Linux Audio

Check our new training course

Loading...
v4.6
  1/*
  2 * Performance events ring-buffer code:
  3 *
  4 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
  5 *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
  6 *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
  7 *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
  8 *
  9 * For licensing details see kernel-base/COPYING
 10 */
 11
 12#include <linux/perf_event.h>
 13#include <linux/vmalloc.h>
 14#include <linux/slab.h>
 15#include <linux/circ_buf.h>
 16#include <linux/poll.h>
 17
 18#include "internal.h"
 19
 20static void perf_output_wakeup(struct perf_output_handle *handle)
 21{
 22	atomic_set(&handle->rb->poll, POLLIN);
 23
 24	handle->event->pending_wakeup = 1;
 25	irq_work_queue(&handle->event->pending);
 26}
 27
 28/*
 29 * We need to ensure a later event_id doesn't publish a head when a former
 30 * event isn't done writing. However since we need to deal with NMIs we
 31 * cannot fully serialize things.
 32 *
 33 * We only publish the head (and generate a wakeup) when the outer-most
 34 * event completes.
 35 */
 36static void perf_output_get_handle(struct perf_output_handle *handle)
 37{
 38	struct ring_buffer *rb = handle->rb;
 39
 40	preempt_disable();
 41	local_inc(&rb->nest);
 42	handle->wakeup = local_read(&rb->wakeup);
 43}
 44
 45static void perf_output_put_handle(struct perf_output_handle *handle)
 46{
 47	struct ring_buffer *rb = handle->rb;
 48	unsigned long head;
 49
 50again:
 51	head = local_read(&rb->head);
 52
 53	/*
 54	 * IRQ/NMI can happen here, which means we can miss a head update.
 55	 */
 56
 57	if (!local_dec_and_test(&rb->nest))
 58		goto out;
 59
 60	/*
 61	 * Since the mmap() consumer (userspace) can run on a different CPU:
 62	 *
 63	 *   kernel				user
 64	 *
 65	 *   if (LOAD ->data_tail) {		LOAD ->data_head
 66	 *			(A)		smp_rmb()	(C)
 67	 *	STORE $data			LOAD $data
 68	 *	smp_wmb()	(B)		smp_mb()	(D)
 69	 *	STORE ->data_head		STORE ->data_tail
 70	 *   }
 71	 *
 72	 * Where A pairs with D, and B pairs with C.
 73	 *
 74	 * In our case (A) is a control dependency that separates the load of
 75	 * the ->data_tail and the stores of $data. In case ->data_tail
 76	 * indicates there is no room in the buffer to store $data we do not.
 77	 *
 78	 * D needs to be a full barrier since it separates the data READ
 79	 * from the tail WRITE.
 80	 *
 81	 * For B a WMB is sufficient since it separates two WRITEs, and for C
 82	 * an RMB is sufficient since it separates two READs.
 83	 *
 84	 * See perf_output_begin().
 85	 */
 86	smp_wmb(); /* B, matches C */
 87	rb->user_page->data_head = head;
 88
 89	/*
 90	 * Now check if we missed an update -- rely on previous implied
 91	 * compiler barriers to force a re-read.
 92	 */
 93	if (unlikely(head != local_read(&rb->head))) {
 94		local_inc(&rb->nest);
 95		goto again;
 96	}
 97
 98	if (handle->wakeup != local_read(&rb->wakeup))
 99		perf_output_wakeup(handle);
100
101out:
102	preempt_enable();
103}
104
105int perf_output_begin(struct perf_output_handle *handle,
106		      struct perf_event *event, unsigned int size)
107{
108	struct ring_buffer *rb;
109	unsigned long tail, offset, head;
110	int have_lost, page_shift;
111	struct {
112		struct perf_event_header header;
113		u64			 id;
114		u64			 lost;
115	} lost_event;
116
117	rcu_read_lock();
118	/*
119	 * For inherited events we send all the output towards the parent.
120	 */
121	if (event->parent)
122		event = event->parent;
123
124	rb = rcu_dereference(event->rb);
125	if (unlikely(!rb))
126		goto out;
127
128	if (unlikely(!rb->nr_pages))
129		goto out;
130
131	handle->rb    = rb;
132	handle->event = event;
133
134	have_lost = local_read(&rb->lost);
135	if (unlikely(have_lost)) {
136		size += sizeof(lost_event);
137		if (event->attr.sample_id_all)
138			size += event->id_header_size;
139	}
140
141	perf_output_get_handle(handle);
142
143	do {
144		tail = READ_ONCE(rb->user_page->data_tail);
145		offset = head = local_read(&rb->head);
146		if (!rb->overwrite &&
147		    unlikely(CIRC_SPACE(head, tail, perf_data_size(rb)) < size))
148			goto fail;
149
150		/*
151		 * The above forms a control dependency barrier separating the
152		 * @tail load above from the data stores below. Since the @tail
153		 * load is required to compute the branch to fail below.
154		 *
155		 * A, matches D; the full memory barrier userspace SHOULD issue
156		 * after reading the data and before storing the new tail
157		 * position.
158		 *
159		 * See perf_output_put_handle().
160		 */
161
162		head += size;
163	} while (local_cmpxchg(&rb->head, offset, head) != offset);
164
165	/*
166	 * We rely on the implied barrier() by local_cmpxchg() to ensure
167	 * none of the data stores below can be lifted up by the compiler.
168	 */
169
170	if (unlikely(head - local_read(&rb->wakeup) > rb->watermark))
171		local_add(rb->watermark, &rb->wakeup);
172
173	page_shift = PAGE_SHIFT + page_order(rb);
174
175	handle->page = (offset >> page_shift) & (rb->nr_pages - 1);
176	offset &= (1UL << page_shift) - 1;
177	handle->addr = rb->data_pages[handle->page] + offset;
178	handle->size = (1UL << page_shift) - offset;
179
180	if (unlikely(have_lost)) {
181		struct perf_sample_data sample_data;
182
183		lost_event.header.size = sizeof(lost_event);
184		lost_event.header.type = PERF_RECORD_LOST;
185		lost_event.header.misc = 0;
186		lost_event.id          = event->id;
187		lost_event.lost        = local_xchg(&rb->lost, 0);
188
189		perf_event_header__init_id(&lost_event.header,
190					   &sample_data, event);
191		perf_output_put(handle, lost_event);
192		perf_event__output_id_sample(event, handle, &sample_data);
193	}
194
195	return 0;
196
197fail:
198	local_inc(&rb->lost);
199	perf_output_put_handle(handle);
200out:
201	rcu_read_unlock();
202
203	return -ENOSPC;
204}
205
206unsigned int perf_output_copy(struct perf_output_handle *handle,
207		      const void *buf, unsigned int len)
208{
209	return __output_copy(handle, buf, len);
210}
211
212unsigned int perf_output_skip(struct perf_output_handle *handle,
213			      unsigned int len)
214{
215	return __output_skip(handle, NULL, len);
216}
217
218void perf_output_end(struct perf_output_handle *handle)
219{
220	perf_output_put_handle(handle);
221	rcu_read_unlock();
222}
223
224static void rb_irq_work(struct irq_work *work);
225
226static void
227ring_buffer_init(struct ring_buffer *rb, long watermark, int flags)
228{
229	long max_size = perf_data_size(rb);
230
231	if (watermark)
232		rb->watermark = min(max_size, watermark);
233
234	if (!rb->watermark)
235		rb->watermark = max_size / 2;
236
237	if (flags & RING_BUFFER_WRITABLE)
238		rb->overwrite = 0;
239	else
240		rb->overwrite = 1;
241
242	atomic_set(&rb->refcount, 1);
243
244	INIT_LIST_HEAD(&rb->event_list);
245	spin_lock_init(&rb->event_lock);
246	init_irq_work(&rb->irq_work, rb_irq_work);
247}
248
249static void ring_buffer_put_async(struct ring_buffer *rb)
250{
251	if (!atomic_dec_and_test(&rb->refcount))
252		return;
253
254	rb->rcu_head.next = (void *)rb;
255	irq_work_queue(&rb->irq_work);
256}
257
258/*
259 * This is called before hardware starts writing to the AUX area to
260 * obtain an output handle and make sure there's room in the buffer.
261 * When the capture completes, call perf_aux_output_end() to commit
262 * the recorded data to the buffer.
263 *
264 * The ordering is similar to that of perf_output_{begin,end}, with
265 * the exception of (B), which should be taken care of by the pmu
266 * driver, since ordering rules will differ depending on hardware.
267 */
268void *perf_aux_output_begin(struct perf_output_handle *handle,
269			    struct perf_event *event)
270{
271	struct perf_event *output_event = event;
272	unsigned long aux_head, aux_tail;
273	struct ring_buffer *rb;
274
275	if (output_event->parent)
276		output_event = output_event->parent;
277
278	/*
279	 * Since this will typically be open across pmu::add/pmu::del, we
280	 * grab ring_buffer's refcount instead of holding rcu read lock
281	 * to make sure it doesn't disappear under us.
282	 */
283	rb = ring_buffer_get(output_event);
284	if (!rb)
285		return NULL;
286
287	if (!rb_has_aux(rb) || !atomic_inc_not_zero(&rb->aux_refcount))
288		goto err;
289
290	/*
291	 * Nesting is not supported for AUX area, make sure nested
292	 * writers are caught early
293	 */
294	if (WARN_ON_ONCE(local_xchg(&rb->aux_nest, 1)))
295		goto err_put;
296
297	aux_head = local_read(&rb->aux_head);
298
299	handle->rb = rb;
300	handle->event = event;
301	handle->head = aux_head;
302	handle->size = 0;
303
304	/*
305	 * In overwrite mode, AUX data stores do not depend on aux_tail,
306	 * therefore (A) control dependency barrier does not exist. The
307	 * (B) <-> (C) ordering is still observed by the pmu driver.
308	 */
309	if (!rb->aux_overwrite) {
310		aux_tail = ACCESS_ONCE(rb->user_page->aux_tail);
311		handle->wakeup = local_read(&rb->aux_wakeup) + rb->aux_watermark;
312		if (aux_head - aux_tail < perf_aux_size(rb))
313			handle->size = CIRC_SPACE(aux_head, aux_tail, perf_aux_size(rb));
314
315		/*
316		 * handle->size computation depends on aux_tail load; this forms a
317		 * control dependency barrier separating aux_tail load from aux data
318		 * store that will be enabled on successful return
319		 */
320		if (!handle->size) { /* A, matches D */
321			event->pending_disable = 1;
322			perf_output_wakeup(handle);
323			local_set(&rb->aux_nest, 0);
324			goto err_put;
325		}
326	}
327
328	return handle->rb->aux_priv;
329
330err_put:
331	rb_free_aux(rb);
332
333err:
334	ring_buffer_put_async(rb);
335	handle->event = NULL;
336
337	return NULL;
338}
339
340/*
341 * Commit the data written by hardware into the ring buffer by adjusting
342 * aux_head and posting a PERF_RECORD_AUX into the perf buffer. It is the
343 * pmu driver's responsibility to observe ordering rules of the hardware,
344 * so that all the data is externally visible before this is called.
345 */
346void perf_aux_output_end(struct perf_output_handle *handle, unsigned long size,
347			 bool truncated)
348{
349	struct ring_buffer *rb = handle->rb;
350	bool wakeup = truncated;
351	unsigned long aux_head;
352	u64 flags = 0;
353
354	if (truncated)
355		flags |= PERF_AUX_FLAG_TRUNCATED;
356
357	/* in overwrite mode, driver provides aux_head via handle */
358	if (rb->aux_overwrite) {
359		flags |= PERF_AUX_FLAG_OVERWRITE;
360
361		aux_head = handle->head;
362		local_set(&rb->aux_head, aux_head);
363	} else {
364		aux_head = local_read(&rb->aux_head);
365		local_add(size, &rb->aux_head);
366	}
367
368	if (size || flags) {
369		/*
370		 * Only send RECORD_AUX if we have something useful to communicate
371		 */
372
373		perf_event_aux_event(handle->event, aux_head, size, flags);
374	}
375
376	aux_head = rb->user_page->aux_head = local_read(&rb->aux_head);
377
378	if (aux_head - local_read(&rb->aux_wakeup) >= rb->aux_watermark) {
379		wakeup = true;
380		local_add(rb->aux_watermark, &rb->aux_wakeup);
381	}
382
383	if (wakeup) {
384		if (truncated)
385			handle->event->pending_disable = 1;
386		perf_output_wakeup(handle);
387	}
388
389	handle->event = NULL;
390
391	local_set(&rb->aux_nest, 0);
392	rb_free_aux(rb);
393	ring_buffer_put_async(rb);
394}
395
396/*
397 * Skip over a given number of bytes in the AUX buffer, due to, for example,
398 * hardware's alignment constraints.
399 */
400int perf_aux_output_skip(struct perf_output_handle *handle, unsigned long size)
401{
402	struct ring_buffer *rb = handle->rb;
403	unsigned long aux_head;
404
405	if (size > handle->size)
406		return -ENOSPC;
407
408	local_add(size, &rb->aux_head);
409
410	aux_head = rb->user_page->aux_head = local_read(&rb->aux_head);
411	if (aux_head - local_read(&rb->aux_wakeup) >= rb->aux_watermark) {
412		perf_output_wakeup(handle);
413		local_add(rb->aux_watermark, &rb->aux_wakeup);
414		handle->wakeup = local_read(&rb->aux_wakeup) +
415				 rb->aux_watermark;
416	}
417
418	handle->head = aux_head;
419	handle->size -= size;
420
421	return 0;
422}
423
424void *perf_get_aux(struct perf_output_handle *handle)
425{
426	/* this is only valid between perf_aux_output_begin and *_end */
427	if (!handle->event)
428		return NULL;
429
430	return handle->rb->aux_priv;
431}
432
433#define PERF_AUX_GFP	(GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN | __GFP_NORETRY)
434
435static struct page *rb_alloc_aux_page(int node, int order)
436{
437	struct page *page;
438
439	if (order > MAX_ORDER)
440		order = MAX_ORDER;
441
442	do {
443		page = alloc_pages_node(node, PERF_AUX_GFP, order);
444	} while (!page && order--);
445
446	if (page && order) {
447		/*
448		 * Communicate the allocation size to the driver:
449		 * if we managed to secure a high-order allocation,
450		 * set its first page's private to this order;
451		 * !PagePrivate(page) means it's just a normal page.
452		 */
453		split_page(page, order);
454		SetPagePrivate(page);
455		set_page_private(page, order);
456	}
457
458	return page;
459}
460
461static void rb_free_aux_page(struct ring_buffer *rb, int idx)
462{
463	struct page *page = virt_to_page(rb->aux_pages[idx]);
464
465	ClearPagePrivate(page);
466	page->mapping = NULL;
467	__free_page(page);
468}
469
470static void __rb_free_aux(struct ring_buffer *rb)
471{
472	int pg;
473
474	if (rb->aux_priv) {
475		rb->free_aux(rb->aux_priv);
476		rb->free_aux = NULL;
477		rb->aux_priv = NULL;
478	}
479
480	if (rb->aux_nr_pages) {
481		for (pg = 0; pg < rb->aux_nr_pages; pg++)
482			rb_free_aux_page(rb, pg);
483
484		kfree(rb->aux_pages);
485		rb->aux_nr_pages = 0;
486	}
487}
488
489int rb_alloc_aux(struct ring_buffer *rb, struct perf_event *event,
490		 pgoff_t pgoff, int nr_pages, long watermark, int flags)
491{
492	bool overwrite = !(flags & RING_BUFFER_WRITABLE);
493	int node = (event->cpu == -1) ? -1 : cpu_to_node(event->cpu);
494	int ret = -ENOMEM, max_order = 0;
495
496	if (!has_aux(event))
497		return -ENOTSUPP;
498
499	if (event->pmu->capabilities & PERF_PMU_CAP_AUX_NO_SG) {
500		/*
501		 * We need to start with the max_order that fits in nr_pages,
502		 * not the other way around, hence ilog2() and not get_order.
503		 */
504		max_order = ilog2(nr_pages);
505
506		/*
507		 * PMU requests more than one contiguous chunks of memory
508		 * for SW double buffering
509		 */
510		if ((event->pmu->capabilities & PERF_PMU_CAP_AUX_SW_DOUBLEBUF) &&
511		    !overwrite) {
512			if (!max_order)
513				return -EINVAL;
514
515			max_order--;
516		}
517	}
518
519	rb->aux_pages = kzalloc_node(nr_pages * sizeof(void *), GFP_KERNEL, node);
520	if (!rb->aux_pages)
521		return -ENOMEM;
522
523	rb->free_aux = event->pmu->free_aux;
524	for (rb->aux_nr_pages = 0; rb->aux_nr_pages < nr_pages;) {
525		struct page *page;
526		int last, order;
527
528		order = min(max_order, ilog2(nr_pages - rb->aux_nr_pages));
529		page = rb_alloc_aux_page(node, order);
530		if (!page)
531			goto out;
532
533		for (last = rb->aux_nr_pages + (1 << page_private(page));
534		     last > rb->aux_nr_pages; rb->aux_nr_pages++)
535			rb->aux_pages[rb->aux_nr_pages] = page_address(page++);
536	}
537
538	/*
539	 * In overwrite mode, PMUs that don't support SG may not handle more
540	 * than one contiguous allocation, since they rely on PMI to do double
541	 * buffering. In this case, the entire buffer has to be one contiguous
542	 * chunk.
543	 */
544	if ((event->pmu->capabilities & PERF_PMU_CAP_AUX_NO_SG) &&
545	    overwrite) {
546		struct page *page = virt_to_page(rb->aux_pages[0]);
547
548		if (page_private(page) != max_order)
549			goto out;
550	}
551
552	rb->aux_priv = event->pmu->setup_aux(event->cpu, rb->aux_pages, nr_pages,
553					     overwrite);
554	if (!rb->aux_priv)
555		goto out;
556
557	ret = 0;
558
559	/*
560	 * aux_pages (and pmu driver's private data, aux_priv) will be
561	 * referenced in both producer's and consumer's contexts, thus
562	 * we keep a refcount here to make sure either of the two can
563	 * reference them safely.
564	 */
565	atomic_set(&rb->aux_refcount, 1);
566
567	rb->aux_overwrite = overwrite;
568	rb->aux_watermark = watermark;
569
570	if (!rb->aux_watermark && !rb->aux_overwrite)
571		rb->aux_watermark = nr_pages << (PAGE_SHIFT - 1);
572
573out:
574	if (!ret)
575		rb->aux_pgoff = pgoff;
576	else
577		__rb_free_aux(rb);
578
579	return ret;
580}
581
582void rb_free_aux(struct ring_buffer *rb)
583{
584	if (atomic_dec_and_test(&rb->aux_refcount))
585		irq_work_queue(&rb->irq_work);
586}
587
588static void rb_irq_work(struct irq_work *work)
589{
590	struct ring_buffer *rb = container_of(work, struct ring_buffer, irq_work);
591
592	if (!atomic_read(&rb->aux_refcount))
593		__rb_free_aux(rb);
594
595	if (rb->rcu_head.next == (void *)rb)
596		call_rcu(&rb->rcu_head, rb_free_rcu);
597}
598
599#ifndef CONFIG_PERF_USE_VMALLOC
600
601/*
602 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
603 */
604
605static struct page *
606__perf_mmap_to_page(struct ring_buffer *rb, unsigned long pgoff)
607{
608	if (pgoff > rb->nr_pages)
609		return NULL;
610
611	if (pgoff == 0)
612		return virt_to_page(rb->user_page);
613
614	return virt_to_page(rb->data_pages[pgoff - 1]);
615}
616
617static void *perf_mmap_alloc_page(int cpu)
618{
619	struct page *page;
620	int node;
621
622	node = (cpu == -1) ? cpu : cpu_to_node(cpu);
623	page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
624	if (!page)
625		return NULL;
626
627	return page_address(page);
628}
629
630struct ring_buffer *rb_alloc(int nr_pages, long watermark, int cpu, int flags)
631{
632	struct ring_buffer *rb;
633	unsigned long size;
634	int i;
635
636	size = sizeof(struct ring_buffer);
637	size += nr_pages * sizeof(void *);
638
639	rb = kzalloc(size, GFP_KERNEL);
640	if (!rb)
641		goto fail;
642
643	rb->user_page = perf_mmap_alloc_page(cpu);
644	if (!rb->user_page)
645		goto fail_user_page;
646
647	for (i = 0; i < nr_pages; i++) {
648		rb->data_pages[i] = perf_mmap_alloc_page(cpu);
649		if (!rb->data_pages[i])
650			goto fail_data_pages;
651	}
652
653	rb->nr_pages = nr_pages;
654
655	ring_buffer_init(rb, watermark, flags);
656
657	return rb;
658
659fail_data_pages:
660	for (i--; i >= 0; i--)
661		free_page((unsigned long)rb->data_pages[i]);
662
663	free_page((unsigned long)rb->user_page);
664
665fail_user_page:
666	kfree(rb);
667
668fail:
669	return NULL;
670}
671
672static void perf_mmap_free_page(unsigned long addr)
673{
674	struct page *page = virt_to_page((void *)addr);
675
676	page->mapping = NULL;
677	__free_page(page);
678}
679
680void rb_free(struct ring_buffer *rb)
681{
682	int i;
683
684	perf_mmap_free_page((unsigned long)rb->user_page);
685	for (i = 0; i < rb->nr_pages; i++)
686		perf_mmap_free_page((unsigned long)rb->data_pages[i]);
687	kfree(rb);
688}
689
690#else
691static int data_page_nr(struct ring_buffer *rb)
692{
693	return rb->nr_pages << page_order(rb);
694}
695
696static struct page *
697__perf_mmap_to_page(struct ring_buffer *rb, unsigned long pgoff)
698{
699	/* The '>' counts in the user page. */
700	if (pgoff > data_page_nr(rb))
701		return NULL;
702
703	return vmalloc_to_page((void *)rb->user_page + pgoff * PAGE_SIZE);
704}
705
706static void perf_mmap_unmark_page(void *addr)
707{
708	struct page *page = vmalloc_to_page(addr);
709
710	page->mapping = NULL;
711}
712
713static void rb_free_work(struct work_struct *work)
714{
715	struct ring_buffer *rb;
716	void *base;
717	int i, nr;
718
719	rb = container_of(work, struct ring_buffer, work);
720	nr = data_page_nr(rb);
721
722	base = rb->user_page;
723	/* The '<=' counts in the user page. */
724	for (i = 0; i <= nr; i++)
725		perf_mmap_unmark_page(base + (i * PAGE_SIZE));
726
727	vfree(base);
728	kfree(rb);
729}
730
731void rb_free(struct ring_buffer *rb)
732{
733	schedule_work(&rb->work);
734}
735
736struct ring_buffer *rb_alloc(int nr_pages, long watermark, int cpu, int flags)
737{
738	struct ring_buffer *rb;
739	unsigned long size;
740	void *all_buf;
741
742	size = sizeof(struct ring_buffer);
743	size += sizeof(void *);
744
745	rb = kzalloc(size, GFP_KERNEL);
746	if (!rb)
747		goto fail;
748
749	INIT_WORK(&rb->work, rb_free_work);
750
751	all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
752	if (!all_buf)
753		goto fail_all_buf;
754
755	rb->user_page = all_buf;
756	rb->data_pages[0] = all_buf + PAGE_SIZE;
757	if (nr_pages) {
758		rb->nr_pages = 1;
759		rb->page_order = ilog2(nr_pages);
760	}
761
762	ring_buffer_init(rb, watermark, flags);
763
764	return rb;
765
766fail_all_buf:
767	kfree(rb);
768
769fail:
770	return NULL;
771}
772
773#endif
774
775struct page *
776perf_mmap_to_page(struct ring_buffer *rb, unsigned long pgoff)
777{
778	if (rb->aux_nr_pages) {
779		/* above AUX space */
780		if (pgoff > rb->aux_pgoff + rb->aux_nr_pages)
781			return NULL;
782
783		/* AUX space */
784		if (pgoff >= rb->aux_pgoff)
785			return virt_to_page(rb->aux_pages[pgoff - rb->aux_pgoff]);
786	}
787
788	return __perf_mmap_to_page(rb, pgoff);
789}
v3.15
  1/*
  2 * Performance events ring-buffer code:
  3 *
  4 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
  5 *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
  6 *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  7 *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
  8 *
  9 * For licensing details see kernel-base/COPYING
 10 */
 11
 12#include <linux/perf_event.h>
 13#include <linux/vmalloc.h>
 14#include <linux/slab.h>
 15#include <linux/circ_buf.h>
 
 16
 17#include "internal.h"
 18
 19static void perf_output_wakeup(struct perf_output_handle *handle)
 20{
 21	atomic_set(&handle->rb->poll, POLL_IN);
 22
 23	handle->event->pending_wakeup = 1;
 24	irq_work_queue(&handle->event->pending);
 25}
 26
 27/*
 28 * We need to ensure a later event_id doesn't publish a head when a former
 29 * event isn't done writing. However since we need to deal with NMIs we
 30 * cannot fully serialize things.
 31 *
 32 * We only publish the head (and generate a wakeup) when the outer-most
 33 * event completes.
 34 */
 35static void perf_output_get_handle(struct perf_output_handle *handle)
 36{
 37	struct ring_buffer *rb = handle->rb;
 38
 39	preempt_disable();
 40	local_inc(&rb->nest);
 41	handle->wakeup = local_read(&rb->wakeup);
 42}
 43
 44static void perf_output_put_handle(struct perf_output_handle *handle)
 45{
 46	struct ring_buffer *rb = handle->rb;
 47	unsigned long head;
 48
 49again:
 50	head = local_read(&rb->head);
 51
 52	/*
 53	 * IRQ/NMI can happen here, which means we can miss a head update.
 54	 */
 55
 56	if (!local_dec_and_test(&rb->nest))
 57		goto out;
 58
 59	/*
 60	 * Since the mmap() consumer (userspace) can run on a different CPU:
 61	 *
 62	 *   kernel				user
 63	 *
 64	 *   if (LOAD ->data_tail) {		LOAD ->data_head
 65	 *			(A)		smp_rmb()	(C)
 66	 *	STORE $data			LOAD $data
 67	 *	smp_wmb()	(B)		smp_mb()	(D)
 68	 *	STORE ->data_head		STORE ->data_tail
 69	 *   }
 70	 *
 71	 * Where A pairs with D, and B pairs with C.
 72	 *
 73	 * In our case (A) is a control dependency that separates the load of
 74	 * the ->data_tail and the stores of $data. In case ->data_tail
 75	 * indicates there is no room in the buffer to store $data we do not.
 76	 *
 77	 * D needs to be a full barrier since it separates the data READ
 78	 * from the tail WRITE.
 79	 *
 80	 * For B a WMB is sufficient since it separates two WRITEs, and for C
 81	 * an RMB is sufficient since it separates two READs.
 82	 *
 83	 * See perf_output_begin().
 84	 */
 85	smp_wmb(); /* B, matches C */
 86	rb->user_page->data_head = head;
 87
 88	/*
 89	 * Now check if we missed an update -- rely on previous implied
 90	 * compiler barriers to force a re-read.
 91	 */
 92	if (unlikely(head != local_read(&rb->head))) {
 93		local_inc(&rb->nest);
 94		goto again;
 95	}
 96
 97	if (handle->wakeup != local_read(&rb->wakeup))
 98		perf_output_wakeup(handle);
 99
100out:
101	preempt_enable();
102}
103
104int perf_output_begin(struct perf_output_handle *handle,
105		      struct perf_event *event, unsigned int size)
106{
107	struct ring_buffer *rb;
108	unsigned long tail, offset, head;
109	int have_lost, page_shift;
110	struct {
111		struct perf_event_header header;
112		u64			 id;
113		u64			 lost;
114	} lost_event;
115
116	rcu_read_lock();
117	/*
118	 * For inherited events we send all the output towards the parent.
119	 */
120	if (event->parent)
121		event = event->parent;
122
123	rb = rcu_dereference(event->rb);
124	if (unlikely(!rb))
125		goto out;
126
127	if (unlikely(!rb->nr_pages))
128		goto out;
129
130	handle->rb    = rb;
131	handle->event = event;
132
133	have_lost = local_read(&rb->lost);
134	if (unlikely(have_lost)) {
135		size += sizeof(lost_event);
136		if (event->attr.sample_id_all)
137			size += event->id_header_size;
138	}
139
140	perf_output_get_handle(handle);
141
142	do {
143		tail = ACCESS_ONCE(rb->user_page->data_tail);
144		offset = head = local_read(&rb->head);
145		if (!rb->overwrite &&
146		    unlikely(CIRC_SPACE(head, tail, perf_data_size(rb)) < size))
147			goto fail;
148
149		/*
150		 * The above forms a control dependency barrier separating the
151		 * @tail load above from the data stores below. Since the @tail
152		 * load is required to compute the branch to fail below.
153		 *
154		 * A, matches D; the full memory barrier userspace SHOULD issue
155		 * after reading the data and before storing the new tail
156		 * position.
157		 *
158		 * See perf_output_put_handle().
159		 */
160
161		head += size;
162	} while (local_cmpxchg(&rb->head, offset, head) != offset);
163
164	/*
165	 * We rely on the implied barrier() by local_cmpxchg() to ensure
166	 * none of the data stores below can be lifted up by the compiler.
167	 */
168
169	if (unlikely(head - local_read(&rb->wakeup) > rb->watermark))
170		local_add(rb->watermark, &rb->wakeup);
171
172	page_shift = PAGE_SHIFT + page_order(rb);
173
174	handle->page = (offset >> page_shift) & (rb->nr_pages - 1);
175	offset &= (1UL << page_shift) - 1;
176	handle->addr = rb->data_pages[handle->page] + offset;
177	handle->size = (1UL << page_shift) - offset;
178
179	if (unlikely(have_lost)) {
180		struct perf_sample_data sample_data;
181
182		lost_event.header.size = sizeof(lost_event);
183		lost_event.header.type = PERF_RECORD_LOST;
184		lost_event.header.misc = 0;
185		lost_event.id          = event->id;
186		lost_event.lost        = local_xchg(&rb->lost, 0);
187
188		perf_event_header__init_id(&lost_event.header,
189					   &sample_data, event);
190		perf_output_put(handle, lost_event);
191		perf_event__output_id_sample(event, handle, &sample_data);
192	}
193
194	return 0;
195
196fail:
197	local_inc(&rb->lost);
198	perf_output_put_handle(handle);
199out:
200	rcu_read_unlock();
201
202	return -ENOSPC;
203}
204
205unsigned int perf_output_copy(struct perf_output_handle *handle,
206		      const void *buf, unsigned int len)
207{
208	return __output_copy(handle, buf, len);
209}
210
211unsigned int perf_output_skip(struct perf_output_handle *handle,
212			      unsigned int len)
213{
214	return __output_skip(handle, NULL, len);
215}
216
217void perf_output_end(struct perf_output_handle *handle)
218{
219	perf_output_put_handle(handle);
220	rcu_read_unlock();
221}
222
 
 
223static void
224ring_buffer_init(struct ring_buffer *rb, long watermark, int flags)
225{
226	long max_size = perf_data_size(rb);
227
228	if (watermark)
229		rb->watermark = min(max_size, watermark);
230
231	if (!rb->watermark)
232		rb->watermark = max_size / 2;
233
234	if (flags & RING_BUFFER_WRITABLE)
235		rb->overwrite = 0;
236	else
237		rb->overwrite = 1;
238
239	atomic_set(&rb->refcount, 1);
240
241	INIT_LIST_HEAD(&rb->event_list);
242	spin_lock_init(&rb->event_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
243}
244
245#ifndef CONFIG_PERF_USE_VMALLOC
246
247/*
248 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
249 */
250
251struct page *
252perf_mmap_to_page(struct ring_buffer *rb, unsigned long pgoff)
253{
254	if (pgoff > rb->nr_pages)
255		return NULL;
256
257	if (pgoff == 0)
258		return virt_to_page(rb->user_page);
259
260	return virt_to_page(rb->data_pages[pgoff - 1]);
261}
262
263static void *perf_mmap_alloc_page(int cpu)
264{
265	struct page *page;
266	int node;
267
268	node = (cpu == -1) ? cpu : cpu_to_node(cpu);
269	page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
270	if (!page)
271		return NULL;
272
273	return page_address(page);
274}
275
276struct ring_buffer *rb_alloc(int nr_pages, long watermark, int cpu, int flags)
277{
278	struct ring_buffer *rb;
279	unsigned long size;
280	int i;
281
282	size = sizeof(struct ring_buffer);
283	size += nr_pages * sizeof(void *);
284
285	rb = kzalloc(size, GFP_KERNEL);
286	if (!rb)
287		goto fail;
288
289	rb->user_page = perf_mmap_alloc_page(cpu);
290	if (!rb->user_page)
291		goto fail_user_page;
292
293	for (i = 0; i < nr_pages; i++) {
294		rb->data_pages[i] = perf_mmap_alloc_page(cpu);
295		if (!rb->data_pages[i])
296			goto fail_data_pages;
297	}
298
299	rb->nr_pages = nr_pages;
300
301	ring_buffer_init(rb, watermark, flags);
302
303	return rb;
304
305fail_data_pages:
306	for (i--; i >= 0; i--)
307		free_page((unsigned long)rb->data_pages[i]);
308
309	free_page((unsigned long)rb->user_page);
310
311fail_user_page:
312	kfree(rb);
313
314fail:
315	return NULL;
316}
317
318static void perf_mmap_free_page(unsigned long addr)
319{
320	struct page *page = virt_to_page((void *)addr);
321
322	page->mapping = NULL;
323	__free_page(page);
324}
325
326void rb_free(struct ring_buffer *rb)
327{
328	int i;
329
330	perf_mmap_free_page((unsigned long)rb->user_page);
331	for (i = 0; i < rb->nr_pages; i++)
332		perf_mmap_free_page((unsigned long)rb->data_pages[i]);
333	kfree(rb);
334}
335
336#else
337static int data_page_nr(struct ring_buffer *rb)
338{
339	return rb->nr_pages << page_order(rb);
340}
341
342struct page *
343perf_mmap_to_page(struct ring_buffer *rb, unsigned long pgoff)
344{
345	/* The '>' counts in the user page. */
346	if (pgoff > data_page_nr(rb))
347		return NULL;
348
349	return vmalloc_to_page((void *)rb->user_page + pgoff * PAGE_SIZE);
350}
351
352static void perf_mmap_unmark_page(void *addr)
353{
354	struct page *page = vmalloc_to_page(addr);
355
356	page->mapping = NULL;
357}
358
359static void rb_free_work(struct work_struct *work)
360{
361	struct ring_buffer *rb;
362	void *base;
363	int i, nr;
364
365	rb = container_of(work, struct ring_buffer, work);
366	nr = data_page_nr(rb);
367
368	base = rb->user_page;
369	/* The '<=' counts in the user page. */
370	for (i = 0; i <= nr; i++)
371		perf_mmap_unmark_page(base + (i * PAGE_SIZE));
372
373	vfree(base);
374	kfree(rb);
375}
376
377void rb_free(struct ring_buffer *rb)
378{
379	schedule_work(&rb->work);
380}
381
382struct ring_buffer *rb_alloc(int nr_pages, long watermark, int cpu, int flags)
383{
384	struct ring_buffer *rb;
385	unsigned long size;
386	void *all_buf;
387
388	size = sizeof(struct ring_buffer);
389	size += sizeof(void *);
390
391	rb = kzalloc(size, GFP_KERNEL);
392	if (!rb)
393		goto fail;
394
395	INIT_WORK(&rb->work, rb_free_work);
396
397	all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
398	if (!all_buf)
399		goto fail_all_buf;
400
401	rb->user_page = all_buf;
402	rb->data_pages[0] = all_buf + PAGE_SIZE;
403	rb->page_order = ilog2(nr_pages);
404	rb->nr_pages = !!nr_pages;
 
 
405
406	ring_buffer_init(rb, watermark, flags);
407
408	return rb;
409
410fail_all_buf:
411	kfree(rb);
412
413fail:
414	return NULL;
415}
416
417#endif