Linux Audio

Check our new training course

Loading...
v4.6
   1/*******************************************************************************
   2
   3  Intel PRO/1000 Linux driver
   4  Copyright(c) 1999 - 2006 Intel Corporation.
   5
   6  This program is free software; you can redistribute it and/or modify it
   7  under the terms and conditions of the GNU General Public License,
   8  version 2, as published by the Free Software Foundation.
   9
  10  This program is distributed in the hope it will be useful, but WITHOUT
  11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13  more details.
  14
  15  You should have received a copy of the GNU General Public License along with
  16  this program; if not, write to the Free Software Foundation, Inc.,
  17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  18
  19  The full GNU General Public License is included in this distribution in
  20  the file called "COPYING".
  21
  22  Contact Information:
  23  Linux NICS <linux.nics@intel.com>
  24  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  25  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  26
  27*******************************************************************************/
  28
  29#include "e1000.h"
  30#include <net/ip6_checksum.h>
  31#include <linux/io.h>
  32#include <linux/prefetch.h>
  33#include <linux/bitops.h>
  34#include <linux/if_vlan.h>
  35
  36char e1000_driver_name[] = "e1000";
  37static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
  38#define DRV_VERSION "7.3.21-k8-NAPI"
  39const char e1000_driver_version[] = DRV_VERSION;
  40static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
  41
  42/* e1000_pci_tbl - PCI Device ID Table
  43 *
  44 * Last entry must be all 0s
  45 *
  46 * Macro expands to...
  47 *   {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
  48 */
  49static const struct pci_device_id e1000_pci_tbl[] = {
  50	INTEL_E1000_ETHERNET_DEVICE(0x1000),
  51	INTEL_E1000_ETHERNET_DEVICE(0x1001),
  52	INTEL_E1000_ETHERNET_DEVICE(0x1004),
  53	INTEL_E1000_ETHERNET_DEVICE(0x1008),
  54	INTEL_E1000_ETHERNET_DEVICE(0x1009),
  55	INTEL_E1000_ETHERNET_DEVICE(0x100C),
  56	INTEL_E1000_ETHERNET_DEVICE(0x100D),
  57	INTEL_E1000_ETHERNET_DEVICE(0x100E),
  58	INTEL_E1000_ETHERNET_DEVICE(0x100F),
  59	INTEL_E1000_ETHERNET_DEVICE(0x1010),
  60	INTEL_E1000_ETHERNET_DEVICE(0x1011),
  61	INTEL_E1000_ETHERNET_DEVICE(0x1012),
  62	INTEL_E1000_ETHERNET_DEVICE(0x1013),
  63	INTEL_E1000_ETHERNET_DEVICE(0x1014),
  64	INTEL_E1000_ETHERNET_DEVICE(0x1015),
  65	INTEL_E1000_ETHERNET_DEVICE(0x1016),
  66	INTEL_E1000_ETHERNET_DEVICE(0x1017),
  67	INTEL_E1000_ETHERNET_DEVICE(0x1018),
  68	INTEL_E1000_ETHERNET_DEVICE(0x1019),
  69	INTEL_E1000_ETHERNET_DEVICE(0x101A),
  70	INTEL_E1000_ETHERNET_DEVICE(0x101D),
  71	INTEL_E1000_ETHERNET_DEVICE(0x101E),
  72	INTEL_E1000_ETHERNET_DEVICE(0x1026),
  73	INTEL_E1000_ETHERNET_DEVICE(0x1027),
  74	INTEL_E1000_ETHERNET_DEVICE(0x1028),
  75	INTEL_E1000_ETHERNET_DEVICE(0x1075),
  76	INTEL_E1000_ETHERNET_DEVICE(0x1076),
  77	INTEL_E1000_ETHERNET_DEVICE(0x1077),
  78	INTEL_E1000_ETHERNET_DEVICE(0x1078),
  79	INTEL_E1000_ETHERNET_DEVICE(0x1079),
  80	INTEL_E1000_ETHERNET_DEVICE(0x107A),
  81	INTEL_E1000_ETHERNET_DEVICE(0x107B),
  82	INTEL_E1000_ETHERNET_DEVICE(0x107C),
  83	INTEL_E1000_ETHERNET_DEVICE(0x108A),
  84	INTEL_E1000_ETHERNET_DEVICE(0x1099),
  85	INTEL_E1000_ETHERNET_DEVICE(0x10B5),
  86	INTEL_E1000_ETHERNET_DEVICE(0x2E6E),
  87	/* required last entry */
  88	{0,}
  89};
  90
  91MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
  92
  93int e1000_up(struct e1000_adapter *adapter);
  94void e1000_down(struct e1000_adapter *adapter);
  95void e1000_reinit_locked(struct e1000_adapter *adapter);
  96void e1000_reset(struct e1000_adapter *adapter);
  97int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
  98int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
  99void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
 100void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
 101static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
 102				    struct e1000_tx_ring *txdr);
 103static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
 104				    struct e1000_rx_ring *rxdr);
 105static void e1000_free_tx_resources(struct e1000_adapter *adapter,
 106				    struct e1000_tx_ring *tx_ring);
 107static void e1000_free_rx_resources(struct e1000_adapter *adapter,
 108				    struct e1000_rx_ring *rx_ring);
 109void e1000_update_stats(struct e1000_adapter *adapter);
 110
 111static int e1000_init_module(void);
 112static void e1000_exit_module(void);
 113static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
 114static void e1000_remove(struct pci_dev *pdev);
 115static int e1000_alloc_queues(struct e1000_adapter *adapter);
 116static int e1000_sw_init(struct e1000_adapter *adapter);
 117static int e1000_open(struct net_device *netdev);
 118static int e1000_close(struct net_device *netdev);
 119static void e1000_configure_tx(struct e1000_adapter *adapter);
 120static void e1000_configure_rx(struct e1000_adapter *adapter);
 121static void e1000_setup_rctl(struct e1000_adapter *adapter);
 122static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
 123static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
 124static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
 125				struct e1000_tx_ring *tx_ring);
 126static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
 127				struct e1000_rx_ring *rx_ring);
 128static void e1000_set_rx_mode(struct net_device *netdev);
 129static void e1000_update_phy_info_task(struct work_struct *work);
 130static void e1000_watchdog(struct work_struct *work);
 131static void e1000_82547_tx_fifo_stall_task(struct work_struct *work);
 132static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
 133				    struct net_device *netdev);
 134static struct net_device_stats *e1000_get_stats(struct net_device *netdev);
 135static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
 136static int e1000_set_mac(struct net_device *netdev, void *p);
 137static irqreturn_t e1000_intr(int irq, void *data);
 138static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
 139			       struct e1000_tx_ring *tx_ring);
 140static int e1000_clean(struct napi_struct *napi, int budget);
 141static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
 142			       struct e1000_rx_ring *rx_ring,
 143			       int *work_done, int work_to_do);
 144static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
 145				     struct e1000_rx_ring *rx_ring,
 146				     int *work_done, int work_to_do);
 147static void e1000_alloc_dummy_rx_buffers(struct e1000_adapter *adapter,
 148					 struct e1000_rx_ring *rx_ring,
 149					 int cleaned_count)
 150{
 151}
 152static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
 153				   struct e1000_rx_ring *rx_ring,
 154				   int cleaned_count);
 155static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
 156					 struct e1000_rx_ring *rx_ring,
 157					 int cleaned_count);
 158static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
 159static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
 160			   int cmd);
 161static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
 162static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
 163static void e1000_tx_timeout(struct net_device *dev);
 164static void e1000_reset_task(struct work_struct *work);
 165static void e1000_smartspeed(struct e1000_adapter *adapter);
 166static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
 167				       struct sk_buff *skb);
 168
 169static bool e1000_vlan_used(struct e1000_adapter *adapter);
 170static void e1000_vlan_mode(struct net_device *netdev,
 171			    netdev_features_t features);
 172static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
 173				     bool filter_on);
 174static int e1000_vlan_rx_add_vid(struct net_device *netdev,
 175				 __be16 proto, u16 vid);
 176static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
 177				  __be16 proto, u16 vid);
 178static void e1000_restore_vlan(struct e1000_adapter *adapter);
 179
 180#ifdef CONFIG_PM
 181static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
 182static int e1000_resume(struct pci_dev *pdev);
 183#endif
 184static void e1000_shutdown(struct pci_dev *pdev);
 185
 186#ifdef CONFIG_NET_POLL_CONTROLLER
 187/* for netdump / net console */
 188static void e1000_netpoll (struct net_device *netdev);
 189#endif
 190
 191#define COPYBREAK_DEFAULT 256
 192static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
 193module_param(copybreak, uint, 0644);
 194MODULE_PARM_DESC(copybreak,
 195	"Maximum size of packet that is copied to a new buffer on receive");
 196
 197static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
 198						pci_channel_state_t state);
 199static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
 200static void e1000_io_resume(struct pci_dev *pdev);
 201
 202static const struct pci_error_handlers e1000_err_handler = {
 203	.error_detected = e1000_io_error_detected,
 204	.slot_reset = e1000_io_slot_reset,
 205	.resume = e1000_io_resume,
 206};
 207
 
 
 208static struct pci_driver e1000_driver = {
 209	.name     = e1000_driver_name,
 210	.id_table = e1000_pci_tbl,
 211	.probe    = e1000_probe,
 212	.remove   = e1000_remove,
 213#ifdef CONFIG_PM
 214	/* Power Management Hooks */
 215	.suspend  = e1000_suspend,
 216	.resume   = e1000_resume,
 217#endif
 218	.shutdown = e1000_shutdown,
 219	.err_handler = &e1000_err_handler
 220};
 221
 222MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
 223MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
 224MODULE_LICENSE("GPL");
 225MODULE_VERSION(DRV_VERSION);
 226
 227#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
 228static int debug = -1;
 229module_param(debug, int, 0);
 230MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
 231
 232/**
 233 * e1000_get_hw_dev - return device
 234 * used by hardware layer to print debugging information
 
 
 235 *
 236 **/
 237struct net_device *e1000_get_hw_dev(struct e1000_hw *hw)
 238{
 239	struct e1000_adapter *adapter = hw->back;
 240	return adapter->netdev;
 241}
 242
 243/**
 244 * e1000_init_module - Driver Registration Routine
 245 *
 246 * e1000_init_module is the first routine called when the driver is
 247 * loaded. All it does is register with the PCI subsystem.
 248 **/
 249static int __init e1000_init_module(void)
 250{
 251	int ret;
 252	pr_info("%s - version %s\n", e1000_driver_string, e1000_driver_version);
 253
 254	pr_info("%s\n", e1000_copyright);
 255
 256	ret = pci_register_driver(&e1000_driver);
 257	if (copybreak != COPYBREAK_DEFAULT) {
 258		if (copybreak == 0)
 259			pr_info("copybreak disabled\n");
 260		else
 261			pr_info("copybreak enabled for "
 262				   "packets <= %u bytes\n", copybreak);
 263	}
 264	return ret;
 265}
 266
 267module_init(e1000_init_module);
 268
 269/**
 270 * e1000_exit_module - Driver Exit Cleanup Routine
 271 *
 272 * e1000_exit_module is called just before the driver is removed
 273 * from memory.
 274 **/
 275static void __exit e1000_exit_module(void)
 276{
 277	pci_unregister_driver(&e1000_driver);
 278}
 279
 280module_exit(e1000_exit_module);
 281
 282static int e1000_request_irq(struct e1000_adapter *adapter)
 283{
 284	struct net_device *netdev = adapter->netdev;
 285	irq_handler_t handler = e1000_intr;
 286	int irq_flags = IRQF_SHARED;
 287	int err;
 288
 289	err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
 290			  netdev);
 291	if (err) {
 292		e_err(probe, "Unable to allocate interrupt Error: %d\n", err);
 293	}
 294
 295	return err;
 296}
 297
 298static void e1000_free_irq(struct e1000_adapter *adapter)
 299{
 300	struct net_device *netdev = adapter->netdev;
 301
 302	free_irq(adapter->pdev->irq, netdev);
 303}
 304
 305/**
 306 * e1000_irq_disable - Mask off interrupt generation on the NIC
 307 * @adapter: board private structure
 308 **/
 309static void e1000_irq_disable(struct e1000_adapter *adapter)
 310{
 311	struct e1000_hw *hw = &adapter->hw;
 312
 313	ew32(IMC, ~0);
 314	E1000_WRITE_FLUSH();
 315	synchronize_irq(adapter->pdev->irq);
 316}
 317
 318/**
 319 * e1000_irq_enable - Enable default interrupt generation settings
 320 * @adapter: board private structure
 321 **/
 322static void e1000_irq_enable(struct e1000_adapter *adapter)
 323{
 324	struct e1000_hw *hw = &adapter->hw;
 325
 326	ew32(IMS, IMS_ENABLE_MASK);
 327	E1000_WRITE_FLUSH();
 328}
 329
 330static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
 331{
 332	struct e1000_hw *hw = &adapter->hw;
 333	struct net_device *netdev = adapter->netdev;
 334	u16 vid = hw->mng_cookie.vlan_id;
 335	u16 old_vid = adapter->mng_vlan_id;
 336
 337	if (!e1000_vlan_used(adapter))
 338		return;
 339
 340	if (!test_bit(vid, adapter->active_vlans)) {
 341		if (hw->mng_cookie.status &
 342		    E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
 343			e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
 344			adapter->mng_vlan_id = vid;
 345		} else {
 346			adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
 347		}
 348		if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
 349		    (vid != old_vid) &&
 350		    !test_bit(old_vid, adapter->active_vlans))
 351			e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
 352					       old_vid);
 353	} else {
 354		adapter->mng_vlan_id = vid;
 355	}
 356}
 357
 358static void e1000_init_manageability(struct e1000_adapter *adapter)
 359{
 360	struct e1000_hw *hw = &adapter->hw;
 361
 362	if (adapter->en_mng_pt) {
 363		u32 manc = er32(MANC);
 364
 365		/* disable hardware interception of ARP */
 366		manc &= ~(E1000_MANC_ARP_EN);
 367
 368		ew32(MANC, manc);
 369	}
 370}
 371
 372static void e1000_release_manageability(struct e1000_adapter *adapter)
 373{
 374	struct e1000_hw *hw = &adapter->hw;
 375
 376	if (adapter->en_mng_pt) {
 377		u32 manc = er32(MANC);
 378
 379		/* re-enable hardware interception of ARP */
 380		manc |= E1000_MANC_ARP_EN;
 381
 382		ew32(MANC, manc);
 383	}
 384}
 385
 386/**
 387 * e1000_configure - configure the hardware for RX and TX
 388 * @adapter = private board structure
 389 **/
 390static void e1000_configure(struct e1000_adapter *adapter)
 391{
 392	struct net_device *netdev = adapter->netdev;
 393	int i;
 394
 395	e1000_set_rx_mode(netdev);
 396
 397	e1000_restore_vlan(adapter);
 398	e1000_init_manageability(adapter);
 399
 400	e1000_configure_tx(adapter);
 401	e1000_setup_rctl(adapter);
 402	e1000_configure_rx(adapter);
 403	/* call E1000_DESC_UNUSED which always leaves
 404	 * at least 1 descriptor unused to make sure
 405	 * next_to_use != next_to_clean
 406	 */
 407	for (i = 0; i < adapter->num_rx_queues; i++) {
 408		struct e1000_rx_ring *ring = &adapter->rx_ring[i];
 409		adapter->alloc_rx_buf(adapter, ring,
 410				      E1000_DESC_UNUSED(ring));
 411	}
 412}
 413
 414int e1000_up(struct e1000_adapter *adapter)
 415{
 416	struct e1000_hw *hw = &adapter->hw;
 417
 418	/* hardware has been reset, we need to reload some things */
 419	e1000_configure(adapter);
 420
 421	clear_bit(__E1000_DOWN, &adapter->flags);
 422
 423	napi_enable(&adapter->napi);
 424
 425	e1000_irq_enable(adapter);
 426
 427	netif_wake_queue(adapter->netdev);
 428
 429	/* fire a link change interrupt to start the watchdog */
 430	ew32(ICS, E1000_ICS_LSC);
 431	return 0;
 432}
 433
 434/**
 435 * e1000_power_up_phy - restore link in case the phy was powered down
 436 * @adapter: address of board private structure
 437 *
 438 * The phy may be powered down to save power and turn off link when the
 439 * driver is unloaded and wake on lan is not enabled (among others)
 440 * *** this routine MUST be followed by a call to e1000_reset ***
 441 **/
 442void e1000_power_up_phy(struct e1000_adapter *adapter)
 443{
 444	struct e1000_hw *hw = &adapter->hw;
 445	u16 mii_reg = 0;
 446
 447	/* Just clear the power down bit to wake the phy back up */
 448	if (hw->media_type == e1000_media_type_copper) {
 449		/* according to the manual, the phy will retain its
 450		 * settings across a power-down/up cycle
 451		 */
 452		e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
 453		mii_reg &= ~MII_CR_POWER_DOWN;
 454		e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
 455	}
 456}
 457
 458static void e1000_power_down_phy(struct e1000_adapter *adapter)
 459{
 460	struct e1000_hw *hw = &adapter->hw;
 461
 462	/* Power down the PHY so no link is implied when interface is down *
 463	 * The PHY cannot be powered down if any of the following is true *
 464	 * (a) WoL is enabled
 465	 * (b) AMT is active
 466	 * (c) SoL/IDER session is active
 467	 */
 468	if (!adapter->wol && hw->mac_type >= e1000_82540 &&
 469	   hw->media_type == e1000_media_type_copper) {
 470		u16 mii_reg = 0;
 471
 472		switch (hw->mac_type) {
 473		case e1000_82540:
 474		case e1000_82545:
 475		case e1000_82545_rev_3:
 476		case e1000_82546:
 477		case e1000_ce4100:
 478		case e1000_82546_rev_3:
 479		case e1000_82541:
 480		case e1000_82541_rev_2:
 481		case e1000_82547:
 482		case e1000_82547_rev_2:
 483			if (er32(MANC) & E1000_MANC_SMBUS_EN)
 484				goto out;
 485			break;
 486		default:
 487			goto out;
 488		}
 489		e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
 490		mii_reg |= MII_CR_POWER_DOWN;
 491		e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
 492		msleep(1);
 493	}
 494out:
 495	return;
 496}
 497
 498static void e1000_down_and_stop(struct e1000_adapter *adapter)
 499{
 500	set_bit(__E1000_DOWN, &adapter->flags);
 501
 502	cancel_delayed_work_sync(&adapter->watchdog_task);
 503
 504	/*
 505	 * Since the watchdog task can reschedule other tasks, we should cancel
 506	 * it first, otherwise we can run into the situation when a work is
 507	 * still running after the adapter has been turned down.
 508	 */
 509
 510	cancel_delayed_work_sync(&adapter->phy_info_task);
 511	cancel_delayed_work_sync(&adapter->fifo_stall_task);
 512
 513	/* Only kill reset task if adapter is not resetting */
 514	if (!test_bit(__E1000_RESETTING, &adapter->flags))
 515		cancel_work_sync(&adapter->reset_task);
 516}
 517
 518void e1000_down(struct e1000_adapter *adapter)
 519{
 520	struct e1000_hw *hw = &adapter->hw;
 521	struct net_device *netdev = adapter->netdev;
 522	u32 rctl, tctl;
 523
 524	netif_carrier_off(netdev);
 525
 526	/* disable receives in the hardware */
 527	rctl = er32(RCTL);
 528	ew32(RCTL, rctl & ~E1000_RCTL_EN);
 529	/* flush and sleep below */
 530
 531	netif_tx_disable(netdev);
 532
 533	/* disable transmits in the hardware */
 534	tctl = er32(TCTL);
 535	tctl &= ~E1000_TCTL_EN;
 536	ew32(TCTL, tctl);
 537	/* flush both disables and wait for them to finish */
 538	E1000_WRITE_FLUSH();
 539	msleep(10);
 540
 
 
 
 
 
 
 
 
 
 
 
 541	napi_disable(&adapter->napi);
 542
 543	e1000_irq_disable(adapter);
 544
 545	/* Setting DOWN must be after irq_disable to prevent
 546	 * a screaming interrupt.  Setting DOWN also prevents
 547	 * tasks from rescheduling.
 548	 */
 549	e1000_down_and_stop(adapter);
 550
 551	adapter->link_speed = 0;
 552	adapter->link_duplex = 0;
 553
 554	e1000_reset(adapter);
 555	e1000_clean_all_tx_rings(adapter);
 556	e1000_clean_all_rx_rings(adapter);
 557}
 558
 559void e1000_reinit_locked(struct e1000_adapter *adapter)
 560{
 561	WARN_ON(in_interrupt());
 562	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
 563		msleep(1);
 564	e1000_down(adapter);
 565	e1000_up(adapter);
 
 
 
 
 
 566	clear_bit(__E1000_RESETTING, &adapter->flags);
 567}
 568
 569void e1000_reset(struct e1000_adapter *adapter)
 570{
 571	struct e1000_hw *hw = &adapter->hw;
 572	u32 pba = 0, tx_space, min_tx_space, min_rx_space;
 573	bool legacy_pba_adjust = false;
 574	u16 hwm;
 575
 576	/* Repartition Pba for greater than 9k mtu
 577	 * To take effect CTRL.RST is required.
 578	 */
 579
 580	switch (hw->mac_type) {
 581	case e1000_82542_rev2_0:
 582	case e1000_82542_rev2_1:
 583	case e1000_82543:
 584	case e1000_82544:
 585	case e1000_82540:
 586	case e1000_82541:
 587	case e1000_82541_rev_2:
 588		legacy_pba_adjust = true;
 589		pba = E1000_PBA_48K;
 590		break;
 591	case e1000_82545:
 592	case e1000_82545_rev_3:
 593	case e1000_82546:
 594	case e1000_ce4100:
 595	case e1000_82546_rev_3:
 596		pba = E1000_PBA_48K;
 597		break;
 598	case e1000_82547:
 599	case e1000_82547_rev_2:
 600		legacy_pba_adjust = true;
 601		pba = E1000_PBA_30K;
 602		break;
 603	case e1000_undefined:
 604	case e1000_num_macs:
 605		break;
 606	}
 607
 608	if (legacy_pba_adjust) {
 609		if (hw->max_frame_size > E1000_RXBUFFER_8192)
 610			pba -= 8; /* allocate more FIFO for Tx */
 611
 612		if (hw->mac_type == e1000_82547) {
 613			adapter->tx_fifo_head = 0;
 614			adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
 615			adapter->tx_fifo_size =
 616				(E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
 617			atomic_set(&adapter->tx_fifo_stall, 0);
 618		}
 619	} else if (hw->max_frame_size >  ETH_FRAME_LEN + ETH_FCS_LEN) {
 620		/* adjust PBA for jumbo frames */
 621		ew32(PBA, pba);
 622
 623		/* To maintain wire speed transmits, the Tx FIFO should be
 624		 * large enough to accommodate two full transmit packets,
 625		 * rounded up to the next 1KB and expressed in KB.  Likewise,
 626		 * the Rx FIFO should be large enough to accommodate at least
 627		 * one full receive packet and is similarly rounded up and
 628		 * expressed in KB.
 629		 */
 630		pba = er32(PBA);
 631		/* upper 16 bits has Tx packet buffer allocation size in KB */
 632		tx_space = pba >> 16;
 633		/* lower 16 bits has Rx packet buffer allocation size in KB */
 634		pba &= 0xffff;
 635		/* the Tx fifo also stores 16 bytes of information about the Tx
 636		 * but don't include ethernet FCS because hardware appends it
 637		 */
 638		min_tx_space = (hw->max_frame_size +
 639				sizeof(struct e1000_tx_desc) -
 640				ETH_FCS_LEN) * 2;
 641		min_tx_space = ALIGN(min_tx_space, 1024);
 642		min_tx_space >>= 10;
 643		/* software strips receive CRC, so leave room for it */
 644		min_rx_space = hw->max_frame_size;
 645		min_rx_space = ALIGN(min_rx_space, 1024);
 646		min_rx_space >>= 10;
 647
 648		/* If current Tx allocation is less than the min Tx FIFO size,
 649		 * and the min Tx FIFO size is less than the current Rx FIFO
 650		 * allocation, take space away from current Rx allocation
 651		 */
 652		if (tx_space < min_tx_space &&
 653		    ((min_tx_space - tx_space) < pba)) {
 654			pba = pba - (min_tx_space - tx_space);
 655
 656			/* PCI/PCIx hardware has PBA alignment constraints */
 657			switch (hw->mac_type) {
 658			case e1000_82545 ... e1000_82546_rev_3:
 659				pba &= ~(E1000_PBA_8K - 1);
 660				break;
 661			default:
 662				break;
 663			}
 664
 665			/* if short on Rx space, Rx wins and must trump Tx
 666			 * adjustment or use Early Receive if available
 667			 */
 668			if (pba < min_rx_space)
 669				pba = min_rx_space;
 670		}
 671	}
 672
 673	ew32(PBA, pba);
 674
 675	/* flow control settings:
 676	 * The high water mark must be low enough to fit one full frame
 677	 * (or the size used for early receive) above it in the Rx FIFO.
 678	 * Set it to the lower of:
 679	 * - 90% of the Rx FIFO size, and
 680	 * - the full Rx FIFO size minus the early receive size (for parts
 681	 *   with ERT support assuming ERT set to E1000_ERT_2048), or
 682	 * - the full Rx FIFO size minus one full frame
 683	 */
 684	hwm = min(((pba << 10) * 9 / 10),
 685		  ((pba << 10) - hw->max_frame_size));
 686
 687	hw->fc_high_water = hwm & 0xFFF8;	/* 8-byte granularity */
 688	hw->fc_low_water = hw->fc_high_water - 8;
 689	hw->fc_pause_time = E1000_FC_PAUSE_TIME;
 690	hw->fc_send_xon = 1;
 691	hw->fc = hw->original_fc;
 692
 693	/* Allow time for pending master requests to run */
 694	e1000_reset_hw(hw);
 695	if (hw->mac_type >= e1000_82544)
 696		ew32(WUC, 0);
 697
 698	if (e1000_init_hw(hw))
 699		e_dev_err("Hardware Error\n");
 700	e1000_update_mng_vlan(adapter);
 701
 702	/* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
 703	if (hw->mac_type >= e1000_82544 &&
 704	    hw->autoneg == 1 &&
 705	    hw->autoneg_advertised == ADVERTISE_1000_FULL) {
 706		u32 ctrl = er32(CTRL);
 707		/* clear phy power management bit if we are in gig only mode,
 708		 * which if enabled will attempt negotiation to 100Mb, which
 709		 * can cause a loss of link at power off or driver unload
 710		 */
 711		ctrl &= ~E1000_CTRL_SWDPIN3;
 712		ew32(CTRL, ctrl);
 713	}
 714
 715	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
 716	ew32(VET, ETHERNET_IEEE_VLAN_TYPE);
 717
 718	e1000_reset_adaptive(hw);
 719	e1000_phy_get_info(hw, &adapter->phy_info);
 720
 721	e1000_release_manageability(adapter);
 722}
 723
 724/* Dump the eeprom for users having checksum issues */
 725static void e1000_dump_eeprom(struct e1000_adapter *adapter)
 726{
 727	struct net_device *netdev = adapter->netdev;
 728	struct ethtool_eeprom eeprom;
 729	const struct ethtool_ops *ops = netdev->ethtool_ops;
 730	u8 *data;
 731	int i;
 732	u16 csum_old, csum_new = 0;
 733
 734	eeprom.len = ops->get_eeprom_len(netdev);
 735	eeprom.offset = 0;
 736
 737	data = kmalloc(eeprom.len, GFP_KERNEL);
 738	if (!data)
 739		return;
 740
 741	ops->get_eeprom(netdev, &eeprom, data);
 742
 743	csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
 744		   (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
 745	for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
 746		csum_new += data[i] + (data[i + 1] << 8);
 747	csum_new = EEPROM_SUM - csum_new;
 748
 749	pr_err("/*********************/\n");
 750	pr_err("Current EEPROM Checksum : 0x%04x\n", csum_old);
 751	pr_err("Calculated              : 0x%04x\n", csum_new);
 752
 753	pr_err("Offset    Values\n");
 754	pr_err("========  ======\n");
 755	print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0);
 756
 757	pr_err("Include this output when contacting your support provider.\n");
 758	pr_err("This is not a software error! Something bad happened to\n");
 759	pr_err("your hardware or EEPROM image. Ignoring this problem could\n");
 760	pr_err("result in further problems, possibly loss of data,\n");
 761	pr_err("corruption or system hangs!\n");
 762	pr_err("The MAC Address will be reset to 00:00:00:00:00:00,\n");
 763	pr_err("which is invalid and requires you to set the proper MAC\n");
 764	pr_err("address manually before continuing to enable this network\n");
 765	pr_err("device. Please inspect the EEPROM dump and report the\n");
 766	pr_err("issue to your hardware vendor or Intel Customer Support.\n");
 767	pr_err("/*********************/\n");
 768
 769	kfree(data);
 770}
 771
 772/**
 773 * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
 774 * @pdev: PCI device information struct
 775 *
 776 * Return true if an adapter needs ioport resources
 777 **/
 778static int e1000_is_need_ioport(struct pci_dev *pdev)
 779{
 780	switch (pdev->device) {
 781	case E1000_DEV_ID_82540EM:
 782	case E1000_DEV_ID_82540EM_LOM:
 783	case E1000_DEV_ID_82540EP:
 784	case E1000_DEV_ID_82540EP_LOM:
 785	case E1000_DEV_ID_82540EP_LP:
 786	case E1000_DEV_ID_82541EI:
 787	case E1000_DEV_ID_82541EI_MOBILE:
 788	case E1000_DEV_ID_82541ER:
 789	case E1000_DEV_ID_82541ER_LOM:
 790	case E1000_DEV_ID_82541GI:
 791	case E1000_DEV_ID_82541GI_LF:
 792	case E1000_DEV_ID_82541GI_MOBILE:
 793	case E1000_DEV_ID_82544EI_COPPER:
 794	case E1000_DEV_ID_82544EI_FIBER:
 795	case E1000_DEV_ID_82544GC_COPPER:
 796	case E1000_DEV_ID_82544GC_LOM:
 797	case E1000_DEV_ID_82545EM_COPPER:
 798	case E1000_DEV_ID_82545EM_FIBER:
 799	case E1000_DEV_ID_82546EB_COPPER:
 800	case E1000_DEV_ID_82546EB_FIBER:
 801	case E1000_DEV_ID_82546EB_QUAD_COPPER:
 802		return true;
 803	default:
 804		return false;
 805	}
 806}
 807
 808static netdev_features_t e1000_fix_features(struct net_device *netdev,
 809	netdev_features_t features)
 810{
 811	/* Since there is no support for separate Rx/Tx vlan accel
 812	 * enable/disable make sure Tx flag is always in same state as Rx.
 813	 */
 814	if (features & NETIF_F_HW_VLAN_CTAG_RX)
 815		features |= NETIF_F_HW_VLAN_CTAG_TX;
 816	else
 817		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
 818
 819	return features;
 820}
 821
 822static int e1000_set_features(struct net_device *netdev,
 823	netdev_features_t features)
 824{
 825	struct e1000_adapter *adapter = netdev_priv(netdev);
 826	netdev_features_t changed = features ^ netdev->features;
 827
 828	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
 829		e1000_vlan_mode(netdev, features);
 830
 831	if (!(changed & (NETIF_F_RXCSUM | NETIF_F_RXALL)))
 832		return 0;
 833
 834	netdev->features = features;
 835	adapter->rx_csum = !!(features & NETIF_F_RXCSUM);
 836
 837	if (netif_running(netdev))
 838		e1000_reinit_locked(adapter);
 839	else
 840		e1000_reset(adapter);
 841
 842	return 0;
 843}
 844
 845static const struct net_device_ops e1000_netdev_ops = {
 846	.ndo_open		= e1000_open,
 847	.ndo_stop		= e1000_close,
 848	.ndo_start_xmit		= e1000_xmit_frame,
 849	.ndo_get_stats		= e1000_get_stats,
 850	.ndo_set_rx_mode	= e1000_set_rx_mode,
 851	.ndo_set_mac_address	= e1000_set_mac,
 852	.ndo_tx_timeout		= e1000_tx_timeout,
 853	.ndo_change_mtu		= e1000_change_mtu,
 854	.ndo_do_ioctl		= e1000_ioctl,
 855	.ndo_validate_addr	= eth_validate_addr,
 856	.ndo_vlan_rx_add_vid	= e1000_vlan_rx_add_vid,
 857	.ndo_vlan_rx_kill_vid	= e1000_vlan_rx_kill_vid,
 858#ifdef CONFIG_NET_POLL_CONTROLLER
 859	.ndo_poll_controller	= e1000_netpoll,
 860#endif
 861	.ndo_fix_features	= e1000_fix_features,
 862	.ndo_set_features	= e1000_set_features,
 863};
 864
 865/**
 866 * e1000_init_hw_struct - initialize members of hw struct
 867 * @adapter: board private struct
 868 * @hw: structure used by e1000_hw.c
 869 *
 870 * Factors out initialization of the e1000_hw struct to its own function
 871 * that can be called very early at init (just after struct allocation).
 872 * Fields are initialized based on PCI device information and
 873 * OS network device settings (MTU size).
 874 * Returns negative error codes if MAC type setup fails.
 875 */
 876static int e1000_init_hw_struct(struct e1000_adapter *adapter,
 877				struct e1000_hw *hw)
 878{
 879	struct pci_dev *pdev = adapter->pdev;
 880
 881	/* PCI config space info */
 882	hw->vendor_id = pdev->vendor;
 883	hw->device_id = pdev->device;
 884	hw->subsystem_vendor_id = pdev->subsystem_vendor;
 885	hw->subsystem_id = pdev->subsystem_device;
 886	hw->revision_id = pdev->revision;
 887
 888	pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
 889
 890	hw->max_frame_size = adapter->netdev->mtu +
 891			     ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
 892	hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
 893
 894	/* identify the MAC */
 895	if (e1000_set_mac_type(hw)) {
 896		e_err(probe, "Unknown MAC Type\n");
 897		return -EIO;
 898	}
 899
 900	switch (hw->mac_type) {
 901	default:
 902		break;
 903	case e1000_82541:
 904	case e1000_82547:
 905	case e1000_82541_rev_2:
 906	case e1000_82547_rev_2:
 907		hw->phy_init_script = 1;
 908		break;
 909	}
 910
 911	e1000_set_media_type(hw);
 912	e1000_get_bus_info(hw);
 913
 914	hw->wait_autoneg_complete = false;
 915	hw->tbi_compatibility_en = true;
 916	hw->adaptive_ifs = true;
 917
 918	/* Copper options */
 919
 920	if (hw->media_type == e1000_media_type_copper) {
 921		hw->mdix = AUTO_ALL_MODES;
 922		hw->disable_polarity_correction = false;
 923		hw->master_slave = E1000_MASTER_SLAVE;
 924	}
 925
 926	return 0;
 927}
 928
 929/**
 930 * e1000_probe - Device Initialization Routine
 931 * @pdev: PCI device information struct
 932 * @ent: entry in e1000_pci_tbl
 933 *
 934 * Returns 0 on success, negative on failure
 935 *
 936 * e1000_probe initializes an adapter identified by a pci_dev structure.
 937 * The OS initialization, configuring of the adapter private structure,
 938 * and a hardware reset occur.
 939 **/
 940static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
 941{
 942	struct net_device *netdev;
 943	struct e1000_adapter *adapter;
 944	struct e1000_hw *hw;
 945
 946	static int cards_found;
 947	static int global_quad_port_a; /* global ksp3 port a indication */
 948	int i, err, pci_using_dac;
 949	u16 eeprom_data = 0;
 950	u16 tmp = 0;
 951	u16 eeprom_apme_mask = E1000_EEPROM_APME;
 952	int bars, need_ioport;
 
 953
 954	/* do not allocate ioport bars when not needed */
 955	need_ioport = e1000_is_need_ioport(pdev);
 956	if (need_ioport) {
 957		bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
 958		err = pci_enable_device(pdev);
 959	} else {
 960		bars = pci_select_bars(pdev, IORESOURCE_MEM);
 961		err = pci_enable_device_mem(pdev);
 962	}
 963	if (err)
 964		return err;
 965
 966	err = pci_request_selected_regions(pdev, bars, e1000_driver_name);
 967	if (err)
 968		goto err_pci_reg;
 969
 970	pci_set_master(pdev);
 971	err = pci_save_state(pdev);
 972	if (err)
 973		goto err_alloc_etherdev;
 974
 975	err = -ENOMEM;
 976	netdev = alloc_etherdev(sizeof(struct e1000_adapter));
 977	if (!netdev)
 978		goto err_alloc_etherdev;
 979
 980	SET_NETDEV_DEV(netdev, &pdev->dev);
 981
 982	pci_set_drvdata(pdev, netdev);
 983	adapter = netdev_priv(netdev);
 984	adapter->netdev = netdev;
 985	adapter->pdev = pdev;
 986	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
 987	adapter->bars = bars;
 988	adapter->need_ioport = need_ioport;
 989
 990	hw = &adapter->hw;
 991	hw->back = adapter;
 992
 993	err = -EIO;
 994	hw->hw_addr = pci_ioremap_bar(pdev, BAR_0);
 995	if (!hw->hw_addr)
 996		goto err_ioremap;
 997
 998	if (adapter->need_ioport) {
 999		for (i = BAR_1; i <= BAR_5; i++) {
1000			if (pci_resource_len(pdev, i) == 0)
1001				continue;
1002			if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
1003				hw->io_base = pci_resource_start(pdev, i);
1004				break;
1005			}
1006		}
1007	}
1008
1009	/* make ready for any if (hw->...) below */
1010	err = e1000_init_hw_struct(adapter, hw);
1011	if (err)
1012		goto err_sw_init;
1013
1014	/* there is a workaround being applied below that limits
1015	 * 64-bit DMA addresses to 64-bit hardware.  There are some
1016	 * 32-bit adapters that Tx hang when given 64-bit DMA addresses
1017	 */
1018	pci_using_dac = 0;
1019	if ((hw->bus_type == e1000_bus_type_pcix) &&
1020	    !dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) {
1021		pci_using_dac = 1;
1022	} else {
1023		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1024		if (err) {
1025			pr_err("No usable DMA config, aborting\n");
1026			goto err_dma;
1027		}
1028	}
1029
1030	netdev->netdev_ops = &e1000_netdev_ops;
1031	e1000_set_ethtool_ops(netdev);
1032	netdev->watchdog_timeo = 5 * HZ;
1033	netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
1034
1035	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1036
1037	adapter->bd_number = cards_found;
1038
1039	/* setup the private structure */
1040
1041	err = e1000_sw_init(adapter);
1042	if (err)
1043		goto err_sw_init;
1044
1045	err = -EIO;
1046	if (hw->mac_type == e1000_ce4100) {
1047		hw->ce4100_gbe_mdio_base_virt =
1048					ioremap(pci_resource_start(pdev, BAR_1),
1049						pci_resource_len(pdev, BAR_1));
1050
1051		if (!hw->ce4100_gbe_mdio_base_virt)
1052			goto err_mdio_ioremap;
1053	}
1054
1055	if (hw->mac_type >= e1000_82543) {
1056		netdev->hw_features = NETIF_F_SG |
1057				   NETIF_F_HW_CSUM |
1058				   NETIF_F_HW_VLAN_CTAG_RX;
1059		netdev->features = NETIF_F_HW_VLAN_CTAG_TX |
1060				   NETIF_F_HW_VLAN_CTAG_FILTER;
1061	}
1062
1063	if ((hw->mac_type >= e1000_82544) &&
1064	   (hw->mac_type != e1000_82547))
1065		netdev->hw_features |= NETIF_F_TSO;
1066
1067	netdev->priv_flags |= IFF_SUPP_NOFCS;
1068
1069	netdev->features |= netdev->hw_features;
1070	netdev->hw_features |= (NETIF_F_RXCSUM |
1071				NETIF_F_RXALL |
1072				NETIF_F_RXFCS);
1073
1074	if (pci_using_dac) {
1075		netdev->features |= NETIF_F_HIGHDMA;
1076		netdev->vlan_features |= NETIF_F_HIGHDMA;
1077	}
1078
1079	netdev->vlan_features |= (NETIF_F_TSO |
1080				  NETIF_F_HW_CSUM |
1081				  NETIF_F_SG);
1082
1083	/* Do not set IFF_UNICAST_FLT for VMWare's 82545EM */
1084	if (hw->device_id != E1000_DEV_ID_82545EM_COPPER ||
1085	    hw->subsystem_vendor_id != PCI_VENDOR_ID_VMWARE)
1086		netdev->priv_flags |= IFF_UNICAST_FLT;
1087
 
 
 
 
1088	adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
1089
1090	/* initialize eeprom parameters */
1091	if (e1000_init_eeprom_params(hw)) {
1092		e_err(probe, "EEPROM initialization failed\n");
1093		goto err_eeprom;
1094	}
1095
1096	/* before reading the EEPROM, reset the controller to
1097	 * put the device in a known good starting state
1098	 */
1099
1100	e1000_reset_hw(hw);
1101
1102	/* make sure the EEPROM is good */
1103	if (e1000_validate_eeprom_checksum(hw) < 0) {
1104		e_err(probe, "The EEPROM Checksum Is Not Valid\n");
1105		e1000_dump_eeprom(adapter);
1106		/* set MAC address to all zeroes to invalidate and temporary
1107		 * disable this device for the user. This blocks regular
1108		 * traffic while still permitting ethtool ioctls from reaching
1109		 * the hardware as well as allowing the user to run the
1110		 * interface after manually setting a hw addr using
1111		 * `ip set address`
1112		 */
1113		memset(hw->mac_addr, 0, netdev->addr_len);
1114	} else {
1115		/* copy the MAC address out of the EEPROM */
1116		if (e1000_read_mac_addr(hw))
1117			e_err(probe, "EEPROM Read Error\n");
1118	}
1119	/* don't block initialization here due to bad MAC address */
1120	memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len);
1121
1122	if (!is_valid_ether_addr(netdev->dev_addr))
1123		e_err(probe, "Invalid MAC Address\n");
1124
1125
1126	INIT_DELAYED_WORK(&adapter->watchdog_task, e1000_watchdog);
1127	INIT_DELAYED_WORK(&adapter->fifo_stall_task,
1128			  e1000_82547_tx_fifo_stall_task);
1129	INIT_DELAYED_WORK(&adapter->phy_info_task, e1000_update_phy_info_task);
1130	INIT_WORK(&adapter->reset_task, e1000_reset_task);
1131
1132	e1000_check_options(adapter);
1133
1134	/* Initial Wake on LAN setting
1135	 * If APM wake is enabled in the EEPROM,
1136	 * enable the ACPI Magic Packet filter
1137	 */
1138
1139	switch (hw->mac_type) {
1140	case e1000_82542_rev2_0:
1141	case e1000_82542_rev2_1:
1142	case e1000_82543:
1143		break;
1144	case e1000_82544:
1145		e1000_read_eeprom(hw,
1146			EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1147		eeprom_apme_mask = E1000_EEPROM_82544_APM;
1148		break;
1149	case e1000_82546:
1150	case e1000_82546_rev_3:
1151		if (er32(STATUS) & E1000_STATUS_FUNC_1) {
1152			e1000_read_eeprom(hw,
1153				EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1154			break;
1155		}
1156		/* Fall Through */
1157	default:
1158		e1000_read_eeprom(hw,
1159			EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1160		break;
1161	}
1162	if (eeprom_data & eeprom_apme_mask)
1163		adapter->eeprom_wol |= E1000_WUFC_MAG;
1164
1165	/* now that we have the eeprom settings, apply the special cases
1166	 * where the eeprom may be wrong or the board simply won't support
1167	 * wake on lan on a particular port
1168	 */
1169	switch (pdev->device) {
1170	case E1000_DEV_ID_82546GB_PCIE:
1171		adapter->eeprom_wol = 0;
1172		break;
1173	case E1000_DEV_ID_82546EB_FIBER:
1174	case E1000_DEV_ID_82546GB_FIBER:
1175		/* Wake events only supported on port A for dual fiber
1176		 * regardless of eeprom setting
1177		 */
1178		if (er32(STATUS) & E1000_STATUS_FUNC_1)
1179			adapter->eeprom_wol = 0;
1180		break;
1181	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1182		/* if quad port adapter, disable WoL on all but port A */
1183		if (global_quad_port_a != 0)
1184			adapter->eeprom_wol = 0;
1185		else
1186			adapter->quad_port_a = true;
1187		/* Reset for multiple quad port adapters */
1188		if (++global_quad_port_a == 4)
1189			global_quad_port_a = 0;
1190		break;
1191	}
1192
1193	/* initialize the wol settings based on the eeprom settings */
1194	adapter->wol = adapter->eeprom_wol;
1195	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1196
1197	/* Auto detect PHY address */
1198	if (hw->mac_type == e1000_ce4100) {
1199		for (i = 0; i < 32; i++) {
1200			hw->phy_addr = i;
1201			e1000_read_phy_reg(hw, PHY_ID2, &tmp);
1202
1203			if (tmp != 0 && tmp != 0xFF)
1204				break;
1205		}
1206
1207		if (i >= 32)
1208			goto err_eeprom;
1209	}
1210
1211	/* reset the hardware with the new settings */
1212	e1000_reset(adapter);
1213
1214	strcpy(netdev->name, "eth%d");
1215	err = register_netdev(netdev);
1216	if (err)
1217		goto err_register;
1218
1219	e1000_vlan_filter_on_off(adapter, false);
1220
1221	/* print bus type/speed/width info */
1222	e_info(probe, "(PCI%s:%dMHz:%d-bit) %pM\n",
1223	       ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : ""),
1224	       ((hw->bus_speed == e1000_bus_speed_133) ? 133 :
1225		(hw->bus_speed == e1000_bus_speed_120) ? 120 :
1226		(hw->bus_speed == e1000_bus_speed_100) ? 100 :
1227		(hw->bus_speed == e1000_bus_speed_66) ? 66 : 33),
1228	       ((hw->bus_width == e1000_bus_width_64) ? 64 : 32),
1229	       netdev->dev_addr);
1230
1231	/* carrier off reporting is important to ethtool even BEFORE open */
1232	netif_carrier_off(netdev);
1233
1234	e_info(probe, "Intel(R) PRO/1000 Network Connection\n");
1235
1236	cards_found++;
1237	return 0;
1238
1239err_register:
1240err_eeprom:
1241	e1000_phy_hw_reset(hw);
1242
1243	if (hw->flash_address)
1244		iounmap(hw->flash_address);
1245	kfree(adapter->tx_ring);
1246	kfree(adapter->rx_ring);
1247err_dma:
1248err_sw_init:
1249err_mdio_ioremap:
1250	iounmap(hw->ce4100_gbe_mdio_base_virt);
1251	iounmap(hw->hw_addr);
1252err_ioremap:
 
1253	free_netdev(netdev);
1254err_alloc_etherdev:
1255	pci_release_selected_regions(pdev, bars);
1256err_pci_reg:
1257	pci_disable_device(pdev);
 
1258	return err;
1259}
1260
1261/**
1262 * e1000_remove - Device Removal Routine
1263 * @pdev: PCI device information struct
1264 *
1265 * e1000_remove is called by the PCI subsystem to alert the driver
1266 * that it should release a PCI device. That could be caused by a
1267 * Hot-Plug event, or because the driver is going to be removed from
1268 * memory.
1269 **/
1270static void e1000_remove(struct pci_dev *pdev)
1271{
1272	struct net_device *netdev = pci_get_drvdata(pdev);
1273	struct e1000_adapter *adapter = netdev_priv(netdev);
1274	struct e1000_hw *hw = &adapter->hw;
 
1275
1276	e1000_down_and_stop(adapter);
1277	e1000_release_manageability(adapter);
1278
1279	unregister_netdev(netdev);
1280
1281	e1000_phy_hw_reset(hw);
1282
1283	kfree(adapter->tx_ring);
1284	kfree(adapter->rx_ring);
1285
1286	if (hw->mac_type == e1000_ce4100)
1287		iounmap(hw->ce4100_gbe_mdio_base_virt);
1288	iounmap(hw->hw_addr);
1289	if (hw->flash_address)
1290		iounmap(hw->flash_address);
1291	pci_release_selected_regions(pdev, adapter->bars);
1292
 
1293	free_netdev(netdev);
1294
1295	pci_disable_device(pdev);
 
1296}
1297
1298/**
1299 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1300 * @adapter: board private structure to initialize
1301 *
1302 * e1000_sw_init initializes the Adapter private data structure.
1303 * e1000_init_hw_struct MUST be called before this function
1304 **/
1305static int e1000_sw_init(struct e1000_adapter *adapter)
1306{
1307	adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1308
1309	adapter->num_tx_queues = 1;
1310	adapter->num_rx_queues = 1;
1311
1312	if (e1000_alloc_queues(adapter)) {
1313		e_err(probe, "Unable to allocate memory for queues\n");
1314		return -ENOMEM;
1315	}
1316
1317	/* Explicitly disable IRQ since the NIC can be in any state. */
1318	e1000_irq_disable(adapter);
1319
1320	spin_lock_init(&adapter->stats_lock);
1321
1322	set_bit(__E1000_DOWN, &adapter->flags);
1323
1324	return 0;
1325}
1326
1327/**
1328 * e1000_alloc_queues - Allocate memory for all rings
1329 * @adapter: board private structure to initialize
1330 *
1331 * We allocate one ring per queue at run-time since we don't know the
1332 * number of queues at compile-time.
1333 **/
1334static int e1000_alloc_queues(struct e1000_adapter *adapter)
1335{
1336	adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1337				   sizeof(struct e1000_tx_ring), GFP_KERNEL);
1338	if (!adapter->tx_ring)
1339		return -ENOMEM;
1340
1341	adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1342				   sizeof(struct e1000_rx_ring), GFP_KERNEL);
1343	if (!adapter->rx_ring) {
1344		kfree(adapter->tx_ring);
1345		return -ENOMEM;
1346	}
1347
1348	return E1000_SUCCESS;
1349}
1350
1351/**
1352 * e1000_open - Called when a network interface is made active
1353 * @netdev: network interface device structure
1354 *
1355 * Returns 0 on success, negative value on failure
1356 *
1357 * The open entry point is called when a network interface is made
1358 * active by the system (IFF_UP).  At this point all resources needed
1359 * for transmit and receive operations are allocated, the interrupt
1360 * handler is registered with the OS, the watchdog task is started,
1361 * and the stack is notified that the interface is ready.
1362 **/
1363static int e1000_open(struct net_device *netdev)
1364{
1365	struct e1000_adapter *adapter = netdev_priv(netdev);
1366	struct e1000_hw *hw = &adapter->hw;
1367	int err;
1368
1369	/* disallow open during test */
1370	if (test_bit(__E1000_TESTING, &adapter->flags))
1371		return -EBUSY;
1372
1373	netif_carrier_off(netdev);
1374
1375	/* allocate transmit descriptors */
1376	err = e1000_setup_all_tx_resources(adapter);
1377	if (err)
1378		goto err_setup_tx;
1379
1380	/* allocate receive descriptors */
1381	err = e1000_setup_all_rx_resources(adapter);
1382	if (err)
1383		goto err_setup_rx;
1384
1385	e1000_power_up_phy(adapter);
1386
1387	adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1388	if ((hw->mng_cookie.status &
1389			  E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1390		e1000_update_mng_vlan(adapter);
1391	}
1392
1393	/* before we allocate an interrupt, we must be ready to handle it.
1394	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1395	 * as soon as we call pci_request_irq, so we have to setup our
1396	 * clean_rx handler before we do so.
1397	 */
1398	e1000_configure(adapter);
1399
1400	err = e1000_request_irq(adapter);
1401	if (err)
1402		goto err_req_irq;
1403
1404	/* From here on the code is the same as e1000_up() */
1405	clear_bit(__E1000_DOWN, &adapter->flags);
1406
 
1407	napi_enable(&adapter->napi);
 
 
1408
1409	e1000_irq_enable(adapter);
1410
1411	netif_start_queue(netdev);
1412
1413	/* fire a link status change interrupt to start the watchdog */
1414	ew32(ICS, E1000_ICS_LSC);
1415
1416	return E1000_SUCCESS;
1417
1418err_req_irq:
1419	e1000_power_down_phy(adapter);
1420	e1000_free_all_rx_resources(adapter);
1421err_setup_rx:
1422	e1000_free_all_tx_resources(adapter);
1423err_setup_tx:
1424	e1000_reset(adapter);
1425
1426	return err;
1427}
1428
1429/**
1430 * e1000_close - Disables a network interface
1431 * @netdev: network interface device structure
1432 *
1433 * Returns 0, this is not allowed to fail
1434 *
1435 * The close entry point is called when an interface is de-activated
1436 * by the OS.  The hardware is still under the drivers control, but
1437 * needs to be disabled.  A global MAC reset is issued to stop the
1438 * hardware, and all transmit and receive resources are freed.
1439 **/
1440static int e1000_close(struct net_device *netdev)
1441{
1442	struct e1000_adapter *adapter = netdev_priv(netdev);
1443	struct e1000_hw *hw = &adapter->hw;
1444	int count = E1000_CHECK_RESET_COUNT;
1445
1446	while (test_bit(__E1000_RESETTING, &adapter->flags) && count--)
1447		usleep_range(10000, 20000);
1448
1449	WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
 
 
 
 
 
1450	e1000_down(adapter);
1451	e1000_power_down_phy(adapter);
1452	e1000_free_irq(adapter);
1453
1454	e1000_free_all_tx_resources(adapter);
1455	e1000_free_all_rx_resources(adapter);
1456
1457	/* kill manageability vlan ID if supported, but not if a vlan with
1458	 * the same ID is registered on the host OS (let 8021q kill it)
1459	 */
1460	if ((hw->mng_cookie.status &
1461	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1462	    !test_bit(adapter->mng_vlan_id, adapter->active_vlans)) {
1463		e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
1464				       adapter->mng_vlan_id);
1465	}
1466
1467	return 0;
1468}
1469
1470/**
1471 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1472 * @adapter: address of board private structure
1473 * @start: address of beginning of memory
1474 * @len: length of memory
1475 **/
1476static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start,
1477				  unsigned long len)
1478{
1479	struct e1000_hw *hw = &adapter->hw;
1480	unsigned long begin = (unsigned long)start;
1481	unsigned long end = begin + len;
1482
1483	/* First rev 82545 and 82546 need to not allow any memory
1484	 * write location to cross 64k boundary due to errata 23
1485	 */
1486	if (hw->mac_type == e1000_82545 ||
1487	    hw->mac_type == e1000_ce4100 ||
1488	    hw->mac_type == e1000_82546) {
1489		return ((begin ^ (end - 1)) >> 16) != 0 ? false : true;
1490	}
1491
1492	return true;
1493}
1494
1495/**
1496 * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1497 * @adapter: board private structure
1498 * @txdr:    tx descriptor ring (for a specific queue) to setup
1499 *
1500 * Return 0 on success, negative on failure
1501 **/
1502static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
1503				    struct e1000_tx_ring *txdr)
1504{
1505	struct pci_dev *pdev = adapter->pdev;
1506	int size;
1507
1508	size = sizeof(struct e1000_tx_buffer) * txdr->count;
1509	txdr->buffer_info = vzalloc(size);
1510	if (!txdr->buffer_info)
1511		return -ENOMEM;
1512
1513	/* round up to nearest 4K */
1514
1515	txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1516	txdr->size = ALIGN(txdr->size, 4096);
1517
1518	txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
1519					GFP_KERNEL);
1520	if (!txdr->desc) {
1521setup_tx_desc_die:
1522		vfree(txdr->buffer_info);
1523		return -ENOMEM;
1524	}
1525
1526	/* Fix for errata 23, can't cross 64kB boundary */
1527	if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1528		void *olddesc = txdr->desc;
1529		dma_addr_t olddma = txdr->dma;
1530		e_err(tx_err, "txdr align check failed: %u bytes at %p\n",
1531		      txdr->size, txdr->desc);
1532		/* Try again, without freeing the previous */
1533		txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size,
1534						&txdr->dma, GFP_KERNEL);
1535		/* Failed allocation, critical failure */
1536		if (!txdr->desc) {
1537			dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1538					  olddma);
1539			goto setup_tx_desc_die;
1540		}
1541
1542		if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1543			/* give up */
1544			dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
1545					  txdr->dma);
1546			dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1547					  olddma);
1548			e_err(probe, "Unable to allocate aligned memory "
1549			      "for the transmit descriptor ring\n");
1550			vfree(txdr->buffer_info);
1551			return -ENOMEM;
1552		} else {
1553			/* Free old allocation, new allocation was successful */
1554			dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1555					  olddma);
1556		}
1557	}
1558	memset(txdr->desc, 0, txdr->size);
1559
1560	txdr->next_to_use = 0;
1561	txdr->next_to_clean = 0;
1562
1563	return 0;
1564}
1565
1566/**
1567 * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1568 * 				  (Descriptors) for all queues
1569 * @adapter: board private structure
1570 *
1571 * Return 0 on success, negative on failure
1572 **/
1573int e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1574{
1575	int i, err = 0;
1576
1577	for (i = 0; i < adapter->num_tx_queues; i++) {
1578		err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1579		if (err) {
1580			e_err(probe, "Allocation for Tx Queue %u failed\n", i);
1581			for (i-- ; i >= 0; i--)
1582				e1000_free_tx_resources(adapter,
1583							&adapter->tx_ring[i]);
1584			break;
1585		}
1586	}
1587
1588	return err;
1589}
1590
1591/**
1592 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1593 * @adapter: board private structure
1594 *
1595 * Configure the Tx unit of the MAC after a reset.
1596 **/
1597static void e1000_configure_tx(struct e1000_adapter *adapter)
1598{
1599	u64 tdba;
1600	struct e1000_hw *hw = &adapter->hw;
1601	u32 tdlen, tctl, tipg;
1602	u32 ipgr1, ipgr2;
1603
1604	/* Setup the HW Tx Head and Tail descriptor pointers */
1605
1606	switch (adapter->num_tx_queues) {
1607	case 1:
1608	default:
1609		tdba = adapter->tx_ring[0].dma;
1610		tdlen = adapter->tx_ring[0].count *
1611			sizeof(struct e1000_tx_desc);
1612		ew32(TDLEN, tdlen);
1613		ew32(TDBAH, (tdba >> 32));
1614		ew32(TDBAL, (tdba & 0x00000000ffffffffULL));
1615		ew32(TDT, 0);
1616		ew32(TDH, 0);
1617		adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ?
1618					   E1000_TDH : E1000_82542_TDH);
1619		adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ?
1620					   E1000_TDT : E1000_82542_TDT);
1621		break;
1622	}
1623
1624	/* Set the default values for the Tx Inter Packet Gap timer */
1625	if ((hw->media_type == e1000_media_type_fiber ||
1626	     hw->media_type == e1000_media_type_internal_serdes))
1627		tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1628	else
1629		tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1630
1631	switch (hw->mac_type) {
1632	case e1000_82542_rev2_0:
1633	case e1000_82542_rev2_1:
1634		tipg = DEFAULT_82542_TIPG_IPGT;
1635		ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1636		ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1637		break;
1638	default:
1639		ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1640		ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1641		break;
1642	}
1643	tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1644	tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1645	ew32(TIPG, tipg);
1646
1647	/* Set the Tx Interrupt Delay register */
1648
1649	ew32(TIDV, adapter->tx_int_delay);
1650	if (hw->mac_type >= e1000_82540)
1651		ew32(TADV, adapter->tx_abs_int_delay);
1652
1653	/* Program the Transmit Control Register */
1654
1655	tctl = er32(TCTL);
1656	tctl &= ~E1000_TCTL_CT;
1657	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1658		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1659
1660	e1000_config_collision_dist(hw);
1661
1662	/* Setup Transmit Descriptor Settings for eop descriptor */
1663	adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1664
1665	/* only set IDE if we are delaying interrupts using the timers */
1666	if (adapter->tx_int_delay)
1667		adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1668
1669	if (hw->mac_type < e1000_82543)
1670		adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1671	else
1672		adapter->txd_cmd |= E1000_TXD_CMD_RS;
1673
1674	/* Cache if we're 82544 running in PCI-X because we'll
1675	 * need this to apply a workaround later in the send path.
1676	 */
1677	if (hw->mac_type == e1000_82544 &&
1678	    hw->bus_type == e1000_bus_type_pcix)
1679		adapter->pcix_82544 = true;
1680
1681	ew32(TCTL, tctl);
1682
1683}
1684
1685/**
1686 * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1687 * @adapter: board private structure
1688 * @rxdr:    rx descriptor ring (for a specific queue) to setup
1689 *
1690 * Returns 0 on success, negative on failure
1691 **/
1692static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
1693				    struct e1000_rx_ring *rxdr)
1694{
1695	struct pci_dev *pdev = adapter->pdev;
1696	int size, desc_len;
1697
1698	size = sizeof(struct e1000_rx_buffer) * rxdr->count;
1699	rxdr->buffer_info = vzalloc(size);
1700	if (!rxdr->buffer_info)
1701		return -ENOMEM;
1702
1703	desc_len = sizeof(struct e1000_rx_desc);
1704
1705	/* Round up to nearest 4K */
1706
1707	rxdr->size = rxdr->count * desc_len;
1708	rxdr->size = ALIGN(rxdr->size, 4096);
1709
1710	rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
1711					GFP_KERNEL);
1712	if (!rxdr->desc) {
1713setup_rx_desc_die:
1714		vfree(rxdr->buffer_info);
1715		return -ENOMEM;
1716	}
1717
1718	/* Fix for errata 23, can't cross 64kB boundary */
1719	if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1720		void *olddesc = rxdr->desc;
1721		dma_addr_t olddma = rxdr->dma;
1722		e_err(rx_err, "rxdr align check failed: %u bytes at %p\n",
1723		      rxdr->size, rxdr->desc);
1724		/* Try again, without freeing the previous */
1725		rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size,
1726						&rxdr->dma, GFP_KERNEL);
1727		/* Failed allocation, critical failure */
1728		if (!rxdr->desc) {
1729			dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1730					  olddma);
1731			goto setup_rx_desc_die;
1732		}
1733
1734		if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1735			/* give up */
1736			dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
1737					  rxdr->dma);
1738			dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1739					  olddma);
1740			e_err(probe, "Unable to allocate aligned memory for "
1741			      "the Rx descriptor ring\n");
1742			goto setup_rx_desc_die;
1743		} else {
1744			/* Free old allocation, new allocation was successful */
1745			dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1746					  olddma);
1747		}
1748	}
1749	memset(rxdr->desc, 0, rxdr->size);
1750
1751	rxdr->next_to_clean = 0;
1752	rxdr->next_to_use = 0;
1753	rxdr->rx_skb_top = NULL;
1754
1755	return 0;
1756}
1757
1758/**
1759 * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1760 * 				  (Descriptors) for all queues
1761 * @adapter: board private structure
1762 *
1763 * Return 0 on success, negative on failure
1764 **/
1765int e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1766{
1767	int i, err = 0;
1768
1769	for (i = 0; i < adapter->num_rx_queues; i++) {
1770		err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1771		if (err) {
1772			e_err(probe, "Allocation for Rx Queue %u failed\n", i);
1773			for (i-- ; i >= 0; i--)
1774				e1000_free_rx_resources(adapter,
1775							&adapter->rx_ring[i]);
1776			break;
1777		}
1778	}
1779
1780	return err;
1781}
1782
1783/**
1784 * e1000_setup_rctl - configure the receive control registers
1785 * @adapter: Board private structure
1786 **/
1787static void e1000_setup_rctl(struct e1000_adapter *adapter)
1788{
1789	struct e1000_hw *hw = &adapter->hw;
1790	u32 rctl;
1791
1792	rctl = er32(RCTL);
1793
1794	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1795
1796	rctl |= E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
1797		E1000_RCTL_RDMTS_HALF |
1798		(hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1799
1800	if (hw->tbi_compatibility_on == 1)
1801		rctl |= E1000_RCTL_SBP;
1802	else
1803		rctl &= ~E1000_RCTL_SBP;
1804
1805	if (adapter->netdev->mtu <= ETH_DATA_LEN)
1806		rctl &= ~E1000_RCTL_LPE;
1807	else
1808		rctl |= E1000_RCTL_LPE;
1809
1810	/* Setup buffer sizes */
1811	rctl &= ~E1000_RCTL_SZ_4096;
1812	rctl |= E1000_RCTL_BSEX;
1813	switch (adapter->rx_buffer_len) {
1814	case E1000_RXBUFFER_2048:
1815	default:
1816		rctl |= E1000_RCTL_SZ_2048;
1817		rctl &= ~E1000_RCTL_BSEX;
1818		break;
1819	case E1000_RXBUFFER_4096:
1820		rctl |= E1000_RCTL_SZ_4096;
1821		break;
1822	case E1000_RXBUFFER_8192:
1823		rctl |= E1000_RCTL_SZ_8192;
1824		break;
1825	case E1000_RXBUFFER_16384:
1826		rctl |= E1000_RCTL_SZ_16384;
1827		break;
1828	}
1829
1830	/* This is useful for sniffing bad packets. */
1831	if (adapter->netdev->features & NETIF_F_RXALL) {
1832		/* UPE and MPE will be handled by normal PROMISC logic
1833		 * in e1000e_set_rx_mode
1834		 */
1835		rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
1836			 E1000_RCTL_BAM | /* RX All Bcast Pkts */
1837			 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
1838
1839		rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
1840			  E1000_RCTL_DPF | /* Allow filtered pause */
1841			  E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
1842		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
1843		 * and that breaks VLANs.
1844		 */
1845	}
1846
1847	ew32(RCTL, rctl);
1848}
1849
1850/**
1851 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1852 * @adapter: board private structure
1853 *
1854 * Configure the Rx unit of the MAC after a reset.
1855 **/
1856static void e1000_configure_rx(struct e1000_adapter *adapter)
1857{
1858	u64 rdba;
1859	struct e1000_hw *hw = &adapter->hw;
1860	u32 rdlen, rctl, rxcsum;
1861
1862	if (adapter->netdev->mtu > ETH_DATA_LEN) {
1863		rdlen = adapter->rx_ring[0].count *
1864			sizeof(struct e1000_rx_desc);
1865		adapter->clean_rx = e1000_clean_jumbo_rx_irq;
1866		adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
1867	} else {
1868		rdlen = adapter->rx_ring[0].count *
1869			sizeof(struct e1000_rx_desc);
1870		adapter->clean_rx = e1000_clean_rx_irq;
1871		adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1872	}
1873
1874	/* disable receives while setting up the descriptors */
1875	rctl = er32(RCTL);
1876	ew32(RCTL, rctl & ~E1000_RCTL_EN);
1877
1878	/* set the Receive Delay Timer Register */
1879	ew32(RDTR, adapter->rx_int_delay);
1880
1881	if (hw->mac_type >= e1000_82540) {
1882		ew32(RADV, adapter->rx_abs_int_delay);
1883		if (adapter->itr_setting != 0)
1884			ew32(ITR, 1000000000 / (adapter->itr * 256));
1885	}
1886
1887	/* Setup the HW Rx Head and Tail Descriptor Pointers and
1888	 * the Base and Length of the Rx Descriptor Ring
1889	 */
1890	switch (adapter->num_rx_queues) {
1891	case 1:
1892	default:
1893		rdba = adapter->rx_ring[0].dma;
1894		ew32(RDLEN, rdlen);
1895		ew32(RDBAH, (rdba >> 32));
1896		ew32(RDBAL, (rdba & 0x00000000ffffffffULL));
1897		ew32(RDT, 0);
1898		ew32(RDH, 0);
1899		adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ?
1900					   E1000_RDH : E1000_82542_RDH);
1901		adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ?
1902					   E1000_RDT : E1000_82542_RDT);
1903		break;
1904	}
1905
1906	/* Enable 82543 Receive Checksum Offload for TCP and UDP */
1907	if (hw->mac_type >= e1000_82543) {
1908		rxcsum = er32(RXCSUM);
1909		if (adapter->rx_csum)
1910			rxcsum |= E1000_RXCSUM_TUOFL;
1911		else
1912			/* don't need to clear IPPCSE as it defaults to 0 */
1913			rxcsum &= ~E1000_RXCSUM_TUOFL;
1914		ew32(RXCSUM, rxcsum);
1915	}
1916
1917	/* Enable Receives */
1918	ew32(RCTL, rctl | E1000_RCTL_EN);
1919}
1920
1921/**
1922 * e1000_free_tx_resources - Free Tx Resources per Queue
1923 * @adapter: board private structure
1924 * @tx_ring: Tx descriptor ring for a specific queue
1925 *
1926 * Free all transmit software resources
1927 **/
1928static void e1000_free_tx_resources(struct e1000_adapter *adapter,
1929				    struct e1000_tx_ring *tx_ring)
1930{
1931	struct pci_dev *pdev = adapter->pdev;
1932
1933	e1000_clean_tx_ring(adapter, tx_ring);
1934
1935	vfree(tx_ring->buffer_info);
1936	tx_ring->buffer_info = NULL;
1937
1938	dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1939			  tx_ring->dma);
1940
1941	tx_ring->desc = NULL;
1942}
1943
1944/**
1945 * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1946 * @adapter: board private structure
1947 *
1948 * Free all transmit software resources
1949 **/
1950void e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1951{
1952	int i;
1953
1954	for (i = 0; i < adapter->num_tx_queues; i++)
1955		e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1956}
1957
1958static void
1959e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1960				 struct e1000_tx_buffer *buffer_info)
 
1961{
1962	if (buffer_info->dma) {
1963		if (buffer_info->mapped_as_page)
1964			dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1965				       buffer_info->length, DMA_TO_DEVICE);
1966		else
1967			dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1968					 buffer_info->length,
1969					 DMA_TO_DEVICE);
1970		buffer_info->dma = 0;
1971	}
1972	if (buffer_info->skb) {
1973		dev_kfree_skb_any(buffer_info->skb);
1974		buffer_info->skb = NULL;
1975	}
1976	buffer_info->time_stamp = 0;
1977	/* buffer_info must be completely set up in the transmit path */
1978}
1979
1980/**
1981 * e1000_clean_tx_ring - Free Tx Buffers
1982 * @adapter: board private structure
1983 * @tx_ring: ring to be cleaned
1984 **/
1985static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
1986				struct e1000_tx_ring *tx_ring)
1987{
1988	struct e1000_hw *hw = &adapter->hw;
1989	struct e1000_tx_buffer *buffer_info;
1990	unsigned long size;
1991	unsigned int i;
1992
1993	/* Free all the Tx ring sk_buffs */
1994
1995	for (i = 0; i < tx_ring->count; i++) {
1996		buffer_info = &tx_ring->buffer_info[i];
1997		e1000_unmap_and_free_tx_resource(adapter, buffer_info);
1998	}
1999
2000	netdev_reset_queue(adapter->netdev);
2001	size = sizeof(struct e1000_tx_buffer) * tx_ring->count;
2002	memset(tx_ring->buffer_info, 0, size);
2003
2004	/* Zero out the descriptor ring */
2005
2006	memset(tx_ring->desc, 0, tx_ring->size);
2007
2008	tx_ring->next_to_use = 0;
2009	tx_ring->next_to_clean = 0;
2010	tx_ring->last_tx_tso = false;
2011
2012	writel(0, hw->hw_addr + tx_ring->tdh);
2013	writel(0, hw->hw_addr + tx_ring->tdt);
2014}
2015
2016/**
2017 * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2018 * @adapter: board private structure
2019 **/
2020static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
2021{
2022	int i;
2023
2024	for (i = 0; i < adapter->num_tx_queues; i++)
2025		e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
2026}
2027
2028/**
2029 * e1000_free_rx_resources - Free Rx Resources
2030 * @adapter: board private structure
2031 * @rx_ring: ring to clean the resources from
2032 *
2033 * Free all receive software resources
2034 **/
2035static void e1000_free_rx_resources(struct e1000_adapter *adapter,
2036				    struct e1000_rx_ring *rx_ring)
2037{
2038	struct pci_dev *pdev = adapter->pdev;
2039
2040	e1000_clean_rx_ring(adapter, rx_ring);
2041
2042	vfree(rx_ring->buffer_info);
2043	rx_ring->buffer_info = NULL;
2044
2045	dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2046			  rx_ring->dma);
2047
2048	rx_ring->desc = NULL;
2049}
2050
2051/**
2052 * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2053 * @adapter: board private structure
2054 *
2055 * Free all receive software resources
2056 **/
2057void e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2058{
2059	int i;
2060
2061	for (i = 0; i < adapter->num_rx_queues; i++)
2062		e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2063}
2064
2065#define E1000_HEADROOM (NET_SKB_PAD + NET_IP_ALIGN)
2066static unsigned int e1000_frag_len(const struct e1000_adapter *a)
2067{
2068	return SKB_DATA_ALIGN(a->rx_buffer_len + E1000_HEADROOM) +
2069		SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2070}
2071
2072static void *e1000_alloc_frag(const struct e1000_adapter *a)
2073{
2074	unsigned int len = e1000_frag_len(a);
2075	u8 *data = netdev_alloc_frag(len);
2076
2077	if (likely(data))
2078		data += E1000_HEADROOM;
2079	return data;
2080}
2081
2082/**
2083 * e1000_clean_rx_ring - Free Rx Buffers per Queue
2084 * @adapter: board private structure
2085 * @rx_ring: ring to free buffers from
2086 **/
2087static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
2088				struct e1000_rx_ring *rx_ring)
2089{
2090	struct e1000_hw *hw = &adapter->hw;
2091	struct e1000_rx_buffer *buffer_info;
2092	struct pci_dev *pdev = adapter->pdev;
2093	unsigned long size;
2094	unsigned int i;
2095
2096	/* Free all the Rx netfrags */
2097	for (i = 0; i < rx_ring->count; i++) {
2098		buffer_info = &rx_ring->buffer_info[i];
2099		if (adapter->clean_rx == e1000_clean_rx_irq) {
2100			if (buffer_info->dma)
2101				dma_unmap_single(&pdev->dev, buffer_info->dma,
2102						 adapter->rx_buffer_len,
2103						 DMA_FROM_DEVICE);
2104			if (buffer_info->rxbuf.data) {
2105				skb_free_frag(buffer_info->rxbuf.data);
2106				buffer_info->rxbuf.data = NULL;
2107			}
2108		} else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq) {
2109			if (buffer_info->dma)
2110				dma_unmap_page(&pdev->dev, buffer_info->dma,
2111					       adapter->rx_buffer_len,
2112					       DMA_FROM_DEVICE);
2113			if (buffer_info->rxbuf.page) {
2114				put_page(buffer_info->rxbuf.page);
2115				buffer_info->rxbuf.page = NULL;
2116			}
2117		}
2118
2119		buffer_info->dma = 0;
2120	}
2121
2122	/* there also may be some cached data from a chained receive */
2123	napi_free_frags(&adapter->napi);
2124	rx_ring->rx_skb_top = NULL;
2125
2126	size = sizeof(struct e1000_rx_buffer) * rx_ring->count;
2127	memset(rx_ring->buffer_info, 0, size);
2128
2129	/* Zero out the descriptor ring */
2130	memset(rx_ring->desc, 0, rx_ring->size);
2131
2132	rx_ring->next_to_clean = 0;
2133	rx_ring->next_to_use = 0;
2134
2135	writel(0, hw->hw_addr + rx_ring->rdh);
2136	writel(0, hw->hw_addr + rx_ring->rdt);
2137}
2138
2139/**
2140 * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2141 * @adapter: board private structure
2142 **/
2143static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2144{
2145	int i;
2146
2147	for (i = 0; i < adapter->num_rx_queues; i++)
2148		e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2149}
2150
2151/* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2152 * and memory write and invalidate disabled for certain operations
2153 */
2154static void e1000_enter_82542_rst(struct e1000_adapter *adapter)
2155{
2156	struct e1000_hw *hw = &adapter->hw;
2157	struct net_device *netdev = adapter->netdev;
2158	u32 rctl;
2159
2160	e1000_pci_clear_mwi(hw);
2161
2162	rctl = er32(RCTL);
2163	rctl |= E1000_RCTL_RST;
2164	ew32(RCTL, rctl);
2165	E1000_WRITE_FLUSH();
2166	mdelay(5);
2167
2168	if (netif_running(netdev))
2169		e1000_clean_all_rx_rings(adapter);
2170}
2171
2172static void e1000_leave_82542_rst(struct e1000_adapter *adapter)
2173{
2174	struct e1000_hw *hw = &adapter->hw;
2175	struct net_device *netdev = adapter->netdev;
2176	u32 rctl;
2177
2178	rctl = er32(RCTL);
2179	rctl &= ~E1000_RCTL_RST;
2180	ew32(RCTL, rctl);
2181	E1000_WRITE_FLUSH();
2182	mdelay(5);
2183
2184	if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
2185		e1000_pci_set_mwi(hw);
2186
2187	if (netif_running(netdev)) {
2188		/* No need to loop, because 82542 supports only 1 queue */
2189		struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2190		e1000_configure_rx(adapter);
2191		adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2192	}
2193}
2194
2195/**
2196 * e1000_set_mac - Change the Ethernet Address of the NIC
2197 * @netdev: network interface device structure
2198 * @p: pointer to an address structure
2199 *
2200 * Returns 0 on success, negative on failure
2201 **/
2202static int e1000_set_mac(struct net_device *netdev, void *p)
2203{
2204	struct e1000_adapter *adapter = netdev_priv(netdev);
2205	struct e1000_hw *hw = &adapter->hw;
2206	struct sockaddr *addr = p;
2207
2208	if (!is_valid_ether_addr(addr->sa_data))
2209		return -EADDRNOTAVAIL;
2210
2211	/* 82542 2.0 needs to be in reset to write receive address registers */
2212
2213	if (hw->mac_type == e1000_82542_rev2_0)
2214		e1000_enter_82542_rst(adapter);
2215
2216	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2217	memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
2218
2219	e1000_rar_set(hw, hw->mac_addr, 0);
2220
2221	if (hw->mac_type == e1000_82542_rev2_0)
2222		e1000_leave_82542_rst(adapter);
2223
2224	return 0;
2225}
2226
2227/**
2228 * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2229 * @netdev: network interface device structure
2230 *
2231 * The set_rx_mode entry point is called whenever the unicast or multicast
2232 * address lists or the network interface flags are updated. This routine is
2233 * responsible for configuring the hardware for proper unicast, multicast,
2234 * promiscuous mode, and all-multi behavior.
2235 **/
2236static void e1000_set_rx_mode(struct net_device *netdev)
2237{
2238	struct e1000_adapter *adapter = netdev_priv(netdev);
2239	struct e1000_hw *hw = &adapter->hw;
2240	struct netdev_hw_addr *ha;
2241	bool use_uc = false;
2242	u32 rctl;
2243	u32 hash_value;
2244	int i, rar_entries = E1000_RAR_ENTRIES;
2245	int mta_reg_count = E1000_NUM_MTA_REGISTERS;
2246	u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC);
2247
2248	if (!mcarray)
2249		return;
2250
2251	/* Check for Promiscuous and All Multicast modes */
2252
2253	rctl = er32(RCTL);
2254
2255	if (netdev->flags & IFF_PROMISC) {
2256		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2257		rctl &= ~E1000_RCTL_VFE;
2258	} else {
2259		if (netdev->flags & IFF_ALLMULTI)
2260			rctl |= E1000_RCTL_MPE;
2261		else
2262			rctl &= ~E1000_RCTL_MPE;
2263		/* Enable VLAN filter if there is a VLAN */
2264		if (e1000_vlan_used(adapter))
2265			rctl |= E1000_RCTL_VFE;
2266	}
2267
2268	if (netdev_uc_count(netdev) > rar_entries - 1) {
2269		rctl |= E1000_RCTL_UPE;
2270	} else if (!(netdev->flags & IFF_PROMISC)) {
2271		rctl &= ~E1000_RCTL_UPE;
2272		use_uc = true;
2273	}
2274
2275	ew32(RCTL, rctl);
2276
2277	/* 82542 2.0 needs to be in reset to write receive address registers */
2278
2279	if (hw->mac_type == e1000_82542_rev2_0)
2280		e1000_enter_82542_rst(adapter);
2281
2282	/* load the first 14 addresses into the exact filters 1-14. Unicast
2283	 * addresses take precedence to avoid disabling unicast filtering
2284	 * when possible.
2285	 *
2286	 * RAR 0 is used for the station MAC address
2287	 * if there are not 14 addresses, go ahead and clear the filters
2288	 */
2289	i = 1;
2290	if (use_uc)
2291		netdev_for_each_uc_addr(ha, netdev) {
2292			if (i == rar_entries)
2293				break;
2294			e1000_rar_set(hw, ha->addr, i++);
2295		}
2296
2297	netdev_for_each_mc_addr(ha, netdev) {
2298		if (i == rar_entries) {
2299			/* load any remaining addresses into the hash table */
2300			u32 hash_reg, hash_bit, mta;
2301			hash_value = e1000_hash_mc_addr(hw, ha->addr);
2302			hash_reg = (hash_value >> 5) & 0x7F;
2303			hash_bit = hash_value & 0x1F;
2304			mta = (1 << hash_bit);
2305			mcarray[hash_reg] |= mta;
2306		} else {
2307			e1000_rar_set(hw, ha->addr, i++);
2308		}
2309	}
2310
2311	for (; i < rar_entries; i++) {
2312		E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2313		E1000_WRITE_FLUSH();
2314		E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2315		E1000_WRITE_FLUSH();
2316	}
2317
2318	/* write the hash table completely, write from bottom to avoid
2319	 * both stupid write combining chipsets, and flushing each write
2320	 */
2321	for (i = mta_reg_count - 1; i >= 0 ; i--) {
2322		/* If we are on an 82544 has an errata where writing odd
2323		 * offsets overwrites the previous even offset, but writing
2324		 * backwards over the range solves the issue by always
2325		 * writing the odd offset first
2326		 */
2327		E1000_WRITE_REG_ARRAY(hw, MTA, i, mcarray[i]);
2328	}
2329	E1000_WRITE_FLUSH();
2330
2331	if (hw->mac_type == e1000_82542_rev2_0)
2332		e1000_leave_82542_rst(adapter);
2333
2334	kfree(mcarray);
2335}
2336
2337/**
2338 * e1000_update_phy_info_task - get phy info
2339 * @work: work struct contained inside adapter struct
2340 *
2341 * Need to wait a few seconds after link up to get diagnostic information from
2342 * the phy
2343 */
2344static void e1000_update_phy_info_task(struct work_struct *work)
2345{
2346	struct e1000_adapter *adapter = container_of(work,
2347						     struct e1000_adapter,
2348						     phy_info_task.work);
2349
2350	e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2351}
2352
2353/**
2354 * e1000_82547_tx_fifo_stall_task - task to complete work
2355 * @work: work struct contained inside adapter struct
2356 **/
2357static void e1000_82547_tx_fifo_stall_task(struct work_struct *work)
2358{
2359	struct e1000_adapter *adapter = container_of(work,
2360						     struct e1000_adapter,
2361						     fifo_stall_task.work);
2362	struct e1000_hw *hw = &adapter->hw;
2363	struct net_device *netdev = adapter->netdev;
2364	u32 tctl;
2365
2366	if (atomic_read(&adapter->tx_fifo_stall)) {
2367		if ((er32(TDT) == er32(TDH)) &&
2368		   (er32(TDFT) == er32(TDFH)) &&
2369		   (er32(TDFTS) == er32(TDFHS))) {
2370			tctl = er32(TCTL);
2371			ew32(TCTL, tctl & ~E1000_TCTL_EN);
2372			ew32(TDFT, adapter->tx_head_addr);
2373			ew32(TDFH, adapter->tx_head_addr);
2374			ew32(TDFTS, adapter->tx_head_addr);
2375			ew32(TDFHS, adapter->tx_head_addr);
2376			ew32(TCTL, tctl);
2377			E1000_WRITE_FLUSH();
2378
2379			adapter->tx_fifo_head = 0;
2380			atomic_set(&adapter->tx_fifo_stall, 0);
2381			netif_wake_queue(netdev);
2382		} else if (!test_bit(__E1000_DOWN, &adapter->flags)) {
2383			schedule_delayed_work(&adapter->fifo_stall_task, 1);
2384		}
2385	}
2386}
2387
2388bool e1000_has_link(struct e1000_adapter *adapter)
2389{
2390	struct e1000_hw *hw = &adapter->hw;
2391	bool link_active = false;
2392
2393	/* get_link_status is set on LSC (link status) interrupt or rx
2394	 * sequence error interrupt (except on intel ce4100).
2395	 * get_link_status will stay false until the
2396	 * e1000_check_for_link establishes link for copper adapters
2397	 * ONLY
2398	 */
2399	switch (hw->media_type) {
2400	case e1000_media_type_copper:
2401		if (hw->mac_type == e1000_ce4100)
2402			hw->get_link_status = 1;
2403		if (hw->get_link_status) {
2404			e1000_check_for_link(hw);
2405			link_active = !hw->get_link_status;
2406		} else {
2407			link_active = true;
2408		}
2409		break;
2410	case e1000_media_type_fiber:
2411		e1000_check_for_link(hw);
2412		link_active = !!(er32(STATUS) & E1000_STATUS_LU);
2413		break;
2414	case e1000_media_type_internal_serdes:
2415		e1000_check_for_link(hw);
2416		link_active = hw->serdes_has_link;
2417		break;
2418	default:
2419		break;
2420	}
2421
2422	return link_active;
2423}
2424
2425/**
2426 * e1000_watchdog - work function
2427 * @work: work struct contained inside adapter struct
2428 **/
2429static void e1000_watchdog(struct work_struct *work)
2430{
2431	struct e1000_adapter *adapter = container_of(work,
2432						     struct e1000_adapter,
2433						     watchdog_task.work);
2434	struct e1000_hw *hw = &adapter->hw;
2435	struct net_device *netdev = adapter->netdev;
2436	struct e1000_tx_ring *txdr = adapter->tx_ring;
2437	u32 link, tctl;
2438
2439	link = e1000_has_link(adapter);
2440	if ((netif_carrier_ok(netdev)) && link)
2441		goto link_up;
2442
2443	if (link) {
2444		if (!netif_carrier_ok(netdev)) {
2445			u32 ctrl;
2446			bool txb2b = true;
2447			/* update snapshot of PHY registers on LSC */
2448			e1000_get_speed_and_duplex(hw,
2449						   &adapter->link_speed,
2450						   &adapter->link_duplex);
2451
2452			ctrl = er32(CTRL);
2453			pr_info("%s NIC Link is Up %d Mbps %s, "
2454				"Flow Control: %s\n",
2455				netdev->name,
2456				adapter->link_speed,
2457				adapter->link_duplex == FULL_DUPLEX ?
2458				"Full Duplex" : "Half Duplex",
2459				((ctrl & E1000_CTRL_TFCE) && (ctrl &
2460				E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2461				E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2462				E1000_CTRL_TFCE) ? "TX" : "None")));
2463
2464			/* adjust timeout factor according to speed/duplex */
2465			adapter->tx_timeout_factor = 1;
2466			switch (adapter->link_speed) {
2467			case SPEED_10:
2468				txb2b = false;
2469				adapter->tx_timeout_factor = 16;
2470				break;
2471			case SPEED_100:
2472				txb2b = false;
2473				/* maybe add some timeout factor ? */
2474				break;
2475			}
2476
2477			/* enable transmits in the hardware */
2478			tctl = er32(TCTL);
2479			tctl |= E1000_TCTL_EN;
2480			ew32(TCTL, tctl);
2481
2482			netif_carrier_on(netdev);
2483			if (!test_bit(__E1000_DOWN, &adapter->flags))
2484				schedule_delayed_work(&adapter->phy_info_task,
2485						      2 * HZ);
2486			adapter->smartspeed = 0;
2487		}
2488	} else {
2489		if (netif_carrier_ok(netdev)) {
2490			adapter->link_speed = 0;
2491			adapter->link_duplex = 0;
2492			pr_info("%s NIC Link is Down\n",
2493				netdev->name);
2494			netif_carrier_off(netdev);
2495
2496			if (!test_bit(__E1000_DOWN, &adapter->flags))
2497				schedule_delayed_work(&adapter->phy_info_task,
2498						      2 * HZ);
2499		}
2500
2501		e1000_smartspeed(adapter);
2502	}
2503
2504link_up:
2505	e1000_update_stats(adapter);
2506
2507	hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2508	adapter->tpt_old = adapter->stats.tpt;
2509	hw->collision_delta = adapter->stats.colc - adapter->colc_old;
2510	adapter->colc_old = adapter->stats.colc;
2511
2512	adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2513	adapter->gorcl_old = adapter->stats.gorcl;
2514	adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2515	adapter->gotcl_old = adapter->stats.gotcl;
2516
2517	e1000_update_adaptive(hw);
2518
2519	if (!netif_carrier_ok(netdev)) {
2520		if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2521			/* We've lost link, so the controller stops DMA,
2522			 * but we've got queued Tx work that's never going
2523			 * to get done, so reset controller to flush Tx.
2524			 * (Do the reset outside of interrupt context).
2525			 */
2526			adapter->tx_timeout_count++;
2527			schedule_work(&adapter->reset_task);
2528			/* exit immediately since reset is imminent */
2529			return;
2530		}
2531	}
2532
2533	/* Simple mode for Interrupt Throttle Rate (ITR) */
2534	if (hw->mac_type >= e1000_82540 && adapter->itr_setting == 4) {
2535		/* Symmetric Tx/Rx gets a reduced ITR=2000;
2536		 * Total asymmetrical Tx or Rx gets ITR=8000;
2537		 * everyone else is between 2000-8000.
2538		 */
2539		u32 goc = (adapter->gotcl + adapter->gorcl) / 10000;
2540		u32 dif = (adapter->gotcl > adapter->gorcl ?
2541			    adapter->gotcl - adapter->gorcl :
2542			    adapter->gorcl - adapter->gotcl) / 10000;
2543		u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
2544
2545		ew32(ITR, 1000000000 / (itr * 256));
2546	}
2547
2548	/* Cause software interrupt to ensure rx ring is cleaned */
2549	ew32(ICS, E1000_ICS_RXDMT0);
2550
2551	/* Force detection of hung controller every watchdog period */
2552	adapter->detect_tx_hung = true;
2553
2554	/* Reschedule the task */
2555	if (!test_bit(__E1000_DOWN, &adapter->flags))
2556		schedule_delayed_work(&adapter->watchdog_task, 2 * HZ);
2557}
2558
2559enum latency_range {
2560	lowest_latency = 0,
2561	low_latency = 1,
2562	bulk_latency = 2,
2563	latency_invalid = 255
2564};
2565
2566/**
2567 * e1000_update_itr - update the dynamic ITR value based on statistics
2568 * @adapter: pointer to adapter
2569 * @itr_setting: current adapter->itr
2570 * @packets: the number of packets during this measurement interval
2571 * @bytes: the number of bytes during this measurement interval
2572 *
2573 *      Stores a new ITR value based on packets and byte
2574 *      counts during the last interrupt.  The advantage of per interrupt
2575 *      computation is faster updates and more accurate ITR for the current
2576 *      traffic pattern.  Constants in this function were computed
2577 *      based on theoretical maximum wire speed and thresholds were set based
2578 *      on testing data as well as attempting to minimize response time
2579 *      while increasing bulk throughput.
2580 *      this functionality is controlled by the InterruptThrottleRate module
2581 *      parameter (see e1000_param.c)
2582 **/
2583static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2584				     u16 itr_setting, int packets, int bytes)
2585{
2586	unsigned int retval = itr_setting;
2587	struct e1000_hw *hw = &adapter->hw;
2588
2589	if (unlikely(hw->mac_type < e1000_82540))
2590		goto update_itr_done;
2591
2592	if (packets == 0)
2593		goto update_itr_done;
2594
2595	switch (itr_setting) {
2596	case lowest_latency:
2597		/* jumbo frames get bulk treatment*/
2598		if (bytes/packets > 8000)
2599			retval = bulk_latency;
2600		else if ((packets < 5) && (bytes > 512))
2601			retval = low_latency;
2602		break;
2603	case low_latency:  /* 50 usec aka 20000 ints/s */
2604		if (bytes > 10000) {
2605			/* jumbo frames need bulk latency setting */
2606			if (bytes/packets > 8000)
2607				retval = bulk_latency;
2608			else if ((packets < 10) || ((bytes/packets) > 1200))
2609				retval = bulk_latency;
2610			else if ((packets > 35))
2611				retval = lowest_latency;
2612		} else if (bytes/packets > 2000)
2613			retval = bulk_latency;
2614		else if (packets <= 2 && bytes < 512)
2615			retval = lowest_latency;
2616		break;
2617	case bulk_latency: /* 250 usec aka 4000 ints/s */
2618		if (bytes > 25000) {
2619			if (packets > 35)
2620				retval = low_latency;
2621		} else if (bytes < 6000) {
2622			retval = low_latency;
2623		}
2624		break;
2625	}
2626
2627update_itr_done:
2628	return retval;
2629}
2630
2631static void e1000_set_itr(struct e1000_adapter *adapter)
2632{
2633	struct e1000_hw *hw = &adapter->hw;
2634	u16 current_itr;
2635	u32 new_itr = adapter->itr;
2636
2637	if (unlikely(hw->mac_type < e1000_82540))
2638		return;
2639
2640	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2641	if (unlikely(adapter->link_speed != SPEED_1000)) {
2642		current_itr = 0;
2643		new_itr = 4000;
2644		goto set_itr_now;
2645	}
2646
2647	adapter->tx_itr = e1000_update_itr(adapter, adapter->tx_itr,
2648					   adapter->total_tx_packets,
2649					   adapter->total_tx_bytes);
2650	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2651	if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2652		adapter->tx_itr = low_latency;
2653
2654	adapter->rx_itr = e1000_update_itr(adapter, adapter->rx_itr,
2655					   adapter->total_rx_packets,
2656					   adapter->total_rx_bytes);
2657	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2658	if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2659		adapter->rx_itr = low_latency;
2660
2661	current_itr = max(adapter->rx_itr, adapter->tx_itr);
2662
2663	switch (current_itr) {
2664	/* counts and packets in update_itr are dependent on these numbers */
2665	case lowest_latency:
2666		new_itr = 70000;
2667		break;
2668	case low_latency:
2669		new_itr = 20000; /* aka hwitr = ~200 */
2670		break;
2671	case bulk_latency:
2672		new_itr = 4000;
2673		break;
2674	default:
2675		break;
2676	}
2677
2678set_itr_now:
2679	if (new_itr != adapter->itr) {
2680		/* this attempts to bias the interrupt rate towards Bulk
2681		 * by adding intermediate steps when interrupt rate is
2682		 * increasing
2683		 */
2684		new_itr = new_itr > adapter->itr ?
2685			  min(adapter->itr + (new_itr >> 2), new_itr) :
2686			  new_itr;
2687		adapter->itr = new_itr;
2688		ew32(ITR, 1000000000 / (new_itr * 256));
2689	}
2690}
2691
2692#define E1000_TX_FLAGS_CSUM		0x00000001
2693#define E1000_TX_FLAGS_VLAN		0x00000002
2694#define E1000_TX_FLAGS_TSO		0x00000004
2695#define E1000_TX_FLAGS_IPV4		0x00000008
2696#define E1000_TX_FLAGS_NO_FCS		0x00000010
2697#define E1000_TX_FLAGS_VLAN_MASK	0xffff0000
2698#define E1000_TX_FLAGS_VLAN_SHIFT	16
2699
2700static int e1000_tso(struct e1000_adapter *adapter,
2701		     struct e1000_tx_ring *tx_ring, struct sk_buff *skb,
2702		     __be16 protocol)
2703{
2704	struct e1000_context_desc *context_desc;
2705	struct e1000_tx_buffer *buffer_info;
2706	unsigned int i;
2707	u32 cmd_length = 0;
2708	u16 ipcse = 0, tucse, mss;
2709	u8 ipcss, ipcso, tucss, tucso, hdr_len;
2710
2711	if (skb_is_gso(skb)) {
2712		int err;
2713
2714		err = skb_cow_head(skb, 0);
2715		if (err < 0)
2716			return err;
2717
2718		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2719		mss = skb_shinfo(skb)->gso_size;
2720		if (protocol == htons(ETH_P_IP)) {
2721			struct iphdr *iph = ip_hdr(skb);
2722			iph->tot_len = 0;
2723			iph->check = 0;
2724			tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2725								 iph->daddr, 0,
2726								 IPPROTO_TCP,
2727								 0);
2728			cmd_length = E1000_TXD_CMD_IP;
2729			ipcse = skb_transport_offset(skb) - 1;
2730		} else if (skb_is_gso_v6(skb)) {
2731			ipv6_hdr(skb)->payload_len = 0;
2732			tcp_hdr(skb)->check =
2733				~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2734						 &ipv6_hdr(skb)->daddr,
2735						 0, IPPROTO_TCP, 0);
2736			ipcse = 0;
2737		}
2738		ipcss = skb_network_offset(skb);
2739		ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
2740		tucss = skb_transport_offset(skb);
2741		tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
2742		tucse = 0;
2743
2744		cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2745			       E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2746
2747		i = tx_ring->next_to_use;
2748		context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2749		buffer_info = &tx_ring->buffer_info[i];
2750
2751		context_desc->lower_setup.ip_fields.ipcss  = ipcss;
2752		context_desc->lower_setup.ip_fields.ipcso  = ipcso;
2753		context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
2754		context_desc->upper_setup.tcp_fields.tucss = tucss;
2755		context_desc->upper_setup.tcp_fields.tucso = tucso;
2756		context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2757		context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
2758		context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2759		context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2760
2761		buffer_info->time_stamp = jiffies;
2762		buffer_info->next_to_watch = i;
2763
2764		if (++i == tx_ring->count)
2765			i = 0;
2766
2767		tx_ring->next_to_use = i;
2768
2769		return true;
2770	}
2771	return false;
2772}
2773
2774static bool e1000_tx_csum(struct e1000_adapter *adapter,
2775			  struct e1000_tx_ring *tx_ring, struct sk_buff *skb,
2776			  __be16 protocol)
2777{
2778	struct e1000_context_desc *context_desc;
2779	struct e1000_tx_buffer *buffer_info;
2780	unsigned int i;
2781	u8 css;
2782	u32 cmd_len = E1000_TXD_CMD_DEXT;
2783
2784	if (skb->ip_summed != CHECKSUM_PARTIAL)
2785		return false;
2786
2787	switch (protocol) {
2788	case cpu_to_be16(ETH_P_IP):
2789		if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2790			cmd_len |= E1000_TXD_CMD_TCP;
2791		break;
2792	case cpu_to_be16(ETH_P_IPV6):
2793		/* XXX not handling all IPV6 headers */
2794		if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2795			cmd_len |= E1000_TXD_CMD_TCP;
2796		break;
2797	default:
2798		if (unlikely(net_ratelimit()))
2799			e_warn(drv, "checksum_partial proto=%x!\n",
2800			       skb->protocol);
2801		break;
2802	}
2803
2804	css = skb_checksum_start_offset(skb);
2805
2806	i = tx_ring->next_to_use;
2807	buffer_info = &tx_ring->buffer_info[i];
2808	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2809
2810	context_desc->lower_setup.ip_config = 0;
2811	context_desc->upper_setup.tcp_fields.tucss = css;
2812	context_desc->upper_setup.tcp_fields.tucso =
2813		css + skb->csum_offset;
2814	context_desc->upper_setup.tcp_fields.tucse = 0;
2815	context_desc->tcp_seg_setup.data = 0;
2816	context_desc->cmd_and_length = cpu_to_le32(cmd_len);
2817
2818	buffer_info->time_stamp = jiffies;
2819	buffer_info->next_to_watch = i;
2820
2821	if (unlikely(++i == tx_ring->count))
2822		i = 0;
2823
2824	tx_ring->next_to_use = i;
2825
2826	return true;
2827}
2828
2829#define E1000_MAX_TXD_PWR	12
2830#define E1000_MAX_DATA_PER_TXD	(1<<E1000_MAX_TXD_PWR)
2831
2832static int e1000_tx_map(struct e1000_adapter *adapter,
2833			struct e1000_tx_ring *tx_ring,
2834			struct sk_buff *skb, unsigned int first,
2835			unsigned int max_per_txd, unsigned int nr_frags,
2836			unsigned int mss)
2837{
2838	struct e1000_hw *hw = &adapter->hw;
2839	struct pci_dev *pdev = adapter->pdev;
2840	struct e1000_tx_buffer *buffer_info;
2841	unsigned int len = skb_headlen(skb);
2842	unsigned int offset = 0, size, count = 0, i;
2843	unsigned int f, bytecount, segs;
2844
2845	i = tx_ring->next_to_use;
2846
2847	while (len) {
2848		buffer_info = &tx_ring->buffer_info[i];
2849		size = min(len, max_per_txd);
2850		/* Workaround for Controller erratum --
2851		 * descriptor for non-tso packet in a linear SKB that follows a
2852		 * tso gets written back prematurely before the data is fully
2853		 * DMA'd to the controller
2854		 */
2855		if (!skb->data_len && tx_ring->last_tx_tso &&
2856		    !skb_is_gso(skb)) {
2857			tx_ring->last_tx_tso = false;
2858			size -= 4;
2859		}
2860
2861		/* Workaround for premature desc write-backs
2862		 * in TSO mode.  Append 4-byte sentinel desc
2863		 */
2864		if (unlikely(mss && !nr_frags && size == len && size > 8))
2865			size -= 4;
2866		/* work-around for errata 10 and it applies
2867		 * to all controllers in PCI-X mode
2868		 * The fix is to make sure that the first descriptor of a
2869		 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2870		 */
2871		if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
2872			     (size > 2015) && count == 0))
2873			size = 2015;
2874
2875		/* Workaround for potential 82544 hang in PCI-X.  Avoid
2876		 * terminating buffers within evenly-aligned dwords.
2877		 */
2878		if (unlikely(adapter->pcix_82544 &&
2879		   !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2880		   size > 4))
2881			size -= 4;
2882
2883		buffer_info->length = size;
2884		/* set time_stamp *before* dma to help avoid a possible race */
2885		buffer_info->time_stamp = jiffies;
2886		buffer_info->mapped_as_page = false;
2887		buffer_info->dma = dma_map_single(&pdev->dev,
2888						  skb->data + offset,
2889						  size, DMA_TO_DEVICE);
2890		if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2891			goto dma_error;
2892		buffer_info->next_to_watch = i;
2893
2894		len -= size;
2895		offset += size;
2896		count++;
2897		if (len) {
2898			i++;
2899			if (unlikely(i == tx_ring->count))
2900				i = 0;
2901		}
2902	}
2903
2904	for (f = 0; f < nr_frags; f++) {
2905		const struct skb_frag_struct *frag;
2906
2907		frag = &skb_shinfo(skb)->frags[f];
2908		len = skb_frag_size(frag);
2909		offset = 0;
2910
2911		while (len) {
2912			unsigned long bufend;
2913			i++;
2914			if (unlikely(i == tx_ring->count))
2915				i = 0;
2916
2917			buffer_info = &tx_ring->buffer_info[i];
2918			size = min(len, max_per_txd);
2919			/* Workaround for premature desc write-backs
2920			 * in TSO mode.  Append 4-byte sentinel desc
2921			 */
2922			if (unlikely(mss && f == (nr_frags-1) &&
2923			    size == len && size > 8))
2924				size -= 4;
2925			/* Workaround for potential 82544 hang in PCI-X.
2926			 * Avoid terminating buffers within evenly-aligned
2927			 * dwords.
2928			 */
2929			bufend = (unsigned long)
2930				page_to_phys(skb_frag_page(frag));
2931			bufend += offset + size - 1;
2932			if (unlikely(adapter->pcix_82544 &&
2933				     !(bufend & 4) &&
2934				     size > 4))
2935				size -= 4;
2936
2937			buffer_info->length = size;
2938			buffer_info->time_stamp = jiffies;
2939			buffer_info->mapped_as_page = true;
2940			buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
2941						offset, size, DMA_TO_DEVICE);
2942			if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2943				goto dma_error;
2944			buffer_info->next_to_watch = i;
2945
2946			len -= size;
2947			offset += size;
2948			count++;
2949		}
2950	}
2951
2952	segs = skb_shinfo(skb)->gso_segs ?: 1;
2953	/* multiply data chunks by size of headers */
2954	bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
2955
2956	tx_ring->buffer_info[i].skb = skb;
2957	tx_ring->buffer_info[i].segs = segs;
2958	tx_ring->buffer_info[i].bytecount = bytecount;
2959	tx_ring->buffer_info[first].next_to_watch = i;
2960
2961	return count;
2962
2963dma_error:
2964	dev_err(&pdev->dev, "TX DMA map failed\n");
2965	buffer_info->dma = 0;
2966	if (count)
2967		count--;
2968
2969	while (count--) {
2970		if (i == 0)
2971			i += tx_ring->count;
2972		i--;
2973		buffer_info = &tx_ring->buffer_info[i];
2974		e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2975	}
2976
2977	return 0;
2978}
2979
2980static void e1000_tx_queue(struct e1000_adapter *adapter,
2981			   struct e1000_tx_ring *tx_ring, int tx_flags,
2982			   int count)
2983{
2984	struct e1000_tx_desc *tx_desc = NULL;
2985	struct e1000_tx_buffer *buffer_info;
2986	u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
2987	unsigned int i;
2988
2989	if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
2990		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
2991			     E1000_TXD_CMD_TSE;
2992		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2993
2994		if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
2995			txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2996	}
2997
2998	if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
2999		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
3000		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3001	}
3002
3003	if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
3004		txd_lower |= E1000_TXD_CMD_VLE;
3005		txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
3006	}
3007
3008	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
3009		txd_lower &= ~(E1000_TXD_CMD_IFCS);
3010
3011	i = tx_ring->next_to_use;
3012
3013	while (count--) {
3014		buffer_info = &tx_ring->buffer_info[i];
3015		tx_desc = E1000_TX_DESC(*tx_ring, i);
3016		tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3017		tx_desc->lower.data =
3018			cpu_to_le32(txd_lower | buffer_info->length);
3019		tx_desc->upper.data = cpu_to_le32(txd_upper);
3020		if (unlikely(++i == tx_ring->count))
3021			i = 0;
3022	}
3023
3024	tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3025
3026	/* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
3027	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
3028		tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
3029
3030	/* Force memory writes to complete before letting h/w
3031	 * know there are new descriptors to fetch.  (Only
3032	 * applicable for weak-ordered memory model archs,
3033	 * such as IA-64).
3034	 */
3035	wmb();
3036
3037	tx_ring->next_to_use = i;
3038}
3039
3040/* 82547 workaround to avoid controller hang in half-duplex environment.
3041 * The workaround is to avoid queuing a large packet that would span
3042 * the internal Tx FIFO ring boundary by notifying the stack to resend
3043 * the packet at a later time.  This gives the Tx FIFO an opportunity to
3044 * flush all packets.  When that occurs, we reset the Tx FIFO pointers
3045 * to the beginning of the Tx FIFO.
3046 */
3047
3048#define E1000_FIFO_HDR			0x10
3049#define E1000_82547_PAD_LEN		0x3E0
3050
3051static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
3052				       struct sk_buff *skb)
3053{
3054	u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
3055	u32 skb_fifo_len = skb->len + E1000_FIFO_HDR;
3056
3057	skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
3058
3059	if (adapter->link_duplex != HALF_DUPLEX)
3060		goto no_fifo_stall_required;
3061
3062	if (atomic_read(&adapter->tx_fifo_stall))
3063		return 1;
3064
3065	if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
3066		atomic_set(&adapter->tx_fifo_stall, 1);
3067		return 1;
3068	}
3069
3070no_fifo_stall_required:
3071	adapter->tx_fifo_head += skb_fifo_len;
3072	if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
3073		adapter->tx_fifo_head -= adapter->tx_fifo_size;
3074	return 0;
3075}
3076
3077static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3078{
3079	struct e1000_adapter *adapter = netdev_priv(netdev);
3080	struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3081
3082	netif_stop_queue(netdev);
3083	/* Herbert's original patch had:
3084	 *  smp_mb__after_netif_stop_queue();
3085	 * but since that doesn't exist yet, just open code it.
3086	 */
3087	smp_mb();
3088
3089	/* We need to check again in a case another CPU has just
3090	 * made room available.
3091	 */
3092	if (likely(E1000_DESC_UNUSED(tx_ring) < size))
3093		return -EBUSY;
3094
3095	/* A reprieve! */
3096	netif_start_queue(netdev);
3097	++adapter->restart_queue;
3098	return 0;
3099}
3100
3101static int e1000_maybe_stop_tx(struct net_device *netdev,
3102			       struct e1000_tx_ring *tx_ring, int size)
3103{
3104	if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
3105		return 0;
3106	return __e1000_maybe_stop_tx(netdev, size);
3107}
3108
3109#define TXD_USE_COUNT(S, X) (((S) + ((1 << (X)) - 1)) >> (X))
3110static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
3111				    struct net_device *netdev)
3112{
3113	struct e1000_adapter *adapter = netdev_priv(netdev);
3114	struct e1000_hw *hw = &adapter->hw;
3115	struct e1000_tx_ring *tx_ring;
3116	unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
3117	unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3118	unsigned int tx_flags = 0;
3119	unsigned int len = skb_headlen(skb);
3120	unsigned int nr_frags;
3121	unsigned int mss;
3122	int count = 0;
3123	int tso;
3124	unsigned int f;
3125	__be16 protocol = vlan_get_protocol(skb);
3126
3127	/* This goes back to the question of how to logically map a Tx queue
3128	 * to a flow.  Right now, performance is impacted slightly negatively
3129	 * if using multiple Tx queues.  If the stack breaks away from a
3130	 * single qdisc implementation, we can look at this again.
3131	 */
3132	tx_ring = adapter->tx_ring;
3133
3134	/* On PCI/PCI-X HW, if packet size is less than ETH_ZLEN,
3135	 * packets may get corrupted during padding by HW.
3136	 * To WA this issue, pad all small packets manually.
3137	 */
3138	if (eth_skb_pad(skb))
3139		return NETDEV_TX_OK;
3140
3141	mss = skb_shinfo(skb)->gso_size;
3142	/* The controller does a simple calculation to
3143	 * make sure there is enough room in the FIFO before
3144	 * initiating the DMA for each buffer.  The calc is:
3145	 * 4 = ceil(buffer len/mss).  To make sure we don't
3146	 * overrun the FIFO, adjust the max buffer len if mss
3147	 * drops.
3148	 */
3149	if (mss) {
3150		u8 hdr_len;
3151		max_per_txd = min(mss << 2, max_per_txd);
3152		max_txd_pwr = fls(max_per_txd) - 1;
3153
3154		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3155		if (skb->data_len && hdr_len == len) {
3156			switch (hw->mac_type) {
 
3157				unsigned int pull_size;
3158			case e1000_82544:
3159				/* Make sure we have room to chop off 4 bytes,
3160				 * and that the end alignment will work out to
3161				 * this hardware's requirements
3162				 * NOTE: this is a TSO only workaround
3163				 * if end byte alignment not correct move us
3164				 * into the next dword
3165				 */
3166				if ((unsigned long)(skb_tail_pointer(skb) - 1)
3167				    & 4)
3168					break;
3169				/* fall through */
3170				pull_size = min((unsigned int)4, skb->data_len);
3171				if (!__pskb_pull_tail(skb, pull_size)) {
3172					e_err(drv, "__pskb_pull_tail "
3173					      "failed.\n");
3174					dev_kfree_skb_any(skb);
3175					return NETDEV_TX_OK;
3176				}
3177				len = skb_headlen(skb);
3178				break;
 
3179			default:
3180				/* do nothing */
3181				break;
3182			}
3183		}
3184	}
3185
3186	/* reserve a descriptor for the offload context */
3187	if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3188		count++;
3189	count++;
3190
3191	/* Controller Erratum workaround */
3192	if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3193		count++;
3194
3195	count += TXD_USE_COUNT(len, max_txd_pwr);
3196
3197	if (adapter->pcix_82544)
3198		count++;
3199
3200	/* work-around for errata 10 and it applies to all controllers
3201	 * in PCI-X mode, so add one more descriptor to the count
3202	 */
3203	if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
3204			(len > 2015)))
3205		count++;
3206
3207	nr_frags = skb_shinfo(skb)->nr_frags;
3208	for (f = 0; f < nr_frags; f++)
3209		count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->frags[f]),
3210				       max_txd_pwr);
3211	if (adapter->pcix_82544)
3212		count += nr_frags;
3213
3214	/* need: count + 2 desc gap to keep tail from touching
3215	 * head, otherwise try next time
3216	 */
3217	if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2)))
3218		return NETDEV_TX_BUSY;
3219
3220	if (unlikely((hw->mac_type == e1000_82547) &&
3221		     (e1000_82547_fifo_workaround(adapter, skb)))) {
3222		netif_stop_queue(netdev);
3223		if (!test_bit(__E1000_DOWN, &adapter->flags))
3224			schedule_delayed_work(&adapter->fifo_stall_task, 1);
3225		return NETDEV_TX_BUSY;
3226	}
3227
3228	if (skb_vlan_tag_present(skb)) {
3229		tx_flags |= E1000_TX_FLAGS_VLAN;
3230		tx_flags |= (skb_vlan_tag_get(skb) <<
3231			     E1000_TX_FLAGS_VLAN_SHIFT);
3232	}
3233
3234	first = tx_ring->next_to_use;
3235
3236	tso = e1000_tso(adapter, tx_ring, skb, protocol);
3237	if (tso < 0) {
3238		dev_kfree_skb_any(skb);
3239		return NETDEV_TX_OK;
3240	}
3241
3242	if (likely(tso)) {
3243		if (likely(hw->mac_type != e1000_82544))
3244			tx_ring->last_tx_tso = true;
3245		tx_flags |= E1000_TX_FLAGS_TSO;
3246	} else if (likely(e1000_tx_csum(adapter, tx_ring, skb, protocol)))
3247		tx_flags |= E1000_TX_FLAGS_CSUM;
3248
3249	if (protocol == htons(ETH_P_IP))
3250		tx_flags |= E1000_TX_FLAGS_IPV4;
3251
3252	if (unlikely(skb->no_fcs))
3253		tx_flags |= E1000_TX_FLAGS_NO_FCS;
3254
3255	count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd,
3256			     nr_frags, mss);
3257
3258	if (count) {
3259		/* The descriptors needed is higher than other Intel drivers
3260		 * due to a number of workarounds.  The breakdown is below:
3261		 * Data descriptors: MAX_SKB_FRAGS + 1
3262		 * Context Descriptor: 1
3263		 * Keep head from touching tail: 2
3264		 * Workarounds: 3
3265		 */
3266		int desc_needed = MAX_SKB_FRAGS + 7;
3267
3268		netdev_sent_queue(netdev, skb->len);
3269		skb_tx_timestamp(skb);
3270
3271		e1000_tx_queue(adapter, tx_ring, tx_flags, count);
3272
3273		/* 82544 potentially requires twice as many data descriptors
3274		 * in order to guarantee buffers don't end on evenly-aligned
3275		 * dwords
3276		 */
3277		if (adapter->pcix_82544)
3278			desc_needed += MAX_SKB_FRAGS + 1;
3279
3280		/* Make sure there is space in the ring for the next send. */
3281		e1000_maybe_stop_tx(netdev, tx_ring, desc_needed);
3282
3283		if (!skb->xmit_more ||
3284		    netif_xmit_stopped(netdev_get_tx_queue(netdev, 0))) {
3285			writel(tx_ring->next_to_use, hw->hw_addr + tx_ring->tdt);
3286			/* we need this if more than one processor can write to
3287			 * our tail at a time, it synchronizes IO on IA64/Altix
3288			 * systems
3289			 */
3290			mmiowb();
3291		}
3292	} else {
3293		dev_kfree_skb_any(skb);
3294		tx_ring->buffer_info[first].time_stamp = 0;
3295		tx_ring->next_to_use = first;
3296	}
3297
3298	return NETDEV_TX_OK;
3299}
3300
3301#define NUM_REGS 38 /* 1 based count */
3302static void e1000_regdump(struct e1000_adapter *adapter)
3303{
3304	struct e1000_hw *hw = &adapter->hw;
3305	u32 regs[NUM_REGS];
3306	u32 *regs_buff = regs;
3307	int i = 0;
3308
3309	static const char * const reg_name[] = {
3310		"CTRL",  "STATUS",
3311		"RCTL", "RDLEN", "RDH", "RDT", "RDTR",
3312		"TCTL", "TDBAL", "TDBAH", "TDLEN", "TDH", "TDT",
3313		"TIDV", "TXDCTL", "TADV", "TARC0",
3314		"TDBAL1", "TDBAH1", "TDLEN1", "TDH1", "TDT1",
3315		"TXDCTL1", "TARC1",
3316		"CTRL_EXT", "ERT", "RDBAL", "RDBAH",
3317		"TDFH", "TDFT", "TDFHS", "TDFTS", "TDFPC",
3318		"RDFH", "RDFT", "RDFHS", "RDFTS", "RDFPC"
3319	};
3320
3321	regs_buff[0]  = er32(CTRL);
3322	regs_buff[1]  = er32(STATUS);
3323
3324	regs_buff[2]  = er32(RCTL);
3325	regs_buff[3]  = er32(RDLEN);
3326	regs_buff[4]  = er32(RDH);
3327	regs_buff[5]  = er32(RDT);
3328	regs_buff[6]  = er32(RDTR);
3329
3330	regs_buff[7]  = er32(TCTL);
3331	regs_buff[8]  = er32(TDBAL);
3332	regs_buff[9]  = er32(TDBAH);
3333	regs_buff[10] = er32(TDLEN);
3334	regs_buff[11] = er32(TDH);
3335	regs_buff[12] = er32(TDT);
3336	regs_buff[13] = er32(TIDV);
3337	regs_buff[14] = er32(TXDCTL);
3338	regs_buff[15] = er32(TADV);
3339	regs_buff[16] = er32(TARC0);
3340
3341	regs_buff[17] = er32(TDBAL1);
3342	regs_buff[18] = er32(TDBAH1);
3343	regs_buff[19] = er32(TDLEN1);
3344	regs_buff[20] = er32(TDH1);
3345	regs_buff[21] = er32(TDT1);
3346	regs_buff[22] = er32(TXDCTL1);
3347	regs_buff[23] = er32(TARC1);
3348	regs_buff[24] = er32(CTRL_EXT);
3349	regs_buff[25] = er32(ERT);
3350	regs_buff[26] = er32(RDBAL0);
3351	regs_buff[27] = er32(RDBAH0);
3352	regs_buff[28] = er32(TDFH);
3353	regs_buff[29] = er32(TDFT);
3354	regs_buff[30] = er32(TDFHS);
3355	regs_buff[31] = er32(TDFTS);
3356	regs_buff[32] = er32(TDFPC);
3357	regs_buff[33] = er32(RDFH);
3358	regs_buff[34] = er32(RDFT);
3359	regs_buff[35] = er32(RDFHS);
3360	regs_buff[36] = er32(RDFTS);
3361	regs_buff[37] = er32(RDFPC);
3362
3363	pr_info("Register dump\n");
3364	for (i = 0; i < NUM_REGS; i++)
3365		pr_info("%-15s  %08x\n", reg_name[i], regs_buff[i]);
3366}
3367
3368/*
3369 * e1000_dump: Print registers, tx ring and rx ring
3370 */
3371static void e1000_dump(struct e1000_adapter *adapter)
3372{
3373	/* this code doesn't handle multiple rings */
3374	struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3375	struct e1000_rx_ring *rx_ring = adapter->rx_ring;
3376	int i;
3377
3378	if (!netif_msg_hw(adapter))
3379		return;
3380
3381	/* Print Registers */
3382	e1000_regdump(adapter);
3383
3384	/* transmit dump */
3385	pr_info("TX Desc ring0 dump\n");
3386
3387	/* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
3388	 *
3389	 * Legacy Transmit Descriptor
3390	 *   +--------------------------------------------------------------+
3391	 * 0 |         Buffer Address [63:0] (Reserved on Write Back)       |
3392	 *   +--------------------------------------------------------------+
3393	 * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  |
3394	 *   +--------------------------------------------------------------+
3395	 *   63       48 47        36 35    32 31     24 23    16 15        0
3396	 *
3397	 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
3398	 *   63      48 47    40 39       32 31             16 15    8 7      0
3399	 *   +----------------------------------------------------------------+
3400	 * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS |
3401	 *   +----------------------------------------------------------------+
3402	 * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      |
3403	 *   +----------------------------------------------------------------+
3404	 *   63      48 47    40 39 36 35 32 31   24 23  20 19                0
3405	 *
3406	 * Extended Data Descriptor (DTYP=0x1)
3407	 *   +----------------------------------------------------------------+
3408	 * 0 |                     Buffer Address [63:0]                      |
3409	 *   +----------------------------------------------------------------+
3410	 * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  |
3411	 *   +----------------------------------------------------------------+
3412	 *   63       48 47     40 39  36 35    32 31     24 23  20 19        0
3413	 */
3414	pr_info("Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma       ] leng  ntw timestmp         bi->skb\n");
3415	pr_info("Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen] [bi->dma       ] leng  ntw timestmp         bi->skb\n");
3416
3417	if (!netif_msg_tx_done(adapter))
3418		goto rx_ring_summary;
3419
3420	for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
3421		struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
3422		struct e1000_tx_buffer *buffer_info = &tx_ring->buffer_info[i];
3423		struct my_u { __le64 a; __le64 b; };
3424		struct my_u *u = (struct my_u *)tx_desc;
3425		const char *type;
3426
3427		if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
3428			type = "NTC/U";
3429		else if (i == tx_ring->next_to_use)
3430			type = "NTU";
3431		else if (i == tx_ring->next_to_clean)
3432			type = "NTC";
3433		else
3434			type = "";
3435
3436		pr_info("T%c[0x%03X]    %016llX %016llX %016llX %04X  %3X %016llX %p %s\n",
3437			((le64_to_cpu(u->b) & (1<<20)) ? 'd' : 'c'), i,
3438			le64_to_cpu(u->a), le64_to_cpu(u->b),
3439			(u64)buffer_info->dma, buffer_info->length,
3440			buffer_info->next_to_watch,
3441			(u64)buffer_info->time_stamp, buffer_info->skb, type);
3442	}
3443
3444rx_ring_summary:
3445	/* receive dump */
3446	pr_info("\nRX Desc ring dump\n");
3447
3448	/* Legacy Receive Descriptor Format
3449	 *
3450	 * +-----------------------------------------------------+
3451	 * |                Buffer Address [63:0]                |
3452	 * +-----------------------------------------------------+
3453	 * | VLAN Tag | Errors | Status 0 | Packet csum | Length |
3454	 * +-----------------------------------------------------+
3455	 * 63       48 47    40 39      32 31         16 15      0
3456	 */
3457	pr_info("R[desc]      [address 63:0  ] [vl er S cks ln] [bi->dma       ] [bi->skb]\n");
3458
3459	if (!netif_msg_rx_status(adapter))
3460		goto exit;
3461
3462	for (i = 0; rx_ring->desc && (i < rx_ring->count); i++) {
3463		struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
3464		struct e1000_rx_buffer *buffer_info = &rx_ring->buffer_info[i];
3465		struct my_u { __le64 a; __le64 b; };
3466		struct my_u *u = (struct my_u *)rx_desc;
3467		const char *type;
3468
3469		if (i == rx_ring->next_to_use)
3470			type = "NTU";
3471		else if (i == rx_ring->next_to_clean)
3472			type = "NTC";
3473		else
3474			type = "";
3475
3476		pr_info("R[0x%03X]     %016llX %016llX %016llX %p %s\n",
3477			i, le64_to_cpu(u->a), le64_to_cpu(u->b),
3478			(u64)buffer_info->dma, buffer_info->rxbuf.data, type);
3479	} /* for */
3480
3481	/* dump the descriptor caches */
3482	/* rx */
3483	pr_info("Rx descriptor cache in 64bit format\n");
3484	for (i = 0x6000; i <= 0x63FF ; i += 0x10) {
3485		pr_info("R%04X: %08X|%08X %08X|%08X\n",
3486			i,
3487			readl(adapter->hw.hw_addr + i+4),
3488			readl(adapter->hw.hw_addr + i),
3489			readl(adapter->hw.hw_addr + i+12),
3490			readl(adapter->hw.hw_addr + i+8));
3491	}
3492	/* tx */
3493	pr_info("Tx descriptor cache in 64bit format\n");
3494	for (i = 0x7000; i <= 0x73FF ; i += 0x10) {
3495		pr_info("T%04X: %08X|%08X %08X|%08X\n",
3496			i,
3497			readl(adapter->hw.hw_addr + i+4),
3498			readl(adapter->hw.hw_addr + i),
3499			readl(adapter->hw.hw_addr + i+12),
3500			readl(adapter->hw.hw_addr + i+8));
3501	}
3502exit:
3503	return;
3504}
3505
3506/**
3507 * e1000_tx_timeout - Respond to a Tx Hang
3508 * @netdev: network interface device structure
 
3509 **/
3510static void e1000_tx_timeout(struct net_device *netdev)
3511{
3512	struct e1000_adapter *adapter = netdev_priv(netdev);
3513
3514	/* Do the reset outside of interrupt context */
3515	adapter->tx_timeout_count++;
3516	schedule_work(&adapter->reset_task);
3517}
3518
3519static void e1000_reset_task(struct work_struct *work)
3520{
3521	struct e1000_adapter *adapter =
3522		container_of(work, struct e1000_adapter, reset_task);
3523
3524	e_err(drv, "Reset adapter\n");
 
3525	e1000_reinit_locked(adapter);
3526}
3527
3528/**
3529 * e1000_get_stats - Get System Network Statistics
3530 * @netdev: network interface device structure
3531 *
3532 * Returns the address of the device statistics structure.
3533 * The statistics are actually updated from the watchdog.
3534 **/
3535static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
3536{
3537	/* only return the current stats */
3538	return &netdev->stats;
3539}
3540
3541/**
3542 * e1000_change_mtu - Change the Maximum Transfer Unit
3543 * @netdev: network interface device structure
3544 * @new_mtu: new value for maximum frame size
3545 *
3546 * Returns 0 on success, negative on failure
3547 **/
3548static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
3549{
3550	struct e1000_adapter *adapter = netdev_priv(netdev);
3551	struct e1000_hw *hw = &adapter->hw;
3552	int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
3553
3554	if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
3555	    (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3556		e_err(probe, "Invalid MTU setting\n");
3557		return -EINVAL;
3558	}
3559
3560	/* Adapter-specific max frame size limits. */
3561	switch (hw->mac_type) {
3562	case e1000_undefined ... e1000_82542_rev2_1:
3563		if (max_frame > (ETH_FRAME_LEN + ETH_FCS_LEN)) {
3564			e_err(probe, "Jumbo Frames not supported.\n");
3565			return -EINVAL;
3566		}
3567		break;
3568	default:
3569		/* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3570		break;
3571	}
3572
3573	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
3574		msleep(1);
3575	/* e1000_down has a dependency on max_frame_size */
3576	hw->max_frame_size = max_frame;
3577	if (netif_running(netdev)) {
3578		/* prevent buffers from being reallocated */
3579		adapter->alloc_rx_buf = e1000_alloc_dummy_rx_buffers;
3580		e1000_down(adapter);
3581	}
3582
3583	/* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3584	 * means we reserve 2 more, this pushes us to allocate from the next
3585	 * larger slab size.
3586	 * i.e. RXBUFFER_2048 --> size-4096 slab
3587	 * however with the new *_jumbo_rx* routines, jumbo receives will use
3588	 * fragmented skbs
3589	 */
3590
3591	if (max_frame <= E1000_RXBUFFER_2048)
3592		adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3593	else
3594#if (PAGE_SIZE >= E1000_RXBUFFER_16384)
3595		adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3596#elif (PAGE_SIZE >= E1000_RXBUFFER_4096)
3597		adapter->rx_buffer_len = PAGE_SIZE;
3598#endif
3599
3600	/* adjust allocation if LPE protects us, and we aren't using SBP */
3601	if (!hw->tbi_compatibility_on &&
3602	    ((max_frame == (ETH_FRAME_LEN + ETH_FCS_LEN)) ||
3603	     (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3604		adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3605
3606	pr_info("%s changing MTU from %d to %d\n",
3607		netdev->name, netdev->mtu, new_mtu);
3608	netdev->mtu = new_mtu;
3609
3610	if (netif_running(netdev))
3611		e1000_up(adapter);
3612	else
3613		e1000_reset(adapter);
3614
3615	clear_bit(__E1000_RESETTING, &adapter->flags);
3616
3617	return 0;
3618}
3619
3620/**
3621 * e1000_update_stats - Update the board statistics counters
3622 * @adapter: board private structure
3623 **/
3624void e1000_update_stats(struct e1000_adapter *adapter)
3625{
3626	struct net_device *netdev = adapter->netdev;
3627	struct e1000_hw *hw = &adapter->hw;
3628	struct pci_dev *pdev = adapter->pdev;
3629	unsigned long flags;
3630	u16 phy_tmp;
3631
3632#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3633
3634	/* Prevent stats update while adapter is being reset, or if the pci
3635	 * connection is down.
3636	 */
3637	if (adapter->link_speed == 0)
3638		return;
3639	if (pci_channel_offline(pdev))
3640		return;
3641
3642	spin_lock_irqsave(&adapter->stats_lock, flags);
3643
3644	/* these counters are modified from e1000_tbi_adjust_stats,
3645	 * called from the interrupt context, so they must only
3646	 * be written while holding adapter->stats_lock
3647	 */
3648
3649	adapter->stats.crcerrs += er32(CRCERRS);
3650	adapter->stats.gprc += er32(GPRC);
3651	adapter->stats.gorcl += er32(GORCL);
3652	adapter->stats.gorch += er32(GORCH);
3653	adapter->stats.bprc += er32(BPRC);
3654	adapter->stats.mprc += er32(MPRC);
3655	adapter->stats.roc += er32(ROC);
3656
3657	adapter->stats.prc64 += er32(PRC64);
3658	adapter->stats.prc127 += er32(PRC127);
3659	adapter->stats.prc255 += er32(PRC255);
3660	adapter->stats.prc511 += er32(PRC511);
3661	adapter->stats.prc1023 += er32(PRC1023);
3662	adapter->stats.prc1522 += er32(PRC1522);
3663
3664	adapter->stats.symerrs += er32(SYMERRS);
3665	adapter->stats.mpc += er32(MPC);
3666	adapter->stats.scc += er32(SCC);
3667	adapter->stats.ecol += er32(ECOL);
3668	adapter->stats.mcc += er32(MCC);
3669	adapter->stats.latecol += er32(LATECOL);
3670	adapter->stats.dc += er32(DC);
3671	adapter->stats.sec += er32(SEC);
3672	adapter->stats.rlec += er32(RLEC);
3673	adapter->stats.xonrxc += er32(XONRXC);
3674	adapter->stats.xontxc += er32(XONTXC);
3675	adapter->stats.xoffrxc += er32(XOFFRXC);
3676	adapter->stats.xofftxc += er32(XOFFTXC);
3677	adapter->stats.fcruc += er32(FCRUC);
3678	adapter->stats.gptc += er32(GPTC);
3679	adapter->stats.gotcl += er32(GOTCL);
3680	adapter->stats.gotch += er32(GOTCH);
3681	adapter->stats.rnbc += er32(RNBC);
3682	adapter->stats.ruc += er32(RUC);
3683	adapter->stats.rfc += er32(RFC);
3684	adapter->stats.rjc += er32(RJC);
3685	adapter->stats.torl += er32(TORL);
3686	adapter->stats.torh += er32(TORH);
3687	adapter->stats.totl += er32(TOTL);
3688	adapter->stats.toth += er32(TOTH);
3689	adapter->stats.tpr += er32(TPR);
3690
3691	adapter->stats.ptc64 += er32(PTC64);
3692	adapter->stats.ptc127 += er32(PTC127);
3693	adapter->stats.ptc255 += er32(PTC255);
3694	adapter->stats.ptc511 += er32(PTC511);
3695	adapter->stats.ptc1023 += er32(PTC1023);
3696	adapter->stats.ptc1522 += er32(PTC1522);
3697
3698	adapter->stats.mptc += er32(MPTC);
3699	adapter->stats.bptc += er32(BPTC);
3700
3701	/* used for adaptive IFS */
3702
3703	hw->tx_packet_delta = er32(TPT);
3704	adapter->stats.tpt += hw->tx_packet_delta;
3705	hw->collision_delta = er32(COLC);
3706	adapter->stats.colc += hw->collision_delta;
3707
3708	if (hw->mac_type >= e1000_82543) {
3709		adapter->stats.algnerrc += er32(ALGNERRC);
3710		adapter->stats.rxerrc += er32(RXERRC);
3711		adapter->stats.tncrs += er32(TNCRS);
3712		adapter->stats.cexterr += er32(CEXTERR);
3713		adapter->stats.tsctc += er32(TSCTC);
3714		adapter->stats.tsctfc += er32(TSCTFC);
3715	}
3716
3717	/* Fill out the OS statistics structure */
3718	netdev->stats.multicast = adapter->stats.mprc;
3719	netdev->stats.collisions = adapter->stats.colc;
3720
3721	/* Rx Errors */
3722
3723	/* RLEC on some newer hardware can be incorrect so build
3724	 * our own version based on RUC and ROC
3725	 */
3726	netdev->stats.rx_errors = adapter->stats.rxerrc +
3727		adapter->stats.crcerrs + adapter->stats.algnerrc +
3728		adapter->stats.ruc + adapter->stats.roc +
3729		adapter->stats.cexterr;
3730	adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3731	netdev->stats.rx_length_errors = adapter->stats.rlerrc;
3732	netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
3733	netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
3734	netdev->stats.rx_missed_errors = adapter->stats.mpc;
3735
3736	/* Tx Errors */
3737	adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3738	netdev->stats.tx_errors = adapter->stats.txerrc;
3739	netdev->stats.tx_aborted_errors = adapter->stats.ecol;
3740	netdev->stats.tx_window_errors = adapter->stats.latecol;
3741	netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
3742	if (hw->bad_tx_carr_stats_fd &&
3743	    adapter->link_duplex == FULL_DUPLEX) {
3744		netdev->stats.tx_carrier_errors = 0;
3745		adapter->stats.tncrs = 0;
3746	}
3747
3748	/* Tx Dropped needs to be maintained elsewhere */
3749
3750	/* Phy Stats */
3751	if (hw->media_type == e1000_media_type_copper) {
3752		if ((adapter->link_speed == SPEED_1000) &&
3753		   (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3754			phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3755			adapter->phy_stats.idle_errors += phy_tmp;
3756		}
3757
3758		if ((hw->mac_type <= e1000_82546) &&
3759		   (hw->phy_type == e1000_phy_m88) &&
3760		   !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3761			adapter->phy_stats.receive_errors += phy_tmp;
3762	}
3763
3764	/* Management Stats */
3765	if (hw->has_smbus) {
3766		adapter->stats.mgptc += er32(MGTPTC);
3767		adapter->stats.mgprc += er32(MGTPRC);
3768		adapter->stats.mgpdc += er32(MGTPDC);
3769	}
3770
3771	spin_unlock_irqrestore(&adapter->stats_lock, flags);
3772}
3773
3774/**
3775 * e1000_intr - Interrupt Handler
3776 * @irq: interrupt number
3777 * @data: pointer to a network interface device structure
3778 **/
3779static irqreturn_t e1000_intr(int irq, void *data)
3780{
3781	struct net_device *netdev = data;
3782	struct e1000_adapter *adapter = netdev_priv(netdev);
3783	struct e1000_hw *hw = &adapter->hw;
3784	u32 icr = er32(ICR);
3785
3786	if (unlikely((!icr)))
3787		return IRQ_NONE;  /* Not our interrupt */
3788
3789	/* we might have caused the interrupt, but the above
3790	 * read cleared it, and just in case the driver is
3791	 * down there is nothing to do so return handled
3792	 */
3793	if (unlikely(test_bit(__E1000_DOWN, &adapter->flags)))
3794		return IRQ_HANDLED;
3795
3796	if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3797		hw->get_link_status = 1;
3798		/* guard against interrupt when we're going down */
3799		if (!test_bit(__E1000_DOWN, &adapter->flags))
3800			schedule_delayed_work(&adapter->watchdog_task, 1);
3801	}
3802
3803	/* disable interrupts, without the synchronize_irq bit */
3804	ew32(IMC, ~0);
3805	E1000_WRITE_FLUSH();
3806
3807	if (likely(napi_schedule_prep(&adapter->napi))) {
3808		adapter->total_tx_bytes = 0;
3809		adapter->total_tx_packets = 0;
3810		adapter->total_rx_bytes = 0;
3811		adapter->total_rx_packets = 0;
3812		__napi_schedule(&adapter->napi);
3813	} else {
3814		/* this really should not happen! if it does it is basically a
3815		 * bug, but not a hard error, so enable ints and continue
3816		 */
3817		if (!test_bit(__E1000_DOWN, &adapter->flags))
3818			e1000_irq_enable(adapter);
3819	}
3820
3821	return IRQ_HANDLED;
3822}
3823
3824/**
3825 * e1000_clean - NAPI Rx polling callback
3826 * @adapter: board private structure
 
3827 **/
3828static int e1000_clean(struct napi_struct *napi, int budget)
3829{
3830	struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
3831						     napi);
3832	int tx_clean_complete = 0, work_done = 0;
3833
3834	tx_clean_complete = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]);
3835
3836	adapter->clean_rx(adapter, &adapter->rx_ring[0], &work_done, budget);
3837
3838	if (!tx_clean_complete)
3839		work_done = budget;
3840
3841	/* If budget not fully consumed, exit the polling mode */
3842	if (work_done < budget) {
 
 
3843		if (likely(adapter->itr_setting & 3))
3844			e1000_set_itr(adapter);
3845		napi_complete_done(napi, work_done);
3846		if (!test_bit(__E1000_DOWN, &adapter->flags))
3847			e1000_irq_enable(adapter);
3848	}
3849
3850	return work_done;
3851}
3852
3853/**
3854 * e1000_clean_tx_irq - Reclaim resources after transmit completes
3855 * @adapter: board private structure
 
3856 **/
3857static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
3858			       struct e1000_tx_ring *tx_ring)
3859{
3860	struct e1000_hw *hw = &adapter->hw;
3861	struct net_device *netdev = adapter->netdev;
3862	struct e1000_tx_desc *tx_desc, *eop_desc;
3863	struct e1000_tx_buffer *buffer_info;
3864	unsigned int i, eop;
3865	unsigned int count = 0;
3866	unsigned int total_tx_bytes = 0, total_tx_packets = 0;
3867	unsigned int bytes_compl = 0, pkts_compl = 0;
3868
3869	i = tx_ring->next_to_clean;
3870	eop = tx_ring->buffer_info[i].next_to_watch;
3871	eop_desc = E1000_TX_DESC(*tx_ring, eop);
3872
3873	while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
3874	       (count < tx_ring->count)) {
3875		bool cleaned = false;
3876		dma_rmb();	/* read buffer_info after eop_desc */
3877		for ( ; !cleaned; count++) {
3878			tx_desc = E1000_TX_DESC(*tx_ring, i);
3879			buffer_info = &tx_ring->buffer_info[i];
3880			cleaned = (i == eop);
3881
3882			if (cleaned) {
3883				total_tx_packets += buffer_info->segs;
3884				total_tx_bytes += buffer_info->bytecount;
3885				if (buffer_info->skb) {
3886					bytes_compl += buffer_info->skb->len;
3887					pkts_compl++;
3888				}
3889
3890			}
3891			e1000_unmap_and_free_tx_resource(adapter, buffer_info);
 
3892			tx_desc->upper.data = 0;
3893
3894			if (unlikely(++i == tx_ring->count))
3895				i = 0;
3896		}
3897
3898		eop = tx_ring->buffer_info[i].next_to_watch;
3899		eop_desc = E1000_TX_DESC(*tx_ring, eop);
3900	}
3901
3902	/* Synchronize with E1000_DESC_UNUSED called from e1000_xmit_frame,
3903	 * which will reuse the cleaned buffers.
3904	 */
3905	smp_store_release(&tx_ring->next_to_clean, i);
3906
3907	netdev_completed_queue(netdev, pkts_compl, bytes_compl);
3908
3909#define TX_WAKE_THRESHOLD 32
3910	if (unlikely(count && netif_carrier_ok(netdev) &&
3911		     E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3912		/* Make sure that anybody stopping the queue after this
3913		 * sees the new next_to_clean.
3914		 */
3915		smp_mb();
3916
3917		if (netif_queue_stopped(netdev) &&
3918		    !(test_bit(__E1000_DOWN, &adapter->flags))) {
3919			netif_wake_queue(netdev);
3920			++adapter->restart_queue;
3921		}
3922	}
3923
3924	if (adapter->detect_tx_hung) {
3925		/* Detect a transmit hang in hardware, this serializes the
3926		 * check with the clearing of time_stamp and movement of i
3927		 */
3928		adapter->detect_tx_hung = false;
3929		if (tx_ring->buffer_info[eop].time_stamp &&
3930		    time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3931			       (adapter->tx_timeout_factor * HZ)) &&
3932		    !(er32(STATUS) & E1000_STATUS_TXOFF)) {
3933
3934			/* detected Tx unit hang */
3935			e_err(drv, "Detected Tx Unit Hang\n"
3936			      "  Tx Queue             <%lu>\n"
3937			      "  TDH                  <%x>\n"
3938			      "  TDT                  <%x>\n"
3939			      "  next_to_use          <%x>\n"
3940			      "  next_to_clean        <%x>\n"
3941			      "buffer_info[next_to_clean]\n"
3942			      "  time_stamp           <%lx>\n"
3943			      "  next_to_watch        <%x>\n"
3944			      "  jiffies              <%lx>\n"
3945			      "  next_to_watch.status <%x>\n",
3946				(unsigned long)(tx_ring - adapter->tx_ring),
3947				readl(hw->hw_addr + tx_ring->tdh),
3948				readl(hw->hw_addr + tx_ring->tdt),
3949				tx_ring->next_to_use,
3950				tx_ring->next_to_clean,
3951				tx_ring->buffer_info[eop].time_stamp,
3952				eop,
3953				jiffies,
3954				eop_desc->upper.fields.status);
3955			e1000_dump(adapter);
3956			netif_stop_queue(netdev);
3957		}
3958	}
3959	adapter->total_tx_bytes += total_tx_bytes;
3960	adapter->total_tx_packets += total_tx_packets;
3961	netdev->stats.tx_bytes += total_tx_bytes;
3962	netdev->stats.tx_packets += total_tx_packets;
3963	return count < tx_ring->count;
3964}
3965
3966/**
3967 * e1000_rx_checksum - Receive Checksum Offload for 82543
3968 * @adapter:     board private structure
3969 * @status_err:  receive descriptor status and error fields
3970 * @csum:        receive descriptor csum field
3971 * @sk_buff:     socket buffer with received data
3972 **/
3973static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
3974			      u32 csum, struct sk_buff *skb)
3975{
3976	struct e1000_hw *hw = &adapter->hw;
3977	u16 status = (u16)status_err;
3978	u8 errors = (u8)(status_err >> 24);
3979
3980	skb_checksum_none_assert(skb);
3981
3982	/* 82543 or newer only */
3983	if (unlikely(hw->mac_type < e1000_82543))
3984		return;
3985	/* Ignore Checksum bit is set */
3986	if (unlikely(status & E1000_RXD_STAT_IXSM))
3987		return;
3988	/* TCP/UDP checksum error bit is set */
3989	if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3990		/* let the stack verify checksum errors */
3991		adapter->hw_csum_err++;
3992		return;
3993	}
3994	/* TCP/UDP Checksum has not been calculated */
3995	if (!(status & E1000_RXD_STAT_TCPCS))
3996		return;
3997
3998	/* It must be a TCP or UDP packet with a valid checksum */
3999	if (likely(status & E1000_RXD_STAT_TCPCS)) {
4000		/* TCP checksum is good */
4001		skb->ip_summed = CHECKSUM_UNNECESSARY;
4002	}
4003	adapter->hw_csum_good++;
4004}
4005
4006/**
4007 * e1000_consume_page - helper function for jumbo Rx path
 
 
 
4008 **/
4009static void e1000_consume_page(struct e1000_rx_buffer *bi, struct sk_buff *skb,
4010			       u16 length)
4011{
4012	bi->rxbuf.page = NULL;
4013	skb->len += length;
4014	skb->data_len += length;
4015	skb->truesize += PAGE_SIZE;
4016}
4017
4018/**
4019 * e1000_receive_skb - helper function to handle rx indications
4020 * @adapter: board private structure
4021 * @status: descriptor status field as written by hardware
4022 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
4023 * @skb: pointer to sk_buff to be indicated to stack
4024 */
4025static void e1000_receive_skb(struct e1000_adapter *adapter, u8 status,
4026			      __le16 vlan, struct sk_buff *skb)
4027{
4028	skb->protocol = eth_type_trans(skb, adapter->netdev);
4029
4030	if (status & E1000_RXD_STAT_VP) {
4031		u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
4032
4033		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
4034	}
4035	napi_gro_receive(&adapter->napi, skb);
4036}
4037
4038/**
4039 * e1000_tbi_adjust_stats
4040 * @hw: Struct containing variables accessed by shared code
 
4041 * @frame_len: The length of the frame in question
4042 * @mac_addr: The Ethernet destination address of the frame in question
4043 *
4044 * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT
4045 */
4046static void e1000_tbi_adjust_stats(struct e1000_hw *hw,
4047				   struct e1000_hw_stats *stats,
4048				   u32 frame_len, const u8 *mac_addr)
4049{
4050	u64 carry_bit;
4051
4052	/* First adjust the frame length. */
4053	frame_len--;
4054	/* We need to adjust the statistics counters, since the hardware
4055	 * counters overcount this packet as a CRC error and undercount
4056	 * the packet as a good packet
4057	 */
4058	/* This packet should not be counted as a CRC error. */
4059	stats->crcerrs--;
4060	/* This packet does count as a Good Packet Received. */
4061	stats->gprc++;
4062
4063	/* Adjust the Good Octets received counters */
4064	carry_bit = 0x80000000 & stats->gorcl;
4065	stats->gorcl += frame_len;
4066	/* If the high bit of Gorcl (the low 32 bits of the Good Octets
4067	 * Received Count) was one before the addition,
4068	 * AND it is zero after, then we lost the carry out,
4069	 * need to add one to Gorch (Good Octets Received Count High).
4070	 * This could be simplified if all environments supported
4071	 * 64-bit integers.
4072	 */
4073	if (carry_bit && ((stats->gorcl & 0x80000000) == 0))
4074		stats->gorch++;
4075	/* Is this a broadcast or multicast?  Check broadcast first,
4076	 * since the test for a multicast frame will test positive on
4077	 * a broadcast frame.
4078	 */
4079	if (is_broadcast_ether_addr(mac_addr))
4080		stats->bprc++;
4081	else if (is_multicast_ether_addr(mac_addr))
4082		stats->mprc++;
4083
4084	if (frame_len == hw->max_frame_size) {
4085		/* In this case, the hardware has overcounted the number of
4086		 * oversize frames.
4087		 */
4088		if (stats->roc > 0)
4089			stats->roc--;
4090	}
4091
4092	/* Adjust the bin counters when the extra byte put the frame in the
4093	 * wrong bin. Remember that the frame_len was adjusted above.
4094	 */
4095	if (frame_len == 64) {
4096		stats->prc64++;
4097		stats->prc127--;
4098	} else if (frame_len == 127) {
4099		stats->prc127++;
4100		stats->prc255--;
4101	} else if (frame_len == 255) {
4102		stats->prc255++;
4103		stats->prc511--;
4104	} else if (frame_len == 511) {
4105		stats->prc511++;
4106		stats->prc1023--;
4107	} else if (frame_len == 1023) {
4108		stats->prc1023++;
4109		stats->prc1522--;
4110	} else if (frame_len == 1522) {
4111		stats->prc1522++;
4112	}
4113}
4114
4115static bool e1000_tbi_should_accept(struct e1000_adapter *adapter,
4116				    u8 status, u8 errors,
4117				    u32 length, const u8 *data)
4118{
4119	struct e1000_hw *hw = &adapter->hw;
4120	u8 last_byte = *(data + length - 1);
4121
4122	if (TBI_ACCEPT(hw, status, errors, length, last_byte)) {
4123		unsigned long irq_flags;
4124
4125		spin_lock_irqsave(&adapter->stats_lock, irq_flags);
4126		e1000_tbi_adjust_stats(hw, &adapter->stats, length, data);
4127		spin_unlock_irqrestore(&adapter->stats_lock, irq_flags);
4128
4129		return true;
4130	}
4131
4132	return false;
4133}
4134
4135static struct sk_buff *e1000_alloc_rx_skb(struct e1000_adapter *adapter,
4136					  unsigned int bufsz)
4137{
4138	struct sk_buff *skb = napi_alloc_skb(&adapter->napi, bufsz);
4139
4140	if (unlikely(!skb))
4141		adapter->alloc_rx_buff_failed++;
4142	return skb;
4143}
4144
4145/**
4146 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
4147 * @adapter: board private structure
4148 * @rx_ring: ring to clean
4149 * @work_done: amount of napi work completed this call
4150 * @work_to_do: max amount of work allowed for this call to do
4151 *
4152 * the return value indicates whether actual cleaning was done, there
4153 * is no guarantee that everything was cleaned
4154 */
4155static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
4156				     struct e1000_rx_ring *rx_ring,
4157				     int *work_done, int work_to_do)
4158{
4159	struct net_device *netdev = adapter->netdev;
4160	struct pci_dev *pdev = adapter->pdev;
4161	struct e1000_rx_desc *rx_desc, *next_rxd;
4162	struct e1000_rx_buffer *buffer_info, *next_buffer;
4163	u32 length;
4164	unsigned int i;
4165	int cleaned_count = 0;
4166	bool cleaned = false;
4167	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
4168
4169	i = rx_ring->next_to_clean;
4170	rx_desc = E1000_RX_DESC(*rx_ring, i);
4171	buffer_info = &rx_ring->buffer_info[i];
4172
4173	while (rx_desc->status & E1000_RXD_STAT_DD) {
4174		struct sk_buff *skb;
4175		u8 status;
4176
4177		if (*work_done >= work_to_do)
4178			break;
4179		(*work_done)++;
4180		dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
4181
4182		status = rx_desc->status;
4183
4184		if (++i == rx_ring->count)
4185			i = 0;
4186
4187		next_rxd = E1000_RX_DESC(*rx_ring, i);
4188		prefetch(next_rxd);
4189
4190		next_buffer = &rx_ring->buffer_info[i];
4191
4192		cleaned = true;
4193		cleaned_count++;
4194		dma_unmap_page(&pdev->dev, buffer_info->dma,
4195			       adapter->rx_buffer_len, DMA_FROM_DEVICE);
4196		buffer_info->dma = 0;
4197
4198		length = le16_to_cpu(rx_desc->length);
4199
4200		/* errors is only valid for DD + EOP descriptors */
4201		if (unlikely((status & E1000_RXD_STAT_EOP) &&
4202		    (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
4203			u8 *mapped = page_address(buffer_info->rxbuf.page);
4204
4205			if (e1000_tbi_should_accept(adapter, status,
4206						    rx_desc->errors,
4207						    length, mapped)) {
4208				length--;
4209			} else if (netdev->features & NETIF_F_RXALL) {
4210				goto process_skb;
4211			} else {
4212				/* an error means any chain goes out the window
4213				 * too
4214				 */
4215				if (rx_ring->rx_skb_top)
4216					dev_kfree_skb(rx_ring->rx_skb_top);
4217				rx_ring->rx_skb_top = NULL;
4218				goto next_desc;
4219			}
4220		}
4221
4222#define rxtop rx_ring->rx_skb_top
4223process_skb:
4224		if (!(status & E1000_RXD_STAT_EOP)) {
4225			/* this descriptor is only the beginning (or middle) */
4226			if (!rxtop) {
4227				/* this is the beginning of a chain */
4228				rxtop = napi_get_frags(&adapter->napi);
4229				if (!rxtop)
4230					break;
4231
4232				skb_fill_page_desc(rxtop, 0,
4233						   buffer_info->rxbuf.page,
4234						   0, length);
4235			} else {
4236				/* this is the middle of a chain */
4237				skb_fill_page_desc(rxtop,
4238				    skb_shinfo(rxtop)->nr_frags,
4239				    buffer_info->rxbuf.page, 0, length);
4240			}
4241			e1000_consume_page(buffer_info, rxtop, length);
4242			goto next_desc;
4243		} else {
4244			if (rxtop) {
4245				/* end of the chain */
4246				skb_fill_page_desc(rxtop,
4247				    skb_shinfo(rxtop)->nr_frags,
4248				    buffer_info->rxbuf.page, 0, length);
4249				skb = rxtop;
4250				rxtop = NULL;
4251				e1000_consume_page(buffer_info, skb, length);
4252			} else {
4253				struct page *p;
4254				/* no chain, got EOP, this buf is the packet
4255				 * copybreak to save the put_page/alloc_page
4256				 */
4257				p = buffer_info->rxbuf.page;
4258				if (length <= copybreak) {
4259					u8 *vaddr;
4260
4261					if (likely(!(netdev->features & NETIF_F_RXFCS)))
4262						length -= 4;
4263					skb = e1000_alloc_rx_skb(adapter,
4264								 length);
4265					if (!skb)
4266						break;
4267
4268					vaddr = kmap_atomic(p);
4269					memcpy(skb_tail_pointer(skb), vaddr,
4270					       length);
4271					kunmap_atomic(vaddr);
4272					/* re-use the page, so don't erase
4273					 * buffer_info->rxbuf.page
4274					 */
4275					skb_put(skb, length);
4276					e1000_rx_checksum(adapter,
4277							  status | rx_desc->errors << 24,
4278							  le16_to_cpu(rx_desc->csum), skb);
4279
4280					total_rx_bytes += skb->len;
4281					total_rx_packets++;
4282
4283					e1000_receive_skb(adapter, status,
4284							  rx_desc->special, skb);
4285					goto next_desc;
4286				} else {
4287					skb = napi_get_frags(&adapter->napi);
4288					if (!skb) {
4289						adapter->alloc_rx_buff_failed++;
4290						break;
4291					}
4292					skb_fill_page_desc(skb, 0, p, 0,
4293							   length);
4294					e1000_consume_page(buffer_info, skb,
4295							   length);
4296				}
4297			}
4298		}
4299
4300		/* Receive Checksum Offload XXX recompute due to CRC strip? */
4301		e1000_rx_checksum(adapter,
4302				  (u32)(status) |
4303				  ((u32)(rx_desc->errors) << 24),
4304				  le16_to_cpu(rx_desc->csum), skb);
4305
4306		total_rx_bytes += (skb->len - 4); /* don't count FCS */
4307		if (likely(!(netdev->features & NETIF_F_RXFCS)))
4308			pskb_trim(skb, skb->len - 4);
4309		total_rx_packets++;
4310
4311		if (status & E1000_RXD_STAT_VP) {
4312			__le16 vlan = rx_desc->special;
4313			u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
4314
4315			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
4316		}
4317
4318		napi_gro_frags(&adapter->napi);
4319
4320next_desc:
4321		rx_desc->status = 0;
4322
4323		/* return some buffers to hardware, one at a time is too slow */
4324		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4325			adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4326			cleaned_count = 0;
4327		}
4328
4329		/* use prefetched values */
4330		rx_desc = next_rxd;
4331		buffer_info = next_buffer;
4332	}
4333	rx_ring->next_to_clean = i;
4334
4335	cleaned_count = E1000_DESC_UNUSED(rx_ring);
4336	if (cleaned_count)
4337		adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4338
4339	adapter->total_rx_packets += total_rx_packets;
4340	adapter->total_rx_bytes += total_rx_bytes;
4341	netdev->stats.rx_bytes += total_rx_bytes;
4342	netdev->stats.rx_packets += total_rx_packets;
4343	return cleaned;
4344}
4345
4346/* this should improve performance for small packets with large amounts
4347 * of reassembly being done in the stack
4348 */
4349static struct sk_buff *e1000_copybreak(struct e1000_adapter *adapter,
4350				       struct e1000_rx_buffer *buffer_info,
4351				       u32 length, const void *data)
4352{
4353	struct sk_buff *skb;
4354
4355	if (length > copybreak)
4356		return NULL;
4357
4358	skb = e1000_alloc_rx_skb(adapter, length);
4359	if (!skb)
4360		return NULL;
4361
4362	dma_sync_single_for_cpu(&adapter->pdev->dev, buffer_info->dma,
4363				length, DMA_FROM_DEVICE);
4364
4365	memcpy(skb_put(skb, length), data, length);
4366
4367	return skb;
4368}
4369
4370/**
4371 * e1000_clean_rx_irq - Send received data up the network stack; legacy
4372 * @adapter: board private structure
4373 * @rx_ring: ring to clean
4374 * @work_done: amount of napi work completed this call
4375 * @work_to_do: max amount of work allowed for this call to do
4376 */
4377static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
4378			       struct e1000_rx_ring *rx_ring,
4379			       int *work_done, int work_to_do)
4380{
4381	struct net_device *netdev = adapter->netdev;
4382	struct pci_dev *pdev = adapter->pdev;
4383	struct e1000_rx_desc *rx_desc, *next_rxd;
4384	struct e1000_rx_buffer *buffer_info, *next_buffer;
4385	u32 length;
4386	unsigned int i;
4387	int cleaned_count = 0;
4388	bool cleaned = false;
4389	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
4390
4391	i = rx_ring->next_to_clean;
4392	rx_desc = E1000_RX_DESC(*rx_ring, i);
4393	buffer_info = &rx_ring->buffer_info[i];
4394
4395	while (rx_desc->status & E1000_RXD_STAT_DD) {
4396		struct sk_buff *skb;
4397		u8 *data;
4398		u8 status;
4399
4400		if (*work_done >= work_to_do)
4401			break;
4402		(*work_done)++;
4403		dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
4404
4405		status = rx_desc->status;
4406		length = le16_to_cpu(rx_desc->length);
4407
4408		data = buffer_info->rxbuf.data;
4409		prefetch(data);
4410		skb = e1000_copybreak(adapter, buffer_info, length, data);
4411		if (!skb) {
4412			unsigned int frag_len = e1000_frag_len(adapter);
4413
4414			skb = build_skb(data - E1000_HEADROOM, frag_len);
4415			if (!skb) {
4416				adapter->alloc_rx_buff_failed++;
4417				break;
4418			}
4419
4420			skb_reserve(skb, E1000_HEADROOM);
4421			dma_unmap_single(&pdev->dev, buffer_info->dma,
4422					 adapter->rx_buffer_len,
4423					 DMA_FROM_DEVICE);
4424			buffer_info->dma = 0;
4425			buffer_info->rxbuf.data = NULL;
4426		}
4427
4428		if (++i == rx_ring->count)
4429			i = 0;
4430
4431		next_rxd = E1000_RX_DESC(*rx_ring, i);
4432		prefetch(next_rxd);
4433
4434		next_buffer = &rx_ring->buffer_info[i];
4435
4436		cleaned = true;
4437		cleaned_count++;
4438
4439		/* !EOP means multiple descriptors were used to store a single
4440		 * packet, if thats the case we need to toss it.  In fact, we
4441		 * to toss every packet with the EOP bit clear and the next
4442		 * frame that _does_ have the EOP bit set, as it is by
4443		 * definition only a frame fragment
4444		 */
4445		if (unlikely(!(status & E1000_RXD_STAT_EOP)))
4446			adapter->discarding = true;
4447
4448		if (adapter->discarding) {
4449			/* All receives must fit into a single buffer */
4450			netdev_dbg(netdev, "Receive packet consumed multiple buffers\n");
4451			dev_kfree_skb(skb);
4452			if (status & E1000_RXD_STAT_EOP)
4453				adapter->discarding = false;
4454			goto next_desc;
4455		}
4456
4457		if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
4458			if (e1000_tbi_should_accept(adapter, status,
4459						    rx_desc->errors,
4460						    length, data)) {
4461				length--;
4462			} else if (netdev->features & NETIF_F_RXALL) {
4463				goto process_skb;
4464			} else {
4465				dev_kfree_skb(skb);
4466				goto next_desc;
4467			}
4468		}
4469
4470process_skb:
4471		total_rx_bytes += (length - 4); /* don't count FCS */
4472		total_rx_packets++;
4473
4474		if (likely(!(netdev->features & NETIF_F_RXFCS)))
4475			/* adjust length to remove Ethernet CRC, this must be
4476			 * done after the TBI_ACCEPT workaround above
4477			 */
4478			length -= 4;
4479
4480		if (buffer_info->rxbuf.data == NULL)
4481			skb_put(skb, length);
4482		else /* copybreak skb */
4483			skb_trim(skb, length);
4484
4485		/* Receive Checksum Offload */
4486		e1000_rx_checksum(adapter,
4487				  (u32)(status) |
4488				  ((u32)(rx_desc->errors) << 24),
4489				  le16_to_cpu(rx_desc->csum), skb);
4490
4491		e1000_receive_skb(adapter, status, rx_desc->special, skb);
4492
4493next_desc:
4494		rx_desc->status = 0;
4495
4496		/* return some buffers to hardware, one at a time is too slow */
4497		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4498			adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4499			cleaned_count = 0;
4500		}
4501
4502		/* use prefetched values */
4503		rx_desc = next_rxd;
4504		buffer_info = next_buffer;
4505	}
4506	rx_ring->next_to_clean = i;
4507
4508	cleaned_count = E1000_DESC_UNUSED(rx_ring);
4509	if (cleaned_count)
4510		adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4511
4512	adapter->total_rx_packets += total_rx_packets;
4513	adapter->total_rx_bytes += total_rx_bytes;
4514	netdev->stats.rx_bytes += total_rx_bytes;
4515	netdev->stats.rx_packets += total_rx_packets;
4516	return cleaned;
4517}
4518
4519/**
4520 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
4521 * @adapter: address of board private structure
4522 * @rx_ring: pointer to receive ring structure
4523 * @cleaned_count: number of buffers to allocate this pass
4524 **/
4525static void
4526e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
4527			     struct e1000_rx_ring *rx_ring, int cleaned_count)
4528{
4529	struct pci_dev *pdev = adapter->pdev;
4530	struct e1000_rx_desc *rx_desc;
4531	struct e1000_rx_buffer *buffer_info;
4532	unsigned int i;
4533
4534	i = rx_ring->next_to_use;
4535	buffer_info = &rx_ring->buffer_info[i];
4536
4537	while (cleaned_count--) {
4538		/* allocate a new page if necessary */
4539		if (!buffer_info->rxbuf.page) {
4540			buffer_info->rxbuf.page = alloc_page(GFP_ATOMIC);
4541			if (unlikely(!buffer_info->rxbuf.page)) {
4542				adapter->alloc_rx_buff_failed++;
4543				break;
4544			}
4545		}
4546
4547		if (!buffer_info->dma) {
4548			buffer_info->dma = dma_map_page(&pdev->dev,
4549							buffer_info->rxbuf.page, 0,
4550							adapter->rx_buffer_len,
4551							DMA_FROM_DEVICE);
4552			if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4553				put_page(buffer_info->rxbuf.page);
4554				buffer_info->rxbuf.page = NULL;
4555				buffer_info->dma = 0;
4556				adapter->alloc_rx_buff_failed++;
4557				break;
4558			}
4559		}
4560
4561		rx_desc = E1000_RX_DESC(*rx_ring, i);
4562		rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4563
4564		if (unlikely(++i == rx_ring->count))
4565			i = 0;
4566		buffer_info = &rx_ring->buffer_info[i];
4567	}
4568
4569	if (likely(rx_ring->next_to_use != i)) {
4570		rx_ring->next_to_use = i;
4571		if (unlikely(i-- == 0))
4572			i = (rx_ring->count - 1);
4573
4574		/* Force memory writes to complete before letting h/w
4575		 * know there are new descriptors to fetch.  (Only
4576		 * applicable for weak-ordered memory model archs,
4577		 * such as IA-64).
4578		 */
4579		wmb();
4580		writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4581	}
4582}
4583
4584/**
4585 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4586 * @adapter: address of board private structure
 
 
4587 **/
4588static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4589				   struct e1000_rx_ring *rx_ring,
4590				   int cleaned_count)
4591{
4592	struct e1000_hw *hw = &adapter->hw;
4593	struct pci_dev *pdev = adapter->pdev;
4594	struct e1000_rx_desc *rx_desc;
4595	struct e1000_rx_buffer *buffer_info;
4596	unsigned int i;
4597	unsigned int bufsz = adapter->rx_buffer_len;
4598
4599	i = rx_ring->next_to_use;
4600	buffer_info = &rx_ring->buffer_info[i];
4601
4602	while (cleaned_count--) {
4603		void *data;
4604
4605		if (buffer_info->rxbuf.data)
4606			goto skip;
4607
4608		data = e1000_alloc_frag(adapter);
4609		if (!data) {
4610			/* Better luck next round */
4611			adapter->alloc_rx_buff_failed++;
4612			break;
4613		}
4614
4615		/* Fix for errata 23, can't cross 64kB boundary */
4616		if (!e1000_check_64k_bound(adapter, data, bufsz)) {
4617			void *olddata = data;
4618			e_err(rx_err, "skb align check failed: %u bytes at "
4619			      "%p\n", bufsz, data);
4620			/* Try again, without freeing the previous */
4621			data = e1000_alloc_frag(adapter);
4622			/* Failed allocation, critical failure */
4623			if (!data) {
4624				skb_free_frag(olddata);
4625				adapter->alloc_rx_buff_failed++;
4626				break;
4627			}
4628
4629			if (!e1000_check_64k_bound(adapter, data, bufsz)) {
4630				/* give up */
4631				skb_free_frag(data);
4632				skb_free_frag(olddata);
4633				adapter->alloc_rx_buff_failed++;
4634				break;
4635			}
4636
4637			/* Use new allocation */
4638			skb_free_frag(olddata);
4639		}
4640		buffer_info->dma = dma_map_single(&pdev->dev,
4641						  data,
4642						  adapter->rx_buffer_len,
4643						  DMA_FROM_DEVICE);
4644		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4645			skb_free_frag(data);
4646			buffer_info->dma = 0;
4647			adapter->alloc_rx_buff_failed++;
4648			break;
4649		}
4650
4651		/* XXX if it was allocated cleanly it will never map to a
4652		 * boundary crossing
4653		 */
4654
4655		/* Fix for errata 23, can't cross 64kB boundary */
4656		if (!e1000_check_64k_bound(adapter,
4657					(void *)(unsigned long)buffer_info->dma,
4658					adapter->rx_buffer_len)) {
4659			e_err(rx_err, "dma align check failed: %u bytes at "
4660			      "%p\n", adapter->rx_buffer_len,
4661			      (void *)(unsigned long)buffer_info->dma);
4662
4663			dma_unmap_single(&pdev->dev, buffer_info->dma,
4664					 adapter->rx_buffer_len,
4665					 DMA_FROM_DEVICE);
4666
4667			skb_free_frag(data);
4668			buffer_info->rxbuf.data = NULL;
4669			buffer_info->dma = 0;
4670
4671			adapter->alloc_rx_buff_failed++;
4672			break;
4673		}
4674		buffer_info->rxbuf.data = data;
4675 skip:
4676		rx_desc = E1000_RX_DESC(*rx_ring, i);
4677		rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4678
4679		if (unlikely(++i == rx_ring->count))
4680			i = 0;
4681		buffer_info = &rx_ring->buffer_info[i];
4682	}
4683
4684	if (likely(rx_ring->next_to_use != i)) {
4685		rx_ring->next_to_use = i;
4686		if (unlikely(i-- == 0))
4687			i = (rx_ring->count - 1);
4688
4689		/* Force memory writes to complete before letting h/w
4690		 * know there are new descriptors to fetch.  (Only
4691		 * applicable for weak-ordered memory model archs,
4692		 * such as IA-64).
4693		 */
4694		wmb();
4695		writel(i, hw->hw_addr + rx_ring->rdt);
4696	}
4697}
4698
4699/**
4700 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4701 * @adapter:
4702 **/
4703static void e1000_smartspeed(struct e1000_adapter *adapter)
4704{
4705	struct e1000_hw *hw = &adapter->hw;
4706	u16 phy_status;
4707	u16 phy_ctrl;
4708
4709	if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg ||
4710	   !(hw->autoneg_advertised & ADVERTISE_1000_FULL))
4711		return;
4712
4713	if (adapter->smartspeed == 0) {
4714		/* If Master/Slave config fault is asserted twice,
4715		 * we assume back-to-back
4716		 */
4717		e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4718		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
4719			return;
4720		e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4721		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
4722			return;
4723		e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4724		if (phy_ctrl & CR_1000T_MS_ENABLE) {
4725			phy_ctrl &= ~CR_1000T_MS_ENABLE;
4726			e1000_write_phy_reg(hw, PHY_1000T_CTRL,
4727					    phy_ctrl);
4728			adapter->smartspeed++;
4729			if (!e1000_phy_setup_autoneg(hw) &&
4730			   !e1000_read_phy_reg(hw, PHY_CTRL,
4731					       &phy_ctrl)) {
4732				phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4733					     MII_CR_RESTART_AUTO_NEG);
4734				e1000_write_phy_reg(hw, PHY_CTRL,
4735						    phy_ctrl);
4736			}
4737		}
4738		return;
4739	} else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4740		/* If still no link, perhaps using 2/3 pair cable */
4741		e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4742		phy_ctrl |= CR_1000T_MS_ENABLE;
4743		e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
4744		if (!e1000_phy_setup_autoneg(hw) &&
4745		   !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) {
4746			phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4747				     MII_CR_RESTART_AUTO_NEG);
4748			e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl);
4749		}
4750	}
4751	/* Restart process after E1000_SMARTSPEED_MAX iterations */
4752	if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4753		adapter->smartspeed = 0;
4754}
4755
4756/**
4757 * e1000_ioctl -
4758 * @netdev:
4759 * @ifreq:
4760 * @cmd:
4761 **/
4762static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4763{
4764	switch (cmd) {
4765	case SIOCGMIIPHY:
4766	case SIOCGMIIREG:
4767	case SIOCSMIIREG:
4768		return e1000_mii_ioctl(netdev, ifr, cmd);
4769	default:
4770		return -EOPNOTSUPP;
4771	}
4772}
4773
4774/**
4775 * e1000_mii_ioctl -
4776 * @netdev:
4777 * @ifreq:
4778 * @cmd:
4779 **/
4780static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4781			   int cmd)
4782{
4783	struct e1000_adapter *adapter = netdev_priv(netdev);
4784	struct e1000_hw *hw = &adapter->hw;
4785	struct mii_ioctl_data *data = if_mii(ifr);
4786	int retval;
4787	u16 mii_reg;
4788	unsigned long flags;
4789
4790	if (hw->media_type != e1000_media_type_copper)
4791		return -EOPNOTSUPP;
4792
4793	switch (cmd) {
4794	case SIOCGMIIPHY:
4795		data->phy_id = hw->phy_addr;
4796		break;
4797	case SIOCGMIIREG:
4798		spin_lock_irqsave(&adapter->stats_lock, flags);
4799		if (e1000_read_phy_reg(hw, data->reg_num & 0x1F,
4800				   &data->val_out)) {
4801			spin_unlock_irqrestore(&adapter->stats_lock, flags);
4802			return -EIO;
4803		}
4804		spin_unlock_irqrestore(&adapter->stats_lock, flags);
4805		break;
4806	case SIOCSMIIREG:
4807		if (data->reg_num & ~(0x1F))
4808			return -EFAULT;
4809		mii_reg = data->val_in;
4810		spin_lock_irqsave(&adapter->stats_lock, flags);
4811		if (e1000_write_phy_reg(hw, data->reg_num,
4812					mii_reg)) {
4813			spin_unlock_irqrestore(&adapter->stats_lock, flags);
4814			return -EIO;
4815		}
4816		spin_unlock_irqrestore(&adapter->stats_lock, flags);
4817		if (hw->media_type == e1000_media_type_copper) {
4818			switch (data->reg_num) {
4819			case PHY_CTRL:
4820				if (mii_reg & MII_CR_POWER_DOWN)
4821					break;
4822				if (mii_reg & MII_CR_AUTO_NEG_EN) {
4823					hw->autoneg = 1;
4824					hw->autoneg_advertised = 0x2F;
4825				} else {
4826					u32 speed;
4827					if (mii_reg & 0x40)
4828						speed = SPEED_1000;
4829					else if (mii_reg & 0x2000)
4830						speed = SPEED_100;
4831					else
4832						speed = SPEED_10;
4833					retval = e1000_set_spd_dplx(
4834						adapter, speed,
4835						((mii_reg & 0x100)
4836						 ? DUPLEX_FULL :
4837						 DUPLEX_HALF));
4838					if (retval)
4839						return retval;
4840				}
4841				if (netif_running(adapter->netdev))
4842					e1000_reinit_locked(adapter);
4843				else
4844					e1000_reset(adapter);
4845				break;
4846			case M88E1000_PHY_SPEC_CTRL:
4847			case M88E1000_EXT_PHY_SPEC_CTRL:
4848				if (e1000_phy_reset(hw))
4849					return -EIO;
4850				break;
4851			}
4852		} else {
4853			switch (data->reg_num) {
4854			case PHY_CTRL:
4855				if (mii_reg & MII_CR_POWER_DOWN)
4856					break;
4857				if (netif_running(adapter->netdev))
4858					e1000_reinit_locked(adapter);
4859				else
4860					e1000_reset(adapter);
4861				break;
4862			}
4863		}
4864		break;
4865	default:
4866		return -EOPNOTSUPP;
4867	}
4868	return E1000_SUCCESS;
4869}
4870
4871void e1000_pci_set_mwi(struct e1000_hw *hw)
4872{
4873	struct e1000_adapter *adapter = hw->back;
4874	int ret_val = pci_set_mwi(adapter->pdev);
4875
4876	if (ret_val)
4877		e_err(probe, "Error in setting MWI\n");
4878}
4879
4880void e1000_pci_clear_mwi(struct e1000_hw *hw)
4881{
4882	struct e1000_adapter *adapter = hw->back;
4883
4884	pci_clear_mwi(adapter->pdev);
4885}
4886
4887int e1000_pcix_get_mmrbc(struct e1000_hw *hw)
4888{
4889	struct e1000_adapter *adapter = hw->back;
4890	return pcix_get_mmrbc(adapter->pdev);
4891}
4892
4893void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
4894{
4895	struct e1000_adapter *adapter = hw->back;
4896	pcix_set_mmrbc(adapter->pdev, mmrbc);
4897}
4898
4899void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value)
4900{
4901	outl(value, port);
4902}
4903
4904static bool e1000_vlan_used(struct e1000_adapter *adapter)
4905{
4906	u16 vid;
4907
4908	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
4909		return true;
4910	return false;
4911}
4912
4913static void __e1000_vlan_mode(struct e1000_adapter *adapter,
4914			      netdev_features_t features)
4915{
4916	struct e1000_hw *hw = &adapter->hw;
4917	u32 ctrl;
4918
4919	ctrl = er32(CTRL);
4920	if (features & NETIF_F_HW_VLAN_CTAG_RX) {
4921		/* enable VLAN tag insert/strip */
4922		ctrl |= E1000_CTRL_VME;
4923	} else {
4924		/* disable VLAN tag insert/strip */
4925		ctrl &= ~E1000_CTRL_VME;
4926	}
4927	ew32(CTRL, ctrl);
4928}
4929static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
4930				     bool filter_on)
4931{
4932	struct e1000_hw *hw = &adapter->hw;
4933	u32 rctl;
4934
4935	if (!test_bit(__E1000_DOWN, &adapter->flags))
4936		e1000_irq_disable(adapter);
4937
4938	__e1000_vlan_mode(adapter, adapter->netdev->features);
4939	if (filter_on) {
4940		/* enable VLAN receive filtering */
4941		rctl = er32(RCTL);
4942		rctl &= ~E1000_RCTL_CFIEN;
4943		if (!(adapter->netdev->flags & IFF_PROMISC))
4944			rctl |= E1000_RCTL_VFE;
4945		ew32(RCTL, rctl);
4946		e1000_update_mng_vlan(adapter);
4947	} else {
4948		/* disable VLAN receive filtering */
4949		rctl = er32(RCTL);
4950		rctl &= ~E1000_RCTL_VFE;
4951		ew32(RCTL, rctl);
4952	}
4953
4954	if (!test_bit(__E1000_DOWN, &adapter->flags))
4955		e1000_irq_enable(adapter);
4956}
4957
4958static void e1000_vlan_mode(struct net_device *netdev,
4959			    netdev_features_t features)
4960{
4961	struct e1000_adapter *adapter = netdev_priv(netdev);
4962
4963	if (!test_bit(__E1000_DOWN, &adapter->flags))
4964		e1000_irq_disable(adapter);
4965
4966	__e1000_vlan_mode(adapter, features);
4967
4968	if (!test_bit(__E1000_DOWN, &adapter->flags))
4969		e1000_irq_enable(adapter);
4970}
4971
4972static int e1000_vlan_rx_add_vid(struct net_device *netdev,
4973				 __be16 proto, u16 vid)
4974{
4975	struct e1000_adapter *adapter = netdev_priv(netdev);
4976	struct e1000_hw *hw = &adapter->hw;
4977	u32 vfta, index;
4978
4979	if ((hw->mng_cookie.status &
4980	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4981	    (vid == adapter->mng_vlan_id))
4982		return 0;
4983
4984	if (!e1000_vlan_used(adapter))
4985		e1000_vlan_filter_on_off(adapter, true);
4986
4987	/* add VID to filter table */
4988	index = (vid >> 5) & 0x7F;
4989	vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4990	vfta |= (1 << (vid & 0x1F));
4991	e1000_write_vfta(hw, index, vfta);
4992
4993	set_bit(vid, adapter->active_vlans);
4994
4995	return 0;
4996}
4997
4998static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
4999				  __be16 proto, u16 vid)
5000{
5001	struct e1000_adapter *adapter = netdev_priv(netdev);
5002	struct e1000_hw *hw = &adapter->hw;
5003	u32 vfta, index;
5004
5005	if (!test_bit(__E1000_DOWN, &adapter->flags))
5006		e1000_irq_disable(adapter);
5007	if (!test_bit(__E1000_DOWN, &adapter->flags))
5008		e1000_irq_enable(adapter);
5009
5010	/* remove VID from filter table */
5011	index = (vid >> 5) & 0x7F;
5012	vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
5013	vfta &= ~(1 << (vid & 0x1F));
5014	e1000_write_vfta(hw, index, vfta);
5015
5016	clear_bit(vid, adapter->active_vlans);
5017
5018	if (!e1000_vlan_used(adapter))
5019		e1000_vlan_filter_on_off(adapter, false);
5020
5021	return 0;
5022}
5023
5024static void e1000_restore_vlan(struct e1000_adapter *adapter)
5025{
5026	u16 vid;
5027
5028	if (!e1000_vlan_used(adapter))
5029		return;
5030
5031	e1000_vlan_filter_on_off(adapter, true);
5032	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
5033		e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
5034}
5035
5036int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
5037{
5038	struct e1000_hw *hw = &adapter->hw;
5039
5040	hw->autoneg = 0;
5041
5042	/* Make sure dplx is at most 1 bit and lsb of speed is not set
5043	 * for the switch() below to work
5044	 */
5045	if ((spd & 1) || (dplx & ~1))
5046		goto err_inval;
5047
5048	/* Fiber NICs only allow 1000 gbps Full duplex */
5049	if ((hw->media_type == e1000_media_type_fiber) &&
5050	    spd != SPEED_1000 &&
5051	    dplx != DUPLEX_FULL)
5052		goto err_inval;
5053
5054	switch (spd + dplx) {
5055	case SPEED_10 + DUPLEX_HALF:
5056		hw->forced_speed_duplex = e1000_10_half;
5057		break;
5058	case SPEED_10 + DUPLEX_FULL:
5059		hw->forced_speed_duplex = e1000_10_full;
5060		break;
5061	case SPEED_100 + DUPLEX_HALF:
5062		hw->forced_speed_duplex = e1000_100_half;
5063		break;
5064	case SPEED_100 + DUPLEX_FULL:
5065		hw->forced_speed_duplex = e1000_100_full;
5066		break;
5067	case SPEED_1000 + DUPLEX_FULL:
5068		hw->autoneg = 1;
5069		hw->autoneg_advertised = ADVERTISE_1000_FULL;
5070		break;
5071	case SPEED_1000 + DUPLEX_HALF: /* not supported */
5072	default:
5073		goto err_inval;
5074	}
5075
5076	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
5077	hw->mdix = AUTO_ALL_MODES;
5078
5079	return 0;
5080
5081err_inval:
5082	e_err(probe, "Unsupported Speed/Duplex configuration\n");
5083	return -EINVAL;
5084}
5085
5086static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake)
5087{
5088	struct net_device *netdev = pci_get_drvdata(pdev);
5089	struct e1000_adapter *adapter = netdev_priv(netdev);
5090	struct e1000_hw *hw = &adapter->hw;
5091	u32 ctrl, ctrl_ext, rctl, status;
5092	u32 wufc = adapter->wol;
5093#ifdef CONFIG_PM
5094	int retval = 0;
5095#endif
5096
5097	netif_device_detach(netdev);
5098
5099	if (netif_running(netdev)) {
5100		int count = E1000_CHECK_RESET_COUNT;
5101
5102		while (test_bit(__E1000_RESETTING, &adapter->flags) && count--)
5103			usleep_range(10000, 20000);
5104
5105		WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
 
5106		e1000_down(adapter);
 
5107	}
5108
5109#ifdef CONFIG_PM
5110	retval = pci_save_state(pdev);
5111	if (retval)
5112		return retval;
5113#endif
5114
5115	status = er32(STATUS);
5116	if (status & E1000_STATUS_LU)
5117		wufc &= ~E1000_WUFC_LNKC;
5118
5119	if (wufc) {
5120		e1000_setup_rctl(adapter);
5121		e1000_set_rx_mode(netdev);
5122
5123		rctl = er32(RCTL);
5124
5125		/* turn on all-multi mode if wake on multicast is enabled */
5126		if (wufc & E1000_WUFC_MC)
5127			rctl |= E1000_RCTL_MPE;
5128
5129		/* enable receives in the hardware */
5130		ew32(RCTL, rctl | E1000_RCTL_EN);
5131
5132		if (hw->mac_type >= e1000_82540) {
5133			ctrl = er32(CTRL);
5134			/* advertise wake from D3Cold */
5135			#define E1000_CTRL_ADVD3WUC 0x00100000
5136			/* phy power management enable */
5137			#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5138			ctrl |= E1000_CTRL_ADVD3WUC |
5139				E1000_CTRL_EN_PHY_PWR_MGMT;
5140			ew32(CTRL, ctrl);
5141		}
5142
5143		if (hw->media_type == e1000_media_type_fiber ||
5144		    hw->media_type == e1000_media_type_internal_serdes) {
5145			/* keep the laser running in D3 */
5146			ctrl_ext = er32(CTRL_EXT);
5147			ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
5148			ew32(CTRL_EXT, ctrl_ext);
5149		}
5150
5151		ew32(WUC, E1000_WUC_PME_EN);
5152		ew32(WUFC, wufc);
5153	} else {
5154		ew32(WUC, 0);
5155		ew32(WUFC, 0);
5156	}
5157
5158	e1000_release_manageability(adapter);
5159
5160	*enable_wake = !!wufc;
5161
5162	/* make sure adapter isn't asleep if manageability is enabled */
5163	if (adapter->en_mng_pt)
5164		*enable_wake = true;
5165
5166	if (netif_running(netdev))
5167		e1000_free_irq(adapter);
5168
5169	pci_disable_device(pdev);
 
5170
5171	return 0;
5172}
5173
5174#ifdef CONFIG_PM
5175static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
5176{
5177	int retval;
 
5178	bool wake;
5179
5180	retval = __e1000_shutdown(pdev, &wake);
5181	if (retval)
5182		return retval;
5183
5184	if (wake) {
5185		pci_prepare_to_sleep(pdev);
5186	} else {
5187		pci_wake_from_d3(pdev, false);
5188		pci_set_power_state(pdev, PCI_D3hot);
5189	}
5190
5191	return 0;
5192}
5193
5194static int e1000_resume(struct pci_dev *pdev)
5195{
 
5196	struct net_device *netdev = pci_get_drvdata(pdev);
5197	struct e1000_adapter *adapter = netdev_priv(netdev);
5198	struct e1000_hw *hw = &adapter->hw;
5199	u32 err;
5200
5201	pci_set_power_state(pdev, PCI_D0);
5202	pci_restore_state(pdev);
5203	pci_save_state(pdev);
5204
5205	if (adapter->need_ioport)
5206		err = pci_enable_device(pdev);
5207	else
5208		err = pci_enable_device_mem(pdev);
5209	if (err) {
5210		pr_err("Cannot enable PCI device from suspend\n");
5211		return err;
5212	}
 
 
 
 
5213	pci_set_master(pdev);
5214
5215	pci_enable_wake(pdev, PCI_D3hot, 0);
5216	pci_enable_wake(pdev, PCI_D3cold, 0);
5217
5218	if (netif_running(netdev)) {
5219		err = e1000_request_irq(adapter);
5220		if (err)
5221			return err;
5222	}
5223
5224	e1000_power_up_phy(adapter);
5225	e1000_reset(adapter);
5226	ew32(WUS, ~0);
5227
5228	e1000_init_manageability(adapter);
5229
5230	if (netif_running(netdev))
5231		e1000_up(adapter);
5232
5233	netif_device_attach(netdev);
5234
5235	return 0;
5236}
5237#endif
5238
5239static void e1000_shutdown(struct pci_dev *pdev)
5240{
5241	bool wake;
5242
5243	__e1000_shutdown(pdev, &wake);
5244
5245	if (system_state == SYSTEM_POWER_OFF) {
5246		pci_wake_from_d3(pdev, wake);
5247		pci_set_power_state(pdev, PCI_D3hot);
5248	}
5249}
5250
5251#ifdef CONFIG_NET_POLL_CONTROLLER
5252/* Polling 'interrupt' - used by things like netconsole to send skbs
5253 * without having to re-enable interrupts. It's not called while
5254 * the interrupt routine is executing.
5255 */
5256static void e1000_netpoll(struct net_device *netdev)
5257{
5258	struct e1000_adapter *adapter = netdev_priv(netdev);
5259
5260	disable_irq(adapter->pdev->irq);
5261	e1000_intr(adapter->pdev->irq, netdev);
5262	enable_irq(adapter->pdev->irq);
5263}
5264#endif
5265
5266/**
5267 * e1000_io_error_detected - called when PCI error is detected
5268 * @pdev: Pointer to PCI device
5269 * @state: The current pci connection state
5270 *
5271 * This function is called after a PCI bus error affecting
5272 * this device has been detected.
5273 */
5274static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
5275						pci_channel_state_t state)
5276{
5277	struct net_device *netdev = pci_get_drvdata(pdev);
5278	struct e1000_adapter *adapter = netdev_priv(netdev);
5279
 
5280	netif_device_detach(netdev);
5281
5282	if (state == pci_channel_io_perm_failure)
 
5283		return PCI_ERS_RESULT_DISCONNECT;
 
5284
5285	if (netif_running(netdev))
5286		e1000_down(adapter);
5287	pci_disable_device(pdev);
5288
5289	/* Request a slot slot reset. */
 
 
 
 
5290	return PCI_ERS_RESULT_NEED_RESET;
5291}
5292
5293/**
5294 * e1000_io_slot_reset - called after the pci bus has been reset.
5295 * @pdev: Pointer to PCI device
5296 *
5297 * Restart the card from scratch, as if from a cold-boot. Implementation
5298 * resembles the first-half of the e1000_resume routine.
5299 */
5300static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
5301{
5302	struct net_device *netdev = pci_get_drvdata(pdev);
5303	struct e1000_adapter *adapter = netdev_priv(netdev);
5304	struct e1000_hw *hw = &adapter->hw;
5305	int err;
5306
5307	if (adapter->need_ioport)
5308		err = pci_enable_device(pdev);
5309	else
5310		err = pci_enable_device_mem(pdev);
5311	if (err) {
5312		pr_err("Cannot re-enable PCI device after reset.\n");
5313		return PCI_ERS_RESULT_DISCONNECT;
5314	}
 
 
 
 
5315	pci_set_master(pdev);
5316
5317	pci_enable_wake(pdev, PCI_D3hot, 0);
5318	pci_enable_wake(pdev, PCI_D3cold, 0);
5319
5320	e1000_reset(adapter);
5321	ew32(WUS, ~0);
5322
5323	return PCI_ERS_RESULT_RECOVERED;
5324}
5325
5326/**
5327 * e1000_io_resume - called when traffic can start flowing again.
5328 * @pdev: Pointer to PCI device
5329 *
5330 * This callback is called when the error recovery driver tells us that
5331 * its OK to resume normal operation. Implementation resembles the
5332 * second-half of the e1000_resume routine.
5333 */
5334static void e1000_io_resume(struct pci_dev *pdev)
5335{
5336	struct net_device *netdev = pci_get_drvdata(pdev);
5337	struct e1000_adapter *adapter = netdev_priv(netdev);
5338
5339	e1000_init_manageability(adapter);
5340
5341	if (netif_running(netdev)) {
5342		if (e1000_up(adapter)) {
5343			pr_info("can't bring device back up after reset\n");
5344			return;
5345		}
5346	}
5347
5348	netif_device_attach(netdev);
5349}
5350
5351/* e1000_main.c */
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 1999 - 2006 Intel Corporation. */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   3
   4#include "e1000.h"
   5#include <net/ip6_checksum.h>
   6#include <linux/io.h>
   7#include <linux/prefetch.h>
   8#include <linux/bitops.h>
   9#include <linux/if_vlan.h>
  10
  11char e1000_driver_name[] = "e1000";
  12static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
 
 
  13static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
  14
  15/* e1000_pci_tbl - PCI Device ID Table
  16 *
  17 * Last entry must be all 0s
  18 *
  19 * Macro expands to...
  20 *   {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
  21 */
  22static const struct pci_device_id e1000_pci_tbl[] = {
  23	INTEL_E1000_ETHERNET_DEVICE(0x1000),
  24	INTEL_E1000_ETHERNET_DEVICE(0x1001),
  25	INTEL_E1000_ETHERNET_DEVICE(0x1004),
  26	INTEL_E1000_ETHERNET_DEVICE(0x1008),
  27	INTEL_E1000_ETHERNET_DEVICE(0x1009),
  28	INTEL_E1000_ETHERNET_DEVICE(0x100C),
  29	INTEL_E1000_ETHERNET_DEVICE(0x100D),
  30	INTEL_E1000_ETHERNET_DEVICE(0x100E),
  31	INTEL_E1000_ETHERNET_DEVICE(0x100F),
  32	INTEL_E1000_ETHERNET_DEVICE(0x1010),
  33	INTEL_E1000_ETHERNET_DEVICE(0x1011),
  34	INTEL_E1000_ETHERNET_DEVICE(0x1012),
  35	INTEL_E1000_ETHERNET_DEVICE(0x1013),
  36	INTEL_E1000_ETHERNET_DEVICE(0x1014),
  37	INTEL_E1000_ETHERNET_DEVICE(0x1015),
  38	INTEL_E1000_ETHERNET_DEVICE(0x1016),
  39	INTEL_E1000_ETHERNET_DEVICE(0x1017),
  40	INTEL_E1000_ETHERNET_DEVICE(0x1018),
  41	INTEL_E1000_ETHERNET_DEVICE(0x1019),
  42	INTEL_E1000_ETHERNET_DEVICE(0x101A),
  43	INTEL_E1000_ETHERNET_DEVICE(0x101D),
  44	INTEL_E1000_ETHERNET_DEVICE(0x101E),
  45	INTEL_E1000_ETHERNET_DEVICE(0x1026),
  46	INTEL_E1000_ETHERNET_DEVICE(0x1027),
  47	INTEL_E1000_ETHERNET_DEVICE(0x1028),
  48	INTEL_E1000_ETHERNET_DEVICE(0x1075),
  49	INTEL_E1000_ETHERNET_DEVICE(0x1076),
  50	INTEL_E1000_ETHERNET_DEVICE(0x1077),
  51	INTEL_E1000_ETHERNET_DEVICE(0x1078),
  52	INTEL_E1000_ETHERNET_DEVICE(0x1079),
  53	INTEL_E1000_ETHERNET_DEVICE(0x107A),
  54	INTEL_E1000_ETHERNET_DEVICE(0x107B),
  55	INTEL_E1000_ETHERNET_DEVICE(0x107C),
  56	INTEL_E1000_ETHERNET_DEVICE(0x108A),
  57	INTEL_E1000_ETHERNET_DEVICE(0x1099),
  58	INTEL_E1000_ETHERNET_DEVICE(0x10B5),
  59	INTEL_E1000_ETHERNET_DEVICE(0x2E6E),
  60	/* required last entry */
  61	{0,}
  62};
  63
  64MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
  65
  66int e1000_up(struct e1000_adapter *adapter);
  67void e1000_down(struct e1000_adapter *adapter);
  68void e1000_reinit_locked(struct e1000_adapter *adapter);
  69void e1000_reset(struct e1000_adapter *adapter);
  70int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
  71int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
  72void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
  73void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
  74static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
  75				    struct e1000_tx_ring *txdr);
  76static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
  77				    struct e1000_rx_ring *rxdr);
  78static void e1000_free_tx_resources(struct e1000_adapter *adapter,
  79				    struct e1000_tx_ring *tx_ring);
  80static void e1000_free_rx_resources(struct e1000_adapter *adapter,
  81				    struct e1000_rx_ring *rx_ring);
  82void e1000_update_stats(struct e1000_adapter *adapter);
  83
  84static int e1000_init_module(void);
  85static void e1000_exit_module(void);
  86static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
  87static void e1000_remove(struct pci_dev *pdev);
  88static int e1000_alloc_queues(struct e1000_adapter *adapter);
  89static int e1000_sw_init(struct e1000_adapter *adapter);
  90int e1000_open(struct net_device *netdev);
  91int e1000_close(struct net_device *netdev);
  92static void e1000_configure_tx(struct e1000_adapter *adapter);
  93static void e1000_configure_rx(struct e1000_adapter *adapter);
  94static void e1000_setup_rctl(struct e1000_adapter *adapter);
  95static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
  96static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
  97static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
  98				struct e1000_tx_ring *tx_ring);
  99static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
 100				struct e1000_rx_ring *rx_ring);
 101static void e1000_set_rx_mode(struct net_device *netdev);
 102static void e1000_update_phy_info_task(struct work_struct *work);
 103static void e1000_watchdog(struct work_struct *work);
 104static void e1000_82547_tx_fifo_stall_task(struct work_struct *work);
 105static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
 106				    struct net_device *netdev);
 
 107static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
 108static int e1000_set_mac(struct net_device *netdev, void *p);
 109static irqreturn_t e1000_intr(int irq, void *data);
 110static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
 111			       struct e1000_tx_ring *tx_ring);
 112static int e1000_clean(struct napi_struct *napi, int budget);
 113static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
 114			       struct e1000_rx_ring *rx_ring,
 115			       int *work_done, int work_to_do);
 116static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
 117				     struct e1000_rx_ring *rx_ring,
 118				     int *work_done, int work_to_do);
 119static void e1000_alloc_dummy_rx_buffers(struct e1000_adapter *adapter,
 120					 struct e1000_rx_ring *rx_ring,
 121					 int cleaned_count)
 122{
 123}
 124static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
 125				   struct e1000_rx_ring *rx_ring,
 126				   int cleaned_count);
 127static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
 128					 struct e1000_rx_ring *rx_ring,
 129					 int cleaned_count);
 130static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
 131static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
 132			   int cmd);
 133static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
 134static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
 135static void e1000_tx_timeout(struct net_device *dev, unsigned int txqueue);
 136static void e1000_reset_task(struct work_struct *work);
 137static void e1000_smartspeed(struct e1000_adapter *adapter);
 138static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
 139				       struct sk_buff *skb);
 140
 141static bool e1000_vlan_used(struct e1000_adapter *adapter);
 142static void e1000_vlan_mode(struct net_device *netdev,
 143			    netdev_features_t features);
 144static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
 145				     bool filter_on);
 146static int e1000_vlan_rx_add_vid(struct net_device *netdev,
 147				 __be16 proto, u16 vid);
 148static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
 149				  __be16 proto, u16 vid);
 150static void e1000_restore_vlan(struct e1000_adapter *adapter);
 151
 152static int e1000_suspend(struct device *dev);
 153static int e1000_resume(struct device *dev);
 
 
 154static void e1000_shutdown(struct pci_dev *pdev);
 155
 156#ifdef CONFIG_NET_POLL_CONTROLLER
 157/* for netdump / net console */
 158static void e1000_netpoll (struct net_device *netdev);
 159#endif
 160
 161#define COPYBREAK_DEFAULT 256
 162static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
 163module_param(copybreak, uint, 0644);
 164MODULE_PARM_DESC(copybreak,
 165	"Maximum size of packet that is copied to a new buffer on receive");
 166
 167static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
 168						pci_channel_state_t state);
 169static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
 170static void e1000_io_resume(struct pci_dev *pdev);
 171
 172static const struct pci_error_handlers e1000_err_handler = {
 173	.error_detected = e1000_io_error_detected,
 174	.slot_reset = e1000_io_slot_reset,
 175	.resume = e1000_io_resume,
 176};
 177
 178static DEFINE_SIMPLE_DEV_PM_OPS(e1000_pm_ops, e1000_suspend, e1000_resume);
 179
 180static struct pci_driver e1000_driver = {
 181	.name     = e1000_driver_name,
 182	.id_table = e1000_pci_tbl,
 183	.probe    = e1000_probe,
 184	.remove   = e1000_remove,
 185	.driver.pm = pm_sleep_ptr(&e1000_pm_ops),
 
 
 
 
 186	.shutdown = e1000_shutdown,
 187	.err_handler = &e1000_err_handler
 188};
 189
 
 190MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
 191MODULE_LICENSE("GPL v2");
 
 192
 193#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
 194static int debug = -1;
 195module_param(debug, int, 0);
 196MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
 197
 198/**
 199 * e1000_get_hw_dev - helper function for getting netdev
 200 * @hw: pointer to HW struct
 201 *
 202 * return device used by hardware layer to print debugging information
 203 *
 204 **/
 205struct net_device *e1000_get_hw_dev(struct e1000_hw *hw)
 206{
 207	struct e1000_adapter *adapter = hw->back;
 208	return adapter->netdev;
 209}
 210
 211/**
 212 * e1000_init_module - Driver Registration Routine
 213 *
 214 * e1000_init_module is the first routine called when the driver is
 215 * loaded. All it does is register with the PCI subsystem.
 216 **/
 217static int __init e1000_init_module(void)
 218{
 219	int ret;
 220	pr_info("%s\n", e1000_driver_string);
 221
 222	pr_info("%s\n", e1000_copyright);
 223
 224	ret = pci_register_driver(&e1000_driver);
 225	if (copybreak != COPYBREAK_DEFAULT) {
 226		if (copybreak == 0)
 227			pr_info("copybreak disabled\n");
 228		else
 229			pr_info("copybreak enabled for "
 230				   "packets <= %u bytes\n", copybreak);
 231	}
 232	return ret;
 233}
 234
 235module_init(e1000_init_module);
 236
 237/**
 238 * e1000_exit_module - Driver Exit Cleanup Routine
 239 *
 240 * e1000_exit_module is called just before the driver is removed
 241 * from memory.
 242 **/
 243static void __exit e1000_exit_module(void)
 244{
 245	pci_unregister_driver(&e1000_driver);
 246}
 247
 248module_exit(e1000_exit_module);
 249
 250static int e1000_request_irq(struct e1000_adapter *adapter)
 251{
 252	struct net_device *netdev = adapter->netdev;
 253	irq_handler_t handler = e1000_intr;
 254	int irq_flags = IRQF_SHARED;
 255	int err;
 256
 257	err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
 258			  netdev);
 259	if (err) {
 260		e_err(probe, "Unable to allocate interrupt Error: %d\n", err);
 261	}
 262
 263	return err;
 264}
 265
 266static void e1000_free_irq(struct e1000_adapter *adapter)
 267{
 268	struct net_device *netdev = adapter->netdev;
 269
 270	free_irq(adapter->pdev->irq, netdev);
 271}
 272
 273/**
 274 * e1000_irq_disable - Mask off interrupt generation on the NIC
 275 * @adapter: board private structure
 276 **/
 277static void e1000_irq_disable(struct e1000_adapter *adapter)
 278{
 279	struct e1000_hw *hw = &adapter->hw;
 280
 281	ew32(IMC, ~0);
 282	E1000_WRITE_FLUSH();
 283	synchronize_irq(adapter->pdev->irq);
 284}
 285
 286/**
 287 * e1000_irq_enable - Enable default interrupt generation settings
 288 * @adapter: board private structure
 289 **/
 290static void e1000_irq_enable(struct e1000_adapter *adapter)
 291{
 292	struct e1000_hw *hw = &adapter->hw;
 293
 294	ew32(IMS, IMS_ENABLE_MASK);
 295	E1000_WRITE_FLUSH();
 296}
 297
 298static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
 299{
 300	struct e1000_hw *hw = &adapter->hw;
 301	struct net_device *netdev = adapter->netdev;
 302	u16 vid = hw->mng_cookie.vlan_id;
 303	u16 old_vid = adapter->mng_vlan_id;
 304
 305	if (!e1000_vlan_used(adapter))
 306		return;
 307
 308	if (!test_bit(vid, adapter->active_vlans)) {
 309		if (hw->mng_cookie.status &
 310		    E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
 311			e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
 312			adapter->mng_vlan_id = vid;
 313		} else {
 314			adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
 315		}
 316		if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
 317		    (vid != old_vid) &&
 318		    !test_bit(old_vid, adapter->active_vlans))
 319			e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
 320					       old_vid);
 321	} else {
 322		adapter->mng_vlan_id = vid;
 323	}
 324}
 325
 326static void e1000_init_manageability(struct e1000_adapter *adapter)
 327{
 328	struct e1000_hw *hw = &adapter->hw;
 329
 330	if (adapter->en_mng_pt) {
 331		u32 manc = er32(MANC);
 332
 333		/* disable hardware interception of ARP */
 334		manc &= ~(E1000_MANC_ARP_EN);
 335
 336		ew32(MANC, manc);
 337	}
 338}
 339
 340static void e1000_release_manageability(struct e1000_adapter *adapter)
 341{
 342	struct e1000_hw *hw = &adapter->hw;
 343
 344	if (adapter->en_mng_pt) {
 345		u32 manc = er32(MANC);
 346
 347		/* re-enable hardware interception of ARP */
 348		manc |= E1000_MANC_ARP_EN;
 349
 350		ew32(MANC, manc);
 351	}
 352}
 353
 354/**
 355 * e1000_configure - configure the hardware for RX and TX
 356 * @adapter: private board structure
 357 **/
 358static void e1000_configure(struct e1000_adapter *adapter)
 359{
 360	struct net_device *netdev = adapter->netdev;
 361	int i;
 362
 363	e1000_set_rx_mode(netdev);
 364
 365	e1000_restore_vlan(adapter);
 366	e1000_init_manageability(adapter);
 367
 368	e1000_configure_tx(adapter);
 369	e1000_setup_rctl(adapter);
 370	e1000_configure_rx(adapter);
 371	/* call E1000_DESC_UNUSED which always leaves
 372	 * at least 1 descriptor unused to make sure
 373	 * next_to_use != next_to_clean
 374	 */
 375	for (i = 0; i < adapter->num_rx_queues; i++) {
 376		struct e1000_rx_ring *ring = &adapter->rx_ring[i];
 377		adapter->alloc_rx_buf(adapter, ring,
 378				      E1000_DESC_UNUSED(ring));
 379	}
 380}
 381
 382int e1000_up(struct e1000_adapter *adapter)
 383{
 384	struct e1000_hw *hw = &adapter->hw;
 385
 386	/* hardware has been reset, we need to reload some things */
 387	e1000_configure(adapter);
 388
 389	clear_bit(__E1000_DOWN, &adapter->flags);
 390
 391	napi_enable(&adapter->napi);
 392
 393	e1000_irq_enable(adapter);
 394
 395	netif_wake_queue(adapter->netdev);
 396
 397	/* fire a link change interrupt to start the watchdog */
 398	ew32(ICS, E1000_ICS_LSC);
 399	return 0;
 400}
 401
 402/**
 403 * e1000_power_up_phy - restore link in case the phy was powered down
 404 * @adapter: address of board private structure
 405 *
 406 * The phy may be powered down to save power and turn off link when the
 407 * driver is unloaded and wake on lan is not enabled (among others)
 408 * *** this routine MUST be followed by a call to e1000_reset ***
 409 **/
 410void e1000_power_up_phy(struct e1000_adapter *adapter)
 411{
 412	struct e1000_hw *hw = &adapter->hw;
 413	u16 mii_reg = 0;
 414
 415	/* Just clear the power down bit to wake the phy back up */
 416	if (hw->media_type == e1000_media_type_copper) {
 417		/* according to the manual, the phy will retain its
 418		 * settings across a power-down/up cycle
 419		 */
 420		e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
 421		mii_reg &= ~MII_CR_POWER_DOWN;
 422		e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
 423	}
 424}
 425
 426static void e1000_power_down_phy(struct e1000_adapter *adapter)
 427{
 428	struct e1000_hw *hw = &adapter->hw;
 429
 430	/* Power down the PHY so no link is implied when interface is down *
 431	 * The PHY cannot be powered down if any of the following is true *
 432	 * (a) WoL is enabled
 433	 * (b) AMT is active
 434	 * (c) SoL/IDER session is active
 435	 */
 436	if (!adapter->wol && hw->mac_type >= e1000_82540 &&
 437	   hw->media_type == e1000_media_type_copper) {
 438		u16 mii_reg = 0;
 439
 440		switch (hw->mac_type) {
 441		case e1000_82540:
 442		case e1000_82545:
 443		case e1000_82545_rev_3:
 444		case e1000_82546:
 445		case e1000_ce4100:
 446		case e1000_82546_rev_3:
 447		case e1000_82541:
 448		case e1000_82541_rev_2:
 449		case e1000_82547:
 450		case e1000_82547_rev_2:
 451			if (er32(MANC) & E1000_MANC_SMBUS_EN)
 452				goto out;
 453			break;
 454		default:
 455			goto out;
 456		}
 457		e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
 458		mii_reg |= MII_CR_POWER_DOWN;
 459		e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
 460		msleep(1);
 461	}
 462out:
 463	return;
 464}
 465
 466static void e1000_down_and_stop(struct e1000_adapter *adapter)
 467{
 468	set_bit(__E1000_DOWN, &adapter->flags);
 469
 470	cancel_delayed_work_sync(&adapter->watchdog_task);
 471
 472	/*
 473	 * Since the watchdog task can reschedule other tasks, we should cancel
 474	 * it first, otherwise we can run into the situation when a work is
 475	 * still running after the adapter has been turned down.
 476	 */
 477
 478	cancel_delayed_work_sync(&adapter->phy_info_task);
 479	cancel_delayed_work_sync(&adapter->fifo_stall_task);
 480
 481	/* Only kill reset task if adapter is not resetting */
 482	if (!test_bit(__E1000_RESETTING, &adapter->flags))
 483		cancel_work_sync(&adapter->reset_task);
 484}
 485
 486void e1000_down(struct e1000_adapter *adapter)
 487{
 488	struct e1000_hw *hw = &adapter->hw;
 489	struct net_device *netdev = adapter->netdev;
 490	u32 rctl, tctl;
 491
 
 
 492	/* disable receives in the hardware */
 493	rctl = er32(RCTL);
 494	ew32(RCTL, rctl & ~E1000_RCTL_EN);
 495	/* flush and sleep below */
 496
 497	netif_tx_disable(netdev);
 498
 499	/* disable transmits in the hardware */
 500	tctl = er32(TCTL);
 501	tctl &= ~E1000_TCTL_EN;
 502	ew32(TCTL, tctl);
 503	/* flush both disables and wait for them to finish */
 504	E1000_WRITE_FLUSH();
 505	msleep(10);
 506
 507	/* Set the carrier off after transmits have been disabled in the
 508	 * hardware, to avoid race conditions with e1000_watchdog() (which
 509	 * may be running concurrently to us, checking for the carrier
 510	 * bit to decide whether it should enable transmits again). Such
 511	 * a race condition would result into transmission being disabled
 512	 * in the hardware until the next IFF_DOWN+IFF_UP cycle.
 513	 */
 514	netif_carrier_off(netdev);
 515
 516	netif_queue_set_napi(netdev, 0, NETDEV_QUEUE_TYPE_RX, NULL);
 517	netif_queue_set_napi(netdev, 0, NETDEV_QUEUE_TYPE_TX, NULL);
 518	napi_disable(&adapter->napi);
 519
 520	e1000_irq_disable(adapter);
 521
 522	/* Setting DOWN must be after irq_disable to prevent
 523	 * a screaming interrupt.  Setting DOWN also prevents
 524	 * tasks from rescheduling.
 525	 */
 526	e1000_down_and_stop(adapter);
 527
 528	adapter->link_speed = 0;
 529	adapter->link_duplex = 0;
 530
 531	e1000_reset(adapter);
 532	e1000_clean_all_tx_rings(adapter);
 533	e1000_clean_all_rx_rings(adapter);
 534}
 535
 536void e1000_reinit_locked(struct e1000_adapter *adapter)
 537{
 
 538	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
 539		msleep(1);
 540
 541	/* only run the task if not already down */
 542	if (!test_bit(__E1000_DOWN, &adapter->flags)) {
 543		e1000_down(adapter);
 544		e1000_up(adapter);
 545	}
 546
 547	clear_bit(__E1000_RESETTING, &adapter->flags);
 548}
 549
 550void e1000_reset(struct e1000_adapter *adapter)
 551{
 552	struct e1000_hw *hw = &adapter->hw;
 553	u32 pba = 0, tx_space, min_tx_space, min_rx_space;
 554	bool legacy_pba_adjust = false;
 555	u16 hwm;
 556
 557	/* Repartition Pba for greater than 9k mtu
 558	 * To take effect CTRL.RST is required.
 559	 */
 560
 561	switch (hw->mac_type) {
 562	case e1000_82542_rev2_0:
 563	case e1000_82542_rev2_1:
 564	case e1000_82543:
 565	case e1000_82544:
 566	case e1000_82540:
 567	case e1000_82541:
 568	case e1000_82541_rev_2:
 569		legacy_pba_adjust = true;
 570		pba = E1000_PBA_48K;
 571		break;
 572	case e1000_82545:
 573	case e1000_82545_rev_3:
 574	case e1000_82546:
 575	case e1000_ce4100:
 576	case e1000_82546_rev_3:
 577		pba = E1000_PBA_48K;
 578		break;
 579	case e1000_82547:
 580	case e1000_82547_rev_2:
 581		legacy_pba_adjust = true;
 582		pba = E1000_PBA_30K;
 583		break;
 584	case e1000_undefined:
 585	case e1000_num_macs:
 586		break;
 587	}
 588
 589	if (legacy_pba_adjust) {
 590		if (hw->max_frame_size > E1000_RXBUFFER_8192)
 591			pba -= 8; /* allocate more FIFO for Tx */
 592
 593		if (hw->mac_type == e1000_82547) {
 594			adapter->tx_fifo_head = 0;
 595			adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
 596			adapter->tx_fifo_size =
 597				(E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
 598			atomic_set(&adapter->tx_fifo_stall, 0);
 599		}
 600	} else if (hw->max_frame_size >  ETH_FRAME_LEN + ETH_FCS_LEN) {
 601		/* adjust PBA for jumbo frames */
 602		ew32(PBA, pba);
 603
 604		/* To maintain wire speed transmits, the Tx FIFO should be
 605		 * large enough to accommodate two full transmit packets,
 606		 * rounded up to the next 1KB and expressed in KB.  Likewise,
 607		 * the Rx FIFO should be large enough to accommodate at least
 608		 * one full receive packet and is similarly rounded up and
 609		 * expressed in KB.
 610		 */
 611		pba = er32(PBA);
 612		/* upper 16 bits has Tx packet buffer allocation size in KB */
 613		tx_space = pba >> 16;
 614		/* lower 16 bits has Rx packet buffer allocation size in KB */
 615		pba &= 0xffff;
 616		/* the Tx fifo also stores 16 bytes of information about the Tx
 617		 * but don't include ethernet FCS because hardware appends it
 618		 */
 619		min_tx_space = (hw->max_frame_size +
 620				sizeof(struct e1000_tx_desc) -
 621				ETH_FCS_LEN) * 2;
 622		min_tx_space = ALIGN(min_tx_space, 1024);
 623		min_tx_space >>= 10;
 624		/* software strips receive CRC, so leave room for it */
 625		min_rx_space = hw->max_frame_size;
 626		min_rx_space = ALIGN(min_rx_space, 1024);
 627		min_rx_space >>= 10;
 628
 629		/* If current Tx allocation is less than the min Tx FIFO size,
 630		 * and the min Tx FIFO size is less than the current Rx FIFO
 631		 * allocation, take space away from current Rx allocation
 632		 */
 633		if (tx_space < min_tx_space &&
 634		    ((min_tx_space - tx_space) < pba)) {
 635			pba = pba - (min_tx_space - tx_space);
 636
 637			/* PCI/PCIx hardware has PBA alignment constraints */
 638			switch (hw->mac_type) {
 639			case e1000_82545 ... e1000_82546_rev_3:
 640				pba &= ~(E1000_PBA_8K - 1);
 641				break;
 642			default:
 643				break;
 644			}
 645
 646			/* if short on Rx space, Rx wins and must trump Tx
 647			 * adjustment or use Early Receive if available
 648			 */
 649			if (pba < min_rx_space)
 650				pba = min_rx_space;
 651		}
 652	}
 653
 654	ew32(PBA, pba);
 655
 656	/* flow control settings:
 657	 * The high water mark must be low enough to fit one full frame
 658	 * (or the size used for early receive) above it in the Rx FIFO.
 659	 * Set it to the lower of:
 660	 * - 90% of the Rx FIFO size, and
 661	 * - the full Rx FIFO size minus the early receive size (for parts
 662	 *   with ERT support assuming ERT set to E1000_ERT_2048), or
 663	 * - the full Rx FIFO size minus one full frame
 664	 */
 665	hwm = min(((pba << 10) * 9 / 10),
 666		  ((pba << 10) - hw->max_frame_size));
 667
 668	hw->fc_high_water = hwm & 0xFFF8;	/* 8-byte granularity */
 669	hw->fc_low_water = hw->fc_high_water - 8;
 670	hw->fc_pause_time = E1000_FC_PAUSE_TIME;
 671	hw->fc_send_xon = 1;
 672	hw->fc = hw->original_fc;
 673
 674	/* Allow time for pending master requests to run */
 675	e1000_reset_hw(hw);
 676	if (hw->mac_type >= e1000_82544)
 677		ew32(WUC, 0);
 678
 679	if (e1000_init_hw(hw))
 680		e_dev_err("Hardware Error\n");
 681	e1000_update_mng_vlan(adapter);
 682
 683	/* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
 684	if (hw->mac_type >= e1000_82544 &&
 685	    hw->autoneg == 1 &&
 686	    hw->autoneg_advertised == ADVERTISE_1000_FULL) {
 687		u32 ctrl = er32(CTRL);
 688		/* clear phy power management bit if we are in gig only mode,
 689		 * which if enabled will attempt negotiation to 100Mb, which
 690		 * can cause a loss of link at power off or driver unload
 691		 */
 692		ctrl &= ~E1000_CTRL_SWDPIN3;
 693		ew32(CTRL, ctrl);
 694	}
 695
 696	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
 697	ew32(VET, ETHERNET_IEEE_VLAN_TYPE);
 698
 699	e1000_reset_adaptive(hw);
 700	e1000_phy_get_info(hw, &adapter->phy_info);
 701
 702	e1000_release_manageability(adapter);
 703}
 704
 705/* Dump the eeprom for users having checksum issues */
 706static void e1000_dump_eeprom(struct e1000_adapter *adapter)
 707{
 708	struct net_device *netdev = adapter->netdev;
 709	struct ethtool_eeprom eeprom;
 710	const struct ethtool_ops *ops = netdev->ethtool_ops;
 711	u8 *data;
 712	int i;
 713	u16 csum_old, csum_new = 0;
 714
 715	eeprom.len = ops->get_eeprom_len(netdev);
 716	eeprom.offset = 0;
 717
 718	data = kmalloc(eeprom.len, GFP_KERNEL);
 719	if (!data)
 720		return;
 721
 722	ops->get_eeprom(netdev, &eeprom, data);
 723
 724	csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
 725		   (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
 726	for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
 727		csum_new += data[i] + (data[i + 1] << 8);
 728	csum_new = EEPROM_SUM - csum_new;
 729
 730	pr_err("/*********************/\n");
 731	pr_err("Current EEPROM Checksum : 0x%04x\n", csum_old);
 732	pr_err("Calculated              : 0x%04x\n", csum_new);
 733
 734	pr_err("Offset    Values\n");
 735	pr_err("========  ======\n");
 736	print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0);
 737
 738	pr_err("Include this output when contacting your support provider.\n");
 739	pr_err("This is not a software error! Something bad happened to\n");
 740	pr_err("your hardware or EEPROM image. Ignoring this problem could\n");
 741	pr_err("result in further problems, possibly loss of data,\n");
 742	pr_err("corruption or system hangs!\n");
 743	pr_err("The MAC Address will be reset to 00:00:00:00:00:00,\n");
 744	pr_err("which is invalid and requires you to set the proper MAC\n");
 745	pr_err("address manually before continuing to enable this network\n");
 746	pr_err("device. Please inspect the EEPROM dump and report the\n");
 747	pr_err("issue to your hardware vendor or Intel Customer Support.\n");
 748	pr_err("/*********************/\n");
 749
 750	kfree(data);
 751}
 752
 753/**
 754 * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
 755 * @pdev: PCI device information struct
 756 *
 757 * Return true if an adapter needs ioport resources
 758 **/
 759static int e1000_is_need_ioport(struct pci_dev *pdev)
 760{
 761	switch (pdev->device) {
 762	case E1000_DEV_ID_82540EM:
 763	case E1000_DEV_ID_82540EM_LOM:
 764	case E1000_DEV_ID_82540EP:
 765	case E1000_DEV_ID_82540EP_LOM:
 766	case E1000_DEV_ID_82540EP_LP:
 767	case E1000_DEV_ID_82541EI:
 768	case E1000_DEV_ID_82541EI_MOBILE:
 769	case E1000_DEV_ID_82541ER:
 770	case E1000_DEV_ID_82541ER_LOM:
 771	case E1000_DEV_ID_82541GI:
 772	case E1000_DEV_ID_82541GI_LF:
 773	case E1000_DEV_ID_82541GI_MOBILE:
 774	case E1000_DEV_ID_82544EI_COPPER:
 775	case E1000_DEV_ID_82544EI_FIBER:
 776	case E1000_DEV_ID_82544GC_COPPER:
 777	case E1000_DEV_ID_82544GC_LOM:
 778	case E1000_DEV_ID_82545EM_COPPER:
 779	case E1000_DEV_ID_82545EM_FIBER:
 780	case E1000_DEV_ID_82546EB_COPPER:
 781	case E1000_DEV_ID_82546EB_FIBER:
 782	case E1000_DEV_ID_82546EB_QUAD_COPPER:
 783		return true;
 784	default:
 785		return false;
 786	}
 787}
 788
 789static netdev_features_t e1000_fix_features(struct net_device *netdev,
 790	netdev_features_t features)
 791{
 792	/* Since there is no support for separate Rx/Tx vlan accel
 793	 * enable/disable make sure Tx flag is always in same state as Rx.
 794	 */
 795	if (features & NETIF_F_HW_VLAN_CTAG_RX)
 796		features |= NETIF_F_HW_VLAN_CTAG_TX;
 797	else
 798		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
 799
 800	return features;
 801}
 802
 803static int e1000_set_features(struct net_device *netdev,
 804	netdev_features_t features)
 805{
 806	struct e1000_adapter *adapter = netdev_priv(netdev);
 807	netdev_features_t changed = features ^ netdev->features;
 808
 809	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
 810		e1000_vlan_mode(netdev, features);
 811
 812	if (!(changed & (NETIF_F_RXCSUM | NETIF_F_RXALL)))
 813		return 0;
 814
 815	netdev->features = features;
 816	adapter->rx_csum = !!(features & NETIF_F_RXCSUM);
 817
 818	if (netif_running(netdev))
 819		e1000_reinit_locked(adapter);
 820	else
 821		e1000_reset(adapter);
 822
 823	return 1;
 824}
 825
 826static const struct net_device_ops e1000_netdev_ops = {
 827	.ndo_open		= e1000_open,
 828	.ndo_stop		= e1000_close,
 829	.ndo_start_xmit		= e1000_xmit_frame,
 
 830	.ndo_set_rx_mode	= e1000_set_rx_mode,
 831	.ndo_set_mac_address	= e1000_set_mac,
 832	.ndo_tx_timeout		= e1000_tx_timeout,
 833	.ndo_change_mtu		= e1000_change_mtu,
 834	.ndo_eth_ioctl		= e1000_ioctl,
 835	.ndo_validate_addr	= eth_validate_addr,
 836	.ndo_vlan_rx_add_vid	= e1000_vlan_rx_add_vid,
 837	.ndo_vlan_rx_kill_vid	= e1000_vlan_rx_kill_vid,
 838#ifdef CONFIG_NET_POLL_CONTROLLER
 839	.ndo_poll_controller	= e1000_netpoll,
 840#endif
 841	.ndo_fix_features	= e1000_fix_features,
 842	.ndo_set_features	= e1000_set_features,
 843};
 844
 845/**
 846 * e1000_init_hw_struct - initialize members of hw struct
 847 * @adapter: board private struct
 848 * @hw: structure used by e1000_hw.c
 849 *
 850 * Factors out initialization of the e1000_hw struct to its own function
 851 * that can be called very early at init (just after struct allocation).
 852 * Fields are initialized based on PCI device information and
 853 * OS network device settings (MTU size).
 854 * Returns negative error codes if MAC type setup fails.
 855 */
 856static int e1000_init_hw_struct(struct e1000_adapter *adapter,
 857				struct e1000_hw *hw)
 858{
 859	struct pci_dev *pdev = adapter->pdev;
 860
 861	/* PCI config space info */
 862	hw->vendor_id = pdev->vendor;
 863	hw->device_id = pdev->device;
 864	hw->subsystem_vendor_id = pdev->subsystem_vendor;
 865	hw->subsystem_id = pdev->subsystem_device;
 866	hw->revision_id = pdev->revision;
 867
 868	pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
 869
 870	hw->max_frame_size = adapter->netdev->mtu +
 871			     ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
 872	hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
 873
 874	/* identify the MAC */
 875	if (e1000_set_mac_type(hw)) {
 876		e_err(probe, "Unknown MAC Type\n");
 877		return -EIO;
 878	}
 879
 880	switch (hw->mac_type) {
 881	default:
 882		break;
 883	case e1000_82541:
 884	case e1000_82547:
 885	case e1000_82541_rev_2:
 886	case e1000_82547_rev_2:
 887		hw->phy_init_script = 1;
 888		break;
 889	}
 890
 891	e1000_set_media_type(hw);
 892	e1000_get_bus_info(hw);
 893
 894	hw->wait_autoneg_complete = false;
 895	hw->tbi_compatibility_en = true;
 896	hw->adaptive_ifs = true;
 897
 898	/* Copper options */
 899
 900	if (hw->media_type == e1000_media_type_copper) {
 901		hw->mdix = AUTO_ALL_MODES;
 902		hw->disable_polarity_correction = false;
 903		hw->master_slave = E1000_MASTER_SLAVE;
 904	}
 905
 906	return 0;
 907}
 908
 909/**
 910 * e1000_probe - Device Initialization Routine
 911 * @pdev: PCI device information struct
 912 * @ent: entry in e1000_pci_tbl
 913 *
 914 * Returns 0 on success, negative on failure
 915 *
 916 * e1000_probe initializes an adapter identified by a pci_dev structure.
 917 * The OS initialization, configuring of the adapter private structure,
 918 * and a hardware reset occur.
 919 **/
 920static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
 921{
 922	struct net_device *netdev;
 923	struct e1000_adapter *adapter = NULL;
 924	struct e1000_hw *hw;
 925
 926	static int cards_found;
 927	static int global_quad_port_a; /* global ksp3 port a indication */
 928	int i, err, pci_using_dac;
 929	u16 eeprom_data = 0;
 930	u16 tmp = 0;
 931	u16 eeprom_apme_mask = E1000_EEPROM_APME;
 932	int bars, need_ioport;
 933	bool disable_dev = false;
 934
 935	/* do not allocate ioport bars when not needed */
 936	need_ioport = e1000_is_need_ioport(pdev);
 937	if (need_ioport) {
 938		bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
 939		err = pci_enable_device(pdev);
 940	} else {
 941		bars = pci_select_bars(pdev, IORESOURCE_MEM);
 942		err = pci_enable_device_mem(pdev);
 943	}
 944	if (err)
 945		return err;
 946
 947	err = pci_request_selected_regions(pdev, bars, e1000_driver_name);
 948	if (err)
 949		goto err_pci_reg;
 950
 951	pci_set_master(pdev);
 952	err = pci_save_state(pdev);
 953	if (err)
 954		goto err_alloc_etherdev;
 955
 956	err = -ENOMEM;
 957	netdev = alloc_etherdev(sizeof(struct e1000_adapter));
 958	if (!netdev)
 959		goto err_alloc_etherdev;
 960
 961	SET_NETDEV_DEV(netdev, &pdev->dev);
 962
 963	pci_set_drvdata(pdev, netdev);
 964	adapter = netdev_priv(netdev);
 965	adapter->netdev = netdev;
 966	adapter->pdev = pdev;
 967	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
 968	adapter->bars = bars;
 969	adapter->need_ioport = need_ioport;
 970
 971	hw = &adapter->hw;
 972	hw->back = adapter;
 973
 974	err = -EIO;
 975	hw->hw_addr = pci_ioremap_bar(pdev, BAR_0);
 976	if (!hw->hw_addr)
 977		goto err_ioremap;
 978
 979	if (adapter->need_ioport) {
 980		for (i = BAR_1; i < PCI_STD_NUM_BARS; i++) {
 981			if (pci_resource_len(pdev, i) == 0)
 982				continue;
 983			if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
 984				hw->io_base = pci_resource_start(pdev, i);
 985				break;
 986			}
 987		}
 988	}
 989
 990	/* make ready for any if (hw->...) below */
 991	err = e1000_init_hw_struct(adapter, hw);
 992	if (err)
 993		goto err_sw_init;
 994
 995	/* there is a workaround being applied below that limits
 996	 * 64-bit DMA addresses to 64-bit hardware.  There are some
 997	 * 32-bit adapters that Tx hang when given 64-bit DMA addresses
 998	 */
 999	pci_using_dac = 0;
1000	if ((hw->bus_type == e1000_bus_type_pcix) &&
1001	    !dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) {
1002		pci_using_dac = 1;
1003	} else {
1004		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1005		if (err) {
1006			pr_err("No usable DMA config, aborting\n");
1007			goto err_dma;
1008		}
1009	}
1010
1011	netdev->netdev_ops = &e1000_netdev_ops;
1012	e1000_set_ethtool_ops(netdev);
1013	netdev->watchdog_timeo = 5 * HZ;
1014	netif_napi_add(netdev, &adapter->napi, e1000_clean);
1015
1016	strscpy(netdev->name, pci_name(pdev), sizeof(netdev->name));
1017
1018	adapter->bd_number = cards_found;
1019
1020	/* setup the private structure */
1021
1022	err = e1000_sw_init(adapter);
1023	if (err)
1024		goto err_sw_init;
1025
1026	err = -EIO;
1027	if (hw->mac_type == e1000_ce4100) {
1028		hw->ce4100_gbe_mdio_base_virt =
1029					ioremap(pci_resource_start(pdev, BAR_1),
1030						pci_resource_len(pdev, BAR_1));
1031
1032		if (!hw->ce4100_gbe_mdio_base_virt)
1033			goto err_mdio_ioremap;
1034	}
1035
1036	if (hw->mac_type >= e1000_82543) {
1037		netdev->hw_features = NETIF_F_SG |
1038				   NETIF_F_HW_CSUM |
1039				   NETIF_F_HW_VLAN_CTAG_RX;
1040		netdev->features = NETIF_F_HW_VLAN_CTAG_TX |
1041				   NETIF_F_HW_VLAN_CTAG_FILTER;
1042	}
1043
1044	if ((hw->mac_type >= e1000_82544) &&
1045	   (hw->mac_type != e1000_82547))
1046		netdev->hw_features |= NETIF_F_TSO;
1047
1048	netdev->priv_flags |= IFF_SUPP_NOFCS;
1049
1050	netdev->features |= netdev->hw_features;
1051	netdev->hw_features |= (NETIF_F_RXCSUM |
1052				NETIF_F_RXALL |
1053				NETIF_F_RXFCS);
1054
1055	if (pci_using_dac) {
1056		netdev->features |= NETIF_F_HIGHDMA;
1057		netdev->vlan_features |= NETIF_F_HIGHDMA;
1058	}
1059
1060	netdev->vlan_features |= (NETIF_F_TSO |
1061				  NETIF_F_HW_CSUM |
1062				  NETIF_F_SG);
1063
1064	/* Do not set IFF_UNICAST_FLT for VMWare's 82545EM */
1065	if (hw->device_id != E1000_DEV_ID_82545EM_COPPER ||
1066	    hw->subsystem_vendor_id != PCI_VENDOR_ID_VMWARE)
1067		netdev->priv_flags |= IFF_UNICAST_FLT;
1068
1069	/* MTU range: 46 - 16110 */
1070	netdev->min_mtu = ETH_ZLEN - ETH_HLEN;
1071	netdev->max_mtu = MAX_JUMBO_FRAME_SIZE - (ETH_HLEN + ETH_FCS_LEN);
1072
1073	adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
1074
1075	/* initialize eeprom parameters */
1076	if (e1000_init_eeprom_params(hw)) {
1077		e_err(probe, "EEPROM initialization failed\n");
1078		goto err_eeprom;
1079	}
1080
1081	/* before reading the EEPROM, reset the controller to
1082	 * put the device in a known good starting state
1083	 */
1084
1085	e1000_reset_hw(hw);
1086
1087	/* make sure the EEPROM is good */
1088	if (e1000_validate_eeprom_checksum(hw) < 0) {
1089		e_err(probe, "The EEPROM Checksum Is Not Valid\n");
1090		e1000_dump_eeprom(adapter);
1091		/* set MAC address to all zeroes to invalidate and temporary
1092		 * disable this device for the user. This blocks regular
1093		 * traffic while still permitting ethtool ioctls from reaching
1094		 * the hardware as well as allowing the user to run the
1095		 * interface after manually setting a hw addr using
1096		 * `ip set address`
1097		 */
1098		memset(hw->mac_addr, 0, netdev->addr_len);
1099	} else {
1100		/* copy the MAC address out of the EEPROM */
1101		if (e1000_read_mac_addr(hw))
1102			e_err(probe, "EEPROM Read Error\n");
1103	}
1104	/* don't block initialization here due to bad MAC address */
1105	eth_hw_addr_set(netdev, hw->mac_addr);
1106
1107	if (!is_valid_ether_addr(netdev->dev_addr))
1108		e_err(probe, "Invalid MAC Address\n");
1109
1110
1111	INIT_DELAYED_WORK(&adapter->watchdog_task, e1000_watchdog);
1112	INIT_DELAYED_WORK(&adapter->fifo_stall_task,
1113			  e1000_82547_tx_fifo_stall_task);
1114	INIT_DELAYED_WORK(&adapter->phy_info_task, e1000_update_phy_info_task);
1115	INIT_WORK(&adapter->reset_task, e1000_reset_task);
1116
1117	e1000_check_options(adapter);
1118
1119	/* Initial Wake on LAN setting
1120	 * If APM wake is enabled in the EEPROM,
1121	 * enable the ACPI Magic Packet filter
1122	 */
1123
1124	switch (hw->mac_type) {
1125	case e1000_82542_rev2_0:
1126	case e1000_82542_rev2_1:
1127	case e1000_82543:
1128		break;
1129	case e1000_82544:
1130		e1000_read_eeprom(hw,
1131			EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1132		eeprom_apme_mask = E1000_EEPROM_82544_APM;
1133		break;
1134	case e1000_82546:
1135	case e1000_82546_rev_3:
1136		if (er32(STATUS) & E1000_STATUS_FUNC_1) {
1137			e1000_read_eeprom(hw,
1138				EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1139			break;
1140		}
1141		fallthrough;
1142	default:
1143		e1000_read_eeprom(hw,
1144			EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1145		break;
1146	}
1147	if (eeprom_data & eeprom_apme_mask)
1148		adapter->eeprom_wol |= E1000_WUFC_MAG;
1149
1150	/* now that we have the eeprom settings, apply the special cases
1151	 * where the eeprom may be wrong or the board simply won't support
1152	 * wake on lan on a particular port
1153	 */
1154	switch (pdev->device) {
1155	case E1000_DEV_ID_82546GB_PCIE:
1156		adapter->eeprom_wol = 0;
1157		break;
1158	case E1000_DEV_ID_82546EB_FIBER:
1159	case E1000_DEV_ID_82546GB_FIBER:
1160		/* Wake events only supported on port A for dual fiber
1161		 * regardless of eeprom setting
1162		 */
1163		if (er32(STATUS) & E1000_STATUS_FUNC_1)
1164			adapter->eeprom_wol = 0;
1165		break;
1166	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1167		/* if quad port adapter, disable WoL on all but port A */
1168		if (global_quad_port_a != 0)
1169			adapter->eeprom_wol = 0;
1170		else
1171			adapter->quad_port_a = true;
1172		/* Reset for multiple quad port adapters */
1173		if (++global_quad_port_a == 4)
1174			global_quad_port_a = 0;
1175		break;
1176	}
1177
1178	/* initialize the wol settings based on the eeprom settings */
1179	adapter->wol = adapter->eeprom_wol;
1180	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1181
1182	/* Auto detect PHY address */
1183	if (hw->mac_type == e1000_ce4100) {
1184		for (i = 0; i < 32; i++) {
1185			hw->phy_addr = i;
1186			e1000_read_phy_reg(hw, PHY_ID2, &tmp);
1187
1188			if (tmp != 0 && tmp != 0xFF)
1189				break;
1190		}
1191
1192		if (i >= 32)
1193			goto err_eeprom;
1194	}
1195
1196	/* reset the hardware with the new settings */
1197	e1000_reset(adapter);
1198
1199	strcpy(netdev->name, "eth%d");
1200	err = register_netdev(netdev);
1201	if (err)
1202		goto err_register;
1203
1204	e1000_vlan_filter_on_off(adapter, false);
1205
1206	/* print bus type/speed/width info */
1207	e_info(probe, "(PCI%s:%dMHz:%d-bit) %pM\n",
1208	       ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : ""),
1209	       ((hw->bus_speed == e1000_bus_speed_133) ? 133 :
1210		(hw->bus_speed == e1000_bus_speed_120) ? 120 :
1211		(hw->bus_speed == e1000_bus_speed_100) ? 100 :
1212		(hw->bus_speed == e1000_bus_speed_66) ? 66 : 33),
1213	       ((hw->bus_width == e1000_bus_width_64) ? 64 : 32),
1214	       netdev->dev_addr);
1215
1216	/* carrier off reporting is important to ethtool even BEFORE open */
1217	netif_carrier_off(netdev);
1218
1219	e_info(probe, "Intel(R) PRO/1000 Network Connection\n");
1220
1221	cards_found++;
1222	return 0;
1223
1224err_register:
1225err_eeprom:
1226	e1000_phy_hw_reset(hw);
1227
1228	if (hw->flash_address)
1229		iounmap(hw->flash_address);
1230	kfree(adapter->tx_ring);
1231	kfree(adapter->rx_ring);
1232err_dma:
1233err_sw_init:
1234err_mdio_ioremap:
1235	iounmap(hw->ce4100_gbe_mdio_base_virt);
1236	iounmap(hw->hw_addr);
1237err_ioremap:
1238	disable_dev = !test_and_set_bit(__E1000_DISABLED, &adapter->flags);
1239	free_netdev(netdev);
1240err_alloc_etherdev:
1241	pci_release_selected_regions(pdev, bars);
1242err_pci_reg:
1243	if (!adapter || disable_dev)
1244		pci_disable_device(pdev);
1245	return err;
1246}
1247
1248/**
1249 * e1000_remove - Device Removal Routine
1250 * @pdev: PCI device information struct
1251 *
1252 * e1000_remove is called by the PCI subsystem to alert the driver
1253 * that it should release a PCI device. That could be caused by a
1254 * Hot-Plug event, or because the driver is going to be removed from
1255 * memory.
1256 **/
1257static void e1000_remove(struct pci_dev *pdev)
1258{
1259	struct net_device *netdev = pci_get_drvdata(pdev);
1260	struct e1000_adapter *adapter = netdev_priv(netdev);
1261	struct e1000_hw *hw = &adapter->hw;
1262	bool disable_dev;
1263
1264	e1000_down_and_stop(adapter);
1265	e1000_release_manageability(adapter);
1266
1267	unregister_netdev(netdev);
1268
1269	e1000_phy_hw_reset(hw);
1270
1271	kfree(adapter->tx_ring);
1272	kfree(adapter->rx_ring);
1273
1274	if (hw->mac_type == e1000_ce4100)
1275		iounmap(hw->ce4100_gbe_mdio_base_virt);
1276	iounmap(hw->hw_addr);
1277	if (hw->flash_address)
1278		iounmap(hw->flash_address);
1279	pci_release_selected_regions(pdev, adapter->bars);
1280
1281	disable_dev = !test_and_set_bit(__E1000_DISABLED, &adapter->flags);
1282	free_netdev(netdev);
1283
1284	if (disable_dev)
1285		pci_disable_device(pdev);
1286}
1287
1288/**
1289 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1290 * @adapter: board private structure to initialize
1291 *
1292 * e1000_sw_init initializes the Adapter private data structure.
1293 * e1000_init_hw_struct MUST be called before this function
1294 **/
1295static int e1000_sw_init(struct e1000_adapter *adapter)
1296{
1297	adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1298
1299	adapter->num_tx_queues = 1;
1300	adapter->num_rx_queues = 1;
1301
1302	if (e1000_alloc_queues(adapter)) {
1303		e_err(probe, "Unable to allocate memory for queues\n");
1304		return -ENOMEM;
1305	}
1306
1307	/* Explicitly disable IRQ since the NIC can be in any state. */
1308	e1000_irq_disable(adapter);
1309
1310	spin_lock_init(&adapter->stats_lock);
1311
1312	set_bit(__E1000_DOWN, &adapter->flags);
1313
1314	return 0;
1315}
1316
1317/**
1318 * e1000_alloc_queues - Allocate memory for all rings
1319 * @adapter: board private structure to initialize
1320 *
1321 * We allocate one ring per queue at run-time since we don't know the
1322 * number of queues at compile-time.
1323 **/
1324static int e1000_alloc_queues(struct e1000_adapter *adapter)
1325{
1326	adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1327				   sizeof(struct e1000_tx_ring), GFP_KERNEL);
1328	if (!adapter->tx_ring)
1329		return -ENOMEM;
1330
1331	adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1332				   sizeof(struct e1000_rx_ring), GFP_KERNEL);
1333	if (!adapter->rx_ring) {
1334		kfree(adapter->tx_ring);
1335		return -ENOMEM;
1336	}
1337
1338	return E1000_SUCCESS;
1339}
1340
1341/**
1342 * e1000_open - Called when a network interface is made active
1343 * @netdev: network interface device structure
1344 *
1345 * Returns 0 on success, negative value on failure
1346 *
1347 * The open entry point is called when a network interface is made
1348 * active by the system (IFF_UP).  At this point all resources needed
1349 * for transmit and receive operations are allocated, the interrupt
1350 * handler is registered with the OS, the watchdog task is started,
1351 * and the stack is notified that the interface is ready.
1352 **/
1353int e1000_open(struct net_device *netdev)
1354{
1355	struct e1000_adapter *adapter = netdev_priv(netdev);
1356	struct e1000_hw *hw = &adapter->hw;
1357	int err;
1358
1359	/* disallow open during test */
1360	if (test_bit(__E1000_TESTING, &adapter->flags))
1361		return -EBUSY;
1362
1363	netif_carrier_off(netdev);
1364
1365	/* allocate transmit descriptors */
1366	err = e1000_setup_all_tx_resources(adapter);
1367	if (err)
1368		goto err_setup_tx;
1369
1370	/* allocate receive descriptors */
1371	err = e1000_setup_all_rx_resources(adapter);
1372	if (err)
1373		goto err_setup_rx;
1374
1375	e1000_power_up_phy(adapter);
1376
1377	adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1378	if ((hw->mng_cookie.status &
1379			  E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1380		e1000_update_mng_vlan(adapter);
1381	}
1382
1383	/* before we allocate an interrupt, we must be ready to handle it.
1384	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1385	 * as soon as we call pci_request_irq, so we have to setup our
1386	 * clean_rx handler before we do so.
1387	 */
1388	e1000_configure(adapter);
1389
1390	err = e1000_request_irq(adapter);
1391	if (err)
1392		goto err_req_irq;
1393
1394	/* From here on the code is the same as e1000_up() */
1395	clear_bit(__E1000_DOWN, &adapter->flags);
1396
1397	netif_napi_set_irq(&adapter->napi, adapter->pdev->irq);
1398	napi_enable(&adapter->napi);
1399	netif_queue_set_napi(netdev, 0, NETDEV_QUEUE_TYPE_RX, &adapter->napi);
1400	netif_queue_set_napi(netdev, 0, NETDEV_QUEUE_TYPE_TX, &adapter->napi);
1401
1402	e1000_irq_enable(adapter);
1403
1404	netif_start_queue(netdev);
1405
1406	/* fire a link status change interrupt to start the watchdog */
1407	ew32(ICS, E1000_ICS_LSC);
1408
1409	return E1000_SUCCESS;
1410
1411err_req_irq:
1412	e1000_power_down_phy(adapter);
1413	e1000_free_all_rx_resources(adapter);
1414err_setup_rx:
1415	e1000_free_all_tx_resources(adapter);
1416err_setup_tx:
1417	e1000_reset(adapter);
1418
1419	return err;
1420}
1421
1422/**
1423 * e1000_close - Disables a network interface
1424 * @netdev: network interface device structure
1425 *
1426 * Returns 0, this is not allowed to fail
1427 *
1428 * The close entry point is called when an interface is de-activated
1429 * by the OS.  The hardware is still under the drivers control, but
1430 * needs to be disabled.  A global MAC reset is issued to stop the
1431 * hardware, and all transmit and receive resources are freed.
1432 **/
1433int e1000_close(struct net_device *netdev)
1434{
1435	struct e1000_adapter *adapter = netdev_priv(netdev);
1436	struct e1000_hw *hw = &adapter->hw;
1437	int count = E1000_CHECK_RESET_COUNT;
1438
1439	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags) && count--)
1440		usleep_range(10000, 20000);
1441
1442	WARN_ON(count < 0);
1443
1444	/* signal that we're down so that the reset task will no longer run */
1445	set_bit(__E1000_DOWN, &adapter->flags);
1446	clear_bit(__E1000_RESETTING, &adapter->flags);
1447
1448	e1000_down(adapter);
1449	e1000_power_down_phy(adapter);
1450	e1000_free_irq(adapter);
1451
1452	e1000_free_all_tx_resources(adapter);
1453	e1000_free_all_rx_resources(adapter);
1454
1455	/* kill manageability vlan ID if supported, but not if a vlan with
1456	 * the same ID is registered on the host OS (let 8021q kill it)
1457	 */
1458	if ((hw->mng_cookie.status &
1459	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1460	    !test_bit(adapter->mng_vlan_id, adapter->active_vlans)) {
1461		e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
1462				       adapter->mng_vlan_id);
1463	}
1464
1465	return 0;
1466}
1467
1468/**
1469 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1470 * @adapter: address of board private structure
1471 * @start: address of beginning of memory
1472 * @len: length of memory
1473 **/
1474static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start,
1475				  unsigned long len)
1476{
1477	struct e1000_hw *hw = &adapter->hw;
1478	unsigned long begin = (unsigned long)start;
1479	unsigned long end = begin + len;
1480
1481	/* First rev 82545 and 82546 need to not allow any memory
1482	 * write location to cross 64k boundary due to errata 23
1483	 */
1484	if (hw->mac_type == e1000_82545 ||
1485	    hw->mac_type == e1000_ce4100 ||
1486	    hw->mac_type == e1000_82546) {
1487		return ((begin ^ (end - 1)) >> 16) == 0;
1488	}
1489
1490	return true;
1491}
1492
1493/**
1494 * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1495 * @adapter: board private structure
1496 * @txdr:    tx descriptor ring (for a specific queue) to setup
1497 *
1498 * Return 0 on success, negative on failure
1499 **/
1500static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
1501				    struct e1000_tx_ring *txdr)
1502{
1503	struct pci_dev *pdev = adapter->pdev;
1504	int size;
1505
1506	size = sizeof(struct e1000_tx_buffer) * txdr->count;
1507	txdr->buffer_info = vzalloc(size);
1508	if (!txdr->buffer_info)
1509		return -ENOMEM;
1510
1511	/* round up to nearest 4K */
1512
1513	txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1514	txdr->size = ALIGN(txdr->size, 4096);
1515
1516	txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
1517					GFP_KERNEL);
1518	if (!txdr->desc) {
1519setup_tx_desc_die:
1520		vfree(txdr->buffer_info);
1521		return -ENOMEM;
1522	}
1523
1524	/* Fix for errata 23, can't cross 64kB boundary */
1525	if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1526		void *olddesc = txdr->desc;
1527		dma_addr_t olddma = txdr->dma;
1528		e_err(tx_err, "txdr align check failed: %u bytes at %p\n",
1529		      txdr->size, txdr->desc);
1530		/* Try again, without freeing the previous */
1531		txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size,
1532						&txdr->dma, GFP_KERNEL);
1533		/* Failed allocation, critical failure */
1534		if (!txdr->desc) {
1535			dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1536					  olddma);
1537			goto setup_tx_desc_die;
1538		}
1539
1540		if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1541			/* give up */
1542			dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
1543					  txdr->dma);
1544			dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1545					  olddma);
1546			e_err(probe, "Unable to allocate aligned memory "
1547			      "for the transmit descriptor ring\n");
1548			vfree(txdr->buffer_info);
1549			return -ENOMEM;
1550		} else {
1551			/* Free old allocation, new allocation was successful */
1552			dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1553					  olddma);
1554		}
1555	}
1556	memset(txdr->desc, 0, txdr->size);
1557
1558	txdr->next_to_use = 0;
1559	txdr->next_to_clean = 0;
1560
1561	return 0;
1562}
1563
1564/**
1565 * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1566 * 				  (Descriptors) for all queues
1567 * @adapter: board private structure
1568 *
1569 * Return 0 on success, negative on failure
1570 **/
1571int e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1572{
1573	int i, err = 0;
1574
1575	for (i = 0; i < adapter->num_tx_queues; i++) {
1576		err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1577		if (err) {
1578			e_err(probe, "Allocation for Tx Queue %u failed\n", i);
1579			for (i-- ; i >= 0; i--)
1580				e1000_free_tx_resources(adapter,
1581							&adapter->tx_ring[i]);
1582			break;
1583		}
1584	}
1585
1586	return err;
1587}
1588
1589/**
1590 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1591 * @adapter: board private structure
1592 *
1593 * Configure the Tx unit of the MAC after a reset.
1594 **/
1595static void e1000_configure_tx(struct e1000_adapter *adapter)
1596{
1597	u64 tdba;
1598	struct e1000_hw *hw = &adapter->hw;
1599	u32 tdlen, tctl, tipg;
1600	u32 ipgr1, ipgr2;
1601
1602	/* Setup the HW Tx Head and Tail descriptor pointers */
1603
1604	switch (adapter->num_tx_queues) {
1605	case 1:
1606	default:
1607		tdba = adapter->tx_ring[0].dma;
1608		tdlen = adapter->tx_ring[0].count *
1609			sizeof(struct e1000_tx_desc);
1610		ew32(TDLEN, tdlen);
1611		ew32(TDBAH, (tdba >> 32));
1612		ew32(TDBAL, (tdba & 0x00000000ffffffffULL));
1613		ew32(TDT, 0);
1614		ew32(TDH, 0);
1615		adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ?
1616					   E1000_TDH : E1000_82542_TDH);
1617		adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ?
1618					   E1000_TDT : E1000_82542_TDT);
1619		break;
1620	}
1621
1622	/* Set the default values for the Tx Inter Packet Gap timer */
1623	if ((hw->media_type == e1000_media_type_fiber ||
1624	     hw->media_type == e1000_media_type_internal_serdes))
1625		tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1626	else
1627		tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1628
1629	switch (hw->mac_type) {
1630	case e1000_82542_rev2_0:
1631	case e1000_82542_rev2_1:
1632		tipg = DEFAULT_82542_TIPG_IPGT;
1633		ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1634		ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1635		break;
1636	default:
1637		ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1638		ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1639		break;
1640	}
1641	tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1642	tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1643	ew32(TIPG, tipg);
1644
1645	/* Set the Tx Interrupt Delay register */
1646
1647	ew32(TIDV, adapter->tx_int_delay);
1648	if (hw->mac_type >= e1000_82540)
1649		ew32(TADV, adapter->tx_abs_int_delay);
1650
1651	/* Program the Transmit Control Register */
1652
1653	tctl = er32(TCTL);
1654	tctl &= ~E1000_TCTL_CT;
1655	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1656		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1657
1658	e1000_config_collision_dist(hw);
1659
1660	/* Setup Transmit Descriptor Settings for eop descriptor */
1661	adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1662
1663	/* only set IDE if we are delaying interrupts using the timers */
1664	if (adapter->tx_int_delay)
1665		adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1666
1667	if (hw->mac_type < e1000_82543)
1668		adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1669	else
1670		adapter->txd_cmd |= E1000_TXD_CMD_RS;
1671
1672	/* Cache if we're 82544 running in PCI-X because we'll
1673	 * need this to apply a workaround later in the send path.
1674	 */
1675	if (hw->mac_type == e1000_82544 &&
1676	    hw->bus_type == e1000_bus_type_pcix)
1677		adapter->pcix_82544 = true;
1678
1679	ew32(TCTL, tctl);
1680
1681}
1682
1683/**
1684 * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1685 * @adapter: board private structure
1686 * @rxdr:    rx descriptor ring (for a specific queue) to setup
1687 *
1688 * Returns 0 on success, negative on failure
1689 **/
1690static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
1691				    struct e1000_rx_ring *rxdr)
1692{
1693	struct pci_dev *pdev = adapter->pdev;
1694	int size, desc_len;
1695
1696	size = sizeof(struct e1000_rx_buffer) * rxdr->count;
1697	rxdr->buffer_info = vzalloc(size);
1698	if (!rxdr->buffer_info)
1699		return -ENOMEM;
1700
1701	desc_len = sizeof(struct e1000_rx_desc);
1702
1703	/* Round up to nearest 4K */
1704
1705	rxdr->size = rxdr->count * desc_len;
1706	rxdr->size = ALIGN(rxdr->size, 4096);
1707
1708	rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
1709					GFP_KERNEL);
1710	if (!rxdr->desc) {
1711setup_rx_desc_die:
1712		vfree(rxdr->buffer_info);
1713		return -ENOMEM;
1714	}
1715
1716	/* Fix for errata 23, can't cross 64kB boundary */
1717	if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1718		void *olddesc = rxdr->desc;
1719		dma_addr_t olddma = rxdr->dma;
1720		e_err(rx_err, "rxdr align check failed: %u bytes at %p\n",
1721		      rxdr->size, rxdr->desc);
1722		/* Try again, without freeing the previous */
1723		rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size,
1724						&rxdr->dma, GFP_KERNEL);
1725		/* Failed allocation, critical failure */
1726		if (!rxdr->desc) {
1727			dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1728					  olddma);
1729			goto setup_rx_desc_die;
1730		}
1731
1732		if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1733			/* give up */
1734			dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
1735					  rxdr->dma);
1736			dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1737					  olddma);
1738			e_err(probe, "Unable to allocate aligned memory for "
1739			      "the Rx descriptor ring\n");
1740			goto setup_rx_desc_die;
1741		} else {
1742			/* Free old allocation, new allocation was successful */
1743			dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1744					  olddma);
1745		}
1746	}
1747	memset(rxdr->desc, 0, rxdr->size);
1748
1749	rxdr->next_to_clean = 0;
1750	rxdr->next_to_use = 0;
1751	rxdr->rx_skb_top = NULL;
1752
1753	return 0;
1754}
1755
1756/**
1757 * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1758 * 				  (Descriptors) for all queues
1759 * @adapter: board private structure
1760 *
1761 * Return 0 on success, negative on failure
1762 **/
1763int e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1764{
1765	int i, err = 0;
1766
1767	for (i = 0; i < adapter->num_rx_queues; i++) {
1768		err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1769		if (err) {
1770			e_err(probe, "Allocation for Rx Queue %u failed\n", i);
1771			for (i-- ; i >= 0; i--)
1772				e1000_free_rx_resources(adapter,
1773							&adapter->rx_ring[i]);
1774			break;
1775		}
1776	}
1777
1778	return err;
1779}
1780
1781/**
1782 * e1000_setup_rctl - configure the receive control registers
1783 * @adapter: Board private structure
1784 **/
1785static void e1000_setup_rctl(struct e1000_adapter *adapter)
1786{
1787	struct e1000_hw *hw = &adapter->hw;
1788	u32 rctl;
1789
1790	rctl = er32(RCTL);
1791
1792	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1793
1794	rctl |= E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
1795		E1000_RCTL_RDMTS_HALF |
1796		(hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1797
1798	if (hw->tbi_compatibility_on == 1)
1799		rctl |= E1000_RCTL_SBP;
1800	else
1801		rctl &= ~E1000_RCTL_SBP;
1802
1803	if (adapter->netdev->mtu <= ETH_DATA_LEN)
1804		rctl &= ~E1000_RCTL_LPE;
1805	else
1806		rctl |= E1000_RCTL_LPE;
1807
1808	/* Setup buffer sizes */
1809	rctl &= ~E1000_RCTL_SZ_4096;
1810	rctl |= E1000_RCTL_BSEX;
1811	switch (adapter->rx_buffer_len) {
1812	case E1000_RXBUFFER_2048:
1813	default:
1814		rctl |= E1000_RCTL_SZ_2048;
1815		rctl &= ~E1000_RCTL_BSEX;
1816		break;
1817	case E1000_RXBUFFER_4096:
1818		rctl |= E1000_RCTL_SZ_4096;
1819		break;
1820	case E1000_RXBUFFER_8192:
1821		rctl |= E1000_RCTL_SZ_8192;
1822		break;
1823	case E1000_RXBUFFER_16384:
1824		rctl |= E1000_RCTL_SZ_16384;
1825		break;
1826	}
1827
1828	/* This is useful for sniffing bad packets. */
1829	if (adapter->netdev->features & NETIF_F_RXALL) {
1830		/* UPE and MPE will be handled by normal PROMISC logic
1831		 * in e1000e_set_rx_mode
1832		 */
1833		rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
1834			 E1000_RCTL_BAM | /* RX All Bcast Pkts */
1835			 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
1836
1837		rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
1838			  E1000_RCTL_DPF | /* Allow filtered pause */
1839			  E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
1840		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
1841		 * and that breaks VLANs.
1842		 */
1843	}
1844
1845	ew32(RCTL, rctl);
1846}
1847
1848/**
1849 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1850 * @adapter: board private structure
1851 *
1852 * Configure the Rx unit of the MAC after a reset.
1853 **/
1854static void e1000_configure_rx(struct e1000_adapter *adapter)
1855{
1856	u64 rdba;
1857	struct e1000_hw *hw = &adapter->hw;
1858	u32 rdlen, rctl, rxcsum;
1859
1860	if (adapter->netdev->mtu > ETH_DATA_LEN) {
1861		rdlen = adapter->rx_ring[0].count *
1862			sizeof(struct e1000_rx_desc);
1863		adapter->clean_rx = e1000_clean_jumbo_rx_irq;
1864		adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
1865	} else {
1866		rdlen = adapter->rx_ring[0].count *
1867			sizeof(struct e1000_rx_desc);
1868		adapter->clean_rx = e1000_clean_rx_irq;
1869		adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1870	}
1871
1872	/* disable receives while setting up the descriptors */
1873	rctl = er32(RCTL);
1874	ew32(RCTL, rctl & ~E1000_RCTL_EN);
1875
1876	/* set the Receive Delay Timer Register */
1877	ew32(RDTR, adapter->rx_int_delay);
1878
1879	if (hw->mac_type >= e1000_82540) {
1880		ew32(RADV, adapter->rx_abs_int_delay);
1881		if (adapter->itr_setting != 0)
1882			ew32(ITR, 1000000000 / (adapter->itr * 256));
1883	}
1884
1885	/* Setup the HW Rx Head and Tail Descriptor Pointers and
1886	 * the Base and Length of the Rx Descriptor Ring
1887	 */
1888	switch (adapter->num_rx_queues) {
1889	case 1:
1890	default:
1891		rdba = adapter->rx_ring[0].dma;
1892		ew32(RDLEN, rdlen);
1893		ew32(RDBAH, (rdba >> 32));
1894		ew32(RDBAL, (rdba & 0x00000000ffffffffULL));
1895		ew32(RDT, 0);
1896		ew32(RDH, 0);
1897		adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ?
1898					   E1000_RDH : E1000_82542_RDH);
1899		adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ?
1900					   E1000_RDT : E1000_82542_RDT);
1901		break;
1902	}
1903
1904	/* Enable 82543 Receive Checksum Offload for TCP and UDP */
1905	if (hw->mac_type >= e1000_82543) {
1906		rxcsum = er32(RXCSUM);
1907		if (adapter->rx_csum)
1908			rxcsum |= E1000_RXCSUM_TUOFL;
1909		else
1910			/* don't need to clear IPPCSE as it defaults to 0 */
1911			rxcsum &= ~E1000_RXCSUM_TUOFL;
1912		ew32(RXCSUM, rxcsum);
1913	}
1914
1915	/* Enable Receives */
1916	ew32(RCTL, rctl | E1000_RCTL_EN);
1917}
1918
1919/**
1920 * e1000_free_tx_resources - Free Tx Resources per Queue
1921 * @adapter: board private structure
1922 * @tx_ring: Tx descriptor ring for a specific queue
1923 *
1924 * Free all transmit software resources
1925 **/
1926static void e1000_free_tx_resources(struct e1000_adapter *adapter,
1927				    struct e1000_tx_ring *tx_ring)
1928{
1929	struct pci_dev *pdev = adapter->pdev;
1930
1931	e1000_clean_tx_ring(adapter, tx_ring);
1932
1933	vfree(tx_ring->buffer_info);
1934	tx_ring->buffer_info = NULL;
1935
1936	dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1937			  tx_ring->dma);
1938
1939	tx_ring->desc = NULL;
1940}
1941
1942/**
1943 * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1944 * @adapter: board private structure
1945 *
1946 * Free all transmit software resources
1947 **/
1948void e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1949{
1950	int i;
1951
1952	for (i = 0; i < adapter->num_tx_queues; i++)
1953		e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1954}
1955
1956static void
1957e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1958				 struct e1000_tx_buffer *buffer_info,
1959				 int budget)
1960{
1961	if (buffer_info->dma) {
1962		if (buffer_info->mapped_as_page)
1963			dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1964				       buffer_info->length, DMA_TO_DEVICE);
1965		else
1966			dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1967					 buffer_info->length,
1968					 DMA_TO_DEVICE);
1969		buffer_info->dma = 0;
1970	}
1971	if (buffer_info->skb) {
1972		napi_consume_skb(buffer_info->skb, budget);
1973		buffer_info->skb = NULL;
1974	}
1975	buffer_info->time_stamp = 0;
1976	/* buffer_info must be completely set up in the transmit path */
1977}
1978
1979/**
1980 * e1000_clean_tx_ring - Free Tx Buffers
1981 * @adapter: board private structure
1982 * @tx_ring: ring to be cleaned
1983 **/
1984static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
1985				struct e1000_tx_ring *tx_ring)
1986{
1987	struct e1000_hw *hw = &adapter->hw;
1988	struct e1000_tx_buffer *buffer_info;
1989	unsigned long size;
1990	unsigned int i;
1991
1992	/* Free all the Tx ring sk_buffs */
1993
1994	for (i = 0; i < tx_ring->count; i++) {
1995		buffer_info = &tx_ring->buffer_info[i];
1996		e1000_unmap_and_free_tx_resource(adapter, buffer_info, 0);
1997	}
1998
1999	netdev_reset_queue(adapter->netdev);
2000	size = sizeof(struct e1000_tx_buffer) * tx_ring->count;
2001	memset(tx_ring->buffer_info, 0, size);
2002
2003	/* Zero out the descriptor ring */
2004
2005	memset(tx_ring->desc, 0, tx_ring->size);
2006
2007	tx_ring->next_to_use = 0;
2008	tx_ring->next_to_clean = 0;
2009	tx_ring->last_tx_tso = false;
2010
2011	writel(0, hw->hw_addr + tx_ring->tdh);
2012	writel(0, hw->hw_addr + tx_ring->tdt);
2013}
2014
2015/**
2016 * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2017 * @adapter: board private structure
2018 **/
2019static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
2020{
2021	int i;
2022
2023	for (i = 0; i < adapter->num_tx_queues; i++)
2024		e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
2025}
2026
2027/**
2028 * e1000_free_rx_resources - Free Rx Resources
2029 * @adapter: board private structure
2030 * @rx_ring: ring to clean the resources from
2031 *
2032 * Free all receive software resources
2033 **/
2034static void e1000_free_rx_resources(struct e1000_adapter *adapter,
2035				    struct e1000_rx_ring *rx_ring)
2036{
2037	struct pci_dev *pdev = adapter->pdev;
2038
2039	e1000_clean_rx_ring(adapter, rx_ring);
2040
2041	vfree(rx_ring->buffer_info);
2042	rx_ring->buffer_info = NULL;
2043
2044	dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2045			  rx_ring->dma);
2046
2047	rx_ring->desc = NULL;
2048}
2049
2050/**
2051 * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2052 * @adapter: board private structure
2053 *
2054 * Free all receive software resources
2055 **/
2056void e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2057{
2058	int i;
2059
2060	for (i = 0; i < adapter->num_rx_queues; i++)
2061		e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2062}
2063
2064#define E1000_HEADROOM (NET_SKB_PAD + NET_IP_ALIGN)
2065static unsigned int e1000_frag_len(const struct e1000_adapter *a)
2066{
2067	return SKB_DATA_ALIGN(a->rx_buffer_len + E1000_HEADROOM) +
2068		SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2069}
2070
2071static void *e1000_alloc_frag(const struct e1000_adapter *a)
2072{
2073	unsigned int len = e1000_frag_len(a);
2074	u8 *data = netdev_alloc_frag(len);
2075
2076	if (likely(data))
2077		data += E1000_HEADROOM;
2078	return data;
2079}
2080
2081/**
2082 * e1000_clean_rx_ring - Free Rx Buffers per Queue
2083 * @adapter: board private structure
2084 * @rx_ring: ring to free buffers from
2085 **/
2086static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
2087				struct e1000_rx_ring *rx_ring)
2088{
2089	struct e1000_hw *hw = &adapter->hw;
2090	struct e1000_rx_buffer *buffer_info;
2091	struct pci_dev *pdev = adapter->pdev;
2092	unsigned long size;
2093	unsigned int i;
2094
2095	/* Free all the Rx netfrags */
2096	for (i = 0; i < rx_ring->count; i++) {
2097		buffer_info = &rx_ring->buffer_info[i];
2098		if (adapter->clean_rx == e1000_clean_rx_irq) {
2099			if (buffer_info->dma)
2100				dma_unmap_single(&pdev->dev, buffer_info->dma,
2101						 adapter->rx_buffer_len,
2102						 DMA_FROM_DEVICE);
2103			if (buffer_info->rxbuf.data) {
2104				skb_free_frag(buffer_info->rxbuf.data);
2105				buffer_info->rxbuf.data = NULL;
2106			}
2107		} else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq) {
2108			if (buffer_info->dma)
2109				dma_unmap_page(&pdev->dev, buffer_info->dma,
2110					       adapter->rx_buffer_len,
2111					       DMA_FROM_DEVICE);
2112			if (buffer_info->rxbuf.page) {
2113				put_page(buffer_info->rxbuf.page);
2114				buffer_info->rxbuf.page = NULL;
2115			}
2116		}
2117
2118		buffer_info->dma = 0;
2119	}
2120
2121	/* there also may be some cached data from a chained receive */
2122	napi_free_frags(&adapter->napi);
2123	rx_ring->rx_skb_top = NULL;
2124
2125	size = sizeof(struct e1000_rx_buffer) * rx_ring->count;
2126	memset(rx_ring->buffer_info, 0, size);
2127
2128	/* Zero out the descriptor ring */
2129	memset(rx_ring->desc, 0, rx_ring->size);
2130
2131	rx_ring->next_to_clean = 0;
2132	rx_ring->next_to_use = 0;
2133
2134	writel(0, hw->hw_addr + rx_ring->rdh);
2135	writel(0, hw->hw_addr + rx_ring->rdt);
2136}
2137
2138/**
2139 * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2140 * @adapter: board private structure
2141 **/
2142static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2143{
2144	int i;
2145
2146	for (i = 0; i < adapter->num_rx_queues; i++)
2147		e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2148}
2149
2150/* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2151 * and memory write and invalidate disabled for certain operations
2152 */
2153static void e1000_enter_82542_rst(struct e1000_adapter *adapter)
2154{
2155	struct e1000_hw *hw = &adapter->hw;
2156	struct net_device *netdev = adapter->netdev;
2157	u32 rctl;
2158
2159	e1000_pci_clear_mwi(hw);
2160
2161	rctl = er32(RCTL);
2162	rctl |= E1000_RCTL_RST;
2163	ew32(RCTL, rctl);
2164	E1000_WRITE_FLUSH();
2165	mdelay(5);
2166
2167	if (netif_running(netdev))
2168		e1000_clean_all_rx_rings(adapter);
2169}
2170
2171static void e1000_leave_82542_rst(struct e1000_adapter *adapter)
2172{
2173	struct e1000_hw *hw = &adapter->hw;
2174	struct net_device *netdev = adapter->netdev;
2175	u32 rctl;
2176
2177	rctl = er32(RCTL);
2178	rctl &= ~E1000_RCTL_RST;
2179	ew32(RCTL, rctl);
2180	E1000_WRITE_FLUSH();
2181	mdelay(5);
2182
2183	if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
2184		e1000_pci_set_mwi(hw);
2185
2186	if (netif_running(netdev)) {
2187		/* No need to loop, because 82542 supports only 1 queue */
2188		struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2189		e1000_configure_rx(adapter);
2190		adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2191	}
2192}
2193
2194/**
2195 * e1000_set_mac - Change the Ethernet Address of the NIC
2196 * @netdev: network interface device structure
2197 * @p: pointer to an address structure
2198 *
2199 * Returns 0 on success, negative on failure
2200 **/
2201static int e1000_set_mac(struct net_device *netdev, void *p)
2202{
2203	struct e1000_adapter *adapter = netdev_priv(netdev);
2204	struct e1000_hw *hw = &adapter->hw;
2205	struct sockaddr *addr = p;
2206
2207	if (!is_valid_ether_addr(addr->sa_data))
2208		return -EADDRNOTAVAIL;
2209
2210	/* 82542 2.0 needs to be in reset to write receive address registers */
2211
2212	if (hw->mac_type == e1000_82542_rev2_0)
2213		e1000_enter_82542_rst(adapter);
2214
2215	eth_hw_addr_set(netdev, addr->sa_data);
2216	memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
2217
2218	e1000_rar_set(hw, hw->mac_addr, 0);
2219
2220	if (hw->mac_type == e1000_82542_rev2_0)
2221		e1000_leave_82542_rst(adapter);
2222
2223	return 0;
2224}
2225
2226/**
2227 * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2228 * @netdev: network interface device structure
2229 *
2230 * The set_rx_mode entry point is called whenever the unicast or multicast
2231 * address lists or the network interface flags are updated. This routine is
2232 * responsible for configuring the hardware for proper unicast, multicast,
2233 * promiscuous mode, and all-multi behavior.
2234 **/
2235static void e1000_set_rx_mode(struct net_device *netdev)
2236{
2237	struct e1000_adapter *adapter = netdev_priv(netdev);
2238	struct e1000_hw *hw = &adapter->hw;
2239	struct netdev_hw_addr *ha;
2240	bool use_uc = false;
2241	u32 rctl;
2242	u32 hash_value;
2243	int i, rar_entries = E1000_RAR_ENTRIES;
2244	int mta_reg_count = E1000_NUM_MTA_REGISTERS;
2245	u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC);
2246
2247	if (!mcarray)
2248		return;
2249
2250	/* Check for Promiscuous and All Multicast modes */
2251
2252	rctl = er32(RCTL);
2253
2254	if (netdev->flags & IFF_PROMISC) {
2255		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2256		rctl &= ~E1000_RCTL_VFE;
2257	} else {
2258		if (netdev->flags & IFF_ALLMULTI)
2259			rctl |= E1000_RCTL_MPE;
2260		else
2261			rctl &= ~E1000_RCTL_MPE;
2262		/* Enable VLAN filter if there is a VLAN */
2263		if (e1000_vlan_used(adapter))
2264			rctl |= E1000_RCTL_VFE;
2265	}
2266
2267	if (netdev_uc_count(netdev) > rar_entries - 1) {
2268		rctl |= E1000_RCTL_UPE;
2269	} else if (!(netdev->flags & IFF_PROMISC)) {
2270		rctl &= ~E1000_RCTL_UPE;
2271		use_uc = true;
2272	}
2273
2274	ew32(RCTL, rctl);
2275
2276	/* 82542 2.0 needs to be in reset to write receive address registers */
2277
2278	if (hw->mac_type == e1000_82542_rev2_0)
2279		e1000_enter_82542_rst(adapter);
2280
2281	/* load the first 14 addresses into the exact filters 1-14. Unicast
2282	 * addresses take precedence to avoid disabling unicast filtering
2283	 * when possible.
2284	 *
2285	 * RAR 0 is used for the station MAC address
2286	 * if there are not 14 addresses, go ahead and clear the filters
2287	 */
2288	i = 1;
2289	if (use_uc)
2290		netdev_for_each_uc_addr(ha, netdev) {
2291			if (i == rar_entries)
2292				break;
2293			e1000_rar_set(hw, ha->addr, i++);
2294		}
2295
2296	netdev_for_each_mc_addr(ha, netdev) {
2297		if (i == rar_entries) {
2298			/* load any remaining addresses into the hash table */
2299			u32 hash_reg, hash_bit, mta;
2300			hash_value = e1000_hash_mc_addr(hw, ha->addr);
2301			hash_reg = (hash_value >> 5) & 0x7F;
2302			hash_bit = hash_value & 0x1F;
2303			mta = (1 << hash_bit);
2304			mcarray[hash_reg] |= mta;
2305		} else {
2306			e1000_rar_set(hw, ha->addr, i++);
2307		}
2308	}
2309
2310	for (; i < rar_entries; i++) {
2311		E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2312		E1000_WRITE_FLUSH();
2313		E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2314		E1000_WRITE_FLUSH();
2315	}
2316
2317	/* write the hash table completely, write from bottom to avoid
2318	 * both stupid write combining chipsets, and flushing each write
2319	 */
2320	for (i = mta_reg_count - 1; i >= 0 ; i--) {
2321		/* If we are on an 82544 has an errata where writing odd
2322		 * offsets overwrites the previous even offset, but writing
2323		 * backwards over the range solves the issue by always
2324		 * writing the odd offset first
2325		 */
2326		E1000_WRITE_REG_ARRAY(hw, MTA, i, mcarray[i]);
2327	}
2328	E1000_WRITE_FLUSH();
2329
2330	if (hw->mac_type == e1000_82542_rev2_0)
2331		e1000_leave_82542_rst(adapter);
2332
2333	kfree(mcarray);
2334}
2335
2336/**
2337 * e1000_update_phy_info_task - get phy info
2338 * @work: work struct contained inside adapter struct
2339 *
2340 * Need to wait a few seconds after link up to get diagnostic information from
2341 * the phy
2342 */
2343static void e1000_update_phy_info_task(struct work_struct *work)
2344{
2345	struct e1000_adapter *adapter = container_of(work,
2346						     struct e1000_adapter,
2347						     phy_info_task.work);
2348
2349	e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2350}
2351
2352/**
2353 * e1000_82547_tx_fifo_stall_task - task to complete work
2354 * @work: work struct contained inside adapter struct
2355 **/
2356static void e1000_82547_tx_fifo_stall_task(struct work_struct *work)
2357{
2358	struct e1000_adapter *adapter = container_of(work,
2359						     struct e1000_adapter,
2360						     fifo_stall_task.work);
2361	struct e1000_hw *hw = &adapter->hw;
2362	struct net_device *netdev = adapter->netdev;
2363	u32 tctl;
2364
2365	if (atomic_read(&adapter->tx_fifo_stall)) {
2366		if ((er32(TDT) == er32(TDH)) &&
2367		   (er32(TDFT) == er32(TDFH)) &&
2368		   (er32(TDFTS) == er32(TDFHS))) {
2369			tctl = er32(TCTL);
2370			ew32(TCTL, tctl & ~E1000_TCTL_EN);
2371			ew32(TDFT, adapter->tx_head_addr);
2372			ew32(TDFH, adapter->tx_head_addr);
2373			ew32(TDFTS, adapter->tx_head_addr);
2374			ew32(TDFHS, adapter->tx_head_addr);
2375			ew32(TCTL, tctl);
2376			E1000_WRITE_FLUSH();
2377
2378			adapter->tx_fifo_head = 0;
2379			atomic_set(&adapter->tx_fifo_stall, 0);
2380			netif_wake_queue(netdev);
2381		} else if (!test_bit(__E1000_DOWN, &adapter->flags)) {
2382			schedule_delayed_work(&adapter->fifo_stall_task, 1);
2383		}
2384	}
2385}
2386
2387bool e1000_has_link(struct e1000_adapter *adapter)
2388{
2389	struct e1000_hw *hw = &adapter->hw;
2390	bool link_active = false;
2391
2392	/* get_link_status is set on LSC (link status) interrupt or rx
2393	 * sequence error interrupt (except on intel ce4100).
2394	 * get_link_status will stay false until the
2395	 * e1000_check_for_link establishes link for copper adapters
2396	 * ONLY
2397	 */
2398	switch (hw->media_type) {
2399	case e1000_media_type_copper:
2400		if (hw->mac_type == e1000_ce4100)
2401			hw->get_link_status = 1;
2402		if (hw->get_link_status) {
2403			e1000_check_for_link(hw);
2404			link_active = !hw->get_link_status;
2405		} else {
2406			link_active = true;
2407		}
2408		break;
2409	case e1000_media_type_fiber:
2410		e1000_check_for_link(hw);
2411		link_active = !!(er32(STATUS) & E1000_STATUS_LU);
2412		break;
2413	case e1000_media_type_internal_serdes:
2414		e1000_check_for_link(hw);
2415		link_active = hw->serdes_has_link;
2416		break;
2417	default:
2418		break;
2419	}
2420
2421	return link_active;
2422}
2423
2424/**
2425 * e1000_watchdog - work function
2426 * @work: work struct contained inside adapter struct
2427 **/
2428static void e1000_watchdog(struct work_struct *work)
2429{
2430	struct e1000_adapter *adapter = container_of(work,
2431						     struct e1000_adapter,
2432						     watchdog_task.work);
2433	struct e1000_hw *hw = &adapter->hw;
2434	struct net_device *netdev = adapter->netdev;
2435	struct e1000_tx_ring *txdr = adapter->tx_ring;
2436	u32 link, tctl;
2437
2438	link = e1000_has_link(adapter);
2439	if ((netif_carrier_ok(netdev)) && link)
2440		goto link_up;
2441
2442	if (link) {
2443		if (!netif_carrier_ok(netdev)) {
2444			u32 ctrl;
 
2445			/* update snapshot of PHY registers on LSC */
2446			e1000_get_speed_and_duplex(hw,
2447						   &adapter->link_speed,
2448						   &adapter->link_duplex);
2449
2450			ctrl = er32(CTRL);
2451			pr_info("%s NIC Link is Up %d Mbps %s, "
2452				"Flow Control: %s\n",
2453				netdev->name,
2454				adapter->link_speed,
2455				adapter->link_duplex == FULL_DUPLEX ?
2456				"Full Duplex" : "Half Duplex",
2457				((ctrl & E1000_CTRL_TFCE) && (ctrl &
2458				E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2459				E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2460				E1000_CTRL_TFCE) ? "TX" : "None")));
2461
2462			/* adjust timeout factor according to speed/duplex */
2463			adapter->tx_timeout_factor = 1;
2464			switch (adapter->link_speed) {
2465			case SPEED_10:
 
2466				adapter->tx_timeout_factor = 16;
2467				break;
2468			case SPEED_100:
 
2469				/* maybe add some timeout factor ? */
2470				break;
2471			}
2472
2473			/* enable transmits in the hardware */
2474			tctl = er32(TCTL);
2475			tctl |= E1000_TCTL_EN;
2476			ew32(TCTL, tctl);
2477
2478			netif_carrier_on(netdev);
2479			if (!test_bit(__E1000_DOWN, &adapter->flags))
2480				schedule_delayed_work(&adapter->phy_info_task,
2481						      2 * HZ);
2482			adapter->smartspeed = 0;
2483		}
2484	} else {
2485		if (netif_carrier_ok(netdev)) {
2486			adapter->link_speed = 0;
2487			adapter->link_duplex = 0;
2488			pr_info("%s NIC Link is Down\n",
2489				netdev->name);
2490			netif_carrier_off(netdev);
2491
2492			if (!test_bit(__E1000_DOWN, &adapter->flags))
2493				schedule_delayed_work(&adapter->phy_info_task,
2494						      2 * HZ);
2495		}
2496
2497		e1000_smartspeed(adapter);
2498	}
2499
2500link_up:
2501	e1000_update_stats(adapter);
2502
2503	hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2504	adapter->tpt_old = adapter->stats.tpt;
2505	hw->collision_delta = adapter->stats.colc - adapter->colc_old;
2506	adapter->colc_old = adapter->stats.colc;
2507
2508	adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2509	adapter->gorcl_old = adapter->stats.gorcl;
2510	adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2511	adapter->gotcl_old = adapter->stats.gotcl;
2512
2513	e1000_update_adaptive(hw);
2514
2515	if (!netif_carrier_ok(netdev)) {
2516		if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2517			/* We've lost link, so the controller stops DMA,
2518			 * but we've got queued Tx work that's never going
2519			 * to get done, so reset controller to flush Tx.
2520			 * (Do the reset outside of interrupt context).
2521			 */
2522			adapter->tx_timeout_count++;
2523			schedule_work(&adapter->reset_task);
2524			/* exit immediately since reset is imminent */
2525			return;
2526		}
2527	}
2528
2529	/* Simple mode for Interrupt Throttle Rate (ITR) */
2530	if (hw->mac_type >= e1000_82540 && adapter->itr_setting == 4) {
2531		/* Symmetric Tx/Rx gets a reduced ITR=2000;
2532		 * Total asymmetrical Tx or Rx gets ITR=8000;
2533		 * everyone else is between 2000-8000.
2534		 */
2535		u32 goc = (adapter->gotcl + adapter->gorcl) / 10000;
2536		u32 dif = (adapter->gotcl > adapter->gorcl ?
2537			    adapter->gotcl - adapter->gorcl :
2538			    adapter->gorcl - adapter->gotcl) / 10000;
2539		u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
2540
2541		ew32(ITR, 1000000000 / (itr * 256));
2542	}
2543
2544	/* Cause software interrupt to ensure rx ring is cleaned */
2545	ew32(ICS, E1000_ICS_RXDMT0);
2546
2547	/* Force detection of hung controller every watchdog period */
2548	adapter->detect_tx_hung = true;
2549
2550	/* Reschedule the task */
2551	if (!test_bit(__E1000_DOWN, &adapter->flags))
2552		schedule_delayed_work(&adapter->watchdog_task, 2 * HZ);
2553}
2554
2555enum latency_range {
2556	lowest_latency = 0,
2557	low_latency = 1,
2558	bulk_latency = 2,
2559	latency_invalid = 255
2560};
2561
2562/**
2563 * e1000_update_itr - update the dynamic ITR value based on statistics
2564 * @adapter: pointer to adapter
2565 * @itr_setting: current adapter->itr
2566 * @packets: the number of packets during this measurement interval
2567 * @bytes: the number of bytes during this measurement interval
2568 *
2569 *      Stores a new ITR value based on packets and byte
2570 *      counts during the last interrupt.  The advantage of per interrupt
2571 *      computation is faster updates and more accurate ITR for the current
2572 *      traffic pattern.  Constants in this function were computed
2573 *      based on theoretical maximum wire speed and thresholds were set based
2574 *      on testing data as well as attempting to minimize response time
2575 *      while increasing bulk throughput.
2576 *      this functionality is controlled by the InterruptThrottleRate module
2577 *      parameter (see e1000_param.c)
2578 **/
2579static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2580				     u16 itr_setting, int packets, int bytes)
2581{
2582	unsigned int retval = itr_setting;
2583	struct e1000_hw *hw = &adapter->hw;
2584
2585	if (unlikely(hw->mac_type < e1000_82540))
2586		goto update_itr_done;
2587
2588	if (packets == 0)
2589		goto update_itr_done;
2590
2591	switch (itr_setting) {
2592	case lowest_latency:
2593		/* jumbo frames get bulk treatment*/
2594		if (bytes/packets > 8000)
2595			retval = bulk_latency;
2596		else if ((packets < 5) && (bytes > 512))
2597			retval = low_latency;
2598		break;
2599	case low_latency:  /* 50 usec aka 20000 ints/s */
2600		if (bytes > 10000) {
2601			/* jumbo frames need bulk latency setting */
2602			if (bytes/packets > 8000)
2603				retval = bulk_latency;
2604			else if ((packets < 10) || ((bytes/packets) > 1200))
2605				retval = bulk_latency;
2606			else if ((packets > 35))
2607				retval = lowest_latency;
2608		} else if (bytes/packets > 2000)
2609			retval = bulk_latency;
2610		else if (packets <= 2 && bytes < 512)
2611			retval = lowest_latency;
2612		break;
2613	case bulk_latency: /* 250 usec aka 4000 ints/s */
2614		if (bytes > 25000) {
2615			if (packets > 35)
2616				retval = low_latency;
2617		} else if (bytes < 6000) {
2618			retval = low_latency;
2619		}
2620		break;
2621	}
2622
2623update_itr_done:
2624	return retval;
2625}
2626
2627static void e1000_set_itr(struct e1000_adapter *adapter)
2628{
2629	struct e1000_hw *hw = &adapter->hw;
2630	u16 current_itr;
2631	u32 new_itr = adapter->itr;
2632
2633	if (unlikely(hw->mac_type < e1000_82540))
2634		return;
2635
2636	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2637	if (unlikely(adapter->link_speed != SPEED_1000)) {
 
2638		new_itr = 4000;
2639		goto set_itr_now;
2640	}
2641
2642	adapter->tx_itr = e1000_update_itr(adapter, adapter->tx_itr,
2643					   adapter->total_tx_packets,
2644					   adapter->total_tx_bytes);
2645	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2646	if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2647		adapter->tx_itr = low_latency;
2648
2649	adapter->rx_itr = e1000_update_itr(adapter, adapter->rx_itr,
2650					   adapter->total_rx_packets,
2651					   adapter->total_rx_bytes);
2652	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2653	if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2654		adapter->rx_itr = low_latency;
2655
2656	current_itr = max(adapter->rx_itr, adapter->tx_itr);
2657
2658	switch (current_itr) {
2659	/* counts and packets in update_itr are dependent on these numbers */
2660	case lowest_latency:
2661		new_itr = 70000;
2662		break;
2663	case low_latency:
2664		new_itr = 20000; /* aka hwitr = ~200 */
2665		break;
2666	case bulk_latency:
2667		new_itr = 4000;
2668		break;
2669	default:
2670		break;
2671	}
2672
2673set_itr_now:
2674	if (new_itr != adapter->itr) {
2675		/* this attempts to bias the interrupt rate towards Bulk
2676		 * by adding intermediate steps when interrupt rate is
2677		 * increasing
2678		 */
2679		new_itr = new_itr > adapter->itr ?
2680			  min(adapter->itr + (new_itr >> 2), new_itr) :
2681			  new_itr;
2682		adapter->itr = new_itr;
2683		ew32(ITR, 1000000000 / (new_itr * 256));
2684	}
2685}
2686
2687#define E1000_TX_FLAGS_CSUM		0x00000001
2688#define E1000_TX_FLAGS_VLAN		0x00000002
2689#define E1000_TX_FLAGS_TSO		0x00000004
2690#define E1000_TX_FLAGS_IPV4		0x00000008
2691#define E1000_TX_FLAGS_NO_FCS		0x00000010
2692#define E1000_TX_FLAGS_VLAN_MASK	0xffff0000
2693#define E1000_TX_FLAGS_VLAN_SHIFT	16
2694
2695static int e1000_tso(struct e1000_adapter *adapter,
2696		     struct e1000_tx_ring *tx_ring, struct sk_buff *skb,
2697		     __be16 protocol)
2698{
2699	struct e1000_context_desc *context_desc;
2700	struct e1000_tx_buffer *buffer_info;
2701	unsigned int i;
2702	u32 cmd_length = 0;
2703	u16 ipcse = 0, tucse, mss;
2704	u8 ipcss, ipcso, tucss, tucso, hdr_len;
2705
2706	if (skb_is_gso(skb)) {
2707		int err;
2708
2709		err = skb_cow_head(skb, 0);
2710		if (err < 0)
2711			return err;
2712
2713		hdr_len = skb_tcp_all_headers(skb);
2714		mss = skb_shinfo(skb)->gso_size;
2715		if (protocol == htons(ETH_P_IP)) {
2716			struct iphdr *iph = ip_hdr(skb);
2717			iph->tot_len = 0;
2718			iph->check = 0;
2719			tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2720								 iph->daddr, 0,
2721								 IPPROTO_TCP,
2722								 0);
2723			cmd_length = E1000_TXD_CMD_IP;
2724			ipcse = skb_transport_offset(skb) - 1;
2725		} else if (skb_is_gso_v6(skb)) {
2726			tcp_v6_gso_csum_prep(skb);
 
 
 
 
2727			ipcse = 0;
2728		}
2729		ipcss = skb_network_offset(skb);
2730		ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
2731		tucss = skb_transport_offset(skb);
2732		tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
2733		tucse = 0;
2734
2735		cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2736			       E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2737
2738		i = tx_ring->next_to_use;
2739		context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2740		buffer_info = &tx_ring->buffer_info[i];
2741
2742		context_desc->lower_setup.ip_fields.ipcss  = ipcss;
2743		context_desc->lower_setup.ip_fields.ipcso  = ipcso;
2744		context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
2745		context_desc->upper_setup.tcp_fields.tucss = tucss;
2746		context_desc->upper_setup.tcp_fields.tucso = tucso;
2747		context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2748		context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
2749		context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2750		context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2751
2752		buffer_info->time_stamp = jiffies;
2753		buffer_info->next_to_watch = i;
2754
2755		if (++i == tx_ring->count)
2756			i = 0;
2757
2758		tx_ring->next_to_use = i;
2759
2760		return true;
2761	}
2762	return false;
2763}
2764
2765static bool e1000_tx_csum(struct e1000_adapter *adapter,
2766			  struct e1000_tx_ring *tx_ring, struct sk_buff *skb,
2767			  __be16 protocol)
2768{
2769	struct e1000_context_desc *context_desc;
2770	struct e1000_tx_buffer *buffer_info;
2771	unsigned int i;
2772	u8 css;
2773	u32 cmd_len = E1000_TXD_CMD_DEXT;
2774
2775	if (skb->ip_summed != CHECKSUM_PARTIAL)
2776		return false;
2777
2778	switch (protocol) {
2779	case cpu_to_be16(ETH_P_IP):
2780		if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2781			cmd_len |= E1000_TXD_CMD_TCP;
2782		break;
2783	case cpu_to_be16(ETH_P_IPV6):
2784		/* XXX not handling all IPV6 headers */
2785		if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2786			cmd_len |= E1000_TXD_CMD_TCP;
2787		break;
2788	default:
2789		if (unlikely(net_ratelimit()))
2790			e_warn(drv, "checksum_partial proto=%x!\n",
2791			       skb->protocol);
2792		break;
2793	}
2794
2795	css = skb_checksum_start_offset(skb);
2796
2797	i = tx_ring->next_to_use;
2798	buffer_info = &tx_ring->buffer_info[i];
2799	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2800
2801	context_desc->lower_setup.ip_config = 0;
2802	context_desc->upper_setup.tcp_fields.tucss = css;
2803	context_desc->upper_setup.tcp_fields.tucso =
2804		css + skb->csum_offset;
2805	context_desc->upper_setup.tcp_fields.tucse = 0;
2806	context_desc->tcp_seg_setup.data = 0;
2807	context_desc->cmd_and_length = cpu_to_le32(cmd_len);
2808
2809	buffer_info->time_stamp = jiffies;
2810	buffer_info->next_to_watch = i;
2811
2812	if (unlikely(++i == tx_ring->count))
2813		i = 0;
2814
2815	tx_ring->next_to_use = i;
2816
2817	return true;
2818}
2819
2820#define E1000_MAX_TXD_PWR	12
2821#define E1000_MAX_DATA_PER_TXD	(1<<E1000_MAX_TXD_PWR)
2822
2823static int e1000_tx_map(struct e1000_adapter *adapter,
2824			struct e1000_tx_ring *tx_ring,
2825			struct sk_buff *skb, unsigned int first,
2826			unsigned int max_per_txd, unsigned int nr_frags,
2827			unsigned int mss)
2828{
2829	struct e1000_hw *hw = &adapter->hw;
2830	struct pci_dev *pdev = adapter->pdev;
2831	struct e1000_tx_buffer *buffer_info;
2832	unsigned int len = skb_headlen(skb);
2833	unsigned int offset = 0, size, count = 0, i;
2834	unsigned int f, bytecount, segs;
2835
2836	i = tx_ring->next_to_use;
2837
2838	while (len) {
2839		buffer_info = &tx_ring->buffer_info[i];
2840		size = min(len, max_per_txd);
2841		/* Workaround for Controller erratum --
2842		 * descriptor for non-tso packet in a linear SKB that follows a
2843		 * tso gets written back prematurely before the data is fully
2844		 * DMA'd to the controller
2845		 */
2846		if (!skb->data_len && tx_ring->last_tx_tso &&
2847		    !skb_is_gso(skb)) {
2848			tx_ring->last_tx_tso = false;
2849			size -= 4;
2850		}
2851
2852		/* Workaround for premature desc write-backs
2853		 * in TSO mode.  Append 4-byte sentinel desc
2854		 */
2855		if (unlikely(mss && !nr_frags && size == len && size > 8))
2856			size -= 4;
2857		/* work-around for errata 10 and it applies
2858		 * to all controllers in PCI-X mode
2859		 * The fix is to make sure that the first descriptor of a
2860		 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2861		 */
2862		if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
2863			     (size > 2015) && count == 0))
2864			size = 2015;
2865
2866		/* Workaround for potential 82544 hang in PCI-X.  Avoid
2867		 * terminating buffers within evenly-aligned dwords.
2868		 */
2869		if (unlikely(adapter->pcix_82544 &&
2870		   !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2871		   size > 4))
2872			size -= 4;
2873
2874		buffer_info->length = size;
2875		/* set time_stamp *before* dma to help avoid a possible race */
2876		buffer_info->time_stamp = jiffies;
2877		buffer_info->mapped_as_page = false;
2878		buffer_info->dma = dma_map_single(&pdev->dev,
2879						  skb->data + offset,
2880						  size, DMA_TO_DEVICE);
2881		if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2882			goto dma_error;
2883		buffer_info->next_to_watch = i;
2884
2885		len -= size;
2886		offset += size;
2887		count++;
2888		if (len) {
2889			i++;
2890			if (unlikely(i == tx_ring->count))
2891				i = 0;
2892		}
2893	}
2894
2895	for (f = 0; f < nr_frags; f++) {
2896		const skb_frag_t *frag = &skb_shinfo(skb)->frags[f];
2897
 
2898		len = skb_frag_size(frag);
2899		offset = 0;
2900
2901		while (len) {
2902			unsigned long bufend;
2903			i++;
2904			if (unlikely(i == tx_ring->count))
2905				i = 0;
2906
2907			buffer_info = &tx_ring->buffer_info[i];
2908			size = min(len, max_per_txd);
2909			/* Workaround for premature desc write-backs
2910			 * in TSO mode.  Append 4-byte sentinel desc
2911			 */
2912			if (unlikely(mss && f == (nr_frags-1) &&
2913			    size == len && size > 8))
2914				size -= 4;
2915			/* Workaround for potential 82544 hang in PCI-X.
2916			 * Avoid terminating buffers within evenly-aligned
2917			 * dwords.
2918			 */
2919			bufend = (unsigned long)
2920				page_to_phys(skb_frag_page(frag));
2921			bufend += offset + size - 1;
2922			if (unlikely(adapter->pcix_82544 &&
2923				     !(bufend & 4) &&
2924				     size > 4))
2925				size -= 4;
2926
2927			buffer_info->length = size;
2928			buffer_info->time_stamp = jiffies;
2929			buffer_info->mapped_as_page = true;
2930			buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
2931						offset, size, DMA_TO_DEVICE);
2932			if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2933				goto dma_error;
2934			buffer_info->next_to_watch = i;
2935
2936			len -= size;
2937			offset += size;
2938			count++;
2939		}
2940	}
2941
2942	segs = skb_shinfo(skb)->gso_segs ?: 1;
2943	/* multiply data chunks by size of headers */
2944	bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
2945
2946	tx_ring->buffer_info[i].skb = skb;
2947	tx_ring->buffer_info[i].segs = segs;
2948	tx_ring->buffer_info[i].bytecount = bytecount;
2949	tx_ring->buffer_info[first].next_to_watch = i;
2950
2951	return count;
2952
2953dma_error:
2954	dev_err(&pdev->dev, "TX DMA map failed\n");
2955	buffer_info->dma = 0;
2956	if (count)
2957		count--;
2958
2959	while (count--) {
2960		if (i == 0)
2961			i += tx_ring->count;
2962		i--;
2963		buffer_info = &tx_ring->buffer_info[i];
2964		e1000_unmap_and_free_tx_resource(adapter, buffer_info, 0);
2965	}
2966
2967	return 0;
2968}
2969
2970static void e1000_tx_queue(struct e1000_adapter *adapter,
2971			   struct e1000_tx_ring *tx_ring, int tx_flags,
2972			   int count)
2973{
2974	struct e1000_tx_desc *tx_desc = NULL;
2975	struct e1000_tx_buffer *buffer_info;
2976	u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
2977	unsigned int i;
2978
2979	if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
2980		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
2981			     E1000_TXD_CMD_TSE;
2982		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2983
2984		if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
2985			txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2986	}
2987
2988	if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
2989		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
2990		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2991	}
2992
2993	if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
2994		txd_lower |= E1000_TXD_CMD_VLE;
2995		txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
2996	}
2997
2998	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
2999		txd_lower &= ~(E1000_TXD_CMD_IFCS);
3000
3001	i = tx_ring->next_to_use;
3002
3003	while (count--) {
3004		buffer_info = &tx_ring->buffer_info[i];
3005		tx_desc = E1000_TX_DESC(*tx_ring, i);
3006		tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3007		tx_desc->lower.data =
3008			cpu_to_le32(txd_lower | buffer_info->length);
3009		tx_desc->upper.data = cpu_to_le32(txd_upper);
3010		if (unlikely(++i == tx_ring->count))
3011			i = 0;
3012	}
3013
3014	tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3015
3016	/* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
3017	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
3018		tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
3019
3020	/* Force memory writes to complete before letting h/w
3021	 * know there are new descriptors to fetch.  (Only
3022	 * applicable for weak-ordered memory model archs,
3023	 * such as IA-64).
3024	 */
3025	dma_wmb();
3026
3027	tx_ring->next_to_use = i;
3028}
3029
3030/* 82547 workaround to avoid controller hang in half-duplex environment.
3031 * The workaround is to avoid queuing a large packet that would span
3032 * the internal Tx FIFO ring boundary by notifying the stack to resend
3033 * the packet at a later time.  This gives the Tx FIFO an opportunity to
3034 * flush all packets.  When that occurs, we reset the Tx FIFO pointers
3035 * to the beginning of the Tx FIFO.
3036 */
3037
3038#define E1000_FIFO_HDR			0x10
3039#define E1000_82547_PAD_LEN		0x3E0
3040
3041static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
3042				       struct sk_buff *skb)
3043{
3044	u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
3045	u32 skb_fifo_len = skb->len + E1000_FIFO_HDR;
3046
3047	skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
3048
3049	if (adapter->link_duplex != HALF_DUPLEX)
3050		goto no_fifo_stall_required;
3051
3052	if (atomic_read(&adapter->tx_fifo_stall))
3053		return 1;
3054
3055	if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
3056		atomic_set(&adapter->tx_fifo_stall, 1);
3057		return 1;
3058	}
3059
3060no_fifo_stall_required:
3061	adapter->tx_fifo_head += skb_fifo_len;
3062	if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
3063		adapter->tx_fifo_head -= adapter->tx_fifo_size;
3064	return 0;
3065}
3066
3067static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3068{
3069	struct e1000_adapter *adapter = netdev_priv(netdev);
3070	struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3071
3072	netif_stop_queue(netdev);
3073	/* Herbert's original patch had:
3074	 *  smp_mb__after_netif_stop_queue();
3075	 * but since that doesn't exist yet, just open code it.
3076	 */
3077	smp_mb();
3078
3079	/* We need to check again in a case another CPU has just
3080	 * made room available.
3081	 */
3082	if (likely(E1000_DESC_UNUSED(tx_ring) < size))
3083		return -EBUSY;
3084
3085	/* A reprieve! */
3086	netif_start_queue(netdev);
3087	++adapter->restart_queue;
3088	return 0;
3089}
3090
3091static int e1000_maybe_stop_tx(struct net_device *netdev,
3092			       struct e1000_tx_ring *tx_ring, int size)
3093{
3094	if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
3095		return 0;
3096	return __e1000_maybe_stop_tx(netdev, size);
3097}
3098
3099#define TXD_USE_COUNT(S, X) (((S) + ((1 << (X)) - 1)) >> (X))
3100static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
3101				    struct net_device *netdev)
3102{
3103	struct e1000_adapter *adapter = netdev_priv(netdev);
3104	struct e1000_hw *hw = &adapter->hw;
3105	struct e1000_tx_ring *tx_ring;
3106	unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
3107	unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3108	unsigned int tx_flags = 0;
3109	unsigned int len = skb_headlen(skb);
3110	unsigned int nr_frags;
3111	unsigned int mss;
3112	int count = 0;
3113	int tso;
3114	unsigned int f;
3115	__be16 protocol = vlan_get_protocol(skb);
3116
3117	/* This goes back to the question of how to logically map a Tx queue
3118	 * to a flow.  Right now, performance is impacted slightly negatively
3119	 * if using multiple Tx queues.  If the stack breaks away from a
3120	 * single qdisc implementation, we can look at this again.
3121	 */
3122	tx_ring = adapter->tx_ring;
3123
3124	/* On PCI/PCI-X HW, if packet size is less than ETH_ZLEN,
3125	 * packets may get corrupted during padding by HW.
3126	 * To WA this issue, pad all small packets manually.
3127	 */
3128	if (eth_skb_pad(skb))
3129		return NETDEV_TX_OK;
3130
3131	mss = skb_shinfo(skb)->gso_size;
3132	/* The controller does a simple calculation to
3133	 * make sure there is enough room in the FIFO before
3134	 * initiating the DMA for each buffer.  The calc is:
3135	 * 4 = ceil(buffer len/mss).  To make sure we don't
3136	 * overrun the FIFO, adjust the max buffer len if mss
3137	 * drops.
3138	 */
3139	if (mss) {
3140		u8 hdr_len;
3141		max_per_txd = min(mss << 2, max_per_txd);
3142		max_txd_pwr = fls(max_per_txd) - 1;
3143
3144		hdr_len = skb_tcp_all_headers(skb);
3145		if (skb->data_len && hdr_len == len) {
3146			switch (hw->mac_type) {
3147			case e1000_82544: {
3148				unsigned int pull_size;
3149
3150				/* Make sure we have room to chop off 4 bytes,
3151				 * and that the end alignment will work out to
3152				 * this hardware's requirements
3153				 * NOTE: this is a TSO only workaround
3154				 * if end byte alignment not correct move us
3155				 * into the next dword
3156				 */
3157				if ((unsigned long)(skb_tail_pointer(skb) - 1)
3158				    & 4)
3159					break;
 
3160				pull_size = min((unsigned int)4, skb->data_len);
3161				if (!__pskb_pull_tail(skb, pull_size)) {
3162					e_err(drv, "__pskb_pull_tail "
3163					      "failed.\n");
3164					dev_kfree_skb_any(skb);
3165					return NETDEV_TX_OK;
3166				}
3167				len = skb_headlen(skb);
3168				break;
3169			}
3170			default:
3171				/* do nothing */
3172				break;
3173			}
3174		}
3175	}
3176
3177	/* reserve a descriptor for the offload context */
3178	if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3179		count++;
3180	count++;
3181
3182	/* Controller Erratum workaround */
3183	if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3184		count++;
3185
3186	count += TXD_USE_COUNT(len, max_txd_pwr);
3187
3188	if (adapter->pcix_82544)
3189		count++;
3190
3191	/* work-around for errata 10 and it applies to all controllers
3192	 * in PCI-X mode, so add one more descriptor to the count
3193	 */
3194	if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
3195			(len > 2015)))
3196		count++;
3197
3198	nr_frags = skb_shinfo(skb)->nr_frags;
3199	for (f = 0; f < nr_frags; f++)
3200		count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->frags[f]),
3201				       max_txd_pwr);
3202	if (adapter->pcix_82544)
3203		count += nr_frags;
3204
3205	/* need: count + 2 desc gap to keep tail from touching
3206	 * head, otherwise try next time
3207	 */
3208	if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2)))
3209		return NETDEV_TX_BUSY;
3210
3211	if (unlikely((hw->mac_type == e1000_82547) &&
3212		     (e1000_82547_fifo_workaround(adapter, skb)))) {
3213		netif_stop_queue(netdev);
3214		if (!test_bit(__E1000_DOWN, &adapter->flags))
3215			schedule_delayed_work(&adapter->fifo_stall_task, 1);
3216		return NETDEV_TX_BUSY;
3217	}
3218
3219	if (skb_vlan_tag_present(skb)) {
3220		tx_flags |= E1000_TX_FLAGS_VLAN;
3221		tx_flags |= (skb_vlan_tag_get(skb) <<
3222			     E1000_TX_FLAGS_VLAN_SHIFT);
3223	}
3224
3225	first = tx_ring->next_to_use;
3226
3227	tso = e1000_tso(adapter, tx_ring, skb, protocol);
3228	if (tso < 0) {
3229		dev_kfree_skb_any(skb);
3230		return NETDEV_TX_OK;
3231	}
3232
3233	if (likely(tso)) {
3234		if (likely(hw->mac_type != e1000_82544))
3235			tx_ring->last_tx_tso = true;
3236		tx_flags |= E1000_TX_FLAGS_TSO;
3237	} else if (likely(e1000_tx_csum(adapter, tx_ring, skb, protocol)))
3238		tx_flags |= E1000_TX_FLAGS_CSUM;
3239
3240	if (protocol == htons(ETH_P_IP))
3241		tx_flags |= E1000_TX_FLAGS_IPV4;
3242
3243	if (unlikely(skb->no_fcs))
3244		tx_flags |= E1000_TX_FLAGS_NO_FCS;
3245
3246	count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd,
3247			     nr_frags, mss);
3248
3249	if (count) {
3250		/* The descriptors needed is higher than other Intel drivers
3251		 * due to a number of workarounds.  The breakdown is below:
3252		 * Data descriptors: MAX_SKB_FRAGS + 1
3253		 * Context Descriptor: 1
3254		 * Keep head from touching tail: 2
3255		 * Workarounds: 3
3256		 */
3257		int desc_needed = MAX_SKB_FRAGS + 7;
3258
3259		netdev_sent_queue(netdev, skb->len);
3260		skb_tx_timestamp(skb);
3261
3262		e1000_tx_queue(adapter, tx_ring, tx_flags, count);
3263
3264		/* 82544 potentially requires twice as many data descriptors
3265		 * in order to guarantee buffers don't end on evenly-aligned
3266		 * dwords
3267		 */
3268		if (adapter->pcix_82544)
3269			desc_needed += MAX_SKB_FRAGS + 1;
3270
3271		/* Make sure there is space in the ring for the next send. */
3272		e1000_maybe_stop_tx(netdev, tx_ring, desc_needed);
3273
3274		if (!netdev_xmit_more() ||
3275		    netif_xmit_stopped(netdev_get_tx_queue(netdev, 0))) {
3276			writel(tx_ring->next_to_use, hw->hw_addr + tx_ring->tdt);
 
 
 
 
 
3277		}
3278	} else {
3279		dev_kfree_skb_any(skb);
3280		tx_ring->buffer_info[first].time_stamp = 0;
3281		tx_ring->next_to_use = first;
3282	}
3283
3284	return NETDEV_TX_OK;
3285}
3286
3287#define NUM_REGS 38 /* 1 based count */
3288static void e1000_regdump(struct e1000_adapter *adapter)
3289{
3290	struct e1000_hw *hw = &adapter->hw;
3291	u32 regs[NUM_REGS];
3292	u32 *regs_buff = regs;
3293	int i = 0;
3294
3295	static const char * const reg_name[] = {
3296		"CTRL",  "STATUS",
3297		"RCTL", "RDLEN", "RDH", "RDT", "RDTR",
3298		"TCTL", "TDBAL", "TDBAH", "TDLEN", "TDH", "TDT",
3299		"TIDV", "TXDCTL", "TADV", "TARC0",
3300		"TDBAL1", "TDBAH1", "TDLEN1", "TDH1", "TDT1",
3301		"TXDCTL1", "TARC1",
3302		"CTRL_EXT", "ERT", "RDBAL", "RDBAH",
3303		"TDFH", "TDFT", "TDFHS", "TDFTS", "TDFPC",
3304		"RDFH", "RDFT", "RDFHS", "RDFTS", "RDFPC"
3305	};
3306
3307	regs_buff[0]  = er32(CTRL);
3308	regs_buff[1]  = er32(STATUS);
3309
3310	regs_buff[2]  = er32(RCTL);
3311	regs_buff[3]  = er32(RDLEN);
3312	regs_buff[4]  = er32(RDH);
3313	regs_buff[5]  = er32(RDT);
3314	regs_buff[6]  = er32(RDTR);
3315
3316	regs_buff[7]  = er32(TCTL);
3317	regs_buff[8]  = er32(TDBAL);
3318	regs_buff[9]  = er32(TDBAH);
3319	regs_buff[10] = er32(TDLEN);
3320	regs_buff[11] = er32(TDH);
3321	regs_buff[12] = er32(TDT);
3322	regs_buff[13] = er32(TIDV);
3323	regs_buff[14] = er32(TXDCTL);
3324	regs_buff[15] = er32(TADV);
3325	regs_buff[16] = er32(TARC0);
3326
3327	regs_buff[17] = er32(TDBAL1);
3328	regs_buff[18] = er32(TDBAH1);
3329	regs_buff[19] = er32(TDLEN1);
3330	regs_buff[20] = er32(TDH1);
3331	regs_buff[21] = er32(TDT1);
3332	regs_buff[22] = er32(TXDCTL1);
3333	regs_buff[23] = er32(TARC1);
3334	regs_buff[24] = er32(CTRL_EXT);
3335	regs_buff[25] = er32(ERT);
3336	regs_buff[26] = er32(RDBAL0);
3337	regs_buff[27] = er32(RDBAH0);
3338	regs_buff[28] = er32(TDFH);
3339	regs_buff[29] = er32(TDFT);
3340	regs_buff[30] = er32(TDFHS);
3341	regs_buff[31] = er32(TDFTS);
3342	regs_buff[32] = er32(TDFPC);
3343	regs_buff[33] = er32(RDFH);
3344	regs_buff[34] = er32(RDFT);
3345	regs_buff[35] = er32(RDFHS);
3346	regs_buff[36] = er32(RDFTS);
3347	regs_buff[37] = er32(RDFPC);
3348
3349	pr_info("Register dump\n");
3350	for (i = 0; i < NUM_REGS; i++)
3351		pr_info("%-15s  %08x\n", reg_name[i], regs_buff[i]);
3352}
3353
3354/*
3355 * e1000_dump: Print registers, tx ring and rx ring
3356 */
3357static void e1000_dump(struct e1000_adapter *adapter)
3358{
3359	/* this code doesn't handle multiple rings */
3360	struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3361	struct e1000_rx_ring *rx_ring = adapter->rx_ring;
3362	int i;
3363
3364	if (!netif_msg_hw(adapter))
3365		return;
3366
3367	/* Print Registers */
3368	e1000_regdump(adapter);
3369
3370	/* transmit dump */
3371	pr_info("TX Desc ring0 dump\n");
3372
3373	/* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
3374	 *
3375	 * Legacy Transmit Descriptor
3376	 *   +--------------------------------------------------------------+
3377	 * 0 |         Buffer Address [63:0] (Reserved on Write Back)       |
3378	 *   +--------------------------------------------------------------+
3379	 * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  |
3380	 *   +--------------------------------------------------------------+
3381	 *   63       48 47        36 35    32 31     24 23    16 15        0
3382	 *
3383	 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
3384	 *   63      48 47    40 39       32 31             16 15    8 7      0
3385	 *   +----------------------------------------------------------------+
3386	 * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS |
3387	 *   +----------------------------------------------------------------+
3388	 * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      |
3389	 *   +----------------------------------------------------------------+
3390	 *   63      48 47    40 39 36 35 32 31   24 23  20 19                0
3391	 *
3392	 * Extended Data Descriptor (DTYP=0x1)
3393	 *   +----------------------------------------------------------------+
3394	 * 0 |                     Buffer Address [63:0]                      |
3395	 *   +----------------------------------------------------------------+
3396	 * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  |
3397	 *   +----------------------------------------------------------------+
3398	 *   63       48 47     40 39  36 35    32 31     24 23  20 19        0
3399	 */
3400	pr_info("Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma       ] leng  ntw timestmp         bi->skb\n");
3401	pr_info("Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen] [bi->dma       ] leng  ntw timestmp         bi->skb\n");
3402
3403	if (!netif_msg_tx_done(adapter))
3404		goto rx_ring_summary;
3405
3406	for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
3407		struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
3408		struct e1000_tx_buffer *buffer_info = &tx_ring->buffer_info[i];
3409		struct my_u { __le64 a; __le64 b; };
3410		struct my_u *u = (struct my_u *)tx_desc;
3411		const char *type;
3412
3413		if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
3414			type = "NTC/U";
3415		else if (i == tx_ring->next_to_use)
3416			type = "NTU";
3417		else if (i == tx_ring->next_to_clean)
3418			type = "NTC";
3419		else
3420			type = "";
3421
3422		pr_info("T%c[0x%03X]    %016llX %016llX %016llX %04X  %3X %016llX %p %s\n",
3423			((le64_to_cpu(u->b) & (1<<20)) ? 'd' : 'c'), i,
3424			le64_to_cpu(u->a), le64_to_cpu(u->b),
3425			(u64)buffer_info->dma, buffer_info->length,
3426			buffer_info->next_to_watch,
3427			(u64)buffer_info->time_stamp, buffer_info->skb, type);
3428	}
3429
3430rx_ring_summary:
3431	/* receive dump */
3432	pr_info("\nRX Desc ring dump\n");
3433
3434	/* Legacy Receive Descriptor Format
3435	 *
3436	 * +-----------------------------------------------------+
3437	 * |                Buffer Address [63:0]                |
3438	 * +-----------------------------------------------------+
3439	 * | VLAN Tag | Errors | Status 0 | Packet csum | Length |
3440	 * +-----------------------------------------------------+
3441	 * 63       48 47    40 39      32 31         16 15      0
3442	 */
3443	pr_info("R[desc]      [address 63:0  ] [vl er S cks ln] [bi->dma       ] [bi->skb]\n");
3444
3445	if (!netif_msg_rx_status(adapter))
3446		goto exit;
3447
3448	for (i = 0; rx_ring->desc && (i < rx_ring->count); i++) {
3449		struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
3450		struct e1000_rx_buffer *buffer_info = &rx_ring->buffer_info[i];
3451		struct my_u { __le64 a; __le64 b; };
3452		struct my_u *u = (struct my_u *)rx_desc;
3453		const char *type;
3454
3455		if (i == rx_ring->next_to_use)
3456			type = "NTU";
3457		else if (i == rx_ring->next_to_clean)
3458			type = "NTC";
3459		else
3460			type = "";
3461
3462		pr_info("R[0x%03X]     %016llX %016llX %016llX %p %s\n",
3463			i, le64_to_cpu(u->a), le64_to_cpu(u->b),
3464			(u64)buffer_info->dma, buffer_info->rxbuf.data, type);
3465	} /* for */
3466
3467	/* dump the descriptor caches */
3468	/* rx */
3469	pr_info("Rx descriptor cache in 64bit format\n");
3470	for (i = 0x6000; i <= 0x63FF ; i += 0x10) {
3471		pr_info("R%04X: %08X|%08X %08X|%08X\n",
3472			i,
3473			readl(adapter->hw.hw_addr + i+4),
3474			readl(adapter->hw.hw_addr + i),
3475			readl(adapter->hw.hw_addr + i+12),
3476			readl(adapter->hw.hw_addr + i+8));
3477	}
3478	/* tx */
3479	pr_info("Tx descriptor cache in 64bit format\n");
3480	for (i = 0x7000; i <= 0x73FF ; i += 0x10) {
3481		pr_info("T%04X: %08X|%08X %08X|%08X\n",
3482			i,
3483			readl(adapter->hw.hw_addr + i+4),
3484			readl(adapter->hw.hw_addr + i),
3485			readl(adapter->hw.hw_addr + i+12),
3486			readl(adapter->hw.hw_addr + i+8));
3487	}
3488exit:
3489	return;
3490}
3491
3492/**
3493 * e1000_tx_timeout - Respond to a Tx Hang
3494 * @netdev: network interface device structure
3495 * @txqueue: number of the Tx queue that hung (unused)
3496 **/
3497static void e1000_tx_timeout(struct net_device *netdev, unsigned int __always_unused txqueue)
3498{
3499	struct e1000_adapter *adapter = netdev_priv(netdev);
3500
3501	/* Do the reset outside of interrupt context */
3502	adapter->tx_timeout_count++;
3503	schedule_work(&adapter->reset_task);
3504}
3505
3506static void e1000_reset_task(struct work_struct *work)
3507{
3508	struct e1000_adapter *adapter =
3509		container_of(work, struct e1000_adapter, reset_task);
3510
3511	e_err(drv, "Reset adapter\n");
3512	rtnl_lock();
3513	e1000_reinit_locked(adapter);
3514	rtnl_unlock();
 
 
 
 
 
 
 
 
 
 
 
 
3515}
3516
3517/**
3518 * e1000_change_mtu - Change the Maximum Transfer Unit
3519 * @netdev: network interface device structure
3520 * @new_mtu: new value for maximum frame size
3521 *
3522 * Returns 0 on success, negative on failure
3523 **/
3524static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
3525{
3526	struct e1000_adapter *adapter = netdev_priv(netdev);
3527	struct e1000_hw *hw = &adapter->hw;
3528	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
 
 
 
 
 
 
3529
3530	/* Adapter-specific max frame size limits. */
3531	switch (hw->mac_type) {
3532	case e1000_undefined ... e1000_82542_rev2_1:
3533		if (max_frame > (ETH_FRAME_LEN + ETH_FCS_LEN)) {
3534			e_err(probe, "Jumbo Frames not supported.\n");
3535			return -EINVAL;
3536		}
3537		break;
3538	default:
3539		/* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3540		break;
3541	}
3542
3543	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
3544		msleep(1);
3545	/* e1000_down has a dependency on max_frame_size */
3546	hw->max_frame_size = max_frame;
3547	if (netif_running(netdev)) {
3548		/* prevent buffers from being reallocated */
3549		adapter->alloc_rx_buf = e1000_alloc_dummy_rx_buffers;
3550		e1000_down(adapter);
3551	}
3552
3553	/* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3554	 * means we reserve 2 more, this pushes us to allocate from the next
3555	 * larger slab size.
3556	 * i.e. RXBUFFER_2048 --> size-4096 slab
3557	 * however with the new *_jumbo_rx* routines, jumbo receives will use
3558	 * fragmented skbs
3559	 */
3560
3561	if (max_frame <= E1000_RXBUFFER_2048)
3562		adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3563	else
3564#if (PAGE_SIZE >= E1000_RXBUFFER_16384)
3565		adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3566#elif (PAGE_SIZE >= E1000_RXBUFFER_4096)
3567		adapter->rx_buffer_len = PAGE_SIZE;
3568#endif
3569
3570	/* adjust allocation if LPE protects us, and we aren't using SBP */
3571	if (!hw->tbi_compatibility_on &&
3572	    ((max_frame == (ETH_FRAME_LEN + ETH_FCS_LEN)) ||
3573	     (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3574		adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3575
3576	netdev_dbg(netdev, "changing MTU from %d to %d\n",
3577		   netdev->mtu, new_mtu);
3578	WRITE_ONCE(netdev->mtu, new_mtu);
3579
3580	if (netif_running(netdev))
3581		e1000_up(adapter);
3582	else
3583		e1000_reset(adapter);
3584
3585	clear_bit(__E1000_RESETTING, &adapter->flags);
3586
3587	return 0;
3588}
3589
3590/**
3591 * e1000_update_stats - Update the board statistics counters
3592 * @adapter: board private structure
3593 **/
3594void e1000_update_stats(struct e1000_adapter *adapter)
3595{
3596	struct net_device *netdev = adapter->netdev;
3597	struct e1000_hw *hw = &adapter->hw;
3598	struct pci_dev *pdev = adapter->pdev;
3599	unsigned long flags;
3600	u16 phy_tmp;
3601
3602#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3603
3604	/* Prevent stats update while adapter is being reset, or if the pci
3605	 * connection is down.
3606	 */
3607	if (adapter->link_speed == 0)
3608		return;
3609	if (pci_channel_offline(pdev))
3610		return;
3611
3612	spin_lock_irqsave(&adapter->stats_lock, flags);
3613
3614	/* these counters are modified from e1000_tbi_adjust_stats,
3615	 * called from the interrupt context, so they must only
3616	 * be written while holding adapter->stats_lock
3617	 */
3618
3619	adapter->stats.crcerrs += er32(CRCERRS);
3620	adapter->stats.gprc += er32(GPRC);
3621	adapter->stats.gorcl += er32(GORCL);
3622	adapter->stats.gorch += er32(GORCH);
3623	adapter->stats.bprc += er32(BPRC);
3624	adapter->stats.mprc += er32(MPRC);
3625	adapter->stats.roc += er32(ROC);
3626
3627	adapter->stats.prc64 += er32(PRC64);
3628	adapter->stats.prc127 += er32(PRC127);
3629	adapter->stats.prc255 += er32(PRC255);
3630	adapter->stats.prc511 += er32(PRC511);
3631	adapter->stats.prc1023 += er32(PRC1023);
3632	adapter->stats.prc1522 += er32(PRC1522);
3633
3634	adapter->stats.symerrs += er32(SYMERRS);
3635	adapter->stats.mpc += er32(MPC);
3636	adapter->stats.scc += er32(SCC);
3637	adapter->stats.ecol += er32(ECOL);
3638	adapter->stats.mcc += er32(MCC);
3639	adapter->stats.latecol += er32(LATECOL);
3640	adapter->stats.dc += er32(DC);
3641	adapter->stats.sec += er32(SEC);
3642	adapter->stats.rlec += er32(RLEC);
3643	adapter->stats.xonrxc += er32(XONRXC);
3644	adapter->stats.xontxc += er32(XONTXC);
3645	adapter->stats.xoffrxc += er32(XOFFRXC);
3646	adapter->stats.xofftxc += er32(XOFFTXC);
3647	adapter->stats.fcruc += er32(FCRUC);
3648	adapter->stats.gptc += er32(GPTC);
3649	adapter->stats.gotcl += er32(GOTCL);
3650	adapter->stats.gotch += er32(GOTCH);
3651	adapter->stats.rnbc += er32(RNBC);
3652	adapter->stats.ruc += er32(RUC);
3653	adapter->stats.rfc += er32(RFC);
3654	adapter->stats.rjc += er32(RJC);
3655	adapter->stats.torl += er32(TORL);
3656	adapter->stats.torh += er32(TORH);
3657	adapter->stats.totl += er32(TOTL);
3658	adapter->stats.toth += er32(TOTH);
3659	adapter->stats.tpr += er32(TPR);
3660
3661	adapter->stats.ptc64 += er32(PTC64);
3662	adapter->stats.ptc127 += er32(PTC127);
3663	adapter->stats.ptc255 += er32(PTC255);
3664	adapter->stats.ptc511 += er32(PTC511);
3665	adapter->stats.ptc1023 += er32(PTC1023);
3666	adapter->stats.ptc1522 += er32(PTC1522);
3667
3668	adapter->stats.mptc += er32(MPTC);
3669	adapter->stats.bptc += er32(BPTC);
3670
3671	/* used for adaptive IFS */
3672
3673	hw->tx_packet_delta = er32(TPT);
3674	adapter->stats.tpt += hw->tx_packet_delta;
3675	hw->collision_delta = er32(COLC);
3676	adapter->stats.colc += hw->collision_delta;
3677
3678	if (hw->mac_type >= e1000_82543) {
3679		adapter->stats.algnerrc += er32(ALGNERRC);
3680		adapter->stats.rxerrc += er32(RXERRC);
3681		adapter->stats.tncrs += er32(TNCRS);
3682		adapter->stats.cexterr += er32(CEXTERR);
3683		adapter->stats.tsctc += er32(TSCTC);
3684		adapter->stats.tsctfc += er32(TSCTFC);
3685	}
3686
3687	/* Fill out the OS statistics structure */
3688	netdev->stats.multicast = adapter->stats.mprc;
3689	netdev->stats.collisions = adapter->stats.colc;
3690
3691	/* Rx Errors */
3692
3693	/* RLEC on some newer hardware can be incorrect so build
3694	 * our own version based on RUC and ROC
3695	 */
3696	netdev->stats.rx_errors = adapter->stats.rxerrc +
3697		adapter->stats.crcerrs + adapter->stats.algnerrc +
3698		adapter->stats.ruc + adapter->stats.roc +
3699		adapter->stats.cexterr;
3700	adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3701	netdev->stats.rx_length_errors = adapter->stats.rlerrc;
3702	netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
3703	netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
3704	netdev->stats.rx_missed_errors = adapter->stats.mpc;
3705
3706	/* Tx Errors */
3707	adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3708	netdev->stats.tx_errors = adapter->stats.txerrc;
3709	netdev->stats.tx_aborted_errors = adapter->stats.ecol;
3710	netdev->stats.tx_window_errors = adapter->stats.latecol;
3711	netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
3712	if (hw->bad_tx_carr_stats_fd &&
3713	    adapter->link_duplex == FULL_DUPLEX) {
3714		netdev->stats.tx_carrier_errors = 0;
3715		adapter->stats.tncrs = 0;
3716	}
3717
3718	/* Tx Dropped needs to be maintained elsewhere */
3719
3720	/* Phy Stats */
3721	if (hw->media_type == e1000_media_type_copper) {
3722		if ((adapter->link_speed == SPEED_1000) &&
3723		   (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3724			phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3725			adapter->phy_stats.idle_errors += phy_tmp;
3726		}
3727
3728		if ((hw->mac_type <= e1000_82546) &&
3729		   (hw->phy_type == e1000_phy_m88) &&
3730		   !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3731			adapter->phy_stats.receive_errors += phy_tmp;
3732	}
3733
3734	/* Management Stats */
3735	if (hw->has_smbus) {
3736		adapter->stats.mgptc += er32(MGTPTC);
3737		adapter->stats.mgprc += er32(MGTPRC);
3738		adapter->stats.mgpdc += er32(MGTPDC);
3739	}
3740
3741	spin_unlock_irqrestore(&adapter->stats_lock, flags);
3742}
3743
3744/**
3745 * e1000_intr - Interrupt Handler
3746 * @irq: interrupt number
3747 * @data: pointer to a network interface device structure
3748 **/
3749static irqreturn_t e1000_intr(int irq, void *data)
3750{
3751	struct net_device *netdev = data;
3752	struct e1000_adapter *adapter = netdev_priv(netdev);
3753	struct e1000_hw *hw = &adapter->hw;
3754	u32 icr = er32(ICR);
3755
3756	if (unlikely((!icr)))
3757		return IRQ_NONE;  /* Not our interrupt */
3758
3759	/* we might have caused the interrupt, but the above
3760	 * read cleared it, and just in case the driver is
3761	 * down there is nothing to do so return handled
3762	 */
3763	if (unlikely(test_bit(__E1000_DOWN, &adapter->flags)))
3764		return IRQ_HANDLED;
3765
3766	if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3767		hw->get_link_status = 1;
3768		/* guard against interrupt when we're going down */
3769		if (!test_bit(__E1000_DOWN, &adapter->flags))
3770			schedule_delayed_work(&adapter->watchdog_task, 1);
3771	}
3772
3773	/* disable interrupts, without the synchronize_irq bit */
3774	ew32(IMC, ~0);
3775	E1000_WRITE_FLUSH();
3776
3777	if (likely(napi_schedule_prep(&adapter->napi))) {
3778		adapter->total_tx_bytes = 0;
3779		adapter->total_tx_packets = 0;
3780		adapter->total_rx_bytes = 0;
3781		adapter->total_rx_packets = 0;
3782		__napi_schedule(&adapter->napi);
3783	} else {
3784		/* this really should not happen! if it does it is basically a
3785		 * bug, but not a hard error, so enable ints and continue
3786		 */
3787		if (!test_bit(__E1000_DOWN, &adapter->flags))
3788			e1000_irq_enable(adapter);
3789	}
3790
3791	return IRQ_HANDLED;
3792}
3793
3794/**
3795 * e1000_clean - NAPI Rx polling callback
3796 * @napi: napi struct containing references to driver info
3797 * @budget: budget given to driver for receive packets
3798 **/
3799static int e1000_clean(struct napi_struct *napi, int budget)
3800{
3801	struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
3802						     napi);
3803	int tx_clean_complete = 0, work_done = 0;
3804
3805	tx_clean_complete = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]);
3806
3807	adapter->clean_rx(adapter, &adapter->rx_ring[0], &work_done, budget);
3808
3809	if (!tx_clean_complete || work_done == budget)
3810		return budget;
3811
3812	/* Exit the polling mode, but don't re-enable interrupts if stack might
3813	 * poll us due to busy-polling
3814	 */
3815	if (likely(napi_complete_done(napi, work_done))) {
3816		if (likely(adapter->itr_setting & 3))
3817			e1000_set_itr(adapter);
 
3818		if (!test_bit(__E1000_DOWN, &adapter->flags))
3819			e1000_irq_enable(adapter);
3820	}
3821
3822	return work_done;
3823}
3824
3825/**
3826 * e1000_clean_tx_irq - Reclaim resources after transmit completes
3827 * @adapter: board private structure
3828 * @tx_ring: ring to clean
3829 **/
3830static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
3831			       struct e1000_tx_ring *tx_ring)
3832{
3833	struct e1000_hw *hw = &adapter->hw;
3834	struct net_device *netdev = adapter->netdev;
3835	struct e1000_tx_desc *tx_desc, *eop_desc;
3836	struct e1000_tx_buffer *buffer_info;
3837	unsigned int i, eop;
3838	unsigned int count = 0;
3839	unsigned int total_tx_bytes = 0, total_tx_packets = 0;
3840	unsigned int bytes_compl = 0, pkts_compl = 0;
3841
3842	i = tx_ring->next_to_clean;
3843	eop = tx_ring->buffer_info[i].next_to_watch;
3844	eop_desc = E1000_TX_DESC(*tx_ring, eop);
3845
3846	while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
3847	       (count < tx_ring->count)) {
3848		bool cleaned = false;
3849		dma_rmb();	/* read buffer_info after eop_desc */
3850		for ( ; !cleaned; count++) {
3851			tx_desc = E1000_TX_DESC(*tx_ring, i);
3852			buffer_info = &tx_ring->buffer_info[i];
3853			cleaned = (i == eop);
3854
3855			if (cleaned) {
3856				total_tx_packets += buffer_info->segs;
3857				total_tx_bytes += buffer_info->bytecount;
3858				if (buffer_info->skb) {
3859					bytes_compl += buffer_info->skb->len;
3860					pkts_compl++;
3861				}
3862
3863			}
3864			e1000_unmap_and_free_tx_resource(adapter, buffer_info,
3865							 64);
3866			tx_desc->upper.data = 0;
3867
3868			if (unlikely(++i == tx_ring->count))
3869				i = 0;
3870		}
3871
3872		eop = tx_ring->buffer_info[i].next_to_watch;
3873		eop_desc = E1000_TX_DESC(*tx_ring, eop);
3874	}
3875
3876	/* Synchronize with E1000_DESC_UNUSED called from e1000_xmit_frame,
3877	 * which will reuse the cleaned buffers.
3878	 */
3879	smp_store_release(&tx_ring->next_to_clean, i);
3880
3881	netdev_completed_queue(netdev, pkts_compl, bytes_compl);
3882
3883#define TX_WAKE_THRESHOLD 32
3884	if (unlikely(count && netif_carrier_ok(netdev) &&
3885		     E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3886		/* Make sure that anybody stopping the queue after this
3887		 * sees the new next_to_clean.
3888		 */
3889		smp_mb();
3890
3891		if (netif_queue_stopped(netdev) &&
3892		    !(test_bit(__E1000_DOWN, &adapter->flags))) {
3893			netif_wake_queue(netdev);
3894			++adapter->restart_queue;
3895		}
3896	}
3897
3898	if (adapter->detect_tx_hung) {
3899		/* Detect a transmit hang in hardware, this serializes the
3900		 * check with the clearing of time_stamp and movement of i
3901		 */
3902		adapter->detect_tx_hung = false;
3903		if (tx_ring->buffer_info[eop].time_stamp &&
3904		    time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3905			       (adapter->tx_timeout_factor * HZ)) &&
3906		    !(er32(STATUS) & E1000_STATUS_TXOFF)) {
3907
3908			/* detected Tx unit hang */
3909			e_err(drv, "Detected Tx Unit Hang\n"
3910			      "  Tx Queue             <%lu>\n"
3911			      "  TDH                  <%x>\n"
3912			      "  TDT                  <%x>\n"
3913			      "  next_to_use          <%x>\n"
3914			      "  next_to_clean        <%x>\n"
3915			      "buffer_info[next_to_clean]\n"
3916			      "  time_stamp           <%lx>\n"
3917			      "  next_to_watch        <%x>\n"
3918			      "  jiffies              <%lx>\n"
3919			      "  next_to_watch.status <%x>\n",
3920				(unsigned long)(tx_ring - adapter->tx_ring),
3921				readl(hw->hw_addr + tx_ring->tdh),
3922				readl(hw->hw_addr + tx_ring->tdt),
3923				tx_ring->next_to_use,
3924				tx_ring->next_to_clean,
3925				tx_ring->buffer_info[eop].time_stamp,
3926				eop,
3927				jiffies,
3928				eop_desc->upper.fields.status);
3929			e1000_dump(adapter);
3930			netif_stop_queue(netdev);
3931		}
3932	}
3933	adapter->total_tx_bytes += total_tx_bytes;
3934	adapter->total_tx_packets += total_tx_packets;
3935	netdev->stats.tx_bytes += total_tx_bytes;
3936	netdev->stats.tx_packets += total_tx_packets;
3937	return count < tx_ring->count;
3938}
3939
3940/**
3941 * e1000_rx_checksum - Receive Checksum Offload for 82543
3942 * @adapter:     board private structure
3943 * @status_err:  receive descriptor status and error fields
3944 * @csum:        receive descriptor csum field
3945 * @skb:         socket buffer with received data
3946 **/
3947static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
3948			      u32 csum, struct sk_buff *skb)
3949{
3950	struct e1000_hw *hw = &adapter->hw;
3951	u16 status = (u16)status_err;
3952	u8 errors = (u8)(status_err >> 24);
3953
3954	skb_checksum_none_assert(skb);
3955
3956	/* 82543 or newer only */
3957	if (unlikely(hw->mac_type < e1000_82543))
3958		return;
3959	/* Ignore Checksum bit is set */
3960	if (unlikely(status & E1000_RXD_STAT_IXSM))
3961		return;
3962	/* TCP/UDP checksum error bit is set */
3963	if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3964		/* let the stack verify checksum errors */
3965		adapter->hw_csum_err++;
3966		return;
3967	}
3968	/* TCP/UDP Checksum has not been calculated */
3969	if (!(status & E1000_RXD_STAT_TCPCS))
3970		return;
3971
3972	/* It must be a TCP or UDP packet with a valid checksum */
3973	if (likely(status & E1000_RXD_STAT_TCPCS)) {
3974		/* TCP checksum is good */
3975		skb->ip_summed = CHECKSUM_UNNECESSARY;
3976	}
3977	adapter->hw_csum_good++;
3978}
3979
3980/**
3981 * e1000_consume_page - helper function for jumbo Rx path
3982 * @bi: software descriptor shadow data
3983 * @skb: skb being modified
3984 * @length: length of data being added
3985 **/
3986static void e1000_consume_page(struct e1000_rx_buffer *bi, struct sk_buff *skb,
3987			       u16 length)
3988{
3989	bi->rxbuf.page = NULL;
3990	skb->len += length;
3991	skb->data_len += length;
3992	skb->truesize += PAGE_SIZE;
3993}
3994
3995/**
3996 * e1000_receive_skb - helper function to handle rx indications
3997 * @adapter: board private structure
3998 * @status: descriptor status field as written by hardware
3999 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
4000 * @skb: pointer to sk_buff to be indicated to stack
4001 */
4002static void e1000_receive_skb(struct e1000_adapter *adapter, u8 status,
4003			      __le16 vlan, struct sk_buff *skb)
4004{
4005	skb->protocol = eth_type_trans(skb, adapter->netdev);
4006
4007	if (status & E1000_RXD_STAT_VP) {
4008		u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
4009
4010		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
4011	}
4012	napi_gro_receive(&adapter->napi, skb);
4013}
4014
4015/**
4016 * e1000_tbi_adjust_stats
4017 * @hw: Struct containing variables accessed by shared code
4018 * @stats: point to stats struct
4019 * @frame_len: The length of the frame in question
4020 * @mac_addr: The Ethernet destination address of the frame in question
4021 *
4022 * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT
4023 */
4024static void e1000_tbi_adjust_stats(struct e1000_hw *hw,
4025				   struct e1000_hw_stats *stats,
4026				   u32 frame_len, const u8 *mac_addr)
4027{
4028	u64 carry_bit;
4029
4030	/* First adjust the frame length. */
4031	frame_len--;
4032	/* We need to adjust the statistics counters, since the hardware
4033	 * counters overcount this packet as a CRC error and undercount
4034	 * the packet as a good packet
4035	 */
4036	/* This packet should not be counted as a CRC error. */
4037	stats->crcerrs--;
4038	/* This packet does count as a Good Packet Received. */
4039	stats->gprc++;
4040
4041	/* Adjust the Good Octets received counters */
4042	carry_bit = 0x80000000 & stats->gorcl;
4043	stats->gorcl += frame_len;
4044	/* If the high bit of Gorcl (the low 32 bits of the Good Octets
4045	 * Received Count) was one before the addition,
4046	 * AND it is zero after, then we lost the carry out,
4047	 * need to add one to Gorch (Good Octets Received Count High).
4048	 * This could be simplified if all environments supported
4049	 * 64-bit integers.
4050	 */
4051	if (carry_bit && ((stats->gorcl & 0x80000000) == 0))
4052		stats->gorch++;
4053	/* Is this a broadcast or multicast?  Check broadcast first,
4054	 * since the test for a multicast frame will test positive on
4055	 * a broadcast frame.
4056	 */
4057	if (is_broadcast_ether_addr(mac_addr))
4058		stats->bprc++;
4059	else if (is_multicast_ether_addr(mac_addr))
4060		stats->mprc++;
4061
4062	if (frame_len == hw->max_frame_size) {
4063		/* In this case, the hardware has overcounted the number of
4064		 * oversize frames.
4065		 */
4066		if (stats->roc > 0)
4067			stats->roc--;
4068	}
4069
4070	/* Adjust the bin counters when the extra byte put the frame in the
4071	 * wrong bin. Remember that the frame_len was adjusted above.
4072	 */
4073	if (frame_len == 64) {
4074		stats->prc64++;
4075		stats->prc127--;
4076	} else if (frame_len == 127) {
4077		stats->prc127++;
4078		stats->prc255--;
4079	} else if (frame_len == 255) {
4080		stats->prc255++;
4081		stats->prc511--;
4082	} else if (frame_len == 511) {
4083		stats->prc511++;
4084		stats->prc1023--;
4085	} else if (frame_len == 1023) {
4086		stats->prc1023++;
4087		stats->prc1522--;
4088	} else if (frame_len == 1522) {
4089		stats->prc1522++;
4090	}
4091}
4092
4093static bool e1000_tbi_should_accept(struct e1000_adapter *adapter,
4094				    u8 status, u8 errors,
4095				    u32 length, const u8 *data)
4096{
4097	struct e1000_hw *hw = &adapter->hw;
4098	u8 last_byte = *(data + length - 1);
4099
4100	if (TBI_ACCEPT(hw, status, errors, length, last_byte)) {
4101		unsigned long irq_flags;
4102
4103		spin_lock_irqsave(&adapter->stats_lock, irq_flags);
4104		e1000_tbi_adjust_stats(hw, &adapter->stats, length, data);
4105		spin_unlock_irqrestore(&adapter->stats_lock, irq_flags);
4106
4107		return true;
4108	}
4109
4110	return false;
4111}
4112
4113static struct sk_buff *e1000_alloc_rx_skb(struct e1000_adapter *adapter,
4114					  unsigned int bufsz)
4115{
4116	struct sk_buff *skb = napi_alloc_skb(&adapter->napi, bufsz);
4117
4118	if (unlikely(!skb))
4119		adapter->alloc_rx_buff_failed++;
4120	return skb;
4121}
4122
4123/**
4124 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
4125 * @adapter: board private structure
4126 * @rx_ring: ring to clean
4127 * @work_done: amount of napi work completed this call
4128 * @work_to_do: max amount of work allowed for this call to do
4129 *
4130 * the return value indicates whether actual cleaning was done, there
4131 * is no guarantee that everything was cleaned
4132 */
4133static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
4134				     struct e1000_rx_ring *rx_ring,
4135				     int *work_done, int work_to_do)
4136{
4137	struct net_device *netdev = adapter->netdev;
4138	struct pci_dev *pdev = adapter->pdev;
4139	struct e1000_rx_desc *rx_desc, *next_rxd;
4140	struct e1000_rx_buffer *buffer_info, *next_buffer;
4141	u32 length;
4142	unsigned int i;
4143	int cleaned_count = 0;
4144	bool cleaned = false;
4145	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
4146
4147	i = rx_ring->next_to_clean;
4148	rx_desc = E1000_RX_DESC(*rx_ring, i);
4149	buffer_info = &rx_ring->buffer_info[i];
4150
4151	while (rx_desc->status & E1000_RXD_STAT_DD) {
4152		struct sk_buff *skb;
4153		u8 status;
4154
4155		if (*work_done >= work_to_do)
4156			break;
4157		(*work_done)++;
4158		dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
4159
4160		status = rx_desc->status;
4161
4162		if (++i == rx_ring->count)
4163			i = 0;
4164
4165		next_rxd = E1000_RX_DESC(*rx_ring, i);
4166		prefetch(next_rxd);
4167
4168		next_buffer = &rx_ring->buffer_info[i];
4169
4170		cleaned = true;
4171		cleaned_count++;
4172		dma_unmap_page(&pdev->dev, buffer_info->dma,
4173			       adapter->rx_buffer_len, DMA_FROM_DEVICE);
4174		buffer_info->dma = 0;
4175
4176		length = le16_to_cpu(rx_desc->length);
4177
4178		/* errors is only valid for DD + EOP descriptors */
4179		if (unlikely((status & E1000_RXD_STAT_EOP) &&
4180		    (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
4181			u8 *mapped = page_address(buffer_info->rxbuf.page);
4182
4183			if (e1000_tbi_should_accept(adapter, status,
4184						    rx_desc->errors,
4185						    length, mapped)) {
4186				length--;
4187			} else if (netdev->features & NETIF_F_RXALL) {
4188				goto process_skb;
4189			} else {
4190				/* an error means any chain goes out the window
4191				 * too
4192				 */
4193				dev_kfree_skb(rx_ring->rx_skb_top);
 
4194				rx_ring->rx_skb_top = NULL;
4195				goto next_desc;
4196			}
4197		}
4198
4199#define rxtop rx_ring->rx_skb_top
4200process_skb:
4201		if (!(status & E1000_RXD_STAT_EOP)) {
4202			/* this descriptor is only the beginning (or middle) */
4203			if (!rxtop) {
4204				/* this is the beginning of a chain */
4205				rxtop = napi_get_frags(&adapter->napi);
4206				if (!rxtop)
4207					break;
4208
4209				skb_fill_page_desc(rxtop, 0,
4210						   buffer_info->rxbuf.page,
4211						   0, length);
4212			} else {
4213				/* this is the middle of a chain */
4214				skb_fill_page_desc(rxtop,
4215				    skb_shinfo(rxtop)->nr_frags,
4216				    buffer_info->rxbuf.page, 0, length);
4217			}
4218			e1000_consume_page(buffer_info, rxtop, length);
4219			goto next_desc;
4220		} else {
4221			if (rxtop) {
4222				/* end of the chain */
4223				skb_fill_page_desc(rxtop,
4224				    skb_shinfo(rxtop)->nr_frags,
4225				    buffer_info->rxbuf.page, 0, length);
4226				skb = rxtop;
4227				rxtop = NULL;
4228				e1000_consume_page(buffer_info, skb, length);
4229			} else {
4230				struct page *p;
4231				/* no chain, got EOP, this buf is the packet
4232				 * copybreak to save the put_page/alloc_page
4233				 */
4234				p = buffer_info->rxbuf.page;
4235				if (length <= copybreak) {
 
 
4236					if (likely(!(netdev->features & NETIF_F_RXFCS)))
4237						length -= 4;
4238					skb = e1000_alloc_rx_skb(adapter,
4239								 length);
4240					if (!skb)
4241						break;
4242
4243					memcpy(skb_tail_pointer(skb),
4244					       page_address(p), length);
4245
 
4246					/* re-use the page, so don't erase
4247					 * buffer_info->rxbuf.page
4248					 */
4249					skb_put(skb, length);
4250					e1000_rx_checksum(adapter,
4251							  status | rx_desc->errors << 24,
4252							  le16_to_cpu(rx_desc->csum), skb);
4253
4254					total_rx_bytes += skb->len;
4255					total_rx_packets++;
4256
4257					e1000_receive_skb(adapter, status,
4258							  rx_desc->special, skb);
4259					goto next_desc;
4260				} else {
4261					skb = napi_get_frags(&adapter->napi);
4262					if (!skb) {
4263						adapter->alloc_rx_buff_failed++;
4264						break;
4265					}
4266					skb_fill_page_desc(skb, 0, p, 0,
4267							   length);
4268					e1000_consume_page(buffer_info, skb,
4269							   length);
4270				}
4271			}
4272		}
4273
4274		/* Receive Checksum Offload XXX recompute due to CRC strip? */
4275		e1000_rx_checksum(adapter,
4276				  (u32)(status) |
4277				  ((u32)(rx_desc->errors) << 24),
4278				  le16_to_cpu(rx_desc->csum), skb);
4279
4280		total_rx_bytes += (skb->len - 4); /* don't count FCS */
4281		if (likely(!(netdev->features & NETIF_F_RXFCS)))
4282			pskb_trim(skb, skb->len - 4);
4283		total_rx_packets++;
4284
4285		if (status & E1000_RXD_STAT_VP) {
4286			__le16 vlan = rx_desc->special;
4287			u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
4288
4289			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
4290		}
4291
4292		napi_gro_frags(&adapter->napi);
4293
4294next_desc:
4295		rx_desc->status = 0;
4296
4297		/* return some buffers to hardware, one at a time is too slow */
4298		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4299			adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4300			cleaned_count = 0;
4301		}
4302
4303		/* use prefetched values */
4304		rx_desc = next_rxd;
4305		buffer_info = next_buffer;
4306	}
4307	rx_ring->next_to_clean = i;
4308
4309	cleaned_count = E1000_DESC_UNUSED(rx_ring);
4310	if (cleaned_count)
4311		adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4312
4313	adapter->total_rx_packets += total_rx_packets;
4314	adapter->total_rx_bytes += total_rx_bytes;
4315	netdev->stats.rx_bytes += total_rx_bytes;
4316	netdev->stats.rx_packets += total_rx_packets;
4317	return cleaned;
4318}
4319
4320/* this should improve performance for small packets with large amounts
4321 * of reassembly being done in the stack
4322 */
4323static struct sk_buff *e1000_copybreak(struct e1000_adapter *adapter,
4324				       struct e1000_rx_buffer *buffer_info,
4325				       u32 length, const void *data)
4326{
4327	struct sk_buff *skb;
4328
4329	if (length > copybreak)
4330		return NULL;
4331
4332	skb = e1000_alloc_rx_skb(adapter, length);
4333	if (!skb)
4334		return NULL;
4335
4336	dma_sync_single_for_cpu(&adapter->pdev->dev, buffer_info->dma,
4337				length, DMA_FROM_DEVICE);
4338
4339	skb_put_data(skb, data, length);
4340
4341	return skb;
4342}
4343
4344/**
4345 * e1000_clean_rx_irq - Send received data up the network stack; legacy
4346 * @adapter: board private structure
4347 * @rx_ring: ring to clean
4348 * @work_done: amount of napi work completed this call
4349 * @work_to_do: max amount of work allowed for this call to do
4350 */
4351static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
4352			       struct e1000_rx_ring *rx_ring,
4353			       int *work_done, int work_to_do)
4354{
4355	struct net_device *netdev = adapter->netdev;
4356	struct pci_dev *pdev = adapter->pdev;
4357	struct e1000_rx_desc *rx_desc, *next_rxd;
4358	struct e1000_rx_buffer *buffer_info, *next_buffer;
4359	u32 length;
4360	unsigned int i;
4361	int cleaned_count = 0;
4362	bool cleaned = false;
4363	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
4364
4365	i = rx_ring->next_to_clean;
4366	rx_desc = E1000_RX_DESC(*rx_ring, i);
4367	buffer_info = &rx_ring->buffer_info[i];
4368
4369	while (rx_desc->status & E1000_RXD_STAT_DD) {
4370		struct sk_buff *skb;
4371		u8 *data;
4372		u8 status;
4373
4374		if (*work_done >= work_to_do)
4375			break;
4376		(*work_done)++;
4377		dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
4378
4379		status = rx_desc->status;
4380		length = le16_to_cpu(rx_desc->length);
4381
4382		data = buffer_info->rxbuf.data;
4383		prefetch(data);
4384		skb = e1000_copybreak(adapter, buffer_info, length, data);
4385		if (!skb) {
4386			unsigned int frag_len = e1000_frag_len(adapter);
4387
4388			skb = napi_build_skb(data - E1000_HEADROOM, frag_len);
4389			if (!skb) {
4390				adapter->alloc_rx_buff_failed++;
4391				break;
4392			}
4393
4394			skb_reserve(skb, E1000_HEADROOM);
4395			dma_unmap_single(&pdev->dev, buffer_info->dma,
4396					 adapter->rx_buffer_len,
4397					 DMA_FROM_DEVICE);
4398			buffer_info->dma = 0;
4399			buffer_info->rxbuf.data = NULL;
4400		}
4401
4402		if (++i == rx_ring->count)
4403			i = 0;
4404
4405		next_rxd = E1000_RX_DESC(*rx_ring, i);
4406		prefetch(next_rxd);
4407
4408		next_buffer = &rx_ring->buffer_info[i];
4409
4410		cleaned = true;
4411		cleaned_count++;
4412
4413		/* !EOP means multiple descriptors were used to store a single
4414		 * packet, if thats the case we need to toss it.  In fact, we
4415		 * to toss every packet with the EOP bit clear and the next
4416		 * frame that _does_ have the EOP bit set, as it is by
4417		 * definition only a frame fragment
4418		 */
4419		if (unlikely(!(status & E1000_RXD_STAT_EOP)))
4420			adapter->discarding = true;
4421
4422		if (adapter->discarding) {
4423			/* All receives must fit into a single buffer */
4424			netdev_dbg(netdev, "Receive packet consumed multiple buffers\n");
4425			dev_kfree_skb(skb);
4426			if (status & E1000_RXD_STAT_EOP)
4427				adapter->discarding = false;
4428			goto next_desc;
4429		}
4430
4431		if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
4432			if (e1000_tbi_should_accept(adapter, status,
4433						    rx_desc->errors,
4434						    length, data)) {
4435				length--;
4436			} else if (netdev->features & NETIF_F_RXALL) {
4437				goto process_skb;
4438			} else {
4439				dev_kfree_skb(skb);
4440				goto next_desc;
4441			}
4442		}
4443
4444process_skb:
4445		total_rx_bytes += (length - 4); /* don't count FCS */
4446		total_rx_packets++;
4447
4448		if (likely(!(netdev->features & NETIF_F_RXFCS)))
4449			/* adjust length to remove Ethernet CRC, this must be
4450			 * done after the TBI_ACCEPT workaround above
4451			 */
4452			length -= 4;
4453
4454		if (buffer_info->rxbuf.data == NULL)
4455			skb_put(skb, length);
4456		else /* copybreak skb */
4457			skb_trim(skb, length);
4458
4459		/* Receive Checksum Offload */
4460		e1000_rx_checksum(adapter,
4461				  (u32)(status) |
4462				  ((u32)(rx_desc->errors) << 24),
4463				  le16_to_cpu(rx_desc->csum), skb);
4464
4465		e1000_receive_skb(adapter, status, rx_desc->special, skb);
4466
4467next_desc:
4468		rx_desc->status = 0;
4469
4470		/* return some buffers to hardware, one at a time is too slow */
4471		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4472			adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4473			cleaned_count = 0;
4474		}
4475
4476		/* use prefetched values */
4477		rx_desc = next_rxd;
4478		buffer_info = next_buffer;
4479	}
4480	rx_ring->next_to_clean = i;
4481
4482	cleaned_count = E1000_DESC_UNUSED(rx_ring);
4483	if (cleaned_count)
4484		adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4485
4486	adapter->total_rx_packets += total_rx_packets;
4487	adapter->total_rx_bytes += total_rx_bytes;
4488	netdev->stats.rx_bytes += total_rx_bytes;
4489	netdev->stats.rx_packets += total_rx_packets;
4490	return cleaned;
4491}
4492
4493/**
4494 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
4495 * @adapter: address of board private structure
4496 * @rx_ring: pointer to receive ring structure
4497 * @cleaned_count: number of buffers to allocate this pass
4498 **/
4499static void
4500e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
4501			     struct e1000_rx_ring *rx_ring, int cleaned_count)
4502{
4503	struct pci_dev *pdev = adapter->pdev;
4504	struct e1000_rx_desc *rx_desc;
4505	struct e1000_rx_buffer *buffer_info;
4506	unsigned int i;
4507
4508	i = rx_ring->next_to_use;
4509	buffer_info = &rx_ring->buffer_info[i];
4510
4511	while (cleaned_count--) {
4512		/* allocate a new page if necessary */
4513		if (!buffer_info->rxbuf.page) {
4514			buffer_info->rxbuf.page = alloc_page(GFP_ATOMIC);
4515			if (unlikely(!buffer_info->rxbuf.page)) {
4516				adapter->alloc_rx_buff_failed++;
4517				break;
4518			}
4519		}
4520
4521		if (!buffer_info->dma) {
4522			buffer_info->dma = dma_map_page(&pdev->dev,
4523							buffer_info->rxbuf.page, 0,
4524							adapter->rx_buffer_len,
4525							DMA_FROM_DEVICE);
4526			if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4527				put_page(buffer_info->rxbuf.page);
4528				buffer_info->rxbuf.page = NULL;
4529				buffer_info->dma = 0;
4530				adapter->alloc_rx_buff_failed++;
4531				break;
4532			}
4533		}
4534
4535		rx_desc = E1000_RX_DESC(*rx_ring, i);
4536		rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4537
4538		if (unlikely(++i == rx_ring->count))
4539			i = 0;
4540		buffer_info = &rx_ring->buffer_info[i];
4541	}
4542
4543	if (likely(rx_ring->next_to_use != i)) {
4544		rx_ring->next_to_use = i;
4545		if (unlikely(i-- == 0))
4546			i = (rx_ring->count - 1);
4547
4548		/* Force memory writes to complete before letting h/w
4549		 * know there are new descriptors to fetch.  (Only
4550		 * applicable for weak-ordered memory model archs,
4551		 * such as IA-64).
4552		 */
4553		dma_wmb();
4554		writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4555	}
4556}
4557
4558/**
4559 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4560 * @adapter: address of board private structure
4561 * @rx_ring: pointer to ring struct
4562 * @cleaned_count: number of new Rx buffers to try to allocate
4563 **/
4564static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4565				   struct e1000_rx_ring *rx_ring,
4566				   int cleaned_count)
4567{
4568	struct e1000_hw *hw = &adapter->hw;
4569	struct pci_dev *pdev = adapter->pdev;
4570	struct e1000_rx_desc *rx_desc;
4571	struct e1000_rx_buffer *buffer_info;
4572	unsigned int i;
4573	unsigned int bufsz = adapter->rx_buffer_len;
4574
4575	i = rx_ring->next_to_use;
4576	buffer_info = &rx_ring->buffer_info[i];
4577
4578	while (cleaned_count--) {
4579		void *data;
4580
4581		if (buffer_info->rxbuf.data)
4582			goto skip;
4583
4584		data = e1000_alloc_frag(adapter);
4585		if (!data) {
4586			/* Better luck next round */
4587			adapter->alloc_rx_buff_failed++;
4588			break;
4589		}
4590
4591		/* Fix for errata 23, can't cross 64kB boundary */
4592		if (!e1000_check_64k_bound(adapter, data, bufsz)) {
4593			void *olddata = data;
4594			e_err(rx_err, "skb align check failed: %u bytes at "
4595			      "%p\n", bufsz, data);
4596			/* Try again, without freeing the previous */
4597			data = e1000_alloc_frag(adapter);
4598			/* Failed allocation, critical failure */
4599			if (!data) {
4600				skb_free_frag(olddata);
4601				adapter->alloc_rx_buff_failed++;
4602				break;
4603			}
4604
4605			if (!e1000_check_64k_bound(adapter, data, bufsz)) {
4606				/* give up */
4607				skb_free_frag(data);
4608				skb_free_frag(olddata);
4609				adapter->alloc_rx_buff_failed++;
4610				break;
4611			}
4612
4613			/* Use new allocation */
4614			skb_free_frag(olddata);
4615		}
4616		buffer_info->dma = dma_map_single(&pdev->dev,
4617						  data,
4618						  adapter->rx_buffer_len,
4619						  DMA_FROM_DEVICE);
4620		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4621			skb_free_frag(data);
4622			buffer_info->dma = 0;
4623			adapter->alloc_rx_buff_failed++;
4624			break;
4625		}
4626
4627		/* XXX if it was allocated cleanly it will never map to a
4628		 * boundary crossing
4629		 */
4630
4631		/* Fix for errata 23, can't cross 64kB boundary */
4632		if (!e1000_check_64k_bound(adapter,
4633					(void *)(unsigned long)buffer_info->dma,
4634					adapter->rx_buffer_len)) {
4635			e_err(rx_err, "dma align check failed: %u bytes at "
4636			      "%p\n", adapter->rx_buffer_len,
4637			      (void *)(unsigned long)buffer_info->dma);
4638
4639			dma_unmap_single(&pdev->dev, buffer_info->dma,
4640					 adapter->rx_buffer_len,
4641					 DMA_FROM_DEVICE);
4642
4643			skb_free_frag(data);
4644			buffer_info->rxbuf.data = NULL;
4645			buffer_info->dma = 0;
4646
4647			adapter->alloc_rx_buff_failed++;
4648			break;
4649		}
4650		buffer_info->rxbuf.data = data;
4651 skip:
4652		rx_desc = E1000_RX_DESC(*rx_ring, i);
4653		rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4654
4655		if (unlikely(++i == rx_ring->count))
4656			i = 0;
4657		buffer_info = &rx_ring->buffer_info[i];
4658	}
4659
4660	if (likely(rx_ring->next_to_use != i)) {
4661		rx_ring->next_to_use = i;
4662		if (unlikely(i-- == 0))
4663			i = (rx_ring->count - 1);
4664
4665		/* Force memory writes to complete before letting h/w
4666		 * know there are new descriptors to fetch.  (Only
4667		 * applicable for weak-ordered memory model archs,
4668		 * such as IA-64).
4669		 */
4670		dma_wmb();
4671		writel(i, hw->hw_addr + rx_ring->rdt);
4672	}
4673}
4674
4675/**
4676 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4677 * @adapter: address of board private structure
4678 **/
4679static void e1000_smartspeed(struct e1000_adapter *adapter)
4680{
4681	struct e1000_hw *hw = &adapter->hw;
4682	u16 phy_status;
4683	u16 phy_ctrl;
4684
4685	if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg ||
4686	   !(hw->autoneg_advertised & ADVERTISE_1000_FULL))
4687		return;
4688
4689	if (adapter->smartspeed == 0) {
4690		/* If Master/Slave config fault is asserted twice,
4691		 * we assume back-to-back
4692		 */
4693		e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4694		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
4695			return;
4696		e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4697		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
4698			return;
4699		e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4700		if (phy_ctrl & CR_1000T_MS_ENABLE) {
4701			phy_ctrl &= ~CR_1000T_MS_ENABLE;
4702			e1000_write_phy_reg(hw, PHY_1000T_CTRL,
4703					    phy_ctrl);
4704			adapter->smartspeed++;
4705			if (!e1000_phy_setup_autoneg(hw) &&
4706			   !e1000_read_phy_reg(hw, PHY_CTRL,
4707					       &phy_ctrl)) {
4708				phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4709					     MII_CR_RESTART_AUTO_NEG);
4710				e1000_write_phy_reg(hw, PHY_CTRL,
4711						    phy_ctrl);
4712			}
4713		}
4714		return;
4715	} else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4716		/* If still no link, perhaps using 2/3 pair cable */
4717		e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4718		phy_ctrl |= CR_1000T_MS_ENABLE;
4719		e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
4720		if (!e1000_phy_setup_autoneg(hw) &&
4721		   !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) {
4722			phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4723				     MII_CR_RESTART_AUTO_NEG);
4724			e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl);
4725		}
4726	}
4727	/* Restart process after E1000_SMARTSPEED_MAX iterations */
4728	if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4729		adapter->smartspeed = 0;
4730}
4731
4732/**
4733 * e1000_ioctl - handle ioctl calls
4734 * @netdev: pointer to our netdev
4735 * @ifr: pointer to interface request structure
4736 * @cmd: ioctl data
4737 **/
4738static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4739{
4740	switch (cmd) {
4741	case SIOCGMIIPHY:
4742	case SIOCGMIIREG:
4743	case SIOCSMIIREG:
4744		return e1000_mii_ioctl(netdev, ifr, cmd);
4745	default:
4746		return -EOPNOTSUPP;
4747	}
4748}
4749
4750/**
4751 * e1000_mii_ioctl -
4752 * @netdev: pointer to our netdev
4753 * @ifr: pointer to interface request structure
4754 * @cmd: ioctl data
4755 **/
4756static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4757			   int cmd)
4758{
4759	struct e1000_adapter *adapter = netdev_priv(netdev);
4760	struct e1000_hw *hw = &adapter->hw;
4761	struct mii_ioctl_data *data = if_mii(ifr);
4762	int retval;
4763	u16 mii_reg;
4764	unsigned long flags;
4765
4766	if (hw->media_type != e1000_media_type_copper)
4767		return -EOPNOTSUPP;
4768
4769	switch (cmd) {
4770	case SIOCGMIIPHY:
4771		data->phy_id = hw->phy_addr;
4772		break;
4773	case SIOCGMIIREG:
4774		spin_lock_irqsave(&adapter->stats_lock, flags);
4775		if (e1000_read_phy_reg(hw, data->reg_num & 0x1F,
4776				   &data->val_out)) {
4777			spin_unlock_irqrestore(&adapter->stats_lock, flags);
4778			return -EIO;
4779		}
4780		spin_unlock_irqrestore(&adapter->stats_lock, flags);
4781		break;
4782	case SIOCSMIIREG:
4783		if (data->reg_num & ~(0x1F))
4784			return -EFAULT;
4785		mii_reg = data->val_in;
4786		spin_lock_irqsave(&adapter->stats_lock, flags);
4787		if (e1000_write_phy_reg(hw, data->reg_num,
4788					mii_reg)) {
4789			spin_unlock_irqrestore(&adapter->stats_lock, flags);
4790			return -EIO;
4791		}
4792		spin_unlock_irqrestore(&adapter->stats_lock, flags);
4793		if (hw->media_type == e1000_media_type_copper) {
4794			switch (data->reg_num) {
4795			case PHY_CTRL:
4796				if (mii_reg & MII_CR_POWER_DOWN)
4797					break;
4798				if (mii_reg & MII_CR_AUTO_NEG_EN) {
4799					hw->autoneg = 1;
4800					hw->autoneg_advertised = 0x2F;
4801				} else {
4802					u32 speed;
4803					if (mii_reg & 0x40)
4804						speed = SPEED_1000;
4805					else if (mii_reg & 0x2000)
4806						speed = SPEED_100;
4807					else
4808						speed = SPEED_10;
4809					retval = e1000_set_spd_dplx(
4810						adapter, speed,
4811						((mii_reg & 0x100)
4812						 ? DUPLEX_FULL :
4813						 DUPLEX_HALF));
4814					if (retval)
4815						return retval;
4816				}
4817				if (netif_running(adapter->netdev))
4818					e1000_reinit_locked(adapter);
4819				else
4820					e1000_reset(adapter);
4821				break;
4822			case M88E1000_PHY_SPEC_CTRL:
4823			case M88E1000_EXT_PHY_SPEC_CTRL:
4824				if (e1000_phy_reset(hw))
4825					return -EIO;
4826				break;
4827			}
4828		} else {
4829			switch (data->reg_num) {
4830			case PHY_CTRL:
4831				if (mii_reg & MII_CR_POWER_DOWN)
4832					break;
4833				if (netif_running(adapter->netdev))
4834					e1000_reinit_locked(adapter);
4835				else
4836					e1000_reset(adapter);
4837				break;
4838			}
4839		}
4840		break;
4841	default:
4842		return -EOPNOTSUPP;
4843	}
4844	return E1000_SUCCESS;
4845}
4846
4847void e1000_pci_set_mwi(struct e1000_hw *hw)
4848{
4849	struct e1000_adapter *adapter = hw->back;
4850	int ret_val = pci_set_mwi(adapter->pdev);
4851
4852	if (ret_val)
4853		e_err(probe, "Error in setting MWI\n");
4854}
4855
4856void e1000_pci_clear_mwi(struct e1000_hw *hw)
4857{
4858	struct e1000_adapter *adapter = hw->back;
4859
4860	pci_clear_mwi(adapter->pdev);
4861}
4862
4863int e1000_pcix_get_mmrbc(struct e1000_hw *hw)
4864{
4865	struct e1000_adapter *adapter = hw->back;
4866	return pcix_get_mmrbc(adapter->pdev);
4867}
4868
4869void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
4870{
4871	struct e1000_adapter *adapter = hw->back;
4872	pcix_set_mmrbc(adapter->pdev, mmrbc);
4873}
4874
4875void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value)
4876{
4877	outl(value, port);
4878}
4879
4880static bool e1000_vlan_used(struct e1000_adapter *adapter)
4881{
4882	u16 vid;
4883
4884	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
4885		return true;
4886	return false;
4887}
4888
4889static void __e1000_vlan_mode(struct e1000_adapter *adapter,
4890			      netdev_features_t features)
4891{
4892	struct e1000_hw *hw = &adapter->hw;
4893	u32 ctrl;
4894
4895	ctrl = er32(CTRL);
4896	if (features & NETIF_F_HW_VLAN_CTAG_RX) {
4897		/* enable VLAN tag insert/strip */
4898		ctrl |= E1000_CTRL_VME;
4899	} else {
4900		/* disable VLAN tag insert/strip */
4901		ctrl &= ~E1000_CTRL_VME;
4902	}
4903	ew32(CTRL, ctrl);
4904}
4905static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
4906				     bool filter_on)
4907{
4908	struct e1000_hw *hw = &adapter->hw;
4909	u32 rctl;
4910
4911	if (!test_bit(__E1000_DOWN, &adapter->flags))
4912		e1000_irq_disable(adapter);
4913
4914	__e1000_vlan_mode(adapter, adapter->netdev->features);
4915	if (filter_on) {
4916		/* enable VLAN receive filtering */
4917		rctl = er32(RCTL);
4918		rctl &= ~E1000_RCTL_CFIEN;
4919		if (!(adapter->netdev->flags & IFF_PROMISC))
4920			rctl |= E1000_RCTL_VFE;
4921		ew32(RCTL, rctl);
4922		e1000_update_mng_vlan(adapter);
4923	} else {
4924		/* disable VLAN receive filtering */
4925		rctl = er32(RCTL);
4926		rctl &= ~E1000_RCTL_VFE;
4927		ew32(RCTL, rctl);
4928	}
4929
4930	if (!test_bit(__E1000_DOWN, &adapter->flags))
4931		e1000_irq_enable(adapter);
4932}
4933
4934static void e1000_vlan_mode(struct net_device *netdev,
4935			    netdev_features_t features)
4936{
4937	struct e1000_adapter *adapter = netdev_priv(netdev);
4938
4939	if (!test_bit(__E1000_DOWN, &adapter->flags))
4940		e1000_irq_disable(adapter);
4941
4942	__e1000_vlan_mode(adapter, features);
4943
4944	if (!test_bit(__E1000_DOWN, &adapter->flags))
4945		e1000_irq_enable(adapter);
4946}
4947
4948static int e1000_vlan_rx_add_vid(struct net_device *netdev,
4949				 __be16 proto, u16 vid)
4950{
4951	struct e1000_adapter *adapter = netdev_priv(netdev);
4952	struct e1000_hw *hw = &adapter->hw;
4953	u32 vfta, index;
4954
4955	if ((hw->mng_cookie.status &
4956	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4957	    (vid == adapter->mng_vlan_id))
4958		return 0;
4959
4960	if (!e1000_vlan_used(adapter))
4961		e1000_vlan_filter_on_off(adapter, true);
4962
4963	/* add VID to filter table */
4964	index = (vid >> 5) & 0x7F;
4965	vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4966	vfta |= (1 << (vid & 0x1F));
4967	e1000_write_vfta(hw, index, vfta);
4968
4969	set_bit(vid, adapter->active_vlans);
4970
4971	return 0;
4972}
4973
4974static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
4975				  __be16 proto, u16 vid)
4976{
4977	struct e1000_adapter *adapter = netdev_priv(netdev);
4978	struct e1000_hw *hw = &adapter->hw;
4979	u32 vfta, index;
4980
4981	if (!test_bit(__E1000_DOWN, &adapter->flags))
4982		e1000_irq_disable(adapter);
4983	if (!test_bit(__E1000_DOWN, &adapter->flags))
4984		e1000_irq_enable(adapter);
4985
4986	/* remove VID from filter table */
4987	index = (vid >> 5) & 0x7F;
4988	vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4989	vfta &= ~(1 << (vid & 0x1F));
4990	e1000_write_vfta(hw, index, vfta);
4991
4992	clear_bit(vid, adapter->active_vlans);
4993
4994	if (!e1000_vlan_used(adapter))
4995		e1000_vlan_filter_on_off(adapter, false);
4996
4997	return 0;
4998}
4999
5000static void e1000_restore_vlan(struct e1000_adapter *adapter)
5001{
5002	u16 vid;
5003
5004	if (!e1000_vlan_used(adapter))
5005		return;
5006
5007	e1000_vlan_filter_on_off(adapter, true);
5008	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
5009		e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
5010}
5011
5012int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
5013{
5014	struct e1000_hw *hw = &adapter->hw;
5015
5016	hw->autoneg = 0;
5017
5018	/* Make sure dplx is at most 1 bit and lsb of speed is not set
5019	 * for the switch() below to work
5020	 */
5021	if ((spd & 1) || (dplx & ~1))
5022		goto err_inval;
5023
5024	/* Fiber NICs only allow 1000 gbps Full duplex */
5025	if ((hw->media_type == e1000_media_type_fiber) &&
5026	    spd != SPEED_1000 &&
5027	    dplx != DUPLEX_FULL)
5028		goto err_inval;
5029
5030	switch (spd + dplx) {
5031	case SPEED_10 + DUPLEX_HALF:
5032		hw->forced_speed_duplex = e1000_10_half;
5033		break;
5034	case SPEED_10 + DUPLEX_FULL:
5035		hw->forced_speed_duplex = e1000_10_full;
5036		break;
5037	case SPEED_100 + DUPLEX_HALF:
5038		hw->forced_speed_duplex = e1000_100_half;
5039		break;
5040	case SPEED_100 + DUPLEX_FULL:
5041		hw->forced_speed_duplex = e1000_100_full;
5042		break;
5043	case SPEED_1000 + DUPLEX_FULL:
5044		hw->autoneg = 1;
5045		hw->autoneg_advertised = ADVERTISE_1000_FULL;
5046		break;
5047	case SPEED_1000 + DUPLEX_HALF: /* not supported */
5048	default:
5049		goto err_inval;
5050	}
5051
5052	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
5053	hw->mdix = AUTO_ALL_MODES;
5054
5055	return 0;
5056
5057err_inval:
5058	e_err(probe, "Unsupported Speed/Duplex configuration\n");
5059	return -EINVAL;
5060}
5061
5062static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake)
5063{
5064	struct net_device *netdev = pci_get_drvdata(pdev);
5065	struct e1000_adapter *adapter = netdev_priv(netdev);
5066	struct e1000_hw *hw = &adapter->hw;
5067	u32 ctrl, ctrl_ext, rctl, status;
5068	u32 wufc = adapter->wol;
 
 
 
5069
5070	netif_device_detach(netdev);
5071
5072	if (netif_running(netdev)) {
5073		int count = E1000_CHECK_RESET_COUNT;
5074
5075		while (test_bit(__E1000_RESETTING, &adapter->flags) && count--)
5076			usleep_range(10000, 20000);
5077
5078		WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
5079		rtnl_lock();
5080		e1000_down(adapter);
5081		rtnl_unlock();
5082	}
5083
 
 
 
 
 
 
5084	status = er32(STATUS);
5085	if (status & E1000_STATUS_LU)
5086		wufc &= ~E1000_WUFC_LNKC;
5087
5088	if (wufc) {
5089		e1000_setup_rctl(adapter);
5090		e1000_set_rx_mode(netdev);
5091
5092		rctl = er32(RCTL);
5093
5094		/* turn on all-multi mode if wake on multicast is enabled */
5095		if (wufc & E1000_WUFC_MC)
5096			rctl |= E1000_RCTL_MPE;
5097
5098		/* enable receives in the hardware */
5099		ew32(RCTL, rctl | E1000_RCTL_EN);
5100
5101		if (hw->mac_type >= e1000_82540) {
5102			ctrl = er32(CTRL);
5103			/* advertise wake from D3Cold */
5104			#define E1000_CTRL_ADVD3WUC 0x00100000
5105			/* phy power management enable */
5106			#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5107			ctrl |= E1000_CTRL_ADVD3WUC |
5108				E1000_CTRL_EN_PHY_PWR_MGMT;
5109			ew32(CTRL, ctrl);
5110		}
5111
5112		if (hw->media_type == e1000_media_type_fiber ||
5113		    hw->media_type == e1000_media_type_internal_serdes) {
5114			/* keep the laser running in D3 */
5115			ctrl_ext = er32(CTRL_EXT);
5116			ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
5117			ew32(CTRL_EXT, ctrl_ext);
5118		}
5119
5120		ew32(WUC, E1000_WUC_PME_EN);
5121		ew32(WUFC, wufc);
5122	} else {
5123		ew32(WUC, 0);
5124		ew32(WUFC, 0);
5125	}
5126
5127	e1000_release_manageability(adapter);
5128
5129	*enable_wake = !!wufc;
5130
5131	/* make sure adapter isn't asleep if manageability is enabled */
5132	if (adapter->en_mng_pt)
5133		*enable_wake = true;
5134
5135	if (netif_running(netdev))
5136		e1000_free_irq(adapter);
5137
5138	if (!test_and_set_bit(__E1000_DISABLED, &adapter->flags))
5139		pci_disable_device(pdev);
5140
5141	return 0;
5142}
5143
5144static int e1000_suspend(struct device *dev)
 
5145{
5146	int retval;
5147	struct pci_dev *pdev = to_pci_dev(dev);
5148	bool wake;
5149
5150	retval = __e1000_shutdown(pdev, &wake);
5151	device_set_wakeup_enable(dev, wake);
 
 
 
 
 
 
 
 
5152
5153	return retval;
5154}
5155
5156static int e1000_resume(struct device *dev)
5157{
5158	struct pci_dev *pdev = to_pci_dev(dev);
5159	struct net_device *netdev = pci_get_drvdata(pdev);
5160	struct e1000_adapter *adapter = netdev_priv(netdev);
5161	struct e1000_hw *hw = &adapter->hw;
5162	u32 err;
5163
 
 
 
 
5164	if (adapter->need_ioport)
5165		err = pci_enable_device(pdev);
5166	else
5167		err = pci_enable_device_mem(pdev);
5168	if (err) {
5169		pr_err("Cannot enable PCI device from suspend\n");
5170		return err;
5171	}
5172
5173	/* flush memory to make sure state is correct */
5174	smp_mb__before_atomic();
5175	clear_bit(__E1000_DISABLED, &adapter->flags);
5176	pci_set_master(pdev);
5177
5178	pci_enable_wake(pdev, PCI_D3hot, 0);
5179	pci_enable_wake(pdev, PCI_D3cold, 0);
5180
5181	if (netif_running(netdev)) {
5182		err = e1000_request_irq(adapter);
5183		if (err)
5184			return err;
5185	}
5186
5187	e1000_power_up_phy(adapter);
5188	e1000_reset(adapter);
5189	ew32(WUS, ~0);
5190
5191	e1000_init_manageability(adapter);
5192
5193	if (netif_running(netdev))
5194		e1000_up(adapter);
5195
5196	netif_device_attach(netdev);
5197
5198	return 0;
5199}
 
5200
5201static void e1000_shutdown(struct pci_dev *pdev)
5202{
5203	bool wake;
5204
5205	__e1000_shutdown(pdev, &wake);
5206
5207	if (system_state == SYSTEM_POWER_OFF) {
5208		pci_wake_from_d3(pdev, wake);
5209		pci_set_power_state(pdev, PCI_D3hot);
5210	}
5211}
5212
5213#ifdef CONFIG_NET_POLL_CONTROLLER
5214/* Polling 'interrupt' - used by things like netconsole to send skbs
5215 * without having to re-enable interrupts. It's not called while
5216 * the interrupt routine is executing.
5217 */
5218static void e1000_netpoll(struct net_device *netdev)
5219{
5220	struct e1000_adapter *adapter = netdev_priv(netdev);
5221
5222	if (disable_hardirq(adapter->pdev->irq))
5223		e1000_intr(adapter->pdev->irq, netdev);
5224	enable_irq(adapter->pdev->irq);
5225}
5226#endif
5227
5228/**
5229 * e1000_io_error_detected - called when PCI error is detected
5230 * @pdev: Pointer to PCI device
5231 * @state: The current pci connection state
5232 *
5233 * This function is called after a PCI bus error affecting
5234 * this device has been detected.
5235 */
5236static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
5237						pci_channel_state_t state)
5238{
5239	struct net_device *netdev = pci_get_drvdata(pdev);
5240	struct e1000_adapter *adapter = netdev_priv(netdev);
5241
5242	rtnl_lock();
5243	netif_device_detach(netdev);
5244
5245	if (state == pci_channel_io_perm_failure) {
5246		rtnl_unlock();
5247		return PCI_ERS_RESULT_DISCONNECT;
5248	}
5249
5250	if (netif_running(netdev))
5251		e1000_down(adapter);
 
5252
5253	if (!test_and_set_bit(__E1000_DISABLED, &adapter->flags))
5254		pci_disable_device(pdev);
5255	rtnl_unlock();
5256
5257	/* Request a slot reset. */
5258	return PCI_ERS_RESULT_NEED_RESET;
5259}
5260
5261/**
5262 * e1000_io_slot_reset - called after the pci bus has been reset.
5263 * @pdev: Pointer to PCI device
5264 *
5265 * Restart the card from scratch, as if from a cold-boot. Implementation
5266 * resembles the first-half of the e1000_resume routine.
5267 */
5268static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
5269{
5270	struct net_device *netdev = pci_get_drvdata(pdev);
5271	struct e1000_adapter *adapter = netdev_priv(netdev);
5272	struct e1000_hw *hw = &adapter->hw;
5273	int err;
5274
5275	if (adapter->need_ioport)
5276		err = pci_enable_device(pdev);
5277	else
5278		err = pci_enable_device_mem(pdev);
5279	if (err) {
5280		pr_err("Cannot re-enable PCI device after reset.\n");
5281		return PCI_ERS_RESULT_DISCONNECT;
5282	}
5283
5284	/* flush memory to make sure state is correct */
5285	smp_mb__before_atomic();
5286	clear_bit(__E1000_DISABLED, &adapter->flags);
5287	pci_set_master(pdev);
5288
5289	pci_enable_wake(pdev, PCI_D3hot, 0);
5290	pci_enable_wake(pdev, PCI_D3cold, 0);
5291
5292	e1000_reset(adapter);
5293	ew32(WUS, ~0);
5294
5295	return PCI_ERS_RESULT_RECOVERED;
5296}
5297
5298/**
5299 * e1000_io_resume - called when traffic can start flowing again.
5300 * @pdev: Pointer to PCI device
5301 *
5302 * This callback is called when the error recovery driver tells us that
5303 * its OK to resume normal operation. Implementation resembles the
5304 * second-half of the e1000_resume routine.
5305 */
5306static void e1000_io_resume(struct pci_dev *pdev)
5307{
5308	struct net_device *netdev = pci_get_drvdata(pdev);
5309	struct e1000_adapter *adapter = netdev_priv(netdev);
5310
5311	e1000_init_manageability(adapter);
5312
5313	if (netif_running(netdev)) {
5314		if (e1000_up(adapter)) {
5315			pr_info("can't bring device back up after reset\n");
5316			return;
5317		}
5318	}
5319
5320	netif_device_attach(netdev);
5321}
5322
5323/* e1000_main.c */