Loading...
1/*
2 * Performance events ring-buffer code:
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
9 * For licensing details see kernel-base/COPYING
10 */
11
12#include <linux/perf_event.h>
13#include <linux/vmalloc.h>
14#include <linux/slab.h>
15#include <linux/circ_buf.h>
16#include <linux/poll.h>
17
18#include "internal.h"
19
20static void perf_output_wakeup(struct perf_output_handle *handle)
21{
22 atomic_set(&handle->rb->poll, POLLIN);
23
24 handle->event->pending_wakeup = 1;
25 irq_work_queue(&handle->event->pending);
26}
27
28/*
29 * We need to ensure a later event_id doesn't publish a head when a former
30 * event isn't done writing. However since we need to deal with NMIs we
31 * cannot fully serialize things.
32 *
33 * We only publish the head (and generate a wakeup) when the outer-most
34 * event completes.
35 */
36static void perf_output_get_handle(struct perf_output_handle *handle)
37{
38 struct ring_buffer *rb = handle->rb;
39
40 preempt_disable();
41 local_inc(&rb->nest);
42 handle->wakeup = local_read(&rb->wakeup);
43}
44
45static void perf_output_put_handle(struct perf_output_handle *handle)
46{
47 struct ring_buffer *rb = handle->rb;
48 unsigned long head;
49
50again:
51 head = local_read(&rb->head);
52
53 /*
54 * IRQ/NMI can happen here, which means we can miss a head update.
55 */
56
57 if (!local_dec_and_test(&rb->nest))
58 goto out;
59
60 /*
61 * Since the mmap() consumer (userspace) can run on a different CPU:
62 *
63 * kernel user
64 *
65 * if (LOAD ->data_tail) { LOAD ->data_head
66 * (A) smp_rmb() (C)
67 * STORE $data LOAD $data
68 * smp_wmb() (B) smp_mb() (D)
69 * STORE ->data_head STORE ->data_tail
70 * }
71 *
72 * Where A pairs with D, and B pairs with C.
73 *
74 * In our case (A) is a control dependency that separates the load of
75 * the ->data_tail and the stores of $data. In case ->data_tail
76 * indicates there is no room in the buffer to store $data we do not.
77 *
78 * D needs to be a full barrier since it separates the data READ
79 * from the tail WRITE.
80 *
81 * For B a WMB is sufficient since it separates two WRITEs, and for C
82 * an RMB is sufficient since it separates two READs.
83 *
84 * See perf_output_begin().
85 */
86 smp_wmb(); /* B, matches C */
87 rb->user_page->data_head = head;
88
89 /*
90 * Now check if we missed an update -- rely on previous implied
91 * compiler barriers to force a re-read.
92 */
93 if (unlikely(head != local_read(&rb->head))) {
94 local_inc(&rb->nest);
95 goto again;
96 }
97
98 if (handle->wakeup != local_read(&rb->wakeup))
99 perf_output_wakeup(handle);
100
101out:
102 preempt_enable();
103}
104
105int perf_output_begin(struct perf_output_handle *handle,
106 struct perf_event *event, unsigned int size)
107{
108 struct ring_buffer *rb;
109 unsigned long tail, offset, head;
110 int have_lost, page_shift;
111 struct {
112 struct perf_event_header header;
113 u64 id;
114 u64 lost;
115 } lost_event;
116
117 rcu_read_lock();
118 /*
119 * For inherited events we send all the output towards the parent.
120 */
121 if (event->parent)
122 event = event->parent;
123
124 rb = rcu_dereference(event->rb);
125 if (unlikely(!rb))
126 goto out;
127
128 if (unlikely(!rb->nr_pages))
129 goto out;
130
131 handle->rb = rb;
132 handle->event = event;
133
134 have_lost = local_read(&rb->lost);
135 if (unlikely(have_lost)) {
136 size += sizeof(lost_event);
137 if (event->attr.sample_id_all)
138 size += event->id_header_size;
139 }
140
141 perf_output_get_handle(handle);
142
143 do {
144 tail = READ_ONCE(rb->user_page->data_tail);
145 offset = head = local_read(&rb->head);
146 if (!rb->overwrite &&
147 unlikely(CIRC_SPACE(head, tail, perf_data_size(rb)) < size))
148 goto fail;
149
150 /*
151 * The above forms a control dependency barrier separating the
152 * @tail load above from the data stores below. Since the @tail
153 * load is required to compute the branch to fail below.
154 *
155 * A, matches D; the full memory barrier userspace SHOULD issue
156 * after reading the data and before storing the new tail
157 * position.
158 *
159 * See perf_output_put_handle().
160 */
161
162 head += size;
163 } while (local_cmpxchg(&rb->head, offset, head) != offset);
164
165 /*
166 * We rely on the implied barrier() by local_cmpxchg() to ensure
167 * none of the data stores below can be lifted up by the compiler.
168 */
169
170 if (unlikely(head - local_read(&rb->wakeup) > rb->watermark))
171 local_add(rb->watermark, &rb->wakeup);
172
173 page_shift = PAGE_SHIFT + page_order(rb);
174
175 handle->page = (offset >> page_shift) & (rb->nr_pages - 1);
176 offset &= (1UL << page_shift) - 1;
177 handle->addr = rb->data_pages[handle->page] + offset;
178 handle->size = (1UL << page_shift) - offset;
179
180 if (unlikely(have_lost)) {
181 struct perf_sample_data sample_data;
182
183 lost_event.header.size = sizeof(lost_event);
184 lost_event.header.type = PERF_RECORD_LOST;
185 lost_event.header.misc = 0;
186 lost_event.id = event->id;
187 lost_event.lost = local_xchg(&rb->lost, 0);
188
189 perf_event_header__init_id(&lost_event.header,
190 &sample_data, event);
191 perf_output_put(handle, lost_event);
192 perf_event__output_id_sample(event, handle, &sample_data);
193 }
194
195 return 0;
196
197fail:
198 local_inc(&rb->lost);
199 perf_output_put_handle(handle);
200out:
201 rcu_read_unlock();
202
203 return -ENOSPC;
204}
205
206unsigned int perf_output_copy(struct perf_output_handle *handle,
207 const void *buf, unsigned int len)
208{
209 return __output_copy(handle, buf, len);
210}
211
212unsigned int perf_output_skip(struct perf_output_handle *handle,
213 unsigned int len)
214{
215 return __output_skip(handle, NULL, len);
216}
217
218void perf_output_end(struct perf_output_handle *handle)
219{
220 perf_output_put_handle(handle);
221 rcu_read_unlock();
222}
223
224static void rb_irq_work(struct irq_work *work);
225
226static void
227ring_buffer_init(struct ring_buffer *rb, long watermark, int flags)
228{
229 long max_size = perf_data_size(rb);
230
231 if (watermark)
232 rb->watermark = min(max_size, watermark);
233
234 if (!rb->watermark)
235 rb->watermark = max_size / 2;
236
237 if (flags & RING_BUFFER_WRITABLE)
238 rb->overwrite = 0;
239 else
240 rb->overwrite = 1;
241
242 atomic_set(&rb->refcount, 1);
243
244 INIT_LIST_HEAD(&rb->event_list);
245 spin_lock_init(&rb->event_lock);
246 init_irq_work(&rb->irq_work, rb_irq_work);
247}
248
249static void ring_buffer_put_async(struct ring_buffer *rb)
250{
251 if (!atomic_dec_and_test(&rb->refcount))
252 return;
253
254 rb->rcu_head.next = (void *)rb;
255 irq_work_queue(&rb->irq_work);
256}
257
258/*
259 * This is called before hardware starts writing to the AUX area to
260 * obtain an output handle and make sure there's room in the buffer.
261 * When the capture completes, call perf_aux_output_end() to commit
262 * the recorded data to the buffer.
263 *
264 * The ordering is similar to that of perf_output_{begin,end}, with
265 * the exception of (B), which should be taken care of by the pmu
266 * driver, since ordering rules will differ depending on hardware.
267 */
268void *perf_aux_output_begin(struct perf_output_handle *handle,
269 struct perf_event *event)
270{
271 struct perf_event *output_event = event;
272 unsigned long aux_head, aux_tail;
273 struct ring_buffer *rb;
274
275 if (output_event->parent)
276 output_event = output_event->parent;
277
278 /*
279 * Since this will typically be open across pmu::add/pmu::del, we
280 * grab ring_buffer's refcount instead of holding rcu read lock
281 * to make sure it doesn't disappear under us.
282 */
283 rb = ring_buffer_get(output_event);
284 if (!rb)
285 return NULL;
286
287 if (!rb_has_aux(rb) || !atomic_inc_not_zero(&rb->aux_refcount))
288 goto err;
289
290 /*
291 * Nesting is not supported for AUX area, make sure nested
292 * writers are caught early
293 */
294 if (WARN_ON_ONCE(local_xchg(&rb->aux_nest, 1)))
295 goto err_put;
296
297 aux_head = local_read(&rb->aux_head);
298
299 handle->rb = rb;
300 handle->event = event;
301 handle->head = aux_head;
302 handle->size = 0;
303
304 /*
305 * In overwrite mode, AUX data stores do not depend on aux_tail,
306 * therefore (A) control dependency barrier does not exist. The
307 * (B) <-> (C) ordering is still observed by the pmu driver.
308 */
309 if (!rb->aux_overwrite) {
310 aux_tail = ACCESS_ONCE(rb->user_page->aux_tail);
311 handle->wakeup = local_read(&rb->aux_wakeup) + rb->aux_watermark;
312 if (aux_head - aux_tail < perf_aux_size(rb))
313 handle->size = CIRC_SPACE(aux_head, aux_tail, perf_aux_size(rb));
314
315 /*
316 * handle->size computation depends on aux_tail load; this forms a
317 * control dependency barrier separating aux_tail load from aux data
318 * store that will be enabled on successful return
319 */
320 if (!handle->size) { /* A, matches D */
321 event->pending_disable = 1;
322 perf_output_wakeup(handle);
323 local_set(&rb->aux_nest, 0);
324 goto err_put;
325 }
326 }
327
328 return handle->rb->aux_priv;
329
330err_put:
331 rb_free_aux(rb);
332
333err:
334 ring_buffer_put_async(rb);
335 handle->event = NULL;
336
337 return NULL;
338}
339
340/*
341 * Commit the data written by hardware into the ring buffer by adjusting
342 * aux_head and posting a PERF_RECORD_AUX into the perf buffer. It is the
343 * pmu driver's responsibility to observe ordering rules of the hardware,
344 * so that all the data is externally visible before this is called.
345 */
346void perf_aux_output_end(struct perf_output_handle *handle, unsigned long size,
347 bool truncated)
348{
349 struct ring_buffer *rb = handle->rb;
350 bool wakeup = truncated;
351 unsigned long aux_head;
352 u64 flags = 0;
353
354 if (truncated)
355 flags |= PERF_AUX_FLAG_TRUNCATED;
356
357 /* in overwrite mode, driver provides aux_head via handle */
358 if (rb->aux_overwrite) {
359 flags |= PERF_AUX_FLAG_OVERWRITE;
360
361 aux_head = handle->head;
362 local_set(&rb->aux_head, aux_head);
363 } else {
364 aux_head = local_read(&rb->aux_head);
365 local_add(size, &rb->aux_head);
366 }
367
368 if (size || flags) {
369 /*
370 * Only send RECORD_AUX if we have something useful to communicate
371 */
372
373 perf_event_aux_event(handle->event, aux_head, size, flags);
374 }
375
376 aux_head = rb->user_page->aux_head = local_read(&rb->aux_head);
377
378 if (aux_head - local_read(&rb->aux_wakeup) >= rb->aux_watermark) {
379 wakeup = true;
380 local_add(rb->aux_watermark, &rb->aux_wakeup);
381 }
382
383 if (wakeup) {
384 if (truncated)
385 handle->event->pending_disable = 1;
386 perf_output_wakeup(handle);
387 }
388
389 handle->event = NULL;
390
391 local_set(&rb->aux_nest, 0);
392 rb_free_aux(rb);
393 ring_buffer_put_async(rb);
394}
395
396/*
397 * Skip over a given number of bytes in the AUX buffer, due to, for example,
398 * hardware's alignment constraints.
399 */
400int perf_aux_output_skip(struct perf_output_handle *handle, unsigned long size)
401{
402 struct ring_buffer *rb = handle->rb;
403 unsigned long aux_head;
404
405 if (size > handle->size)
406 return -ENOSPC;
407
408 local_add(size, &rb->aux_head);
409
410 aux_head = rb->user_page->aux_head = local_read(&rb->aux_head);
411 if (aux_head - local_read(&rb->aux_wakeup) >= rb->aux_watermark) {
412 perf_output_wakeup(handle);
413 local_add(rb->aux_watermark, &rb->aux_wakeup);
414 handle->wakeup = local_read(&rb->aux_wakeup) +
415 rb->aux_watermark;
416 }
417
418 handle->head = aux_head;
419 handle->size -= size;
420
421 return 0;
422}
423
424void *perf_get_aux(struct perf_output_handle *handle)
425{
426 /* this is only valid between perf_aux_output_begin and *_end */
427 if (!handle->event)
428 return NULL;
429
430 return handle->rb->aux_priv;
431}
432
433#define PERF_AUX_GFP (GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN | __GFP_NORETRY)
434
435static struct page *rb_alloc_aux_page(int node, int order)
436{
437 struct page *page;
438
439 if (order > MAX_ORDER)
440 order = MAX_ORDER;
441
442 do {
443 page = alloc_pages_node(node, PERF_AUX_GFP, order);
444 } while (!page && order--);
445
446 if (page && order) {
447 /*
448 * Communicate the allocation size to the driver:
449 * if we managed to secure a high-order allocation,
450 * set its first page's private to this order;
451 * !PagePrivate(page) means it's just a normal page.
452 */
453 split_page(page, order);
454 SetPagePrivate(page);
455 set_page_private(page, order);
456 }
457
458 return page;
459}
460
461static void rb_free_aux_page(struct ring_buffer *rb, int idx)
462{
463 struct page *page = virt_to_page(rb->aux_pages[idx]);
464
465 ClearPagePrivate(page);
466 page->mapping = NULL;
467 __free_page(page);
468}
469
470static void __rb_free_aux(struct ring_buffer *rb)
471{
472 int pg;
473
474 if (rb->aux_priv) {
475 rb->free_aux(rb->aux_priv);
476 rb->free_aux = NULL;
477 rb->aux_priv = NULL;
478 }
479
480 if (rb->aux_nr_pages) {
481 for (pg = 0; pg < rb->aux_nr_pages; pg++)
482 rb_free_aux_page(rb, pg);
483
484 kfree(rb->aux_pages);
485 rb->aux_nr_pages = 0;
486 }
487}
488
489int rb_alloc_aux(struct ring_buffer *rb, struct perf_event *event,
490 pgoff_t pgoff, int nr_pages, long watermark, int flags)
491{
492 bool overwrite = !(flags & RING_BUFFER_WRITABLE);
493 int node = (event->cpu == -1) ? -1 : cpu_to_node(event->cpu);
494 int ret = -ENOMEM, max_order = 0;
495
496 if (!has_aux(event))
497 return -ENOTSUPP;
498
499 if (event->pmu->capabilities & PERF_PMU_CAP_AUX_NO_SG) {
500 /*
501 * We need to start with the max_order that fits in nr_pages,
502 * not the other way around, hence ilog2() and not get_order.
503 */
504 max_order = ilog2(nr_pages);
505
506 /*
507 * PMU requests more than one contiguous chunks of memory
508 * for SW double buffering
509 */
510 if ((event->pmu->capabilities & PERF_PMU_CAP_AUX_SW_DOUBLEBUF) &&
511 !overwrite) {
512 if (!max_order)
513 return -EINVAL;
514
515 max_order--;
516 }
517 }
518
519 rb->aux_pages = kzalloc_node(nr_pages * sizeof(void *), GFP_KERNEL, node);
520 if (!rb->aux_pages)
521 return -ENOMEM;
522
523 rb->free_aux = event->pmu->free_aux;
524 for (rb->aux_nr_pages = 0; rb->aux_nr_pages < nr_pages;) {
525 struct page *page;
526 int last, order;
527
528 order = min(max_order, ilog2(nr_pages - rb->aux_nr_pages));
529 page = rb_alloc_aux_page(node, order);
530 if (!page)
531 goto out;
532
533 for (last = rb->aux_nr_pages + (1 << page_private(page));
534 last > rb->aux_nr_pages; rb->aux_nr_pages++)
535 rb->aux_pages[rb->aux_nr_pages] = page_address(page++);
536 }
537
538 /*
539 * In overwrite mode, PMUs that don't support SG may not handle more
540 * than one contiguous allocation, since they rely on PMI to do double
541 * buffering. In this case, the entire buffer has to be one contiguous
542 * chunk.
543 */
544 if ((event->pmu->capabilities & PERF_PMU_CAP_AUX_NO_SG) &&
545 overwrite) {
546 struct page *page = virt_to_page(rb->aux_pages[0]);
547
548 if (page_private(page) != max_order)
549 goto out;
550 }
551
552 rb->aux_priv = event->pmu->setup_aux(event->cpu, rb->aux_pages, nr_pages,
553 overwrite);
554 if (!rb->aux_priv)
555 goto out;
556
557 ret = 0;
558
559 /*
560 * aux_pages (and pmu driver's private data, aux_priv) will be
561 * referenced in both producer's and consumer's contexts, thus
562 * we keep a refcount here to make sure either of the two can
563 * reference them safely.
564 */
565 atomic_set(&rb->aux_refcount, 1);
566
567 rb->aux_overwrite = overwrite;
568 rb->aux_watermark = watermark;
569
570 if (!rb->aux_watermark && !rb->aux_overwrite)
571 rb->aux_watermark = nr_pages << (PAGE_SHIFT - 1);
572
573out:
574 if (!ret)
575 rb->aux_pgoff = pgoff;
576 else
577 __rb_free_aux(rb);
578
579 return ret;
580}
581
582void rb_free_aux(struct ring_buffer *rb)
583{
584 if (atomic_dec_and_test(&rb->aux_refcount))
585 irq_work_queue(&rb->irq_work);
586}
587
588static void rb_irq_work(struct irq_work *work)
589{
590 struct ring_buffer *rb = container_of(work, struct ring_buffer, irq_work);
591
592 if (!atomic_read(&rb->aux_refcount))
593 __rb_free_aux(rb);
594
595 if (rb->rcu_head.next == (void *)rb)
596 call_rcu(&rb->rcu_head, rb_free_rcu);
597}
598
599#ifndef CONFIG_PERF_USE_VMALLOC
600
601/*
602 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
603 */
604
605static struct page *
606__perf_mmap_to_page(struct ring_buffer *rb, unsigned long pgoff)
607{
608 if (pgoff > rb->nr_pages)
609 return NULL;
610
611 if (pgoff == 0)
612 return virt_to_page(rb->user_page);
613
614 return virt_to_page(rb->data_pages[pgoff - 1]);
615}
616
617static void *perf_mmap_alloc_page(int cpu)
618{
619 struct page *page;
620 int node;
621
622 node = (cpu == -1) ? cpu : cpu_to_node(cpu);
623 page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
624 if (!page)
625 return NULL;
626
627 return page_address(page);
628}
629
630struct ring_buffer *rb_alloc(int nr_pages, long watermark, int cpu, int flags)
631{
632 struct ring_buffer *rb;
633 unsigned long size;
634 int i;
635
636 size = sizeof(struct ring_buffer);
637 size += nr_pages * sizeof(void *);
638
639 rb = kzalloc(size, GFP_KERNEL);
640 if (!rb)
641 goto fail;
642
643 rb->user_page = perf_mmap_alloc_page(cpu);
644 if (!rb->user_page)
645 goto fail_user_page;
646
647 for (i = 0; i < nr_pages; i++) {
648 rb->data_pages[i] = perf_mmap_alloc_page(cpu);
649 if (!rb->data_pages[i])
650 goto fail_data_pages;
651 }
652
653 rb->nr_pages = nr_pages;
654
655 ring_buffer_init(rb, watermark, flags);
656
657 return rb;
658
659fail_data_pages:
660 for (i--; i >= 0; i--)
661 free_page((unsigned long)rb->data_pages[i]);
662
663 free_page((unsigned long)rb->user_page);
664
665fail_user_page:
666 kfree(rb);
667
668fail:
669 return NULL;
670}
671
672static void perf_mmap_free_page(unsigned long addr)
673{
674 struct page *page = virt_to_page((void *)addr);
675
676 page->mapping = NULL;
677 __free_page(page);
678}
679
680void rb_free(struct ring_buffer *rb)
681{
682 int i;
683
684 perf_mmap_free_page((unsigned long)rb->user_page);
685 for (i = 0; i < rb->nr_pages; i++)
686 perf_mmap_free_page((unsigned long)rb->data_pages[i]);
687 kfree(rb);
688}
689
690#else
691static int data_page_nr(struct ring_buffer *rb)
692{
693 return rb->nr_pages << page_order(rb);
694}
695
696static struct page *
697__perf_mmap_to_page(struct ring_buffer *rb, unsigned long pgoff)
698{
699 /* The '>' counts in the user page. */
700 if (pgoff > data_page_nr(rb))
701 return NULL;
702
703 return vmalloc_to_page((void *)rb->user_page + pgoff * PAGE_SIZE);
704}
705
706static void perf_mmap_unmark_page(void *addr)
707{
708 struct page *page = vmalloc_to_page(addr);
709
710 page->mapping = NULL;
711}
712
713static void rb_free_work(struct work_struct *work)
714{
715 struct ring_buffer *rb;
716 void *base;
717 int i, nr;
718
719 rb = container_of(work, struct ring_buffer, work);
720 nr = data_page_nr(rb);
721
722 base = rb->user_page;
723 /* The '<=' counts in the user page. */
724 for (i = 0; i <= nr; i++)
725 perf_mmap_unmark_page(base + (i * PAGE_SIZE));
726
727 vfree(base);
728 kfree(rb);
729}
730
731void rb_free(struct ring_buffer *rb)
732{
733 schedule_work(&rb->work);
734}
735
736struct ring_buffer *rb_alloc(int nr_pages, long watermark, int cpu, int flags)
737{
738 struct ring_buffer *rb;
739 unsigned long size;
740 void *all_buf;
741
742 size = sizeof(struct ring_buffer);
743 size += sizeof(void *);
744
745 rb = kzalloc(size, GFP_KERNEL);
746 if (!rb)
747 goto fail;
748
749 INIT_WORK(&rb->work, rb_free_work);
750
751 all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
752 if (!all_buf)
753 goto fail_all_buf;
754
755 rb->user_page = all_buf;
756 rb->data_pages[0] = all_buf + PAGE_SIZE;
757 if (nr_pages) {
758 rb->nr_pages = 1;
759 rb->page_order = ilog2(nr_pages);
760 }
761
762 ring_buffer_init(rb, watermark, flags);
763
764 return rb;
765
766fail_all_buf:
767 kfree(rb);
768
769fail:
770 return NULL;
771}
772
773#endif
774
775struct page *
776perf_mmap_to_page(struct ring_buffer *rb, unsigned long pgoff)
777{
778 if (rb->aux_nr_pages) {
779 /* above AUX space */
780 if (pgoff > rb->aux_pgoff + rb->aux_nr_pages)
781 return NULL;
782
783 /* AUX space */
784 if (pgoff >= rb->aux_pgoff)
785 return virt_to_page(rb->aux_pages[pgoff - rb->aux_pgoff]);
786 }
787
788 return __perf_mmap_to_page(rb, pgoff);
789}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Performance events ring-buffer code:
4 *
5 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
6 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9 */
10
11#include <linux/perf_event.h>
12#include <linux/vmalloc.h>
13#include <linux/slab.h>
14#include <linux/circ_buf.h>
15#include <linux/poll.h>
16#include <linux/nospec.h>
17
18#include "internal.h"
19
20static void perf_output_wakeup(struct perf_output_handle *handle)
21{
22 atomic_set(&handle->rb->poll, EPOLLIN);
23
24 handle->event->pending_wakeup = 1;
25
26 if (*perf_event_fasync(handle->event) && !handle->event->pending_kill)
27 handle->event->pending_kill = POLL_IN;
28
29 irq_work_queue(&handle->event->pending_irq);
30}
31
32/*
33 * We need to ensure a later event_id doesn't publish a head when a former
34 * event isn't done writing. However since we need to deal with NMIs we
35 * cannot fully serialize things.
36 *
37 * We only publish the head (and generate a wakeup) when the outer-most
38 * event completes.
39 */
40static void perf_output_get_handle(struct perf_output_handle *handle)
41{
42 struct perf_buffer *rb = handle->rb;
43
44 preempt_disable();
45
46 /*
47 * Avoid an explicit LOAD/STORE such that architectures with memops
48 * can use them.
49 */
50 (*(volatile unsigned int *)&rb->nest)++;
51 handle->wakeup = local_read(&rb->wakeup);
52}
53
54static void perf_output_put_handle(struct perf_output_handle *handle)
55{
56 struct perf_buffer *rb = handle->rb;
57 unsigned long head;
58 unsigned int nest;
59
60 /*
61 * If this isn't the outermost nesting, we don't have to update
62 * @rb->user_page->data_head.
63 */
64 nest = READ_ONCE(rb->nest);
65 if (nest > 1) {
66 WRITE_ONCE(rb->nest, nest - 1);
67 goto out;
68 }
69
70again:
71 /*
72 * In order to avoid publishing a head value that goes backwards,
73 * we must ensure the load of @rb->head happens after we've
74 * incremented @rb->nest.
75 *
76 * Otherwise we can observe a @rb->head value before one published
77 * by an IRQ/NMI happening between the load and the increment.
78 */
79 barrier();
80 head = local_read(&rb->head);
81
82 /*
83 * IRQ/NMI can happen here and advance @rb->head, causing our
84 * load above to be stale.
85 */
86
87 /*
88 * Since the mmap() consumer (userspace) can run on a different CPU:
89 *
90 * kernel user
91 *
92 * if (LOAD ->data_tail) { LOAD ->data_head
93 * (A) smp_rmb() (C)
94 * STORE $data LOAD $data
95 * smp_wmb() (B) smp_mb() (D)
96 * STORE ->data_head STORE ->data_tail
97 * }
98 *
99 * Where A pairs with D, and B pairs with C.
100 *
101 * In our case (A) is a control dependency that separates the load of
102 * the ->data_tail and the stores of $data. In case ->data_tail
103 * indicates there is no room in the buffer to store $data we do not.
104 *
105 * D needs to be a full barrier since it separates the data READ
106 * from the tail WRITE.
107 *
108 * For B a WMB is sufficient since it separates two WRITEs, and for C
109 * an RMB is sufficient since it separates two READs.
110 *
111 * See perf_output_begin().
112 */
113 smp_wmb(); /* B, matches C */
114 WRITE_ONCE(rb->user_page->data_head, head);
115
116 /*
117 * We must publish the head before decrementing the nest count,
118 * otherwise an IRQ/NMI can publish a more recent head value and our
119 * write will (temporarily) publish a stale value.
120 */
121 barrier();
122 WRITE_ONCE(rb->nest, 0);
123
124 /*
125 * Ensure we decrement @rb->nest before we validate the @rb->head.
126 * Otherwise we cannot be sure we caught the 'last' nested update.
127 */
128 barrier();
129 if (unlikely(head != local_read(&rb->head))) {
130 WRITE_ONCE(rb->nest, 1);
131 goto again;
132 }
133
134 if (handle->wakeup != local_read(&rb->wakeup))
135 perf_output_wakeup(handle);
136
137out:
138 preempt_enable();
139}
140
141static __always_inline bool
142ring_buffer_has_space(unsigned long head, unsigned long tail,
143 unsigned long data_size, unsigned int size,
144 bool backward)
145{
146 if (!backward)
147 return CIRC_SPACE(head, tail, data_size) >= size;
148 else
149 return CIRC_SPACE(tail, head, data_size) >= size;
150}
151
152static __always_inline int
153__perf_output_begin(struct perf_output_handle *handle,
154 struct perf_sample_data *data,
155 struct perf_event *event, unsigned int size,
156 bool backward)
157{
158 struct perf_buffer *rb;
159 unsigned long tail, offset, head;
160 int have_lost, page_shift;
161 struct {
162 struct perf_event_header header;
163 u64 id;
164 u64 lost;
165 } lost_event;
166
167 rcu_read_lock();
168 /*
169 * For inherited events we send all the output towards the parent.
170 */
171 if (event->parent)
172 event = event->parent;
173
174 rb = rcu_dereference(event->rb);
175 if (unlikely(!rb))
176 goto out;
177
178 if (unlikely(rb->paused)) {
179 if (rb->nr_pages) {
180 local_inc(&rb->lost);
181 atomic64_inc(&event->lost_samples);
182 }
183 goto out;
184 }
185
186 handle->rb = rb;
187 handle->event = event;
188
189 have_lost = local_read(&rb->lost);
190 if (unlikely(have_lost)) {
191 size += sizeof(lost_event);
192 if (event->attr.sample_id_all)
193 size += event->id_header_size;
194 }
195
196 perf_output_get_handle(handle);
197
198 offset = local_read(&rb->head);
199 do {
200 head = offset;
201 tail = READ_ONCE(rb->user_page->data_tail);
202 if (!rb->overwrite) {
203 if (unlikely(!ring_buffer_has_space(head, tail,
204 perf_data_size(rb),
205 size, backward)))
206 goto fail;
207 }
208
209 /*
210 * The above forms a control dependency barrier separating the
211 * @tail load above from the data stores below. Since the @tail
212 * load is required to compute the branch to fail below.
213 *
214 * A, matches D; the full memory barrier userspace SHOULD issue
215 * after reading the data and before storing the new tail
216 * position.
217 *
218 * See perf_output_put_handle().
219 */
220
221 if (!backward)
222 head += size;
223 else
224 head -= size;
225 } while (!local_try_cmpxchg(&rb->head, &offset, head));
226
227 if (backward) {
228 offset = head;
229 head = (u64)(-head);
230 }
231
232 /*
233 * We rely on the implied barrier() by local_cmpxchg() to ensure
234 * none of the data stores below can be lifted up by the compiler.
235 */
236
237 if (unlikely(head - local_read(&rb->wakeup) > rb->watermark))
238 local_add(rb->watermark, &rb->wakeup);
239
240 page_shift = PAGE_SHIFT + page_order(rb);
241
242 handle->page = (offset >> page_shift) & (rb->nr_pages - 1);
243 offset &= (1UL << page_shift) - 1;
244 handle->addr = rb->data_pages[handle->page] + offset;
245 handle->size = (1UL << page_shift) - offset;
246
247 if (unlikely(have_lost)) {
248 lost_event.header.size = sizeof(lost_event);
249 lost_event.header.type = PERF_RECORD_LOST;
250 lost_event.header.misc = 0;
251 lost_event.id = event->id;
252 lost_event.lost = local_xchg(&rb->lost, 0);
253
254 /* XXX mostly redundant; @data is already fully initializes */
255 perf_event_header__init_id(&lost_event.header, data, event);
256 perf_output_put(handle, lost_event);
257 perf_event__output_id_sample(event, handle, data);
258 }
259
260 return 0;
261
262fail:
263 local_inc(&rb->lost);
264 atomic64_inc(&event->lost_samples);
265 perf_output_put_handle(handle);
266out:
267 rcu_read_unlock();
268
269 return -ENOSPC;
270}
271
272int perf_output_begin_forward(struct perf_output_handle *handle,
273 struct perf_sample_data *data,
274 struct perf_event *event, unsigned int size)
275{
276 return __perf_output_begin(handle, data, event, size, false);
277}
278
279int perf_output_begin_backward(struct perf_output_handle *handle,
280 struct perf_sample_data *data,
281 struct perf_event *event, unsigned int size)
282{
283 return __perf_output_begin(handle, data, event, size, true);
284}
285
286int perf_output_begin(struct perf_output_handle *handle,
287 struct perf_sample_data *data,
288 struct perf_event *event, unsigned int size)
289{
290
291 return __perf_output_begin(handle, data, event, size,
292 unlikely(is_write_backward(event)));
293}
294
295unsigned int perf_output_copy(struct perf_output_handle *handle,
296 const void *buf, unsigned int len)
297{
298 return __output_copy(handle, buf, len);
299}
300
301unsigned int perf_output_skip(struct perf_output_handle *handle,
302 unsigned int len)
303{
304 return __output_skip(handle, NULL, len);
305}
306
307void perf_output_end(struct perf_output_handle *handle)
308{
309 perf_output_put_handle(handle);
310 rcu_read_unlock();
311}
312
313static void
314ring_buffer_init(struct perf_buffer *rb, long watermark, int flags)
315{
316 long max_size = perf_data_size(rb);
317
318 if (watermark)
319 rb->watermark = min(max_size, watermark);
320
321 if (!rb->watermark)
322 rb->watermark = max_size / 2;
323
324 if (flags & RING_BUFFER_WRITABLE)
325 rb->overwrite = 0;
326 else
327 rb->overwrite = 1;
328
329 refcount_set(&rb->refcount, 1);
330
331 INIT_LIST_HEAD(&rb->event_list);
332 spin_lock_init(&rb->event_lock);
333
334 /*
335 * perf_output_begin() only checks rb->paused, therefore
336 * rb->paused must be true if we have no pages for output.
337 */
338 if (!rb->nr_pages)
339 rb->paused = 1;
340
341 mutex_init(&rb->aux_mutex);
342}
343
344void perf_aux_output_flag(struct perf_output_handle *handle, u64 flags)
345{
346 /*
347 * OVERWRITE is determined by perf_aux_output_end() and can't
348 * be passed in directly.
349 */
350 if (WARN_ON_ONCE(flags & PERF_AUX_FLAG_OVERWRITE))
351 return;
352
353 handle->aux_flags |= flags;
354}
355EXPORT_SYMBOL_GPL(perf_aux_output_flag);
356
357/*
358 * This is called before hardware starts writing to the AUX area to
359 * obtain an output handle and make sure there's room in the buffer.
360 * When the capture completes, call perf_aux_output_end() to commit
361 * the recorded data to the buffer.
362 *
363 * The ordering is similar to that of perf_output_{begin,end}, with
364 * the exception of (B), which should be taken care of by the pmu
365 * driver, since ordering rules will differ depending on hardware.
366 *
367 * Call this from pmu::start(); see the comment in perf_aux_output_end()
368 * about its use in pmu callbacks. Both can also be called from the PMI
369 * handler if needed.
370 */
371void *perf_aux_output_begin(struct perf_output_handle *handle,
372 struct perf_event *event)
373{
374 struct perf_event *output_event = event;
375 unsigned long aux_head, aux_tail;
376 struct perf_buffer *rb;
377 unsigned int nest;
378
379 if (output_event->parent)
380 output_event = output_event->parent;
381
382 /*
383 * Since this will typically be open across pmu::add/pmu::del, we
384 * grab ring_buffer's refcount instead of holding rcu read lock
385 * to make sure it doesn't disappear under us.
386 */
387 rb = ring_buffer_get(output_event);
388 if (!rb)
389 return NULL;
390
391 if (!rb_has_aux(rb))
392 goto err;
393
394 /*
395 * If aux_mmap_count is zero, the aux buffer is in perf_mmap_close(),
396 * about to get freed, so we leave immediately.
397 *
398 * Checking rb::aux_mmap_count and rb::refcount has to be done in
399 * the same order, see perf_mmap_close. Otherwise we end up freeing
400 * aux pages in this path, which is a bug, because in_atomic().
401 */
402 if (!atomic_read(&rb->aux_mmap_count))
403 goto err;
404
405 if (!refcount_inc_not_zero(&rb->aux_refcount))
406 goto err;
407
408 nest = READ_ONCE(rb->aux_nest);
409 /*
410 * Nesting is not supported for AUX area, make sure nested
411 * writers are caught early
412 */
413 if (WARN_ON_ONCE(nest))
414 goto err_put;
415
416 WRITE_ONCE(rb->aux_nest, nest + 1);
417
418 aux_head = rb->aux_head;
419
420 handle->rb = rb;
421 handle->event = event;
422 handle->head = aux_head;
423 handle->size = 0;
424 handle->aux_flags = 0;
425
426 /*
427 * In overwrite mode, AUX data stores do not depend on aux_tail,
428 * therefore (A) control dependency barrier does not exist. The
429 * (B) <-> (C) ordering is still observed by the pmu driver.
430 */
431 if (!rb->aux_overwrite) {
432 aux_tail = READ_ONCE(rb->user_page->aux_tail);
433 handle->wakeup = rb->aux_wakeup + rb->aux_watermark;
434 if (aux_head - aux_tail < perf_aux_size(rb))
435 handle->size = CIRC_SPACE(aux_head, aux_tail, perf_aux_size(rb));
436
437 /*
438 * handle->size computation depends on aux_tail load; this forms a
439 * control dependency barrier separating aux_tail load from aux data
440 * store that will be enabled on successful return
441 */
442 if (!handle->size) { /* A, matches D */
443 event->pending_disable = smp_processor_id();
444 perf_output_wakeup(handle);
445 WRITE_ONCE(rb->aux_nest, 0);
446 goto err_put;
447 }
448 }
449
450 return handle->rb->aux_priv;
451
452err_put:
453 /* can't be last */
454 rb_free_aux(rb);
455
456err:
457 ring_buffer_put(rb);
458 handle->event = NULL;
459
460 return NULL;
461}
462EXPORT_SYMBOL_GPL(perf_aux_output_begin);
463
464static __always_inline bool rb_need_aux_wakeup(struct perf_buffer *rb)
465{
466 if (rb->aux_overwrite)
467 return false;
468
469 if (rb->aux_head - rb->aux_wakeup >= rb->aux_watermark) {
470 rb->aux_wakeup = rounddown(rb->aux_head, rb->aux_watermark);
471 return true;
472 }
473
474 return false;
475}
476
477/*
478 * Commit the data written by hardware into the ring buffer by adjusting
479 * aux_head and posting a PERF_RECORD_AUX into the perf buffer. It is the
480 * pmu driver's responsibility to observe ordering rules of the hardware,
481 * so that all the data is externally visible before this is called.
482 *
483 * Note: this has to be called from pmu::stop() callback, as the assumption
484 * of the AUX buffer management code is that after pmu::stop(), the AUX
485 * transaction must be stopped and therefore drop the AUX reference count.
486 */
487void perf_aux_output_end(struct perf_output_handle *handle, unsigned long size)
488{
489 bool wakeup = !!(handle->aux_flags & PERF_AUX_FLAG_TRUNCATED);
490 struct perf_buffer *rb = handle->rb;
491 unsigned long aux_head;
492
493 /* in overwrite mode, driver provides aux_head via handle */
494 if (rb->aux_overwrite) {
495 handle->aux_flags |= PERF_AUX_FLAG_OVERWRITE;
496
497 aux_head = handle->head;
498 rb->aux_head = aux_head;
499 } else {
500 handle->aux_flags &= ~PERF_AUX_FLAG_OVERWRITE;
501
502 aux_head = rb->aux_head;
503 rb->aux_head += size;
504 }
505
506 /*
507 * Only send RECORD_AUX if we have something useful to communicate
508 *
509 * Note: the OVERWRITE records by themselves are not considered
510 * useful, as they don't communicate any *new* information,
511 * aside from the short-lived offset, that becomes history at
512 * the next event sched-in and therefore isn't useful.
513 * The userspace that needs to copy out AUX data in overwrite
514 * mode should know to use user_page::aux_head for the actual
515 * offset. So, from now on we don't output AUX records that
516 * have *only* OVERWRITE flag set.
517 */
518 if (size || (handle->aux_flags & ~(u64)PERF_AUX_FLAG_OVERWRITE))
519 perf_event_aux_event(handle->event, aux_head, size,
520 handle->aux_flags);
521
522 WRITE_ONCE(rb->user_page->aux_head, rb->aux_head);
523 if (rb_need_aux_wakeup(rb))
524 wakeup = true;
525
526 if (wakeup) {
527 if (handle->aux_flags & PERF_AUX_FLAG_TRUNCATED)
528 handle->event->pending_disable = smp_processor_id();
529 perf_output_wakeup(handle);
530 }
531
532 handle->event = NULL;
533
534 WRITE_ONCE(rb->aux_nest, 0);
535 /* can't be last */
536 rb_free_aux(rb);
537 ring_buffer_put(rb);
538}
539EXPORT_SYMBOL_GPL(perf_aux_output_end);
540
541/*
542 * Skip over a given number of bytes in the AUX buffer, due to, for example,
543 * hardware's alignment constraints.
544 */
545int perf_aux_output_skip(struct perf_output_handle *handle, unsigned long size)
546{
547 struct perf_buffer *rb = handle->rb;
548
549 if (size > handle->size)
550 return -ENOSPC;
551
552 rb->aux_head += size;
553
554 WRITE_ONCE(rb->user_page->aux_head, rb->aux_head);
555 if (rb_need_aux_wakeup(rb)) {
556 perf_output_wakeup(handle);
557 handle->wakeup = rb->aux_wakeup + rb->aux_watermark;
558 }
559
560 handle->head = rb->aux_head;
561 handle->size -= size;
562
563 return 0;
564}
565EXPORT_SYMBOL_GPL(perf_aux_output_skip);
566
567void *perf_get_aux(struct perf_output_handle *handle)
568{
569 /* this is only valid between perf_aux_output_begin and *_end */
570 if (!handle->event)
571 return NULL;
572
573 return handle->rb->aux_priv;
574}
575EXPORT_SYMBOL_GPL(perf_get_aux);
576
577/*
578 * Copy out AUX data from an AUX handle.
579 */
580long perf_output_copy_aux(struct perf_output_handle *aux_handle,
581 struct perf_output_handle *handle,
582 unsigned long from, unsigned long to)
583{
584 struct perf_buffer *rb = aux_handle->rb;
585 unsigned long tocopy, remainder, len = 0;
586 void *addr;
587
588 from &= (rb->aux_nr_pages << PAGE_SHIFT) - 1;
589 to &= (rb->aux_nr_pages << PAGE_SHIFT) - 1;
590
591 do {
592 tocopy = PAGE_SIZE - offset_in_page(from);
593 if (to > from)
594 tocopy = min(tocopy, to - from);
595 if (!tocopy)
596 break;
597
598 addr = rb->aux_pages[from >> PAGE_SHIFT];
599 addr += offset_in_page(from);
600
601 remainder = perf_output_copy(handle, addr, tocopy);
602 if (remainder)
603 return -EFAULT;
604
605 len += tocopy;
606 from += tocopy;
607 from &= (rb->aux_nr_pages << PAGE_SHIFT) - 1;
608 } while (to != from);
609
610 return len;
611}
612
613#define PERF_AUX_GFP (GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN | __GFP_NORETRY)
614
615static struct page *rb_alloc_aux_page(int node, int order)
616{
617 struct page *page;
618
619 if (order > MAX_PAGE_ORDER)
620 order = MAX_PAGE_ORDER;
621
622 do {
623 page = alloc_pages_node(node, PERF_AUX_GFP, order);
624 } while (!page && order--);
625
626 if (page && order) {
627 /*
628 * Communicate the allocation size to the driver:
629 * if we managed to secure a high-order allocation,
630 * set its first page's private to this order;
631 * !PagePrivate(page) means it's just a normal page.
632 */
633 split_page(page, order);
634 SetPagePrivate(page);
635 set_page_private(page, order);
636 }
637
638 return page;
639}
640
641static void rb_free_aux_page(struct perf_buffer *rb, int idx)
642{
643 struct page *page = virt_to_page(rb->aux_pages[idx]);
644
645 ClearPagePrivate(page);
646 page->mapping = NULL;
647 __free_page(page);
648}
649
650static void __rb_free_aux(struct perf_buffer *rb)
651{
652 int pg;
653
654 /*
655 * Should never happen, the last reference should be dropped from
656 * perf_mmap_close() path, which first stops aux transactions (which
657 * in turn are the atomic holders of aux_refcount) and then does the
658 * last rb_free_aux().
659 */
660 WARN_ON_ONCE(in_atomic());
661
662 if (rb->aux_priv) {
663 rb->free_aux(rb->aux_priv);
664 rb->free_aux = NULL;
665 rb->aux_priv = NULL;
666 }
667
668 if (rb->aux_nr_pages) {
669 for (pg = 0; pg < rb->aux_nr_pages; pg++)
670 rb_free_aux_page(rb, pg);
671
672 kfree(rb->aux_pages);
673 rb->aux_nr_pages = 0;
674 }
675}
676
677int rb_alloc_aux(struct perf_buffer *rb, struct perf_event *event,
678 pgoff_t pgoff, int nr_pages, long watermark, int flags)
679{
680 bool overwrite = !(flags & RING_BUFFER_WRITABLE);
681 int node = (event->cpu == -1) ? -1 : cpu_to_node(event->cpu);
682 int ret = -ENOMEM, max_order;
683
684 if (!has_aux(event))
685 return -EOPNOTSUPP;
686
687 if (nr_pages <= 0)
688 return -EINVAL;
689
690 if (!overwrite) {
691 /*
692 * Watermark defaults to half the buffer, and so does the
693 * max_order, to aid PMU drivers in double buffering.
694 */
695 if (!watermark)
696 watermark = min_t(unsigned long,
697 U32_MAX,
698 (unsigned long)nr_pages << (PAGE_SHIFT - 1));
699
700 /*
701 * Use aux_watermark as the basis for chunking to
702 * help PMU drivers honor the watermark.
703 */
704 max_order = get_order(watermark);
705 } else {
706 /*
707 * We need to start with the max_order that fits in nr_pages,
708 * not the other way around, hence ilog2() and not get_order.
709 */
710 max_order = ilog2(nr_pages);
711 watermark = 0;
712 }
713
714 /*
715 * kcalloc_node() is unable to allocate buffer if the size is larger
716 * than: PAGE_SIZE << MAX_PAGE_ORDER; directly bail out in this case.
717 */
718 if (get_order((unsigned long)nr_pages * sizeof(void *)) > MAX_PAGE_ORDER)
719 return -ENOMEM;
720 rb->aux_pages = kcalloc_node(nr_pages, sizeof(void *), GFP_KERNEL,
721 node);
722 if (!rb->aux_pages)
723 return -ENOMEM;
724
725 rb->free_aux = event->pmu->free_aux;
726 for (rb->aux_nr_pages = 0; rb->aux_nr_pages < nr_pages;) {
727 struct page *page;
728 int last, order;
729
730 order = min(max_order, ilog2(nr_pages - rb->aux_nr_pages));
731 page = rb_alloc_aux_page(node, order);
732 if (!page)
733 goto out;
734
735 for (last = rb->aux_nr_pages + (1 << page_private(page));
736 last > rb->aux_nr_pages; rb->aux_nr_pages++)
737 rb->aux_pages[rb->aux_nr_pages] = page_address(page++);
738 }
739
740 /*
741 * In overwrite mode, PMUs that don't support SG may not handle more
742 * than one contiguous allocation, since they rely on PMI to do double
743 * buffering. In this case, the entire buffer has to be one contiguous
744 * chunk.
745 */
746 if ((event->pmu->capabilities & PERF_PMU_CAP_AUX_NO_SG) &&
747 overwrite) {
748 struct page *page = virt_to_page(rb->aux_pages[0]);
749
750 if (page_private(page) != max_order)
751 goto out;
752 }
753
754 rb->aux_priv = event->pmu->setup_aux(event, rb->aux_pages, nr_pages,
755 overwrite);
756 if (!rb->aux_priv)
757 goto out;
758
759 ret = 0;
760
761 /*
762 * aux_pages (and pmu driver's private data, aux_priv) will be
763 * referenced in both producer's and consumer's contexts, thus
764 * we keep a refcount here to make sure either of the two can
765 * reference them safely.
766 */
767 refcount_set(&rb->aux_refcount, 1);
768
769 rb->aux_overwrite = overwrite;
770 rb->aux_watermark = watermark;
771
772out:
773 if (!ret)
774 rb->aux_pgoff = pgoff;
775 else
776 __rb_free_aux(rb);
777
778 return ret;
779}
780
781void rb_free_aux(struct perf_buffer *rb)
782{
783 if (refcount_dec_and_test(&rb->aux_refcount))
784 __rb_free_aux(rb);
785}
786
787#ifndef CONFIG_PERF_USE_VMALLOC
788
789/*
790 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
791 */
792
793static struct page *
794__perf_mmap_to_page(struct perf_buffer *rb, unsigned long pgoff)
795{
796 if (pgoff > rb->nr_pages)
797 return NULL;
798
799 if (pgoff == 0)
800 return virt_to_page(rb->user_page);
801
802 return virt_to_page(rb->data_pages[pgoff - 1]);
803}
804
805static void *perf_mmap_alloc_page(int cpu)
806{
807 struct page *page;
808 int node;
809
810 node = (cpu == -1) ? cpu : cpu_to_node(cpu);
811 page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
812 if (!page)
813 return NULL;
814
815 return page_address(page);
816}
817
818static void perf_mmap_free_page(void *addr)
819{
820 struct page *page = virt_to_page(addr);
821
822 page->mapping = NULL;
823 __free_page(page);
824}
825
826struct perf_buffer *rb_alloc(int nr_pages, long watermark, int cpu, int flags)
827{
828 struct perf_buffer *rb;
829 unsigned long size;
830 int i, node;
831
832 size = sizeof(struct perf_buffer);
833 size += nr_pages * sizeof(void *);
834
835 if (order_base_2(size) > PAGE_SHIFT+MAX_PAGE_ORDER)
836 goto fail;
837
838 node = (cpu == -1) ? cpu : cpu_to_node(cpu);
839 rb = kzalloc_node(size, GFP_KERNEL, node);
840 if (!rb)
841 goto fail;
842
843 rb->user_page = perf_mmap_alloc_page(cpu);
844 if (!rb->user_page)
845 goto fail_user_page;
846
847 for (i = 0; i < nr_pages; i++) {
848 rb->data_pages[i] = perf_mmap_alloc_page(cpu);
849 if (!rb->data_pages[i])
850 goto fail_data_pages;
851 }
852
853 rb->nr_pages = nr_pages;
854
855 ring_buffer_init(rb, watermark, flags);
856
857 return rb;
858
859fail_data_pages:
860 for (i--; i >= 0; i--)
861 perf_mmap_free_page(rb->data_pages[i]);
862
863 perf_mmap_free_page(rb->user_page);
864
865fail_user_page:
866 kfree(rb);
867
868fail:
869 return NULL;
870}
871
872void rb_free(struct perf_buffer *rb)
873{
874 int i;
875
876 perf_mmap_free_page(rb->user_page);
877 for (i = 0; i < rb->nr_pages; i++)
878 perf_mmap_free_page(rb->data_pages[i]);
879 kfree(rb);
880}
881
882#else
883static struct page *
884__perf_mmap_to_page(struct perf_buffer *rb, unsigned long pgoff)
885{
886 /* The '>' counts in the user page. */
887 if (pgoff > data_page_nr(rb))
888 return NULL;
889
890 return vmalloc_to_page((void *)rb->user_page + pgoff * PAGE_SIZE);
891}
892
893static void perf_mmap_unmark_page(void *addr)
894{
895 struct page *page = vmalloc_to_page(addr);
896
897 page->mapping = NULL;
898}
899
900static void rb_free_work(struct work_struct *work)
901{
902 struct perf_buffer *rb;
903 void *base;
904 int i, nr;
905
906 rb = container_of(work, struct perf_buffer, work);
907 nr = data_page_nr(rb);
908
909 base = rb->user_page;
910 /* The '<=' counts in the user page. */
911 for (i = 0; i <= nr; i++)
912 perf_mmap_unmark_page(base + (i * PAGE_SIZE));
913
914 vfree(base);
915 kfree(rb);
916}
917
918void rb_free(struct perf_buffer *rb)
919{
920 schedule_work(&rb->work);
921}
922
923struct perf_buffer *rb_alloc(int nr_pages, long watermark, int cpu, int flags)
924{
925 struct perf_buffer *rb;
926 unsigned long size;
927 void *all_buf;
928 int node;
929
930 size = sizeof(struct perf_buffer);
931 size += sizeof(void *);
932
933 node = (cpu == -1) ? cpu : cpu_to_node(cpu);
934 rb = kzalloc_node(size, GFP_KERNEL, node);
935 if (!rb)
936 goto fail;
937
938 INIT_WORK(&rb->work, rb_free_work);
939
940 all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
941 if (!all_buf)
942 goto fail_all_buf;
943
944 rb->user_page = all_buf;
945 rb->data_pages[0] = all_buf + PAGE_SIZE;
946 if (nr_pages) {
947 rb->nr_pages = 1;
948 rb->page_order = ilog2(nr_pages);
949 }
950
951 ring_buffer_init(rb, watermark, flags);
952
953 return rb;
954
955fail_all_buf:
956 kfree(rb);
957
958fail:
959 return NULL;
960}
961
962#endif
963
964struct page *
965perf_mmap_to_page(struct perf_buffer *rb, unsigned long pgoff)
966{
967 if (rb->aux_nr_pages) {
968 /* above AUX space */
969 if (pgoff > rb->aux_pgoff + rb->aux_nr_pages)
970 return NULL;
971
972 /* AUX space */
973 if (pgoff >= rb->aux_pgoff) {
974 int aux_pgoff = array_index_nospec(pgoff - rb->aux_pgoff, rb->aux_nr_pages);
975 return virt_to_page(rb->aux_pages[aux_pgoff]);
976 }
977 }
978
979 return __perf_mmap_to_page(rb, pgoff);
980}