Linux Audio

Check our new training course

Loading...
v4.6
 
   1/*
   2 * Implement CPU time clocks for the POSIX clock interface.
   3 */
   4
   5#include <linux/sched.h>
 
   6#include <linux/posix-timers.h>
   7#include <linux/errno.h>
   8#include <linux/math64.h>
   9#include <asm/uaccess.h>
  10#include <linux/kernel_stat.h>
  11#include <trace/events/timer.h>
  12#include <linux/random.h>
  13#include <linux/tick.h>
  14#include <linux/workqueue.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  15
  16/*
  17 * Called after updating RLIMIT_CPU to run cpu timer and update
  18 * tsk->signal->cputime_expires expiration cache if necessary. Needs
  19 * siglock protection since other code may update expiration cache as
  20 * well.
 
 
 
  21 */
  22void update_rlimit_cpu(struct task_struct *task, unsigned long rlim_new)
  23{
  24	cputime_t cputime = secs_to_cputime(rlim_new);
 
  25
  26	spin_lock_irq(&task->sighand->siglock);
  27	set_process_cpu_timer(task, CPUCLOCK_PROF, &cputime, NULL);
  28	spin_unlock_irq(&task->sighand->siglock);
 
 
  29}
  30
  31static int check_clock(const clockid_t which_clock)
 
 
 
  32{
  33	int error = 0;
  34	struct task_struct *p;
  35	const pid_t pid = CPUCLOCK_PID(which_clock);
  36
  37	if (CPUCLOCK_WHICH(which_clock) >= CPUCLOCK_MAX)
  38		return -EINVAL;
  39
  40	if (pid == 0)
  41		return 0;
 
 
 
 
  42
  43	rcu_read_lock();
  44	p = find_task_by_vpid(pid);
  45	if (!p || !(CPUCLOCK_PERTHREAD(which_clock) ?
  46		   same_thread_group(p, current) : has_group_leader_pid(p))) {
  47		error = -EINVAL;
 
 
  48	}
  49	rcu_read_unlock();
  50
  51	return error;
 
 
 
 
 
 
 
 
 
 
 
 
  52}
  53
  54static inline unsigned long long
  55timespec_to_sample(const clockid_t which_clock, const struct timespec *tp)
  56{
  57	unsigned long long ret;
 
 
 
 
  58
  59	ret = 0;		/* high half always zero when .cpu used */
  60	if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
  61		ret = (unsigned long long)tp->tv_sec * NSEC_PER_SEC + tp->tv_nsec;
  62	} else {
  63		ret = cputime_to_expires(timespec_to_cputime(tp));
  64	}
  65	return ret;
  66}
  67
  68static void sample_to_timespec(const clockid_t which_clock,
  69			       unsigned long long expires,
  70			       struct timespec *tp)
  71{
  72	if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED)
  73		*tp = ns_to_timespec(expires);
  74	else
  75		cputime_to_timespec((__force cputime_t)expires, tp);
 
 
  76}
  77
  78/*
  79 * Update expiry time from increment, and increase overrun count,
  80 * given the current clock sample.
  81 */
  82static void bump_cpu_timer(struct k_itimer *timer,
  83			   unsigned long long now)
  84{
 
  85	int i;
  86	unsigned long long delta, incr;
  87
  88	if (timer->it.cpu.incr == 0)
  89		return;
  90
  91	if (now < timer->it.cpu.expires)
  92		return;
  93
  94	incr = timer->it.cpu.incr;
  95	delta = now + incr - timer->it.cpu.expires;
  96
  97	/* Don't use (incr*2 < delta), incr*2 might overflow. */
  98	for (i = 0; incr < delta - incr; i++)
  99		incr = incr << 1;
 100
 101	for (; i >= 0; incr >>= 1, i--) {
 102		if (delta < incr)
 103			continue;
 104
 105		timer->it.cpu.expires += incr;
 106		timer->it_overrun += 1 << i;
 107		delta -= incr;
 108	}
 
 109}
 110
 111/**
 112 * task_cputime_zero - Check a task_cputime struct for all zero fields.
 113 *
 114 * @cputime:	The struct to compare.
 115 *
 116 * Checks @cputime to see if all fields are zero.  Returns true if all fields
 117 * are zero, false if any field is nonzero.
 118 */
 119static inline int task_cputime_zero(const struct task_cputime *cputime)
 120{
 121	if (!cputime->utime && !cputime->stime && !cputime->sum_exec_runtime)
 122		return 1;
 123	return 0;
 124}
 125
 126static inline unsigned long long prof_ticks(struct task_struct *p)
 127{
 128	cputime_t utime, stime;
 129
 130	task_cputime(p, &utime, &stime);
 131
 132	return cputime_to_expires(utime + stime);
 133}
 134static inline unsigned long long virt_ticks(struct task_struct *p)
 135{
 136	cputime_t utime;
 137
 138	task_cputime(p, &utime, NULL);
 139
 140	return cputime_to_expires(utime);
 141}
 142
 143static int
 144posix_cpu_clock_getres(const clockid_t which_clock, struct timespec *tp)
 145{
 146	int error = check_clock(which_clock);
 
 147	if (!error) {
 148		tp->tv_sec = 0;
 149		tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ);
 150		if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
 151			/*
 152			 * If sched_clock is using a cycle counter, we
 153			 * don't have any idea of its true resolution
 154			 * exported, but it is much more than 1s/HZ.
 155			 */
 156			tp->tv_nsec = 1;
 157		}
 158	}
 159	return error;
 160}
 161
 162static int
 163posix_cpu_clock_set(const clockid_t which_clock, const struct timespec *tp)
 164{
 
 
 165	/*
 166	 * You can never reset a CPU clock, but we check for other errors
 167	 * in the call before failing with EPERM.
 168	 */
 169	int error = check_clock(which_clock);
 170	if (error == 0) {
 171		error = -EPERM;
 172	}
 173	return error;
 174}
 175
 176
 177/*
 178 * Sample a per-thread clock for the given task.
 179 */
 180static int cpu_clock_sample(const clockid_t which_clock, struct task_struct *p,
 181			    unsigned long long *sample)
 182{
 183	switch (CPUCLOCK_WHICH(which_clock)) {
 184	default:
 185		return -EINVAL;
 
 
 
 
 
 186	case CPUCLOCK_PROF:
 187		*sample = prof_ticks(p);
 188		break;
 189	case CPUCLOCK_VIRT:
 190		*sample = virt_ticks(p);
 191		break;
 192	case CPUCLOCK_SCHED:
 193		*sample = task_sched_runtime(p);
 194		break;
 195	}
 196	return 0;
 197}
 198
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 199/*
 200 * Set cputime to sum_cputime if sum_cputime > cputime. Use cmpxchg
 201 * to avoid race conditions with concurrent updates to cputime.
 202 */
 203static inline void __update_gt_cputime(atomic64_t *cputime, u64 sum_cputime)
 204{
 205	u64 curr_cputime;
 206retry:
 207	curr_cputime = atomic64_read(cputime);
 208	if (sum_cputime > curr_cputime) {
 209		if (atomic64_cmpxchg(cputime, curr_cputime, sum_cputime) != curr_cputime)
 210			goto retry;
 211	}
 212}
 213
 214static void update_gt_cputime(struct task_cputime_atomic *cputime_atomic, struct task_cputime *sum)
 
 215{
 216	__update_gt_cputime(&cputime_atomic->utime, sum->utime);
 217	__update_gt_cputime(&cputime_atomic->stime, sum->stime);
 218	__update_gt_cputime(&cputime_atomic->sum_exec_runtime, sum->sum_exec_runtime);
 219}
 220
 221/* Sample task_cputime_atomic values in "atomic_timers", store results in "times". */
 222static inline void sample_cputime_atomic(struct task_cputime *times,
 223					 struct task_cputime_atomic *atomic_times)
 
 
 
 
 
 
 
 
 
 224{
 225	times->utime = atomic64_read(&atomic_times->utime);
 226	times->stime = atomic64_read(&atomic_times->stime);
 227	times->sum_exec_runtime = atomic64_read(&atomic_times->sum_exec_runtime);
 
 
 
 228}
 229
 230void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times)
 
 
 
 
 
 
 
 
 
 
 
 
 231{
 232	struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
 233	struct task_cputime sum;
 
 
 234
 235	/* Check if cputimer isn't running. This is accessed without locking. */
 236	if (!READ_ONCE(cputimer->running)) {
 
 
 237		/*
 238		 * The POSIX timer interface allows for absolute time expiry
 239		 * values through the TIMER_ABSTIME flag, therefore we have
 240		 * to synchronize the timer to the clock every time we start it.
 241		 */
 242		thread_group_cputime(tsk, &sum);
 243		update_gt_cputime(&cputimer->cputime_atomic, &sum);
 244
 245		/*
 246		 * We're setting cputimer->running without a lock. Ensure
 247		 * this only gets written to in one operation. We set
 248		 * running after update_gt_cputime() as a small optimization,
 249		 * but barriers are not required because update_gt_cputime()
 250		 * can handle concurrent updates.
 251		 */
 252		WRITE_ONCE(cputimer->running, true);
 253	}
 254	sample_cputime_atomic(times, &cputimer->cputime_atomic);
 255}
 256
 257/*
 258 * Sample a process (thread group) clock for the given group_leader task.
 259 * Must be called with task sighand lock held for safe while_each_thread()
 260 * traversal.
 261 */
 262static int cpu_clock_sample_group(const clockid_t which_clock,
 263				  struct task_struct *p,
 264				  unsigned long long *sample)
 265{
 266	struct task_cputime cputime;
 267
 268	switch (CPUCLOCK_WHICH(which_clock)) {
 269	default:
 270		return -EINVAL;
 271	case CPUCLOCK_PROF:
 272		thread_group_cputime(p, &cputime);
 273		*sample = cputime_to_expires(cputime.utime + cputime.stime);
 274		break;
 275	case CPUCLOCK_VIRT:
 276		thread_group_cputime(p, &cputime);
 277		*sample = cputime_to_expires(cputime.utime);
 278		break;
 279	case CPUCLOCK_SCHED:
 280		thread_group_cputime(p, &cputime);
 281		*sample = cputime.sum_exec_runtime;
 282		break;
 283	}
 284	return 0;
 285}
 286
 287static int posix_cpu_clock_get_task(struct task_struct *tsk,
 288				    const clockid_t which_clock,
 289				    struct timespec *tp)
 290{
 291	int err = -EINVAL;
 292	unsigned long long rtn;
 293
 294	if (CPUCLOCK_PERTHREAD(which_clock)) {
 295		if (same_thread_group(tsk, current))
 296			err = cpu_clock_sample(which_clock, tsk, &rtn);
 
 
 
 
 
 
 
 297	} else {
 298		if (tsk == current || thread_group_leader(tsk))
 299			err = cpu_clock_sample_group(which_clock, tsk, &rtn);
 300	}
 301
 302	if (!err)
 303		sample_to_timespec(which_clock, rtn, tp);
 304
 305	return err;
 306}
 307
 308
 309static int posix_cpu_clock_get(const clockid_t which_clock, struct timespec *tp)
 310{
 311	const pid_t pid = CPUCLOCK_PID(which_clock);
 312	int err = -EINVAL;
 
 313
 314	if (pid == 0) {
 315		/*
 316		 * Special case constant value for our own clocks.
 317		 * We don't have to do any lookup to find ourselves.
 318		 */
 319		err = posix_cpu_clock_get_task(current, which_clock, tp);
 320	} else {
 321		/*
 322		 * Find the given PID, and validate that the caller
 323		 * should be able to see it.
 324		 */
 325		struct task_struct *p;
 326		rcu_read_lock();
 327		p = find_task_by_vpid(pid);
 328		if (p)
 329			err = posix_cpu_clock_get_task(p, which_clock, tp);
 330		rcu_read_unlock();
 
 331	}
 332
 333	return err;
 
 
 
 
 
 
 
 334}
 335
 336/*
 337 * Validate the clockid_t for a new CPU-clock timer, and initialize the timer.
 338 * This is called from sys_timer_create() and do_cpu_nanosleep() with the
 339 * new timer already all-zeros initialized.
 340 */
 341static int posix_cpu_timer_create(struct k_itimer *new_timer)
 342{
 343	int ret = 0;
 344	const pid_t pid = CPUCLOCK_PID(new_timer->it_clock);
 345	struct task_struct *p;
 346
 347	if (CPUCLOCK_WHICH(new_timer->it_clock) >= CPUCLOCK_MAX)
 348		return -EINVAL;
 349
 350	INIT_LIST_HEAD(&new_timer->it.cpu.entry);
 351
 352	rcu_read_lock();
 353	if (CPUCLOCK_PERTHREAD(new_timer->it_clock)) {
 354		if (pid == 0) {
 355			p = current;
 356		} else {
 357			p = find_task_by_vpid(pid);
 358			if (p && !same_thread_group(p, current))
 359				p = NULL;
 360		}
 361	} else {
 362		if (pid == 0) {
 363			p = current->group_leader;
 364		} else {
 365			p = find_task_by_vpid(pid);
 366			if (p && !has_group_leader_pid(p))
 367				p = NULL;
 368		}
 369	}
 370	new_timer->it.cpu.task = p;
 371	if (p) {
 372		get_task_struct(p);
 373	} else {
 374		ret = -EINVAL;
 375	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 376	rcu_read_unlock();
 
 
 377
 378	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 379}
 380
 381/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 382 * Clean up a CPU-clock timer that is about to be destroyed.
 383 * This is called from timer deletion with the timer already locked.
 384 * If we return TIMER_RETRY, it's necessary to release the timer's lock
 385 * and try again.  (This happens when the timer is in the middle of firing.)
 386 */
 387static int posix_cpu_timer_del(struct k_itimer *timer)
 388{
 389	int ret = 0;
 390	unsigned long flags;
 391	struct sighand_struct *sighand;
 392	struct task_struct *p = timer->it.cpu.task;
 
 
 393
 394	WARN_ON_ONCE(p == NULL);
 
 
 
 395
 396	/*
 397	 * Protect against sighand release/switch in exit/exec and process/
 398	 * thread timer list entry concurrent read/writes.
 399	 */
 400	sighand = lock_task_sighand(p, &flags);
 401	if (unlikely(sighand == NULL)) {
 402		/*
 403		 * We raced with the reaping of the task.
 404		 * The deletion should have cleared us off the list.
 405		 */
 406		WARN_ON_ONCE(!list_empty(&timer->it.cpu.entry));
 407	} else {
 408		if (timer->it.cpu.firing)
 
 
 
 
 
 
 
 409			ret = TIMER_RETRY;
 410		else
 411			list_del(&timer->it.cpu.entry);
 412
 413		unlock_task_sighand(p, &flags);
 414	}
 415
 416	if (!ret)
 417		put_task_struct(p);
 418
 
 
 
 
 419	return ret;
 420}
 421
 422static void cleanup_timers_list(struct list_head *head)
 423{
 424	struct cpu_timer_list *timer, *next;
 
 425
 426	list_for_each_entry_safe(timer, next, head, entry)
 427		list_del_init(&timer->entry);
 
 
 
 428}
 429
 430/*
 431 * Clean out CPU timers still ticking when a thread exited.  The task
 432 * pointer is cleared, and the expiry time is replaced with the residual
 433 * time for later timer_gettime calls to return.
 
 434 * This must be called with the siglock held.
 435 */
 436static void cleanup_timers(struct list_head *head)
 437{
 438	cleanup_timers_list(head);
 439	cleanup_timers_list(++head);
 440	cleanup_timers_list(++head);
 441}
 442
 443/*
 444 * These are both called with the siglock held, when the current thread
 445 * is being reaped.  When the final (leader) thread in the group is reaped,
 446 * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit.
 447 */
 448void posix_cpu_timers_exit(struct task_struct *tsk)
 449{
 450	add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
 451						sizeof(unsigned long long));
 452	cleanup_timers(tsk->cpu_timers);
 453
 454}
 455void posix_cpu_timers_exit_group(struct task_struct *tsk)
 456{
 457	cleanup_timers(tsk->signal->cpu_timers);
 458}
 459
 460static inline int expires_gt(cputime_t expires, cputime_t new_exp)
 461{
 462	return expires == 0 || expires > new_exp;
 463}
 464
 465/*
 466 * Insert the timer on the appropriate list before any timers that
 467 * expire later.  This must be called with the sighand lock held.
 468 */
 469static void arm_timer(struct k_itimer *timer)
 470{
 471	struct task_struct *p = timer->it.cpu.task;
 472	struct list_head *head, *listpos;
 473	struct task_cputime *cputime_expires;
 474	struct cpu_timer_list *const nt = &timer->it.cpu;
 475	struct cpu_timer_list *next;
 476
 477	if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
 478		head = p->cpu_timers;
 479		cputime_expires = &p->cputime_expires;
 480	} else {
 481		head = p->signal->cpu_timers;
 482		cputime_expires = &p->signal->cputime_expires;
 483	}
 484	head += CPUCLOCK_WHICH(timer->it_clock);
 485
 486	listpos = head;
 487	list_for_each_entry(next, head, entry) {
 488		if (nt->expires < next->expires)
 489			break;
 490		listpos = &next->entry;
 491	}
 492	list_add(&nt->entry, listpos);
 493
 494	if (listpos == head) {
 495		unsigned long long exp = nt->expires;
 
 496
 497		/*
 498		 * We are the new earliest-expiring POSIX 1.b timer, hence
 499		 * need to update expiration cache. Take into account that
 500		 * for process timers we share expiration cache with itimers
 501		 * and RLIMIT_CPU and for thread timers with RLIMIT_RTTIME.
 502		 */
 
 
 503
 504		switch (CPUCLOCK_WHICH(timer->it_clock)) {
 505		case CPUCLOCK_PROF:
 506			if (expires_gt(cputime_expires->prof_exp, expires_to_cputime(exp)))
 507				cputime_expires->prof_exp = expires_to_cputime(exp);
 508			break;
 509		case CPUCLOCK_VIRT:
 510			if (expires_gt(cputime_expires->virt_exp, expires_to_cputime(exp)))
 511				cputime_expires->virt_exp = expires_to_cputime(exp);
 512			break;
 513		case CPUCLOCK_SCHED:
 514			if (cputime_expires->sched_exp == 0 ||
 515			    cputime_expires->sched_exp > exp)
 516				cputime_expires->sched_exp = exp;
 517			break;
 518		}
 519		if (CPUCLOCK_PERTHREAD(timer->it_clock))
 520			tick_dep_set_task(p, TICK_DEP_BIT_POSIX_TIMER);
 521		else
 522			tick_dep_set_signal(p->signal, TICK_DEP_BIT_POSIX_TIMER);
 523	}
 524}
 525
 526/*
 527 * The timer is locked, fire it and arrange for its reload.
 528 */
 529static void cpu_timer_fire(struct k_itimer *timer)
 530{
 531	if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) {
 532		/*
 533		 * User don't want any signal.
 534		 */
 535		timer->it.cpu.expires = 0;
 536	} else if (unlikely(timer->sigq == NULL)) {
 537		/*
 538		 * This a special case for clock_nanosleep,
 539		 * not a normal timer from sys_timer_create.
 540		 */
 541		wake_up_process(timer->it_process);
 542		timer->it.cpu.expires = 0;
 543	} else if (timer->it.cpu.incr == 0) {
 544		/*
 545		 * One-shot timer.  Clear it as soon as it's fired.
 546		 */
 547		posix_timer_event(timer, 0);
 548		timer->it.cpu.expires = 0;
 549	} else if (posix_timer_event(timer, ++timer->it_requeue_pending)) {
 550		/*
 551		 * The signal did not get queued because the signal
 552		 * was ignored, so we won't get any callback to
 553		 * reload the timer.  But we need to keep it
 554		 * ticking in case the signal is deliverable next time.
 555		 */
 556		posix_cpu_timer_schedule(timer);
 557	}
 558}
 559
 560/*
 561 * Sample a process (thread group) timer for the given group_leader task.
 562 * Must be called with task sighand lock held for safe while_each_thread()
 563 * traversal.
 564 */
 565static int cpu_timer_sample_group(const clockid_t which_clock,
 566				  struct task_struct *p,
 567				  unsigned long long *sample)
 568{
 569	struct task_cputime cputime;
 570
 571	thread_group_cputimer(p, &cputime);
 572	switch (CPUCLOCK_WHICH(which_clock)) {
 573	default:
 574		return -EINVAL;
 575	case CPUCLOCK_PROF:
 576		*sample = cputime_to_expires(cputime.utime + cputime.stime);
 577		break;
 578	case CPUCLOCK_VIRT:
 579		*sample = cputime_to_expires(cputime.utime);
 580		break;
 581	case CPUCLOCK_SCHED:
 582		*sample = cputime.sum_exec_runtime;
 583		break;
 584	}
 585	return 0;
 586}
 587
 588/*
 589 * Guts of sys_timer_settime for CPU timers.
 590 * This is called with the timer locked and interrupts disabled.
 591 * If we return TIMER_RETRY, it's necessary to release the timer's lock
 592 * and try again.  (This happens when the timer is in the middle of firing.)
 593 */
 594static int posix_cpu_timer_set(struct k_itimer *timer, int timer_flags,
 595			       struct itimerspec *new, struct itimerspec *old)
 596{
 597	unsigned long flags;
 
 
 
 598	struct sighand_struct *sighand;
 599	struct task_struct *p = timer->it.cpu.task;
 600	unsigned long long old_expires, new_expires, old_incr, val;
 601	int ret;
 602
 603	WARN_ON_ONCE(p == NULL);
 
 
 
 
 
 
 
 
 
 604
 605	new_expires = timespec_to_sample(timer->it_clock, &new->it_value);
 
 
 
 
 606
 607	/*
 608	 * Protect against sighand release/switch in exit/exec and p->cpu_timers
 609	 * and p->signal->cpu_timers read/write in arm_timer()
 610	 */
 611	sighand = lock_task_sighand(p, &flags);
 612	/*
 613	 * If p has just been reaped, we can no
 614	 * longer get any information about it at all.
 615	 */
 616	if (unlikely(sighand == NULL)) {
 
 617		return -ESRCH;
 618	}
 619
 620	/*
 621	 * Disarm any old timer after extracting its expiry time.
 622	 */
 623	WARN_ON_ONCE(!irqs_disabled());
 624
 625	ret = 0;
 626	old_incr = timer->it.cpu.incr;
 627	old_expires = timer->it.cpu.expires;
 628	if (unlikely(timer->it.cpu.firing)) {
 629		timer->it.cpu.firing = -1;
 
 
 
 
 
 
 630		ret = TIMER_RETRY;
 631	} else
 632		list_del_init(&timer->it.cpu.entry);
 
 
 633
 634	/*
 635	 * We need to sample the current value to convert the new
 636	 * value from to relative and absolute, and to convert the
 637	 * old value from absolute to relative.  To set a process
 638	 * timer, we need a sample to balance the thread expiry
 639	 * times (in arm_timer).  With an absolute time, we must
 640	 * check if it's already passed.  In short, we need a sample.
 641	 */
 642	if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
 643		cpu_clock_sample(timer->it_clock, p, &val);
 644	} else {
 645		cpu_timer_sample_group(timer->it_clock, p, &val);
 646	}
 647
 
 648	if (old) {
 649		if (old_expires == 0) {
 650			old->it_value.tv_sec = 0;
 651			old->it_value.tv_nsec = 0;
 652		} else {
 653			/*
 654			 * Update the timer in case it has
 655			 * overrun already.  If it has,
 656			 * we'll report it as having overrun
 657			 * and with the next reloaded timer
 658			 * already ticking, though we are
 659			 * swallowing that pending
 660			 * notification here to install the
 661			 * new setting.
 662			 */
 663			bump_cpu_timer(timer, val);
 664			if (val < timer->it.cpu.expires) {
 665				old_expires = timer->it.cpu.expires - val;
 666				sample_to_timespec(timer->it_clock,
 667						   old_expires,
 668						   &old->it_value);
 669			} else {
 670				old->it_value.tv_nsec = 1;
 671				old->it_value.tv_sec = 0;
 672			}
 673		}
 674	}
 675
 
 676	if (unlikely(ret)) {
 677		/*
 678		 * We are colliding with the timer actually firing.
 679		 * Punt after filling in the timer's old value, and
 680		 * disable this firing since we are already reporting
 681		 * it as an overrun (thanks to bump_cpu_timer above).
 682		 */
 683		unlock_task_sighand(p, &flags);
 684		goto out;
 685	}
 686
 687	if (new_expires != 0 && !(timer_flags & TIMER_ABSTIME)) {
 688		new_expires += val;
 689	}
 690
 691	/*
 692	 * Install the new expiry time (or zero).
 693	 * For a timer with no notification action, we don't actually
 694	 * arm the timer (we'll just fake it for timer_gettime).
 695	 */
 696	timer->it.cpu.expires = new_expires;
 697	if (new_expires != 0 && val < new_expires) {
 698		arm_timer(timer);
 
 
 
 
 
 
 
 699	}
 700
 701	unlock_task_sighand(p, &flags);
 702	/*
 703	 * Install the new reload setting, and
 704	 * set up the signal and overrun bookkeeping.
 705	 */
 706	timer->it.cpu.incr = timespec_to_sample(timer->it_clock,
 707						&new->it_interval);
 708
 709	/*
 710	 * This acts as a modification timestamp for the timer,
 711	 * so any automatic reload attempt will punt on seeing
 712	 * that we have reset the timer manually.
 713	 */
 714	timer->it_requeue_pending = (timer->it_requeue_pending + 2) &
 715		~REQUEUE_PENDING;
 716	timer->it_overrun_last = 0;
 717	timer->it_overrun = -1;
 718
 719	if (new_expires != 0 && !(val < new_expires)) {
 720		/*
 721		 * The designated time already passed, so we notify
 722		 * immediately, even if the thread never runs to
 723		 * accumulate more time on this clock.
 724		 */
 725		cpu_timer_fire(timer);
 726	}
 727
 728	ret = 0;
 729 out:
 730	if (old) {
 731		sample_to_timespec(timer->it_clock,
 732				   old_incr, &old->it_interval);
 733	}
 734
 735	return ret;
 736}
 737
 738static void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec *itp)
 739{
 740	unsigned long long now;
 741	struct task_struct *p = timer->it.cpu.task;
 742
 743	WARN_ON_ONCE(p == NULL);
 744
 745	/*
 746	 * Easy part: convert the reload time.
 
 
 
 
 747	 */
 748	sample_to_timespec(timer->it_clock,
 749			   timer->it.cpu.incr, &itp->it_interval);
 750
 751	if (timer->it.cpu.expires == 0) {	/* Timer not armed at all.  */
 752		itp->it_value.tv_sec = itp->it_value.tv_nsec = 0;
 753		return;
 754	}
 755
 756	/*
 757	 * Sample the clock to take the difference with the expiry time.
 
 
 758	 */
 759	if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
 760		cpu_clock_sample(timer->it_clock, p, &now);
 761	} else {
 762		struct sighand_struct *sighand;
 763		unsigned long flags;
 764
 765		/*
 766		 * Protect against sighand release/switch in exit/exec and
 767		 * also make timer sampling safe if it ends up calling
 768		 * thread_group_cputime().
 
 769		 */
 770		sighand = lock_task_sighand(p, &flags);
 771		if (unlikely(sighand == NULL)) {
 772			/*
 773			 * The process has been reaped.
 774			 * We can't even collect a sample any more.
 775			 * Call the timer disarmed, nothing else to do.
 776			 */
 777			timer->it.cpu.expires = 0;
 778			sample_to_timespec(timer->it_clock, timer->it.cpu.expires,
 779					   &itp->it_value);
 780		} else {
 781			cpu_timer_sample_group(timer->it_clock, p, &now);
 782			unlock_task_sighand(p, &flags);
 783		}
 784	}
 
 785
 786	if (now < timer->it.cpu.expires) {
 787		sample_to_timespec(timer->it_clock,
 788				   timer->it.cpu.expires - now,
 789				   &itp->it_value);
 790	} else {
 791		/*
 792		 * The timer should have expired already, but the firing
 793		 * hasn't taken place yet.  Say it's just about to expire.
 794		 */
 795		itp->it_value.tv_nsec = 1;
 796		itp->it_value.tv_sec = 0;
 
 
 
 
 
 
 797	}
 
 798}
 799
 800static unsigned long long
 801check_timers_list(struct list_head *timers,
 802		  struct list_head *firing,
 803		  unsigned long long curr)
 804{
 805	int maxfire = 20;
 
 
 
 
 
 806
 807	while (!list_empty(timers)) {
 808		struct cpu_timer_list *t;
 
 
 
 809
 810		t = list_first_entry(timers, struct cpu_timer_list, entry);
 
 
 
 
 
 811
 812		if (!--maxfire || curr < t->expires)
 813			return t->expires;
 814
 815		t->firing = 1;
 816		list_move_tail(&t->entry, firing);
 
 
 
 
 
 
 
 817	}
 
 818
 819	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 820}
 821
 822/*
 823 * Check for any per-thread CPU timers that have fired and move them off
 824 * the tsk->cpu_timers[N] list onto the firing list.  Here we update the
 825 * tsk->it_*_expires values to reflect the remaining thread CPU timers.
 826 */
 827static void check_thread_timers(struct task_struct *tsk,
 828				struct list_head *firing)
 829{
 830	struct list_head *timers = tsk->cpu_timers;
 831	struct signal_struct *const sig = tsk->signal;
 832	struct task_cputime *tsk_expires = &tsk->cputime_expires;
 833	unsigned long long expires;
 834	unsigned long soft;
 835
 836	/*
 837	 * If cputime_expires is zero, then there are no active
 838	 * per thread CPU timers.
 839	 */
 840	if (task_cputime_zero(&tsk->cputime_expires))
 841		return;
 842
 843	expires = check_timers_list(timers, firing, prof_ticks(tsk));
 844	tsk_expires->prof_exp = expires_to_cputime(expires);
 845
 846	expires = check_timers_list(++timers, firing, virt_ticks(tsk));
 847	tsk_expires->virt_exp = expires_to_cputime(expires);
 848
 849	tsk_expires->sched_exp = check_timers_list(++timers, firing,
 850						   tsk->se.sum_exec_runtime);
 851
 852	/*
 853	 * Check for the special case thread timers.
 854	 */
 855	soft = READ_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_cur);
 856	if (soft != RLIM_INFINITY) {
 857		unsigned long hard =
 858			READ_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_max);
 
 859
 
 860		if (hard != RLIM_INFINITY &&
 861		    tsk->rt.timeout > DIV_ROUND_UP(hard, USEC_PER_SEC/HZ)) {
 862			/*
 863			 * At the hard limit, we just die.
 864			 * No need to calculate anything else now.
 865			 */
 866			__group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
 867			return;
 868		}
 869		if (tsk->rt.timeout > DIV_ROUND_UP(soft, USEC_PER_SEC/HZ)) {
 870			/*
 871			 * At the soft limit, send a SIGXCPU every second.
 872			 */
 873			if (soft < hard) {
 874				soft += USEC_PER_SEC;
 875				sig->rlim[RLIMIT_RTTIME].rlim_cur = soft;
 876			}
 877			printk(KERN_INFO
 878				"RT Watchdog Timeout: %s[%d]\n",
 879				tsk->comm, task_pid_nr(tsk));
 880			__group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
 881		}
 882	}
 883	if (task_cputime_zero(tsk_expires))
 
 884		tick_dep_clear_task(tsk, TICK_DEP_BIT_POSIX_TIMER);
 885}
 886
 887static inline void stop_process_timers(struct signal_struct *sig)
 888{
 889	struct thread_group_cputimer *cputimer = &sig->cputimer;
 890
 891	/* Turn off cputimer->running. This is done without locking. */
 892	WRITE_ONCE(cputimer->running, false);
 893	tick_dep_clear_signal(sig, TICK_DEP_BIT_POSIX_TIMER);
 894}
 895
 896static u32 onecputick;
 897
 898static void check_cpu_itimer(struct task_struct *tsk, struct cpu_itimer *it,
 899			     unsigned long long *expires,
 900			     unsigned long long cur_time, int signo)
 901{
 902	if (!it->expires)
 903		return;
 904
 905	if (cur_time >= it->expires) {
 906		if (it->incr) {
 907			it->expires += it->incr;
 908			it->error += it->incr_error;
 909			if (it->error >= onecputick) {
 910				it->expires -= cputime_one_jiffy;
 911				it->error -= onecputick;
 912			}
 913		} else {
 914			it->expires = 0;
 915		}
 916
 917		trace_itimer_expire(signo == SIGPROF ?
 918				    ITIMER_PROF : ITIMER_VIRTUAL,
 919				    tsk->signal->leader_pid, cur_time);
 920		__group_send_sig_info(signo, SEND_SIG_PRIV, tsk);
 921	}
 922
 923	if (it->expires && (!*expires || it->expires < *expires)) {
 924		*expires = it->expires;
 925	}
 926}
 927
 928/*
 929 * Check for any per-thread CPU timers that have fired and move them
 930 * off the tsk->*_timers list onto the firing list.  Per-thread timers
 931 * have already been taken off.
 932 */
 933static void check_process_timers(struct task_struct *tsk,
 934				 struct list_head *firing)
 935{
 936	struct signal_struct *const sig = tsk->signal;
 937	unsigned long long utime, ptime, virt_expires, prof_expires;
 938	unsigned long long sum_sched_runtime, sched_expires;
 939	struct list_head *timers = sig->cpu_timers;
 940	struct task_cputime cputime;
 941	unsigned long soft;
 942
 943	/*
 944	 * If cputimer is not running, then there are no active
 945	 * process wide timers (POSIX 1.b, itimers, RLIMIT_CPU).
 
 946	 */
 947	if (!READ_ONCE(tsk->signal->cputimer.running))
 948		return;
 949
 950        /*
 951	 * Signify that a thread is checking for process timers.
 952	 * Write access to this field is protected by the sighand lock.
 953	 */
 954	sig->cputimer.checking_timer = true;
 955
 956	/*
 957	 * Collect the current process totals.
 
 958	 */
 959	thread_group_cputimer(tsk, &cputime);
 960	utime = cputime_to_expires(cputime.utime);
 961	ptime = utime + cputime_to_expires(cputime.stime);
 962	sum_sched_runtime = cputime.sum_exec_runtime;
 963
 964	prof_expires = check_timers_list(timers, firing, ptime);
 965	virt_expires = check_timers_list(++timers, firing, utime);
 966	sched_expires = check_timers_list(++timers, firing, sum_sched_runtime);
 967
 968	/*
 969	 * Check for the special case process timers.
 970	 */
 971	check_cpu_itimer(tsk, &sig->it[CPUCLOCK_PROF], &prof_expires, ptime,
 972			 SIGPROF);
 973	check_cpu_itimer(tsk, &sig->it[CPUCLOCK_VIRT], &virt_expires, utime,
 974			 SIGVTALRM);
 975	soft = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
 
 
 
 976	if (soft != RLIM_INFINITY) {
 977		unsigned long psecs = cputime_to_secs(ptime);
 978		unsigned long hard =
 979			READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_max);
 980		cputime_t x;
 981		if (psecs >= hard) {
 982			/*
 983			 * At the hard limit, we just die.
 984			 * No need to calculate anything else now.
 985			 */
 986			__group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
 987			return;
 
 
 
 
 
 988		}
 989		if (psecs >= soft) {
 990			/*
 991			 * At the soft limit, send a SIGXCPU every second.
 992			 */
 993			__group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
 994			if (soft < hard) {
 995				soft++;
 996				sig->rlim[RLIMIT_CPU].rlim_cur = soft;
 997			}
 998		}
 999		x = secs_to_cputime(soft);
1000		if (!prof_expires || x < prof_expires) {
1001			prof_expires = x;
1002		}
1003	}
1004
1005	sig->cputime_expires.prof_exp = expires_to_cputime(prof_expires);
1006	sig->cputime_expires.virt_exp = expires_to_cputime(virt_expires);
1007	sig->cputime_expires.sched_exp = sched_expires;
1008	if (task_cputime_zero(&sig->cputime_expires))
1009		stop_process_timers(sig);
1010
1011	sig->cputimer.checking_timer = false;
1012}
1013
1014/*
1015 * This is called from the signal code (via do_schedule_next_timer)
1016 * when the last timer signal was delivered and we have to reload the timer.
1017 */
1018void posix_cpu_timer_schedule(struct k_itimer *timer)
1019{
 
 
1020	struct sighand_struct *sighand;
1021	unsigned long flags;
1022	struct task_struct *p = timer->it.cpu.task;
1023	unsigned long long now;
1024
1025	WARN_ON_ONCE(p == NULL);
 
 
 
 
 
 
 
 
1026
1027	/*
1028	 * Fetch the current sample and update the timer's expiry time.
1029	 */
1030	if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
1031		cpu_clock_sample(timer->it_clock, p, &now);
1032		bump_cpu_timer(timer, now);
1033		if (unlikely(p->exit_state))
1034			goto out;
1035
1036		/* Protect timer list r/w in arm_timer() */
1037		sighand = lock_task_sighand(p, &flags);
1038		if (!sighand)
1039			goto out;
1040	} else {
1041		/*
1042		 * Protect arm_timer() and timer sampling in case of call to
1043		 * thread_group_cputime().
1044		 */
1045		sighand = lock_task_sighand(p, &flags);
1046		if (unlikely(sighand == NULL)) {
1047			/*
1048			 * The process has been reaped.
1049			 * We can't even collect a sample any more.
1050			 */
1051			timer->it.cpu.expires = 0;
1052			goto out;
1053		} else if (unlikely(p->exit_state) && thread_group_empty(p)) {
1054			unlock_task_sighand(p, &flags);
1055			/* Optimizations: if the process is dying, no need to rearm */
1056			goto out;
1057		}
1058		cpu_timer_sample_group(timer->it_clock, p, &now);
1059		bump_cpu_timer(timer, now);
1060		/* Leave the sighand locked for the call below.  */
1061	}
1062
1063	/*
1064	 * Now re-arm for the new expiry time.
1065	 */
1066	WARN_ON_ONCE(!irqs_disabled());
1067	arm_timer(timer);
1068	unlock_task_sighand(p, &flags);
1069
1070out:
1071	timer->it_overrun_last = timer->it_overrun;
1072	timer->it_overrun = -1;
1073	++timer->it_requeue_pending;
1074}
1075
1076/**
1077 * task_cputime_expired - Compare two task_cputime entities.
1078 *
1079 * @sample:	The task_cputime structure to be checked for expiration.
1080 * @expires:	Expiration times, against which @sample will be checked.
1081 *
1082 * Checks @sample against @expires to see if any field of @sample has expired.
1083 * Returns true if any field of the former is greater than the corresponding
1084 * field of the latter if the latter field is set.  Otherwise returns false.
1085 */
1086static inline int task_cputime_expired(const struct task_cputime *sample,
1087					const struct task_cputime *expires)
1088{
1089	if (expires->utime && sample->utime >= expires->utime)
1090		return 1;
1091	if (expires->stime && sample->utime + sample->stime >= expires->stime)
1092		return 1;
1093	if (expires->sum_exec_runtime != 0 &&
1094	    sample->sum_exec_runtime >= expires->sum_exec_runtime)
1095		return 1;
1096	return 0;
1097}
1098
1099/**
1100 * fastpath_timer_check - POSIX CPU timers fast path.
1101 *
1102 * @tsk:	The task (thread) being checked.
1103 *
1104 * Check the task and thread group timers.  If both are zero (there are no
1105 * timers set) return false.  Otherwise snapshot the task and thread group
1106 * timers and compare them with the corresponding expiration times.  Return
1107 * true if a timer has expired, else return false.
1108 */
1109static inline int fastpath_timer_check(struct task_struct *tsk)
1110{
 
1111	struct signal_struct *sig;
1112
1113	if (!task_cputime_zero(&tsk->cputime_expires)) {
1114		struct task_cputime task_sample;
1115
1116		task_cputime(tsk, &task_sample.utime, &task_sample.stime);
1117		task_sample.sum_exec_runtime = tsk->se.sum_exec_runtime;
1118		if (task_cputime_expired(&task_sample, &tsk->cputime_expires))
1119			return 1;
1120	}
1121
1122	sig = tsk->signal;
 
1123	/*
1124	 * Check if thread group timers expired when the cputimer is
1125	 * running and no other thread in the group is already checking
1126	 * for thread group cputimers. These fields are read without the
1127	 * sighand lock. However, this is fine because this is meant to
1128	 * be a fastpath heuristic to determine whether we should try to
1129	 * acquire the sighand lock to check/handle timers.
1130	 *
1131	 * In the worst case scenario, if 'running' or 'checking_timer' gets
1132	 * set but the current thread doesn't see the change yet, we'll wait
1133	 * until the next thread in the group gets a scheduler interrupt to
1134	 * handle the timer. This isn't an issue in practice because these
1135	 * types of delays with signals actually getting sent are expected.
1136	 */
1137	if (READ_ONCE(sig->cputimer.running) &&
1138	    !READ_ONCE(sig->cputimer.checking_timer)) {
1139		struct task_cputime group_sample;
1140
1141		sample_cputime_atomic(&group_sample, &sig->cputimer.cputime_atomic);
 
1142
1143		if (task_cputime_expired(&group_sample, &sig->cputime_expires))
1144			return 1;
1145	}
1146
1147	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1148}
1149
1150/*
1151 * This is called from the timer interrupt handler.  The irq handler has
1152 * already updated our counts.  We need to check if any timers fire now.
1153 * Interrupts are disabled.
1154 */
1155void run_posix_cpu_timers(struct task_struct *tsk)
1156{
1157	LIST_HEAD(firing);
1158	struct k_itimer *timer, *next;
1159	unsigned long flags;
1160
1161	WARN_ON_ONCE(!irqs_disabled());
 
 
1162
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1163	/*
1164	 * The fast path checks that there are no expired thread or thread
1165	 * group timers.  If that's so, just return.
1166	 */
1167	if (!fastpath_timer_check(tsk))
1168		return;
 
 
 
 
 
1169
1170	if (!lock_task_sighand(tsk, &flags))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1171		return;
 
 
 
 
 
 
 
 
 
 
 
1172	/*
1173	 * Here we take off tsk->signal->cpu_timers[N] and
1174	 * tsk->cpu_timers[N] all the timers that are firing, and
1175	 * put them on the firing list.
1176	 */
1177	check_thread_timers(tsk, &firing);
 
 
 
1178
1179	check_process_timers(tsk, &firing);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1180
1181	/*
1182	 * We must release these locks before taking any timer's lock.
1183	 * There is a potential race with timer deletion here, as the
1184	 * siglock now protects our private firing list.  We have set
1185	 * the firing flag in each timer, so that a deletion attempt
1186	 * that gets the timer lock before we do will give it up and
1187	 * spin until we've taken care of that timer below.
1188	 */
1189	unlock_task_sighand(tsk, &flags);
1190
1191	/*
1192	 * Now that all the timers on our list have the firing flag,
1193	 * no one will touch their list entries but us.  We'll take
1194	 * each timer's lock before clearing its firing flag, so no
1195	 * timer call will interfere.
1196	 */
1197	list_for_each_entry_safe(timer, next, &firing, it.cpu.entry) {
1198		int cpu_firing;
1199
 
 
 
 
 
 
 
1200		spin_lock(&timer->it_lock);
1201		list_del_init(&timer->it.cpu.entry);
1202		cpu_firing = timer->it.cpu.firing;
1203		timer->it.cpu.firing = 0;
1204		/*
1205		 * The firing flag is -1 if we collided with a reset
1206		 * of the timer, which already reported this
1207		 * almost-firing as an overrun.  So don't generate an event.
1208		 */
1209		if (likely(cpu_firing >= 0))
1210			cpu_timer_fire(timer);
 
 
1211		spin_unlock(&timer->it_lock);
1212	}
1213}
1214
1215/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1216 * Set one of the process-wide special case CPU timers or RLIMIT_CPU.
1217 * The tsk->sighand->siglock must be held by the caller.
1218 */
1219void set_process_cpu_timer(struct task_struct *tsk, unsigned int clock_idx,
1220			   cputime_t *newval, cputime_t *oldval)
1221{
1222	unsigned long long now;
 
 
 
1223
1224	WARN_ON_ONCE(clock_idx == CPUCLOCK_SCHED);
1225	cpu_timer_sample_group(clock_idx, tsk, &now);
1226
1227	if (oldval) {
1228		/*
1229		 * We are setting itimer. The *oldval is absolute and we update
1230		 * it to be relative, *newval argument is relative and we update
1231		 * it to be absolute.
1232		 */
1233		if (*oldval) {
1234			if (*oldval <= now) {
1235				/* Just about to fire. */
1236				*oldval = cputime_one_jiffy;
1237			} else {
1238				*oldval -= now;
1239			}
1240		}
1241
1242		if (!*newval)
1243			return;
1244		*newval += now;
1245	}
1246
1247	/*
1248	 * Update expiration cache if we are the earliest timer, or eventually
1249	 * RLIMIT_CPU limit is earlier than prof_exp cpu timer expire.
1250	 */
1251	switch (clock_idx) {
1252	case CPUCLOCK_PROF:
1253		if (expires_gt(tsk->signal->cputime_expires.prof_exp, *newval))
1254			tsk->signal->cputime_expires.prof_exp = *newval;
1255		break;
1256	case CPUCLOCK_VIRT:
1257		if (expires_gt(tsk->signal->cputime_expires.virt_exp, *newval))
1258			tsk->signal->cputime_expires.virt_exp = *newval;
1259		break;
1260	}
1261
1262	tick_dep_set_signal(tsk->signal, TICK_DEP_BIT_POSIX_TIMER);
1263}
1264
1265static int do_cpu_nanosleep(const clockid_t which_clock, int flags,
1266			    struct timespec *rqtp, struct itimerspec *it)
1267{
 
1268	struct k_itimer timer;
 
1269	int error;
1270
1271	/*
1272	 * Set up a temporary timer and then wait for it to go off.
1273	 */
1274	memset(&timer, 0, sizeof timer);
1275	spin_lock_init(&timer.it_lock);
1276	timer.it_clock = which_clock;
1277	timer.it_overrun = -1;
1278	error = posix_cpu_timer_create(&timer);
1279	timer.it_process = current;
 
 
1280	if (!error) {
1281		static struct itimerspec zero_it;
 
1282
1283		memset(it, 0, sizeof *it);
1284		it->it_value = *rqtp;
1285
1286		spin_lock_irq(&timer.it_lock);
1287		error = posix_cpu_timer_set(&timer, flags, it, NULL);
1288		if (error) {
1289			spin_unlock_irq(&timer.it_lock);
1290			return error;
1291		}
1292
1293		while (!signal_pending(current)) {
1294			if (timer.it.cpu.expires == 0) {
1295				/*
1296				 * Our timer fired and was reset, below
1297				 * deletion can not fail.
1298				 */
1299				posix_cpu_timer_del(&timer);
1300				spin_unlock_irq(&timer.it_lock);
1301				return 0;
1302			}
1303
1304			/*
1305			 * Block until cpu_timer_fire (or a signal) wakes us.
1306			 */
1307			__set_current_state(TASK_INTERRUPTIBLE);
1308			spin_unlock_irq(&timer.it_lock);
1309			schedule();
1310			spin_lock_irq(&timer.it_lock);
1311		}
1312
1313		/*
1314		 * We were interrupted by a signal.
1315		 */
1316		sample_to_timespec(which_clock, timer.it.cpu.expires, rqtp);
1317		error = posix_cpu_timer_set(&timer, 0, &zero_it, it);
1318		if (!error) {
1319			/*
1320			 * Timer is now unarmed, deletion can not fail.
1321			 */
1322			posix_cpu_timer_del(&timer);
 
 
 
 
 
1323		}
1324		spin_unlock_irq(&timer.it_lock);
1325
1326		while (error == TIMER_RETRY) {
1327			/*
1328			 * We need to handle case when timer was or is in the
1329			 * middle of firing. In other cases we already freed
1330			 * resources.
1331			 */
1332			spin_lock_irq(&timer.it_lock);
1333			error = posix_cpu_timer_del(&timer);
1334			spin_unlock_irq(&timer.it_lock);
1335		}
1336
1337		if ((it->it_value.tv_sec | it->it_value.tv_nsec) == 0) {
1338			/*
1339			 * It actually did fire already.
1340			 */
1341			return 0;
1342		}
1343
1344		error = -ERESTART_RESTARTBLOCK;
 
 
 
 
 
 
 
1345	}
1346
1347	return error;
1348}
1349
1350static long posix_cpu_nsleep_restart(struct restart_block *restart_block);
1351
1352static int posix_cpu_nsleep(const clockid_t which_clock, int flags,
1353			    struct timespec *rqtp, struct timespec __user *rmtp)
1354{
1355	struct restart_block *restart_block = &current->restart_block;
1356	struct itimerspec it;
1357	int error;
1358
1359	/*
1360	 * Diagnose required errors first.
1361	 */
1362	if (CPUCLOCK_PERTHREAD(which_clock) &&
1363	    (CPUCLOCK_PID(which_clock) == 0 ||
1364	     CPUCLOCK_PID(which_clock) == current->pid))
1365		return -EINVAL;
1366
1367	error = do_cpu_nanosleep(which_clock, flags, rqtp, &it);
1368
1369	if (error == -ERESTART_RESTARTBLOCK) {
1370
1371		if (flags & TIMER_ABSTIME)
1372			return -ERESTARTNOHAND;
1373		/*
1374		 * Report back to the user the time still remaining.
1375		 */
1376		if (rmtp && copy_to_user(rmtp, &it.it_value, sizeof *rmtp))
1377			return -EFAULT;
1378
1379		restart_block->fn = posix_cpu_nsleep_restart;
1380		restart_block->nanosleep.clockid = which_clock;
1381		restart_block->nanosleep.rmtp = rmtp;
1382		restart_block->nanosleep.expires = timespec_to_ns(rqtp);
1383	}
1384	return error;
1385}
1386
1387static long posix_cpu_nsleep_restart(struct restart_block *restart_block)
1388{
1389	clockid_t which_clock = restart_block->nanosleep.clockid;
1390	struct timespec t;
1391	struct itimerspec it;
1392	int error;
1393
1394	t = ns_to_timespec(restart_block->nanosleep.expires);
1395
1396	error = do_cpu_nanosleep(which_clock, TIMER_ABSTIME, &t, &it);
1397
1398	if (error == -ERESTART_RESTARTBLOCK) {
1399		struct timespec __user *rmtp = restart_block->nanosleep.rmtp;
1400		/*
1401		 * Report back to the user the time still remaining.
1402		 */
1403		if (rmtp && copy_to_user(rmtp, &it.it_value, sizeof *rmtp))
1404			return -EFAULT;
1405
1406		restart_block->nanosleep.expires = timespec_to_ns(&t);
1407	}
1408	return error;
1409
 
1410}
1411
1412#define PROCESS_CLOCK	MAKE_PROCESS_CPUCLOCK(0, CPUCLOCK_SCHED)
1413#define THREAD_CLOCK	MAKE_THREAD_CPUCLOCK(0, CPUCLOCK_SCHED)
1414
1415static int process_cpu_clock_getres(const clockid_t which_clock,
1416				    struct timespec *tp)
1417{
1418	return posix_cpu_clock_getres(PROCESS_CLOCK, tp);
1419}
1420static int process_cpu_clock_get(const clockid_t which_clock,
1421				 struct timespec *tp)
1422{
1423	return posix_cpu_clock_get(PROCESS_CLOCK, tp);
1424}
1425static int process_cpu_timer_create(struct k_itimer *timer)
1426{
1427	timer->it_clock = PROCESS_CLOCK;
1428	return posix_cpu_timer_create(timer);
1429}
1430static int process_cpu_nsleep(const clockid_t which_clock, int flags,
1431			      struct timespec *rqtp,
1432			      struct timespec __user *rmtp)
1433{
1434	return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp, rmtp);
1435}
1436static long process_cpu_nsleep_restart(struct restart_block *restart_block)
1437{
1438	return -EINVAL;
1439}
1440static int thread_cpu_clock_getres(const clockid_t which_clock,
1441				   struct timespec *tp)
1442{
1443	return posix_cpu_clock_getres(THREAD_CLOCK, tp);
1444}
1445static int thread_cpu_clock_get(const clockid_t which_clock,
1446				struct timespec *tp)
1447{
1448	return posix_cpu_clock_get(THREAD_CLOCK, tp);
1449}
1450static int thread_cpu_timer_create(struct k_itimer *timer)
1451{
1452	timer->it_clock = THREAD_CLOCK;
1453	return posix_cpu_timer_create(timer);
1454}
1455
1456struct k_clock clock_posix_cpu = {
1457	.clock_getres	= posix_cpu_clock_getres,
1458	.clock_set	= posix_cpu_clock_set,
1459	.clock_get	= posix_cpu_clock_get,
1460	.timer_create	= posix_cpu_timer_create,
1461	.nsleep		= posix_cpu_nsleep,
1462	.nsleep_restart	= posix_cpu_nsleep_restart,
1463	.timer_set	= posix_cpu_timer_set,
1464	.timer_del	= posix_cpu_timer_del,
1465	.timer_get	= posix_cpu_timer_get,
 
1466};
1467
1468static __init int init_posix_cpu_timers(void)
1469{
1470	struct k_clock process = {
1471		.clock_getres	= process_cpu_clock_getres,
1472		.clock_get	= process_cpu_clock_get,
1473		.timer_create	= process_cpu_timer_create,
1474		.nsleep		= process_cpu_nsleep,
1475		.nsleep_restart	= process_cpu_nsleep_restart,
1476	};
1477	struct k_clock thread = {
1478		.clock_getres	= thread_cpu_clock_getres,
1479		.clock_get	= thread_cpu_clock_get,
1480		.timer_create	= thread_cpu_timer_create,
1481	};
1482	struct timespec ts;
1483
1484	posix_timers_register_clock(CLOCK_PROCESS_CPUTIME_ID, &process);
1485	posix_timers_register_clock(CLOCK_THREAD_CPUTIME_ID, &thread);
1486
1487	cputime_to_timespec(cputime_one_jiffy, &ts);
1488	onecputick = ts.tv_nsec;
1489	WARN_ON(ts.tv_sec != 0);
1490
1491	return 0;
1492}
1493__initcall(init_posix_cpu_timers);
 
 
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Implement CPU time clocks for the POSIX clock interface.
   4 */
   5
   6#include <linux/sched/signal.h>
   7#include <linux/sched/cputime.h>
   8#include <linux/posix-timers.h>
   9#include <linux/errno.h>
  10#include <linux/math64.h>
  11#include <linux/uaccess.h>
  12#include <linux/kernel_stat.h>
  13#include <trace/events/timer.h>
 
  14#include <linux/tick.h>
  15#include <linux/workqueue.h>
  16#include <linux/compat.h>
  17#include <linux/sched/deadline.h>
  18#include <linux/task_work.h>
  19
  20#include "posix-timers.h"
  21
  22static void posix_cpu_timer_rearm(struct k_itimer *timer);
  23
  24void posix_cputimers_group_init(struct posix_cputimers *pct, u64 cpu_limit)
  25{
  26	posix_cputimers_init(pct);
  27	if (cpu_limit != RLIM_INFINITY) {
  28		pct->bases[CPUCLOCK_PROF].nextevt = cpu_limit * NSEC_PER_SEC;
  29		pct->timers_active = true;
  30	}
  31}
  32
  33/*
  34 * Called after updating RLIMIT_CPU to run cpu timer and update
  35 * tsk->signal->posix_cputimers.bases[clock].nextevt expiration cache if
  36 * necessary. Needs siglock protection since other code may update the
  37 * expiration cache as well.
  38 *
  39 * Returns 0 on success, -ESRCH on failure.  Can fail if the task is exiting and
  40 * we cannot lock_task_sighand.  Cannot fail if task is current.
  41 */
  42int update_rlimit_cpu(struct task_struct *task, unsigned long rlim_new)
  43{
  44	u64 nsecs = rlim_new * NSEC_PER_SEC;
  45	unsigned long irq_fl;
  46
  47	if (!lock_task_sighand(task, &irq_fl))
  48		return -ESRCH;
  49	set_process_cpu_timer(task, CPUCLOCK_PROF, &nsecs, NULL);
  50	unlock_task_sighand(task, &irq_fl);
  51	return 0;
  52}
  53
  54/*
  55 * Functions for validating access to tasks.
  56 */
  57static struct pid *pid_for_clock(const clockid_t clock, bool gettime)
  58{
  59	const bool thread = !!CPUCLOCK_PERTHREAD(clock);
  60	const pid_t upid = CPUCLOCK_PID(clock);
  61	struct pid *pid;
  62
  63	if (CPUCLOCK_WHICH(clock) >= CPUCLOCK_MAX)
  64		return NULL;
  65
  66	/*
  67	 * If the encoded PID is 0, then the timer is targeted at current
  68	 * or the process to which current belongs.
  69	 */
  70	if (upid == 0)
  71		return thread ? task_pid(current) : task_tgid(current);
  72
  73	pid = find_vpid(upid);
  74	if (!pid)
  75		return NULL;
  76
  77	if (thread) {
  78		struct task_struct *tsk = pid_task(pid, PIDTYPE_PID);
  79		return (tsk && same_thread_group(tsk, current)) ? pid : NULL;
  80	}
 
  81
  82	/*
  83	 * For clock_gettime(PROCESS) allow finding the process by
  84	 * with the pid of the current task.  The code needs the tgid
  85	 * of the process so that pid_task(pid, PIDTYPE_TGID) can be
  86	 * used to find the process.
  87	 */
  88	if (gettime && (pid == task_pid(current)))
  89		return task_tgid(current);
  90
  91	/*
  92	 * For processes require that pid identifies a process.
  93	 */
  94	return pid_has_task(pid, PIDTYPE_TGID) ? pid : NULL;
  95}
  96
  97static inline int validate_clock_permissions(const clockid_t clock)
 
  98{
  99	int ret;
 100
 101	rcu_read_lock();
 102	ret = pid_for_clock(clock, false) ? 0 : -EINVAL;
 103	rcu_read_unlock();
 104
 
 
 
 
 
 
 105	return ret;
 106}
 107
 108static inline enum pid_type clock_pid_type(const clockid_t clock)
 
 
 109{
 110	return CPUCLOCK_PERTHREAD(clock) ? PIDTYPE_PID : PIDTYPE_TGID;
 111}
 112
 113static inline struct task_struct *cpu_timer_task_rcu(struct k_itimer *timer)
 114{
 115	return pid_task(timer->it.cpu.pid, clock_pid_type(timer->it_clock));
 116}
 117
 118/*
 119 * Update expiry time from increment, and increase overrun count,
 120 * given the current clock sample.
 121 */
 122static u64 bump_cpu_timer(struct k_itimer *timer, u64 now)
 
 123{
 124	u64 delta, incr, expires = timer->it.cpu.node.expires;
 125	int i;
 
 126
 127	if (!timer->it_interval)
 128		return expires;
 129
 130	if (now < expires)
 131		return expires;
 132
 133	incr = timer->it_interval;
 134	delta = now + incr - expires;
 135
 136	/* Don't use (incr*2 < delta), incr*2 might overflow. */
 137	for (i = 0; incr < delta - incr; i++)
 138		incr = incr << 1;
 139
 140	for (; i >= 0; incr >>= 1, i--) {
 141		if (delta < incr)
 142			continue;
 143
 144		timer->it.cpu.node.expires += incr;
 145		timer->it_overrun += 1LL << i;
 146		delta -= incr;
 147	}
 148	return timer->it.cpu.node.expires;
 149}
 150
 151/* Check whether all cache entries contain U64_MAX, i.e. eternal expiry time */
 152static inline bool expiry_cache_is_inactive(const struct posix_cputimers *pct)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 153{
 154	return !(~pct->bases[CPUCLOCK_PROF].nextevt |
 155		 ~pct->bases[CPUCLOCK_VIRT].nextevt |
 156		 ~pct->bases[CPUCLOCK_SCHED].nextevt);
 
 
 
 
 
 
 
 
 
 
 157}
 158
 159static int
 160posix_cpu_clock_getres(const clockid_t which_clock, struct timespec64 *tp)
 161{
 162	int error = validate_clock_permissions(which_clock);
 163
 164	if (!error) {
 165		tp->tv_sec = 0;
 166		tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ);
 167		if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
 168			/*
 169			 * If sched_clock is using a cycle counter, we
 170			 * don't have any idea of its true resolution
 171			 * exported, but it is much more than 1s/HZ.
 172			 */
 173			tp->tv_nsec = 1;
 174		}
 175	}
 176	return error;
 177}
 178
 179static int
 180posix_cpu_clock_set(const clockid_t clock, const struct timespec64 *tp)
 181{
 182	int error = validate_clock_permissions(clock);
 183
 184	/*
 185	 * You can never reset a CPU clock, but we check for other errors
 186	 * in the call before failing with EPERM.
 187	 */
 188	return error ? : -EPERM;
 
 
 
 
 189}
 190
 
 191/*
 192 * Sample a per-thread clock for the given task. clkid is validated.
 193 */
 194static u64 cpu_clock_sample(const clockid_t clkid, struct task_struct *p)
 
 195{
 196	u64 utime, stime;
 197
 198	if (clkid == CPUCLOCK_SCHED)
 199		return task_sched_runtime(p);
 200
 201	task_cputime(p, &utime, &stime);
 202
 203	switch (clkid) {
 204	case CPUCLOCK_PROF:
 205		return utime + stime;
 
 206	case CPUCLOCK_VIRT:
 207		return utime;
 208	default:
 209		WARN_ON_ONCE(1);
 
 
 210	}
 211	return 0;
 212}
 213
 214static inline void store_samples(u64 *samples, u64 stime, u64 utime, u64 rtime)
 215{
 216	samples[CPUCLOCK_PROF] = stime + utime;
 217	samples[CPUCLOCK_VIRT] = utime;
 218	samples[CPUCLOCK_SCHED] = rtime;
 219}
 220
 221static void task_sample_cputime(struct task_struct *p, u64 *samples)
 222{
 223	u64 stime, utime;
 224
 225	task_cputime(p, &utime, &stime);
 226	store_samples(samples, stime, utime, p->se.sum_exec_runtime);
 227}
 228
 229static void proc_sample_cputime_atomic(struct task_cputime_atomic *at,
 230				       u64 *samples)
 231{
 232	u64 stime, utime, rtime;
 233
 234	utime = atomic64_read(&at->utime);
 235	stime = atomic64_read(&at->stime);
 236	rtime = atomic64_read(&at->sum_exec_runtime);
 237	store_samples(samples, stime, utime, rtime);
 238}
 239
 240/*
 241 * Set cputime to sum_cputime if sum_cputime > cputime. Use cmpxchg
 242 * to avoid race conditions with concurrent updates to cputime.
 243 */
 244static inline void __update_gt_cputime(atomic64_t *cputime, u64 sum_cputime)
 245{
 246	u64 curr_cputime = atomic64_read(cputime);
 247
 248	do {
 249		if (sum_cputime <= curr_cputime)
 250			return;
 251	} while (!atomic64_try_cmpxchg(cputime, &curr_cputime, sum_cputime));
 
 252}
 253
 254static void update_gt_cputime(struct task_cputime_atomic *cputime_atomic,
 255			      struct task_cputime *sum)
 256{
 257	__update_gt_cputime(&cputime_atomic->utime, sum->utime);
 258	__update_gt_cputime(&cputime_atomic->stime, sum->stime);
 259	__update_gt_cputime(&cputime_atomic->sum_exec_runtime, sum->sum_exec_runtime);
 260}
 261
 262/**
 263 * thread_group_sample_cputime - Sample cputime for a given task
 264 * @tsk:	Task for which cputime needs to be started
 265 * @samples:	Storage for time samples
 266 *
 267 * Called from sys_getitimer() to calculate the expiry time of an active
 268 * timer. That means group cputime accounting is already active. Called
 269 * with task sighand lock held.
 270 *
 271 * Updates @times with an uptodate sample of the thread group cputimes.
 272 */
 273void thread_group_sample_cputime(struct task_struct *tsk, u64 *samples)
 274{
 275	struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
 276	struct posix_cputimers *pct = &tsk->signal->posix_cputimers;
 277
 278	WARN_ON_ONCE(!pct->timers_active);
 279
 280	proc_sample_cputime_atomic(&cputimer->cputime_atomic, samples);
 281}
 282
 283/**
 284 * thread_group_start_cputime - Start cputime and return a sample
 285 * @tsk:	Task for which cputime needs to be started
 286 * @samples:	Storage for time samples
 287 *
 288 * The thread group cputime accounting is avoided when there are no posix
 289 * CPU timers armed. Before starting a timer it's required to check whether
 290 * the time accounting is active. If not, a full update of the atomic
 291 * accounting store needs to be done and the accounting enabled.
 292 *
 293 * Updates @times with an uptodate sample of the thread group cputimes.
 294 */
 295static void thread_group_start_cputime(struct task_struct *tsk, u64 *samples)
 296{
 297	struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
 298	struct posix_cputimers *pct = &tsk->signal->posix_cputimers;
 299
 300	lockdep_assert_task_sighand_held(tsk);
 301
 302	/* Check if cputimer isn't running. This is accessed without locking. */
 303	if (!READ_ONCE(pct->timers_active)) {
 304		struct task_cputime sum;
 305
 306		/*
 307		 * The POSIX timer interface allows for absolute time expiry
 308		 * values through the TIMER_ABSTIME flag, therefore we have
 309		 * to synchronize the timer to the clock every time we start it.
 310		 */
 311		thread_group_cputime(tsk, &sum);
 312		update_gt_cputime(&cputimer->cputime_atomic, &sum);
 313
 314		/*
 315		 * We're setting timers_active without a lock. Ensure this
 316		 * only gets written to in one operation. We set it after
 317		 * update_gt_cputime() as a small optimization, but
 318		 * barriers are not required because update_gt_cputime()
 319		 * can handle concurrent updates.
 320		 */
 321		WRITE_ONCE(pct->timers_active, true);
 322	}
 323	proc_sample_cputime_atomic(&cputimer->cputime_atomic, samples);
 324}
 325
 326static void __thread_group_cputime(struct task_struct *tsk, u64 *samples)
 
 
 
 
 
 
 
 327{
 328	struct task_cputime ct;
 329
 330	thread_group_cputime(tsk, &ct);
 331	store_samples(samples, ct.stime, ct.utime, ct.sum_exec_runtime);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 332}
 333
 334/*
 335 * Sample a process (thread group) clock for the given task clkid. If the
 336 * group's cputime accounting is already enabled, read the atomic
 337 * store. Otherwise a full update is required.  clkid is already validated.
 338 */
 339static u64 cpu_clock_sample_group(const clockid_t clkid, struct task_struct *p,
 340				  bool start)
 341{
 342	struct thread_group_cputimer *cputimer = &p->signal->cputimer;
 343	struct posix_cputimers *pct = &p->signal->posix_cputimers;
 344	u64 samples[CPUCLOCK_MAX];
 345
 346	if (!READ_ONCE(pct->timers_active)) {
 347		if (start)
 348			thread_group_start_cputime(p, samples);
 349		else
 350			__thread_group_cputime(p, samples);
 351	} else {
 352		proc_sample_cputime_atomic(&cputimer->cputime_atomic, samples);
 
 353	}
 354
 355	return samples[clkid];
 
 
 
 356}
 357
 358static int posix_cpu_clock_get(const clockid_t clock, struct timespec64 *tp)
 
 359{
 360	const clockid_t clkid = CPUCLOCK_WHICH(clock);
 361	struct task_struct *tsk;
 362	u64 t;
 363
 364	rcu_read_lock();
 365	tsk = pid_task(pid_for_clock(clock, true), clock_pid_type(clock));
 366	if (!tsk) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 367		rcu_read_unlock();
 368		return -EINVAL;
 369	}
 370
 371	if (CPUCLOCK_PERTHREAD(clock))
 372		t = cpu_clock_sample(clkid, tsk);
 373	else
 374		t = cpu_clock_sample_group(clkid, tsk, false);
 375	rcu_read_unlock();
 376
 377	*tp = ns_to_timespec64(t);
 378	return 0;
 379}
 380
 381/*
 382 * Validate the clockid_t for a new CPU-clock timer, and initialize the timer.
 383 * This is called from sys_timer_create() and do_cpu_nanosleep() with the
 384 * new timer already all-zeros initialized.
 385 */
 386static int posix_cpu_timer_create(struct k_itimer *new_timer)
 387{
 388	static struct lock_class_key posix_cpu_timers_key;
 389	struct pid *pid;
 
 
 
 
 
 
 390
 391	rcu_read_lock();
 392	pid = pid_for_clock(new_timer->it_clock, false);
 393	if (!pid) {
 394		rcu_read_unlock();
 395		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 396	}
 397
 398	/*
 399	 * If posix timer expiry is handled in task work context then
 400	 * timer::it_lock can be taken without disabling interrupts as all
 401	 * other locking happens in task context. This requires a separate
 402	 * lock class key otherwise regular posix timer expiry would record
 403	 * the lock class being taken in interrupt context and generate a
 404	 * false positive warning.
 405	 */
 406	if (IS_ENABLED(CONFIG_POSIX_CPU_TIMERS_TASK_WORK))
 407		lockdep_set_class(&new_timer->it_lock, &posix_cpu_timers_key);
 408
 409	new_timer->kclock = &clock_posix_cpu;
 410	timerqueue_init(&new_timer->it.cpu.node);
 411	new_timer->it.cpu.pid = get_pid(pid);
 412	rcu_read_unlock();
 413	return 0;
 414}
 415
 416static struct posix_cputimer_base *timer_base(struct k_itimer *timer,
 417					      struct task_struct *tsk)
 418{
 419	int clkidx = CPUCLOCK_WHICH(timer->it_clock);
 420
 421	if (CPUCLOCK_PERTHREAD(timer->it_clock))
 422		return tsk->posix_cputimers.bases + clkidx;
 423	else
 424		return tsk->signal->posix_cputimers.bases + clkidx;
 425}
 426
 427/*
 428 * Force recalculating the base earliest expiration on the next tick.
 429 * This will also re-evaluate the need to keep around the process wide
 430 * cputime counter and tick dependency and eventually shut these down
 431 * if necessary.
 432 */
 433static void trigger_base_recalc_expires(struct k_itimer *timer,
 434					struct task_struct *tsk)
 435{
 436	struct posix_cputimer_base *base = timer_base(timer, tsk);
 437
 438	base->nextevt = 0;
 439}
 440
 441/*
 442 * Dequeue the timer and reset the base if it was its earliest expiration.
 443 * It makes sure the next tick recalculates the base next expiration so we
 444 * don't keep the costly process wide cputime counter around for a random
 445 * amount of time, along with the tick dependency.
 446 *
 447 * If another timer gets queued between this and the next tick, its
 448 * expiration will update the base next event if necessary on the next
 449 * tick.
 450 */
 451static void disarm_timer(struct k_itimer *timer, struct task_struct *p)
 452{
 453	struct cpu_timer *ctmr = &timer->it.cpu;
 454	struct posix_cputimer_base *base;
 455
 456	if (!cpu_timer_dequeue(ctmr))
 457		return;
 458
 459	base = timer_base(timer, p);
 460	if (cpu_timer_getexpires(ctmr) == base->nextevt)
 461		trigger_base_recalc_expires(timer, p);
 462}
 463
 464
 465/*
 466 * Clean up a CPU-clock timer that is about to be destroyed.
 467 * This is called from timer deletion with the timer already locked.
 468 * If we return TIMER_RETRY, it's necessary to release the timer's lock
 469 * and try again.  (This happens when the timer is in the middle of firing.)
 470 */
 471static int posix_cpu_timer_del(struct k_itimer *timer)
 472{
 473	struct cpu_timer *ctmr = &timer->it.cpu;
 
 474	struct sighand_struct *sighand;
 475	struct task_struct *p;
 476	unsigned long flags;
 477	int ret = 0;
 478
 479	rcu_read_lock();
 480	p = cpu_timer_task_rcu(timer);
 481	if (!p)
 482		goto out;
 483
 484	/*
 485	 * Protect against sighand release/switch in exit/exec and process/
 486	 * thread timer list entry concurrent read/writes.
 487	 */
 488	sighand = lock_task_sighand(p, &flags);
 489	if (unlikely(sighand == NULL)) {
 490		/*
 491		 * This raced with the reaping of the task. The exit cleanup
 492		 * should have removed this timer from the timer queue.
 493		 */
 494		WARN_ON_ONCE(ctmr->head || timerqueue_node_queued(&ctmr->node));
 495	} else {
 496		if (timer->it.cpu.firing) {
 497			/*
 498			 * Prevent signal delivery. The timer cannot be dequeued
 499			 * because it is on the firing list which is not protected
 500			 * by sighand->lock. The delivery path is waiting for
 501			 * the timer lock. So go back, unlock and retry.
 502			 */
 503			timer->it.cpu.firing = false;
 504			ret = TIMER_RETRY;
 505		} else {
 506			disarm_timer(timer, p);
 507		}
 508		unlock_task_sighand(p, &flags);
 509	}
 510
 511out:
 512	rcu_read_unlock();
 513
 514	if (!ret) {
 515		put_pid(ctmr->pid);
 516		timer->it_status = POSIX_TIMER_DISARMED;
 517	}
 518	return ret;
 519}
 520
 521static void cleanup_timerqueue(struct timerqueue_head *head)
 522{
 523	struct timerqueue_node *node;
 524	struct cpu_timer *ctmr;
 525
 526	while ((node = timerqueue_getnext(head))) {
 527		timerqueue_del(head, node);
 528		ctmr = container_of(node, struct cpu_timer, node);
 529		ctmr->head = NULL;
 530	}
 531}
 532
 533/*
 534 * Clean out CPU timers which are still armed when a thread exits. The
 535 * timers are only removed from the list. No other updates are done. The
 536 * corresponding posix timers are still accessible, but cannot be rearmed.
 537 *
 538 * This must be called with the siglock held.
 539 */
 540static void cleanup_timers(struct posix_cputimers *pct)
 541{
 542	cleanup_timerqueue(&pct->bases[CPUCLOCK_PROF].tqhead);
 543	cleanup_timerqueue(&pct->bases[CPUCLOCK_VIRT].tqhead);
 544	cleanup_timerqueue(&pct->bases[CPUCLOCK_SCHED].tqhead);
 545}
 546
 547/*
 548 * These are both called with the siglock held, when the current thread
 549 * is being reaped.  When the final (leader) thread in the group is reaped,
 550 * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit.
 551 */
 552void posix_cpu_timers_exit(struct task_struct *tsk)
 553{
 554	cleanup_timers(&tsk->posix_cputimers);
 
 
 
 555}
 556void posix_cpu_timers_exit_group(struct task_struct *tsk)
 557{
 558	cleanup_timers(&tsk->signal->posix_cputimers);
 
 
 
 
 
 559}
 560
 561/*
 562 * Insert the timer on the appropriate list before any timers that
 563 * expire later.  This must be called with the sighand lock held.
 564 */
 565static void arm_timer(struct k_itimer *timer, struct task_struct *p)
 566{
 567	struct posix_cputimer_base *base = timer_base(timer, p);
 568	struct cpu_timer *ctmr = &timer->it.cpu;
 569	u64 newexp = cpu_timer_getexpires(ctmr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 570
 571	timer->it_status = POSIX_TIMER_ARMED;
 572	if (!cpu_timer_enqueue(&base->tqhead, ctmr))
 573		return;
 574
 575	/*
 576	 * We are the new earliest-expiring POSIX 1.b timer, hence
 577	 * need to update expiration cache. Take into account that
 578	 * for process timers we share expiration cache with itimers
 579	 * and RLIMIT_CPU and for thread timers with RLIMIT_RTTIME.
 580	 */
 581	if (newexp < base->nextevt)
 582		base->nextevt = newexp;
 583
 584	if (CPUCLOCK_PERTHREAD(timer->it_clock))
 585		tick_dep_set_task(p, TICK_DEP_BIT_POSIX_TIMER);
 586	else
 587		tick_dep_set_signal(p, TICK_DEP_BIT_POSIX_TIMER);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 588}
 589
 590/*
 591 * The timer is locked, fire it and arrange for its reload.
 592 */
 593static void cpu_timer_fire(struct k_itimer *timer)
 594{
 595	struct cpu_timer *ctmr = &timer->it.cpu;
 596
 597	timer->it_status = POSIX_TIMER_DISARMED;
 598
 599	if (unlikely(ctmr->nanosleep)) {
 
 600		/*
 601		 * This a special case for clock_nanosleep,
 602		 * not a normal timer from sys_timer_create.
 603		 */
 604		wake_up_process(timer->it_process);
 605		cpu_timer_setexpires(ctmr, 0);
 606	} else {
 607		posix_timer_queue_signal(timer);
 608		/* Disable oneshot timers */
 609		if (!timer->it_interval)
 610			cpu_timer_setexpires(ctmr, 0);
 
 
 
 
 
 
 
 
 
 611	}
 612}
 613
 614static void __posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec64 *itp, u64 now);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 615
 616/*
 617 * Guts of sys_timer_settime for CPU timers.
 618 * This is called with the timer locked and interrupts disabled.
 619 * If we return TIMER_RETRY, it's necessary to release the timer's lock
 620 * and try again.  (This happens when the timer is in the middle of firing.)
 621 */
 622static int posix_cpu_timer_set(struct k_itimer *timer, int timer_flags,
 623			       struct itimerspec64 *new, struct itimerspec64 *old)
 624{
 625	bool sigev_none = timer->it_sigev_notify == SIGEV_NONE;
 626	clockid_t clkid = CPUCLOCK_WHICH(timer->it_clock);
 627	struct cpu_timer *ctmr = &timer->it.cpu;
 628	u64 old_expires, new_expires, now;
 629	struct sighand_struct *sighand;
 630	struct task_struct *p;
 631	unsigned long flags;
 632	int ret = 0;
 633
 634	rcu_read_lock();
 635	p = cpu_timer_task_rcu(timer);
 636	if (!p) {
 637		/*
 638		 * If p has just been reaped, we can no
 639		 * longer get any information about it at all.
 640		 */
 641		rcu_read_unlock();
 642		return -ESRCH;
 643	}
 644
 645	/*
 646	 * Use the to_ktime conversion because that clamps the maximum
 647	 * value to KTIME_MAX and avoid multiplication overflows.
 648	 */
 649	new_expires = ktime_to_ns(timespec64_to_ktime(new->it_value));
 650
 651	/*
 652	 * Protect against sighand release/switch in exit/exec and p->cpu_timers
 653	 * and p->signal->cpu_timers read/write in arm_timer()
 654	 */
 655	sighand = lock_task_sighand(p, &flags);
 656	/*
 657	 * If p has just been reaped, we can no
 658	 * longer get any information about it at all.
 659	 */
 660	if (unlikely(sighand == NULL)) {
 661		rcu_read_unlock();
 662		return -ESRCH;
 663	}
 664
 665	/* Retrieve the current expiry time before disarming the timer */
 666	old_expires = cpu_timer_getexpires(ctmr);
 
 
 667
 
 
 
 668	if (unlikely(timer->it.cpu.firing)) {
 669		/*
 670		 * Prevent signal delivery. The timer cannot be dequeued
 671		 * because it is on the firing list which is not protected
 672		 * by sighand->lock. The delivery path is waiting for
 673		 * the timer lock. So go back, unlock and retry.
 674		 */
 675		timer->it.cpu.firing = false;
 676		ret = TIMER_RETRY;
 677	} else {
 678		cpu_timer_dequeue(ctmr);
 679		timer->it_status = POSIX_TIMER_DISARMED;
 680	}
 681
 682	/*
 683	 * Sample the current clock for saving the previous setting
 684	 * and for rearming the timer.
 
 
 
 
 685	 */
 686	if (CPUCLOCK_PERTHREAD(timer->it_clock))
 687		now = cpu_clock_sample(clkid, p);
 688	else
 689		now = cpu_clock_sample_group(clkid, p, !sigev_none);
 
 690
 691	/* Retrieve the previous expiry value if requested. */
 692	if (old) {
 693		old->it_value = (struct timespec64){ };
 694		if (old_expires)
 695			__posix_cpu_timer_get(timer, old, now);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 696	}
 697
 698	/* Retry if the timer expiry is running concurrently */
 699	if (unlikely(ret)) {
 
 
 
 
 
 
 700		unlock_task_sighand(p, &flags);
 701		goto out;
 702	}
 703
 704	/* Convert relative expiry time to absolute */
 705	if (new_expires && !(timer_flags & TIMER_ABSTIME))
 706		new_expires += now;
 707
 708	/* Set the new expiry time (might be 0) */
 709	cpu_timer_setexpires(ctmr, new_expires);
 710
 711	/*
 712	 * Arm the timer if it is not disabled, the new expiry value has
 713	 * not yet expired and the timer requires signal delivery.
 714	 * SIGEV_NONE timers are never armed. In case the timer is not
 715	 * armed, enforce the reevaluation of the timer base so that the
 716	 * process wide cputime counter can be disabled eventually.
 717	 */
 718	if (likely(!sigev_none)) {
 719		if (new_expires && now < new_expires)
 720			arm_timer(timer, p);
 721		else
 722			trigger_base_recalc_expires(timer, p);
 723	}
 724
 725	unlock_task_sighand(p, &flags);
 726
 727	posix_timer_set_common(timer, new);
 
 
 
 
 728
 729	/*
 730	 * If the new expiry time was already in the past the timer was not
 731	 * queued. Fire it immediately even if the thread never runs to
 732	 * accumulate more time on this clock.
 733	 */
 734	if (!sigev_none && new_expires && now >= new_expires)
 
 
 
 
 
 
 
 
 
 
 735		cpu_timer_fire(timer);
 736out:
 737	rcu_read_unlock();
 
 
 
 
 
 
 
 738	return ret;
 739}
 740
 741static void __posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec64 *itp, u64 now)
 742{
 743	bool sigev_none = timer->it_sigev_notify == SIGEV_NONE;
 744	u64 expires, iv = timer->it_interval;
 
 
 745
 746	/*
 747	 * Make sure that interval timers are moved forward for the
 748	 * following cases:
 749	 *  - SIGEV_NONE timers which are never armed
 750	 *  - Timers which expired, but the signal has not yet been
 751	 *    delivered
 752	 */
 753	if (iv && timer->it_status != POSIX_TIMER_ARMED)
 754		expires = bump_cpu_timer(timer, now);
 755	else
 756		expires = cpu_timer_getexpires(&timer->it.cpu);
 
 
 
 757
 758	/*
 759	 * Expired interval timers cannot have a remaining time <= 0.
 760	 * The kernel has to move them forward so that the next
 761	 * timer expiry is > @now.
 762	 */
 763	if (now < expires) {
 764		itp->it_value = ns_to_timespec64(expires - now);
 765	} else {
 
 
 
 766		/*
 767		 * A single shot SIGEV_NONE timer must return 0, when it is
 768		 * expired! Timers which have a real signal delivery mode
 769		 * must return a remaining time greater than 0 because the
 770		 * signal has not yet been delivered.
 771		 */
 772		if (!sigev_none)
 773			itp->it_value.tv_nsec = 1;
 
 
 
 
 
 
 
 
 
 
 
 
 774	}
 775}
 776
 777static void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec64 *itp)
 778{
 779	clockid_t clkid = CPUCLOCK_WHICH(timer->it_clock);
 780	struct task_struct *p;
 781	u64 now;
 782
 783	rcu_read_lock();
 784	p = cpu_timer_task_rcu(timer);
 785	if (p && cpu_timer_getexpires(&timer->it.cpu)) {
 786		itp->it_interval = ktime_to_timespec64(timer->it_interval);
 787
 788		if (CPUCLOCK_PERTHREAD(timer->it_clock))
 789			now = cpu_clock_sample(clkid, p);
 790		else
 791			now = cpu_clock_sample_group(clkid, p, false);
 792
 793		__posix_cpu_timer_get(timer, itp, now);
 794	}
 795	rcu_read_unlock();
 796}
 797
 798#define MAX_COLLECTED	20
 799
 800static u64 collect_timerqueue(struct timerqueue_head *head,
 801			      struct list_head *firing, u64 now)
 802{
 803	struct timerqueue_node *next;
 804	int i = 0;
 805
 806	while ((next = timerqueue_getnext(head))) {
 807		struct cpu_timer *ctmr;
 808		u64 expires;
 809
 810		ctmr = container_of(next, struct cpu_timer, node);
 811		expires = cpu_timer_getexpires(ctmr);
 812		/* Limit the number of timers to expire at once */
 813		if (++i == MAX_COLLECTED || now < expires)
 814			return expires;
 815
 816		ctmr->firing = true;
 817		/* See posix_cpu_timer_wait_running() */
 818		rcu_assign_pointer(ctmr->handling, current);
 819		cpu_timer_dequeue(ctmr);
 820		list_add_tail(&ctmr->elist, firing);
 821	}
 822
 823	return U64_MAX;
 824}
 825
 826static void collect_posix_cputimers(struct posix_cputimers *pct, u64 *samples,
 827				    struct list_head *firing)
 828{
 829	struct posix_cputimer_base *base = pct->bases;
 830	int i;
 831
 832	for (i = 0; i < CPUCLOCK_MAX; i++, base++) {
 833		base->nextevt = collect_timerqueue(&base->tqhead, firing,
 834						    samples[i]);
 835	}
 836}
 837
 838static inline void check_dl_overrun(struct task_struct *tsk)
 839{
 840	if (tsk->dl.dl_overrun) {
 841		tsk->dl.dl_overrun = 0;
 842		send_signal_locked(SIGXCPU, SEND_SIG_PRIV, tsk, PIDTYPE_TGID);
 843	}
 844}
 845
 846static bool check_rlimit(u64 time, u64 limit, int signo, bool rt, bool hard)
 847{
 848	if (time < limit)
 849		return false;
 850
 851	if (print_fatal_signals) {
 852		pr_info("%s Watchdog Timeout (%s): %s[%d]\n",
 853			rt ? "RT" : "CPU", hard ? "hard" : "soft",
 854			current->comm, task_pid_nr(current));
 855	}
 856	send_signal_locked(signo, SEND_SIG_PRIV, current, PIDTYPE_TGID);
 857	return true;
 858}
 859
 860/*
 861 * Check for any per-thread CPU timers that have fired and move them off
 862 * the tsk->cpu_timers[N] list onto the firing list.  Here we update the
 863 * tsk->it_*_expires values to reflect the remaining thread CPU timers.
 864 */
 865static void check_thread_timers(struct task_struct *tsk,
 866				struct list_head *firing)
 867{
 868	struct posix_cputimers *pct = &tsk->posix_cputimers;
 869	u64 samples[CPUCLOCK_MAX];
 
 
 870	unsigned long soft;
 871
 872	if (dl_task(tsk))
 873		check_dl_overrun(tsk);
 
 
 
 
 874
 875	if (expiry_cache_is_inactive(pct))
 876		return;
 
 
 
 877
 878	task_sample_cputime(tsk, samples);
 879	collect_posix_cputimers(pct, samples, firing);
 880
 881	/*
 882	 * Check for the special case thread timers.
 883	 */
 884	soft = task_rlimit(tsk, RLIMIT_RTTIME);
 885	if (soft != RLIM_INFINITY) {
 886		/* Task RT timeout is accounted in jiffies. RTTIME is usec */
 887		unsigned long rttime = tsk->rt.timeout * (USEC_PER_SEC / HZ);
 888		unsigned long hard = task_rlimit_max(tsk, RLIMIT_RTTIME);
 889
 890		/* At the hard limit, send SIGKILL. No further action. */
 891		if (hard != RLIM_INFINITY &&
 892		    check_rlimit(rttime, hard, SIGKILL, true, true))
 
 
 
 
 
 893			return;
 894
 895		/* At the soft limit, send a SIGXCPU every second */
 896		if (check_rlimit(rttime, soft, SIGXCPU, true, false)) {
 897			soft += USEC_PER_SEC;
 898			tsk->signal->rlim[RLIMIT_RTTIME].rlim_cur = soft;
 
 
 
 
 
 
 
 
 899		}
 900	}
 901
 902	if (expiry_cache_is_inactive(pct))
 903		tick_dep_clear_task(tsk, TICK_DEP_BIT_POSIX_TIMER);
 904}
 905
 906static inline void stop_process_timers(struct signal_struct *sig)
 907{
 908	struct posix_cputimers *pct = &sig->posix_cputimers;
 909
 910	/* Turn off the active flag. This is done without locking. */
 911	WRITE_ONCE(pct->timers_active, false);
 912	tick_dep_clear_signal(sig, TICK_DEP_BIT_POSIX_TIMER);
 913}
 914
 
 
 915static void check_cpu_itimer(struct task_struct *tsk, struct cpu_itimer *it,
 916			     u64 *expires, u64 cur_time, int signo)
 
 917{
 918	if (!it->expires)
 919		return;
 920
 921	if (cur_time >= it->expires) {
 922		if (it->incr)
 923			it->expires += it->incr;
 924		else
 
 
 
 
 
 925			it->expires = 0;
 
 926
 927		trace_itimer_expire(signo == SIGPROF ?
 928				    ITIMER_PROF : ITIMER_VIRTUAL,
 929				    task_tgid(tsk), cur_time);
 930		send_signal_locked(signo, SEND_SIG_PRIV, tsk, PIDTYPE_TGID);
 931	}
 932
 933	if (it->expires && it->expires < *expires)
 934		*expires = it->expires;
 
 935}
 936
 937/*
 938 * Check for any per-thread CPU timers that have fired and move them
 939 * off the tsk->*_timers list onto the firing list.  Per-thread timers
 940 * have already been taken off.
 941 */
 942static void check_process_timers(struct task_struct *tsk,
 943				 struct list_head *firing)
 944{
 945	struct signal_struct *const sig = tsk->signal;
 946	struct posix_cputimers *pct = &sig->posix_cputimers;
 947	u64 samples[CPUCLOCK_MAX];
 
 
 948	unsigned long soft;
 949
 950	/*
 951	 * If there are no active process wide timers (POSIX 1.b, itimers,
 952	 * RLIMIT_CPU) nothing to check. Also skip the process wide timer
 953	 * processing when there is already another task handling them.
 954	 */
 955	if (!READ_ONCE(pct->timers_active) || pct->expiry_active)
 956		return;
 957
 958	/*
 959	 * Signify that a thread is checking for process timers.
 960	 * Write access to this field is protected by the sighand lock.
 961	 */
 962	pct->expiry_active = true;
 963
 964	/*
 965	 * Collect the current process totals. Group accounting is active
 966	 * so the sample can be taken directly.
 967	 */
 968	proc_sample_cputime_atomic(&sig->cputimer.cputime_atomic, samples);
 969	collect_posix_cputimers(pct, samples, firing);
 
 
 
 
 
 
 970
 971	/*
 972	 * Check for the special case process timers.
 973	 */
 974	check_cpu_itimer(tsk, &sig->it[CPUCLOCK_PROF],
 975			 &pct->bases[CPUCLOCK_PROF].nextevt,
 976			 samples[CPUCLOCK_PROF], SIGPROF);
 977	check_cpu_itimer(tsk, &sig->it[CPUCLOCK_VIRT],
 978			 &pct->bases[CPUCLOCK_VIRT].nextevt,
 979			 samples[CPUCLOCK_VIRT], SIGVTALRM);
 980
 981	soft = task_rlimit(tsk, RLIMIT_CPU);
 982	if (soft != RLIM_INFINITY) {
 983		/* RLIMIT_CPU is in seconds. Samples are nanoseconds */
 984		unsigned long hard = task_rlimit_max(tsk, RLIMIT_CPU);
 985		u64 ptime = samples[CPUCLOCK_PROF];
 986		u64 softns = (u64)soft * NSEC_PER_SEC;
 987		u64 hardns = (u64)hard * NSEC_PER_SEC;
 988
 989		/* At the hard limit, send SIGKILL. No further action. */
 990		if (hard != RLIM_INFINITY &&
 991		    check_rlimit(ptime, hardns, SIGKILL, false, true))
 
 992			return;
 993
 994		/* At the soft limit, send a SIGXCPU every second */
 995		if (check_rlimit(ptime, softns, SIGXCPU, false, false)) {
 996			sig->rlim[RLIMIT_CPU].rlim_cur = soft + 1;
 997			softns += NSEC_PER_SEC;
 998		}
 999
1000		/* Update the expiry cache */
1001		if (softns < pct->bases[CPUCLOCK_PROF].nextevt)
1002			pct->bases[CPUCLOCK_PROF].nextevt = softns;
 
 
 
 
 
 
 
 
 
 
1003	}
1004
1005	if (expiry_cache_is_inactive(pct))
 
 
 
1006		stop_process_timers(sig);
1007
1008	pct->expiry_active = false;
1009}
1010
1011/*
1012 * This is called from the signal code (via posixtimer_rearm)
1013 * when the last timer signal was delivered and we have to reload the timer.
1014 */
1015static void posix_cpu_timer_rearm(struct k_itimer *timer)
1016{
1017	clockid_t clkid = CPUCLOCK_WHICH(timer->it_clock);
1018	struct task_struct *p;
1019	struct sighand_struct *sighand;
1020	unsigned long flags;
1021	u64 now;
 
1022
1023	rcu_read_lock();
1024	p = cpu_timer_task_rcu(timer);
1025	if (!p)
1026		goto out;
1027
1028	/* Protect timer list r/w in arm_timer() */
1029	sighand = lock_task_sighand(p, &flags);
1030	if (unlikely(sighand == NULL))
1031		goto out;
1032
1033	/*
1034	 * Fetch the current sample and update the timer's expiry time.
1035	 */
1036	if (CPUCLOCK_PERTHREAD(timer->it_clock))
1037		now = cpu_clock_sample(clkid, p);
1038	else
1039		now = cpu_clock_sample_group(clkid, p, true);
1040
1041	bump_cpu_timer(timer, now);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1042
1043	/*
1044	 * Now re-arm for the new expiry time.
1045	 */
1046	arm_timer(timer, p);
 
1047	unlock_task_sighand(p, &flags);
 
1048out:
1049	rcu_read_unlock();
 
 
1050}
1051
1052/**
1053 * task_cputimers_expired - Check whether posix CPU timers are expired
1054 *
1055 * @samples:	Array of current samples for the CPUCLOCK clocks
1056 * @pct:	Pointer to a posix_cputimers container
1057 *
1058 * Returns true if any member of @samples is greater than the corresponding
1059 * member of @pct->bases[CLK].nextevt. False otherwise
1060 */
1061static inline bool
1062task_cputimers_expired(const u64 *samples, struct posix_cputimers *pct)
1063{
1064	int i;
1065
1066	for (i = 0; i < CPUCLOCK_MAX; i++) {
1067		if (samples[i] >= pct->bases[i].nextevt)
1068			return true;
1069	}
1070	return false;
 
 
1071}
1072
1073/**
1074 * fastpath_timer_check - POSIX CPU timers fast path.
1075 *
1076 * @tsk:	The task (thread) being checked.
1077 *
1078 * Check the task and thread group timers.  If both are zero (there are no
1079 * timers set) return false.  Otherwise snapshot the task and thread group
1080 * timers and compare them with the corresponding expiration times.  Return
1081 * true if a timer has expired, else return false.
1082 */
1083static inline bool fastpath_timer_check(struct task_struct *tsk)
1084{
1085	struct posix_cputimers *pct = &tsk->posix_cputimers;
1086	struct signal_struct *sig;
1087
1088	if (!expiry_cache_is_inactive(pct)) {
1089		u64 samples[CPUCLOCK_MAX];
1090
1091		task_sample_cputime(tsk, samples);
1092		if (task_cputimers_expired(samples, pct))
1093			return true;
 
1094	}
1095
1096	sig = tsk->signal;
1097	pct = &sig->posix_cputimers;
1098	/*
1099	 * Check if thread group timers expired when timers are active and
1100	 * no other thread in the group is already handling expiry for
1101	 * thread group cputimers. These fields are read without the
1102	 * sighand lock. However, this is fine because this is meant to be
1103	 * a fastpath heuristic to determine whether we should try to
1104	 * acquire the sighand lock to handle timer expiry.
1105	 *
1106	 * In the worst case scenario, if concurrently timers_active is set
1107	 * or expiry_active is cleared, but the current thread doesn't see
1108	 * the change yet, the timer checks are delayed until the next
1109	 * thread in the group gets a scheduler interrupt to handle the
1110	 * timer. This isn't an issue in practice because these types of
1111	 * delays with signals actually getting sent are expected.
1112	 */
1113	if (READ_ONCE(pct->timers_active) && !READ_ONCE(pct->expiry_active)) {
1114		u64 samples[CPUCLOCK_MAX];
1115
1116		proc_sample_cputime_atomic(&sig->cputimer.cputime_atomic,
1117					   samples);
1118
1119		if (task_cputimers_expired(samples, pct))
1120			return true;
1121	}
1122
1123	if (dl_task(tsk) && tsk->dl.dl_overrun)
1124		return true;
1125
1126	return false;
1127}
1128
1129static void handle_posix_cpu_timers(struct task_struct *tsk);
1130
1131#ifdef CONFIG_POSIX_CPU_TIMERS_TASK_WORK
1132static void posix_cpu_timers_work(struct callback_head *work)
1133{
1134	struct posix_cputimers_work *cw = container_of(work, typeof(*cw), work);
1135
1136	mutex_lock(&cw->mutex);
1137	handle_posix_cpu_timers(current);
1138	mutex_unlock(&cw->mutex);
1139}
1140
1141/*
1142 * Invoked from the posix-timer core when a cancel operation failed because
1143 * the timer is marked firing. The caller holds rcu_read_lock(), which
1144 * protects the timer and the task which is expiring it from being freed.
1145 */
1146static void posix_cpu_timer_wait_running(struct k_itimer *timr)
1147{
1148	struct task_struct *tsk = rcu_dereference(timr->it.cpu.handling);
 
 
1149
1150	/* Has the handling task completed expiry already? */
1151	if (!tsk)
1152		return;
1153
1154	/* Ensure that the task cannot go away */
1155	get_task_struct(tsk);
1156	/* Now drop the RCU protection so the mutex can be locked */
1157	rcu_read_unlock();
1158	/* Wait on the expiry mutex */
1159	mutex_lock(&tsk->posix_cputimers_work.mutex);
1160	/* Release it immediately again. */
1161	mutex_unlock(&tsk->posix_cputimers_work.mutex);
1162	/* Drop the task reference. */
1163	put_task_struct(tsk);
1164	/* Relock RCU so the callsite is balanced */
1165	rcu_read_lock();
1166}
1167
1168static void posix_cpu_timer_wait_running_nsleep(struct k_itimer *timr)
1169{
1170	/* Ensure that timr->it.cpu.handling task cannot go away */
1171	rcu_read_lock();
1172	spin_unlock_irq(&timr->it_lock);
1173	posix_cpu_timer_wait_running(timr);
1174	rcu_read_unlock();
1175	/* @timr is on stack and is valid */
1176	spin_lock_irq(&timr->it_lock);
1177}
1178
1179/*
1180 * Clear existing posix CPU timers task work.
1181 */
1182void clear_posix_cputimers_work(struct task_struct *p)
1183{
1184	/*
1185	 * A copied work entry from the old task is not meaningful, clear it.
1186	 * N.B. init_task_work will not do this.
1187	 */
1188	memset(&p->posix_cputimers_work.work, 0,
1189	       sizeof(p->posix_cputimers_work.work));
1190	init_task_work(&p->posix_cputimers_work.work,
1191		       posix_cpu_timers_work);
1192	mutex_init(&p->posix_cputimers_work.mutex);
1193	p->posix_cputimers_work.scheduled = false;
1194}
1195
1196/*
1197 * Initialize posix CPU timers task work in init task. Out of line to
1198 * keep the callback static and to avoid header recursion hell.
1199 */
1200void __init posix_cputimers_init_work(void)
1201{
1202	clear_posix_cputimers_work(current);
1203}
1204
1205/*
1206 * Note: All operations on tsk->posix_cputimer_work.scheduled happen either
1207 * in hard interrupt context or in task context with interrupts
1208 * disabled. Aside of that the writer/reader interaction is always in the
1209 * context of the current task, which means they are strict per CPU.
1210 */
1211static inline bool posix_cpu_timers_work_scheduled(struct task_struct *tsk)
1212{
1213	return tsk->posix_cputimers_work.scheduled;
1214}
1215
1216static inline void __run_posix_cpu_timers(struct task_struct *tsk)
1217{
1218	if (WARN_ON_ONCE(tsk->posix_cputimers_work.scheduled))
1219		return;
1220
1221	/* Schedule task work to actually expire the timers */
1222	tsk->posix_cputimers_work.scheduled = true;
1223	task_work_add(tsk, &tsk->posix_cputimers_work.work, TWA_RESUME);
1224}
1225
1226static inline bool posix_cpu_timers_enable_work(struct task_struct *tsk,
1227						unsigned long start)
1228{
1229	bool ret = true;
1230
1231	/*
1232	 * On !RT kernels interrupts are disabled while collecting expired
1233	 * timers, so no tick can happen and the fast path check can be
1234	 * reenabled without further checks.
1235	 */
1236	if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
1237		tsk->posix_cputimers_work.scheduled = false;
1238		return true;
1239	}
1240
1241	/*
1242	 * On RT enabled kernels ticks can happen while the expired timers
1243	 * are collected under sighand lock. But any tick which observes
1244	 * the CPUTIMERS_WORK_SCHEDULED bit set, does not run the fastpath
1245	 * checks. So reenabling the tick work has do be done carefully:
1246	 *
1247	 * Disable interrupts and run the fast path check if jiffies have
1248	 * advanced since the collecting of expired timers started. If
1249	 * jiffies have not advanced or the fast path check did not find
1250	 * newly expired timers, reenable the fast path check in the timer
1251	 * interrupt. If there are newly expired timers, return false and
1252	 * let the collection loop repeat.
1253	 */
1254	local_irq_disable();
1255	if (start != jiffies && fastpath_timer_check(tsk))
1256		ret = false;
1257	else
1258		tsk->posix_cputimers_work.scheduled = false;
1259	local_irq_enable();
1260
1261	return ret;
1262}
1263#else /* CONFIG_POSIX_CPU_TIMERS_TASK_WORK */
1264static inline void __run_posix_cpu_timers(struct task_struct *tsk)
1265{
1266	lockdep_posixtimer_enter();
1267	handle_posix_cpu_timers(tsk);
1268	lockdep_posixtimer_exit();
1269}
1270
1271static void posix_cpu_timer_wait_running(struct k_itimer *timr)
1272{
1273	cpu_relax();
1274}
1275
1276static void posix_cpu_timer_wait_running_nsleep(struct k_itimer *timr)
1277{
1278	spin_unlock_irq(&timr->it_lock);
1279	cpu_relax();
1280	spin_lock_irq(&timr->it_lock);
1281}
1282
1283static inline bool posix_cpu_timers_work_scheduled(struct task_struct *tsk)
1284{
1285	return false;
1286}
1287
1288static inline bool posix_cpu_timers_enable_work(struct task_struct *tsk,
1289						unsigned long start)
1290{
1291	return true;
1292}
1293#endif /* CONFIG_POSIX_CPU_TIMERS_TASK_WORK */
1294
1295static void handle_posix_cpu_timers(struct task_struct *tsk)
1296{
1297	struct k_itimer *timer, *next;
1298	unsigned long flags, start;
1299	LIST_HEAD(firing);
1300
1301	if (!lock_task_sighand(tsk, &flags))
1302		return;
1303
1304	do {
1305		/*
1306		 * On RT locking sighand lock does not disable interrupts,
1307		 * so this needs to be careful vs. ticks. Store the current
1308		 * jiffies value.
1309		 */
1310		start = READ_ONCE(jiffies);
1311		barrier();
1312
1313		/*
1314		 * Here we take off tsk->signal->cpu_timers[N] and
1315		 * tsk->cpu_timers[N] all the timers that are firing, and
1316		 * put them on the firing list.
1317		 */
1318		check_thread_timers(tsk, &firing);
1319
1320		check_process_timers(tsk, &firing);
1321
1322		/*
1323		 * The above timer checks have updated the expiry cache and
1324		 * because nothing can have queued or modified timers after
1325		 * sighand lock was taken above it is guaranteed to be
1326		 * consistent. So the next timer interrupt fastpath check
1327		 * will find valid data.
1328		 *
1329		 * If timer expiry runs in the timer interrupt context then
1330		 * the loop is not relevant as timers will be directly
1331		 * expired in interrupt context. The stub function below
1332		 * returns always true which allows the compiler to
1333		 * optimize the loop out.
1334		 *
1335		 * If timer expiry is deferred to task work context then
1336		 * the following rules apply:
1337		 *
1338		 * - On !RT kernels no tick can have happened on this CPU
1339		 *   after sighand lock was acquired because interrupts are
1340		 *   disabled. So reenabling task work before dropping
1341		 *   sighand lock and reenabling interrupts is race free.
1342		 *
1343		 * - On RT kernels ticks might have happened but the tick
1344		 *   work ignored posix CPU timer handling because the
1345		 *   CPUTIMERS_WORK_SCHEDULED bit is set. Reenabling work
1346		 *   must be done very carefully including a check whether
1347		 *   ticks have happened since the start of the timer
1348		 *   expiry checks. posix_cpu_timers_enable_work() takes
1349		 *   care of that and eventually lets the expiry checks
1350		 *   run again.
1351		 */
1352	} while (!posix_cpu_timers_enable_work(tsk, start));
1353
1354	/*
1355	 * We must release sighand lock before taking any timer's lock.
1356	 * There is a potential race with timer deletion here, as the
1357	 * siglock now protects our private firing list.  We have set
1358	 * the firing flag in each timer, so that a deletion attempt
1359	 * that gets the timer lock before we do will give it up and
1360	 * spin until we've taken care of that timer below.
1361	 */
1362	unlock_task_sighand(tsk, &flags);
1363
1364	/*
1365	 * Now that all the timers on our list have the firing flag,
1366	 * no one will touch their list entries but us.  We'll take
1367	 * each timer's lock before clearing its firing flag, so no
1368	 * timer call will interfere.
1369	 */
1370	list_for_each_entry_safe(timer, next, &firing, it.cpu.elist) {
1371		bool cpu_firing;
1372
1373		/*
1374		 * spin_lock() is sufficient here even independent of the
1375		 * expiry context. If expiry happens in hard interrupt
1376		 * context it's obvious. For task work context it's safe
1377		 * because all other operations on timer::it_lock happen in
1378		 * task context (syscall or exit).
1379		 */
1380		spin_lock(&timer->it_lock);
1381		list_del_init(&timer->it.cpu.elist);
1382		cpu_firing = timer->it.cpu.firing;
1383		timer->it.cpu.firing = false;
1384		/*
1385		 * If the firing flag is cleared then this raced with a
1386		 * timer rearm/delete operation. So don't generate an
1387		 * event.
1388		 */
1389		if (likely(cpu_firing))
1390			cpu_timer_fire(timer);
1391		/* See posix_cpu_timer_wait_running() */
1392		rcu_assign_pointer(timer->it.cpu.handling, NULL);
1393		spin_unlock(&timer->it_lock);
1394	}
1395}
1396
1397/*
1398 * This is called from the timer interrupt handler.  The irq handler has
1399 * already updated our counts.  We need to check if any timers fire now.
1400 * Interrupts are disabled.
1401 */
1402void run_posix_cpu_timers(void)
1403{
1404	struct task_struct *tsk = current;
1405
1406	lockdep_assert_irqs_disabled();
1407
1408	/*
1409	 * If the actual expiry is deferred to task work context and the
1410	 * work is already scheduled there is no point to do anything here.
1411	 */
1412	if (posix_cpu_timers_work_scheduled(tsk))
1413		return;
1414
1415	/*
1416	 * The fast path checks that there are no expired thread or thread
1417	 * group timers.  If that's so, just return.
1418	 */
1419	if (!fastpath_timer_check(tsk))
1420		return;
1421
1422	__run_posix_cpu_timers(tsk);
1423}
1424
1425/*
1426 * Set one of the process-wide special case CPU timers or RLIMIT_CPU.
1427 * The tsk->sighand->siglock must be held by the caller.
1428 */
1429void set_process_cpu_timer(struct task_struct *tsk, unsigned int clkid,
1430			   u64 *newval, u64 *oldval)
1431{
1432	u64 now, *nextevt;
1433
1434	if (WARN_ON_ONCE(clkid >= CPUCLOCK_SCHED))
1435		return;
1436
1437	nextevt = &tsk->signal->posix_cputimers.bases[clkid].nextevt;
1438	now = cpu_clock_sample_group(clkid, tsk, true);
1439
1440	if (oldval) {
1441		/*
1442		 * We are setting itimer. The *oldval is absolute and we update
1443		 * it to be relative, *newval argument is relative and we update
1444		 * it to be absolute.
1445		 */
1446		if (*oldval) {
1447			if (*oldval <= now) {
1448				/* Just about to fire. */
1449				*oldval = TICK_NSEC;
1450			} else {
1451				*oldval -= now;
1452			}
1453		}
1454
1455		if (*newval)
1456			*newval += now;
 
1457	}
1458
1459	/*
1460	 * Update expiration cache if this is the earliest timer. CPUCLOCK_PROF
1461	 * expiry cache is also used by RLIMIT_CPU!.
1462	 */
1463	if (*newval < *nextevt)
1464		*nextevt = *newval;
 
 
 
 
 
 
 
 
1465
1466	tick_dep_set_signal(tsk, TICK_DEP_BIT_POSIX_TIMER);
1467}
1468
1469static int do_cpu_nanosleep(const clockid_t which_clock, int flags,
1470			    const struct timespec64 *rqtp)
1471{
1472	struct itimerspec64 it;
1473	struct k_itimer timer;
1474	u64 expires;
1475	int error;
1476
1477	/*
1478	 * Set up a temporary timer and then wait for it to go off.
1479	 */
1480	memset(&timer, 0, sizeof timer);
1481	spin_lock_init(&timer.it_lock);
1482	timer.it_clock = which_clock;
1483	timer.it_overrun = -1;
1484	error = posix_cpu_timer_create(&timer);
1485	timer.it_process = current;
1486	timer.it.cpu.nanosleep = true;
1487
1488	if (!error) {
1489		static struct itimerspec64 zero_it;
1490		struct restart_block *restart;
1491
1492		memset(&it, 0, sizeof(it));
1493		it.it_value = *rqtp;
1494
1495		spin_lock_irq(&timer.it_lock);
1496		error = posix_cpu_timer_set(&timer, flags, &it, NULL);
1497		if (error) {
1498			spin_unlock_irq(&timer.it_lock);
1499			return error;
1500		}
1501
1502		while (!signal_pending(current)) {
1503			if (!cpu_timer_getexpires(&timer.it.cpu)) {
1504				/*
1505				 * Our timer fired and was reset, below
1506				 * deletion can not fail.
1507				 */
1508				posix_cpu_timer_del(&timer);
1509				spin_unlock_irq(&timer.it_lock);
1510				return 0;
1511			}
1512
1513			/*
1514			 * Block until cpu_timer_fire (or a signal) wakes us.
1515			 */
1516			__set_current_state(TASK_INTERRUPTIBLE);
1517			spin_unlock_irq(&timer.it_lock);
1518			schedule();
1519			spin_lock_irq(&timer.it_lock);
1520		}
1521
1522		/*
1523		 * We were interrupted by a signal.
1524		 */
1525		expires = cpu_timer_getexpires(&timer.it.cpu);
1526		error = posix_cpu_timer_set(&timer, 0, &zero_it, &it);
1527		if (!error) {
1528			/* Timer is now unarmed, deletion can not fail. */
 
 
1529			posix_cpu_timer_del(&timer);
1530		} else {
1531			while (error == TIMER_RETRY) {
1532				posix_cpu_timer_wait_running_nsleep(&timer);
1533				error = posix_cpu_timer_del(&timer);
1534			}
1535		}
 
1536
1537		spin_unlock_irq(&timer.it_lock);
 
 
 
 
 
 
 
 
 
1538
1539		if ((it.it_value.tv_sec | it.it_value.tv_nsec) == 0) {
1540			/*
1541			 * It actually did fire already.
1542			 */
1543			return 0;
1544		}
1545
1546		error = -ERESTART_RESTARTBLOCK;
1547		/*
1548		 * Report back to the user the time still remaining.
1549		 */
1550		restart = &current->restart_block;
1551		restart->nanosleep.expires = expires;
1552		if (restart->nanosleep.type != TT_NONE)
1553			error = nanosleep_copyout(restart, &it.it_value);
1554	}
1555
1556	return error;
1557}
1558
1559static long posix_cpu_nsleep_restart(struct restart_block *restart_block);
1560
1561static int posix_cpu_nsleep(const clockid_t which_clock, int flags,
1562			    const struct timespec64 *rqtp)
1563{
1564	struct restart_block *restart_block = &current->restart_block;
 
1565	int error;
1566
1567	/*
1568	 * Diagnose required errors first.
1569	 */
1570	if (CPUCLOCK_PERTHREAD(which_clock) &&
1571	    (CPUCLOCK_PID(which_clock) == 0 ||
1572	     CPUCLOCK_PID(which_clock) == task_pid_vnr(current)))
1573		return -EINVAL;
1574
1575	error = do_cpu_nanosleep(which_clock, flags, rqtp);
1576
1577	if (error == -ERESTART_RESTARTBLOCK) {
1578
1579		if (flags & TIMER_ABSTIME)
1580			return -ERESTARTNOHAND;
 
 
 
 
 
1581
 
1582		restart_block->nanosleep.clockid = which_clock;
1583		set_restart_fn(restart_block, posix_cpu_nsleep_restart);
 
1584	}
1585	return error;
1586}
1587
1588static long posix_cpu_nsleep_restart(struct restart_block *restart_block)
1589{
1590	clockid_t which_clock = restart_block->nanosleep.clockid;
1591	struct timespec64 t;
 
 
 
 
1592
1593	t = ns_to_timespec64(restart_block->nanosleep.expires);
 
 
 
 
 
 
 
 
 
 
 
 
1594
1595	return do_cpu_nanosleep(which_clock, TIMER_ABSTIME, &t);
1596}
1597
1598#define PROCESS_CLOCK	make_process_cpuclock(0, CPUCLOCK_SCHED)
1599#define THREAD_CLOCK	make_thread_cpuclock(0, CPUCLOCK_SCHED)
1600
1601static int process_cpu_clock_getres(const clockid_t which_clock,
1602				    struct timespec64 *tp)
1603{
1604	return posix_cpu_clock_getres(PROCESS_CLOCK, tp);
1605}
1606static int process_cpu_clock_get(const clockid_t which_clock,
1607				 struct timespec64 *tp)
1608{
1609	return posix_cpu_clock_get(PROCESS_CLOCK, tp);
1610}
1611static int process_cpu_timer_create(struct k_itimer *timer)
1612{
1613	timer->it_clock = PROCESS_CLOCK;
1614	return posix_cpu_timer_create(timer);
1615}
1616static int process_cpu_nsleep(const clockid_t which_clock, int flags,
1617			      const struct timespec64 *rqtp)
 
1618{
1619	return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp);
 
 
 
 
1620}
1621static int thread_cpu_clock_getres(const clockid_t which_clock,
1622				   struct timespec64 *tp)
1623{
1624	return posix_cpu_clock_getres(THREAD_CLOCK, tp);
1625}
1626static int thread_cpu_clock_get(const clockid_t which_clock,
1627				struct timespec64 *tp)
1628{
1629	return posix_cpu_clock_get(THREAD_CLOCK, tp);
1630}
1631static int thread_cpu_timer_create(struct k_itimer *timer)
1632{
1633	timer->it_clock = THREAD_CLOCK;
1634	return posix_cpu_timer_create(timer);
1635}
1636
1637const struct k_clock clock_posix_cpu = {
1638	.clock_getres		= posix_cpu_clock_getres,
1639	.clock_set		= posix_cpu_clock_set,
1640	.clock_get_timespec	= posix_cpu_clock_get,
1641	.timer_create		= posix_cpu_timer_create,
1642	.nsleep			= posix_cpu_nsleep,
1643	.timer_set		= posix_cpu_timer_set,
1644	.timer_del		= posix_cpu_timer_del,
1645	.timer_get		= posix_cpu_timer_get,
1646	.timer_rearm		= posix_cpu_timer_rearm,
1647	.timer_wait_running	= posix_cpu_timer_wait_running,
1648};
1649
1650const struct k_clock clock_process = {
1651	.clock_getres		= process_cpu_clock_getres,
1652	.clock_get_timespec	= process_cpu_clock_get,
1653	.timer_create		= process_cpu_timer_create,
1654	.nsleep			= process_cpu_nsleep,
1655};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1656
1657const struct k_clock clock_thread = {
1658	.clock_getres		= thread_cpu_clock_getres,
1659	.clock_get_timespec	= thread_cpu_clock_get,
1660	.timer_create		= thread_cpu_timer_create,
1661};