Loading...
1/*******************************************************************************
2
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2006 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27*******************************************************************************/
28
29#include "e1000.h"
30#include <net/ip6_checksum.h>
31#include <linux/io.h>
32#include <linux/prefetch.h>
33#include <linux/bitops.h>
34#include <linux/if_vlan.h>
35
36char e1000_driver_name[] = "e1000";
37static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
38#define DRV_VERSION "7.3.21-k8-NAPI"
39const char e1000_driver_version[] = DRV_VERSION;
40static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
41
42/* e1000_pci_tbl - PCI Device ID Table
43 *
44 * Last entry must be all 0s
45 *
46 * Macro expands to...
47 * {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
48 */
49static const struct pci_device_id e1000_pci_tbl[] = {
50 INTEL_E1000_ETHERNET_DEVICE(0x1000),
51 INTEL_E1000_ETHERNET_DEVICE(0x1001),
52 INTEL_E1000_ETHERNET_DEVICE(0x1004),
53 INTEL_E1000_ETHERNET_DEVICE(0x1008),
54 INTEL_E1000_ETHERNET_DEVICE(0x1009),
55 INTEL_E1000_ETHERNET_DEVICE(0x100C),
56 INTEL_E1000_ETHERNET_DEVICE(0x100D),
57 INTEL_E1000_ETHERNET_DEVICE(0x100E),
58 INTEL_E1000_ETHERNET_DEVICE(0x100F),
59 INTEL_E1000_ETHERNET_DEVICE(0x1010),
60 INTEL_E1000_ETHERNET_DEVICE(0x1011),
61 INTEL_E1000_ETHERNET_DEVICE(0x1012),
62 INTEL_E1000_ETHERNET_DEVICE(0x1013),
63 INTEL_E1000_ETHERNET_DEVICE(0x1014),
64 INTEL_E1000_ETHERNET_DEVICE(0x1015),
65 INTEL_E1000_ETHERNET_DEVICE(0x1016),
66 INTEL_E1000_ETHERNET_DEVICE(0x1017),
67 INTEL_E1000_ETHERNET_DEVICE(0x1018),
68 INTEL_E1000_ETHERNET_DEVICE(0x1019),
69 INTEL_E1000_ETHERNET_DEVICE(0x101A),
70 INTEL_E1000_ETHERNET_DEVICE(0x101D),
71 INTEL_E1000_ETHERNET_DEVICE(0x101E),
72 INTEL_E1000_ETHERNET_DEVICE(0x1026),
73 INTEL_E1000_ETHERNET_DEVICE(0x1027),
74 INTEL_E1000_ETHERNET_DEVICE(0x1028),
75 INTEL_E1000_ETHERNET_DEVICE(0x1075),
76 INTEL_E1000_ETHERNET_DEVICE(0x1076),
77 INTEL_E1000_ETHERNET_DEVICE(0x1077),
78 INTEL_E1000_ETHERNET_DEVICE(0x1078),
79 INTEL_E1000_ETHERNET_DEVICE(0x1079),
80 INTEL_E1000_ETHERNET_DEVICE(0x107A),
81 INTEL_E1000_ETHERNET_DEVICE(0x107B),
82 INTEL_E1000_ETHERNET_DEVICE(0x107C),
83 INTEL_E1000_ETHERNET_DEVICE(0x108A),
84 INTEL_E1000_ETHERNET_DEVICE(0x1099),
85 INTEL_E1000_ETHERNET_DEVICE(0x10B5),
86 INTEL_E1000_ETHERNET_DEVICE(0x2E6E),
87 /* required last entry */
88 {0,}
89};
90
91MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
92
93int e1000_up(struct e1000_adapter *adapter);
94void e1000_down(struct e1000_adapter *adapter);
95void e1000_reinit_locked(struct e1000_adapter *adapter);
96void e1000_reset(struct e1000_adapter *adapter);
97int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
98int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
99void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
100void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
101static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
102 struct e1000_tx_ring *txdr);
103static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
104 struct e1000_rx_ring *rxdr);
105static void e1000_free_tx_resources(struct e1000_adapter *adapter,
106 struct e1000_tx_ring *tx_ring);
107static void e1000_free_rx_resources(struct e1000_adapter *adapter,
108 struct e1000_rx_ring *rx_ring);
109void e1000_update_stats(struct e1000_adapter *adapter);
110
111static int e1000_init_module(void);
112static void e1000_exit_module(void);
113static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
114static void e1000_remove(struct pci_dev *pdev);
115static int e1000_alloc_queues(struct e1000_adapter *adapter);
116static int e1000_sw_init(struct e1000_adapter *adapter);
117static int e1000_open(struct net_device *netdev);
118static int e1000_close(struct net_device *netdev);
119static void e1000_configure_tx(struct e1000_adapter *adapter);
120static void e1000_configure_rx(struct e1000_adapter *adapter);
121static void e1000_setup_rctl(struct e1000_adapter *adapter);
122static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
123static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
124static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
125 struct e1000_tx_ring *tx_ring);
126static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
127 struct e1000_rx_ring *rx_ring);
128static void e1000_set_rx_mode(struct net_device *netdev);
129static void e1000_update_phy_info_task(struct work_struct *work);
130static void e1000_watchdog(struct work_struct *work);
131static void e1000_82547_tx_fifo_stall_task(struct work_struct *work);
132static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
133 struct net_device *netdev);
134static struct net_device_stats *e1000_get_stats(struct net_device *netdev);
135static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
136static int e1000_set_mac(struct net_device *netdev, void *p);
137static irqreturn_t e1000_intr(int irq, void *data);
138static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
139 struct e1000_tx_ring *tx_ring);
140static int e1000_clean(struct napi_struct *napi, int budget);
141static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
142 struct e1000_rx_ring *rx_ring,
143 int *work_done, int work_to_do);
144static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
145 struct e1000_rx_ring *rx_ring,
146 int *work_done, int work_to_do);
147static void e1000_alloc_dummy_rx_buffers(struct e1000_adapter *adapter,
148 struct e1000_rx_ring *rx_ring,
149 int cleaned_count)
150{
151}
152static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
153 struct e1000_rx_ring *rx_ring,
154 int cleaned_count);
155static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
156 struct e1000_rx_ring *rx_ring,
157 int cleaned_count);
158static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
159static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
160 int cmd);
161static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
162static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
163static void e1000_tx_timeout(struct net_device *dev);
164static void e1000_reset_task(struct work_struct *work);
165static void e1000_smartspeed(struct e1000_adapter *adapter);
166static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
167 struct sk_buff *skb);
168
169static bool e1000_vlan_used(struct e1000_adapter *adapter);
170static void e1000_vlan_mode(struct net_device *netdev,
171 netdev_features_t features);
172static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
173 bool filter_on);
174static int e1000_vlan_rx_add_vid(struct net_device *netdev,
175 __be16 proto, u16 vid);
176static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
177 __be16 proto, u16 vid);
178static void e1000_restore_vlan(struct e1000_adapter *adapter);
179
180#ifdef CONFIG_PM
181static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
182static int e1000_resume(struct pci_dev *pdev);
183#endif
184static void e1000_shutdown(struct pci_dev *pdev);
185
186#ifdef CONFIG_NET_POLL_CONTROLLER
187/* for netdump / net console */
188static void e1000_netpoll (struct net_device *netdev);
189#endif
190
191#define COPYBREAK_DEFAULT 256
192static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
193module_param(copybreak, uint, 0644);
194MODULE_PARM_DESC(copybreak,
195 "Maximum size of packet that is copied to a new buffer on receive");
196
197static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
198 pci_channel_state_t state);
199static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
200static void e1000_io_resume(struct pci_dev *pdev);
201
202static const struct pci_error_handlers e1000_err_handler = {
203 .error_detected = e1000_io_error_detected,
204 .slot_reset = e1000_io_slot_reset,
205 .resume = e1000_io_resume,
206};
207
208static struct pci_driver e1000_driver = {
209 .name = e1000_driver_name,
210 .id_table = e1000_pci_tbl,
211 .probe = e1000_probe,
212 .remove = e1000_remove,
213#ifdef CONFIG_PM
214 /* Power Management Hooks */
215 .suspend = e1000_suspend,
216 .resume = e1000_resume,
217#endif
218 .shutdown = e1000_shutdown,
219 .err_handler = &e1000_err_handler
220};
221
222MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
223MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
224MODULE_LICENSE("GPL");
225MODULE_VERSION(DRV_VERSION);
226
227#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
228static int debug = -1;
229module_param(debug, int, 0);
230MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
231
232/**
233 * e1000_get_hw_dev - return device
234 * used by hardware layer to print debugging information
235 *
236 **/
237struct net_device *e1000_get_hw_dev(struct e1000_hw *hw)
238{
239 struct e1000_adapter *adapter = hw->back;
240 return adapter->netdev;
241}
242
243/**
244 * e1000_init_module - Driver Registration Routine
245 *
246 * e1000_init_module is the first routine called when the driver is
247 * loaded. All it does is register with the PCI subsystem.
248 **/
249static int __init e1000_init_module(void)
250{
251 int ret;
252 pr_info("%s - version %s\n", e1000_driver_string, e1000_driver_version);
253
254 pr_info("%s\n", e1000_copyright);
255
256 ret = pci_register_driver(&e1000_driver);
257 if (copybreak != COPYBREAK_DEFAULT) {
258 if (copybreak == 0)
259 pr_info("copybreak disabled\n");
260 else
261 pr_info("copybreak enabled for "
262 "packets <= %u bytes\n", copybreak);
263 }
264 return ret;
265}
266
267module_init(e1000_init_module);
268
269/**
270 * e1000_exit_module - Driver Exit Cleanup Routine
271 *
272 * e1000_exit_module is called just before the driver is removed
273 * from memory.
274 **/
275static void __exit e1000_exit_module(void)
276{
277 pci_unregister_driver(&e1000_driver);
278}
279
280module_exit(e1000_exit_module);
281
282static int e1000_request_irq(struct e1000_adapter *adapter)
283{
284 struct net_device *netdev = adapter->netdev;
285 irq_handler_t handler = e1000_intr;
286 int irq_flags = IRQF_SHARED;
287 int err;
288
289 err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
290 netdev);
291 if (err) {
292 e_err(probe, "Unable to allocate interrupt Error: %d\n", err);
293 }
294
295 return err;
296}
297
298static void e1000_free_irq(struct e1000_adapter *adapter)
299{
300 struct net_device *netdev = adapter->netdev;
301
302 free_irq(adapter->pdev->irq, netdev);
303}
304
305/**
306 * e1000_irq_disable - Mask off interrupt generation on the NIC
307 * @adapter: board private structure
308 **/
309static void e1000_irq_disable(struct e1000_adapter *adapter)
310{
311 struct e1000_hw *hw = &adapter->hw;
312
313 ew32(IMC, ~0);
314 E1000_WRITE_FLUSH();
315 synchronize_irq(adapter->pdev->irq);
316}
317
318/**
319 * e1000_irq_enable - Enable default interrupt generation settings
320 * @adapter: board private structure
321 **/
322static void e1000_irq_enable(struct e1000_adapter *adapter)
323{
324 struct e1000_hw *hw = &adapter->hw;
325
326 ew32(IMS, IMS_ENABLE_MASK);
327 E1000_WRITE_FLUSH();
328}
329
330static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
331{
332 struct e1000_hw *hw = &adapter->hw;
333 struct net_device *netdev = adapter->netdev;
334 u16 vid = hw->mng_cookie.vlan_id;
335 u16 old_vid = adapter->mng_vlan_id;
336
337 if (!e1000_vlan_used(adapter))
338 return;
339
340 if (!test_bit(vid, adapter->active_vlans)) {
341 if (hw->mng_cookie.status &
342 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
343 e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
344 adapter->mng_vlan_id = vid;
345 } else {
346 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
347 }
348 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
349 (vid != old_vid) &&
350 !test_bit(old_vid, adapter->active_vlans))
351 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
352 old_vid);
353 } else {
354 adapter->mng_vlan_id = vid;
355 }
356}
357
358static void e1000_init_manageability(struct e1000_adapter *adapter)
359{
360 struct e1000_hw *hw = &adapter->hw;
361
362 if (adapter->en_mng_pt) {
363 u32 manc = er32(MANC);
364
365 /* disable hardware interception of ARP */
366 manc &= ~(E1000_MANC_ARP_EN);
367
368 ew32(MANC, manc);
369 }
370}
371
372static void e1000_release_manageability(struct e1000_adapter *adapter)
373{
374 struct e1000_hw *hw = &adapter->hw;
375
376 if (adapter->en_mng_pt) {
377 u32 manc = er32(MANC);
378
379 /* re-enable hardware interception of ARP */
380 manc |= E1000_MANC_ARP_EN;
381
382 ew32(MANC, manc);
383 }
384}
385
386/**
387 * e1000_configure - configure the hardware for RX and TX
388 * @adapter = private board structure
389 **/
390static void e1000_configure(struct e1000_adapter *adapter)
391{
392 struct net_device *netdev = adapter->netdev;
393 int i;
394
395 e1000_set_rx_mode(netdev);
396
397 e1000_restore_vlan(adapter);
398 e1000_init_manageability(adapter);
399
400 e1000_configure_tx(adapter);
401 e1000_setup_rctl(adapter);
402 e1000_configure_rx(adapter);
403 /* call E1000_DESC_UNUSED which always leaves
404 * at least 1 descriptor unused to make sure
405 * next_to_use != next_to_clean
406 */
407 for (i = 0; i < adapter->num_rx_queues; i++) {
408 struct e1000_rx_ring *ring = &adapter->rx_ring[i];
409 adapter->alloc_rx_buf(adapter, ring,
410 E1000_DESC_UNUSED(ring));
411 }
412}
413
414int e1000_up(struct e1000_adapter *adapter)
415{
416 struct e1000_hw *hw = &adapter->hw;
417
418 /* hardware has been reset, we need to reload some things */
419 e1000_configure(adapter);
420
421 clear_bit(__E1000_DOWN, &adapter->flags);
422
423 napi_enable(&adapter->napi);
424
425 e1000_irq_enable(adapter);
426
427 netif_wake_queue(adapter->netdev);
428
429 /* fire a link change interrupt to start the watchdog */
430 ew32(ICS, E1000_ICS_LSC);
431 return 0;
432}
433
434/**
435 * e1000_power_up_phy - restore link in case the phy was powered down
436 * @adapter: address of board private structure
437 *
438 * The phy may be powered down to save power and turn off link when the
439 * driver is unloaded and wake on lan is not enabled (among others)
440 * *** this routine MUST be followed by a call to e1000_reset ***
441 **/
442void e1000_power_up_phy(struct e1000_adapter *adapter)
443{
444 struct e1000_hw *hw = &adapter->hw;
445 u16 mii_reg = 0;
446
447 /* Just clear the power down bit to wake the phy back up */
448 if (hw->media_type == e1000_media_type_copper) {
449 /* according to the manual, the phy will retain its
450 * settings across a power-down/up cycle
451 */
452 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
453 mii_reg &= ~MII_CR_POWER_DOWN;
454 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
455 }
456}
457
458static void e1000_power_down_phy(struct e1000_adapter *adapter)
459{
460 struct e1000_hw *hw = &adapter->hw;
461
462 /* Power down the PHY so no link is implied when interface is down *
463 * The PHY cannot be powered down if any of the following is true *
464 * (a) WoL is enabled
465 * (b) AMT is active
466 * (c) SoL/IDER session is active
467 */
468 if (!adapter->wol && hw->mac_type >= e1000_82540 &&
469 hw->media_type == e1000_media_type_copper) {
470 u16 mii_reg = 0;
471
472 switch (hw->mac_type) {
473 case e1000_82540:
474 case e1000_82545:
475 case e1000_82545_rev_3:
476 case e1000_82546:
477 case e1000_ce4100:
478 case e1000_82546_rev_3:
479 case e1000_82541:
480 case e1000_82541_rev_2:
481 case e1000_82547:
482 case e1000_82547_rev_2:
483 if (er32(MANC) & E1000_MANC_SMBUS_EN)
484 goto out;
485 break;
486 default:
487 goto out;
488 }
489 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
490 mii_reg |= MII_CR_POWER_DOWN;
491 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
492 msleep(1);
493 }
494out:
495 return;
496}
497
498static void e1000_down_and_stop(struct e1000_adapter *adapter)
499{
500 set_bit(__E1000_DOWN, &adapter->flags);
501
502 cancel_delayed_work_sync(&adapter->watchdog_task);
503
504 /*
505 * Since the watchdog task can reschedule other tasks, we should cancel
506 * it first, otherwise we can run into the situation when a work is
507 * still running after the adapter has been turned down.
508 */
509
510 cancel_delayed_work_sync(&adapter->phy_info_task);
511 cancel_delayed_work_sync(&adapter->fifo_stall_task);
512
513 /* Only kill reset task if adapter is not resetting */
514 if (!test_bit(__E1000_RESETTING, &adapter->flags))
515 cancel_work_sync(&adapter->reset_task);
516}
517
518void e1000_down(struct e1000_adapter *adapter)
519{
520 struct e1000_hw *hw = &adapter->hw;
521 struct net_device *netdev = adapter->netdev;
522 u32 rctl, tctl;
523
524 netif_carrier_off(netdev);
525
526 /* disable receives in the hardware */
527 rctl = er32(RCTL);
528 ew32(RCTL, rctl & ~E1000_RCTL_EN);
529 /* flush and sleep below */
530
531 netif_tx_disable(netdev);
532
533 /* disable transmits in the hardware */
534 tctl = er32(TCTL);
535 tctl &= ~E1000_TCTL_EN;
536 ew32(TCTL, tctl);
537 /* flush both disables and wait for them to finish */
538 E1000_WRITE_FLUSH();
539 msleep(10);
540
541 napi_disable(&adapter->napi);
542
543 e1000_irq_disable(adapter);
544
545 /* Setting DOWN must be after irq_disable to prevent
546 * a screaming interrupt. Setting DOWN also prevents
547 * tasks from rescheduling.
548 */
549 e1000_down_and_stop(adapter);
550
551 adapter->link_speed = 0;
552 adapter->link_duplex = 0;
553
554 e1000_reset(adapter);
555 e1000_clean_all_tx_rings(adapter);
556 e1000_clean_all_rx_rings(adapter);
557}
558
559void e1000_reinit_locked(struct e1000_adapter *adapter)
560{
561 WARN_ON(in_interrupt());
562 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
563 msleep(1);
564 e1000_down(adapter);
565 e1000_up(adapter);
566 clear_bit(__E1000_RESETTING, &adapter->flags);
567}
568
569void e1000_reset(struct e1000_adapter *adapter)
570{
571 struct e1000_hw *hw = &adapter->hw;
572 u32 pba = 0, tx_space, min_tx_space, min_rx_space;
573 bool legacy_pba_adjust = false;
574 u16 hwm;
575
576 /* Repartition Pba for greater than 9k mtu
577 * To take effect CTRL.RST is required.
578 */
579
580 switch (hw->mac_type) {
581 case e1000_82542_rev2_0:
582 case e1000_82542_rev2_1:
583 case e1000_82543:
584 case e1000_82544:
585 case e1000_82540:
586 case e1000_82541:
587 case e1000_82541_rev_2:
588 legacy_pba_adjust = true;
589 pba = E1000_PBA_48K;
590 break;
591 case e1000_82545:
592 case e1000_82545_rev_3:
593 case e1000_82546:
594 case e1000_ce4100:
595 case e1000_82546_rev_3:
596 pba = E1000_PBA_48K;
597 break;
598 case e1000_82547:
599 case e1000_82547_rev_2:
600 legacy_pba_adjust = true;
601 pba = E1000_PBA_30K;
602 break;
603 case e1000_undefined:
604 case e1000_num_macs:
605 break;
606 }
607
608 if (legacy_pba_adjust) {
609 if (hw->max_frame_size > E1000_RXBUFFER_8192)
610 pba -= 8; /* allocate more FIFO for Tx */
611
612 if (hw->mac_type == e1000_82547) {
613 adapter->tx_fifo_head = 0;
614 adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
615 adapter->tx_fifo_size =
616 (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
617 atomic_set(&adapter->tx_fifo_stall, 0);
618 }
619 } else if (hw->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
620 /* adjust PBA for jumbo frames */
621 ew32(PBA, pba);
622
623 /* To maintain wire speed transmits, the Tx FIFO should be
624 * large enough to accommodate two full transmit packets,
625 * rounded up to the next 1KB and expressed in KB. Likewise,
626 * the Rx FIFO should be large enough to accommodate at least
627 * one full receive packet and is similarly rounded up and
628 * expressed in KB.
629 */
630 pba = er32(PBA);
631 /* upper 16 bits has Tx packet buffer allocation size in KB */
632 tx_space = pba >> 16;
633 /* lower 16 bits has Rx packet buffer allocation size in KB */
634 pba &= 0xffff;
635 /* the Tx fifo also stores 16 bytes of information about the Tx
636 * but don't include ethernet FCS because hardware appends it
637 */
638 min_tx_space = (hw->max_frame_size +
639 sizeof(struct e1000_tx_desc) -
640 ETH_FCS_LEN) * 2;
641 min_tx_space = ALIGN(min_tx_space, 1024);
642 min_tx_space >>= 10;
643 /* software strips receive CRC, so leave room for it */
644 min_rx_space = hw->max_frame_size;
645 min_rx_space = ALIGN(min_rx_space, 1024);
646 min_rx_space >>= 10;
647
648 /* If current Tx allocation is less than the min Tx FIFO size,
649 * and the min Tx FIFO size is less than the current Rx FIFO
650 * allocation, take space away from current Rx allocation
651 */
652 if (tx_space < min_tx_space &&
653 ((min_tx_space - tx_space) < pba)) {
654 pba = pba - (min_tx_space - tx_space);
655
656 /* PCI/PCIx hardware has PBA alignment constraints */
657 switch (hw->mac_type) {
658 case e1000_82545 ... e1000_82546_rev_3:
659 pba &= ~(E1000_PBA_8K - 1);
660 break;
661 default:
662 break;
663 }
664
665 /* if short on Rx space, Rx wins and must trump Tx
666 * adjustment or use Early Receive if available
667 */
668 if (pba < min_rx_space)
669 pba = min_rx_space;
670 }
671 }
672
673 ew32(PBA, pba);
674
675 /* flow control settings:
676 * The high water mark must be low enough to fit one full frame
677 * (or the size used for early receive) above it in the Rx FIFO.
678 * Set it to the lower of:
679 * - 90% of the Rx FIFO size, and
680 * - the full Rx FIFO size minus the early receive size (for parts
681 * with ERT support assuming ERT set to E1000_ERT_2048), or
682 * - the full Rx FIFO size minus one full frame
683 */
684 hwm = min(((pba << 10) * 9 / 10),
685 ((pba << 10) - hw->max_frame_size));
686
687 hw->fc_high_water = hwm & 0xFFF8; /* 8-byte granularity */
688 hw->fc_low_water = hw->fc_high_water - 8;
689 hw->fc_pause_time = E1000_FC_PAUSE_TIME;
690 hw->fc_send_xon = 1;
691 hw->fc = hw->original_fc;
692
693 /* Allow time for pending master requests to run */
694 e1000_reset_hw(hw);
695 if (hw->mac_type >= e1000_82544)
696 ew32(WUC, 0);
697
698 if (e1000_init_hw(hw))
699 e_dev_err("Hardware Error\n");
700 e1000_update_mng_vlan(adapter);
701
702 /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
703 if (hw->mac_type >= e1000_82544 &&
704 hw->autoneg == 1 &&
705 hw->autoneg_advertised == ADVERTISE_1000_FULL) {
706 u32 ctrl = er32(CTRL);
707 /* clear phy power management bit if we are in gig only mode,
708 * which if enabled will attempt negotiation to 100Mb, which
709 * can cause a loss of link at power off or driver unload
710 */
711 ctrl &= ~E1000_CTRL_SWDPIN3;
712 ew32(CTRL, ctrl);
713 }
714
715 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
716 ew32(VET, ETHERNET_IEEE_VLAN_TYPE);
717
718 e1000_reset_adaptive(hw);
719 e1000_phy_get_info(hw, &adapter->phy_info);
720
721 e1000_release_manageability(adapter);
722}
723
724/* Dump the eeprom for users having checksum issues */
725static void e1000_dump_eeprom(struct e1000_adapter *adapter)
726{
727 struct net_device *netdev = adapter->netdev;
728 struct ethtool_eeprom eeprom;
729 const struct ethtool_ops *ops = netdev->ethtool_ops;
730 u8 *data;
731 int i;
732 u16 csum_old, csum_new = 0;
733
734 eeprom.len = ops->get_eeprom_len(netdev);
735 eeprom.offset = 0;
736
737 data = kmalloc(eeprom.len, GFP_KERNEL);
738 if (!data)
739 return;
740
741 ops->get_eeprom(netdev, &eeprom, data);
742
743 csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
744 (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
745 for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
746 csum_new += data[i] + (data[i + 1] << 8);
747 csum_new = EEPROM_SUM - csum_new;
748
749 pr_err("/*********************/\n");
750 pr_err("Current EEPROM Checksum : 0x%04x\n", csum_old);
751 pr_err("Calculated : 0x%04x\n", csum_new);
752
753 pr_err("Offset Values\n");
754 pr_err("======== ======\n");
755 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0);
756
757 pr_err("Include this output when contacting your support provider.\n");
758 pr_err("This is not a software error! Something bad happened to\n");
759 pr_err("your hardware or EEPROM image. Ignoring this problem could\n");
760 pr_err("result in further problems, possibly loss of data,\n");
761 pr_err("corruption or system hangs!\n");
762 pr_err("The MAC Address will be reset to 00:00:00:00:00:00,\n");
763 pr_err("which is invalid and requires you to set the proper MAC\n");
764 pr_err("address manually before continuing to enable this network\n");
765 pr_err("device. Please inspect the EEPROM dump and report the\n");
766 pr_err("issue to your hardware vendor or Intel Customer Support.\n");
767 pr_err("/*********************/\n");
768
769 kfree(data);
770}
771
772/**
773 * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
774 * @pdev: PCI device information struct
775 *
776 * Return true if an adapter needs ioport resources
777 **/
778static int e1000_is_need_ioport(struct pci_dev *pdev)
779{
780 switch (pdev->device) {
781 case E1000_DEV_ID_82540EM:
782 case E1000_DEV_ID_82540EM_LOM:
783 case E1000_DEV_ID_82540EP:
784 case E1000_DEV_ID_82540EP_LOM:
785 case E1000_DEV_ID_82540EP_LP:
786 case E1000_DEV_ID_82541EI:
787 case E1000_DEV_ID_82541EI_MOBILE:
788 case E1000_DEV_ID_82541ER:
789 case E1000_DEV_ID_82541ER_LOM:
790 case E1000_DEV_ID_82541GI:
791 case E1000_DEV_ID_82541GI_LF:
792 case E1000_DEV_ID_82541GI_MOBILE:
793 case E1000_DEV_ID_82544EI_COPPER:
794 case E1000_DEV_ID_82544EI_FIBER:
795 case E1000_DEV_ID_82544GC_COPPER:
796 case E1000_DEV_ID_82544GC_LOM:
797 case E1000_DEV_ID_82545EM_COPPER:
798 case E1000_DEV_ID_82545EM_FIBER:
799 case E1000_DEV_ID_82546EB_COPPER:
800 case E1000_DEV_ID_82546EB_FIBER:
801 case E1000_DEV_ID_82546EB_QUAD_COPPER:
802 return true;
803 default:
804 return false;
805 }
806}
807
808static netdev_features_t e1000_fix_features(struct net_device *netdev,
809 netdev_features_t features)
810{
811 /* Since there is no support for separate Rx/Tx vlan accel
812 * enable/disable make sure Tx flag is always in same state as Rx.
813 */
814 if (features & NETIF_F_HW_VLAN_CTAG_RX)
815 features |= NETIF_F_HW_VLAN_CTAG_TX;
816 else
817 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
818
819 return features;
820}
821
822static int e1000_set_features(struct net_device *netdev,
823 netdev_features_t features)
824{
825 struct e1000_adapter *adapter = netdev_priv(netdev);
826 netdev_features_t changed = features ^ netdev->features;
827
828 if (changed & NETIF_F_HW_VLAN_CTAG_RX)
829 e1000_vlan_mode(netdev, features);
830
831 if (!(changed & (NETIF_F_RXCSUM | NETIF_F_RXALL)))
832 return 0;
833
834 netdev->features = features;
835 adapter->rx_csum = !!(features & NETIF_F_RXCSUM);
836
837 if (netif_running(netdev))
838 e1000_reinit_locked(adapter);
839 else
840 e1000_reset(adapter);
841
842 return 0;
843}
844
845static const struct net_device_ops e1000_netdev_ops = {
846 .ndo_open = e1000_open,
847 .ndo_stop = e1000_close,
848 .ndo_start_xmit = e1000_xmit_frame,
849 .ndo_get_stats = e1000_get_stats,
850 .ndo_set_rx_mode = e1000_set_rx_mode,
851 .ndo_set_mac_address = e1000_set_mac,
852 .ndo_tx_timeout = e1000_tx_timeout,
853 .ndo_change_mtu = e1000_change_mtu,
854 .ndo_do_ioctl = e1000_ioctl,
855 .ndo_validate_addr = eth_validate_addr,
856 .ndo_vlan_rx_add_vid = e1000_vlan_rx_add_vid,
857 .ndo_vlan_rx_kill_vid = e1000_vlan_rx_kill_vid,
858#ifdef CONFIG_NET_POLL_CONTROLLER
859 .ndo_poll_controller = e1000_netpoll,
860#endif
861 .ndo_fix_features = e1000_fix_features,
862 .ndo_set_features = e1000_set_features,
863};
864
865/**
866 * e1000_init_hw_struct - initialize members of hw struct
867 * @adapter: board private struct
868 * @hw: structure used by e1000_hw.c
869 *
870 * Factors out initialization of the e1000_hw struct to its own function
871 * that can be called very early at init (just after struct allocation).
872 * Fields are initialized based on PCI device information and
873 * OS network device settings (MTU size).
874 * Returns negative error codes if MAC type setup fails.
875 */
876static int e1000_init_hw_struct(struct e1000_adapter *adapter,
877 struct e1000_hw *hw)
878{
879 struct pci_dev *pdev = adapter->pdev;
880
881 /* PCI config space info */
882 hw->vendor_id = pdev->vendor;
883 hw->device_id = pdev->device;
884 hw->subsystem_vendor_id = pdev->subsystem_vendor;
885 hw->subsystem_id = pdev->subsystem_device;
886 hw->revision_id = pdev->revision;
887
888 pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
889
890 hw->max_frame_size = adapter->netdev->mtu +
891 ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
892 hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
893
894 /* identify the MAC */
895 if (e1000_set_mac_type(hw)) {
896 e_err(probe, "Unknown MAC Type\n");
897 return -EIO;
898 }
899
900 switch (hw->mac_type) {
901 default:
902 break;
903 case e1000_82541:
904 case e1000_82547:
905 case e1000_82541_rev_2:
906 case e1000_82547_rev_2:
907 hw->phy_init_script = 1;
908 break;
909 }
910
911 e1000_set_media_type(hw);
912 e1000_get_bus_info(hw);
913
914 hw->wait_autoneg_complete = false;
915 hw->tbi_compatibility_en = true;
916 hw->adaptive_ifs = true;
917
918 /* Copper options */
919
920 if (hw->media_type == e1000_media_type_copper) {
921 hw->mdix = AUTO_ALL_MODES;
922 hw->disable_polarity_correction = false;
923 hw->master_slave = E1000_MASTER_SLAVE;
924 }
925
926 return 0;
927}
928
929/**
930 * e1000_probe - Device Initialization Routine
931 * @pdev: PCI device information struct
932 * @ent: entry in e1000_pci_tbl
933 *
934 * Returns 0 on success, negative on failure
935 *
936 * e1000_probe initializes an adapter identified by a pci_dev structure.
937 * The OS initialization, configuring of the adapter private structure,
938 * and a hardware reset occur.
939 **/
940static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
941{
942 struct net_device *netdev;
943 struct e1000_adapter *adapter;
944 struct e1000_hw *hw;
945
946 static int cards_found;
947 static int global_quad_port_a; /* global ksp3 port a indication */
948 int i, err, pci_using_dac;
949 u16 eeprom_data = 0;
950 u16 tmp = 0;
951 u16 eeprom_apme_mask = E1000_EEPROM_APME;
952 int bars, need_ioport;
953
954 /* do not allocate ioport bars when not needed */
955 need_ioport = e1000_is_need_ioport(pdev);
956 if (need_ioport) {
957 bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
958 err = pci_enable_device(pdev);
959 } else {
960 bars = pci_select_bars(pdev, IORESOURCE_MEM);
961 err = pci_enable_device_mem(pdev);
962 }
963 if (err)
964 return err;
965
966 err = pci_request_selected_regions(pdev, bars, e1000_driver_name);
967 if (err)
968 goto err_pci_reg;
969
970 pci_set_master(pdev);
971 err = pci_save_state(pdev);
972 if (err)
973 goto err_alloc_etherdev;
974
975 err = -ENOMEM;
976 netdev = alloc_etherdev(sizeof(struct e1000_adapter));
977 if (!netdev)
978 goto err_alloc_etherdev;
979
980 SET_NETDEV_DEV(netdev, &pdev->dev);
981
982 pci_set_drvdata(pdev, netdev);
983 adapter = netdev_priv(netdev);
984 adapter->netdev = netdev;
985 adapter->pdev = pdev;
986 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
987 adapter->bars = bars;
988 adapter->need_ioport = need_ioport;
989
990 hw = &adapter->hw;
991 hw->back = adapter;
992
993 err = -EIO;
994 hw->hw_addr = pci_ioremap_bar(pdev, BAR_0);
995 if (!hw->hw_addr)
996 goto err_ioremap;
997
998 if (adapter->need_ioport) {
999 for (i = BAR_1; i <= BAR_5; i++) {
1000 if (pci_resource_len(pdev, i) == 0)
1001 continue;
1002 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
1003 hw->io_base = pci_resource_start(pdev, i);
1004 break;
1005 }
1006 }
1007 }
1008
1009 /* make ready for any if (hw->...) below */
1010 err = e1000_init_hw_struct(adapter, hw);
1011 if (err)
1012 goto err_sw_init;
1013
1014 /* there is a workaround being applied below that limits
1015 * 64-bit DMA addresses to 64-bit hardware. There are some
1016 * 32-bit adapters that Tx hang when given 64-bit DMA addresses
1017 */
1018 pci_using_dac = 0;
1019 if ((hw->bus_type == e1000_bus_type_pcix) &&
1020 !dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) {
1021 pci_using_dac = 1;
1022 } else {
1023 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1024 if (err) {
1025 pr_err("No usable DMA config, aborting\n");
1026 goto err_dma;
1027 }
1028 }
1029
1030 netdev->netdev_ops = &e1000_netdev_ops;
1031 e1000_set_ethtool_ops(netdev);
1032 netdev->watchdog_timeo = 5 * HZ;
1033 netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
1034
1035 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1036
1037 adapter->bd_number = cards_found;
1038
1039 /* setup the private structure */
1040
1041 err = e1000_sw_init(adapter);
1042 if (err)
1043 goto err_sw_init;
1044
1045 err = -EIO;
1046 if (hw->mac_type == e1000_ce4100) {
1047 hw->ce4100_gbe_mdio_base_virt =
1048 ioremap(pci_resource_start(pdev, BAR_1),
1049 pci_resource_len(pdev, BAR_1));
1050
1051 if (!hw->ce4100_gbe_mdio_base_virt)
1052 goto err_mdio_ioremap;
1053 }
1054
1055 if (hw->mac_type >= e1000_82543) {
1056 netdev->hw_features = NETIF_F_SG |
1057 NETIF_F_HW_CSUM |
1058 NETIF_F_HW_VLAN_CTAG_RX;
1059 netdev->features = NETIF_F_HW_VLAN_CTAG_TX |
1060 NETIF_F_HW_VLAN_CTAG_FILTER;
1061 }
1062
1063 if ((hw->mac_type >= e1000_82544) &&
1064 (hw->mac_type != e1000_82547))
1065 netdev->hw_features |= NETIF_F_TSO;
1066
1067 netdev->priv_flags |= IFF_SUPP_NOFCS;
1068
1069 netdev->features |= netdev->hw_features;
1070 netdev->hw_features |= (NETIF_F_RXCSUM |
1071 NETIF_F_RXALL |
1072 NETIF_F_RXFCS);
1073
1074 if (pci_using_dac) {
1075 netdev->features |= NETIF_F_HIGHDMA;
1076 netdev->vlan_features |= NETIF_F_HIGHDMA;
1077 }
1078
1079 netdev->vlan_features |= (NETIF_F_TSO |
1080 NETIF_F_HW_CSUM |
1081 NETIF_F_SG);
1082
1083 /* Do not set IFF_UNICAST_FLT for VMWare's 82545EM */
1084 if (hw->device_id != E1000_DEV_ID_82545EM_COPPER ||
1085 hw->subsystem_vendor_id != PCI_VENDOR_ID_VMWARE)
1086 netdev->priv_flags |= IFF_UNICAST_FLT;
1087
1088 adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
1089
1090 /* initialize eeprom parameters */
1091 if (e1000_init_eeprom_params(hw)) {
1092 e_err(probe, "EEPROM initialization failed\n");
1093 goto err_eeprom;
1094 }
1095
1096 /* before reading the EEPROM, reset the controller to
1097 * put the device in a known good starting state
1098 */
1099
1100 e1000_reset_hw(hw);
1101
1102 /* make sure the EEPROM is good */
1103 if (e1000_validate_eeprom_checksum(hw) < 0) {
1104 e_err(probe, "The EEPROM Checksum Is Not Valid\n");
1105 e1000_dump_eeprom(adapter);
1106 /* set MAC address to all zeroes to invalidate and temporary
1107 * disable this device for the user. This blocks regular
1108 * traffic while still permitting ethtool ioctls from reaching
1109 * the hardware as well as allowing the user to run the
1110 * interface after manually setting a hw addr using
1111 * `ip set address`
1112 */
1113 memset(hw->mac_addr, 0, netdev->addr_len);
1114 } else {
1115 /* copy the MAC address out of the EEPROM */
1116 if (e1000_read_mac_addr(hw))
1117 e_err(probe, "EEPROM Read Error\n");
1118 }
1119 /* don't block initialization here due to bad MAC address */
1120 memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len);
1121
1122 if (!is_valid_ether_addr(netdev->dev_addr))
1123 e_err(probe, "Invalid MAC Address\n");
1124
1125
1126 INIT_DELAYED_WORK(&adapter->watchdog_task, e1000_watchdog);
1127 INIT_DELAYED_WORK(&adapter->fifo_stall_task,
1128 e1000_82547_tx_fifo_stall_task);
1129 INIT_DELAYED_WORK(&adapter->phy_info_task, e1000_update_phy_info_task);
1130 INIT_WORK(&adapter->reset_task, e1000_reset_task);
1131
1132 e1000_check_options(adapter);
1133
1134 /* Initial Wake on LAN setting
1135 * If APM wake is enabled in the EEPROM,
1136 * enable the ACPI Magic Packet filter
1137 */
1138
1139 switch (hw->mac_type) {
1140 case e1000_82542_rev2_0:
1141 case e1000_82542_rev2_1:
1142 case e1000_82543:
1143 break;
1144 case e1000_82544:
1145 e1000_read_eeprom(hw,
1146 EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1147 eeprom_apme_mask = E1000_EEPROM_82544_APM;
1148 break;
1149 case e1000_82546:
1150 case e1000_82546_rev_3:
1151 if (er32(STATUS) & E1000_STATUS_FUNC_1) {
1152 e1000_read_eeprom(hw,
1153 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1154 break;
1155 }
1156 /* Fall Through */
1157 default:
1158 e1000_read_eeprom(hw,
1159 EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1160 break;
1161 }
1162 if (eeprom_data & eeprom_apme_mask)
1163 adapter->eeprom_wol |= E1000_WUFC_MAG;
1164
1165 /* now that we have the eeprom settings, apply the special cases
1166 * where the eeprom may be wrong or the board simply won't support
1167 * wake on lan on a particular port
1168 */
1169 switch (pdev->device) {
1170 case E1000_DEV_ID_82546GB_PCIE:
1171 adapter->eeprom_wol = 0;
1172 break;
1173 case E1000_DEV_ID_82546EB_FIBER:
1174 case E1000_DEV_ID_82546GB_FIBER:
1175 /* Wake events only supported on port A for dual fiber
1176 * regardless of eeprom setting
1177 */
1178 if (er32(STATUS) & E1000_STATUS_FUNC_1)
1179 adapter->eeprom_wol = 0;
1180 break;
1181 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1182 /* if quad port adapter, disable WoL on all but port A */
1183 if (global_quad_port_a != 0)
1184 adapter->eeprom_wol = 0;
1185 else
1186 adapter->quad_port_a = true;
1187 /* Reset for multiple quad port adapters */
1188 if (++global_quad_port_a == 4)
1189 global_quad_port_a = 0;
1190 break;
1191 }
1192
1193 /* initialize the wol settings based on the eeprom settings */
1194 adapter->wol = adapter->eeprom_wol;
1195 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1196
1197 /* Auto detect PHY address */
1198 if (hw->mac_type == e1000_ce4100) {
1199 for (i = 0; i < 32; i++) {
1200 hw->phy_addr = i;
1201 e1000_read_phy_reg(hw, PHY_ID2, &tmp);
1202
1203 if (tmp != 0 && tmp != 0xFF)
1204 break;
1205 }
1206
1207 if (i >= 32)
1208 goto err_eeprom;
1209 }
1210
1211 /* reset the hardware with the new settings */
1212 e1000_reset(adapter);
1213
1214 strcpy(netdev->name, "eth%d");
1215 err = register_netdev(netdev);
1216 if (err)
1217 goto err_register;
1218
1219 e1000_vlan_filter_on_off(adapter, false);
1220
1221 /* print bus type/speed/width info */
1222 e_info(probe, "(PCI%s:%dMHz:%d-bit) %pM\n",
1223 ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : ""),
1224 ((hw->bus_speed == e1000_bus_speed_133) ? 133 :
1225 (hw->bus_speed == e1000_bus_speed_120) ? 120 :
1226 (hw->bus_speed == e1000_bus_speed_100) ? 100 :
1227 (hw->bus_speed == e1000_bus_speed_66) ? 66 : 33),
1228 ((hw->bus_width == e1000_bus_width_64) ? 64 : 32),
1229 netdev->dev_addr);
1230
1231 /* carrier off reporting is important to ethtool even BEFORE open */
1232 netif_carrier_off(netdev);
1233
1234 e_info(probe, "Intel(R) PRO/1000 Network Connection\n");
1235
1236 cards_found++;
1237 return 0;
1238
1239err_register:
1240err_eeprom:
1241 e1000_phy_hw_reset(hw);
1242
1243 if (hw->flash_address)
1244 iounmap(hw->flash_address);
1245 kfree(adapter->tx_ring);
1246 kfree(adapter->rx_ring);
1247err_dma:
1248err_sw_init:
1249err_mdio_ioremap:
1250 iounmap(hw->ce4100_gbe_mdio_base_virt);
1251 iounmap(hw->hw_addr);
1252err_ioremap:
1253 free_netdev(netdev);
1254err_alloc_etherdev:
1255 pci_release_selected_regions(pdev, bars);
1256err_pci_reg:
1257 pci_disable_device(pdev);
1258 return err;
1259}
1260
1261/**
1262 * e1000_remove - Device Removal Routine
1263 * @pdev: PCI device information struct
1264 *
1265 * e1000_remove is called by the PCI subsystem to alert the driver
1266 * that it should release a PCI device. That could be caused by a
1267 * Hot-Plug event, or because the driver is going to be removed from
1268 * memory.
1269 **/
1270static void e1000_remove(struct pci_dev *pdev)
1271{
1272 struct net_device *netdev = pci_get_drvdata(pdev);
1273 struct e1000_adapter *adapter = netdev_priv(netdev);
1274 struct e1000_hw *hw = &adapter->hw;
1275
1276 e1000_down_and_stop(adapter);
1277 e1000_release_manageability(adapter);
1278
1279 unregister_netdev(netdev);
1280
1281 e1000_phy_hw_reset(hw);
1282
1283 kfree(adapter->tx_ring);
1284 kfree(adapter->rx_ring);
1285
1286 if (hw->mac_type == e1000_ce4100)
1287 iounmap(hw->ce4100_gbe_mdio_base_virt);
1288 iounmap(hw->hw_addr);
1289 if (hw->flash_address)
1290 iounmap(hw->flash_address);
1291 pci_release_selected_regions(pdev, adapter->bars);
1292
1293 free_netdev(netdev);
1294
1295 pci_disable_device(pdev);
1296}
1297
1298/**
1299 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1300 * @adapter: board private structure to initialize
1301 *
1302 * e1000_sw_init initializes the Adapter private data structure.
1303 * e1000_init_hw_struct MUST be called before this function
1304 **/
1305static int e1000_sw_init(struct e1000_adapter *adapter)
1306{
1307 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1308
1309 adapter->num_tx_queues = 1;
1310 adapter->num_rx_queues = 1;
1311
1312 if (e1000_alloc_queues(adapter)) {
1313 e_err(probe, "Unable to allocate memory for queues\n");
1314 return -ENOMEM;
1315 }
1316
1317 /* Explicitly disable IRQ since the NIC can be in any state. */
1318 e1000_irq_disable(adapter);
1319
1320 spin_lock_init(&adapter->stats_lock);
1321
1322 set_bit(__E1000_DOWN, &adapter->flags);
1323
1324 return 0;
1325}
1326
1327/**
1328 * e1000_alloc_queues - Allocate memory for all rings
1329 * @adapter: board private structure to initialize
1330 *
1331 * We allocate one ring per queue at run-time since we don't know the
1332 * number of queues at compile-time.
1333 **/
1334static int e1000_alloc_queues(struct e1000_adapter *adapter)
1335{
1336 adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1337 sizeof(struct e1000_tx_ring), GFP_KERNEL);
1338 if (!adapter->tx_ring)
1339 return -ENOMEM;
1340
1341 adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1342 sizeof(struct e1000_rx_ring), GFP_KERNEL);
1343 if (!adapter->rx_ring) {
1344 kfree(adapter->tx_ring);
1345 return -ENOMEM;
1346 }
1347
1348 return E1000_SUCCESS;
1349}
1350
1351/**
1352 * e1000_open - Called when a network interface is made active
1353 * @netdev: network interface device structure
1354 *
1355 * Returns 0 on success, negative value on failure
1356 *
1357 * The open entry point is called when a network interface is made
1358 * active by the system (IFF_UP). At this point all resources needed
1359 * for transmit and receive operations are allocated, the interrupt
1360 * handler is registered with the OS, the watchdog task is started,
1361 * and the stack is notified that the interface is ready.
1362 **/
1363static int e1000_open(struct net_device *netdev)
1364{
1365 struct e1000_adapter *adapter = netdev_priv(netdev);
1366 struct e1000_hw *hw = &adapter->hw;
1367 int err;
1368
1369 /* disallow open during test */
1370 if (test_bit(__E1000_TESTING, &adapter->flags))
1371 return -EBUSY;
1372
1373 netif_carrier_off(netdev);
1374
1375 /* allocate transmit descriptors */
1376 err = e1000_setup_all_tx_resources(adapter);
1377 if (err)
1378 goto err_setup_tx;
1379
1380 /* allocate receive descriptors */
1381 err = e1000_setup_all_rx_resources(adapter);
1382 if (err)
1383 goto err_setup_rx;
1384
1385 e1000_power_up_phy(adapter);
1386
1387 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1388 if ((hw->mng_cookie.status &
1389 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1390 e1000_update_mng_vlan(adapter);
1391 }
1392
1393 /* before we allocate an interrupt, we must be ready to handle it.
1394 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1395 * as soon as we call pci_request_irq, so we have to setup our
1396 * clean_rx handler before we do so.
1397 */
1398 e1000_configure(adapter);
1399
1400 err = e1000_request_irq(adapter);
1401 if (err)
1402 goto err_req_irq;
1403
1404 /* From here on the code is the same as e1000_up() */
1405 clear_bit(__E1000_DOWN, &adapter->flags);
1406
1407 napi_enable(&adapter->napi);
1408
1409 e1000_irq_enable(adapter);
1410
1411 netif_start_queue(netdev);
1412
1413 /* fire a link status change interrupt to start the watchdog */
1414 ew32(ICS, E1000_ICS_LSC);
1415
1416 return E1000_SUCCESS;
1417
1418err_req_irq:
1419 e1000_power_down_phy(adapter);
1420 e1000_free_all_rx_resources(adapter);
1421err_setup_rx:
1422 e1000_free_all_tx_resources(adapter);
1423err_setup_tx:
1424 e1000_reset(adapter);
1425
1426 return err;
1427}
1428
1429/**
1430 * e1000_close - Disables a network interface
1431 * @netdev: network interface device structure
1432 *
1433 * Returns 0, this is not allowed to fail
1434 *
1435 * The close entry point is called when an interface is de-activated
1436 * by the OS. The hardware is still under the drivers control, but
1437 * needs to be disabled. A global MAC reset is issued to stop the
1438 * hardware, and all transmit and receive resources are freed.
1439 **/
1440static int e1000_close(struct net_device *netdev)
1441{
1442 struct e1000_adapter *adapter = netdev_priv(netdev);
1443 struct e1000_hw *hw = &adapter->hw;
1444 int count = E1000_CHECK_RESET_COUNT;
1445
1446 while (test_bit(__E1000_RESETTING, &adapter->flags) && count--)
1447 usleep_range(10000, 20000);
1448
1449 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
1450 e1000_down(adapter);
1451 e1000_power_down_phy(adapter);
1452 e1000_free_irq(adapter);
1453
1454 e1000_free_all_tx_resources(adapter);
1455 e1000_free_all_rx_resources(adapter);
1456
1457 /* kill manageability vlan ID if supported, but not if a vlan with
1458 * the same ID is registered on the host OS (let 8021q kill it)
1459 */
1460 if ((hw->mng_cookie.status &
1461 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1462 !test_bit(adapter->mng_vlan_id, adapter->active_vlans)) {
1463 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
1464 adapter->mng_vlan_id);
1465 }
1466
1467 return 0;
1468}
1469
1470/**
1471 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1472 * @adapter: address of board private structure
1473 * @start: address of beginning of memory
1474 * @len: length of memory
1475 **/
1476static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start,
1477 unsigned long len)
1478{
1479 struct e1000_hw *hw = &adapter->hw;
1480 unsigned long begin = (unsigned long)start;
1481 unsigned long end = begin + len;
1482
1483 /* First rev 82545 and 82546 need to not allow any memory
1484 * write location to cross 64k boundary due to errata 23
1485 */
1486 if (hw->mac_type == e1000_82545 ||
1487 hw->mac_type == e1000_ce4100 ||
1488 hw->mac_type == e1000_82546) {
1489 return ((begin ^ (end - 1)) >> 16) != 0 ? false : true;
1490 }
1491
1492 return true;
1493}
1494
1495/**
1496 * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1497 * @adapter: board private structure
1498 * @txdr: tx descriptor ring (for a specific queue) to setup
1499 *
1500 * Return 0 on success, negative on failure
1501 **/
1502static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
1503 struct e1000_tx_ring *txdr)
1504{
1505 struct pci_dev *pdev = adapter->pdev;
1506 int size;
1507
1508 size = sizeof(struct e1000_tx_buffer) * txdr->count;
1509 txdr->buffer_info = vzalloc(size);
1510 if (!txdr->buffer_info)
1511 return -ENOMEM;
1512
1513 /* round up to nearest 4K */
1514
1515 txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1516 txdr->size = ALIGN(txdr->size, 4096);
1517
1518 txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
1519 GFP_KERNEL);
1520 if (!txdr->desc) {
1521setup_tx_desc_die:
1522 vfree(txdr->buffer_info);
1523 return -ENOMEM;
1524 }
1525
1526 /* Fix for errata 23, can't cross 64kB boundary */
1527 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1528 void *olddesc = txdr->desc;
1529 dma_addr_t olddma = txdr->dma;
1530 e_err(tx_err, "txdr align check failed: %u bytes at %p\n",
1531 txdr->size, txdr->desc);
1532 /* Try again, without freeing the previous */
1533 txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size,
1534 &txdr->dma, GFP_KERNEL);
1535 /* Failed allocation, critical failure */
1536 if (!txdr->desc) {
1537 dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1538 olddma);
1539 goto setup_tx_desc_die;
1540 }
1541
1542 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1543 /* give up */
1544 dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
1545 txdr->dma);
1546 dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1547 olddma);
1548 e_err(probe, "Unable to allocate aligned memory "
1549 "for the transmit descriptor ring\n");
1550 vfree(txdr->buffer_info);
1551 return -ENOMEM;
1552 } else {
1553 /* Free old allocation, new allocation was successful */
1554 dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1555 olddma);
1556 }
1557 }
1558 memset(txdr->desc, 0, txdr->size);
1559
1560 txdr->next_to_use = 0;
1561 txdr->next_to_clean = 0;
1562
1563 return 0;
1564}
1565
1566/**
1567 * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1568 * (Descriptors) for all queues
1569 * @adapter: board private structure
1570 *
1571 * Return 0 on success, negative on failure
1572 **/
1573int e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1574{
1575 int i, err = 0;
1576
1577 for (i = 0; i < adapter->num_tx_queues; i++) {
1578 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1579 if (err) {
1580 e_err(probe, "Allocation for Tx Queue %u failed\n", i);
1581 for (i-- ; i >= 0; i--)
1582 e1000_free_tx_resources(adapter,
1583 &adapter->tx_ring[i]);
1584 break;
1585 }
1586 }
1587
1588 return err;
1589}
1590
1591/**
1592 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1593 * @adapter: board private structure
1594 *
1595 * Configure the Tx unit of the MAC after a reset.
1596 **/
1597static void e1000_configure_tx(struct e1000_adapter *adapter)
1598{
1599 u64 tdba;
1600 struct e1000_hw *hw = &adapter->hw;
1601 u32 tdlen, tctl, tipg;
1602 u32 ipgr1, ipgr2;
1603
1604 /* Setup the HW Tx Head and Tail descriptor pointers */
1605
1606 switch (adapter->num_tx_queues) {
1607 case 1:
1608 default:
1609 tdba = adapter->tx_ring[0].dma;
1610 tdlen = adapter->tx_ring[0].count *
1611 sizeof(struct e1000_tx_desc);
1612 ew32(TDLEN, tdlen);
1613 ew32(TDBAH, (tdba >> 32));
1614 ew32(TDBAL, (tdba & 0x00000000ffffffffULL));
1615 ew32(TDT, 0);
1616 ew32(TDH, 0);
1617 adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ?
1618 E1000_TDH : E1000_82542_TDH);
1619 adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ?
1620 E1000_TDT : E1000_82542_TDT);
1621 break;
1622 }
1623
1624 /* Set the default values for the Tx Inter Packet Gap timer */
1625 if ((hw->media_type == e1000_media_type_fiber ||
1626 hw->media_type == e1000_media_type_internal_serdes))
1627 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1628 else
1629 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1630
1631 switch (hw->mac_type) {
1632 case e1000_82542_rev2_0:
1633 case e1000_82542_rev2_1:
1634 tipg = DEFAULT_82542_TIPG_IPGT;
1635 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1636 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1637 break;
1638 default:
1639 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1640 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1641 break;
1642 }
1643 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1644 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1645 ew32(TIPG, tipg);
1646
1647 /* Set the Tx Interrupt Delay register */
1648
1649 ew32(TIDV, adapter->tx_int_delay);
1650 if (hw->mac_type >= e1000_82540)
1651 ew32(TADV, adapter->tx_abs_int_delay);
1652
1653 /* Program the Transmit Control Register */
1654
1655 tctl = er32(TCTL);
1656 tctl &= ~E1000_TCTL_CT;
1657 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1658 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1659
1660 e1000_config_collision_dist(hw);
1661
1662 /* Setup Transmit Descriptor Settings for eop descriptor */
1663 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1664
1665 /* only set IDE if we are delaying interrupts using the timers */
1666 if (adapter->tx_int_delay)
1667 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1668
1669 if (hw->mac_type < e1000_82543)
1670 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1671 else
1672 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1673
1674 /* Cache if we're 82544 running in PCI-X because we'll
1675 * need this to apply a workaround later in the send path.
1676 */
1677 if (hw->mac_type == e1000_82544 &&
1678 hw->bus_type == e1000_bus_type_pcix)
1679 adapter->pcix_82544 = true;
1680
1681 ew32(TCTL, tctl);
1682
1683}
1684
1685/**
1686 * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1687 * @adapter: board private structure
1688 * @rxdr: rx descriptor ring (for a specific queue) to setup
1689 *
1690 * Returns 0 on success, negative on failure
1691 **/
1692static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
1693 struct e1000_rx_ring *rxdr)
1694{
1695 struct pci_dev *pdev = adapter->pdev;
1696 int size, desc_len;
1697
1698 size = sizeof(struct e1000_rx_buffer) * rxdr->count;
1699 rxdr->buffer_info = vzalloc(size);
1700 if (!rxdr->buffer_info)
1701 return -ENOMEM;
1702
1703 desc_len = sizeof(struct e1000_rx_desc);
1704
1705 /* Round up to nearest 4K */
1706
1707 rxdr->size = rxdr->count * desc_len;
1708 rxdr->size = ALIGN(rxdr->size, 4096);
1709
1710 rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
1711 GFP_KERNEL);
1712 if (!rxdr->desc) {
1713setup_rx_desc_die:
1714 vfree(rxdr->buffer_info);
1715 return -ENOMEM;
1716 }
1717
1718 /* Fix for errata 23, can't cross 64kB boundary */
1719 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1720 void *olddesc = rxdr->desc;
1721 dma_addr_t olddma = rxdr->dma;
1722 e_err(rx_err, "rxdr align check failed: %u bytes at %p\n",
1723 rxdr->size, rxdr->desc);
1724 /* Try again, without freeing the previous */
1725 rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size,
1726 &rxdr->dma, GFP_KERNEL);
1727 /* Failed allocation, critical failure */
1728 if (!rxdr->desc) {
1729 dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1730 olddma);
1731 goto setup_rx_desc_die;
1732 }
1733
1734 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1735 /* give up */
1736 dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
1737 rxdr->dma);
1738 dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1739 olddma);
1740 e_err(probe, "Unable to allocate aligned memory for "
1741 "the Rx descriptor ring\n");
1742 goto setup_rx_desc_die;
1743 } else {
1744 /* Free old allocation, new allocation was successful */
1745 dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1746 olddma);
1747 }
1748 }
1749 memset(rxdr->desc, 0, rxdr->size);
1750
1751 rxdr->next_to_clean = 0;
1752 rxdr->next_to_use = 0;
1753 rxdr->rx_skb_top = NULL;
1754
1755 return 0;
1756}
1757
1758/**
1759 * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1760 * (Descriptors) for all queues
1761 * @adapter: board private structure
1762 *
1763 * Return 0 on success, negative on failure
1764 **/
1765int e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1766{
1767 int i, err = 0;
1768
1769 for (i = 0; i < adapter->num_rx_queues; i++) {
1770 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1771 if (err) {
1772 e_err(probe, "Allocation for Rx Queue %u failed\n", i);
1773 for (i-- ; i >= 0; i--)
1774 e1000_free_rx_resources(adapter,
1775 &adapter->rx_ring[i]);
1776 break;
1777 }
1778 }
1779
1780 return err;
1781}
1782
1783/**
1784 * e1000_setup_rctl - configure the receive control registers
1785 * @adapter: Board private structure
1786 **/
1787static void e1000_setup_rctl(struct e1000_adapter *adapter)
1788{
1789 struct e1000_hw *hw = &adapter->hw;
1790 u32 rctl;
1791
1792 rctl = er32(RCTL);
1793
1794 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1795
1796 rctl |= E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
1797 E1000_RCTL_RDMTS_HALF |
1798 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1799
1800 if (hw->tbi_compatibility_on == 1)
1801 rctl |= E1000_RCTL_SBP;
1802 else
1803 rctl &= ~E1000_RCTL_SBP;
1804
1805 if (adapter->netdev->mtu <= ETH_DATA_LEN)
1806 rctl &= ~E1000_RCTL_LPE;
1807 else
1808 rctl |= E1000_RCTL_LPE;
1809
1810 /* Setup buffer sizes */
1811 rctl &= ~E1000_RCTL_SZ_4096;
1812 rctl |= E1000_RCTL_BSEX;
1813 switch (adapter->rx_buffer_len) {
1814 case E1000_RXBUFFER_2048:
1815 default:
1816 rctl |= E1000_RCTL_SZ_2048;
1817 rctl &= ~E1000_RCTL_BSEX;
1818 break;
1819 case E1000_RXBUFFER_4096:
1820 rctl |= E1000_RCTL_SZ_4096;
1821 break;
1822 case E1000_RXBUFFER_8192:
1823 rctl |= E1000_RCTL_SZ_8192;
1824 break;
1825 case E1000_RXBUFFER_16384:
1826 rctl |= E1000_RCTL_SZ_16384;
1827 break;
1828 }
1829
1830 /* This is useful for sniffing bad packets. */
1831 if (adapter->netdev->features & NETIF_F_RXALL) {
1832 /* UPE and MPE will be handled by normal PROMISC logic
1833 * in e1000e_set_rx_mode
1834 */
1835 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
1836 E1000_RCTL_BAM | /* RX All Bcast Pkts */
1837 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
1838
1839 rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
1840 E1000_RCTL_DPF | /* Allow filtered pause */
1841 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
1842 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
1843 * and that breaks VLANs.
1844 */
1845 }
1846
1847 ew32(RCTL, rctl);
1848}
1849
1850/**
1851 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1852 * @adapter: board private structure
1853 *
1854 * Configure the Rx unit of the MAC after a reset.
1855 **/
1856static void e1000_configure_rx(struct e1000_adapter *adapter)
1857{
1858 u64 rdba;
1859 struct e1000_hw *hw = &adapter->hw;
1860 u32 rdlen, rctl, rxcsum;
1861
1862 if (adapter->netdev->mtu > ETH_DATA_LEN) {
1863 rdlen = adapter->rx_ring[0].count *
1864 sizeof(struct e1000_rx_desc);
1865 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
1866 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
1867 } else {
1868 rdlen = adapter->rx_ring[0].count *
1869 sizeof(struct e1000_rx_desc);
1870 adapter->clean_rx = e1000_clean_rx_irq;
1871 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1872 }
1873
1874 /* disable receives while setting up the descriptors */
1875 rctl = er32(RCTL);
1876 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1877
1878 /* set the Receive Delay Timer Register */
1879 ew32(RDTR, adapter->rx_int_delay);
1880
1881 if (hw->mac_type >= e1000_82540) {
1882 ew32(RADV, adapter->rx_abs_int_delay);
1883 if (adapter->itr_setting != 0)
1884 ew32(ITR, 1000000000 / (adapter->itr * 256));
1885 }
1886
1887 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1888 * the Base and Length of the Rx Descriptor Ring
1889 */
1890 switch (adapter->num_rx_queues) {
1891 case 1:
1892 default:
1893 rdba = adapter->rx_ring[0].dma;
1894 ew32(RDLEN, rdlen);
1895 ew32(RDBAH, (rdba >> 32));
1896 ew32(RDBAL, (rdba & 0x00000000ffffffffULL));
1897 ew32(RDT, 0);
1898 ew32(RDH, 0);
1899 adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ?
1900 E1000_RDH : E1000_82542_RDH);
1901 adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ?
1902 E1000_RDT : E1000_82542_RDT);
1903 break;
1904 }
1905
1906 /* Enable 82543 Receive Checksum Offload for TCP and UDP */
1907 if (hw->mac_type >= e1000_82543) {
1908 rxcsum = er32(RXCSUM);
1909 if (adapter->rx_csum)
1910 rxcsum |= E1000_RXCSUM_TUOFL;
1911 else
1912 /* don't need to clear IPPCSE as it defaults to 0 */
1913 rxcsum &= ~E1000_RXCSUM_TUOFL;
1914 ew32(RXCSUM, rxcsum);
1915 }
1916
1917 /* Enable Receives */
1918 ew32(RCTL, rctl | E1000_RCTL_EN);
1919}
1920
1921/**
1922 * e1000_free_tx_resources - Free Tx Resources per Queue
1923 * @adapter: board private structure
1924 * @tx_ring: Tx descriptor ring for a specific queue
1925 *
1926 * Free all transmit software resources
1927 **/
1928static void e1000_free_tx_resources(struct e1000_adapter *adapter,
1929 struct e1000_tx_ring *tx_ring)
1930{
1931 struct pci_dev *pdev = adapter->pdev;
1932
1933 e1000_clean_tx_ring(adapter, tx_ring);
1934
1935 vfree(tx_ring->buffer_info);
1936 tx_ring->buffer_info = NULL;
1937
1938 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1939 tx_ring->dma);
1940
1941 tx_ring->desc = NULL;
1942}
1943
1944/**
1945 * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1946 * @adapter: board private structure
1947 *
1948 * Free all transmit software resources
1949 **/
1950void e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1951{
1952 int i;
1953
1954 for (i = 0; i < adapter->num_tx_queues; i++)
1955 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1956}
1957
1958static void
1959e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1960 struct e1000_tx_buffer *buffer_info)
1961{
1962 if (buffer_info->dma) {
1963 if (buffer_info->mapped_as_page)
1964 dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1965 buffer_info->length, DMA_TO_DEVICE);
1966 else
1967 dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1968 buffer_info->length,
1969 DMA_TO_DEVICE);
1970 buffer_info->dma = 0;
1971 }
1972 if (buffer_info->skb) {
1973 dev_kfree_skb_any(buffer_info->skb);
1974 buffer_info->skb = NULL;
1975 }
1976 buffer_info->time_stamp = 0;
1977 /* buffer_info must be completely set up in the transmit path */
1978}
1979
1980/**
1981 * e1000_clean_tx_ring - Free Tx Buffers
1982 * @adapter: board private structure
1983 * @tx_ring: ring to be cleaned
1984 **/
1985static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
1986 struct e1000_tx_ring *tx_ring)
1987{
1988 struct e1000_hw *hw = &adapter->hw;
1989 struct e1000_tx_buffer *buffer_info;
1990 unsigned long size;
1991 unsigned int i;
1992
1993 /* Free all the Tx ring sk_buffs */
1994
1995 for (i = 0; i < tx_ring->count; i++) {
1996 buffer_info = &tx_ring->buffer_info[i];
1997 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
1998 }
1999
2000 netdev_reset_queue(adapter->netdev);
2001 size = sizeof(struct e1000_tx_buffer) * tx_ring->count;
2002 memset(tx_ring->buffer_info, 0, size);
2003
2004 /* Zero out the descriptor ring */
2005
2006 memset(tx_ring->desc, 0, tx_ring->size);
2007
2008 tx_ring->next_to_use = 0;
2009 tx_ring->next_to_clean = 0;
2010 tx_ring->last_tx_tso = false;
2011
2012 writel(0, hw->hw_addr + tx_ring->tdh);
2013 writel(0, hw->hw_addr + tx_ring->tdt);
2014}
2015
2016/**
2017 * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2018 * @adapter: board private structure
2019 **/
2020static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
2021{
2022 int i;
2023
2024 for (i = 0; i < adapter->num_tx_queues; i++)
2025 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
2026}
2027
2028/**
2029 * e1000_free_rx_resources - Free Rx Resources
2030 * @adapter: board private structure
2031 * @rx_ring: ring to clean the resources from
2032 *
2033 * Free all receive software resources
2034 **/
2035static void e1000_free_rx_resources(struct e1000_adapter *adapter,
2036 struct e1000_rx_ring *rx_ring)
2037{
2038 struct pci_dev *pdev = adapter->pdev;
2039
2040 e1000_clean_rx_ring(adapter, rx_ring);
2041
2042 vfree(rx_ring->buffer_info);
2043 rx_ring->buffer_info = NULL;
2044
2045 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2046 rx_ring->dma);
2047
2048 rx_ring->desc = NULL;
2049}
2050
2051/**
2052 * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2053 * @adapter: board private structure
2054 *
2055 * Free all receive software resources
2056 **/
2057void e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2058{
2059 int i;
2060
2061 for (i = 0; i < adapter->num_rx_queues; i++)
2062 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2063}
2064
2065#define E1000_HEADROOM (NET_SKB_PAD + NET_IP_ALIGN)
2066static unsigned int e1000_frag_len(const struct e1000_adapter *a)
2067{
2068 return SKB_DATA_ALIGN(a->rx_buffer_len + E1000_HEADROOM) +
2069 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2070}
2071
2072static void *e1000_alloc_frag(const struct e1000_adapter *a)
2073{
2074 unsigned int len = e1000_frag_len(a);
2075 u8 *data = netdev_alloc_frag(len);
2076
2077 if (likely(data))
2078 data += E1000_HEADROOM;
2079 return data;
2080}
2081
2082/**
2083 * e1000_clean_rx_ring - Free Rx Buffers per Queue
2084 * @adapter: board private structure
2085 * @rx_ring: ring to free buffers from
2086 **/
2087static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
2088 struct e1000_rx_ring *rx_ring)
2089{
2090 struct e1000_hw *hw = &adapter->hw;
2091 struct e1000_rx_buffer *buffer_info;
2092 struct pci_dev *pdev = adapter->pdev;
2093 unsigned long size;
2094 unsigned int i;
2095
2096 /* Free all the Rx netfrags */
2097 for (i = 0; i < rx_ring->count; i++) {
2098 buffer_info = &rx_ring->buffer_info[i];
2099 if (adapter->clean_rx == e1000_clean_rx_irq) {
2100 if (buffer_info->dma)
2101 dma_unmap_single(&pdev->dev, buffer_info->dma,
2102 adapter->rx_buffer_len,
2103 DMA_FROM_DEVICE);
2104 if (buffer_info->rxbuf.data) {
2105 skb_free_frag(buffer_info->rxbuf.data);
2106 buffer_info->rxbuf.data = NULL;
2107 }
2108 } else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq) {
2109 if (buffer_info->dma)
2110 dma_unmap_page(&pdev->dev, buffer_info->dma,
2111 adapter->rx_buffer_len,
2112 DMA_FROM_DEVICE);
2113 if (buffer_info->rxbuf.page) {
2114 put_page(buffer_info->rxbuf.page);
2115 buffer_info->rxbuf.page = NULL;
2116 }
2117 }
2118
2119 buffer_info->dma = 0;
2120 }
2121
2122 /* there also may be some cached data from a chained receive */
2123 napi_free_frags(&adapter->napi);
2124 rx_ring->rx_skb_top = NULL;
2125
2126 size = sizeof(struct e1000_rx_buffer) * rx_ring->count;
2127 memset(rx_ring->buffer_info, 0, size);
2128
2129 /* Zero out the descriptor ring */
2130 memset(rx_ring->desc, 0, rx_ring->size);
2131
2132 rx_ring->next_to_clean = 0;
2133 rx_ring->next_to_use = 0;
2134
2135 writel(0, hw->hw_addr + rx_ring->rdh);
2136 writel(0, hw->hw_addr + rx_ring->rdt);
2137}
2138
2139/**
2140 * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2141 * @adapter: board private structure
2142 **/
2143static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2144{
2145 int i;
2146
2147 for (i = 0; i < adapter->num_rx_queues; i++)
2148 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2149}
2150
2151/* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2152 * and memory write and invalidate disabled for certain operations
2153 */
2154static void e1000_enter_82542_rst(struct e1000_adapter *adapter)
2155{
2156 struct e1000_hw *hw = &adapter->hw;
2157 struct net_device *netdev = adapter->netdev;
2158 u32 rctl;
2159
2160 e1000_pci_clear_mwi(hw);
2161
2162 rctl = er32(RCTL);
2163 rctl |= E1000_RCTL_RST;
2164 ew32(RCTL, rctl);
2165 E1000_WRITE_FLUSH();
2166 mdelay(5);
2167
2168 if (netif_running(netdev))
2169 e1000_clean_all_rx_rings(adapter);
2170}
2171
2172static void e1000_leave_82542_rst(struct e1000_adapter *adapter)
2173{
2174 struct e1000_hw *hw = &adapter->hw;
2175 struct net_device *netdev = adapter->netdev;
2176 u32 rctl;
2177
2178 rctl = er32(RCTL);
2179 rctl &= ~E1000_RCTL_RST;
2180 ew32(RCTL, rctl);
2181 E1000_WRITE_FLUSH();
2182 mdelay(5);
2183
2184 if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
2185 e1000_pci_set_mwi(hw);
2186
2187 if (netif_running(netdev)) {
2188 /* No need to loop, because 82542 supports only 1 queue */
2189 struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2190 e1000_configure_rx(adapter);
2191 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2192 }
2193}
2194
2195/**
2196 * e1000_set_mac - Change the Ethernet Address of the NIC
2197 * @netdev: network interface device structure
2198 * @p: pointer to an address structure
2199 *
2200 * Returns 0 on success, negative on failure
2201 **/
2202static int e1000_set_mac(struct net_device *netdev, void *p)
2203{
2204 struct e1000_adapter *adapter = netdev_priv(netdev);
2205 struct e1000_hw *hw = &adapter->hw;
2206 struct sockaddr *addr = p;
2207
2208 if (!is_valid_ether_addr(addr->sa_data))
2209 return -EADDRNOTAVAIL;
2210
2211 /* 82542 2.0 needs to be in reset to write receive address registers */
2212
2213 if (hw->mac_type == e1000_82542_rev2_0)
2214 e1000_enter_82542_rst(adapter);
2215
2216 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2217 memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
2218
2219 e1000_rar_set(hw, hw->mac_addr, 0);
2220
2221 if (hw->mac_type == e1000_82542_rev2_0)
2222 e1000_leave_82542_rst(adapter);
2223
2224 return 0;
2225}
2226
2227/**
2228 * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2229 * @netdev: network interface device structure
2230 *
2231 * The set_rx_mode entry point is called whenever the unicast or multicast
2232 * address lists or the network interface flags are updated. This routine is
2233 * responsible for configuring the hardware for proper unicast, multicast,
2234 * promiscuous mode, and all-multi behavior.
2235 **/
2236static void e1000_set_rx_mode(struct net_device *netdev)
2237{
2238 struct e1000_adapter *adapter = netdev_priv(netdev);
2239 struct e1000_hw *hw = &adapter->hw;
2240 struct netdev_hw_addr *ha;
2241 bool use_uc = false;
2242 u32 rctl;
2243 u32 hash_value;
2244 int i, rar_entries = E1000_RAR_ENTRIES;
2245 int mta_reg_count = E1000_NUM_MTA_REGISTERS;
2246 u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC);
2247
2248 if (!mcarray)
2249 return;
2250
2251 /* Check for Promiscuous and All Multicast modes */
2252
2253 rctl = er32(RCTL);
2254
2255 if (netdev->flags & IFF_PROMISC) {
2256 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2257 rctl &= ~E1000_RCTL_VFE;
2258 } else {
2259 if (netdev->flags & IFF_ALLMULTI)
2260 rctl |= E1000_RCTL_MPE;
2261 else
2262 rctl &= ~E1000_RCTL_MPE;
2263 /* Enable VLAN filter if there is a VLAN */
2264 if (e1000_vlan_used(adapter))
2265 rctl |= E1000_RCTL_VFE;
2266 }
2267
2268 if (netdev_uc_count(netdev) > rar_entries - 1) {
2269 rctl |= E1000_RCTL_UPE;
2270 } else if (!(netdev->flags & IFF_PROMISC)) {
2271 rctl &= ~E1000_RCTL_UPE;
2272 use_uc = true;
2273 }
2274
2275 ew32(RCTL, rctl);
2276
2277 /* 82542 2.0 needs to be in reset to write receive address registers */
2278
2279 if (hw->mac_type == e1000_82542_rev2_0)
2280 e1000_enter_82542_rst(adapter);
2281
2282 /* load the first 14 addresses into the exact filters 1-14. Unicast
2283 * addresses take precedence to avoid disabling unicast filtering
2284 * when possible.
2285 *
2286 * RAR 0 is used for the station MAC address
2287 * if there are not 14 addresses, go ahead and clear the filters
2288 */
2289 i = 1;
2290 if (use_uc)
2291 netdev_for_each_uc_addr(ha, netdev) {
2292 if (i == rar_entries)
2293 break;
2294 e1000_rar_set(hw, ha->addr, i++);
2295 }
2296
2297 netdev_for_each_mc_addr(ha, netdev) {
2298 if (i == rar_entries) {
2299 /* load any remaining addresses into the hash table */
2300 u32 hash_reg, hash_bit, mta;
2301 hash_value = e1000_hash_mc_addr(hw, ha->addr);
2302 hash_reg = (hash_value >> 5) & 0x7F;
2303 hash_bit = hash_value & 0x1F;
2304 mta = (1 << hash_bit);
2305 mcarray[hash_reg] |= mta;
2306 } else {
2307 e1000_rar_set(hw, ha->addr, i++);
2308 }
2309 }
2310
2311 for (; i < rar_entries; i++) {
2312 E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2313 E1000_WRITE_FLUSH();
2314 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2315 E1000_WRITE_FLUSH();
2316 }
2317
2318 /* write the hash table completely, write from bottom to avoid
2319 * both stupid write combining chipsets, and flushing each write
2320 */
2321 for (i = mta_reg_count - 1; i >= 0 ; i--) {
2322 /* If we are on an 82544 has an errata where writing odd
2323 * offsets overwrites the previous even offset, but writing
2324 * backwards over the range solves the issue by always
2325 * writing the odd offset first
2326 */
2327 E1000_WRITE_REG_ARRAY(hw, MTA, i, mcarray[i]);
2328 }
2329 E1000_WRITE_FLUSH();
2330
2331 if (hw->mac_type == e1000_82542_rev2_0)
2332 e1000_leave_82542_rst(adapter);
2333
2334 kfree(mcarray);
2335}
2336
2337/**
2338 * e1000_update_phy_info_task - get phy info
2339 * @work: work struct contained inside adapter struct
2340 *
2341 * Need to wait a few seconds after link up to get diagnostic information from
2342 * the phy
2343 */
2344static void e1000_update_phy_info_task(struct work_struct *work)
2345{
2346 struct e1000_adapter *adapter = container_of(work,
2347 struct e1000_adapter,
2348 phy_info_task.work);
2349
2350 e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2351}
2352
2353/**
2354 * e1000_82547_tx_fifo_stall_task - task to complete work
2355 * @work: work struct contained inside adapter struct
2356 **/
2357static void e1000_82547_tx_fifo_stall_task(struct work_struct *work)
2358{
2359 struct e1000_adapter *adapter = container_of(work,
2360 struct e1000_adapter,
2361 fifo_stall_task.work);
2362 struct e1000_hw *hw = &adapter->hw;
2363 struct net_device *netdev = adapter->netdev;
2364 u32 tctl;
2365
2366 if (atomic_read(&adapter->tx_fifo_stall)) {
2367 if ((er32(TDT) == er32(TDH)) &&
2368 (er32(TDFT) == er32(TDFH)) &&
2369 (er32(TDFTS) == er32(TDFHS))) {
2370 tctl = er32(TCTL);
2371 ew32(TCTL, tctl & ~E1000_TCTL_EN);
2372 ew32(TDFT, adapter->tx_head_addr);
2373 ew32(TDFH, adapter->tx_head_addr);
2374 ew32(TDFTS, adapter->tx_head_addr);
2375 ew32(TDFHS, adapter->tx_head_addr);
2376 ew32(TCTL, tctl);
2377 E1000_WRITE_FLUSH();
2378
2379 adapter->tx_fifo_head = 0;
2380 atomic_set(&adapter->tx_fifo_stall, 0);
2381 netif_wake_queue(netdev);
2382 } else if (!test_bit(__E1000_DOWN, &adapter->flags)) {
2383 schedule_delayed_work(&adapter->fifo_stall_task, 1);
2384 }
2385 }
2386}
2387
2388bool e1000_has_link(struct e1000_adapter *adapter)
2389{
2390 struct e1000_hw *hw = &adapter->hw;
2391 bool link_active = false;
2392
2393 /* get_link_status is set on LSC (link status) interrupt or rx
2394 * sequence error interrupt (except on intel ce4100).
2395 * get_link_status will stay false until the
2396 * e1000_check_for_link establishes link for copper adapters
2397 * ONLY
2398 */
2399 switch (hw->media_type) {
2400 case e1000_media_type_copper:
2401 if (hw->mac_type == e1000_ce4100)
2402 hw->get_link_status = 1;
2403 if (hw->get_link_status) {
2404 e1000_check_for_link(hw);
2405 link_active = !hw->get_link_status;
2406 } else {
2407 link_active = true;
2408 }
2409 break;
2410 case e1000_media_type_fiber:
2411 e1000_check_for_link(hw);
2412 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
2413 break;
2414 case e1000_media_type_internal_serdes:
2415 e1000_check_for_link(hw);
2416 link_active = hw->serdes_has_link;
2417 break;
2418 default:
2419 break;
2420 }
2421
2422 return link_active;
2423}
2424
2425/**
2426 * e1000_watchdog - work function
2427 * @work: work struct contained inside adapter struct
2428 **/
2429static void e1000_watchdog(struct work_struct *work)
2430{
2431 struct e1000_adapter *adapter = container_of(work,
2432 struct e1000_adapter,
2433 watchdog_task.work);
2434 struct e1000_hw *hw = &adapter->hw;
2435 struct net_device *netdev = adapter->netdev;
2436 struct e1000_tx_ring *txdr = adapter->tx_ring;
2437 u32 link, tctl;
2438
2439 link = e1000_has_link(adapter);
2440 if ((netif_carrier_ok(netdev)) && link)
2441 goto link_up;
2442
2443 if (link) {
2444 if (!netif_carrier_ok(netdev)) {
2445 u32 ctrl;
2446 bool txb2b = true;
2447 /* update snapshot of PHY registers on LSC */
2448 e1000_get_speed_and_duplex(hw,
2449 &adapter->link_speed,
2450 &adapter->link_duplex);
2451
2452 ctrl = er32(CTRL);
2453 pr_info("%s NIC Link is Up %d Mbps %s, "
2454 "Flow Control: %s\n",
2455 netdev->name,
2456 adapter->link_speed,
2457 adapter->link_duplex == FULL_DUPLEX ?
2458 "Full Duplex" : "Half Duplex",
2459 ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2460 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2461 E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2462 E1000_CTRL_TFCE) ? "TX" : "None")));
2463
2464 /* adjust timeout factor according to speed/duplex */
2465 adapter->tx_timeout_factor = 1;
2466 switch (adapter->link_speed) {
2467 case SPEED_10:
2468 txb2b = false;
2469 adapter->tx_timeout_factor = 16;
2470 break;
2471 case SPEED_100:
2472 txb2b = false;
2473 /* maybe add some timeout factor ? */
2474 break;
2475 }
2476
2477 /* enable transmits in the hardware */
2478 tctl = er32(TCTL);
2479 tctl |= E1000_TCTL_EN;
2480 ew32(TCTL, tctl);
2481
2482 netif_carrier_on(netdev);
2483 if (!test_bit(__E1000_DOWN, &adapter->flags))
2484 schedule_delayed_work(&adapter->phy_info_task,
2485 2 * HZ);
2486 adapter->smartspeed = 0;
2487 }
2488 } else {
2489 if (netif_carrier_ok(netdev)) {
2490 adapter->link_speed = 0;
2491 adapter->link_duplex = 0;
2492 pr_info("%s NIC Link is Down\n",
2493 netdev->name);
2494 netif_carrier_off(netdev);
2495
2496 if (!test_bit(__E1000_DOWN, &adapter->flags))
2497 schedule_delayed_work(&adapter->phy_info_task,
2498 2 * HZ);
2499 }
2500
2501 e1000_smartspeed(adapter);
2502 }
2503
2504link_up:
2505 e1000_update_stats(adapter);
2506
2507 hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2508 adapter->tpt_old = adapter->stats.tpt;
2509 hw->collision_delta = adapter->stats.colc - adapter->colc_old;
2510 adapter->colc_old = adapter->stats.colc;
2511
2512 adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2513 adapter->gorcl_old = adapter->stats.gorcl;
2514 adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2515 adapter->gotcl_old = adapter->stats.gotcl;
2516
2517 e1000_update_adaptive(hw);
2518
2519 if (!netif_carrier_ok(netdev)) {
2520 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2521 /* We've lost link, so the controller stops DMA,
2522 * but we've got queued Tx work that's never going
2523 * to get done, so reset controller to flush Tx.
2524 * (Do the reset outside of interrupt context).
2525 */
2526 adapter->tx_timeout_count++;
2527 schedule_work(&adapter->reset_task);
2528 /* exit immediately since reset is imminent */
2529 return;
2530 }
2531 }
2532
2533 /* Simple mode for Interrupt Throttle Rate (ITR) */
2534 if (hw->mac_type >= e1000_82540 && adapter->itr_setting == 4) {
2535 /* Symmetric Tx/Rx gets a reduced ITR=2000;
2536 * Total asymmetrical Tx or Rx gets ITR=8000;
2537 * everyone else is between 2000-8000.
2538 */
2539 u32 goc = (adapter->gotcl + adapter->gorcl) / 10000;
2540 u32 dif = (adapter->gotcl > adapter->gorcl ?
2541 adapter->gotcl - adapter->gorcl :
2542 adapter->gorcl - adapter->gotcl) / 10000;
2543 u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
2544
2545 ew32(ITR, 1000000000 / (itr * 256));
2546 }
2547
2548 /* Cause software interrupt to ensure rx ring is cleaned */
2549 ew32(ICS, E1000_ICS_RXDMT0);
2550
2551 /* Force detection of hung controller every watchdog period */
2552 adapter->detect_tx_hung = true;
2553
2554 /* Reschedule the task */
2555 if (!test_bit(__E1000_DOWN, &adapter->flags))
2556 schedule_delayed_work(&adapter->watchdog_task, 2 * HZ);
2557}
2558
2559enum latency_range {
2560 lowest_latency = 0,
2561 low_latency = 1,
2562 bulk_latency = 2,
2563 latency_invalid = 255
2564};
2565
2566/**
2567 * e1000_update_itr - update the dynamic ITR value based on statistics
2568 * @adapter: pointer to adapter
2569 * @itr_setting: current adapter->itr
2570 * @packets: the number of packets during this measurement interval
2571 * @bytes: the number of bytes during this measurement interval
2572 *
2573 * Stores a new ITR value based on packets and byte
2574 * counts during the last interrupt. The advantage of per interrupt
2575 * computation is faster updates and more accurate ITR for the current
2576 * traffic pattern. Constants in this function were computed
2577 * based on theoretical maximum wire speed and thresholds were set based
2578 * on testing data as well as attempting to minimize response time
2579 * while increasing bulk throughput.
2580 * this functionality is controlled by the InterruptThrottleRate module
2581 * parameter (see e1000_param.c)
2582 **/
2583static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2584 u16 itr_setting, int packets, int bytes)
2585{
2586 unsigned int retval = itr_setting;
2587 struct e1000_hw *hw = &adapter->hw;
2588
2589 if (unlikely(hw->mac_type < e1000_82540))
2590 goto update_itr_done;
2591
2592 if (packets == 0)
2593 goto update_itr_done;
2594
2595 switch (itr_setting) {
2596 case lowest_latency:
2597 /* jumbo frames get bulk treatment*/
2598 if (bytes/packets > 8000)
2599 retval = bulk_latency;
2600 else if ((packets < 5) && (bytes > 512))
2601 retval = low_latency;
2602 break;
2603 case low_latency: /* 50 usec aka 20000 ints/s */
2604 if (bytes > 10000) {
2605 /* jumbo frames need bulk latency setting */
2606 if (bytes/packets > 8000)
2607 retval = bulk_latency;
2608 else if ((packets < 10) || ((bytes/packets) > 1200))
2609 retval = bulk_latency;
2610 else if ((packets > 35))
2611 retval = lowest_latency;
2612 } else if (bytes/packets > 2000)
2613 retval = bulk_latency;
2614 else if (packets <= 2 && bytes < 512)
2615 retval = lowest_latency;
2616 break;
2617 case bulk_latency: /* 250 usec aka 4000 ints/s */
2618 if (bytes > 25000) {
2619 if (packets > 35)
2620 retval = low_latency;
2621 } else if (bytes < 6000) {
2622 retval = low_latency;
2623 }
2624 break;
2625 }
2626
2627update_itr_done:
2628 return retval;
2629}
2630
2631static void e1000_set_itr(struct e1000_adapter *adapter)
2632{
2633 struct e1000_hw *hw = &adapter->hw;
2634 u16 current_itr;
2635 u32 new_itr = adapter->itr;
2636
2637 if (unlikely(hw->mac_type < e1000_82540))
2638 return;
2639
2640 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2641 if (unlikely(adapter->link_speed != SPEED_1000)) {
2642 current_itr = 0;
2643 new_itr = 4000;
2644 goto set_itr_now;
2645 }
2646
2647 adapter->tx_itr = e1000_update_itr(adapter, adapter->tx_itr,
2648 adapter->total_tx_packets,
2649 adapter->total_tx_bytes);
2650 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2651 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2652 adapter->tx_itr = low_latency;
2653
2654 adapter->rx_itr = e1000_update_itr(adapter, adapter->rx_itr,
2655 adapter->total_rx_packets,
2656 adapter->total_rx_bytes);
2657 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2658 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2659 adapter->rx_itr = low_latency;
2660
2661 current_itr = max(adapter->rx_itr, adapter->tx_itr);
2662
2663 switch (current_itr) {
2664 /* counts and packets in update_itr are dependent on these numbers */
2665 case lowest_latency:
2666 new_itr = 70000;
2667 break;
2668 case low_latency:
2669 new_itr = 20000; /* aka hwitr = ~200 */
2670 break;
2671 case bulk_latency:
2672 new_itr = 4000;
2673 break;
2674 default:
2675 break;
2676 }
2677
2678set_itr_now:
2679 if (new_itr != adapter->itr) {
2680 /* this attempts to bias the interrupt rate towards Bulk
2681 * by adding intermediate steps when interrupt rate is
2682 * increasing
2683 */
2684 new_itr = new_itr > adapter->itr ?
2685 min(adapter->itr + (new_itr >> 2), new_itr) :
2686 new_itr;
2687 adapter->itr = new_itr;
2688 ew32(ITR, 1000000000 / (new_itr * 256));
2689 }
2690}
2691
2692#define E1000_TX_FLAGS_CSUM 0x00000001
2693#define E1000_TX_FLAGS_VLAN 0x00000002
2694#define E1000_TX_FLAGS_TSO 0x00000004
2695#define E1000_TX_FLAGS_IPV4 0x00000008
2696#define E1000_TX_FLAGS_NO_FCS 0x00000010
2697#define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
2698#define E1000_TX_FLAGS_VLAN_SHIFT 16
2699
2700static int e1000_tso(struct e1000_adapter *adapter,
2701 struct e1000_tx_ring *tx_ring, struct sk_buff *skb,
2702 __be16 protocol)
2703{
2704 struct e1000_context_desc *context_desc;
2705 struct e1000_tx_buffer *buffer_info;
2706 unsigned int i;
2707 u32 cmd_length = 0;
2708 u16 ipcse = 0, tucse, mss;
2709 u8 ipcss, ipcso, tucss, tucso, hdr_len;
2710
2711 if (skb_is_gso(skb)) {
2712 int err;
2713
2714 err = skb_cow_head(skb, 0);
2715 if (err < 0)
2716 return err;
2717
2718 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2719 mss = skb_shinfo(skb)->gso_size;
2720 if (protocol == htons(ETH_P_IP)) {
2721 struct iphdr *iph = ip_hdr(skb);
2722 iph->tot_len = 0;
2723 iph->check = 0;
2724 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2725 iph->daddr, 0,
2726 IPPROTO_TCP,
2727 0);
2728 cmd_length = E1000_TXD_CMD_IP;
2729 ipcse = skb_transport_offset(skb) - 1;
2730 } else if (skb_is_gso_v6(skb)) {
2731 ipv6_hdr(skb)->payload_len = 0;
2732 tcp_hdr(skb)->check =
2733 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2734 &ipv6_hdr(skb)->daddr,
2735 0, IPPROTO_TCP, 0);
2736 ipcse = 0;
2737 }
2738 ipcss = skb_network_offset(skb);
2739 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
2740 tucss = skb_transport_offset(skb);
2741 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
2742 tucse = 0;
2743
2744 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2745 E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2746
2747 i = tx_ring->next_to_use;
2748 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2749 buffer_info = &tx_ring->buffer_info[i];
2750
2751 context_desc->lower_setup.ip_fields.ipcss = ipcss;
2752 context_desc->lower_setup.ip_fields.ipcso = ipcso;
2753 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
2754 context_desc->upper_setup.tcp_fields.tucss = tucss;
2755 context_desc->upper_setup.tcp_fields.tucso = tucso;
2756 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2757 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
2758 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2759 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2760
2761 buffer_info->time_stamp = jiffies;
2762 buffer_info->next_to_watch = i;
2763
2764 if (++i == tx_ring->count)
2765 i = 0;
2766
2767 tx_ring->next_to_use = i;
2768
2769 return true;
2770 }
2771 return false;
2772}
2773
2774static bool e1000_tx_csum(struct e1000_adapter *adapter,
2775 struct e1000_tx_ring *tx_ring, struct sk_buff *skb,
2776 __be16 protocol)
2777{
2778 struct e1000_context_desc *context_desc;
2779 struct e1000_tx_buffer *buffer_info;
2780 unsigned int i;
2781 u8 css;
2782 u32 cmd_len = E1000_TXD_CMD_DEXT;
2783
2784 if (skb->ip_summed != CHECKSUM_PARTIAL)
2785 return false;
2786
2787 switch (protocol) {
2788 case cpu_to_be16(ETH_P_IP):
2789 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2790 cmd_len |= E1000_TXD_CMD_TCP;
2791 break;
2792 case cpu_to_be16(ETH_P_IPV6):
2793 /* XXX not handling all IPV6 headers */
2794 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2795 cmd_len |= E1000_TXD_CMD_TCP;
2796 break;
2797 default:
2798 if (unlikely(net_ratelimit()))
2799 e_warn(drv, "checksum_partial proto=%x!\n",
2800 skb->protocol);
2801 break;
2802 }
2803
2804 css = skb_checksum_start_offset(skb);
2805
2806 i = tx_ring->next_to_use;
2807 buffer_info = &tx_ring->buffer_info[i];
2808 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2809
2810 context_desc->lower_setup.ip_config = 0;
2811 context_desc->upper_setup.tcp_fields.tucss = css;
2812 context_desc->upper_setup.tcp_fields.tucso =
2813 css + skb->csum_offset;
2814 context_desc->upper_setup.tcp_fields.tucse = 0;
2815 context_desc->tcp_seg_setup.data = 0;
2816 context_desc->cmd_and_length = cpu_to_le32(cmd_len);
2817
2818 buffer_info->time_stamp = jiffies;
2819 buffer_info->next_to_watch = i;
2820
2821 if (unlikely(++i == tx_ring->count))
2822 i = 0;
2823
2824 tx_ring->next_to_use = i;
2825
2826 return true;
2827}
2828
2829#define E1000_MAX_TXD_PWR 12
2830#define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR)
2831
2832static int e1000_tx_map(struct e1000_adapter *adapter,
2833 struct e1000_tx_ring *tx_ring,
2834 struct sk_buff *skb, unsigned int first,
2835 unsigned int max_per_txd, unsigned int nr_frags,
2836 unsigned int mss)
2837{
2838 struct e1000_hw *hw = &adapter->hw;
2839 struct pci_dev *pdev = adapter->pdev;
2840 struct e1000_tx_buffer *buffer_info;
2841 unsigned int len = skb_headlen(skb);
2842 unsigned int offset = 0, size, count = 0, i;
2843 unsigned int f, bytecount, segs;
2844
2845 i = tx_ring->next_to_use;
2846
2847 while (len) {
2848 buffer_info = &tx_ring->buffer_info[i];
2849 size = min(len, max_per_txd);
2850 /* Workaround for Controller erratum --
2851 * descriptor for non-tso packet in a linear SKB that follows a
2852 * tso gets written back prematurely before the data is fully
2853 * DMA'd to the controller
2854 */
2855 if (!skb->data_len && tx_ring->last_tx_tso &&
2856 !skb_is_gso(skb)) {
2857 tx_ring->last_tx_tso = false;
2858 size -= 4;
2859 }
2860
2861 /* Workaround for premature desc write-backs
2862 * in TSO mode. Append 4-byte sentinel desc
2863 */
2864 if (unlikely(mss && !nr_frags && size == len && size > 8))
2865 size -= 4;
2866 /* work-around for errata 10 and it applies
2867 * to all controllers in PCI-X mode
2868 * The fix is to make sure that the first descriptor of a
2869 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2870 */
2871 if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
2872 (size > 2015) && count == 0))
2873 size = 2015;
2874
2875 /* Workaround for potential 82544 hang in PCI-X. Avoid
2876 * terminating buffers within evenly-aligned dwords.
2877 */
2878 if (unlikely(adapter->pcix_82544 &&
2879 !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2880 size > 4))
2881 size -= 4;
2882
2883 buffer_info->length = size;
2884 /* set time_stamp *before* dma to help avoid a possible race */
2885 buffer_info->time_stamp = jiffies;
2886 buffer_info->mapped_as_page = false;
2887 buffer_info->dma = dma_map_single(&pdev->dev,
2888 skb->data + offset,
2889 size, DMA_TO_DEVICE);
2890 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2891 goto dma_error;
2892 buffer_info->next_to_watch = i;
2893
2894 len -= size;
2895 offset += size;
2896 count++;
2897 if (len) {
2898 i++;
2899 if (unlikely(i == tx_ring->count))
2900 i = 0;
2901 }
2902 }
2903
2904 for (f = 0; f < nr_frags; f++) {
2905 const struct skb_frag_struct *frag;
2906
2907 frag = &skb_shinfo(skb)->frags[f];
2908 len = skb_frag_size(frag);
2909 offset = 0;
2910
2911 while (len) {
2912 unsigned long bufend;
2913 i++;
2914 if (unlikely(i == tx_ring->count))
2915 i = 0;
2916
2917 buffer_info = &tx_ring->buffer_info[i];
2918 size = min(len, max_per_txd);
2919 /* Workaround for premature desc write-backs
2920 * in TSO mode. Append 4-byte sentinel desc
2921 */
2922 if (unlikely(mss && f == (nr_frags-1) &&
2923 size == len && size > 8))
2924 size -= 4;
2925 /* Workaround for potential 82544 hang in PCI-X.
2926 * Avoid terminating buffers within evenly-aligned
2927 * dwords.
2928 */
2929 bufend = (unsigned long)
2930 page_to_phys(skb_frag_page(frag));
2931 bufend += offset + size - 1;
2932 if (unlikely(adapter->pcix_82544 &&
2933 !(bufend & 4) &&
2934 size > 4))
2935 size -= 4;
2936
2937 buffer_info->length = size;
2938 buffer_info->time_stamp = jiffies;
2939 buffer_info->mapped_as_page = true;
2940 buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
2941 offset, size, DMA_TO_DEVICE);
2942 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2943 goto dma_error;
2944 buffer_info->next_to_watch = i;
2945
2946 len -= size;
2947 offset += size;
2948 count++;
2949 }
2950 }
2951
2952 segs = skb_shinfo(skb)->gso_segs ?: 1;
2953 /* multiply data chunks by size of headers */
2954 bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
2955
2956 tx_ring->buffer_info[i].skb = skb;
2957 tx_ring->buffer_info[i].segs = segs;
2958 tx_ring->buffer_info[i].bytecount = bytecount;
2959 tx_ring->buffer_info[first].next_to_watch = i;
2960
2961 return count;
2962
2963dma_error:
2964 dev_err(&pdev->dev, "TX DMA map failed\n");
2965 buffer_info->dma = 0;
2966 if (count)
2967 count--;
2968
2969 while (count--) {
2970 if (i == 0)
2971 i += tx_ring->count;
2972 i--;
2973 buffer_info = &tx_ring->buffer_info[i];
2974 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2975 }
2976
2977 return 0;
2978}
2979
2980static void e1000_tx_queue(struct e1000_adapter *adapter,
2981 struct e1000_tx_ring *tx_ring, int tx_flags,
2982 int count)
2983{
2984 struct e1000_tx_desc *tx_desc = NULL;
2985 struct e1000_tx_buffer *buffer_info;
2986 u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
2987 unsigned int i;
2988
2989 if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
2990 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
2991 E1000_TXD_CMD_TSE;
2992 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2993
2994 if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
2995 txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2996 }
2997
2998 if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
2999 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
3000 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3001 }
3002
3003 if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
3004 txd_lower |= E1000_TXD_CMD_VLE;
3005 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
3006 }
3007
3008 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
3009 txd_lower &= ~(E1000_TXD_CMD_IFCS);
3010
3011 i = tx_ring->next_to_use;
3012
3013 while (count--) {
3014 buffer_info = &tx_ring->buffer_info[i];
3015 tx_desc = E1000_TX_DESC(*tx_ring, i);
3016 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3017 tx_desc->lower.data =
3018 cpu_to_le32(txd_lower | buffer_info->length);
3019 tx_desc->upper.data = cpu_to_le32(txd_upper);
3020 if (unlikely(++i == tx_ring->count))
3021 i = 0;
3022 }
3023
3024 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3025
3026 /* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
3027 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
3028 tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
3029
3030 /* Force memory writes to complete before letting h/w
3031 * know there are new descriptors to fetch. (Only
3032 * applicable for weak-ordered memory model archs,
3033 * such as IA-64).
3034 */
3035 wmb();
3036
3037 tx_ring->next_to_use = i;
3038}
3039
3040/* 82547 workaround to avoid controller hang in half-duplex environment.
3041 * The workaround is to avoid queuing a large packet that would span
3042 * the internal Tx FIFO ring boundary by notifying the stack to resend
3043 * the packet at a later time. This gives the Tx FIFO an opportunity to
3044 * flush all packets. When that occurs, we reset the Tx FIFO pointers
3045 * to the beginning of the Tx FIFO.
3046 */
3047
3048#define E1000_FIFO_HDR 0x10
3049#define E1000_82547_PAD_LEN 0x3E0
3050
3051static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
3052 struct sk_buff *skb)
3053{
3054 u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
3055 u32 skb_fifo_len = skb->len + E1000_FIFO_HDR;
3056
3057 skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
3058
3059 if (adapter->link_duplex != HALF_DUPLEX)
3060 goto no_fifo_stall_required;
3061
3062 if (atomic_read(&adapter->tx_fifo_stall))
3063 return 1;
3064
3065 if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
3066 atomic_set(&adapter->tx_fifo_stall, 1);
3067 return 1;
3068 }
3069
3070no_fifo_stall_required:
3071 adapter->tx_fifo_head += skb_fifo_len;
3072 if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
3073 adapter->tx_fifo_head -= adapter->tx_fifo_size;
3074 return 0;
3075}
3076
3077static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3078{
3079 struct e1000_adapter *adapter = netdev_priv(netdev);
3080 struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3081
3082 netif_stop_queue(netdev);
3083 /* Herbert's original patch had:
3084 * smp_mb__after_netif_stop_queue();
3085 * but since that doesn't exist yet, just open code it.
3086 */
3087 smp_mb();
3088
3089 /* We need to check again in a case another CPU has just
3090 * made room available.
3091 */
3092 if (likely(E1000_DESC_UNUSED(tx_ring) < size))
3093 return -EBUSY;
3094
3095 /* A reprieve! */
3096 netif_start_queue(netdev);
3097 ++adapter->restart_queue;
3098 return 0;
3099}
3100
3101static int e1000_maybe_stop_tx(struct net_device *netdev,
3102 struct e1000_tx_ring *tx_ring, int size)
3103{
3104 if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
3105 return 0;
3106 return __e1000_maybe_stop_tx(netdev, size);
3107}
3108
3109#define TXD_USE_COUNT(S, X) (((S) + ((1 << (X)) - 1)) >> (X))
3110static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
3111 struct net_device *netdev)
3112{
3113 struct e1000_adapter *adapter = netdev_priv(netdev);
3114 struct e1000_hw *hw = &adapter->hw;
3115 struct e1000_tx_ring *tx_ring;
3116 unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
3117 unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3118 unsigned int tx_flags = 0;
3119 unsigned int len = skb_headlen(skb);
3120 unsigned int nr_frags;
3121 unsigned int mss;
3122 int count = 0;
3123 int tso;
3124 unsigned int f;
3125 __be16 protocol = vlan_get_protocol(skb);
3126
3127 /* This goes back to the question of how to logically map a Tx queue
3128 * to a flow. Right now, performance is impacted slightly negatively
3129 * if using multiple Tx queues. If the stack breaks away from a
3130 * single qdisc implementation, we can look at this again.
3131 */
3132 tx_ring = adapter->tx_ring;
3133
3134 /* On PCI/PCI-X HW, if packet size is less than ETH_ZLEN,
3135 * packets may get corrupted during padding by HW.
3136 * To WA this issue, pad all small packets manually.
3137 */
3138 if (eth_skb_pad(skb))
3139 return NETDEV_TX_OK;
3140
3141 mss = skb_shinfo(skb)->gso_size;
3142 /* The controller does a simple calculation to
3143 * make sure there is enough room in the FIFO before
3144 * initiating the DMA for each buffer. The calc is:
3145 * 4 = ceil(buffer len/mss). To make sure we don't
3146 * overrun the FIFO, adjust the max buffer len if mss
3147 * drops.
3148 */
3149 if (mss) {
3150 u8 hdr_len;
3151 max_per_txd = min(mss << 2, max_per_txd);
3152 max_txd_pwr = fls(max_per_txd) - 1;
3153
3154 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3155 if (skb->data_len && hdr_len == len) {
3156 switch (hw->mac_type) {
3157 unsigned int pull_size;
3158 case e1000_82544:
3159 /* Make sure we have room to chop off 4 bytes,
3160 * and that the end alignment will work out to
3161 * this hardware's requirements
3162 * NOTE: this is a TSO only workaround
3163 * if end byte alignment not correct move us
3164 * into the next dword
3165 */
3166 if ((unsigned long)(skb_tail_pointer(skb) - 1)
3167 & 4)
3168 break;
3169 /* fall through */
3170 pull_size = min((unsigned int)4, skb->data_len);
3171 if (!__pskb_pull_tail(skb, pull_size)) {
3172 e_err(drv, "__pskb_pull_tail "
3173 "failed.\n");
3174 dev_kfree_skb_any(skb);
3175 return NETDEV_TX_OK;
3176 }
3177 len = skb_headlen(skb);
3178 break;
3179 default:
3180 /* do nothing */
3181 break;
3182 }
3183 }
3184 }
3185
3186 /* reserve a descriptor for the offload context */
3187 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3188 count++;
3189 count++;
3190
3191 /* Controller Erratum workaround */
3192 if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3193 count++;
3194
3195 count += TXD_USE_COUNT(len, max_txd_pwr);
3196
3197 if (adapter->pcix_82544)
3198 count++;
3199
3200 /* work-around for errata 10 and it applies to all controllers
3201 * in PCI-X mode, so add one more descriptor to the count
3202 */
3203 if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
3204 (len > 2015)))
3205 count++;
3206
3207 nr_frags = skb_shinfo(skb)->nr_frags;
3208 for (f = 0; f < nr_frags; f++)
3209 count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->frags[f]),
3210 max_txd_pwr);
3211 if (adapter->pcix_82544)
3212 count += nr_frags;
3213
3214 /* need: count + 2 desc gap to keep tail from touching
3215 * head, otherwise try next time
3216 */
3217 if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2)))
3218 return NETDEV_TX_BUSY;
3219
3220 if (unlikely((hw->mac_type == e1000_82547) &&
3221 (e1000_82547_fifo_workaround(adapter, skb)))) {
3222 netif_stop_queue(netdev);
3223 if (!test_bit(__E1000_DOWN, &adapter->flags))
3224 schedule_delayed_work(&adapter->fifo_stall_task, 1);
3225 return NETDEV_TX_BUSY;
3226 }
3227
3228 if (skb_vlan_tag_present(skb)) {
3229 tx_flags |= E1000_TX_FLAGS_VLAN;
3230 tx_flags |= (skb_vlan_tag_get(skb) <<
3231 E1000_TX_FLAGS_VLAN_SHIFT);
3232 }
3233
3234 first = tx_ring->next_to_use;
3235
3236 tso = e1000_tso(adapter, tx_ring, skb, protocol);
3237 if (tso < 0) {
3238 dev_kfree_skb_any(skb);
3239 return NETDEV_TX_OK;
3240 }
3241
3242 if (likely(tso)) {
3243 if (likely(hw->mac_type != e1000_82544))
3244 tx_ring->last_tx_tso = true;
3245 tx_flags |= E1000_TX_FLAGS_TSO;
3246 } else if (likely(e1000_tx_csum(adapter, tx_ring, skb, protocol)))
3247 tx_flags |= E1000_TX_FLAGS_CSUM;
3248
3249 if (protocol == htons(ETH_P_IP))
3250 tx_flags |= E1000_TX_FLAGS_IPV4;
3251
3252 if (unlikely(skb->no_fcs))
3253 tx_flags |= E1000_TX_FLAGS_NO_FCS;
3254
3255 count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd,
3256 nr_frags, mss);
3257
3258 if (count) {
3259 /* The descriptors needed is higher than other Intel drivers
3260 * due to a number of workarounds. The breakdown is below:
3261 * Data descriptors: MAX_SKB_FRAGS + 1
3262 * Context Descriptor: 1
3263 * Keep head from touching tail: 2
3264 * Workarounds: 3
3265 */
3266 int desc_needed = MAX_SKB_FRAGS + 7;
3267
3268 netdev_sent_queue(netdev, skb->len);
3269 skb_tx_timestamp(skb);
3270
3271 e1000_tx_queue(adapter, tx_ring, tx_flags, count);
3272
3273 /* 82544 potentially requires twice as many data descriptors
3274 * in order to guarantee buffers don't end on evenly-aligned
3275 * dwords
3276 */
3277 if (adapter->pcix_82544)
3278 desc_needed += MAX_SKB_FRAGS + 1;
3279
3280 /* Make sure there is space in the ring for the next send. */
3281 e1000_maybe_stop_tx(netdev, tx_ring, desc_needed);
3282
3283 if (!skb->xmit_more ||
3284 netif_xmit_stopped(netdev_get_tx_queue(netdev, 0))) {
3285 writel(tx_ring->next_to_use, hw->hw_addr + tx_ring->tdt);
3286 /* we need this if more than one processor can write to
3287 * our tail at a time, it synchronizes IO on IA64/Altix
3288 * systems
3289 */
3290 mmiowb();
3291 }
3292 } else {
3293 dev_kfree_skb_any(skb);
3294 tx_ring->buffer_info[first].time_stamp = 0;
3295 tx_ring->next_to_use = first;
3296 }
3297
3298 return NETDEV_TX_OK;
3299}
3300
3301#define NUM_REGS 38 /* 1 based count */
3302static void e1000_regdump(struct e1000_adapter *adapter)
3303{
3304 struct e1000_hw *hw = &adapter->hw;
3305 u32 regs[NUM_REGS];
3306 u32 *regs_buff = regs;
3307 int i = 0;
3308
3309 static const char * const reg_name[] = {
3310 "CTRL", "STATUS",
3311 "RCTL", "RDLEN", "RDH", "RDT", "RDTR",
3312 "TCTL", "TDBAL", "TDBAH", "TDLEN", "TDH", "TDT",
3313 "TIDV", "TXDCTL", "TADV", "TARC0",
3314 "TDBAL1", "TDBAH1", "TDLEN1", "TDH1", "TDT1",
3315 "TXDCTL1", "TARC1",
3316 "CTRL_EXT", "ERT", "RDBAL", "RDBAH",
3317 "TDFH", "TDFT", "TDFHS", "TDFTS", "TDFPC",
3318 "RDFH", "RDFT", "RDFHS", "RDFTS", "RDFPC"
3319 };
3320
3321 regs_buff[0] = er32(CTRL);
3322 regs_buff[1] = er32(STATUS);
3323
3324 regs_buff[2] = er32(RCTL);
3325 regs_buff[3] = er32(RDLEN);
3326 regs_buff[4] = er32(RDH);
3327 regs_buff[5] = er32(RDT);
3328 regs_buff[6] = er32(RDTR);
3329
3330 regs_buff[7] = er32(TCTL);
3331 regs_buff[8] = er32(TDBAL);
3332 regs_buff[9] = er32(TDBAH);
3333 regs_buff[10] = er32(TDLEN);
3334 regs_buff[11] = er32(TDH);
3335 regs_buff[12] = er32(TDT);
3336 regs_buff[13] = er32(TIDV);
3337 regs_buff[14] = er32(TXDCTL);
3338 regs_buff[15] = er32(TADV);
3339 regs_buff[16] = er32(TARC0);
3340
3341 regs_buff[17] = er32(TDBAL1);
3342 regs_buff[18] = er32(TDBAH1);
3343 regs_buff[19] = er32(TDLEN1);
3344 regs_buff[20] = er32(TDH1);
3345 regs_buff[21] = er32(TDT1);
3346 regs_buff[22] = er32(TXDCTL1);
3347 regs_buff[23] = er32(TARC1);
3348 regs_buff[24] = er32(CTRL_EXT);
3349 regs_buff[25] = er32(ERT);
3350 regs_buff[26] = er32(RDBAL0);
3351 regs_buff[27] = er32(RDBAH0);
3352 regs_buff[28] = er32(TDFH);
3353 regs_buff[29] = er32(TDFT);
3354 regs_buff[30] = er32(TDFHS);
3355 regs_buff[31] = er32(TDFTS);
3356 regs_buff[32] = er32(TDFPC);
3357 regs_buff[33] = er32(RDFH);
3358 regs_buff[34] = er32(RDFT);
3359 regs_buff[35] = er32(RDFHS);
3360 regs_buff[36] = er32(RDFTS);
3361 regs_buff[37] = er32(RDFPC);
3362
3363 pr_info("Register dump\n");
3364 for (i = 0; i < NUM_REGS; i++)
3365 pr_info("%-15s %08x\n", reg_name[i], regs_buff[i]);
3366}
3367
3368/*
3369 * e1000_dump: Print registers, tx ring and rx ring
3370 */
3371static void e1000_dump(struct e1000_adapter *adapter)
3372{
3373 /* this code doesn't handle multiple rings */
3374 struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3375 struct e1000_rx_ring *rx_ring = adapter->rx_ring;
3376 int i;
3377
3378 if (!netif_msg_hw(adapter))
3379 return;
3380
3381 /* Print Registers */
3382 e1000_regdump(adapter);
3383
3384 /* transmit dump */
3385 pr_info("TX Desc ring0 dump\n");
3386
3387 /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
3388 *
3389 * Legacy Transmit Descriptor
3390 * +--------------------------------------------------------------+
3391 * 0 | Buffer Address [63:0] (Reserved on Write Back) |
3392 * +--------------------------------------------------------------+
3393 * 8 | Special | CSS | Status | CMD | CSO | Length |
3394 * +--------------------------------------------------------------+
3395 * 63 48 47 36 35 32 31 24 23 16 15 0
3396 *
3397 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
3398 * 63 48 47 40 39 32 31 16 15 8 7 0
3399 * +----------------------------------------------------------------+
3400 * 0 | TUCSE | TUCS0 | TUCSS | IPCSE | IPCS0 | IPCSS |
3401 * +----------------------------------------------------------------+
3402 * 8 | MSS | HDRLEN | RSV | STA | TUCMD | DTYP | PAYLEN |
3403 * +----------------------------------------------------------------+
3404 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
3405 *
3406 * Extended Data Descriptor (DTYP=0x1)
3407 * +----------------------------------------------------------------+
3408 * 0 | Buffer Address [63:0] |
3409 * +----------------------------------------------------------------+
3410 * 8 | VLAN tag | POPTS | Rsvd | Status | Command | DTYP | DTALEN |
3411 * +----------------------------------------------------------------+
3412 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
3413 */
3414 pr_info("Tc[desc] [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma ] leng ntw timestmp bi->skb\n");
3415 pr_info("Td[desc] [address 63:0 ] [VlaPoRSCm1Dlen] [bi->dma ] leng ntw timestmp bi->skb\n");
3416
3417 if (!netif_msg_tx_done(adapter))
3418 goto rx_ring_summary;
3419
3420 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
3421 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
3422 struct e1000_tx_buffer *buffer_info = &tx_ring->buffer_info[i];
3423 struct my_u { __le64 a; __le64 b; };
3424 struct my_u *u = (struct my_u *)tx_desc;
3425 const char *type;
3426
3427 if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
3428 type = "NTC/U";
3429 else if (i == tx_ring->next_to_use)
3430 type = "NTU";
3431 else if (i == tx_ring->next_to_clean)
3432 type = "NTC";
3433 else
3434 type = "";
3435
3436 pr_info("T%c[0x%03X] %016llX %016llX %016llX %04X %3X %016llX %p %s\n",
3437 ((le64_to_cpu(u->b) & (1<<20)) ? 'd' : 'c'), i,
3438 le64_to_cpu(u->a), le64_to_cpu(u->b),
3439 (u64)buffer_info->dma, buffer_info->length,
3440 buffer_info->next_to_watch,
3441 (u64)buffer_info->time_stamp, buffer_info->skb, type);
3442 }
3443
3444rx_ring_summary:
3445 /* receive dump */
3446 pr_info("\nRX Desc ring dump\n");
3447
3448 /* Legacy Receive Descriptor Format
3449 *
3450 * +-----------------------------------------------------+
3451 * | Buffer Address [63:0] |
3452 * +-----------------------------------------------------+
3453 * | VLAN Tag | Errors | Status 0 | Packet csum | Length |
3454 * +-----------------------------------------------------+
3455 * 63 48 47 40 39 32 31 16 15 0
3456 */
3457 pr_info("R[desc] [address 63:0 ] [vl er S cks ln] [bi->dma ] [bi->skb]\n");
3458
3459 if (!netif_msg_rx_status(adapter))
3460 goto exit;
3461
3462 for (i = 0; rx_ring->desc && (i < rx_ring->count); i++) {
3463 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
3464 struct e1000_rx_buffer *buffer_info = &rx_ring->buffer_info[i];
3465 struct my_u { __le64 a; __le64 b; };
3466 struct my_u *u = (struct my_u *)rx_desc;
3467 const char *type;
3468
3469 if (i == rx_ring->next_to_use)
3470 type = "NTU";
3471 else if (i == rx_ring->next_to_clean)
3472 type = "NTC";
3473 else
3474 type = "";
3475
3476 pr_info("R[0x%03X] %016llX %016llX %016llX %p %s\n",
3477 i, le64_to_cpu(u->a), le64_to_cpu(u->b),
3478 (u64)buffer_info->dma, buffer_info->rxbuf.data, type);
3479 } /* for */
3480
3481 /* dump the descriptor caches */
3482 /* rx */
3483 pr_info("Rx descriptor cache in 64bit format\n");
3484 for (i = 0x6000; i <= 0x63FF ; i += 0x10) {
3485 pr_info("R%04X: %08X|%08X %08X|%08X\n",
3486 i,
3487 readl(adapter->hw.hw_addr + i+4),
3488 readl(adapter->hw.hw_addr + i),
3489 readl(adapter->hw.hw_addr + i+12),
3490 readl(adapter->hw.hw_addr + i+8));
3491 }
3492 /* tx */
3493 pr_info("Tx descriptor cache in 64bit format\n");
3494 for (i = 0x7000; i <= 0x73FF ; i += 0x10) {
3495 pr_info("T%04X: %08X|%08X %08X|%08X\n",
3496 i,
3497 readl(adapter->hw.hw_addr + i+4),
3498 readl(adapter->hw.hw_addr + i),
3499 readl(adapter->hw.hw_addr + i+12),
3500 readl(adapter->hw.hw_addr + i+8));
3501 }
3502exit:
3503 return;
3504}
3505
3506/**
3507 * e1000_tx_timeout - Respond to a Tx Hang
3508 * @netdev: network interface device structure
3509 **/
3510static void e1000_tx_timeout(struct net_device *netdev)
3511{
3512 struct e1000_adapter *adapter = netdev_priv(netdev);
3513
3514 /* Do the reset outside of interrupt context */
3515 adapter->tx_timeout_count++;
3516 schedule_work(&adapter->reset_task);
3517}
3518
3519static void e1000_reset_task(struct work_struct *work)
3520{
3521 struct e1000_adapter *adapter =
3522 container_of(work, struct e1000_adapter, reset_task);
3523
3524 e_err(drv, "Reset adapter\n");
3525 e1000_reinit_locked(adapter);
3526}
3527
3528/**
3529 * e1000_get_stats - Get System Network Statistics
3530 * @netdev: network interface device structure
3531 *
3532 * Returns the address of the device statistics structure.
3533 * The statistics are actually updated from the watchdog.
3534 **/
3535static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
3536{
3537 /* only return the current stats */
3538 return &netdev->stats;
3539}
3540
3541/**
3542 * e1000_change_mtu - Change the Maximum Transfer Unit
3543 * @netdev: network interface device structure
3544 * @new_mtu: new value for maximum frame size
3545 *
3546 * Returns 0 on success, negative on failure
3547 **/
3548static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
3549{
3550 struct e1000_adapter *adapter = netdev_priv(netdev);
3551 struct e1000_hw *hw = &adapter->hw;
3552 int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
3553
3554 if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
3555 (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3556 e_err(probe, "Invalid MTU setting\n");
3557 return -EINVAL;
3558 }
3559
3560 /* Adapter-specific max frame size limits. */
3561 switch (hw->mac_type) {
3562 case e1000_undefined ... e1000_82542_rev2_1:
3563 if (max_frame > (ETH_FRAME_LEN + ETH_FCS_LEN)) {
3564 e_err(probe, "Jumbo Frames not supported.\n");
3565 return -EINVAL;
3566 }
3567 break;
3568 default:
3569 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3570 break;
3571 }
3572
3573 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
3574 msleep(1);
3575 /* e1000_down has a dependency on max_frame_size */
3576 hw->max_frame_size = max_frame;
3577 if (netif_running(netdev)) {
3578 /* prevent buffers from being reallocated */
3579 adapter->alloc_rx_buf = e1000_alloc_dummy_rx_buffers;
3580 e1000_down(adapter);
3581 }
3582
3583 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3584 * means we reserve 2 more, this pushes us to allocate from the next
3585 * larger slab size.
3586 * i.e. RXBUFFER_2048 --> size-4096 slab
3587 * however with the new *_jumbo_rx* routines, jumbo receives will use
3588 * fragmented skbs
3589 */
3590
3591 if (max_frame <= E1000_RXBUFFER_2048)
3592 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3593 else
3594#if (PAGE_SIZE >= E1000_RXBUFFER_16384)
3595 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3596#elif (PAGE_SIZE >= E1000_RXBUFFER_4096)
3597 adapter->rx_buffer_len = PAGE_SIZE;
3598#endif
3599
3600 /* adjust allocation if LPE protects us, and we aren't using SBP */
3601 if (!hw->tbi_compatibility_on &&
3602 ((max_frame == (ETH_FRAME_LEN + ETH_FCS_LEN)) ||
3603 (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3604 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3605
3606 pr_info("%s changing MTU from %d to %d\n",
3607 netdev->name, netdev->mtu, new_mtu);
3608 netdev->mtu = new_mtu;
3609
3610 if (netif_running(netdev))
3611 e1000_up(adapter);
3612 else
3613 e1000_reset(adapter);
3614
3615 clear_bit(__E1000_RESETTING, &adapter->flags);
3616
3617 return 0;
3618}
3619
3620/**
3621 * e1000_update_stats - Update the board statistics counters
3622 * @adapter: board private structure
3623 **/
3624void e1000_update_stats(struct e1000_adapter *adapter)
3625{
3626 struct net_device *netdev = adapter->netdev;
3627 struct e1000_hw *hw = &adapter->hw;
3628 struct pci_dev *pdev = adapter->pdev;
3629 unsigned long flags;
3630 u16 phy_tmp;
3631
3632#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3633
3634 /* Prevent stats update while adapter is being reset, or if the pci
3635 * connection is down.
3636 */
3637 if (adapter->link_speed == 0)
3638 return;
3639 if (pci_channel_offline(pdev))
3640 return;
3641
3642 spin_lock_irqsave(&adapter->stats_lock, flags);
3643
3644 /* these counters are modified from e1000_tbi_adjust_stats,
3645 * called from the interrupt context, so they must only
3646 * be written while holding adapter->stats_lock
3647 */
3648
3649 adapter->stats.crcerrs += er32(CRCERRS);
3650 adapter->stats.gprc += er32(GPRC);
3651 adapter->stats.gorcl += er32(GORCL);
3652 adapter->stats.gorch += er32(GORCH);
3653 adapter->stats.bprc += er32(BPRC);
3654 adapter->stats.mprc += er32(MPRC);
3655 adapter->stats.roc += er32(ROC);
3656
3657 adapter->stats.prc64 += er32(PRC64);
3658 adapter->stats.prc127 += er32(PRC127);
3659 adapter->stats.prc255 += er32(PRC255);
3660 adapter->stats.prc511 += er32(PRC511);
3661 adapter->stats.prc1023 += er32(PRC1023);
3662 adapter->stats.prc1522 += er32(PRC1522);
3663
3664 adapter->stats.symerrs += er32(SYMERRS);
3665 adapter->stats.mpc += er32(MPC);
3666 adapter->stats.scc += er32(SCC);
3667 adapter->stats.ecol += er32(ECOL);
3668 adapter->stats.mcc += er32(MCC);
3669 adapter->stats.latecol += er32(LATECOL);
3670 adapter->stats.dc += er32(DC);
3671 adapter->stats.sec += er32(SEC);
3672 adapter->stats.rlec += er32(RLEC);
3673 adapter->stats.xonrxc += er32(XONRXC);
3674 adapter->stats.xontxc += er32(XONTXC);
3675 adapter->stats.xoffrxc += er32(XOFFRXC);
3676 adapter->stats.xofftxc += er32(XOFFTXC);
3677 adapter->stats.fcruc += er32(FCRUC);
3678 adapter->stats.gptc += er32(GPTC);
3679 adapter->stats.gotcl += er32(GOTCL);
3680 adapter->stats.gotch += er32(GOTCH);
3681 adapter->stats.rnbc += er32(RNBC);
3682 adapter->stats.ruc += er32(RUC);
3683 adapter->stats.rfc += er32(RFC);
3684 adapter->stats.rjc += er32(RJC);
3685 adapter->stats.torl += er32(TORL);
3686 adapter->stats.torh += er32(TORH);
3687 adapter->stats.totl += er32(TOTL);
3688 adapter->stats.toth += er32(TOTH);
3689 adapter->stats.tpr += er32(TPR);
3690
3691 adapter->stats.ptc64 += er32(PTC64);
3692 adapter->stats.ptc127 += er32(PTC127);
3693 adapter->stats.ptc255 += er32(PTC255);
3694 adapter->stats.ptc511 += er32(PTC511);
3695 adapter->stats.ptc1023 += er32(PTC1023);
3696 adapter->stats.ptc1522 += er32(PTC1522);
3697
3698 adapter->stats.mptc += er32(MPTC);
3699 adapter->stats.bptc += er32(BPTC);
3700
3701 /* used for adaptive IFS */
3702
3703 hw->tx_packet_delta = er32(TPT);
3704 adapter->stats.tpt += hw->tx_packet_delta;
3705 hw->collision_delta = er32(COLC);
3706 adapter->stats.colc += hw->collision_delta;
3707
3708 if (hw->mac_type >= e1000_82543) {
3709 adapter->stats.algnerrc += er32(ALGNERRC);
3710 adapter->stats.rxerrc += er32(RXERRC);
3711 adapter->stats.tncrs += er32(TNCRS);
3712 adapter->stats.cexterr += er32(CEXTERR);
3713 adapter->stats.tsctc += er32(TSCTC);
3714 adapter->stats.tsctfc += er32(TSCTFC);
3715 }
3716
3717 /* Fill out the OS statistics structure */
3718 netdev->stats.multicast = adapter->stats.mprc;
3719 netdev->stats.collisions = adapter->stats.colc;
3720
3721 /* Rx Errors */
3722
3723 /* RLEC on some newer hardware can be incorrect so build
3724 * our own version based on RUC and ROC
3725 */
3726 netdev->stats.rx_errors = adapter->stats.rxerrc +
3727 adapter->stats.crcerrs + adapter->stats.algnerrc +
3728 adapter->stats.ruc + adapter->stats.roc +
3729 adapter->stats.cexterr;
3730 adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3731 netdev->stats.rx_length_errors = adapter->stats.rlerrc;
3732 netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
3733 netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
3734 netdev->stats.rx_missed_errors = adapter->stats.mpc;
3735
3736 /* Tx Errors */
3737 adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3738 netdev->stats.tx_errors = adapter->stats.txerrc;
3739 netdev->stats.tx_aborted_errors = adapter->stats.ecol;
3740 netdev->stats.tx_window_errors = adapter->stats.latecol;
3741 netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
3742 if (hw->bad_tx_carr_stats_fd &&
3743 adapter->link_duplex == FULL_DUPLEX) {
3744 netdev->stats.tx_carrier_errors = 0;
3745 adapter->stats.tncrs = 0;
3746 }
3747
3748 /* Tx Dropped needs to be maintained elsewhere */
3749
3750 /* Phy Stats */
3751 if (hw->media_type == e1000_media_type_copper) {
3752 if ((adapter->link_speed == SPEED_1000) &&
3753 (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3754 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3755 adapter->phy_stats.idle_errors += phy_tmp;
3756 }
3757
3758 if ((hw->mac_type <= e1000_82546) &&
3759 (hw->phy_type == e1000_phy_m88) &&
3760 !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3761 adapter->phy_stats.receive_errors += phy_tmp;
3762 }
3763
3764 /* Management Stats */
3765 if (hw->has_smbus) {
3766 adapter->stats.mgptc += er32(MGTPTC);
3767 adapter->stats.mgprc += er32(MGTPRC);
3768 adapter->stats.mgpdc += er32(MGTPDC);
3769 }
3770
3771 spin_unlock_irqrestore(&adapter->stats_lock, flags);
3772}
3773
3774/**
3775 * e1000_intr - Interrupt Handler
3776 * @irq: interrupt number
3777 * @data: pointer to a network interface device structure
3778 **/
3779static irqreturn_t e1000_intr(int irq, void *data)
3780{
3781 struct net_device *netdev = data;
3782 struct e1000_adapter *adapter = netdev_priv(netdev);
3783 struct e1000_hw *hw = &adapter->hw;
3784 u32 icr = er32(ICR);
3785
3786 if (unlikely((!icr)))
3787 return IRQ_NONE; /* Not our interrupt */
3788
3789 /* we might have caused the interrupt, but the above
3790 * read cleared it, and just in case the driver is
3791 * down there is nothing to do so return handled
3792 */
3793 if (unlikely(test_bit(__E1000_DOWN, &adapter->flags)))
3794 return IRQ_HANDLED;
3795
3796 if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3797 hw->get_link_status = 1;
3798 /* guard against interrupt when we're going down */
3799 if (!test_bit(__E1000_DOWN, &adapter->flags))
3800 schedule_delayed_work(&adapter->watchdog_task, 1);
3801 }
3802
3803 /* disable interrupts, without the synchronize_irq bit */
3804 ew32(IMC, ~0);
3805 E1000_WRITE_FLUSH();
3806
3807 if (likely(napi_schedule_prep(&adapter->napi))) {
3808 adapter->total_tx_bytes = 0;
3809 adapter->total_tx_packets = 0;
3810 adapter->total_rx_bytes = 0;
3811 adapter->total_rx_packets = 0;
3812 __napi_schedule(&adapter->napi);
3813 } else {
3814 /* this really should not happen! if it does it is basically a
3815 * bug, but not a hard error, so enable ints and continue
3816 */
3817 if (!test_bit(__E1000_DOWN, &adapter->flags))
3818 e1000_irq_enable(adapter);
3819 }
3820
3821 return IRQ_HANDLED;
3822}
3823
3824/**
3825 * e1000_clean - NAPI Rx polling callback
3826 * @adapter: board private structure
3827 **/
3828static int e1000_clean(struct napi_struct *napi, int budget)
3829{
3830 struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
3831 napi);
3832 int tx_clean_complete = 0, work_done = 0;
3833
3834 tx_clean_complete = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]);
3835
3836 adapter->clean_rx(adapter, &adapter->rx_ring[0], &work_done, budget);
3837
3838 if (!tx_clean_complete)
3839 work_done = budget;
3840
3841 /* If budget not fully consumed, exit the polling mode */
3842 if (work_done < budget) {
3843 if (likely(adapter->itr_setting & 3))
3844 e1000_set_itr(adapter);
3845 napi_complete_done(napi, work_done);
3846 if (!test_bit(__E1000_DOWN, &adapter->flags))
3847 e1000_irq_enable(adapter);
3848 }
3849
3850 return work_done;
3851}
3852
3853/**
3854 * e1000_clean_tx_irq - Reclaim resources after transmit completes
3855 * @adapter: board private structure
3856 **/
3857static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
3858 struct e1000_tx_ring *tx_ring)
3859{
3860 struct e1000_hw *hw = &adapter->hw;
3861 struct net_device *netdev = adapter->netdev;
3862 struct e1000_tx_desc *tx_desc, *eop_desc;
3863 struct e1000_tx_buffer *buffer_info;
3864 unsigned int i, eop;
3865 unsigned int count = 0;
3866 unsigned int total_tx_bytes = 0, total_tx_packets = 0;
3867 unsigned int bytes_compl = 0, pkts_compl = 0;
3868
3869 i = tx_ring->next_to_clean;
3870 eop = tx_ring->buffer_info[i].next_to_watch;
3871 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3872
3873 while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
3874 (count < tx_ring->count)) {
3875 bool cleaned = false;
3876 dma_rmb(); /* read buffer_info after eop_desc */
3877 for ( ; !cleaned; count++) {
3878 tx_desc = E1000_TX_DESC(*tx_ring, i);
3879 buffer_info = &tx_ring->buffer_info[i];
3880 cleaned = (i == eop);
3881
3882 if (cleaned) {
3883 total_tx_packets += buffer_info->segs;
3884 total_tx_bytes += buffer_info->bytecount;
3885 if (buffer_info->skb) {
3886 bytes_compl += buffer_info->skb->len;
3887 pkts_compl++;
3888 }
3889
3890 }
3891 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
3892 tx_desc->upper.data = 0;
3893
3894 if (unlikely(++i == tx_ring->count))
3895 i = 0;
3896 }
3897
3898 eop = tx_ring->buffer_info[i].next_to_watch;
3899 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3900 }
3901
3902 /* Synchronize with E1000_DESC_UNUSED called from e1000_xmit_frame,
3903 * which will reuse the cleaned buffers.
3904 */
3905 smp_store_release(&tx_ring->next_to_clean, i);
3906
3907 netdev_completed_queue(netdev, pkts_compl, bytes_compl);
3908
3909#define TX_WAKE_THRESHOLD 32
3910 if (unlikely(count && netif_carrier_ok(netdev) &&
3911 E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3912 /* Make sure that anybody stopping the queue after this
3913 * sees the new next_to_clean.
3914 */
3915 smp_mb();
3916
3917 if (netif_queue_stopped(netdev) &&
3918 !(test_bit(__E1000_DOWN, &adapter->flags))) {
3919 netif_wake_queue(netdev);
3920 ++adapter->restart_queue;
3921 }
3922 }
3923
3924 if (adapter->detect_tx_hung) {
3925 /* Detect a transmit hang in hardware, this serializes the
3926 * check with the clearing of time_stamp and movement of i
3927 */
3928 adapter->detect_tx_hung = false;
3929 if (tx_ring->buffer_info[eop].time_stamp &&
3930 time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3931 (adapter->tx_timeout_factor * HZ)) &&
3932 !(er32(STATUS) & E1000_STATUS_TXOFF)) {
3933
3934 /* detected Tx unit hang */
3935 e_err(drv, "Detected Tx Unit Hang\n"
3936 " Tx Queue <%lu>\n"
3937 " TDH <%x>\n"
3938 " TDT <%x>\n"
3939 " next_to_use <%x>\n"
3940 " next_to_clean <%x>\n"
3941 "buffer_info[next_to_clean]\n"
3942 " time_stamp <%lx>\n"
3943 " next_to_watch <%x>\n"
3944 " jiffies <%lx>\n"
3945 " next_to_watch.status <%x>\n",
3946 (unsigned long)(tx_ring - adapter->tx_ring),
3947 readl(hw->hw_addr + tx_ring->tdh),
3948 readl(hw->hw_addr + tx_ring->tdt),
3949 tx_ring->next_to_use,
3950 tx_ring->next_to_clean,
3951 tx_ring->buffer_info[eop].time_stamp,
3952 eop,
3953 jiffies,
3954 eop_desc->upper.fields.status);
3955 e1000_dump(adapter);
3956 netif_stop_queue(netdev);
3957 }
3958 }
3959 adapter->total_tx_bytes += total_tx_bytes;
3960 adapter->total_tx_packets += total_tx_packets;
3961 netdev->stats.tx_bytes += total_tx_bytes;
3962 netdev->stats.tx_packets += total_tx_packets;
3963 return count < tx_ring->count;
3964}
3965
3966/**
3967 * e1000_rx_checksum - Receive Checksum Offload for 82543
3968 * @adapter: board private structure
3969 * @status_err: receive descriptor status and error fields
3970 * @csum: receive descriptor csum field
3971 * @sk_buff: socket buffer with received data
3972 **/
3973static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
3974 u32 csum, struct sk_buff *skb)
3975{
3976 struct e1000_hw *hw = &adapter->hw;
3977 u16 status = (u16)status_err;
3978 u8 errors = (u8)(status_err >> 24);
3979
3980 skb_checksum_none_assert(skb);
3981
3982 /* 82543 or newer only */
3983 if (unlikely(hw->mac_type < e1000_82543))
3984 return;
3985 /* Ignore Checksum bit is set */
3986 if (unlikely(status & E1000_RXD_STAT_IXSM))
3987 return;
3988 /* TCP/UDP checksum error bit is set */
3989 if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3990 /* let the stack verify checksum errors */
3991 adapter->hw_csum_err++;
3992 return;
3993 }
3994 /* TCP/UDP Checksum has not been calculated */
3995 if (!(status & E1000_RXD_STAT_TCPCS))
3996 return;
3997
3998 /* It must be a TCP or UDP packet with a valid checksum */
3999 if (likely(status & E1000_RXD_STAT_TCPCS)) {
4000 /* TCP checksum is good */
4001 skb->ip_summed = CHECKSUM_UNNECESSARY;
4002 }
4003 adapter->hw_csum_good++;
4004}
4005
4006/**
4007 * e1000_consume_page - helper function for jumbo Rx path
4008 **/
4009static void e1000_consume_page(struct e1000_rx_buffer *bi, struct sk_buff *skb,
4010 u16 length)
4011{
4012 bi->rxbuf.page = NULL;
4013 skb->len += length;
4014 skb->data_len += length;
4015 skb->truesize += PAGE_SIZE;
4016}
4017
4018/**
4019 * e1000_receive_skb - helper function to handle rx indications
4020 * @adapter: board private structure
4021 * @status: descriptor status field as written by hardware
4022 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
4023 * @skb: pointer to sk_buff to be indicated to stack
4024 */
4025static void e1000_receive_skb(struct e1000_adapter *adapter, u8 status,
4026 __le16 vlan, struct sk_buff *skb)
4027{
4028 skb->protocol = eth_type_trans(skb, adapter->netdev);
4029
4030 if (status & E1000_RXD_STAT_VP) {
4031 u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
4032
4033 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
4034 }
4035 napi_gro_receive(&adapter->napi, skb);
4036}
4037
4038/**
4039 * e1000_tbi_adjust_stats
4040 * @hw: Struct containing variables accessed by shared code
4041 * @frame_len: The length of the frame in question
4042 * @mac_addr: The Ethernet destination address of the frame in question
4043 *
4044 * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT
4045 */
4046static void e1000_tbi_adjust_stats(struct e1000_hw *hw,
4047 struct e1000_hw_stats *stats,
4048 u32 frame_len, const u8 *mac_addr)
4049{
4050 u64 carry_bit;
4051
4052 /* First adjust the frame length. */
4053 frame_len--;
4054 /* We need to adjust the statistics counters, since the hardware
4055 * counters overcount this packet as a CRC error and undercount
4056 * the packet as a good packet
4057 */
4058 /* This packet should not be counted as a CRC error. */
4059 stats->crcerrs--;
4060 /* This packet does count as a Good Packet Received. */
4061 stats->gprc++;
4062
4063 /* Adjust the Good Octets received counters */
4064 carry_bit = 0x80000000 & stats->gorcl;
4065 stats->gorcl += frame_len;
4066 /* If the high bit of Gorcl (the low 32 bits of the Good Octets
4067 * Received Count) was one before the addition,
4068 * AND it is zero after, then we lost the carry out,
4069 * need to add one to Gorch (Good Octets Received Count High).
4070 * This could be simplified if all environments supported
4071 * 64-bit integers.
4072 */
4073 if (carry_bit && ((stats->gorcl & 0x80000000) == 0))
4074 stats->gorch++;
4075 /* Is this a broadcast or multicast? Check broadcast first,
4076 * since the test for a multicast frame will test positive on
4077 * a broadcast frame.
4078 */
4079 if (is_broadcast_ether_addr(mac_addr))
4080 stats->bprc++;
4081 else if (is_multicast_ether_addr(mac_addr))
4082 stats->mprc++;
4083
4084 if (frame_len == hw->max_frame_size) {
4085 /* In this case, the hardware has overcounted the number of
4086 * oversize frames.
4087 */
4088 if (stats->roc > 0)
4089 stats->roc--;
4090 }
4091
4092 /* Adjust the bin counters when the extra byte put the frame in the
4093 * wrong bin. Remember that the frame_len was adjusted above.
4094 */
4095 if (frame_len == 64) {
4096 stats->prc64++;
4097 stats->prc127--;
4098 } else if (frame_len == 127) {
4099 stats->prc127++;
4100 stats->prc255--;
4101 } else if (frame_len == 255) {
4102 stats->prc255++;
4103 stats->prc511--;
4104 } else if (frame_len == 511) {
4105 stats->prc511++;
4106 stats->prc1023--;
4107 } else if (frame_len == 1023) {
4108 stats->prc1023++;
4109 stats->prc1522--;
4110 } else if (frame_len == 1522) {
4111 stats->prc1522++;
4112 }
4113}
4114
4115static bool e1000_tbi_should_accept(struct e1000_adapter *adapter,
4116 u8 status, u8 errors,
4117 u32 length, const u8 *data)
4118{
4119 struct e1000_hw *hw = &adapter->hw;
4120 u8 last_byte = *(data + length - 1);
4121
4122 if (TBI_ACCEPT(hw, status, errors, length, last_byte)) {
4123 unsigned long irq_flags;
4124
4125 spin_lock_irqsave(&adapter->stats_lock, irq_flags);
4126 e1000_tbi_adjust_stats(hw, &adapter->stats, length, data);
4127 spin_unlock_irqrestore(&adapter->stats_lock, irq_flags);
4128
4129 return true;
4130 }
4131
4132 return false;
4133}
4134
4135static struct sk_buff *e1000_alloc_rx_skb(struct e1000_adapter *adapter,
4136 unsigned int bufsz)
4137{
4138 struct sk_buff *skb = napi_alloc_skb(&adapter->napi, bufsz);
4139
4140 if (unlikely(!skb))
4141 adapter->alloc_rx_buff_failed++;
4142 return skb;
4143}
4144
4145/**
4146 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
4147 * @adapter: board private structure
4148 * @rx_ring: ring to clean
4149 * @work_done: amount of napi work completed this call
4150 * @work_to_do: max amount of work allowed for this call to do
4151 *
4152 * the return value indicates whether actual cleaning was done, there
4153 * is no guarantee that everything was cleaned
4154 */
4155static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
4156 struct e1000_rx_ring *rx_ring,
4157 int *work_done, int work_to_do)
4158{
4159 struct net_device *netdev = adapter->netdev;
4160 struct pci_dev *pdev = adapter->pdev;
4161 struct e1000_rx_desc *rx_desc, *next_rxd;
4162 struct e1000_rx_buffer *buffer_info, *next_buffer;
4163 u32 length;
4164 unsigned int i;
4165 int cleaned_count = 0;
4166 bool cleaned = false;
4167 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
4168
4169 i = rx_ring->next_to_clean;
4170 rx_desc = E1000_RX_DESC(*rx_ring, i);
4171 buffer_info = &rx_ring->buffer_info[i];
4172
4173 while (rx_desc->status & E1000_RXD_STAT_DD) {
4174 struct sk_buff *skb;
4175 u8 status;
4176
4177 if (*work_done >= work_to_do)
4178 break;
4179 (*work_done)++;
4180 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
4181
4182 status = rx_desc->status;
4183
4184 if (++i == rx_ring->count)
4185 i = 0;
4186
4187 next_rxd = E1000_RX_DESC(*rx_ring, i);
4188 prefetch(next_rxd);
4189
4190 next_buffer = &rx_ring->buffer_info[i];
4191
4192 cleaned = true;
4193 cleaned_count++;
4194 dma_unmap_page(&pdev->dev, buffer_info->dma,
4195 adapter->rx_buffer_len, DMA_FROM_DEVICE);
4196 buffer_info->dma = 0;
4197
4198 length = le16_to_cpu(rx_desc->length);
4199
4200 /* errors is only valid for DD + EOP descriptors */
4201 if (unlikely((status & E1000_RXD_STAT_EOP) &&
4202 (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
4203 u8 *mapped = page_address(buffer_info->rxbuf.page);
4204
4205 if (e1000_tbi_should_accept(adapter, status,
4206 rx_desc->errors,
4207 length, mapped)) {
4208 length--;
4209 } else if (netdev->features & NETIF_F_RXALL) {
4210 goto process_skb;
4211 } else {
4212 /* an error means any chain goes out the window
4213 * too
4214 */
4215 if (rx_ring->rx_skb_top)
4216 dev_kfree_skb(rx_ring->rx_skb_top);
4217 rx_ring->rx_skb_top = NULL;
4218 goto next_desc;
4219 }
4220 }
4221
4222#define rxtop rx_ring->rx_skb_top
4223process_skb:
4224 if (!(status & E1000_RXD_STAT_EOP)) {
4225 /* this descriptor is only the beginning (or middle) */
4226 if (!rxtop) {
4227 /* this is the beginning of a chain */
4228 rxtop = napi_get_frags(&adapter->napi);
4229 if (!rxtop)
4230 break;
4231
4232 skb_fill_page_desc(rxtop, 0,
4233 buffer_info->rxbuf.page,
4234 0, length);
4235 } else {
4236 /* this is the middle of a chain */
4237 skb_fill_page_desc(rxtop,
4238 skb_shinfo(rxtop)->nr_frags,
4239 buffer_info->rxbuf.page, 0, length);
4240 }
4241 e1000_consume_page(buffer_info, rxtop, length);
4242 goto next_desc;
4243 } else {
4244 if (rxtop) {
4245 /* end of the chain */
4246 skb_fill_page_desc(rxtop,
4247 skb_shinfo(rxtop)->nr_frags,
4248 buffer_info->rxbuf.page, 0, length);
4249 skb = rxtop;
4250 rxtop = NULL;
4251 e1000_consume_page(buffer_info, skb, length);
4252 } else {
4253 struct page *p;
4254 /* no chain, got EOP, this buf is the packet
4255 * copybreak to save the put_page/alloc_page
4256 */
4257 p = buffer_info->rxbuf.page;
4258 if (length <= copybreak) {
4259 u8 *vaddr;
4260
4261 if (likely(!(netdev->features & NETIF_F_RXFCS)))
4262 length -= 4;
4263 skb = e1000_alloc_rx_skb(adapter,
4264 length);
4265 if (!skb)
4266 break;
4267
4268 vaddr = kmap_atomic(p);
4269 memcpy(skb_tail_pointer(skb), vaddr,
4270 length);
4271 kunmap_atomic(vaddr);
4272 /* re-use the page, so don't erase
4273 * buffer_info->rxbuf.page
4274 */
4275 skb_put(skb, length);
4276 e1000_rx_checksum(adapter,
4277 status | rx_desc->errors << 24,
4278 le16_to_cpu(rx_desc->csum), skb);
4279
4280 total_rx_bytes += skb->len;
4281 total_rx_packets++;
4282
4283 e1000_receive_skb(adapter, status,
4284 rx_desc->special, skb);
4285 goto next_desc;
4286 } else {
4287 skb = napi_get_frags(&adapter->napi);
4288 if (!skb) {
4289 adapter->alloc_rx_buff_failed++;
4290 break;
4291 }
4292 skb_fill_page_desc(skb, 0, p, 0,
4293 length);
4294 e1000_consume_page(buffer_info, skb,
4295 length);
4296 }
4297 }
4298 }
4299
4300 /* Receive Checksum Offload XXX recompute due to CRC strip? */
4301 e1000_rx_checksum(adapter,
4302 (u32)(status) |
4303 ((u32)(rx_desc->errors) << 24),
4304 le16_to_cpu(rx_desc->csum), skb);
4305
4306 total_rx_bytes += (skb->len - 4); /* don't count FCS */
4307 if (likely(!(netdev->features & NETIF_F_RXFCS)))
4308 pskb_trim(skb, skb->len - 4);
4309 total_rx_packets++;
4310
4311 if (status & E1000_RXD_STAT_VP) {
4312 __le16 vlan = rx_desc->special;
4313 u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
4314
4315 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
4316 }
4317
4318 napi_gro_frags(&adapter->napi);
4319
4320next_desc:
4321 rx_desc->status = 0;
4322
4323 /* return some buffers to hardware, one at a time is too slow */
4324 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4325 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4326 cleaned_count = 0;
4327 }
4328
4329 /* use prefetched values */
4330 rx_desc = next_rxd;
4331 buffer_info = next_buffer;
4332 }
4333 rx_ring->next_to_clean = i;
4334
4335 cleaned_count = E1000_DESC_UNUSED(rx_ring);
4336 if (cleaned_count)
4337 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4338
4339 adapter->total_rx_packets += total_rx_packets;
4340 adapter->total_rx_bytes += total_rx_bytes;
4341 netdev->stats.rx_bytes += total_rx_bytes;
4342 netdev->stats.rx_packets += total_rx_packets;
4343 return cleaned;
4344}
4345
4346/* this should improve performance for small packets with large amounts
4347 * of reassembly being done in the stack
4348 */
4349static struct sk_buff *e1000_copybreak(struct e1000_adapter *adapter,
4350 struct e1000_rx_buffer *buffer_info,
4351 u32 length, const void *data)
4352{
4353 struct sk_buff *skb;
4354
4355 if (length > copybreak)
4356 return NULL;
4357
4358 skb = e1000_alloc_rx_skb(adapter, length);
4359 if (!skb)
4360 return NULL;
4361
4362 dma_sync_single_for_cpu(&adapter->pdev->dev, buffer_info->dma,
4363 length, DMA_FROM_DEVICE);
4364
4365 memcpy(skb_put(skb, length), data, length);
4366
4367 return skb;
4368}
4369
4370/**
4371 * e1000_clean_rx_irq - Send received data up the network stack; legacy
4372 * @adapter: board private structure
4373 * @rx_ring: ring to clean
4374 * @work_done: amount of napi work completed this call
4375 * @work_to_do: max amount of work allowed for this call to do
4376 */
4377static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
4378 struct e1000_rx_ring *rx_ring,
4379 int *work_done, int work_to_do)
4380{
4381 struct net_device *netdev = adapter->netdev;
4382 struct pci_dev *pdev = adapter->pdev;
4383 struct e1000_rx_desc *rx_desc, *next_rxd;
4384 struct e1000_rx_buffer *buffer_info, *next_buffer;
4385 u32 length;
4386 unsigned int i;
4387 int cleaned_count = 0;
4388 bool cleaned = false;
4389 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
4390
4391 i = rx_ring->next_to_clean;
4392 rx_desc = E1000_RX_DESC(*rx_ring, i);
4393 buffer_info = &rx_ring->buffer_info[i];
4394
4395 while (rx_desc->status & E1000_RXD_STAT_DD) {
4396 struct sk_buff *skb;
4397 u8 *data;
4398 u8 status;
4399
4400 if (*work_done >= work_to_do)
4401 break;
4402 (*work_done)++;
4403 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
4404
4405 status = rx_desc->status;
4406 length = le16_to_cpu(rx_desc->length);
4407
4408 data = buffer_info->rxbuf.data;
4409 prefetch(data);
4410 skb = e1000_copybreak(adapter, buffer_info, length, data);
4411 if (!skb) {
4412 unsigned int frag_len = e1000_frag_len(adapter);
4413
4414 skb = build_skb(data - E1000_HEADROOM, frag_len);
4415 if (!skb) {
4416 adapter->alloc_rx_buff_failed++;
4417 break;
4418 }
4419
4420 skb_reserve(skb, E1000_HEADROOM);
4421 dma_unmap_single(&pdev->dev, buffer_info->dma,
4422 adapter->rx_buffer_len,
4423 DMA_FROM_DEVICE);
4424 buffer_info->dma = 0;
4425 buffer_info->rxbuf.data = NULL;
4426 }
4427
4428 if (++i == rx_ring->count)
4429 i = 0;
4430
4431 next_rxd = E1000_RX_DESC(*rx_ring, i);
4432 prefetch(next_rxd);
4433
4434 next_buffer = &rx_ring->buffer_info[i];
4435
4436 cleaned = true;
4437 cleaned_count++;
4438
4439 /* !EOP means multiple descriptors were used to store a single
4440 * packet, if thats the case we need to toss it. In fact, we
4441 * to toss every packet with the EOP bit clear and the next
4442 * frame that _does_ have the EOP bit set, as it is by
4443 * definition only a frame fragment
4444 */
4445 if (unlikely(!(status & E1000_RXD_STAT_EOP)))
4446 adapter->discarding = true;
4447
4448 if (adapter->discarding) {
4449 /* All receives must fit into a single buffer */
4450 netdev_dbg(netdev, "Receive packet consumed multiple buffers\n");
4451 dev_kfree_skb(skb);
4452 if (status & E1000_RXD_STAT_EOP)
4453 adapter->discarding = false;
4454 goto next_desc;
4455 }
4456
4457 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
4458 if (e1000_tbi_should_accept(adapter, status,
4459 rx_desc->errors,
4460 length, data)) {
4461 length--;
4462 } else if (netdev->features & NETIF_F_RXALL) {
4463 goto process_skb;
4464 } else {
4465 dev_kfree_skb(skb);
4466 goto next_desc;
4467 }
4468 }
4469
4470process_skb:
4471 total_rx_bytes += (length - 4); /* don't count FCS */
4472 total_rx_packets++;
4473
4474 if (likely(!(netdev->features & NETIF_F_RXFCS)))
4475 /* adjust length to remove Ethernet CRC, this must be
4476 * done after the TBI_ACCEPT workaround above
4477 */
4478 length -= 4;
4479
4480 if (buffer_info->rxbuf.data == NULL)
4481 skb_put(skb, length);
4482 else /* copybreak skb */
4483 skb_trim(skb, length);
4484
4485 /* Receive Checksum Offload */
4486 e1000_rx_checksum(adapter,
4487 (u32)(status) |
4488 ((u32)(rx_desc->errors) << 24),
4489 le16_to_cpu(rx_desc->csum), skb);
4490
4491 e1000_receive_skb(adapter, status, rx_desc->special, skb);
4492
4493next_desc:
4494 rx_desc->status = 0;
4495
4496 /* return some buffers to hardware, one at a time is too slow */
4497 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4498 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4499 cleaned_count = 0;
4500 }
4501
4502 /* use prefetched values */
4503 rx_desc = next_rxd;
4504 buffer_info = next_buffer;
4505 }
4506 rx_ring->next_to_clean = i;
4507
4508 cleaned_count = E1000_DESC_UNUSED(rx_ring);
4509 if (cleaned_count)
4510 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4511
4512 adapter->total_rx_packets += total_rx_packets;
4513 adapter->total_rx_bytes += total_rx_bytes;
4514 netdev->stats.rx_bytes += total_rx_bytes;
4515 netdev->stats.rx_packets += total_rx_packets;
4516 return cleaned;
4517}
4518
4519/**
4520 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
4521 * @adapter: address of board private structure
4522 * @rx_ring: pointer to receive ring structure
4523 * @cleaned_count: number of buffers to allocate this pass
4524 **/
4525static void
4526e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
4527 struct e1000_rx_ring *rx_ring, int cleaned_count)
4528{
4529 struct pci_dev *pdev = adapter->pdev;
4530 struct e1000_rx_desc *rx_desc;
4531 struct e1000_rx_buffer *buffer_info;
4532 unsigned int i;
4533
4534 i = rx_ring->next_to_use;
4535 buffer_info = &rx_ring->buffer_info[i];
4536
4537 while (cleaned_count--) {
4538 /* allocate a new page if necessary */
4539 if (!buffer_info->rxbuf.page) {
4540 buffer_info->rxbuf.page = alloc_page(GFP_ATOMIC);
4541 if (unlikely(!buffer_info->rxbuf.page)) {
4542 adapter->alloc_rx_buff_failed++;
4543 break;
4544 }
4545 }
4546
4547 if (!buffer_info->dma) {
4548 buffer_info->dma = dma_map_page(&pdev->dev,
4549 buffer_info->rxbuf.page, 0,
4550 adapter->rx_buffer_len,
4551 DMA_FROM_DEVICE);
4552 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4553 put_page(buffer_info->rxbuf.page);
4554 buffer_info->rxbuf.page = NULL;
4555 buffer_info->dma = 0;
4556 adapter->alloc_rx_buff_failed++;
4557 break;
4558 }
4559 }
4560
4561 rx_desc = E1000_RX_DESC(*rx_ring, i);
4562 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4563
4564 if (unlikely(++i == rx_ring->count))
4565 i = 0;
4566 buffer_info = &rx_ring->buffer_info[i];
4567 }
4568
4569 if (likely(rx_ring->next_to_use != i)) {
4570 rx_ring->next_to_use = i;
4571 if (unlikely(i-- == 0))
4572 i = (rx_ring->count - 1);
4573
4574 /* Force memory writes to complete before letting h/w
4575 * know there are new descriptors to fetch. (Only
4576 * applicable for weak-ordered memory model archs,
4577 * such as IA-64).
4578 */
4579 wmb();
4580 writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4581 }
4582}
4583
4584/**
4585 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4586 * @adapter: address of board private structure
4587 **/
4588static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4589 struct e1000_rx_ring *rx_ring,
4590 int cleaned_count)
4591{
4592 struct e1000_hw *hw = &adapter->hw;
4593 struct pci_dev *pdev = adapter->pdev;
4594 struct e1000_rx_desc *rx_desc;
4595 struct e1000_rx_buffer *buffer_info;
4596 unsigned int i;
4597 unsigned int bufsz = adapter->rx_buffer_len;
4598
4599 i = rx_ring->next_to_use;
4600 buffer_info = &rx_ring->buffer_info[i];
4601
4602 while (cleaned_count--) {
4603 void *data;
4604
4605 if (buffer_info->rxbuf.data)
4606 goto skip;
4607
4608 data = e1000_alloc_frag(adapter);
4609 if (!data) {
4610 /* Better luck next round */
4611 adapter->alloc_rx_buff_failed++;
4612 break;
4613 }
4614
4615 /* Fix for errata 23, can't cross 64kB boundary */
4616 if (!e1000_check_64k_bound(adapter, data, bufsz)) {
4617 void *olddata = data;
4618 e_err(rx_err, "skb align check failed: %u bytes at "
4619 "%p\n", bufsz, data);
4620 /* Try again, without freeing the previous */
4621 data = e1000_alloc_frag(adapter);
4622 /* Failed allocation, critical failure */
4623 if (!data) {
4624 skb_free_frag(olddata);
4625 adapter->alloc_rx_buff_failed++;
4626 break;
4627 }
4628
4629 if (!e1000_check_64k_bound(adapter, data, bufsz)) {
4630 /* give up */
4631 skb_free_frag(data);
4632 skb_free_frag(olddata);
4633 adapter->alloc_rx_buff_failed++;
4634 break;
4635 }
4636
4637 /* Use new allocation */
4638 skb_free_frag(olddata);
4639 }
4640 buffer_info->dma = dma_map_single(&pdev->dev,
4641 data,
4642 adapter->rx_buffer_len,
4643 DMA_FROM_DEVICE);
4644 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4645 skb_free_frag(data);
4646 buffer_info->dma = 0;
4647 adapter->alloc_rx_buff_failed++;
4648 break;
4649 }
4650
4651 /* XXX if it was allocated cleanly it will never map to a
4652 * boundary crossing
4653 */
4654
4655 /* Fix for errata 23, can't cross 64kB boundary */
4656 if (!e1000_check_64k_bound(adapter,
4657 (void *)(unsigned long)buffer_info->dma,
4658 adapter->rx_buffer_len)) {
4659 e_err(rx_err, "dma align check failed: %u bytes at "
4660 "%p\n", adapter->rx_buffer_len,
4661 (void *)(unsigned long)buffer_info->dma);
4662
4663 dma_unmap_single(&pdev->dev, buffer_info->dma,
4664 adapter->rx_buffer_len,
4665 DMA_FROM_DEVICE);
4666
4667 skb_free_frag(data);
4668 buffer_info->rxbuf.data = NULL;
4669 buffer_info->dma = 0;
4670
4671 adapter->alloc_rx_buff_failed++;
4672 break;
4673 }
4674 buffer_info->rxbuf.data = data;
4675 skip:
4676 rx_desc = E1000_RX_DESC(*rx_ring, i);
4677 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4678
4679 if (unlikely(++i == rx_ring->count))
4680 i = 0;
4681 buffer_info = &rx_ring->buffer_info[i];
4682 }
4683
4684 if (likely(rx_ring->next_to_use != i)) {
4685 rx_ring->next_to_use = i;
4686 if (unlikely(i-- == 0))
4687 i = (rx_ring->count - 1);
4688
4689 /* Force memory writes to complete before letting h/w
4690 * know there are new descriptors to fetch. (Only
4691 * applicable for weak-ordered memory model archs,
4692 * such as IA-64).
4693 */
4694 wmb();
4695 writel(i, hw->hw_addr + rx_ring->rdt);
4696 }
4697}
4698
4699/**
4700 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4701 * @adapter:
4702 **/
4703static void e1000_smartspeed(struct e1000_adapter *adapter)
4704{
4705 struct e1000_hw *hw = &adapter->hw;
4706 u16 phy_status;
4707 u16 phy_ctrl;
4708
4709 if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg ||
4710 !(hw->autoneg_advertised & ADVERTISE_1000_FULL))
4711 return;
4712
4713 if (adapter->smartspeed == 0) {
4714 /* If Master/Slave config fault is asserted twice,
4715 * we assume back-to-back
4716 */
4717 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4718 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
4719 return;
4720 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4721 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
4722 return;
4723 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4724 if (phy_ctrl & CR_1000T_MS_ENABLE) {
4725 phy_ctrl &= ~CR_1000T_MS_ENABLE;
4726 e1000_write_phy_reg(hw, PHY_1000T_CTRL,
4727 phy_ctrl);
4728 adapter->smartspeed++;
4729 if (!e1000_phy_setup_autoneg(hw) &&
4730 !e1000_read_phy_reg(hw, PHY_CTRL,
4731 &phy_ctrl)) {
4732 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4733 MII_CR_RESTART_AUTO_NEG);
4734 e1000_write_phy_reg(hw, PHY_CTRL,
4735 phy_ctrl);
4736 }
4737 }
4738 return;
4739 } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4740 /* If still no link, perhaps using 2/3 pair cable */
4741 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4742 phy_ctrl |= CR_1000T_MS_ENABLE;
4743 e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
4744 if (!e1000_phy_setup_autoneg(hw) &&
4745 !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) {
4746 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4747 MII_CR_RESTART_AUTO_NEG);
4748 e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl);
4749 }
4750 }
4751 /* Restart process after E1000_SMARTSPEED_MAX iterations */
4752 if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4753 adapter->smartspeed = 0;
4754}
4755
4756/**
4757 * e1000_ioctl -
4758 * @netdev:
4759 * @ifreq:
4760 * @cmd:
4761 **/
4762static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4763{
4764 switch (cmd) {
4765 case SIOCGMIIPHY:
4766 case SIOCGMIIREG:
4767 case SIOCSMIIREG:
4768 return e1000_mii_ioctl(netdev, ifr, cmd);
4769 default:
4770 return -EOPNOTSUPP;
4771 }
4772}
4773
4774/**
4775 * e1000_mii_ioctl -
4776 * @netdev:
4777 * @ifreq:
4778 * @cmd:
4779 **/
4780static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4781 int cmd)
4782{
4783 struct e1000_adapter *adapter = netdev_priv(netdev);
4784 struct e1000_hw *hw = &adapter->hw;
4785 struct mii_ioctl_data *data = if_mii(ifr);
4786 int retval;
4787 u16 mii_reg;
4788 unsigned long flags;
4789
4790 if (hw->media_type != e1000_media_type_copper)
4791 return -EOPNOTSUPP;
4792
4793 switch (cmd) {
4794 case SIOCGMIIPHY:
4795 data->phy_id = hw->phy_addr;
4796 break;
4797 case SIOCGMIIREG:
4798 spin_lock_irqsave(&adapter->stats_lock, flags);
4799 if (e1000_read_phy_reg(hw, data->reg_num & 0x1F,
4800 &data->val_out)) {
4801 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4802 return -EIO;
4803 }
4804 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4805 break;
4806 case SIOCSMIIREG:
4807 if (data->reg_num & ~(0x1F))
4808 return -EFAULT;
4809 mii_reg = data->val_in;
4810 spin_lock_irqsave(&adapter->stats_lock, flags);
4811 if (e1000_write_phy_reg(hw, data->reg_num,
4812 mii_reg)) {
4813 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4814 return -EIO;
4815 }
4816 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4817 if (hw->media_type == e1000_media_type_copper) {
4818 switch (data->reg_num) {
4819 case PHY_CTRL:
4820 if (mii_reg & MII_CR_POWER_DOWN)
4821 break;
4822 if (mii_reg & MII_CR_AUTO_NEG_EN) {
4823 hw->autoneg = 1;
4824 hw->autoneg_advertised = 0x2F;
4825 } else {
4826 u32 speed;
4827 if (mii_reg & 0x40)
4828 speed = SPEED_1000;
4829 else if (mii_reg & 0x2000)
4830 speed = SPEED_100;
4831 else
4832 speed = SPEED_10;
4833 retval = e1000_set_spd_dplx(
4834 adapter, speed,
4835 ((mii_reg & 0x100)
4836 ? DUPLEX_FULL :
4837 DUPLEX_HALF));
4838 if (retval)
4839 return retval;
4840 }
4841 if (netif_running(adapter->netdev))
4842 e1000_reinit_locked(adapter);
4843 else
4844 e1000_reset(adapter);
4845 break;
4846 case M88E1000_PHY_SPEC_CTRL:
4847 case M88E1000_EXT_PHY_SPEC_CTRL:
4848 if (e1000_phy_reset(hw))
4849 return -EIO;
4850 break;
4851 }
4852 } else {
4853 switch (data->reg_num) {
4854 case PHY_CTRL:
4855 if (mii_reg & MII_CR_POWER_DOWN)
4856 break;
4857 if (netif_running(adapter->netdev))
4858 e1000_reinit_locked(adapter);
4859 else
4860 e1000_reset(adapter);
4861 break;
4862 }
4863 }
4864 break;
4865 default:
4866 return -EOPNOTSUPP;
4867 }
4868 return E1000_SUCCESS;
4869}
4870
4871void e1000_pci_set_mwi(struct e1000_hw *hw)
4872{
4873 struct e1000_adapter *adapter = hw->back;
4874 int ret_val = pci_set_mwi(adapter->pdev);
4875
4876 if (ret_val)
4877 e_err(probe, "Error in setting MWI\n");
4878}
4879
4880void e1000_pci_clear_mwi(struct e1000_hw *hw)
4881{
4882 struct e1000_adapter *adapter = hw->back;
4883
4884 pci_clear_mwi(adapter->pdev);
4885}
4886
4887int e1000_pcix_get_mmrbc(struct e1000_hw *hw)
4888{
4889 struct e1000_adapter *adapter = hw->back;
4890 return pcix_get_mmrbc(adapter->pdev);
4891}
4892
4893void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
4894{
4895 struct e1000_adapter *adapter = hw->back;
4896 pcix_set_mmrbc(adapter->pdev, mmrbc);
4897}
4898
4899void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value)
4900{
4901 outl(value, port);
4902}
4903
4904static bool e1000_vlan_used(struct e1000_adapter *adapter)
4905{
4906 u16 vid;
4907
4908 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
4909 return true;
4910 return false;
4911}
4912
4913static void __e1000_vlan_mode(struct e1000_adapter *adapter,
4914 netdev_features_t features)
4915{
4916 struct e1000_hw *hw = &adapter->hw;
4917 u32 ctrl;
4918
4919 ctrl = er32(CTRL);
4920 if (features & NETIF_F_HW_VLAN_CTAG_RX) {
4921 /* enable VLAN tag insert/strip */
4922 ctrl |= E1000_CTRL_VME;
4923 } else {
4924 /* disable VLAN tag insert/strip */
4925 ctrl &= ~E1000_CTRL_VME;
4926 }
4927 ew32(CTRL, ctrl);
4928}
4929static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
4930 bool filter_on)
4931{
4932 struct e1000_hw *hw = &adapter->hw;
4933 u32 rctl;
4934
4935 if (!test_bit(__E1000_DOWN, &adapter->flags))
4936 e1000_irq_disable(adapter);
4937
4938 __e1000_vlan_mode(adapter, adapter->netdev->features);
4939 if (filter_on) {
4940 /* enable VLAN receive filtering */
4941 rctl = er32(RCTL);
4942 rctl &= ~E1000_RCTL_CFIEN;
4943 if (!(adapter->netdev->flags & IFF_PROMISC))
4944 rctl |= E1000_RCTL_VFE;
4945 ew32(RCTL, rctl);
4946 e1000_update_mng_vlan(adapter);
4947 } else {
4948 /* disable VLAN receive filtering */
4949 rctl = er32(RCTL);
4950 rctl &= ~E1000_RCTL_VFE;
4951 ew32(RCTL, rctl);
4952 }
4953
4954 if (!test_bit(__E1000_DOWN, &adapter->flags))
4955 e1000_irq_enable(adapter);
4956}
4957
4958static void e1000_vlan_mode(struct net_device *netdev,
4959 netdev_features_t features)
4960{
4961 struct e1000_adapter *adapter = netdev_priv(netdev);
4962
4963 if (!test_bit(__E1000_DOWN, &adapter->flags))
4964 e1000_irq_disable(adapter);
4965
4966 __e1000_vlan_mode(adapter, features);
4967
4968 if (!test_bit(__E1000_DOWN, &adapter->flags))
4969 e1000_irq_enable(adapter);
4970}
4971
4972static int e1000_vlan_rx_add_vid(struct net_device *netdev,
4973 __be16 proto, u16 vid)
4974{
4975 struct e1000_adapter *adapter = netdev_priv(netdev);
4976 struct e1000_hw *hw = &adapter->hw;
4977 u32 vfta, index;
4978
4979 if ((hw->mng_cookie.status &
4980 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4981 (vid == adapter->mng_vlan_id))
4982 return 0;
4983
4984 if (!e1000_vlan_used(adapter))
4985 e1000_vlan_filter_on_off(adapter, true);
4986
4987 /* add VID to filter table */
4988 index = (vid >> 5) & 0x7F;
4989 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4990 vfta |= (1 << (vid & 0x1F));
4991 e1000_write_vfta(hw, index, vfta);
4992
4993 set_bit(vid, adapter->active_vlans);
4994
4995 return 0;
4996}
4997
4998static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
4999 __be16 proto, u16 vid)
5000{
5001 struct e1000_adapter *adapter = netdev_priv(netdev);
5002 struct e1000_hw *hw = &adapter->hw;
5003 u32 vfta, index;
5004
5005 if (!test_bit(__E1000_DOWN, &adapter->flags))
5006 e1000_irq_disable(adapter);
5007 if (!test_bit(__E1000_DOWN, &adapter->flags))
5008 e1000_irq_enable(adapter);
5009
5010 /* remove VID from filter table */
5011 index = (vid >> 5) & 0x7F;
5012 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
5013 vfta &= ~(1 << (vid & 0x1F));
5014 e1000_write_vfta(hw, index, vfta);
5015
5016 clear_bit(vid, adapter->active_vlans);
5017
5018 if (!e1000_vlan_used(adapter))
5019 e1000_vlan_filter_on_off(adapter, false);
5020
5021 return 0;
5022}
5023
5024static void e1000_restore_vlan(struct e1000_adapter *adapter)
5025{
5026 u16 vid;
5027
5028 if (!e1000_vlan_used(adapter))
5029 return;
5030
5031 e1000_vlan_filter_on_off(adapter, true);
5032 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
5033 e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
5034}
5035
5036int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
5037{
5038 struct e1000_hw *hw = &adapter->hw;
5039
5040 hw->autoneg = 0;
5041
5042 /* Make sure dplx is at most 1 bit and lsb of speed is not set
5043 * for the switch() below to work
5044 */
5045 if ((spd & 1) || (dplx & ~1))
5046 goto err_inval;
5047
5048 /* Fiber NICs only allow 1000 gbps Full duplex */
5049 if ((hw->media_type == e1000_media_type_fiber) &&
5050 spd != SPEED_1000 &&
5051 dplx != DUPLEX_FULL)
5052 goto err_inval;
5053
5054 switch (spd + dplx) {
5055 case SPEED_10 + DUPLEX_HALF:
5056 hw->forced_speed_duplex = e1000_10_half;
5057 break;
5058 case SPEED_10 + DUPLEX_FULL:
5059 hw->forced_speed_duplex = e1000_10_full;
5060 break;
5061 case SPEED_100 + DUPLEX_HALF:
5062 hw->forced_speed_duplex = e1000_100_half;
5063 break;
5064 case SPEED_100 + DUPLEX_FULL:
5065 hw->forced_speed_duplex = e1000_100_full;
5066 break;
5067 case SPEED_1000 + DUPLEX_FULL:
5068 hw->autoneg = 1;
5069 hw->autoneg_advertised = ADVERTISE_1000_FULL;
5070 break;
5071 case SPEED_1000 + DUPLEX_HALF: /* not supported */
5072 default:
5073 goto err_inval;
5074 }
5075
5076 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
5077 hw->mdix = AUTO_ALL_MODES;
5078
5079 return 0;
5080
5081err_inval:
5082 e_err(probe, "Unsupported Speed/Duplex configuration\n");
5083 return -EINVAL;
5084}
5085
5086static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake)
5087{
5088 struct net_device *netdev = pci_get_drvdata(pdev);
5089 struct e1000_adapter *adapter = netdev_priv(netdev);
5090 struct e1000_hw *hw = &adapter->hw;
5091 u32 ctrl, ctrl_ext, rctl, status;
5092 u32 wufc = adapter->wol;
5093#ifdef CONFIG_PM
5094 int retval = 0;
5095#endif
5096
5097 netif_device_detach(netdev);
5098
5099 if (netif_running(netdev)) {
5100 int count = E1000_CHECK_RESET_COUNT;
5101
5102 while (test_bit(__E1000_RESETTING, &adapter->flags) && count--)
5103 usleep_range(10000, 20000);
5104
5105 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
5106 e1000_down(adapter);
5107 }
5108
5109#ifdef CONFIG_PM
5110 retval = pci_save_state(pdev);
5111 if (retval)
5112 return retval;
5113#endif
5114
5115 status = er32(STATUS);
5116 if (status & E1000_STATUS_LU)
5117 wufc &= ~E1000_WUFC_LNKC;
5118
5119 if (wufc) {
5120 e1000_setup_rctl(adapter);
5121 e1000_set_rx_mode(netdev);
5122
5123 rctl = er32(RCTL);
5124
5125 /* turn on all-multi mode if wake on multicast is enabled */
5126 if (wufc & E1000_WUFC_MC)
5127 rctl |= E1000_RCTL_MPE;
5128
5129 /* enable receives in the hardware */
5130 ew32(RCTL, rctl | E1000_RCTL_EN);
5131
5132 if (hw->mac_type >= e1000_82540) {
5133 ctrl = er32(CTRL);
5134 /* advertise wake from D3Cold */
5135 #define E1000_CTRL_ADVD3WUC 0x00100000
5136 /* phy power management enable */
5137 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5138 ctrl |= E1000_CTRL_ADVD3WUC |
5139 E1000_CTRL_EN_PHY_PWR_MGMT;
5140 ew32(CTRL, ctrl);
5141 }
5142
5143 if (hw->media_type == e1000_media_type_fiber ||
5144 hw->media_type == e1000_media_type_internal_serdes) {
5145 /* keep the laser running in D3 */
5146 ctrl_ext = er32(CTRL_EXT);
5147 ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
5148 ew32(CTRL_EXT, ctrl_ext);
5149 }
5150
5151 ew32(WUC, E1000_WUC_PME_EN);
5152 ew32(WUFC, wufc);
5153 } else {
5154 ew32(WUC, 0);
5155 ew32(WUFC, 0);
5156 }
5157
5158 e1000_release_manageability(adapter);
5159
5160 *enable_wake = !!wufc;
5161
5162 /* make sure adapter isn't asleep if manageability is enabled */
5163 if (adapter->en_mng_pt)
5164 *enable_wake = true;
5165
5166 if (netif_running(netdev))
5167 e1000_free_irq(adapter);
5168
5169 pci_disable_device(pdev);
5170
5171 return 0;
5172}
5173
5174#ifdef CONFIG_PM
5175static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
5176{
5177 int retval;
5178 bool wake;
5179
5180 retval = __e1000_shutdown(pdev, &wake);
5181 if (retval)
5182 return retval;
5183
5184 if (wake) {
5185 pci_prepare_to_sleep(pdev);
5186 } else {
5187 pci_wake_from_d3(pdev, false);
5188 pci_set_power_state(pdev, PCI_D3hot);
5189 }
5190
5191 return 0;
5192}
5193
5194static int e1000_resume(struct pci_dev *pdev)
5195{
5196 struct net_device *netdev = pci_get_drvdata(pdev);
5197 struct e1000_adapter *adapter = netdev_priv(netdev);
5198 struct e1000_hw *hw = &adapter->hw;
5199 u32 err;
5200
5201 pci_set_power_state(pdev, PCI_D0);
5202 pci_restore_state(pdev);
5203 pci_save_state(pdev);
5204
5205 if (adapter->need_ioport)
5206 err = pci_enable_device(pdev);
5207 else
5208 err = pci_enable_device_mem(pdev);
5209 if (err) {
5210 pr_err("Cannot enable PCI device from suspend\n");
5211 return err;
5212 }
5213 pci_set_master(pdev);
5214
5215 pci_enable_wake(pdev, PCI_D3hot, 0);
5216 pci_enable_wake(pdev, PCI_D3cold, 0);
5217
5218 if (netif_running(netdev)) {
5219 err = e1000_request_irq(adapter);
5220 if (err)
5221 return err;
5222 }
5223
5224 e1000_power_up_phy(adapter);
5225 e1000_reset(adapter);
5226 ew32(WUS, ~0);
5227
5228 e1000_init_manageability(adapter);
5229
5230 if (netif_running(netdev))
5231 e1000_up(adapter);
5232
5233 netif_device_attach(netdev);
5234
5235 return 0;
5236}
5237#endif
5238
5239static void e1000_shutdown(struct pci_dev *pdev)
5240{
5241 bool wake;
5242
5243 __e1000_shutdown(pdev, &wake);
5244
5245 if (system_state == SYSTEM_POWER_OFF) {
5246 pci_wake_from_d3(pdev, wake);
5247 pci_set_power_state(pdev, PCI_D3hot);
5248 }
5249}
5250
5251#ifdef CONFIG_NET_POLL_CONTROLLER
5252/* Polling 'interrupt' - used by things like netconsole to send skbs
5253 * without having to re-enable interrupts. It's not called while
5254 * the interrupt routine is executing.
5255 */
5256static void e1000_netpoll(struct net_device *netdev)
5257{
5258 struct e1000_adapter *adapter = netdev_priv(netdev);
5259
5260 disable_irq(adapter->pdev->irq);
5261 e1000_intr(adapter->pdev->irq, netdev);
5262 enable_irq(adapter->pdev->irq);
5263}
5264#endif
5265
5266/**
5267 * e1000_io_error_detected - called when PCI error is detected
5268 * @pdev: Pointer to PCI device
5269 * @state: The current pci connection state
5270 *
5271 * This function is called after a PCI bus error affecting
5272 * this device has been detected.
5273 */
5274static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
5275 pci_channel_state_t state)
5276{
5277 struct net_device *netdev = pci_get_drvdata(pdev);
5278 struct e1000_adapter *adapter = netdev_priv(netdev);
5279
5280 netif_device_detach(netdev);
5281
5282 if (state == pci_channel_io_perm_failure)
5283 return PCI_ERS_RESULT_DISCONNECT;
5284
5285 if (netif_running(netdev))
5286 e1000_down(adapter);
5287 pci_disable_device(pdev);
5288
5289 /* Request a slot slot reset. */
5290 return PCI_ERS_RESULT_NEED_RESET;
5291}
5292
5293/**
5294 * e1000_io_slot_reset - called after the pci bus has been reset.
5295 * @pdev: Pointer to PCI device
5296 *
5297 * Restart the card from scratch, as if from a cold-boot. Implementation
5298 * resembles the first-half of the e1000_resume routine.
5299 */
5300static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
5301{
5302 struct net_device *netdev = pci_get_drvdata(pdev);
5303 struct e1000_adapter *adapter = netdev_priv(netdev);
5304 struct e1000_hw *hw = &adapter->hw;
5305 int err;
5306
5307 if (adapter->need_ioport)
5308 err = pci_enable_device(pdev);
5309 else
5310 err = pci_enable_device_mem(pdev);
5311 if (err) {
5312 pr_err("Cannot re-enable PCI device after reset.\n");
5313 return PCI_ERS_RESULT_DISCONNECT;
5314 }
5315 pci_set_master(pdev);
5316
5317 pci_enable_wake(pdev, PCI_D3hot, 0);
5318 pci_enable_wake(pdev, PCI_D3cold, 0);
5319
5320 e1000_reset(adapter);
5321 ew32(WUS, ~0);
5322
5323 return PCI_ERS_RESULT_RECOVERED;
5324}
5325
5326/**
5327 * e1000_io_resume - called when traffic can start flowing again.
5328 * @pdev: Pointer to PCI device
5329 *
5330 * This callback is called when the error recovery driver tells us that
5331 * its OK to resume normal operation. Implementation resembles the
5332 * second-half of the e1000_resume routine.
5333 */
5334static void e1000_io_resume(struct pci_dev *pdev)
5335{
5336 struct net_device *netdev = pci_get_drvdata(pdev);
5337 struct e1000_adapter *adapter = netdev_priv(netdev);
5338
5339 e1000_init_manageability(adapter);
5340
5341 if (netif_running(netdev)) {
5342 if (e1000_up(adapter)) {
5343 pr_info("can't bring device back up after reset\n");
5344 return;
5345 }
5346 }
5347
5348 netif_device_attach(netdev);
5349}
5350
5351/* e1000_main.c */
1// SPDX-License-Identifier: GPL-2.0
2/* Copyright(c) 1999 - 2006 Intel Corporation. */
3
4#include "e1000.h"
5#include <net/ip6_checksum.h>
6#include <linux/io.h>
7#include <linux/prefetch.h>
8#include <linux/bitops.h>
9#include <linux/if_vlan.h>
10
11char e1000_driver_name[] = "e1000";
12static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
13static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
14
15/* e1000_pci_tbl - PCI Device ID Table
16 *
17 * Last entry must be all 0s
18 *
19 * Macro expands to...
20 * {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
21 */
22static const struct pci_device_id e1000_pci_tbl[] = {
23 INTEL_E1000_ETHERNET_DEVICE(0x1000),
24 INTEL_E1000_ETHERNET_DEVICE(0x1001),
25 INTEL_E1000_ETHERNET_DEVICE(0x1004),
26 INTEL_E1000_ETHERNET_DEVICE(0x1008),
27 INTEL_E1000_ETHERNET_DEVICE(0x1009),
28 INTEL_E1000_ETHERNET_DEVICE(0x100C),
29 INTEL_E1000_ETHERNET_DEVICE(0x100D),
30 INTEL_E1000_ETHERNET_DEVICE(0x100E),
31 INTEL_E1000_ETHERNET_DEVICE(0x100F),
32 INTEL_E1000_ETHERNET_DEVICE(0x1010),
33 INTEL_E1000_ETHERNET_DEVICE(0x1011),
34 INTEL_E1000_ETHERNET_DEVICE(0x1012),
35 INTEL_E1000_ETHERNET_DEVICE(0x1013),
36 INTEL_E1000_ETHERNET_DEVICE(0x1014),
37 INTEL_E1000_ETHERNET_DEVICE(0x1015),
38 INTEL_E1000_ETHERNET_DEVICE(0x1016),
39 INTEL_E1000_ETHERNET_DEVICE(0x1017),
40 INTEL_E1000_ETHERNET_DEVICE(0x1018),
41 INTEL_E1000_ETHERNET_DEVICE(0x1019),
42 INTEL_E1000_ETHERNET_DEVICE(0x101A),
43 INTEL_E1000_ETHERNET_DEVICE(0x101D),
44 INTEL_E1000_ETHERNET_DEVICE(0x101E),
45 INTEL_E1000_ETHERNET_DEVICE(0x1026),
46 INTEL_E1000_ETHERNET_DEVICE(0x1027),
47 INTEL_E1000_ETHERNET_DEVICE(0x1028),
48 INTEL_E1000_ETHERNET_DEVICE(0x1075),
49 INTEL_E1000_ETHERNET_DEVICE(0x1076),
50 INTEL_E1000_ETHERNET_DEVICE(0x1077),
51 INTEL_E1000_ETHERNET_DEVICE(0x1078),
52 INTEL_E1000_ETHERNET_DEVICE(0x1079),
53 INTEL_E1000_ETHERNET_DEVICE(0x107A),
54 INTEL_E1000_ETHERNET_DEVICE(0x107B),
55 INTEL_E1000_ETHERNET_DEVICE(0x107C),
56 INTEL_E1000_ETHERNET_DEVICE(0x108A),
57 INTEL_E1000_ETHERNET_DEVICE(0x1099),
58 INTEL_E1000_ETHERNET_DEVICE(0x10B5),
59 INTEL_E1000_ETHERNET_DEVICE(0x2E6E),
60 /* required last entry */
61 {0,}
62};
63
64MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
65
66int e1000_up(struct e1000_adapter *adapter);
67void e1000_down(struct e1000_adapter *adapter);
68void e1000_reinit_locked(struct e1000_adapter *adapter);
69void e1000_reset(struct e1000_adapter *adapter);
70int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
71int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
72void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
73void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
74static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
75 struct e1000_tx_ring *txdr);
76static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
77 struct e1000_rx_ring *rxdr);
78static void e1000_free_tx_resources(struct e1000_adapter *adapter,
79 struct e1000_tx_ring *tx_ring);
80static void e1000_free_rx_resources(struct e1000_adapter *adapter,
81 struct e1000_rx_ring *rx_ring);
82void e1000_update_stats(struct e1000_adapter *adapter);
83
84static int e1000_init_module(void);
85static void e1000_exit_module(void);
86static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
87static void e1000_remove(struct pci_dev *pdev);
88static int e1000_alloc_queues(struct e1000_adapter *adapter);
89static int e1000_sw_init(struct e1000_adapter *adapter);
90int e1000_open(struct net_device *netdev);
91int e1000_close(struct net_device *netdev);
92static void e1000_configure_tx(struct e1000_adapter *adapter);
93static void e1000_configure_rx(struct e1000_adapter *adapter);
94static void e1000_setup_rctl(struct e1000_adapter *adapter);
95static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
96static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
97static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
98 struct e1000_tx_ring *tx_ring);
99static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
100 struct e1000_rx_ring *rx_ring);
101static void e1000_set_rx_mode(struct net_device *netdev);
102static void e1000_update_phy_info_task(struct work_struct *work);
103static void e1000_watchdog(struct work_struct *work);
104static void e1000_82547_tx_fifo_stall_task(struct work_struct *work);
105static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
106 struct net_device *netdev);
107static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
108static int e1000_set_mac(struct net_device *netdev, void *p);
109static irqreturn_t e1000_intr(int irq, void *data);
110static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
111 struct e1000_tx_ring *tx_ring);
112static int e1000_clean(struct napi_struct *napi, int budget);
113static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
114 struct e1000_rx_ring *rx_ring,
115 int *work_done, int work_to_do);
116static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
117 struct e1000_rx_ring *rx_ring,
118 int *work_done, int work_to_do);
119static void e1000_alloc_dummy_rx_buffers(struct e1000_adapter *adapter,
120 struct e1000_rx_ring *rx_ring,
121 int cleaned_count)
122{
123}
124static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
125 struct e1000_rx_ring *rx_ring,
126 int cleaned_count);
127static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
128 struct e1000_rx_ring *rx_ring,
129 int cleaned_count);
130static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
131static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
132 int cmd);
133static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
134static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
135static void e1000_tx_timeout(struct net_device *dev, unsigned int txqueue);
136static void e1000_reset_task(struct work_struct *work);
137static void e1000_smartspeed(struct e1000_adapter *adapter);
138static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
139 struct sk_buff *skb);
140
141static bool e1000_vlan_used(struct e1000_adapter *adapter);
142static void e1000_vlan_mode(struct net_device *netdev,
143 netdev_features_t features);
144static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
145 bool filter_on);
146static int e1000_vlan_rx_add_vid(struct net_device *netdev,
147 __be16 proto, u16 vid);
148static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
149 __be16 proto, u16 vid);
150static void e1000_restore_vlan(struct e1000_adapter *adapter);
151
152static int e1000_suspend(struct device *dev);
153static int e1000_resume(struct device *dev);
154static void e1000_shutdown(struct pci_dev *pdev);
155
156#ifdef CONFIG_NET_POLL_CONTROLLER
157/* for netdump / net console */
158static void e1000_netpoll (struct net_device *netdev);
159#endif
160
161#define COPYBREAK_DEFAULT 256
162static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
163module_param(copybreak, uint, 0644);
164MODULE_PARM_DESC(copybreak,
165 "Maximum size of packet that is copied to a new buffer on receive");
166
167static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
168 pci_channel_state_t state);
169static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
170static void e1000_io_resume(struct pci_dev *pdev);
171
172static const struct pci_error_handlers e1000_err_handler = {
173 .error_detected = e1000_io_error_detected,
174 .slot_reset = e1000_io_slot_reset,
175 .resume = e1000_io_resume,
176};
177
178static DEFINE_SIMPLE_DEV_PM_OPS(e1000_pm_ops, e1000_suspend, e1000_resume);
179
180static struct pci_driver e1000_driver = {
181 .name = e1000_driver_name,
182 .id_table = e1000_pci_tbl,
183 .probe = e1000_probe,
184 .remove = e1000_remove,
185 .driver.pm = pm_sleep_ptr(&e1000_pm_ops),
186 .shutdown = e1000_shutdown,
187 .err_handler = &e1000_err_handler
188};
189
190MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
191MODULE_LICENSE("GPL v2");
192
193#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
194static int debug = -1;
195module_param(debug, int, 0);
196MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
197
198/**
199 * e1000_get_hw_dev - helper function for getting netdev
200 * @hw: pointer to HW struct
201 *
202 * return device used by hardware layer to print debugging information
203 *
204 **/
205struct net_device *e1000_get_hw_dev(struct e1000_hw *hw)
206{
207 struct e1000_adapter *adapter = hw->back;
208 return adapter->netdev;
209}
210
211/**
212 * e1000_init_module - Driver Registration Routine
213 *
214 * e1000_init_module is the first routine called when the driver is
215 * loaded. All it does is register with the PCI subsystem.
216 **/
217static int __init e1000_init_module(void)
218{
219 int ret;
220 pr_info("%s\n", e1000_driver_string);
221
222 pr_info("%s\n", e1000_copyright);
223
224 ret = pci_register_driver(&e1000_driver);
225 if (copybreak != COPYBREAK_DEFAULT) {
226 if (copybreak == 0)
227 pr_info("copybreak disabled\n");
228 else
229 pr_info("copybreak enabled for "
230 "packets <= %u bytes\n", copybreak);
231 }
232 return ret;
233}
234
235module_init(e1000_init_module);
236
237/**
238 * e1000_exit_module - Driver Exit Cleanup Routine
239 *
240 * e1000_exit_module is called just before the driver is removed
241 * from memory.
242 **/
243static void __exit e1000_exit_module(void)
244{
245 pci_unregister_driver(&e1000_driver);
246}
247
248module_exit(e1000_exit_module);
249
250static int e1000_request_irq(struct e1000_adapter *adapter)
251{
252 struct net_device *netdev = adapter->netdev;
253 irq_handler_t handler = e1000_intr;
254 int irq_flags = IRQF_SHARED;
255 int err;
256
257 err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
258 netdev);
259 if (err) {
260 e_err(probe, "Unable to allocate interrupt Error: %d\n", err);
261 }
262
263 return err;
264}
265
266static void e1000_free_irq(struct e1000_adapter *adapter)
267{
268 struct net_device *netdev = adapter->netdev;
269
270 free_irq(adapter->pdev->irq, netdev);
271}
272
273/**
274 * e1000_irq_disable - Mask off interrupt generation on the NIC
275 * @adapter: board private structure
276 **/
277static void e1000_irq_disable(struct e1000_adapter *adapter)
278{
279 struct e1000_hw *hw = &adapter->hw;
280
281 ew32(IMC, ~0);
282 E1000_WRITE_FLUSH();
283 synchronize_irq(adapter->pdev->irq);
284}
285
286/**
287 * e1000_irq_enable - Enable default interrupt generation settings
288 * @adapter: board private structure
289 **/
290static void e1000_irq_enable(struct e1000_adapter *adapter)
291{
292 struct e1000_hw *hw = &adapter->hw;
293
294 ew32(IMS, IMS_ENABLE_MASK);
295 E1000_WRITE_FLUSH();
296}
297
298static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
299{
300 struct e1000_hw *hw = &adapter->hw;
301 struct net_device *netdev = adapter->netdev;
302 u16 vid = hw->mng_cookie.vlan_id;
303 u16 old_vid = adapter->mng_vlan_id;
304
305 if (!e1000_vlan_used(adapter))
306 return;
307
308 if (!test_bit(vid, adapter->active_vlans)) {
309 if (hw->mng_cookie.status &
310 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
311 e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
312 adapter->mng_vlan_id = vid;
313 } else {
314 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
315 }
316 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
317 (vid != old_vid) &&
318 !test_bit(old_vid, adapter->active_vlans))
319 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
320 old_vid);
321 } else {
322 adapter->mng_vlan_id = vid;
323 }
324}
325
326static void e1000_init_manageability(struct e1000_adapter *adapter)
327{
328 struct e1000_hw *hw = &adapter->hw;
329
330 if (adapter->en_mng_pt) {
331 u32 manc = er32(MANC);
332
333 /* disable hardware interception of ARP */
334 manc &= ~(E1000_MANC_ARP_EN);
335
336 ew32(MANC, manc);
337 }
338}
339
340static void e1000_release_manageability(struct e1000_adapter *adapter)
341{
342 struct e1000_hw *hw = &adapter->hw;
343
344 if (adapter->en_mng_pt) {
345 u32 manc = er32(MANC);
346
347 /* re-enable hardware interception of ARP */
348 manc |= E1000_MANC_ARP_EN;
349
350 ew32(MANC, manc);
351 }
352}
353
354/**
355 * e1000_configure - configure the hardware for RX and TX
356 * @adapter: private board structure
357 **/
358static void e1000_configure(struct e1000_adapter *adapter)
359{
360 struct net_device *netdev = adapter->netdev;
361 int i;
362
363 e1000_set_rx_mode(netdev);
364
365 e1000_restore_vlan(adapter);
366 e1000_init_manageability(adapter);
367
368 e1000_configure_tx(adapter);
369 e1000_setup_rctl(adapter);
370 e1000_configure_rx(adapter);
371 /* call E1000_DESC_UNUSED which always leaves
372 * at least 1 descriptor unused to make sure
373 * next_to_use != next_to_clean
374 */
375 for (i = 0; i < adapter->num_rx_queues; i++) {
376 struct e1000_rx_ring *ring = &adapter->rx_ring[i];
377 adapter->alloc_rx_buf(adapter, ring,
378 E1000_DESC_UNUSED(ring));
379 }
380}
381
382int e1000_up(struct e1000_adapter *adapter)
383{
384 struct e1000_hw *hw = &adapter->hw;
385
386 /* hardware has been reset, we need to reload some things */
387 e1000_configure(adapter);
388
389 clear_bit(__E1000_DOWN, &adapter->flags);
390
391 napi_enable(&adapter->napi);
392
393 e1000_irq_enable(adapter);
394
395 netif_wake_queue(adapter->netdev);
396
397 /* fire a link change interrupt to start the watchdog */
398 ew32(ICS, E1000_ICS_LSC);
399 return 0;
400}
401
402/**
403 * e1000_power_up_phy - restore link in case the phy was powered down
404 * @adapter: address of board private structure
405 *
406 * The phy may be powered down to save power and turn off link when the
407 * driver is unloaded and wake on lan is not enabled (among others)
408 * *** this routine MUST be followed by a call to e1000_reset ***
409 **/
410void e1000_power_up_phy(struct e1000_adapter *adapter)
411{
412 struct e1000_hw *hw = &adapter->hw;
413 u16 mii_reg = 0;
414
415 /* Just clear the power down bit to wake the phy back up */
416 if (hw->media_type == e1000_media_type_copper) {
417 /* according to the manual, the phy will retain its
418 * settings across a power-down/up cycle
419 */
420 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
421 mii_reg &= ~MII_CR_POWER_DOWN;
422 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
423 }
424}
425
426static void e1000_power_down_phy(struct e1000_adapter *adapter)
427{
428 struct e1000_hw *hw = &adapter->hw;
429
430 /* Power down the PHY so no link is implied when interface is down *
431 * The PHY cannot be powered down if any of the following is true *
432 * (a) WoL is enabled
433 * (b) AMT is active
434 * (c) SoL/IDER session is active
435 */
436 if (!adapter->wol && hw->mac_type >= e1000_82540 &&
437 hw->media_type == e1000_media_type_copper) {
438 u16 mii_reg = 0;
439
440 switch (hw->mac_type) {
441 case e1000_82540:
442 case e1000_82545:
443 case e1000_82545_rev_3:
444 case e1000_82546:
445 case e1000_ce4100:
446 case e1000_82546_rev_3:
447 case e1000_82541:
448 case e1000_82541_rev_2:
449 case e1000_82547:
450 case e1000_82547_rev_2:
451 if (er32(MANC) & E1000_MANC_SMBUS_EN)
452 goto out;
453 break;
454 default:
455 goto out;
456 }
457 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
458 mii_reg |= MII_CR_POWER_DOWN;
459 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
460 msleep(1);
461 }
462out:
463 return;
464}
465
466static void e1000_down_and_stop(struct e1000_adapter *adapter)
467{
468 set_bit(__E1000_DOWN, &adapter->flags);
469
470 cancel_delayed_work_sync(&adapter->watchdog_task);
471
472 /*
473 * Since the watchdog task can reschedule other tasks, we should cancel
474 * it first, otherwise we can run into the situation when a work is
475 * still running after the adapter has been turned down.
476 */
477
478 cancel_delayed_work_sync(&adapter->phy_info_task);
479 cancel_delayed_work_sync(&adapter->fifo_stall_task);
480
481 /* Only kill reset task if adapter is not resetting */
482 if (!test_bit(__E1000_RESETTING, &adapter->flags))
483 cancel_work_sync(&adapter->reset_task);
484}
485
486void e1000_down(struct e1000_adapter *adapter)
487{
488 struct e1000_hw *hw = &adapter->hw;
489 struct net_device *netdev = adapter->netdev;
490 u32 rctl, tctl;
491
492 /* disable receives in the hardware */
493 rctl = er32(RCTL);
494 ew32(RCTL, rctl & ~E1000_RCTL_EN);
495 /* flush and sleep below */
496
497 netif_tx_disable(netdev);
498
499 /* disable transmits in the hardware */
500 tctl = er32(TCTL);
501 tctl &= ~E1000_TCTL_EN;
502 ew32(TCTL, tctl);
503 /* flush both disables and wait for them to finish */
504 E1000_WRITE_FLUSH();
505 msleep(10);
506
507 /* Set the carrier off after transmits have been disabled in the
508 * hardware, to avoid race conditions with e1000_watchdog() (which
509 * may be running concurrently to us, checking for the carrier
510 * bit to decide whether it should enable transmits again). Such
511 * a race condition would result into transmission being disabled
512 * in the hardware until the next IFF_DOWN+IFF_UP cycle.
513 */
514 netif_carrier_off(netdev);
515
516 netif_queue_set_napi(netdev, 0, NETDEV_QUEUE_TYPE_RX, NULL);
517 netif_queue_set_napi(netdev, 0, NETDEV_QUEUE_TYPE_TX, NULL);
518 napi_disable(&adapter->napi);
519
520 e1000_irq_disable(adapter);
521
522 /* Setting DOWN must be after irq_disable to prevent
523 * a screaming interrupt. Setting DOWN also prevents
524 * tasks from rescheduling.
525 */
526 e1000_down_and_stop(adapter);
527
528 adapter->link_speed = 0;
529 adapter->link_duplex = 0;
530
531 e1000_reset(adapter);
532 e1000_clean_all_tx_rings(adapter);
533 e1000_clean_all_rx_rings(adapter);
534}
535
536void e1000_reinit_locked(struct e1000_adapter *adapter)
537{
538 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
539 msleep(1);
540
541 /* only run the task if not already down */
542 if (!test_bit(__E1000_DOWN, &adapter->flags)) {
543 e1000_down(adapter);
544 e1000_up(adapter);
545 }
546
547 clear_bit(__E1000_RESETTING, &adapter->flags);
548}
549
550void e1000_reset(struct e1000_adapter *adapter)
551{
552 struct e1000_hw *hw = &adapter->hw;
553 u32 pba = 0, tx_space, min_tx_space, min_rx_space;
554 bool legacy_pba_adjust = false;
555 u16 hwm;
556
557 /* Repartition Pba for greater than 9k mtu
558 * To take effect CTRL.RST is required.
559 */
560
561 switch (hw->mac_type) {
562 case e1000_82542_rev2_0:
563 case e1000_82542_rev2_1:
564 case e1000_82543:
565 case e1000_82544:
566 case e1000_82540:
567 case e1000_82541:
568 case e1000_82541_rev_2:
569 legacy_pba_adjust = true;
570 pba = E1000_PBA_48K;
571 break;
572 case e1000_82545:
573 case e1000_82545_rev_3:
574 case e1000_82546:
575 case e1000_ce4100:
576 case e1000_82546_rev_3:
577 pba = E1000_PBA_48K;
578 break;
579 case e1000_82547:
580 case e1000_82547_rev_2:
581 legacy_pba_adjust = true;
582 pba = E1000_PBA_30K;
583 break;
584 case e1000_undefined:
585 case e1000_num_macs:
586 break;
587 }
588
589 if (legacy_pba_adjust) {
590 if (hw->max_frame_size > E1000_RXBUFFER_8192)
591 pba -= 8; /* allocate more FIFO for Tx */
592
593 if (hw->mac_type == e1000_82547) {
594 adapter->tx_fifo_head = 0;
595 adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
596 adapter->tx_fifo_size =
597 (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
598 atomic_set(&adapter->tx_fifo_stall, 0);
599 }
600 } else if (hw->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
601 /* adjust PBA for jumbo frames */
602 ew32(PBA, pba);
603
604 /* To maintain wire speed transmits, the Tx FIFO should be
605 * large enough to accommodate two full transmit packets,
606 * rounded up to the next 1KB and expressed in KB. Likewise,
607 * the Rx FIFO should be large enough to accommodate at least
608 * one full receive packet and is similarly rounded up and
609 * expressed in KB.
610 */
611 pba = er32(PBA);
612 /* upper 16 bits has Tx packet buffer allocation size in KB */
613 tx_space = pba >> 16;
614 /* lower 16 bits has Rx packet buffer allocation size in KB */
615 pba &= 0xffff;
616 /* the Tx fifo also stores 16 bytes of information about the Tx
617 * but don't include ethernet FCS because hardware appends it
618 */
619 min_tx_space = (hw->max_frame_size +
620 sizeof(struct e1000_tx_desc) -
621 ETH_FCS_LEN) * 2;
622 min_tx_space = ALIGN(min_tx_space, 1024);
623 min_tx_space >>= 10;
624 /* software strips receive CRC, so leave room for it */
625 min_rx_space = hw->max_frame_size;
626 min_rx_space = ALIGN(min_rx_space, 1024);
627 min_rx_space >>= 10;
628
629 /* If current Tx allocation is less than the min Tx FIFO size,
630 * and the min Tx FIFO size is less than the current Rx FIFO
631 * allocation, take space away from current Rx allocation
632 */
633 if (tx_space < min_tx_space &&
634 ((min_tx_space - tx_space) < pba)) {
635 pba = pba - (min_tx_space - tx_space);
636
637 /* PCI/PCIx hardware has PBA alignment constraints */
638 switch (hw->mac_type) {
639 case e1000_82545 ... e1000_82546_rev_3:
640 pba &= ~(E1000_PBA_8K - 1);
641 break;
642 default:
643 break;
644 }
645
646 /* if short on Rx space, Rx wins and must trump Tx
647 * adjustment or use Early Receive if available
648 */
649 if (pba < min_rx_space)
650 pba = min_rx_space;
651 }
652 }
653
654 ew32(PBA, pba);
655
656 /* flow control settings:
657 * The high water mark must be low enough to fit one full frame
658 * (or the size used for early receive) above it in the Rx FIFO.
659 * Set it to the lower of:
660 * - 90% of the Rx FIFO size, and
661 * - the full Rx FIFO size minus the early receive size (for parts
662 * with ERT support assuming ERT set to E1000_ERT_2048), or
663 * - the full Rx FIFO size minus one full frame
664 */
665 hwm = min(((pba << 10) * 9 / 10),
666 ((pba << 10) - hw->max_frame_size));
667
668 hw->fc_high_water = hwm & 0xFFF8; /* 8-byte granularity */
669 hw->fc_low_water = hw->fc_high_water - 8;
670 hw->fc_pause_time = E1000_FC_PAUSE_TIME;
671 hw->fc_send_xon = 1;
672 hw->fc = hw->original_fc;
673
674 /* Allow time for pending master requests to run */
675 e1000_reset_hw(hw);
676 if (hw->mac_type >= e1000_82544)
677 ew32(WUC, 0);
678
679 if (e1000_init_hw(hw))
680 e_dev_err("Hardware Error\n");
681 e1000_update_mng_vlan(adapter);
682
683 /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
684 if (hw->mac_type >= e1000_82544 &&
685 hw->autoneg == 1 &&
686 hw->autoneg_advertised == ADVERTISE_1000_FULL) {
687 u32 ctrl = er32(CTRL);
688 /* clear phy power management bit if we are in gig only mode,
689 * which if enabled will attempt negotiation to 100Mb, which
690 * can cause a loss of link at power off or driver unload
691 */
692 ctrl &= ~E1000_CTRL_SWDPIN3;
693 ew32(CTRL, ctrl);
694 }
695
696 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
697 ew32(VET, ETHERNET_IEEE_VLAN_TYPE);
698
699 e1000_reset_adaptive(hw);
700 e1000_phy_get_info(hw, &adapter->phy_info);
701
702 e1000_release_manageability(adapter);
703}
704
705/* Dump the eeprom for users having checksum issues */
706static void e1000_dump_eeprom(struct e1000_adapter *adapter)
707{
708 struct net_device *netdev = adapter->netdev;
709 struct ethtool_eeprom eeprom;
710 const struct ethtool_ops *ops = netdev->ethtool_ops;
711 u8 *data;
712 int i;
713 u16 csum_old, csum_new = 0;
714
715 eeprom.len = ops->get_eeprom_len(netdev);
716 eeprom.offset = 0;
717
718 data = kmalloc(eeprom.len, GFP_KERNEL);
719 if (!data)
720 return;
721
722 ops->get_eeprom(netdev, &eeprom, data);
723
724 csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
725 (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
726 for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
727 csum_new += data[i] + (data[i + 1] << 8);
728 csum_new = EEPROM_SUM - csum_new;
729
730 pr_err("/*********************/\n");
731 pr_err("Current EEPROM Checksum : 0x%04x\n", csum_old);
732 pr_err("Calculated : 0x%04x\n", csum_new);
733
734 pr_err("Offset Values\n");
735 pr_err("======== ======\n");
736 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0);
737
738 pr_err("Include this output when contacting your support provider.\n");
739 pr_err("This is not a software error! Something bad happened to\n");
740 pr_err("your hardware or EEPROM image. Ignoring this problem could\n");
741 pr_err("result in further problems, possibly loss of data,\n");
742 pr_err("corruption or system hangs!\n");
743 pr_err("The MAC Address will be reset to 00:00:00:00:00:00,\n");
744 pr_err("which is invalid and requires you to set the proper MAC\n");
745 pr_err("address manually before continuing to enable this network\n");
746 pr_err("device. Please inspect the EEPROM dump and report the\n");
747 pr_err("issue to your hardware vendor or Intel Customer Support.\n");
748 pr_err("/*********************/\n");
749
750 kfree(data);
751}
752
753/**
754 * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
755 * @pdev: PCI device information struct
756 *
757 * Return true if an adapter needs ioport resources
758 **/
759static int e1000_is_need_ioport(struct pci_dev *pdev)
760{
761 switch (pdev->device) {
762 case E1000_DEV_ID_82540EM:
763 case E1000_DEV_ID_82540EM_LOM:
764 case E1000_DEV_ID_82540EP:
765 case E1000_DEV_ID_82540EP_LOM:
766 case E1000_DEV_ID_82540EP_LP:
767 case E1000_DEV_ID_82541EI:
768 case E1000_DEV_ID_82541EI_MOBILE:
769 case E1000_DEV_ID_82541ER:
770 case E1000_DEV_ID_82541ER_LOM:
771 case E1000_DEV_ID_82541GI:
772 case E1000_DEV_ID_82541GI_LF:
773 case E1000_DEV_ID_82541GI_MOBILE:
774 case E1000_DEV_ID_82544EI_COPPER:
775 case E1000_DEV_ID_82544EI_FIBER:
776 case E1000_DEV_ID_82544GC_COPPER:
777 case E1000_DEV_ID_82544GC_LOM:
778 case E1000_DEV_ID_82545EM_COPPER:
779 case E1000_DEV_ID_82545EM_FIBER:
780 case E1000_DEV_ID_82546EB_COPPER:
781 case E1000_DEV_ID_82546EB_FIBER:
782 case E1000_DEV_ID_82546EB_QUAD_COPPER:
783 return true;
784 default:
785 return false;
786 }
787}
788
789static netdev_features_t e1000_fix_features(struct net_device *netdev,
790 netdev_features_t features)
791{
792 /* Since there is no support for separate Rx/Tx vlan accel
793 * enable/disable make sure Tx flag is always in same state as Rx.
794 */
795 if (features & NETIF_F_HW_VLAN_CTAG_RX)
796 features |= NETIF_F_HW_VLAN_CTAG_TX;
797 else
798 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
799
800 return features;
801}
802
803static int e1000_set_features(struct net_device *netdev,
804 netdev_features_t features)
805{
806 struct e1000_adapter *adapter = netdev_priv(netdev);
807 netdev_features_t changed = features ^ netdev->features;
808
809 if (changed & NETIF_F_HW_VLAN_CTAG_RX)
810 e1000_vlan_mode(netdev, features);
811
812 if (!(changed & (NETIF_F_RXCSUM | NETIF_F_RXALL)))
813 return 0;
814
815 netdev->features = features;
816 adapter->rx_csum = !!(features & NETIF_F_RXCSUM);
817
818 if (netif_running(netdev))
819 e1000_reinit_locked(adapter);
820 else
821 e1000_reset(adapter);
822
823 return 1;
824}
825
826static const struct net_device_ops e1000_netdev_ops = {
827 .ndo_open = e1000_open,
828 .ndo_stop = e1000_close,
829 .ndo_start_xmit = e1000_xmit_frame,
830 .ndo_set_rx_mode = e1000_set_rx_mode,
831 .ndo_set_mac_address = e1000_set_mac,
832 .ndo_tx_timeout = e1000_tx_timeout,
833 .ndo_change_mtu = e1000_change_mtu,
834 .ndo_eth_ioctl = e1000_ioctl,
835 .ndo_validate_addr = eth_validate_addr,
836 .ndo_vlan_rx_add_vid = e1000_vlan_rx_add_vid,
837 .ndo_vlan_rx_kill_vid = e1000_vlan_rx_kill_vid,
838#ifdef CONFIG_NET_POLL_CONTROLLER
839 .ndo_poll_controller = e1000_netpoll,
840#endif
841 .ndo_fix_features = e1000_fix_features,
842 .ndo_set_features = e1000_set_features,
843};
844
845/**
846 * e1000_init_hw_struct - initialize members of hw struct
847 * @adapter: board private struct
848 * @hw: structure used by e1000_hw.c
849 *
850 * Factors out initialization of the e1000_hw struct to its own function
851 * that can be called very early at init (just after struct allocation).
852 * Fields are initialized based on PCI device information and
853 * OS network device settings (MTU size).
854 * Returns negative error codes if MAC type setup fails.
855 */
856static int e1000_init_hw_struct(struct e1000_adapter *adapter,
857 struct e1000_hw *hw)
858{
859 struct pci_dev *pdev = adapter->pdev;
860
861 /* PCI config space info */
862 hw->vendor_id = pdev->vendor;
863 hw->device_id = pdev->device;
864 hw->subsystem_vendor_id = pdev->subsystem_vendor;
865 hw->subsystem_id = pdev->subsystem_device;
866 hw->revision_id = pdev->revision;
867
868 pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
869
870 hw->max_frame_size = adapter->netdev->mtu +
871 ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
872 hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
873
874 /* identify the MAC */
875 if (e1000_set_mac_type(hw)) {
876 e_err(probe, "Unknown MAC Type\n");
877 return -EIO;
878 }
879
880 switch (hw->mac_type) {
881 default:
882 break;
883 case e1000_82541:
884 case e1000_82547:
885 case e1000_82541_rev_2:
886 case e1000_82547_rev_2:
887 hw->phy_init_script = 1;
888 break;
889 }
890
891 e1000_set_media_type(hw);
892 e1000_get_bus_info(hw);
893
894 hw->wait_autoneg_complete = false;
895 hw->tbi_compatibility_en = true;
896 hw->adaptive_ifs = true;
897
898 /* Copper options */
899
900 if (hw->media_type == e1000_media_type_copper) {
901 hw->mdix = AUTO_ALL_MODES;
902 hw->disable_polarity_correction = false;
903 hw->master_slave = E1000_MASTER_SLAVE;
904 }
905
906 return 0;
907}
908
909/**
910 * e1000_probe - Device Initialization Routine
911 * @pdev: PCI device information struct
912 * @ent: entry in e1000_pci_tbl
913 *
914 * Returns 0 on success, negative on failure
915 *
916 * e1000_probe initializes an adapter identified by a pci_dev structure.
917 * The OS initialization, configuring of the adapter private structure,
918 * and a hardware reset occur.
919 **/
920static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
921{
922 struct net_device *netdev;
923 struct e1000_adapter *adapter = NULL;
924 struct e1000_hw *hw;
925
926 static int cards_found;
927 static int global_quad_port_a; /* global ksp3 port a indication */
928 int i, err, pci_using_dac;
929 u16 eeprom_data = 0;
930 u16 tmp = 0;
931 u16 eeprom_apme_mask = E1000_EEPROM_APME;
932 int bars, need_ioport;
933 bool disable_dev = false;
934
935 /* do not allocate ioport bars when not needed */
936 need_ioport = e1000_is_need_ioport(pdev);
937 if (need_ioport) {
938 bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
939 err = pci_enable_device(pdev);
940 } else {
941 bars = pci_select_bars(pdev, IORESOURCE_MEM);
942 err = pci_enable_device_mem(pdev);
943 }
944 if (err)
945 return err;
946
947 err = pci_request_selected_regions(pdev, bars, e1000_driver_name);
948 if (err)
949 goto err_pci_reg;
950
951 pci_set_master(pdev);
952 err = pci_save_state(pdev);
953 if (err)
954 goto err_alloc_etherdev;
955
956 err = -ENOMEM;
957 netdev = alloc_etherdev(sizeof(struct e1000_adapter));
958 if (!netdev)
959 goto err_alloc_etherdev;
960
961 SET_NETDEV_DEV(netdev, &pdev->dev);
962
963 pci_set_drvdata(pdev, netdev);
964 adapter = netdev_priv(netdev);
965 adapter->netdev = netdev;
966 adapter->pdev = pdev;
967 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
968 adapter->bars = bars;
969 adapter->need_ioport = need_ioport;
970
971 hw = &adapter->hw;
972 hw->back = adapter;
973
974 err = -EIO;
975 hw->hw_addr = pci_ioremap_bar(pdev, BAR_0);
976 if (!hw->hw_addr)
977 goto err_ioremap;
978
979 if (adapter->need_ioport) {
980 for (i = BAR_1; i < PCI_STD_NUM_BARS; i++) {
981 if (pci_resource_len(pdev, i) == 0)
982 continue;
983 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
984 hw->io_base = pci_resource_start(pdev, i);
985 break;
986 }
987 }
988 }
989
990 /* make ready for any if (hw->...) below */
991 err = e1000_init_hw_struct(adapter, hw);
992 if (err)
993 goto err_sw_init;
994
995 /* there is a workaround being applied below that limits
996 * 64-bit DMA addresses to 64-bit hardware. There are some
997 * 32-bit adapters that Tx hang when given 64-bit DMA addresses
998 */
999 pci_using_dac = 0;
1000 if ((hw->bus_type == e1000_bus_type_pcix) &&
1001 !dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) {
1002 pci_using_dac = 1;
1003 } else {
1004 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1005 if (err) {
1006 pr_err("No usable DMA config, aborting\n");
1007 goto err_dma;
1008 }
1009 }
1010
1011 netdev->netdev_ops = &e1000_netdev_ops;
1012 e1000_set_ethtool_ops(netdev);
1013 netdev->watchdog_timeo = 5 * HZ;
1014 netif_napi_add(netdev, &adapter->napi, e1000_clean);
1015
1016 strscpy(netdev->name, pci_name(pdev), sizeof(netdev->name));
1017
1018 adapter->bd_number = cards_found;
1019
1020 /* setup the private structure */
1021
1022 err = e1000_sw_init(adapter);
1023 if (err)
1024 goto err_sw_init;
1025
1026 err = -EIO;
1027 if (hw->mac_type == e1000_ce4100) {
1028 hw->ce4100_gbe_mdio_base_virt =
1029 ioremap(pci_resource_start(pdev, BAR_1),
1030 pci_resource_len(pdev, BAR_1));
1031
1032 if (!hw->ce4100_gbe_mdio_base_virt)
1033 goto err_mdio_ioremap;
1034 }
1035
1036 if (hw->mac_type >= e1000_82543) {
1037 netdev->hw_features = NETIF_F_SG |
1038 NETIF_F_HW_CSUM |
1039 NETIF_F_HW_VLAN_CTAG_RX;
1040 netdev->features = NETIF_F_HW_VLAN_CTAG_TX |
1041 NETIF_F_HW_VLAN_CTAG_FILTER;
1042 }
1043
1044 if ((hw->mac_type >= e1000_82544) &&
1045 (hw->mac_type != e1000_82547))
1046 netdev->hw_features |= NETIF_F_TSO;
1047
1048 netdev->priv_flags |= IFF_SUPP_NOFCS;
1049
1050 netdev->features |= netdev->hw_features;
1051 netdev->hw_features |= (NETIF_F_RXCSUM |
1052 NETIF_F_RXALL |
1053 NETIF_F_RXFCS);
1054
1055 if (pci_using_dac) {
1056 netdev->features |= NETIF_F_HIGHDMA;
1057 netdev->vlan_features |= NETIF_F_HIGHDMA;
1058 }
1059
1060 netdev->vlan_features |= (NETIF_F_TSO |
1061 NETIF_F_HW_CSUM |
1062 NETIF_F_SG);
1063
1064 /* Do not set IFF_UNICAST_FLT for VMWare's 82545EM */
1065 if (hw->device_id != E1000_DEV_ID_82545EM_COPPER ||
1066 hw->subsystem_vendor_id != PCI_VENDOR_ID_VMWARE)
1067 netdev->priv_flags |= IFF_UNICAST_FLT;
1068
1069 /* MTU range: 46 - 16110 */
1070 netdev->min_mtu = ETH_ZLEN - ETH_HLEN;
1071 netdev->max_mtu = MAX_JUMBO_FRAME_SIZE - (ETH_HLEN + ETH_FCS_LEN);
1072
1073 adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
1074
1075 /* initialize eeprom parameters */
1076 if (e1000_init_eeprom_params(hw)) {
1077 e_err(probe, "EEPROM initialization failed\n");
1078 goto err_eeprom;
1079 }
1080
1081 /* before reading the EEPROM, reset the controller to
1082 * put the device in a known good starting state
1083 */
1084
1085 e1000_reset_hw(hw);
1086
1087 /* make sure the EEPROM is good */
1088 if (e1000_validate_eeprom_checksum(hw) < 0) {
1089 e_err(probe, "The EEPROM Checksum Is Not Valid\n");
1090 e1000_dump_eeprom(adapter);
1091 /* set MAC address to all zeroes to invalidate and temporary
1092 * disable this device for the user. This blocks regular
1093 * traffic while still permitting ethtool ioctls from reaching
1094 * the hardware as well as allowing the user to run the
1095 * interface after manually setting a hw addr using
1096 * `ip set address`
1097 */
1098 memset(hw->mac_addr, 0, netdev->addr_len);
1099 } else {
1100 /* copy the MAC address out of the EEPROM */
1101 if (e1000_read_mac_addr(hw))
1102 e_err(probe, "EEPROM Read Error\n");
1103 }
1104 /* don't block initialization here due to bad MAC address */
1105 eth_hw_addr_set(netdev, hw->mac_addr);
1106
1107 if (!is_valid_ether_addr(netdev->dev_addr))
1108 e_err(probe, "Invalid MAC Address\n");
1109
1110
1111 INIT_DELAYED_WORK(&adapter->watchdog_task, e1000_watchdog);
1112 INIT_DELAYED_WORK(&adapter->fifo_stall_task,
1113 e1000_82547_tx_fifo_stall_task);
1114 INIT_DELAYED_WORK(&adapter->phy_info_task, e1000_update_phy_info_task);
1115 INIT_WORK(&adapter->reset_task, e1000_reset_task);
1116
1117 e1000_check_options(adapter);
1118
1119 /* Initial Wake on LAN setting
1120 * If APM wake is enabled in the EEPROM,
1121 * enable the ACPI Magic Packet filter
1122 */
1123
1124 switch (hw->mac_type) {
1125 case e1000_82542_rev2_0:
1126 case e1000_82542_rev2_1:
1127 case e1000_82543:
1128 break;
1129 case e1000_82544:
1130 e1000_read_eeprom(hw,
1131 EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1132 eeprom_apme_mask = E1000_EEPROM_82544_APM;
1133 break;
1134 case e1000_82546:
1135 case e1000_82546_rev_3:
1136 if (er32(STATUS) & E1000_STATUS_FUNC_1) {
1137 e1000_read_eeprom(hw,
1138 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1139 break;
1140 }
1141 fallthrough;
1142 default:
1143 e1000_read_eeprom(hw,
1144 EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1145 break;
1146 }
1147 if (eeprom_data & eeprom_apme_mask)
1148 adapter->eeprom_wol |= E1000_WUFC_MAG;
1149
1150 /* now that we have the eeprom settings, apply the special cases
1151 * where the eeprom may be wrong or the board simply won't support
1152 * wake on lan on a particular port
1153 */
1154 switch (pdev->device) {
1155 case E1000_DEV_ID_82546GB_PCIE:
1156 adapter->eeprom_wol = 0;
1157 break;
1158 case E1000_DEV_ID_82546EB_FIBER:
1159 case E1000_DEV_ID_82546GB_FIBER:
1160 /* Wake events only supported on port A for dual fiber
1161 * regardless of eeprom setting
1162 */
1163 if (er32(STATUS) & E1000_STATUS_FUNC_1)
1164 adapter->eeprom_wol = 0;
1165 break;
1166 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1167 /* if quad port adapter, disable WoL on all but port A */
1168 if (global_quad_port_a != 0)
1169 adapter->eeprom_wol = 0;
1170 else
1171 adapter->quad_port_a = true;
1172 /* Reset for multiple quad port adapters */
1173 if (++global_quad_port_a == 4)
1174 global_quad_port_a = 0;
1175 break;
1176 }
1177
1178 /* initialize the wol settings based on the eeprom settings */
1179 adapter->wol = adapter->eeprom_wol;
1180 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1181
1182 /* Auto detect PHY address */
1183 if (hw->mac_type == e1000_ce4100) {
1184 for (i = 0; i < 32; i++) {
1185 hw->phy_addr = i;
1186 e1000_read_phy_reg(hw, PHY_ID2, &tmp);
1187
1188 if (tmp != 0 && tmp != 0xFF)
1189 break;
1190 }
1191
1192 if (i >= 32)
1193 goto err_eeprom;
1194 }
1195
1196 /* reset the hardware with the new settings */
1197 e1000_reset(adapter);
1198
1199 strcpy(netdev->name, "eth%d");
1200 err = register_netdev(netdev);
1201 if (err)
1202 goto err_register;
1203
1204 e1000_vlan_filter_on_off(adapter, false);
1205
1206 /* print bus type/speed/width info */
1207 e_info(probe, "(PCI%s:%dMHz:%d-bit) %pM\n",
1208 ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : ""),
1209 ((hw->bus_speed == e1000_bus_speed_133) ? 133 :
1210 (hw->bus_speed == e1000_bus_speed_120) ? 120 :
1211 (hw->bus_speed == e1000_bus_speed_100) ? 100 :
1212 (hw->bus_speed == e1000_bus_speed_66) ? 66 : 33),
1213 ((hw->bus_width == e1000_bus_width_64) ? 64 : 32),
1214 netdev->dev_addr);
1215
1216 /* carrier off reporting is important to ethtool even BEFORE open */
1217 netif_carrier_off(netdev);
1218
1219 e_info(probe, "Intel(R) PRO/1000 Network Connection\n");
1220
1221 cards_found++;
1222 return 0;
1223
1224err_register:
1225err_eeprom:
1226 e1000_phy_hw_reset(hw);
1227
1228 if (hw->flash_address)
1229 iounmap(hw->flash_address);
1230 kfree(adapter->tx_ring);
1231 kfree(adapter->rx_ring);
1232err_dma:
1233err_sw_init:
1234err_mdio_ioremap:
1235 iounmap(hw->ce4100_gbe_mdio_base_virt);
1236 iounmap(hw->hw_addr);
1237err_ioremap:
1238 disable_dev = !test_and_set_bit(__E1000_DISABLED, &adapter->flags);
1239 free_netdev(netdev);
1240err_alloc_etherdev:
1241 pci_release_selected_regions(pdev, bars);
1242err_pci_reg:
1243 if (!adapter || disable_dev)
1244 pci_disable_device(pdev);
1245 return err;
1246}
1247
1248/**
1249 * e1000_remove - Device Removal Routine
1250 * @pdev: PCI device information struct
1251 *
1252 * e1000_remove is called by the PCI subsystem to alert the driver
1253 * that it should release a PCI device. That could be caused by a
1254 * Hot-Plug event, or because the driver is going to be removed from
1255 * memory.
1256 **/
1257static void e1000_remove(struct pci_dev *pdev)
1258{
1259 struct net_device *netdev = pci_get_drvdata(pdev);
1260 struct e1000_adapter *adapter = netdev_priv(netdev);
1261 struct e1000_hw *hw = &adapter->hw;
1262 bool disable_dev;
1263
1264 e1000_down_and_stop(adapter);
1265 e1000_release_manageability(adapter);
1266
1267 unregister_netdev(netdev);
1268
1269 e1000_phy_hw_reset(hw);
1270
1271 kfree(adapter->tx_ring);
1272 kfree(adapter->rx_ring);
1273
1274 if (hw->mac_type == e1000_ce4100)
1275 iounmap(hw->ce4100_gbe_mdio_base_virt);
1276 iounmap(hw->hw_addr);
1277 if (hw->flash_address)
1278 iounmap(hw->flash_address);
1279 pci_release_selected_regions(pdev, adapter->bars);
1280
1281 disable_dev = !test_and_set_bit(__E1000_DISABLED, &adapter->flags);
1282 free_netdev(netdev);
1283
1284 if (disable_dev)
1285 pci_disable_device(pdev);
1286}
1287
1288/**
1289 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1290 * @adapter: board private structure to initialize
1291 *
1292 * e1000_sw_init initializes the Adapter private data structure.
1293 * e1000_init_hw_struct MUST be called before this function
1294 **/
1295static int e1000_sw_init(struct e1000_adapter *adapter)
1296{
1297 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1298
1299 adapter->num_tx_queues = 1;
1300 adapter->num_rx_queues = 1;
1301
1302 if (e1000_alloc_queues(adapter)) {
1303 e_err(probe, "Unable to allocate memory for queues\n");
1304 return -ENOMEM;
1305 }
1306
1307 /* Explicitly disable IRQ since the NIC can be in any state. */
1308 e1000_irq_disable(adapter);
1309
1310 spin_lock_init(&adapter->stats_lock);
1311
1312 set_bit(__E1000_DOWN, &adapter->flags);
1313
1314 return 0;
1315}
1316
1317/**
1318 * e1000_alloc_queues - Allocate memory for all rings
1319 * @adapter: board private structure to initialize
1320 *
1321 * We allocate one ring per queue at run-time since we don't know the
1322 * number of queues at compile-time.
1323 **/
1324static int e1000_alloc_queues(struct e1000_adapter *adapter)
1325{
1326 adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1327 sizeof(struct e1000_tx_ring), GFP_KERNEL);
1328 if (!adapter->tx_ring)
1329 return -ENOMEM;
1330
1331 adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1332 sizeof(struct e1000_rx_ring), GFP_KERNEL);
1333 if (!adapter->rx_ring) {
1334 kfree(adapter->tx_ring);
1335 return -ENOMEM;
1336 }
1337
1338 return E1000_SUCCESS;
1339}
1340
1341/**
1342 * e1000_open - Called when a network interface is made active
1343 * @netdev: network interface device structure
1344 *
1345 * Returns 0 on success, negative value on failure
1346 *
1347 * The open entry point is called when a network interface is made
1348 * active by the system (IFF_UP). At this point all resources needed
1349 * for transmit and receive operations are allocated, the interrupt
1350 * handler is registered with the OS, the watchdog task is started,
1351 * and the stack is notified that the interface is ready.
1352 **/
1353int e1000_open(struct net_device *netdev)
1354{
1355 struct e1000_adapter *adapter = netdev_priv(netdev);
1356 struct e1000_hw *hw = &adapter->hw;
1357 int err;
1358
1359 /* disallow open during test */
1360 if (test_bit(__E1000_TESTING, &adapter->flags))
1361 return -EBUSY;
1362
1363 netif_carrier_off(netdev);
1364
1365 /* allocate transmit descriptors */
1366 err = e1000_setup_all_tx_resources(adapter);
1367 if (err)
1368 goto err_setup_tx;
1369
1370 /* allocate receive descriptors */
1371 err = e1000_setup_all_rx_resources(adapter);
1372 if (err)
1373 goto err_setup_rx;
1374
1375 e1000_power_up_phy(adapter);
1376
1377 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1378 if ((hw->mng_cookie.status &
1379 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1380 e1000_update_mng_vlan(adapter);
1381 }
1382
1383 /* before we allocate an interrupt, we must be ready to handle it.
1384 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1385 * as soon as we call pci_request_irq, so we have to setup our
1386 * clean_rx handler before we do so.
1387 */
1388 e1000_configure(adapter);
1389
1390 err = e1000_request_irq(adapter);
1391 if (err)
1392 goto err_req_irq;
1393
1394 /* From here on the code is the same as e1000_up() */
1395 clear_bit(__E1000_DOWN, &adapter->flags);
1396
1397 netif_napi_set_irq(&adapter->napi, adapter->pdev->irq);
1398 napi_enable(&adapter->napi);
1399 netif_queue_set_napi(netdev, 0, NETDEV_QUEUE_TYPE_RX, &adapter->napi);
1400 netif_queue_set_napi(netdev, 0, NETDEV_QUEUE_TYPE_TX, &adapter->napi);
1401
1402 e1000_irq_enable(adapter);
1403
1404 netif_start_queue(netdev);
1405
1406 /* fire a link status change interrupt to start the watchdog */
1407 ew32(ICS, E1000_ICS_LSC);
1408
1409 return E1000_SUCCESS;
1410
1411err_req_irq:
1412 e1000_power_down_phy(adapter);
1413 e1000_free_all_rx_resources(adapter);
1414err_setup_rx:
1415 e1000_free_all_tx_resources(adapter);
1416err_setup_tx:
1417 e1000_reset(adapter);
1418
1419 return err;
1420}
1421
1422/**
1423 * e1000_close - Disables a network interface
1424 * @netdev: network interface device structure
1425 *
1426 * Returns 0, this is not allowed to fail
1427 *
1428 * The close entry point is called when an interface is de-activated
1429 * by the OS. The hardware is still under the drivers control, but
1430 * needs to be disabled. A global MAC reset is issued to stop the
1431 * hardware, and all transmit and receive resources are freed.
1432 **/
1433int e1000_close(struct net_device *netdev)
1434{
1435 struct e1000_adapter *adapter = netdev_priv(netdev);
1436 struct e1000_hw *hw = &adapter->hw;
1437 int count = E1000_CHECK_RESET_COUNT;
1438
1439 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags) && count--)
1440 usleep_range(10000, 20000);
1441
1442 WARN_ON(count < 0);
1443
1444 /* signal that we're down so that the reset task will no longer run */
1445 set_bit(__E1000_DOWN, &adapter->flags);
1446 clear_bit(__E1000_RESETTING, &adapter->flags);
1447
1448 e1000_down(adapter);
1449 e1000_power_down_phy(adapter);
1450 e1000_free_irq(adapter);
1451
1452 e1000_free_all_tx_resources(adapter);
1453 e1000_free_all_rx_resources(adapter);
1454
1455 /* kill manageability vlan ID if supported, but not if a vlan with
1456 * the same ID is registered on the host OS (let 8021q kill it)
1457 */
1458 if ((hw->mng_cookie.status &
1459 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1460 !test_bit(adapter->mng_vlan_id, adapter->active_vlans)) {
1461 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
1462 adapter->mng_vlan_id);
1463 }
1464
1465 return 0;
1466}
1467
1468/**
1469 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1470 * @adapter: address of board private structure
1471 * @start: address of beginning of memory
1472 * @len: length of memory
1473 **/
1474static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start,
1475 unsigned long len)
1476{
1477 struct e1000_hw *hw = &adapter->hw;
1478 unsigned long begin = (unsigned long)start;
1479 unsigned long end = begin + len;
1480
1481 /* First rev 82545 and 82546 need to not allow any memory
1482 * write location to cross 64k boundary due to errata 23
1483 */
1484 if (hw->mac_type == e1000_82545 ||
1485 hw->mac_type == e1000_ce4100 ||
1486 hw->mac_type == e1000_82546) {
1487 return ((begin ^ (end - 1)) >> 16) == 0;
1488 }
1489
1490 return true;
1491}
1492
1493/**
1494 * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1495 * @adapter: board private structure
1496 * @txdr: tx descriptor ring (for a specific queue) to setup
1497 *
1498 * Return 0 on success, negative on failure
1499 **/
1500static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
1501 struct e1000_tx_ring *txdr)
1502{
1503 struct pci_dev *pdev = adapter->pdev;
1504 int size;
1505
1506 size = sizeof(struct e1000_tx_buffer) * txdr->count;
1507 txdr->buffer_info = vzalloc(size);
1508 if (!txdr->buffer_info)
1509 return -ENOMEM;
1510
1511 /* round up to nearest 4K */
1512
1513 txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1514 txdr->size = ALIGN(txdr->size, 4096);
1515
1516 txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
1517 GFP_KERNEL);
1518 if (!txdr->desc) {
1519setup_tx_desc_die:
1520 vfree(txdr->buffer_info);
1521 return -ENOMEM;
1522 }
1523
1524 /* Fix for errata 23, can't cross 64kB boundary */
1525 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1526 void *olddesc = txdr->desc;
1527 dma_addr_t olddma = txdr->dma;
1528 e_err(tx_err, "txdr align check failed: %u bytes at %p\n",
1529 txdr->size, txdr->desc);
1530 /* Try again, without freeing the previous */
1531 txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size,
1532 &txdr->dma, GFP_KERNEL);
1533 /* Failed allocation, critical failure */
1534 if (!txdr->desc) {
1535 dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1536 olddma);
1537 goto setup_tx_desc_die;
1538 }
1539
1540 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1541 /* give up */
1542 dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
1543 txdr->dma);
1544 dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1545 olddma);
1546 e_err(probe, "Unable to allocate aligned memory "
1547 "for the transmit descriptor ring\n");
1548 vfree(txdr->buffer_info);
1549 return -ENOMEM;
1550 } else {
1551 /* Free old allocation, new allocation was successful */
1552 dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1553 olddma);
1554 }
1555 }
1556 memset(txdr->desc, 0, txdr->size);
1557
1558 txdr->next_to_use = 0;
1559 txdr->next_to_clean = 0;
1560
1561 return 0;
1562}
1563
1564/**
1565 * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1566 * (Descriptors) for all queues
1567 * @adapter: board private structure
1568 *
1569 * Return 0 on success, negative on failure
1570 **/
1571int e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1572{
1573 int i, err = 0;
1574
1575 for (i = 0; i < adapter->num_tx_queues; i++) {
1576 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1577 if (err) {
1578 e_err(probe, "Allocation for Tx Queue %u failed\n", i);
1579 for (i-- ; i >= 0; i--)
1580 e1000_free_tx_resources(adapter,
1581 &adapter->tx_ring[i]);
1582 break;
1583 }
1584 }
1585
1586 return err;
1587}
1588
1589/**
1590 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1591 * @adapter: board private structure
1592 *
1593 * Configure the Tx unit of the MAC after a reset.
1594 **/
1595static void e1000_configure_tx(struct e1000_adapter *adapter)
1596{
1597 u64 tdba;
1598 struct e1000_hw *hw = &adapter->hw;
1599 u32 tdlen, tctl, tipg;
1600 u32 ipgr1, ipgr2;
1601
1602 /* Setup the HW Tx Head and Tail descriptor pointers */
1603
1604 switch (adapter->num_tx_queues) {
1605 case 1:
1606 default:
1607 tdba = adapter->tx_ring[0].dma;
1608 tdlen = adapter->tx_ring[0].count *
1609 sizeof(struct e1000_tx_desc);
1610 ew32(TDLEN, tdlen);
1611 ew32(TDBAH, (tdba >> 32));
1612 ew32(TDBAL, (tdba & 0x00000000ffffffffULL));
1613 ew32(TDT, 0);
1614 ew32(TDH, 0);
1615 adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ?
1616 E1000_TDH : E1000_82542_TDH);
1617 adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ?
1618 E1000_TDT : E1000_82542_TDT);
1619 break;
1620 }
1621
1622 /* Set the default values for the Tx Inter Packet Gap timer */
1623 if ((hw->media_type == e1000_media_type_fiber ||
1624 hw->media_type == e1000_media_type_internal_serdes))
1625 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1626 else
1627 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1628
1629 switch (hw->mac_type) {
1630 case e1000_82542_rev2_0:
1631 case e1000_82542_rev2_1:
1632 tipg = DEFAULT_82542_TIPG_IPGT;
1633 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1634 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1635 break;
1636 default:
1637 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1638 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1639 break;
1640 }
1641 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1642 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1643 ew32(TIPG, tipg);
1644
1645 /* Set the Tx Interrupt Delay register */
1646
1647 ew32(TIDV, adapter->tx_int_delay);
1648 if (hw->mac_type >= e1000_82540)
1649 ew32(TADV, adapter->tx_abs_int_delay);
1650
1651 /* Program the Transmit Control Register */
1652
1653 tctl = er32(TCTL);
1654 tctl &= ~E1000_TCTL_CT;
1655 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1656 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1657
1658 e1000_config_collision_dist(hw);
1659
1660 /* Setup Transmit Descriptor Settings for eop descriptor */
1661 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1662
1663 /* only set IDE if we are delaying interrupts using the timers */
1664 if (adapter->tx_int_delay)
1665 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1666
1667 if (hw->mac_type < e1000_82543)
1668 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1669 else
1670 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1671
1672 /* Cache if we're 82544 running in PCI-X because we'll
1673 * need this to apply a workaround later in the send path.
1674 */
1675 if (hw->mac_type == e1000_82544 &&
1676 hw->bus_type == e1000_bus_type_pcix)
1677 adapter->pcix_82544 = true;
1678
1679 ew32(TCTL, tctl);
1680
1681}
1682
1683/**
1684 * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1685 * @adapter: board private structure
1686 * @rxdr: rx descriptor ring (for a specific queue) to setup
1687 *
1688 * Returns 0 on success, negative on failure
1689 **/
1690static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
1691 struct e1000_rx_ring *rxdr)
1692{
1693 struct pci_dev *pdev = adapter->pdev;
1694 int size, desc_len;
1695
1696 size = sizeof(struct e1000_rx_buffer) * rxdr->count;
1697 rxdr->buffer_info = vzalloc(size);
1698 if (!rxdr->buffer_info)
1699 return -ENOMEM;
1700
1701 desc_len = sizeof(struct e1000_rx_desc);
1702
1703 /* Round up to nearest 4K */
1704
1705 rxdr->size = rxdr->count * desc_len;
1706 rxdr->size = ALIGN(rxdr->size, 4096);
1707
1708 rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
1709 GFP_KERNEL);
1710 if (!rxdr->desc) {
1711setup_rx_desc_die:
1712 vfree(rxdr->buffer_info);
1713 return -ENOMEM;
1714 }
1715
1716 /* Fix for errata 23, can't cross 64kB boundary */
1717 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1718 void *olddesc = rxdr->desc;
1719 dma_addr_t olddma = rxdr->dma;
1720 e_err(rx_err, "rxdr align check failed: %u bytes at %p\n",
1721 rxdr->size, rxdr->desc);
1722 /* Try again, without freeing the previous */
1723 rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size,
1724 &rxdr->dma, GFP_KERNEL);
1725 /* Failed allocation, critical failure */
1726 if (!rxdr->desc) {
1727 dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1728 olddma);
1729 goto setup_rx_desc_die;
1730 }
1731
1732 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1733 /* give up */
1734 dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
1735 rxdr->dma);
1736 dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1737 olddma);
1738 e_err(probe, "Unable to allocate aligned memory for "
1739 "the Rx descriptor ring\n");
1740 goto setup_rx_desc_die;
1741 } else {
1742 /* Free old allocation, new allocation was successful */
1743 dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1744 olddma);
1745 }
1746 }
1747 memset(rxdr->desc, 0, rxdr->size);
1748
1749 rxdr->next_to_clean = 0;
1750 rxdr->next_to_use = 0;
1751 rxdr->rx_skb_top = NULL;
1752
1753 return 0;
1754}
1755
1756/**
1757 * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1758 * (Descriptors) for all queues
1759 * @adapter: board private structure
1760 *
1761 * Return 0 on success, negative on failure
1762 **/
1763int e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1764{
1765 int i, err = 0;
1766
1767 for (i = 0; i < adapter->num_rx_queues; i++) {
1768 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1769 if (err) {
1770 e_err(probe, "Allocation for Rx Queue %u failed\n", i);
1771 for (i-- ; i >= 0; i--)
1772 e1000_free_rx_resources(adapter,
1773 &adapter->rx_ring[i]);
1774 break;
1775 }
1776 }
1777
1778 return err;
1779}
1780
1781/**
1782 * e1000_setup_rctl - configure the receive control registers
1783 * @adapter: Board private structure
1784 **/
1785static void e1000_setup_rctl(struct e1000_adapter *adapter)
1786{
1787 struct e1000_hw *hw = &adapter->hw;
1788 u32 rctl;
1789
1790 rctl = er32(RCTL);
1791
1792 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1793
1794 rctl |= E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
1795 E1000_RCTL_RDMTS_HALF |
1796 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1797
1798 if (hw->tbi_compatibility_on == 1)
1799 rctl |= E1000_RCTL_SBP;
1800 else
1801 rctl &= ~E1000_RCTL_SBP;
1802
1803 if (adapter->netdev->mtu <= ETH_DATA_LEN)
1804 rctl &= ~E1000_RCTL_LPE;
1805 else
1806 rctl |= E1000_RCTL_LPE;
1807
1808 /* Setup buffer sizes */
1809 rctl &= ~E1000_RCTL_SZ_4096;
1810 rctl |= E1000_RCTL_BSEX;
1811 switch (adapter->rx_buffer_len) {
1812 case E1000_RXBUFFER_2048:
1813 default:
1814 rctl |= E1000_RCTL_SZ_2048;
1815 rctl &= ~E1000_RCTL_BSEX;
1816 break;
1817 case E1000_RXBUFFER_4096:
1818 rctl |= E1000_RCTL_SZ_4096;
1819 break;
1820 case E1000_RXBUFFER_8192:
1821 rctl |= E1000_RCTL_SZ_8192;
1822 break;
1823 case E1000_RXBUFFER_16384:
1824 rctl |= E1000_RCTL_SZ_16384;
1825 break;
1826 }
1827
1828 /* This is useful for sniffing bad packets. */
1829 if (adapter->netdev->features & NETIF_F_RXALL) {
1830 /* UPE and MPE will be handled by normal PROMISC logic
1831 * in e1000e_set_rx_mode
1832 */
1833 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
1834 E1000_RCTL_BAM | /* RX All Bcast Pkts */
1835 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
1836
1837 rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
1838 E1000_RCTL_DPF | /* Allow filtered pause */
1839 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
1840 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
1841 * and that breaks VLANs.
1842 */
1843 }
1844
1845 ew32(RCTL, rctl);
1846}
1847
1848/**
1849 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1850 * @adapter: board private structure
1851 *
1852 * Configure the Rx unit of the MAC after a reset.
1853 **/
1854static void e1000_configure_rx(struct e1000_adapter *adapter)
1855{
1856 u64 rdba;
1857 struct e1000_hw *hw = &adapter->hw;
1858 u32 rdlen, rctl, rxcsum;
1859
1860 if (adapter->netdev->mtu > ETH_DATA_LEN) {
1861 rdlen = adapter->rx_ring[0].count *
1862 sizeof(struct e1000_rx_desc);
1863 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
1864 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
1865 } else {
1866 rdlen = adapter->rx_ring[0].count *
1867 sizeof(struct e1000_rx_desc);
1868 adapter->clean_rx = e1000_clean_rx_irq;
1869 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1870 }
1871
1872 /* disable receives while setting up the descriptors */
1873 rctl = er32(RCTL);
1874 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1875
1876 /* set the Receive Delay Timer Register */
1877 ew32(RDTR, adapter->rx_int_delay);
1878
1879 if (hw->mac_type >= e1000_82540) {
1880 ew32(RADV, adapter->rx_abs_int_delay);
1881 if (adapter->itr_setting != 0)
1882 ew32(ITR, 1000000000 / (adapter->itr * 256));
1883 }
1884
1885 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1886 * the Base and Length of the Rx Descriptor Ring
1887 */
1888 switch (adapter->num_rx_queues) {
1889 case 1:
1890 default:
1891 rdba = adapter->rx_ring[0].dma;
1892 ew32(RDLEN, rdlen);
1893 ew32(RDBAH, (rdba >> 32));
1894 ew32(RDBAL, (rdba & 0x00000000ffffffffULL));
1895 ew32(RDT, 0);
1896 ew32(RDH, 0);
1897 adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ?
1898 E1000_RDH : E1000_82542_RDH);
1899 adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ?
1900 E1000_RDT : E1000_82542_RDT);
1901 break;
1902 }
1903
1904 /* Enable 82543 Receive Checksum Offload for TCP and UDP */
1905 if (hw->mac_type >= e1000_82543) {
1906 rxcsum = er32(RXCSUM);
1907 if (adapter->rx_csum)
1908 rxcsum |= E1000_RXCSUM_TUOFL;
1909 else
1910 /* don't need to clear IPPCSE as it defaults to 0 */
1911 rxcsum &= ~E1000_RXCSUM_TUOFL;
1912 ew32(RXCSUM, rxcsum);
1913 }
1914
1915 /* Enable Receives */
1916 ew32(RCTL, rctl | E1000_RCTL_EN);
1917}
1918
1919/**
1920 * e1000_free_tx_resources - Free Tx Resources per Queue
1921 * @adapter: board private structure
1922 * @tx_ring: Tx descriptor ring for a specific queue
1923 *
1924 * Free all transmit software resources
1925 **/
1926static void e1000_free_tx_resources(struct e1000_adapter *adapter,
1927 struct e1000_tx_ring *tx_ring)
1928{
1929 struct pci_dev *pdev = adapter->pdev;
1930
1931 e1000_clean_tx_ring(adapter, tx_ring);
1932
1933 vfree(tx_ring->buffer_info);
1934 tx_ring->buffer_info = NULL;
1935
1936 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1937 tx_ring->dma);
1938
1939 tx_ring->desc = NULL;
1940}
1941
1942/**
1943 * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1944 * @adapter: board private structure
1945 *
1946 * Free all transmit software resources
1947 **/
1948void e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1949{
1950 int i;
1951
1952 for (i = 0; i < adapter->num_tx_queues; i++)
1953 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1954}
1955
1956static void
1957e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1958 struct e1000_tx_buffer *buffer_info,
1959 int budget)
1960{
1961 if (buffer_info->dma) {
1962 if (buffer_info->mapped_as_page)
1963 dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1964 buffer_info->length, DMA_TO_DEVICE);
1965 else
1966 dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1967 buffer_info->length,
1968 DMA_TO_DEVICE);
1969 buffer_info->dma = 0;
1970 }
1971 if (buffer_info->skb) {
1972 napi_consume_skb(buffer_info->skb, budget);
1973 buffer_info->skb = NULL;
1974 }
1975 buffer_info->time_stamp = 0;
1976 /* buffer_info must be completely set up in the transmit path */
1977}
1978
1979/**
1980 * e1000_clean_tx_ring - Free Tx Buffers
1981 * @adapter: board private structure
1982 * @tx_ring: ring to be cleaned
1983 **/
1984static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
1985 struct e1000_tx_ring *tx_ring)
1986{
1987 struct e1000_hw *hw = &adapter->hw;
1988 struct e1000_tx_buffer *buffer_info;
1989 unsigned long size;
1990 unsigned int i;
1991
1992 /* Free all the Tx ring sk_buffs */
1993
1994 for (i = 0; i < tx_ring->count; i++) {
1995 buffer_info = &tx_ring->buffer_info[i];
1996 e1000_unmap_and_free_tx_resource(adapter, buffer_info, 0);
1997 }
1998
1999 netdev_reset_queue(adapter->netdev);
2000 size = sizeof(struct e1000_tx_buffer) * tx_ring->count;
2001 memset(tx_ring->buffer_info, 0, size);
2002
2003 /* Zero out the descriptor ring */
2004
2005 memset(tx_ring->desc, 0, tx_ring->size);
2006
2007 tx_ring->next_to_use = 0;
2008 tx_ring->next_to_clean = 0;
2009 tx_ring->last_tx_tso = false;
2010
2011 writel(0, hw->hw_addr + tx_ring->tdh);
2012 writel(0, hw->hw_addr + tx_ring->tdt);
2013}
2014
2015/**
2016 * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2017 * @adapter: board private structure
2018 **/
2019static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
2020{
2021 int i;
2022
2023 for (i = 0; i < adapter->num_tx_queues; i++)
2024 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
2025}
2026
2027/**
2028 * e1000_free_rx_resources - Free Rx Resources
2029 * @adapter: board private structure
2030 * @rx_ring: ring to clean the resources from
2031 *
2032 * Free all receive software resources
2033 **/
2034static void e1000_free_rx_resources(struct e1000_adapter *adapter,
2035 struct e1000_rx_ring *rx_ring)
2036{
2037 struct pci_dev *pdev = adapter->pdev;
2038
2039 e1000_clean_rx_ring(adapter, rx_ring);
2040
2041 vfree(rx_ring->buffer_info);
2042 rx_ring->buffer_info = NULL;
2043
2044 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2045 rx_ring->dma);
2046
2047 rx_ring->desc = NULL;
2048}
2049
2050/**
2051 * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2052 * @adapter: board private structure
2053 *
2054 * Free all receive software resources
2055 **/
2056void e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2057{
2058 int i;
2059
2060 for (i = 0; i < adapter->num_rx_queues; i++)
2061 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2062}
2063
2064#define E1000_HEADROOM (NET_SKB_PAD + NET_IP_ALIGN)
2065static unsigned int e1000_frag_len(const struct e1000_adapter *a)
2066{
2067 return SKB_DATA_ALIGN(a->rx_buffer_len + E1000_HEADROOM) +
2068 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2069}
2070
2071static void *e1000_alloc_frag(const struct e1000_adapter *a)
2072{
2073 unsigned int len = e1000_frag_len(a);
2074 u8 *data = netdev_alloc_frag(len);
2075
2076 if (likely(data))
2077 data += E1000_HEADROOM;
2078 return data;
2079}
2080
2081/**
2082 * e1000_clean_rx_ring - Free Rx Buffers per Queue
2083 * @adapter: board private structure
2084 * @rx_ring: ring to free buffers from
2085 **/
2086static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
2087 struct e1000_rx_ring *rx_ring)
2088{
2089 struct e1000_hw *hw = &adapter->hw;
2090 struct e1000_rx_buffer *buffer_info;
2091 struct pci_dev *pdev = adapter->pdev;
2092 unsigned long size;
2093 unsigned int i;
2094
2095 /* Free all the Rx netfrags */
2096 for (i = 0; i < rx_ring->count; i++) {
2097 buffer_info = &rx_ring->buffer_info[i];
2098 if (adapter->clean_rx == e1000_clean_rx_irq) {
2099 if (buffer_info->dma)
2100 dma_unmap_single(&pdev->dev, buffer_info->dma,
2101 adapter->rx_buffer_len,
2102 DMA_FROM_DEVICE);
2103 if (buffer_info->rxbuf.data) {
2104 skb_free_frag(buffer_info->rxbuf.data);
2105 buffer_info->rxbuf.data = NULL;
2106 }
2107 } else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq) {
2108 if (buffer_info->dma)
2109 dma_unmap_page(&pdev->dev, buffer_info->dma,
2110 adapter->rx_buffer_len,
2111 DMA_FROM_DEVICE);
2112 if (buffer_info->rxbuf.page) {
2113 put_page(buffer_info->rxbuf.page);
2114 buffer_info->rxbuf.page = NULL;
2115 }
2116 }
2117
2118 buffer_info->dma = 0;
2119 }
2120
2121 /* there also may be some cached data from a chained receive */
2122 napi_free_frags(&adapter->napi);
2123 rx_ring->rx_skb_top = NULL;
2124
2125 size = sizeof(struct e1000_rx_buffer) * rx_ring->count;
2126 memset(rx_ring->buffer_info, 0, size);
2127
2128 /* Zero out the descriptor ring */
2129 memset(rx_ring->desc, 0, rx_ring->size);
2130
2131 rx_ring->next_to_clean = 0;
2132 rx_ring->next_to_use = 0;
2133
2134 writel(0, hw->hw_addr + rx_ring->rdh);
2135 writel(0, hw->hw_addr + rx_ring->rdt);
2136}
2137
2138/**
2139 * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2140 * @adapter: board private structure
2141 **/
2142static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2143{
2144 int i;
2145
2146 for (i = 0; i < adapter->num_rx_queues; i++)
2147 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2148}
2149
2150/* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2151 * and memory write and invalidate disabled for certain operations
2152 */
2153static void e1000_enter_82542_rst(struct e1000_adapter *adapter)
2154{
2155 struct e1000_hw *hw = &adapter->hw;
2156 struct net_device *netdev = adapter->netdev;
2157 u32 rctl;
2158
2159 e1000_pci_clear_mwi(hw);
2160
2161 rctl = er32(RCTL);
2162 rctl |= E1000_RCTL_RST;
2163 ew32(RCTL, rctl);
2164 E1000_WRITE_FLUSH();
2165 mdelay(5);
2166
2167 if (netif_running(netdev))
2168 e1000_clean_all_rx_rings(adapter);
2169}
2170
2171static void e1000_leave_82542_rst(struct e1000_adapter *adapter)
2172{
2173 struct e1000_hw *hw = &adapter->hw;
2174 struct net_device *netdev = adapter->netdev;
2175 u32 rctl;
2176
2177 rctl = er32(RCTL);
2178 rctl &= ~E1000_RCTL_RST;
2179 ew32(RCTL, rctl);
2180 E1000_WRITE_FLUSH();
2181 mdelay(5);
2182
2183 if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
2184 e1000_pci_set_mwi(hw);
2185
2186 if (netif_running(netdev)) {
2187 /* No need to loop, because 82542 supports only 1 queue */
2188 struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2189 e1000_configure_rx(adapter);
2190 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2191 }
2192}
2193
2194/**
2195 * e1000_set_mac - Change the Ethernet Address of the NIC
2196 * @netdev: network interface device structure
2197 * @p: pointer to an address structure
2198 *
2199 * Returns 0 on success, negative on failure
2200 **/
2201static int e1000_set_mac(struct net_device *netdev, void *p)
2202{
2203 struct e1000_adapter *adapter = netdev_priv(netdev);
2204 struct e1000_hw *hw = &adapter->hw;
2205 struct sockaddr *addr = p;
2206
2207 if (!is_valid_ether_addr(addr->sa_data))
2208 return -EADDRNOTAVAIL;
2209
2210 /* 82542 2.0 needs to be in reset to write receive address registers */
2211
2212 if (hw->mac_type == e1000_82542_rev2_0)
2213 e1000_enter_82542_rst(adapter);
2214
2215 eth_hw_addr_set(netdev, addr->sa_data);
2216 memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
2217
2218 e1000_rar_set(hw, hw->mac_addr, 0);
2219
2220 if (hw->mac_type == e1000_82542_rev2_0)
2221 e1000_leave_82542_rst(adapter);
2222
2223 return 0;
2224}
2225
2226/**
2227 * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2228 * @netdev: network interface device structure
2229 *
2230 * The set_rx_mode entry point is called whenever the unicast or multicast
2231 * address lists or the network interface flags are updated. This routine is
2232 * responsible for configuring the hardware for proper unicast, multicast,
2233 * promiscuous mode, and all-multi behavior.
2234 **/
2235static void e1000_set_rx_mode(struct net_device *netdev)
2236{
2237 struct e1000_adapter *adapter = netdev_priv(netdev);
2238 struct e1000_hw *hw = &adapter->hw;
2239 struct netdev_hw_addr *ha;
2240 bool use_uc = false;
2241 u32 rctl;
2242 u32 hash_value;
2243 int i, rar_entries = E1000_RAR_ENTRIES;
2244 int mta_reg_count = E1000_NUM_MTA_REGISTERS;
2245 u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC);
2246
2247 if (!mcarray)
2248 return;
2249
2250 /* Check for Promiscuous and All Multicast modes */
2251
2252 rctl = er32(RCTL);
2253
2254 if (netdev->flags & IFF_PROMISC) {
2255 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2256 rctl &= ~E1000_RCTL_VFE;
2257 } else {
2258 if (netdev->flags & IFF_ALLMULTI)
2259 rctl |= E1000_RCTL_MPE;
2260 else
2261 rctl &= ~E1000_RCTL_MPE;
2262 /* Enable VLAN filter if there is a VLAN */
2263 if (e1000_vlan_used(adapter))
2264 rctl |= E1000_RCTL_VFE;
2265 }
2266
2267 if (netdev_uc_count(netdev) > rar_entries - 1) {
2268 rctl |= E1000_RCTL_UPE;
2269 } else if (!(netdev->flags & IFF_PROMISC)) {
2270 rctl &= ~E1000_RCTL_UPE;
2271 use_uc = true;
2272 }
2273
2274 ew32(RCTL, rctl);
2275
2276 /* 82542 2.0 needs to be in reset to write receive address registers */
2277
2278 if (hw->mac_type == e1000_82542_rev2_0)
2279 e1000_enter_82542_rst(adapter);
2280
2281 /* load the first 14 addresses into the exact filters 1-14. Unicast
2282 * addresses take precedence to avoid disabling unicast filtering
2283 * when possible.
2284 *
2285 * RAR 0 is used for the station MAC address
2286 * if there are not 14 addresses, go ahead and clear the filters
2287 */
2288 i = 1;
2289 if (use_uc)
2290 netdev_for_each_uc_addr(ha, netdev) {
2291 if (i == rar_entries)
2292 break;
2293 e1000_rar_set(hw, ha->addr, i++);
2294 }
2295
2296 netdev_for_each_mc_addr(ha, netdev) {
2297 if (i == rar_entries) {
2298 /* load any remaining addresses into the hash table */
2299 u32 hash_reg, hash_bit, mta;
2300 hash_value = e1000_hash_mc_addr(hw, ha->addr);
2301 hash_reg = (hash_value >> 5) & 0x7F;
2302 hash_bit = hash_value & 0x1F;
2303 mta = (1 << hash_bit);
2304 mcarray[hash_reg] |= mta;
2305 } else {
2306 e1000_rar_set(hw, ha->addr, i++);
2307 }
2308 }
2309
2310 for (; i < rar_entries; i++) {
2311 E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2312 E1000_WRITE_FLUSH();
2313 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2314 E1000_WRITE_FLUSH();
2315 }
2316
2317 /* write the hash table completely, write from bottom to avoid
2318 * both stupid write combining chipsets, and flushing each write
2319 */
2320 for (i = mta_reg_count - 1; i >= 0 ; i--) {
2321 /* If we are on an 82544 has an errata where writing odd
2322 * offsets overwrites the previous even offset, but writing
2323 * backwards over the range solves the issue by always
2324 * writing the odd offset first
2325 */
2326 E1000_WRITE_REG_ARRAY(hw, MTA, i, mcarray[i]);
2327 }
2328 E1000_WRITE_FLUSH();
2329
2330 if (hw->mac_type == e1000_82542_rev2_0)
2331 e1000_leave_82542_rst(adapter);
2332
2333 kfree(mcarray);
2334}
2335
2336/**
2337 * e1000_update_phy_info_task - get phy info
2338 * @work: work struct contained inside adapter struct
2339 *
2340 * Need to wait a few seconds after link up to get diagnostic information from
2341 * the phy
2342 */
2343static void e1000_update_phy_info_task(struct work_struct *work)
2344{
2345 struct e1000_adapter *adapter = container_of(work,
2346 struct e1000_adapter,
2347 phy_info_task.work);
2348
2349 e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2350}
2351
2352/**
2353 * e1000_82547_tx_fifo_stall_task - task to complete work
2354 * @work: work struct contained inside adapter struct
2355 **/
2356static void e1000_82547_tx_fifo_stall_task(struct work_struct *work)
2357{
2358 struct e1000_adapter *adapter = container_of(work,
2359 struct e1000_adapter,
2360 fifo_stall_task.work);
2361 struct e1000_hw *hw = &adapter->hw;
2362 struct net_device *netdev = adapter->netdev;
2363 u32 tctl;
2364
2365 if (atomic_read(&adapter->tx_fifo_stall)) {
2366 if ((er32(TDT) == er32(TDH)) &&
2367 (er32(TDFT) == er32(TDFH)) &&
2368 (er32(TDFTS) == er32(TDFHS))) {
2369 tctl = er32(TCTL);
2370 ew32(TCTL, tctl & ~E1000_TCTL_EN);
2371 ew32(TDFT, adapter->tx_head_addr);
2372 ew32(TDFH, adapter->tx_head_addr);
2373 ew32(TDFTS, adapter->tx_head_addr);
2374 ew32(TDFHS, adapter->tx_head_addr);
2375 ew32(TCTL, tctl);
2376 E1000_WRITE_FLUSH();
2377
2378 adapter->tx_fifo_head = 0;
2379 atomic_set(&adapter->tx_fifo_stall, 0);
2380 netif_wake_queue(netdev);
2381 } else if (!test_bit(__E1000_DOWN, &adapter->flags)) {
2382 schedule_delayed_work(&adapter->fifo_stall_task, 1);
2383 }
2384 }
2385}
2386
2387bool e1000_has_link(struct e1000_adapter *adapter)
2388{
2389 struct e1000_hw *hw = &adapter->hw;
2390 bool link_active = false;
2391
2392 /* get_link_status is set on LSC (link status) interrupt or rx
2393 * sequence error interrupt (except on intel ce4100).
2394 * get_link_status will stay false until the
2395 * e1000_check_for_link establishes link for copper adapters
2396 * ONLY
2397 */
2398 switch (hw->media_type) {
2399 case e1000_media_type_copper:
2400 if (hw->mac_type == e1000_ce4100)
2401 hw->get_link_status = 1;
2402 if (hw->get_link_status) {
2403 e1000_check_for_link(hw);
2404 link_active = !hw->get_link_status;
2405 } else {
2406 link_active = true;
2407 }
2408 break;
2409 case e1000_media_type_fiber:
2410 e1000_check_for_link(hw);
2411 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
2412 break;
2413 case e1000_media_type_internal_serdes:
2414 e1000_check_for_link(hw);
2415 link_active = hw->serdes_has_link;
2416 break;
2417 default:
2418 break;
2419 }
2420
2421 return link_active;
2422}
2423
2424/**
2425 * e1000_watchdog - work function
2426 * @work: work struct contained inside adapter struct
2427 **/
2428static void e1000_watchdog(struct work_struct *work)
2429{
2430 struct e1000_adapter *adapter = container_of(work,
2431 struct e1000_adapter,
2432 watchdog_task.work);
2433 struct e1000_hw *hw = &adapter->hw;
2434 struct net_device *netdev = adapter->netdev;
2435 struct e1000_tx_ring *txdr = adapter->tx_ring;
2436 u32 link, tctl;
2437
2438 link = e1000_has_link(adapter);
2439 if ((netif_carrier_ok(netdev)) && link)
2440 goto link_up;
2441
2442 if (link) {
2443 if (!netif_carrier_ok(netdev)) {
2444 u32 ctrl;
2445 /* update snapshot of PHY registers on LSC */
2446 e1000_get_speed_and_duplex(hw,
2447 &adapter->link_speed,
2448 &adapter->link_duplex);
2449
2450 ctrl = er32(CTRL);
2451 pr_info("%s NIC Link is Up %d Mbps %s, "
2452 "Flow Control: %s\n",
2453 netdev->name,
2454 adapter->link_speed,
2455 adapter->link_duplex == FULL_DUPLEX ?
2456 "Full Duplex" : "Half Duplex",
2457 ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2458 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2459 E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2460 E1000_CTRL_TFCE) ? "TX" : "None")));
2461
2462 /* adjust timeout factor according to speed/duplex */
2463 adapter->tx_timeout_factor = 1;
2464 switch (adapter->link_speed) {
2465 case SPEED_10:
2466 adapter->tx_timeout_factor = 16;
2467 break;
2468 case SPEED_100:
2469 /* maybe add some timeout factor ? */
2470 break;
2471 }
2472
2473 /* enable transmits in the hardware */
2474 tctl = er32(TCTL);
2475 tctl |= E1000_TCTL_EN;
2476 ew32(TCTL, tctl);
2477
2478 netif_carrier_on(netdev);
2479 if (!test_bit(__E1000_DOWN, &adapter->flags))
2480 schedule_delayed_work(&adapter->phy_info_task,
2481 2 * HZ);
2482 adapter->smartspeed = 0;
2483 }
2484 } else {
2485 if (netif_carrier_ok(netdev)) {
2486 adapter->link_speed = 0;
2487 adapter->link_duplex = 0;
2488 pr_info("%s NIC Link is Down\n",
2489 netdev->name);
2490 netif_carrier_off(netdev);
2491
2492 if (!test_bit(__E1000_DOWN, &adapter->flags))
2493 schedule_delayed_work(&adapter->phy_info_task,
2494 2 * HZ);
2495 }
2496
2497 e1000_smartspeed(adapter);
2498 }
2499
2500link_up:
2501 e1000_update_stats(adapter);
2502
2503 hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2504 adapter->tpt_old = adapter->stats.tpt;
2505 hw->collision_delta = adapter->stats.colc - adapter->colc_old;
2506 adapter->colc_old = adapter->stats.colc;
2507
2508 adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2509 adapter->gorcl_old = adapter->stats.gorcl;
2510 adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2511 adapter->gotcl_old = adapter->stats.gotcl;
2512
2513 e1000_update_adaptive(hw);
2514
2515 if (!netif_carrier_ok(netdev)) {
2516 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2517 /* We've lost link, so the controller stops DMA,
2518 * but we've got queued Tx work that's never going
2519 * to get done, so reset controller to flush Tx.
2520 * (Do the reset outside of interrupt context).
2521 */
2522 adapter->tx_timeout_count++;
2523 schedule_work(&adapter->reset_task);
2524 /* exit immediately since reset is imminent */
2525 return;
2526 }
2527 }
2528
2529 /* Simple mode for Interrupt Throttle Rate (ITR) */
2530 if (hw->mac_type >= e1000_82540 && adapter->itr_setting == 4) {
2531 /* Symmetric Tx/Rx gets a reduced ITR=2000;
2532 * Total asymmetrical Tx or Rx gets ITR=8000;
2533 * everyone else is between 2000-8000.
2534 */
2535 u32 goc = (adapter->gotcl + adapter->gorcl) / 10000;
2536 u32 dif = (adapter->gotcl > adapter->gorcl ?
2537 adapter->gotcl - adapter->gorcl :
2538 adapter->gorcl - adapter->gotcl) / 10000;
2539 u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
2540
2541 ew32(ITR, 1000000000 / (itr * 256));
2542 }
2543
2544 /* Cause software interrupt to ensure rx ring is cleaned */
2545 ew32(ICS, E1000_ICS_RXDMT0);
2546
2547 /* Force detection of hung controller every watchdog period */
2548 adapter->detect_tx_hung = true;
2549
2550 /* Reschedule the task */
2551 if (!test_bit(__E1000_DOWN, &adapter->flags))
2552 schedule_delayed_work(&adapter->watchdog_task, 2 * HZ);
2553}
2554
2555enum latency_range {
2556 lowest_latency = 0,
2557 low_latency = 1,
2558 bulk_latency = 2,
2559 latency_invalid = 255
2560};
2561
2562/**
2563 * e1000_update_itr - update the dynamic ITR value based on statistics
2564 * @adapter: pointer to adapter
2565 * @itr_setting: current adapter->itr
2566 * @packets: the number of packets during this measurement interval
2567 * @bytes: the number of bytes during this measurement interval
2568 *
2569 * Stores a new ITR value based on packets and byte
2570 * counts during the last interrupt. The advantage of per interrupt
2571 * computation is faster updates and more accurate ITR for the current
2572 * traffic pattern. Constants in this function were computed
2573 * based on theoretical maximum wire speed and thresholds were set based
2574 * on testing data as well as attempting to minimize response time
2575 * while increasing bulk throughput.
2576 * this functionality is controlled by the InterruptThrottleRate module
2577 * parameter (see e1000_param.c)
2578 **/
2579static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2580 u16 itr_setting, int packets, int bytes)
2581{
2582 unsigned int retval = itr_setting;
2583 struct e1000_hw *hw = &adapter->hw;
2584
2585 if (unlikely(hw->mac_type < e1000_82540))
2586 goto update_itr_done;
2587
2588 if (packets == 0)
2589 goto update_itr_done;
2590
2591 switch (itr_setting) {
2592 case lowest_latency:
2593 /* jumbo frames get bulk treatment*/
2594 if (bytes/packets > 8000)
2595 retval = bulk_latency;
2596 else if ((packets < 5) && (bytes > 512))
2597 retval = low_latency;
2598 break;
2599 case low_latency: /* 50 usec aka 20000 ints/s */
2600 if (bytes > 10000) {
2601 /* jumbo frames need bulk latency setting */
2602 if (bytes/packets > 8000)
2603 retval = bulk_latency;
2604 else if ((packets < 10) || ((bytes/packets) > 1200))
2605 retval = bulk_latency;
2606 else if ((packets > 35))
2607 retval = lowest_latency;
2608 } else if (bytes/packets > 2000)
2609 retval = bulk_latency;
2610 else if (packets <= 2 && bytes < 512)
2611 retval = lowest_latency;
2612 break;
2613 case bulk_latency: /* 250 usec aka 4000 ints/s */
2614 if (bytes > 25000) {
2615 if (packets > 35)
2616 retval = low_latency;
2617 } else if (bytes < 6000) {
2618 retval = low_latency;
2619 }
2620 break;
2621 }
2622
2623update_itr_done:
2624 return retval;
2625}
2626
2627static void e1000_set_itr(struct e1000_adapter *adapter)
2628{
2629 struct e1000_hw *hw = &adapter->hw;
2630 u16 current_itr;
2631 u32 new_itr = adapter->itr;
2632
2633 if (unlikely(hw->mac_type < e1000_82540))
2634 return;
2635
2636 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2637 if (unlikely(adapter->link_speed != SPEED_1000)) {
2638 new_itr = 4000;
2639 goto set_itr_now;
2640 }
2641
2642 adapter->tx_itr = e1000_update_itr(adapter, adapter->tx_itr,
2643 adapter->total_tx_packets,
2644 adapter->total_tx_bytes);
2645 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2646 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2647 adapter->tx_itr = low_latency;
2648
2649 adapter->rx_itr = e1000_update_itr(adapter, adapter->rx_itr,
2650 adapter->total_rx_packets,
2651 adapter->total_rx_bytes);
2652 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2653 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2654 adapter->rx_itr = low_latency;
2655
2656 current_itr = max(adapter->rx_itr, adapter->tx_itr);
2657
2658 switch (current_itr) {
2659 /* counts and packets in update_itr are dependent on these numbers */
2660 case lowest_latency:
2661 new_itr = 70000;
2662 break;
2663 case low_latency:
2664 new_itr = 20000; /* aka hwitr = ~200 */
2665 break;
2666 case bulk_latency:
2667 new_itr = 4000;
2668 break;
2669 default:
2670 break;
2671 }
2672
2673set_itr_now:
2674 if (new_itr != adapter->itr) {
2675 /* this attempts to bias the interrupt rate towards Bulk
2676 * by adding intermediate steps when interrupt rate is
2677 * increasing
2678 */
2679 new_itr = new_itr > adapter->itr ?
2680 min(adapter->itr + (new_itr >> 2), new_itr) :
2681 new_itr;
2682 adapter->itr = new_itr;
2683 ew32(ITR, 1000000000 / (new_itr * 256));
2684 }
2685}
2686
2687#define E1000_TX_FLAGS_CSUM 0x00000001
2688#define E1000_TX_FLAGS_VLAN 0x00000002
2689#define E1000_TX_FLAGS_TSO 0x00000004
2690#define E1000_TX_FLAGS_IPV4 0x00000008
2691#define E1000_TX_FLAGS_NO_FCS 0x00000010
2692#define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
2693#define E1000_TX_FLAGS_VLAN_SHIFT 16
2694
2695static int e1000_tso(struct e1000_adapter *adapter,
2696 struct e1000_tx_ring *tx_ring, struct sk_buff *skb,
2697 __be16 protocol)
2698{
2699 struct e1000_context_desc *context_desc;
2700 struct e1000_tx_buffer *buffer_info;
2701 unsigned int i;
2702 u32 cmd_length = 0;
2703 u16 ipcse = 0, tucse, mss;
2704 u8 ipcss, ipcso, tucss, tucso, hdr_len;
2705
2706 if (skb_is_gso(skb)) {
2707 int err;
2708
2709 err = skb_cow_head(skb, 0);
2710 if (err < 0)
2711 return err;
2712
2713 hdr_len = skb_tcp_all_headers(skb);
2714 mss = skb_shinfo(skb)->gso_size;
2715 if (protocol == htons(ETH_P_IP)) {
2716 struct iphdr *iph = ip_hdr(skb);
2717 iph->tot_len = 0;
2718 iph->check = 0;
2719 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2720 iph->daddr, 0,
2721 IPPROTO_TCP,
2722 0);
2723 cmd_length = E1000_TXD_CMD_IP;
2724 ipcse = skb_transport_offset(skb) - 1;
2725 } else if (skb_is_gso_v6(skb)) {
2726 tcp_v6_gso_csum_prep(skb);
2727 ipcse = 0;
2728 }
2729 ipcss = skb_network_offset(skb);
2730 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
2731 tucss = skb_transport_offset(skb);
2732 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
2733 tucse = 0;
2734
2735 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2736 E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2737
2738 i = tx_ring->next_to_use;
2739 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2740 buffer_info = &tx_ring->buffer_info[i];
2741
2742 context_desc->lower_setup.ip_fields.ipcss = ipcss;
2743 context_desc->lower_setup.ip_fields.ipcso = ipcso;
2744 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
2745 context_desc->upper_setup.tcp_fields.tucss = tucss;
2746 context_desc->upper_setup.tcp_fields.tucso = tucso;
2747 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2748 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
2749 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2750 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2751
2752 buffer_info->time_stamp = jiffies;
2753 buffer_info->next_to_watch = i;
2754
2755 if (++i == tx_ring->count)
2756 i = 0;
2757
2758 tx_ring->next_to_use = i;
2759
2760 return true;
2761 }
2762 return false;
2763}
2764
2765static bool e1000_tx_csum(struct e1000_adapter *adapter,
2766 struct e1000_tx_ring *tx_ring, struct sk_buff *skb,
2767 __be16 protocol)
2768{
2769 struct e1000_context_desc *context_desc;
2770 struct e1000_tx_buffer *buffer_info;
2771 unsigned int i;
2772 u8 css;
2773 u32 cmd_len = E1000_TXD_CMD_DEXT;
2774
2775 if (skb->ip_summed != CHECKSUM_PARTIAL)
2776 return false;
2777
2778 switch (protocol) {
2779 case cpu_to_be16(ETH_P_IP):
2780 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2781 cmd_len |= E1000_TXD_CMD_TCP;
2782 break;
2783 case cpu_to_be16(ETH_P_IPV6):
2784 /* XXX not handling all IPV6 headers */
2785 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2786 cmd_len |= E1000_TXD_CMD_TCP;
2787 break;
2788 default:
2789 if (unlikely(net_ratelimit()))
2790 e_warn(drv, "checksum_partial proto=%x!\n",
2791 skb->protocol);
2792 break;
2793 }
2794
2795 css = skb_checksum_start_offset(skb);
2796
2797 i = tx_ring->next_to_use;
2798 buffer_info = &tx_ring->buffer_info[i];
2799 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2800
2801 context_desc->lower_setup.ip_config = 0;
2802 context_desc->upper_setup.tcp_fields.tucss = css;
2803 context_desc->upper_setup.tcp_fields.tucso =
2804 css + skb->csum_offset;
2805 context_desc->upper_setup.tcp_fields.tucse = 0;
2806 context_desc->tcp_seg_setup.data = 0;
2807 context_desc->cmd_and_length = cpu_to_le32(cmd_len);
2808
2809 buffer_info->time_stamp = jiffies;
2810 buffer_info->next_to_watch = i;
2811
2812 if (unlikely(++i == tx_ring->count))
2813 i = 0;
2814
2815 tx_ring->next_to_use = i;
2816
2817 return true;
2818}
2819
2820#define E1000_MAX_TXD_PWR 12
2821#define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR)
2822
2823static int e1000_tx_map(struct e1000_adapter *adapter,
2824 struct e1000_tx_ring *tx_ring,
2825 struct sk_buff *skb, unsigned int first,
2826 unsigned int max_per_txd, unsigned int nr_frags,
2827 unsigned int mss)
2828{
2829 struct e1000_hw *hw = &adapter->hw;
2830 struct pci_dev *pdev = adapter->pdev;
2831 struct e1000_tx_buffer *buffer_info;
2832 unsigned int len = skb_headlen(skb);
2833 unsigned int offset = 0, size, count = 0, i;
2834 unsigned int f, bytecount, segs;
2835
2836 i = tx_ring->next_to_use;
2837
2838 while (len) {
2839 buffer_info = &tx_ring->buffer_info[i];
2840 size = min(len, max_per_txd);
2841 /* Workaround for Controller erratum --
2842 * descriptor for non-tso packet in a linear SKB that follows a
2843 * tso gets written back prematurely before the data is fully
2844 * DMA'd to the controller
2845 */
2846 if (!skb->data_len && tx_ring->last_tx_tso &&
2847 !skb_is_gso(skb)) {
2848 tx_ring->last_tx_tso = false;
2849 size -= 4;
2850 }
2851
2852 /* Workaround for premature desc write-backs
2853 * in TSO mode. Append 4-byte sentinel desc
2854 */
2855 if (unlikely(mss && !nr_frags && size == len && size > 8))
2856 size -= 4;
2857 /* work-around for errata 10 and it applies
2858 * to all controllers in PCI-X mode
2859 * The fix is to make sure that the first descriptor of a
2860 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2861 */
2862 if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
2863 (size > 2015) && count == 0))
2864 size = 2015;
2865
2866 /* Workaround for potential 82544 hang in PCI-X. Avoid
2867 * terminating buffers within evenly-aligned dwords.
2868 */
2869 if (unlikely(adapter->pcix_82544 &&
2870 !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2871 size > 4))
2872 size -= 4;
2873
2874 buffer_info->length = size;
2875 /* set time_stamp *before* dma to help avoid a possible race */
2876 buffer_info->time_stamp = jiffies;
2877 buffer_info->mapped_as_page = false;
2878 buffer_info->dma = dma_map_single(&pdev->dev,
2879 skb->data + offset,
2880 size, DMA_TO_DEVICE);
2881 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2882 goto dma_error;
2883 buffer_info->next_to_watch = i;
2884
2885 len -= size;
2886 offset += size;
2887 count++;
2888 if (len) {
2889 i++;
2890 if (unlikely(i == tx_ring->count))
2891 i = 0;
2892 }
2893 }
2894
2895 for (f = 0; f < nr_frags; f++) {
2896 const skb_frag_t *frag = &skb_shinfo(skb)->frags[f];
2897
2898 len = skb_frag_size(frag);
2899 offset = 0;
2900
2901 while (len) {
2902 unsigned long bufend;
2903 i++;
2904 if (unlikely(i == tx_ring->count))
2905 i = 0;
2906
2907 buffer_info = &tx_ring->buffer_info[i];
2908 size = min(len, max_per_txd);
2909 /* Workaround for premature desc write-backs
2910 * in TSO mode. Append 4-byte sentinel desc
2911 */
2912 if (unlikely(mss && f == (nr_frags-1) &&
2913 size == len && size > 8))
2914 size -= 4;
2915 /* Workaround for potential 82544 hang in PCI-X.
2916 * Avoid terminating buffers within evenly-aligned
2917 * dwords.
2918 */
2919 bufend = (unsigned long)
2920 page_to_phys(skb_frag_page(frag));
2921 bufend += offset + size - 1;
2922 if (unlikely(adapter->pcix_82544 &&
2923 !(bufend & 4) &&
2924 size > 4))
2925 size -= 4;
2926
2927 buffer_info->length = size;
2928 buffer_info->time_stamp = jiffies;
2929 buffer_info->mapped_as_page = true;
2930 buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
2931 offset, size, DMA_TO_DEVICE);
2932 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2933 goto dma_error;
2934 buffer_info->next_to_watch = i;
2935
2936 len -= size;
2937 offset += size;
2938 count++;
2939 }
2940 }
2941
2942 segs = skb_shinfo(skb)->gso_segs ?: 1;
2943 /* multiply data chunks by size of headers */
2944 bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
2945
2946 tx_ring->buffer_info[i].skb = skb;
2947 tx_ring->buffer_info[i].segs = segs;
2948 tx_ring->buffer_info[i].bytecount = bytecount;
2949 tx_ring->buffer_info[first].next_to_watch = i;
2950
2951 return count;
2952
2953dma_error:
2954 dev_err(&pdev->dev, "TX DMA map failed\n");
2955 buffer_info->dma = 0;
2956 if (count)
2957 count--;
2958
2959 while (count--) {
2960 if (i == 0)
2961 i += tx_ring->count;
2962 i--;
2963 buffer_info = &tx_ring->buffer_info[i];
2964 e1000_unmap_and_free_tx_resource(adapter, buffer_info, 0);
2965 }
2966
2967 return 0;
2968}
2969
2970static void e1000_tx_queue(struct e1000_adapter *adapter,
2971 struct e1000_tx_ring *tx_ring, int tx_flags,
2972 int count)
2973{
2974 struct e1000_tx_desc *tx_desc = NULL;
2975 struct e1000_tx_buffer *buffer_info;
2976 u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
2977 unsigned int i;
2978
2979 if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
2980 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
2981 E1000_TXD_CMD_TSE;
2982 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2983
2984 if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
2985 txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2986 }
2987
2988 if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
2989 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
2990 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2991 }
2992
2993 if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
2994 txd_lower |= E1000_TXD_CMD_VLE;
2995 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
2996 }
2997
2998 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
2999 txd_lower &= ~(E1000_TXD_CMD_IFCS);
3000
3001 i = tx_ring->next_to_use;
3002
3003 while (count--) {
3004 buffer_info = &tx_ring->buffer_info[i];
3005 tx_desc = E1000_TX_DESC(*tx_ring, i);
3006 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3007 tx_desc->lower.data =
3008 cpu_to_le32(txd_lower | buffer_info->length);
3009 tx_desc->upper.data = cpu_to_le32(txd_upper);
3010 if (unlikely(++i == tx_ring->count))
3011 i = 0;
3012 }
3013
3014 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3015
3016 /* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
3017 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
3018 tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
3019
3020 /* Force memory writes to complete before letting h/w
3021 * know there are new descriptors to fetch. (Only
3022 * applicable for weak-ordered memory model archs,
3023 * such as IA-64).
3024 */
3025 dma_wmb();
3026
3027 tx_ring->next_to_use = i;
3028}
3029
3030/* 82547 workaround to avoid controller hang in half-duplex environment.
3031 * The workaround is to avoid queuing a large packet that would span
3032 * the internal Tx FIFO ring boundary by notifying the stack to resend
3033 * the packet at a later time. This gives the Tx FIFO an opportunity to
3034 * flush all packets. When that occurs, we reset the Tx FIFO pointers
3035 * to the beginning of the Tx FIFO.
3036 */
3037
3038#define E1000_FIFO_HDR 0x10
3039#define E1000_82547_PAD_LEN 0x3E0
3040
3041static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
3042 struct sk_buff *skb)
3043{
3044 u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
3045 u32 skb_fifo_len = skb->len + E1000_FIFO_HDR;
3046
3047 skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
3048
3049 if (adapter->link_duplex != HALF_DUPLEX)
3050 goto no_fifo_stall_required;
3051
3052 if (atomic_read(&adapter->tx_fifo_stall))
3053 return 1;
3054
3055 if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
3056 atomic_set(&adapter->tx_fifo_stall, 1);
3057 return 1;
3058 }
3059
3060no_fifo_stall_required:
3061 adapter->tx_fifo_head += skb_fifo_len;
3062 if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
3063 adapter->tx_fifo_head -= adapter->tx_fifo_size;
3064 return 0;
3065}
3066
3067static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3068{
3069 struct e1000_adapter *adapter = netdev_priv(netdev);
3070 struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3071
3072 netif_stop_queue(netdev);
3073 /* Herbert's original patch had:
3074 * smp_mb__after_netif_stop_queue();
3075 * but since that doesn't exist yet, just open code it.
3076 */
3077 smp_mb();
3078
3079 /* We need to check again in a case another CPU has just
3080 * made room available.
3081 */
3082 if (likely(E1000_DESC_UNUSED(tx_ring) < size))
3083 return -EBUSY;
3084
3085 /* A reprieve! */
3086 netif_start_queue(netdev);
3087 ++adapter->restart_queue;
3088 return 0;
3089}
3090
3091static int e1000_maybe_stop_tx(struct net_device *netdev,
3092 struct e1000_tx_ring *tx_ring, int size)
3093{
3094 if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
3095 return 0;
3096 return __e1000_maybe_stop_tx(netdev, size);
3097}
3098
3099#define TXD_USE_COUNT(S, X) (((S) + ((1 << (X)) - 1)) >> (X))
3100static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
3101 struct net_device *netdev)
3102{
3103 struct e1000_adapter *adapter = netdev_priv(netdev);
3104 struct e1000_hw *hw = &adapter->hw;
3105 struct e1000_tx_ring *tx_ring;
3106 unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
3107 unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3108 unsigned int tx_flags = 0;
3109 unsigned int len = skb_headlen(skb);
3110 unsigned int nr_frags;
3111 unsigned int mss;
3112 int count = 0;
3113 int tso;
3114 unsigned int f;
3115 __be16 protocol = vlan_get_protocol(skb);
3116
3117 /* This goes back to the question of how to logically map a Tx queue
3118 * to a flow. Right now, performance is impacted slightly negatively
3119 * if using multiple Tx queues. If the stack breaks away from a
3120 * single qdisc implementation, we can look at this again.
3121 */
3122 tx_ring = adapter->tx_ring;
3123
3124 /* On PCI/PCI-X HW, if packet size is less than ETH_ZLEN,
3125 * packets may get corrupted during padding by HW.
3126 * To WA this issue, pad all small packets manually.
3127 */
3128 if (eth_skb_pad(skb))
3129 return NETDEV_TX_OK;
3130
3131 mss = skb_shinfo(skb)->gso_size;
3132 /* The controller does a simple calculation to
3133 * make sure there is enough room in the FIFO before
3134 * initiating the DMA for each buffer. The calc is:
3135 * 4 = ceil(buffer len/mss). To make sure we don't
3136 * overrun the FIFO, adjust the max buffer len if mss
3137 * drops.
3138 */
3139 if (mss) {
3140 u8 hdr_len;
3141 max_per_txd = min(mss << 2, max_per_txd);
3142 max_txd_pwr = fls(max_per_txd) - 1;
3143
3144 hdr_len = skb_tcp_all_headers(skb);
3145 if (skb->data_len && hdr_len == len) {
3146 switch (hw->mac_type) {
3147 case e1000_82544: {
3148 unsigned int pull_size;
3149
3150 /* Make sure we have room to chop off 4 bytes,
3151 * and that the end alignment will work out to
3152 * this hardware's requirements
3153 * NOTE: this is a TSO only workaround
3154 * if end byte alignment not correct move us
3155 * into the next dword
3156 */
3157 if ((unsigned long)(skb_tail_pointer(skb) - 1)
3158 & 4)
3159 break;
3160 pull_size = min((unsigned int)4, skb->data_len);
3161 if (!__pskb_pull_tail(skb, pull_size)) {
3162 e_err(drv, "__pskb_pull_tail "
3163 "failed.\n");
3164 dev_kfree_skb_any(skb);
3165 return NETDEV_TX_OK;
3166 }
3167 len = skb_headlen(skb);
3168 break;
3169 }
3170 default:
3171 /* do nothing */
3172 break;
3173 }
3174 }
3175 }
3176
3177 /* reserve a descriptor for the offload context */
3178 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3179 count++;
3180 count++;
3181
3182 /* Controller Erratum workaround */
3183 if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3184 count++;
3185
3186 count += TXD_USE_COUNT(len, max_txd_pwr);
3187
3188 if (adapter->pcix_82544)
3189 count++;
3190
3191 /* work-around for errata 10 and it applies to all controllers
3192 * in PCI-X mode, so add one more descriptor to the count
3193 */
3194 if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
3195 (len > 2015)))
3196 count++;
3197
3198 nr_frags = skb_shinfo(skb)->nr_frags;
3199 for (f = 0; f < nr_frags; f++)
3200 count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->frags[f]),
3201 max_txd_pwr);
3202 if (adapter->pcix_82544)
3203 count += nr_frags;
3204
3205 /* need: count + 2 desc gap to keep tail from touching
3206 * head, otherwise try next time
3207 */
3208 if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2)))
3209 return NETDEV_TX_BUSY;
3210
3211 if (unlikely((hw->mac_type == e1000_82547) &&
3212 (e1000_82547_fifo_workaround(adapter, skb)))) {
3213 netif_stop_queue(netdev);
3214 if (!test_bit(__E1000_DOWN, &adapter->flags))
3215 schedule_delayed_work(&adapter->fifo_stall_task, 1);
3216 return NETDEV_TX_BUSY;
3217 }
3218
3219 if (skb_vlan_tag_present(skb)) {
3220 tx_flags |= E1000_TX_FLAGS_VLAN;
3221 tx_flags |= (skb_vlan_tag_get(skb) <<
3222 E1000_TX_FLAGS_VLAN_SHIFT);
3223 }
3224
3225 first = tx_ring->next_to_use;
3226
3227 tso = e1000_tso(adapter, tx_ring, skb, protocol);
3228 if (tso < 0) {
3229 dev_kfree_skb_any(skb);
3230 return NETDEV_TX_OK;
3231 }
3232
3233 if (likely(tso)) {
3234 if (likely(hw->mac_type != e1000_82544))
3235 tx_ring->last_tx_tso = true;
3236 tx_flags |= E1000_TX_FLAGS_TSO;
3237 } else if (likely(e1000_tx_csum(adapter, tx_ring, skb, protocol)))
3238 tx_flags |= E1000_TX_FLAGS_CSUM;
3239
3240 if (protocol == htons(ETH_P_IP))
3241 tx_flags |= E1000_TX_FLAGS_IPV4;
3242
3243 if (unlikely(skb->no_fcs))
3244 tx_flags |= E1000_TX_FLAGS_NO_FCS;
3245
3246 count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd,
3247 nr_frags, mss);
3248
3249 if (count) {
3250 /* The descriptors needed is higher than other Intel drivers
3251 * due to a number of workarounds. The breakdown is below:
3252 * Data descriptors: MAX_SKB_FRAGS + 1
3253 * Context Descriptor: 1
3254 * Keep head from touching tail: 2
3255 * Workarounds: 3
3256 */
3257 int desc_needed = MAX_SKB_FRAGS + 7;
3258
3259 netdev_sent_queue(netdev, skb->len);
3260 skb_tx_timestamp(skb);
3261
3262 e1000_tx_queue(adapter, tx_ring, tx_flags, count);
3263
3264 /* 82544 potentially requires twice as many data descriptors
3265 * in order to guarantee buffers don't end on evenly-aligned
3266 * dwords
3267 */
3268 if (adapter->pcix_82544)
3269 desc_needed += MAX_SKB_FRAGS + 1;
3270
3271 /* Make sure there is space in the ring for the next send. */
3272 e1000_maybe_stop_tx(netdev, tx_ring, desc_needed);
3273
3274 if (!netdev_xmit_more() ||
3275 netif_xmit_stopped(netdev_get_tx_queue(netdev, 0))) {
3276 writel(tx_ring->next_to_use, hw->hw_addr + tx_ring->tdt);
3277 }
3278 } else {
3279 dev_kfree_skb_any(skb);
3280 tx_ring->buffer_info[first].time_stamp = 0;
3281 tx_ring->next_to_use = first;
3282 }
3283
3284 return NETDEV_TX_OK;
3285}
3286
3287#define NUM_REGS 38 /* 1 based count */
3288static void e1000_regdump(struct e1000_adapter *adapter)
3289{
3290 struct e1000_hw *hw = &adapter->hw;
3291 u32 regs[NUM_REGS];
3292 u32 *regs_buff = regs;
3293 int i = 0;
3294
3295 static const char * const reg_name[] = {
3296 "CTRL", "STATUS",
3297 "RCTL", "RDLEN", "RDH", "RDT", "RDTR",
3298 "TCTL", "TDBAL", "TDBAH", "TDLEN", "TDH", "TDT",
3299 "TIDV", "TXDCTL", "TADV", "TARC0",
3300 "TDBAL1", "TDBAH1", "TDLEN1", "TDH1", "TDT1",
3301 "TXDCTL1", "TARC1",
3302 "CTRL_EXT", "ERT", "RDBAL", "RDBAH",
3303 "TDFH", "TDFT", "TDFHS", "TDFTS", "TDFPC",
3304 "RDFH", "RDFT", "RDFHS", "RDFTS", "RDFPC"
3305 };
3306
3307 regs_buff[0] = er32(CTRL);
3308 regs_buff[1] = er32(STATUS);
3309
3310 regs_buff[2] = er32(RCTL);
3311 regs_buff[3] = er32(RDLEN);
3312 regs_buff[4] = er32(RDH);
3313 regs_buff[5] = er32(RDT);
3314 regs_buff[6] = er32(RDTR);
3315
3316 regs_buff[7] = er32(TCTL);
3317 regs_buff[8] = er32(TDBAL);
3318 regs_buff[9] = er32(TDBAH);
3319 regs_buff[10] = er32(TDLEN);
3320 regs_buff[11] = er32(TDH);
3321 regs_buff[12] = er32(TDT);
3322 regs_buff[13] = er32(TIDV);
3323 regs_buff[14] = er32(TXDCTL);
3324 regs_buff[15] = er32(TADV);
3325 regs_buff[16] = er32(TARC0);
3326
3327 regs_buff[17] = er32(TDBAL1);
3328 regs_buff[18] = er32(TDBAH1);
3329 regs_buff[19] = er32(TDLEN1);
3330 regs_buff[20] = er32(TDH1);
3331 regs_buff[21] = er32(TDT1);
3332 regs_buff[22] = er32(TXDCTL1);
3333 regs_buff[23] = er32(TARC1);
3334 regs_buff[24] = er32(CTRL_EXT);
3335 regs_buff[25] = er32(ERT);
3336 regs_buff[26] = er32(RDBAL0);
3337 regs_buff[27] = er32(RDBAH0);
3338 regs_buff[28] = er32(TDFH);
3339 regs_buff[29] = er32(TDFT);
3340 regs_buff[30] = er32(TDFHS);
3341 regs_buff[31] = er32(TDFTS);
3342 regs_buff[32] = er32(TDFPC);
3343 regs_buff[33] = er32(RDFH);
3344 regs_buff[34] = er32(RDFT);
3345 regs_buff[35] = er32(RDFHS);
3346 regs_buff[36] = er32(RDFTS);
3347 regs_buff[37] = er32(RDFPC);
3348
3349 pr_info("Register dump\n");
3350 for (i = 0; i < NUM_REGS; i++)
3351 pr_info("%-15s %08x\n", reg_name[i], regs_buff[i]);
3352}
3353
3354/*
3355 * e1000_dump: Print registers, tx ring and rx ring
3356 */
3357static void e1000_dump(struct e1000_adapter *adapter)
3358{
3359 /* this code doesn't handle multiple rings */
3360 struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3361 struct e1000_rx_ring *rx_ring = adapter->rx_ring;
3362 int i;
3363
3364 if (!netif_msg_hw(adapter))
3365 return;
3366
3367 /* Print Registers */
3368 e1000_regdump(adapter);
3369
3370 /* transmit dump */
3371 pr_info("TX Desc ring0 dump\n");
3372
3373 /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
3374 *
3375 * Legacy Transmit Descriptor
3376 * +--------------------------------------------------------------+
3377 * 0 | Buffer Address [63:0] (Reserved on Write Back) |
3378 * +--------------------------------------------------------------+
3379 * 8 | Special | CSS | Status | CMD | CSO | Length |
3380 * +--------------------------------------------------------------+
3381 * 63 48 47 36 35 32 31 24 23 16 15 0
3382 *
3383 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
3384 * 63 48 47 40 39 32 31 16 15 8 7 0
3385 * +----------------------------------------------------------------+
3386 * 0 | TUCSE | TUCS0 | TUCSS | IPCSE | IPCS0 | IPCSS |
3387 * +----------------------------------------------------------------+
3388 * 8 | MSS | HDRLEN | RSV | STA | TUCMD | DTYP | PAYLEN |
3389 * +----------------------------------------------------------------+
3390 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
3391 *
3392 * Extended Data Descriptor (DTYP=0x1)
3393 * +----------------------------------------------------------------+
3394 * 0 | Buffer Address [63:0] |
3395 * +----------------------------------------------------------------+
3396 * 8 | VLAN tag | POPTS | Rsvd | Status | Command | DTYP | DTALEN |
3397 * +----------------------------------------------------------------+
3398 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
3399 */
3400 pr_info("Tc[desc] [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma ] leng ntw timestmp bi->skb\n");
3401 pr_info("Td[desc] [address 63:0 ] [VlaPoRSCm1Dlen] [bi->dma ] leng ntw timestmp bi->skb\n");
3402
3403 if (!netif_msg_tx_done(adapter))
3404 goto rx_ring_summary;
3405
3406 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
3407 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
3408 struct e1000_tx_buffer *buffer_info = &tx_ring->buffer_info[i];
3409 struct my_u { __le64 a; __le64 b; };
3410 struct my_u *u = (struct my_u *)tx_desc;
3411 const char *type;
3412
3413 if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
3414 type = "NTC/U";
3415 else if (i == tx_ring->next_to_use)
3416 type = "NTU";
3417 else if (i == tx_ring->next_to_clean)
3418 type = "NTC";
3419 else
3420 type = "";
3421
3422 pr_info("T%c[0x%03X] %016llX %016llX %016llX %04X %3X %016llX %p %s\n",
3423 ((le64_to_cpu(u->b) & (1<<20)) ? 'd' : 'c'), i,
3424 le64_to_cpu(u->a), le64_to_cpu(u->b),
3425 (u64)buffer_info->dma, buffer_info->length,
3426 buffer_info->next_to_watch,
3427 (u64)buffer_info->time_stamp, buffer_info->skb, type);
3428 }
3429
3430rx_ring_summary:
3431 /* receive dump */
3432 pr_info("\nRX Desc ring dump\n");
3433
3434 /* Legacy Receive Descriptor Format
3435 *
3436 * +-----------------------------------------------------+
3437 * | Buffer Address [63:0] |
3438 * +-----------------------------------------------------+
3439 * | VLAN Tag | Errors | Status 0 | Packet csum | Length |
3440 * +-----------------------------------------------------+
3441 * 63 48 47 40 39 32 31 16 15 0
3442 */
3443 pr_info("R[desc] [address 63:0 ] [vl er S cks ln] [bi->dma ] [bi->skb]\n");
3444
3445 if (!netif_msg_rx_status(adapter))
3446 goto exit;
3447
3448 for (i = 0; rx_ring->desc && (i < rx_ring->count); i++) {
3449 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
3450 struct e1000_rx_buffer *buffer_info = &rx_ring->buffer_info[i];
3451 struct my_u { __le64 a; __le64 b; };
3452 struct my_u *u = (struct my_u *)rx_desc;
3453 const char *type;
3454
3455 if (i == rx_ring->next_to_use)
3456 type = "NTU";
3457 else if (i == rx_ring->next_to_clean)
3458 type = "NTC";
3459 else
3460 type = "";
3461
3462 pr_info("R[0x%03X] %016llX %016llX %016llX %p %s\n",
3463 i, le64_to_cpu(u->a), le64_to_cpu(u->b),
3464 (u64)buffer_info->dma, buffer_info->rxbuf.data, type);
3465 } /* for */
3466
3467 /* dump the descriptor caches */
3468 /* rx */
3469 pr_info("Rx descriptor cache in 64bit format\n");
3470 for (i = 0x6000; i <= 0x63FF ; i += 0x10) {
3471 pr_info("R%04X: %08X|%08X %08X|%08X\n",
3472 i,
3473 readl(adapter->hw.hw_addr + i+4),
3474 readl(adapter->hw.hw_addr + i),
3475 readl(adapter->hw.hw_addr + i+12),
3476 readl(adapter->hw.hw_addr + i+8));
3477 }
3478 /* tx */
3479 pr_info("Tx descriptor cache in 64bit format\n");
3480 for (i = 0x7000; i <= 0x73FF ; i += 0x10) {
3481 pr_info("T%04X: %08X|%08X %08X|%08X\n",
3482 i,
3483 readl(adapter->hw.hw_addr + i+4),
3484 readl(adapter->hw.hw_addr + i),
3485 readl(adapter->hw.hw_addr + i+12),
3486 readl(adapter->hw.hw_addr + i+8));
3487 }
3488exit:
3489 return;
3490}
3491
3492/**
3493 * e1000_tx_timeout - Respond to a Tx Hang
3494 * @netdev: network interface device structure
3495 * @txqueue: number of the Tx queue that hung (unused)
3496 **/
3497static void e1000_tx_timeout(struct net_device *netdev, unsigned int __always_unused txqueue)
3498{
3499 struct e1000_adapter *adapter = netdev_priv(netdev);
3500
3501 /* Do the reset outside of interrupt context */
3502 adapter->tx_timeout_count++;
3503 schedule_work(&adapter->reset_task);
3504}
3505
3506static void e1000_reset_task(struct work_struct *work)
3507{
3508 struct e1000_adapter *adapter =
3509 container_of(work, struct e1000_adapter, reset_task);
3510
3511 e_err(drv, "Reset adapter\n");
3512 rtnl_lock();
3513 e1000_reinit_locked(adapter);
3514 rtnl_unlock();
3515}
3516
3517/**
3518 * e1000_change_mtu - Change the Maximum Transfer Unit
3519 * @netdev: network interface device structure
3520 * @new_mtu: new value for maximum frame size
3521 *
3522 * Returns 0 on success, negative on failure
3523 **/
3524static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
3525{
3526 struct e1000_adapter *adapter = netdev_priv(netdev);
3527 struct e1000_hw *hw = &adapter->hw;
3528 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3529
3530 /* Adapter-specific max frame size limits. */
3531 switch (hw->mac_type) {
3532 case e1000_undefined ... e1000_82542_rev2_1:
3533 if (max_frame > (ETH_FRAME_LEN + ETH_FCS_LEN)) {
3534 e_err(probe, "Jumbo Frames not supported.\n");
3535 return -EINVAL;
3536 }
3537 break;
3538 default:
3539 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3540 break;
3541 }
3542
3543 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
3544 msleep(1);
3545 /* e1000_down has a dependency on max_frame_size */
3546 hw->max_frame_size = max_frame;
3547 if (netif_running(netdev)) {
3548 /* prevent buffers from being reallocated */
3549 adapter->alloc_rx_buf = e1000_alloc_dummy_rx_buffers;
3550 e1000_down(adapter);
3551 }
3552
3553 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3554 * means we reserve 2 more, this pushes us to allocate from the next
3555 * larger slab size.
3556 * i.e. RXBUFFER_2048 --> size-4096 slab
3557 * however with the new *_jumbo_rx* routines, jumbo receives will use
3558 * fragmented skbs
3559 */
3560
3561 if (max_frame <= E1000_RXBUFFER_2048)
3562 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3563 else
3564#if (PAGE_SIZE >= E1000_RXBUFFER_16384)
3565 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3566#elif (PAGE_SIZE >= E1000_RXBUFFER_4096)
3567 adapter->rx_buffer_len = PAGE_SIZE;
3568#endif
3569
3570 /* adjust allocation if LPE protects us, and we aren't using SBP */
3571 if (!hw->tbi_compatibility_on &&
3572 ((max_frame == (ETH_FRAME_LEN + ETH_FCS_LEN)) ||
3573 (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3574 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3575
3576 netdev_dbg(netdev, "changing MTU from %d to %d\n",
3577 netdev->mtu, new_mtu);
3578 WRITE_ONCE(netdev->mtu, new_mtu);
3579
3580 if (netif_running(netdev))
3581 e1000_up(adapter);
3582 else
3583 e1000_reset(adapter);
3584
3585 clear_bit(__E1000_RESETTING, &adapter->flags);
3586
3587 return 0;
3588}
3589
3590/**
3591 * e1000_update_stats - Update the board statistics counters
3592 * @adapter: board private structure
3593 **/
3594void e1000_update_stats(struct e1000_adapter *adapter)
3595{
3596 struct net_device *netdev = adapter->netdev;
3597 struct e1000_hw *hw = &adapter->hw;
3598 struct pci_dev *pdev = adapter->pdev;
3599 unsigned long flags;
3600 u16 phy_tmp;
3601
3602#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3603
3604 /* Prevent stats update while adapter is being reset, or if the pci
3605 * connection is down.
3606 */
3607 if (adapter->link_speed == 0)
3608 return;
3609 if (pci_channel_offline(pdev))
3610 return;
3611
3612 spin_lock_irqsave(&adapter->stats_lock, flags);
3613
3614 /* these counters are modified from e1000_tbi_adjust_stats,
3615 * called from the interrupt context, so they must only
3616 * be written while holding adapter->stats_lock
3617 */
3618
3619 adapter->stats.crcerrs += er32(CRCERRS);
3620 adapter->stats.gprc += er32(GPRC);
3621 adapter->stats.gorcl += er32(GORCL);
3622 adapter->stats.gorch += er32(GORCH);
3623 adapter->stats.bprc += er32(BPRC);
3624 adapter->stats.mprc += er32(MPRC);
3625 adapter->stats.roc += er32(ROC);
3626
3627 adapter->stats.prc64 += er32(PRC64);
3628 adapter->stats.prc127 += er32(PRC127);
3629 adapter->stats.prc255 += er32(PRC255);
3630 adapter->stats.prc511 += er32(PRC511);
3631 adapter->stats.prc1023 += er32(PRC1023);
3632 adapter->stats.prc1522 += er32(PRC1522);
3633
3634 adapter->stats.symerrs += er32(SYMERRS);
3635 adapter->stats.mpc += er32(MPC);
3636 adapter->stats.scc += er32(SCC);
3637 adapter->stats.ecol += er32(ECOL);
3638 adapter->stats.mcc += er32(MCC);
3639 adapter->stats.latecol += er32(LATECOL);
3640 adapter->stats.dc += er32(DC);
3641 adapter->stats.sec += er32(SEC);
3642 adapter->stats.rlec += er32(RLEC);
3643 adapter->stats.xonrxc += er32(XONRXC);
3644 adapter->stats.xontxc += er32(XONTXC);
3645 adapter->stats.xoffrxc += er32(XOFFRXC);
3646 adapter->stats.xofftxc += er32(XOFFTXC);
3647 adapter->stats.fcruc += er32(FCRUC);
3648 adapter->stats.gptc += er32(GPTC);
3649 adapter->stats.gotcl += er32(GOTCL);
3650 adapter->stats.gotch += er32(GOTCH);
3651 adapter->stats.rnbc += er32(RNBC);
3652 adapter->stats.ruc += er32(RUC);
3653 adapter->stats.rfc += er32(RFC);
3654 adapter->stats.rjc += er32(RJC);
3655 adapter->stats.torl += er32(TORL);
3656 adapter->stats.torh += er32(TORH);
3657 adapter->stats.totl += er32(TOTL);
3658 adapter->stats.toth += er32(TOTH);
3659 adapter->stats.tpr += er32(TPR);
3660
3661 adapter->stats.ptc64 += er32(PTC64);
3662 adapter->stats.ptc127 += er32(PTC127);
3663 adapter->stats.ptc255 += er32(PTC255);
3664 adapter->stats.ptc511 += er32(PTC511);
3665 adapter->stats.ptc1023 += er32(PTC1023);
3666 adapter->stats.ptc1522 += er32(PTC1522);
3667
3668 adapter->stats.mptc += er32(MPTC);
3669 adapter->stats.bptc += er32(BPTC);
3670
3671 /* used for adaptive IFS */
3672
3673 hw->tx_packet_delta = er32(TPT);
3674 adapter->stats.tpt += hw->tx_packet_delta;
3675 hw->collision_delta = er32(COLC);
3676 adapter->stats.colc += hw->collision_delta;
3677
3678 if (hw->mac_type >= e1000_82543) {
3679 adapter->stats.algnerrc += er32(ALGNERRC);
3680 adapter->stats.rxerrc += er32(RXERRC);
3681 adapter->stats.tncrs += er32(TNCRS);
3682 adapter->stats.cexterr += er32(CEXTERR);
3683 adapter->stats.tsctc += er32(TSCTC);
3684 adapter->stats.tsctfc += er32(TSCTFC);
3685 }
3686
3687 /* Fill out the OS statistics structure */
3688 netdev->stats.multicast = adapter->stats.mprc;
3689 netdev->stats.collisions = adapter->stats.colc;
3690
3691 /* Rx Errors */
3692
3693 /* RLEC on some newer hardware can be incorrect so build
3694 * our own version based on RUC and ROC
3695 */
3696 netdev->stats.rx_errors = adapter->stats.rxerrc +
3697 adapter->stats.crcerrs + adapter->stats.algnerrc +
3698 adapter->stats.ruc + adapter->stats.roc +
3699 adapter->stats.cexterr;
3700 adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3701 netdev->stats.rx_length_errors = adapter->stats.rlerrc;
3702 netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
3703 netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
3704 netdev->stats.rx_missed_errors = adapter->stats.mpc;
3705
3706 /* Tx Errors */
3707 adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3708 netdev->stats.tx_errors = adapter->stats.txerrc;
3709 netdev->stats.tx_aborted_errors = adapter->stats.ecol;
3710 netdev->stats.tx_window_errors = adapter->stats.latecol;
3711 netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
3712 if (hw->bad_tx_carr_stats_fd &&
3713 adapter->link_duplex == FULL_DUPLEX) {
3714 netdev->stats.tx_carrier_errors = 0;
3715 adapter->stats.tncrs = 0;
3716 }
3717
3718 /* Tx Dropped needs to be maintained elsewhere */
3719
3720 /* Phy Stats */
3721 if (hw->media_type == e1000_media_type_copper) {
3722 if ((adapter->link_speed == SPEED_1000) &&
3723 (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3724 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3725 adapter->phy_stats.idle_errors += phy_tmp;
3726 }
3727
3728 if ((hw->mac_type <= e1000_82546) &&
3729 (hw->phy_type == e1000_phy_m88) &&
3730 !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3731 adapter->phy_stats.receive_errors += phy_tmp;
3732 }
3733
3734 /* Management Stats */
3735 if (hw->has_smbus) {
3736 adapter->stats.mgptc += er32(MGTPTC);
3737 adapter->stats.mgprc += er32(MGTPRC);
3738 adapter->stats.mgpdc += er32(MGTPDC);
3739 }
3740
3741 spin_unlock_irqrestore(&adapter->stats_lock, flags);
3742}
3743
3744/**
3745 * e1000_intr - Interrupt Handler
3746 * @irq: interrupt number
3747 * @data: pointer to a network interface device structure
3748 **/
3749static irqreturn_t e1000_intr(int irq, void *data)
3750{
3751 struct net_device *netdev = data;
3752 struct e1000_adapter *adapter = netdev_priv(netdev);
3753 struct e1000_hw *hw = &adapter->hw;
3754 u32 icr = er32(ICR);
3755
3756 if (unlikely((!icr)))
3757 return IRQ_NONE; /* Not our interrupt */
3758
3759 /* we might have caused the interrupt, but the above
3760 * read cleared it, and just in case the driver is
3761 * down there is nothing to do so return handled
3762 */
3763 if (unlikely(test_bit(__E1000_DOWN, &adapter->flags)))
3764 return IRQ_HANDLED;
3765
3766 if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3767 hw->get_link_status = 1;
3768 /* guard against interrupt when we're going down */
3769 if (!test_bit(__E1000_DOWN, &adapter->flags))
3770 schedule_delayed_work(&adapter->watchdog_task, 1);
3771 }
3772
3773 /* disable interrupts, without the synchronize_irq bit */
3774 ew32(IMC, ~0);
3775 E1000_WRITE_FLUSH();
3776
3777 if (likely(napi_schedule_prep(&adapter->napi))) {
3778 adapter->total_tx_bytes = 0;
3779 adapter->total_tx_packets = 0;
3780 adapter->total_rx_bytes = 0;
3781 adapter->total_rx_packets = 0;
3782 __napi_schedule(&adapter->napi);
3783 } else {
3784 /* this really should not happen! if it does it is basically a
3785 * bug, but not a hard error, so enable ints and continue
3786 */
3787 if (!test_bit(__E1000_DOWN, &adapter->flags))
3788 e1000_irq_enable(adapter);
3789 }
3790
3791 return IRQ_HANDLED;
3792}
3793
3794/**
3795 * e1000_clean - NAPI Rx polling callback
3796 * @napi: napi struct containing references to driver info
3797 * @budget: budget given to driver for receive packets
3798 **/
3799static int e1000_clean(struct napi_struct *napi, int budget)
3800{
3801 struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
3802 napi);
3803 int tx_clean_complete = 0, work_done = 0;
3804
3805 tx_clean_complete = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]);
3806
3807 adapter->clean_rx(adapter, &adapter->rx_ring[0], &work_done, budget);
3808
3809 if (!tx_clean_complete || work_done == budget)
3810 return budget;
3811
3812 /* Exit the polling mode, but don't re-enable interrupts if stack might
3813 * poll us due to busy-polling
3814 */
3815 if (likely(napi_complete_done(napi, work_done))) {
3816 if (likely(adapter->itr_setting & 3))
3817 e1000_set_itr(adapter);
3818 if (!test_bit(__E1000_DOWN, &adapter->flags))
3819 e1000_irq_enable(adapter);
3820 }
3821
3822 return work_done;
3823}
3824
3825/**
3826 * e1000_clean_tx_irq - Reclaim resources after transmit completes
3827 * @adapter: board private structure
3828 * @tx_ring: ring to clean
3829 **/
3830static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
3831 struct e1000_tx_ring *tx_ring)
3832{
3833 struct e1000_hw *hw = &adapter->hw;
3834 struct net_device *netdev = adapter->netdev;
3835 struct e1000_tx_desc *tx_desc, *eop_desc;
3836 struct e1000_tx_buffer *buffer_info;
3837 unsigned int i, eop;
3838 unsigned int count = 0;
3839 unsigned int total_tx_bytes = 0, total_tx_packets = 0;
3840 unsigned int bytes_compl = 0, pkts_compl = 0;
3841
3842 i = tx_ring->next_to_clean;
3843 eop = tx_ring->buffer_info[i].next_to_watch;
3844 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3845
3846 while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
3847 (count < tx_ring->count)) {
3848 bool cleaned = false;
3849 dma_rmb(); /* read buffer_info after eop_desc */
3850 for ( ; !cleaned; count++) {
3851 tx_desc = E1000_TX_DESC(*tx_ring, i);
3852 buffer_info = &tx_ring->buffer_info[i];
3853 cleaned = (i == eop);
3854
3855 if (cleaned) {
3856 total_tx_packets += buffer_info->segs;
3857 total_tx_bytes += buffer_info->bytecount;
3858 if (buffer_info->skb) {
3859 bytes_compl += buffer_info->skb->len;
3860 pkts_compl++;
3861 }
3862
3863 }
3864 e1000_unmap_and_free_tx_resource(adapter, buffer_info,
3865 64);
3866 tx_desc->upper.data = 0;
3867
3868 if (unlikely(++i == tx_ring->count))
3869 i = 0;
3870 }
3871
3872 eop = tx_ring->buffer_info[i].next_to_watch;
3873 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3874 }
3875
3876 /* Synchronize with E1000_DESC_UNUSED called from e1000_xmit_frame,
3877 * which will reuse the cleaned buffers.
3878 */
3879 smp_store_release(&tx_ring->next_to_clean, i);
3880
3881 netdev_completed_queue(netdev, pkts_compl, bytes_compl);
3882
3883#define TX_WAKE_THRESHOLD 32
3884 if (unlikely(count && netif_carrier_ok(netdev) &&
3885 E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3886 /* Make sure that anybody stopping the queue after this
3887 * sees the new next_to_clean.
3888 */
3889 smp_mb();
3890
3891 if (netif_queue_stopped(netdev) &&
3892 !(test_bit(__E1000_DOWN, &adapter->flags))) {
3893 netif_wake_queue(netdev);
3894 ++adapter->restart_queue;
3895 }
3896 }
3897
3898 if (adapter->detect_tx_hung) {
3899 /* Detect a transmit hang in hardware, this serializes the
3900 * check with the clearing of time_stamp and movement of i
3901 */
3902 adapter->detect_tx_hung = false;
3903 if (tx_ring->buffer_info[eop].time_stamp &&
3904 time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3905 (adapter->tx_timeout_factor * HZ)) &&
3906 !(er32(STATUS) & E1000_STATUS_TXOFF)) {
3907
3908 /* detected Tx unit hang */
3909 e_err(drv, "Detected Tx Unit Hang\n"
3910 " Tx Queue <%lu>\n"
3911 " TDH <%x>\n"
3912 " TDT <%x>\n"
3913 " next_to_use <%x>\n"
3914 " next_to_clean <%x>\n"
3915 "buffer_info[next_to_clean]\n"
3916 " time_stamp <%lx>\n"
3917 " next_to_watch <%x>\n"
3918 " jiffies <%lx>\n"
3919 " next_to_watch.status <%x>\n",
3920 (unsigned long)(tx_ring - adapter->tx_ring),
3921 readl(hw->hw_addr + tx_ring->tdh),
3922 readl(hw->hw_addr + tx_ring->tdt),
3923 tx_ring->next_to_use,
3924 tx_ring->next_to_clean,
3925 tx_ring->buffer_info[eop].time_stamp,
3926 eop,
3927 jiffies,
3928 eop_desc->upper.fields.status);
3929 e1000_dump(adapter);
3930 netif_stop_queue(netdev);
3931 }
3932 }
3933 adapter->total_tx_bytes += total_tx_bytes;
3934 adapter->total_tx_packets += total_tx_packets;
3935 netdev->stats.tx_bytes += total_tx_bytes;
3936 netdev->stats.tx_packets += total_tx_packets;
3937 return count < tx_ring->count;
3938}
3939
3940/**
3941 * e1000_rx_checksum - Receive Checksum Offload for 82543
3942 * @adapter: board private structure
3943 * @status_err: receive descriptor status and error fields
3944 * @csum: receive descriptor csum field
3945 * @skb: socket buffer with received data
3946 **/
3947static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
3948 u32 csum, struct sk_buff *skb)
3949{
3950 struct e1000_hw *hw = &adapter->hw;
3951 u16 status = (u16)status_err;
3952 u8 errors = (u8)(status_err >> 24);
3953
3954 skb_checksum_none_assert(skb);
3955
3956 /* 82543 or newer only */
3957 if (unlikely(hw->mac_type < e1000_82543))
3958 return;
3959 /* Ignore Checksum bit is set */
3960 if (unlikely(status & E1000_RXD_STAT_IXSM))
3961 return;
3962 /* TCP/UDP checksum error bit is set */
3963 if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3964 /* let the stack verify checksum errors */
3965 adapter->hw_csum_err++;
3966 return;
3967 }
3968 /* TCP/UDP Checksum has not been calculated */
3969 if (!(status & E1000_RXD_STAT_TCPCS))
3970 return;
3971
3972 /* It must be a TCP or UDP packet with a valid checksum */
3973 if (likely(status & E1000_RXD_STAT_TCPCS)) {
3974 /* TCP checksum is good */
3975 skb->ip_summed = CHECKSUM_UNNECESSARY;
3976 }
3977 adapter->hw_csum_good++;
3978}
3979
3980/**
3981 * e1000_consume_page - helper function for jumbo Rx path
3982 * @bi: software descriptor shadow data
3983 * @skb: skb being modified
3984 * @length: length of data being added
3985 **/
3986static void e1000_consume_page(struct e1000_rx_buffer *bi, struct sk_buff *skb,
3987 u16 length)
3988{
3989 bi->rxbuf.page = NULL;
3990 skb->len += length;
3991 skb->data_len += length;
3992 skb->truesize += PAGE_SIZE;
3993}
3994
3995/**
3996 * e1000_receive_skb - helper function to handle rx indications
3997 * @adapter: board private structure
3998 * @status: descriptor status field as written by hardware
3999 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
4000 * @skb: pointer to sk_buff to be indicated to stack
4001 */
4002static void e1000_receive_skb(struct e1000_adapter *adapter, u8 status,
4003 __le16 vlan, struct sk_buff *skb)
4004{
4005 skb->protocol = eth_type_trans(skb, adapter->netdev);
4006
4007 if (status & E1000_RXD_STAT_VP) {
4008 u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
4009
4010 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
4011 }
4012 napi_gro_receive(&adapter->napi, skb);
4013}
4014
4015/**
4016 * e1000_tbi_adjust_stats
4017 * @hw: Struct containing variables accessed by shared code
4018 * @stats: point to stats struct
4019 * @frame_len: The length of the frame in question
4020 * @mac_addr: The Ethernet destination address of the frame in question
4021 *
4022 * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT
4023 */
4024static void e1000_tbi_adjust_stats(struct e1000_hw *hw,
4025 struct e1000_hw_stats *stats,
4026 u32 frame_len, const u8 *mac_addr)
4027{
4028 u64 carry_bit;
4029
4030 /* First adjust the frame length. */
4031 frame_len--;
4032 /* We need to adjust the statistics counters, since the hardware
4033 * counters overcount this packet as a CRC error and undercount
4034 * the packet as a good packet
4035 */
4036 /* This packet should not be counted as a CRC error. */
4037 stats->crcerrs--;
4038 /* This packet does count as a Good Packet Received. */
4039 stats->gprc++;
4040
4041 /* Adjust the Good Octets received counters */
4042 carry_bit = 0x80000000 & stats->gorcl;
4043 stats->gorcl += frame_len;
4044 /* If the high bit of Gorcl (the low 32 bits of the Good Octets
4045 * Received Count) was one before the addition,
4046 * AND it is zero after, then we lost the carry out,
4047 * need to add one to Gorch (Good Octets Received Count High).
4048 * This could be simplified if all environments supported
4049 * 64-bit integers.
4050 */
4051 if (carry_bit && ((stats->gorcl & 0x80000000) == 0))
4052 stats->gorch++;
4053 /* Is this a broadcast or multicast? Check broadcast first,
4054 * since the test for a multicast frame will test positive on
4055 * a broadcast frame.
4056 */
4057 if (is_broadcast_ether_addr(mac_addr))
4058 stats->bprc++;
4059 else if (is_multicast_ether_addr(mac_addr))
4060 stats->mprc++;
4061
4062 if (frame_len == hw->max_frame_size) {
4063 /* In this case, the hardware has overcounted the number of
4064 * oversize frames.
4065 */
4066 if (stats->roc > 0)
4067 stats->roc--;
4068 }
4069
4070 /* Adjust the bin counters when the extra byte put the frame in the
4071 * wrong bin. Remember that the frame_len was adjusted above.
4072 */
4073 if (frame_len == 64) {
4074 stats->prc64++;
4075 stats->prc127--;
4076 } else if (frame_len == 127) {
4077 stats->prc127++;
4078 stats->prc255--;
4079 } else if (frame_len == 255) {
4080 stats->prc255++;
4081 stats->prc511--;
4082 } else if (frame_len == 511) {
4083 stats->prc511++;
4084 stats->prc1023--;
4085 } else if (frame_len == 1023) {
4086 stats->prc1023++;
4087 stats->prc1522--;
4088 } else if (frame_len == 1522) {
4089 stats->prc1522++;
4090 }
4091}
4092
4093static bool e1000_tbi_should_accept(struct e1000_adapter *adapter,
4094 u8 status, u8 errors,
4095 u32 length, const u8 *data)
4096{
4097 struct e1000_hw *hw = &adapter->hw;
4098 u8 last_byte = *(data + length - 1);
4099
4100 if (TBI_ACCEPT(hw, status, errors, length, last_byte)) {
4101 unsigned long irq_flags;
4102
4103 spin_lock_irqsave(&adapter->stats_lock, irq_flags);
4104 e1000_tbi_adjust_stats(hw, &adapter->stats, length, data);
4105 spin_unlock_irqrestore(&adapter->stats_lock, irq_flags);
4106
4107 return true;
4108 }
4109
4110 return false;
4111}
4112
4113static struct sk_buff *e1000_alloc_rx_skb(struct e1000_adapter *adapter,
4114 unsigned int bufsz)
4115{
4116 struct sk_buff *skb = napi_alloc_skb(&adapter->napi, bufsz);
4117
4118 if (unlikely(!skb))
4119 adapter->alloc_rx_buff_failed++;
4120 return skb;
4121}
4122
4123/**
4124 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
4125 * @adapter: board private structure
4126 * @rx_ring: ring to clean
4127 * @work_done: amount of napi work completed this call
4128 * @work_to_do: max amount of work allowed for this call to do
4129 *
4130 * the return value indicates whether actual cleaning was done, there
4131 * is no guarantee that everything was cleaned
4132 */
4133static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
4134 struct e1000_rx_ring *rx_ring,
4135 int *work_done, int work_to_do)
4136{
4137 struct net_device *netdev = adapter->netdev;
4138 struct pci_dev *pdev = adapter->pdev;
4139 struct e1000_rx_desc *rx_desc, *next_rxd;
4140 struct e1000_rx_buffer *buffer_info, *next_buffer;
4141 u32 length;
4142 unsigned int i;
4143 int cleaned_count = 0;
4144 bool cleaned = false;
4145 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
4146
4147 i = rx_ring->next_to_clean;
4148 rx_desc = E1000_RX_DESC(*rx_ring, i);
4149 buffer_info = &rx_ring->buffer_info[i];
4150
4151 while (rx_desc->status & E1000_RXD_STAT_DD) {
4152 struct sk_buff *skb;
4153 u8 status;
4154
4155 if (*work_done >= work_to_do)
4156 break;
4157 (*work_done)++;
4158 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
4159
4160 status = rx_desc->status;
4161
4162 if (++i == rx_ring->count)
4163 i = 0;
4164
4165 next_rxd = E1000_RX_DESC(*rx_ring, i);
4166 prefetch(next_rxd);
4167
4168 next_buffer = &rx_ring->buffer_info[i];
4169
4170 cleaned = true;
4171 cleaned_count++;
4172 dma_unmap_page(&pdev->dev, buffer_info->dma,
4173 adapter->rx_buffer_len, DMA_FROM_DEVICE);
4174 buffer_info->dma = 0;
4175
4176 length = le16_to_cpu(rx_desc->length);
4177
4178 /* errors is only valid for DD + EOP descriptors */
4179 if (unlikely((status & E1000_RXD_STAT_EOP) &&
4180 (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
4181 u8 *mapped = page_address(buffer_info->rxbuf.page);
4182
4183 if (e1000_tbi_should_accept(adapter, status,
4184 rx_desc->errors,
4185 length, mapped)) {
4186 length--;
4187 } else if (netdev->features & NETIF_F_RXALL) {
4188 goto process_skb;
4189 } else {
4190 /* an error means any chain goes out the window
4191 * too
4192 */
4193 dev_kfree_skb(rx_ring->rx_skb_top);
4194 rx_ring->rx_skb_top = NULL;
4195 goto next_desc;
4196 }
4197 }
4198
4199#define rxtop rx_ring->rx_skb_top
4200process_skb:
4201 if (!(status & E1000_RXD_STAT_EOP)) {
4202 /* this descriptor is only the beginning (or middle) */
4203 if (!rxtop) {
4204 /* this is the beginning of a chain */
4205 rxtop = napi_get_frags(&adapter->napi);
4206 if (!rxtop)
4207 break;
4208
4209 skb_fill_page_desc(rxtop, 0,
4210 buffer_info->rxbuf.page,
4211 0, length);
4212 } else {
4213 /* this is the middle of a chain */
4214 skb_fill_page_desc(rxtop,
4215 skb_shinfo(rxtop)->nr_frags,
4216 buffer_info->rxbuf.page, 0, length);
4217 }
4218 e1000_consume_page(buffer_info, rxtop, length);
4219 goto next_desc;
4220 } else {
4221 if (rxtop) {
4222 /* end of the chain */
4223 skb_fill_page_desc(rxtop,
4224 skb_shinfo(rxtop)->nr_frags,
4225 buffer_info->rxbuf.page, 0, length);
4226 skb = rxtop;
4227 rxtop = NULL;
4228 e1000_consume_page(buffer_info, skb, length);
4229 } else {
4230 struct page *p;
4231 /* no chain, got EOP, this buf is the packet
4232 * copybreak to save the put_page/alloc_page
4233 */
4234 p = buffer_info->rxbuf.page;
4235 if (length <= copybreak) {
4236 if (likely(!(netdev->features & NETIF_F_RXFCS)))
4237 length -= 4;
4238 skb = e1000_alloc_rx_skb(adapter,
4239 length);
4240 if (!skb)
4241 break;
4242
4243 memcpy(skb_tail_pointer(skb),
4244 page_address(p), length);
4245
4246 /* re-use the page, so don't erase
4247 * buffer_info->rxbuf.page
4248 */
4249 skb_put(skb, length);
4250 e1000_rx_checksum(adapter,
4251 status | rx_desc->errors << 24,
4252 le16_to_cpu(rx_desc->csum), skb);
4253
4254 total_rx_bytes += skb->len;
4255 total_rx_packets++;
4256
4257 e1000_receive_skb(adapter, status,
4258 rx_desc->special, skb);
4259 goto next_desc;
4260 } else {
4261 skb = napi_get_frags(&adapter->napi);
4262 if (!skb) {
4263 adapter->alloc_rx_buff_failed++;
4264 break;
4265 }
4266 skb_fill_page_desc(skb, 0, p, 0,
4267 length);
4268 e1000_consume_page(buffer_info, skb,
4269 length);
4270 }
4271 }
4272 }
4273
4274 /* Receive Checksum Offload XXX recompute due to CRC strip? */
4275 e1000_rx_checksum(adapter,
4276 (u32)(status) |
4277 ((u32)(rx_desc->errors) << 24),
4278 le16_to_cpu(rx_desc->csum), skb);
4279
4280 total_rx_bytes += (skb->len - 4); /* don't count FCS */
4281 if (likely(!(netdev->features & NETIF_F_RXFCS)))
4282 pskb_trim(skb, skb->len - 4);
4283 total_rx_packets++;
4284
4285 if (status & E1000_RXD_STAT_VP) {
4286 __le16 vlan = rx_desc->special;
4287 u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
4288
4289 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
4290 }
4291
4292 napi_gro_frags(&adapter->napi);
4293
4294next_desc:
4295 rx_desc->status = 0;
4296
4297 /* return some buffers to hardware, one at a time is too slow */
4298 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4299 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4300 cleaned_count = 0;
4301 }
4302
4303 /* use prefetched values */
4304 rx_desc = next_rxd;
4305 buffer_info = next_buffer;
4306 }
4307 rx_ring->next_to_clean = i;
4308
4309 cleaned_count = E1000_DESC_UNUSED(rx_ring);
4310 if (cleaned_count)
4311 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4312
4313 adapter->total_rx_packets += total_rx_packets;
4314 adapter->total_rx_bytes += total_rx_bytes;
4315 netdev->stats.rx_bytes += total_rx_bytes;
4316 netdev->stats.rx_packets += total_rx_packets;
4317 return cleaned;
4318}
4319
4320/* this should improve performance for small packets with large amounts
4321 * of reassembly being done in the stack
4322 */
4323static struct sk_buff *e1000_copybreak(struct e1000_adapter *adapter,
4324 struct e1000_rx_buffer *buffer_info,
4325 u32 length, const void *data)
4326{
4327 struct sk_buff *skb;
4328
4329 if (length > copybreak)
4330 return NULL;
4331
4332 skb = e1000_alloc_rx_skb(adapter, length);
4333 if (!skb)
4334 return NULL;
4335
4336 dma_sync_single_for_cpu(&adapter->pdev->dev, buffer_info->dma,
4337 length, DMA_FROM_DEVICE);
4338
4339 skb_put_data(skb, data, length);
4340
4341 return skb;
4342}
4343
4344/**
4345 * e1000_clean_rx_irq - Send received data up the network stack; legacy
4346 * @adapter: board private structure
4347 * @rx_ring: ring to clean
4348 * @work_done: amount of napi work completed this call
4349 * @work_to_do: max amount of work allowed for this call to do
4350 */
4351static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
4352 struct e1000_rx_ring *rx_ring,
4353 int *work_done, int work_to_do)
4354{
4355 struct net_device *netdev = adapter->netdev;
4356 struct pci_dev *pdev = adapter->pdev;
4357 struct e1000_rx_desc *rx_desc, *next_rxd;
4358 struct e1000_rx_buffer *buffer_info, *next_buffer;
4359 u32 length;
4360 unsigned int i;
4361 int cleaned_count = 0;
4362 bool cleaned = false;
4363 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
4364
4365 i = rx_ring->next_to_clean;
4366 rx_desc = E1000_RX_DESC(*rx_ring, i);
4367 buffer_info = &rx_ring->buffer_info[i];
4368
4369 while (rx_desc->status & E1000_RXD_STAT_DD) {
4370 struct sk_buff *skb;
4371 u8 *data;
4372 u8 status;
4373
4374 if (*work_done >= work_to_do)
4375 break;
4376 (*work_done)++;
4377 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
4378
4379 status = rx_desc->status;
4380 length = le16_to_cpu(rx_desc->length);
4381
4382 data = buffer_info->rxbuf.data;
4383 prefetch(data);
4384 skb = e1000_copybreak(adapter, buffer_info, length, data);
4385 if (!skb) {
4386 unsigned int frag_len = e1000_frag_len(adapter);
4387
4388 skb = napi_build_skb(data - E1000_HEADROOM, frag_len);
4389 if (!skb) {
4390 adapter->alloc_rx_buff_failed++;
4391 break;
4392 }
4393
4394 skb_reserve(skb, E1000_HEADROOM);
4395 dma_unmap_single(&pdev->dev, buffer_info->dma,
4396 adapter->rx_buffer_len,
4397 DMA_FROM_DEVICE);
4398 buffer_info->dma = 0;
4399 buffer_info->rxbuf.data = NULL;
4400 }
4401
4402 if (++i == rx_ring->count)
4403 i = 0;
4404
4405 next_rxd = E1000_RX_DESC(*rx_ring, i);
4406 prefetch(next_rxd);
4407
4408 next_buffer = &rx_ring->buffer_info[i];
4409
4410 cleaned = true;
4411 cleaned_count++;
4412
4413 /* !EOP means multiple descriptors were used to store a single
4414 * packet, if thats the case we need to toss it. In fact, we
4415 * to toss every packet with the EOP bit clear and the next
4416 * frame that _does_ have the EOP bit set, as it is by
4417 * definition only a frame fragment
4418 */
4419 if (unlikely(!(status & E1000_RXD_STAT_EOP)))
4420 adapter->discarding = true;
4421
4422 if (adapter->discarding) {
4423 /* All receives must fit into a single buffer */
4424 netdev_dbg(netdev, "Receive packet consumed multiple buffers\n");
4425 dev_kfree_skb(skb);
4426 if (status & E1000_RXD_STAT_EOP)
4427 adapter->discarding = false;
4428 goto next_desc;
4429 }
4430
4431 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
4432 if (e1000_tbi_should_accept(adapter, status,
4433 rx_desc->errors,
4434 length, data)) {
4435 length--;
4436 } else if (netdev->features & NETIF_F_RXALL) {
4437 goto process_skb;
4438 } else {
4439 dev_kfree_skb(skb);
4440 goto next_desc;
4441 }
4442 }
4443
4444process_skb:
4445 total_rx_bytes += (length - 4); /* don't count FCS */
4446 total_rx_packets++;
4447
4448 if (likely(!(netdev->features & NETIF_F_RXFCS)))
4449 /* adjust length to remove Ethernet CRC, this must be
4450 * done after the TBI_ACCEPT workaround above
4451 */
4452 length -= 4;
4453
4454 if (buffer_info->rxbuf.data == NULL)
4455 skb_put(skb, length);
4456 else /* copybreak skb */
4457 skb_trim(skb, length);
4458
4459 /* Receive Checksum Offload */
4460 e1000_rx_checksum(adapter,
4461 (u32)(status) |
4462 ((u32)(rx_desc->errors) << 24),
4463 le16_to_cpu(rx_desc->csum), skb);
4464
4465 e1000_receive_skb(adapter, status, rx_desc->special, skb);
4466
4467next_desc:
4468 rx_desc->status = 0;
4469
4470 /* return some buffers to hardware, one at a time is too slow */
4471 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4472 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4473 cleaned_count = 0;
4474 }
4475
4476 /* use prefetched values */
4477 rx_desc = next_rxd;
4478 buffer_info = next_buffer;
4479 }
4480 rx_ring->next_to_clean = i;
4481
4482 cleaned_count = E1000_DESC_UNUSED(rx_ring);
4483 if (cleaned_count)
4484 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4485
4486 adapter->total_rx_packets += total_rx_packets;
4487 adapter->total_rx_bytes += total_rx_bytes;
4488 netdev->stats.rx_bytes += total_rx_bytes;
4489 netdev->stats.rx_packets += total_rx_packets;
4490 return cleaned;
4491}
4492
4493/**
4494 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
4495 * @adapter: address of board private structure
4496 * @rx_ring: pointer to receive ring structure
4497 * @cleaned_count: number of buffers to allocate this pass
4498 **/
4499static void
4500e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
4501 struct e1000_rx_ring *rx_ring, int cleaned_count)
4502{
4503 struct pci_dev *pdev = adapter->pdev;
4504 struct e1000_rx_desc *rx_desc;
4505 struct e1000_rx_buffer *buffer_info;
4506 unsigned int i;
4507
4508 i = rx_ring->next_to_use;
4509 buffer_info = &rx_ring->buffer_info[i];
4510
4511 while (cleaned_count--) {
4512 /* allocate a new page if necessary */
4513 if (!buffer_info->rxbuf.page) {
4514 buffer_info->rxbuf.page = alloc_page(GFP_ATOMIC);
4515 if (unlikely(!buffer_info->rxbuf.page)) {
4516 adapter->alloc_rx_buff_failed++;
4517 break;
4518 }
4519 }
4520
4521 if (!buffer_info->dma) {
4522 buffer_info->dma = dma_map_page(&pdev->dev,
4523 buffer_info->rxbuf.page, 0,
4524 adapter->rx_buffer_len,
4525 DMA_FROM_DEVICE);
4526 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4527 put_page(buffer_info->rxbuf.page);
4528 buffer_info->rxbuf.page = NULL;
4529 buffer_info->dma = 0;
4530 adapter->alloc_rx_buff_failed++;
4531 break;
4532 }
4533 }
4534
4535 rx_desc = E1000_RX_DESC(*rx_ring, i);
4536 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4537
4538 if (unlikely(++i == rx_ring->count))
4539 i = 0;
4540 buffer_info = &rx_ring->buffer_info[i];
4541 }
4542
4543 if (likely(rx_ring->next_to_use != i)) {
4544 rx_ring->next_to_use = i;
4545 if (unlikely(i-- == 0))
4546 i = (rx_ring->count - 1);
4547
4548 /* Force memory writes to complete before letting h/w
4549 * know there are new descriptors to fetch. (Only
4550 * applicable for weak-ordered memory model archs,
4551 * such as IA-64).
4552 */
4553 dma_wmb();
4554 writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4555 }
4556}
4557
4558/**
4559 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4560 * @adapter: address of board private structure
4561 * @rx_ring: pointer to ring struct
4562 * @cleaned_count: number of new Rx buffers to try to allocate
4563 **/
4564static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4565 struct e1000_rx_ring *rx_ring,
4566 int cleaned_count)
4567{
4568 struct e1000_hw *hw = &adapter->hw;
4569 struct pci_dev *pdev = adapter->pdev;
4570 struct e1000_rx_desc *rx_desc;
4571 struct e1000_rx_buffer *buffer_info;
4572 unsigned int i;
4573 unsigned int bufsz = adapter->rx_buffer_len;
4574
4575 i = rx_ring->next_to_use;
4576 buffer_info = &rx_ring->buffer_info[i];
4577
4578 while (cleaned_count--) {
4579 void *data;
4580
4581 if (buffer_info->rxbuf.data)
4582 goto skip;
4583
4584 data = e1000_alloc_frag(adapter);
4585 if (!data) {
4586 /* Better luck next round */
4587 adapter->alloc_rx_buff_failed++;
4588 break;
4589 }
4590
4591 /* Fix for errata 23, can't cross 64kB boundary */
4592 if (!e1000_check_64k_bound(adapter, data, bufsz)) {
4593 void *olddata = data;
4594 e_err(rx_err, "skb align check failed: %u bytes at "
4595 "%p\n", bufsz, data);
4596 /* Try again, without freeing the previous */
4597 data = e1000_alloc_frag(adapter);
4598 /* Failed allocation, critical failure */
4599 if (!data) {
4600 skb_free_frag(olddata);
4601 adapter->alloc_rx_buff_failed++;
4602 break;
4603 }
4604
4605 if (!e1000_check_64k_bound(adapter, data, bufsz)) {
4606 /* give up */
4607 skb_free_frag(data);
4608 skb_free_frag(olddata);
4609 adapter->alloc_rx_buff_failed++;
4610 break;
4611 }
4612
4613 /* Use new allocation */
4614 skb_free_frag(olddata);
4615 }
4616 buffer_info->dma = dma_map_single(&pdev->dev,
4617 data,
4618 adapter->rx_buffer_len,
4619 DMA_FROM_DEVICE);
4620 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4621 skb_free_frag(data);
4622 buffer_info->dma = 0;
4623 adapter->alloc_rx_buff_failed++;
4624 break;
4625 }
4626
4627 /* XXX if it was allocated cleanly it will never map to a
4628 * boundary crossing
4629 */
4630
4631 /* Fix for errata 23, can't cross 64kB boundary */
4632 if (!e1000_check_64k_bound(adapter,
4633 (void *)(unsigned long)buffer_info->dma,
4634 adapter->rx_buffer_len)) {
4635 e_err(rx_err, "dma align check failed: %u bytes at "
4636 "%p\n", adapter->rx_buffer_len,
4637 (void *)(unsigned long)buffer_info->dma);
4638
4639 dma_unmap_single(&pdev->dev, buffer_info->dma,
4640 adapter->rx_buffer_len,
4641 DMA_FROM_DEVICE);
4642
4643 skb_free_frag(data);
4644 buffer_info->rxbuf.data = NULL;
4645 buffer_info->dma = 0;
4646
4647 adapter->alloc_rx_buff_failed++;
4648 break;
4649 }
4650 buffer_info->rxbuf.data = data;
4651 skip:
4652 rx_desc = E1000_RX_DESC(*rx_ring, i);
4653 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4654
4655 if (unlikely(++i == rx_ring->count))
4656 i = 0;
4657 buffer_info = &rx_ring->buffer_info[i];
4658 }
4659
4660 if (likely(rx_ring->next_to_use != i)) {
4661 rx_ring->next_to_use = i;
4662 if (unlikely(i-- == 0))
4663 i = (rx_ring->count - 1);
4664
4665 /* Force memory writes to complete before letting h/w
4666 * know there are new descriptors to fetch. (Only
4667 * applicable for weak-ordered memory model archs,
4668 * such as IA-64).
4669 */
4670 dma_wmb();
4671 writel(i, hw->hw_addr + rx_ring->rdt);
4672 }
4673}
4674
4675/**
4676 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4677 * @adapter: address of board private structure
4678 **/
4679static void e1000_smartspeed(struct e1000_adapter *adapter)
4680{
4681 struct e1000_hw *hw = &adapter->hw;
4682 u16 phy_status;
4683 u16 phy_ctrl;
4684
4685 if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg ||
4686 !(hw->autoneg_advertised & ADVERTISE_1000_FULL))
4687 return;
4688
4689 if (adapter->smartspeed == 0) {
4690 /* If Master/Slave config fault is asserted twice,
4691 * we assume back-to-back
4692 */
4693 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4694 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
4695 return;
4696 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4697 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
4698 return;
4699 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4700 if (phy_ctrl & CR_1000T_MS_ENABLE) {
4701 phy_ctrl &= ~CR_1000T_MS_ENABLE;
4702 e1000_write_phy_reg(hw, PHY_1000T_CTRL,
4703 phy_ctrl);
4704 adapter->smartspeed++;
4705 if (!e1000_phy_setup_autoneg(hw) &&
4706 !e1000_read_phy_reg(hw, PHY_CTRL,
4707 &phy_ctrl)) {
4708 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4709 MII_CR_RESTART_AUTO_NEG);
4710 e1000_write_phy_reg(hw, PHY_CTRL,
4711 phy_ctrl);
4712 }
4713 }
4714 return;
4715 } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4716 /* If still no link, perhaps using 2/3 pair cable */
4717 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4718 phy_ctrl |= CR_1000T_MS_ENABLE;
4719 e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
4720 if (!e1000_phy_setup_autoneg(hw) &&
4721 !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) {
4722 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4723 MII_CR_RESTART_AUTO_NEG);
4724 e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl);
4725 }
4726 }
4727 /* Restart process after E1000_SMARTSPEED_MAX iterations */
4728 if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4729 adapter->smartspeed = 0;
4730}
4731
4732/**
4733 * e1000_ioctl - handle ioctl calls
4734 * @netdev: pointer to our netdev
4735 * @ifr: pointer to interface request structure
4736 * @cmd: ioctl data
4737 **/
4738static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4739{
4740 switch (cmd) {
4741 case SIOCGMIIPHY:
4742 case SIOCGMIIREG:
4743 case SIOCSMIIREG:
4744 return e1000_mii_ioctl(netdev, ifr, cmd);
4745 default:
4746 return -EOPNOTSUPP;
4747 }
4748}
4749
4750/**
4751 * e1000_mii_ioctl -
4752 * @netdev: pointer to our netdev
4753 * @ifr: pointer to interface request structure
4754 * @cmd: ioctl data
4755 **/
4756static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4757 int cmd)
4758{
4759 struct e1000_adapter *adapter = netdev_priv(netdev);
4760 struct e1000_hw *hw = &adapter->hw;
4761 struct mii_ioctl_data *data = if_mii(ifr);
4762 int retval;
4763 u16 mii_reg;
4764 unsigned long flags;
4765
4766 if (hw->media_type != e1000_media_type_copper)
4767 return -EOPNOTSUPP;
4768
4769 switch (cmd) {
4770 case SIOCGMIIPHY:
4771 data->phy_id = hw->phy_addr;
4772 break;
4773 case SIOCGMIIREG:
4774 spin_lock_irqsave(&adapter->stats_lock, flags);
4775 if (e1000_read_phy_reg(hw, data->reg_num & 0x1F,
4776 &data->val_out)) {
4777 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4778 return -EIO;
4779 }
4780 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4781 break;
4782 case SIOCSMIIREG:
4783 if (data->reg_num & ~(0x1F))
4784 return -EFAULT;
4785 mii_reg = data->val_in;
4786 spin_lock_irqsave(&adapter->stats_lock, flags);
4787 if (e1000_write_phy_reg(hw, data->reg_num,
4788 mii_reg)) {
4789 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4790 return -EIO;
4791 }
4792 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4793 if (hw->media_type == e1000_media_type_copper) {
4794 switch (data->reg_num) {
4795 case PHY_CTRL:
4796 if (mii_reg & MII_CR_POWER_DOWN)
4797 break;
4798 if (mii_reg & MII_CR_AUTO_NEG_EN) {
4799 hw->autoneg = 1;
4800 hw->autoneg_advertised = 0x2F;
4801 } else {
4802 u32 speed;
4803 if (mii_reg & 0x40)
4804 speed = SPEED_1000;
4805 else if (mii_reg & 0x2000)
4806 speed = SPEED_100;
4807 else
4808 speed = SPEED_10;
4809 retval = e1000_set_spd_dplx(
4810 adapter, speed,
4811 ((mii_reg & 0x100)
4812 ? DUPLEX_FULL :
4813 DUPLEX_HALF));
4814 if (retval)
4815 return retval;
4816 }
4817 if (netif_running(adapter->netdev))
4818 e1000_reinit_locked(adapter);
4819 else
4820 e1000_reset(adapter);
4821 break;
4822 case M88E1000_PHY_SPEC_CTRL:
4823 case M88E1000_EXT_PHY_SPEC_CTRL:
4824 if (e1000_phy_reset(hw))
4825 return -EIO;
4826 break;
4827 }
4828 } else {
4829 switch (data->reg_num) {
4830 case PHY_CTRL:
4831 if (mii_reg & MII_CR_POWER_DOWN)
4832 break;
4833 if (netif_running(adapter->netdev))
4834 e1000_reinit_locked(adapter);
4835 else
4836 e1000_reset(adapter);
4837 break;
4838 }
4839 }
4840 break;
4841 default:
4842 return -EOPNOTSUPP;
4843 }
4844 return E1000_SUCCESS;
4845}
4846
4847void e1000_pci_set_mwi(struct e1000_hw *hw)
4848{
4849 struct e1000_adapter *adapter = hw->back;
4850 int ret_val = pci_set_mwi(adapter->pdev);
4851
4852 if (ret_val)
4853 e_err(probe, "Error in setting MWI\n");
4854}
4855
4856void e1000_pci_clear_mwi(struct e1000_hw *hw)
4857{
4858 struct e1000_adapter *adapter = hw->back;
4859
4860 pci_clear_mwi(adapter->pdev);
4861}
4862
4863int e1000_pcix_get_mmrbc(struct e1000_hw *hw)
4864{
4865 struct e1000_adapter *adapter = hw->back;
4866 return pcix_get_mmrbc(adapter->pdev);
4867}
4868
4869void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
4870{
4871 struct e1000_adapter *adapter = hw->back;
4872 pcix_set_mmrbc(adapter->pdev, mmrbc);
4873}
4874
4875void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value)
4876{
4877 outl(value, port);
4878}
4879
4880static bool e1000_vlan_used(struct e1000_adapter *adapter)
4881{
4882 u16 vid;
4883
4884 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
4885 return true;
4886 return false;
4887}
4888
4889static void __e1000_vlan_mode(struct e1000_adapter *adapter,
4890 netdev_features_t features)
4891{
4892 struct e1000_hw *hw = &adapter->hw;
4893 u32 ctrl;
4894
4895 ctrl = er32(CTRL);
4896 if (features & NETIF_F_HW_VLAN_CTAG_RX) {
4897 /* enable VLAN tag insert/strip */
4898 ctrl |= E1000_CTRL_VME;
4899 } else {
4900 /* disable VLAN tag insert/strip */
4901 ctrl &= ~E1000_CTRL_VME;
4902 }
4903 ew32(CTRL, ctrl);
4904}
4905static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
4906 bool filter_on)
4907{
4908 struct e1000_hw *hw = &adapter->hw;
4909 u32 rctl;
4910
4911 if (!test_bit(__E1000_DOWN, &adapter->flags))
4912 e1000_irq_disable(adapter);
4913
4914 __e1000_vlan_mode(adapter, adapter->netdev->features);
4915 if (filter_on) {
4916 /* enable VLAN receive filtering */
4917 rctl = er32(RCTL);
4918 rctl &= ~E1000_RCTL_CFIEN;
4919 if (!(adapter->netdev->flags & IFF_PROMISC))
4920 rctl |= E1000_RCTL_VFE;
4921 ew32(RCTL, rctl);
4922 e1000_update_mng_vlan(adapter);
4923 } else {
4924 /* disable VLAN receive filtering */
4925 rctl = er32(RCTL);
4926 rctl &= ~E1000_RCTL_VFE;
4927 ew32(RCTL, rctl);
4928 }
4929
4930 if (!test_bit(__E1000_DOWN, &adapter->flags))
4931 e1000_irq_enable(adapter);
4932}
4933
4934static void e1000_vlan_mode(struct net_device *netdev,
4935 netdev_features_t features)
4936{
4937 struct e1000_adapter *adapter = netdev_priv(netdev);
4938
4939 if (!test_bit(__E1000_DOWN, &adapter->flags))
4940 e1000_irq_disable(adapter);
4941
4942 __e1000_vlan_mode(adapter, features);
4943
4944 if (!test_bit(__E1000_DOWN, &adapter->flags))
4945 e1000_irq_enable(adapter);
4946}
4947
4948static int e1000_vlan_rx_add_vid(struct net_device *netdev,
4949 __be16 proto, u16 vid)
4950{
4951 struct e1000_adapter *adapter = netdev_priv(netdev);
4952 struct e1000_hw *hw = &adapter->hw;
4953 u32 vfta, index;
4954
4955 if ((hw->mng_cookie.status &
4956 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4957 (vid == adapter->mng_vlan_id))
4958 return 0;
4959
4960 if (!e1000_vlan_used(adapter))
4961 e1000_vlan_filter_on_off(adapter, true);
4962
4963 /* add VID to filter table */
4964 index = (vid >> 5) & 0x7F;
4965 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4966 vfta |= (1 << (vid & 0x1F));
4967 e1000_write_vfta(hw, index, vfta);
4968
4969 set_bit(vid, adapter->active_vlans);
4970
4971 return 0;
4972}
4973
4974static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
4975 __be16 proto, u16 vid)
4976{
4977 struct e1000_adapter *adapter = netdev_priv(netdev);
4978 struct e1000_hw *hw = &adapter->hw;
4979 u32 vfta, index;
4980
4981 if (!test_bit(__E1000_DOWN, &adapter->flags))
4982 e1000_irq_disable(adapter);
4983 if (!test_bit(__E1000_DOWN, &adapter->flags))
4984 e1000_irq_enable(adapter);
4985
4986 /* remove VID from filter table */
4987 index = (vid >> 5) & 0x7F;
4988 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4989 vfta &= ~(1 << (vid & 0x1F));
4990 e1000_write_vfta(hw, index, vfta);
4991
4992 clear_bit(vid, adapter->active_vlans);
4993
4994 if (!e1000_vlan_used(adapter))
4995 e1000_vlan_filter_on_off(adapter, false);
4996
4997 return 0;
4998}
4999
5000static void e1000_restore_vlan(struct e1000_adapter *adapter)
5001{
5002 u16 vid;
5003
5004 if (!e1000_vlan_used(adapter))
5005 return;
5006
5007 e1000_vlan_filter_on_off(adapter, true);
5008 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
5009 e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
5010}
5011
5012int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
5013{
5014 struct e1000_hw *hw = &adapter->hw;
5015
5016 hw->autoneg = 0;
5017
5018 /* Make sure dplx is at most 1 bit and lsb of speed is not set
5019 * for the switch() below to work
5020 */
5021 if ((spd & 1) || (dplx & ~1))
5022 goto err_inval;
5023
5024 /* Fiber NICs only allow 1000 gbps Full duplex */
5025 if ((hw->media_type == e1000_media_type_fiber) &&
5026 spd != SPEED_1000 &&
5027 dplx != DUPLEX_FULL)
5028 goto err_inval;
5029
5030 switch (spd + dplx) {
5031 case SPEED_10 + DUPLEX_HALF:
5032 hw->forced_speed_duplex = e1000_10_half;
5033 break;
5034 case SPEED_10 + DUPLEX_FULL:
5035 hw->forced_speed_duplex = e1000_10_full;
5036 break;
5037 case SPEED_100 + DUPLEX_HALF:
5038 hw->forced_speed_duplex = e1000_100_half;
5039 break;
5040 case SPEED_100 + DUPLEX_FULL:
5041 hw->forced_speed_duplex = e1000_100_full;
5042 break;
5043 case SPEED_1000 + DUPLEX_FULL:
5044 hw->autoneg = 1;
5045 hw->autoneg_advertised = ADVERTISE_1000_FULL;
5046 break;
5047 case SPEED_1000 + DUPLEX_HALF: /* not supported */
5048 default:
5049 goto err_inval;
5050 }
5051
5052 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
5053 hw->mdix = AUTO_ALL_MODES;
5054
5055 return 0;
5056
5057err_inval:
5058 e_err(probe, "Unsupported Speed/Duplex configuration\n");
5059 return -EINVAL;
5060}
5061
5062static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake)
5063{
5064 struct net_device *netdev = pci_get_drvdata(pdev);
5065 struct e1000_adapter *adapter = netdev_priv(netdev);
5066 struct e1000_hw *hw = &adapter->hw;
5067 u32 ctrl, ctrl_ext, rctl, status;
5068 u32 wufc = adapter->wol;
5069
5070 netif_device_detach(netdev);
5071
5072 if (netif_running(netdev)) {
5073 int count = E1000_CHECK_RESET_COUNT;
5074
5075 while (test_bit(__E1000_RESETTING, &adapter->flags) && count--)
5076 usleep_range(10000, 20000);
5077
5078 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
5079 rtnl_lock();
5080 e1000_down(adapter);
5081 rtnl_unlock();
5082 }
5083
5084 status = er32(STATUS);
5085 if (status & E1000_STATUS_LU)
5086 wufc &= ~E1000_WUFC_LNKC;
5087
5088 if (wufc) {
5089 e1000_setup_rctl(adapter);
5090 e1000_set_rx_mode(netdev);
5091
5092 rctl = er32(RCTL);
5093
5094 /* turn on all-multi mode if wake on multicast is enabled */
5095 if (wufc & E1000_WUFC_MC)
5096 rctl |= E1000_RCTL_MPE;
5097
5098 /* enable receives in the hardware */
5099 ew32(RCTL, rctl | E1000_RCTL_EN);
5100
5101 if (hw->mac_type >= e1000_82540) {
5102 ctrl = er32(CTRL);
5103 /* advertise wake from D3Cold */
5104 #define E1000_CTRL_ADVD3WUC 0x00100000
5105 /* phy power management enable */
5106 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5107 ctrl |= E1000_CTRL_ADVD3WUC |
5108 E1000_CTRL_EN_PHY_PWR_MGMT;
5109 ew32(CTRL, ctrl);
5110 }
5111
5112 if (hw->media_type == e1000_media_type_fiber ||
5113 hw->media_type == e1000_media_type_internal_serdes) {
5114 /* keep the laser running in D3 */
5115 ctrl_ext = er32(CTRL_EXT);
5116 ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
5117 ew32(CTRL_EXT, ctrl_ext);
5118 }
5119
5120 ew32(WUC, E1000_WUC_PME_EN);
5121 ew32(WUFC, wufc);
5122 } else {
5123 ew32(WUC, 0);
5124 ew32(WUFC, 0);
5125 }
5126
5127 e1000_release_manageability(adapter);
5128
5129 *enable_wake = !!wufc;
5130
5131 /* make sure adapter isn't asleep if manageability is enabled */
5132 if (adapter->en_mng_pt)
5133 *enable_wake = true;
5134
5135 if (netif_running(netdev))
5136 e1000_free_irq(adapter);
5137
5138 if (!test_and_set_bit(__E1000_DISABLED, &adapter->flags))
5139 pci_disable_device(pdev);
5140
5141 return 0;
5142}
5143
5144static int e1000_suspend(struct device *dev)
5145{
5146 int retval;
5147 struct pci_dev *pdev = to_pci_dev(dev);
5148 bool wake;
5149
5150 retval = __e1000_shutdown(pdev, &wake);
5151 device_set_wakeup_enable(dev, wake);
5152
5153 return retval;
5154}
5155
5156static int e1000_resume(struct device *dev)
5157{
5158 struct pci_dev *pdev = to_pci_dev(dev);
5159 struct net_device *netdev = pci_get_drvdata(pdev);
5160 struct e1000_adapter *adapter = netdev_priv(netdev);
5161 struct e1000_hw *hw = &adapter->hw;
5162 u32 err;
5163
5164 if (adapter->need_ioport)
5165 err = pci_enable_device(pdev);
5166 else
5167 err = pci_enable_device_mem(pdev);
5168 if (err) {
5169 pr_err("Cannot enable PCI device from suspend\n");
5170 return err;
5171 }
5172
5173 /* flush memory to make sure state is correct */
5174 smp_mb__before_atomic();
5175 clear_bit(__E1000_DISABLED, &adapter->flags);
5176 pci_set_master(pdev);
5177
5178 pci_enable_wake(pdev, PCI_D3hot, 0);
5179 pci_enable_wake(pdev, PCI_D3cold, 0);
5180
5181 if (netif_running(netdev)) {
5182 err = e1000_request_irq(adapter);
5183 if (err)
5184 return err;
5185 }
5186
5187 e1000_power_up_phy(adapter);
5188 e1000_reset(adapter);
5189 ew32(WUS, ~0);
5190
5191 e1000_init_manageability(adapter);
5192
5193 if (netif_running(netdev))
5194 e1000_up(adapter);
5195
5196 netif_device_attach(netdev);
5197
5198 return 0;
5199}
5200
5201static void e1000_shutdown(struct pci_dev *pdev)
5202{
5203 bool wake;
5204
5205 __e1000_shutdown(pdev, &wake);
5206
5207 if (system_state == SYSTEM_POWER_OFF) {
5208 pci_wake_from_d3(pdev, wake);
5209 pci_set_power_state(pdev, PCI_D3hot);
5210 }
5211}
5212
5213#ifdef CONFIG_NET_POLL_CONTROLLER
5214/* Polling 'interrupt' - used by things like netconsole to send skbs
5215 * without having to re-enable interrupts. It's not called while
5216 * the interrupt routine is executing.
5217 */
5218static void e1000_netpoll(struct net_device *netdev)
5219{
5220 struct e1000_adapter *adapter = netdev_priv(netdev);
5221
5222 if (disable_hardirq(adapter->pdev->irq))
5223 e1000_intr(adapter->pdev->irq, netdev);
5224 enable_irq(adapter->pdev->irq);
5225}
5226#endif
5227
5228/**
5229 * e1000_io_error_detected - called when PCI error is detected
5230 * @pdev: Pointer to PCI device
5231 * @state: The current pci connection state
5232 *
5233 * This function is called after a PCI bus error affecting
5234 * this device has been detected.
5235 */
5236static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
5237 pci_channel_state_t state)
5238{
5239 struct net_device *netdev = pci_get_drvdata(pdev);
5240 struct e1000_adapter *adapter = netdev_priv(netdev);
5241
5242 rtnl_lock();
5243 netif_device_detach(netdev);
5244
5245 if (state == pci_channel_io_perm_failure) {
5246 rtnl_unlock();
5247 return PCI_ERS_RESULT_DISCONNECT;
5248 }
5249
5250 if (netif_running(netdev))
5251 e1000_down(adapter);
5252
5253 if (!test_and_set_bit(__E1000_DISABLED, &adapter->flags))
5254 pci_disable_device(pdev);
5255 rtnl_unlock();
5256
5257 /* Request a slot reset. */
5258 return PCI_ERS_RESULT_NEED_RESET;
5259}
5260
5261/**
5262 * e1000_io_slot_reset - called after the pci bus has been reset.
5263 * @pdev: Pointer to PCI device
5264 *
5265 * Restart the card from scratch, as if from a cold-boot. Implementation
5266 * resembles the first-half of the e1000_resume routine.
5267 */
5268static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
5269{
5270 struct net_device *netdev = pci_get_drvdata(pdev);
5271 struct e1000_adapter *adapter = netdev_priv(netdev);
5272 struct e1000_hw *hw = &adapter->hw;
5273 int err;
5274
5275 if (adapter->need_ioport)
5276 err = pci_enable_device(pdev);
5277 else
5278 err = pci_enable_device_mem(pdev);
5279 if (err) {
5280 pr_err("Cannot re-enable PCI device after reset.\n");
5281 return PCI_ERS_RESULT_DISCONNECT;
5282 }
5283
5284 /* flush memory to make sure state is correct */
5285 smp_mb__before_atomic();
5286 clear_bit(__E1000_DISABLED, &adapter->flags);
5287 pci_set_master(pdev);
5288
5289 pci_enable_wake(pdev, PCI_D3hot, 0);
5290 pci_enable_wake(pdev, PCI_D3cold, 0);
5291
5292 e1000_reset(adapter);
5293 ew32(WUS, ~0);
5294
5295 return PCI_ERS_RESULT_RECOVERED;
5296}
5297
5298/**
5299 * e1000_io_resume - called when traffic can start flowing again.
5300 * @pdev: Pointer to PCI device
5301 *
5302 * This callback is called when the error recovery driver tells us that
5303 * its OK to resume normal operation. Implementation resembles the
5304 * second-half of the e1000_resume routine.
5305 */
5306static void e1000_io_resume(struct pci_dev *pdev)
5307{
5308 struct net_device *netdev = pci_get_drvdata(pdev);
5309 struct e1000_adapter *adapter = netdev_priv(netdev);
5310
5311 e1000_init_manageability(adapter);
5312
5313 if (netif_running(netdev)) {
5314 if (e1000_up(adapter)) {
5315 pr_info("can't bring device back up after reset\n");
5316 return;
5317 }
5318 }
5319
5320 netif_device_attach(netdev);
5321}
5322
5323/* e1000_main.c */