Linux Audio

Check our new training course

Loading...
v4.6
 
   1/*
   2 * Implement CPU time clocks for the POSIX clock interface.
   3 */
   4
   5#include <linux/sched.h>
 
   6#include <linux/posix-timers.h>
   7#include <linux/errno.h>
   8#include <linux/math64.h>
   9#include <asm/uaccess.h>
  10#include <linux/kernel_stat.h>
  11#include <trace/events/timer.h>
  12#include <linux/random.h>
  13#include <linux/tick.h>
  14#include <linux/workqueue.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  15
  16/*
  17 * Called after updating RLIMIT_CPU to run cpu timer and update
  18 * tsk->signal->cputime_expires expiration cache if necessary. Needs
  19 * siglock protection since other code may update expiration cache as
  20 * well.
  21 */
  22void update_rlimit_cpu(struct task_struct *task, unsigned long rlim_new)
  23{
  24	cputime_t cputime = secs_to_cputime(rlim_new);
  25
  26	spin_lock_irq(&task->sighand->siglock);
  27	set_process_cpu_timer(task, CPUCLOCK_PROF, &cputime, NULL);
  28	spin_unlock_irq(&task->sighand->siglock);
  29}
  30
  31static int check_clock(const clockid_t which_clock)
 
 
 
  32{
  33	int error = 0;
  34	struct task_struct *p;
  35	const pid_t pid = CPUCLOCK_PID(which_clock);
  36
  37	if (CPUCLOCK_WHICH(which_clock) >= CPUCLOCK_MAX)
  38		return -EINVAL;
  39
  40	if (pid == 0)
  41		return 0;
 
 
 
 
  42
  43	rcu_read_lock();
  44	p = find_task_by_vpid(pid);
  45	if (!p || !(CPUCLOCK_PERTHREAD(which_clock) ?
  46		   same_thread_group(p, current) : has_group_leader_pid(p))) {
  47		error = -EINVAL;
 
 
  48	}
  49	rcu_read_unlock();
  50
  51	return error;
 
 
 
 
 
 
 
 
 
 
 
 
  52}
  53
  54static inline unsigned long long
  55timespec_to_sample(const clockid_t which_clock, const struct timespec *tp)
  56{
  57	unsigned long long ret;
 
 
 
 
  58
  59	ret = 0;		/* high half always zero when .cpu used */
  60	if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
  61		ret = (unsigned long long)tp->tv_sec * NSEC_PER_SEC + tp->tv_nsec;
  62	} else {
  63		ret = cputime_to_expires(timespec_to_cputime(tp));
  64	}
  65	return ret;
  66}
  67
  68static void sample_to_timespec(const clockid_t which_clock,
  69			       unsigned long long expires,
  70			       struct timespec *tp)
  71{
  72	if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED)
  73		*tp = ns_to_timespec(expires);
  74	else
  75		cputime_to_timespec((__force cputime_t)expires, tp);
 
 
  76}
  77
  78/*
  79 * Update expiry time from increment, and increase overrun count,
  80 * given the current clock sample.
  81 */
  82static void bump_cpu_timer(struct k_itimer *timer,
  83			   unsigned long long now)
  84{
 
  85	int i;
  86	unsigned long long delta, incr;
  87
  88	if (timer->it.cpu.incr == 0)
  89		return;
  90
  91	if (now < timer->it.cpu.expires)
  92		return;
  93
  94	incr = timer->it.cpu.incr;
  95	delta = now + incr - timer->it.cpu.expires;
  96
  97	/* Don't use (incr*2 < delta), incr*2 might overflow. */
  98	for (i = 0; incr < delta - incr; i++)
  99		incr = incr << 1;
 100
 101	for (; i >= 0; incr >>= 1, i--) {
 102		if (delta < incr)
 103			continue;
 104
 105		timer->it.cpu.expires += incr;
 106		timer->it_overrun += 1 << i;
 107		delta -= incr;
 108	}
 
 109}
 110
 111/**
 112 * task_cputime_zero - Check a task_cputime struct for all zero fields.
 113 *
 114 * @cputime:	The struct to compare.
 115 *
 116 * Checks @cputime to see if all fields are zero.  Returns true if all fields
 117 * are zero, false if any field is nonzero.
 118 */
 119static inline int task_cputime_zero(const struct task_cputime *cputime)
 120{
 121	if (!cputime->utime && !cputime->stime && !cputime->sum_exec_runtime)
 122		return 1;
 123	return 0;
 124}
 125
 126static inline unsigned long long prof_ticks(struct task_struct *p)
 127{
 128	cputime_t utime, stime;
 129
 130	task_cputime(p, &utime, &stime);
 131
 132	return cputime_to_expires(utime + stime);
 133}
 134static inline unsigned long long virt_ticks(struct task_struct *p)
 135{
 136	cputime_t utime;
 137
 138	task_cputime(p, &utime, NULL);
 139
 140	return cputime_to_expires(utime);
 141}
 142
 143static int
 144posix_cpu_clock_getres(const clockid_t which_clock, struct timespec *tp)
 145{
 146	int error = check_clock(which_clock);
 
 147	if (!error) {
 148		tp->tv_sec = 0;
 149		tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ);
 150		if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
 151			/*
 152			 * If sched_clock is using a cycle counter, we
 153			 * don't have any idea of its true resolution
 154			 * exported, but it is much more than 1s/HZ.
 155			 */
 156			tp->tv_nsec = 1;
 157		}
 158	}
 159	return error;
 160}
 161
 162static int
 163posix_cpu_clock_set(const clockid_t which_clock, const struct timespec *tp)
 164{
 
 
 165	/*
 166	 * You can never reset a CPU clock, but we check for other errors
 167	 * in the call before failing with EPERM.
 168	 */
 169	int error = check_clock(which_clock);
 170	if (error == 0) {
 171		error = -EPERM;
 172	}
 173	return error;
 174}
 175
 176
 177/*
 178 * Sample a per-thread clock for the given task.
 179 */
 180static int cpu_clock_sample(const clockid_t which_clock, struct task_struct *p,
 181			    unsigned long long *sample)
 182{
 183	switch (CPUCLOCK_WHICH(which_clock)) {
 184	default:
 185		return -EINVAL;
 
 
 
 
 
 186	case CPUCLOCK_PROF:
 187		*sample = prof_ticks(p);
 188		break;
 189	case CPUCLOCK_VIRT:
 190		*sample = virt_ticks(p);
 191		break;
 192	case CPUCLOCK_SCHED:
 193		*sample = task_sched_runtime(p);
 194		break;
 195	}
 196	return 0;
 197}
 198
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 199/*
 200 * Set cputime to sum_cputime if sum_cputime > cputime. Use cmpxchg
 201 * to avoid race conditions with concurrent updates to cputime.
 202 */
 203static inline void __update_gt_cputime(atomic64_t *cputime, u64 sum_cputime)
 204{
 205	u64 curr_cputime;
 206retry:
 207	curr_cputime = atomic64_read(cputime);
 208	if (sum_cputime > curr_cputime) {
 209		if (atomic64_cmpxchg(cputime, curr_cputime, sum_cputime) != curr_cputime)
 210			goto retry;
 211	}
 212}
 213
 214static void update_gt_cputime(struct task_cputime_atomic *cputime_atomic, struct task_cputime *sum)
 
 215{
 216	__update_gt_cputime(&cputime_atomic->utime, sum->utime);
 217	__update_gt_cputime(&cputime_atomic->stime, sum->stime);
 218	__update_gt_cputime(&cputime_atomic->sum_exec_runtime, sum->sum_exec_runtime);
 219}
 220
 221/* Sample task_cputime_atomic values in "atomic_timers", store results in "times". */
 222static inline void sample_cputime_atomic(struct task_cputime *times,
 223					 struct task_cputime_atomic *atomic_times)
 
 
 
 
 
 
 
 
 
 224{
 225	times->utime = atomic64_read(&atomic_times->utime);
 226	times->stime = atomic64_read(&atomic_times->stime);
 227	times->sum_exec_runtime = atomic64_read(&atomic_times->sum_exec_runtime);
 
 
 
 228}
 229
 230void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times)
 
 
 
 
 
 
 
 
 
 
 
 
 231{
 232	struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
 233	struct task_cputime sum;
 234
 235	/* Check if cputimer isn't running. This is accessed without locking. */
 236	if (!READ_ONCE(cputimer->running)) {
 
 
 237		/*
 238		 * The POSIX timer interface allows for absolute time expiry
 239		 * values through the TIMER_ABSTIME flag, therefore we have
 240		 * to synchronize the timer to the clock every time we start it.
 241		 */
 242		thread_group_cputime(tsk, &sum);
 243		update_gt_cputime(&cputimer->cputime_atomic, &sum);
 244
 245		/*
 246		 * We're setting cputimer->running without a lock. Ensure
 247		 * this only gets written to in one operation. We set
 248		 * running after update_gt_cputime() as a small optimization,
 249		 * but barriers are not required because update_gt_cputime()
 250		 * can handle concurrent updates.
 251		 */
 252		WRITE_ONCE(cputimer->running, true);
 253	}
 254	sample_cputime_atomic(times, &cputimer->cputime_atomic);
 255}
 256
 257/*
 258 * Sample a process (thread group) clock for the given group_leader task.
 259 * Must be called with task sighand lock held for safe while_each_thread()
 260 * traversal.
 261 */
 262static int cpu_clock_sample_group(const clockid_t which_clock,
 263				  struct task_struct *p,
 264				  unsigned long long *sample)
 265{
 266	struct task_cputime cputime;
 267
 268	switch (CPUCLOCK_WHICH(which_clock)) {
 269	default:
 270		return -EINVAL;
 271	case CPUCLOCK_PROF:
 272		thread_group_cputime(p, &cputime);
 273		*sample = cputime_to_expires(cputime.utime + cputime.stime);
 274		break;
 275	case CPUCLOCK_VIRT:
 276		thread_group_cputime(p, &cputime);
 277		*sample = cputime_to_expires(cputime.utime);
 278		break;
 279	case CPUCLOCK_SCHED:
 280		thread_group_cputime(p, &cputime);
 281		*sample = cputime.sum_exec_runtime;
 282		break;
 283	}
 284	return 0;
 285}
 286
 287static int posix_cpu_clock_get_task(struct task_struct *tsk,
 288				    const clockid_t which_clock,
 289				    struct timespec *tp)
 290{
 291	int err = -EINVAL;
 292	unsigned long long rtn;
 293
 294	if (CPUCLOCK_PERTHREAD(which_clock)) {
 295		if (same_thread_group(tsk, current))
 296			err = cpu_clock_sample(which_clock, tsk, &rtn);
 
 
 
 
 
 
 
 297	} else {
 298		if (tsk == current || thread_group_leader(tsk))
 299			err = cpu_clock_sample_group(which_clock, tsk, &rtn);
 300	}
 301
 302	if (!err)
 303		sample_to_timespec(which_clock, rtn, tp);
 304
 305	return err;
 306}
 307
 308
 309static int posix_cpu_clock_get(const clockid_t which_clock, struct timespec *tp)
 310{
 311	const pid_t pid = CPUCLOCK_PID(which_clock);
 312	int err = -EINVAL;
 
 313
 314	if (pid == 0) {
 315		/*
 316		 * Special case constant value for our own clocks.
 317		 * We don't have to do any lookup to find ourselves.
 318		 */
 319		err = posix_cpu_clock_get_task(current, which_clock, tp);
 320	} else {
 321		/*
 322		 * Find the given PID, and validate that the caller
 323		 * should be able to see it.
 324		 */
 325		struct task_struct *p;
 326		rcu_read_lock();
 327		p = find_task_by_vpid(pid);
 328		if (p)
 329			err = posix_cpu_clock_get_task(p, which_clock, tp);
 330		rcu_read_unlock();
 
 331	}
 332
 333	return err;
 
 
 
 
 
 
 
 334}
 335
 336/*
 337 * Validate the clockid_t for a new CPU-clock timer, and initialize the timer.
 338 * This is called from sys_timer_create() and do_cpu_nanosleep() with the
 339 * new timer already all-zeros initialized.
 340 */
 341static int posix_cpu_timer_create(struct k_itimer *new_timer)
 342{
 343	int ret = 0;
 344	const pid_t pid = CPUCLOCK_PID(new_timer->it_clock);
 345	struct task_struct *p;
 346
 347	if (CPUCLOCK_WHICH(new_timer->it_clock) >= CPUCLOCK_MAX)
 348		return -EINVAL;
 349
 350	INIT_LIST_HEAD(&new_timer->it.cpu.entry);
 351
 352	rcu_read_lock();
 353	if (CPUCLOCK_PERTHREAD(new_timer->it_clock)) {
 354		if (pid == 0) {
 355			p = current;
 356		} else {
 357			p = find_task_by_vpid(pid);
 358			if (p && !same_thread_group(p, current))
 359				p = NULL;
 360		}
 361	} else {
 362		if (pid == 0) {
 363			p = current->group_leader;
 364		} else {
 365			p = find_task_by_vpid(pid);
 366			if (p && !has_group_leader_pid(p))
 367				p = NULL;
 368		}
 369	}
 370	new_timer->it.cpu.task = p;
 371	if (p) {
 372		get_task_struct(p);
 373	} else {
 374		ret = -EINVAL;
 375	}
 376	rcu_read_unlock();
 377
 378	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 379}
 380
 381/*
 382 * Clean up a CPU-clock timer that is about to be destroyed.
 383 * This is called from timer deletion with the timer already locked.
 384 * If we return TIMER_RETRY, it's necessary to release the timer's lock
 385 * and try again.  (This happens when the timer is in the middle of firing.)
 386 */
 387static int posix_cpu_timer_del(struct k_itimer *timer)
 388{
 389	int ret = 0;
 390	unsigned long flags;
 391	struct sighand_struct *sighand;
 392	struct task_struct *p = timer->it.cpu.task;
 
 
 393
 394	WARN_ON_ONCE(p == NULL);
 
 
 
 395
 396	/*
 397	 * Protect against sighand release/switch in exit/exec and process/
 398	 * thread timer list entry concurrent read/writes.
 399	 */
 400	sighand = lock_task_sighand(p, &flags);
 401	if (unlikely(sighand == NULL)) {
 402		/*
 403		 * We raced with the reaping of the task.
 404		 * The deletion should have cleared us off the list.
 405		 */
 406		WARN_ON_ONCE(!list_empty(&timer->it.cpu.entry));
 407	} else {
 408		if (timer->it.cpu.firing)
 409			ret = TIMER_RETRY;
 410		else
 411			list_del(&timer->it.cpu.entry);
 412
 413		unlock_task_sighand(p, &flags);
 414	}
 415
 
 
 416	if (!ret)
 417		put_task_struct(p);
 418
 419	return ret;
 420}
 421
 422static void cleanup_timers_list(struct list_head *head)
 423{
 424	struct cpu_timer_list *timer, *next;
 
 425
 426	list_for_each_entry_safe(timer, next, head, entry)
 427		list_del_init(&timer->entry);
 
 
 
 428}
 429
 430/*
 431 * Clean out CPU timers still ticking when a thread exited.  The task
 432 * pointer is cleared, and the expiry time is replaced with the residual
 433 * time for later timer_gettime calls to return.
 
 434 * This must be called with the siglock held.
 435 */
 436static void cleanup_timers(struct list_head *head)
 437{
 438	cleanup_timers_list(head);
 439	cleanup_timers_list(++head);
 440	cleanup_timers_list(++head);
 441}
 442
 443/*
 444 * These are both called with the siglock held, when the current thread
 445 * is being reaped.  When the final (leader) thread in the group is reaped,
 446 * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit.
 447 */
 448void posix_cpu_timers_exit(struct task_struct *tsk)
 449{
 450	add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
 451						sizeof(unsigned long long));
 452	cleanup_timers(tsk->cpu_timers);
 453
 454}
 455void posix_cpu_timers_exit_group(struct task_struct *tsk)
 456{
 457	cleanup_timers(tsk->signal->cpu_timers);
 458}
 459
 460static inline int expires_gt(cputime_t expires, cputime_t new_exp)
 461{
 462	return expires == 0 || expires > new_exp;
 463}
 464
 465/*
 466 * Insert the timer on the appropriate list before any timers that
 467 * expire later.  This must be called with the sighand lock held.
 468 */
 469static void arm_timer(struct k_itimer *timer)
 470{
 471	struct task_struct *p = timer->it.cpu.task;
 472	struct list_head *head, *listpos;
 473	struct task_cputime *cputime_expires;
 474	struct cpu_timer_list *const nt = &timer->it.cpu;
 475	struct cpu_timer_list *next;
 476
 477	if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
 478		head = p->cpu_timers;
 479		cputime_expires = &p->cputime_expires;
 480	} else {
 481		head = p->signal->cpu_timers;
 482		cputime_expires = &p->signal->cputime_expires;
 483	}
 484	head += CPUCLOCK_WHICH(timer->it_clock);
 485
 486	listpos = head;
 487	list_for_each_entry(next, head, entry) {
 488		if (nt->expires < next->expires)
 489			break;
 490		listpos = &next->entry;
 491	}
 492	list_add(&nt->entry, listpos);
 493
 494	if (listpos == head) {
 495		unsigned long long exp = nt->expires;
 496
 497		/*
 498		 * We are the new earliest-expiring POSIX 1.b timer, hence
 499		 * need to update expiration cache. Take into account that
 500		 * for process timers we share expiration cache with itimers
 501		 * and RLIMIT_CPU and for thread timers with RLIMIT_RTTIME.
 502		 */
 
 
 503
 504		switch (CPUCLOCK_WHICH(timer->it_clock)) {
 505		case CPUCLOCK_PROF:
 506			if (expires_gt(cputime_expires->prof_exp, expires_to_cputime(exp)))
 507				cputime_expires->prof_exp = expires_to_cputime(exp);
 508			break;
 509		case CPUCLOCK_VIRT:
 510			if (expires_gt(cputime_expires->virt_exp, expires_to_cputime(exp)))
 511				cputime_expires->virt_exp = expires_to_cputime(exp);
 512			break;
 513		case CPUCLOCK_SCHED:
 514			if (cputime_expires->sched_exp == 0 ||
 515			    cputime_expires->sched_exp > exp)
 516				cputime_expires->sched_exp = exp;
 517			break;
 518		}
 519		if (CPUCLOCK_PERTHREAD(timer->it_clock))
 520			tick_dep_set_task(p, TICK_DEP_BIT_POSIX_TIMER);
 521		else
 522			tick_dep_set_signal(p->signal, TICK_DEP_BIT_POSIX_TIMER);
 523	}
 524}
 525
 526/*
 527 * The timer is locked, fire it and arrange for its reload.
 528 */
 529static void cpu_timer_fire(struct k_itimer *timer)
 530{
 
 
 531	if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) {
 532		/*
 533		 * User don't want any signal.
 534		 */
 535		timer->it.cpu.expires = 0;
 536	} else if (unlikely(timer->sigq == NULL)) {
 537		/*
 538		 * This a special case for clock_nanosleep,
 539		 * not a normal timer from sys_timer_create.
 540		 */
 541		wake_up_process(timer->it_process);
 542		timer->it.cpu.expires = 0;
 543	} else if (timer->it.cpu.incr == 0) {
 544		/*
 545		 * One-shot timer.  Clear it as soon as it's fired.
 546		 */
 547		posix_timer_event(timer, 0);
 548		timer->it.cpu.expires = 0;
 549	} else if (posix_timer_event(timer, ++timer->it_requeue_pending)) {
 550		/*
 551		 * The signal did not get queued because the signal
 552		 * was ignored, so we won't get any callback to
 553		 * reload the timer.  But we need to keep it
 554		 * ticking in case the signal is deliverable next time.
 555		 */
 556		posix_cpu_timer_schedule(timer);
 
 557	}
 558}
 559
 560/*
 561 * Sample a process (thread group) timer for the given group_leader task.
 562 * Must be called with task sighand lock held for safe while_each_thread()
 563 * traversal.
 564 */
 565static int cpu_timer_sample_group(const clockid_t which_clock,
 566				  struct task_struct *p,
 567				  unsigned long long *sample)
 568{
 569	struct task_cputime cputime;
 570
 571	thread_group_cputimer(p, &cputime);
 572	switch (CPUCLOCK_WHICH(which_clock)) {
 573	default:
 574		return -EINVAL;
 575	case CPUCLOCK_PROF:
 576		*sample = cputime_to_expires(cputime.utime + cputime.stime);
 577		break;
 578	case CPUCLOCK_VIRT:
 579		*sample = cputime_to_expires(cputime.utime);
 580		break;
 581	case CPUCLOCK_SCHED:
 582		*sample = cputime.sum_exec_runtime;
 583		break;
 584	}
 585	return 0;
 586}
 587
 588/*
 589 * Guts of sys_timer_settime for CPU timers.
 590 * This is called with the timer locked and interrupts disabled.
 591 * If we return TIMER_RETRY, it's necessary to release the timer's lock
 592 * and try again.  (This happens when the timer is in the middle of firing.)
 593 */
 594static int posix_cpu_timer_set(struct k_itimer *timer, int timer_flags,
 595			       struct itimerspec *new, struct itimerspec *old)
 596{
 597	unsigned long flags;
 
 
 598	struct sighand_struct *sighand;
 599	struct task_struct *p = timer->it.cpu.task;
 600	unsigned long long old_expires, new_expires, old_incr, val;
 601	int ret;
 602
 603	WARN_ON_ONCE(p == NULL);
 
 
 
 
 
 
 
 
 
 604
 605	new_expires = timespec_to_sample(timer->it_clock, &new->it_value);
 
 
 
 
 606
 607	/*
 608	 * Protect against sighand release/switch in exit/exec and p->cpu_timers
 609	 * and p->signal->cpu_timers read/write in arm_timer()
 610	 */
 611	sighand = lock_task_sighand(p, &flags);
 612	/*
 613	 * If p has just been reaped, we can no
 614	 * longer get any information about it at all.
 615	 */
 616	if (unlikely(sighand == NULL)) {
 
 617		return -ESRCH;
 618	}
 619
 620	/*
 621	 * Disarm any old timer after extracting its expiry time.
 622	 */
 623	WARN_ON_ONCE(!irqs_disabled());
 
 624
 625	ret = 0;
 626	old_incr = timer->it.cpu.incr;
 627	old_expires = timer->it.cpu.expires;
 628	if (unlikely(timer->it.cpu.firing)) {
 629		timer->it.cpu.firing = -1;
 630		ret = TIMER_RETRY;
 631	} else
 632		list_del_init(&timer->it.cpu.entry);
 
 633
 634	/*
 635	 * We need to sample the current value to convert the new
 636	 * value from to relative and absolute, and to convert the
 637	 * old value from absolute to relative.  To set a process
 638	 * timer, we need a sample to balance the thread expiry
 639	 * times (in arm_timer).  With an absolute time, we must
 640	 * check if it's already passed.  In short, we need a sample.
 641	 */
 642	if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
 643		cpu_clock_sample(timer->it_clock, p, &val);
 644	} else {
 645		cpu_timer_sample_group(timer->it_clock, p, &val);
 646	}
 647
 648	if (old) {
 649		if (old_expires == 0) {
 650			old->it_value.tv_sec = 0;
 651			old->it_value.tv_nsec = 0;
 652		} else {
 653			/*
 654			 * Update the timer in case it has
 655			 * overrun already.  If it has,
 656			 * we'll report it as having overrun
 657			 * and with the next reloaded timer
 658			 * already ticking, though we are
 659			 * swallowing that pending
 660			 * notification here to install the
 661			 * new setting.
 662			 */
 663			bump_cpu_timer(timer, val);
 664			if (val < timer->it.cpu.expires) {
 665				old_expires = timer->it.cpu.expires - val;
 666				sample_to_timespec(timer->it_clock,
 667						   old_expires,
 668						   &old->it_value);
 669			} else {
 670				old->it_value.tv_nsec = 1;
 671				old->it_value.tv_sec = 0;
 672			}
 673		}
 674	}
 675
 676	if (unlikely(ret)) {
 677		/*
 678		 * We are colliding with the timer actually firing.
 679		 * Punt after filling in the timer's old value, and
 680		 * disable this firing since we are already reporting
 681		 * it as an overrun (thanks to bump_cpu_timer above).
 682		 */
 683		unlock_task_sighand(p, &flags);
 684		goto out;
 685	}
 686
 687	if (new_expires != 0 && !(timer_flags & TIMER_ABSTIME)) {
 688		new_expires += val;
 689	}
 690
 691	/*
 692	 * Install the new expiry time (or zero).
 693	 * For a timer with no notification action, we don't actually
 694	 * arm the timer (we'll just fake it for timer_gettime).
 695	 */
 696	timer->it.cpu.expires = new_expires;
 697	if (new_expires != 0 && val < new_expires) {
 698		arm_timer(timer);
 699	}
 700
 701	unlock_task_sighand(p, &flags);
 702	/*
 703	 * Install the new reload setting, and
 704	 * set up the signal and overrun bookkeeping.
 705	 */
 706	timer->it.cpu.incr = timespec_to_sample(timer->it_clock,
 707						&new->it_interval);
 708
 709	/*
 710	 * This acts as a modification timestamp for the timer,
 711	 * so any automatic reload attempt will punt on seeing
 712	 * that we have reset the timer manually.
 713	 */
 714	timer->it_requeue_pending = (timer->it_requeue_pending + 2) &
 715		~REQUEUE_PENDING;
 716	timer->it_overrun_last = 0;
 717	timer->it_overrun = -1;
 718
 719	if (new_expires != 0 && !(val < new_expires)) {
 720		/*
 721		 * The designated time already passed, so we notify
 722		 * immediately, even if the thread never runs to
 723		 * accumulate more time on this clock.
 724		 */
 725		cpu_timer_fire(timer);
 726	}
 727
 728	ret = 0;
 729 out:
 730	if (old) {
 731		sample_to_timespec(timer->it_clock,
 732				   old_incr, &old->it_interval);
 733	}
 734
 735	return ret;
 736}
 737
 738static void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec *itp)
 739{
 740	unsigned long long now;
 741	struct task_struct *p = timer->it.cpu.task;
 
 
 742
 743	WARN_ON_ONCE(p == NULL);
 
 
 
 744
 745	/*
 746	 * Easy part: convert the reload time.
 747	 */
 748	sample_to_timespec(timer->it_clock,
 749			   timer->it.cpu.incr, &itp->it_interval);
 750
 751	if (timer->it.cpu.expires == 0) {	/* Timer not armed at all.  */
 752		itp->it_value.tv_sec = itp->it_value.tv_nsec = 0;
 753		return;
 754	}
 755
 756	/*
 757	 * Sample the clock to take the difference with the expiry time.
 758	 */
 759	if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
 760		cpu_clock_sample(timer->it_clock, p, &now);
 761	} else {
 762		struct sighand_struct *sighand;
 763		unsigned long flags;
 764
 765		/*
 766		 * Protect against sighand release/switch in exit/exec and
 767		 * also make timer sampling safe if it ends up calling
 768		 * thread_group_cputime().
 769		 */
 770		sighand = lock_task_sighand(p, &flags);
 771		if (unlikely(sighand == NULL)) {
 772			/*
 773			 * The process has been reaped.
 774			 * We can't even collect a sample any more.
 775			 * Call the timer disarmed, nothing else to do.
 776			 */
 777			timer->it.cpu.expires = 0;
 778			sample_to_timespec(timer->it_clock, timer->it.cpu.expires,
 779					   &itp->it_value);
 780		} else {
 781			cpu_timer_sample_group(timer->it_clock, p, &now);
 782			unlock_task_sighand(p, &flags);
 783		}
 784	}
 785
 786	if (now < timer->it.cpu.expires) {
 787		sample_to_timespec(timer->it_clock,
 788				   timer->it.cpu.expires - now,
 789				   &itp->it_value);
 790	} else {
 791		/*
 792		 * The timer should have expired already, but the firing
 793		 * hasn't taken place yet.  Say it's just about to expire.
 794		 */
 795		itp->it_value.tv_nsec = 1;
 796		itp->it_value.tv_sec = 0;
 797	}
 
 
 798}
 799
 800static unsigned long long
 801check_timers_list(struct list_head *timers,
 802		  struct list_head *firing,
 803		  unsigned long long curr)
 804{
 805	int maxfire = 20;
 
 806
 807	while (!list_empty(timers)) {
 808		struct cpu_timer_list *t;
 
 809
 810		t = list_first_entry(timers, struct cpu_timer_list, entry);
 
 
 
 
 811
 812		if (!--maxfire || curr < t->expires)
 813			return t->expires;
 
 
 814
 815		t->firing = 1;
 816		list_move_tail(&t->entry, firing);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 817	}
 
 818
 819	return 0;
 
 
 
 
 
 
 
 
 
 
 
 820}
 821
 822/*
 823 * Check for any per-thread CPU timers that have fired and move them off
 824 * the tsk->cpu_timers[N] list onto the firing list.  Here we update the
 825 * tsk->it_*_expires values to reflect the remaining thread CPU timers.
 826 */
 827static void check_thread_timers(struct task_struct *tsk,
 828				struct list_head *firing)
 829{
 830	struct list_head *timers = tsk->cpu_timers;
 831	struct signal_struct *const sig = tsk->signal;
 832	struct task_cputime *tsk_expires = &tsk->cputime_expires;
 833	unsigned long long expires;
 834	unsigned long soft;
 835
 836	/*
 837	 * If cputime_expires is zero, then there are no active
 838	 * per thread CPU timers.
 839	 */
 840	if (task_cputime_zero(&tsk->cputime_expires))
 841		return;
 842
 843	expires = check_timers_list(timers, firing, prof_ticks(tsk));
 844	tsk_expires->prof_exp = expires_to_cputime(expires);
 845
 846	expires = check_timers_list(++timers, firing, virt_ticks(tsk));
 847	tsk_expires->virt_exp = expires_to_cputime(expires);
 848
 849	tsk_expires->sched_exp = check_timers_list(++timers, firing,
 850						   tsk->se.sum_exec_runtime);
 851
 852	/*
 853	 * Check for the special case thread timers.
 854	 */
 855	soft = READ_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_cur);
 856	if (soft != RLIM_INFINITY) {
 857		unsigned long hard =
 858			READ_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_max);
 
 859
 
 860		if (hard != RLIM_INFINITY &&
 861		    tsk->rt.timeout > DIV_ROUND_UP(hard, USEC_PER_SEC/HZ)) {
 862			/*
 863			 * At the hard limit, we just die.
 864			 * No need to calculate anything else now.
 865			 */
 866			__group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
 867			return;
 868		}
 869		if (tsk->rt.timeout > DIV_ROUND_UP(soft, USEC_PER_SEC/HZ)) {
 870			/*
 871			 * At the soft limit, send a SIGXCPU every second.
 872			 */
 873			if (soft < hard) {
 874				soft += USEC_PER_SEC;
 875				sig->rlim[RLIMIT_RTTIME].rlim_cur = soft;
 876			}
 877			printk(KERN_INFO
 878				"RT Watchdog Timeout: %s[%d]\n",
 879				tsk->comm, task_pid_nr(tsk));
 880			__group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
 881		}
 882	}
 883	if (task_cputime_zero(tsk_expires))
 
 884		tick_dep_clear_task(tsk, TICK_DEP_BIT_POSIX_TIMER);
 885}
 886
 887static inline void stop_process_timers(struct signal_struct *sig)
 888{
 889	struct thread_group_cputimer *cputimer = &sig->cputimer;
 890
 891	/* Turn off cputimer->running. This is done without locking. */
 892	WRITE_ONCE(cputimer->running, false);
 893	tick_dep_clear_signal(sig, TICK_DEP_BIT_POSIX_TIMER);
 894}
 895
 896static u32 onecputick;
 897
 898static void check_cpu_itimer(struct task_struct *tsk, struct cpu_itimer *it,
 899			     unsigned long long *expires,
 900			     unsigned long long cur_time, int signo)
 901{
 902	if (!it->expires)
 903		return;
 904
 905	if (cur_time >= it->expires) {
 906		if (it->incr) {
 907			it->expires += it->incr;
 908			it->error += it->incr_error;
 909			if (it->error >= onecputick) {
 910				it->expires -= cputime_one_jiffy;
 911				it->error -= onecputick;
 912			}
 913		} else {
 914			it->expires = 0;
 915		}
 916
 917		trace_itimer_expire(signo == SIGPROF ?
 918				    ITIMER_PROF : ITIMER_VIRTUAL,
 919				    tsk->signal->leader_pid, cur_time);
 920		__group_send_sig_info(signo, SEND_SIG_PRIV, tsk);
 921	}
 922
 923	if (it->expires && (!*expires || it->expires < *expires)) {
 924		*expires = it->expires;
 925	}
 926}
 927
 928/*
 929 * Check for any per-thread CPU timers that have fired and move them
 930 * off the tsk->*_timers list onto the firing list.  Per-thread timers
 931 * have already been taken off.
 932 */
 933static void check_process_timers(struct task_struct *tsk,
 934				 struct list_head *firing)
 935{
 936	struct signal_struct *const sig = tsk->signal;
 937	unsigned long long utime, ptime, virt_expires, prof_expires;
 938	unsigned long long sum_sched_runtime, sched_expires;
 939	struct list_head *timers = sig->cpu_timers;
 940	struct task_cputime cputime;
 941	unsigned long soft;
 942
 943	/*
 944	 * If cputimer is not running, then there are no active
 945	 * process wide timers (POSIX 1.b, itimers, RLIMIT_CPU).
 
 946	 */
 947	if (!READ_ONCE(tsk->signal->cputimer.running))
 948		return;
 949
 950        /*
 951	 * Signify that a thread is checking for process timers.
 952	 * Write access to this field is protected by the sighand lock.
 953	 */
 954	sig->cputimer.checking_timer = true;
 955
 956	/*
 957	 * Collect the current process totals.
 
 958	 */
 959	thread_group_cputimer(tsk, &cputime);
 960	utime = cputime_to_expires(cputime.utime);
 961	ptime = utime + cputime_to_expires(cputime.stime);
 962	sum_sched_runtime = cputime.sum_exec_runtime;
 963
 964	prof_expires = check_timers_list(timers, firing, ptime);
 965	virt_expires = check_timers_list(++timers, firing, utime);
 966	sched_expires = check_timers_list(++timers, firing, sum_sched_runtime);
 967
 968	/*
 969	 * Check for the special case process timers.
 970	 */
 971	check_cpu_itimer(tsk, &sig->it[CPUCLOCK_PROF], &prof_expires, ptime,
 972			 SIGPROF);
 973	check_cpu_itimer(tsk, &sig->it[CPUCLOCK_VIRT], &virt_expires, utime,
 974			 SIGVTALRM);
 975	soft = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
 
 
 
 976	if (soft != RLIM_INFINITY) {
 977		unsigned long psecs = cputime_to_secs(ptime);
 978		unsigned long hard =
 979			READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_max);
 980		cputime_t x;
 981		if (psecs >= hard) {
 982			/*
 983			 * At the hard limit, we just die.
 984			 * No need to calculate anything else now.
 985			 */
 986			__group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
 987			return;
 
 
 
 
 
 988		}
 989		if (psecs >= soft) {
 990			/*
 991			 * At the soft limit, send a SIGXCPU every second.
 992			 */
 993			__group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
 994			if (soft < hard) {
 995				soft++;
 996				sig->rlim[RLIMIT_CPU].rlim_cur = soft;
 997			}
 998		}
 999		x = secs_to_cputime(soft);
1000		if (!prof_expires || x < prof_expires) {
1001			prof_expires = x;
1002		}
1003	}
1004
1005	sig->cputime_expires.prof_exp = expires_to_cputime(prof_expires);
1006	sig->cputime_expires.virt_exp = expires_to_cputime(virt_expires);
1007	sig->cputime_expires.sched_exp = sched_expires;
1008	if (task_cputime_zero(&sig->cputime_expires))
1009		stop_process_timers(sig);
1010
1011	sig->cputimer.checking_timer = false;
1012}
1013
1014/*
1015 * This is called from the signal code (via do_schedule_next_timer)
1016 * when the last timer signal was delivered and we have to reload the timer.
1017 */
1018void posix_cpu_timer_schedule(struct k_itimer *timer)
1019{
 
 
1020	struct sighand_struct *sighand;
1021	unsigned long flags;
1022	struct task_struct *p = timer->it.cpu.task;
1023	unsigned long long now;
1024
1025	WARN_ON_ONCE(p == NULL);
 
 
 
 
 
 
 
 
1026
1027	/*
1028	 * Fetch the current sample and update the timer's expiry time.
1029	 */
1030	if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
1031		cpu_clock_sample(timer->it_clock, p, &now);
1032		bump_cpu_timer(timer, now);
1033		if (unlikely(p->exit_state))
1034			goto out;
1035
1036		/* Protect timer list r/w in arm_timer() */
1037		sighand = lock_task_sighand(p, &flags);
1038		if (!sighand)
1039			goto out;
1040	} else {
1041		/*
1042		 * Protect arm_timer() and timer sampling in case of call to
1043		 * thread_group_cputime().
1044		 */
1045		sighand = lock_task_sighand(p, &flags);
1046		if (unlikely(sighand == NULL)) {
1047			/*
1048			 * The process has been reaped.
1049			 * We can't even collect a sample any more.
1050			 */
1051			timer->it.cpu.expires = 0;
1052			goto out;
1053		} else if (unlikely(p->exit_state) && thread_group_empty(p)) {
1054			unlock_task_sighand(p, &flags);
1055			/* Optimizations: if the process is dying, no need to rearm */
1056			goto out;
1057		}
1058		cpu_timer_sample_group(timer->it_clock, p, &now);
1059		bump_cpu_timer(timer, now);
1060		/* Leave the sighand locked for the call below.  */
1061	}
1062
1063	/*
1064	 * Now re-arm for the new expiry time.
1065	 */
1066	WARN_ON_ONCE(!irqs_disabled());
1067	arm_timer(timer);
1068	unlock_task_sighand(p, &flags);
1069
1070out:
1071	timer->it_overrun_last = timer->it_overrun;
1072	timer->it_overrun = -1;
1073	++timer->it_requeue_pending;
1074}
1075
1076/**
1077 * task_cputime_expired - Compare two task_cputime entities.
1078 *
1079 * @sample:	The task_cputime structure to be checked for expiration.
1080 * @expires:	Expiration times, against which @sample will be checked.
1081 *
1082 * Checks @sample against @expires to see if any field of @sample has expired.
1083 * Returns true if any field of the former is greater than the corresponding
1084 * field of the latter if the latter field is set.  Otherwise returns false.
1085 */
1086static inline int task_cputime_expired(const struct task_cputime *sample,
1087					const struct task_cputime *expires)
1088{
1089	if (expires->utime && sample->utime >= expires->utime)
1090		return 1;
1091	if (expires->stime && sample->utime + sample->stime >= expires->stime)
1092		return 1;
1093	if (expires->sum_exec_runtime != 0 &&
1094	    sample->sum_exec_runtime >= expires->sum_exec_runtime)
1095		return 1;
1096	return 0;
1097}
1098
1099/**
1100 * fastpath_timer_check - POSIX CPU timers fast path.
1101 *
1102 * @tsk:	The task (thread) being checked.
1103 *
1104 * Check the task and thread group timers.  If both are zero (there are no
1105 * timers set) return false.  Otherwise snapshot the task and thread group
1106 * timers and compare them with the corresponding expiration times.  Return
1107 * true if a timer has expired, else return false.
1108 */
1109static inline int fastpath_timer_check(struct task_struct *tsk)
1110{
 
1111	struct signal_struct *sig;
1112
1113	if (!task_cputime_zero(&tsk->cputime_expires)) {
1114		struct task_cputime task_sample;
1115
1116		task_cputime(tsk, &task_sample.utime, &task_sample.stime);
1117		task_sample.sum_exec_runtime = tsk->se.sum_exec_runtime;
1118		if (task_cputime_expired(&task_sample, &tsk->cputime_expires))
1119			return 1;
1120	}
1121
1122	sig = tsk->signal;
 
1123	/*
1124	 * Check if thread group timers expired when the cputimer is
1125	 * running and no other thread in the group is already checking
1126	 * for thread group cputimers. These fields are read without the
1127	 * sighand lock. However, this is fine because this is meant to
1128	 * be a fastpath heuristic to determine whether we should try to
1129	 * acquire the sighand lock to check/handle timers.
1130	 *
1131	 * In the worst case scenario, if 'running' or 'checking_timer' gets
1132	 * set but the current thread doesn't see the change yet, we'll wait
1133	 * until the next thread in the group gets a scheduler interrupt to
1134	 * handle the timer. This isn't an issue in practice because these
1135	 * types of delays with signals actually getting sent are expected.
1136	 */
1137	if (READ_ONCE(sig->cputimer.running) &&
1138	    !READ_ONCE(sig->cputimer.checking_timer)) {
1139		struct task_cputime group_sample;
1140
1141		sample_cputime_atomic(&group_sample, &sig->cputimer.cputime_atomic);
 
1142
1143		if (task_cputime_expired(&group_sample, &sig->cputime_expires))
1144			return 1;
1145	}
1146
1147	return 0;
 
 
 
 
 
 
 
 
 
 
 
1148}
1149
1150/*
1151 * This is called from the timer interrupt handler.  The irq handler has
1152 * already updated our counts.  We need to check if any timers fire now.
1153 * Interrupts are disabled.
1154 */
1155void run_posix_cpu_timers(struct task_struct *tsk)
1156{
1157	LIST_HEAD(firing);
1158	struct k_itimer *timer, *next;
1159	unsigned long flags;
1160
1161	WARN_ON_ONCE(!irqs_disabled());
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1162
1163	/*
1164	 * The fast path checks that there are no expired thread or thread
1165	 * group timers.  If that's so, just return.
 
1166	 */
1167	if (!fastpath_timer_check(tsk))
1168		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1169
1170	if (!lock_task_sighand(tsk, &flags))
1171		return;
1172	/*
1173	 * Here we take off tsk->signal->cpu_timers[N] and
1174	 * tsk->cpu_timers[N] all the timers that are firing, and
1175	 * put them on the firing list.
1176	 */
1177	check_thread_timers(tsk, &firing);
1178
1179	check_process_timers(tsk, &firing);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1180
1181	/*
1182	 * We must release these locks before taking any timer's lock.
1183	 * There is a potential race with timer deletion here, as the
1184	 * siglock now protects our private firing list.  We have set
1185	 * the firing flag in each timer, so that a deletion attempt
1186	 * that gets the timer lock before we do will give it up and
1187	 * spin until we've taken care of that timer below.
1188	 */
1189	unlock_task_sighand(tsk, &flags);
1190
1191	/*
1192	 * Now that all the timers on our list have the firing flag,
1193	 * no one will touch their list entries but us.  We'll take
1194	 * each timer's lock before clearing its firing flag, so no
1195	 * timer call will interfere.
1196	 */
1197	list_for_each_entry_safe(timer, next, &firing, it.cpu.entry) {
1198		int cpu_firing;
1199
 
 
 
 
 
 
 
1200		spin_lock(&timer->it_lock);
1201		list_del_init(&timer->it.cpu.entry);
1202		cpu_firing = timer->it.cpu.firing;
1203		timer->it.cpu.firing = 0;
1204		/*
1205		 * The firing flag is -1 if we collided with a reset
1206		 * of the timer, which already reported this
1207		 * almost-firing as an overrun.  So don't generate an event.
1208		 */
1209		if (likely(cpu_firing >= 0))
1210			cpu_timer_fire(timer);
1211		spin_unlock(&timer->it_lock);
1212	}
1213}
1214
1215/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1216 * Set one of the process-wide special case CPU timers or RLIMIT_CPU.
1217 * The tsk->sighand->siglock must be held by the caller.
1218 */
1219void set_process_cpu_timer(struct task_struct *tsk, unsigned int clock_idx,
1220			   cputime_t *newval, cputime_t *oldval)
1221{
1222	unsigned long long now;
 
 
 
1223
1224	WARN_ON_ONCE(clock_idx == CPUCLOCK_SCHED);
1225	cpu_timer_sample_group(clock_idx, tsk, &now);
1226
1227	if (oldval) {
1228		/*
1229		 * We are setting itimer. The *oldval is absolute and we update
1230		 * it to be relative, *newval argument is relative and we update
1231		 * it to be absolute.
1232		 */
1233		if (*oldval) {
1234			if (*oldval <= now) {
1235				/* Just about to fire. */
1236				*oldval = cputime_one_jiffy;
1237			} else {
1238				*oldval -= now;
1239			}
1240		}
1241
1242		if (!*newval)
1243			return;
1244		*newval += now;
1245	}
1246
1247	/*
1248	 * Update expiration cache if we are the earliest timer, or eventually
1249	 * RLIMIT_CPU limit is earlier than prof_exp cpu timer expire.
1250	 */
1251	switch (clock_idx) {
1252	case CPUCLOCK_PROF:
1253		if (expires_gt(tsk->signal->cputime_expires.prof_exp, *newval))
1254			tsk->signal->cputime_expires.prof_exp = *newval;
1255		break;
1256	case CPUCLOCK_VIRT:
1257		if (expires_gt(tsk->signal->cputime_expires.virt_exp, *newval))
1258			tsk->signal->cputime_expires.virt_exp = *newval;
1259		break;
1260	}
1261
1262	tick_dep_set_signal(tsk->signal, TICK_DEP_BIT_POSIX_TIMER);
1263}
1264
1265static int do_cpu_nanosleep(const clockid_t which_clock, int flags,
1266			    struct timespec *rqtp, struct itimerspec *it)
1267{
 
1268	struct k_itimer timer;
 
1269	int error;
1270
1271	/*
1272	 * Set up a temporary timer and then wait for it to go off.
1273	 */
1274	memset(&timer, 0, sizeof timer);
1275	spin_lock_init(&timer.it_lock);
1276	timer.it_clock = which_clock;
1277	timer.it_overrun = -1;
1278	error = posix_cpu_timer_create(&timer);
1279	timer.it_process = current;
 
1280	if (!error) {
1281		static struct itimerspec zero_it;
 
1282
1283		memset(it, 0, sizeof *it);
1284		it->it_value = *rqtp;
1285
1286		spin_lock_irq(&timer.it_lock);
1287		error = posix_cpu_timer_set(&timer, flags, it, NULL);
1288		if (error) {
1289			spin_unlock_irq(&timer.it_lock);
1290			return error;
1291		}
1292
1293		while (!signal_pending(current)) {
1294			if (timer.it.cpu.expires == 0) {
1295				/*
1296				 * Our timer fired and was reset, below
1297				 * deletion can not fail.
1298				 */
1299				posix_cpu_timer_del(&timer);
1300				spin_unlock_irq(&timer.it_lock);
1301				return 0;
1302			}
1303
1304			/*
1305			 * Block until cpu_timer_fire (or a signal) wakes us.
1306			 */
1307			__set_current_state(TASK_INTERRUPTIBLE);
1308			spin_unlock_irq(&timer.it_lock);
1309			schedule();
1310			spin_lock_irq(&timer.it_lock);
1311		}
1312
1313		/*
1314		 * We were interrupted by a signal.
1315		 */
1316		sample_to_timespec(which_clock, timer.it.cpu.expires, rqtp);
1317		error = posix_cpu_timer_set(&timer, 0, &zero_it, it);
1318		if (!error) {
1319			/*
1320			 * Timer is now unarmed, deletion can not fail.
1321			 */
1322			posix_cpu_timer_del(&timer);
1323		}
1324		spin_unlock_irq(&timer.it_lock);
1325
1326		while (error == TIMER_RETRY) {
1327			/*
1328			 * We need to handle case when timer was or is in the
1329			 * middle of firing. In other cases we already freed
1330			 * resources.
1331			 */
1332			spin_lock_irq(&timer.it_lock);
1333			error = posix_cpu_timer_del(&timer);
1334			spin_unlock_irq(&timer.it_lock);
1335		}
1336
1337		if ((it->it_value.tv_sec | it->it_value.tv_nsec) == 0) {
1338			/*
1339			 * It actually did fire already.
1340			 */
1341			return 0;
1342		}
1343
1344		error = -ERESTART_RESTARTBLOCK;
 
 
 
 
 
 
 
1345	}
1346
1347	return error;
1348}
1349
1350static long posix_cpu_nsleep_restart(struct restart_block *restart_block);
1351
1352static int posix_cpu_nsleep(const clockid_t which_clock, int flags,
1353			    struct timespec *rqtp, struct timespec __user *rmtp)
1354{
1355	struct restart_block *restart_block = &current->restart_block;
1356	struct itimerspec it;
1357	int error;
1358
1359	/*
1360	 * Diagnose required errors first.
1361	 */
1362	if (CPUCLOCK_PERTHREAD(which_clock) &&
1363	    (CPUCLOCK_PID(which_clock) == 0 ||
1364	     CPUCLOCK_PID(which_clock) == current->pid))
1365		return -EINVAL;
1366
1367	error = do_cpu_nanosleep(which_clock, flags, rqtp, &it);
1368
1369	if (error == -ERESTART_RESTARTBLOCK) {
1370
1371		if (flags & TIMER_ABSTIME)
1372			return -ERESTARTNOHAND;
1373		/*
1374		 * Report back to the user the time still remaining.
1375		 */
1376		if (rmtp && copy_to_user(rmtp, &it.it_value, sizeof *rmtp))
1377			return -EFAULT;
1378
1379		restart_block->fn = posix_cpu_nsleep_restart;
1380		restart_block->nanosleep.clockid = which_clock;
1381		restart_block->nanosleep.rmtp = rmtp;
1382		restart_block->nanosleep.expires = timespec_to_ns(rqtp);
1383	}
1384	return error;
1385}
1386
1387static long posix_cpu_nsleep_restart(struct restart_block *restart_block)
1388{
1389	clockid_t which_clock = restart_block->nanosleep.clockid;
1390	struct timespec t;
1391	struct itimerspec it;
1392	int error;
1393
1394	t = ns_to_timespec(restart_block->nanosleep.expires);
1395
1396	error = do_cpu_nanosleep(which_clock, TIMER_ABSTIME, &t, &it);
1397
1398	if (error == -ERESTART_RESTARTBLOCK) {
1399		struct timespec __user *rmtp = restart_block->nanosleep.rmtp;
1400		/*
1401		 * Report back to the user the time still remaining.
1402		 */
1403		if (rmtp && copy_to_user(rmtp, &it.it_value, sizeof *rmtp))
1404			return -EFAULT;
1405
1406		restart_block->nanosleep.expires = timespec_to_ns(&t);
1407	}
1408	return error;
1409
 
1410}
1411
1412#define PROCESS_CLOCK	MAKE_PROCESS_CPUCLOCK(0, CPUCLOCK_SCHED)
1413#define THREAD_CLOCK	MAKE_THREAD_CPUCLOCK(0, CPUCLOCK_SCHED)
1414
1415static int process_cpu_clock_getres(const clockid_t which_clock,
1416				    struct timespec *tp)
1417{
1418	return posix_cpu_clock_getres(PROCESS_CLOCK, tp);
1419}
1420static int process_cpu_clock_get(const clockid_t which_clock,
1421				 struct timespec *tp)
1422{
1423	return posix_cpu_clock_get(PROCESS_CLOCK, tp);
1424}
1425static int process_cpu_timer_create(struct k_itimer *timer)
1426{
1427	timer->it_clock = PROCESS_CLOCK;
1428	return posix_cpu_timer_create(timer);
1429}
1430static int process_cpu_nsleep(const clockid_t which_clock, int flags,
1431			      struct timespec *rqtp,
1432			      struct timespec __user *rmtp)
1433{
1434	return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp, rmtp);
1435}
1436static long process_cpu_nsleep_restart(struct restart_block *restart_block)
1437{
1438	return -EINVAL;
1439}
1440static int thread_cpu_clock_getres(const clockid_t which_clock,
1441				   struct timespec *tp)
1442{
1443	return posix_cpu_clock_getres(THREAD_CLOCK, tp);
1444}
1445static int thread_cpu_clock_get(const clockid_t which_clock,
1446				struct timespec *tp)
1447{
1448	return posix_cpu_clock_get(THREAD_CLOCK, tp);
1449}
1450static int thread_cpu_timer_create(struct k_itimer *timer)
1451{
1452	timer->it_clock = THREAD_CLOCK;
1453	return posix_cpu_timer_create(timer);
1454}
1455
1456struct k_clock clock_posix_cpu = {
1457	.clock_getres	= posix_cpu_clock_getres,
1458	.clock_set	= posix_cpu_clock_set,
1459	.clock_get	= posix_cpu_clock_get,
1460	.timer_create	= posix_cpu_timer_create,
1461	.nsleep		= posix_cpu_nsleep,
1462	.nsleep_restart	= posix_cpu_nsleep_restart,
1463	.timer_set	= posix_cpu_timer_set,
1464	.timer_del	= posix_cpu_timer_del,
1465	.timer_get	= posix_cpu_timer_get,
1466};
1467
1468static __init int init_posix_cpu_timers(void)
1469{
1470	struct k_clock process = {
1471		.clock_getres	= process_cpu_clock_getres,
1472		.clock_get	= process_cpu_clock_get,
1473		.timer_create	= process_cpu_timer_create,
1474		.nsleep		= process_cpu_nsleep,
1475		.nsleep_restart	= process_cpu_nsleep_restart,
1476	};
1477	struct k_clock thread = {
1478		.clock_getres	= thread_cpu_clock_getres,
1479		.clock_get	= thread_cpu_clock_get,
1480		.timer_create	= thread_cpu_timer_create,
1481	};
1482	struct timespec ts;
1483
1484	posix_timers_register_clock(CLOCK_PROCESS_CPUTIME_ID, &process);
1485	posix_timers_register_clock(CLOCK_THREAD_CPUTIME_ID, &thread);
1486
1487	cputime_to_timespec(cputime_one_jiffy, &ts);
1488	onecputick = ts.tv_nsec;
1489	WARN_ON(ts.tv_sec != 0);
1490
1491	return 0;
1492}
1493__initcall(init_posix_cpu_timers);
 
 
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Implement CPU time clocks for the POSIX clock interface.
   4 */
   5
   6#include <linux/sched/signal.h>
   7#include <linux/sched/cputime.h>
   8#include <linux/posix-timers.h>
   9#include <linux/errno.h>
  10#include <linux/math64.h>
  11#include <linux/uaccess.h>
  12#include <linux/kernel_stat.h>
  13#include <trace/events/timer.h>
 
  14#include <linux/tick.h>
  15#include <linux/workqueue.h>
  16#include <linux/compat.h>
  17#include <linux/sched/deadline.h>
  18
  19#include "posix-timers.h"
  20
  21static void posix_cpu_timer_rearm(struct k_itimer *timer);
  22
  23void posix_cputimers_group_init(struct posix_cputimers *pct, u64 cpu_limit)
  24{
  25	posix_cputimers_init(pct);
  26	if (cpu_limit != RLIM_INFINITY) {
  27		pct->bases[CPUCLOCK_PROF].nextevt = cpu_limit * NSEC_PER_SEC;
  28		pct->timers_active = true;
  29	}
  30}
  31
  32/*
  33 * Called after updating RLIMIT_CPU to run cpu timer and update
  34 * tsk->signal->posix_cputimers.bases[clock].nextevt expiration cache if
  35 * necessary. Needs siglock protection since other code may update the
  36 * expiration cache as well.
  37 */
  38void update_rlimit_cpu(struct task_struct *task, unsigned long rlim_new)
  39{
  40	u64 nsecs = rlim_new * NSEC_PER_SEC;
  41
  42	spin_lock_irq(&task->sighand->siglock);
  43	set_process_cpu_timer(task, CPUCLOCK_PROF, &nsecs, NULL);
  44	spin_unlock_irq(&task->sighand->siglock);
  45}
  46
  47/*
  48 * Functions for validating access to tasks.
  49 */
  50static struct pid *pid_for_clock(const clockid_t clock, bool gettime)
  51{
  52	const bool thread = !!CPUCLOCK_PERTHREAD(clock);
  53	const pid_t upid = CPUCLOCK_PID(clock);
  54	struct pid *pid;
  55
  56	if (CPUCLOCK_WHICH(clock) >= CPUCLOCK_MAX)
  57		return NULL;
  58
  59	/*
  60	 * If the encoded PID is 0, then the timer is targeted at current
  61	 * or the process to which current belongs.
  62	 */
  63	if (upid == 0)
  64		return thread ? task_pid(current) : task_tgid(current);
  65
  66	pid = find_vpid(upid);
  67	if (!pid)
  68		return NULL;
  69
  70	if (thread) {
  71		struct task_struct *tsk = pid_task(pid, PIDTYPE_PID);
  72		return (tsk && same_thread_group(tsk, current)) ? pid : NULL;
  73	}
 
  74
  75	/*
  76	 * For clock_gettime(PROCESS) allow finding the process by
  77	 * with the pid of the current task.  The code needs the tgid
  78	 * of the process so that pid_task(pid, PIDTYPE_TGID) can be
  79	 * used to find the process.
  80	 */
  81	if (gettime && (pid == task_pid(current)))
  82		return task_tgid(current);
  83
  84	/*
  85	 * For processes require that pid identifies a process.
  86	 */
  87	return pid_has_task(pid, PIDTYPE_TGID) ? pid : NULL;
  88}
  89
  90static inline int validate_clock_permissions(const clockid_t clock)
 
  91{
  92	int ret;
  93
  94	rcu_read_lock();
  95	ret = pid_for_clock(clock, false) ? 0 : -EINVAL;
  96	rcu_read_unlock();
  97
 
 
 
 
 
 
  98	return ret;
  99}
 100
 101static inline enum pid_type clock_pid_type(const clockid_t clock)
 
 
 102{
 103	return CPUCLOCK_PERTHREAD(clock) ? PIDTYPE_PID : PIDTYPE_TGID;
 104}
 105
 106static inline struct task_struct *cpu_timer_task_rcu(struct k_itimer *timer)
 107{
 108	return pid_task(timer->it.cpu.pid, clock_pid_type(timer->it_clock));
 109}
 110
 111/*
 112 * Update expiry time from increment, and increase overrun count,
 113 * given the current clock sample.
 114 */
 115static u64 bump_cpu_timer(struct k_itimer *timer, u64 now)
 
 116{
 117	u64 delta, incr, expires = timer->it.cpu.node.expires;
 118	int i;
 
 119
 120	if (!timer->it_interval)
 121		return expires;
 122
 123	if (now < expires)
 124		return expires;
 125
 126	incr = timer->it_interval;
 127	delta = now + incr - expires;
 128
 129	/* Don't use (incr*2 < delta), incr*2 might overflow. */
 130	for (i = 0; incr < delta - incr; i++)
 131		incr = incr << 1;
 132
 133	for (; i >= 0; incr >>= 1, i--) {
 134		if (delta < incr)
 135			continue;
 136
 137		timer->it.cpu.node.expires += incr;
 138		timer->it_overrun += 1LL << i;
 139		delta -= incr;
 140	}
 141	return timer->it.cpu.node.expires;
 142}
 143
 144/* Check whether all cache entries contain U64_MAX, i.e. eternal expiry time */
 145static inline bool expiry_cache_is_inactive(const struct posix_cputimers *pct)
 
 
 
 
 
 
 
 146{
 147	return !(~pct->bases[CPUCLOCK_PROF].nextevt |
 148		 ~pct->bases[CPUCLOCK_VIRT].nextevt |
 149		 ~pct->bases[CPUCLOCK_SCHED].nextevt);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 150}
 151
 152static int
 153posix_cpu_clock_getres(const clockid_t which_clock, struct timespec64 *tp)
 154{
 155	int error = validate_clock_permissions(which_clock);
 156
 157	if (!error) {
 158		tp->tv_sec = 0;
 159		tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ);
 160		if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
 161			/*
 162			 * If sched_clock is using a cycle counter, we
 163			 * don't have any idea of its true resolution
 164			 * exported, but it is much more than 1s/HZ.
 165			 */
 166			tp->tv_nsec = 1;
 167		}
 168	}
 169	return error;
 170}
 171
 172static int
 173posix_cpu_clock_set(const clockid_t clock, const struct timespec64 *tp)
 174{
 175	int error = validate_clock_permissions(clock);
 176
 177	/*
 178	 * You can never reset a CPU clock, but we check for other errors
 179	 * in the call before failing with EPERM.
 180	 */
 181	return error ? : -EPERM;
 
 
 
 
 182}
 183
 
 184/*
 185 * Sample a per-thread clock for the given task. clkid is validated.
 186 */
 187static u64 cpu_clock_sample(const clockid_t clkid, struct task_struct *p)
 
 188{
 189	u64 utime, stime;
 190
 191	if (clkid == CPUCLOCK_SCHED)
 192		return task_sched_runtime(p);
 193
 194	task_cputime(p, &utime, &stime);
 195
 196	switch (clkid) {
 197	case CPUCLOCK_PROF:
 198		return utime + stime;
 
 199	case CPUCLOCK_VIRT:
 200		return utime;
 201	default:
 202		WARN_ON_ONCE(1);
 
 
 203	}
 204	return 0;
 205}
 206
 207static inline void store_samples(u64 *samples, u64 stime, u64 utime, u64 rtime)
 208{
 209	samples[CPUCLOCK_PROF] = stime + utime;
 210	samples[CPUCLOCK_VIRT] = utime;
 211	samples[CPUCLOCK_SCHED] = rtime;
 212}
 213
 214static void task_sample_cputime(struct task_struct *p, u64 *samples)
 215{
 216	u64 stime, utime;
 217
 218	task_cputime(p, &utime, &stime);
 219	store_samples(samples, stime, utime, p->se.sum_exec_runtime);
 220}
 221
 222static void proc_sample_cputime_atomic(struct task_cputime_atomic *at,
 223				       u64 *samples)
 224{
 225	u64 stime, utime, rtime;
 226
 227	utime = atomic64_read(&at->utime);
 228	stime = atomic64_read(&at->stime);
 229	rtime = atomic64_read(&at->sum_exec_runtime);
 230	store_samples(samples, stime, utime, rtime);
 231}
 232
 233/*
 234 * Set cputime to sum_cputime if sum_cputime > cputime. Use cmpxchg
 235 * to avoid race conditions with concurrent updates to cputime.
 236 */
 237static inline void __update_gt_cputime(atomic64_t *cputime, u64 sum_cputime)
 238{
 239	u64 curr_cputime;
 240retry:
 241	curr_cputime = atomic64_read(cputime);
 242	if (sum_cputime > curr_cputime) {
 243		if (atomic64_cmpxchg(cputime, curr_cputime, sum_cputime) != curr_cputime)
 244			goto retry;
 245	}
 246}
 247
 248static void update_gt_cputime(struct task_cputime_atomic *cputime_atomic,
 249			      struct task_cputime *sum)
 250{
 251	__update_gt_cputime(&cputime_atomic->utime, sum->utime);
 252	__update_gt_cputime(&cputime_atomic->stime, sum->stime);
 253	__update_gt_cputime(&cputime_atomic->sum_exec_runtime, sum->sum_exec_runtime);
 254}
 255
 256/**
 257 * thread_group_sample_cputime - Sample cputime for a given task
 258 * @tsk:	Task for which cputime needs to be started
 259 * @samples:	Storage for time samples
 260 *
 261 * Called from sys_getitimer() to calculate the expiry time of an active
 262 * timer. That means group cputime accounting is already active. Called
 263 * with task sighand lock held.
 264 *
 265 * Updates @times with an uptodate sample of the thread group cputimes.
 266 */
 267void thread_group_sample_cputime(struct task_struct *tsk, u64 *samples)
 268{
 269	struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
 270	struct posix_cputimers *pct = &tsk->signal->posix_cputimers;
 271
 272	WARN_ON_ONCE(!pct->timers_active);
 273
 274	proc_sample_cputime_atomic(&cputimer->cputime_atomic, samples);
 275}
 276
 277/**
 278 * thread_group_start_cputime - Start cputime and return a sample
 279 * @tsk:	Task for which cputime needs to be started
 280 * @samples:	Storage for time samples
 281 *
 282 * The thread group cputime accounting is avoided when there are no posix
 283 * CPU timers armed. Before starting a timer it's required to check whether
 284 * the time accounting is active. If not, a full update of the atomic
 285 * accounting store needs to be done and the accounting enabled.
 286 *
 287 * Updates @times with an uptodate sample of the thread group cputimes.
 288 */
 289static void thread_group_start_cputime(struct task_struct *tsk, u64 *samples)
 290{
 291	struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
 292	struct posix_cputimers *pct = &tsk->signal->posix_cputimers;
 293
 294	/* Check if cputimer isn't running. This is accessed without locking. */
 295	if (!READ_ONCE(pct->timers_active)) {
 296		struct task_cputime sum;
 297
 298		/*
 299		 * The POSIX timer interface allows for absolute time expiry
 300		 * values through the TIMER_ABSTIME flag, therefore we have
 301		 * to synchronize the timer to the clock every time we start it.
 302		 */
 303		thread_group_cputime(tsk, &sum);
 304		update_gt_cputime(&cputimer->cputime_atomic, &sum);
 305
 306		/*
 307		 * We're setting timers_active without a lock. Ensure this
 308		 * only gets written to in one operation. We set it after
 309		 * update_gt_cputime() as a small optimization, but
 310		 * barriers are not required because update_gt_cputime()
 311		 * can handle concurrent updates.
 312		 */
 313		WRITE_ONCE(pct->timers_active, true);
 314	}
 315	proc_sample_cputime_atomic(&cputimer->cputime_atomic, samples);
 316}
 317
 318static void __thread_group_cputime(struct task_struct *tsk, u64 *samples)
 
 
 
 
 
 
 
 319{
 320	struct task_cputime ct;
 321
 322	thread_group_cputime(tsk, &ct);
 323	store_samples(samples, ct.stime, ct.utime, ct.sum_exec_runtime);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 324}
 325
 326/*
 327 * Sample a process (thread group) clock for the given task clkid. If the
 328 * group's cputime accounting is already enabled, read the atomic
 329 * store. Otherwise a full update is required.  clkid is already validated.
 330 */
 331static u64 cpu_clock_sample_group(const clockid_t clkid, struct task_struct *p,
 332				  bool start)
 333{
 334	struct thread_group_cputimer *cputimer = &p->signal->cputimer;
 335	struct posix_cputimers *pct = &p->signal->posix_cputimers;
 336	u64 samples[CPUCLOCK_MAX];
 337
 338	if (!READ_ONCE(pct->timers_active)) {
 339		if (start)
 340			thread_group_start_cputime(p, samples);
 341		else
 342			__thread_group_cputime(p, samples);
 343	} else {
 344		proc_sample_cputime_atomic(&cputimer->cputime_atomic, samples);
 
 345	}
 346
 347	return samples[clkid];
 
 
 
 348}
 349
 350static int posix_cpu_clock_get(const clockid_t clock, struct timespec64 *tp)
 
 351{
 352	const clockid_t clkid = CPUCLOCK_WHICH(clock);
 353	struct task_struct *tsk;
 354	u64 t;
 355
 356	rcu_read_lock();
 357	tsk = pid_task(pid_for_clock(clock, true), clock_pid_type(clock));
 358	if (!tsk) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 359		rcu_read_unlock();
 360		return -EINVAL;
 361	}
 362
 363	if (CPUCLOCK_PERTHREAD(clock))
 364		t = cpu_clock_sample(clkid, tsk);
 365	else
 366		t = cpu_clock_sample_group(clkid, tsk, false);
 367	rcu_read_unlock();
 368
 369	*tp = ns_to_timespec64(t);
 370	return 0;
 371}
 372
 373/*
 374 * Validate the clockid_t for a new CPU-clock timer, and initialize the timer.
 375 * This is called from sys_timer_create() and do_cpu_nanosleep() with the
 376 * new timer already all-zeros initialized.
 377 */
 378static int posix_cpu_timer_create(struct k_itimer *new_timer)
 379{
 380	static struct lock_class_key posix_cpu_timers_key;
 381	struct pid *pid;
 
 
 
 
 
 
 382
 383	rcu_read_lock();
 384	pid = pid_for_clock(new_timer->it_clock, false);
 385	if (!pid) {
 386		rcu_read_unlock();
 387		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 388	}
 
 389
 390	/*
 391	 * If posix timer expiry is handled in task work context then
 392	 * timer::it_lock can be taken without disabling interrupts as all
 393	 * other locking happens in task context. This requires a separate
 394	 * lock class key otherwise regular posix timer expiry would record
 395	 * the lock class being taken in interrupt context and generate a
 396	 * false positive warning.
 397	 */
 398	if (IS_ENABLED(CONFIG_POSIX_CPU_TIMERS_TASK_WORK))
 399		lockdep_set_class(&new_timer->it_lock, &posix_cpu_timers_key);
 400
 401	new_timer->kclock = &clock_posix_cpu;
 402	timerqueue_init(&new_timer->it.cpu.node);
 403	new_timer->it.cpu.pid = get_pid(pid);
 404	rcu_read_unlock();
 405	return 0;
 406}
 407
 408/*
 409 * Clean up a CPU-clock timer that is about to be destroyed.
 410 * This is called from timer deletion with the timer already locked.
 411 * If we return TIMER_RETRY, it's necessary to release the timer's lock
 412 * and try again.  (This happens when the timer is in the middle of firing.)
 413 */
 414static int posix_cpu_timer_del(struct k_itimer *timer)
 415{
 416	struct cpu_timer *ctmr = &timer->it.cpu;
 
 417	struct sighand_struct *sighand;
 418	struct task_struct *p;
 419	unsigned long flags;
 420	int ret = 0;
 421
 422	rcu_read_lock();
 423	p = cpu_timer_task_rcu(timer);
 424	if (!p)
 425		goto out;
 426
 427	/*
 428	 * Protect against sighand release/switch in exit/exec and process/
 429	 * thread timer list entry concurrent read/writes.
 430	 */
 431	sighand = lock_task_sighand(p, &flags);
 432	if (unlikely(sighand == NULL)) {
 433		/*
 434		 * This raced with the reaping of the task. The exit cleanup
 435		 * should have removed this timer from the timer queue.
 436		 */
 437		WARN_ON_ONCE(ctmr->head || timerqueue_node_queued(&ctmr->node));
 438	} else {
 439		if (timer->it.cpu.firing)
 440			ret = TIMER_RETRY;
 441		else
 442			cpu_timer_dequeue(ctmr);
 443
 444		unlock_task_sighand(p, &flags);
 445	}
 446
 447out:
 448	rcu_read_unlock();
 449	if (!ret)
 450		put_pid(ctmr->pid);
 451
 452	return ret;
 453}
 454
 455static void cleanup_timerqueue(struct timerqueue_head *head)
 456{
 457	struct timerqueue_node *node;
 458	struct cpu_timer *ctmr;
 459
 460	while ((node = timerqueue_getnext(head))) {
 461		timerqueue_del(head, node);
 462		ctmr = container_of(node, struct cpu_timer, node);
 463		ctmr->head = NULL;
 464	}
 465}
 466
 467/*
 468 * Clean out CPU timers which are still armed when a thread exits. The
 469 * timers are only removed from the list. No other updates are done. The
 470 * corresponding posix timers are still accessible, but cannot be rearmed.
 471 *
 472 * This must be called with the siglock held.
 473 */
 474static void cleanup_timers(struct posix_cputimers *pct)
 475{
 476	cleanup_timerqueue(&pct->bases[CPUCLOCK_PROF].tqhead);
 477	cleanup_timerqueue(&pct->bases[CPUCLOCK_VIRT].tqhead);
 478	cleanup_timerqueue(&pct->bases[CPUCLOCK_SCHED].tqhead);
 479}
 480
 481/*
 482 * These are both called with the siglock held, when the current thread
 483 * is being reaped.  When the final (leader) thread in the group is reaped,
 484 * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit.
 485 */
 486void posix_cpu_timers_exit(struct task_struct *tsk)
 487{
 488	cleanup_timers(&tsk->posix_cputimers);
 
 
 
 489}
 490void posix_cpu_timers_exit_group(struct task_struct *tsk)
 491{
 492	cleanup_timers(&tsk->signal->posix_cputimers);
 
 
 
 
 
 493}
 494
 495/*
 496 * Insert the timer on the appropriate list before any timers that
 497 * expire later.  This must be called with the sighand lock held.
 498 */
 499static void arm_timer(struct k_itimer *timer, struct task_struct *p)
 500{
 501	int clkidx = CPUCLOCK_WHICH(timer->it_clock);
 502	struct cpu_timer *ctmr = &timer->it.cpu;
 503	u64 newexp = cpu_timer_getexpires(ctmr);
 504	struct posix_cputimer_base *base;
 
 
 
 
 
 
 
 
 
 
 505
 506	if (CPUCLOCK_PERTHREAD(timer->it_clock))
 507		base = p->posix_cputimers.bases + clkidx;
 508	else
 509		base = p->signal->posix_cputimers.bases + clkidx;
 
 
 
 510
 511	if (!cpu_timer_enqueue(&base->tqhead, ctmr))
 512		return;
 513
 514	/*
 515	 * We are the new earliest-expiring POSIX 1.b timer, hence
 516	 * need to update expiration cache. Take into account that
 517	 * for process timers we share expiration cache with itimers
 518	 * and RLIMIT_CPU and for thread timers with RLIMIT_RTTIME.
 519	 */
 520	if (newexp < base->nextevt)
 521		base->nextevt = newexp;
 522
 523	if (CPUCLOCK_PERTHREAD(timer->it_clock))
 524		tick_dep_set_task(p, TICK_DEP_BIT_POSIX_TIMER);
 525	else
 526		tick_dep_set_signal(p, TICK_DEP_BIT_POSIX_TIMER);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 527}
 528
 529/*
 530 * The timer is locked, fire it and arrange for its reload.
 531 */
 532static void cpu_timer_fire(struct k_itimer *timer)
 533{
 534	struct cpu_timer *ctmr = &timer->it.cpu;
 535
 536	if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) {
 537		/*
 538		 * User don't want any signal.
 539		 */
 540		cpu_timer_setexpires(ctmr, 0);
 541	} else if (unlikely(timer->sigq == NULL)) {
 542		/*
 543		 * This a special case for clock_nanosleep,
 544		 * not a normal timer from sys_timer_create.
 545		 */
 546		wake_up_process(timer->it_process);
 547		cpu_timer_setexpires(ctmr, 0);
 548	} else if (!timer->it_interval) {
 549		/*
 550		 * One-shot timer.  Clear it as soon as it's fired.
 551		 */
 552		posix_timer_event(timer, 0);
 553		cpu_timer_setexpires(ctmr, 0);
 554	} else if (posix_timer_event(timer, ++timer->it_requeue_pending)) {
 555		/*
 556		 * The signal did not get queued because the signal
 557		 * was ignored, so we won't get any callback to
 558		 * reload the timer.  But we need to keep it
 559		 * ticking in case the signal is deliverable next time.
 560		 */
 561		posix_cpu_timer_rearm(timer);
 562		++timer->it_requeue_pending;
 563	}
 564}
 565
 566/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 567 * Guts of sys_timer_settime for CPU timers.
 568 * This is called with the timer locked and interrupts disabled.
 569 * If we return TIMER_RETRY, it's necessary to release the timer's lock
 570 * and try again.  (This happens when the timer is in the middle of firing.)
 571 */
 572static int posix_cpu_timer_set(struct k_itimer *timer, int timer_flags,
 573			       struct itimerspec64 *new, struct itimerspec64 *old)
 574{
 575	clockid_t clkid = CPUCLOCK_WHICH(timer->it_clock);
 576	u64 old_expires, new_expires, old_incr, val;
 577	struct cpu_timer *ctmr = &timer->it.cpu;
 578	struct sighand_struct *sighand;
 579	struct task_struct *p;
 580	unsigned long flags;
 581	int ret = 0;
 582
 583	rcu_read_lock();
 584	p = cpu_timer_task_rcu(timer);
 585	if (!p) {
 586		/*
 587		 * If p has just been reaped, we can no
 588		 * longer get any information about it at all.
 589		 */
 590		rcu_read_unlock();
 591		return -ESRCH;
 592	}
 593
 594	/*
 595	 * Use the to_ktime conversion because that clamps the maximum
 596	 * value to KTIME_MAX and avoid multiplication overflows.
 597	 */
 598	new_expires = ktime_to_ns(timespec64_to_ktime(new->it_value));
 599
 600	/*
 601	 * Protect against sighand release/switch in exit/exec and p->cpu_timers
 602	 * and p->signal->cpu_timers read/write in arm_timer()
 603	 */
 604	sighand = lock_task_sighand(p, &flags);
 605	/*
 606	 * If p has just been reaped, we can no
 607	 * longer get any information about it at all.
 608	 */
 609	if (unlikely(sighand == NULL)) {
 610		rcu_read_unlock();
 611		return -ESRCH;
 612	}
 613
 614	/*
 615	 * Disarm any old timer after extracting its expiry time.
 616	 */
 617	old_incr = timer->it_interval;
 618	old_expires = cpu_timer_getexpires(ctmr);
 619
 
 
 
 620	if (unlikely(timer->it.cpu.firing)) {
 621		timer->it.cpu.firing = -1;
 622		ret = TIMER_RETRY;
 623	} else {
 624		cpu_timer_dequeue(ctmr);
 625	}
 626
 627	/*
 628	 * We need to sample the current value to convert the new
 629	 * value from to relative and absolute, and to convert the
 630	 * old value from absolute to relative.  To set a process
 631	 * timer, we need a sample to balance the thread expiry
 632	 * times (in arm_timer).  With an absolute time, we must
 633	 * check if it's already passed.  In short, we need a sample.
 634	 */
 635	if (CPUCLOCK_PERTHREAD(timer->it_clock))
 636		val = cpu_clock_sample(clkid, p);
 637	else
 638		val = cpu_clock_sample_group(clkid, p, true);
 
 639
 640	if (old) {
 641		if (old_expires == 0) {
 642			old->it_value.tv_sec = 0;
 643			old->it_value.tv_nsec = 0;
 644		} else {
 645			/*
 646			 * Update the timer in case it has overrun already.
 647			 * If it has, we'll report it as having overrun and
 648			 * with the next reloaded timer already ticking,
 649			 * though we are swallowing that pending
 650			 * notification here to install the new setting.
 
 
 
 651			 */
 652			u64 exp = bump_cpu_timer(timer, val);
 653
 654			if (val < exp) {
 655				old_expires = exp - val;
 656				old->it_value = ns_to_timespec64(old_expires);
 
 657			} else {
 658				old->it_value.tv_nsec = 1;
 659				old->it_value.tv_sec = 0;
 660			}
 661		}
 662	}
 663
 664	if (unlikely(ret)) {
 665		/*
 666		 * We are colliding with the timer actually firing.
 667		 * Punt after filling in the timer's old value, and
 668		 * disable this firing since we are already reporting
 669		 * it as an overrun (thanks to bump_cpu_timer above).
 670		 */
 671		unlock_task_sighand(p, &flags);
 672		goto out;
 673	}
 674
 675	if (new_expires != 0 && !(timer_flags & TIMER_ABSTIME)) {
 676		new_expires += val;
 677	}
 678
 679	/*
 680	 * Install the new expiry time (or zero).
 681	 * For a timer with no notification action, we don't actually
 682	 * arm the timer (we'll just fake it for timer_gettime).
 683	 */
 684	cpu_timer_setexpires(ctmr, new_expires);
 685	if (new_expires != 0 && val < new_expires) {
 686		arm_timer(timer, p);
 687	}
 688
 689	unlock_task_sighand(p, &flags);
 690	/*
 691	 * Install the new reload setting, and
 692	 * set up the signal and overrun bookkeeping.
 693	 */
 694	timer->it_interval = timespec64_to_ktime(new->it_interval);
 
 695
 696	/*
 697	 * This acts as a modification timestamp for the timer,
 698	 * so any automatic reload attempt will punt on seeing
 699	 * that we have reset the timer manually.
 700	 */
 701	timer->it_requeue_pending = (timer->it_requeue_pending + 2) &
 702		~REQUEUE_PENDING;
 703	timer->it_overrun_last = 0;
 704	timer->it_overrun = -1;
 705
 706	if (new_expires != 0 && !(val < new_expires)) {
 707		/*
 708		 * The designated time already passed, so we notify
 709		 * immediately, even if the thread never runs to
 710		 * accumulate more time on this clock.
 711		 */
 712		cpu_timer_fire(timer);
 713	}
 714
 715	ret = 0;
 716 out:
 717	rcu_read_unlock();
 718	if (old)
 719		old->it_interval = ns_to_timespec64(old_incr);
 
 720
 721	return ret;
 722}
 723
 724static void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec64 *itp)
 725{
 726	clockid_t clkid = CPUCLOCK_WHICH(timer->it_clock);
 727	struct cpu_timer *ctmr = &timer->it.cpu;
 728	u64 now, expires = cpu_timer_getexpires(ctmr);
 729	struct task_struct *p;
 730
 731	rcu_read_lock();
 732	p = cpu_timer_task_rcu(timer);
 733	if (!p)
 734		goto out;
 735
 736	/*
 737	 * Easy part: convert the reload time.
 738	 */
 739	itp->it_interval = ktime_to_timespec64(timer->it_interval);
 
 740
 741	if (!expires)
 742		goto out;
 
 
 743
 744	/*
 745	 * Sample the clock to take the difference with the expiry time.
 746	 */
 747	if (CPUCLOCK_PERTHREAD(timer->it_clock))
 748		now = cpu_clock_sample(clkid, p);
 749	else
 750		now = cpu_clock_sample_group(clkid, p, false);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 751
 752	if (now < expires) {
 753		itp->it_value = ns_to_timespec64(expires - now);
 
 
 754	} else {
 755		/*
 756		 * The timer should have expired already, but the firing
 757		 * hasn't taken place yet.  Say it's just about to expire.
 758		 */
 759		itp->it_value.tv_nsec = 1;
 760		itp->it_value.tv_sec = 0;
 761	}
 762out:
 763	rcu_read_unlock();
 764}
 765
 766#define MAX_COLLECTED	20
 767
 768static u64 collect_timerqueue(struct timerqueue_head *head,
 769			      struct list_head *firing, u64 now)
 770{
 771	struct timerqueue_node *next;
 772	int i = 0;
 773
 774	while ((next = timerqueue_getnext(head))) {
 775		struct cpu_timer *ctmr;
 776		u64 expires;
 777
 778		ctmr = container_of(next, struct cpu_timer, node);
 779		expires = cpu_timer_getexpires(ctmr);
 780		/* Limit the number of timers to expire at once */
 781		if (++i == MAX_COLLECTED || now < expires)
 782			return expires;
 783
 784		ctmr->firing = 1;
 785		cpu_timer_dequeue(ctmr);
 786		list_add_tail(&ctmr->elist, firing);
 787	}
 788
 789	return U64_MAX;
 790}
 791
 792static void collect_posix_cputimers(struct posix_cputimers *pct, u64 *samples,
 793				    struct list_head *firing)
 794{
 795	struct posix_cputimer_base *base = pct->bases;
 796	int i;
 797
 798	for (i = 0; i < CPUCLOCK_MAX; i++, base++) {
 799		base->nextevt = collect_timerqueue(&base->tqhead, firing,
 800						    samples[i]);
 801	}
 802}
 803
 804static inline void check_dl_overrun(struct task_struct *tsk)
 805{
 806	if (tsk->dl.dl_overrun) {
 807		tsk->dl.dl_overrun = 0;
 808		__group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
 809	}
 810}
 811
 812static bool check_rlimit(u64 time, u64 limit, int signo, bool rt, bool hard)
 813{
 814	if (time < limit)
 815		return false;
 816
 817	if (print_fatal_signals) {
 818		pr_info("%s Watchdog Timeout (%s): %s[%d]\n",
 819			rt ? "RT" : "CPU", hard ? "hard" : "soft",
 820			current->comm, task_pid_nr(current));
 821	}
 822	__group_send_sig_info(signo, SEND_SIG_PRIV, current);
 823	return true;
 824}
 825
 826/*
 827 * Check for any per-thread CPU timers that have fired and move them off
 828 * the tsk->cpu_timers[N] list onto the firing list.  Here we update the
 829 * tsk->it_*_expires values to reflect the remaining thread CPU timers.
 830 */
 831static void check_thread_timers(struct task_struct *tsk,
 832				struct list_head *firing)
 833{
 834	struct posix_cputimers *pct = &tsk->posix_cputimers;
 835	u64 samples[CPUCLOCK_MAX];
 
 
 836	unsigned long soft;
 837
 838	if (dl_task(tsk))
 839		check_dl_overrun(tsk);
 
 
 
 
 
 
 
 840
 841	if (expiry_cache_is_inactive(pct))
 842		return;
 843
 844	task_sample_cputime(tsk, samples);
 845	collect_posix_cputimers(pct, samples, firing);
 846
 847	/*
 848	 * Check for the special case thread timers.
 849	 */
 850	soft = task_rlimit(tsk, RLIMIT_RTTIME);
 851	if (soft != RLIM_INFINITY) {
 852		/* Task RT timeout is accounted in jiffies. RTTIME is usec */
 853		unsigned long rttime = tsk->rt.timeout * (USEC_PER_SEC / HZ);
 854		unsigned long hard = task_rlimit_max(tsk, RLIMIT_RTTIME);
 855
 856		/* At the hard limit, send SIGKILL. No further action. */
 857		if (hard != RLIM_INFINITY &&
 858		    check_rlimit(rttime, hard, SIGKILL, true, true))
 
 
 
 
 
 859			return;
 860
 861		/* At the soft limit, send a SIGXCPU every second */
 862		if (check_rlimit(rttime, soft, SIGXCPU, true, false)) {
 863			soft += USEC_PER_SEC;
 864			tsk->signal->rlim[RLIMIT_RTTIME].rlim_cur = soft;
 
 
 
 
 
 
 
 
 865		}
 866	}
 867
 868	if (expiry_cache_is_inactive(pct))
 869		tick_dep_clear_task(tsk, TICK_DEP_BIT_POSIX_TIMER);
 870}
 871
 872static inline void stop_process_timers(struct signal_struct *sig)
 873{
 874	struct posix_cputimers *pct = &sig->posix_cputimers;
 875
 876	/* Turn off the active flag. This is done without locking. */
 877	WRITE_ONCE(pct->timers_active, false);
 878	tick_dep_clear_signal(sig, TICK_DEP_BIT_POSIX_TIMER);
 879}
 880
 
 
 881static void check_cpu_itimer(struct task_struct *tsk, struct cpu_itimer *it,
 882			     u64 *expires, u64 cur_time, int signo)
 
 883{
 884	if (!it->expires)
 885		return;
 886
 887	if (cur_time >= it->expires) {
 888		if (it->incr)
 889			it->expires += it->incr;
 890		else
 
 
 
 
 
 891			it->expires = 0;
 
 892
 893		trace_itimer_expire(signo == SIGPROF ?
 894				    ITIMER_PROF : ITIMER_VIRTUAL,
 895				    task_tgid(tsk), cur_time);
 896		__group_send_sig_info(signo, SEND_SIG_PRIV, tsk);
 897	}
 898
 899	if (it->expires && it->expires < *expires)
 900		*expires = it->expires;
 
 901}
 902
 903/*
 904 * Check for any per-thread CPU timers that have fired and move them
 905 * off the tsk->*_timers list onto the firing list.  Per-thread timers
 906 * have already been taken off.
 907 */
 908static void check_process_timers(struct task_struct *tsk,
 909				 struct list_head *firing)
 910{
 911	struct signal_struct *const sig = tsk->signal;
 912	struct posix_cputimers *pct = &sig->posix_cputimers;
 913	u64 samples[CPUCLOCK_MAX];
 
 
 914	unsigned long soft;
 915
 916	/*
 917	 * If there are no active process wide timers (POSIX 1.b, itimers,
 918	 * RLIMIT_CPU) nothing to check. Also skip the process wide timer
 919	 * processing when there is already another task handling them.
 920	 */
 921	if (!READ_ONCE(pct->timers_active) || pct->expiry_active)
 922		return;
 923
 924	/*
 925	 * Signify that a thread is checking for process timers.
 926	 * Write access to this field is protected by the sighand lock.
 927	 */
 928	pct->expiry_active = true;
 929
 930	/*
 931	 * Collect the current process totals. Group accounting is active
 932	 * so the sample can be taken directly.
 933	 */
 934	proc_sample_cputime_atomic(&sig->cputimer.cputime_atomic, samples);
 935	collect_posix_cputimers(pct, samples, firing);
 
 
 
 
 
 
 936
 937	/*
 938	 * Check for the special case process timers.
 939	 */
 940	check_cpu_itimer(tsk, &sig->it[CPUCLOCK_PROF],
 941			 &pct->bases[CPUCLOCK_PROF].nextevt,
 942			 samples[CPUCLOCK_PROF], SIGPROF);
 943	check_cpu_itimer(tsk, &sig->it[CPUCLOCK_VIRT],
 944			 &pct->bases[CPUCLOCK_VIRT].nextevt,
 945			 samples[CPUCLOCK_VIRT], SIGVTALRM);
 946
 947	soft = task_rlimit(tsk, RLIMIT_CPU);
 948	if (soft != RLIM_INFINITY) {
 949		/* RLIMIT_CPU is in seconds. Samples are nanoseconds */
 950		unsigned long hard = task_rlimit_max(tsk, RLIMIT_CPU);
 951		u64 ptime = samples[CPUCLOCK_PROF];
 952		u64 softns = (u64)soft * NSEC_PER_SEC;
 953		u64 hardns = (u64)hard * NSEC_PER_SEC;
 954
 955		/* At the hard limit, send SIGKILL. No further action. */
 956		if (hard != RLIM_INFINITY &&
 957		    check_rlimit(ptime, hardns, SIGKILL, false, true))
 
 958			return;
 959
 960		/* At the soft limit, send a SIGXCPU every second */
 961		if (check_rlimit(ptime, softns, SIGXCPU, false, false)) {
 962			sig->rlim[RLIMIT_CPU].rlim_cur = soft + 1;
 963			softns += NSEC_PER_SEC;
 964		}
 965
 966		/* Update the expiry cache */
 967		if (softns < pct->bases[CPUCLOCK_PROF].nextevt)
 968			pct->bases[CPUCLOCK_PROF].nextevt = softns;
 
 
 
 
 
 
 
 
 
 
 969	}
 970
 971	if (expiry_cache_is_inactive(pct))
 
 
 
 972		stop_process_timers(sig);
 973
 974	pct->expiry_active = false;
 975}
 976
 977/*
 978 * This is called from the signal code (via posixtimer_rearm)
 979 * when the last timer signal was delivered and we have to reload the timer.
 980 */
 981static void posix_cpu_timer_rearm(struct k_itimer *timer)
 982{
 983	clockid_t clkid = CPUCLOCK_WHICH(timer->it_clock);
 984	struct task_struct *p;
 985	struct sighand_struct *sighand;
 986	unsigned long flags;
 987	u64 now;
 
 988
 989	rcu_read_lock();
 990	p = cpu_timer_task_rcu(timer);
 991	if (!p)
 992		goto out;
 993
 994	/* Protect timer list r/w in arm_timer() */
 995	sighand = lock_task_sighand(p, &flags);
 996	if (unlikely(sighand == NULL))
 997		goto out;
 998
 999	/*
1000	 * Fetch the current sample and update the timer's expiry time.
1001	 */
1002	if (CPUCLOCK_PERTHREAD(timer->it_clock))
1003		now = cpu_clock_sample(clkid, p);
1004	else
1005		now = cpu_clock_sample_group(clkid, p, true);
1006
1007	bump_cpu_timer(timer, now);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1008
1009	/*
1010	 * Now re-arm for the new expiry time.
1011	 */
1012	arm_timer(timer, p);
 
1013	unlock_task_sighand(p, &flags);
 
1014out:
1015	rcu_read_unlock();
 
 
1016}
1017
1018/**
1019 * task_cputimers_expired - Check whether posix CPU timers are expired
1020 *
1021 * @samples:	Array of current samples for the CPUCLOCK clocks
1022 * @pct:	Pointer to a posix_cputimers container
1023 *
1024 * Returns true if any member of @samples is greater than the corresponding
1025 * member of @pct->bases[CLK].nextevt. False otherwise
1026 */
1027static inline bool
1028task_cputimers_expired(const u64 *samples, struct posix_cputimers *pct)
1029{
1030	int i;
1031
1032	for (i = 0; i < CPUCLOCK_MAX; i++) {
1033		if (samples[i] >= pct->bases[i].nextevt)
1034			return true;
1035	}
1036	return false;
 
 
1037}
1038
1039/**
1040 * fastpath_timer_check - POSIX CPU timers fast path.
1041 *
1042 * @tsk:	The task (thread) being checked.
1043 *
1044 * Check the task and thread group timers.  If both are zero (there are no
1045 * timers set) return false.  Otherwise snapshot the task and thread group
1046 * timers and compare them with the corresponding expiration times.  Return
1047 * true if a timer has expired, else return false.
1048 */
1049static inline bool fastpath_timer_check(struct task_struct *tsk)
1050{
1051	struct posix_cputimers *pct = &tsk->posix_cputimers;
1052	struct signal_struct *sig;
1053
1054	if (!expiry_cache_is_inactive(pct)) {
1055		u64 samples[CPUCLOCK_MAX];
1056
1057		task_sample_cputime(tsk, samples);
1058		if (task_cputimers_expired(samples, pct))
1059			return true;
 
1060	}
1061
1062	sig = tsk->signal;
1063	pct = &sig->posix_cputimers;
1064	/*
1065	 * Check if thread group timers expired when timers are active and
1066	 * no other thread in the group is already handling expiry for
1067	 * thread group cputimers. These fields are read without the
1068	 * sighand lock. However, this is fine because this is meant to be
1069	 * a fastpath heuristic to determine whether we should try to
1070	 * acquire the sighand lock to handle timer expiry.
1071	 *
1072	 * In the worst case scenario, if concurrently timers_active is set
1073	 * or expiry_active is cleared, but the current thread doesn't see
1074	 * the change yet, the timer checks are delayed until the next
1075	 * thread in the group gets a scheduler interrupt to handle the
1076	 * timer. This isn't an issue in practice because these types of
1077	 * delays with signals actually getting sent are expected.
1078	 */
1079	if (READ_ONCE(pct->timers_active) && !READ_ONCE(pct->expiry_active)) {
1080		u64 samples[CPUCLOCK_MAX];
1081
1082		proc_sample_cputime_atomic(&sig->cputimer.cputime_atomic,
1083					   samples);
1084
1085		if (task_cputimers_expired(samples, pct))
1086			return true;
1087	}
1088
1089	if (dl_task(tsk) && tsk->dl.dl_overrun)
1090		return true;
1091
1092	return false;
1093}
1094
1095static void handle_posix_cpu_timers(struct task_struct *tsk);
1096
1097#ifdef CONFIG_POSIX_CPU_TIMERS_TASK_WORK
1098static void posix_cpu_timers_work(struct callback_head *work)
1099{
1100	handle_posix_cpu_timers(current);
1101}
1102
1103/*
1104 * Initialize posix CPU timers task work in init task. Out of line to
1105 * keep the callback static and to avoid header recursion hell.
 
1106 */
1107void __init posix_cputimers_init_work(void)
1108{
1109	init_task_work(&current->posix_cputimers_work.work,
1110		       posix_cpu_timers_work);
1111}
1112
1113/*
1114 * Note: All operations on tsk->posix_cputimer_work.scheduled happen either
1115 * in hard interrupt context or in task context with interrupts
1116 * disabled. Aside of that the writer/reader interaction is always in the
1117 * context of the current task, which means they are strict per CPU.
1118 */
1119static inline bool posix_cpu_timers_work_scheduled(struct task_struct *tsk)
1120{
1121	return tsk->posix_cputimers_work.scheduled;
1122}
1123
1124static inline void __run_posix_cpu_timers(struct task_struct *tsk)
1125{
1126	if (WARN_ON_ONCE(tsk->posix_cputimers_work.scheduled))
1127		return;
1128
1129	/* Schedule task work to actually expire the timers */
1130	tsk->posix_cputimers_work.scheduled = true;
1131	task_work_add(tsk, &tsk->posix_cputimers_work.work, TWA_RESUME);
1132}
1133
1134static inline bool posix_cpu_timers_enable_work(struct task_struct *tsk,
1135						unsigned long start)
1136{
1137	bool ret = true;
1138
1139	/*
1140	 * On !RT kernels interrupts are disabled while collecting expired
1141	 * timers, so no tick can happen and the fast path check can be
1142	 * reenabled without further checks.
1143	 */
1144	if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
1145		tsk->posix_cputimers_work.scheduled = false;
1146		return true;
1147	}
1148
1149	/*
1150	 * On RT enabled kernels ticks can happen while the expired timers
1151	 * are collected under sighand lock. But any tick which observes
1152	 * the CPUTIMERS_WORK_SCHEDULED bit set, does not run the fastpath
1153	 * checks. So reenabling the tick work has do be done carefully:
1154	 *
1155	 * Disable interrupts and run the fast path check if jiffies have
1156	 * advanced since the collecting of expired timers started. If
1157	 * jiffies have not advanced or the fast path check did not find
1158	 * newly expired timers, reenable the fast path check in the timer
1159	 * interrupt. If there are newly expired timers, return false and
1160	 * let the collection loop repeat.
1161	 */
1162	local_irq_disable();
1163	if (start != jiffies && fastpath_timer_check(tsk))
1164		ret = false;
1165	else
1166		tsk->posix_cputimers_work.scheduled = false;
1167	local_irq_enable();
1168
1169	return ret;
1170}
1171#else /* CONFIG_POSIX_CPU_TIMERS_TASK_WORK */
1172static inline void __run_posix_cpu_timers(struct task_struct *tsk)
1173{
1174	lockdep_posixtimer_enter();
1175	handle_posix_cpu_timers(tsk);
1176	lockdep_posixtimer_exit();
1177}
1178
1179static inline bool posix_cpu_timers_work_scheduled(struct task_struct *tsk)
1180{
1181	return false;
1182}
1183
1184static inline bool posix_cpu_timers_enable_work(struct task_struct *tsk,
1185						unsigned long start)
1186{
1187	return true;
1188}
1189#endif /* CONFIG_POSIX_CPU_TIMERS_TASK_WORK */
1190
1191static void handle_posix_cpu_timers(struct task_struct *tsk)
1192{
1193	struct k_itimer *timer, *next;
1194	unsigned long flags, start;
1195	LIST_HEAD(firing);
1196
1197	if (!lock_task_sighand(tsk, &flags))
1198		return;
 
 
 
 
 
 
1199
1200	do {
1201		/*
1202		 * On RT locking sighand lock does not disable interrupts,
1203		 * so this needs to be careful vs. ticks. Store the current
1204		 * jiffies value.
1205		 */
1206		start = READ_ONCE(jiffies);
1207		barrier();
1208
1209		/*
1210		 * Here we take off tsk->signal->cpu_timers[N] and
1211		 * tsk->cpu_timers[N] all the timers that are firing, and
1212		 * put them on the firing list.
1213		 */
1214		check_thread_timers(tsk, &firing);
1215
1216		check_process_timers(tsk, &firing);
1217
1218		/*
1219		 * The above timer checks have updated the expiry cache and
1220		 * because nothing can have queued or modified timers after
1221		 * sighand lock was taken above it is guaranteed to be
1222		 * consistent. So the next timer interrupt fastpath check
1223		 * will find valid data.
1224		 *
1225		 * If timer expiry runs in the timer interrupt context then
1226		 * the loop is not relevant as timers will be directly
1227		 * expired in interrupt context. The stub function below
1228		 * returns always true which allows the compiler to
1229		 * optimize the loop out.
1230		 *
1231		 * If timer expiry is deferred to task work context then
1232		 * the following rules apply:
1233		 *
1234		 * - On !RT kernels no tick can have happened on this CPU
1235		 *   after sighand lock was acquired because interrupts are
1236		 *   disabled. So reenabling task work before dropping
1237		 *   sighand lock and reenabling interrupts is race free.
1238		 *
1239		 * - On RT kernels ticks might have happened but the tick
1240		 *   work ignored posix CPU timer handling because the
1241		 *   CPUTIMERS_WORK_SCHEDULED bit is set. Reenabling work
1242		 *   must be done very carefully including a check whether
1243		 *   ticks have happened since the start of the timer
1244		 *   expiry checks. posix_cpu_timers_enable_work() takes
1245		 *   care of that and eventually lets the expiry checks
1246		 *   run again.
1247		 */
1248	} while (!posix_cpu_timers_enable_work(tsk, start));
1249
1250	/*
1251	 * We must release sighand lock before taking any timer's lock.
1252	 * There is a potential race with timer deletion here, as the
1253	 * siglock now protects our private firing list.  We have set
1254	 * the firing flag in each timer, so that a deletion attempt
1255	 * that gets the timer lock before we do will give it up and
1256	 * spin until we've taken care of that timer below.
1257	 */
1258	unlock_task_sighand(tsk, &flags);
1259
1260	/*
1261	 * Now that all the timers on our list have the firing flag,
1262	 * no one will touch their list entries but us.  We'll take
1263	 * each timer's lock before clearing its firing flag, so no
1264	 * timer call will interfere.
1265	 */
1266	list_for_each_entry_safe(timer, next, &firing, it.cpu.elist) {
1267		int cpu_firing;
1268
1269		/*
1270		 * spin_lock() is sufficient here even independent of the
1271		 * expiry context. If expiry happens in hard interrupt
1272		 * context it's obvious. For task work context it's safe
1273		 * because all other operations on timer::it_lock happen in
1274		 * task context (syscall or exit).
1275		 */
1276		spin_lock(&timer->it_lock);
1277		list_del_init(&timer->it.cpu.elist);
1278		cpu_firing = timer->it.cpu.firing;
1279		timer->it.cpu.firing = 0;
1280		/*
1281		 * The firing flag is -1 if we collided with a reset
1282		 * of the timer, which already reported this
1283		 * almost-firing as an overrun.  So don't generate an event.
1284		 */
1285		if (likely(cpu_firing >= 0))
1286			cpu_timer_fire(timer);
1287		spin_unlock(&timer->it_lock);
1288	}
1289}
1290
1291/*
1292 * This is called from the timer interrupt handler.  The irq handler has
1293 * already updated our counts.  We need to check if any timers fire now.
1294 * Interrupts are disabled.
1295 */
1296void run_posix_cpu_timers(void)
1297{
1298	struct task_struct *tsk = current;
1299
1300	lockdep_assert_irqs_disabled();
1301
1302	/*
1303	 * If the actual expiry is deferred to task work context and the
1304	 * work is already scheduled there is no point to do anything here.
1305	 */
1306	if (posix_cpu_timers_work_scheduled(tsk))
1307		return;
1308
1309	/*
1310	 * The fast path checks that there are no expired thread or thread
1311	 * group timers.  If that's so, just return.
1312	 */
1313	if (!fastpath_timer_check(tsk))
1314		return;
1315
1316	__run_posix_cpu_timers(tsk);
1317}
1318
1319/*
1320 * Set one of the process-wide special case CPU timers or RLIMIT_CPU.
1321 * The tsk->sighand->siglock must be held by the caller.
1322 */
1323void set_process_cpu_timer(struct task_struct *tsk, unsigned int clkid,
1324			   u64 *newval, u64 *oldval)
1325{
1326	u64 now, *nextevt;
1327
1328	if (WARN_ON_ONCE(clkid >= CPUCLOCK_SCHED))
1329		return;
1330
1331	nextevt = &tsk->signal->posix_cputimers.bases[clkid].nextevt;
1332	now = cpu_clock_sample_group(clkid, tsk, true);
1333
1334	if (oldval) {
1335		/*
1336		 * We are setting itimer. The *oldval is absolute and we update
1337		 * it to be relative, *newval argument is relative and we update
1338		 * it to be absolute.
1339		 */
1340		if (*oldval) {
1341			if (*oldval <= now) {
1342				/* Just about to fire. */
1343				*oldval = TICK_NSEC;
1344			} else {
1345				*oldval -= now;
1346			}
1347		}
1348
1349		if (!*newval)
1350			return;
1351		*newval += now;
1352	}
1353
1354	/*
1355	 * Update expiration cache if this is the earliest timer. CPUCLOCK_PROF
1356	 * expiry cache is also used by RLIMIT_CPU!.
1357	 */
1358	if (*newval < *nextevt)
1359		*nextevt = *newval;
 
 
 
 
 
 
 
 
1360
1361	tick_dep_set_signal(tsk, TICK_DEP_BIT_POSIX_TIMER);
1362}
1363
1364static int do_cpu_nanosleep(const clockid_t which_clock, int flags,
1365			    const struct timespec64 *rqtp)
1366{
1367	struct itimerspec64 it;
1368	struct k_itimer timer;
1369	u64 expires;
1370	int error;
1371
1372	/*
1373	 * Set up a temporary timer and then wait for it to go off.
1374	 */
1375	memset(&timer, 0, sizeof timer);
1376	spin_lock_init(&timer.it_lock);
1377	timer.it_clock = which_clock;
1378	timer.it_overrun = -1;
1379	error = posix_cpu_timer_create(&timer);
1380	timer.it_process = current;
1381
1382	if (!error) {
1383		static struct itimerspec64 zero_it;
1384		struct restart_block *restart;
1385
1386		memset(&it, 0, sizeof(it));
1387		it.it_value = *rqtp;
1388
1389		spin_lock_irq(&timer.it_lock);
1390		error = posix_cpu_timer_set(&timer, flags, &it, NULL);
1391		if (error) {
1392			spin_unlock_irq(&timer.it_lock);
1393			return error;
1394		}
1395
1396		while (!signal_pending(current)) {
1397			if (!cpu_timer_getexpires(&timer.it.cpu)) {
1398				/*
1399				 * Our timer fired and was reset, below
1400				 * deletion can not fail.
1401				 */
1402				posix_cpu_timer_del(&timer);
1403				spin_unlock_irq(&timer.it_lock);
1404				return 0;
1405			}
1406
1407			/*
1408			 * Block until cpu_timer_fire (or a signal) wakes us.
1409			 */
1410			__set_current_state(TASK_INTERRUPTIBLE);
1411			spin_unlock_irq(&timer.it_lock);
1412			schedule();
1413			spin_lock_irq(&timer.it_lock);
1414		}
1415
1416		/*
1417		 * We were interrupted by a signal.
1418		 */
1419		expires = cpu_timer_getexpires(&timer.it.cpu);
1420		error = posix_cpu_timer_set(&timer, 0, &zero_it, &it);
1421		if (!error) {
1422			/*
1423			 * Timer is now unarmed, deletion can not fail.
1424			 */
1425			posix_cpu_timer_del(&timer);
1426		}
1427		spin_unlock_irq(&timer.it_lock);
1428
1429		while (error == TIMER_RETRY) {
1430			/*
1431			 * We need to handle case when timer was or is in the
1432			 * middle of firing. In other cases we already freed
1433			 * resources.
1434			 */
1435			spin_lock_irq(&timer.it_lock);
1436			error = posix_cpu_timer_del(&timer);
1437			spin_unlock_irq(&timer.it_lock);
1438		}
1439
1440		if ((it.it_value.tv_sec | it.it_value.tv_nsec) == 0) {
1441			/*
1442			 * It actually did fire already.
1443			 */
1444			return 0;
1445		}
1446
1447		error = -ERESTART_RESTARTBLOCK;
1448		/*
1449		 * Report back to the user the time still remaining.
1450		 */
1451		restart = &current->restart_block;
1452		restart->nanosleep.expires = expires;
1453		if (restart->nanosleep.type != TT_NONE)
1454			error = nanosleep_copyout(restart, &it.it_value);
1455	}
1456
1457	return error;
1458}
1459
1460static long posix_cpu_nsleep_restart(struct restart_block *restart_block);
1461
1462static int posix_cpu_nsleep(const clockid_t which_clock, int flags,
1463			    const struct timespec64 *rqtp)
1464{
1465	struct restart_block *restart_block = &current->restart_block;
 
1466	int error;
1467
1468	/*
1469	 * Diagnose required errors first.
1470	 */
1471	if (CPUCLOCK_PERTHREAD(which_clock) &&
1472	    (CPUCLOCK_PID(which_clock) == 0 ||
1473	     CPUCLOCK_PID(which_clock) == task_pid_vnr(current)))
1474		return -EINVAL;
1475
1476	error = do_cpu_nanosleep(which_clock, flags, rqtp);
1477
1478	if (error == -ERESTART_RESTARTBLOCK) {
1479
1480		if (flags & TIMER_ABSTIME)
1481			return -ERESTARTNOHAND;
 
 
 
 
 
1482
 
1483		restart_block->nanosleep.clockid = which_clock;
1484		set_restart_fn(restart_block, posix_cpu_nsleep_restart);
 
1485	}
1486	return error;
1487}
1488
1489static long posix_cpu_nsleep_restart(struct restart_block *restart_block)
1490{
1491	clockid_t which_clock = restart_block->nanosleep.clockid;
1492	struct timespec64 t;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1493
1494	t = ns_to_timespec64(restart_block->nanosleep.expires);
 
 
1495
1496	return do_cpu_nanosleep(which_clock, TIMER_ABSTIME, &t);
1497}
1498
1499#define PROCESS_CLOCK	make_process_cpuclock(0, CPUCLOCK_SCHED)
1500#define THREAD_CLOCK	make_thread_cpuclock(0, CPUCLOCK_SCHED)
1501
1502static int process_cpu_clock_getres(const clockid_t which_clock,
1503				    struct timespec64 *tp)
1504{
1505	return posix_cpu_clock_getres(PROCESS_CLOCK, tp);
1506}
1507static int process_cpu_clock_get(const clockid_t which_clock,
1508				 struct timespec64 *tp)
1509{
1510	return posix_cpu_clock_get(PROCESS_CLOCK, tp);
1511}
1512static int process_cpu_timer_create(struct k_itimer *timer)
1513{
1514	timer->it_clock = PROCESS_CLOCK;
1515	return posix_cpu_timer_create(timer);
1516}
1517static int process_cpu_nsleep(const clockid_t which_clock, int flags,
1518			      const struct timespec64 *rqtp)
 
 
 
 
 
1519{
1520	return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp);
1521}
1522static int thread_cpu_clock_getres(const clockid_t which_clock,
1523				   struct timespec64 *tp)
1524{
1525	return posix_cpu_clock_getres(THREAD_CLOCK, tp);
1526}
1527static int thread_cpu_clock_get(const clockid_t which_clock,
1528				struct timespec64 *tp)
1529{
1530	return posix_cpu_clock_get(THREAD_CLOCK, tp);
1531}
1532static int thread_cpu_timer_create(struct k_itimer *timer)
1533{
1534	timer->it_clock = THREAD_CLOCK;
1535	return posix_cpu_timer_create(timer);
1536}
1537
1538const struct k_clock clock_posix_cpu = {
1539	.clock_getres		= posix_cpu_clock_getres,
1540	.clock_set		= posix_cpu_clock_set,
1541	.clock_get_timespec	= posix_cpu_clock_get,
1542	.timer_create		= posix_cpu_timer_create,
1543	.nsleep			= posix_cpu_nsleep,
1544	.timer_set		= posix_cpu_timer_set,
1545	.timer_del		= posix_cpu_timer_del,
1546	.timer_get		= posix_cpu_timer_get,
1547	.timer_rearm		= posix_cpu_timer_rearm,
1548};
1549
1550const struct k_clock clock_process = {
1551	.clock_getres		= process_cpu_clock_getres,
1552	.clock_get_timespec	= process_cpu_clock_get,
1553	.timer_create		= process_cpu_timer_create,
1554	.nsleep			= process_cpu_nsleep,
1555};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1556
1557const struct k_clock clock_thread = {
1558	.clock_getres		= thread_cpu_clock_getres,
1559	.clock_get_timespec	= thread_cpu_clock_get,
1560	.timer_create		= thread_cpu_timer_create,
1561};