 *
3054 * This prevents all writes to the buffer. Any attempt to write
3055 * to the buffer after this will fail and return NULL.
3056 *
3057 * The caller should call synchronize_sched() after this.
3058 */
3059void ring_buffer_record_disable(struct ring_buffer *buffer)
3060{
3061	atomic_inc(&buffer->record_disabled);
3062}
3063EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
3064
3065/**
3066 * ring_buffer_record_enable - enable writes to the buffer
3067 * @buffer: The ring buffer to enable writes
3068 *
3069 * Note, multiple disables will need the same number of enables
3070 * to truly enable the writing (much like preempt_disable).
3071 */
3072void ring_buffer_record_enable(struct ring_buffer *buffer)
3073{
3074	atomic_dec(&buffer->record_disabled);
3075}
3076EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
3077
3078/**
3079 * ring_buffer_record_off - stop all writes into the buffer
3080 * @buffer: The ring buffer to stop writes to.
3081 *
3082 * This prevents all writes to the buffer. Any attempt to write
3083 * to the buffer after this will fail and return NULL.
3084 *
3085 * This is different than ring_buffer_record_disable() as
3086 * it works like an on/off switch, where as the disable() version
3087 * must be paired with a enable().
3088 */
3089void ring_buffer_record_off(struct ring_buffer *buffer)
3090{
3091	unsigned int rd;
3092	unsigned int new_rd;
3093
3094	do {
3095		rd = atomic_read(&buffer->record_disabled);
3096		new_rd = rd | RB_BUFFER_OFF;
3097	} while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3098}
3099EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3100
3101/**
3102 * ring_buffer_record_on - restart writes into the buffer
3103 * @buffer: The ring buffer to start writes to.
3104 *
3105 * This enables all writes to the buffer that was disabled by
3106 * ring_buffer_record_off().
3107 *
3108 * This is different than ring_buffer_record_enable() as
3109 * it works like an on/off switch, where as the enable() version
3110 * must be paired with a disable().
3111 */
3112void ring_buffer_record_on(struct ring_buffer *buffer)
3113{
3114	unsigned int rd;
3115	unsigned int new_rd;
3116
3117	do {
3118		rd = atomic_read(&buffer->record_disabled);
3119		new_rd = rd & ~RB_BUFFER_OFF;
3120	} while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3121}
3122EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3123
3124/**
3125 * ring_buffer_record_is_on - return true if the ring buffer can write
3126 * @buffer: The ring buffer to see if write is enabled
3127 *
3128 * Returns true if the ring buffer is in a state that it accepts writes.
3129 */
3130int ring_buffer_record_is_on(struct ring_buffer *buffer)
3131{
3132	return !atomic_read(&buffer->record_disabled);
3133}
3134
3135/**
3136 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3137 * @buffer: The ring buffer to stop writes to.
3138 * @cpu: The CPU buffer to stop
3139 *
3140 * This prevents all writes to the buffer. Any attempt to write
3141 * to the buffer after this will fail and return NULL.
3142 *
3143 * The caller should call synchronize_sched() after this.
3144 */
3145void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
3146{
3147	struct ring_buffer_per_cpu *cpu_buffer;
3148
3149	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3150		return;
3151
3152	cpu_buffer = buffer->buffers[cpu];
3153	atomic_inc(&cpu_buffer->record_disabled);
3154}
3155EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
3156
3157/**
3158 * ring_buffer_record_enable_cpu - enable writes to the buffer
3159 * @buffer: The ring buffer to enable writes
3160 * @cpu: The CPU to enable.
3161 *
3162 * Note, multiple disables will need the same number of enables
3163 * to truly enable the writing (much like preempt_disable).
3164 */
3165void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
3166{
3167	struct ring_buffer_per_cpu *cpu_buffer;
3168
3169	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3170		return;
3171
3172	cpu_buffer = buffer->buffers[cpu];
3173	atomic_dec(&cpu_buffer->record_disabled);
3174}
3175EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
3176
3177/*
3178 * The total entries in the ring buffer is the running counter
3179 * of entries entered into the ring buffer, minus the sum of
3180 * the entries read from the ring buffer and the number of
3181 * entries that were overwritten.
3182 */
3183static inline unsigned long
3184rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3185{
3186	return local_read(&cpu_buffer->entries) -
3187		(local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3188}
3189
3190/**
3191 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3192 * @buffer: The ring buffer
3193 * @cpu: The per CPU buffer to read from.
3194 */
3195u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
3196{
3197	unsigned long flags;
3198	struct ring_buffer_per_cpu *cpu_buffer;
3199	struct buffer_page *bpage;
3200	u64 ret = 0;
3201
3202	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3203		return 0;
3204
3205	cpu_buffer = buffer->buffers[cpu];
3206	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3207	/*
3208	 * if the tail is on reader_page, oldest time stamp is on the reader
3209	 * page
3210	 */
3211	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3212		bpage = cpu_buffer->reader_page;
3213	else
3214		bpage = rb_set_head_page(cpu_buffer);
3215	if (bpage)
3216		ret = bpage->page->time_stamp;
3217	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3218
3219	return ret;
3220}
3221EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3222
3223/**
3224 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3225 * @buffer: The ring buffer
3226 * @cpu: The per CPU buffer to read from.
3227 */
3228unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
3229{
3230	struct ring_buffer_per_cpu *cpu_buffer;
3231	unsigned long ret;
3232
3233	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3234		return 0;
3235
3236	cpu_buffer = buffer->buffers[cpu];
3237	ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3238
3239	return ret;
3240}
3241EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3242
3243/**
3244 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3245 * @buffer: The ring buffer
3246 * @cpu: The per CPU buffer to get the entries from.
3247 */
3248unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
3249{
3250	struct ring_buffer_per_cpu *cpu_buffer;
3251
3252	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3253		return 0;
3254
3255	cpu_buffer = buffer->buffers[cpu];
3256
3257	return rb_num_of_entries(cpu_buffer);
3258}
3259EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
3260
3261/**
3262 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3263 * buffer wrapping around (only if RB_FL_OVERWRITE is on).
3264 * @buffer: The ring buffer
3265 * @cpu: The per CPU buffer to get the number of overruns from
3266 */
3267unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
3268{
3269	struct ring_buffer_per_cpu *cpu_buffer;
3270	unsigned long ret;
3271
3272	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3273		return 0;
3274
3275	cpu_buffer = buffer->buffers[cpu];
3276	ret = local_read(&cpu_buffer->overrun);
3277
3278	return ret;
3279}
3280EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
3281
3282/**
3283 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3284 * commits failing due to the buffer wrapping around while there are uncommitted
3285 * events, such as during an interrupt storm.
3286 * @buffer: The ring buffer
3287 * @cpu: The per CPU buffer to get the number of overruns from
3288 */
3289unsigned long
3290ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
3291{
3292	struct ring_buffer_per_cpu *cpu_buffer;
3293	unsigned long ret;
3294
3295	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3296		return 0;
3297
3298	cpu_buffer = buffer->buffers[cpu];
3299	ret = local_read(&cpu_buffer->commit_overrun);
3300
3301	return ret;
3302}
3303EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3304
3305/**
3306 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3307 * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3308 * @buffer: The ring buffer
3309 * @cpu: The per CPU buffer to get the number of overruns from
3310 */
3311unsigned long
3312ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu)
3313{
3314	struct ring_buffer_per_cpu *cpu_buffer;
3315	unsigned long ret;
3316
3317	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3318		return 0;
3319
3320	cpu_buffer = buffer->buffers[cpu];
3321	ret = local_read(&cpu_buffer->dropped_events);
3322
3323	return ret;
3324}
3325EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3326
3327/**
3328 * ring_buffer_read_events_cpu - get the number of events successfully read
3329 * @buffer: The ring buffer
3330 * @cpu: The per CPU buffer to get the number of events read
3331 */
3332unsigned long
3333ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu)
3334{
3335	struct ring_buffer_per_cpu *cpu_buffer;
3336
3337	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3338		return 0;
3339
3340	cpu_buffer = buffer->buffers[cpu];
3341	return cpu_buffer->read;
3342}
3343EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
3344
3345/**
3346 * ring_buffer_entries - get the number of entries in a buffer
3347 * @buffer: The ring buffer
3348 *
3349 * Returns the total number of entries in the ring buffer
3350 * (all CPU entries)
3351 */
3352unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3353{
3354	struct ring_buffer_per_cpu *cpu_buffer;
3355	unsigned long entries = 0;
3356	int cpu;
3357
3358	/* if you care about this being correct, lock the buffer */
3359	for_each_buffer_cpu(buffer, cpu) {
3360		cpu_buffer = buffer->buffers[cpu];
3361		entries += rb_num_of_entries(cpu_buffer);
3362	}
3363
3364	return entries;
3365}
3366EXPORT_SYMBOL_GPL(ring_buffer_entries);
3367
3368/**
3369 * ring_buffer_overruns - get the number of overruns in buffer
3370 * @buffer: The ring buffer
3371 *
3372 * Returns the total number of overruns in the ring buffer
3373 * (all CPU entries)
3374 */
3375unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3376{
3377	struct ring_buffer_per_cpu *cpu_buffer;
3378	unsigned long overruns = 0;
3379	int cpu;
3380
3381	/* if you care about this being correct, lock the buffer */
3382	for_each_buffer_cpu(buffer, cpu) {
3383		cpu_buffer = buffer->buffers[cpu];
3384		overruns += local_read(&cpu_buffer->overrun);
3385	}
3386
3387	return overruns;
3388}
3389EXPORT_SYMBOL_GPL(ring_buffer_overruns);
3390
3391static void rb_iter_reset(struct ring_buffer_iter *iter)
3392{
3393	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3394
3395	/* Iterator usage is expected to have record disabled */
3396	iter->head_page = cpu_buffer->reader_page;
3397	iter->head = cpu_buffer->reader_page->read;
3398
3399	iter->cache_reader_page = iter->head_page;
3400	iter->cache_read = cpu_buffer->read;
3401
 
 
 
3402	if (iter->head)
3403		iter->read_stamp = cpu_buffer->read_stamp;
3404	else
3405		iter->read_stamp = iter->head_page->page->time_stamp;
 
 
3406}
3407
3408/**
3409 * ring_buffer_iter_reset - reset an iterator
3410 * @iter: The iterator to reset
3411 *
3412 * Resets the iterator, so that it will start from the beginning
3413 * again.
3414 */
3415void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3416{
3417	struct ring_buffer_per_cpu *cpu_buffer;
3418	unsigned long flags;
3419
3420	if (!iter)
3421		return;
3422
3423	cpu_buffer = iter->cpu_buffer;
3424
3425	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3426	rb_iter_reset(iter);
3427	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3428}
3429EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
3430
3431/**
3432 * ring_buffer_iter_empty - check if an iterator has no more to read
3433 * @iter: The iterator to check
3434 */
3435int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3436{
3437	struct ring_buffer_per_cpu *cpu_buffer;
3438
3439	cpu_buffer = iter->cpu_buffer;
3440
3441	return iter->head_page == cpu_buffer->commit_page &&
3442		iter->head == rb_commit_index(cpu_buffer);
3443}
3444EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
3445
3446static void
3447rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3448		     struct ring_buffer_event *event)
3449{
3450	u64 delta;
3451
3452	switch (event->type_len) {
3453	case RINGBUF_TYPE_PADDING:
3454		return;
3455
3456	case RINGBUF_TYPE_TIME_EXTEND:
3457		delta = event->array[0];
3458		delta <<= TS_SHIFT;
3459		delta += event->time_delta;
3460		cpu_buffer->read_stamp += delta;
3461		return;
3462
3463	case RINGBUF_TYPE_TIME_STAMP:
3464		/* FIXME: not implemented */
3465		return;
3466
3467	case RINGBUF_TYPE_DATA:
3468		cpu_buffer->read_stamp += event->time_delta;
3469		return;
3470
3471	default:
3472		BUG();
3473	}
3474	return;
3475}
3476
3477static void
3478rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3479			  struct ring_buffer_event *event)
3480{
3481	u64 delta;
3482
3483	switch (event->type_len) {
3484	case RINGBUF_TYPE_PADDING:
3485		return;
3486
3487	case RINGBUF_TYPE_TIME_EXTEND:
3488		delta = event->array[0];
3489		delta <<= TS_SHIFT;
3490		delta += event->time_delta;
3491		iter->read_stamp += delta;
3492		return;
3493
3494	case RINGBUF_TYPE_TIME_STAMP:
3495		/* FIXME: not implemented */
3496		return;
3497
3498	case RINGBUF_TYPE_DATA:
3499		iter->read_stamp += event->time_delta;
3500		return;
3501
3502	default:
3503		BUG();
3504	}
3505	return;
3506}
3507
3508static struct buffer_page *
3509rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
3510{
3511	struct buffer_page *reader = NULL;
3512	unsigned long overwrite;
3513	unsigned long flags;
3514	int nr_loops = 0;
3515	int ret;
3516
3517	local_irq_save(flags);
3518	arch_spin_lock(&cpu_buffer->lock);
3519
3520 again:
3521	/*
3522	 * This should normally only loop twice. But because the
3523	 * start of the reader inserts an empty page, it causes
3524	 * a case where we will loop three times. There should be no
3525	 * reason to loop four times (that I know of).
3526	 */
3527	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
3528		reader = NULL;
3529		goto out;
3530	}
3531
3532	reader = cpu_buffer->reader_page;
3533
3534	/* If there's more to read, return this page */
3535	if (cpu_buffer->reader_page->read < rb_page_size(reader))
3536		goto out;
3537
3538	/* Never should we have an index greater than the size */
3539	if (RB_WARN_ON(cpu_buffer,
3540		       cpu_buffer->reader_page->read > rb_page_size(reader)))
3541		goto out;
3542
3543	/* check if we caught up to the tail */
3544	reader = NULL;
3545	if (cpu_buffer->commit_page == cpu_buffer->reader_page)
3546		goto out;
3547
3548	/* Don't bother swapping if the ring buffer is empty */
3549	if (rb_num_of_entries(cpu_buffer) == 0)
3550		goto out;
3551
3552	/*
3553	 * Reset the reader page to size zero.
3554	 */
3555	local_set(&cpu_buffer->reader_page->write, 0);
3556	local_set(&cpu_buffer->reader_page->entries, 0);
3557	local_set(&cpu_buffer->reader_page->page->commit, 0);
3558	cpu_buffer->reader_page->real_end = 0;
3559
3560 spin:
3561	/*
3562	 * Splice the empty reader page into the list around the head.
3563	 */
3564	reader = rb_set_head_page(cpu_buffer);
3565	if (!reader)
3566		goto out;
3567	cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
3568	cpu_buffer->reader_page->list.prev = reader->list.prev;
3569
3570	/*
3571	 * cpu_buffer->pages just needs to point to the buffer, it
3572	 *  has no specific buffer page to point to. Lets move it out
3573	 *  of our way so we don't accidentally swap it.
3574	 */
3575	cpu_buffer->pages = reader->list.prev;
3576
3577	/* The reader page will be pointing to the new head */
3578	rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
3579
3580	/*
3581	 * We want to make sure we read the overruns after we set up our
3582	 * pointers to the next object. The writer side does a
3583	 * cmpxchg to cross pages which acts as the mb on the writer
3584	 * side. Note, the reader will constantly fail the swap
3585	 * while the writer is updating the pointers, so this
3586	 * guarantees that the overwrite recorded here is the one we
3587	 * want to compare with the last_overrun.
3588	 */
3589	smp_mb();
3590	overwrite = local_read(&(cpu_buffer->overrun));
3591
3592	/*
3593	 * Here's the tricky part.
3594	 *
3595	 * We need to move the pointer past the header page.
3596	 * But we can only do that if a writer is not currently
3597	 * moving it. The page before the header page has the
3598	 * flag bit '1' set if it is pointing to the page we want.
3599	 * but if the writer is in the process of moving it
3600	 * than it will be '2' or already moved '0'.
3601	 */
3602
3603	ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
3604
3605	/*
3606	 * If we did not convert it, then we must try again.
3607	 */
3608	if (!ret)
3609		goto spin;
3610
3611	/*
3612	 * Yeah! We succeeded in replacing the page.
3613	 *
3614	 * Now make the new head point back to the reader page.
3615	 */
3616	rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
3617	rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
3618
3619	/* Finally update the reader page to the new head */
3620	cpu_buffer->reader_page = reader;
3621	cpu_buffer->reader_page->read = 0;
3622
3623	if (overwrite != cpu_buffer->last_overrun) {
3624		cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3625		cpu_buffer->last_overrun = overwrite;
3626	}
3627
3628	goto again;
3629
3630 out:
3631	/* Update the read_stamp on the first event */
3632	if (reader && reader->read == 0)
3633		cpu_buffer->read_stamp = reader->page->time_stamp;
3634
3635	arch_spin_unlock(&cpu_buffer->lock);
3636	local_irq_restore(flags);
3637
3638	return reader;
3639}
3640
3641static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3642{
3643	struct ring_buffer_event *event;
3644	struct buffer_page *reader;
3645	unsigned length;
3646
3647	reader = rb_get_reader_page(cpu_buffer);
3648
3649	/* This function should not be called when buffer is empty */
3650	if (RB_WARN_ON(cpu_buffer, !reader))
3651		return;
3652
3653	event = rb_reader_event(cpu_buffer);
3654
3655	if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
3656		cpu_buffer->read++;
3657
3658	rb_update_read_stamp(cpu_buffer, event);
3659
3660	length = rb_event_length(event);
3661	cpu_buffer->reader_page->read += length;
3662}
3663
3664static void rb_advance_iter(struct ring_buffer_iter *iter)
3665{
3666	struct ring_buffer_per_cpu *cpu_buffer;
3667	struct ring_buffer_event *event;
3668	unsigned length;
3669
3670	cpu_buffer = iter->cpu_buffer;
3671
3672	/*
3673	 * Check if we are at the end of the buffer.
3674	 */
3675	if (iter->head >= rb_page_size(iter->head_page)) {
3676		/* discarded commits can make the page empty */
3677		if (iter->head_page == cpu_buffer->commit_page)
3678			return;
3679		rb_inc_iter(iter);
3680		return;
3681	}
3682
3683	event = rb_iter_head_event(iter);
3684
3685	length = rb_event_length(event);
3686
3687	/*
3688	 * This should not be called to advance the header if we are
3689	 * at the tail of the buffer.
3690	 */
3691	if (RB_WARN_ON(cpu_buffer,
3692		       (iter->head_page == cpu_buffer->commit_page) &&
3693		       (iter->head + length > rb_commit_index(cpu_buffer))))
3694		return;
3695
3696	rb_update_iter_read_stamp(iter, event);
3697
3698	iter->head += length;
3699
3700	/* check for end of page padding */
3701	if ((iter->head >= rb_page_size(iter->head_page)) &&
3702	    (iter->head_page != cpu_buffer->commit_page))
3703		rb_inc_iter(iter);
3704}
3705
3706static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3707{
3708	return cpu_buffer->lost_events;
3709}
3710
3711static struct ring_buffer_event *
3712rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3713	       unsigned long *lost_events)
3714{
3715	struct ring_buffer_event *event;
3716	struct buffer_page *reader;
3717	int nr_loops = 0;
3718
3719 again:
3720	/*
3721	 * We repeat when a time extend is encountered.
3722	 * Since the time extend is always attached to a data event,
3723	 * we should never loop more than once.
3724	 * (We never hit the following condition more than twice).
3725	 */
3726	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3727		return NULL;
3728
3729	reader = rb_get_reader_page(cpu_buffer);
3730	if (!reader)
3731		return NULL;
3732
3733	event = rb_reader_event(cpu_buffer);
3734
3735	switch (event->type_len) {
3736	case RINGBUF_TYPE_PADDING:
3737		if (rb_null_event(event))
3738			RB_WARN_ON(cpu_buffer, 1);
3739		/*
3740		 * Because the writer could be discarding every
3741		 * event it creates (which would probably be bad)
3742		 * if we were to go back to "again" then we may never
3743		 * catch up, and will trigger the warn on, or lock
3744		 * the box. Return the padding, and we will release
3745		 * the current locks, and try again.
3746		 */
3747		return event;
3748
3749	case RINGBUF_TYPE_TIME_EXTEND:
3750		/* Internal data, OK to advance */
3751		rb_advance_reader(cpu_buffer);
3752		goto again;
3753
3754	case RINGBUF_TYPE_TIME_STAMP:
3755		/* FIXME: not implemented */
3756		rb_advance_reader(cpu_buffer);
3757		goto again;
3758
3759	case RINGBUF_TYPE_DATA:
3760		if (ts) {
3761			*ts = cpu_buffer->read_stamp + event->time_delta;
3762			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3763							 cpu_buffer->cpu, ts);
3764		}
3765		if (lost_events)
3766			*lost_events = rb_lost_events(cpu_buffer);
3767		return event;
3768
3769	default:
3770		BUG();
3771	}
3772
3773	return NULL;
3774}
3775EXPORT_SYMBOL_GPL(ring_buffer_peek);
3776
3777static struct ring_buffer_event *
3778rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3779{
3780	struct ring_buffer *buffer;
3781	struct ring_buffer_per_cpu *cpu_buffer;
3782	struct ring_buffer_event *event;
3783	int nr_loops = 0;
3784
3785	cpu_buffer = iter->cpu_buffer;
3786	buffer = cpu_buffer->buffer;
3787
3788	/*
3789	 * Check if someone performed a consuming read to
3790	 * the buffer. A consuming read invalidates the iterator
3791	 * and we need to reset the iterator in this case.
3792	 */
3793	if (unlikely(iter->cache_read != cpu_buffer->read ||
3794		     iter->cache_reader_page != cpu_buffer->reader_page))
3795		rb_iter_reset(iter);
3796
3797 again:
3798	if (ring_buffer_iter_empty(iter))
3799		return NULL;
3800
3801	/*
3802	 * We repeat when a time extend is encountered or we hit
3803	 * the end of the page. Since the time extend is always attached
3804	 * to a data event, we should never loop more than three times.
3805	 * Once for going to next page, once on time extend, and
3806	 * finally once to get the event.
3807	 * (We never hit the following condition more than thrice).
3808	 */
3809	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3))
3810		return NULL;
3811
3812	if (rb_per_cpu_empty(cpu_buffer))
3813		return NULL;
3814
3815	if (iter->head >= rb_page_size(iter->head_page)) {
3816		rb_inc_iter(iter);
3817		goto again;
3818	}
3819
3820	event = rb_iter_head_event(iter);
3821
3822	switch (event->type_len) {
3823	case RINGBUF_TYPE_PADDING:
3824		if (rb_null_event(event)) {
3825			rb_inc_iter(iter);
3826			goto again;
3827		}
3828		rb_advance_iter(iter);
3829		return event;
3830
3831	case RINGBUF_TYPE_TIME_EXTEND:
3832		/* Internal data, OK to advance */
3833		rb_advance_iter(iter);
3834		goto again;
3835
3836	case RINGBUF_TYPE_TIME_STAMP:
3837		/* FIXME: not implemented */
3838		rb_advance_iter(iter);
3839		goto again;
3840
3841	case RINGBUF_TYPE_DATA:
3842		if (ts) {
3843			*ts = iter->read_stamp + event->time_delta;
3844			ring_buffer_normalize_time_stamp(buffer,
3845							 cpu_buffer->cpu, ts);
3846		}
3847		return event;
3848
3849	default:
3850		BUG();
3851	}
3852
3853	return NULL;
3854}
3855EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
3856
3857static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
3858{
3859	if (likely(!in_nmi())) {
3860		raw_spin_lock(&cpu_buffer->reader_lock);
3861		return true;
3862	}
3863
3864	/*
3865	 * If an NMI die dumps out the content of the ring buffer
3866	 * trylock must be used to prevent a deadlock if the NMI
3867	 * preempted a task that holds the ring buffer locks. If
3868	 * we get the lock then all is fine, if not, then continue
3869	 * to do the read, but this can corrupt the ring buffer,
3870	 * so it must be permanently disabled from future writes.
3871	 * Reading from NMI is a oneshot deal.
3872	 */
3873	if (raw_spin_trylock(&cpu_buffer->reader_lock))
3874		return true;
3875
3876	/* Continue without locking, but disable the ring buffer */
3877	atomic_inc(&cpu_buffer->record_disabled);
3878	return false;
3879}
3880
3881static inline void
3882rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
3883{
3884	if (likely(locked))
3885		raw_spin_unlock(&cpu_buffer->reader_lock);
3886	return;
3887}
3888
3889/**
3890 * ring_buffer_peek - peek at the next event to be read
3891 * @buffer: The ring buffer to read
3892 * @cpu: The cpu to peak at
3893 * @ts: The timestamp counter of this event.
3894 * @lost_events: a variable to store if events were lost (may be NULL)
3895 *
3896 * This will return the event that will be read next, but does
3897 * not consume the data.
3898 */
3899struct ring_buffer_event *
3900ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3901		 unsigned long *lost_events)
3902{
3903	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3904	struct ring_buffer_event *event;
3905	unsigned long flags;
3906	bool dolock;
3907
3908	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3909		return NULL;
3910
 
3911 again:
3912	local_irq_save(flags);
3913	dolock = rb_reader_lock(cpu_buffer);
 
3914	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3915	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3916		rb_advance_reader(cpu_buffer);
3917	rb_reader_unlock(cpu_buffer, dolock);
 
3918	local_irq_restore(flags);
3919
3920	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3921		goto again;
3922
3923	return event;
3924}
3925
3926/**
3927 * ring_buffer_iter_peek - peek at the next event to be read
3928 * @iter: The ring buffer iterator
3929 * @ts: The timestamp counter of this event.
3930 *
3931 * This will return the event that will be read next, but does
3932 * not increment the iterator.
3933 */
3934struct ring_buffer_event *
3935ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3936{
3937	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3938	struct ring_buffer_event *event;
3939	unsigned long flags;
3940
3941 again:
3942	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3943	event = rb_iter_peek(iter, ts);
3944	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3945
3946	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3947		goto again;
3948
3949	return event;
3950}
3951
3952/**
3953 * ring_buffer_consume - return an event and consume it
3954 * @buffer: The ring buffer to get the next event from
3955 * @cpu: the cpu to read the buffer from
3956 * @ts: a variable to store the timestamp (may be NULL)
3957 * @lost_events: a variable to store if events were lost (may be NULL)
3958 *
3959 * Returns the next event in the ring buffer, and that event is consumed.
3960 * Meaning, that sequential reads will keep returning a different event,
3961 * and eventually empty the ring buffer if the producer is slower.
3962 */
3963struct ring_buffer_event *
3964ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
3965		    unsigned long *lost_events)
3966{
3967	struct ring_buffer_per_cpu *cpu_buffer;
3968	struct ring_buffer_event *event = NULL;
3969	unsigned long flags;
3970	bool dolock;
 
 
3971
3972 again:
3973	/* might be called in atomic */
3974	preempt_disable();
3975
3976	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3977		goto out;
3978
3979	cpu_buffer = buffer->buffers[cpu];
3980	local_irq_save(flags);
3981	dolock = rb_reader_lock(cpu_buffer);
 
3982
3983	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3984	if (event) {
3985		cpu_buffer->lost_events = 0;
3986		rb_advance_reader(cpu_buffer);
3987	}
3988
3989	rb_reader_unlock(cpu_buffer, dolock);
 
3990	local_irq_restore(flags);
3991
3992 out:
3993	preempt_enable();
3994
3995	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3996		goto again;
3997
3998	return event;
3999}
4000EXPORT_SYMBOL_GPL(ring_buffer_consume);
4001
4002/**
4003 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
4004 * @buffer: The ring buffer to read from
4005 * @cpu: The cpu buffer to iterate over
4006 *
4007 * This performs the initial preparations necessary to iterate
4008 * through the buffer.  Memory is allocated, buffer recording
4009 * is disabled, and the iterator pointer is returned to the caller.
4010 *
4011 * Disabling buffer recordng prevents the reading from being
4012 * corrupted. This is not a consuming read, so a producer is not
4013 * expected.
4014 *
4015 * After a sequence of ring_buffer_read_prepare calls, the user is
4016 * expected to make at least one call to ring_buffer_read_prepare_sync.
4017 * Afterwards, ring_buffer_read_start is invoked to get things going
4018 * for real.
4019 *
4020 * This overall must be paired with ring_buffer_read_finish.
4021 */
4022struct ring_buffer_iter *
4023ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
4024{
4025	struct ring_buffer_per_cpu *cpu_buffer;
4026	struct ring_buffer_iter *iter;
4027
4028	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4029		return NULL;
4030
4031	iter = kmalloc(sizeof(*iter), GFP_KERNEL);
4032	if (!iter)
4033		return NULL;
4034
4035	cpu_buffer = buffer->buffers[cpu];
4036
4037	iter->cpu_buffer = cpu_buffer;
4038
4039	atomic_inc(&buffer->resize_disabled);
4040	atomic_inc(&cpu_buffer->record_disabled);
4041
4042	return iter;
4043}
4044EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
4045
4046/**
4047 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
4048 *
4049 * All previously invoked ring_buffer_read_prepare calls to prepare
4050 * iterators will be synchronized.  Afterwards, read_buffer_read_start
4051 * calls on those iterators are allowed.
4052 */
4053void
4054ring_buffer_read_prepare_sync(void)
4055{
4056	synchronize_sched();
4057}
4058EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
4059
4060/**
4061 * ring_buffer_read_start - start a non consuming read of the buffer
4062 * @iter: The iterator returned by ring_buffer_read_prepare
4063 *
4064 * This finalizes the startup of an iteration through the buffer.
4065 * The iterator comes from a call to ring_buffer_read_prepare and
4066 * an intervening ring_buffer_read_prepare_sync must have been
4067 * performed.
4068 *
4069 * Must be paired with ring_buffer_read_finish.
4070 */
4071void
4072ring_buffer_read_start(struct ring_buffer_iter *iter)
4073{
4074	struct ring_buffer_per_cpu *cpu_buffer;
4075	unsigned long flags;
4076
4077	if (!iter)
4078		return;
4079
4080	cpu_buffer = iter->cpu_buffer;
4081
4082	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4083	arch_spin_lock(&cpu_buffer->lock);
4084	rb_iter_reset(iter);
4085	arch_spin_unlock(&cpu_buffer->lock);
4086	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4087}
4088EXPORT_SYMBOL_GPL(ring_buffer_read_start);
4089
4090/**
4091 * ring_buffer_read_finish - finish reading the iterator of the buffer
4092 * @iter: The iterator retrieved by ring_buffer_start
4093 *
4094 * This re-enables the recording to the buffer, and frees the
4095 * iterator.
4096 */
4097void
4098ring_buffer_read_finish(struct ring_buffer_iter *iter)
4099{
4100	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4101	unsigned long flags;
4102
4103	/*
4104	 * Ring buffer is disabled from recording, here's a good place
4105	 * to check the integrity of the ring buffer.
4106	 * Must prevent readers from trying to read, as the check
4107	 * clears the HEAD page and readers require it.
4108	 */
4109	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4110	rb_check_pages(cpu_buffer);
4111	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4112
4113	atomic_dec(&cpu_buffer->record_disabled);
4114	atomic_dec(&cpu_buffer->buffer->resize_disabled);
4115	kfree(iter);
4116}
4117EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
4118
4119/**
4120 * ring_buffer_read - read the next item in the ring buffer by the iterator
4121 * @iter: The ring buffer iterator
4122 * @ts: The time stamp of the event read.
4123 *
4124 * This reads the next event in the ring buffer and increments the iterator.
4125 */
4126struct ring_buffer_event *
4127ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
4128{
4129	struct ring_buffer_event *event;
4130	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4131	unsigned long flags;
4132
4133	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4134 again:
4135	event = rb_iter_peek(iter, ts);
4136	if (!event)
4137		goto out;
4138
4139	if (event->type_len == RINGBUF_TYPE_PADDING)
4140		goto again;
4141
4142	rb_advance_iter(iter);
4143 out:
4144	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4145
4146	return event;
4147}
4148EXPORT_SYMBOL_GPL(ring_buffer_read);
4149
4150/**
4151 * ring_buffer_size - return the size of the ring buffer (in bytes)
4152 * @buffer: The ring buffer.
4153 */
4154unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
4155{
4156	/*
4157	 * Earlier, this method returned
4158	 *	BUF_PAGE_SIZE * buffer->nr_pages
4159	 * Since the nr_pages field is now removed, we have converted this to
4160	 * return the per cpu buffer value.
4161	 */
4162	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4163		return 0;
4164
4165	return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
4166}
4167EXPORT_SYMBOL_GPL(ring_buffer_size);
4168
4169static void
4170rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4171{
4172	rb_head_page_deactivate(cpu_buffer);
4173
4174	cpu_buffer->head_page
4175		= list_entry(cpu_buffer->pages, struct buffer_page, list);
4176	local_set(&cpu_buffer->head_page->write, 0);
4177	local_set(&cpu_buffer->head_page->entries, 0);
4178	local_set(&cpu_buffer->head_page->page->commit, 0);
4179
4180	cpu_buffer->head_page->read = 0;
4181
4182	cpu_buffer->tail_page = cpu_buffer->head_page;
4183	cpu_buffer->commit_page = cpu_buffer->head_page;
4184
4185	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
4186	INIT_LIST_HEAD(&cpu_buffer->new_pages);
4187	local_set(&cpu_buffer->reader_page->write, 0);
4188	local_set(&cpu_buffer->reader_page->entries, 0);
4189	local_set(&cpu_buffer->reader_page->page->commit, 0);
4190	cpu_buffer->reader_page->read = 0;
4191
 
4192	local_set(&cpu_buffer->entries_bytes, 0);
4193	local_set(&cpu_buffer->overrun, 0);
4194	local_set(&cpu_buffer->commit_overrun, 0);
4195	local_set(&cpu_buffer->dropped_events, 0);
4196	local_set(&cpu_buffer->entries, 0);
4197	local_set(&cpu_buffer->committing, 0);
4198	local_set(&cpu_buffer->commits, 0);
4199	cpu_buffer->read = 0;
4200	cpu_buffer->read_bytes = 0;
4201
4202	cpu_buffer->write_stamp = 0;
4203	cpu_buffer->read_stamp = 0;
4204
4205	cpu_buffer->lost_events = 0;
4206	cpu_buffer->last_overrun = 0;
4207
4208	rb_head_page_activate(cpu_buffer);
4209}
4210
4211/**
4212 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4213 * @buffer: The ring buffer to reset a per cpu buffer of
4214 * @cpu: The CPU buffer to be reset
4215 */
4216void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
4217{
4218	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4219	unsigned long flags;
4220
4221	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4222		return;
4223
4224	atomic_inc(&buffer->resize_disabled);
4225	atomic_inc(&cpu_buffer->record_disabled);
4226
4227	/* Make sure all commits have finished */
4228	synchronize_sched();
4229
4230	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4231
4232	if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
4233		goto out;
4234
4235	arch_spin_lock(&cpu_buffer->lock);
4236
4237	rb_reset_cpu(cpu_buffer);
4238
4239	arch_spin_unlock(&cpu_buffer->lock);
4240
4241 out:
4242	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4243
4244	atomic_dec(&cpu_buffer->record_disabled);
4245	atomic_dec(&buffer->resize_disabled);
4246}
4247EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
4248
4249/**
4250 * ring_buffer_reset - reset a ring buffer
4251 * @buffer: The ring buffer to reset all cpu buffers
4252 */
4253void ring_buffer_reset(struct ring_buffer *buffer)
4254{
4255	int cpu;
4256
4257	for_each_buffer_cpu(buffer, cpu)
4258		ring_buffer_reset_cpu(buffer, cpu);
4259}
4260EXPORT_SYMBOL_GPL(ring_buffer_reset);
4261
4262/**
4263 * rind_buffer_empty - is the ring buffer empty?
4264 * @buffer: The ring buffer to test
4265 */
4266bool ring_buffer_empty(struct ring_buffer *buffer)
4267{
4268	struct ring_buffer_per_cpu *cpu_buffer;
4269	unsigned long flags;
4270	bool dolock;
4271	int cpu;
4272	int ret;
4273
 
 
4274	/* yes this is racy, but if you don't like the race, lock the buffer */
4275	for_each_buffer_cpu(buffer, cpu) {
4276		cpu_buffer = buffer->buffers[cpu];
4277		local_irq_save(flags);
4278		dolock = rb_reader_lock(cpu_buffer);
 
4279		ret = rb_per_cpu_empty(cpu_buffer);
4280		rb_reader_unlock(cpu_buffer, dolock);
 
4281		local_irq_restore(flags);
4282
4283		if (!ret)
4284			return false;
4285	}
4286
4287	return true;
4288}
4289EXPORT_SYMBOL_GPL(ring_buffer_empty);
4290
4291/**
4292 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4293 * @buffer: The ring buffer
4294 * @cpu: The CPU buffer to test
4295 */
4296bool ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
4297{
4298	struct ring_buffer_per_cpu *cpu_buffer;
4299	unsigned long flags;
4300	bool dolock;
4301	int ret;
4302
4303	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4304		return true;
 
 
4305
4306	cpu_buffer = buffer->buffers[cpu];
4307	local_irq_save(flags);
4308	dolock = rb_reader_lock(cpu_buffer);
 
4309	ret = rb_per_cpu_empty(cpu_buffer);
4310	rb_reader_unlock(cpu_buffer, dolock);
 
4311	local_irq_restore(flags);
4312
4313	return ret;
4314}
4315EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
4316
4317#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4318/**
4319 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4320 * @buffer_a: One buffer to swap with
4321 * @buffer_b: The other buffer to swap with
4322 *
4323 * This function is useful for tracers that want to take a "snapshot"
4324 * of a CPU buffer and has another back up buffer lying around.
4325 * it is expected that the tracer handles the cpu buffer not being
4326 * used at the moment.
4327 */
4328int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
4329			 struct ring_buffer *buffer_b, int cpu)
4330{
4331	struct ring_buffer_per_cpu *cpu_buffer_a;
4332	struct ring_buffer_per_cpu *cpu_buffer_b;
4333	int ret = -EINVAL;
4334
4335	if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4336	    !cpumask_test_cpu(cpu, buffer_b->cpumask))
4337		goto out;
4338
4339	cpu_buffer_a = buffer_a->buffers[cpu];
4340	cpu_buffer_b = buffer_b->buffers[cpu];
4341
4342	/* At least make sure the two buffers are somewhat the same */
4343	if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
4344		goto out;
4345
4346	ret = -EAGAIN;
4347
 
 
 
4348	if (atomic_read(&buffer_a->record_disabled))
4349		goto out;
4350
4351	if (atomic_read(&buffer_b->record_disabled))
4352		goto out;
4353
4354	if (atomic_read(&cpu_buffer_a->record_disabled))
4355		goto out;
4356
4357	if (atomic_read(&cpu_buffer_b->record_disabled))
4358		goto out;
4359
4360	/*
4361	 * We can't do a synchronize_sched here because this
4362	 * function can be called in atomic context.
4363	 * Normally this will be called from the same CPU as cpu.
4364	 * If not it's up to the caller to protect this.
4365	 */
4366	atomic_inc(&cpu_buffer_a->record_disabled);
4367	atomic_inc(&cpu_buffer_b->record_disabled);
4368
4369	ret = -EBUSY;
4370	if (local_read(&cpu_buffer_a->committing))
4371		goto out_dec;
4372	if (local_read(&cpu_buffer_b->committing))
4373		goto out_dec;
4374
4375	buffer_a->buffers[cpu] = cpu_buffer_b;
4376	buffer_b->buffers[cpu] = cpu_buffer_a;
4377
4378	cpu_buffer_b->buffer = buffer_a;
4379	cpu_buffer_a->buffer = buffer_b;
4380
4381	ret = 0;
4382
4383out_dec:
4384	atomic_dec(&cpu_buffer_a->record_disabled);
4385	atomic_dec(&cpu_buffer_b->record_disabled);
4386out:
4387	return ret;
4388}
4389EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
4390#endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
4391
4392/**
4393 * ring_buffer_alloc_read_page - allocate a page to read from buffer
4394 * @buffer: the buffer to allocate for.
4395 * @cpu: the cpu buffer to allocate.
4396 *
4397 * This function is used in conjunction with ring_buffer_read_page.
4398 * When reading a full page from the ring buffer, these functions
4399 * can be used to speed up the process. The calling function should
4400 * allocate a few pages first with this function. Then when it
4401 * needs to get pages from the ring buffer, it passes the result
4402 * of this function into ring_buffer_read_page, which will swap
4403 * the page that was allocated, with the read page of the buffer.
4404 *
4405 * Returns:
4406 *  The page allocated, or NULL on error.
4407 */
4408void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
4409{
4410	struct buffer_data_page *bpage;
4411	struct page *page;
4412
4413	page = alloc_pages_node(cpu_to_node(cpu),
4414				GFP_KERNEL | __GFP_NORETRY, 0);
4415	if (!page)
4416		return NULL;
4417
4418	bpage = page_address(page);
4419
4420	rb_init_page(bpage);
4421
4422	return bpage;
4423}
4424EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
4425
4426/**
4427 * ring_buffer_free_read_page - free an allocated read page
4428 * @buffer: the buffer the page was allocate for
4429 * @data: the page to free
4430 *
4431 * Free a page allocated from ring_buffer_alloc_read_page.
4432 */
4433void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
4434{
4435	free_page((unsigned long)data);
4436}
4437EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
4438
4439/**
4440 * ring_buffer_read_page - extract a page from the ring buffer
4441 * @buffer: buffer to extract from
4442 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
4443 * @len: amount to extract
4444 * @cpu: the cpu of the buffer to extract
4445 * @full: should the extraction only happen when the page is full.
4446 *
4447 * This function will pull out a page from the ring buffer and consume it.
4448 * @data_page must be the address of the variable that was returned
4449 * from ring_buffer_alloc_read_page. This is because the page might be used
4450 * to swap with a page in the ring buffer.
4451 *
4452 * for example:
4453 *	rpage = ring_buffer_alloc_read_page(buffer, cpu);
4454 *	if (!rpage)
4455 *		return error;
4456 *	ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
4457 *	if (ret >= 0)
4458 *		process_page(rpage, ret);
4459 *
4460 * When @full is set, the function will not return true unless
4461 * the writer is off the reader page.
4462 *
4463 * Note: it is up to the calling functions to handle sleeps and wakeups.
4464 *  The ring buffer can be used anywhere in the kernel and can not
4465 *  blindly call wake_up. The layer that uses the ring buffer must be
4466 *  responsible for that.
4467 *
4468 * Returns:
4469 *  >=0 if data has been transferred, returns the offset of consumed data.
4470 *  <0 if no data has been transferred.
4471 */
4472int ring_buffer_read_page(struct ring_buffer *buffer,
4473			  void **data_page, size_t len, int cpu, int full)
4474{
4475	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4476	struct ring_buffer_event *event;
4477	struct buffer_data_page *bpage;
4478	struct buffer_page *reader;
4479	unsigned long missed_events;
4480	unsigned long flags;
4481	unsigned int commit;
4482	unsigned int read;
4483	u64 save_timestamp;
4484	int ret = -1;
4485
4486	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4487		goto out;
4488
4489	/*
4490	 * If len is not big enough to hold the page header, then
4491	 * we can not copy anything.
4492	 */
4493	if (len <= BUF_PAGE_HDR_SIZE)
4494		goto out;
4495
4496	len -= BUF_PAGE_HDR_SIZE;
4497
4498	if (!data_page)
4499		goto out;
4500
4501	bpage = *data_page;
4502	if (!bpage)
4503		goto out;
4504
4505	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4506
4507	reader = rb_get_reader_page(cpu_buffer);
4508	if (!reader)
4509		goto out_unlock;
4510
4511	event = rb_reader_event(cpu_buffer);
4512
4513	read = reader->read;
4514	commit = rb_page_commit(reader);
4515
4516	/* Check if any events were dropped */
4517	missed_events = cpu_buffer->lost_events;
4518
4519	/*
4520	 * If this page has been partially read or
4521	 * if len is not big enough to read the rest of the page or
4522	 * a writer is still on the page, then
4523	 * we must copy the data from the page to the buffer.
4524	 * Otherwise, we can simply swap the page with the one passed in.
4525	 */
4526	if (read || (len < (commit - read)) ||
4527	    cpu_buffer->reader_page == cpu_buffer->commit_page) {
4528		struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
4529		unsigned int rpos = read;
4530		unsigned int pos = 0;
4531		unsigned int size;
4532
4533		if (full)
4534			goto out_unlock;
4535
4536		if (len > (commit - read))
4537			len = (commit - read);
4538
4539		/* Always keep the time extend and data together */
4540		size = rb_event_ts_length(event);
4541
4542		if (len < size)
4543			goto out_unlock;
4544
4545		/* save the current timestamp, since the user will need it */
4546		save_timestamp = cpu_buffer->read_stamp;
4547
4548		/* Need to copy one event at a time */
4549		do {
4550			/* We need the size of one event, because
4551			 * rb_advance_reader only advances by one event,
4552			 * whereas rb_event_ts_length may include the size of
4553			 * one or two events.
4554			 * We have already ensured there's enough space if this
4555			 * is a time extend. */
4556			size = rb_event_length(event);
4557			memcpy(bpage->data + pos, rpage->data + rpos, size);
4558
4559			len -= size;
4560
4561			rb_advance_reader(cpu_buffer);
4562			rpos = reader->read;
4563			pos += size;
4564
4565			if (rpos >= commit)
4566				break;
4567
4568			event = rb_reader_event(cpu_buffer);
4569			/* Always keep the time extend and data together */
4570			size = rb_event_ts_length(event);
4571		} while (len >= size);
4572
4573		/* update bpage */
4574		local_set(&bpage->commit, pos);
4575		bpage->time_stamp = save_timestamp;
4576
4577		/* we copied everything to the beginning */
4578		read = 0;
4579	} else {
4580		/* update the entry counter */
4581		cpu_buffer->read += rb_page_entries(reader);
4582		cpu_buffer->read_bytes += BUF_PAGE_SIZE;
4583
4584		/* swap the pages */
4585		rb_init_page(bpage);
4586		bpage = reader->page;
4587		reader->page = *data_page;
4588		local_set(&reader->write, 0);
4589		local_set(&reader->entries, 0);
4590		reader->read = 0;
4591		*data_page = bpage;
4592
4593		/*
4594		 * Use the real_end for the data size,
4595		 * This gives us a chance to store the lost events
4596		 * on the page.
4597		 */
4598		if (reader->real_end)
4599			local_set(&bpage->commit, reader->real_end);
4600	}
4601	ret = read;
4602
4603	cpu_buffer->lost_events = 0;
4604
4605	commit = local_read(&bpage->commit);
4606	/*
4607	 * Set a flag in the commit field if we lost events
4608	 */
4609	if (missed_events) {
4610		/* If there is room at the end of the page to save the
4611		 * missed events, then record it there.
4612		 */
4613		if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4614			memcpy(&bpage->data[commit], &missed_events,
4615			       sizeof(missed_events));
4616			local_add(RB_MISSED_STORED, &bpage->commit);
4617			commit += sizeof(missed_events);
4618		}
4619		local_add(RB_MISSED_EVENTS, &bpage->commit);
4620	}
4621
4622	/*
4623	 * This page may be off to user land. Zero it out here.
4624	 */
4625	if (commit < BUF_PAGE_SIZE)
4626		memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4627
4628 out_unlock:
4629	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4630
4631 out:
4632	return ret;
4633}
4634EXPORT_SYMBOL_GPL(ring_buffer_read_page);
4635
4636#ifdef CONFIG_HOTPLUG_CPU
4637static int rb_cpu_notify(struct notifier_block *self,
4638			 unsigned long action, void *hcpu)
4639{
4640	struct ring_buffer *buffer =
4641		container_of(self, struct ring_buffer, cpu_notify);
4642	long cpu = (long)hcpu;
4643	int cpu_i, nr_pages_same;
4644	unsigned int nr_pages;
4645
4646	switch (action) {
4647	case CPU_UP_PREPARE:
4648	case CPU_UP_PREPARE_FROZEN:
4649		if (cpumask_test_cpu(cpu, buffer->cpumask))
4650			return NOTIFY_OK;
4651
4652		nr_pages = 0;
4653		nr_pages_same = 1;
4654		/* check if all cpu sizes are same */
4655		for_each_buffer_cpu(buffer, cpu_i) {
4656			/* fill in the size from first enabled cpu */
4657			if (nr_pages == 0)
4658				nr_pages = buffer->buffers[cpu_i]->nr_pages;
4659			if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4660				nr_pages_same = 0;
4661				break;
4662			}
4663		}
4664		/* allocate minimum pages, user can later expand it */
4665		if (!nr_pages_same)
4666			nr_pages = 2;
4667		buffer->buffers[cpu] =
4668			rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
4669		if (!buffer->buffers[cpu]) {
4670			WARN(1, "failed to allocate ring buffer on CPU %ld\n",
4671			     cpu);
4672			return NOTIFY_OK;
4673		}
4674		smp_wmb();
4675		cpumask_set_cpu(cpu, buffer->cpumask);
4676		break;
4677	case CPU_DOWN_PREPARE:
4678	case CPU_DOWN_PREPARE_FROZEN:
4679		/*
4680		 * Do nothing.
4681		 *  If we were to free the buffer, then the user would
4682		 *  lose any trace that was in the buffer.
4683		 */
4684		break;
4685	default:
4686		break;
4687	}
4688	return NOTIFY_OK;
4689}
4690#endif
4691
4692#ifdef CONFIG_RING_BUFFER_STARTUP_TEST
4693/*
4694 * This is a basic integrity check of the ring buffer.
4695 * Late in the boot cycle this test will run when configured in.
4696 * It will kick off a thread per CPU that will go into a loop
4697 * writing to the per cpu ring buffer various sizes of data.
4698 * Some of the data will be large items, some small.
4699 *
4700 * Another thread is created that goes into a spin, sending out
4701 * IPIs to the other CPUs to also write into the ring buffer.
4702 * this is to test the nesting ability of the buffer.
4703 *
4704 * Basic stats are recorded and reported. If something in the
4705 * ring buffer should happen that's not expected, a big warning
4706 * is displayed and all ring buffers are disabled.
4707 */
4708static struct task_struct *rb_threads[NR_CPUS] __initdata;
4709
4710struct rb_test_data {
4711	struct ring_buffer	*buffer;
4712	unsigned long		events;
4713	unsigned long		bytes_written;
4714	unsigned long		bytes_alloc;
4715	unsigned long		bytes_dropped;
4716	unsigned long		events_nested;
4717	unsigned long		bytes_written_nested;
4718	unsigned long		bytes_alloc_nested;
4719	unsigned long		bytes_dropped_nested;
4720	int			min_size_nested;
4721	int			max_size_nested;
4722	int			max_size;
4723	int			min_size;
4724	int			cpu;
4725	int			cnt;
4726};
4727
4728static struct rb_test_data rb_data[NR_CPUS] __initdata;
4729
4730/* 1 meg per cpu */
4731#define RB_TEST_BUFFER_SIZE	1048576
4732
4733static char rb_string[] __initdata =
4734	"abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
4735	"?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
4736	"!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
4737
4738static bool rb_test_started __initdata;
4739
4740struct rb_item {
4741	int size;
4742	char str[];
4743};
4744
4745static __init int rb_write_something(struct rb_test_data *data, bool nested)
4746{
4747	struct ring_buffer_event *event;
4748	struct rb_item *item;
4749	bool started;
4750	int event_len;
4751	int size;
4752	int len;
4753	int cnt;
4754
4755	/* Have nested writes different that what is written */
4756	cnt = data->cnt + (nested ? 27 : 0);
4757
4758	/* Multiply cnt by ~e, to make some unique increment */
4759	size = (data->cnt * 68 / 25) % (sizeof(rb_string) - 1);
4760
4761	len = size + sizeof(struct rb_item);
4762
4763	started = rb_test_started;
4764	/* read rb_test_started before checking buffer enabled */
4765	smp_rmb();
4766
4767	event = ring_buffer_lock_reserve(data->buffer, len);
4768	if (!event) {
4769		/* Ignore dropped events before test starts. */
4770		if (started) {
4771			if (nested)
4772				data->bytes_dropped += len;
4773			else
4774				data->bytes_dropped_nested += len;
4775		}
4776		return len;
4777	}
4778
4779	event_len = ring_buffer_event_length(event);
4780
4781	if (RB_WARN_ON(data->buffer, event_len < len))
4782		goto out;
4783
4784	item = ring_buffer_event_data(event);
4785	item->size = size;
4786	memcpy(item->str, rb_string, size);
4787
4788	if (nested) {
4789		data->bytes_alloc_nested += event_len;
4790		data->bytes_written_nested += len;
4791		data->events_nested++;
4792		if (!data->min_size_nested || len < data->min_size_nested)
4793			data->min_size_nested = len;
4794		if (len > data->max_size_nested)
4795			data->max_size_nested = len;
4796	} else {
4797		data->bytes_alloc += event_len;
4798		data->bytes_written += len;
4799		data->events++;
4800		if (!data->min_size || len < data->min_size)
4801			data->max_size = len;
4802		if (len > data->max_size)
4803			data->max_size = len;
4804	}
4805
4806 out:
4807	ring_buffer_unlock_commit(data->buffer, event);
4808
4809	return 0;
4810}
4811
4812static __init int rb_test(void *arg)
4813{
4814	struct rb_test_data *data = arg;
4815
4816	while (!kthread_should_stop()) {
4817		rb_write_something(data, false);
4818		data->cnt++;
4819
4820		set_current_state(TASK_INTERRUPTIBLE);
4821		/* Now sleep between a min of 100-300us and a max of 1ms */
4822		usleep_range(((data->cnt % 3) + 1) * 100, 1000);
4823	}
4824
4825	return 0;
4826}
4827
4828static __init void rb_ipi(void *ignore)
4829{
4830	struct rb_test_data *data;
4831	int cpu = smp_processor_id();
4832
4833	data = &rb_data[cpu];
4834	rb_write_something(data, true);
4835}
4836
4837static __init int rb_hammer_test(void *arg)
4838{
4839	while (!kthread_should_stop()) {
4840
4841		/* Send an IPI to all cpus to write data! */
4842		smp_call_function(rb_ipi, NULL, 1);
4843		/* No sleep, but for non preempt, let others run */
4844		schedule();
4845	}
4846
4847	return 0;
4848}
4849
4850static __init int test_ringbuffer(void)
4851{
4852	struct task_struct *rb_hammer;
4853	struct ring_buffer *buffer;
4854	int cpu;
4855	int ret = 0;
4856
4857	pr_info("Running ring buffer tests...\n");
4858
4859	buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
4860	if (WARN_ON(!buffer))
4861		return 0;
4862
4863	/* Disable buffer so that threads can't write to it yet */
4864	ring_buffer_record_off(buffer);
4865
4866	for_each_online_cpu(cpu) {
4867		rb_data[cpu].buffer = buffer;
4868		rb_data[cpu].cpu = cpu;
4869		rb_data[cpu].cnt = cpu;
4870		rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
4871						 "rbtester/%d", cpu);
4872		if (WARN_ON(!rb_threads[cpu])) {
4873			pr_cont("FAILED\n");
4874			ret = -1;
4875			goto out_free;
4876		}
4877
4878		kthread_bind(rb_threads[cpu], cpu);
4879 		wake_up_process(rb_threads[cpu]);
4880	}
4881
4882	/* Now create the rb hammer! */
4883	rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
4884	if (WARN_ON(!rb_hammer)) {
4885		pr_cont("FAILED\n");
4886		ret = -1;
4887		goto out_free;
4888	}
4889
4890	ring_buffer_record_on(buffer);
4891	/*
4892	 * Show buffer is enabled before setting rb_test_started.
4893	 * Yes there's a small race window where events could be
4894	 * dropped and the thread wont catch it. But when a ring
4895	 * buffer gets enabled, there will always be some kind of
4896	 * delay before other CPUs see it. Thus, we don't care about
4897	 * those dropped events. We care about events dropped after
4898	 * the threads see that the buffer is active.
4899	 */
4900	smp_wmb();
4901	rb_test_started = true;
4902
4903	set_current_state(TASK_INTERRUPTIBLE);
4904	/* Just run for 10 seconds */;
4905	schedule_timeout(10 * HZ);
4906
4907	kthread_stop(rb_hammer);
4908
4909 out_free:
4910	for_each_online_cpu(cpu) {
4911		if (!rb_threads[cpu])
4912			break;
4913		kthread_stop(rb_threads[cpu]);
4914	}
4915	if (ret) {
4916		ring_buffer_free(buffer);
4917		return ret;
4918	}
4919
4920	/* Report! */
4921	pr_info("finished\n");
4922	for_each_online_cpu(cpu) {
4923		struct ring_buffer_event *event;
4924		struct rb_test_data *data = &rb_data[cpu];
4925		struct rb_item *item;
4926		unsigned long total_events;
4927		unsigned long total_dropped;
4928		unsigned long total_written;
4929		unsigned long total_alloc;
4930		unsigned long total_read = 0;
4931		unsigned long total_size = 0;
4932		unsigned long total_len = 0;
4933		unsigned long total_lost = 0;
4934		unsigned long lost;
4935		int big_event_size;
4936		int small_event_size;
4937
4938		ret = -1;
4939
4940		total_events = data->events + data->events_nested;
4941		total_written = data->bytes_written + data->bytes_written_nested;
4942		total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
4943		total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
4944
4945		big_event_size = data->max_size + data->max_size_nested;
4946		small_event_size = data->min_size + data->min_size_nested;
4947
4948		pr_info("CPU %d:\n", cpu);
4949		pr_info("              events:    %ld\n", total_events);
4950		pr_info("       dropped bytes:    %ld\n", total_dropped);
4951		pr_info("       alloced bytes:    %ld\n", total_alloc);
4952		pr_info("       written bytes:    %ld\n", total_written);
4953		pr_info("       biggest event:    %d\n", big_event_size);
4954		pr_info("      smallest event:    %d\n", small_event_size);
4955
4956		if (RB_WARN_ON(buffer, total_dropped))
4957			break;
4958
4959		ret = 0;
4960
4961		while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
4962			total_lost += lost;
4963			item = ring_buffer_event_data(event);
4964			total_len += ring_buffer_event_length(event);
4965			total_size += item->size + sizeof(struct rb_item);
4966			if (memcmp(&item->str[0], rb_string, item->size) != 0) {
4967				pr_info("FAILED!\n");
4968				pr_info("buffer had: %.*s\n", item->size, item->str);
4969				pr_info("expected:   %.*s\n", item->size, rb_string);
4970				RB_WARN_ON(buffer, 1);
4971				ret = -1;
4972				break;
4973			}
4974			total_read++;
4975		}
4976		if (ret)
4977			break;
4978
4979		ret = -1;
4980
4981		pr_info("         read events:   %ld\n", total_read);
4982		pr_info("         lost events:   %ld\n", total_lost);
4983		pr_info("        total events:   %ld\n", total_lost + total_read);
4984		pr_info("  recorded len bytes:   %ld\n", total_len);
4985		pr_info(" recorded size bytes:   %ld\n", total_size);
4986		if (total_lost)
4987			pr_info(" With dropped events, record len and size may not match\n"
4988				" alloced and written from above\n");
4989		if (!total_lost) {
4990			if (RB_WARN_ON(buffer, total_len != total_alloc ||
4991				       total_size != total_written))
4992				break;
4993		}
4994		if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
4995			break;
4996
4997		ret = 0;
4998	}
4999	if (!ret)
5000		pr_info("Ring buffer PASSED!\n");
5001
5002	ring_buffer_free(buffer);
5003	return 0;
5004}
5005
5006late_initcall(test_ringbuffer);
5007#endif /* CONFIG_RING_BUFFER_STARTUP_TEST */
v3.5.6
   1/*
   2 * Generic ring buffer
   3 *
   4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
   5 */
 
   6#include <linux/ring_buffer.h>
   7#include <linux/trace_clock.h>
 
   8#include <linux/spinlock.h>
   9#include <linux/debugfs.h>
  10#include <linux/uaccess.h>
  11#include <linux/hardirq.h>
 
  12#include <linux/kmemcheck.h>
  13#include <linux/module.h>
  14#include <linux/percpu.h>
  15#include <linux/mutex.h>
 
  16#include <linux/slab.h>
  17#include <linux/init.h>
  18#include <linux/hash.h>
  19#include <linux/list.h>
  20#include <linux/cpu.h>
  21#include <linux/fs.h>
  22
  23#include <asm/local.h>
  24#include "trace.h"
  25
  26static void update_pages_handler(struct work_struct *work);
  27
  28/*
  29 * The ring buffer header is special. We must manually up keep it.
  30 */
  31int ring_buffer_print_entry_header(struct trace_seq *s)
  32{
  33	int ret;
  34
  35	ret = trace_seq_printf(s, "# compressed entry header\n");
  36	ret = trace_seq_printf(s, "\ttype_len    :    5 bits\n");
  37	ret = trace_seq_printf(s, "\ttime_delta  :   27 bits\n");
  38	ret = trace_seq_printf(s, "\tarray       :   32 bits\n");
  39	ret = trace_seq_printf(s, "\n");
  40	ret = trace_seq_printf(s, "\tpadding     : type == %d\n",
  41			       RINGBUF_TYPE_PADDING);
  42	ret = trace_seq_printf(s, "\ttime_extend : type == %d\n",
  43			       RINGBUF_TYPE_TIME_EXTEND);
  44	ret = trace_seq_printf(s, "\tdata max type_len  == %d\n",
  45			       RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
  46
  47	return ret;
  48}
  49
  50/*
  51 * The ring buffer is made up of a list of pages. A separate list of pages is
  52 * allocated for each CPU. A writer may only write to a buffer that is
  53 * associated with the CPU it is currently executing on.  A reader may read
  54 * from any per cpu buffer.
  55 *
  56 * The reader is special. For each per cpu buffer, the reader has its own
  57 * reader page. When a reader has read the entire reader page, this reader
  58 * page is swapped with another page in the ring buffer.
  59 *
  60 * Now, as long as the writer is off the reader page, the reader can do what
  61 * ever it wants with that page. The writer will never write to that page
  62 * again (as long as it is out of the ring buffer).
  63 *
  64 * Here's some silly ASCII art.
  65 *
  66 *   +------+
  67 *   |reader|          RING BUFFER
  68 *   |page  |
  69 *   +------+        +---+   +---+   +---+
  70 *                   |   |-->|   |-->|   |
  71 *                   +---+   +---+   +---+
  72 *                     ^               |
  73 *                     |               |
  74 *                     +---------------+
  75 *
  76 *
  77 *   +------+
  78 *   |reader|          RING BUFFER
  79 *   |page  |------------------v
  80 *   +------+        +---+   +---+   +---+
  81 *                   |   |-->|   |-->|   |
  82 *                   +---+   +---+   +---+
  83 *                     ^               |
  84 *                     |               |
  85 *                     +---------------+
  86 *
  87 *
  88 *   +------+
  89 *   |reader|          RING BUFFER
  90 *   |page  |------------------v
  91 *   +------+        +---+   +---+   +---+
  92 *      ^            |   |-->|   |-->|   |
  93 *      |            +---+   +---+   +---+
  94 *      |                              |
  95 *      |                              |
  96 *      +------------------------------+
  97 *
  98 *
  99 *   +------+
 100 *   |buffer|          RING BUFFER
 101 *   |page  |------------------v
 102 *   +------+        +---+   +---+   +---+
 103 *      ^            |   |   |   |-->|   |
 104 *      |   New      +---+   +---+   +---+
 105 *      |  Reader------^               |
 106 *      |   page                       |
 107 *      +------------------------------+
 108 *
 109 *
 110 * After we make this swap, the reader can hand this page off to the splice
 111 * code and be done with it. It can even allocate a new page if it needs to
 112 * and swap that into the ring buffer.
 113 *
 114 * We will be using cmpxchg soon to make all this lockless.
 115 *
 116 */
 117
 118/*
 119 * A fast way to enable or disable all ring buffers is to
 120 * call tracing_on or tracing_off. Turning off the ring buffers
 121 * prevents all ring buffers from being recorded to.
 122 * Turning this switch on, makes it OK to write to the
 123 * ring buffer, if the ring buffer is enabled itself.
 124 *
 125 * There's three layers that must be on in order to write
 126 * to the ring buffer.
 127 *
 128 * 1) This global flag must be set.
 129 * 2) The ring buffer must be enabled for recording.
 130 * 3) The per cpu buffer must be enabled for recording.
 131 *
 132 * In case of an anomaly, this global flag has a bit set that
 133 * will permantly disable all ring buffers.
 134 */
 135
 136/*
 137 * Global flag to disable all recording to ring buffers
 138 *  This has two bits: ON, DISABLED
 139 *
 140 *  ON   DISABLED
 141 * ---- ----------
 142 *   0      0        : ring buffers are off
 143 *   1      0        : ring buffers are on
 144 *   X      1        : ring buffers are permanently disabled
 145 */
 146
 147enum {
 148	RB_BUFFERS_ON_BIT	= 0,
 149	RB_BUFFERS_DISABLED_BIT	= 1,
 150};
 151
 152enum {
 153	RB_BUFFERS_ON		= 1 << RB_BUFFERS_ON_BIT,
 154	RB_BUFFERS_DISABLED	= 1 << RB_BUFFERS_DISABLED_BIT,
 155};
 156
 157static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
 158
 159/* Used for individual buffers (after the counter) */
 160#define RB_BUFFER_OFF		(1 << 20)
 161
 162#define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
 163
 164/**
 165 * tracing_off_permanent - permanently disable ring buffers
 166 *
 167 * This function, once called, will disable all ring buffers
 168 * permanently.
 169 */
 170void tracing_off_permanent(void)
 171{
 172	set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
 173}
 174
 175#define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
 176#define RB_ALIGNMENT		4U
 177#define RB_MAX_SMALL_DATA	(RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
 178#define RB_EVNT_MIN_SIZE	8U	/* two 32bit words */
 179
 180#if !defined(CONFIG_64BIT) || defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
 181# define RB_FORCE_8BYTE_ALIGNMENT	0
 182# define RB_ARCH_ALIGNMENT		RB_ALIGNMENT
 183#else
 184# define RB_FORCE_8BYTE_ALIGNMENT	1
 185# define RB_ARCH_ALIGNMENT		8U
 186#endif
 187
 
 
 188/* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
 189#define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
 190
 191enum {
 192	RB_LEN_TIME_EXTEND = 8,
 193	RB_LEN_TIME_STAMP = 16,
 194};
 195
 196#define skip_time_extend(event) \
 197	((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
 198
 199static inline int rb_null_event(struct ring_buffer_event *event)
 200{
 201	return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
 202}
 203
 204static void rb_event_set_padding(struct ring_buffer_event *event)
 205{
 206	/* padding has a NULL time_delta */
 207	event->type_len = RINGBUF_TYPE_PADDING;
 208	event->time_delta = 0;
 209}
 210
 211static unsigned
 212rb_event_data_length(struct ring_buffer_event *event)
 213{
 214	unsigned length;
 215
 216	if (event->type_len)
 217		length = event->type_len * RB_ALIGNMENT;
 218	else
 219		length = event->array[0];
 220	return length + RB_EVNT_HDR_SIZE;
 221}
 222
 223/*
 224 * Return the length of the given event. Will return
 225 * the length of the time extend if the event is a
 226 * time extend.
 227 */
 228static inline unsigned
 229rb_event_length(struct ring_buffer_event *event)
 230{
 231	switch (event->type_len) {
 232	case RINGBUF_TYPE_PADDING:
 233		if (rb_null_event(event))
 234			/* undefined */
 235			return -1;
 236		return  event->array[0] + RB_EVNT_HDR_SIZE;
 237
 238	case RINGBUF_TYPE_TIME_EXTEND:
 239		return RB_LEN_TIME_EXTEND;
 240
 241	case RINGBUF_TYPE_TIME_STAMP:
 242		return RB_LEN_TIME_STAMP;
 243
 244	case RINGBUF_TYPE_DATA:
 245		return rb_event_data_length(event);
 246	default:
 247		BUG();
 248	}
 249	/* not hit */
 250	return 0;
 251}
 252
 253/*
 254 * Return total length of time extend and data,
 255 *   or just the event length for all other events.
 256 */
 257static inline unsigned
 258rb_event_ts_length(struct ring_buffer_event *event)
 259{
 260	unsigned len = 0;
 261
 262	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
 263		/* time extends include the data event after it */
 264		len = RB_LEN_TIME_EXTEND;
 265		event = skip_time_extend(event);
 266	}
 267	return len + rb_event_length(event);
 268}
 269
 270/**
 271 * ring_buffer_event_length - return the length of the event
 272 * @event: the event to get the length of
 273 *
 274 * Returns the size of the data load of a data event.
 275 * If the event is something other than a data event, it
 276 * returns the size of the event itself. With the exception
 277 * of a TIME EXTEND, where it still returns the size of the
 278 * data load of the data event after it.
 279 */
 280unsigned ring_buffer_event_length(struct ring_buffer_event *event)
 281{
 282	unsigned length;
 283
 284	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
 285		event = skip_time_extend(event);
 286
 287	length = rb_event_length(event);
 288	if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
 289		return length;
 290	length -= RB_EVNT_HDR_SIZE;
 291	if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
 292                length -= sizeof(event->array[0]);
 293	return length;
 294}
 295EXPORT_SYMBOL_GPL(ring_buffer_event_length);
 296
 297/* inline for ring buffer fast paths */
 298static void *
 299rb_event_data(struct ring_buffer_event *event)
 300{
 301	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
 302		event = skip_time_extend(event);
 303	BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
 304	/* If length is in len field, then array[0] has the data */
 305	if (event->type_len)
 306		return (void *)&event->array[0];
 307	/* Otherwise length is in array[0] and array[1] has the data */
 308	return (void *)&event->array[1];
 309}
 310
 311/**
 312 * ring_buffer_event_data - return the data of the event
 313 * @event: the event to get the data from
 314 */
 315void *ring_buffer_event_data(struct ring_buffer_event *event)
 316{
 317	return rb_event_data(event);
 318}
 319EXPORT_SYMBOL_GPL(ring_buffer_event_data);
 320
 321#define for_each_buffer_cpu(buffer, cpu)		\
 322	for_each_cpu(cpu, buffer->cpumask)
 323
 324#define TS_SHIFT	27
 325#define TS_MASK		((1ULL << TS_SHIFT) - 1)
 326#define TS_DELTA_TEST	(~TS_MASK)
 327
 328/* Flag when events were overwritten */
 329#define RB_MISSED_EVENTS	(1 << 31)
 330/* Missed count stored at end */
 331#define RB_MISSED_STORED	(1 << 30)
 332
 333struct buffer_data_page {
 334	u64		 time_stamp;	/* page time stamp */
 335	local_t		 commit;	/* write committed index */
 336	unsigned char	 data[];	/* data of buffer page */
 337};
 338
 339/*
 340 * Note, the buffer_page list must be first. The buffer pages
 341 * are allocated in cache lines, which means that each buffer
 342 * page will be at the beginning of a cache line, and thus
 343 * the least significant bits will be zero. We use this to
 344 * add flags in the list struct pointers, to make the ring buffer
 345 * lockless.
 346 */
 347struct buffer_page {
 348	struct list_head list;		/* list of buffer pages */
 349	local_t		 write;		/* index for next write */
 350	unsigned	 read;		/* index for next read */
 351	local_t		 entries;	/* entries on this page */
 352	unsigned long	 real_end;	/* real end of data */
 353	struct buffer_data_page *page;	/* Actual data page */
 354};
 355
 356/*
 357 * The buffer page counters, write and entries, must be reset
 358 * atomically when crossing page boundaries. To synchronize this
 359 * update, two counters are inserted into the number. One is
 360 * the actual counter for the write position or count on the page.
 361 *
 362 * The other is a counter of updaters. Before an update happens
 363 * the update partition of the counter is incremented. This will
 364 * allow the updater to update the counter atomically.
 365 *
 366 * The counter is 20 bits, and the state data is 12.
 367 */
 368#define RB_WRITE_MASK		0xfffff
 369#define RB_WRITE_INTCNT		(1 << 20)
 370
 371static void rb_init_page(struct buffer_data_page *bpage)
 372{
 373	local_set(&bpage->commit, 0);
 374}
 375
 376/**
 377 * ring_buffer_page_len - the size of data on the page.
 378 * @page: The page to read
 379 *
 380 * Returns the amount of data on the page, including buffer page header.
 381 */
 382size_t ring_buffer_page_len(void *page)
 383{
 384	return local_read(&((struct buffer_data_page *)page)->commit)
 385		+ BUF_PAGE_HDR_SIZE;
 386}
 387
 388/*
 389 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
 390 * this issue out.
 391 */
 392static void free_buffer_page(struct buffer_page *bpage)
 393{
 394	free_page((unsigned long)bpage->page);
 395	kfree(bpage);
 396}
 397
 398/*
 399 * We need to fit the time_stamp delta into 27 bits.
 400 */
 401static inline int test_time_stamp(u64 delta)
 402{
 403	if (delta & TS_DELTA_TEST)
 404		return 1;
 405	return 0;
 406}
 407
 408#define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
 409
 410/* Max payload is BUF_PAGE_SIZE - header (8bytes) */
 411#define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
 412
 413int ring_buffer_print_page_header(struct trace_seq *s)
 414{
 415	struct buffer_data_page field;
 416	int ret;
 417
 418	ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t"
 419			       "offset:0;\tsize:%u;\tsigned:%u;\n",
 420			       (unsigned int)sizeof(field.time_stamp),
 421			       (unsigned int)is_signed_type(u64));
 422
 423	ret = trace_seq_printf(s, "\tfield: local_t commit;\t"
 424			       "offset:%u;\tsize:%u;\tsigned:%u;\n",
 425			       (unsigned int)offsetof(typeof(field), commit),
 426			       (unsigned int)sizeof(field.commit),
 427			       (unsigned int)is_signed_type(long));
 428
 429	ret = trace_seq_printf(s, "\tfield: int overwrite;\t"
 430			       "offset:%u;\tsize:%u;\tsigned:%u;\n",
 431			       (unsigned int)offsetof(typeof(field), commit),
 432			       1,
 433			       (unsigned int)is_signed_type(long));
 434
 435	ret = trace_seq_printf(s, "\tfield: char data;\t"
 436			       "offset:%u;\tsize:%u;\tsigned:%u;\n",
 437			       (unsigned int)offsetof(typeof(field), data),
 438			       (unsigned int)BUF_PAGE_SIZE,
 439			       (unsigned int)is_signed_type(char));
 
 
 
 
 
 
 
 
 
 
 
 
 440
 441	return ret;
 442}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 443
 444/*
 445 * head_page == tail_page && head == tail then buffer is empty.
 446 */
 447struct ring_buffer_per_cpu {
 448	int				cpu;
 449	atomic_t			record_disabled;
 450	struct ring_buffer		*buffer;
 451	raw_spinlock_t			reader_lock;	/* serialize readers */
 452	arch_spinlock_t			lock;
 453	struct lock_class_key		lock_key;
 454	unsigned int			nr_pages;
 
 455	struct list_head		*pages;
 456	struct buffer_page		*head_page;	/* read from head */
 457	struct buffer_page		*tail_page;	/* write to tail */
 458	struct buffer_page		*commit_page;	/* committed pages */
 459	struct buffer_page		*reader_page;
 460	unsigned long			lost_events;
 461	unsigned long			last_overrun;
 462	local_t				entries_bytes;
 
 
 463	local_t				commit_overrun;
 464	local_t				overrun;
 465	local_t				entries;
 466	local_t				committing;
 467	local_t				commits;
 468	unsigned long			read;
 469	unsigned long			read_bytes;
 470	u64				write_stamp;
 471	u64				read_stamp;
 472	/* ring buffer pages to update, > 0 to add, < 0 to remove */
 473	int				nr_pages_to_update;
 474	struct list_head		new_pages; /* new pages to add */
 475	struct work_struct		update_pages_work;
 476	struct completion		update_done;
 
 
 477};
 478
 479struct ring_buffer {
 480	unsigned			flags;
 481	int				cpus;
 482	atomic_t			record_disabled;
 483	atomic_t			resize_disabled;
 484	cpumask_var_t			cpumask;
 485
 486	struct lock_class_key		*reader_lock_key;
 487
 488	struct mutex			mutex;
 489
 490	struct ring_buffer_per_cpu	**buffers;
 491
 492#ifdef CONFIG_HOTPLUG_CPU
 493	struct notifier_block		cpu_notify;
 494#endif
 495	u64				(*clock)(void);
 
 
 496};
 497
 498struct ring_buffer_iter {
 499	struct ring_buffer_per_cpu	*cpu_buffer;
 500	unsigned long			head;
 501	struct buffer_page		*head_page;
 502	struct buffer_page		*cache_reader_page;
 503	unsigned long			cache_read;
 504	u64				read_stamp;
 505};
 506
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 507/* buffer may be either ring_buffer or ring_buffer_per_cpu */
 508#define RB_WARN_ON(b, cond)						\
 509	({								\
 510		int _____ret = unlikely(cond);				\
 511		if (_____ret) {						\
 512			if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
 513				struct ring_buffer_per_cpu *__b =	\
 514					(void *)b;			\
 515				atomic_inc(&__b->buffer->record_disabled); \
 516			} else						\
 517				atomic_inc(&b->record_disabled);	\
 518			WARN_ON(1);					\
 519		}							\
 520		_____ret;						\
 521	})
 522
 523/* Up this if you want to test the TIME_EXTENTS and normalization */
 524#define DEBUG_SHIFT 0
 525
 526static inline u64 rb_time_stamp(struct ring_buffer *buffer)
 527{
 528	/* shift to debug/test normalization and TIME_EXTENTS */
 529	return buffer->clock() << DEBUG_SHIFT;
 530}
 531
 532u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
 533{
 534	u64 time;
 535
 536	preempt_disable_notrace();
 537	time = rb_time_stamp(buffer);
 538	preempt_enable_no_resched_notrace();
 539
 540	return time;
 541}
 542EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
 543
 544void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
 545				      int cpu, u64 *ts)
 546{
 547	/* Just stupid testing the normalize function and deltas */
 548	*ts >>= DEBUG_SHIFT;
 549}
 550EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
 551
 552/*
 553 * Making the ring buffer lockless makes things tricky.
 554 * Although writes only happen on the CPU that they are on,
 555 * and they only need to worry about interrupts. Reads can
 556 * happen on any CPU.
 557 *
 558 * The reader page is always off the ring buffer, but when the
 559 * reader finishes with a page, it needs to swap its page with
 560 * a new one from the buffer. The reader needs to take from
 561 * the head (writes go to the tail). But if a writer is in overwrite
 562 * mode and wraps, it must push the head page forward.
 563 *
 564 * Here lies the problem.
 565 *
 566 * The reader must be careful to replace only the head page, and
 567 * not another one. As described at the top of the file in the
 568 * ASCII art, the reader sets its old page to point to the next
 569 * page after head. It then sets the page after head to point to
 570 * the old reader page. But if the writer moves the head page
 571 * during this operation, the reader could end up with the tail.
 572 *
 573 * We use cmpxchg to help prevent this race. We also do something
 574 * special with the page before head. We set the LSB to 1.
 575 *
 576 * When the writer must push the page forward, it will clear the
 577 * bit that points to the head page, move the head, and then set
 578 * the bit that points to the new head page.
 579 *
 580 * We also don't want an interrupt coming in and moving the head
 581 * page on another writer. Thus we use the second LSB to catch
 582 * that too. Thus:
 583 *
 584 * head->list->prev->next        bit 1          bit 0
 585 *                              -------        -------
 586 * Normal page                     0              0
 587 * Points to head page             0              1
 588 * New head page                   1              0
 589 *
 590 * Note we can not trust the prev pointer of the head page, because:
 591 *
 592 * +----+       +-----+        +-----+
 593 * |    |------>|  T  |---X--->|  N  |
 594 * |    |<------|     |        |     |
 595 * +----+       +-----+        +-----+
 596 *   ^                           ^ |
 597 *   |          +-----+          | |
 598 *   +----------|  R  |----------+ |
 599 *              |     |<-----------+
 600 *              +-----+
 601 *
 602 * Key:  ---X-->  HEAD flag set in pointer
 603 *         T      Tail page
 604 *         R      Reader page
 605 *         N      Next page
 606 *
 607 * (see __rb_reserve_next() to see where this happens)
 608 *
 609 *  What the above shows is that the reader just swapped out
 610 *  the reader page with a page in the buffer, but before it
 611 *  could make the new header point back to the new page added
 612 *  it was preempted by a writer. The writer moved forward onto
 613 *  the new page added by the reader and is about to move forward
 614 *  again.
 615 *
 616 *  You can see, it is legitimate for the previous pointer of
 617 *  the head (or any page) not to point back to itself. But only
 618 *  temporarially.
 619 */
 620
 621#define RB_PAGE_NORMAL		0UL
 622#define RB_PAGE_HEAD		1UL
 623#define RB_PAGE_UPDATE		2UL
 624
 625
 626#define RB_FLAG_MASK		3UL
 627
 628/* PAGE_MOVED is not part of the mask */
 629#define RB_PAGE_MOVED		4UL
 630
 631/*
 632 * rb_list_head - remove any bit
 633 */
 634static struct list_head *rb_list_head(struct list_head *list)
 635{
 636	unsigned long val = (unsigned long)list;
 637
 638	return (struct list_head *)(val & ~RB_FLAG_MASK);
 639}
 640
 641/*
 642 * rb_is_head_page - test if the given page is the head page
 643 *
 644 * Because the reader may move the head_page pointer, we can
 645 * not trust what the head page is (it may be pointing to
 646 * the reader page). But if the next page is a header page,
 647 * its flags will be non zero.
 648 */
 649static inline int
 650rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
 651		struct buffer_page *page, struct list_head *list)
 652{
 653	unsigned long val;
 654
 655	val = (unsigned long)list->next;
 656
 657	if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
 658		return RB_PAGE_MOVED;
 659
 660	return val & RB_FLAG_MASK;
 661}
 662
 663/*
 664 * rb_is_reader_page
 665 *
 666 * The unique thing about the reader page, is that, if the
 667 * writer is ever on it, the previous pointer never points
 668 * back to the reader page.
 669 */
 670static int rb_is_reader_page(struct buffer_page *page)
 671{
 672	struct list_head *list = page->list.prev;
 673
 674	return rb_list_head(list->next) != &page->list;
 675}
 676
 677/*
 678 * rb_set_list_to_head - set a list_head to be pointing to head.
 679 */
 680static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
 681				struct list_head *list)
 682{
 683	unsigned long *ptr;
 684
 685	ptr = (unsigned long *)&list->next;
 686	*ptr |= RB_PAGE_HEAD;
 687	*ptr &= ~RB_PAGE_UPDATE;
 688}
 689
 690/*
 691 * rb_head_page_activate - sets up head page
 692 */
 693static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
 694{
 695	struct buffer_page *head;
 696
 697	head = cpu_buffer->head_page;
 698	if (!head)
 699		return;
 700
 701	/*
 702	 * Set the previous list pointer to have the HEAD flag.
 703	 */
 704	rb_set_list_to_head(cpu_buffer, head->list.prev);
 705}
 706
 707static void rb_list_head_clear(struct list_head *list)
 708{
 709	unsigned long *ptr = (unsigned long *)&list->next;
 710
 711	*ptr &= ~RB_FLAG_MASK;
 712}
 713
 714/*
 715 * rb_head_page_dactivate - clears head page ptr (for free list)
 716 */
 717static void
 718rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
 719{
 720	struct list_head *hd;
 721
 722	/* Go through the whole list and clear any pointers found. */
 723	rb_list_head_clear(cpu_buffer->pages);
 724
 725	list_for_each(hd, cpu_buffer->pages)
 726		rb_list_head_clear(hd);
 727}
 728
 729static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
 730			    struct buffer_page *head,
 731			    struct buffer_page *prev,
 732			    int old_flag, int new_flag)
 733{
 734	struct list_head *list;
 735	unsigned long val = (unsigned long)&head->list;
 736	unsigned long ret;
 737
 738	list = &prev->list;
 739
 740	val &= ~RB_FLAG_MASK;
 741
 742	ret = cmpxchg((unsigned long *)&list->next,
 743		      val | old_flag, val | new_flag);
 744
 745	/* check if the reader took the page */
 746	if ((ret & ~RB_FLAG_MASK) != val)
 747		return RB_PAGE_MOVED;
 748
 749	return ret & RB_FLAG_MASK;
 750}
 751
 752static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
 753				   struct buffer_page *head,
 754				   struct buffer_page *prev,
 755				   int old_flag)
 756{
 757	return rb_head_page_set(cpu_buffer, head, prev,
 758				old_flag, RB_PAGE_UPDATE);
 759}
 760
 761static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
 762				 struct buffer_page *head,
 763				 struct buffer_page *prev,
 764				 int old_flag)
 765{
 766	return rb_head_page_set(cpu_buffer, head, prev,
 767				old_flag, RB_PAGE_HEAD);
 768}
 769
 770static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
 771				   struct buffer_page *head,
 772				   struct buffer_page *prev,
 773				   int old_flag)
 774{
 775	return rb_head_page_set(cpu_buffer, head, prev,
 776				old_flag, RB_PAGE_NORMAL);
 777}
 778
 779static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
 780			       struct buffer_page **bpage)
 781{
 782	struct list_head *p = rb_list_head((*bpage)->list.next);
 783
 784	*bpage = list_entry(p, struct buffer_page, list);
 785}
 786
 787static struct buffer_page *
 788rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
 789{
 790	struct buffer_page *head;
 791	struct buffer_page *page;
 792	struct list_head *list;
 793	int i;
 794
 795	if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
 796		return NULL;
 797
 798	/* sanity check */
 799	list = cpu_buffer->pages;
 800	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
 801		return NULL;
 802
 803	page = head = cpu_buffer->head_page;
 804	/*
 805	 * It is possible that the writer moves the header behind
 806	 * where we started, and we miss in one loop.
 807	 * A second loop should grab the header, but we'll do
 808	 * three loops just because I'm paranoid.
 809	 */
 810	for (i = 0; i < 3; i++) {
 811		do {
 812			if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
 813				cpu_buffer->head_page = page;
 814				return page;
 815			}
 816			rb_inc_page(cpu_buffer, &page);
 817		} while (page != head);
 818	}
 819
 820	RB_WARN_ON(cpu_buffer, 1);
 821
 822	return NULL;
 823}
 824
 825static int rb_head_page_replace(struct buffer_page *old,
 826				struct buffer_page *new)
 827{
 828	unsigned long *ptr = (unsigned long *)&old->list.prev->next;
 829	unsigned long val;
 830	unsigned long ret;
 831
 832	val = *ptr & ~RB_FLAG_MASK;
 833	val |= RB_PAGE_HEAD;
 834
 835	ret = cmpxchg(ptr, val, (unsigned long)&new->list);
 836
 837	return ret == val;
 838}
 839
 840/*
 841 * rb_tail_page_update - move the tail page forward
 842 *
 843 * Returns 1 if moved tail page, 0 if someone else did.
 844 */
 845static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
 846			       struct buffer_page *tail_page,
 847			       struct buffer_page *next_page)
 848{
 849	struct buffer_page *old_tail;
 850	unsigned long old_entries;
 851	unsigned long old_write;
 852	int ret = 0;
 853
 854	/*
 855	 * The tail page now needs to be moved forward.
 856	 *
 857	 * We need to reset the tail page, but without messing
 858	 * with possible erasing of data brought in by interrupts
 859	 * that have moved the tail page and are currently on it.
 860	 *
 861	 * We add a counter to the write field to denote this.
 862	 */
 863	old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
 864	old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
 865
 866	/*
 867	 * Just make sure we have seen our old_write and synchronize
 868	 * with any interrupts that come in.
 869	 */
 870	barrier();
 871
 872	/*
 873	 * If the tail page is still the same as what we think
 874	 * it is, then it is up to us to update the tail
 875	 * pointer.
 876	 */
 877	if (tail_page == cpu_buffer->tail_page) {
 878		/* Zero the write counter */
 879		unsigned long val = old_write & ~RB_WRITE_MASK;
 880		unsigned long eval = old_entries & ~RB_WRITE_MASK;
 881
 882		/*
 883		 * This will only succeed if an interrupt did
 884		 * not come in and change it. In which case, we
 885		 * do not want to modify it.
 886		 *
 887		 * We add (void) to let the compiler know that we do not care
 888		 * about the return value of these functions. We use the
 889		 * cmpxchg to only update if an interrupt did not already
 890		 * do it for us. If the cmpxchg fails, we don't care.
 891		 */
 892		(void)local_cmpxchg(&next_page->write, old_write, val);
 893		(void)local_cmpxchg(&next_page->entries, old_entries, eval);
 894
 895		/*
 896		 * No need to worry about races with clearing out the commit.
 897		 * it only can increment when a commit takes place. But that
 898		 * only happens in the outer most nested commit.
 899		 */
 900		local_set(&next_page->page->commit, 0);
 901
 902		old_tail = cmpxchg(&cpu_buffer->tail_page,
 903				   tail_page, next_page);
 904
 905		if (old_tail == tail_page)
 906			ret = 1;
 907	}
 908
 909	return ret;
 910}
 911
 912static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
 913			  struct buffer_page *bpage)
 914{
 915	unsigned long val = (unsigned long)bpage;
 916
 917	if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
 918		return 1;
 919
 920	return 0;
 921}
 922
 923/**
 924 * rb_check_list - make sure a pointer to a list has the last bits zero
 925 */
 926static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
 927			 struct list_head *list)
 928{
 929	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
 930		return 1;
 931	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
 932		return 1;
 933	return 0;
 934}
 935
 936/**
 937 * check_pages - integrity check of buffer pages
 938 * @cpu_buffer: CPU buffer with pages to test
 939 *
 940 * As a safety measure we check to make sure the data pages have not
 941 * been corrupted.
 942 */
 943static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
 944{
 945	struct list_head *head = cpu_buffer->pages;
 946	struct buffer_page *bpage, *tmp;
 947
 948	/* Reset the head page if it exists */
 949	if (cpu_buffer->head_page)
 950		rb_set_head_page(cpu_buffer);
 951
 952	rb_head_page_deactivate(cpu_buffer);
 953
 954	if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
 955		return -1;
 956	if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
 957		return -1;
 958
 959	if (rb_check_list(cpu_buffer, head))
 960		return -1;
 961
 962	list_for_each_entry_safe(bpage, tmp, head, list) {
 963		if (RB_WARN_ON(cpu_buffer,
 964			       bpage->list.next->prev != &bpage->list))
 965			return -1;
 966		if (RB_WARN_ON(cpu_buffer,
 967			       bpage->list.prev->next != &bpage->list))
 968			return -1;
 969		if (rb_check_list(cpu_buffer, &bpage->list))
 970			return -1;
 971	}
 972
 973	rb_head_page_activate(cpu_buffer);
 974
 975	return 0;
 976}
 977
 978static int __rb_allocate_pages(int nr_pages, struct list_head *pages, int cpu)
 979{
 980	int i;
 981	struct buffer_page *bpage, *tmp;
 982
 983	for (i = 0; i < nr_pages; i++) {
 984		struct page *page;
 985		/*
 986		 * __GFP_NORETRY flag makes sure that the allocation fails
 987		 * gracefully without invoking oom-killer and the system is
 988		 * not destabilized.
 989		 */
 990		bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
 991				    GFP_KERNEL | __GFP_NORETRY,
 992				    cpu_to_node(cpu));
 993		if (!bpage)
 994			goto free_pages;
 995
 996		list_add(&bpage->list, pages);
 997
 998		page = alloc_pages_node(cpu_to_node(cpu),
 999					GFP_KERNEL | __GFP_NORETRY, 0);
1000		if (!page)
1001			goto free_pages;
1002		bpage->page = page_address(page);
1003		rb_init_page(bpage->page);
1004	}
1005
1006	return 0;
1007
1008free_pages:
1009	list_for_each_entry_safe(bpage, tmp, pages, list) {
1010		list_del_init(&bpage->list);
1011		free_buffer_page(bpage);
1012	}
1013
1014	return -ENOMEM;
1015}
1016
1017static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1018			     unsigned nr_pages)
1019{
1020	LIST_HEAD(pages);
1021
1022	WARN_ON(!nr_pages);
1023
1024	if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1025		return -ENOMEM;
1026
1027	/*
1028	 * The ring buffer page list is a circular list that does not
1029	 * start and end with a list head. All page list items point to
1030	 * other pages.
1031	 */
1032	cpu_buffer->pages = pages.next;
1033	list_del(&pages);
1034
1035	cpu_buffer->nr_pages = nr_pages;
1036
1037	rb_check_pages(cpu_buffer);
1038
1039	return 0;
1040}
1041
1042static struct ring_buffer_per_cpu *
1043rb_allocate_cpu_buffer(struct ring_buffer *buffer, int nr_pages, int cpu)
1044{
1045	struct ring_buffer_per_cpu *cpu_buffer;
1046	struct buffer_page *bpage;
1047	struct page *page;
1048	int ret;
1049
1050	cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1051				  GFP_KERNEL, cpu_to_node(cpu));
1052	if (!cpu_buffer)
1053		return NULL;
1054
1055	cpu_buffer->cpu = cpu;
1056	cpu_buffer->buffer = buffer;
1057	raw_spin_lock_init(&cpu_buffer->reader_lock);
1058	lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1059	cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1060	INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1061	init_completion(&cpu_buffer->update_done);
 
 
 
1062
1063	bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1064			    GFP_KERNEL, cpu_to_node(cpu));
1065	if (!bpage)
1066		goto fail_free_buffer;
1067
1068	rb_check_bpage(cpu_buffer, bpage);
1069
1070	cpu_buffer->reader_page = bpage;
1071	page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1072	if (!page)
1073		goto fail_free_reader;
1074	bpage->page = page_address(page);
1075	rb_init_page(bpage->page);
1076
1077	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1078	INIT_LIST_HEAD(&cpu_buffer->new_pages);
1079
1080	ret = rb_allocate_pages(cpu_buffer, nr_pages);
1081	if (ret < 0)
1082		goto fail_free_reader;
1083
1084	cpu_buffer->head_page
1085		= list_entry(cpu_buffer->pages, struct buffer_page, list);
1086	cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1087
1088	rb_head_page_activate(cpu_buffer);
1089
1090	return cpu_buffer;
1091
1092 fail_free_reader:
1093	free_buffer_page(cpu_buffer->reader_page);
1094
1095 fail_free_buffer:
1096	kfree(cpu_buffer);
1097	return NULL;
1098}
1099
1100static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1101{
1102	struct list_head *head = cpu_buffer->pages;
1103	struct buffer_page *bpage, *tmp;
1104
1105	free_buffer_page(cpu_buffer->reader_page);
1106
1107	rb_head_page_deactivate(cpu_buffer);
1108
1109	if (head) {
1110		list_for_each_entry_safe(bpage, tmp, head, list) {
1111			list_del_init(&bpage->list);
1112			free_buffer_page(bpage);
1113		}
1114		bpage = list_entry(head, struct buffer_page, list);
1115		free_buffer_page(bpage);
1116	}
1117
1118	kfree(cpu_buffer);
1119}
1120
1121#ifdef CONFIG_HOTPLUG_CPU
1122static int rb_cpu_notify(struct notifier_block *self,
1123			 unsigned long action, void *hcpu);
1124#endif
1125
1126/**
1127 * ring_buffer_alloc - allocate a new ring_buffer
1128 * @size: the size in bytes per cpu that is needed.
1129 * @flags: attributes to set for the ring buffer.
1130 *
1131 * Currently the only flag that is available is the RB_FL_OVERWRITE
1132 * flag. This flag means that the buffer will overwrite old data
1133 * when the buffer wraps. If this flag is not set, the buffer will
1134 * drop data when the tail hits the head.
1135 */
1136struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1137					struct lock_class_key *key)
1138{
1139	struct ring_buffer *buffer;
1140	int bsize;
1141	int cpu, nr_pages;
1142
1143	/* keep it in its own cache line */
1144	buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1145			 GFP_KERNEL);
1146	if (!buffer)
1147		return NULL;
1148
1149	if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1150		goto fail_free_buffer;
1151
1152	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1153	buffer->flags = flags;
1154	buffer->clock = trace_clock_local;
1155	buffer->reader_lock_key = key;
1156
 
 
 
1157	/* need at least two pages */
1158	if (nr_pages < 2)
1159		nr_pages = 2;
1160
1161	/*
1162	 * In case of non-hotplug cpu, if the ring-buffer is allocated
1163	 * in early initcall, it will not be notified of secondary cpus.
1164	 * In that off case, we need to allocate for all possible cpus.
1165	 */
1166#ifdef CONFIG_HOTPLUG_CPU
1167	get_online_cpus();
1168	cpumask_copy(buffer->cpumask, cpu_online_mask);
1169#else
1170	cpumask_copy(buffer->cpumask, cpu_possible_mask);
1171#endif
1172	buffer->cpus = nr_cpu_ids;
1173
1174	bsize = sizeof(void *) * nr_cpu_ids;
1175	buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1176				  GFP_KERNEL);
1177	if (!buffer->buffers)
1178		goto fail_free_cpumask;
1179
1180	for_each_buffer_cpu(buffer, cpu) {
1181		buffer->buffers[cpu] =
1182			rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1183		if (!buffer->buffers[cpu])
1184			goto fail_free_buffers;
1185	}
1186
1187#ifdef CONFIG_HOTPLUG_CPU
1188	buffer->cpu_notify.notifier_call = rb_cpu_notify;
1189	buffer->cpu_notify.priority = 0;
1190	register_cpu_notifier(&buffer->cpu_notify);
 
1191#endif
1192
1193	put_online_cpus();
1194	mutex_init(&buffer->mutex);
1195
1196	return buffer;
1197
1198 fail_free_buffers:
1199	for_each_buffer_cpu(buffer, cpu) {
1200		if (buffer->buffers[cpu])
1201			rb_free_cpu_buffer(buffer->buffers[cpu]);
1202	}
1203	kfree(buffer->buffers);
1204
1205 fail_free_cpumask:
1206	free_cpumask_var(buffer->cpumask);
1207	put_online_cpus();
 
 
1208
1209 fail_free_buffer:
1210	kfree(buffer);
1211	return NULL;
1212}
1213EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1214
1215/**
1216 * ring_buffer_free - free a ring buffer.
1217 * @buffer: the buffer to free.
1218 */
1219void
1220ring_buffer_free(struct ring_buffer *buffer)
1221{
1222	int cpu;
1223
1224	get_online_cpus();
1225
1226#ifdef CONFIG_HOTPLUG_CPU
1227	unregister_cpu_notifier(&buffer->cpu_notify);
 
1228#endif
1229
1230	for_each_buffer_cpu(buffer, cpu)
1231		rb_free_cpu_buffer(buffer->buffers[cpu]);
1232
1233	put_online_cpus();
 
 
1234
1235	kfree(buffer->buffers);
1236	free_cpumask_var(buffer->cpumask);
1237
1238	kfree(buffer);
1239}
1240EXPORT_SYMBOL_GPL(ring_buffer_free);
1241
1242void ring_buffer_set_clock(struct ring_buffer *buffer,
1243			   u64 (*clock)(void))
1244{
1245	buffer->clock = clock;
1246}
1247
1248static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1249
1250static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1251{
1252	return local_read(&bpage->entries) & RB_WRITE_MASK;
1253}
1254
1255static inline unsigned long rb_page_write(struct buffer_page *bpage)
1256{
1257	return local_read(&bpage->write) & RB_WRITE_MASK;
1258}
1259
1260static int
1261rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned int nr_pages)
1262{
1263	struct list_head *tail_page, *to_remove, *next_page;
1264	struct buffer_page *to_remove_page, *tmp_iter_page;
1265	struct buffer_page *last_page, *first_page;
1266	unsigned int nr_removed;
1267	unsigned long head_bit;
1268	int page_entries;
1269
1270	head_bit = 0;
1271
1272	raw_spin_lock_irq(&cpu_buffer->reader_lock);
1273	atomic_inc(&cpu_buffer->record_disabled);
1274	/*
1275	 * We don't race with the readers since we have acquired the reader
1276	 * lock. We also don't race with writers after disabling recording.
1277	 * This makes it easy to figure out the first and the last page to be
1278	 * removed from the list. We unlink all the pages in between including
1279	 * the first and last pages. This is done in a busy loop so that we
1280	 * lose the least number of traces.
1281	 * The pages are freed after we restart recording and unlock readers.
1282	 */
1283	tail_page = &cpu_buffer->tail_page->list;
1284
1285	/*
1286	 * tail page might be on reader page, we remove the next page
1287	 * from the ring buffer
1288	 */
1289	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1290		tail_page = rb_list_head(tail_page->next);
1291	to_remove = tail_page;
1292
1293	/* start of pages to remove */
1294	first_page = list_entry(rb_list_head(to_remove->next),
1295				struct buffer_page, list);
1296
1297	for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1298		to_remove = rb_list_head(to_remove)->next;
1299		head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1300	}
1301
1302	next_page = rb_list_head(to_remove)->next;
1303
1304	/*
1305	 * Now we remove all pages between tail_page and next_page.
1306	 * Make sure that we have head_bit value preserved for the
1307	 * next page
1308	 */
1309	tail_page->next = (struct list_head *)((unsigned long)next_page |
1310						head_bit);
1311	next_page = rb_list_head(next_page);
1312	next_page->prev = tail_page;
1313
1314	/* make sure pages points to a valid page in the ring buffer */
1315	cpu_buffer->pages = next_page;
1316
1317	/* update head page */
1318	if (head_bit)
1319		cpu_buffer->head_page = list_entry(next_page,
1320						struct buffer_page, list);
1321
1322	/*
1323	 * change read pointer to make sure any read iterators reset
1324	 * themselves
1325	 */
1326	cpu_buffer->read = 0;
1327
1328	/* pages are removed, resume tracing and then free the pages */
1329	atomic_dec(&cpu_buffer->record_disabled);
1330	raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1331
1332	RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1333
1334	/* last buffer page to remove */
1335	last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1336				list);
1337	tmp_iter_page = first_page;
1338
1339	do {
1340		to_remove_page = tmp_iter_page;
1341		rb_inc_page(cpu_buffer, &tmp_iter_page);
1342
1343		/* update the counters */
1344		page_entries = rb_page_entries(to_remove_page);
1345		if (page_entries) {
1346			/*
1347			 * If something was added to this page, it was full
1348			 * since it is not the tail page. So we deduct the
1349			 * bytes consumed in ring buffer from here.
1350			 * Increment overrun to account for the lost events.
1351			 */
1352			local_add(page_entries, &cpu_buffer->overrun);
1353			local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1354		}
1355
1356		/*
1357		 * We have already removed references to this list item, just
1358		 * free up the buffer_page and its page
1359		 */
1360		free_buffer_page(to_remove_page);
1361		nr_removed--;
1362
1363	} while (to_remove_page != last_page);
1364
1365	RB_WARN_ON(cpu_buffer, nr_removed);
1366
1367	return nr_removed == 0;
1368}
1369
1370static int
1371rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1372{
1373	struct list_head *pages = &cpu_buffer->new_pages;
1374	int retries, success;
1375
1376	raw_spin_lock_irq(&cpu_buffer->reader_lock);
1377	/*
1378	 * We are holding the reader lock, so the reader page won't be swapped
1379	 * in the ring buffer. Now we are racing with the writer trying to
1380	 * move head page and the tail page.
1381	 * We are going to adapt the reader page update process where:
1382	 * 1. We first splice the start and end of list of new pages between
1383	 *    the head page and its previous page.
1384	 * 2. We cmpxchg the prev_page->next to point from head page to the
1385	 *    start of new pages list.
1386	 * 3. Finally, we update the head->prev to the end of new list.
1387	 *
1388	 * We will try this process 10 times, to make sure that we don't keep
1389	 * spinning.
1390	 */
1391	retries = 10;
1392	success = 0;
1393	while (retries--) {
1394		struct list_head *head_page, *prev_page, *r;
1395		struct list_head *last_page, *first_page;
1396		struct list_head *head_page_with_bit;
1397
1398		head_page = &rb_set_head_page(cpu_buffer)->list;
 
 
1399		prev_page = head_page->prev;
1400
1401		first_page = pages->next;
1402		last_page  = pages->prev;
1403
1404		head_page_with_bit = (struct list_head *)
1405				     ((unsigned long)head_page | RB_PAGE_HEAD);
1406
1407		last_page->next = head_page_with_bit;
1408		first_page->prev = prev_page;
1409
1410		r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1411
1412		if (r == head_page_with_bit) {
1413			/*
1414			 * yay, we replaced the page pointer to our new list,
1415			 * now, we just have to update to head page's prev
1416			 * pointer to point to end of list
1417			 */
1418			head_page->prev = last_page;
1419			success = 1;
1420			break;
1421		}
1422	}
1423
1424	if (success)
1425		INIT_LIST_HEAD(pages);
1426	/*
1427	 * If we weren't successful in adding in new pages, warn and stop
1428	 * tracing
1429	 */
1430	RB_WARN_ON(cpu_buffer, !success);
1431	raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1432
1433	/* free pages if they weren't inserted */
1434	if (!success) {
1435		struct buffer_page *bpage, *tmp;
1436		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1437					 list) {
1438			list_del_init(&bpage->list);
1439			free_buffer_page(bpage);
1440		}
1441	}
1442	return success;
1443}
1444
1445static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1446{
1447	int success;
1448
1449	if (cpu_buffer->nr_pages_to_update > 0)
1450		success = rb_insert_pages(cpu_buffer);
1451	else
1452		success = rb_remove_pages(cpu_buffer,
1453					-cpu_buffer->nr_pages_to_update);
1454
1455	if (success)
1456		cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
1457}
1458
1459static void update_pages_handler(struct work_struct *work)
1460{
1461	struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1462			struct ring_buffer_per_cpu, update_pages_work);
1463	rb_update_pages(cpu_buffer);
1464	complete(&cpu_buffer->update_done);
1465}
1466
1467/**
1468 * ring_buffer_resize - resize the ring buffer
1469 * @buffer: the buffer to resize.
1470 * @size: the new size.
 
1471 *
1472 * Minimum size is 2 * BUF_PAGE_SIZE.
1473 *
1474 * Returns 0 on success and < 0 on failure.
1475 */
1476int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1477			int cpu_id)
1478{
1479	struct ring_buffer_per_cpu *cpu_buffer;
1480	unsigned nr_pages;
1481	int cpu, err = 0;
1482
1483	/*
1484	 * Always succeed at resizing a non-existent buffer:
1485	 */
1486	if (!buffer)
1487		return size;
1488
1489	/* Make sure the requested buffer exists */
1490	if (cpu_id != RING_BUFFER_ALL_CPUS &&
1491	    !cpumask_test_cpu(cpu_id, buffer->cpumask))
1492		return size;
1493
1494	size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1495	size *= BUF_PAGE_SIZE;
1496
1497	/* we need a minimum of two pages */
1498	if (size < BUF_PAGE_SIZE * 2)
1499		size = BUF_PAGE_SIZE * 2;
1500
1501	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1502
1503	/*
1504	 * Don't succeed if resizing is disabled, as a reader might be
1505	 * manipulating the ring buffer and is expecting a sane state while
1506	 * this is true.
1507	 */
1508	if (atomic_read(&buffer->resize_disabled))
1509		return -EBUSY;
1510
1511	/* prevent another thread from changing buffer sizes */
1512	mutex_lock(&buffer->mutex);
1513
1514	if (cpu_id == RING_BUFFER_ALL_CPUS) {
1515		/* calculate the pages to update */
1516		for_each_buffer_cpu(buffer, cpu) {
1517			cpu_buffer = buffer->buffers[cpu];
1518
1519			cpu_buffer->nr_pages_to_update = nr_pages -
1520							cpu_buffer->nr_pages;
1521			/*
1522			 * nothing more to do for removing pages or no update
1523			 */
1524			if (cpu_buffer->nr_pages_to_update <= 0)
1525				continue;
1526			/*
1527			 * to add pages, make sure all new pages can be
1528			 * allocated without receiving ENOMEM
1529			 */
1530			INIT_LIST_HEAD(&cpu_buffer->new_pages);
1531			if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1532						&cpu_buffer->new_pages, cpu)) {
1533				/* not enough memory for new pages */
1534				err = -ENOMEM;
1535				goto out_err;
1536			}
1537		}
1538
1539		get_online_cpus();
1540		/*
1541		 * Fire off all the required work handlers
1542		 * We can't schedule on offline CPUs, but it's not necessary
1543		 * since we can change their buffer sizes without any race.
1544		 */
1545		for_each_buffer_cpu(buffer, cpu) {
1546			cpu_buffer = buffer->buffers[cpu];
1547			if (!cpu_buffer->nr_pages_to_update)
1548				continue;
1549
1550			if (cpu_online(cpu))
 
 
 
 
1551				schedule_work_on(cpu,
1552						&cpu_buffer->update_pages_work);
1553			else
1554				rb_update_pages(cpu_buffer);
1555		}
1556
1557		/* wait for all the updates to complete */
1558		for_each_buffer_cpu(buffer, cpu) {
1559			cpu_buffer = buffer->buffers[cpu];
1560			if (!cpu_buffer->nr_pages_to_update)
1561				continue;
1562
1563			if (cpu_online(cpu))
1564				wait_for_completion(&cpu_buffer->update_done);
1565			cpu_buffer->nr_pages_to_update = 0;
1566		}
1567
1568		put_online_cpus();
1569	} else {
 
 
 
 
1570		cpu_buffer = buffer->buffers[cpu_id];
1571
1572		if (nr_pages == cpu_buffer->nr_pages)
1573			goto out;
1574
1575		cpu_buffer->nr_pages_to_update = nr_pages -
1576						cpu_buffer->nr_pages;
1577
1578		INIT_LIST_HEAD(&cpu_buffer->new_pages);
1579		if (cpu_buffer->nr_pages_to_update > 0 &&
1580			__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1581					    &cpu_buffer->new_pages, cpu_id)) {
1582			err = -ENOMEM;
1583			goto out_err;
1584		}
1585
1586		get_online_cpus();
1587
1588		if (cpu_online(cpu_id)) {
 
 
 
1589			schedule_work_on(cpu_id,
1590					 &cpu_buffer->update_pages_work);
1591			wait_for_completion(&cpu_buffer->update_done);
1592		} else
1593			rb_update_pages(cpu_buffer);
1594
1595		cpu_buffer->nr_pages_to_update = 0;
1596		put_online_cpus();
1597	}
1598
1599 out:
1600	/*
1601	 * The ring buffer resize can happen with the ring buffer
1602	 * enabled, so that the update disturbs the tracing as little
1603	 * as possible. But if the buffer is disabled, we do not need
1604	 * to worry about that, and we can take the time to verify
1605	 * that the buffer is not corrupt.
1606	 */
1607	if (atomic_read(&buffer->record_disabled)) {
1608		atomic_inc(&buffer->record_disabled);
1609		/*
1610		 * Even though the buffer was disabled, we must make sure
1611		 * that it is truly disabled before calling rb_check_pages.
1612		 * There could have been a race between checking
1613		 * record_disable and incrementing it.
1614		 */
1615		synchronize_sched();
1616		for_each_buffer_cpu(buffer, cpu) {
1617			cpu_buffer = buffer->buffers[cpu];
1618			rb_check_pages(cpu_buffer);
1619		}
1620		atomic_dec(&buffer->record_disabled);
1621	}
1622
1623	mutex_unlock(&buffer->mutex);
1624	return size;
1625
1626 out_err:
1627	for_each_buffer_cpu(buffer, cpu) {
1628		struct buffer_page *bpage, *tmp;
1629
1630		cpu_buffer = buffer->buffers[cpu];
1631		cpu_buffer->nr_pages_to_update = 0;
1632
1633		if (list_empty(&cpu_buffer->new_pages))
1634			continue;
1635
1636		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1637					list) {
1638			list_del_init(&bpage->list);
1639			free_buffer_page(bpage);
1640		}
1641	}
1642	mutex_unlock(&buffer->mutex);
1643	return err;
1644}
1645EXPORT_SYMBOL_GPL(ring_buffer_resize);
1646
1647void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1648{
1649	mutex_lock(&buffer->mutex);
1650	if (val)
1651		buffer->flags |= RB_FL_OVERWRITE;
1652	else
1653		buffer->flags &= ~RB_FL_OVERWRITE;
1654	mutex_unlock(&buffer->mutex);
1655}
1656EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1657
1658static inline void *
1659__rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
1660{
1661	return bpage->data + index;
1662}
1663
1664static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1665{
1666	return bpage->page->data + index;
1667}
1668
1669static inline struct ring_buffer_event *
1670rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1671{
1672	return __rb_page_index(cpu_buffer->reader_page,
1673			       cpu_buffer->reader_page->read);
1674}
1675
1676static inline struct ring_buffer_event *
1677rb_iter_head_event(struct ring_buffer_iter *iter)
1678{
1679	return __rb_page_index(iter->head_page, iter->head);
1680}
1681
1682static inline unsigned rb_page_commit(struct buffer_page *bpage)
1683{
1684	return local_read(&bpage->page->commit);
1685}
1686
1687/* Size is determined by what has been committed */
1688static inline unsigned rb_page_size(struct buffer_page *bpage)
1689{
1690	return rb_page_commit(bpage);
1691}
1692
1693static inline unsigned
1694rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1695{
1696	return rb_page_commit(cpu_buffer->commit_page);
1697}
1698
1699static inline unsigned
1700rb_event_index(struct ring_buffer_event *event)
1701{
1702	unsigned long addr = (unsigned long)event;
1703
1704	return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1705}
1706
1707static inline int
1708rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1709		   struct ring_buffer_event *event)
1710{
1711	unsigned long addr = (unsigned long)event;
1712	unsigned long index;
1713
1714	index = rb_event_index(event);
1715	addr &= PAGE_MASK;
1716
1717	return cpu_buffer->commit_page->page == (void *)addr &&
1718		rb_commit_index(cpu_buffer) == index;
1719}
1720
1721static void
1722rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
1723{
1724	unsigned long max_count;
1725
1726	/*
1727	 * We only race with interrupts and NMIs on this CPU.
1728	 * If we own the commit event, then we can commit
1729	 * all others that interrupted us, since the interruptions
1730	 * are in stack format (they finish before they come
1731	 * back to us). This allows us to do a simple loop to
1732	 * assign the commit to the tail.
1733	 */
1734 again:
1735	max_count = cpu_buffer->nr_pages * 100;
1736
1737	while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
1738		if (RB_WARN_ON(cpu_buffer, !(--max_count)))
1739			return;
1740		if (RB_WARN_ON(cpu_buffer,
1741			       rb_is_reader_page(cpu_buffer->tail_page)))
1742			return;
1743		local_set(&cpu_buffer->commit_page->page->commit,
1744			  rb_page_write(cpu_buffer->commit_page));
1745		rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
1746		cpu_buffer->write_stamp =
1747			cpu_buffer->commit_page->page->time_stamp;
1748		/* add barrier to keep gcc from optimizing too much */
1749		barrier();
1750	}
1751	while (rb_commit_index(cpu_buffer) !=
1752	       rb_page_write(cpu_buffer->commit_page)) {
1753
1754		local_set(&cpu_buffer->commit_page->page->commit,
1755			  rb_page_write(cpu_buffer->commit_page));
1756		RB_WARN_ON(cpu_buffer,
1757			   local_read(&cpu_buffer->commit_page->page->commit) &
1758			   ~RB_WRITE_MASK);
1759		barrier();
1760	}
1761
1762	/* again, keep gcc from optimizing */
1763	barrier();
1764
1765	/*
1766	 * If an interrupt came in just after the first while loop
1767	 * and pushed the tail page forward, we will be left with
1768	 * a dangling commit that will never go forward.
1769	 */
1770	if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1771		goto again;
1772}
1773
1774static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1775{
1776	cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
1777	cpu_buffer->reader_page->read = 0;
1778}
1779
1780static void rb_inc_iter(struct ring_buffer_iter *iter)
1781{
1782	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1783
1784	/*
1785	 * The iterator could be on the reader page (it starts there).
1786	 * But the head could have moved, since the reader was
1787	 * found. Check for this case and assign the iterator
1788	 * to the head page instead of next.
1789	 */
1790	if (iter->head_page == cpu_buffer->reader_page)
1791		iter->head_page = rb_set_head_page(cpu_buffer);
1792	else
1793		rb_inc_page(cpu_buffer, &iter->head_page);
1794
1795	iter->read_stamp = iter->head_page->page->time_stamp;
1796	iter->head = 0;
1797}
1798
1799/* Slow path, do not inline */
1800static noinline struct ring_buffer_event *
1801rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
1802{
1803	event->type_len = RINGBUF_TYPE_TIME_EXTEND;
1804
1805	/* Not the first event on the page? */
1806	if (rb_event_index(event)) {
1807		event->time_delta = delta & TS_MASK;
1808		event->array[0] = delta >> TS_SHIFT;
1809	} else {
1810		/* nope, just zero it */
1811		event->time_delta = 0;
1812		event->array[0] = 0;
1813	}
1814
1815	return skip_time_extend(event);
1816}
1817
1818/**
1819 * ring_buffer_update_event - update event type and data
1820 * @event: the even to update
1821 * @type: the type of event
1822 * @length: the size of the event field in the ring buffer
1823 *
1824 * Update the type and data fields of the event. The length
1825 * is the actual size that is written to the ring buffer,
1826 * and with this, we can determine what to place into the
1827 * data field.
1828 */
1829static void
1830rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
1831		struct ring_buffer_event *event, unsigned length,
1832		int add_timestamp, u64 delta)
1833{
1834	/* Only a commit updates the timestamp */
1835	if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
1836		delta = 0;
1837
1838	/*
1839	 * If we need to add a timestamp, then we
1840	 * add it to the start of the resevered space.
1841	 */
1842	if (unlikely(add_timestamp)) {
1843		event = rb_add_time_stamp(event, delta);
1844		length -= RB_LEN_TIME_EXTEND;
1845		delta = 0;
1846	}
1847
1848	event->time_delta = delta;
1849	length -= RB_EVNT_HDR_SIZE;
1850	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
1851		event->type_len = 0;
1852		event->array[0] = length;
1853	} else
1854		event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
1855}
1856
1857/*
1858 * rb_handle_head_page - writer hit the head page
1859 *
1860 * Returns: +1 to retry page
1861 *           0 to continue
1862 *          -1 on error
1863 */
1864static int
1865rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1866		    struct buffer_page *tail_page,
1867		    struct buffer_page *next_page)
1868{
1869	struct buffer_page *new_head;
1870	int entries;
1871	int type;
1872	int ret;
1873
1874	entries = rb_page_entries(next_page);
1875
1876	/*
1877	 * The hard part is here. We need to move the head
1878	 * forward, and protect against both readers on
1879	 * other CPUs and writers coming in via interrupts.
1880	 */
1881	type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
1882				       RB_PAGE_HEAD);
1883
1884	/*
1885	 * type can be one of four:
1886	 *  NORMAL - an interrupt already moved it for us
1887	 *  HEAD   - we are the first to get here.
1888	 *  UPDATE - we are the interrupt interrupting
1889	 *           a current move.
1890	 *  MOVED  - a reader on another CPU moved the next
1891	 *           pointer to its reader page. Give up
1892	 *           and try again.
1893	 */
1894
1895	switch (type) {
1896	case RB_PAGE_HEAD:
1897		/*
1898		 * We changed the head to UPDATE, thus
1899		 * it is our responsibility to update
1900		 * the counters.
1901		 */
1902		local_add(entries, &cpu_buffer->overrun);
1903		local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1904
1905		/*
1906		 * The entries will be zeroed out when we move the
1907		 * tail page.
1908		 */
1909
1910		/* still more to do */
1911		break;
1912
1913	case RB_PAGE_UPDATE:
1914		/*
1915		 * This is an interrupt that interrupt the
1916		 * previous update. Still more to do.
1917		 */
1918		break;
1919	case RB_PAGE_NORMAL:
1920		/*
1921		 * An interrupt came in before the update
1922		 * and processed this for us.
1923		 * Nothing left to do.
1924		 */
1925		return 1;
1926	case RB_PAGE_MOVED:
1927		/*
1928		 * The reader is on another CPU and just did
1929		 * a swap with our next_page.
1930		 * Try again.
1931		 */
1932		return 1;
1933	default:
1934		RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
1935		return -1;
1936	}
1937
1938	/*
1939	 * Now that we are here, the old head pointer is
1940	 * set to UPDATE. This will keep the reader from
1941	 * swapping the head page with the reader page.
1942	 * The reader (on another CPU) will spin till
1943	 * we are finished.
1944	 *
1945	 * We just need to protect against interrupts
1946	 * doing the job. We will set the next pointer
1947	 * to HEAD. After that, we set the old pointer
1948	 * to NORMAL, but only if it was HEAD before.
1949	 * otherwise we are an interrupt, and only
1950	 * want the outer most commit to reset it.
1951	 */
1952	new_head = next_page;
1953	rb_inc_page(cpu_buffer, &new_head);
1954
1955	ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
1956				    RB_PAGE_NORMAL);
1957
1958	/*
1959	 * Valid returns are:
1960	 *  HEAD   - an interrupt came in and already set it.
1961	 *  NORMAL - One of two things:
1962	 *            1) We really set it.
1963	 *            2) A bunch of interrupts came in and moved
1964	 *               the page forward again.
1965	 */
1966	switch (ret) {
1967	case RB_PAGE_HEAD:
1968	case RB_PAGE_NORMAL:
1969		/* OK */
1970		break;
1971	default:
1972		RB_WARN_ON(cpu_buffer, 1);
1973		return -1;
1974	}
1975
1976	/*
1977	 * It is possible that an interrupt came in,
1978	 * set the head up, then more interrupts came in
1979	 * and moved it again. When we get back here,
1980	 * the page would have been set to NORMAL but we
1981	 * just set it back to HEAD.
1982	 *
1983	 * How do you detect this? Well, if that happened
1984	 * the tail page would have moved.
1985	 */
1986	if (ret == RB_PAGE_NORMAL) {
 
 
 
1987		/*
1988		 * If the tail had moved passed next, then we need
1989		 * to reset the pointer.
1990		 */
1991		if (cpu_buffer->tail_page != tail_page &&
1992		    cpu_buffer->tail_page != next_page)
1993			rb_head_page_set_normal(cpu_buffer, new_head,
1994						next_page,
1995						RB_PAGE_HEAD);
1996	}
1997
1998	/*
1999	 * If this was the outer most commit (the one that
2000	 * changed the original pointer from HEAD to UPDATE),
2001	 * then it is up to us to reset it to NORMAL.
2002	 */
2003	if (type == RB_PAGE_HEAD) {
2004		ret = rb_head_page_set_normal(cpu_buffer, next_page,
2005					      tail_page,
2006					      RB_PAGE_UPDATE);
2007		if (RB_WARN_ON(cpu_buffer,
2008			       ret != RB_PAGE_UPDATE))
2009			return -1;
2010	}
2011
2012	return 0;
2013}
2014
2015static unsigned rb_calculate_event_length(unsigned length)
2016{
2017	struct ring_buffer_event event; /* Used only for sizeof array */
2018
2019	/* zero length can cause confusions */
2020	if (!length)
2021		length = 1;
2022
2023	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2024		length += sizeof(event.array[0]);
2025
2026	length += RB_EVNT_HDR_SIZE;
2027	length = ALIGN(length, RB_ARCH_ALIGNMENT);
2028
2029	return length;
2030}
2031
2032static inline void
2033rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2034	      struct buffer_page *tail_page,
2035	      unsigned long tail, unsigned long length)
2036{
 
2037	struct ring_buffer_event *event;
 
2038
2039	/*
2040	 * Only the event that crossed the page boundary
2041	 * must fill the old tail_page with padding.
2042	 */
2043	if (tail >= BUF_PAGE_SIZE) {
2044		/*
2045		 * If the page was filled, then we still need
2046		 * to update the real_end. Reset it to zero
2047		 * and the reader will ignore it.
2048		 */
2049		if (tail == BUF_PAGE_SIZE)
2050			tail_page->real_end = 0;
2051
2052		local_sub(length, &tail_page->write);
2053		return;
2054	}
2055
2056	event = __rb_page_index(tail_page, tail);
2057	kmemcheck_annotate_bitfield(event, bitfield);
2058
2059	/* account for padding bytes */
2060	local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2061
2062	/*
2063	 * Save the original length to the meta data.
2064	 * This will be used by the reader to add lost event
2065	 * counter.
2066	 */
2067	tail_page->real_end = tail;
2068
2069	/*
2070	 * If this event is bigger than the minimum size, then
2071	 * we need to be careful that we don't subtract the
2072	 * write counter enough to allow another writer to slip
2073	 * in on this page.
2074	 * We put in a discarded commit instead, to make sure
2075	 * that this space is not used again.
2076	 *
2077	 * If we are less than the minimum size, we don't need to
2078	 * worry about it.
2079	 */
2080	if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2081		/* No room for any events */
2082
2083		/* Mark the rest of the page with padding */
2084		rb_event_set_padding(event);
2085
2086		/* Set the write back to the previous setting */
2087		local_sub(length, &tail_page->write);
2088		return;
2089	}
2090
2091	/* Put in a discarded event */
2092	event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2093	event->type_len = RINGBUF_TYPE_PADDING;
2094	/* time delta must be non zero */
2095	event->time_delta = 1;
2096
2097	/* Set write to end of buffer */
2098	length = (tail + length) - BUF_PAGE_SIZE;
2099	local_sub(length, &tail_page->write);
2100}
2101
 
 
2102/*
2103 * This is the slow path, force gcc not to inline it.
2104 */
2105static noinline struct ring_buffer_event *
2106rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2107	     unsigned long length, unsigned long tail,
2108	     struct buffer_page *tail_page, u64 ts)
2109{
 
2110	struct buffer_page *commit_page = cpu_buffer->commit_page;
2111	struct ring_buffer *buffer = cpu_buffer->buffer;
2112	struct buffer_page *next_page;
2113	int ret;
2114
2115	next_page = tail_page;
2116
2117	rb_inc_page(cpu_buffer, &next_page);
2118
2119	/*
2120	 * If for some reason, we had an interrupt storm that made
2121	 * it all the way around the buffer, bail, and warn
2122	 * about it.
2123	 */
2124	if (unlikely(next_page == commit_page)) {
2125		local_inc(&cpu_buffer->commit_overrun);
2126		goto out_reset;
2127	}
2128
2129	/*
2130	 * This is where the fun begins!
2131	 *
2132	 * We are fighting against races between a reader that
2133	 * could be on another CPU trying to swap its reader
2134	 * page with the buffer head.
2135	 *
2136	 * We are also fighting against interrupts coming in and
2137	 * moving the head or tail on us as well.
2138	 *
2139	 * If the next page is the head page then we have filled
2140	 * the buffer, unless the commit page is still on the
2141	 * reader page.
2142	 */
2143	if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
2144
2145		/*
2146		 * If the commit is not on the reader page, then
2147		 * move the header page.
2148		 */
2149		if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2150			/*
2151			 * If we are not in overwrite mode,
2152			 * this is easy, just stop here.
2153			 */
2154			if (!(buffer->flags & RB_FL_OVERWRITE))
 
2155				goto out_reset;
 
2156
2157			ret = rb_handle_head_page(cpu_buffer,
2158						  tail_page,
2159						  next_page);
2160			if (ret < 0)
2161				goto out_reset;
2162			if (ret)
2163				goto out_again;
2164		} else {
2165			/*
2166			 * We need to be careful here too. The
2167			 * commit page could still be on the reader
2168			 * page. We could have a small buffer, and
2169			 * have filled up the buffer with events
2170			 * from interrupts and such, and wrapped.
2171			 *
2172			 * Note, if the tail page is also the on the
2173			 * reader_page, we let it move out.
2174			 */
2175			if (unlikely((cpu_buffer->commit_page !=
2176				      cpu_buffer->tail_page) &&
2177				     (cpu_buffer->commit_page ==
2178				      cpu_buffer->reader_page))) {
2179				local_inc(&cpu_buffer->commit_overrun);
2180				goto out_reset;
2181			}
2182		}
2183	}
2184
2185	ret = rb_tail_page_update(cpu_buffer, tail_page, next_page);
2186	if (ret) {
2187		/*
2188		 * Nested commits always have zero deltas, so
2189		 * just reread the time stamp
2190		 */
2191		ts = rb_time_stamp(buffer);
2192		next_page->page->time_stamp = ts;
2193	}
2194
2195 out_again:
2196
2197	rb_reset_tail(cpu_buffer, tail_page, tail, length);
 
 
 
 
 
2198
2199	/* fail and let the caller try again */
2200	return ERR_PTR(-EAGAIN);
2201
2202 out_reset:
2203	/* reset write */
2204	rb_reset_tail(cpu_buffer, tail_page, tail, length);
2205
2206	return NULL;
2207}
2208
2209static struct ring_buffer_event *
2210__rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
2211		  unsigned long length, u64 ts,
2212		  u64 delta, int add_timestamp)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2213{
2214	struct buffer_page *tail_page;
2215	struct ring_buffer_event *event;
2216	unsigned long tail, write;
 
 
 
2217
2218	/*
2219	 * If the time delta since the last event is too big to
2220	 * hold in the time field of the event, then we append a
2221	 * TIME EXTEND event ahead of the data event.
2222	 */
2223	if (unlikely(add_timestamp))
2224		length += RB_LEN_TIME_EXTEND;
 
 
 
2225
2226	tail_page = cpu_buffer->tail_page;
2227	write = local_add_return(length, &tail_page->write);
 
 
 
 
 
 
2228
2229	/* set write to only the index of the write */
2230	write &= RB_WRITE_MASK;
2231	tail = write - length;
2232
2233	/* See if we shot pass the end of this buffer page */
2234	if (unlikely(write > BUF_PAGE_SIZE))
2235		return rb_move_tail(cpu_buffer, length, tail,
2236				    tail_page, ts);
2237
2238	/* We reserved something on the buffer */
 
2239
2240	event = __rb_page_index(tail_page, tail);
2241	kmemcheck_annotate_bitfield(event, bitfield);
2242	rb_update_event(cpu_buffer, event, length, add_timestamp, delta);
2243
2244	local_inc(&tail_page->entries);
2245
2246	/*
2247	 * If this is the first commit on the page, then update
2248	 * its timestamp.
 
 
 
 
 
 
 
 
2249	 */
2250	if (!tail)
2251		tail_page->page->time_stamp = ts;
2252
2253	/* account for these added bytes */
2254	local_add(length, &cpu_buffer->entries_bytes);
2255
2256	return event;
 
 
 
2257}
 
2258
2259static inline int
2260rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2261		  struct ring_buffer_event *event)
2262{
2263	unsigned long new_index, old_index;
2264	struct buffer_page *bpage;
2265	unsigned long index;
2266	unsigned long addr;
2267
2268	new_index = rb_event_index(event);
2269	old_index = new_index + rb_event_ts_length(event);
2270	addr = (unsigned long)event;
2271	addr &= PAGE_MASK;
2272
2273	bpage = cpu_buffer->tail_page;
2274
2275	if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2276		unsigned long write_mask =
2277			local_read(&bpage->write) & ~RB_WRITE_MASK;
2278		unsigned long event_length = rb_event_length(event);
2279		/*
2280		 * This is on the tail page. It is possible that
2281		 * a write could come in and move the tail page
2282		 * and write to the next page. That is fine
2283		 * because we just shorten what is on this page.
2284		 */
2285		old_index += write_mask;
2286		new_index += write_mask;
2287		index = local_cmpxchg(&bpage->write, old_index, new_index);
2288		if (index == old_index) {
2289			/* update counters */
2290			local_sub(event_length, &cpu_buffer->entries_bytes);
2291			return 1;
2292		}
2293	}
2294
2295	/* could not discard */
2296	return 0;
2297}
2298
2299static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2300{
2301	local_inc(&cpu_buffer->committing);
2302	local_inc(&cpu_buffer->commits);
2303}
2304
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2305static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2306{
2307	unsigned long commits;
2308
2309	if (RB_WARN_ON(cpu_buffer,
2310		       !local_read(&cpu_buffer->committing)))
2311		return;
2312
2313 again:
2314	commits = local_read(&cpu_buffer->commits);
2315	/* synchronize with interrupts */
2316	barrier();
2317	if (local_read(&cpu_buffer->committing) == 1)
2318		rb_set_commit_to_write(cpu_buffer);
2319
2320	local_dec(&cpu_buffer->committing);
2321
2322	/* synchronize with interrupts */
2323	barrier();
2324
2325	/*
2326	 * Need to account for interrupts coming in between the
2327	 * updating of the commit page and the clearing of the
2328	 * committing counter.
2329	 */
2330	if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2331	    !local_read(&cpu_buffer->committing)) {
2332		local_inc(&cpu_buffer->committing);
2333		goto again;
2334	}
2335}
2336
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2337static struct ring_buffer_event *
2338rb_reserve_next_event(struct ring_buffer *buffer,
2339		      struct ring_buffer_per_cpu *cpu_buffer,
2340		      unsigned long length)
2341{
2342	struct ring_buffer_event *event;
2343	u64 ts, delta;
2344	int nr_loops = 0;
2345	int add_timestamp;
2346	u64 diff;
2347
2348	rb_start_commit(cpu_buffer);
2349
2350#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2351	/*
2352	 * Due to the ability to swap a cpu buffer from a buffer
2353	 * it is possible it was swapped before we committed.
2354	 * (committing stops a swap). We check for it here and
2355	 * if it happened, we have to fail the write.
2356	 */
2357	barrier();
2358	if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2359		local_dec(&cpu_buffer->committing);
2360		local_dec(&cpu_buffer->commits);
2361		return NULL;
2362	}
2363#endif
2364
2365	length = rb_calculate_event_length(length);
2366 again:
2367	add_timestamp = 0;
2368	delta = 0;
2369
2370	/*
2371	 * We allow for interrupts to reenter here and do a trace.
2372	 * If one does, it will cause this original code to loop
2373	 * back here. Even with heavy interrupts happening, this
2374	 * should only happen a few times in a row. If this happens
2375	 * 1000 times in a row, there must be either an interrupt
2376	 * storm or we have something buggy.
2377	 * Bail!
2378	 */
2379	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2380		goto out_fail;
2381
2382	ts = rb_time_stamp(cpu_buffer->buffer);
2383	diff = ts - cpu_buffer->write_stamp;
2384
2385	/* make sure this diff is calculated here */
2386	barrier();
2387
2388	/* Did the write stamp get updated already? */
2389	if (likely(ts >= cpu_buffer->write_stamp)) {
2390		delta = diff;
2391		if (unlikely(test_time_stamp(delta))) {
2392			int local_clock_stable = 1;
2393#ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2394			local_clock_stable = sched_clock_stable;
2395#endif
2396			WARN_ONCE(delta > (1ULL << 59),
2397				  KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2398				  (unsigned long long)delta,
2399				  (unsigned long long)ts,
2400				  (unsigned long long)cpu_buffer->write_stamp,
2401				  local_clock_stable ? "" :
2402				  "If you just came from a suspend/resume,\n"
2403				  "please switch to the trace global clock:\n"
2404				  "  echo global > /sys/kernel/debug/tracing/trace_clock\n");
2405			add_timestamp = 1;
2406		}
2407	}
2408
2409	event = __rb_reserve_next(cpu_buffer, length, ts,
2410				  delta, add_timestamp);
2411	if (unlikely(PTR_ERR(event) == -EAGAIN))
 
 
2412		goto again;
 
2413
2414	if (!event)
2415		goto out_fail;
2416
2417	return event;
2418
2419 out_fail:
2420	rb_end_commit(cpu_buffer);
2421	return NULL;
2422}
2423
2424#ifdef CONFIG_TRACING
2425
2426#define TRACE_RECURSIVE_DEPTH 16
2427
2428/* Keep this code out of the fast path cache */
2429static noinline void trace_recursive_fail(void)
2430{
2431	/* Disable all tracing before we do anything else */
2432	tracing_off_permanent();
2433
2434	printk_once(KERN_WARNING "Tracing recursion: depth[%ld]:"
2435		    "HC[%lu]:SC[%lu]:NMI[%lu]\n",
2436		    trace_recursion_buffer(),
2437		    hardirq_count() >> HARDIRQ_SHIFT,
2438		    softirq_count() >> SOFTIRQ_SHIFT,
2439		    in_nmi());
2440
2441	WARN_ON_ONCE(1);
2442}
2443
2444static inline int trace_recursive_lock(void)
2445{
2446	trace_recursion_inc();
2447
2448	if (likely(trace_recursion_buffer() < TRACE_RECURSIVE_DEPTH))
2449		return 0;
2450
2451	trace_recursive_fail();
2452
2453	return -1;
2454}
2455
2456static inline void trace_recursive_unlock(void)
2457{
2458	WARN_ON_ONCE(!trace_recursion_buffer());
2459
2460	trace_recursion_dec();
2461}
2462
2463#else
2464
2465#define trace_recursive_lock()		(0)
2466#define trace_recursive_unlock()	do { } while (0)
2467
2468#endif
2469
2470/**
2471 * ring_buffer_lock_reserve - reserve a part of the buffer
2472 * @buffer: the ring buffer to reserve from
2473 * @length: the length of the data to reserve (excluding event header)
2474 *
2475 * Returns a reseverd event on the ring buffer to copy directly to.
2476 * The user of this interface will need to get the body to write into
2477 * and can use the ring_buffer_event_data() interface.
2478 *
2479 * The length is the length of the data needed, not the event length
2480 * which also includes the event header.
2481 *
2482 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2483 * If NULL is returned, then nothing has been allocated or locked.
2484 */
2485struct ring_buffer_event *
2486ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2487{
2488	struct ring_buffer_per_cpu *cpu_buffer;
2489	struct ring_buffer_event *event;
2490	int cpu;
2491
2492	if (ring_buffer_flags != RB_BUFFERS_ON)
2493		return NULL;
2494
2495	/* If we are tracing schedule, we don't want to recurse */
2496	preempt_disable_notrace();
2497
2498	if (atomic_read(&buffer->record_disabled))
2499		goto out_nocheck;
2500
2501	if (trace_recursive_lock())
2502		goto out_nocheck;
2503
2504	cpu = raw_smp_processor_id();
2505
2506	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2507		goto out;
2508
2509	cpu_buffer = buffer->buffers[cpu];
2510
2511	if (atomic_read(&cpu_buffer->record_disabled))
 
 
 
2512		goto out;
2513
2514	if (length > BUF_MAX_DATA_SIZE)
2515		goto out;
2516
2517	event = rb_reserve_next_event(buffer, cpu_buffer, length);
2518	if (!event)
2519		goto out;
2520
2521	return event;
2522
 
 
2523 out:
2524	trace_recursive_unlock();
2525
2526 out_nocheck:
2527	preempt_enable_notrace();
2528	return NULL;
2529}
2530EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2531
2532static void
2533rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2534		      struct ring_buffer_event *event)
2535{
2536	u64 delta;
2537
2538	/*
2539	 * The event first in the commit queue updates the
2540	 * time stamp.
2541	 */
2542	if (rb_event_is_commit(cpu_buffer, event)) {
2543		/*
2544		 * A commit event that is first on a page
2545		 * updates the write timestamp with the page stamp
2546		 */
2547		if (!rb_event_index(event))
2548			cpu_buffer->write_stamp =
2549				cpu_buffer->commit_page->page->time_stamp;
2550		else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2551			delta = event->array[0];
2552			delta <<= TS_SHIFT;
2553			delta += event->time_delta;
2554			cpu_buffer->write_stamp += delta;
2555		} else
2556			cpu_buffer->write_stamp += event->time_delta;
2557	}
2558}
2559
2560static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2561		      struct ring_buffer_event *event)
2562{
2563	local_inc(&cpu_buffer->entries);
2564	rb_update_write_stamp(cpu_buffer, event);
2565	rb_end_commit(cpu_buffer);
2566}
2567
2568/**
2569 * ring_buffer_unlock_commit - commit a reserved
2570 * @buffer: The buffer to commit to
2571 * @event: The event pointer to commit.
2572 *
2573 * This commits the data to the ring buffer, and releases any locks held.
2574 *
2575 * Must be paired with ring_buffer_lock_reserve.
2576 */
2577int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2578			      struct ring_buffer_event *event)
2579{
2580	struct ring_buffer_per_cpu *cpu_buffer;
2581	int cpu = raw_smp_processor_id();
2582
2583	cpu_buffer = buffer->buffers[cpu];
2584
2585	rb_commit(cpu_buffer, event);
2586
2587	trace_recursive_unlock();
2588
2589	preempt_enable_notrace();
2590
2591	return 0;
2592}
2593EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2594
2595static inline void rb_event_discard(struct ring_buffer_event *event)
2596{
2597	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
2598		event = skip_time_extend(event);
2599
2600	/* array[0] holds the actual length for the discarded event */
2601	event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2602	event->type_len = RINGBUF_TYPE_PADDING;
2603	/* time delta must be non zero */
2604	if (!event->time_delta)
2605		event->time_delta = 1;
2606}
2607
2608/*
2609 * Decrement the entries to the page that an event is on.
2610 * The event does not even need to exist, only the pointer
2611 * to the page it is on. This may only be called before the commit
2612 * takes place.
2613 */
2614static inline void
2615rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2616		   struct ring_buffer_event *event)
2617{
2618	unsigned long addr = (unsigned long)event;
2619	struct buffer_page *bpage = cpu_buffer->commit_page;
2620	struct buffer_page *start;
2621
2622	addr &= PAGE_MASK;
2623
2624	/* Do the likely case first */
2625	if (likely(bpage->page == (void *)addr)) {
2626		local_dec(&bpage->entries);
2627		return;
2628	}
2629
2630	/*
2631	 * Because the commit page may be on the reader page we
2632	 * start with the next page and check the end loop there.
2633	 */
2634	rb_inc_page(cpu_buffer, &bpage);
2635	start = bpage;
2636	do {
2637		if (bpage->page == (void *)addr) {
2638			local_dec(&bpage->entries);
2639			return;
2640		}
2641		rb_inc_page(cpu_buffer, &bpage);
2642	} while (bpage != start);
2643
2644	/* commit not part of this buffer?? */
2645	RB_WARN_ON(cpu_buffer, 1);
2646}
2647
2648/**
2649 * ring_buffer_commit_discard - discard an event that has not been committed
2650 * @buffer: the ring buffer
2651 * @event: non committed event to discard
2652 *
2653 * Sometimes an event that is in the ring buffer needs to be ignored.
2654 * This function lets the user discard an event in the ring buffer
2655 * and then that event will not be read later.
2656 *
2657 * This function only works if it is called before the the item has been
2658 * committed. It will try to free the event from the ring buffer
2659 * if another event has not been added behind it.
2660 *
2661 * If another event has been added behind it, it will set the event
2662 * up as discarded, and perform the commit.
2663 *
2664 * If this function is called, do not call ring_buffer_unlock_commit on
2665 * the event.
2666 */
2667void ring_buffer_discard_commit(struct ring_buffer *buffer,
2668				struct ring_buffer_event *event)
2669{
2670	struct ring_buffer_per_cpu *cpu_buffer;
2671	int cpu;
2672
2673	/* The event is discarded regardless */
2674	rb_event_discard(event);
2675
2676	cpu = smp_processor_id();
2677	cpu_buffer = buffer->buffers[cpu];
2678
2679	/*
2680	 * This must only be called if the event has not been
2681	 * committed yet. Thus we can assume that preemption
2682	 * is still disabled.
2683	 */
2684	RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
2685
2686	rb_decrement_entry(cpu_buffer, event);
2687	if (rb_try_to_discard(cpu_buffer, event))
2688		goto out;
2689
2690	/*
2691	 * The commit is still visible by the reader, so we
2692	 * must still update the timestamp.
2693	 */
2694	rb_update_write_stamp(cpu_buffer, event);
2695 out:
2696	rb_end_commit(cpu_buffer);
2697
2698	trace_recursive_unlock();
2699
2700	preempt_enable_notrace();
2701
2702}
2703EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2704
2705/**
2706 * ring_buffer_write - write data to the buffer without reserving
2707 * @buffer: The ring buffer to write to.
2708 * @length: The length of the data being written (excluding the event header)
2709 * @data: The data to write to the buffer.
2710 *
2711 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2712 * one function. If you already have the data to write to the buffer, it
2713 * may be easier to simply call this function.
2714 *
2715 * Note, like ring_buffer_lock_reserve, the length is the length of the data
2716 * and not the length of the event which would hold the header.
2717 */
2718int ring_buffer_write(struct ring_buffer *buffer,
2719			unsigned long length,
2720			void *data)
2721{
2722	struct ring_buffer_per_cpu *cpu_buffer;
2723	struct ring_buffer_event *event;
2724	void *body;
2725	int ret = -EBUSY;
2726	int cpu;
2727
2728	if (ring_buffer_flags != RB_BUFFERS_ON)
2729		return -EBUSY;
2730
2731	preempt_disable_notrace();
2732
2733	if (atomic_read(&buffer->record_disabled))
2734		goto out;
2735
2736	cpu = raw_smp_processor_id();
2737
2738	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2739		goto out;
2740
2741	cpu_buffer = buffer->buffers[cpu];
2742
2743	if (atomic_read(&cpu_buffer->record_disabled))
2744		goto out;
2745
2746	if (length > BUF_MAX_DATA_SIZE)
2747		goto out;
2748
 
 
 
2749	event = rb_reserve_next_event(buffer, cpu_buffer, length);
2750	if (!event)
2751		goto out;
2752
2753	body = rb_event_data(event);
2754
2755	memcpy(body, data, length);
2756
2757	rb_commit(cpu_buffer, event);
2758
 
 
2759	ret = 0;
 
 
 
 
2760 out:
2761	preempt_enable_notrace();
2762
2763	return ret;
2764}
2765EXPORT_SYMBOL_GPL(ring_buffer_write);
2766
2767static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
2768{
2769	struct buffer_page *reader = cpu_buffer->reader_page;
2770	struct buffer_page *head = rb_set_head_page(cpu_buffer);
2771	struct buffer_page *commit = cpu_buffer->commit_page;
2772
2773	/* In case of error, head will be NULL */
2774	if (unlikely(!head))
2775		return 1;
2776
2777	return reader->read == rb_page_commit(reader) &&
2778		(commit == reader ||
2779		 (commit == head &&
2780		  head->read == rb_page_commit(commit)));
2781}
2782
2783/**
2784 * ring_buffer_record_disable - stop all writes into the buffer
2785 * @buffer: The ring buffer to stop writes to.
2786 *
2787 * This prevents all writes to the buffer. Any attempt to write
2788 * to the buffer after this will fail and return NULL.
2789 *
2790 * The caller should call synchronize_sched() after this.
2791 */
2792void ring_buffer_record_disable(struct ring_buffer *buffer)
2793{
2794	atomic_inc(&buffer->record_disabled);
2795}
2796EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
2797
2798/**
2799 * ring_buffer_record_enable - enable writes to the buffer
2800 * @buffer: The ring buffer to enable writes
2801 *
2802 * Note, multiple disables will need the same number of enables
2803 * to truly enable the writing (much like preempt_disable).
2804 */
2805void ring_buffer_record_enable(struct ring_buffer *buffer)
2806{
2807	atomic_dec(&buffer->record_disabled);
2808}
2809EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
2810
2811/**
2812 * ring_buffer_record_off - stop all writes into the buffer
2813 * @buffer: The ring buffer to stop writes to.
2814 *
2815 * This prevents all writes to the buffer. Any attempt to write
2816 * to the buffer after this will fail and return NULL.
2817 *
2818 * This is different than ring_buffer_record_disable() as
2819 * it works like an on/off switch, where as the disable() verison
2820 * must be paired with a enable().
2821 */
2822void ring_buffer_record_off(struct ring_buffer *buffer)
2823{
2824	unsigned int rd;
2825	unsigned int new_rd;
2826
2827	do {
2828		rd = atomic_read(&buffer->record_disabled);
2829		new_rd = rd | RB_BUFFER_OFF;
2830	} while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
2831}
2832EXPORT_SYMBOL_GPL(ring_buffer_record_off);
2833
2834/**
2835 * ring_buffer_record_on - restart writes into the buffer
2836 * @buffer: The ring buffer to start writes to.
2837 *
2838 * This enables all writes to the buffer that was disabled by
2839 * ring_buffer_record_off().
2840 *
2841 * This is different than ring_buffer_record_enable() as
2842 * it works like an on/off switch, where as the enable() verison
2843 * must be paired with a disable().
2844 */
2845void ring_buffer_record_on(struct ring_buffer *buffer)
2846{
2847	unsigned int rd;
2848	unsigned int new_rd;
2849
2850	do {
2851		rd = atomic_read(&buffer->record_disabled);
2852		new_rd = rd & ~RB_BUFFER_OFF;
2853	} while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
2854}
2855EXPORT_SYMBOL_GPL(ring_buffer_record_on);
2856
2857/**
2858 * ring_buffer_record_is_on - return true if the ring buffer can write
2859 * @buffer: The ring buffer to see if write is enabled
2860 *
2861 * Returns true if the ring buffer is in a state that it accepts writes.
2862 */
2863int ring_buffer_record_is_on(struct ring_buffer *buffer)
2864{
2865	return !atomic_read(&buffer->record_disabled);
2866}
2867
2868/**
2869 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
2870 * @buffer: The ring buffer to stop writes to.
2871 * @cpu: The CPU buffer to stop
2872 *
2873 * This prevents all writes to the buffer. Any attempt to write
2874 * to the buffer after this will fail and return NULL.
2875 *
2876 * The caller should call synchronize_sched() after this.
2877 */
2878void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
2879{
2880	struct ring_buffer_per_cpu *cpu_buffer;
2881
2882	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2883		return;
2884
2885	cpu_buffer = buffer->buffers[cpu];
2886	atomic_inc(&cpu_buffer->record_disabled);
2887}
2888EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
2889
2890/**
2891 * ring_buffer_record_enable_cpu - enable writes to the buffer
2892 * @buffer: The ring buffer to enable writes
2893 * @cpu: The CPU to enable.
2894 *
2895 * Note, multiple disables will need the same number of enables
2896 * to truly enable the writing (much like preempt_disable).
2897 */
2898void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
2899{
2900	struct ring_buffer_per_cpu *cpu_buffer;
2901
2902	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2903		return;
2904
2905	cpu_buffer = buffer->buffers[cpu];
2906	atomic_dec(&cpu_buffer->record_disabled);
2907}
2908EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
2909
2910/*
2911 * The total entries in the ring buffer is the running counter
2912 * of entries entered into the ring buffer, minus the sum of
2913 * the entries read from the ring buffer and the number of
2914 * entries that were overwritten.
2915 */
2916static inline unsigned long
2917rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
2918{
2919	return local_read(&cpu_buffer->entries) -
2920		(local_read(&cpu_buffer->overrun) + cpu_buffer->read);
2921}
2922
2923/**
2924 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
2925 * @buffer: The ring buffer
2926 * @cpu: The per CPU buffer to read from.
2927 */
2928unsigned long ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
2929{
2930	unsigned long flags;
2931	struct ring_buffer_per_cpu *cpu_buffer;
2932	struct buffer_page *bpage;
2933	unsigned long ret;
2934
2935	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2936		return 0;
2937
2938	cpu_buffer = buffer->buffers[cpu];
2939	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2940	/*
2941	 * if the tail is on reader_page, oldest time stamp is on the reader
2942	 * page
2943	 */
2944	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
2945		bpage = cpu_buffer->reader_page;
2946	else
2947		bpage = rb_set_head_page(cpu_buffer);
2948	ret = bpage->page->time_stamp;
 
2949	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2950
2951	return ret;
2952}
2953EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
2954
2955/**
2956 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
2957 * @buffer: The ring buffer
2958 * @cpu: The per CPU buffer to read from.
2959 */
2960unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
2961{
2962	struct ring_buffer_per_cpu *cpu_buffer;
2963	unsigned long ret;
2964
2965	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2966		return 0;
2967
2968	cpu_buffer = buffer->buffers[cpu];
2969	ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
2970
2971	return ret;
2972}
2973EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
2974
2975/**
2976 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
2977 * @buffer: The ring buffer
2978 * @cpu: The per CPU buffer to get the entries from.
2979 */
2980unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
2981{
2982	struct ring_buffer_per_cpu *cpu_buffer;
2983
2984	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2985		return 0;
2986
2987	cpu_buffer = buffer->buffers[cpu];
2988
2989	return rb_num_of_entries(cpu_buffer);
2990}
2991EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
2992
2993/**
2994 * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer
 
2995 * @buffer: The ring buffer
2996 * @cpu: The per CPU buffer to get the number of overruns from
2997 */
2998unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
2999{
3000	struct ring_buffer_per_cpu *cpu_buffer;
3001	unsigned long ret;
3002
3003	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3004		return 0;
3005
3006	cpu_buffer = buffer->buffers[cpu];
3007	ret = local_read(&cpu_buffer->overrun);
3008
3009	return ret;
3010}
3011EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
3012
3013/**
3014 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by commits
 
 
3015 * @buffer: The ring buffer
3016 * @cpu: The per CPU buffer to get the number of overruns from
3017 */
3018unsigned long
3019ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
3020{
3021	struct ring_buffer_per_cpu *cpu_buffer;
3022	unsigned long ret;
3023
3024	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3025		return 0;
3026
3027	cpu_buffer = buffer->buffers[cpu];
3028	ret = local_read(&cpu_buffer->commit_overrun);
3029
3030	return ret;
3031}
3032EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3033
3034/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3035 * ring_buffer_entries - get the number of entries in a buffer
3036 * @buffer: The ring buffer
3037 *
3038 * Returns the total number of entries in the ring buffer
3039 * (all CPU entries)
3040 */
3041unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3042{
3043	struct ring_buffer_per_cpu *cpu_buffer;
3044	unsigned long entries = 0;
3045	int cpu;
3046
3047	/* if you care about this being correct, lock the buffer */
3048	for_each_buffer_cpu(buffer, cpu) {
3049		cpu_buffer = buffer->buffers[cpu];
3050		entries += rb_num_of_entries(cpu_buffer);
3051	}
3052
3053	return entries;
3054}
3055EXPORT_SYMBOL_GPL(ring_buffer_entries);
3056
3057/**
3058 * ring_buffer_overruns - get the number of overruns in buffer
3059 * @buffer: The ring buffer
3060 *
3061 * Returns the total number of overruns in the ring buffer
3062 * (all CPU entries)
3063 */
3064unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3065{
3066	struct ring_buffer_per_cpu *cpu_buffer;
3067	unsigned long overruns = 0;
3068	int cpu;
3069
3070	/* if you care about this being correct, lock the buffer */
3071	for_each_buffer_cpu(buffer, cpu) {
3072		cpu_buffer = buffer->buffers[cpu];
3073		overruns += local_read(&cpu_buffer->overrun);
3074	}
3075
3076	return overruns;
3077}
3078EXPORT_SYMBOL_GPL(ring_buffer_overruns);
3079
3080static void rb_iter_reset(struct ring_buffer_iter *iter)
3081{
3082	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3083
3084	/* Iterator usage is expected to have record disabled */
3085	if (list_empty(&cpu_buffer->reader_page->list)) {
3086		iter->head_page = rb_set_head_page(cpu_buffer);
3087		if (unlikely(!iter->head_page))
3088			return;
3089		iter->head = iter->head_page->read;
3090	} else {
3091		iter->head_page = cpu_buffer->reader_page;
3092		iter->head = cpu_buffer->reader_page->read;
3093	}
3094	if (iter->head)
3095		iter->read_stamp = cpu_buffer->read_stamp;
3096	else
3097		iter->read_stamp = iter->head_page->page->time_stamp;
3098	iter->cache_reader_page = cpu_buffer->reader_page;
3099	iter->cache_read = cpu_buffer->read;
3100}
3101
3102/**
3103 * ring_buffer_iter_reset - reset an iterator
3104 * @iter: The iterator to reset
3105 *
3106 * Resets the iterator, so that it will start from the beginning
3107 * again.
3108 */
3109void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3110{
3111	struct ring_buffer_per_cpu *cpu_buffer;
3112	unsigned long flags;
3113
3114	if (!iter)
3115		return;
3116
3117	cpu_buffer = iter->cpu_buffer;
3118
3119	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3120	rb_iter_reset(iter);
3121	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3122}
3123EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
3124
3125/**
3126 * ring_buffer_iter_empty - check if an iterator has no more to read
3127 * @iter: The iterator to check
3128 */
3129int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3130{
3131	struct ring_buffer_per_cpu *cpu_buffer;
3132
3133	cpu_buffer = iter->cpu_buffer;
3134
3135	return iter->head_page == cpu_buffer->commit_page &&
3136		iter->head == rb_commit_index(cpu_buffer);
3137}
3138EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
3139
3140static void
3141rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3142		     struct ring_buffer_event *event)
3143{
3144	u64 delta;
3145
3146	switch (event->type_len) {
3147	case RINGBUF_TYPE_PADDING:
3148		return;
3149
3150	case RINGBUF_TYPE_TIME_EXTEND:
3151		delta = event->array[0];
3152		delta <<= TS_SHIFT;
3153		delta += event->time_delta;
3154		cpu_buffer->read_stamp += delta;
3155		return;
3156
3157	case RINGBUF_TYPE_TIME_STAMP:
3158		/* FIXME: not implemented */
3159		return;
3160
3161	case RINGBUF_TYPE_DATA:
3162		cpu_buffer->read_stamp += event->time_delta;
3163		return;
3164
3165	default:
3166		BUG();
3167	}
3168	return;
3169}
3170
3171static void
3172rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3173			  struct ring_buffer_event *event)
3174{
3175	u64 delta;
3176
3177	switch (event->type_len) {
3178	case RINGBUF_TYPE_PADDING:
3179		return;
3180
3181	case RINGBUF_TYPE_TIME_EXTEND:
3182		delta = event->array[0];
3183		delta <<= TS_SHIFT;
3184		delta += event->time_delta;
3185		iter->read_stamp += delta;
3186		return;
3187
3188	case RINGBUF_TYPE_TIME_STAMP:
3189		/* FIXME: not implemented */
3190		return;
3191
3192	case RINGBUF_TYPE_DATA:
3193		iter->read_stamp += event->time_delta;
3194		return;
3195
3196	default:
3197		BUG();
3198	}
3199	return;
3200}
3201
3202static struct buffer_page *
3203rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
3204{
3205	struct buffer_page *reader = NULL;
3206	unsigned long overwrite;
3207	unsigned long flags;
3208	int nr_loops = 0;
3209	int ret;
3210
3211	local_irq_save(flags);
3212	arch_spin_lock(&cpu_buffer->lock);
3213
3214 again:
3215	/*
3216	 * This should normally only loop twice. But because the
3217	 * start of the reader inserts an empty page, it causes
3218	 * a case where we will loop three times. There should be no
3219	 * reason to loop four times (that I know of).
3220	 */
3221	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
3222		reader = NULL;
3223		goto out;
3224	}
3225
3226	reader = cpu_buffer->reader_page;
3227
3228	/* If there's more to read, return this page */
3229	if (cpu_buffer->reader_page->read < rb_page_size(reader))
3230		goto out;
3231
3232	/* Never should we have an index greater than the size */
3233	if (RB_WARN_ON(cpu_buffer,
3234		       cpu_buffer->reader_page->read > rb_page_size(reader)))
3235		goto out;
3236
3237	/* check if we caught up to the tail */
3238	reader = NULL;
3239	if (cpu_buffer->commit_page == cpu_buffer->reader_page)
3240		goto out;
3241
 
 
 
 
3242	/*
3243	 * Reset the reader page to size zero.
3244	 */
3245	local_set(&cpu_buffer->reader_page->write, 0);
3246	local_set(&cpu_buffer->reader_page->entries, 0);
3247	local_set(&cpu_buffer->reader_page->page->commit, 0);
3248	cpu_buffer->reader_page->real_end = 0;
3249
3250 spin:
3251	/*
3252	 * Splice the empty reader page into the list around the head.
3253	 */
3254	reader = rb_set_head_page(cpu_buffer);
 
 
3255	cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
3256	cpu_buffer->reader_page->list.prev = reader->list.prev;
3257
3258	/*
3259	 * cpu_buffer->pages just needs to point to the buffer, it
3260	 *  has no specific buffer page to point to. Lets move it out
3261	 *  of our way so we don't accidentally swap it.
3262	 */
3263	cpu_buffer->pages = reader->list.prev;
3264
3265	/* The reader page will be pointing to the new head */
3266	rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
3267
3268	/*
3269	 * We want to make sure we read the overruns after we set up our
3270	 * pointers to the next object. The writer side does a
3271	 * cmpxchg to cross pages which acts as the mb on the writer
3272	 * side. Note, the reader will constantly fail the swap
3273	 * while the writer is updating the pointers, so this
3274	 * guarantees that the overwrite recorded here is the one we
3275	 * want to compare with the last_overrun.
3276	 */
3277	smp_mb();
3278	overwrite = local_read(&(cpu_buffer->overrun));
3279
3280	/*
3281	 * Here's the tricky part.
3282	 *
3283	 * We need to move the pointer past the header page.
3284	 * But we can only do that if a writer is not currently
3285	 * moving it. The page before the header page has the
3286	 * flag bit '1' set if it is pointing to the page we want.
3287	 * but if the writer is in the process of moving it
3288	 * than it will be '2' or already moved '0'.
3289	 */
3290
3291	ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
3292
3293	/*
3294	 * If we did not convert it, then we must try again.
3295	 */
3296	if (!ret)
3297		goto spin;
3298
3299	/*
3300	 * Yeah! We succeeded in replacing the page.
3301	 *
3302	 * Now make the new head point back to the reader page.
3303	 */
3304	rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
3305	rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
3306
3307	/* Finally update the reader page to the new head */
3308	cpu_buffer->reader_page = reader;
3309	rb_reset_reader_page(cpu_buffer);
3310
3311	if (overwrite != cpu_buffer->last_overrun) {
3312		cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3313		cpu_buffer->last_overrun = overwrite;
3314	}
3315
3316	goto again;
3317
3318 out:
 
 
 
 
3319	arch_spin_unlock(&cpu_buffer->lock);
3320	local_irq_restore(flags);
3321
3322	return reader;
3323}
3324
3325static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3326{
3327	struct ring_buffer_event *event;
3328	struct buffer_page *reader;
3329	unsigned length;
3330
3331	reader = rb_get_reader_page(cpu_buffer);
3332
3333	/* This function should not be called when buffer is empty */
3334	if (RB_WARN_ON(cpu_buffer, !reader))
3335		return;
3336
3337	event = rb_reader_event(cpu_buffer);
3338
3339	if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
3340		cpu_buffer->read++;
3341
3342	rb_update_read_stamp(cpu_buffer, event);
3343
3344	length = rb_event_length(event);
3345	cpu_buffer->reader_page->read += length;
3346}
3347
3348static void rb_advance_iter(struct ring_buffer_iter *iter)
3349{
3350	struct ring_buffer_per_cpu *cpu_buffer;
3351	struct ring_buffer_event *event;
3352	unsigned length;
3353
3354	cpu_buffer = iter->cpu_buffer;
3355
3356	/*
3357	 * Check if we are at the end of the buffer.
3358	 */
3359	if (iter->head >= rb_page_size(iter->head_page)) {
3360		/* discarded commits can make the page empty */
3361		if (iter->head_page == cpu_buffer->commit_page)
3362			return;
3363		rb_inc_iter(iter);
3364		return;
3365	}
3366
3367	event = rb_iter_head_event(iter);
3368
3369	length = rb_event_length(event);
3370
3371	/*
3372	 * This should not be called to advance the header if we are
3373	 * at the tail of the buffer.
3374	 */
3375	if (RB_WARN_ON(cpu_buffer,
3376		       (iter->head_page == cpu_buffer->commit_page) &&
3377		       (iter->head + length > rb_commit_index(cpu_buffer))))
3378		return;
3379
3380	rb_update_iter_read_stamp(iter, event);
3381
3382	iter->head += length;
3383
3384	/* check for end of page padding */
3385	if ((iter->head >= rb_page_size(iter->head_page)) &&
3386	    (iter->head_page != cpu_buffer->commit_page))
3387		rb_advance_iter(iter);
3388}
3389
3390static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3391{
3392	return cpu_buffer->lost_events;
3393}
3394
3395static struct ring_buffer_event *
3396rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3397	       unsigned long *lost_events)
3398{
3399	struct ring_buffer_event *event;
3400	struct buffer_page *reader;
3401	int nr_loops = 0;
3402
3403 again:
3404	/*
3405	 * We repeat when a time extend is encountered.
3406	 * Since the time extend is always attached to a data event,
3407	 * we should never loop more than once.
3408	 * (We never hit the following condition more than twice).
3409	 */
3410	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3411		return NULL;
3412
3413	reader = rb_get_reader_page(cpu_buffer);
3414	if (!reader)
3415		return NULL;
3416
3417	event = rb_reader_event(cpu_buffer);
3418
3419	switch (event->type_len) {
3420	case RINGBUF_TYPE_PADDING:
3421		if (rb_null_event(event))
3422			RB_WARN_ON(cpu_buffer, 1);
3423		/*
3424		 * Because the writer could be discarding every
3425		 * event it creates (which would probably be bad)
3426		 * if we were to go back to "again" then we may never
3427		 * catch up, and will trigger the warn on, or lock
3428		 * the box. Return the padding, and we will release
3429		 * the current locks, and try again.
3430		 */
3431		return event;
3432
3433	case RINGBUF_TYPE_TIME_EXTEND:
3434		/* Internal data, OK to advance */
3435		rb_advance_reader(cpu_buffer);
3436		goto again;
3437
3438	case RINGBUF_TYPE_TIME_STAMP:
3439		/* FIXME: not implemented */
3440		rb_advance_reader(cpu_buffer);
3441		goto again;
3442
3443	case RINGBUF_TYPE_DATA:
3444		if (ts) {
3445			*ts = cpu_buffer->read_stamp + event->time_delta;
3446			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3447							 cpu_buffer->cpu, ts);
3448		}
3449		if (lost_events)
3450			*lost_events = rb_lost_events(cpu_buffer);
3451		return event;
3452
3453	default:
3454		BUG();
3455	}
3456
3457	return NULL;
3458}
3459EXPORT_SYMBOL_GPL(ring_buffer_peek);
3460
3461static struct ring_buffer_event *
3462rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3463{
3464	struct ring_buffer *buffer;
3465	struct ring_buffer_per_cpu *cpu_buffer;
3466	struct ring_buffer_event *event;
3467	int nr_loops = 0;
3468
3469	cpu_buffer = iter->cpu_buffer;
3470	buffer = cpu_buffer->buffer;
3471
3472	/*
3473	 * Check if someone performed a consuming read to
3474	 * the buffer. A consuming read invalidates the iterator
3475	 * and we need to reset the iterator in this case.
3476	 */
3477	if (unlikely(iter->cache_read != cpu_buffer->read ||
3478		     iter->cache_reader_page != cpu_buffer->reader_page))
3479		rb_iter_reset(iter);
3480
3481 again:
3482	if (ring_buffer_iter_empty(iter))
3483		return NULL;
3484
3485	/*
3486	 * We repeat when a time extend is encountered.
3487	 * Since the time extend is always attached to a data event,
3488	 * we should never loop more than once.
3489	 * (We never hit the following condition more than twice).
 
 
3490	 */
3491	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3492		return NULL;
3493
3494	if (rb_per_cpu_empty(cpu_buffer))
3495		return NULL;
3496
3497	if (iter->head >= local_read(&iter->head_page->page->commit)) {
3498		rb_inc_iter(iter);
3499		goto again;
3500	}
3501
3502	event = rb_iter_head_event(iter);
3503
3504	switch (event->type_len) {
3505	case RINGBUF_TYPE_PADDING:
3506		if (rb_null_event(event)) {
3507			rb_inc_iter(iter);
3508			goto again;
3509		}
3510		rb_advance_iter(iter);
3511		return event;
3512
3513	case RINGBUF_TYPE_TIME_EXTEND:
3514		/* Internal data, OK to advance */
3515		rb_advance_iter(iter);
3516		goto again;
3517
3518	case RINGBUF_TYPE_TIME_STAMP:
3519		/* FIXME: not implemented */
3520		rb_advance_iter(iter);
3521		goto again;
3522
3523	case RINGBUF_TYPE_DATA:
3524		if (ts) {
3525			*ts = iter->read_stamp + event->time_delta;
3526			ring_buffer_normalize_time_stamp(buffer,
3527							 cpu_buffer->cpu, ts);
3528		}
3529		return event;
3530
3531	default:
3532		BUG();
3533	}
3534
3535	return NULL;
3536}
3537EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
3538
3539static inline int rb_ok_to_lock(void)
3540{
 
 
 
 
 
3541	/*
3542	 * If an NMI die dumps out the content of the ring buffer
3543	 * do not grab locks. We also permanently disable the ring
3544	 * buffer too. A one time deal is all you get from reading
3545	 * the ring buffer from an NMI.
 
 
 
3546	 */
3547	if (likely(!in_nmi()))
3548		return 1;
 
 
 
 
 
3549
3550	tracing_off_permanent();
3551	return 0;
 
 
 
 
3552}
3553
3554/**
3555 * ring_buffer_peek - peek at the next event to be read
3556 * @buffer: The ring buffer to read
3557 * @cpu: The cpu to peak at
3558 * @ts: The timestamp counter of this event.
3559 * @lost_events: a variable to store if events were lost (may be NULL)
3560 *
3561 * This will return the event that will be read next, but does
3562 * not consume the data.
3563 */
3564struct ring_buffer_event *
3565ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3566		 unsigned long *lost_events)
3567{
3568	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3569	struct ring_buffer_event *event;
3570	unsigned long flags;
3571	int dolock;
3572
3573	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3574		return NULL;
3575
3576	dolock = rb_ok_to_lock();
3577 again:
3578	local_irq_save(flags);
3579	if (dolock)
3580		raw_spin_lock(&cpu_buffer->reader_lock);
3581	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3582	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3583		rb_advance_reader(cpu_buffer);
3584	if (dolock)
3585		raw_spin_unlock(&cpu_buffer->reader_lock);
3586	local_irq_restore(flags);
3587
3588	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3589		goto again;
3590
3591	return event;
3592}
3593
3594/**
3595 * ring_buffer_iter_peek - peek at the next event to be read
3596 * @iter: The ring buffer iterator
3597 * @ts: The timestamp counter of this event.
3598 *
3599 * This will return the event that will be read next, but does
3600 * not increment the iterator.
3601 */
3602struct ring_buffer_event *
3603ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3604{
3605	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3606	struct ring_buffer_event *event;
3607	unsigned long flags;
3608
3609 again:
3610	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3611	event = rb_iter_peek(iter, ts);
3612	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3613
3614	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3615		goto again;
3616
3617	return event;
3618}
3619
3620/**
3621 * ring_buffer_consume - return an event and consume it
3622 * @buffer: The ring buffer to get the next event from
3623 * @cpu: the cpu to read the buffer from
3624 * @ts: a variable to store the timestamp (may be NULL)
3625 * @lost_events: a variable to store if events were lost (may be NULL)
3626 *
3627 * Returns the next event in the ring buffer, and that event is consumed.
3628 * Meaning, that sequential reads will keep returning a different event,
3629 * and eventually empty the ring buffer if the producer is slower.
3630 */
3631struct ring_buffer_event *
3632ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
3633		    unsigned long *lost_events)
3634{
3635	struct ring_buffer_per_cpu *cpu_buffer;
3636	struct ring_buffer_event *event = NULL;
3637	unsigned long flags;
3638	int dolock;
3639
3640	dolock = rb_ok_to_lock();
3641
3642 again:
3643	/* might be called in atomic */
3644	preempt_disable();
3645
3646	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3647		goto out;
3648
3649	cpu_buffer = buffer->buffers[cpu];
3650	local_irq_save(flags);
3651	if (dolock)
3652		raw_spin_lock(&cpu_buffer->reader_lock);
3653
3654	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3655	if (event) {
3656		cpu_buffer->lost_events = 0;
3657		rb_advance_reader(cpu_buffer);
3658	}
3659
3660	if (dolock)
3661		raw_spin_unlock(&cpu_buffer->reader_lock);
3662	local_irq_restore(flags);
3663
3664 out:
3665	preempt_enable();
3666
3667	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3668		goto again;
3669
3670	return event;
3671}
3672EXPORT_SYMBOL_GPL(ring_buffer_consume);
3673
3674/**
3675 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
3676 * @buffer: The ring buffer to read from
3677 * @cpu: The cpu buffer to iterate over
3678 *
3679 * This performs the initial preparations necessary to iterate
3680 * through the buffer.  Memory is allocated, buffer recording
3681 * is disabled, and the iterator pointer is returned to the caller.
3682 *
3683 * Disabling buffer recordng prevents the reading from being
3684 * corrupted. This is not a consuming read, so a producer is not
3685 * expected.
3686 *
3687 * After a sequence of ring_buffer_read_prepare calls, the user is
3688 * expected to make at least one call to ring_buffer_prepare_sync.
3689 * Afterwards, ring_buffer_read_start is invoked to get things going
3690 * for real.
3691 *
3692 * This overall must be paired with ring_buffer_finish.
3693 */
3694struct ring_buffer_iter *
3695ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
3696{
3697	struct ring_buffer_per_cpu *cpu_buffer;
3698	struct ring_buffer_iter *iter;
3699
3700	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3701		return NULL;
3702
3703	iter = kmalloc(sizeof(*iter), GFP_KERNEL);
3704	if (!iter)
3705		return NULL;
3706
3707	cpu_buffer = buffer->buffers[cpu];
3708
3709	iter->cpu_buffer = cpu_buffer;
3710
3711	atomic_inc(&buffer->resize_disabled);
3712	atomic_inc(&cpu_buffer->record_disabled);
3713
3714	return iter;
3715}
3716EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
3717
3718/**
3719 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
3720 *
3721 * All previously invoked ring_buffer_read_prepare calls to prepare
3722 * iterators will be synchronized.  Afterwards, read_buffer_read_start
3723 * calls on those iterators are allowed.
3724 */
3725void
3726ring_buffer_read_prepare_sync(void)
3727{
3728	synchronize_sched();
3729}
3730EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
3731
3732/**
3733 * ring_buffer_read_start - start a non consuming read of the buffer
3734 * @iter: The iterator returned by ring_buffer_read_prepare
3735 *
3736 * This finalizes the startup of an iteration through the buffer.
3737 * The iterator comes from a call to ring_buffer_read_prepare and
3738 * an intervening ring_buffer_read_prepare_sync must have been
3739 * performed.
3740 *
3741 * Must be paired with ring_buffer_finish.
3742 */
3743void
3744ring_buffer_read_start(struct ring_buffer_iter *iter)
3745{
3746	struct ring_buffer_per_cpu *cpu_buffer;
3747	unsigned long flags;
3748
3749	if (!iter)
3750		return;
3751
3752	cpu_buffer = iter->cpu_buffer;
3753
3754	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3755	arch_spin_lock(&cpu_buffer->lock);
3756	rb_iter_reset(iter);
3757	arch_spin_unlock(&cpu_buffer->lock);
3758	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3759}
3760EXPORT_SYMBOL_GPL(ring_buffer_read_start);
3761
3762/**
3763 * ring_buffer_finish - finish reading the iterator of the buffer
3764 * @iter: The iterator retrieved by ring_buffer_start
3765 *
3766 * This re-enables the recording to the buffer, and frees the
3767 * iterator.
3768 */
3769void
3770ring_buffer_read_finish(struct ring_buffer_iter *iter)
3771{
3772	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
 
3773
3774	/*
3775	 * Ring buffer is disabled from recording, here's a good place
3776	 * to check the integrity of the ring buffer. 
 
 
3777	 */
 
3778	rb_check_pages(cpu_buffer);
 
3779
3780	atomic_dec(&cpu_buffer->record_disabled);
3781	atomic_dec(&cpu_buffer->buffer->resize_disabled);
3782	kfree(iter);
3783}
3784EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
3785
3786/**
3787 * ring_buffer_read - read the next item in the ring buffer by the iterator
3788 * @iter: The ring buffer iterator
3789 * @ts: The time stamp of the event read.
3790 *
3791 * This reads the next event in the ring buffer and increments the iterator.
3792 */
3793struct ring_buffer_event *
3794ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
3795{
3796	struct ring_buffer_event *event;
3797	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3798	unsigned long flags;
3799
3800	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3801 again:
3802	event = rb_iter_peek(iter, ts);
3803	if (!event)
3804		goto out;
3805
3806	if (event->type_len == RINGBUF_TYPE_PADDING)
3807		goto again;
3808
3809	rb_advance_iter(iter);
3810 out:
3811	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3812
3813	return event;
3814}
3815EXPORT_SYMBOL_GPL(ring_buffer_read);
3816
3817/**
3818 * ring_buffer_size - return the size of the ring buffer (in bytes)
3819 * @buffer: The ring buffer.
3820 */
3821unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
3822{
3823	/*
3824	 * Earlier, this method returned
3825	 *	BUF_PAGE_SIZE * buffer->nr_pages
3826	 * Since the nr_pages field is now removed, we have converted this to
3827	 * return the per cpu buffer value.
3828	 */
3829	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3830		return 0;
3831
3832	return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
3833}
3834EXPORT_SYMBOL_GPL(ring_buffer_size);
3835
3836static void
3837rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
3838{
3839	rb_head_page_deactivate(cpu_buffer);
3840
3841	cpu_buffer->head_page
3842		= list_entry(cpu_buffer->pages, struct buffer_page, list);
3843	local_set(&cpu_buffer->head_page->write, 0);
3844	local_set(&cpu_buffer->head_page->entries, 0);
3845	local_set(&cpu_buffer->head_page->page->commit, 0);
3846
3847	cpu_buffer->head_page->read = 0;
3848
3849	cpu_buffer->tail_page = cpu_buffer->head_page;
3850	cpu_buffer->commit_page = cpu_buffer->head_page;
3851
3852	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
3853	INIT_LIST_HEAD(&cpu_buffer->new_pages);
3854	local_set(&cpu_buffer->reader_page->write, 0);
3855	local_set(&cpu_buffer->reader_page->entries, 0);
3856	local_set(&cpu_buffer->reader_page->page->commit, 0);
3857	cpu_buffer->reader_page->read = 0;
3858
3859	local_set(&cpu_buffer->commit_overrun, 0);
3860	local_set(&cpu_buffer->entries_bytes, 0);
3861	local_set(&cpu_buffer->overrun, 0);
 
 
3862	local_set(&cpu_buffer->entries, 0);
3863	local_set(&cpu_buffer->committing, 0);
3864	local_set(&cpu_buffer->commits, 0);
3865	cpu_buffer->read = 0;
3866	cpu_buffer->read_bytes = 0;
3867
3868	cpu_buffer->write_stamp = 0;
3869	cpu_buffer->read_stamp = 0;
3870
3871	cpu_buffer->lost_events = 0;
3872	cpu_buffer->last_overrun = 0;
3873
3874	rb_head_page_activate(cpu_buffer);
3875}
3876
3877/**
3878 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
3879 * @buffer: The ring buffer to reset a per cpu buffer of
3880 * @cpu: The CPU buffer to be reset
3881 */
3882void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
3883{
3884	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3885	unsigned long flags;
3886
3887	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3888		return;
3889
3890	atomic_inc(&buffer->resize_disabled);
3891	atomic_inc(&cpu_buffer->record_disabled);
3892
3893	/* Make sure all commits have finished */
3894	synchronize_sched();
3895
3896	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3897
3898	if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
3899		goto out;
3900
3901	arch_spin_lock(&cpu_buffer->lock);
3902
3903	rb_reset_cpu(cpu_buffer);
3904
3905	arch_spin_unlock(&cpu_buffer->lock);
3906
3907 out:
3908	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3909
3910	atomic_dec(&cpu_buffer->record_disabled);
3911	atomic_dec(&buffer->resize_disabled);
3912}
3913EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
3914
3915/**
3916 * ring_buffer_reset - reset a ring buffer
3917 * @buffer: The ring buffer to reset all cpu buffers
3918 */
3919void ring_buffer_reset(struct ring_buffer *buffer)
3920{
3921	int cpu;
3922
3923	for_each_buffer_cpu(buffer, cpu)
3924		ring_buffer_reset_cpu(buffer, cpu);
3925}
3926EXPORT_SYMBOL_GPL(ring_buffer_reset);
3927
3928/**
3929 * rind_buffer_empty - is the ring buffer empty?
3930 * @buffer: The ring buffer to test
3931 */
3932int ring_buffer_empty(struct ring_buffer *buffer)
3933{
3934	struct ring_buffer_per_cpu *cpu_buffer;
3935	unsigned long flags;
3936	int dolock;
3937	int cpu;
3938	int ret;
3939
3940	dolock = rb_ok_to_lock();
3941
3942	/* yes this is racy, but if you don't like the race, lock the buffer */
3943	for_each_buffer_cpu(buffer, cpu) {
3944		cpu_buffer = buffer->buffers[cpu];
3945		local_irq_save(flags);
3946		if (dolock)
3947			raw_spin_lock(&cpu_buffer->reader_lock);
3948		ret = rb_per_cpu_empty(cpu_buffer);
3949		if (dolock)
3950			raw_spin_unlock(&cpu_buffer->reader_lock);
3951		local_irq_restore(flags);
3952
3953		if (!ret)
3954			return 0;
3955	}
3956
3957	return 1;
3958}
3959EXPORT_SYMBOL_GPL(ring_buffer_empty);
3960
3961/**
3962 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
3963 * @buffer: The ring buffer
3964 * @cpu: The CPU buffer to test
3965 */
3966int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
3967{
3968	struct ring_buffer_per_cpu *cpu_buffer;
3969	unsigned long flags;
3970	int dolock;
3971	int ret;
3972
3973	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3974		return 1;
3975
3976	dolock = rb_ok_to_lock();
3977
3978	cpu_buffer = buffer->buffers[cpu];
3979	local_irq_save(flags);
3980	if (dolock)
3981		raw_spin_lock(&cpu_buffer->reader_lock);
3982	ret = rb_per_cpu_empty(cpu_buffer);
3983	if (dolock)
3984		raw_spin_unlock(&cpu_buffer->reader_lock);
3985	local_irq_restore(flags);
3986
3987	return ret;
3988}
3989EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
3990
3991#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
3992/**
3993 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
3994 * @buffer_a: One buffer to swap with
3995 * @buffer_b: The other buffer to swap with
3996 *
3997 * This function is useful for tracers that want to take a "snapshot"
3998 * of a CPU buffer and has another back up buffer lying around.
3999 * it is expected that the tracer handles the cpu buffer not being
4000 * used at the moment.
4001 */
4002int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
4003			 struct ring_buffer *buffer_b, int cpu)
4004{
4005	struct ring_buffer_per_cpu *cpu_buffer_a;
4006	struct ring_buffer_per_cpu *cpu_buffer_b;
4007	int ret = -EINVAL;
4008
4009	if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4010	    !cpumask_test_cpu(cpu, buffer_b->cpumask))
4011		goto out;
4012
4013	cpu_buffer_a = buffer_a->buffers[cpu];
4014	cpu_buffer_b = buffer_b->buffers[cpu];
4015
4016	/* At least make sure the two buffers are somewhat the same */
4017	if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
4018		goto out;
4019
4020	ret = -EAGAIN;
4021
4022	if (ring_buffer_flags != RB_BUFFERS_ON)
4023		goto out;
4024
4025	if (atomic_read(&buffer_a->record_disabled))
4026		goto out;
4027
4028	if (atomic_read(&buffer_b->record_disabled))
4029		goto out;
4030
4031	if (atomic_read(&cpu_buffer_a->record_disabled))
4032		goto out;
4033
4034	if (atomic_read(&cpu_buffer_b->record_disabled))
4035		goto out;
4036
4037	/*
4038	 * We can't do a synchronize_sched here because this
4039	 * function can be called in atomic context.
4040	 * Normally this will be called from the same CPU as cpu.
4041	 * If not it's up to the caller to protect this.
4042	 */
4043	atomic_inc(&cpu_buffer_a->record_disabled);
4044	atomic_inc(&cpu_buffer_b->record_disabled);
4045
4046	ret = -EBUSY;
4047	if (local_read(&cpu_buffer_a->committing))
4048		goto out_dec;
4049	if (local_read(&cpu_buffer_b->committing))
4050		goto out_dec;
4051
4052	buffer_a->buffers[cpu] = cpu_buffer_b;
4053	buffer_b->buffers[cpu] = cpu_buffer_a;
4054
4055	cpu_buffer_b->buffer = buffer_a;
4056	cpu_buffer_a->buffer = buffer_b;
4057
4058	ret = 0;
4059
4060out_dec:
4061	atomic_dec(&cpu_buffer_a->record_disabled);
4062	atomic_dec(&cpu_buffer_b->record_disabled);
4063out:
4064	return ret;
4065}
4066EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
4067#endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
4068
4069/**
4070 * ring_buffer_alloc_read_page - allocate a page to read from buffer
4071 * @buffer: the buffer to allocate for.
 
4072 *
4073 * This function is used in conjunction with ring_buffer_read_page.
4074 * When reading a full page from the ring buffer, these functions
4075 * can be used to speed up the process. The calling function should
4076 * allocate a few pages first with this function. Then when it
4077 * needs to get pages from the ring buffer, it passes the result
4078 * of this function into ring_buffer_read_page, which will swap
4079 * the page that was allocated, with the read page of the buffer.
4080 *
4081 * Returns:
4082 *  The page allocated, or NULL on error.
4083 */
4084void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
4085{
4086	struct buffer_data_page *bpage;
4087	struct page *page;
4088
4089	page = alloc_pages_node(cpu_to_node(cpu),
4090				GFP_KERNEL | __GFP_NORETRY, 0);
4091	if (!page)
4092		return NULL;
4093
4094	bpage = page_address(page);
4095
4096	rb_init_page(bpage);
4097
4098	return bpage;
4099}
4100EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
4101
4102/**
4103 * ring_buffer_free_read_page - free an allocated read page
4104 * @buffer: the buffer the page was allocate for
4105 * @data: the page to free
4106 *
4107 * Free a page allocated from ring_buffer_alloc_read_page.
4108 */
4109void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
4110{
4111	free_page((unsigned long)data);
4112}
4113EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
4114
4115/**
4116 * ring_buffer_read_page - extract a page from the ring buffer
4117 * @buffer: buffer to extract from
4118 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
4119 * @len: amount to extract
4120 * @cpu: the cpu of the buffer to extract
4121 * @full: should the extraction only happen when the page is full.
4122 *
4123 * This function will pull out a page from the ring buffer and consume it.
4124 * @data_page must be the address of the variable that was returned
4125 * from ring_buffer_alloc_read_page. This is because the page might be used
4126 * to swap with a page in the ring buffer.
4127 *
4128 * for example:
4129 *	rpage = ring_buffer_alloc_read_page(buffer);
4130 *	if (!rpage)
4131 *		return error;
4132 *	ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
4133 *	if (ret >= 0)
4134 *		process_page(rpage, ret);
4135 *
4136 * When @full is set, the function will not return true unless
4137 * the writer is off the reader page.
4138 *
4139 * Note: it is up to the calling functions to handle sleeps and wakeups.
4140 *  The ring buffer can be used anywhere in the kernel and can not
4141 *  blindly call wake_up. The layer that uses the ring buffer must be
4142 *  responsible for that.
4143 *
4144 * Returns:
4145 *  >=0 if data has been transferred, returns the offset of consumed data.
4146 *  <0 if no data has been transferred.
4147 */
4148int ring_buffer_read_page(struct ring_buffer *buffer,
4149			  void **data_page, size_t len, int cpu, int full)
4150{
4151	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4152	struct ring_buffer_event *event;
4153	struct buffer_data_page *bpage;
4154	struct buffer_page *reader;
4155	unsigned long missed_events;
4156	unsigned long flags;
4157	unsigned int commit;
4158	unsigned int read;
4159	u64 save_timestamp;
4160	int ret = -1;
4161
4162	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4163		goto out;
4164
4165	/*
4166	 * If len is not big enough to hold the page header, then
4167	 * we can not copy anything.
4168	 */
4169	if (len <= BUF_PAGE_HDR_SIZE)
4170		goto out;
4171
4172	len -= BUF_PAGE_HDR_SIZE;
4173
4174	if (!data_page)
4175		goto out;
4176
4177	bpage = *data_page;
4178	if (!bpage)
4179		goto out;
4180
4181	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4182
4183	reader = rb_get_reader_page(cpu_buffer);
4184	if (!reader)
4185		goto out_unlock;
4186
4187	event = rb_reader_event(cpu_buffer);
4188
4189	read = reader->read;
4190	commit = rb_page_commit(reader);
4191
4192	/* Check if any events were dropped */
4193	missed_events = cpu_buffer->lost_events;
4194
4195	/*
4196	 * If this page has been partially read or
4197	 * if len is not big enough to read the rest of the page or
4198	 * a writer is still on the page, then
4199	 * we must copy the data from the page to the buffer.
4200	 * Otherwise, we can simply swap the page with the one passed in.
4201	 */
4202	if (read || (len < (commit - read)) ||
4203	    cpu_buffer->reader_page == cpu_buffer->commit_page) {
4204		struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
4205		unsigned int rpos = read;
4206		unsigned int pos = 0;
4207		unsigned int size;
4208
4209		if (full)
4210			goto out_unlock;
4211
4212		if (len > (commit - read))
4213			len = (commit - read);
4214
4215		/* Always keep the time extend and data together */
4216		size = rb_event_ts_length(event);
4217
4218		if (len < size)
4219			goto out_unlock;
4220
4221		/* save the current timestamp, since the user will need it */
4222		save_timestamp = cpu_buffer->read_stamp;
4223
4224		/* Need to copy one event at a time */
4225		do {
4226			/* We need the size of one event, because
4227			 * rb_advance_reader only advances by one event,
4228			 * whereas rb_event_ts_length may include the size of
4229			 * one or two events.
4230			 * We have already ensured there's enough space if this
4231			 * is a time extend. */
4232			size = rb_event_length(event);
4233			memcpy(bpage->data + pos, rpage->data + rpos, size);
4234
4235			len -= size;
4236
4237			rb_advance_reader(cpu_buffer);
4238			rpos = reader->read;
4239			pos += size;
4240
4241			if (rpos >= commit)
4242				break;
4243
4244			event = rb_reader_event(cpu_buffer);
4245			/* Always keep the time extend and data together */
4246			size = rb_event_ts_length(event);
4247		} while (len >= size);
4248
4249		/* update bpage */
4250		local_set(&bpage->commit, pos);
4251		bpage->time_stamp = save_timestamp;
4252
4253		/* we copied everything to the beginning */
4254		read = 0;
4255	} else {
4256		/* update the entry counter */
4257		cpu_buffer->read += rb_page_entries(reader);
4258		cpu_buffer->read_bytes += BUF_PAGE_SIZE;
4259
4260		/* swap the pages */
4261		rb_init_page(bpage);
4262		bpage = reader->page;
4263		reader->page = *data_page;
4264		local_set(&reader->write, 0);
4265		local_set(&reader->entries, 0);
4266		reader->read = 0;
4267		*data_page = bpage;
4268
4269		/*
4270		 * Use the real_end for the data size,
4271		 * This gives us a chance to store the lost events
4272		 * on the page.
4273		 */
4274		if (reader->real_end)
4275			local_set(&bpage->commit, reader->real_end);
4276	}
4277	ret = read;
4278
4279	cpu_buffer->lost_events = 0;
4280
4281	commit = local_read(&bpage->commit);
4282	/*
4283	 * Set a flag in the commit field if we lost events
4284	 */
4285	if (missed_events) {
4286		/* If there is room at the end of the page to save the
4287		 * missed events, then record it there.
4288		 */
4289		if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4290			memcpy(&bpage->data[commit], &missed_events,
4291			       sizeof(missed_events));
4292			local_add(RB_MISSED_STORED, &bpage->commit);
4293			commit += sizeof(missed_events);
4294		}
4295		local_add(RB_MISSED_EVENTS, &bpage->commit);
4296	}
4297
4298	/*
4299	 * This page may be off to user land. Zero it out here.
4300	 */
4301	if (commit < BUF_PAGE_SIZE)
4302		memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4303
4304 out_unlock:
4305	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4306
4307 out:
4308	return ret;
4309}
4310EXPORT_SYMBOL_GPL(ring_buffer_read_page);
4311
4312#ifdef CONFIG_HOTPLUG_CPU
4313static int rb_cpu_notify(struct notifier_block *self,
4314			 unsigned long action, void *hcpu)
4315{
4316	struct ring_buffer *buffer =
4317		container_of(self, struct ring_buffer, cpu_notify);
4318	long cpu = (long)hcpu;
4319	int cpu_i, nr_pages_same;
4320	unsigned int nr_pages;
4321
4322	switch (action) {
4323	case CPU_UP_PREPARE:
4324	case CPU_UP_PREPARE_FROZEN:
4325		if (cpumask_test_cpu(cpu, buffer->cpumask))
4326			return NOTIFY_OK;
4327
4328		nr_pages = 0;
4329		nr_pages_same = 1;
4330		/* check if all cpu sizes are same */
4331		for_each_buffer_cpu(buffer, cpu_i) {
4332			/* fill in the size from first enabled cpu */
4333			if (nr_pages == 0)
4334				nr_pages = buffer->buffers[cpu_i]->nr_pages;
4335			if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4336				nr_pages_same = 0;
4337				break;
4338			}
4339		}
4340		/* allocate minimum pages, user can later expand it */
4341		if (!nr_pages_same)
4342			nr_pages = 2;
4343		buffer->buffers[cpu] =
4344			rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
4345		if (!buffer->buffers[cpu]) {
4346			WARN(1, "failed to allocate ring buffer on CPU %ld\n",
4347			     cpu);
4348			return NOTIFY_OK;
4349		}
4350		smp_wmb();
4351		cpumask_set_cpu(cpu, buffer->cpumask);
4352		break;
4353	case CPU_DOWN_PREPARE:
4354	case CPU_DOWN_PREPARE_FROZEN:
4355		/*
4356		 * Do nothing.
4357		 *  If we were to free the buffer, then the user would
4358		 *  lose any trace that was in the buffer.
4359		 */
4360		break;
4361	default:
4362		break;
4363	}
4364	return NOTIFY_OK;
4365}
4366#endif