Loading...
1/*******************************************************************************
2
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2006 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27*******************************************************************************/
28
29#include "e1000.h"
30#include <net/ip6_checksum.h>
31#include <linux/io.h>
32#include <linux/prefetch.h>
33#include <linux/bitops.h>
34#include <linux/if_vlan.h>
35
36char e1000_driver_name[] = "e1000";
37static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
38#define DRV_VERSION "7.3.21-k8-NAPI"
39const char e1000_driver_version[] = DRV_VERSION;
40static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
41
42/* e1000_pci_tbl - PCI Device ID Table
43 *
44 * Last entry must be all 0s
45 *
46 * Macro expands to...
47 * {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
48 */
49static const struct pci_device_id e1000_pci_tbl[] = {
50 INTEL_E1000_ETHERNET_DEVICE(0x1000),
51 INTEL_E1000_ETHERNET_DEVICE(0x1001),
52 INTEL_E1000_ETHERNET_DEVICE(0x1004),
53 INTEL_E1000_ETHERNET_DEVICE(0x1008),
54 INTEL_E1000_ETHERNET_DEVICE(0x1009),
55 INTEL_E1000_ETHERNET_DEVICE(0x100C),
56 INTEL_E1000_ETHERNET_DEVICE(0x100D),
57 INTEL_E1000_ETHERNET_DEVICE(0x100E),
58 INTEL_E1000_ETHERNET_DEVICE(0x100F),
59 INTEL_E1000_ETHERNET_DEVICE(0x1010),
60 INTEL_E1000_ETHERNET_DEVICE(0x1011),
61 INTEL_E1000_ETHERNET_DEVICE(0x1012),
62 INTEL_E1000_ETHERNET_DEVICE(0x1013),
63 INTEL_E1000_ETHERNET_DEVICE(0x1014),
64 INTEL_E1000_ETHERNET_DEVICE(0x1015),
65 INTEL_E1000_ETHERNET_DEVICE(0x1016),
66 INTEL_E1000_ETHERNET_DEVICE(0x1017),
67 INTEL_E1000_ETHERNET_DEVICE(0x1018),
68 INTEL_E1000_ETHERNET_DEVICE(0x1019),
69 INTEL_E1000_ETHERNET_DEVICE(0x101A),
70 INTEL_E1000_ETHERNET_DEVICE(0x101D),
71 INTEL_E1000_ETHERNET_DEVICE(0x101E),
72 INTEL_E1000_ETHERNET_DEVICE(0x1026),
73 INTEL_E1000_ETHERNET_DEVICE(0x1027),
74 INTEL_E1000_ETHERNET_DEVICE(0x1028),
75 INTEL_E1000_ETHERNET_DEVICE(0x1075),
76 INTEL_E1000_ETHERNET_DEVICE(0x1076),
77 INTEL_E1000_ETHERNET_DEVICE(0x1077),
78 INTEL_E1000_ETHERNET_DEVICE(0x1078),
79 INTEL_E1000_ETHERNET_DEVICE(0x1079),
80 INTEL_E1000_ETHERNET_DEVICE(0x107A),
81 INTEL_E1000_ETHERNET_DEVICE(0x107B),
82 INTEL_E1000_ETHERNET_DEVICE(0x107C),
83 INTEL_E1000_ETHERNET_DEVICE(0x108A),
84 INTEL_E1000_ETHERNET_DEVICE(0x1099),
85 INTEL_E1000_ETHERNET_DEVICE(0x10B5),
86 INTEL_E1000_ETHERNET_DEVICE(0x2E6E),
87 /* required last entry */
88 {0,}
89};
90
91MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
92
93int e1000_up(struct e1000_adapter *adapter);
94void e1000_down(struct e1000_adapter *adapter);
95void e1000_reinit_locked(struct e1000_adapter *adapter);
96void e1000_reset(struct e1000_adapter *adapter);
97int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
98int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
99void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
100void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
101static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
102 struct e1000_tx_ring *txdr);
103static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
104 struct e1000_rx_ring *rxdr);
105static void e1000_free_tx_resources(struct e1000_adapter *adapter,
106 struct e1000_tx_ring *tx_ring);
107static void e1000_free_rx_resources(struct e1000_adapter *adapter,
108 struct e1000_rx_ring *rx_ring);
109void e1000_update_stats(struct e1000_adapter *adapter);
110
111static int e1000_init_module(void);
112static void e1000_exit_module(void);
113static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
114static void e1000_remove(struct pci_dev *pdev);
115static int e1000_alloc_queues(struct e1000_adapter *adapter);
116static int e1000_sw_init(struct e1000_adapter *adapter);
117static int e1000_open(struct net_device *netdev);
118static int e1000_close(struct net_device *netdev);
119static void e1000_configure_tx(struct e1000_adapter *adapter);
120static void e1000_configure_rx(struct e1000_adapter *adapter);
121static void e1000_setup_rctl(struct e1000_adapter *adapter);
122static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
123static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
124static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
125 struct e1000_tx_ring *tx_ring);
126static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
127 struct e1000_rx_ring *rx_ring);
128static void e1000_set_rx_mode(struct net_device *netdev);
129static void e1000_update_phy_info_task(struct work_struct *work);
130static void e1000_watchdog(struct work_struct *work);
131static void e1000_82547_tx_fifo_stall_task(struct work_struct *work);
132static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
133 struct net_device *netdev);
134static struct net_device_stats *e1000_get_stats(struct net_device *netdev);
135static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
136static int e1000_set_mac(struct net_device *netdev, void *p);
137static irqreturn_t e1000_intr(int irq, void *data);
138static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
139 struct e1000_tx_ring *tx_ring);
140static int e1000_clean(struct napi_struct *napi, int budget);
141static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
142 struct e1000_rx_ring *rx_ring,
143 int *work_done, int work_to_do);
144static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
145 struct e1000_rx_ring *rx_ring,
146 int *work_done, int work_to_do);
147static void e1000_alloc_dummy_rx_buffers(struct e1000_adapter *adapter,
148 struct e1000_rx_ring *rx_ring,
149 int cleaned_count)
150{
151}
152static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
153 struct e1000_rx_ring *rx_ring,
154 int cleaned_count);
155static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
156 struct e1000_rx_ring *rx_ring,
157 int cleaned_count);
158static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
159static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
160 int cmd);
161static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
162static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
163static void e1000_tx_timeout(struct net_device *dev);
164static void e1000_reset_task(struct work_struct *work);
165static void e1000_smartspeed(struct e1000_adapter *adapter);
166static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
167 struct sk_buff *skb);
168
169static bool e1000_vlan_used(struct e1000_adapter *adapter);
170static void e1000_vlan_mode(struct net_device *netdev,
171 netdev_features_t features);
172static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
173 bool filter_on);
174static int e1000_vlan_rx_add_vid(struct net_device *netdev,
175 __be16 proto, u16 vid);
176static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
177 __be16 proto, u16 vid);
178static void e1000_restore_vlan(struct e1000_adapter *adapter);
179
180#ifdef CONFIG_PM
181static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
182static int e1000_resume(struct pci_dev *pdev);
183#endif
184static void e1000_shutdown(struct pci_dev *pdev);
185
186#ifdef CONFIG_NET_POLL_CONTROLLER
187/* for netdump / net console */
188static void e1000_netpoll (struct net_device *netdev);
189#endif
190
191#define COPYBREAK_DEFAULT 256
192static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
193module_param(copybreak, uint, 0644);
194MODULE_PARM_DESC(copybreak,
195 "Maximum size of packet that is copied to a new buffer on receive");
196
197static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
198 pci_channel_state_t state);
199static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
200static void e1000_io_resume(struct pci_dev *pdev);
201
202static const struct pci_error_handlers e1000_err_handler = {
203 .error_detected = e1000_io_error_detected,
204 .slot_reset = e1000_io_slot_reset,
205 .resume = e1000_io_resume,
206};
207
208static struct pci_driver e1000_driver = {
209 .name = e1000_driver_name,
210 .id_table = e1000_pci_tbl,
211 .probe = e1000_probe,
212 .remove = e1000_remove,
213#ifdef CONFIG_PM
214 /* Power Management Hooks */
215 .suspend = e1000_suspend,
216 .resume = e1000_resume,
217#endif
218 .shutdown = e1000_shutdown,
219 .err_handler = &e1000_err_handler
220};
221
222MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
223MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
224MODULE_LICENSE("GPL");
225MODULE_VERSION(DRV_VERSION);
226
227#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
228static int debug = -1;
229module_param(debug, int, 0);
230MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
231
232/**
233 * e1000_get_hw_dev - return device
234 * used by hardware layer to print debugging information
235 *
236 **/
237struct net_device *e1000_get_hw_dev(struct e1000_hw *hw)
238{
239 struct e1000_adapter *adapter = hw->back;
240 return adapter->netdev;
241}
242
243/**
244 * e1000_init_module - Driver Registration Routine
245 *
246 * e1000_init_module is the first routine called when the driver is
247 * loaded. All it does is register with the PCI subsystem.
248 **/
249static int __init e1000_init_module(void)
250{
251 int ret;
252 pr_info("%s - version %s\n", e1000_driver_string, e1000_driver_version);
253
254 pr_info("%s\n", e1000_copyright);
255
256 ret = pci_register_driver(&e1000_driver);
257 if (copybreak != COPYBREAK_DEFAULT) {
258 if (copybreak == 0)
259 pr_info("copybreak disabled\n");
260 else
261 pr_info("copybreak enabled for "
262 "packets <= %u bytes\n", copybreak);
263 }
264 return ret;
265}
266
267module_init(e1000_init_module);
268
269/**
270 * e1000_exit_module - Driver Exit Cleanup Routine
271 *
272 * e1000_exit_module is called just before the driver is removed
273 * from memory.
274 **/
275static void __exit e1000_exit_module(void)
276{
277 pci_unregister_driver(&e1000_driver);
278}
279
280module_exit(e1000_exit_module);
281
282static int e1000_request_irq(struct e1000_adapter *adapter)
283{
284 struct net_device *netdev = adapter->netdev;
285 irq_handler_t handler = e1000_intr;
286 int irq_flags = IRQF_SHARED;
287 int err;
288
289 err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
290 netdev);
291 if (err) {
292 e_err(probe, "Unable to allocate interrupt Error: %d\n", err);
293 }
294
295 return err;
296}
297
298static void e1000_free_irq(struct e1000_adapter *adapter)
299{
300 struct net_device *netdev = adapter->netdev;
301
302 free_irq(adapter->pdev->irq, netdev);
303}
304
305/**
306 * e1000_irq_disable - Mask off interrupt generation on the NIC
307 * @adapter: board private structure
308 **/
309static void e1000_irq_disable(struct e1000_adapter *adapter)
310{
311 struct e1000_hw *hw = &adapter->hw;
312
313 ew32(IMC, ~0);
314 E1000_WRITE_FLUSH();
315 synchronize_irq(adapter->pdev->irq);
316}
317
318/**
319 * e1000_irq_enable - Enable default interrupt generation settings
320 * @adapter: board private structure
321 **/
322static void e1000_irq_enable(struct e1000_adapter *adapter)
323{
324 struct e1000_hw *hw = &adapter->hw;
325
326 ew32(IMS, IMS_ENABLE_MASK);
327 E1000_WRITE_FLUSH();
328}
329
330static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
331{
332 struct e1000_hw *hw = &adapter->hw;
333 struct net_device *netdev = adapter->netdev;
334 u16 vid = hw->mng_cookie.vlan_id;
335 u16 old_vid = adapter->mng_vlan_id;
336
337 if (!e1000_vlan_used(adapter))
338 return;
339
340 if (!test_bit(vid, adapter->active_vlans)) {
341 if (hw->mng_cookie.status &
342 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
343 e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
344 adapter->mng_vlan_id = vid;
345 } else {
346 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
347 }
348 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
349 (vid != old_vid) &&
350 !test_bit(old_vid, adapter->active_vlans))
351 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
352 old_vid);
353 } else {
354 adapter->mng_vlan_id = vid;
355 }
356}
357
358static void e1000_init_manageability(struct e1000_adapter *adapter)
359{
360 struct e1000_hw *hw = &adapter->hw;
361
362 if (adapter->en_mng_pt) {
363 u32 manc = er32(MANC);
364
365 /* disable hardware interception of ARP */
366 manc &= ~(E1000_MANC_ARP_EN);
367
368 ew32(MANC, manc);
369 }
370}
371
372static void e1000_release_manageability(struct e1000_adapter *adapter)
373{
374 struct e1000_hw *hw = &adapter->hw;
375
376 if (adapter->en_mng_pt) {
377 u32 manc = er32(MANC);
378
379 /* re-enable hardware interception of ARP */
380 manc |= E1000_MANC_ARP_EN;
381
382 ew32(MANC, manc);
383 }
384}
385
386/**
387 * e1000_configure - configure the hardware for RX and TX
388 * @adapter = private board structure
389 **/
390static void e1000_configure(struct e1000_adapter *adapter)
391{
392 struct net_device *netdev = adapter->netdev;
393 int i;
394
395 e1000_set_rx_mode(netdev);
396
397 e1000_restore_vlan(adapter);
398 e1000_init_manageability(adapter);
399
400 e1000_configure_tx(adapter);
401 e1000_setup_rctl(adapter);
402 e1000_configure_rx(adapter);
403 /* call E1000_DESC_UNUSED which always leaves
404 * at least 1 descriptor unused to make sure
405 * next_to_use != next_to_clean
406 */
407 for (i = 0; i < adapter->num_rx_queues; i++) {
408 struct e1000_rx_ring *ring = &adapter->rx_ring[i];
409 adapter->alloc_rx_buf(adapter, ring,
410 E1000_DESC_UNUSED(ring));
411 }
412}
413
414int e1000_up(struct e1000_adapter *adapter)
415{
416 struct e1000_hw *hw = &adapter->hw;
417
418 /* hardware has been reset, we need to reload some things */
419 e1000_configure(adapter);
420
421 clear_bit(__E1000_DOWN, &adapter->flags);
422
423 napi_enable(&adapter->napi);
424
425 e1000_irq_enable(adapter);
426
427 netif_wake_queue(adapter->netdev);
428
429 /* fire a link change interrupt to start the watchdog */
430 ew32(ICS, E1000_ICS_LSC);
431 return 0;
432}
433
434/**
435 * e1000_power_up_phy - restore link in case the phy was powered down
436 * @adapter: address of board private structure
437 *
438 * The phy may be powered down to save power and turn off link when the
439 * driver is unloaded and wake on lan is not enabled (among others)
440 * *** this routine MUST be followed by a call to e1000_reset ***
441 **/
442void e1000_power_up_phy(struct e1000_adapter *adapter)
443{
444 struct e1000_hw *hw = &adapter->hw;
445 u16 mii_reg = 0;
446
447 /* Just clear the power down bit to wake the phy back up */
448 if (hw->media_type == e1000_media_type_copper) {
449 /* according to the manual, the phy will retain its
450 * settings across a power-down/up cycle
451 */
452 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
453 mii_reg &= ~MII_CR_POWER_DOWN;
454 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
455 }
456}
457
458static void e1000_power_down_phy(struct e1000_adapter *adapter)
459{
460 struct e1000_hw *hw = &adapter->hw;
461
462 /* Power down the PHY so no link is implied when interface is down *
463 * The PHY cannot be powered down if any of the following is true *
464 * (a) WoL is enabled
465 * (b) AMT is active
466 * (c) SoL/IDER session is active
467 */
468 if (!adapter->wol && hw->mac_type >= e1000_82540 &&
469 hw->media_type == e1000_media_type_copper) {
470 u16 mii_reg = 0;
471
472 switch (hw->mac_type) {
473 case e1000_82540:
474 case e1000_82545:
475 case e1000_82545_rev_3:
476 case e1000_82546:
477 case e1000_ce4100:
478 case e1000_82546_rev_3:
479 case e1000_82541:
480 case e1000_82541_rev_2:
481 case e1000_82547:
482 case e1000_82547_rev_2:
483 if (er32(MANC) & E1000_MANC_SMBUS_EN)
484 goto out;
485 break;
486 default:
487 goto out;
488 }
489 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
490 mii_reg |= MII_CR_POWER_DOWN;
491 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
492 msleep(1);
493 }
494out:
495 return;
496}
497
498static void e1000_down_and_stop(struct e1000_adapter *adapter)
499{
500 set_bit(__E1000_DOWN, &adapter->flags);
501
502 cancel_delayed_work_sync(&adapter->watchdog_task);
503
504 /*
505 * Since the watchdog task can reschedule other tasks, we should cancel
506 * it first, otherwise we can run into the situation when a work is
507 * still running after the adapter has been turned down.
508 */
509
510 cancel_delayed_work_sync(&adapter->phy_info_task);
511 cancel_delayed_work_sync(&adapter->fifo_stall_task);
512
513 /* Only kill reset task if adapter is not resetting */
514 if (!test_bit(__E1000_RESETTING, &adapter->flags))
515 cancel_work_sync(&adapter->reset_task);
516}
517
518void e1000_down(struct e1000_adapter *adapter)
519{
520 struct e1000_hw *hw = &adapter->hw;
521 struct net_device *netdev = adapter->netdev;
522 u32 rctl, tctl;
523
524 netif_carrier_off(netdev);
525
526 /* disable receives in the hardware */
527 rctl = er32(RCTL);
528 ew32(RCTL, rctl & ~E1000_RCTL_EN);
529 /* flush and sleep below */
530
531 netif_tx_disable(netdev);
532
533 /* disable transmits in the hardware */
534 tctl = er32(TCTL);
535 tctl &= ~E1000_TCTL_EN;
536 ew32(TCTL, tctl);
537 /* flush both disables and wait for them to finish */
538 E1000_WRITE_FLUSH();
539 msleep(10);
540
541 napi_disable(&adapter->napi);
542
543 e1000_irq_disable(adapter);
544
545 /* Setting DOWN must be after irq_disable to prevent
546 * a screaming interrupt. Setting DOWN also prevents
547 * tasks from rescheduling.
548 */
549 e1000_down_and_stop(adapter);
550
551 adapter->link_speed = 0;
552 adapter->link_duplex = 0;
553
554 e1000_reset(adapter);
555 e1000_clean_all_tx_rings(adapter);
556 e1000_clean_all_rx_rings(adapter);
557}
558
559void e1000_reinit_locked(struct e1000_adapter *adapter)
560{
561 WARN_ON(in_interrupt());
562 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
563 msleep(1);
564 e1000_down(adapter);
565 e1000_up(adapter);
566 clear_bit(__E1000_RESETTING, &adapter->flags);
567}
568
569void e1000_reset(struct e1000_adapter *adapter)
570{
571 struct e1000_hw *hw = &adapter->hw;
572 u32 pba = 0, tx_space, min_tx_space, min_rx_space;
573 bool legacy_pba_adjust = false;
574 u16 hwm;
575
576 /* Repartition Pba for greater than 9k mtu
577 * To take effect CTRL.RST is required.
578 */
579
580 switch (hw->mac_type) {
581 case e1000_82542_rev2_0:
582 case e1000_82542_rev2_1:
583 case e1000_82543:
584 case e1000_82544:
585 case e1000_82540:
586 case e1000_82541:
587 case e1000_82541_rev_2:
588 legacy_pba_adjust = true;
589 pba = E1000_PBA_48K;
590 break;
591 case e1000_82545:
592 case e1000_82545_rev_3:
593 case e1000_82546:
594 case e1000_ce4100:
595 case e1000_82546_rev_3:
596 pba = E1000_PBA_48K;
597 break;
598 case e1000_82547:
599 case e1000_82547_rev_2:
600 legacy_pba_adjust = true;
601 pba = E1000_PBA_30K;
602 break;
603 case e1000_undefined:
604 case e1000_num_macs:
605 break;
606 }
607
608 if (legacy_pba_adjust) {
609 if (hw->max_frame_size > E1000_RXBUFFER_8192)
610 pba -= 8; /* allocate more FIFO for Tx */
611
612 if (hw->mac_type == e1000_82547) {
613 adapter->tx_fifo_head = 0;
614 adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
615 adapter->tx_fifo_size =
616 (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
617 atomic_set(&adapter->tx_fifo_stall, 0);
618 }
619 } else if (hw->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
620 /* adjust PBA for jumbo frames */
621 ew32(PBA, pba);
622
623 /* To maintain wire speed transmits, the Tx FIFO should be
624 * large enough to accommodate two full transmit packets,
625 * rounded up to the next 1KB and expressed in KB. Likewise,
626 * the Rx FIFO should be large enough to accommodate at least
627 * one full receive packet and is similarly rounded up and
628 * expressed in KB.
629 */
630 pba = er32(PBA);
631 /* upper 16 bits has Tx packet buffer allocation size in KB */
632 tx_space = pba >> 16;
633 /* lower 16 bits has Rx packet buffer allocation size in KB */
634 pba &= 0xffff;
635 /* the Tx fifo also stores 16 bytes of information about the Tx
636 * but don't include ethernet FCS because hardware appends it
637 */
638 min_tx_space = (hw->max_frame_size +
639 sizeof(struct e1000_tx_desc) -
640 ETH_FCS_LEN) * 2;
641 min_tx_space = ALIGN(min_tx_space, 1024);
642 min_tx_space >>= 10;
643 /* software strips receive CRC, so leave room for it */
644 min_rx_space = hw->max_frame_size;
645 min_rx_space = ALIGN(min_rx_space, 1024);
646 min_rx_space >>= 10;
647
648 /* If current Tx allocation is less than the min Tx FIFO size,
649 * and the min Tx FIFO size is less than the current Rx FIFO
650 * allocation, take space away from current Rx allocation
651 */
652 if (tx_space < min_tx_space &&
653 ((min_tx_space - tx_space) < pba)) {
654 pba = pba - (min_tx_space - tx_space);
655
656 /* PCI/PCIx hardware has PBA alignment constraints */
657 switch (hw->mac_type) {
658 case e1000_82545 ... e1000_82546_rev_3:
659 pba &= ~(E1000_PBA_8K - 1);
660 break;
661 default:
662 break;
663 }
664
665 /* if short on Rx space, Rx wins and must trump Tx
666 * adjustment or use Early Receive if available
667 */
668 if (pba < min_rx_space)
669 pba = min_rx_space;
670 }
671 }
672
673 ew32(PBA, pba);
674
675 /* flow control settings:
676 * The high water mark must be low enough to fit one full frame
677 * (or the size used for early receive) above it in the Rx FIFO.
678 * Set it to the lower of:
679 * - 90% of the Rx FIFO size, and
680 * - the full Rx FIFO size minus the early receive size (for parts
681 * with ERT support assuming ERT set to E1000_ERT_2048), or
682 * - the full Rx FIFO size minus one full frame
683 */
684 hwm = min(((pba << 10) * 9 / 10),
685 ((pba << 10) - hw->max_frame_size));
686
687 hw->fc_high_water = hwm & 0xFFF8; /* 8-byte granularity */
688 hw->fc_low_water = hw->fc_high_water - 8;
689 hw->fc_pause_time = E1000_FC_PAUSE_TIME;
690 hw->fc_send_xon = 1;
691 hw->fc = hw->original_fc;
692
693 /* Allow time for pending master requests to run */
694 e1000_reset_hw(hw);
695 if (hw->mac_type >= e1000_82544)
696 ew32(WUC, 0);
697
698 if (e1000_init_hw(hw))
699 e_dev_err("Hardware Error\n");
700 e1000_update_mng_vlan(adapter);
701
702 /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
703 if (hw->mac_type >= e1000_82544 &&
704 hw->autoneg == 1 &&
705 hw->autoneg_advertised == ADVERTISE_1000_FULL) {
706 u32 ctrl = er32(CTRL);
707 /* clear phy power management bit if we are in gig only mode,
708 * which if enabled will attempt negotiation to 100Mb, which
709 * can cause a loss of link at power off or driver unload
710 */
711 ctrl &= ~E1000_CTRL_SWDPIN3;
712 ew32(CTRL, ctrl);
713 }
714
715 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
716 ew32(VET, ETHERNET_IEEE_VLAN_TYPE);
717
718 e1000_reset_adaptive(hw);
719 e1000_phy_get_info(hw, &adapter->phy_info);
720
721 e1000_release_manageability(adapter);
722}
723
724/* Dump the eeprom for users having checksum issues */
725static void e1000_dump_eeprom(struct e1000_adapter *adapter)
726{
727 struct net_device *netdev = adapter->netdev;
728 struct ethtool_eeprom eeprom;
729 const struct ethtool_ops *ops = netdev->ethtool_ops;
730 u8 *data;
731 int i;
732 u16 csum_old, csum_new = 0;
733
734 eeprom.len = ops->get_eeprom_len(netdev);
735 eeprom.offset = 0;
736
737 data = kmalloc(eeprom.len, GFP_KERNEL);
738 if (!data)
739 return;
740
741 ops->get_eeprom(netdev, &eeprom, data);
742
743 csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
744 (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
745 for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
746 csum_new += data[i] + (data[i + 1] << 8);
747 csum_new = EEPROM_SUM - csum_new;
748
749 pr_err("/*********************/\n");
750 pr_err("Current EEPROM Checksum : 0x%04x\n", csum_old);
751 pr_err("Calculated : 0x%04x\n", csum_new);
752
753 pr_err("Offset Values\n");
754 pr_err("======== ======\n");
755 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0);
756
757 pr_err("Include this output when contacting your support provider.\n");
758 pr_err("This is not a software error! Something bad happened to\n");
759 pr_err("your hardware or EEPROM image. Ignoring this problem could\n");
760 pr_err("result in further problems, possibly loss of data,\n");
761 pr_err("corruption or system hangs!\n");
762 pr_err("The MAC Address will be reset to 00:00:00:00:00:00,\n");
763 pr_err("which is invalid and requires you to set the proper MAC\n");
764 pr_err("address manually before continuing to enable this network\n");
765 pr_err("device. Please inspect the EEPROM dump and report the\n");
766 pr_err("issue to your hardware vendor or Intel Customer Support.\n");
767 pr_err("/*********************/\n");
768
769 kfree(data);
770}
771
772/**
773 * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
774 * @pdev: PCI device information struct
775 *
776 * Return true if an adapter needs ioport resources
777 **/
778static int e1000_is_need_ioport(struct pci_dev *pdev)
779{
780 switch (pdev->device) {
781 case E1000_DEV_ID_82540EM:
782 case E1000_DEV_ID_82540EM_LOM:
783 case E1000_DEV_ID_82540EP:
784 case E1000_DEV_ID_82540EP_LOM:
785 case E1000_DEV_ID_82540EP_LP:
786 case E1000_DEV_ID_82541EI:
787 case E1000_DEV_ID_82541EI_MOBILE:
788 case E1000_DEV_ID_82541ER:
789 case E1000_DEV_ID_82541ER_LOM:
790 case E1000_DEV_ID_82541GI:
791 case E1000_DEV_ID_82541GI_LF:
792 case E1000_DEV_ID_82541GI_MOBILE:
793 case E1000_DEV_ID_82544EI_COPPER:
794 case E1000_DEV_ID_82544EI_FIBER:
795 case E1000_DEV_ID_82544GC_COPPER:
796 case E1000_DEV_ID_82544GC_LOM:
797 case E1000_DEV_ID_82545EM_COPPER:
798 case E1000_DEV_ID_82545EM_FIBER:
799 case E1000_DEV_ID_82546EB_COPPER:
800 case E1000_DEV_ID_82546EB_FIBER:
801 case E1000_DEV_ID_82546EB_QUAD_COPPER:
802 return true;
803 default:
804 return false;
805 }
806}
807
808static netdev_features_t e1000_fix_features(struct net_device *netdev,
809 netdev_features_t features)
810{
811 /* Since there is no support for separate Rx/Tx vlan accel
812 * enable/disable make sure Tx flag is always in same state as Rx.
813 */
814 if (features & NETIF_F_HW_VLAN_CTAG_RX)
815 features |= NETIF_F_HW_VLAN_CTAG_TX;
816 else
817 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
818
819 return features;
820}
821
822static int e1000_set_features(struct net_device *netdev,
823 netdev_features_t features)
824{
825 struct e1000_adapter *adapter = netdev_priv(netdev);
826 netdev_features_t changed = features ^ netdev->features;
827
828 if (changed & NETIF_F_HW_VLAN_CTAG_RX)
829 e1000_vlan_mode(netdev, features);
830
831 if (!(changed & (NETIF_F_RXCSUM | NETIF_F_RXALL)))
832 return 0;
833
834 netdev->features = features;
835 adapter->rx_csum = !!(features & NETIF_F_RXCSUM);
836
837 if (netif_running(netdev))
838 e1000_reinit_locked(adapter);
839 else
840 e1000_reset(adapter);
841
842 return 0;
843}
844
845static const struct net_device_ops e1000_netdev_ops = {
846 .ndo_open = e1000_open,
847 .ndo_stop = e1000_close,
848 .ndo_start_xmit = e1000_xmit_frame,
849 .ndo_get_stats = e1000_get_stats,
850 .ndo_set_rx_mode = e1000_set_rx_mode,
851 .ndo_set_mac_address = e1000_set_mac,
852 .ndo_tx_timeout = e1000_tx_timeout,
853 .ndo_change_mtu = e1000_change_mtu,
854 .ndo_do_ioctl = e1000_ioctl,
855 .ndo_validate_addr = eth_validate_addr,
856 .ndo_vlan_rx_add_vid = e1000_vlan_rx_add_vid,
857 .ndo_vlan_rx_kill_vid = e1000_vlan_rx_kill_vid,
858#ifdef CONFIG_NET_POLL_CONTROLLER
859 .ndo_poll_controller = e1000_netpoll,
860#endif
861 .ndo_fix_features = e1000_fix_features,
862 .ndo_set_features = e1000_set_features,
863};
864
865/**
866 * e1000_init_hw_struct - initialize members of hw struct
867 * @adapter: board private struct
868 * @hw: structure used by e1000_hw.c
869 *
870 * Factors out initialization of the e1000_hw struct to its own function
871 * that can be called very early at init (just after struct allocation).
872 * Fields are initialized based on PCI device information and
873 * OS network device settings (MTU size).
874 * Returns negative error codes if MAC type setup fails.
875 */
876static int e1000_init_hw_struct(struct e1000_adapter *adapter,
877 struct e1000_hw *hw)
878{
879 struct pci_dev *pdev = adapter->pdev;
880
881 /* PCI config space info */
882 hw->vendor_id = pdev->vendor;
883 hw->device_id = pdev->device;
884 hw->subsystem_vendor_id = pdev->subsystem_vendor;
885 hw->subsystem_id = pdev->subsystem_device;
886 hw->revision_id = pdev->revision;
887
888 pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
889
890 hw->max_frame_size = adapter->netdev->mtu +
891 ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
892 hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
893
894 /* identify the MAC */
895 if (e1000_set_mac_type(hw)) {
896 e_err(probe, "Unknown MAC Type\n");
897 return -EIO;
898 }
899
900 switch (hw->mac_type) {
901 default:
902 break;
903 case e1000_82541:
904 case e1000_82547:
905 case e1000_82541_rev_2:
906 case e1000_82547_rev_2:
907 hw->phy_init_script = 1;
908 break;
909 }
910
911 e1000_set_media_type(hw);
912 e1000_get_bus_info(hw);
913
914 hw->wait_autoneg_complete = false;
915 hw->tbi_compatibility_en = true;
916 hw->adaptive_ifs = true;
917
918 /* Copper options */
919
920 if (hw->media_type == e1000_media_type_copper) {
921 hw->mdix = AUTO_ALL_MODES;
922 hw->disable_polarity_correction = false;
923 hw->master_slave = E1000_MASTER_SLAVE;
924 }
925
926 return 0;
927}
928
929/**
930 * e1000_probe - Device Initialization Routine
931 * @pdev: PCI device information struct
932 * @ent: entry in e1000_pci_tbl
933 *
934 * Returns 0 on success, negative on failure
935 *
936 * e1000_probe initializes an adapter identified by a pci_dev structure.
937 * The OS initialization, configuring of the adapter private structure,
938 * and a hardware reset occur.
939 **/
940static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
941{
942 struct net_device *netdev;
943 struct e1000_adapter *adapter;
944 struct e1000_hw *hw;
945
946 static int cards_found;
947 static int global_quad_port_a; /* global ksp3 port a indication */
948 int i, err, pci_using_dac;
949 u16 eeprom_data = 0;
950 u16 tmp = 0;
951 u16 eeprom_apme_mask = E1000_EEPROM_APME;
952 int bars, need_ioport;
953
954 /* do not allocate ioport bars when not needed */
955 need_ioport = e1000_is_need_ioport(pdev);
956 if (need_ioport) {
957 bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
958 err = pci_enable_device(pdev);
959 } else {
960 bars = pci_select_bars(pdev, IORESOURCE_MEM);
961 err = pci_enable_device_mem(pdev);
962 }
963 if (err)
964 return err;
965
966 err = pci_request_selected_regions(pdev, bars, e1000_driver_name);
967 if (err)
968 goto err_pci_reg;
969
970 pci_set_master(pdev);
971 err = pci_save_state(pdev);
972 if (err)
973 goto err_alloc_etherdev;
974
975 err = -ENOMEM;
976 netdev = alloc_etherdev(sizeof(struct e1000_adapter));
977 if (!netdev)
978 goto err_alloc_etherdev;
979
980 SET_NETDEV_DEV(netdev, &pdev->dev);
981
982 pci_set_drvdata(pdev, netdev);
983 adapter = netdev_priv(netdev);
984 adapter->netdev = netdev;
985 adapter->pdev = pdev;
986 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
987 adapter->bars = bars;
988 adapter->need_ioport = need_ioport;
989
990 hw = &adapter->hw;
991 hw->back = adapter;
992
993 err = -EIO;
994 hw->hw_addr = pci_ioremap_bar(pdev, BAR_0);
995 if (!hw->hw_addr)
996 goto err_ioremap;
997
998 if (adapter->need_ioport) {
999 for (i = BAR_1; i <= BAR_5; i++) {
1000 if (pci_resource_len(pdev, i) == 0)
1001 continue;
1002 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
1003 hw->io_base = pci_resource_start(pdev, i);
1004 break;
1005 }
1006 }
1007 }
1008
1009 /* make ready for any if (hw->...) below */
1010 err = e1000_init_hw_struct(adapter, hw);
1011 if (err)
1012 goto err_sw_init;
1013
1014 /* there is a workaround being applied below that limits
1015 * 64-bit DMA addresses to 64-bit hardware. There are some
1016 * 32-bit adapters that Tx hang when given 64-bit DMA addresses
1017 */
1018 pci_using_dac = 0;
1019 if ((hw->bus_type == e1000_bus_type_pcix) &&
1020 !dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) {
1021 pci_using_dac = 1;
1022 } else {
1023 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1024 if (err) {
1025 pr_err("No usable DMA config, aborting\n");
1026 goto err_dma;
1027 }
1028 }
1029
1030 netdev->netdev_ops = &e1000_netdev_ops;
1031 e1000_set_ethtool_ops(netdev);
1032 netdev->watchdog_timeo = 5 * HZ;
1033 netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
1034
1035 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1036
1037 adapter->bd_number = cards_found;
1038
1039 /* setup the private structure */
1040
1041 err = e1000_sw_init(adapter);
1042 if (err)
1043 goto err_sw_init;
1044
1045 err = -EIO;
1046 if (hw->mac_type == e1000_ce4100) {
1047 hw->ce4100_gbe_mdio_base_virt =
1048 ioremap(pci_resource_start(pdev, BAR_1),
1049 pci_resource_len(pdev, BAR_1));
1050
1051 if (!hw->ce4100_gbe_mdio_base_virt)
1052 goto err_mdio_ioremap;
1053 }
1054
1055 if (hw->mac_type >= e1000_82543) {
1056 netdev->hw_features = NETIF_F_SG |
1057 NETIF_F_HW_CSUM |
1058 NETIF_F_HW_VLAN_CTAG_RX;
1059 netdev->features = NETIF_F_HW_VLAN_CTAG_TX |
1060 NETIF_F_HW_VLAN_CTAG_FILTER;
1061 }
1062
1063 if ((hw->mac_type >= e1000_82544) &&
1064 (hw->mac_type != e1000_82547))
1065 netdev->hw_features |= NETIF_F_TSO;
1066
1067 netdev->priv_flags |= IFF_SUPP_NOFCS;
1068
1069 netdev->features |= netdev->hw_features;
1070 netdev->hw_features |= (NETIF_F_RXCSUM |
1071 NETIF_F_RXALL |
1072 NETIF_F_RXFCS);
1073
1074 if (pci_using_dac) {
1075 netdev->features |= NETIF_F_HIGHDMA;
1076 netdev->vlan_features |= NETIF_F_HIGHDMA;
1077 }
1078
1079 netdev->vlan_features |= (NETIF_F_TSO |
1080 NETIF_F_HW_CSUM |
1081 NETIF_F_SG);
1082
1083 /* Do not set IFF_UNICAST_FLT for VMWare's 82545EM */
1084 if (hw->device_id != E1000_DEV_ID_82545EM_COPPER ||
1085 hw->subsystem_vendor_id != PCI_VENDOR_ID_VMWARE)
1086 netdev->priv_flags |= IFF_UNICAST_FLT;
1087
1088 adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
1089
1090 /* initialize eeprom parameters */
1091 if (e1000_init_eeprom_params(hw)) {
1092 e_err(probe, "EEPROM initialization failed\n");
1093 goto err_eeprom;
1094 }
1095
1096 /* before reading the EEPROM, reset the controller to
1097 * put the device in a known good starting state
1098 */
1099
1100 e1000_reset_hw(hw);
1101
1102 /* make sure the EEPROM is good */
1103 if (e1000_validate_eeprom_checksum(hw) < 0) {
1104 e_err(probe, "The EEPROM Checksum Is Not Valid\n");
1105 e1000_dump_eeprom(adapter);
1106 /* set MAC address to all zeroes to invalidate and temporary
1107 * disable this device for the user. This blocks regular
1108 * traffic while still permitting ethtool ioctls from reaching
1109 * the hardware as well as allowing the user to run the
1110 * interface after manually setting a hw addr using
1111 * `ip set address`
1112 */
1113 memset(hw->mac_addr, 0, netdev->addr_len);
1114 } else {
1115 /* copy the MAC address out of the EEPROM */
1116 if (e1000_read_mac_addr(hw))
1117 e_err(probe, "EEPROM Read Error\n");
1118 }
1119 /* don't block initialization here due to bad MAC address */
1120 memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len);
1121
1122 if (!is_valid_ether_addr(netdev->dev_addr))
1123 e_err(probe, "Invalid MAC Address\n");
1124
1125
1126 INIT_DELAYED_WORK(&adapter->watchdog_task, e1000_watchdog);
1127 INIT_DELAYED_WORK(&adapter->fifo_stall_task,
1128 e1000_82547_tx_fifo_stall_task);
1129 INIT_DELAYED_WORK(&adapter->phy_info_task, e1000_update_phy_info_task);
1130 INIT_WORK(&adapter->reset_task, e1000_reset_task);
1131
1132 e1000_check_options(adapter);
1133
1134 /* Initial Wake on LAN setting
1135 * If APM wake is enabled in the EEPROM,
1136 * enable the ACPI Magic Packet filter
1137 */
1138
1139 switch (hw->mac_type) {
1140 case e1000_82542_rev2_0:
1141 case e1000_82542_rev2_1:
1142 case e1000_82543:
1143 break;
1144 case e1000_82544:
1145 e1000_read_eeprom(hw,
1146 EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1147 eeprom_apme_mask = E1000_EEPROM_82544_APM;
1148 break;
1149 case e1000_82546:
1150 case e1000_82546_rev_3:
1151 if (er32(STATUS) & E1000_STATUS_FUNC_1) {
1152 e1000_read_eeprom(hw,
1153 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1154 break;
1155 }
1156 /* Fall Through */
1157 default:
1158 e1000_read_eeprom(hw,
1159 EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1160 break;
1161 }
1162 if (eeprom_data & eeprom_apme_mask)
1163 adapter->eeprom_wol |= E1000_WUFC_MAG;
1164
1165 /* now that we have the eeprom settings, apply the special cases
1166 * where the eeprom may be wrong or the board simply won't support
1167 * wake on lan on a particular port
1168 */
1169 switch (pdev->device) {
1170 case E1000_DEV_ID_82546GB_PCIE:
1171 adapter->eeprom_wol = 0;
1172 break;
1173 case E1000_DEV_ID_82546EB_FIBER:
1174 case E1000_DEV_ID_82546GB_FIBER:
1175 /* Wake events only supported on port A for dual fiber
1176 * regardless of eeprom setting
1177 */
1178 if (er32(STATUS) & E1000_STATUS_FUNC_1)
1179 adapter->eeprom_wol = 0;
1180 break;
1181 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1182 /* if quad port adapter, disable WoL on all but port A */
1183 if (global_quad_port_a != 0)
1184 adapter->eeprom_wol = 0;
1185 else
1186 adapter->quad_port_a = true;
1187 /* Reset for multiple quad port adapters */
1188 if (++global_quad_port_a == 4)
1189 global_quad_port_a = 0;
1190 break;
1191 }
1192
1193 /* initialize the wol settings based on the eeprom settings */
1194 adapter->wol = adapter->eeprom_wol;
1195 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1196
1197 /* Auto detect PHY address */
1198 if (hw->mac_type == e1000_ce4100) {
1199 for (i = 0; i < 32; i++) {
1200 hw->phy_addr = i;
1201 e1000_read_phy_reg(hw, PHY_ID2, &tmp);
1202
1203 if (tmp != 0 && tmp != 0xFF)
1204 break;
1205 }
1206
1207 if (i >= 32)
1208 goto err_eeprom;
1209 }
1210
1211 /* reset the hardware with the new settings */
1212 e1000_reset(adapter);
1213
1214 strcpy(netdev->name, "eth%d");
1215 err = register_netdev(netdev);
1216 if (err)
1217 goto err_register;
1218
1219 e1000_vlan_filter_on_off(adapter, false);
1220
1221 /* print bus type/speed/width info */
1222 e_info(probe, "(PCI%s:%dMHz:%d-bit) %pM\n",
1223 ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : ""),
1224 ((hw->bus_speed == e1000_bus_speed_133) ? 133 :
1225 (hw->bus_speed == e1000_bus_speed_120) ? 120 :
1226 (hw->bus_speed == e1000_bus_speed_100) ? 100 :
1227 (hw->bus_speed == e1000_bus_speed_66) ? 66 : 33),
1228 ((hw->bus_width == e1000_bus_width_64) ? 64 : 32),
1229 netdev->dev_addr);
1230
1231 /* carrier off reporting is important to ethtool even BEFORE open */
1232 netif_carrier_off(netdev);
1233
1234 e_info(probe, "Intel(R) PRO/1000 Network Connection\n");
1235
1236 cards_found++;
1237 return 0;
1238
1239err_register:
1240err_eeprom:
1241 e1000_phy_hw_reset(hw);
1242
1243 if (hw->flash_address)
1244 iounmap(hw->flash_address);
1245 kfree(adapter->tx_ring);
1246 kfree(adapter->rx_ring);
1247err_dma:
1248err_sw_init:
1249err_mdio_ioremap:
1250 iounmap(hw->ce4100_gbe_mdio_base_virt);
1251 iounmap(hw->hw_addr);
1252err_ioremap:
1253 free_netdev(netdev);
1254err_alloc_etherdev:
1255 pci_release_selected_regions(pdev, bars);
1256err_pci_reg:
1257 pci_disable_device(pdev);
1258 return err;
1259}
1260
1261/**
1262 * e1000_remove - Device Removal Routine
1263 * @pdev: PCI device information struct
1264 *
1265 * e1000_remove is called by the PCI subsystem to alert the driver
1266 * that it should release a PCI device. That could be caused by a
1267 * Hot-Plug event, or because the driver is going to be removed from
1268 * memory.
1269 **/
1270static void e1000_remove(struct pci_dev *pdev)
1271{
1272 struct net_device *netdev = pci_get_drvdata(pdev);
1273 struct e1000_adapter *adapter = netdev_priv(netdev);
1274 struct e1000_hw *hw = &adapter->hw;
1275
1276 e1000_down_and_stop(adapter);
1277 e1000_release_manageability(adapter);
1278
1279 unregister_netdev(netdev);
1280
1281 e1000_phy_hw_reset(hw);
1282
1283 kfree(adapter->tx_ring);
1284 kfree(adapter->rx_ring);
1285
1286 if (hw->mac_type == e1000_ce4100)
1287 iounmap(hw->ce4100_gbe_mdio_base_virt);
1288 iounmap(hw->hw_addr);
1289 if (hw->flash_address)
1290 iounmap(hw->flash_address);
1291 pci_release_selected_regions(pdev, adapter->bars);
1292
1293 free_netdev(netdev);
1294
1295 pci_disable_device(pdev);
1296}
1297
1298/**
1299 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1300 * @adapter: board private structure to initialize
1301 *
1302 * e1000_sw_init initializes the Adapter private data structure.
1303 * e1000_init_hw_struct MUST be called before this function
1304 **/
1305static int e1000_sw_init(struct e1000_adapter *adapter)
1306{
1307 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1308
1309 adapter->num_tx_queues = 1;
1310 adapter->num_rx_queues = 1;
1311
1312 if (e1000_alloc_queues(adapter)) {
1313 e_err(probe, "Unable to allocate memory for queues\n");
1314 return -ENOMEM;
1315 }
1316
1317 /* Explicitly disable IRQ since the NIC can be in any state. */
1318 e1000_irq_disable(adapter);
1319
1320 spin_lock_init(&adapter->stats_lock);
1321
1322 set_bit(__E1000_DOWN, &adapter->flags);
1323
1324 return 0;
1325}
1326
1327/**
1328 * e1000_alloc_queues - Allocate memory for all rings
1329 * @adapter: board private structure to initialize
1330 *
1331 * We allocate one ring per queue at run-time since we don't know the
1332 * number of queues at compile-time.
1333 **/
1334static int e1000_alloc_queues(struct e1000_adapter *adapter)
1335{
1336 adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1337 sizeof(struct e1000_tx_ring), GFP_KERNEL);
1338 if (!adapter->tx_ring)
1339 return -ENOMEM;
1340
1341 adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1342 sizeof(struct e1000_rx_ring), GFP_KERNEL);
1343 if (!adapter->rx_ring) {
1344 kfree(adapter->tx_ring);
1345 return -ENOMEM;
1346 }
1347
1348 return E1000_SUCCESS;
1349}
1350
1351/**
1352 * e1000_open - Called when a network interface is made active
1353 * @netdev: network interface device structure
1354 *
1355 * Returns 0 on success, negative value on failure
1356 *
1357 * The open entry point is called when a network interface is made
1358 * active by the system (IFF_UP). At this point all resources needed
1359 * for transmit and receive operations are allocated, the interrupt
1360 * handler is registered with the OS, the watchdog task is started,
1361 * and the stack is notified that the interface is ready.
1362 **/
1363static int e1000_open(struct net_device *netdev)
1364{
1365 struct e1000_adapter *adapter = netdev_priv(netdev);
1366 struct e1000_hw *hw = &adapter->hw;
1367 int err;
1368
1369 /* disallow open during test */
1370 if (test_bit(__E1000_TESTING, &adapter->flags))
1371 return -EBUSY;
1372
1373 netif_carrier_off(netdev);
1374
1375 /* allocate transmit descriptors */
1376 err = e1000_setup_all_tx_resources(adapter);
1377 if (err)
1378 goto err_setup_tx;
1379
1380 /* allocate receive descriptors */
1381 err = e1000_setup_all_rx_resources(adapter);
1382 if (err)
1383 goto err_setup_rx;
1384
1385 e1000_power_up_phy(adapter);
1386
1387 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1388 if ((hw->mng_cookie.status &
1389 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1390 e1000_update_mng_vlan(adapter);
1391 }
1392
1393 /* before we allocate an interrupt, we must be ready to handle it.
1394 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1395 * as soon as we call pci_request_irq, so we have to setup our
1396 * clean_rx handler before we do so.
1397 */
1398 e1000_configure(adapter);
1399
1400 err = e1000_request_irq(adapter);
1401 if (err)
1402 goto err_req_irq;
1403
1404 /* From here on the code is the same as e1000_up() */
1405 clear_bit(__E1000_DOWN, &adapter->flags);
1406
1407 napi_enable(&adapter->napi);
1408
1409 e1000_irq_enable(adapter);
1410
1411 netif_start_queue(netdev);
1412
1413 /* fire a link status change interrupt to start the watchdog */
1414 ew32(ICS, E1000_ICS_LSC);
1415
1416 return E1000_SUCCESS;
1417
1418err_req_irq:
1419 e1000_power_down_phy(adapter);
1420 e1000_free_all_rx_resources(adapter);
1421err_setup_rx:
1422 e1000_free_all_tx_resources(adapter);
1423err_setup_tx:
1424 e1000_reset(adapter);
1425
1426 return err;
1427}
1428
1429/**
1430 * e1000_close - Disables a network interface
1431 * @netdev: network interface device structure
1432 *
1433 * Returns 0, this is not allowed to fail
1434 *
1435 * The close entry point is called when an interface is de-activated
1436 * by the OS. The hardware is still under the drivers control, but
1437 * needs to be disabled. A global MAC reset is issued to stop the
1438 * hardware, and all transmit and receive resources are freed.
1439 **/
1440static int e1000_close(struct net_device *netdev)
1441{
1442 struct e1000_adapter *adapter = netdev_priv(netdev);
1443 struct e1000_hw *hw = &adapter->hw;
1444 int count = E1000_CHECK_RESET_COUNT;
1445
1446 while (test_bit(__E1000_RESETTING, &adapter->flags) && count--)
1447 usleep_range(10000, 20000);
1448
1449 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
1450 e1000_down(adapter);
1451 e1000_power_down_phy(adapter);
1452 e1000_free_irq(adapter);
1453
1454 e1000_free_all_tx_resources(adapter);
1455 e1000_free_all_rx_resources(adapter);
1456
1457 /* kill manageability vlan ID if supported, but not if a vlan with
1458 * the same ID is registered on the host OS (let 8021q kill it)
1459 */
1460 if ((hw->mng_cookie.status &
1461 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1462 !test_bit(adapter->mng_vlan_id, adapter->active_vlans)) {
1463 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
1464 adapter->mng_vlan_id);
1465 }
1466
1467 return 0;
1468}
1469
1470/**
1471 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1472 * @adapter: address of board private structure
1473 * @start: address of beginning of memory
1474 * @len: length of memory
1475 **/
1476static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start,
1477 unsigned long len)
1478{
1479 struct e1000_hw *hw = &adapter->hw;
1480 unsigned long begin = (unsigned long)start;
1481 unsigned long end = begin + len;
1482
1483 /* First rev 82545 and 82546 need to not allow any memory
1484 * write location to cross 64k boundary due to errata 23
1485 */
1486 if (hw->mac_type == e1000_82545 ||
1487 hw->mac_type == e1000_ce4100 ||
1488 hw->mac_type == e1000_82546) {
1489 return ((begin ^ (end - 1)) >> 16) != 0 ? false : true;
1490 }
1491
1492 return true;
1493}
1494
1495/**
1496 * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1497 * @adapter: board private structure
1498 * @txdr: tx descriptor ring (for a specific queue) to setup
1499 *
1500 * Return 0 on success, negative on failure
1501 **/
1502static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
1503 struct e1000_tx_ring *txdr)
1504{
1505 struct pci_dev *pdev = adapter->pdev;
1506 int size;
1507
1508 size = sizeof(struct e1000_tx_buffer) * txdr->count;
1509 txdr->buffer_info = vzalloc(size);
1510 if (!txdr->buffer_info)
1511 return -ENOMEM;
1512
1513 /* round up to nearest 4K */
1514
1515 txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1516 txdr->size = ALIGN(txdr->size, 4096);
1517
1518 txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
1519 GFP_KERNEL);
1520 if (!txdr->desc) {
1521setup_tx_desc_die:
1522 vfree(txdr->buffer_info);
1523 return -ENOMEM;
1524 }
1525
1526 /* Fix for errata 23, can't cross 64kB boundary */
1527 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1528 void *olddesc = txdr->desc;
1529 dma_addr_t olddma = txdr->dma;
1530 e_err(tx_err, "txdr align check failed: %u bytes at %p\n",
1531 txdr->size, txdr->desc);
1532 /* Try again, without freeing the previous */
1533 txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size,
1534 &txdr->dma, GFP_KERNEL);
1535 /* Failed allocation, critical failure */
1536 if (!txdr->desc) {
1537 dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1538 olddma);
1539 goto setup_tx_desc_die;
1540 }
1541
1542 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1543 /* give up */
1544 dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
1545 txdr->dma);
1546 dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1547 olddma);
1548 e_err(probe, "Unable to allocate aligned memory "
1549 "for the transmit descriptor ring\n");
1550 vfree(txdr->buffer_info);
1551 return -ENOMEM;
1552 } else {
1553 /* Free old allocation, new allocation was successful */
1554 dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1555 olddma);
1556 }
1557 }
1558 memset(txdr->desc, 0, txdr->size);
1559
1560 txdr->next_to_use = 0;
1561 txdr->next_to_clean = 0;
1562
1563 return 0;
1564}
1565
1566/**
1567 * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1568 * (Descriptors) for all queues
1569 * @adapter: board private structure
1570 *
1571 * Return 0 on success, negative on failure
1572 **/
1573int e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1574{
1575 int i, err = 0;
1576
1577 for (i = 0; i < adapter->num_tx_queues; i++) {
1578 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1579 if (err) {
1580 e_err(probe, "Allocation for Tx Queue %u failed\n", i);
1581 for (i-- ; i >= 0; i--)
1582 e1000_free_tx_resources(adapter,
1583 &adapter->tx_ring[i]);
1584 break;
1585 }
1586 }
1587
1588 return err;
1589}
1590
1591/**
1592 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1593 * @adapter: board private structure
1594 *
1595 * Configure the Tx unit of the MAC after a reset.
1596 **/
1597static void e1000_configure_tx(struct e1000_adapter *adapter)
1598{
1599 u64 tdba;
1600 struct e1000_hw *hw = &adapter->hw;
1601 u32 tdlen, tctl, tipg;
1602 u32 ipgr1, ipgr2;
1603
1604 /* Setup the HW Tx Head and Tail descriptor pointers */
1605
1606 switch (adapter->num_tx_queues) {
1607 case 1:
1608 default:
1609 tdba = adapter->tx_ring[0].dma;
1610 tdlen = adapter->tx_ring[0].count *
1611 sizeof(struct e1000_tx_desc);
1612 ew32(TDLEN, tdlen);
1613 ew32(TDBAH, (tdba >> 32));
1614 ew32(TDBAL, (tdba & 0x00000000ffffffffULL));
1615 ew32(TDT, 0);
1616 ew32(TDH, 0);
1617 adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ?
1618 E1000_TDH : E1000_82542_TDH);
1619 adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ?
1620 E1000_TDT : E1000_82542_TDT);
1621 break;
1622 }
1623
1624 /* Set the default values for the Tx Inter Packet Gap timer */
1625 if ((hw->media_type == e1000_media_type_fiber ||
1626 hw->media_type == e1000_media_type_internal_serdes))
1627 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1628 else
1629 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1630
1631 switch (hw->mac_type) {
1632 case e1000_82542_rev2_0:
1633 case e1000_82542_rev2_1:
1634 tipg = DEFAULT_82542_TIPG_IPGT;
1635 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1636 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1637 break;
1638 default:
1639 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1640 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1641 break;
1642 }
1643 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1644 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1645 ew32(TIPG, tipg);
1646
1647 /* Set the Tx Interrupt Delay register */
1648
1649 ew32(TIDV, adapter->tx_int_delay);
1650 if (hw->mac_type >= e1000_82540)
1651 ew32(TADV, adapter->tx_abs_int_delay);
1652
1653 /* Program the Transmit Control Register */
1654
1655 tctl = er32(TCTL);
1656 tctl &= ~E1000_TCTL_CT;
1657 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1658 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1659
1660 e1000_config_collision_dist(hw);
1661
1662 /* Setup Transmit Descriptor Settings for eop descriptor */
1663 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1664
1665 /* only set IDE if we are delaying interrupts using the timers */
1666 if (adapter->tx_int_delay)
1667 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1668
1669 if (hw->mac_type < e1000_82543)
1670 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1671 else
1672 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1673
1674 /* Cache if we're 82544 running in PCI-X because we'll
1675 * need this to apply a workaround later in the send path.
1676 */
1677 if (hw->mac_type == e1000_82544 &&
1678 hw->bus_type == e1000_bus_type_pcix)
1679 adapter->pcix_82544 = true;
1680
1681 ew32(TCTL, tctl);
1682
1683}
1684
1685/**
1686 * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1687 * @adapter: board private structure
1688 * @rxdr: rx descriptor ring (for a specific queue) to setup
1689 *
1690 * Returns 0 on success, negative on failure
1691 **/
1692static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
1693 struct e1000_rx_ring *rxdr)
1694{
1695 struct pci_dev *pdev = adapter->pdev;
1696 int size, desc_len;
1697
1698 size = sizeof(struct e1000_rx_buffer) * rxdr->count;
1699 rxdr->buffer_info = vzalloc(size);
1700 if (!rxdr->buffer_info)
1701 return -ENOMEM;
1702
1703 desc_len = sizeof(struct e1000_rx_desc);
1704
1705 /* Round up to nearest 4K */
1706
1707 rxdr->size = rxdr->count * desc_len;
1708 rxdr->size = ALIGN(rxdr->size, 4096);
1709
1710 rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
1711 GFP_KERNEL);
1712 if (!rxdr->desc) {
1713setup_rx_desc_die:
1714 vfree(rxdr->buffer_info);
1715 return -ENOMEM;
1716 }
1717
1718 /* Fix for errata 23, can't cross 64kB boundary */
1719 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1720 void *olddesc = rxdr->desc;
1721 dma_addr_t olddma = rxdr->dma;
1722 e_err(rx_err, "rxdr align check failed: %u bytes at %p\n",
1723 rxdr->size, rxdr->desc);
1724 /* Try again, without freeing the previous */
1725 rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size,
1726 &rxdr->dma, GFP_KERNEL);
1727 /* Failed allocation, critical failure */
1728 if (!rxdr->desc) {
1729 dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1730 olddma);
1731 goto setup_rx_desc_die;
1732 }
1733
1734 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1735 /* give up */
1736 dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
1737 rxdr->dma);
1738 dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1739 olddma);
1740 e_err(probe, "Unable to allocate aligned memory for "
1741 "the Rx descriptor ring\n");
1742 goto setup_rx_desc_die;
1743 } else {
1744 /* Free old allocation, new allocation was successful */
1745 dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1746 olddma);
1747 }
1748 }
1749 memset(rxdr->desc, 0, rxdr->size);
1750
1751 rxdr->next_to_clean = 0;
1752 rxdr->next_to_use = 0;
1753 rxdr->rx_skb_top = NULL;
1754
1755 return 0;
1756}
1757
1758/**
1759 * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1760 * (Descriptors) for all queues
1761 * @adapter: board private structure
1762 *
1763 * Return 0 on success, negative on failure
1764 **/
1765int e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1766{
1767 int i, err = 0;
1768
1769 for (i = 0; i < adapter->num_rx_queues; i++) {
1770 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1771 if (err) {
1772 e_err(probe, "Allocation for Rx Queue %u failed\n", i);
1773 for (i-- ; i >= 0; i--)
1774 e1000_free_rx_resources(adapter,
1775 &adapter->rx_ring[i]);
1776 break;
1777 }
1778 }
1779
1780 return err;
1781}
1782
1783/**
1784 * e1000_setup_rctl - configure the receive control registers
1785 * @adapter: Board private structure
1786 **/
1787static void e1000_setup_rctl(struct e1000_adapter *adapter)
1788{
1789 struct e1000_hw *hw = &adapter->hw;
1790 u32 rctl;
1791
1792 rctl = er32(RCTL);
1793
1794 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1795
1796 rctl |= E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
1797 E1000_RCTL_RDMTS_HALF |
1798 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1799
1800 if (hw->tbi_compatibility_on == 1)
1801 rctl |= E1000_RCTL_SBP;
1802 else
1803 rctl &= ~E1000_RCTL_SBP;
1804
1805 if (adapter->netdev->mtu <= ETH_DATA_LEN)
1806 rctl &= ~E1000_RCTL_LPE;
1807 else
1808 rctl |= E1000_RCTL_LPE;
1809
1810 /* Setup buffer sizes */
1811 rctl &= ~E1000_RCTL_SZ_4096;
1812 rctl |= E1000_RCTL_BSEX;
1813 switch (adapter->rx_buffer_len) {
1814 case E1000_RXBUFFER_2048:
1815 default:
1816 rctl |= E1000_RCTL_SZ_2048;
1817 rctl &= ~E1000_RCTL_BSEX;
1818 break;
1819 case E1000_RXBUFFER_4096:
1820 rctl |= E1000_RCTL_SZ_4096;
1821 break;
1822 case E1000_RXBUFFER_8192:
1823 rctl |= E1000_RCTL_SZ_8192;
1824 break;
1825 case E1000_RXBUFFER_16384:
1826 rctl |= E1000_RCTL_SZ_16384;
1827 break;
1828 }
1829
1830 /* This is useful for sniffing bad packets. */
1831 if (adapter->netdev->features & NETIF_F_RXALL) {
1832 /* UPE and MPE will be handled by normal PROMISC logic
1833 * in e1000e_set_rx_mode
1834 */
1835 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
1836 E1000_RCTL_BAM | /* RX All Bcast Pkts */
1837 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
1838
1839 rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
1840 E1000_RCTL_DPF | /* Allow filtered pause */
1841 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
1842 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
1843 * and that breaks VLANs.
1844 */
1845 }
1846
1847 ew32(RCTL, rctl);
1848}
1849
1850/**
1851 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1852 * @adapter: board private structure
1853 *
1854 * Configure the Rx unit of the MAC after a reset.
1855 **/
1856static void e1000_configure_rx(struct e1000_adapter *adapter)
1857{
1858 u64 rdba;
1859 struct e1000_hw *hw = &adapter->hw;
1860 u32 rdlen, rctl, rxcsum;
1861
1862 if (adapter->netdev->mtu > ETH_DATA_LEN) {
1863 rdlen = adapter->rx_ring[0].count *
1864 sizeof(struct e1000_rx_desc);
1865 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
1866 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
1867 } else {
1868 rdlen = adapter->rx_ring[0].count *
1869 sizeof(struct e1000_rx_desc);
1870 adapter->clean_rx = e1000_clean_rx_irq;
1871 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1872 }
1873
1874 /* disable receives while setting up the descriptors */
1875 rctl = er32(RCTL);
1876 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1877
1878 /* set the Receive Delay Timer Register */
1879 ew32(RDTR, adapter->rx_int_delay);
1880
1881 if (hw->mac_type >= e1000_82540) {
1882 ew32(RADV, adapter->rx_abs_int_delay);
1883 if (adapter->itr_setting != 0)
1884 ew32(ITR, 1000000000 / (adapter->itr * 256));
1885 }
1886
1887 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1888 * the Base and Length of the Rx Descriptor Ring
1889 */
1890 switch (adapter->num_rx_queues) {
1891 case 1:
1892 default:
1893 rdba = adapter->rx_ring[0].dma;
1894 ew32(RDLEN, rdlen);
1895 ew32(RDBAH, (rdba >> 32));
1896 ew32(RDBAL, (rdba & 0x00000000ffffffffULL));
1897 ew32(RDT, 0);
1898 ew32(RDH, 0);
1899 adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ?
1900 E1000_RDH : E1000_82542_RDH);
1901 adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ?
1902 E1000_RDT : E1000_82542_RDT);
1903 break;
1904 }
1905
1906 /* Enable 82543 Receive Checksum Offload for TCP and UDP */
1907 if (hw->mac_type >= e1000_82543) {
1908 rxcsum = er32(RXCSUM);
1909 if (adapter->rx_csum)
1910 rxcsum |= E1000_RXCSUM_TUOFL;
1911 else
1912 /* don't need to clear IPPCSE as it defaults to 0 */
1913 rxcsum &= ~E1000_RXCSUM_TUOFL;
1914 ew32(RXCSUM, rxcsum);
1915 }
1916
1917 /* Enable Receives */
1918 ew32(RCTL, rctl | E1000_RCTL_EN);
1919}
1920
1921/**
1922 * e1000_free_tx_resources - Free Tx Resources per Queue
1923 * @adapter: board private structure
1924 * @tx_ring: Tx descriptor ring for a specific queue
1925 *
1926 * Free all transmit software resources
1927 **/
1928static void e1000_free_tx_resources(struct e1000_adapter *adapter,
1929 struct e1000_tx_ring *tx_ring)
1930{
1931 struct pci_dev *pdev = adapter->pdev;
1932
1933 e1000_clean_tx_ring(adapter, tx_ring);
1934
1935 vfree(tx_ring->buffer_info);
1936 tx_ring->buffer_info = NULL;
1937
1938 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1939 tx_ring->dma);
1940
1941 tx_ring->desc = NULL;
1942}
1943
1944/**
1945 * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1946 * @adapter: board private structure
1947 *
1948 * Free all transmit software resources
1949 **/
1950void e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1951{
1952 int i;
1953
1954 for (i = 0; i < adapter->num_tx_queues; i++)
1955 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1956}
1957
1958static void
1959e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1960 struct e1000_tx_buffer *buffer_info)
1961{
1962 if (buffer_info->dma) {
1963 if (buffer_info->mapped_as_page)
1964 dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1965 buffer_info->length, DMA_TO_DEVICE);
1966 else
1967 dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1968 buffer_info->length,
1969 DMA_TO_DEVICE);
1970 buffer_info->dma = 0;
1971 }
1972 if (buffer_info->skb) {
1973 dev_kfree_skb_any(buffer_info->skb);
1974 buffer_info->skb = NULL;
1975 }
1976 buffer_info->time_stamp = 0;
1977 /* buffer_info must be completely set up in the transmit path */
1978}
1979
1980/**
1981 * e1000_clean_tx_ring - Free Tx Buffers
1982 * @adapter: board private structure
1983 * @tx_ring: ring to be cleaned
1984 **/
1985static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
1986 struct e1000_tx_ring *tx_ring)
1987{
1988 struct e1000_hw *hw = &adapter->hw;
1989 struct e1000_tx_buffer *buffer_info;
1990 unsigned long size;
1991 unsigned int i;
1992
1993 /* Free all the Tx ring sk_buffs */
1994
1995 for (i = 0; i < tx_ring->count; i++) {
1996 buffer_info = &tx_ring->buffer_info[i];
1997 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
1998 }
1999
2000 netdev_reset_queue(adapter->netdev);
2001 size = sizeof(struct e1000_tx_buffer) * tx_ring->count;
2002 memset(tx_ring->buffer_info, 0, size);
2003
2004 /* Zero out the descriptor ring */
2005
2006 memset(tx_ring->desc, 0, tx_ring->size);
2007
2008 tx_ring->next_to_use = 0;
2009 tx_ring->next_to_clean = 0;
2010 tx_ring->last_tx_tso = false;
2011
2012 writel(0, hw->hw_addr + tx_ring->tdh);
2013 writel(0, hw->hw_addr + tx_ring->tdt);
2014}
2015
2016/**
2017 * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2018 * @adapter: board private structure
2019 **/
2020static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
2021{
2022 int i;
2023
2024 for (i = 0; i < adapter->num_tx_queues; i++)
2025 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
2026}
2027
2028/**
2029 * e1000_free_rx_resources - Free Rx Resources
2030 * @adapter: board private structure
2031 * @rx_ring: ring to clean the resources from
2032 *
2033 * Free all receive software resources
2034 **/
2035static void e1000_free_rx_resources(struct e1000_adapter *adapter,
2036 struct e1000_rx_ring *rx_ring)
2037{
2038 struct pci_dev *pdev = adapter->pdev;
2039
2040 e1000_clean_rx_ring(adapter, rx_ring);
2041
2042 vfree(rx_ring->buffer_info);
2043 rx_ring->buffer_info = NULL;
2044
2045 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2046 rx_ring->dma);
2047
2048 rx_ring->desc = NULL;
2049}
2050
2051/**
2052 * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2053 * @adapter: board private structure
2054 *
2055 * Free all receive software resources
2056 **/
2057void e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2058{
2059 int i;
2060
2061 for (i = 0; i < adapter->num_rx_queues; i++)
2062 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2063}
2064
2065#define E1000_HEADROOM (NET_SKB_PAD + NET_IP_ALIGN)
2066static unsigned int e1000_frag_len(const struct e1000_adapter *a)
2067{
2068 return SKB_DATA_ALIGN(a->rx_buffer_len + E1000_HEADROOM) +
2069 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2070}
2071
2072static void *e1000_alloc_frag(const struct e1000_adapter *a)
2073{
2074 unsigned int len = e1000_frag_len(a);
2075 u8 *data = netdev_alloc_frag(len);
2076
2077 if (likely(data))
2078 data += E1000_HEADROOM;
2079 return data;
2080}
2081
2082/**
2083 * e1000_clean_rx_ring - Free Rx Buffers per Queue
2084 * @adapter: board private structure
2085 * @rx_ring: ring to free buffers from
2086 **/
2087static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
2088 struct e1000_rx_ring *rx_ring)
2089{
2090 struct e1000_hw *hw = &adapter->hw;
2091 struct e1000_rx_buffer *buffer_info;
2092 struct pci_dev *pdev = adapter->pdev;
2093 unsigned long size;
2094 unsigned int i;
2095
2096 /* Free all the Rx netfrags */
2097 for (i = 0; i < rx_ring->count; i++) {
2098 buffer_info = &rx_ring->buffer_info[i];
2099 if (adapter->clean_rx == e1000_clean_rx_irq) {
2100 if (buffer_info->dma)
2101 dma_unmap_single(&pdev->dev, buffer_info->dma,
2102 adapter->rx_buffer_len,
2103 DMA_FROM_DEVICE);
2104 if (buffer_info->rxbuf.data) {
2105 skb_free_frag(buffer_info->rxbuf.data);
2106 buffer_info->rxbuf.data = NULL;
2107 }
2108 } else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq) {
2109 if (buffer_info->dma)
2110 dma_unmap_page(&pdev->dev, buffer_info->dma,
2111 adapter->rx_buffer_len,
2112 DMA_FROM_DEVICE);
2113 if (buffer_info->rxbuf.page) {
2114 put_page(buffer_info->rxbuf.page);
2115 buffer_info->rxbuf.page = NULL;
2116 }
2117 }
2118
2119 buffer_info->dma = 0;
2120 }
2121
2122 /* there also may be some cached data from a chained receive */
2123 napi_free_frags(&adapter->napi);
2124 rx_ring->rx_skb_top = NULL;
2125
2126 size = sizeof(struct e1000_rx_buffer) * rx_ring->count;
2127 memset(rx_ring->buffer_info, 0, size);
2128
2129 /* Zero out the descriptor ring */
2130 memset(rx_ring->desc, 0, rx_ring->size);
2131
2132 rx_ring->next_to_clean = 0;
2133 rx_ring->next_to_use = 0;
2134
2135 writel(0, hw->hw_addr + rx_ring->rdh);
2136 writel(0, hw->hw_addr + rx_ring->rdt);
2137}
2138
2139/**
2140 * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2141 * @adapter: board private structure
2142 **/
2143static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2144{
2145 int i;
2146
2147 for (i = 0; i < adapter->num_rx_queues; i++)
2148 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2149}
2150
2151/* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2152 * and memory write and invalidate disabled for certain operations
2153 */
2154static void e1000_enter_82542_rst(struct e1000_adapter *adapter)
2155{
2156 struct e1000_hw *hw = &adapter->hw;
2157 struct net_device *netdev = adapter->netdev;
2158 u32 rctl;
2159
2160 e1000_pci_clear_mwi(hw);
2161
2162 rctl = er32(RCTL);
2163 rctl |= E1000_RCTL_RST;
2164 ew32(RCTL, rctl);
2165 E1000_WRITE_FLUSH();
2166 mdelay(5);
2167
2168 if (netif_running(netdev))
2169 e1000_clean_all_rx_rings(adapter);
2170}
2171
2172static void e1000_leave_82542_rst(struct e1000_adapter *adapter)
2173{
2174 struct e1000_hw *hw = &adapter->hw;
2175 struct net_device *netdev = adapter->netdev;
2176 u32 rctl;
2177
2178 rctl = er32(RCTL);
2179 rctl &= ~E1000_RCTL_RST;
2180 ew32(RCTL, rctl);
2181 E1000_WRITE_FLUSH();
2182 mdelay(5);
2183
2184 if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
2185 e1000_pci_set_mwi(hw);
2186
2187 if (netif_running(netdev)) {
2188 /* No need to loop, because 82542 supports only 1 queue */
2189 struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2190 e1000_configure_rx(adapter);
2191 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2192 }
2193}
2194
2195/**
2196 * e1000_set_mac - Change the Ethernet Address of the NIC
2197 * @netdev: network interface device structure
2198 * @p: pointer to an address structure
2199 *
2200 * Returns 0 on success, negative on failure
2201 **/
2202static int e1000_set_mac(struct net_device *netdev, void *p)
2203{
2204 struct e1000_adapter *adapter = netdev_priv(netdev);
2205 struct e1000_hw *hw = &adapter->hw;
2206 struct sockaddr *addr = p;
2207
2208 if (!is_valid_ether_addr(addr->sa_data))
2209 return -EADDRNOTAVAIL;
2210
2211 /* 82542 2.0 needs to be in reset to write receive address registers */
2212
2213 if (hw->mac_type == e1000_82542_rev2_0)
2214 e1000_enter_82542_rst(adapter);
2215
2216 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2217 memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
2218
2219 e1000_rar_set(hw, hw->mac_addr, 0);
2220
2221 if (hw->mac_type == e1000_82542_rev2_0)
2222 e1000_leave_82542_rst(adapter);
2223
2224 return 0;
2225}
2226
2227/**
2228 * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2229 * @netdev: network interface device structure
2230 *
2231 * The set_rx_mode entry point is called whenever the unicast or multicast
2232 * address lists or the network interface flags are updated. This routine is
2233 * responsible for configuring the hardware for proper unicast, multicast,
2234 * promiscuous mode, and all-multi behavior.
2235 **/
2236static void e1000_set_rx_mode(struct net_device *netdev)
2237{
2238 struct e1000_adapter *adapter = netdev_priv(netdev);
2239 struct e1000_hw *hw = &adapter->hw;
2240 struct netdev_hw_addr *ha;
2241 bool use_uc = false;
2242 u32 rctl;
2243 u32 hash_value;
2244 int i, rar_entries = E1000_RAR_ENTRIES;
2245 int mta_reg_count = E1000_NUM_MTA_REGISTERS;
2246 u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC);
2247
2248 if (!mcarray)
2249 return;
2250
2251 /* Check for Promiscuous and All Multicast modes */
2252
2253 rctl = er32(RCTL);
2254
2255 if (netdev->flags & IFF_PROMISC) {
2256 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2257 rctl &= ~E1000_RCTL_VFE;
2258 } else {
2259 if (netdev->flags & IFF_ALLMULTI)
2260 rctl |= E1000_RCTL_MPE;
2261 else
2262 rctl &= ~E1000_RCTL_MPE;
2263 /* Enable VLAN filter if there is a VLAN */
2264 if (e1000_vlan_used(adapter))
2265 rctl |= E1000_RCTL_VFE;
2266 }
2267
2268 if (netdev_uc_count(netdev) > rar_entries - 1) {
2269 rctl |= E1000_RCTL_UPE;
2270 } else if (!(netdev->flags & IFF_PROMISC)) {
2271 rctl &= ~E1000_RCTL_UPE;
2272 use_uc = true;
2273 }
2274
2275 ew32(RCTL, rctl);
2276
2277 /* 82542 2.0 needs to be in reset to write receive address registers */
2278
2279 if (hw->mac_type == e1000_82542_rev2_0)
2280 e1000_enter_82542_rst(adapter);
2281
2282 /* load the first 14 addresses into the exact filters 1-14. Unicast
2283 * addresses take precedence to avoid disabling unicast filtering
2284 * when possible.
2285 *
2286 * RAR 0 is used for the station MAC address
2287 * if there are not 14 addresses, go ahead and clear the filters
2288 */
2289 i = 1;
2290 if (use_uc)
2291 netdev_for_each_uc_addr(ha, netdev) {
2292 if (i == rar_entries)
2293 break;
2294 e1000_rar_set(hw, ha->addr, i++);
2295 }
2296
2297 netdev_for_each_mc_addr(ha, netdev) {
2298 if (i == rar_entries) {
2299 /* load any remaining addresses into the hash table */
2300 u32 hash_reg, hash_bit, mta;
2301 hash_value = e1000_hash_mc_addr(hw, ha->addr);
2302 hash_reg = (hash_value >> 5) & 0x7F;
2303 hash_bit = hash_value & 0x1F;
2304 mta = (1 << hash_bit);
2305 mcarray[hash_reg] |= mta;
2306 } else {
2307 e1000_rar_set(hw, ha->addr, i++);
2308 }
2309 }
2310
2311 for (; i < rar_entries; i++) {
2312 E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2313 E1000_WRITE_FLUSH();
2314 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2315 E1000_WRITE_FLUSH();
2316 }
2317
2318 /* write the hash table completely, write from bottom to avoid
2319 * both stupid write combining chipsets, and flushing each write
2320 */
2321 for (i = mta_reg_count - 1; i >= 0 ; i--) {
2322 /* If we are on an 82544 has an errata where writing odd
2323 * offsets overwrites the previous even offset, but writing
2324 * backwards over the range solves the issue by always
2325 * writing the odd offset first
2326 */
2327 E1000_WRITE_REG_ARRAY(hw, MTA, i, mcarray[i]);
2328 }
2329 E1000_WRITE_FLUSH();
2330
2331 if (hw->mac_type == e1000_82542_rev2_0)
2332 e1000_leave_82542_rst(adapter);
2333
2334 kfree(mcarray);
2335}
2336
2337/**
2338 * e1000_update_phy_info_task - get phy info
2339 * @work: work struct contained inside adapter struct
2340 *
2341 * Need to wait a few seconds after link up to get diagnostic information from
2342 * the phy
2343 */
2344static void e1000_update_phy_info_task(struct work_struct *work)
2345{
2346 struct e1000_adapter *adapter = container_of(work,
2347 struct e1000_adapter,
2348 phy_info_task.work);
2349
2350 e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2351}
2352
2353/**
2354 * e1000_82547_tx_fifo_stall_task - task to complete work
2355 * @work: work struct contained inside adapter struct
2356 **/
2357static void e1000_82547_tx_fifo_stall_task(struct work_struct *work)
2358{
2359 struct e1000_adapter *adapter = container_of(work,
2360 struct e1000_adapter,
2361 fifo_stall_task.work);
2362 struct e1000_hw *hw = &adapter->hw;
2363 struct net_device *netdev = adapter->netdev;
2364 u32 tctl;
2365
2366 if (atomic_read(&adapter->tx_fifo_stall)) {
2367 if ((er32(TDT) == er32(TDH)) &&
2368 (er32(TDFT) == er32(TDFH)) &&
2369 (er32(TDFTS) == er32(TDFHS))) {
2370 tctl = er32(TCTL);
2371 ew32(TCTL, tctl & ~E1000_TCTL_EN);
2372 ew32(TDFT, adapter->tx_head_addr);
2373 ew32(TDFH, adapter->tx_head_addr);
2374 ew32(TDFTS, adapter->tx_head_addr);
2375 ew32(TDFHS, adapter->tx_head_addr);
2376 ew32(TCTL, tctl);
2377 E1000_WRITE_FLUSH();
2378
2379 adapter->tx_fifo_head = 0;
2380 atomic_set(&adapter->tx_fifo_stall, 0);
2381 netif_wake_queue(netdev);
2382 } else if (!test_bit(__E1000_DOWN, &adapter->flags)) {
2383 schedule_delayed_work(&adapter->fifo_stall_task, 1);
2384 }
2385 }
2386}
2387
2388bool e1000_has_link(struct e1000_adapter *adapter)
2389{
2390 struct e1000_hw *hw = &adapter->hw;
2391 bool link_active = false;
2392
2393 /* get_link_status is set on LSC (link status) interrupt or rx
2394 * sequence error interrupt (except on intel ce4100).
2395 * get_link_status will stay false until the
2396 * e1000_check_for_link establishes link for copper adapters
2397 * ONLY
2398 */
2399 switch (hw->media_type) {
2400 case e1000_media_type_copper:
2401 if (hw->mac_type == e1000_ce4100)
2402 hw->get_link_status = 1;
2403 if (hw->get_link_status) {
2404 e1000_check_for_link(hw);
2405 link_active = !hw->get_link_status;
2406 } else {
2407 link_active = true;
2408 }
2409 break;
2410 case e1000_media_type_fiber:
2411 e1000_check_for_link(hw);
2412 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
2413 break;
2414 case e1000_media_type_internal_serdes:
2415 e1000_check_for_link(hw);
2416 link_active = hw->serdes_has_link;
2417 break;
2418 default:
2419 break;
2420 }
2421
2422 return link_active;
2423}
2424
2425/**
2426 * e1000_watchdog - work function
2427 * @work: work struct contained inside adapter struct
2428 **/
2429static void e1000_watchdog(struct work_struct *work)
2430{
2431 struct e1000_adapter *adapter = container_of(work,
2432 struct e1000_adapter,
2433 watchdog_task.work);
2434 struct e1000_hw *hw = &adapter->hw;
2435 struct net_device *netdev = adapter->netdev;
2436 struct e1000_tx_ring *txdr = adapter->tx_ring;
2437 u32 link, tctl;
2438
2439 link = e1000_has_link(adapter);
2440 if ((netif_carrier_ok(netdev)) && link)
2441 goto link_up;
2442
2443 if (link) {
2444 if (!netif_carrier_ok(netdev)) {
2445 u32 ctrl;
2446 bool txb2b = true;
2447 /* update snapshot of PHY registers on LSC */
2448 e1000_get_speed_and_duplex(hw,
2449 &adapter->link_speed,
2450 &adapter->link_duplex);
2451
2452 ctrl = er32(CTRL);
2453 pr_info("%s NIC Link is Up %d Mbps %s, "
2454 "Flow Control: %s\n",
2455 netdev->name,
2456 adapter->link_speed,
2457 adapter->link_duplex == FULL_DUPLEX ?
2458 "Full Duplex" : "Half Duplex",
2459 ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2460 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2461 E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2462 E1000_CTRL_TFCE) ? "TX" : "None")));
2463
2464 /* adjust timeout factor according to speed/duplex */
2465 adapter->tx_timeout_factor = 1;
2466 switch (adapter->link_speed) {
2467 case SPEED_10:
2468 txb2b = false;
2469 adapter->tx_timeout_factor = 16;
2470 break;
2471 case SPEED_100:
2472 txb2b = false;
2473 /* maybe add some timeout factor ? */
2474 break;
2475 }
2476
2477 /* enable transmits in the hardware */
2478 tctl = er32(TCTL);
2479 tctl |= E1000_TCTL_EN;
2480 ew32(TCTL, tctl);
2481
2482 netif_carrier_on(netdev);
2483 if (!test_bit(__E1000_DOWN, &adapter->flags))
2484 schedule_delayed_work(&adapter->phy_info_task,
2485 2 * HZ);
2486 adapter->smartspeed = 0;
2487 }
2488 } else {
2489 if (netif_carrier_ok(netdev)) {
2490 adapter->link_speed = 0;
2491 adapter->link_duplex = 0;
2492 pr_info("%s NIC Link is Down\n",
2493 netdev->name);
2494 netif_carrier_off(netdev);
2495
2496 if (!test_bit(__E1000_DOWN, &adapter->flags))
2497 schedule_delayed_work(&adapter->phy_info_task,
2498 2 * HZ);
2499 }
2500
2501 e1000_smartspeed(adapter);
2502 }
2503
2504link_up:
2505 e1000_update_stats(adapter);
2506
2507 hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2508 adapter->tpt_old = adapter->stats.tpt;
2509 hw->collision_delta = adapter->stats.colc - adapter->colc_old;
2510 adapter->colc_old = adapter->stats.colc;
2511
2512 adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2513 adapter->gorcl_old = adapter->stats.gorcl;
2514 adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2515 adapter->gotcl_old = adapter->stats.gotcl;
2516
2517 e1000_update_adaptive(hw);
2518
2519 if (!netif_carrier_ok(netdev)) {
2520 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2521 /* We've lost link, so the controller stops DMA,
2522 * but we've got queued Tx work that's never going
2523 * to get done, so reset controller to flush Tx.
2524 * (Do the reset outside of interrupt context).
2525 */
2526 adapter->tx_timeout_count++;
2527 schedule_work(&adapter->reset_task);
2528 /* exit immediately since reset is imminent */
2529 return;
2530 }
2531 }
2532
2533 /* Simple mode for Interrupt Throttle Rate (ITR) */
2534 if (hw->mac_type >= e1000_82540 && adapter->itr_setting == 4) {
2535 /* Symmetric Tx/Rx gets a reduced ITR=2000;
2536 * Total asymmetrical Tx or Rx gets ITR=8000;
2537 * everyone else is between 2000-8000.
2538 */
2539 u32 goc = (adapter->gotcl + adapter->gorcl) / 10000;
2540 u32 dif = (adapter->gotcl > adapter->gorcl ?
2541 adapter->gotcl - adapter->gorcl :
2542 adapter->gorcl - adapter->gotcl) / 10000;
2543 u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
2544
2545 ew32(ITR, 1000000000 / (itr * 256));
2546 }
2547
2548 /* Cause software interrupt to ensure rx ring is cleaned */
2549 ew32(ICS, E1000_ICS_RXDMT0);
2550
2551 /* Force detection of hung controller every watchdog period */
2552 adapter->detect_tx_hung = true;
2553
2554 /* Reschedule the task */
2555 if (!test_bit(__E1000_DOWN, &adapter->flags))
2556 schedule_delayed_work(&adapter->watchdog_task, 2 * HZ);
2557}
2558
2559enum latency_range {
2560 lowest_latency = 0,
2561 low_latency = 1,
2562 bulk_latency = 2,
2563 latency_invalid = 255
2564};
2565
2566/**
2567 * e1000_update_itr - update the dynamic ITR value based on statistics
2568 * @adapter: pointer to adapter
2569 * @itr_setting: current adapter->itr
2570 * @packets: the number of packets during this measurement interval
2571 * @bytes: the number of bytes during this measurement interval
2572 *
2573 * Stores a new ITR value based on packets and byte
2574 * counts during the last interrupt. The advantage of per interrupt
2575 * computation is faster updates and more accurate ITR for the current
2576 * traffic pattern. Constants in this function were computed
2577 * based on theoretical maximum wire speed and thresholds were set based
2578 * on testing data as well as attempting to minimize response time
2579 * while increasing bulk throughput.
2580 * this functionality is controlled by the InterruptThrottleRate module
2581 * parameter (see e1000_param.c)
2582 **/
2583static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2584 u16 itr_setting, int packets, int bytes)
2585{
2586 unsigned int retval = itr_setting;
2587 struct e1000_hw *hw = &adapter->hw;
2588
2589 if (unlikely(hw->mac_type < e1000_82540))
2590 goto update_itr_done;
2591
2592 if (packets == 0)
2593 goto update_itr_done;
2594
2595 switch (itr_setting) {
2596 case lowest_latency:
2597 /* jumbo frames get bulk treatment*/
2598 if (bytes/packets > 8000)
2599 retval = bulk_latency;
2600 else if ((packets < 5) && (bytes > 512))
2601 retval = low_latency;
2602 break;
2603 case low_latency: /* 50 usec aka 20000 ints/s */
2604 if (bytes > 10000) {
2605 /* jumbo frames need bulk latency setting */
2606 if (bytes/packets > 8000)
2607 retval = bulk_latency;
2608 else if ((packets < 10) || ((bytes/packets) > 1200))
2609 retval = bulk_latency;
2610 else if ((packets > 35))
2611 retval = lowest_latency;
2612 } else if (bytes/packets > 2000)
2613 retval = bulk_latency;
2614 else if (packets <= 2 && bytes < 512)
2615 retval = lowest_latency;
2616 break;
2617 case bulk_latency: /* 250 usec aka 4000 ints/s */
2618 if (bytes > 25000) {
2619 if (packets > 35)
2620 retval = low_latency;
2621 } else if (bytes < 6000) {
2622 retval = low_latency;
2623 }
2624 break;
2625 }
2626
2627update_itr_done:
2628 return retval;
2629}
2630
2631static void e1000_set_itr(struct e1000_adapter *adapter)
2632{
2633 struct e1000_hw *hw = &adapter->hw;
2634 u16 current_itr;
2635 u32 new_itr = adapter->itr;
2636
2637 if (unlikely(hw->mac_type < e1000_82540))
2638 return;
2639
2640 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2641 if (unlikely(adapter->link_speed != SPEED_1000)) {
2642 current_itr = 0;
2643 new_itr = 4000;
2644 goto set_itr_now;
2645 }
2646
2647 adapter->tx_itr = e1000_update_itr(adapter, adapter->tx_itr,
2648 adapter->total_tx_packets,
2649 adapter->total_tx_bytes);
2650 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2651 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2652 adapter->tx_itr = low_latency;
2653
2654 adapter->rx_itr = e1000_update_itr(adapter, adapter->rx_itr,
2655 adapter->total_rx_packets,
2656 adapter->total_rx_bytes);
2657 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2658 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2659 adapter->rx_itr = low_latency;
2660
2661 current_itr = max(adapter->rx_itr, adapter->tx_itr);
2662
2663 switch (current_itr) {
2664 /* counts and packets in update_itr are dependent on these numbers */
2665 case lowest_latency:
2666 new_itr = 70000;
2667 break;
2668 case low_latency:
2669 new_itr = 20000; /* aka hwitr = ~200 */
2670 break;
2671 case bulk_latency:
2672 new_itr = 4000;
2673 break;
2674 default:
2675 break;
2676 }
2677
2678set_itr_now:
2679 if (new_itr != adapter->itr) {
2680 /* this attempts to bias the interrupt rate towards Bulk
2681 * by adding intermediate steps when interrupt rate is
2682 * increasing
2683 */
2684 new_itr = new_itr > adapter->itr ?
2685 min(adapter->itr + (new_itr >> 2), new_itr) :
2686 new_itr;
2687 adapter->itr = new_itr;
2688 ew32(ITR, 1000000000 / (new_itr * 256));
2689 }
2690}
2691
2692#define E1000_TX_FLAGS_CSUM 0x00000001
2693#define E1000_TX_FLAGS_VLAN 0x00000002
2694#define E1000_TX_FLAGS_TSO 0x00000004
2695#define E1000_TX_FLAGS_IPV4 0x00000008
2696#define E1000_TX_FLAGS_NO_FCS 0x00000010
2697#define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
2698#define E1000_TX_FLAGS_VLAN_SHIFT 16
2699
2700static int e1000_tso(struct e1000_adapter *adapter,
2701 struct e1000_tx_ring *tx_ring, struct sk_buff *skb,
2702 __be16 protocol)
2703{
2704 struct e1000_context_desc *context_desc;
2705 struct e1000_tx_buffer *buffer_info;
2706 unsigned int i;
2707 u32 cmd_length = 0;
2708 u16 ipcse = 0, tucse, mss;
2709 u8 ipcss, ipcso, tucss, tucso, hdr_len;
2710
2711 if (skb_is_gso(skb)) {
2712 int err;
2713
2714 err = skb_cow_head(skb, 0);
2715 if (err < 0)
2716 return err;
2717
2718 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2719 mss = skb_shinfo(skb)->gso_size;
2720 if (protocol == htons(ETH_P_IP)) {
2721 struct iphdr *iph = ip_hdr(skb);
2722 iph->tot_len = 0;
2723 iph->check = 0;
2724 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2725 iph->daddr, 0,
2726 IPPROTO_TCP,
2727 0);
2728 cmd_length = E1000_TXD_CMD_IP;
2729 ipcse = skb_transport_offset(skb) - 1;
2730 } else if (skb_is_gso_v6(skb)) {
2731 ipv6_hdr(skb)->payload_len = 0;
2732 tcp_hdr(skb)->check =
2733 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2734 &ipv6_hdr(skb)->daddr,
2735 0, IPPROTO_TCP, 0);
2736 ipcse = 0;
2737 }
2738 ipcss = skb_network_offset(skb);
2739 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
2740 tucss = skb_transport_offset(skb);
2741 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
2742 tucse = 0;
2743
2744 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2745 E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2746
2747 i = tx_ring->next_to_use;
2748 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2749 buffer_info = &tx_ring->buffer_info[i];
2750
2751 context_desc->lower_setup.ip_fields.ipcss = ipcss;
2752 context_desc->lower_setup.ip_fields.ipcso = ipcso;
2753 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
2754 context_desc->upper_setup.tcp_fields.tucss = tucss;
2755 context_desc->upper_setup.tcp_fields.tucso = tucso;
2756 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2757 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
2758 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2759 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2760
2761 buffer_info->time_stamp = jiffies;
2762 buffer_info->next_to_watch = i;
2763
2764 if (++i == tx_ring->count)
2765 i = 0;
2766
2767 tx_ring->next_to_use = i;
2768
2769 return true;
2770 }
2771 return false;
2772}
2773
2774static bool e1000_tx_csum(struct e1000_adapter *adapter,
2775 struct e1000_tx_ring *tx_ring, struct sk_buff *skb,
2776 __be16 protocol)
2777{
2778 struct e1000_context_desc *context_desc;
2779 struct e1000_tx_buffer *buffer_info;
2780 unsigned int i;
2781 u8 css;
2782 u32 cmd_len = E1000_TXD_CMD_DEXT;
2783
2784 if (skb->ip_summed != CHECKSUM_PARTIAL)
2785 return false;
2786
2787 switch (protocol) {
2788 case cpu_to_be16(ETH_P_IP):
2789 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2790 cmd_len |= E1000_TXD_CMD_TCP;
2791 break;
2792 case cpu_to_be16(ETH_P_IPV6):
2793 /* XXX not handling all IPV6 headers */
2794 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2795 cmd_len |= E1000_TXD_CMD_TCP;
2796 break;
2797 default:
2798 if (unlikely(net_ratelimit()))
2799 e_warn(drv, "checksum_partial proto=%x!\n",
2800 skb->protocol);
2801 break;
2802 }
2803
2804 css = skb_checksum_start_offset(skb);
2805
2806 i = tx_ring->next_to_use;
2807 buffer_info = &tx_ring->buffer_info[i];
2808 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2809
2810 context_desc->lower_setup.ip_config = 0;
2811 context_desc->upper_setup.tcp_fields.tucss = css;
2812 context_desc->upper_setup.tcp_fields.tucso =
2813 css + skb->csum_offset;
2814 context_desc->upper_setup.tcp_fields.tucse = 0;
2815 context_desc->tcp_seg_setup.data = 0;
2816 context_desc->cmd_and_length = cpu_to_le32(cmd_len);
2817
2818 buffer_info->time_stamp = jiffies;
2819 buffer_info->next_to_watch = i;
2820
2821 if (unlikely(++i == tx_ring->count))
2822 i = 0;
2823
2824 tx_ring->next_to_use = i;
2825
2826 return true;
2827}
2828
2829#define E1000_MAX_TXD_PWR 12
2830#define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR)
2831
2832static int e1000_tx_map(struct e1000_adapter *adapter,
2833 struct e1000_tx_ring *tx_ring,
2834 struct sk_buff *skb, unsigned int first,
2835 unsigned int max_per_txd, unsigned int nr_frags,
2836 unsigned int mss)
2837{
2838 struct e1000_hw *hw = &adapter->hw;
2839 struct pci_dev *pdev = adapter->pdev;
2840 struct e1000_tx_buffer *buffer_info;
2841 unsigned int len = skb_headlen(skb);
2842 unsigned int offset = 0, size, count = 0, i;
2843 unsigned int f, bytecount, segs;
2844
2845 i = tx_ring->next_to_use;
2846
2847 while (len) {
2848 buffer_info = &tx_ring->buffer_info[i];
2849 size = min(len, max_per_txd);
2850 /* Workaround for Controller erratum --
2851 * descriptor for non-tso packet in a linear SKB that follows a
2852 * tso gets written back prematurely before the data is fully
2853 * DMA'd to the controller
2854 */
2855 if (!skb->data_len && tx_ring->last_tx_tso &&
2856 !skb_is_gso(skb)) {
2857 tx_ring->last_tx_tso = false;
2858 size -= 4;
2859 }
2860
2861 /* Workaround for premature desc write-backs
2862 * in TSO mode. Append 4-byte sentinel desc
2863 */
2864 if (unlikely(mss && !nr_frags && size == len && size > 8))
2865 size -= 4;
2866 /* work-around for errata 10 and it applies
2867 * to all controllers in PCI-X mode
2868 * The fix is to make sure that the first descriptor of a
2869 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2870 */
2871 if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
2872 (size > 2015) && count == 0))
2873 size = 2015;
2874
2875 /* Workaround for potential 82544 hang in PCI-X. Avoid
2876 * terminating buffers within evenly-aligned dwords.
2877 */
2878 if (unlikely(adapter->pcix_82544 &&
2879 !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2880 size > 4))
2881 size -= 4;
2882
2883 buffer_info->length = size;
2884 /* set time_stamp *before* dma to help avoid a possible race */
2885 buffer_info->time_stamp = jiffies;
2886 buffer_info->mapped_as_page = false;
2887 buffer_info->dma = dma_map_single(&pdev->dev,
2888 skb->data + offset,
2889 size, DMA_TO_DEVICE);
2890 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2891 goto dma_error;
2892 buffer_info->next_to_watch = i;
2893
2894 len -= size;
2895 offset += size;
2896 count++;
2897 if (len) {
2898 i++;
2899 if (unlikely(i == tx_ring->count))
2900 i = 0;
2901 }
2902 }
2903
2904 for (f = 0; f < nr_frags; f++) {
2905 const struct skb_frag_struct *frag;
2906
2907 frag = &skb_shinfo(skb)->frags[f];
2908 len = skb_frag_size(frag);
2909 offset = 0;
2910
2911 while (len) {
2912 unsigned long bufend;
2913 i++;
2914 if (unlikely(i == tx_ring->count))
2915 i = 0;
2916
2917 buffer_info = &tx_ring->buffer_info[i];
2918 size = min(len, max_per_txd);
2919 /* Workaround for premature desc write-backs
2920 * in TSO mode. Append 4-byte sentinel desc
2921 */
2922 if (unlikely(mss && f == (nr_frags-1) &&
2923 size == len && size > 8))
2924 size -= 4;
2925 /* Workaround for potential 82544 hang in PCI-X.
2926 * Avoid terminating buffers within evenly-aligned
2927 * dwords.
2928 */
2929 bufend = (unsigned long)
2930 page_to_phys(skb_frag_page(frag));
2931 bufend += offset + size - 1;
2932 if (unlikely(adapter->pcix_82544 &&
2933 !(bufend & 4) &&
2934 size > 4))
2935 size -= 4;
2936
2937 buffer_info->length = size;
2938 buffer_info->time_stamp = jiffies;
2939 buffer_info->mapped_as_page = true;
2940 buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
2941 offset, size, DMA_TO_DEVICE);
2942 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2943 goto dma_error;
2944 buffer_info->next_to_watch = i;
2945
2946 len -= size;
2947 offset += size;
2948 count++;
2949 }
2950 }
2951
2952 segs = skb_shinfo(skb)->gso_segs ?: 1;
2953 /* multiply data chunks by size of headers */
2954 bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
2955
2956 tx_ring->buffer_info[i].skb = skb;
2957 tx_ring->buffer_info[i].segs = segs;
2958 tx_ring->buffer_info[i].bytecount = bytecount;
2959 tx_ring->buffer_info[first].next_to_watch = i;
2960
2961 return count;
2962
2963dma_error:
2964 dev_err(&pdev->dev, "TX DMA map failed\n");
2965 buffer_info->dma = 0;
2966 if (count)
2967 count--;
2968
2969 while (count--) {
2970 if (i == 0)
2971 i += tx_ring->count;
2972 i--;
2973 buffer_info = &tx_ring->buffer_info[i];
2974 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2975 }
2976
2977 return 0;
2978}
2979
2980static void e1000_tx_queue(struct e1000_adapter *adapter,
2981 struct e1000_tx_ring *tx_ring, int tx_flags,
2982 int count)
2983{
2984 struct e1000_tx_desc *tx_desc = NULL;
2985 struct e1000_tx_buffer *buffer_info;
2986 u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
2987 unsigned int i;
2988
2989 if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
2990 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
2991 E1000_TXD_CMD_TSE;
2992 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2993
2994 if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
2995 txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2996 }
2997
2998 if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
2999 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
3000 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3001 }
3002
3003 if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
3004 txd_lower |= E1000_TXD_CMD_VLE;
3005 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
3006 }
3007
3008 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
3009 txd_lower &= ~(E1000_TXD_CMD_IFCS);
3010
3011 i = tx_ring->next_to_use;
3012
3013 while (count--) {
3014 buffer_info = &tx_ring->buffer_info[i];
3015 tx_desc = E1000_TX_DESC(*tx_ring, i);
3016 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3017 tx_desc->lower.data =
3018 cpu_to_le32(txd_lower | buffer_info->length);
3019 tx_desc->upper.data = cpu_to_le32(txd_upper);
3020 if (unlikely(++i == tx_ring->count))
3021 i = 0;
3022 }
3023
3024 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3025
3026 /* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
3027 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
3028 tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
3029
3030 /* Force memory writes to complete before letting h/w
3031 * know there are new descriptors to fetch. (Only
3032 * applicable for weak-ordered memory model archs,
3033 * such as IA-64).
3034 */
3035 wmb();
3036
3037 tx_ring->next_to_use = i;
3038}
3039
3040/* 82547 workaround to avoid controller hang in half-duplex environment.
3041 * The workaround is to avoid queuing a large packet that would span
3042 * the internal Tx FIFO ring boundary by notifying the stack to resend
3043 * the packet at a later time. This gives the Tx FIFO an opportunity to
3044 * flush all packets. When that occurs, we reset the Tx FIFO pointers
3045 * to the beginning of the Tx FIFO.
3046 */
3047
3048#define E1000_FIFO_HDR 0x10
3049#define E1000_82547_PAD_LEN 0x3E0
3050
3051static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
3052 struct sk_buff *skb)
3053{
3054 u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
3055 u32 skb_fifo_len = skb->len + E1000_FIFO_HDR;
3056
3057 skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
3058
3059 if (adapter->link_duplex != HALF_DUPLEX)
3060 goto no_fifo_stall_required;
3061
3062 if (atomic_read(&adapter->tx_fifo_stall))
3063 return 1;
3064
3065 if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
3066 atomic_set(&adapter->tx_fifo_stall, 1);
3067 return 1;
3068 }
3069
3070no_fifo_stall_required:
3071 adapter->tx_fifo_head += skb_fifo_len;
3072 if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
3073 adapter->tx_fifo_head -= adapter->tx_fifo_size;
3074 return 0;
3075}
3076
3077static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3078{
3079 struct e1000_adapter *adapter = netdev_priv(netdev);
3080 struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3081
3082 netif_stop_queue(netdev);
3083 /* Herbert's original patch had:
3084 * smp_mb__after_netif_stop_queue();
3085 * but since that doesn't exist yet, just open code it.
3086 */
3087 smp_mb();
3088
3089 /* We need to check again in a case another CPU has just
3090 * made room available.
3091 */
3092 if (likely(E1000_DESC_UNUSED(tx_ring) < size))
3093 return -EBUSY;
3094
3095 /* A reprieve! */
3096 netif_start_queue(netdev);
3097 ++adapter->restart_queue;
3098 return 0;
3099}
3100
3101static int e1000_maybe_stop_tx(struct net_device *netdev,
3102 struct e1000_tx_ring *tx_ring, int size)
3103{
3104 if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
3105 return 0;
3106 return __e1000_maybe_stop_tx(netdev, size);
3107}
3108
3109#define TXD_USE_COUNT(S, X) (((S) + ((1 << (X)) - 1)) >> (X))
3110static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
3111 struct net_device *netdev)
3112{
3113 struct e1000_adapter *adapter = netdev_priv(netdev);
3114 struct e1000_hw *hw = &adapter->hw;
3115 struct e1000_tx_ring *tx_ring;
3116 unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
3117 unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3118 unsigned int tx_flags = 0;
3119 unsigned int len = skb_headlen(skb);
3120 unsigned int nr_frags;
3121 unsigned int mss;
3122 int count = 0;
3123 int tso;
3124 unsigned int f;
3125 __be16 protocol = vlan_get_protocol(skb);
3126
3127 /* This goes back to the question of how to logically map a Tx queue
3128 * to a flow. Right now, performance is impacted slightly negatively
3129 * if using multiple Tx queues. If the stack breaks away from a
3130 * single qdisc implementation, we can look at this again.
3131 */
3132 tx_ring = adapter->tx_ring;
3133
3134 /* On PCI/PCI-X HW, if packet size is less than ETH_ZLEN,
3135 * packets may get corrupted during padding by HW.
3136 * To WA this issue, pad all small packets manually.
3137 */
3138 if (eth_skb_pad(skb))
3139 return NETDEV_TX_OK;
3140
3141 mss = skb_shinfo(skb)->gso_size;
3142 /* The controller does a simple calculation to
3143 * make sure there is enough room in the FIFO before
3144 * initiating the DMA for each buffer. The calc is:
3145 * 4 = ceil(buffer len/mss). To make sure we don't
3146 * overrun the FIFO, adjust the max buffer len if mss
3147 * drops.
3148 */
3149 if (mss) {
3150 u8 hdr_len;
3151 max_per_txd = min(mss << 2, max_per_txd);
3152 max_txd_pwr = fls(max_per_txd) - 1;
3153
3154 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3155 if (skb->data_len && hdr_len == len) {
3156 switch (hw->mac_type) {
3157 unsigned int pull_size;
3158 case e1000_82544:
3159 /* Make sure we have room to chop off 4 bytes,
3160 * and that the end alignment will work out to
3161 * this hardware's requirements
3162 * NOTE: this is a TSO only workaround
3163 * if end byte alignment not correct move us
3164 * into the next dword
3165 */
3166 if ((unsigned long)(skb_tail_pointer(skb) - 1)
3167 & 4)
3168 break;
3169 /* fall through */
3170 pull_size = min((unsigned int)4, skb->data_len);
3171 if (!__pskb_pull_tail(skb, pull_size)) {
3172 e_err(drv, "__pskb_pull_tail "
3173 "failed.\n");
3174 dev_kfree_skb_any(skb);
3175 return NETDEV_TX_OK;
3176 }
3177 len = skb_headlen(skb);
3178 break;
3179 default:
3180 /* do nothing */
3181 break;
3182 }
3183 }
3184 }
3185
3186 /* reserve a descriptor for the offload context */
3187 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3188 count++;
3189 count++;
3190
3191 /* Controller Erratum workaround */
3192 if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3193 count++;
3194
3195 count += TXD_USE_COUNT(len, max_txd_pwr);
3196
3197 if (adapter->pcix_82544)
3198 count++;
3199
3200 /* work-around for errata 10 and it applies to all controllers
3201 * in PCI-X mode, so add one more descriptor to the count
3202 */
3203 if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
3204 (len > 2015)))
3205 count++;
3206
3207 nr_frags = skb_shinfo(skb)->nr_frags;
3208 for (f = 0; f < nr_frags; f++)
3209 count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->frags[f]),
3210 max_txd_pwr);
3211 if (adapter->pcix_82544)
3212 count += nr_frags;
3213
3214 /* need: count + 2 desc gap to keep tail from touching
3215 * head, otherwise try next time
3216 */
3217 if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2)))
3218 return NETDEV_TX_BUSY;
3219
3220 if (unlikely((hw->mac_type == e1000_82547) &&
3221 (e1000_82547_fifo_workaround(adapter, skb)))) {
3222 netif_stop_queue(netdev);
3223 if (!test_bit(__E1000_DOWN, &adapter->flags))
3224 schedule_delayed_work(&adapter->fifo_stall_task, 1);
3225 return NETDEV_TX_BUSY;
3226 }
3227
3228 if (skb_vlan_tag_present(skb)) {
3229 tx_flags |= E1000_TX_FLAGS_VLAN;
3230 tx_flags |= (skb_vlan_tag_get(skb) <<
3231 E1000_TX_FLAGS_VLAN_SHIFT);
3232 }
3233
3234 first = tx_ring->next_to_use;
3235
3236 tso = e1000_tso(adapter, tx_ring, skb, protocol);
3237 if (tso < 0) {
3238 dev_kfree_skb_any(skb);
3239 return NETDEV_TX_OK;
3240 }
3241
3242 if (likely(tso)) {
3243 if (likely(hw->mac_type != e1000_82544))
3244 tx_ring->last_tx_tso = true;
3245 tx_flags |= E1000_TX_FLAGS_TSO;
3246 } else if (likely(e1000_tx_csum(adapter, tx_ring, skb, protocol)))
3247 tx_flags |= E1000_TX_FLAGS_CSUM;
3248
3249 if (protocol == htons(ETH_P_IP))
3250 tx_flags |= E1000_TX_FLAGS_IPV4;
3251
3252 if (unlikely(skb->no_fcs))
3253 tx_flags |= E1000_TX_FLAGS_NO_FCS;
3254
3255 count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd,
3256 nr_frags, mss);
3257
3258 if (count) {
3259 /* The descriptors needed is higher than other Intel drivers
3260 * due to a number of workarounds. The breakdown is below:
3261 * Data descriptors: MAX_SKB_FRAGS + 1
3262 * Context Descriptor: 1
3263 * Keep head from touching tail: 2
3264 * Workarounds: 3
3265 */
3266 int desc_needed = MAX_SKB_FRAGS + 7;
3267
3268 netdev_sent_queue(netdev, skb->len);
3269 skb_tx_timestamp(skb);
3270
3271 e1000_tx_queue(adapter, tx_ring, tx_flags, count);
3272
3273 /* 82544 potentially requires twice as many data descriptors
3274 * in order to guarantee buffers don't end on evenly-aligned
3275 * dwords
3276 */
3277 if (adapter->pcix_82544)
3278 desc_needed += MAX_SKB_FRAGS + 1;
3279
3280 /* Make sure there is space in the ring for the next send. */
3281 e1000_maybe_stop_tx(netdev, tx_ring, desc_needed);
3282
3283 if (!skb->xmit_more ||
3284 netif_xmit_stopped(netdev_get_tx_queue(netdev, 0))) {
3285 writel(tx_ring->next_to_use, hw->hw_addr + tx_ring->tdt);
3286 /* we need this if more than one processor can write to
3287 * our tail at a time, it synchronizes IO on IA64/Altix
3288 * systems
3289 */
3290 mmiowb();
3291 }
3292 } else {
3293 dev_kfree_skb_any(skb);
3294 tx_ring->buffer_info[first].time_stamp = 0;
3295 tx_ring->next_to_use = first;
3296 }
3297
3298 return NETDEV_TX_OK;
3299}
3300
3301#define NUM_REGS 38 /* 1 based count */
3302static void e1000_regdump(struct e1000_adapter *adapter)
3303{
3304 struct e1000_hw *hw = &adapter->hw;
3305 u32 regs[NUM_REGS];
3306 u32 *regs_buff = regs;
3307 int i = 0;
3308
3309 static const char * const reg_name[] = {
3310 "CTRL", "STATUS",
3311 "RCTL", "RDLEN", "RDH", "RDT", "RDTR",
3312 "TCTL", "TDBAL", "TDBAH", "TDLEN", "TDH", "TDT",
3313 "TIDV", "TXDCTL", "TADV", "TARC0",
3314 "TDBAL1", "TDBAH1", "TDLEN1", "TDH1", "TDT1",
3315 "TXDCTL1", "TARC1",
3316 "CTRL_EXT", "ERT", "RDBAL", "RDBAH",
3317 "TDFH", "TDFT", "TDFHS", "TDFTS", "TDFPC",
3318 "RDFH", "RDFT", "RDFHS", "RDFTS", "RDFPC"
3319 };
3320
3321 regs_buff[0] = er32(CTRL);
3322 regs_buff[1] = er32(STATUS);
3323
3324 regs_buff[2] = er32(RCTL);
3325 regs_buff[3] = er32(RDLEN);
3326 regs_buff[4] = er32(RDH);
3327 regs_buff[5] = er32(RDT);
3328 regs_buff[6] = er32(RDTR);
3329
3330 regs_buff[7] = er32(TCTL);
3331 regs_buff[8] = er32(TDBAL);
3332 regs_buff[9] = er32(TDBAH);
3333 regs_buff[10] = er32(TDLEN);
3334 regs_buff[11] = er32(TDH);
3335 regs_buff[12] = er32(TDT);
3336 regs_buff[13] = er32(TIDV);
3337 regs_buff[14] = er32(TXDCTL);
3338 regs_buff[15] = er32(TADV);
3339 regs_buff[16] = er32(TARC0);
3340
3341 regs_buff[17] = er32(TDBAL1);
3342 regs_buff[18] = er32(TDBAH1);
3343 regs_buff[19] = er32(TDLEN1);
3344 regs_buff[20] = er32(TDH1);
3345 regs_buff[21] = er32(TDT1);
3346 regs_buff[22] = er32(TXDCTL1);
3347 regs_buff[23] = er32(TARC1);
3348 regs_buff[24] = er32(CTRL_EXT);
3349 regs_buff[25] = er32(ERT);
3350 regs_buff[26] = er32(RDBAL0);
3351 regs_buff[27] = er32(RDBAH0);
3352 regs_buff[28] = er32(TDFH);
3353 regs_buff[29] = er32(TDFT);
3354 regs_buff[30] = er32(TDFHS);
3355 regs_buff[31] = er32(TDFTS);
3356 regs_buff[32] = er32(TDFPC);
3357 regs_buff[33] = er32(RDFH);
3358 regs_buff[34] = er32(RDFT);
3359 regs_buff[35] = er32(RDFHS);
3360 regs_buff[36] = er32(RDFTS);
3361 regs_buff[37] = er32(RDFPC);
3362
3363 pr_info("Register dump\n");
3364 for (i = 0; i < NUM_REGS; i++)
3365 pr_info("%-15s %08x\n", reg_name[i], regs_buff[i]);
3366}
3367
3368/*
3369 * e1000_dump: Print registers, tx ring and rx ring
3370 */
3371static void e1000_dump(struct e1000_adapter *adapter)
3372{
3373 /* this code doesn't handle multiple rings */
3374 struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3375 struct e1000_rx_ring *rx_ring = adapter->rx_ring;
3376 int i;
3377
3378 if (!netif_msg_hw(adapter))
3379 return;
3380
3381 /* Print Registers */
3382 e1000_regdump(adapter);
3383
3384 /* transmit dump */
3385 pr_info("TX Desc ring0 dump\n");
3386
3387 /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
3388 *
3389 * Legacy Transmit Descriptor
3390 * +--------------------------------------------------------------+
3391 * 0 | Buffer Address [63:0] (Reserved on Write Back) |
3392 * +--------------------------------------------------------------+
3393 * 8 | Special | CSS | Status | CMD | CSO | Length |
3394 * +--------------------------------------------------------------+
3395 * 63 48 47 36 35 32 31 24 23 16 15 0
3396 *
3397 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
3398 * 63 48 47 40 39 32 31 16 15 8 7 0
3399 * +----------------------------------------------------------------+
3400 * 0 | TUCSE | TUCS0 | TUCSS | IPCSE | IPCS0 | IPCSS |
3401 * +----------------------------------------------------------------+
3402 * 8 | MSS | HDRLEN | RSV | STA | TUCMD | DTYP | PAYLEN |
3403 * +----------------------------------------------------------------+
3404 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
3405 *
3406 * Extended Data Descriptor (DTYP=0x1)
3407 * +----------------------------------------------------------------+
3408 * 0 | Buffer Address [63:0] |
3409 * +----------------------------------------------------------------+
3410 * 8 | VLAN tag | POPTS | Rsvd | Status | Command | DTYP | DTALEN |
3411 * +----------------------------------------------------------------+
3412 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
3413 */
3414 pr_info("Tc[desc] [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma ] leng ntw timestmp bi->skb\n");
3415 pr_info("Td[desc] [address 63:0 ] [VlaPoRSCm1Dlen] [bi->dma ] leng ntw timestmp bi->skb\n");
3416
3417 if (!netif_msg_tx_done(adapter))
3418 goto rx_ring_summary;
3419
3420 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
3421 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
3422 struct e1000_tx_buffer *buffer_info = &tx_ring->buffer_info[i];
3423 struct my_u { __le64 a; __le64 b; };
3424 struct my_u *u = (struct my_u *)tx_desc;
3425 const char *type;
3426
3427 if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
3428 type = "NTC/U";
3429 else if (i == tx_ring->next_to_use)
3430 type = "NTU";
3431 else if (i == tx_ring->next_to_clean)
3432 type = "NTC";
3433 else
3434 type = "";
3435
3436 pr_info("T%c[0x%03X] %016llX %016llX %016llX %04X %3X %016llX %p %s\n",
3437 ((le64_to_cpu(u->b) & (1<<20)) ? 'd' : 'c'), i,
3438 le64_to_cpu(u->a), le64_to_cpu(u->b),
3439 (u64)buffer_info->dma, buffer_info->length,
3440 buffer_info->next_to_watch,
3441 (u64)buffer_info->time_stamp, buffer_info->skb, type);
3442 }
3443
3444rx_ring_summary:
3445 /* receive dump */
3446 pr_info("\nRX Desc ring dump\n");
3447
3448 /* Legacy Receive Descriptor Format
3449 *
3450 * +-----------------------------------------------------+
3451 * | Buffer Address [63:0] |
3452 * +-----------------------------------------------------+
3453 * | VLAN Tag | Errors | Status 0 | Packet csum | Length |
3454 * +-----------------------------------------------------+
3455 * 63 48 47 40 39 32 31 16 15 0
3456 */
3457 pr_info("R[desc] [address 63:0 ] [vl er S cks ln] [bi->dma ] [bi->skb]\n");
3458
3459 if (!netif_msg_rx_status(adapter))
3460 goto exit;
3461
3462 for (i = 0; rx_ring->desc && (i < rx_ring->count); i++) {
3463 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
3464 struct e1000_rx_buffer *buffer_info = &rx_ring->buffer_info[i];
3465 struct my_u { __le64 a; __le64 b; };
3466 struct my_u *u = (struct my_u *)rx_desc;
3467 const char *type;
3468
3469 if (i == rx_ring->next_to_use)
3470 type = "NTU";
3471 else if (i == rx_ring->next_to_clean)
3472 type = "NTC";
3473 else
3474 type = "";
3475
3476 pr_info("R[0x%03X] %016llX %016llX %016llX %p %s\n",
3477 i, le64_to_cpu(u->a), le64_to_cpu(u->b),
3478 (u64)buffer_info->dma, buffer_info->rxbuf.data, type);
3479 } /* for */
3480
3481 /* dump the descriptor caches */
3482 /* rx */
3483 pr_info("Rx descriptor cache in 64bit format\n");
3484 for (i = 0x6000; i <= 0x63FF ; i += 0x10) {
3485 pr_info("R%04X: %08X|%08X %08X|%08X\n",
3486 i,
3487 readl(adapter->hw.hw_addr + i+4),
3488 readl(adapter->hw.hw_addr + i),
3489 readl(adapter->hw.hw_addr + i+12),
3490 readl(adapter->hw.hw_addr + i+8));
3491 }
3492 /* tx */
3493 pr_info("Tx descriptor cache in 64bit format\n");
3494 for (i = 0x7000; i <= 0x73FF ; i += 0x10) {
3495 pr_info("T%04X: %08X|%08X %08X|%08X\n",
3496 i,
3497 readl(adapter->hw.hw_addr + i+4),
3498 readl(adapter->hw.hw_addr + i),
3499 readl(adapter->hw.hw_addr + i+12),
3500 readl(adapter->hw.hw_addr + i+8));
3501 }
3502exit:
3503 return;
3504}
3505
3506/**
3507 * e1000_tx_timeout - Respond to a Tx Hang
3508 * @netdev: network interface device structure
3509 **/
3510static void e1000_tx_timeout(struct net_device *netdev)
3511{
3512 struct e1000_adapter *adapter = netdev_priv(netdev);
3513
3514 /* Do the reset outside of interrupt context */
3515 adapter->tx_timeout_count++;
3516 schedule_work(&adapter->reset_task);
3517}
3518
3519static void e1000_reset_task(struct work_struct *work)
3520{
3521 struct e1000_adapter *adapter =
3522 container_of(work, struct e1000_adapter, reset_task);
3523
3524 e_err(drv, "Reset adapter\n");
3525 e1000_reinit_locked(adapter);
3526}
3527
3528/**
3529 * e1000_get_stats - Get System Network Statistics
3530 * @netdev: network interface device structure
3531 *
3532 * Returns the address of the device statistics structure.
3533 * The statistics are actually updated from the watchdog.
3534 **/
3535static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
3536{
3537 /* only return the current stats */
3538 return &netdev->stats;
3539}
3540
3541/**
3542 * e1000_change_mtu - Change the Maximum Transfer Unit
3543 * @netdev: network interface device structure
3544 * @new_mtu: new value for maximum frame size
3545 *
3546 * Returns 0 on success, negative on failure
3547 **/
3548static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
3549{
3550 struct e1000_adapter *adapter = netdev_priv(netdev);
3551 struct e1000_hw *hw = &adapter->hw;
3552 int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
3553
3554 if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
3555 (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3556 e_err(probe, "Invalid MTU setting\n");
3557 return -EINVAL;
3558 }
3559
3560 /* Adapter-specific max frame size limits. */
3561 switch (hw->mac_type) {
3562 case e1000_undefined ... e1000_82542_rev2_1:
3563 if (max_frame > (ETH_FRAME_LEN + ETH_FCS_LEN)) {
3564 e_err(probe, "Jumbo Frames not supported.\n");
3565 return -EINVAL;
3566 }
3567 break;
3568 default:
3569 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3570 break;
3571 }
3572
3573 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
3574 msleep(1);
3575 /* e1000_down has a dependency on max_frame_size */
3576 hw->max_frame_size = max_frame;
3577 if (netif_running(netdev)) {
3578 /* prevent buffers from being reallocated */
3579 adapter->alloc_rx_buf = e1000_alloc_dummy_rx_buffers;
3580 e1000_down(adapter);
3581 }
3582
3583 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3584 * means we reserve 2 more, this pushes us to allocate from the next
3585 * larger slab size.
3586 * i.e. RXBUFFER_2048 --> size-4096 slab
3587 * however with the new *_jumbo_rx* routines, jumbo receives will use
3588 * fragmented skbs
3589 */
3590
3591 if (max_frame <= E1000_RXBUFFER_2048)
3592 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3593 else
3594#if (PAGE_SIZE >= E1000_RXBUFFER_16384)
3595 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3596#elif (PAGE_SIZE >= E1000_RXBUFFER_4096)
3597 adapter->rx_buffer_len = PAGE_SIZE;
3598#endif
3599
3600 /* adjust allocation if LPE protects us, and we aren't using SBP */
3601 if (!hw->tbi_compatibility_on &&
3602 ((max_frame == (ETH_FRAME_LEN + ETH_FCS_LEN)) ||
3603 (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3604 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3605
3606 pr_info("%s changing MTU from %d to %d\n",
3607 netdev->name, netdev->mtu, new_mtu);
3608 netdev->mtu = new_mtu;
3609
3610 if (netif_running(netdev))
3611 e1000_up(adapter);
3612 else
3613 e1000_reset(adapter);
3614
3615 clear_bit(__E1000_RESETTING, &adapter->flags);
3616
3617 return 0;
3618}
3619
3620/**
3621 * e1000_update_stats - Update the board statistics counters
3622 * @adapter: board private structure
3623 **/
3624void e1000_update_stats(struct e1000_adapter *adapter)
3625{
3626 struct net_device *netdev = adapter->netdev;
3627 struct e1000_hw *hw = &adapter->hw;
3628 struct pci_dev *pdev = adapter->pdev;
3629 unsigned long flags;
3630 u16 phy_tmp;
3631
3632#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3633
3634 /* Prevent stats update while adapter is being reset, or if the pci
3635 * connection is down.
3636 */
3637 if (adapter->link_speed == 0)
3638 return;
3639 if (pci_channel_offline(pdev))
3640 return;
3641
3642 spin_lock_irqsave(&adapter->stats_lock, flags);
3643
3644 /* these counters are modified from e1000_tbi_adjust_stats,
3645 * called from the interrupt context, so they must only
3646 * be written while holding adapter->stats_lock
3647 */
3648
3649 adapter->stats.crcerrs += er32(CRCERRS);
3650 adapter->stats.gprc += er32(GPRC);
3651 adapter->stats.gorcl += er32(GORCL);
3652 adapter->stats.gorch += er32(GORCH);
3653 adapter->stats.bprc += er32(BPRC);
3654 adapter->stats.mprc += er32(MPRC);
3655 adapter->stats.roc += er32(ROC);
3656
3657 adapter->stats.prc64 += er32(PRC64);
3658 adapter->stats.prc127 += er32(PRC127);
3659 adapter->stats.prc255 += er32(PRC255);
3660 adapter->stats.prc511 += er32(PRC511);
3661 adapter->stats.prc1023 += er32(PRC1023);
3662 adapter->stats.prc1522 += er32(PRC1522);
3663
3664 adapter->stats.symerrs += er32(SYMERRS);
3665 adapter->stats.mpc += er32(MPC);
3666 adapter->stats.scc += er32(SCC);
3667 adapter->stats.ecol += er32(ECOL);
3668 adapter->stats.mcc += er32(MCC);
3669 adapter->stats.latecol += er32(LATECOL);
3670 adapter->stats.dc += er32(DC);
3671 adapter->stats.sec += er32(SEC);
3672 adapter->stats.rlec += er32(RLEC);
3673 adapter->stats.xonrxc += er32(XONRXC);
3674 adapter->stats.xontxc += er32(XONTXC);
3675 adapter->stats.xoffrxc += er32(XOFFRXC);
3676 adapter->stats.xofftxc += er32(XOFFTXC);
3677 adapter->stats.fcruc += er32(FCRUC);
3678 adapter->stats.gptc += er32(GPTC);
3679 adapter->stats.gotcl += er32(GOTCL);
3680 adapter->stats.gotch += er32(GOTCH);
3681 adapter->stats.rnbc += er32(RNBC);
3682 adapter->stats.ruc += er32(RUC);
3683 adapter->stats.rfc += er32(RFC);
3684 adapter->stats.rjc += er32(RJC);
3685 adapter->stats.torl += er32(TORL);
3686 adapter->stats.torh += er32(TORH);
3687 adapter->stats.totl += er32(TOTL);
3688 adapter->stats.toth += er32(TOTH);
3689 adapter->stats.tpr += er32(TPR);
3690
3691 adapter->stats.ptc64 += er32(PTC64);
3692 adapter->stats.ptc127 += er32(PTC127);
3693 adapter->stats.ptc255 += er32(PTC255);
3694 adapter->stats.ptc511 += er32(PTC511);
3695 adapter->stats.ptc1023 += er32(PTC1023);
3696 adapter->stats.ptc1522 += er32(PTC1522);
3697
3698 adapter->stats.mptc += er32(MPTC);
3699 adapter->stats.bptc += er32(BPTC);
3700
3701 /* used for adaptive IFS */
3702
3703 hw->tx_packet_delta = er32(TPT);
3704 adapter->stats.tpt += hw->tx_packet_delta;
3705 hw->collision_delta = er32(COLC);
3706 adapter->stats.colc += hw->collision_delta;
3707
3708 if (hw->mac_type >= e1000_82543) {
3709 adapter->stats.algnerrc += er32(ALGNERRC);
3710 adapter->stats.rxerrc += er32(RXERRC);
3711 adapter->stats.tncrs += er32(TNCRS);
3712 adapter->stats.cexterr += er32(CEXTERR);
3713 adapter->stats.tsctc += er32(TSCTC);
3714 adapter->stats.tsctfc += er32(TSCTFC);
3715 }
3716
3717 /* Fill out the OS statistics structure */
3718 netdev->stats.multicast = adapter->stats.mprc;
3719 netdev->stats.collisions = adapter->stats.colc;
3720
3721 /* Rx Errors */
3722
3723 /* RLEC on some newer hardware can be incorrect so build
3724 * our own version based on RUC and ROC
3725 */
3726 netdev->stats.rx_errors = adapter->stats.rxerrc +
3727 adapter->stats.crcerrs + adapter->stats.algnerrc +
3728 adapter->stats.ruc + adapter->stats.roc +
3729 adapter->stats.cexterr;
3730 adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3731 netdev->stats.rx_length_errors = adapter->stats.rlerrc;
3732 netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
3733 netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
3734 netdev->stats.rx_missed_errors = adapter->stats.mpc;
3735
3736 /* Tx Errors */
3737 adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3738 netdev->stats.tx_errors = adapter->stats.txerrc;
3739 netdev->stats.tx_aborted_errors = adapter->stats.ecol;
3740 netdev->stats.tx_window_errors = adapter->stats.latecol;
3741 netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
3742 if (hw->bad_tx_carr_stats_fd &&
3743 adapter->link_duplex == FULL_DUPLEX) {
3744 netdev->stats.tx_carrier_errors = 0;
3745 adapter->stats.tncrs = 0;
3746 }
3747
3748 /* Tx Dropped needs to be maintained elsewhere */
3749
3750 /* Phy Stats */
3751 if (hw->media_type == e1000_media_type_copper) {
3752 if ((adapter->link_speed == SPEED_1000) &&
3753 (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3754 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3755 adapter->phy_stats.idle_errors += phy_tmp;
3756 }
3757
3758 if ((hw->mac_type <= e1000_82546) &&
3759 (hw->phy_type == e1000_phy_m88) &&
3760 !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3761 adapter->phy_stats.receive_errors += phy_tmp;
3762 }
3763
3764 /* Management Stats */
3765 if (hw->has_smbus) {
3766 adapter->stats.mgptc += er32(MGTPTC);
3767 adapter->stats.mgprc += er32(MGTPRC);
3768 adapter->stats.mgpdc += er32(MGTPDC);
3769 }
3770
3771 spin_unlock_irqrestore(&adapter->stats_lock, flags);
3772}
3773
3774/**
3775 * e1000_intr - Interrupt Handler
3776 * @irq: interrupt number
3777 * @data: pointer to a network interface device structure
3778 **/
3779static irqreturn_t e1000_intr(int irq, void *data)
3780{
3781 struct net_device *netdev = data;
3782 struct e1000_adapter *adapter = netdev_priv(netdev);
3783 struct e1000_hw *hw = &adapter->hw;
3784 u32 icr = er32(ICR);
3785
3786 if (unlikely((!icr)))
3787 return IRQ_NONE; /* Not our interrupt */
3788
3789 /* we might have caused the interrupt, but the above
3790 * read cleared it, and just in case the driver is
3791 * down there is nothing to do so return handled
3792 */
3793 if (unlikely(test_bit(__E1000_DOWN, &adapter->flags)))
3794 return IRQ_HANDLED;
3795
3796 if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3797 hw->get_link_status = 1;
3798 /* guard against interrupt when we're going down */
3799 if (!test_bit(__E1000_DOWN, &adapter->flags))
3800 schedule_delayed_work(&adapter->watchdog_task, 1);
3801 }
3802
3803 /* disable interrupts, without the synchronize_irq bit */
3804 ew32(IMC, ~0);
3805 E1000_WRITE_FLUSH();
3806
3807 if (likely(napi_schedule_prep(&adapter->napi))) {
3808 adapter->total_tx_bytes = 0;
3809 adapter->total_tx_packets = 0;
3810 adapter->total_rx_bytes = 0;
3811 adapter->total_rx_packets = 0;
3812 __napi_schedule(&adapter->napi);
3813 } else {
3814 /* this really should not happen! if it does it is basically a
3815 * bug, but not a hard error, so enable ints and continue
3816 */
3817 if (!test_bit(__E1000_DOWN, &adapter->flags))
3818 e1000_irq_enable(adapter);
3819 }
3820
3821 return IRQ_HANDLED;
3822}
3823
3824/**
3825 * e1000_clean - NAPI Rx polling callback
3826 * @adapter: board private structure
3827 **/
3828static int e1000_clean(struct napi_struct *napi, int budget)
3829{
3830 struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
3831 napi);
3832 int tx_clean_complete = 0, work_done = 0;
3833
3834 tx_clean_complete = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]);
3835
3836 adapter->clean_rx(adapter, &adapter->rx_ring[0], &work_done, budget);
3837
3838 if (!tx_clean_complete)
3839 work_done = budget;
3840
3841 /* If budget not fully consumed, exit the polling mode */
3842 if (work_done < budget) {
3843 if (likely(adapter->itr_setting & 3))
3844 e1000_set_itr(adapter);
3845 napi_complete_done(napi, work_done);
3846 if (!test_bit(__E1000_DOWN, &adapter->flags))
3847 e1000_irq_enable(adapter);
3848 }
3849
3850 return work_done;
3851}
3852
3853/**
3854 * e1000_clean_tx_irq - Reclaim resources after transmit completes
3855 * @adapter: board private structure
3856 **/
3857static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
3858 struct e1000_tx_ring *tx_ring)
3859{
3860 struct e1000_hw *hw = &adapter->hw;
3861 struct net_device *netdev = adapter->netdev;
3862 struct e1000_tx_desc *tx_desc, *eop_desc;
3863 struct e1000_tx_buffer *buffer_info;
3864 unsigned int i, eop;
3865 unsigned int count = 0;
3866 unsigned int total_tx_bytes = 0, total_tx_packets = 0;
3867 unsigned int bytes_compl = 0, pkts_compl = 0;
3868
3869 i = tx_ring->next_to_clean;
3870 eop = tx_ring->buffer_info[i].next_to_watch;
3871 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3872
3873 while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
3874 (count < tx_ring->count)) {
3875 bool cleaned = false;
3876 dma_rmb(); /* read buffer_info after eop_desc */
3877 for ( ; !cleaned; count++) {
3878 tx_desc = E1000_TX_DESC(*tx_ring, i);
3879 buffer_info = &tx_ring->buffer_info[i];
3880 cleaned = (i == eop);
3881
3882 if (cleaned) {
3883 total_tx_packets += buffer_info->segs;
3884 total_tx_bytes += buffer_info->bytecount;
3885 if (buffer_info->skb) {
3886 bytes_compl += buffer_info->skb->len;
3887 pkts_compl++;
3888 }
3889
3890 }
3891 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
3892 tx_desc->upper.data = 0;
3893
3894 if (unlikely(++i == tx_ring->count))
3895 i = 0;
3896 }
3897
3898 eop = tx_ring->buffer_info[i].next_to_watch;
3899 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3900 }
3901
3902 /* Synchronize with E1000_DESC_UNUSED called from e1000_xmit_frame,
3903 * which will reuse the cleaned buffers.
3904 */
3905 smp_store_release(&tx_ring->next_to_clean, i);
3906
3907 netdev_completed_queue(netdev, pkts_compl, bytes_compl);
3908
3909#define TX_WAKE_THRESHOLD 32
3910 if (unlikely(count && netif_carrier_ok(netdev) &&
3911 E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3912 /* Make sure that anybody stopping the queue after this
3913 * sees the new next_to_clean.
3914 */
3915 smp_mb();
3916
3917 if (netif_queue_stopped(netdev) &&
3918 !(test_bit(__E1000_DOWN, &adapter->flags))) {
3919 netif_wake_queue(netdev);
3920 ++adapter->restart_queue;
3921 }
3922 }
3923
3924 if (adapter->detect_tx_hung) {
3925 /* Detect a transmit hang in hardware, this serializes the
3926 * check with the clearing of time_stamp and movement of i
3927 */
3928 adapter->detect_tx_hung = false;
3929 if (tx_ring->buffer_info[eop].time_stamp &&
3930 time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3931 (adapter->tx_timeout_factor * HZ)) &&
3932 !(er32(STATUS) & E1000_STATUS_TXOFF)) {
3933
3934 /* detected Tx unit hang */
3935 e_err(drv, "Detected Tx Unit Hang\n"
3936 " Tx Queue <%lu>\n"
3937 " TDH <%x>\n"
3938 " TDT <%x>\n"
3939 " next_to_use <%x>\n"
3940 " next_to_clean <%x>\n"
3941 "buffer_info[next_to_clean]\n"
3942 " time_stamp <%lx>\n"
3943 " next_to_watch <%x>\n"
3944 " jiffies <%lx>\n"
3945 " next_to_watch.status <%x>\n",
3946 (unsigned long)(tx_ring - adapter->tx_ring),
3947 readl(hw->hw_addr + tx_ring->tdh),
3948 readl(hw->hw_addr + tx_ring->tdt),
3949 tx_ring->next_to_use,
3950 tx_ring->next_to_clean,
3951 tx_ring->buffer_info[eop].time_stamp,
3952 eop,
3953 jiffies,
3954 eop_desc->upper.fields.status);
3955 e1000_dump(adapter);
3956 netif_stop_queue(netdev);
3957 }
3958 }
3959 adapter->total_tx_bytes += total_tx_bytes;
3960 adapter->total_tx_packets += total_tx_packets;
3961 netdev->stats.tx_bytes += total_tx_bytes;
3962 netdev->stats.tx_packets += total_tx_packets;
3963 return count < tx_ring->count;
3964}
3965
3966/**
3967 * e1000_rx_checksum - Receive Checksum Offload for 82543
3968 * @adapter: board private structure
3969 * @status_err: receive descriptor status and error fields
3970 * @csum: receive descriptor csum field
3971 * @sk_buff: socket buffer with received data
3972 **/
3973static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
3974 u32 csum, struct sk_buff *skb)
3975{
3976 struct e1000_hw *hw = &adapter->hw;
3977 u16 status = (u16)status_err;
3978 u8 errors = (u8)(status_err >> 24);
3979
3980 skb_checksum_none_assert(skb);
3981
3982 /* 82543 or newer only */
3983 if (unlikely(hw->mac_type < e1000_82543))
3984 return;
3985 /* Ignore Checksum bit is set */
3986 if (unlikely(status & E1000_RXD_STAT_IXSM))
3987 return;
3988 /* TCP/UDP checksum error bit is set */
3989 if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3990 /* let the stack verify checksum errors */
3991 adapter->hw_csum_err++;
3992 return;
3993 }
3994 /* TCP/UDP Checksum has not been calculated */
3995 if (!(status & E1000_RXD_STAT_TCPCS))
3996 return;
3997
3998 /* It must be a TCP or UDP packet with a valid checksum */
3999 if (likely(status & E1000_RXD_STAT_TCPCS)) {
4000 /* TCP checksum is good */
4001 skb->ip_summed = CHECKSUM_UNNECESSARY;
4002 }
4003 adapter->hw_csum_good++;
4004}
4005
4006/**
4007 * e1000_consume_page - helper function for jumbo Rx path
4008 **/
4009static void e1000_consume_page(struct e1000_rx_buffer *bi, struct sk_buff *skb,
4010 u16 length)
4011{
4012 bi->rxbuf.page = NULL;
4013 skb->len += length;
4014 skb->data_len += length;
4015 skb->truesize += PAGE_SIZE;
4016}
4017
4018/**
4019 * e1000_receive_skb - helper function to handle rx indications
4020 * @adapter: board private structure
4021 * @status: descriptor status field as written by hardware
4022 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
4023 * @skb: pointer to sk_buff to be indicated to stack
4024 */
4025static void e1000_receive_skb(struct e1000_adapter *adapter, u8 status,
4026 __le16 vlan, struct sk_buff *skb)
4027{
4028 skb->protocol = eth_type_trans(skb, adapter->netdev);
4029
4030 if (status & E1000_RXD_STAT_VP) {
4031 u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
4032
4033 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
4034 }
4035 napi_gro_receive(&adapter->napi, skb);
4036}
4037
4038/**
4039 * e1000_tbi_adjust_stats
4040 * @hw: Struct containing variables accessed by shared code
4041 * @frame_len: The length of the frame in question
4042 * @mac_addr: The Ethernet destination address of the frame in question
4043 *
4044 * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT
4045 */
4046static void e1000_tbi_adjust_stats(struct e1000_hw *hw,
4047 struct e1000_hw_stats *stats,
4048 u32 frame_len, const u8 *mac_addr)
4049{
4050 u64 carry_bit;
4051
4052 /* First adjust the frame length. */
4053 frame_len--;
4054 /* We need to adjust the statistics counters, since the hardware
4055 * counters overcount this packet as a CRC error and undercount
4056 * the packet as a good packet
4057 */
4058 /* This packet should not be counted as a CRC error. */
4059 stats->crcerrs--;
4060 /* This packet does count as a Good Packet Received. */
4061 stats->gprc++;
4062
4063 /* Adjust the Good Octets received counters */
4064 carry_bit = 0x80000000 & stats->gorcl;
4065 stats->gorcl += frame_len;
4066 /* If the high bit of Gorcl (the low 32 bits of the Good Octets
4067 * Received Count) was one before the addition,
4068 * AND it is zero after, then we lost the carry out,
4069 * need to add one to Gorch (Good Octets Received Count High).
4070 * This could be simplified if all environments supported
4071 * 64-bit integers.
4072 */
4073 if (carry_bit && ((stats->gorcl & 0x80000000) == 0))
4074 stats->gorch++;
4075 /* Is this a broadcast or multicast? Check broadcast first,
4076 * since the test for a multicast frame will test positive on
4077 * a broadcast frame.
4078 */
4079 if (is_broadcast_ether_addr(mac_addr))
4080 stats->bprc++;
4081 else if (is_multicast_ether_addr(mac_addr))
4082 stats->mprc++;
4083
4084 if (frame_len == hw->max_frame_size) {
4085 /* In this case, the hardware has overcounted the number of
4086 * oversize frames.
4087 */
4088 if (stats->roc > 0)
4089 stats->roc--;
4090 }
4091
4092 /* Adjust the bin counters when the extra byte put the frame in the
4093 * wrong bin. Remember that the frame_len was adjusted above.
4094 */
4095 if (frame_len == 64) {
4096 stats->prc64++;
4097 stats->prc127--;
4098 } else if (frame_len == 127) {
4099 stats->prc127++;
4100 stats->prc255--;
4101 } else if (frame_len == 255) {
4102 stats->prc255++;
4103 stats->prc511--;
4104 } else if (frame_len == 511) {
4105 stats->prc511++;
4106 stats->prc1023--;
4107 } else if (frame_len == 1023) {
4108 stats->prc1023++;
4109 stats->prc1522--;
4110 } else if (frame_len == 1522) {
4111 stats->prc1522++;
4112 }
4113}
4114
4115static bool e1000_tbi_should_accept(struct e1000_adapter *adapter,
4116 u8 status, u8 errors,
4117 u32 length, const u8 *data)
4118{
4119 struct e1000_hw *hw = &adapter->hw;
4120 u8 last_byte = *(data + length - 1);
4121
4122 if (TBI_ACCEPT(hw, status, errors, length, last_byte)) {
4123 unsigned long irq_flags;
4124
4125 spin_lock_irqsave(&adapter->stats_lock, irq_flags);
4126 e1000_tbi_adjust_stats(hw, &adapter->stats, length, data);
4127 spin_unlock_irqrestore(&adapter->stats_lock, irq_flags);
4128
4129 return true;
4130 }
4131
4132 return false;
4133}
4134
4135static struct sk_buff *e1000_alloc_rx_skb(struct e1000_adapter *adapter,
4136 unsigned int bufsz)
4137{
4138 struct sk_buff *skb = napi_alloc_skb(&adapter->napi, bufsz);
4139
4140 if (unlikely(!skb))
4141 adapter->alloc_rx_buff_failed++;
4142 return skb;
4143}
4144
4145/**
4146 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
4147 * @adapter: board private structure
4148 * @rx_ring: ring to clean
4149 * @work_done: amount of napi work completed this call
4150 * @work_to_do: max amount of work allowed for this call to do
4151 *
4152 * the return value indicates whether actual cleaning was done, there
4153 * is no guarantee that everything was cleaned
4154 */
4155static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
4156 struct e1000_rx_ring *rx_ring,
4157 int *work_done, int work_to_do)
4158{
4159 struct net_device *netdev = adapter->netdev;
4160 struct pci_dev *pdev = adapter->pdev;
4161 struct e1000_rx_desc *rx_desc, *next_rxd;
4162 struct e1000_rx_buffer *buffer_info, *next_buffer;
4163 u32 length;
4164 unsigned int i;
4165 int cleaned_count = 0;
4166 bool cleaned = false;
4167 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
4168
4169 i = rx_ring->next_to_clean;
4170 rx_desc = E1000_RX_DESC(*rx_ring, i);
4171 buffer_info = &rx_ring->buffer_info[i];
4172
4173 while (rx_desc->status & E1000_RXD_STAT_DD) {
4174 struct sk_buff *skb;
4175 u8 status;
4176
4177 if (*work_done >= work_to_do)
4178 break;
4179 (*work_done)++;
4180 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
4181
4182 status = rx_desc->status;
4183
4184 if (++i == rx_ring->count)
4185 i = 0;
4186
4187 next_rxd = E1000_RX_DESC(*rx_ring, i);
4188 prefetch(next_rxd);
4189
4190 next_buffer = &rx_ring->buffer_info[i];
4191
4192 cleaned = true;
4193 cleaned_count++;
4194 dma_unmap_page(&pdev->dev, buffer_info->dma,
4195 adapter->rx_buffer_len, DMA_FROM_DEVICE);
4196 buffer_info->dma = 0;
4197
4198 length = le16_to_cpu(rx_desc->length);
4199
4200 /* errors is only valid for DD + EOP descriptors */
4201 if (unlikely((status & E1000_RXD_STAT_EOP) &&
4202 (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
4203 u8 *mapped = page_address(buffer_info->rxbuf.page);
4204
4205 if (e1000_tbi_should_accept(adapter, status,
4206 rx_desc->errors,
4207 length, mapped)) {
4208 length--;
4209 } else if (netdev->features & NETIF_F_RXALL) {
4210 goto process_skb;
4211 } else {
4212 /* an error means any chain goes out the window
4213 * too
4214 */
4215 if (rx_ring->rx_skb_top)
4216 dev_kfree_skb(rx_ring->rx_skb_top);
4217 rx_ring->rx_skb_top = NULL;
4218 goto next_desc;
4219 }
4220 }
4221
4222#define rxtop rx_ring->rx_skb_top
4223process_skb:
4224 if (!(status & E1000_RXD_STAT_EOP)) {
4225 /* this descriptor is only the beginning (or middle) */
4226 if (!rxtop) {
4227 /* this is the beginning of a chain */
4228 rxtop = napi_get_frags(&adapter->napi);
4229 if (!rxtop)
4230 break;
4231
4232 skb_fill_page_desc(rxtop, 0,
4233 buffer_info->rxbuf.page,
4234 0, length);
4235 } else {
4236 /* this is the middle of a chain */
4237 skb_fill_page_desc(rxtop,
4238 skb_shinfo(rxtop)->nr_frags,
4239 buffer_info->rxbuf.page, 0, length);
4240 }
4241 e1000_consume_page(buffer_info, rxtop, length);
4242 goto next_desc;
4243 } else {
4244 if (rxtop) {
4245 /* end of the chain */
4246 skb_fill_page_desc(rxtop,
4247 skb_shinfo(rxtop)->nr_frags,
4248 buffer_info->rxbuf.page, 0, length);
4249 skb = rxtop;
4250 rxtop = NULL;
4251 e1000_consume_page(buffer_info, skb, length);
4252 } else {
4253 struct page *p;
4254 /* no chain, got EOP, this buf is the packet
4255 * copybreak to save the put_page/alloc_page
4256 */
4257 p = buffer_info->rxbuf.page;
4258 if (length <= copybreak) {
4259 u8 *vaddr;
4260
4261 if (likely(!(netdev->features & NETIF_F_RXFCS)))
4262 length -= 4;
4263 skb = e1000_alloc_rx_skb(adapter,
4264 length);
4265 if (!skb)
4266 break;
4267
4268 vaddr = kmap_atomic(p);
4269 memcpy(skb_tail_pointer(skb), vaddr,
4270 length);
4271 kunmap_atomic(vaddr);
4272 /* re-use the page, so don't erase
4273 * buffer_info->rxbuf.page
4274 */
4275 skb_put(skb, length);
4276 e1000_rx_checksum(adapter,
4277 status | rx_desc->errors << 24,
4278 le16_to_cpu(rx_desc->csum), skb);
4279
4280 total_rx_bytes += skb->len;
4281 total_rx_packets++;
4282
4283 e1000_receive_skb(adapter, status,
4284 rx_desc->special, skb);
4285 goto next_desc;
4286 } else {
4287 skb = napi_get_frags(&adapter->napi);
4288 if (!skb) {
4289 adapter->alloc_rx_buff_failed++;
4290 break;
4291 }
4292 skb_fill_page_desc(skb, 0, p, 0,
4293 length);
4294 e1000_consume_page(buffer_info, skb,
4295 length);
4296 }
4297 }
4298 }
4299
4300 /* Receive Checksum Offload XXX recompute due to CRC strip? */
4301 e1000_rx_checksum(adapter,
4302 (u32)(status) |
4303 ((u32)(rx_desc->errors) << 24),
4304 le16_to_cpu(rx_desc->csum), skb);
4305
4306 total_rx_bytes += (skb->len - 4); /* don't count FCS */
4307 if (likely(!(netdev->features & NETIF_F_RXFCS)))
4308 pskb_trim(skb, skb->len - 4);
4309 total_rx_packets++;
4310
4311 if (status & E1000_RXD_STAT_VP) {
4312 __le16 vlan = rx_desc->special;
4313 u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
4314
4315 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
4316 }
4317
4318 napi_gro_frags(&adapter->napi);
4319
4320next_desc:
4321 rx_desc->status = 0;
4322
4323 /* return some buffers to hardware, one at a time is too slow */
4324 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4325 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4326 cleaned_count = 0;
4327 }
4328
4329 /* use prefetched values */
4330 rx_desc = next_rxd;
4331 buffer_info = next_buffer;
4332 }
4333 rx_ring->next_to_clean = i;
4334
4335 cleaned_count = E1000_DESC_UNUSED(rx_ring);
4336 if (cleaned_count)
4337 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4338
4339 adapter->total_rx_packets += total_rx_packets;
4340 adapter->total_rx_bytes += total_rx_bytes;
4341 netdev->stats.rx_bytes += total_rx_bytes;
4342 netdev->stats.rx_packets += total_rx_packets;
4343 return cleaned;
4344}
4345
4346/* this should improve performance for small packets with large amounts
4347 * of reassembly being done in the stack
4348 */
4349static struct sk_buff *e1000_copybreak(struct e1000_adapter *adapter,
4350 struct e1000_rx_buffer *buffer_info,
4351 u32 length, const void *data)
4352{
4353 struct sk_buff *skb;
4354
4355 if (length > copybreak)
4356 return NULL;
4357
4358 skb = e1000_alloc_rx_skb(adapter, length);
4359 if (!skb)
4360 return NULL;
4361
4362 dma_sync_single_for_cpu(&adapter->pdev->dev, buffer_info->dma,
4363 length, DMA_FROM_DEVICE);
4364
4365 memcpy(skb_put(skb, length), data, length);
4366
4367 return skb;
4368}
4369
4370/**
4371 * e1000_clean_rx_irq - Send received data up the network stack; legacy
4372 * @adapter: board private structure
4373 * @rx_ring: ring to clean
4374 * @work_done: amount of napi work completed this call
4375 * @work_to_do: max amount of work allowed for this call to do
4376 */
4377static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
4378 struct e1000_rx_ring *rx_ring,
4379 int *work_done, int work_to_do)
4380{
4381 struct net_device *netdev = adapter->netdev;
4382 struct pci_dev *pdev = adapter->pdev;
4383 struct e1000_rx_desc *rx_desc, *next_rxd;
4384 struct e1000_rx_buffer *buffer_info, *next_buffer;
4385 u32 length;
4386 unsigned int i;
4387 int cleaned_count = 0;
4388 bool cleaned = false;
4389 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
4390
4391 i = rx_ring->next_to_clean;
4392 rx_desc = E1000_RX_DESC(*rx_ring, i);
4393 buffer_info = &rx_ring->buffer_info[i];
4394
4395 while (rx_desc->status & E1000_RXD_STAT_DD) {
4396 struct sk_buff *skb;
4397 u8 *data;
4398 u8 status;
4399
4400 if (*work_done >= work_to_do)
4401 break;
4402 (*work_done)++;
4403 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
4404
4405 status = rx_desc->status;
4406 length = le16_to_cpu(rx_desc->length);
4407
4408 data = buffer_info->rxbuf.data;
4409 prefetch(data);
4410 skb = e1000_copybreak(adapter, buffer_info, length, data);
4411 if (!skb) {
4412 unsigned int frag_len = e1000_frag_len(adapter);
4413
4414 skb = build_skb(data - E1000_HEADROOM, frag_len);
4415 if (!skb) {
4416 adapter->alloc_rx_buff_failed++;
4417 break;
4418 }
4419
4420 skb_reserve(skb, E1000_HEADROOM);
4421 dma_unmap_single(&pdev->dev, buffer_info->dma,
4422 adapter->rx_buffer_len,
4423 DMA_FROM_DEVICE);
4424 buffer_info->dma = 0;
4425 buffer_info->rxbuf.data = NULL;
4426 }
4427
4428 if (++i == rx_ring->count)
4429 i = 0;
4430
4431 next_rxd = E1000_RX_DESC(*rx_ring, i);
4432 prefetch(next_rxd);
4433
4434 next_buffer = &rx_ring->buffer_info[i];
4435
4436 cleaned = true;
4437 cleaned_count++;
4438
4439 /* !EOP means multiple descriptors were used to store a single
4440 * packet, if thats the case we need to toss it. In fact, we
4441 * to toss every packet with the EOP bit clear and the next
4442 * frame that _does_ have the EOP bit set, as it is by
4443 * definition only a frame fragment
4444 */
4445 if (unlikely(!(status & E1000_RXD_STAT_EOP)))
4446 adapter->discarding = true;
4447
4448 if (adapter->discarding) {
4449 /* All receives must fit into a single buffer */
4450 netdev_dbg(netdev, "Receive packet consumed multiple buffers\n");
4451 dev_kfree_skb(skb);
4452 if (status & E1000_RXD_STAT_EOP)
4453 adapter->discarding = false;
4454 goto next_desc;
4455 }
4456
4457 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
4458 if (e1000_tbi_should_accept(adapter, status,
4459 rx_desc->errors,
4460 length, data)) {
4461 length--;
4462 } else if (netdev->features & NETIF_F_RXALL) {
4463 goto process_skb;
4464 } else {
4465 dev_kfree_skb(skb);
4466 goto next_desc;
4467 }
4468 }
4469
4470process_skb:
4471 total_rx_bytes += (length - 4); /* don't count FCS */
4472 total_rx_packets++;
4473
4474 if (likely(!(netdev->features & NETIF_F_RXFCS)))
4475 /* adjust length to remove Ethernet CRC, this must be
4476 * done after the TBI_ACCEPT workaround above
4477 */
4478 length -= 4;
4479
4480 if (buffer_info->rxbuf.data == NULL)
4481 skb_put(skb, length);
4482 else /* copybreak skb */
4483 skb_trim(skb, length);
4484
4485 /* Receive Checksum Offload */
4486 e1000_rx_checksum(adapter,
4487 (u32)(status) |
4488 ((u32)(rx_desc->errors) << 24),
4489 le16_to_cpu(rx_desc->csum), skb);
4490
4491 e1000_receive_skb(adapter, status, rx_desc->special, skb);
4492
4493next_desc:
4494 rx_desc->status = 0;
4495
4496 /* return some buffers to hardware, one at a time is too slow */
4497 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4498 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4499 cleaned_count = 0;
4500 }
4501
4502 /* use prefetched values */
4503 rx_desc = next_rxd;
4504 buffer_info = next_buffer;
4505 }
4506 rx_ring->next_to_clean = i;
4507
4508 cleaned_count = E1000_DESC_UNUSED(rx_ring);
4509 if (cleaned_count)
4510 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4511
4512 adapter->total_rx_packets += total_rx_packets;
4513 adapter->total_rx_bytes += total_rx_bytes;
4514 netdev->stats.rx_bytes += total_rx_bytes;
4515 netdev->stats.rx_packets += total_rx_packets;
4516 return cleaned;
4517}
4518
4519/**
4520 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
4521 * @adapter: address of board private structure
4522 * @rx_ring: pointer to receive ring structure
4523 * @cleaned_count: number of buffers to allocate this pass
4524 **/
4525static void
4526e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
4527 struct e1000_rx_ring *rx_ring, int cleaned_count)
4528{
4529 struct pci_dev *pdev = adapter->pdev;
4530 struct e1000_rx_desc *rx_desc;
4531 struct e1000_rx_buffer *buffer_info;
4532 unsigned int i;
4533
4534 i = rx_ring->next_to_use;
4535 buffer_info = &rx_ring->buffer_info[i];
4536
4537 while (cleaned_count--) {
4538 /* allocate a new page if necessary */
4539 if (!buffer_info->rxbuf.page) {
4540 buffer_info->rxbuf.page = alloc_page(GFP_ATOMIC);
4541 if (unlikely(!buffer_info->rxbuf.page)) {
4542 adapter->alloc_rx_buff_failed++;
4543 break;
4544 }
4545 }
4546
4547 if (!buffer_info->dma) {
4548 buffer_info->dma = dma_map_page(&pdev->dev,
4549 buffer_info->rxbuf.page, 0,
4550 adapter->rx_buffer_len,
4551 DMA_FROM_DEVICE);
4552 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4553 put_page(buffer_info->rxbuf.page);
4554 buffer_info->rxbuf.page = NULL;
4555 buffer_info->dma = 0;
4556 adapter->alloc_rx_buff_failed++;
4557 break;
4558 }
4559 }
4560
4561 rx_desc = E1000_RX_DESC(*rx_ring, i);
4562 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4563
4564 if (unlikely(++i == rx_ring->count))
4565 i = 0;
4566 buffer_info = &rx_ring->buffer_info[i];
4567 }
4568
4569 if (likely(rx_ring->next_to_use != i)) {
4570 rx_ring->next_to_use = i;
4571 if (unlikely(i-- == 0))
4572 i = (rx_ring->count - 1);
4573
4574 /* Force memory writes to complete before letting h/w
4575 * know there are new descriptors to fetch. (Only
4576 * applicable for weak-ordered memory model archs,
4577 * such as IA-64).
4578 */
4579 wmb();
4580 writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4581 }
4582}
4583
4584/**
4585 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4586 * @adapter: address of board private structure
4587 **/
4588static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4589 struct e1000_rx_ring *rx_ring,
4590 int cleaned_count)
4591{
4592 struct e1000_hw *hw = &adapter->hw;
4593 struct pci_dev *pdev = adapter->pdev;
4594 struct e1000_rx_desc *rx_desc;
4595 struct e1000_rx_buffer *buffer_info;
4596 unsigned int i;
4597 unsigned int bufsz = adapter->rx_buffer_len;
4598
4599 i = rx_ring->next_to_use;
4600 buffer_info = &rx_ring->buffer_info[i];
4601
4602 while (cleaned_count--) {
4603 void *data;
4604
4605 if (buffer_info->rxbuf.data)
4606 goto skip;
4607
4608 data = e1000_alloc_frag(adapter);
4609 if (!data) {
4610 /* Better luck next round */
4611 adapter->alloc_rx_buff_failed++;
4612 break;
4613 }
4614
4615 /* Fix for errata 23, can't cross 64kB boundary */
4616 if (!e1000_check_64k_bound(adapter, data, bufsz)) {
4617 void *olddata = data;
4618 e_err(rx_err, "skb align check failed: %u bytes at "
4619 "%p\n", bufsz, data);
4620 /* Try again, without freeing the previous */
4621 data = e1000_alloc_frag(adapter);
4622 /* Failed allocation, critical failure */
4623 if (!data) {
4624 skb_free_frag(olddata);
4625 adapter->alloc_rx_buff_failed++;
4626 break;
4627 }
4628
4629 if (!e1000_check_64k_bound(adapter, data, bufsz)) {
4630 /* give up */
4631 skb_free_frag(data);
4632 skb_free_frag(olddata);
4633 adapter->alloc_rx_buff_failed++;
4634 break;
4635 }
4636
4637 /* Use new allocation */
4638 skb_free_frag(olddata);
4639 }
4640 buffer_info->dma = dma_map_single(&pdev->dev,
4641 data,
4642 adapter->rx_buffer_len,
4643 DMA_FROM_DEVICE);
4644 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4645 skb_free_frag(data);
4646 buffer_info->dma = 0;
4647 adapter->alloc_rx_buff_failed++;
4648 break;
4649 }
4650
4651 /* XXX if it was allocated cleanly it will never map to a
4652 * boundary crossing
4653 */
4654
4655 /* Fix for errata 23, can't cross 64kB boundary */
4656 if (!e1000_check_64k_bound(adapter,
4657 (void *)(unsigned long)buffer_info->dma,
4658 adapter->rx_buffer_len)) {
4659 e_err(rx_err, "dma align check failed: %u bytes at "
4660 "%p\n", adapter->rx_buffer_len,
4661 (void *)(unsigned long)buffer_info->dma);
4662
4663 dma_unmap_single(&pdev->dev, buffer_info->dma,
4664 adapter->rx_buffer_len,
4665 DMA_FROM_DEVICE);
4666
4667 skb_free_frag(data);
4668 buffer_info->rxbuf.data = NULL;
4669 buffer_info->dma = 0;
4670
4671 adapter->alloc_rx_buff_failed++;
4672 break;
4673 }
4674 buffer_info->rxbuf.data = data;
4675 skip:
4676 rx_desc = E1000_RX_DESC(*rx_ring, i);
4677 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4678
4679 if (unlikely(++i == rx_ring->count))
4680 i = 0;
4681 buffer_info = &rx_ring->buffer_info[i];
4682 }
4683
4684 if (likely(rx_ring->next_to_use != i)) {
4685 rx_ring->next_to_use = i;
4686 if (unlikely(i-- == 0))
4687 i = (rx_ring->count - 1);
4688
4689 /* Force memory writes to complete before letting h/w
4690 * know there are new descriptors to fetch. (Only
4691 * applicable for weak-ordered memory model archs,
4692 * such as IA-64).
4693 */
4694 wmb();
4695 writel(i, hw->hw_addr + rx_ring->rdt);
4696 }
4697}
4698
4699/**
4700 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4701 * @adapter:
4702 **/
4703static void e1000_smartspeed(struct e1000_adapter *adapter)
4704{
4705 struct e1000_hw *hw = &adapter->hw;
4706 u16 phy_status;
4707 u16 phy_ctrl;
4708
4709 if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg ||
4710 !(hw->autoneg_advertised & ADVERTISE_1000_FULL))
4711 return;
4712
4713 if (adapter->smartspeed == 0) {
4714 /* If Master/Slave config fault is asserted twice,
4715 * we assume back-to-back
4716 */
4717 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4718 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
4719 return;
4720 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4721 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
4722 return;
4723 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4724 if (phy_ctrl & CR_1000T_MS_ENABLE) {
4725 phy_ctrl &= ~CR_1000T_MS_ENABLE;
4726 e1000_write_phy_reg(hw, PHY_1000T_CTRL,
4727 phy_ctrl);
4728 adapter->smartspeed++;
4729 if (!e1000_phy_setup_autoneg(hw) &&
4730 !e1000_read_phy_reg(hw, PHY_CTRL,
4731 &phy_ctrl)) {
4732 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4733 MII_CR_RESTART_AUTO_NEG);
4734 e1000_write_phy_reg(hw, PHY_CTRL,
4735 phy_ctrl);
4736 }
4737 }
4738 return;
4739 } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4740 /* If still no link, perhaps using 2/3 pair cable */
4741 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4742 phy_ctrl |= CR_1000T_MS_ENABLE;
4743 e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
4744 if (!e1000_phy_setup_autoneg(hw) &&
4745 !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) {
4746 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4747 MII_CR_RESTART_AUTO_NEG);
4748 e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl);
4749 }
4750 }
4751 /* Restart process after E1000_SMARTSPEED_MAX iterations */
4752 if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4753 adapter->smartspeed = 0;
4754}
4755
4756/**
4757 * e1000_ioctl -
4758 * @netdev:
4759 * @ifreq:
4760 * @cmd:
4761 **/
4762static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4763{
4764 switch (cmd) {
4765 case SIOCGMIIPHY:
4766 case SIOCGMIIREG:
4767 case SIOCSMIIREG:
4768 return e1000_mii_ioctl(netdev, ifr, cmd);
4769 default:
4770 return -EOPNOTSUPP;
4771 }
4772}
4773
4774/**
4775 * e1000_mii_ioctl -
4776 * @netdev:
4777 * @ifreq:
4778 * @cmd:
4779 **/
4780static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4781 int cmd)
4782{
4783 struct e1000_adapter *adapter = netdev_priv(netdev);
4784 struct e1000_hw *hw = &adapter->hw;
4785 struct mii_ioctl_data *data = if_mii(ifr);
4786 int retval;
4787 u16 mii_reg;
4788 unsigned long flags;
4789
4790 if (hw->media_type != e1000_media_type_copper)
4791 return -EOPNOTSUPP;
4792
4793 switch (cmd) {
4794 case SIOCGMIIPHY:
4795 data->phy_id = hw->phy_addr;
4796 break;
4797 case SIOCGMIIREG:
4798 spin_lock_irqsave(&adapter->stats_lock, flags);
4799 if (e1000_read_phy_reg(hw, data->reg_num & 0x1F,
4800 &data->val_out)) {
4801 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4802 return -EIO;
4803 }
4804 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4805 break;
4806 case SIOCSMIIREG:
4807 if (data->reg_num & ~(0x1F))
4808 return -EFAULT;
4809 mii_reg = data->val_in;
4810 spin_lock_irqsave(&adapter->stats_lock, flags);
4811 if (e1000_write_phy_reg(hw, data->reg_num,
4812 mii_reg)) {
4813 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4814 return -EIO;
4815 }
4816 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4817 if (hw->media_type == e1000_media_type_copper) {
4818 switch (data->reg_num) {
4819 case PHY_CTRL:
4820 if (mii_reg & MII_CR_POWER_DOWN)
4821 break;
4822 if (mii_reg & MII_CR_AUTO_NEG_EN) {
4823 hw->autoneg = 1;
4824 hw->autoneg_advertised = 0x2F;
4825 } else {
4826 u32 speed;
4827 if (mii_reg & 0x40)
4828 speed = SPEED_1000;
4829 else if (mii_reg & 0x2000)
4830 speed = SPEED_100;
4831 else
4832 speed = SPEED_10;
4833 retval = e1000_set_spd_dplx(
4834 adapter, speed,
4835 ((mii_reg & 0x100)
4836 ? DUPLEX_FULL :
4837 DUPLEX_HALF));
4838 if (retval)
4839 return retval;
4840 }
4841 if (netif_running(adapter->netdev))
4842 e1000_reinit_locked(adapter);
4843 else
4844 e1000_reset(adapter);
4845 break;
4846 case M88E1000_PHY_SPEC_CTRL:
4847 case M88E1000_EXT_PHY_SPEC_CTRL:
4848 if (e1000_phy_reset(hw))
4849 return -EIO;
4850 break;
4851 }
4852 } else {
4853 switch (data->reg_num) {
4854 case PHY_CTRL:
4855 if (mii_reg & MII_CR_POWER_DOWN)
4856 break;
4857 if (netif_running(adapter->netdev))
4858 e1000_reinit_locked(adapter);
4859 else
4860 e1000_reset(adapter);
4861 break;
4862 }
4863 }
4864 break;
4865 default:
4866 return -EOPNOTSUPP;
4867 }
4868 return E1000_SUCCESS;
4869}
4870
4871void e1000_pci_set_mwi(struct e1000_hw *hw)
4872{
4873 struct e1000_adapter *adapter = hw->back;
4874 int ret_val = pci_set_mwi(adapter->pdev);
4875
4876 if (ret_val)
4877 e_err(probe, "Error in setting MWI\n");
4878}
4879
4880void e1000_pci_clear_mwi(struct e1000_hw *hw)
4881{
4882 struct e1000_adapter *adapter = hw->back;
4883
4884 pci_clear_mwi(adapter->pdev);
4885}
4886
4887int e1000_pcix_get_mmrbc(struct e1000_hw *hw)
4888{
4889 struct e1000_adapter *adapter = hw->back;
4890 return pcix_get_mmrbc(adapter->pdev);
4891}
4892
4893void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
4894{
4895 struct e1000_adapter *adapter = hw->back;
4896 pcix_set_mmrbc(adapter->pdev, mmrbc);
4897}
4898
4899void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value)
4900{
4901 outl(value, port);
4902}
4903
4904static bool e1000_vlan_used(struct e1000_adapter *adapter)
4905{
4906 u16 vid;
4907
4908 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
4909 return true;
4910 return false;
4911}
4912
4913static void __e1000_vlan_mode(struct e1000_adapter *adapter,
4914 netdev_features_t features)
4915{
4916 struct e1000_hw *hw = &adapter->hw;
4917 u32 ctrl;
4918
4919 ctrl = er32(CTRL);
4920 if (features & NETIF_F_HW_VLAN_CTAG_RX) {
4921 /* enable VLAN tag insert/strip */
4922 ctrl |= E1000_CTRL_VME;
4923 } else {
4924 /* disable VLAN tag insert/strip */
4925 ctrl &= ~E1000_CTRL_VME;
4926 }
4927 ew32(CTRL, ctrl);
4928}
4929static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
4930 bool filter_on)
4931{
4932 struct e1000_hw *hw = &adapter->hw;
4933 u32 rctl;
4934
4935 if (!test_bit(__E1000_DOWN, &adapter->flags))
4936 e1000_irq_disable(adapter);
4937
4938 __e1000_vlan_mode(adapter, adapter->netdev->features);
4939 if (filter_on) {
4940 /* enable VLAN receive filtering */
4941 rctl = er32(RCTL);
4942 rctl &= ~E1000_RCTL_CFIEN;
4943 if (!(adapter->netdev->flags & IFF_PROMISC))
4944 rctl |= E1000_RCTL_VFE;
4945 ew32(RCTL, rctl);
4946 e1000_update_mng_vlan(adapter);
4947 } else {
4948 /* disable VLAN receive filtering */
4949 rctl = er32(RCTL);
4950 rctl &= ~E1000_RCTL_VFE;
4951 ew32(RCTL, rctl);
4952 }
4953
4954 if (!test_bit(__E1000_DOWN, &adapter->flags))
4955 e1000_irq_enable(adapter);
4956}
4957
4958static void e1000_vlan_mode(struct net_device *netdev,
4959 netdev_features_t features)
4960{
4961 struct e1000_adapter *adapter = netdev_priv(netdev);
4962
4963 if (!test_bit(__E1000_DOWN, &adapter->flags))
4964 e1000_irq_disable(adapter);
4965
4966 __e1000_vlan_mode(adapter, features);
4967
4968 if (!test_bit(__E1000_DOWN, &adapter->flags))
4969 e1000_irq_enable(adapter);
4970}
4971
4972static int e1000_vlan_rx_add_vid(struct net_device *netdev,
4973 __be16 proto, u16 vid)
4974{
4975 struct e1000_adapter *adapter = netdev_priv(netdev);
4976 struct e1000_hw *hw = &adapter->hw;
4977 u32 vfta, index;
4978
4979 if ((hw->mng_cookie.status &
4980 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4981 (vid == adapter->mng_vlan_id))
4982 return 0;
4983
4984 if (!e1000_vlan_used(adapter))
4985 e1000_vlan_filter_on_off(adapter, true);
4986
4987 /* add VID to filter table */
4988 index = (vid >> 5) & 0x7F;
4989 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4990 vfta |= (1 << (vid & 0x1F));
4991 e1000_write_vfta(hw, index, vfta);
4992
4993 set_bit(vid, adapter->active_vlans);
4994
4995 return 0;
4996}
4997
4998static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
4999 __be16 proto, u16 vid)
5000{
5001 struct e1000_adapter *adapter = netdev_priv(netdev);
5002 struct e1000_hw *hw = &adapter->hw;
5003 u32 vfta, index;
5004
5005 if (!test_bit(__E1000_DOWN, &adapter->flags))
5006 e1000_irq_disable(adapter);
5007 if (!test_bit(__E1000_DOWN, &adapter->flags))
5008 e1000_irq_enable(adapter);
5009
5010 /* remove VID from filter table */
5011 index = (vid >> 5) & 0x7F;
5012 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
5013 vfta &= ~(1 << (vid & 0x1F));
5014 e1000_write_vfta(hw, index, vfta);
5015
5016 clear_bit(vid, adapter->active_vlans);
5017
5018 if (!e1000_vlan_used(adapter))
5019 e1000_vlan_filter_on_off(adapter, false);
5020
5021 return 0;
5022}
5023
5024static void e1000_restore_vlan(struct e1000_adapter *adapter)
5025{
5026 u16 vid;
5027
5028 if (!e1000_vlan_used(adapter))
5029 return;
5030
5031 e1000_vlan_filter_on_off(adapter, true);
5032 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
5033 e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
5034}
5035
5036int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
5037{
5038 struct e1000_hw *hw = &adapter->hw;
5039
5040 hw->autoneg = 0;
5041
5042 /* Make sure dplx is at most 1 bit and lsb of speed is not set
5043 * for the switch() below to work
5044 */
5045 if ((spd & 1) || (dplx & ~1))
5046 goto err_inval;
5047
5048 /* Fiber NICs only allow 1000 gbps Full duplex */
5049 if ((hw->media_type == e1000_media_type_fiber) &&
5050 spd != SPEED_1000 &&
5051 dplx != DUPLEX_FULL)
5052 goto err_inval;
5053
5054 switch (spd + dplx) {
5055 case SPEED_10 + DUPLEX_HALF:
5056 hw->forced_speed_duplex = e1000_10_half;
5057 break;
5058 case SPEED_10 + DUPLEX_FULL:
5059 hw->forced_speed_duplex = e1000_10_full;
5060 break;
5061 case SPEED_100 + DUPLEX_HALF:
5062 hw->forced_speed_duplex = e1000_100_half;
5063 break;
5064 case SPEED_100 + DUPLEX_FULL:
5065 hw->forced_speed_duplex = e1000_100_full;
5066 break;
5067 case SPEED_1000 + DUPLEX_FULL:
5068 hw->autoneg = 1;
5069 hw->autoneg_advertised = ADVERTISE_1000_FULL;
5070 break;
5071 case SPEED_1000 + DUPLEX_HALF: /* not supported */
5072 default:
5073 goto err_inval;
5074 }
5075
5076 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
5077 hw->mdix = AUTO_ALL_MODES;
5078
5079 return 0;
5080
5081err_inval:
5082 e_err(probe, "Unsupported Speed/Duplex configuration\n");
5083 return -EINVAL;
5084}
5085
5086static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake)
5087{
5088 struct net_device *netdev = pci_get_drvdata(pdev);
5089 struct e1000_adapter *adapter = netdev_priv(netdev);
5090 struct e1000_hw *hw = &adapter->hw;
5091 u32 ctrl, ctrl_ext, rctl, status;
5092 u32 wufc = adapter->wol;
5093#ifdef CONFIG_PM
5094 int retval = 0;
5095#endif
5096
5097 netif_device_detach(netdev);
5098
5099 if (netif_running(netdev)) {
5100 int count = E1000_CHECK_RESET_COUNT;
5101
5102 while (test_bit(__E1000_RESETTING, &adapter->flags) && count--)
5103 usleep_range(10000, 20000);
5104
5105 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
5106 e1000_down(adapter);
5107 }
5108
5109#ifdef CONFIG_PM
5110 retval = pci_save_state(pdev);
5111 if (retval)
5112 return retval;
5113#endif
5114
5115 status = er32(STATUS);
5116 if (status & E1000_STATUS_LU)
5117 wufc &= ~E1000_WUFC_LNKC;
5118
5119 if (wufc) {
5120 e1000_setup_rctl(adapter);
5121 e1000_set_rx_mode(netdev);
5122
5123 rctl = er32(RCTL);
5124
5125 /* turn on all-multi mode if wake on multicast is enabled */
5126 if (wufc & E1000_WUFC_MC)
5127 rctl |= E1000_RCTL_MPE;
5128
5129 /* enable receives in the hardware */
5130 ew32(RCTL, rctl | E1000_RCTL_EN);
5131
5132 if (hw->mac_type >= e1000_82540) {
5133 ctrl = er32(CTRL);
5134 /* advertise wake from D3Cold */
5135 #define E1000_CTRL_ADVD3WUC 0x00100000
5136 /* phy power management enable */
5137 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5138 ctrl |= E1000_CTRL_ADVD3WUC |
5139 E1000_CTRL_EN_PHY_PWR_MGMT;
5140 ew32(CTRL, ctrl);
5141 }
5142
5143 if (hw->media_type == e1000_media_type_fiber ||
5144 hw->media_type == e1000_media_type_internal_serdes) {
5145 /* keep the laser running in D3 */
5146 ctrl_ext = er32(CTRL_EXT);
5147 ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
5148 ew32(CTRL_EXT, ctrl_ext);
5149 }
5150
5151 ew32(WUC, E1000_WUC_PME_EN);
5152 ew32(WUFC, wufc);
5153 } else {
5154 ew32(WUC, 0);
5155 ew32(WUFC, 0);
5156 }
5157
5158 e1000_release_manageability(adapter);
5159
5160 *enable_wake = !!wufc;
5161
5162 /* make sure adapter isn't asleep if manageability is enabled */
5163 if (adapter->en_mng_pt)
5164 *enable_wake = true;
5165
5166 if (netif_running(netdev))
5167 e1000_free_irq(adapter);
5168
5169 pci_disable_device(pdev);
5170
5171 return 0;
5172}
5173
5174#ifdef CONFIG_PM
5175static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
5176{
5177 int retval;
5178 bool wake;
5179
5180 retval = __e1000_shutdown(pdev, &wake);
5181 if (retval)
5182 return retval;
5183
5184 if (wake) {
5185 pci_prepare_to_sleep(pdev);
5186 } else {
5187 pci_wake_from_d3(pdev, false);
5188 pci_set_power_state(pdev, PCI_D3hot);
5189 }
5190
5191 return 0;
5192}
5193
5194static int e1000_resume(struct pci_dev *pdev)
5195{
5196 struct net_device *netdev = pci_get_drvdata(pdev);
5197 struct e1000_adapter *adapter = netdev_priv(netdev);
5198 struct e1000_hw *hw = &adapter->hw;
5199 u32 err;
5200
5201 pci_set_power_state(pdev, PCI_D0);
5202 pci_restore_state(pdev);
5203 pci_save_state(pdev);
5204
5205 if (adapter->need_ioport)
5206 err = pci_enable_device(pdev);
5207 else
5208 err = pci_enable_device_mem(pdev);
5209 if (err) {
5210 pr_err("Cannot enable PCI device from suspend\n");
5211 return err;
5212 }
5213 pci_set_master(pdev);
5214
5215 pci_enable_wake(pdev, PCI_D3hot, 0);
5216 pci_enable_wake(pdev, PCI_D3cold, 0);
5217
5218 if (netif_running(netdev)) {
5219 err = e1000_request_irq(adapter);
5220 if (err)
5221 return err;
5222 }
5223
5224 e1000_power_up_phy(adapter);
5225 e1000_reset(adapter);
5226 ew32(WUS, ~0);
5227
5228 e1000_init_manageability(adapter);
5229
5230 if (netif_running(netdev))
5231 e1000_up(adapter);
5232
5233 netif_device_attach(netdev);
5234
5235 return 0;
5236}
5237#endif
5238
5239static void e1000_shutdown(struct pci_dev *pdev)
5240{
5241 bool wake;
5242
5243 __e1000_shutdown(pdev, &wake);
5244
5245 if (system_state == SYSTEM_POWER_OFF) {
5246 pci_wake_from_d3(pdev, wake);
5247 pci_set_power_state(pdev, PCI_D3hot);
5248 }
5249}
5250
5251#ifdef CONFIG_NET_POLL_CONTROLLER
5252/* Polling 'interrupt' - used by things like netconsole to send skbs
5253 * without having to re-enable interrupts. It's not called while
5254 * the interrupt routine is executing.
5255 */
5256static void e1000_netpoll(struct net_device *netdev)
5257{
5258 struct e1000_adapter *adapter = netdev_priv(netdev);
5259
5260 disable_irq(adapter->pdev->irq);
5261 e1000_intr(adapter->pdev->irq, netdev);
5262 enable_irq(adapter->pdev->irq);
5263}
5264#endif
5265
5266/**
5267 * e1000_io_error_detected - called when PCI error is detected
5268 * @pdev: Pointer to PCI device
5269 * @state: The current pci connection state
5270 *
5271 * This function is called after a PCI bus error affecting
5272 * this device has been detected.
5273 */
5274static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
5275 pci_channel_state_t state)
5276{
5277 struct net_device *netdev = pci_get_drvdata(pdev);
5278 struct e1000_adapter *adapter = netdev_priv(netdev);
5279
5280 netif_device_detach(netdev);
5281
5282 if (state == pci_channel_io_perm_failure)
5283 return PCI_ERS_RESULT_DISCONNECT;
5284
5285 if (netif_running(netdev))
5286 e1000_down(adapter);
5287 pci_disable_device(pdev);
5288
5289 /* Request a slot slot reset. */
5290 return PCI_ERS_RESULT_NEED_RESET;
5291}
5292
5293/**
5294 * e1000_io_slot_reset - called after the pci bus has been reset.
5295 * @pdev: Pointer to PCI device
5296 *
5297 * Restart the card from scratch, as if from a cold-boot. Implementation
5298 * resembles the first-half of the e1000_resume routine.
5299 */
5300static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
5301{
5302 struct net_device *netdev = pci_get_drvdata(pdev);
5303 struct e1000_adapter *adapter = netdev_priv(netdev);
5304 struct e1000_hw *hw = &adapter->hw;
5305 int err;
5306
5307 if (adapter->need_ioport)
5308 err = pci_enable_device(pdev);
5309 else
5310 err = pci_enable_device_mem(pdev);
5311 if (err) {
5312 pr_err("Cannot re-enable PCI device after reset.\n");
5313 return PCI_ERS_RESULT_DISCONNECT;
5314 }
5315 pci_set_master(pdev);
5316
5317 pci_enable_wake(pdev, PCI_D3hot, 0);
5318 pci_enable_wake(pdev, PCI_D3cold, 0);
5319
5320 e1000_reset(adapter);
5321 ew32(WUS, ~0);
5322
5323 return PCI_ERS_RESULT_RECOVERED;
5324}
5325
5326/**
5327 * e1000_io_resume - called when traffic can start flowing again.
5328 * @pdev: Pointer to PCI device
5329 *
5330 * This callback is called when the error recovery driver tells us that
5331 * its OK to resume normal operation. Implementation resembles the
5332 * second-half of the e1000_resume routine.
5333 */
5334static void e1000_io_resume(struct pci_dev *pdev)
5335{
5336 struct net_device *netdev = pci_get_drvdata(pdev);
5337 struct e1000_adapter *adapter = netdev_priv(netdev);
5338
5339 e1000_init_manageability(adapter);
5340
5341 if (netif_running(netdev)) {
5342 if (e1000_up(adapter)) {
5343 pr_info("can't bring device back up after reset\n");
5344 return;
5345 }
5346 }
5347
5348 netif_device_attach(netdev);
5349}
5350
5351/* e1000_main.c */
1/*******************************************************************************
2
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2006 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27*******************************************************************************/
28
29#include "e1000.h"
30#include <net/ip6_checksum.h>
31#include <linux/io.h>
32#include <linux/prefetch.h>
33#include <linux/bitops.h>
34#include <linux/if_vlan.h>
35
36char e1000_driver_name[] = "e1000";
37static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
38#define DRV_VERSION "7.3.21-k8-NAPI"
39const char e1000_driver_version[] = DRV_VERSION;
40static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
41
42/* e1000_pci_tbl - PCI Device ID Table
43 *
44 * Last entry must be all 0s
45 *
46 * Macro expands to...
47 * {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
48 */
49static const struct pci_device_id e1000_pci_tbl[] = {
50 INTEL_E1000_ETHERNET_DEVICE(0x1000),
51 INTEL_E1000_ETHERNET_DEVICE(0x1001),
52 INTEL_E1000_ETHERNET_DEVICE(0x1004),
53 INTEL_E1000_ETHERNET_DEVICE(0x1008),
54 INTEL_E1000_ETHERNET_DEVICE(0x1009),
55 INTEL_E1000_ETHERNET_DEVICE(0x100C),
56 INTEL_E1000_ETHERNET_DEVICE(0x100D),
57 INTEL_E1000_ETHERNET_DEVICE(0x100E),
58 INTEL_E1000_ETHERNET_DEVICE(0x100F),
59 INTEL_E1000_ETHERNET_DEVICE(0x1010),
60 INTEL_E1000_ETHERNET_DEVICE(0x1011),
61 INTEL_E1000_ETHERNET_DEVICE(0x1012),
62 INTEL_E1000_ETHERNET_DEVICE(0x1013),
63 INTEL_E1000_ETHERNET_DEVICE(0x1014),
64 INTEL_E1000_ETHERNET_DEVICE(0x1015),
65 INTEL_E1000_ETHERNET_DEVICE(0x1016),
66 INTEL_E1000_ETHERNET_DEVICE(0x1017),
67 INTEL_E1000_ETHERNET_DEVICE(0x1018),
68 INTEL_E1000_ETHERNET_DEVICE(0x1019),
69 INTEL_E1000_ETHERNET_DEVICE(0x101A),
70 INTEL_E1000_ETHERNET_DEVICE(0x101D),
71 INTEL_E1000_ETHERNET_DEVICE(0x101E),
72 INTEL_E1000_ETHERNET_DEVICE(0x1026),
73 INTEL_E1000_ETHERNET_DEVICE(0x1027),
74 INTEL_E1000_ETHERNET_DEVICE(0x1028),
75 INTEL_E1000_ETHERNET_DEVICE(0x1075),
76 INTEL_E1000_ETHERNET_DEVICE(0x1076),
77 INTEL_E1000_ETHERNET_DEVICE(0x1077),
78 INTEL_E1000_ETHERNET_DEVICE(0x1078),
79 INTEL_E1000_ETHERNET_DEVICE(0x1079),
80 INTEL_E1000_ETHERNET_DEVICE(0x107A),
81 INTEL_E1000_ETHERNET_DEVICE(0x107B),
82 INTEL_E1000_ETHERNET_DEVICE(0x107C),
83 INTEL_E1000_ETHERNET_DEVICE(0x108A),
84 INTEL_E1000_ETHERNET_DEVICE(0x1099),
85 INTEL_E1000_ETHERNET_DEVICE(0x10B5),
86 INTEL_E1000_ETHERNET_DEVICE(0x2E6E),
87 /* required last entry */
88 {0,}
89};
90
91MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
92
93int e1000_up(struct e1000_adapter *adapter);
94void e1000_down(struct e1000_adapter *adapter);
95void e1000_reinit_locked(struct e1000_adapter *adapter);
96void e1000_reset(struct e1000_adapter *adapter);
97int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
98int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
99void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
100void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
101static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
102 struct e1000_tx_ring *txdr);
103static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
104 struct e1000_rx_ring *rxdr);
105static void e1000_free_tx_resources(struct e1000_adapter *adapter,
106 struct e1000_tx_ring *tx_ring);
107static void e1000_free_rx_resources(struct e1000_adapter *adapter,
108 struct e1000_rx_ring *rx_ring);
109void e1000_update_stats(struct e1000_adapter *adapter);
110
111static int e1000_init_module(void);
112static void e1000_exit_module(void);
113static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
114static void e1000_remove(struct pci_dev *pdev);
115static int e1000_alloc_queues(struct e1000_adapter *adapter);
116static int e1000_sw_init(struct e1000_adapter *adapter);
117int e1000_open(struct net_device *netdev);
118int e1000_close(struct net_device *netdev);
119static void e1000_configure_tx(struct e1000_adapter *adapter);
120static void e1000_configure_rx(struct e1000_adapter *adapter);
121static void e1000_setup_rctl(struct e1000_adapter *adapter);
122static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
123static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
124static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
125 struct e1000_tx_ring *tx_ring);
126static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
127 struct e1000_rx_ring *rx_ring);
128static void e1000_set_rx_mode(struct net_device *netdev);
129static void e1000_update_phy_info_task(struct work_struct *work);
130static void e1000_watchdog(struct work_struct *work);
131static void e1000_82547_tx_fifo_stall_task(struct work_struct *work);
132static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
133 struct net_device *netdev);
134static struct net_device_stats *e1000_get_stats(struct net_device *netdev);
135static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
136static int e1000_set_mac(struct net_device *netdev, void *p);
137static irqreturn_t e1000_intr(int irq, void *data);
138static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
139 struct e1000_tx_ring *tx_ring);
140static int e1000_clean(struct napi_struct *napi, int budget);
141static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
142 struct e1000_rx_ring *rx_ring,
143 int *work_done, int work_to_do);
144static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
145 struct e1000_rx_ring *rx_ring,
146 int *work_done, int work_to_do);
147static void e1000_alloc_dummy_rx_buffers(struct e1000_adapter *adapter,
148 struct e1000_rx_ring *rx_ring,
149 int cleaned_count)
150{
151}
152static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
153 struct e1000_rx_ring *rx_ring,
154 int cleaned_count);
155static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
156 struct e1000_rx_ring *rx_ring,
157 int cleaned_count);
158static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
159static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
160 int cmd);
161static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
162static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
163static void e1000_tx_timeout(struct net_device *dev);
164static void e1000_reset_task(struct work_struct *work);
165static void e1000_smartspeed(struct e1000_adapter *adapter);
166static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
167 struct sk_buff *skb);
168
169static bool e1000_vlan_used(struct e1000_adapter *adapter);
170static void e1000_vlan_mode(struct net_device *netdev,
171 netdev_features_t features);
172static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
173 bool filter_on);
174static int e1000_vlan_rx_add_vid(struct net_device *netdev,
175 __be16 proto, u16 vid);
176static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
177 __be16 proto, u16 vid);
178static void e1000_restore_vlan(struct e1000_adapter *adapter);
179
180#ifdef CONFIG_PM
181static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
182static int e1000_resume(struct pci_dev *pdev);
183#endif
184static void e1000_shutdown(struct pci_dev *pdev);
185
186#ifdef CONFIG_NET_POLL_CONTROLLER
187/* for netdump / net console */
188static void e1000_netpoll (struct net_device *netdev);
189#endif
190
191#define COPYBREAK_DEFAULT 256
192static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
193module_param(copybreak, uint, 0644);
194MODULE_PARM_DESC(copybreak,
195 "Maximum size of packet that is copied to a new buffer on receive");
196
197static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
198 pci_channel_state_t state);
199static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
200static void e1000_io_resume(struct pci_dev *pdev);
201
202static const struct pci_error_handlers e1000_err_handler = {
203 .error_detected = e1000_io_error_detected,
204 .slot_reset = e1000_io_slot_reset,
205 .resume = e1000_io_resume,
206};
207
208static struct pci_driver e1000_driver = {
209 .name = e1000_driver_name,
210 .id_table = e1000_pci_tbl,
211 .probe = e1000_probe,
212 .remove = e1000_remove,
213#ifdef CONFIG_PM
214 /* Power Management Hooks */
215 .suspend = e1000_suspend,
216 .resume = e1000_resume,
217#endif
218 .shutdown = e1000_shutdown,
219 .err_handler = &e1000_err_handler
220};
221
222MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
223MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
224MODULE_LICENSE("GPL");
225MODULE_VERSION(DRV_VERSION);
226
227#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
228static int debug = -1;
229module_param(debug, int, 0);
230MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
231
232/**
233 * e1000_get_hw_dev - return device
234 * used by hardware layer to print debugging information
235 *
236 **/
237struct net_device *e1000_get_hw_dev(struct e1000_hw *hw)
238{
239 struct e1000_adapter *adapter = hw->back;
240 return adapter->netdev;
241}
242
243/**
244 * e1000_init_module - Driver Registration Routine
245 *
246 * e1000_init_module is the first routine called when the driver is
247 * loaded. All it does is register with the PCI subsystem.
248 **/
249static int __init e1000_init_module(void)
250{
251 int ret;
252 pr_info("%s - version %s\n", e1000_driver_string, e1000_driver_version);
253
254 pr_info("%s\n", e1000_copyright);
255
256 ret = pci_register_driver(&e1000_driver);
257 if (copybreak != COPYBREAK_DEFAULT) {
258 if (copybreak == 0)
259 pr_info("copybreak disabled\n");
260 else
261 pr_info("copybreak enabled for "
262 "packets <= %u bytes\n", copybreak);
263 }
264 return ret;
265}
266
267module_init(e1000_init_module);
268
269/**
270 * e1000_exit_module - Driver Exit Cleanup Routine
271 *
272 * e1000_exit_module is called just before the driver is removed
273 * from memory.
274 **/
275static void __exit e1000_exit_module(void)
276{
277 pci_unregister_driver(&e1000_driver);
278}
279
280module_exit(e1000_exit_module);
281
282static int e1000_request_irq(struct e1000_adapter *adapter)
283{
284 struct net_device *netdev = adapter->netdev;
285 irq_handler_t handler = e1000_intr;
286 int irq_flags = IRQF_SHARED;
287 int err;
288
289 err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
290 netdev);
291 if (err) {
292 e_err(probe, "Unable to allocate interrupt Error: %d\n", err);
293 }
294
295 return err;
296}
297
298static void e1000_free_irq(struct e1000_adapter *adapter)
299{
300 struct net_device *netdev = adapter->netdev;
301
302 free_irq(adapter->pdev->irq, netdev);
303}
304
305/**
306 * e1000_irq_disable - Mask off interrupt generation on the NIC
307 * @adapter: board private structure
308 **/
309static void e1000_irq_disable(struct e1000_adapter *adapter)
310{
311 struct e1000_hw *hw = &adapter->hw;
312
313 ew32(IMC, ~0);
314 E1000_WRITE_FLUSH();
315 synchronize_irq(adapter->pdev->irq);
316}
317
318/**
319 * e1000_irq_enable - Enable default interrupt generation settings
320 * @adapter: board private structure
321 **/
322static void e1000_irq_enable(struct e1000_adapter *adapter)
323{
324 struct e1000_hw *hw = &adapter->hw;
325
326 ew32(IMS, IMS_ENABLE_MASK);
327 E1000_WRITE_FLUSH();
328}
329
330static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
331{
332 struct e1000_hw *hw = &adapter->hw;
333 struct net_device *netdev = adapter->netdev;
334 u16 vid = hw->mng_cookie.vlan_id;
335 u16 old_vid = adapter->mng_vlan_id;
336
337 if (!e1000_vlan_used(adapter))
338 return;
339
340 if (!test_bit(vid, adapter->active_vlans)) {
341 if (hw->mng_cookie.status &
342 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
343 e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
344 adapter->mng_vlan_id = vid;
345 } else {
346 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
347 }
348 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
349 (vid != old_vid) &&
350 !test_bit(old_vid, adapter->active_vlans))
351 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
352 old_vid);
353 } else {
354 adapter->mng_vlan_id = vid;
355 }
356}
357
358static void e1000_init_manageability(struct e1000_adapter *adapter)
359{
360 struct e1000_hw *hw = &adapter->hw;
361
362 if (adapter->en_mng_pt) {
363 u32 manc = er32(MANC);
364
365 /* disable hardware interception of ARP */
366 manc &= ~(E1000_MANC_ARP_EN);
367
368 ew32(MANC, manc);
369 }
370}
371
372static void e1000_release_manageability(struct e1000_adapter *adapter)
373{
374 struct e1000_hw *hw = &adapter->hw;
375
376 if (adapter->en_mng_pt) {
377 u32 manc = er32(MANC);
378
379 /* re-enable hardware interception of ARP */
380 manc |= E1000_MANC_ARP_EN;
381
382 ew32(MANC, manc);
383 }
384}
385
386/**
387 * e1000_configure - configure the hardware for RX and TX
388 * @adapter = private board structure
389 **/
390static void e1000_configure(struct e1000_adapter *adapter)
391{
392 struct net_device *netdev = adapter->netdev;
393 int i;
394
395 e1000_set_rx_mode(netdev);
396
397 e1000_restore_vlan(adapter);
398 e1000_init_manageability(adapter);
399
400 e1000_configure_tx(adapter);
401 e1000_setup_rctl(adapter);
402 e1000_configure_rx(adapter);
403 /* call E1000_DESC_UNUSED which always leaves
404 * at least 1 descriptor unused to make sure
405 * next_to_use != next_to_clean
406 */
407 for (i = 0; i < adapter->num_rx_queues; i++) {
408 struct e1000_rx_ring *ring = &adapter->rx_ring[i];
409 adapter->alloc_rx_buf(adapter, ring,
410 E1000_DESC_UNUSED(ring));
411 }
412}
413
414int e1000_up(struct e1000_adapter *adapter)
415{
416 struct e1000_hw *hw = &adapter->hw;
417
418 /* hardware has been reset, we need to reload some things */
419 e1000_configure(adapter);
420
421 clear_bit(__E1000_DOWN, &adapter->flags);
422
423 napi_enable(&adapter->napi);
424
425 e1000_irq_enable(adapter);
426
427 netif_wake_queue(adapter->netdev);
428
429 /* fire a link change interrupt to start the watchdog */
430 ew32(ICS, E1000_ICS_LSC);
431 return 0;
432}
433
434/**
435 * e1000_power_up_phy - restore link in case the phy was powered down
436 * @adapter: address of board private structure
437 *
438 * The phy may be powered down to save power and turn off link when the
439 * driver is unloaded and wake on lan is not enabled (among others)
440 * *** this routine MUST be followed by a call to e1000_reset ***
441 **/
442void e1000_power_up_phy(struct e1000_adapter *adapter)
443{
444 struct e1000_hw *hw = &adapter->hw;
445 u16 mii_reg = 0;
446
447 /* Just clear the power down bit to wake the phy back up */
448 if (hw->media_type == e1000_media_type_copper) {
449 /* according to the manual, the phy will retain its
450 * settings across a power-down/up cycle
451 */
452 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
453 mii_reg &= ~MII_CR_POWER_DOWN;
454 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
455 }
456}
457
458static void e1000_power_down_phy(struct e1000_adapter *adapter)
459{
460 struct e1000_hw *hw = &adapter->hw;
461
462 /* Power down the PHY so no link is implied when interface is down *
463 * The PHY cannot be powered down if any of the following is true *
464 * (a) WoL is enabled
465 * (b) AMT is active
466 * (c) SoL/IDER session is active
467 */
468 if (!adapter->wol && hw->mac_type >= e1000_82540 &&
469 hw->media_type == e1000_media_type_copper) {
470 u16 mii_reg = 0;
471
472 switch (hw->mac_type) {
473 case e1000_82540:
474 case e1000_82545:
475 case e1000_82545_rev_3:
476 case e1000_82546:
477 case e1000_ce4100:
478 case e1000_82546_rev_3:
479 case e1000_82541:
480 case e1000_82541_rev_2:
481 case e1000_82547:
482 case e1000_82547_rev_2:
483 if (er32(MANC) & E1000_MANC_SMBUS_EN)
484 goto out;
485 break;
486 default:
487 goto out;
488 }
489 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
490 mii_reg |= MII_CR_POWER_DOWN;
491 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
492 msleep(1);
493 }
494out:
495 return;
496}
497
498static void e1000_down_and_stop(struct e1000_adapter *adapter)
499{
500 set_bit(__E1000_DOWN, &adapter->flags);
501
502 cancel_delayed_work_sync(&adapter->watchdog_task);
503
504 /*
505 * Since the watchdog task can reschedule other tasks, we should cancel
506 * it first, otherwise we can run into the situation when a work is
507 * still running after the adapter has been turned down.
508 */
509
510 cancel_delayed_work_sync(&adapter->phy_info_task);
511 cancel_delayed_work_sync(&adapter->fifo_stall_task);
512
513 /* Only kill reset task if adapter is not resetting */
514 if (!test_bit(__E1000_RESETTING, &adapter->flags))
515 cancel_work_sync(&adapter->reset_task);
516}
517
518void e1000_down(struct e1000_adapter *adapter)
519{
520 struct e1000_hw *hw = &adapter->hw;
521 struct net_device *netdev = adapter->netdev;
522 u32 rctl, tctl;
523
524 netif_carrier_off(netdev);
525
526 /* disable receives in the hardware */
527 rctl = er32(RCTL);
528 ew32(RCTL, rctl & ~E1000_RCTL_EN);
529 /* flush and sleep below */
530
531 netif_tx_disable(netdev);
532
533 /* disable transmits in the hardware */
534 tctl = er32(TCTL);
535 tctl &= ~E1000_TCTL_EN;
536 ew32(TCTL, tctl);
537 /* flush both disables and wait for them to finish */
538 E1000_WRITE_FLUSH();
539 msleep(10);
540
541 napi_disable(&adapter->napi);
542
543 e1000_irq_disable(adapter);
544
545 /* Setting DOWN must be after irq_disable to prevent
546 * a screaming interrupt. Setting DOWN also prevents
547 * tasks from rescheduling.
548 */
549 e1000_down_and_stop(adapter);
550
551 adapter->link_speed = 0;
552 adapter->link_duplex = 0;
553
554 e1000_reset(adapter);
555 e1000_clean_all_tx_rings(adapter);
556 e1000_clean_all_rx_rings(adapter);
557}
558
559void e1000_reinit_locked(struct e1000_adapter *adapter)
560{
561 WARN_ON(in_interrupt());
562 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
563 msleep(1);
564 e1000_down(adapter);
565 e1000_up(adapter);
566 clear_bit(__E1000_RESETTING, &adapter->flags);
567}
568
569void e1000_reset(struct e1000_adapter *adapter)
570{
571 struct e1000_hw *hw = &adapter->hw;
572 u32 pba = 0, tx_space, min_tx_space, min_rx_space;
573 bool legacy_pba_adjust = false;
574 u16 hwm;
575
576 /* Repartition Pba for greater than 9k mtu
577 * To take effect CTRL.RST is required.
578 */
579
580 switch (hw->mac_type) {
581 case e1000_82542_rev2_0:
582 case e1000_82542_rev2_1:
583 case e1000_82543:
584 case e1000_82544:
585 case e1000_82540:
586 case e1000_82541:
587 case e1000_82541_rev_2:
588 legacy_pba_adjust = true;
589 pba = E1000_PBA_48K;
590 break;
591 case e1000_82545:
592 case e1000_82545_rev_3:
593 case e1000_82546:
594 case e1000_ce4100:
595 case e1000_82546_rev_3:
596 pba = E1000_PBA_48K;
597 break;
598 case e1000_82547:
599 case e1000_82547_rev_2:
600 legacy_pba_adjust = true;
601 pba = E1000_PBA_30K;
602 break;
603 case e1000_undefined:
604 case e1000_num_macs:
605 break;
606 }
607
608 if (legacy_pba_adjust) {
609 if (hw->max_frame_size > E1000_RXBUFFER_8192)
610 pba -= 8; /* allocate more FIFO for Tx */
611
612 if (hw->mac_type == e1000_82547) {
613 adapter->tx_fifo_head = 0;
614 adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
615 adapter->tx_fifo_size =
616 (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
617 atomic_set(&adapter->tx_fifo_stall, 0);
618 }
619 } else if (hw->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
620 /* adjust PBA for jumbo frames */
621 ew32(PBA, pba);
622
623 /* To maintain wire speed transmits, the Tx FIFO should be
624 * large enough to accommodate two full transmit packets,
625 * rounded up to the next 1KB and expressed in KB. Likewise,
626 * the Rx FIFO should be large enough to accommodate at least
627 * one full receive packet and is similarly rounded up and
628 * expressed in KB.
629 */
630 pba = er32(PBA);
631 /* upper 16 bits has Tx packet buffer allocation size in KB */
632 tx_space = pba >> 16;
633 /* lower 16 bits has Rx packet buffer allocation size in KB */
634 pba &= 0xffff;
635 /* the Tx fifo also stores 16 bytes of information about the Tx
636 * but don't include ethernet FCS because hardware appends it
637 */
638 min_tx_space = (hw->max_frame_size +
639 sizeof(struct e1000_tx_desc) -
640 ETH_FCS_LEN) * 2;
641 min_tx_space = ALIGN(min_tx_space, 1024);
642 min_tx_space >>= 10;
643 /* software strips receive CRC, so leave room for it */
644 min_rx_space = hw->max_frame_size;
645 min_rx_space = ALIGN(min_rx_space, 1024);
646 min_rx_space >>= 10;
647
648 /* If current Tx allocation is less than the min Tx FIFO size,
649 * and the min Tx FIFO size is less than the current Rx FIFO
650 * allocation, take space away from current Rx allocation
651 */
652 if (tx_space < min_tx_space &&
653 ((min_tx_space - tx_space) < pba)) {
654 pba = pba - (min_tx_space - tx_space);
655
656 /* PCI/PCIx hardware has PBA alignment constraints */
657 switch (hw->mac_type) {
658 case e1000_82545 ... e1000_82546_rev_3:
659 pba &= ~(E1000_PBA_8K - 1);
660 break;
661 default:
662 break;
663 }
664
665 /* if short on Rx space, Rx wins and must trump Tx
666 * adjustment or use Early Receive if available
667 */
668 if (pba < min_rx_space)
669 pba = min_rx_space;
670 }
671 }
672
673 ew32(PBA, pba);
674
675 /* flow control settings:
676 * The high water mark must be low enough to fit one full frame
677 * (or the size used for early receive) above it in the Rx FIFO.
678 * Set it to the lower of:
679 * - 90% of the Rx FIFO size, and
680 * - the full Rx FIFO size minus the early receive size (for parts
681 * with ERT support assuming ERT set to E1000_ERT_2048), or
682 * - the full Rx FIFO size minus one full frame
683 */
684 hwm = min(((pba << 10) * 9 / 10),
685 ((pba << 10) - hw->max_frame_size));
686
687 hw->fc_high_water = hwm & 0xFFF8; /* 8-byte granularity */
688 hw->fc_low_water = hw->fc_high_water - 8;
689 hw->fc_pause_time = E1000_FC_PAUSE_TIME;
690 hw->fc_send_xon = 1;
691 hw->fc = hw->original_fc;
692
693 /* Allow time for pending master requests to run */
694 e1000_reset_hw(hw);
695 if (hw->mac_type >= e1000_82544)
696 ew32(WUC, 0);
697
698 if (e1000_init_hw(hw))
699 e_dev_err("Hardware Error\n");
700 e1000_update_mng_vlan(adapter);
701
702 /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
703 if (hw->mac_type >= e1000_82544 &&
704 hw->autoneg == 1 &&
705 hw->autoneg_advertised == ADVERTISE_1000_FULL) {
706 u32 ctrl = er32(CTRL);
707 /* clear phy power management bit if we are in gig only mode,
708 * which if enabled will attempt negotiation to 100Mb, which
709 * can cause a loss of link at power off or driver unload
710 */
711 ctrl &= ~E1000_CTRL_SWDPIN3;
712 ew32(CTRL, ctrl);
713 }
714
715 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
716 ew32(VET, ETHERNET_IEEE_VLAN_TYPE);
717
718 e1000_reset_adaptive(hw);
719 e1000_phy_get_info(hw, &adapter->phy_info);
720
721 e1000_release_manageability(adapter);
722}
723
724/* Dump the eeprom for users having checksum issues */
725static void e1000_dump_eeprom(struct e1000_adapter *adapter)
726{
727 struct net_device *netdev = adapter->netdev;
728 struct ethtool_eeprom eeprom;
729 const struct ethtool_ops *ops = netdev->ethtool_ops;
730 u8 *data;
731 int i;
732 u16 csum_old, csum_new = 0;
733
734 eeprom.len = ops->get_eeprom_len(netdev);
735 eeprom.offset = 0;
736
737 data = kmalloc(eeprom.len, GFP_KERNEL);
738 if (!data)
739 return;
740
741 ops->get_eeprom(netdev, &eeprom, data);
742
743 csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
744 (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
745 for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
746 csum_new += data[i] + (data[i + 1] << 8);
747 csum_new = EEPROM_SUM - csum_new;
748
749 pr_err("/*********************/\n");
750 pr_err("Current EEPROM Checksum : 0x%04x\n", csum_old);
751 pr_err("Calculated : 0x%04x\n", csum_new);
752
753 pr_err("Offset Values\n");
754 pr_err("======== ======\n");
755 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0);
756
757 pr_err("Include this output when contacting your support provider.\n");
758 pr_err("This is not a software error! Something bad happened to\n");
759 pr_err("your hardware or EEPROM image. Ignoring this problem could\n");
760 pr_err("result in further problems, possibly loss of data,\n");
761 pr_err("corruption or system hangs!\n");
762 pr_err("The MAC Address will be reset to 00:00:00:00:00:00,\n");
763 pr_err("which is invalid and requires you to set the proper MAC\n");
764 pr_err("address manually before continuing to enable this network\n");
765 pr_err("device. Please inspect the EEPROM dump and report the\n");
766 pr_err("issue to your hardware vendor or Intel Customer Support.\n");
767 pr_err("/*********************/\n");
768
769 kfree(data);
770}
771
772/**
773 * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
774 * @pdev: PCI device information struct
775 *
776 * Return true if an adapter needs ioport resources
777 **/
778static int e1000_is_need_ioport(struct pci_dev *pdev)
779{
780 switch (pdev->device) {
781 case E1000_DEV_ID_82540EM:
782 case E1000_DEV_ID_82540EM_LOM:
783 case E1000_DEV_ID_82540EP:
784 case E1000_DEV_ID_82540EP_LOM:
785 case E1000_DEV_ID_82540EP_LP:
786 case E1000_DEV_ID_82541EI:
787 case E1000_DEV_ID_82541EI_MOBILE:
788 case E1000_DEV_ID_82541ER:
789 case E1000_DEV_ID_82541ER_LOM:
790 case E1000_DEV_ID_82541GI:
791 case E1000_DEV_ID_82541GI_LF:
792 case E1000_DEV_ID_82541GI_MOBILE:
793 case E1000_DEV_ID_82544EI_COPPER:
794 case E1000_DEV_ID_82544EI_FIBER:
795 case E1000_DEV_ID_82544GC_COPPER:
796 case E1000_DEV_ID_82544GC_LOM:
797 case E1000_DEV_ID_82545EM_COPPER:
798 case E1000_DEV_ID_82545EM_FIBER:
799 case E1000_DEV_ID_82546EB_COPPER:
800 case E1000_DEV_ID_82546EB_FIBER:
801 case E1000_DEV_ID_82546EB_QUAD_COPPER:
802 return true;
803 default:
804 return false;
805 }
806}
807
808static netdev_features_t e1000_fix_features(struct net_device *netdev,
809 netdev_features_t features)
810{
811 /* Since there is no support for separate Rx/Tx vlan accel
812 * enable/disable make sure Tx flag is always in same state as Rx.
813 */
814 if (features & NETIF_F_HW_VLAN_CTAG_RX)
815 features |= NETIF_F_HW_VLAN_CTAG_TX;
816 else
817 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
818
819 return features;
820}
821
822static int e1000_set_features(struct net_device *netdev,
823 netdev_features_t features)
824{
825 struct e1000_adapter *adapter = netdev_priv(netdev);
826 netdev_features_t changed = features ^ netdev->features;
827
828 if (changed & NETIF_F_HW_VLAN_CTAG_RX)
829 e1000_vlan_mode(netdev, features);
830
831 if (!(changed & (NETIF_F_RXCSUM | NETIF_F_RXALL)))
832 return 0;
833
834 netdev->features = features;
835 adapter->rx_csum = !!(features & NETIF_F_RXCSUM);
836
837 if (netif_running(netdev))
838 e1000_reinit_locked(adapter);
839 else
840 e1000_reset(adapter);
841
842 return 0;
843}
844
845static const struct net_device_ops e1000_netdev_ops = {
846 .ndo_open = e1000_open,
847 .ndo_stop = e1000_close,
848 .ndo_start_xmit = e1000_xmit_frame,
849 .ndo_get_stats = e1000_get_stats,
850 .ndo_set_rx_mode = e1000_set_rx_mode,
851 .ndo_set_mac_address = e1000_set_mac,
852 .ndo_tx_timeout = e1000_tx_timeout,
853 .ndo_change_mtu = e1000_change_mtu,
854 .ndo_do_ioctl = e1000_ioctl,
855 .ndo_validate_addr = eth_validate_addr,
856 .ndo_vlan_rx_add_vid = e1000_vlan_rx_add_vid,
857 .ndo_vlan_rx_kill_vid = e1000_vlan_rx_kill_vid,
858#ifdef CONFIG_NET_POLL_CONTROLLER
859 .ndo_poll_controller = e1000_netpoll,
860#endif
861 .ndo_fix_features = e1000_fix_features,
862 .ndo_set_features = e1000_set_features,
863};
864
865/**
866 * e1000_init_hw_struct - initialize members of hw struct
867 * @adapter: board private struct
868 * @hw: structure used by e1000_hw.c
869 *
870 * Factors out initialization of the e1000_hw struct to its own function
871 * that can be called very early at init (just after struct allocation).
872 * Fields are initialized based on PCI device information and
873 * OS network device settings (MTU size).
874 * Returns negative error codes if MAC type setup fails.
875 */
876static int e1000_init_hw_struct(struct e1000_adapter *adapter,
877 struct e1000_hw *hw)
878{
879 struct pci_dev *pdev = adapter->pdev;
880
881 /* PCI config space info */
882 hw->vendor_id = pdev->vendor;
883 hw->device_id = pdev->device;
884 hw->subsystem_vendor_id = pdev->subsystem_vendor;
885 hw->subsystem_id = pdev->subsystem_device;
886 hw->revision_id = pdev->revision;
887
888 pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
889
890 hw->max_frame_size = adapter->netdev->mtu +
891 ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
892 hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
893
894 /* identify the MAC */
895 if (e1000_set_mac_type(hw)) {
896 e_err(probe, "Unknown MAC Type\n");
897 return -EIO;
898 }
899
900 switch (hw->mac_type) {
901 default:
902 break;
903 case e1000_82541:
904 case e1000_82547:
905 case e1000_82541_rev_2:
906 case e1000_82547_rev_2:
907 hw->phy_init_script = 1;
908 break;
909 }
910
911 e1000_set_media_type(hw);
912 e1000_get_bus_info(hw);
913
914 hw->wait_autoneg_complete = false;
915 hw->tbi_compatibility_en = true;
916 hw->adaptive_ifs = true;
917
918 /* Copper options */
919
920 if (hw->media_type == e1000_media_type_copper) {
921 hw->mdix = AUTO_ALL_MODES;
922 hw->disable_polarity_correction = false;
923 hw->master_slave = E1000_MASTER_SLAVE;
924 }
925
926 return 0;
927}
928
929/**
930 * e1000_probe - Device Initialization Routine
931 * @pdev: PCI device information struct
932 * @ent: entry in e1000_pci_tbl
933 *
934 * Returns 0 on success, negative on failure
935 *
936 * e1000_probe initializes an adapter identified by a pci_dev structure.
937 * The OS initialization, configuring of the adapter private structure,
938 * and a hardware reset occur.
939 **/
940static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
941{
942 struct net_device *netdev;
943 struct e1000_adapter *adapter;
944 struct e1000_hw *hw;
945
946 static int cards_found;
947 static int global_quad_port_a; /* global ksp3 port a indication */
948 int i, err, pci_using_dac;
949 u16 eeprom_data = 0;
950 u16 tmp = 0;
951 u16 eeprom_apme_mask = E1000_EEPROM_APME;
952 int bars, need_ioport;
953
954 /* do not allocate ioport bars when not needed */
955 need_ioport = e1000_is_need_ioport(pdev);
956 if (need_ioport) {
957 bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
958 err = pci_enable_device(pdev);
959 } else {
960 bars = pci_select_bars(pdev, IORESOURCE_MEM);
961 err = pci_enable_device_mem(pdev);
962 }
963 if (err)
964 return err;
965
966 err = pci_request_selected_regions(pdev, bars, e1000_driver_name);
967 if (err)
968 goto err_pci_reg;
969
970 pci_set_master(pdev);
971 err = pci_save_state(pdev);
972 if (err)
973 goto err_alloc_etherdev;
974
975 err = -ENOMEM;
976 netdev = alloc_etherdev(sizeof(struct e1000_adapter));
977 if (!netdev)
978 goto err_alloc_etherdev;
979
980 SET_NETDEV_DEV(netdev, &pdev->dev);
981
982 pci_set_drvdata(pdev, netdev);
983 adapter = netdev_priv(netdev);
984 adapter->netdev = netdev;
985 adapter->pdev = pdev;
986 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
987 adapter->bars = bars;
988 adapter->need_ioport = need_ioport;
989
990 hw = &adapter->hw;
991 hw->back = adapter;
992
993 err = -EIO;
994 hw->hw_addr = pci_ioremap_bar(pdev, BAR_0);
995 if (!hw->hw_addr)
996 goto err_ioremap;
997
998 if (adapter->need_ioport) {
999 for (i = BAR_1; i <= BAR_5; i++) {
1000 if (pci_resource_len(pdev, i) == 0)
1001 continue;
1002 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
1003 hw->io_base = pci_resource_start(pdev, i);
1004 break;
1005 }
1006 }
1007 }
1008
1009 /* make ready for any if (hw->...) below */
1010 err = e1000_init_hw_struct(adapter, hw);
1011 if (err)
1012 goto err_sw_init;
1013
1014 /* there is a workaround being applied below that limits
1015 * 64-bit DMA addresses to 64-bit hardware. There are some
1016 * 32-bit adapters that Tx hang when given 64-bit DMA addresses
1017 */
1018 pci_using_dac = 0;
1019 if ((hw->bus_type == e1000_bus_type_pcix) &&
1020 !dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) {
1021 pci_using_dac = 1;
1022 } else {
1023 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1024 if (err) {
1025 pr_err("No usable DMA config, aborting\n");
1026 goto err_dma;
1027 }
1028 }
1029
1030 netdev->netdev_ops = &e1000_netdev_ops;
1031 e1000_set_ethtool_ops(netdev);
1032 netdev->watchdog_timeo = 5 * HZ;
1033 netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
1034
1035 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1036
1037 adapter->bd_number = cards_found;
1038
1039 /* setup the private structure */
1040
1041 err = e1000_sw_init(adapter);
1042 if (err)
1043 goto err_sw_init;
1044
1045 err = -EIO;
1046 if (hw->mac_type == e1000_ce4100) {
1047 hw->ce4100_gbe_mdio_base_virt =
1048 ioremap(pci_resource_start(pdev, BAR_1),
1049 pci_resource_len(pdev, BAR_1));
1050
1051 if (!hw->ce4100_gbe_mdio_base_virt)
1052 goto err_mdio_ioremap;
1053 }
1054
1055 if (hw->mac_type >= e1000_82543) {
1056 netdev->hw_features = NETIF_F_SG |
1057 NETIF_F_HW_CSUM |
1058 NETIF_F_HW_VLAN_CTAG_RX;
1059 netdev->features = NETIF_F_HW_VLAN_CTAG_TX |
1060 NETIF_F_HW_VLAN_CTAG_FILTER;
1061 }
1062
1063 if ((hw->mac_type >= e1000_82544) &&
1064 (hw->mac_type != e1000_82547))
1065 netdev->hw_features |= NETIF_F_TSO;
1066
1067 netdev->priv_flags |= IFF_SUPP_NOFCS;
1068
1069 netdev->features |= netdev->hw_features;
1070 netdev->hw_features |= (NETIF_F_RXCSUM |
1071 NETIF_F_RXALL |
1072 NETIF_F_RXFCS);
1073
1074 if (pci_using_dac) {
1075 netdev->features |= NETIF_F_HIGHDMA;
1076 netdev->vlan_features |= NETIF_F_HIGHDMA;
1077 }
1078
1079 netdev->vlan_features |= (NETIF_F_TSO |
1080 NETIF_F_HW_CSUM |
1081 NETIF_F_SG);
1082
1083 /* Do not set IFF_UNICAST_FLT for VMWare's 82545EM */
1084 if (hw->device_id != E1000_DEV_ID_82545EM_COPPER ||
1085 hw->subsystem_vendor_id != PCI_VENDOR_ID_VMWARE)
1086 netdev->priv_flags |= IFF_UNICAST_FLT;
1087
1088 /* MTU range: 46 - 16110 */
1089 netdev->min_mtu = ETH_ZLEN - ETH_HLEN;
1090 netdev->max_mtu = MAX_JUMBO_FRAME_SIZE - (ETH_HLEN + ETH_FCS_LEN);
1091
1092 adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
1093
1094 /* initialize eeprom parameters */
1095 if (e1000_init_eeprom_params(hw)) {
1096 e_err(probe, "EEPROM initialization failed\n");
1097 goto err_eeprom;
1098 }
1099
1100 /* before reading the EEPROM, reset the controller to
1101 * put the device in a known good starting state
1102 */
1103
1104 e1000_reset_hw(hw);
1105
1106 /* make sure the EEPROM is good */
1107 if (e1000_validate_eeprom_checksum(hw) < 0) {
1108 e_err(probe, "The EEPROM Checksum Is Not Valid\n");
1109 e1000_dump_eeprom(adapter);
1110 /* set MAC address to all zeroes to invalidate and temporary
1111 * disable this device for the user. This blocks regular
1112 * traffic while still permitting ethtool ioctls from reaching
1113 * the hardware as well as allowing the user to run the
1114 * interface after manually setting a hw addr using
1115 * `ip set address`
1116 */
1117 memset(hw->mac_addr, 0, netdev->addr_len);
1118 } else {
1119 /* copy the MAC address out of the EEPROM */
1120 if (e1000_read_mac_addr(hw))
1121 e_err(probe, "EEPROM Read Error\n");
1122 }
1123 /* don't block initialization here due to bad MAC address */
1124 memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len);
1125
1126 if (!is_valid_ether_addr(netdev->dev_addr))
1127 e_err(probe, "Invalid MAC Address\n");
1128
1129
1130 INIT_DELAYED_WORK(&adapter->watchdog_task, e1000_watchdog);
1131 INIT_DELAYED_WORK(&adapter->fifo_stall_task,
1132 e1000_82547_tx_fifo_stall_task);
1133 INIT_DELAYED_WORK(&adapter->phy_info_task, e1000_update_phy_info_task);
1134 INIT_WORK(&adapter->reset_task, e1000_reset_task);
1135
1136 e1000_check_options(adapter);
1137
1138 /* Initial Wake on LAN setting
1139 * If APM wake is enabled in the EEPROM,
1140 * enable the ACPI Magic Packet filter
1141 */
1142
1143 switch (hw->mac_type) {
1144 case e1000_82542_rev2_0:
1145 case e1000_82542_rev2_1:
1146 case e1000_82543:
1147 break;
1148 case e1000_82544:
1149 e1000_read_eeprom(hw,
1150 EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1151 eeprom_apme_mask = E1000_EEPROM_82544_APM;
1152 break;
1153 case e1000_82546:
1154 case e1000_82546_rev_3:
1155 if (er32(STATUS) & E1000_STATUS_FUNC_1) {
1156 e1000_read_eeprom(hw,
1157 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1158 break;
1159 }
1160 /* Fall Through */
1161 default:
1162 e1000_read_eeprom(hw,
1163 EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1164 break;
1165 }
1166 if (eeprom_data & eeprom_apme_mask)
1167 adapter->eeprom_wol |= E1000_WUFC_MAG;
1168
1169 /* now that we have the eeprom settings, apply the special cases
1170 * where the eeprom may be wrong or the board simply won't support
1171 * wake on lan on a particular port
1172 */
1173 switch (pdev->device) {
1174 case E1000_DEV_ID_82546GB_PCIE:
1175 adapter->eeprom_wol = 0;
1176 break;
1177 case E1000_DEV_ID_82546EB_FIBER:
1178 case E1000_DEV_ID_82546GB_FIBER:
1179 /* Wake events only supported on port A for dual fiber
1180 * regardless of eeprom setting
1181 */
1182 if (er32(STATUS) & E1000_STATUS_FUNC_1)
1183 adapter->eeprom_wol = 0;
1184 break;
1185 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1186 /* if quad port adapter, disable WoL on all but port A */
1187 if (global_quad_port_a != 0)
1188 adapter->eeprom_wol = 0;
1189 else
1190 adapter->quad_port_a = true;
1191 /* Reset for multiple quad port adapters */
1192 if (++global_quad_port_a == 4)
1193 global_quad_port_a = 0;
1194 break;
1195 }
1196
1197 /* initialize the wol settings based on the eeprom settings */
1198 adapter->wol = adapter->eeprom_wol;
1199 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1200
1201 /* Auto detect PHY address */
1202 if (hw->mac_type == e1000_ce4100) {
1203 for (i = 0; i < 32; i++) {
1204 hw->phy_addr = i;
1205 e1000_read_phy_reg(hw, PHY_ID2, &tmp);
1206
1207 if (tmp != 0 && tmp != 0xFF)
1208 break;
1209 }
1210
1211 if (i >= 32)
1212 goto err_eeprom;
1213 }
1214
1215 /* reset the hardware with the new settings */
1216 e1000_reset(adapter);
1217
1218 strcpy(netdev->name, "eth%d");
1219 err = register_netdev(netdev);
1220 if (err)
1221 goto err_register;
1222
1223 e1000_vlan_filter_on_off(adapter, false);
1224
1225 /* print bus type/speed/width info */
1226 e_info(probe, "(PCI%s:%dMHz:%d-bit) %pM\n",
1227 ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : ""),
1228 ((hw->bus_speed == e1000_bus_speed_133) ? 133 :
1229 (hw->bus_speed == e1000_bus_speed_120) ? 120 :
1230 (hw->bus_speed == e1000_bus_speed_100) ? 100 :
1231 (hw->bus_speed == e1000_bus_speed_66) ? 66 : 33),
1232 ((hw->bus_width == e1000_bus_width_64) ? 64 : 32),
1233 netdev->dev_addr);
1234
1235 /* carrier off reporting is important to ethtool even BEFORE open */
1236 netif_carrier_off(netdev);
1237
1238 e_info(probe, "Intel(R) PRO/1000 Network Connection\n");
1239
1240 cards_found++;
1241 return 0;
1242
1243err_register:
1244err_eeprom:
1245 e1000_phy_hw_reset(hw);
1246
1247 if (hw->flash_address)
1248 iounmap(hw->flash_address);
1249 kfree(adapter->tx_ring);
1250 kfree(adapter->rx_ring);
1251err_dma:
1252err_sw_init:
1253err_mdio_ioremap:
1254 iounmap(hw->ce4100_gbe_mdio_base_virt);
1255 iounmap(hw->hw_addr);
1256err_ioremap:
1257 free_netdev(netdev);
1258err_alloc_etherdev:
1259 pci_release_selected_regions(pdev, bars);
1260err_pci_reg:
1261 pci_disable_device(pdev);
1262 return err;
1263}
1264
1265/**
1266 * e1000_remove - Device Removal Routine
1267 * @pdev: PCI device information struct
1268 *
1269 * e1000_remove is called by the PCI subsystem to alert the driver
1270 * that it should release a PCI device. That could be caused by a
1271 * Hot-Plug event, or because the driver is going to be removed from
1272 * memory.
1273 **/
1274static void e1000_remove(struct pci_dev *pdev)
1275{
1276 struct net_device *netdev = pci_get_drvdata(pdev);
1277 struct e1000_adapter *adapter = netdev_priv(netdev);
1278 struct e1000_hw *hw = &adapter->hw;
1279
1280 e1000_down_and_stop(adapter);
1281 e1000_release_manageability(adapter);
1282
1283 unregister_netdev(netdev);
1284
1285 e1000_phy_hw_reset(hw);
1286
1287 kfree(adapter->tx_ring);
1288 kfree(adapter->rx_ring);
1289
1290 if (hw->mac_type == e1000_ce4100)
1291 iounmap(hw->ce4100_gbe_mdio_base_virt);
1292 iounmap(hw->hw_addr);
1293 if (hw->flash_address)
1294 iounmap(hw->flash_address);
1295 pci_release_selected_regions(pdev, adapter->bars);
1296
1297 free_netdev(netdev);
1298
1299 pci_disable_device(pdev);
1300}
1301
1302/**
1303 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1304 * @adapter: board private structure to initialize
1305 *
1306 * e1000_sw_init initializes the Adapter private data structure.
1307 * e1000_init_hw_struct MUST be called before this function
1308 **/
1309static int e1000_sw_init(struct e1000_adapter *adapter)
1310{
1311 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1312
1313 adapter->num_tx_queues = 1;
1314 adapter->num_rx_queues = 1;
1315
1316 if (e1000_alloc_queues(adapter)) {
1317 e_err(probe, "Unable to allocate memory for queues\n");
1318 return -ENOMEM;
1319 }
1320
1321 /* Explicitly disable IRQ since the NIC can be in any state. */
1322 e1000_irq_disable(adapter);
1323
1324 spin_lock_init(&adapter->stats_lock);
1325
1326 set_bit(__E1000_DOWN, &adapter->flags);
1327
1328 return 0;
1329}
1330
1331/**
1332 * e1000_alloc_queues - Allocate memory for all rings
1333 * @adapter: board private structure to initialize
1334 *
1335 * We allocate one ring per queue at run-time since we don't know the
1336 * number of queues at compile-time.
1337 **/
1338static int e1000_alloc_queues(struct e1000_adapter *adapter)
1339{
1340 adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1341 sizeof(struct e1000_tx_ring), GFP_KERNEL);
1342 if (!adapter->tx_ring)
1343 return -ENOMEM;
1344
1345 adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1346 sizeof(struct e1000_rx_ring), GFP_KERNEL);
1347 if (!adapter->rx_ring) {
1348 kfree(adapter->tx_ring);
1349 return -ENOMEM;
1350 }
1351
1352 return E1000_SUCCESS;
1353}
1354
1355/**
1356 * e1000_open - Called when a network interface is made active
1357 * @netdev: network interface device structure
1358 *
1359 * Returns 0 on success, negative value on failure
1360 *
1361 * The open entry point is called when a network interface is made
1362 * active by the system (IFF_UP). At this point all resources needed
1363 * for transmit and receive operations are allocated, the interrupt
1364 * handler is registered with the OS, the watchdog task is started,
1365 * and the stack is notified that the interface is ready.
1366 **/
1367int e1000_open(struct net_device *netdev)
1368{
1369 struct e1000_adapter *adapter = netdev_priv(netdev);
1370 struct e1000_hw *hw = &adapter->hw;
1371 int err;
1372
1373 /* disallow open during test */
1374 if (test_bit(__E1000_TESTING, &adapter->flags))
1375 return -EBUSY;
1376
1377 netif_carrier_off(netdev);
1378
1379 /* allocate transmit descriptors */
1380 err = e1000_setup_all_tx_resources(adapter);
1381 if (err)
1382 goto err_setup_tx;
1383
1384 /* allocate receive descriptors */
1385 err = e1000_setup_all_rx_resources(adapter);
1386 if (err)
1387 goto err_setup_rx;
1388
1389 e1000_power_up_phy(adapter);
1390
1391 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1392 if ((hw->mng_cookie.status &
1393 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1394 e1000_update_mng_vlan(adapter);
1395 }
1396
1397 /* before we allocate an interrupt, we must be ready to handle it.
1398 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1399 * as soon as we call pci_request_irq, so we have to setup our
1400 * clean_rx handler before we do so.
1401 */
1402 e1000_configure(adapter);
1403
1404 err = e1000_request_irq(adapter);
1405 if (err)
1406 goto err_req_irq;
1407
1408 /* From here on the code is the same as e1000_up() */
1409 clear_bit(__E1000_DOWN, &adapter->flags);
1410
1411 napi_enable(&adapter->napi);
1412
1413 e1000_irq_enable(adapter);
1414
1415 netif_start_queue(netdev);
1416
1417 /* fire a link status change interrupt to start the watchdog */
1418 ew32(ICS, E1000_ICS_LSC);
1419
1420 return E1000_SUCCESS;
1421
1422err_req_irq:
1423 e1000_power_down_phy(adapter);
1424 e1000_free_all_rx_resources(adapter);
1425err_setup_rx:
1426 e1000_free_all_tx_resources(adapter);
1427err_setup_tx:
1428 e1000_reset(adapter);
1429
1430 return err;
1431}
1432
1433/**
1434 * e1000_close - Disables a network interface
1435 * @netdev: network interface device structure
1436 *
1437 * Returns 0, this is not allowed to fail
1438 *
1439 * The close entry point is called when an interface is de-activated
1440 * by the OS. The hardware is still under the drivers control, but
1441 * needs to be disabled. A global MAC reset is issued to stop the
1442 * hardware, and all transmit and receive resources are freed.
1443 **/
1444int e1000_close(struct net_device *netdev)
1445{
1446 struct e1000_adapter *adapter = netdev_priv(netdev);
1447 struct e1000_hw *hw = &adapter->hw;
1448 int count = E1000_CHECK_RESET_COUNT;
1449
1450 while (test_bit(__E1000_RESETTING, &adapter->flags) && count--)
1451 usleep_range(10000, 20000);
1452
1453 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
1454 e1000_down(adapter);
1455 e1000_power_down_phy(adapter);
1456 e1000_free_irq(adapter);
1457
1458 e1000_free_all_tx_resources(adapter);
1459 e1000_free_all_rx_resources(adapter);
1460
1461 /* kill manageability vlan ID if supported, but not if a vlan with
1462 * the same ID is registered on the host OS (let 8021q kill it)
1463 */
1464 if ((hw->mng_cookie.status &
1465 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1466 !test_bit(adapter->mng_vlan_id, adapter->active_vlans)) {
1467 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
1468 adapter->mng_vlan_id);
1469 }
1470
1471 return 0;
1472}
1473
1474/**
1475 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1476 * @adapter: address of board private structure
1477 * @start: address of beginning of memory
1478 * @len: length of memory
1479 **/
1480static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start,
1481 unsigned long len)
1482{
1483 struct e1000_hw *hw = &adapter->hw;
1484 unsigned long begin = (unsigned long)start;
1485 unsigned long end = begin + len;
1486
1487 /* First rev 82545 and 82546 need to not allow any memory
1488 * write location to cross 64k boundary due to errata 23
1489 */
1490 if (hw->mac_type == e1000_82545 ||
1491 hw->mac_type == e1000_ce4100 ||
1492 hw->mac_type == e1000_82546) {
1493 return ((begin ^ (end - 1)) >> 16) != 0 ? false : true;
1494 }
1495
1496 return true;
1497}
1498
1499/**
1500 * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1501 * @adapter: board private structure
1502 * @txdr: tx descriptor ring (for a specific queue) to setup
1503 *
1504 * Return 0 on success, negative on failure
1505 **/
1506static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
1507 struct e1000_tx_ring *txdr)
1508{
1509 struct pci_dev *pdev = adapter->pdev;
1510 int size;
1511
1512 size = sizeof(struct e1000_tx_buffer) * txdr->count;
1513 txdr->buffer_info = vzalloc(size);
1514 if (!txdr->buffer_info)
1515 return -ENOMEM;
1516
1517 /* round up to nearest 4K */
1518
1519 txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1520 txdr->size = ALIGN(txdr->size, 4096);
1521
1522 txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
1523 GFP_KERNEL);
1524 if (!txdr->desc) {
1525setup_tx_desc_die:
1526 vfree(txdr->buffer_info);
1527 return -ENOMEM;
1528 }
1529
1530 /* Fix for errata 23, can't cross 64kB boundary */
1531 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1532 void *olddesc = txdr->desc;
1533 dma_addr_t olddma = txdr->dma;
1534 e_err(tx_err, "txdr align check failed: %u bytes at %p\n",
1535 txdr->size, txdr->desc);
1536 /* Try again, without freeing the previous */
1537 txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size,
1538 &txdr->dma, GFP_KERNEL);
1539 /* Failed allocation, critical failure */
1540 if (!txdr->desc) {
1541 dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1542 olddma);
1543 goto setup_tx_desc_die;
1544 }
1545
1546 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1547 /* give up */
1548 dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
1549 txdr->dma);
1550 dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1551 olddma);
1552 e_err(probe, "Unable to allocate aligned memory "
1553 "for the transmit descriptor ring\n");
1554 vfree(txdr->buffer_info);
1555 return -ENOMEM;
1556 } else {
1557 /* Free old allocation, new allocation was successful */
1558 dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1559 olddma);
1560 }
1561 }
1562 memset(txdr->desc, 0, txdr->size);
1563
1564 txdr->next_to_use = 0;
1565 txdr->next_to_clean = 0;
1566
1567 return 0;
1568}
1569
1570/**
1571 * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1572 * (Descriptors) for all queues
1573 * @adapter: board private structure
1574 *
1575 * Return 0 on success, negative on failure
1576 **/
1577int e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1578{
1579 int i, err = 0;
1580
1581 for (i = 0; i < adapter->num_tx_queues; i++) {
1582 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1583 if (err) {
1584 e_err(probe, "Allocation for Tx Queue %u failed\n", i);
1585 for (i-- ; i >= 0; i--)
1586 e1000_free_tx_resources(adapter,
1587 &adapter->tx_ring[i]);
1588 break;
1589 }
1590 }
1591
1592 return err;
1593}
1594
1595/**
1596 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1597 * @adapter: board private structure
1598 *
1599 * Configure the Tx unit of the MAC after a reset.
1600 **/
1601static void e1000_configure_tx(struct e1000_adapter *adapter)
1602{
1603 u64 tdba;
1604 struct e1000_hw *hw = &adapter->hw;
1605 u32 tdlen, tctl, tipg;
1606 u32 ipgr1, ipgr2;
1607
1608 /* Setup the HW Tx Head and Tail descriptor pointers */
1609
1610 switch (adapter->num_tx_queues) {
1611 case 1:
1612 default:
1613 tdba = adapter->tx_ring[0].dma;
1614 tdlen = adapter->tx_ring[0].count *
1615 sizeof(struct e1000_tx_desc);
1616 ew32(TDLEN, tdlen);
1617 ew32(TDBAH, (tdba >> 32));
1618 ew32(TDBAL, (tdba & 0x00000000ffffffffULL));
1619 ew32(TDT, 0);
1620 ew32(TDH, 0);
1621 adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ?
1622 E1000_TDH : E1000_82542_TDH);
1623 adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ?
1624 E1000_TDT : E1000_82542_TDT);
1625 break;
1626 }
1627
1628 /* Set the default values for the Tx Inter Packet Gap timer */
1629 if ((hw->media_type == e1000_media_type_fiber ||
1630 hw->media_type == e1000_media_type_internal_serdes))
1631 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1632 else
1633 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1634
1635 switch (hw->mac_type) {
1636 case e1000_82542_rev2_0:
1637 case e1000_82542_rev2_1:
1638 tipg = DEFAULT_82542_TIPG_IPGT;
1639 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1640 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1641 break;
1642 default:
1643 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1644 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1645 break;
1646 }
1647 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1648 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1649 ew32(TIPG, tipg);
1650
1651 /* Set the Tx Interrupt Delay register */
1652
1653 ew32(TIDV, adapter->tx_int_delay);
1654 if (hw->mac_type >= e1000_82540)
1655 ew32(TADV, adapter->tx_abs_int_delay);
1656
1657 /* Program the Transmit Control Register */
1658
1659 tctl = er32(TCTL);
1660 tctl &= ~E1000_TCTL_CT;
1661 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1662 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1663
1664 e1000_config_collision_dist(hw);
1665
1666 /* Setup Transmit Descriptor Settings for eop descriptor */
1667 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1668
1669 /* only set IDE if we are delaying interrupts using the timers */
1670 if (adapter->tx_int_delay)
1671 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1672
1673 if (hw->mac_type < e1000_82543)
1674 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1675 else
1676 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1677
1678 /* Cache if we're 82544 running in PCI-X because we'll
1679 * need this to apply a workaround later in the send path.
1680 */
1681 if (hw->mac_type == e1000_82544 &&
1682 hw->bus_type == e1000_bus_type_pcix)
1683 adapter->pcix_82544 = true;
1684
1685 ew32(TCTL, tctl);
1686
1687}
1688
1689/**
1690 * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1691 * @adapter: board private structure
1692 * @rxdr: rx descriptor ring (for a specific queue) to setup
1693 *
1694 * Returns 0 on success, negative on failure
1695 **/
1696static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
1697 struct e1000_rx_ring *rxdr)
1698{
1699 struct pci_dev *pdev = adapter->pdev;
1700 int size, desc_len;
1701
1702 size = sizeof(struct e1000_rx_buffer) * rxdr->count;
1703 rxdr->buffer_info = vzalloc(size);
1704 if (!rxdr->buffer_info)
1705 return -ENOMEM;
1706
1707 desc_len = sizeof(struct e1000_rx_desc);
1708
1709 /* Round up to nearest 4K */
1710
1711 rxdr->size = rxdr->count * desc_len;
1712 rxdr->size = ALIGN(rxdr->size, 4096);
1713
1714 rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
1715 GFP_KERNEL);
1716 if (!rxdr->desc) {
1717setup_rx_desc_die:
1718 vfree(rxdr->buffer_info);
1719 return -ENOMEM;
1720 }
1721
1722 /* Fix for errata 23, can't cross 64kB boundary */
1723 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1724 void *olddesc = rxdr->desc;
1725 dma_addr_t olddma = rxdr->dma;
1726 e_err(rx_err, "rxdr align check failed: %u bytes at %p\n",
1727 rxdr->size, rxdr->desc);
1728 /* Try again, without freeing the previous */
1729 rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size,
1730 &rxdr->dma, GFP_KERNEL);
1731 /* Failed allocation, critical failure */
1732 if (!rxdr->desc) {
1733 dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1734 olddma);
1735 goto setup_rx_desc_die;
1736 }
1737
1738 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1739 /* give up */
1740 dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
1741 rxdr->dma);
1742 dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1743 olddma);
1744 e_err(probe, "Unable to allocate aligned memory for "
1745 "the Rx descriptor ring\n");
1746 goto setup_rx_desc_die;
1747 } else {
1748 /* Free old allocation, new allocation was successful */
1749 dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1750 olddma);
1751 }
1752 }
1753 memset(rxdr->desc, 0, rxdr->size);
1754
1755 rxdr->next_to_clean = 0;
1756 rxdr->next_to_use = 0;
1757 rxdr->rx_skb_top = NULL;
1758
1759 return 0;
1760}
1761
1762/**
1763 * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1764 * (Descriptors) for all queues
1765 * @adapter: board private structure
1766 *
1767 * Return 0 on success, negative on failure
1768 **/
1769int e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1770{
1771 int i, err = 0;
1772
1773 for (i = 0; i < adapter->num_rx_queues; i++) {
1774 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1775 if (err) {
1776 e_err(probe, "Allocation for Rx Queue %u failed\n", i);
1777 for (i-- ; i >= 0; i--)
1778 e1000_free_rx_resources(adapter,
1779 &adapter->rx_ring[i]);
1780 break;
1781 }
1782 }
1783
1784 return err;
1785}
1786
1787/**
1788 * e1000_setup_rctl - configure the receive control registers
1789 * @adapter: Board private structure
1790 **/
1791static void e1000_setup_rctl(struct e1000_adapter *adapter)
1792{
1793 struct e1000_hw *hw = &adapter->hw;
1794 u32 rctl;
1795
1796 rctl = er32(RCTL);
1797
1798 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1799
1800 rctl |= E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
1801 E1000_RCTL_RDMTS_HALF |
1802 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1803
1804 if (hw->tbi_compatibility_on == 1)
1805 rctl |= E1000_RCTL_SBP;
1806 else
1807 rctl &= ~E1000_RCTL_SBP;
1808
1809 if (adapter->netdev->mtu <= ETH_DATA_LEN)
1810 rctl &= ~E1000_RCTL_LPE;
1811 else
1812 rctl |= E1000_RCTL_LPE;
1813
1814 /* Setup buffer sizes */
1815 rctl &= ~E1000_RCTL_SZ_4096;
1816 rctl |= E1000_RCTL_BSEX;
1817 switch (adapter->rx_buffer_len) {
1818 case E1000_RXBUFFER_2048:
1819 default:
1820 rctl |= E1000_RCTL_SZ_2048;
1821 rctl &= ~E1000_RCTL_BSEX;
1822 break;
1823 case E1000_RXBUFFER_4096:
1824 rctl |= E1000_RCTL_SZ_4096;
1825 break;
1826 case E1000_RXBUFFER_8192:
1827 rctl |= E1000_RCTL_SZ_8192;
1828 break;
1829 case E1000_RXBUFFER_16384:
1830 rctl |= E1000_RCTL_SZ_16384;
1831 break;
1832 }
1833
1834 /* This is useful for sniffing bad packets. */
1835 if (adapter->netdev->features & NETIF_F_RXALL) {
1836 /* UPE and MPE will be handled by normal PROMISC logic
1837 * in e1000e_set_rx_mode
1838 */
1839 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
1840 E1000_RCTL_BAM | /* RX All Bcast Pkts */
1841 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
1842
1843 rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
1844 E1000_RCTL_DPF | /* Allow filtered pause */
1845 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
1846 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
1847 * and that breaks VLANs.
1848 */
1849 }
1850
1851 ew32(RCTL, rctl);
1852}
1853
1854/**
1855 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1856 * @adapter: board private structure
1857 *
1858 * Configure the Rx unit of the MAC after a reset.
1859 **/
1860static void e1000_configure_rx(struct e1000_adapter *adapter)
1861{
1862 u64 rdba;
1863 struct e1000_hw *hw = &adapter->hw;
1864 u32 rdlen, rctl, rxcsum;
1865
1866 if (adapter->netdev->mtu > ETH_DATA_LEN) {
1867 rdlen = adapter->rx_ring[0].count *
1868 sizeof(struct e1000_rx_desc);
1869 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
1870 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
1871 } else {
1872 rdlen = adapter->rx_ring[0].count *
1873 sizeof(struct e1000_rx_desc);
1874 adapter->clean_rx = e1000_clean_rx_irq;
1875 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1876 }
1877
1878 /* disable receives while setting up the descriptors */
1879 rctl = er32(RCTL);
1880 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1881
1882 /* set the Receive Delay Timer Register */
1883 ew32(RDTR, adapter->rx_int_delay);
1884
1885 if (hw->mac_type >= e1000_82540) {
1886 ew32(RADV, adapter->rx_abs_int_delay);
1887 if (adapter->itr_setting != 0)
1888 ew32(ITR, 1000000000 / (adapter->itr * 256));
1889 }
1890
1891 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1892 * the Base and Length of the Rx Descriptor Ring
1893 */
1894 switch (adapter->num_rx_queues) {
1895 case 1:
1896 default:
1897 rdba = adapter->rx_ring[0].dma;
1898 ew32(RDLEN, rdlen);
1899 ew32(RDBAH, (rdba >> 32));
1900 ew32(RDBAL, (rdba & 0x00000000ffffffffULL));
1901 ew32(RDT, 0);
1902 ew32(RDH, 0);
1903 adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ?
1904 E1000_RDH : E1000_82542_RDH);
1905 adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ?
1906 E1000_RDT : E1000_82542_RDT);
1907 break;
1908 }
1909
1910 /* Enable 82543 Receive Checksum Offload for TCP and UDP */
1911 if (hw->mac_type >= e1000_82543) {
1912 rxcsum = er32(RXCSUM);
1913 if (adapter->rx_csum)
1914 rxcsum |= E1000_RXCSUM_TUOFL;
1915 else
1916 /* don't need to clear IPPCSE as it defaults to 0 */
1917 rxcsum &= ~E1000_RXCSUM_TUOFL;
1918 ew32(RXCSUM, rxcsum);
1919 }
1920
1921 /* Enable Receives */
1922 ew32(RCTL, rctl | E1000_RCTL_EN);
1923}
1924
1925/**
1926 * e1000_free_tx_resources - Free Tx Resources per Queue
1927 * @adapter: board private structure
1928 * @tx_ring: Tx descriptor ring for a specific queue
1929 *
1930 * Free all transmit software resources
1931 **/
1932static void e1000_free_tx_resources(struct e1000_adapter *adapter,
1933 struct e1000_tx_ring *tx_ring)
1934{
1935 struct pci_dev *pdev = adapter->pdev;
1936
1937 e1000_clean_tx_ring(adapter, tx_ring);
1938
1939 vfree(tx_ring->buffer_info);
1940 tx_ring->buffer_info = NULL;
1941
1942 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1943 tx_ring->dma);
1944
1945 tx_ring->desc = NULL;
1946}
1947
1948/**
1949 * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1950 * @adapter: board private structure
1951 *
1952 * Free all transmit software resources
1953 **/
1954void e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1955{
1956 int i;
1957
1958 for (i = 0; i < adapter->num_tx_queues; i++)
1959 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1960}
1961
1962static void
1963e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1964 struct e1000_tx_buffer *buffer_info)
1965{
1966 if (buffer_info->dma) {
1967 if (buffer_info->mapped_as_page)
1968 dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1969 buffer_info->length, DMA_TO_DEVICE);
1970 else
1971 dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1972 buffer_info->length,
1973 DMA_TO_DEVICE);
1974 buffer_info->dma = 0;
1975 }
1976 if (buffer_info->skb) {
1977 dev_kfree_skb_any(buffer_info->skb);
1978 buffer_info->skb = NULL;
1979 }
1980 buffer_info->time_stamp = 0;
1981 /* buffer_info must be completely set up in the transmit path */
1982}
1983
1984/**
1985 * e1000_clean_tx_ring - Free Tx Buffers
1986 * @adapter: board private structure
1987 * @tx_ring: ring to be cleaned
1988 **/
1989static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
1990 struct e1000_tx_ring *tx_ring)
1991{
1992 struct e1000_hw *hw = &adapter->hw;
1993 struct e1000_tx_buffer *buffer_info;
1994 unsigned long size;
1995 unsigned int i;
1996
1997 /* Free all the Tx ring sk_buffs */
1998
1999 for (i = 0; i < tx_ring->count; i++) {
2000 buffer_info = &tx_ring->buffer_info[i];
2001 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2002 }
2003
2004 netdev_reset_queue(adapter->netdev);
2005 size = sizeof(struct e1000_tx_buffer) * tx_ring->count;
2006 memset(tx_ring->buffer_info, 0, size);
2007
2008 /* Zero out the descriptor ring */
2009
2010 memset(tx_ring->desc, 0, tx_ring->size);
2011
2012 tx_ring->next_to_use = 0;
2013 tx_ring->next_to_clean = 0;
2014 tx_ring->last_tx_tso = false;
2015
2016 writel(0, hw->hw_addr + tx_ring->tdh);
2017 writel(0, hw->hw_addr + tx_ring->tdt);
2018}
2019
2020/**
2021 * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2022 * @adapter: board private structure
2023 **/
2024static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
2025{
2026 int i;
2027
2028 for (i = 0; i < adapter->num_tx_queues; i++)
2029 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
2030}
2031
2032/**
2033 * e1000_free_rx_resources - Free Rx Resources
2034 * @adapter: board private structure
2035 * @rx_ring: ring to clean the resources from
2036 *
2037 * Free all receive software resources
2038 **/
2039static void e1000_free_rx_resources(struct e1000_adapter *adapter,
2040 struct e1000_rx_ring *rx_ring)
2041{
2042 struct pci_dev *pdev = adapter->pdev;
2043
2044 e1000_clean_rx_ring(adapter, rx_ring);
2045
2046 vfree(rx_ring->buffer_info);
2047 rx_ring->buffer_info = NULL;
2048
2049 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2050 rx_ring->dma);
2051
2052 rx_ring->desc = NULL;
2053}
2054
2055/**
2056 * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2057 * @adapter: board private structure
2058 *
2059 * Free all receive software resources
2060 **/
2061void e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2062{
2063 int i;
2064
2065 for (i = 0; i < adapter->num_rx_queues; i++)
2066 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2067}
2068
2069#define E1000_HEADROOM (NET_SKB_PAD + NET_IP_ALIGN)
2070static unsigned int e1000_frag_len(const struct e1000_adapter *a)
2071{
2072 return SKB_DATA_ALIGN(a->rx_buffer_len + E1000_HEADROOM) +
2073 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2074}
2075
2076static void *e1000_alloc_frag(const struct e1000_adapter *a)
2077{
2078 unsigned int len = e1000_frag_len(a);
2079 u8 *data = netdev_alloc_frag(len);
2080
2081 if (likely(data))
2082 data += E1000_HEADROOM;
2083 return data;
2084}
2085
2086/**
2087 * e1000_clean_rx_ring - Free Rx Buffers per Queue
2088 * @adapter: board private structure
2089 * @rx_ring: ring to free buffers from
2090 **/
2091static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
2092 struct e1000_rx_ring *rx_ring)
2093{
2094 struct e1000_hw *hw = &adapter->hw;
2095 struct e1000_rx_buffer *buffer_info;
2096 struct pci_dev *pdev = adapter->pdev;
2097 unsigned long size;
2098 unsigned int i;
2099
2100 /* Free all the Rx netfrags */
2101 for (i = 0; i < rx_ring->count; i++) {
2102 buffer_info = &rx_ring->buffer_info[i];
2103 if (adapter->clean_rx == e1000_clean_rx_irq) {
2104 if (buffer_info->dma)
2105 dma_unmap_single(&pdev->dev, buffer_info->dma,
2106 adapter->rx_buffer_len,
2107 DMA_FROM_DEVICE);
2108 if (buffer_info->rxbuf.data) {
2109 skb_free_frag(buffer_info->rxbuf.data);
2110 buffer_info->rxbuf.data = NULL;
2111 }
2112 } else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq) {
2113 if (buffer_info->dma)
2114 dma_unmap_page(&pdev->dev, buffer_info->dma,
2115 adapter->rx_buffer_len,
2116 DMA_FROM_DEVICE);
2117 if (buffer_info->rxbuf.page) {
2118 put_page(buffer_info->rxbuf.page);
2119 buffer_info->rxbuf.page = NULL;
2120 }
2121 }
2122
2123 buffer_info->dma = 0;
2124 }
2125
2126 /* there also may be some cached data from a chained receive */
2127 napi_free_frags(&adapter->napi);
2128 rx_ring->rx_skb_top = NULL;
2129
2130 size = sizeof(struct e1000_rx_buffer) * rx_ring->count;
2131 memset(rx_ring->buffer_info, 0, size);
2132
2133 /* Zero out the descriptor ring */
2134 memset(rx_ring->desc, 0, rx_ring->size);
2135
2136 rx_ring->next_to_clean = 0;
2137 rx_ring->next_to_use = 0;
2138
2139 writel(0, hw->hw_addr + rx_ring->rdh);
2140 writel(0, hw->hw_addr + rx_ring->rdt);
2141}
2142
2143/**
2144 * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2145 * @adapter: board private structure
2146 **/
2147static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2148{
2149 int i;
2150
2151 for (i = 0; i < adapter->num_rx_queues; i++)
2152 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2153}
2154
2155/* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2156 * and memory write and invalidate disabled for certain operations
2157 */
2158static void e1000_enter_82542_rst(struct e1000_adapter *adapter)
2159{
2160 struct e1000_hw *hw = &adapter->hw;
2161 struct net_device *netdev = adapter->netdev;
2162 u32 rctl;
2163
2164 e1000_pci_clear_mwi(hw);
2165
2166 rctl = er32(RCTL);
2167 rctl |= E1000_RCTL_RST;
2168 ew32(RCTL, rctl);
2169 E1000_WRITE_FLUSH();
2170 mdelay(5);
2171
2172 if (netif_running(netdev))
2173 e1000_clean_all_rx_rings(adapter);
2174}
2175
2176static void e1000_leave_82542_rst(struct e1000_adapter *adapter)
2177{
2178 struct e1000_hw *hw = &adapter->hw;
2179 struct net_device *netdev = adapter->netdev;
2180 u32 rctl;
2181
2182 rctl = er32(RCTL);
2183 rctl &= ~E1000_RCTL_RST;
2184 ew32(RCTL, rctl);
2185 E1000_WRITE_FLUSH();
2186 mdelay(5);
2187
2188 if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
2189 e1000_pci_set_mwi(hw);
2190
2191 if (netif_running(netdev)) {
2192 /* No need to loop, because 82542 supports only 1 queue */
2193 struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2194 e1000_configure_rx(adapter);
2195 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2196 }
2197}
2198
2199/**
2200 * e1000_set_mac - Change the Ethernet Address of the NIC
2201 * @netdev: network interface device structure
2202 * @p: pointer to an address structure
2203 *
2204 * Returns 0 on success, negative on failure
2205 **/
2206static int e1000_set_mac(struct net_device *netdev, void *p)
2207{
2208 struct e1000_adapter *adapter = netdev_priv(netdev);
2209 struct e1000_hw *hw = &adapter->hw;
2210 struct sockaddr *addr = p;
2211
2212 if (!is_valid_ether_addr(addr->sa_data))
2213 return -EADDRNOTAVAIL;
2214
2215 /* 82542 2.0 needs to be in reset to write receive address registers */
2216
2217 if (hw->mac_type == e1000_82542_rev2_0)
2218 e1000_enter_82542_rst(adapter);
2219
2220 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2221 memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
2222
2223 e1000_rar_set(hw, hw->mac_addr, 0);
2224
2225 if (hw->mac_type == e1000_82542_rev2_0)
2226 e1000_leave_82542_rst(adapter);
2227
2228 return 0;
2229}
2230
2231/**
2232 * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2233 * @netdev: network interface device structure
2234 *
2235 * The set_rx_mode entry point is called whenever the unicast or multicast
2236 * address lists or the network interface flags are updated. This routine is
2237 * responsible for configuring the hardware for proper unicast, multicast,
2238 * promiscuous mode, and all-multi behavior.
2239 **/
2240static void e1000_set_rx_mode(struct net_device *netdev)
2241{
2242 struct e1000_adapter *adapter = netdev_priv(netdev);
2243 struct e1000_hw *hw = &adapter->hw;
2244 struct netdev_hw_addr *ha;
2245 bool use_uc = false;
2246 u32 rctl;
2247 u32 hash_value;
2248 int i, rar_entries = E1000_RAR_ENTRIES;
2249 int mta_reg_count = E1000_NUM_MTA_REGISTERS;
2250 u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC);
2251
2252 if (!mcarray)
2253 return;
2254
2255 /* Check for Promiscuous and All Multicast modes */
2256
2257 rctl = er32(RCTL);
2258
2259 if (netdev->flags & IFF_PROMISC) {
2260 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2261 rctl &= ~E1000_RCTL_VFE;
2262 } else {
2263 if (netdev->flags & IFF_ALLMULTI)
2264 rctl |= E1000_RCTL_MPE;
2265 else
2266 rctl &= ~E1000_RCTL_MPE;
2267 /* Enable VLAN filter if there is a VLAN */
2268 if (e1000_vlan_used(adapter))
2269 rctl |= E1000_RCTL_VFE;
2270 }
2271
2272 if (netdev_uc_count(netdev) > rar_entries - 1) {
2273 rctl |= E1000_RCTL_UPE;
2274 } else if (!(netdev->flags & IFF_PROMISC)) {
2275 rctl &= ~E1000_RCTL_UPE;
2276 use_uc = true;
2277 }
2278
2279 ew32(RCTL, rctl);
2280
2281 /* 82542 2.0 needs to be in reset to write receive address registers */
2282
2283 if (hw->mac_type == e1000_82542_rev2_0)
2284 e1000_enter_82542_rst(adapter);
2285
2286 /* load the first 14 addresses into the exact filters 1-14. Unicast
2287 * addresses take precedence to avoid disabling unicast filtering
2288 * when possible.
2289 *
2290 * RAR 0 is used for the station MAC address
2291 * if there are not 14 addresses, go ahead and clear the filters
2292 */
2293 i = 1;
2294 if (use_uc)
2295 netdev_for_each_uc_addr(ha, netdev) {
2296 if (i == rar_entries)
2297 break;
2298 e1000_rar_set(hw, ha->addr, i++);
2299 }
2300
2301 netdev_for_each_mc_addr(ha, netdev) {
2302 if (i == rar_entries) {
2303 /* load any remaining addresses into the hash table */
2304 u32 hash_reg, hash_bit, mta;
2305 hash_value = e1000_hash_mc_addr(hw, ha->addr);
2306 hash_reg = (hash_value >> 5) & 0x7F;
2307 hash_bit = hash_value & 0x1F;
2308 mta = (1 << hash_bit);
2309 mcarray[hash_reg] |= mta;
2310 } else {
2311 e1000_rar_set(hw, ha->addr, i++);
2312 }
2313 }
2314
2315 for (; i < rar_entries; i++) {
2316 E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2317 E1000_WRITE_FLUSH();
2318 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2319 E1000_WRITE_FLUSH();
2320 }
2321
2322 /* write the hash table completely, write from bottom to avoid
2323 * both stupid write combining chipsets, and flushing each write
2324 */
2325 for (i = mta_reg_count - 1; i >= 0 ; i--) {
2326 /* If we are on an 82544 has an errata where writing odd
2327 * offsets overwrites the previous even offset, but writing
2328 * backwards over the range solves the issue by always
2329 * writing the odd offset first
2330 */
2331 E1000_WRITE_REG_ARRAY(hw, MTA, i, mcarray[i]);
2332 }
2333 E1000_WRITE_FLUSH();
2334
2335 if (hw->mac_type == e1000_82542_rev2_0)
2336 e1000_leave_82542_rst(adapter);
2337
2338 kfree(mcarray);
2339}
2340
2341/**
2342 * e1000_update_phy_info_task - get phy info
2343 * @work: work struct contained inside adapter struct
2344 *
2345 * Need to wait a few seconds after link up to get diagnostic information from
2346 * the phy
2347 */
2348static void e1000_update_phy_info_task(struct work_struct *work)
2349{
2350 struct e1000_adapter *adapter = container_of(work,
2351 struct e1000_adapter,
2352 phy_info_task.work);
2353
2354 e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2355}
2356
2357/**
2358 * e1000_82547_tx_fifo_stall_task - task to complete work
2359 * @work: work struct contained inside adapter struct
2360 **/
2361static void e1000_82547_tx_fifo_stall_task(struct work_struct *work)
2362{
2363 struct e1000_adapter *adapter = container_of(work,
2364 struct e1000_adapter,
2365 fifo_stall_task.work);
2366 struct e1000_hw *hw = &adapter->hw;
2367 struct net_device *netdev = adapter->netdev;
2368 u32 tctl;
2369
2370 if (atomic_read(&adapter->tx_fifo_stall)) {
2371 if ((er32(TDT) == er32(TDH)) &&
2372 (er32(TDFT) == er32(TDFH)) &&
2373 (er32(TDFTS) == er32(TDFHS))) {
2374 tctl = er32(TCTL);
2375 ew32(TCTL, tctl & ~E1000_TCTL_EN);
2376 ew32(TDFT, adapter->tx_head_addr);
2377 ew32(TDFH, adapter->tx_head_addr);
2378 ew32(TDFTS, adapter->tx_head_addr);
2379 ew32(TDFHS, adapter->tx_head_addr);
2380 ew32(TCTL, tctl);
2381 E1000_WRITE_FLUSH();
2382
2383 adapter->tx_fifo_head = 0;
2384 atomic_set(&adapter->tx_fifo_stall, 0);
2385 netif_wake_queue(netdev);
2386 } else if (!test_bit(__E1000_DOWN, &adapter->flags)) {
2387 schedule_delayed_work(&adapter->fifo_stall_task, 1);
2388 }
2389 }
2390}
2391
2392bool e1000_has_link(struct e1000_adapter *adapter)
2393{
2394 struct e1000_hw *hw = &adapter->hw;
2395 bool link_active = false;
2396
2397 /* get_link_status is set on LSC (link status) interrupt or rx
2398 * sequence error interrupt (except on intel ce4100).
2399 * get_link_status will stay false until the
2400 * e1000_check_for_link establishes link for copper adapters
2401 * ONLY
2402 */
2403 switch (hw->media_type) {
2404 case e1000_media_type_copper:
2405 if (hw->mac_type == e1000_ce4100)
2406 hw->get_link_status = 1;
2407 if (hw->get_link_status) {
2408 e1000_check_for_link(hw);
2409 link_active = !hw->get_link_status;
2410 } else {
2411 link_active = true;
2412 }
2413 break;
2414 case e1000_media_type_fiber:
2415 e1000_check_for_link(hw);
2416 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
2417 break;
2418 case e1000_media_type_internal_serdes:
2419 e1000_check_for_link(hw);
2420 link_active = hw->serdes_has_link;
2421 break;
2422 default:
2423 break;
2424 }
2425
2426 return link_active;
2427}
2428
2429/**
2430 * e1000_watchdog - work function
2431 * @work: work struct contained inside adapter struct
2432 **/
2433static void e1000_watchdog(struct work_struct *work)
2434{
2435 struct e1000_adapter *adapter = container_of(work,
2436 struct e1000_adapter,
2437 watchdog_task.work);
2438 struct e1000_hw *hw = &adapter->hw;
2439 struct net_device *netdev = adapter->netdev;
2440 struct e1000_tx_ring *txdr = adapter->tx_ring;
2441 u32 link, tctl;
2442
2443 link = e1000_has_link(adapter);
2444 if ((netif_carrier_ok(netdev)) && link)
2445 goto link_up;
2446
2447 if (link) {
2448 if (!netif_carrier_ok(netdev)) {
2449 u32 ctrl;
2450 bool txb2b = true;
2451 /* update snapshot of PHY registers on LSC */
2452 e1000_get_speed_and_duplex(hw,
2453 &adapter->link_speed,
2454 &adapter->link_duplex);
2455
2456 ctrl = er32(CTRL);
2457 pr_info("%s NIC Link is Up %d Mbps %s, "
2458 "Flow Control: %s\n",
2459 netdev->name,
2460 adapter->link_speed,
2461 adapter->link_duplex == FULL_DUPLEX ?
2462 "Full Duplex" : "Half Duplex",
2463 ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2464 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2465 E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2466 E1000_CTRL_TFCE) ? "TX" : "None")));
2467
2468 /* adjust timeout factor according to speed/duplex */
2469 adapter->tx_timeout_factor = 1;
2470 switch (adapter->link_speed) {
2471 case SPEED_10:
2472 txb2b = false;
2473 adapter->tx_timeout_factor = 16;
2474 break;
2475 case SPEED_100:
2476 txb2b = false;
2477 /* maybe add some timeout factor ? */
2478 break;
2479 }
2480
2481 /* enable transmits in the hardware */
2482 tctl = er32(TCTL);
2483 tctl |= E1000_TCTL_EN;
2484 ew32(TCTL, tctl);
2485
2486 netif_carrier_on(netdev);
2487 if (!test_bit(__E1000_DOWN, &adapter->flags))
2488 schedule_delayed_work(&adapter->phy_info_task,
2489 2 * HZ);
2490 adapter->smartspeed = 0;
2491 }
2492 } else {
2493 if (netif_carrier_ok(netdev)) {
2494 adapter->link_speed = 0;
2495 adapter->link_duplex = 0;
2496 pr_info("%s NIC Link is Down\n",
2497 netdev->name);
2498 netif_carrier_off(netdev);
2499
2500 if (!test_bit(__E1000_DOWN, &adapter->flags))
2501 schedule_delayed_work(&adapter->phy_info_task,
2502 2 * HZ);
2503 }
2504
2505 e1000_smartspeed(adapter);
2506 }
2507
2508link_up:
2509 e1000_update_stats(adapter);
2510
2511 hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2512 adapter->tpt_old = adapter->stats.tpt;
2513 hw->collision_delta = adapter->stats.colc - adapter->colc_old;
2514 adapter->colc_old = adapter->stats.colc;
2515
2516 adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2517 adapter->gorcl_old = adapter->stats.gorcl;
2518 adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2519 adapter->gotcl_old = adapter->stats.gotcl;
2520
2521 e1000_update_adaptive(hw);
2522
2523 if (!netif_carrier_ok(netdev)) {
2524 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2525 /* We've lost link, so the controller stops DMA,
2526 * but we've got queued Tx work that's never going
2527 * to get done, so reset controller to flush Tx.
2528 * (Do the reset outside of interrupt context).
2529 */
2530 adapter->tx_timeout_count++;
2531 schedule_work(&adapter->reset_task);
2532 /* exit immediately since reset is imminent */
2533 return;
2534 }
2535 }
2536
2537 /* Simple mode for Interrupt Throttle Rate (ITR) */
2538 if (hw->mac_type >= e1000_82540 && adapter->itr_setting == 4) {
2539 /* Symmetric Tx/Rx gets a reduced ITR=2000;
2540 * Total asymmetrical Tx or Rx gets ITR=8000;
2541 * everyone else is between 2000-8000.
2542 */
2543 u32 goc = (adapter->gotcl + adapter->gorcl) / 10000;
2544 u32 dif = (adapter->gotcl > adapter->gorcl ?
2545 adapter->gotcl - adapter->gorcl :
2546 adapter->gorcl - adapter->gotcl) / 10000;
2547 u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
2548
2549 ew32(ITR, 1000000000 / (itr * 256));
2550 }
2551
2552 /* Cause software interrupt to ensure rx ring is cleaned */
2553 ew32(ICS, E1000_ICS_RXDMT0);
2554
2555 /* Force detection of hung controller every watchdog period */
2556 adapter->detect_tx_hung = true;
2557
2558 /* Reschedule the task */
2559 if (!test_bit(__E1000_DOWN, &adapter->flags))
2560 schedule_delayed_work(&adapter->watchdog_task, 2 * HZ);
2561}
2562
2563enum latency_range {
2564 lowest_latency = 0,
2565 low_latency = 1,
2566 bulk_latency = 2,
2567 latency_invalid = 255
2568};
2569
2570/**
2571 * e1000_update_itr - update the dynamic ITR value based on statistics
2572 * @adapter: pointer to adapter
2573 * @itr_setting: current adapter->itr
2574 * @packets: the number of packets during this measurement interval
2575 * @bytes: the number of bytes during this measurement interval
2576 *
2577 * Stores a new ITR value based on packets and byte
2578 * counts during the last interrupt. The advantage of per interrupt
2579 * computation is faster updates and more accurate ITR for the current
2580 * traffic pattern. Constants in this function were computed
2581 * based on theoretical maximum wire speed and thresholds were set based
2582 * on testing data as well as attempting to minimize response time
2583 * while increasing bulk throughput.
2584 * this functionality is controlled by the InterruptThrottleRate module
2585 * parameter (see e1000_param.c)
2586 **/
2587static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2588 u16 itr_setting, int packets, int bytes)
2589{
2590 unsigned int retval = itr_setting;
2591 struct e1000_hw *hw = &adapter->hw;
2592
2593 if (unlikely(hw->mac_type < e1000_82540))
2594 goto update_itr_done;
2595
2596 if (packets == 0)
2597 goto update_itr_done;
2598
2599 switch (itr_setting) {
2600 case lowest_latency:
2601 /* jumbo frames get bulk treatment*/
2602 if (bytes/packets > 8000)
2603 retval = bulk_latency;
2604 else if ((packets < 5) && (bytes > 512))
2605 retval = low_latency;
2606 break;
2607 case low_latency: /* 50 usec aka 20000 ints/s */
2608 if (bytes > 10000) {
2609 /* jumbo frames need bulk latency setting */
2610 if (bytes/packets > 8000)
2611 retval = bulk_latency;
2612 else if ((packets < 10) || ((bytes/packets) > 1200))
2613 retval = bulk_latency;
2614 else if ((packets > 35))
2615 retval = lowest_latency;
2616 } else if (bytes/packets > 2000)
2617 retval = bulk_latency;
2618 else if (packets <= 2 && bytes < 512)
2619 retval = lowest_latency;
2620 break;
2621 case bulk_latency: /* 250 usec aka 4000 ints/s */
2622 if (bytes > 25000) {
2623 if (packets > 35)
2624 retval = low_latency;
2625 } else if (bytes < 6000) {
2626 retval = low_latency;
2627 }
2628 break;
2629 }
2630
2631update_itr_done:
2632 return retval;
2633}
2634
2635static void e1000_set_itr(struct e1000_adapter *adapter)
2636{
2637 struct e1000_hw *hw = &adapter->hw;
2638 u16 current_itr;
2639 u32 new_itr = adapter->itr;
2640
2641 if (unlikely(hw->mac_type < e1000_82540))
2642 return;
2643
2644 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2645 if (unlikely(adapter->link_speed != SPEED_1000)) {
2646 current_itr = 0;
2647 new_itr = 4000;
2648 goto set_itr_now;
2649 }
2650
2651 adapter->tx_itr = e1000_update_itr(adapter, adapter->tx_itr,
2652 adapter->total_tx_packets,
2653 adapter->total_tx_bytes);
2654 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2655 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2656 adapter->tx_itr = low_latency;
2657
2658 adapter->rx_itr = e1000_update_itr(adapter, adapter->rx_itr,
2659 adapter->total_rx_packets,
2660 adapter->total_rx_bytes);
2661 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2662 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2663 adapter->rx_itr = low_latency;
2664
2665 current_itr = max(adapter->rx_itr, adapter->tx_itr);
2666
2667 switch (current_itr) {
2668 /* counts and packets in update_itr are dependent on these numbers */
2669 case lowest_latency:
2670 new_itr = 70000;
2671 break;
2672 case low_latency:
2673 new_itr = 20000; /* aka hwitr = ~200 */
2674 break;
2675 case bulk_latency:
2676 new_itr = 4000;
2677 break;
2678 default:
2679 break;
2680 }
2681
2682set_itr_now:
2683 if (new_itr != adapter->itr) {
2684 /* this attempts to bias the interrupt rate towards Bulk
2685 * by adding intermediate steps when interrupt rate is
2686 * increasing
2687 */
2688 new_itr = new_itr > adapter->itr ?
2689 min(adapter->itr + (new_itr >> 2), new_itr) :
2690 new_itr;
2691 adapter->itr = new_itr;
2692 ew32(ITR, 1000000000 / (new_itr * 256));
2693 }
2694}
2695
2696#define E1000_TX_FLAGS_CSUM 0x00000001
2697#define E1000_TX_FLAGS_VLAN 0x00000002
2698#define E1000_TX_FLAGS_TSO 0x00000004
2699#define E1000_TX_FLAGS_IPV4 0x00000008
2700#define E1000_TX_FLAGS_NO_FCS 0x00000010
2701#define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
2702#define E1000_TX_FLAGS_VLAN_SHIFT 16
2703
2704static int e1000_tso(struct e1000_adapter *adapter,
2705 struct e1000_tx_ring *tx_ring, struct sk_buff *skb,
2706 __be16 protocol)
2707{
2708 struct e1000_context_desc *context_desc;
2709 struct e1000_tx_buffer *buffer_info;
2710 unsigned int i;
2711 u32 cmd_length = 0;
2712 u16 ipcse = 0, tucse, mss;
2713 u8 ipcss, ipcso, tucss, tucso, hdr_len;
2714
2715 if (skb_is_gso(skb)) {
2716 int err;
2717
2718 err = skb_cow_head(skb, 0);
2719 if (err < 0)
2720 return err;
2721
2722 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2723 mss = skb_shinfo(skb)->gso_size;
2724 if (protocol == htons(ETH_P_IP)) {
2725 struct iphdr *iph = ip_hdr(skb);
2726 iph->tot_len = 0;
2727 iph->check = 0;
2728 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2729 iph->daddr, 0,
2730 IPPROTO_TCP,
2731 0);
2732 cmd_length = E1000_TXD_CMD_IP;
2733 ipcse = skb_transport_offset(skb) - 1;
2734 } else if (skb_is_gso_v6(skb)) {
2735 ipv6_hdr(skb)->payload_len = 0;
2736 tcp_hdr(skb)->check =
2737 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2738 &ipv6_hdr(skb)->daddr,
2739 0, IPPROTO_TCP, 0);
2740 ipcse = 0;
2741 }
2742 ipcss = skb_network_offset(skb);
2743 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
2744 tucss = skb_transport_offset(skb);
2745 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
2746 tucse = 0;
2747
2748 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2749 E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2750
2751 i = tx_ring->next_to_use;
2752 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2753 buffer_info = &tx_ring->buffer_info[i];
2754
2755 context_desc->lower_setup.ip_fields.ipcss = ipcss;
2756 context_desc->lower_setup.ip_fields.ipcso = ipcso;
2757 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
2758 context_desc->upper_setup.tcp_fields.tucss = tucss;
2759 context_desc->upper_setup.tcp_fields.tucso = tucso;
2760 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2761 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
2762 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2763 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2764
2765 buffer_info->time_stamp = jiffies;
2766 buffer_info->next_to_watch = i;
2767
2768 if (++i == tx_ring->count)
2769 i = 0;
2770
2771 tx_ring->next_to_use = i;
2772
2773 return true;
2774 }
2775 return false;
2776}
2777
2778static bool e1000_tx_csum(struct e1000_adapter *adapter,
2779 struct e1000_tx_ring *tx_ring, struct sk_buff *skb,
2780 __be16 protocol)
2781{
2782 struct e1000_context_desc *context_desc;
2783 struct e1000_tx_buffer *buffer_info;
2784 unsigned int i;
2785 u8 css;
2786 u32 cmd_len = E1000_TXD_CMD_DEXT;
2787
2788 if (skb->ip_summed != CHECKSUM_PARTIAL)
2789 return false;
2790
2791 switch (protocol) {
2792 case cpu_to_be16(ETH_P_IP):
2793 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2794 cmd_len |= E1000_TXD_CMD_TCP;
2795 break;
2796 case cpu_to_be16(ETH_P_IPV6):
2797 /* XXX not handling all IPV6 headers */
2798 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2799 cmd_len |= E1000_TXD_CMD_TCP;
2800 break;
2801 default:
2802 if (unlikely(net_ratelimit()))
2803 e_warn(drv, "checksum_partial proto=%x!\n",
2804 skb->protocol);
2805 break;
2806 }
2807
2808 css = skb_checksum_start_offset(skb);
2809
2810 i = tx_ring->next_to_use;
2811 buffer_info = &tx_ring->buffer_info[i];
2812 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2813
2814 context_desc->lower_setup.ip_config = 0;
2815 context_desc->upper_setup.tcp_fields.tucss = css;
2816 context_desc->upper_setup.tcp_fields.tucso =
2817 css + skb->csum_offset;
2818 context_desc->upper_setup.tcp_fields.tucse = 0;
2819 context_desc->tcp_seg_setup.data = 0;
2820 context_desc->cmd_and_length = cpu_to_le32(cmd_len);
2821
2822 buffer_info->time_stamp = jiffies;
2823 buffer_info->next_to_watch = i;
2824
2825 if (unlikely(++i == tx_ring->count))
2826 i = 0;
2827
2828 tx_ring->next_to_use = i;
2829
2830 return true;
2831}
2832
2833#define E1000_MAX_TXD_PWR 12
2834#define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR)
2835
2836static int e1000_tx_map(struct e1000_adapter *adapter,
2837 struct e1000_tx_ring *tx_ring,
2838 struct sk_buff *skb, unsigned int first,
2839 unsigned int max_per_txd, unsigned int nr_frags,
2840 unsigned int mss)
2841{
2842 struct e1000_hw *hw = &adapter->hw;
2843 struct pci_dev *pdev = adapter->pdev;
2844 struct e1000_tx_buffer *buffer_info;
2845 unsigned int len = skb_headlen(skb);
2846 unsigned int offset = 0, size, count = 0, i;
2847 unsigned int f, bytecount, segs;
2848
2849 i = tx_ring->next_to_use;
2850
2851 while (len) {
2852 buffer_info = &tx_ring->buffer_info[i];
2853 size = min(len, max_per_txd);
2854 /* Workaround for Controller erratum --
2855 * descriptor for non-tso packet in a linear SKB that follows a
2856 * tso gets written back prematurely before the data is fully
2857 * DMA'd to the controller
2858 */
2859 if (!skb->data_len && tx_ring->last_tx_tso &&
2860 !skb_is_gso(skb)) {
2861 tx_ring->last_tx_tso = false;
2862 size -= 4;
2863 }
2864
2865 /* Workaround for premature desc write-backs
2866 * in TSO mode. Append 4-byte sentinel desc
2867 */
2868 if (unlikely(mss && !nr_frags && size == len && size > 8))
2869 size -= 4;
2870 /* work-around for errata 10 and it applies
2871 * to all controllers in PCI-X mode
2872 * The fix is to make sure that the first descriptor of a
2873 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2874 */
2875 if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
2876 (size > 2015) && count == 0))
2877 size = 2015;
2878
2879 /* Workaround for potential 82544 hang in PCI-X. Avoid
2880 * terminating buffers within evenly-aligned dwords.
2881 */
2882 if (unlikely(adapter->pcix_82544 &&
2883 !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2884 size > 4))
2885 size -= 4;
2886
2887 buffer_info->length = size;
2888 /* set time_stamp *before* dma to help avoid a possible race */
2889 buffer_info->time_stamp = jiffies;
2890 buffer_info->mapped_as_page = false;
2891 buffer_info->dma = dma_map_single(&pdev->dev,
2892 skb->data + offset,
2893 size, DMA_TO_DEVICE);
2894 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2895 goto dma_error;
2896 buffer_info->next_to_watch = i;
2897
2898 len -= size;
2899 offset += size;
2900 count++;
2901 if (len) {
2902 i++;
2903 if (unlikely(i == tx_ring->count))
2904 i = 0;
2905 }
2906 }
2907
2908 for (f = 0; f < nr_frags; f++) {
2909 const struct skb_frag_struct *frag;
2910
2911 frag = &skb_shinfo(skb)->frags[f];
2912 len = skb_frag_size(frag);
2913 offset = 0;
2914
2915 while (len) {
2916 unsigned long bufend;
2917 i++;
2918 if (unlikely(i == tx_ring->count))
2919 i = 0;
2920
2921 buffer_info = &tx_ring->buffer_info[i];
2922 size = min(len, max_per_txd);
2923 /* Workaround for premature desc write-backs
2924 * in TSO mode. Append 4-byte sentinel desc
2925 */
2926 if (unlikely(mss && f == (nr_frags-1) &&
2927 size == len && size > 8))
2928 size -= 4;
2929 /* Workaround for potential 82544 hang in PCI-X.
2930 * Avoid terminating buffers within evenly-aligned
2931 * dwords.
2932 */
2933 bufend = (unsigned long)
2934 page_to_phys(skb_frag_page(frag));
2935 bufend += offset + size - 1;
2936 if (unlikely(adapter->pcix_82544 &&
2937 !(bufend & 4) &&
2938 size > 4))
2939 size -= 4;
2940
2941 buffer_info->length = size;
2942 buffer_info->time_stamp = jiffies;
2943 buffer_info->mapped_as_page = true;
2944 buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
2945 offset, size, DMA_TO_DEVICE);
2946 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2947 goto dma_error;
2948 buffer_info->next_to_watch = i;
2949
2950 len -= size;
2951 offset += size;
2952 count++;
2953 }
2954 }
2955
2956 segs = skb_shinfo(skb)->gso_segs ?: 1;
2957 /* multiply data chunks by size of headers */
2958 bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
2959
2960 tx_ring->buffer_info[i].skb = skb;
2961 tx_ring->buffer_info[i].segs = segs;
2962 tx_ring->buffer_info[i].bytecount = bytecount;
2963 tx_ring->buffer_info[first].next_to_watch = i;
2964
2965 return count;
2966
2967dma_error:
2968 dev_err(&pdev->dev, "TX DMA map failed\n");
2969 buffer_info->dma = 0;
2970 if (count)
2971 count--;
2972
2973 while (count--) {
2974 if (i == 0)
2975 i += tx_ring->count;
2976 i--;
2977 buffer_info = &tx_ring->buffer_info[i];
2978 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2979 }
2980
2981 return 0;
2982}
2983
2984static void e1000_tx_queue(struct e1000_adapter *adapter,
2985 struct e1000_tx_ring *tx_ring, int tx_flags,
2986 int count)
2987{
2988 struct e1000_tx_desc *tx_desc = NULL;
2989 struct e1000_tx_buffer *buffer_info;
2990 u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
2991 unsigned int i;
2992
2993 if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
2994 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
2995 E1000_TXD_CMD_TSE;
2996 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2997
2998 if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
2999 txd_upper |= E1000_TXD_POPTS_IXSM << 8;
3000 }
3001
3002 if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
3003 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
3004 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3005 }
3006
3007 if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
3008 txd_lower |= E1000_TXD_CMD_VLE;
3009 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
3010 }
3011
3012 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
3013 txd_lower &= ~(E1000_TXD_CMD_IFCS);
3014
3015 i = tx_ring->next_to_use;
3016
3017 while (count--) {
3018 buffer_info = &tx_ring->buffer_info[i];
3019 tx_desc = E1000_TX_DESC(*tx_ring, i);
3020 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3021 tx_desc->lower.data =
3022 cpu_to_le32(txd_lower | buffer_info->length);
3023 tx_desc->upper.data = cpu_to_le32(txd_upper);
3024 if (unlikely(++i == tx_ring->count))
3025 i = 0;
3026 }
3027
3028 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3029
3030 /* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
3031 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
3032 tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
3033
3034 /* Force memory writes to complete before letting h/w
3035 * know there are new descriptors to fetch. (Only
3036 * applicable for weak-ordered memory model archs,
3037 * such as IA-64).
3038 */
3039 wmb();
3040
3041 tx_ring->next_to_use = i;
3042}
3043
3044/* 82547 workaround to avoid controller hang in half-duplex environment.
3045 * The workaround is to avoid queuing a large packet that would span
3046 * the internal Tx FIFO ring boundary by notifying the stack to resend
3047 * the packet at a later time. This gives the Tx FIFO an opportunity to
3048 * flush all packets. When that occurs, we reset the Tx FIFO pointers
3049 * to the beginning of the Tx FIFO.
3050 */
3051
3052#define E1000_FIFO_HDR 0x10
3053#define E1000_82547_PAD_LEN 0x3E0
3054
3055static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
3056 struct sk_buff *skb)
3057{
3058 u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
3059 u32 skb_fifo_len = skb->len + E1000_FIFO_HDR;
3060
3061 skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
3062
3063 if (adapter->link_duplex != HALF_DUPLEX)
3064 goto no_fifo_stall_required;
3065
3066 if (atomic_read(&adapter->tx_fifo_stall))
3067 return 1;
3068
3069 if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
3070 atomic_set(&adapter->tx_fifo_stall, 1);
3071 return 1;
3072 }
3073
3074no_fifo_stall_required:
3075 adapter->tx_fifo_head += skb_fifo_len;
3076 if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
3077 adapter->tx_fifo_head -= adapter->tx_fifo_size;
3078 return 0;
3079}
3080
3081static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3082{
3083 struct e1000_adapter *adapter = netdev_priv(netdev);
3084 struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3085
3086 netif_stop_queue(netdev);
3087 /* Herbert's original patch had:
3088 * smp_mb__after_netif_stop_queue();
3089 * but since that doesn't exist yet, just open code it.
3090 */
3091 smp_mb();
3092
3093 /* We need to check again in a case another CPU has just
3094 * made room available.
3095 */
3096 if (likely(E1000_DESC_UNUSED(tx_ring) < size))
3097 return -EBUSY;
3098
3099 /* A reprieve! */
3100 netif_start_queue(netdev);
3101 ++adapter->restart_queue;
3102 return 0;
3103}
3104
3105static int e1000_maybe_stop_tx(struct net_device *netdev,
3106 struct e1000_tx_ring *tx_ring, int size)
3107{
3108 if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
3109 return 0;
3110 return __e1000_maybe_stop_tx(netdev, size);
3111}
3112
3113#define TXD_USE_COUNT(S, X) (((S) + ((1 << (X)) - 1)) >> (X))
3114static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
3115 struct net_device *netdev)
3116{
3117 struct e1000_adapter *adapter = netdev_priv(netdev);
3118 struct e1000_hw *hw = &adapter->hw;
3119 struct e1000_tx_ring *tx_ring;
3120 unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
3121 unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3122 unsigned int tx_flags = 0;
3123 unsigned int len = skb_headlen(skb);
3124 unsigned int nr_frags;
3125 unsigned int mss;
3126 int count = 0;
3127 int tso;
3128 unsigned int f;
3129 __be16 protocol = vlan_get_protocol(skb);
3130
3131 /* This goes back to the question of how to logically map a Tx queue
3132 * to a flow. Right now, performance is impacted slightly negatively
3133 * if using multiple Tx queues. If the stack breaks away from a
3134 * single qdisc implementation, we can look at this again.
3135 */
3136 tx_ring = adapter->tx_ring;
3137
3138 /* On PCI/PCI-X HW, if packet size is less than ETH_ZLEN,
3139 * packets may get corrupted during padding by HW.
3140 * To WA this issue, pad all small packets manually.
3141 */
3142 if (eth_skb_pad(skb))
3143 return NETDEV_TX_OK;
3144
3145 mss = skb_shinfo(skb)->gso_size;
3146 /* The controller does a simple calculation to
3147 * make sure there is enough room in the FIFO before
3148 * initiating the DMA for each buffer. The calc is:
3149 * 4 = ceil(buffer len/mss). To make sure we don't
3150 * overrun the FIFO, adjust the max buffer len if mss
3151 * drops.
3152 */
3153 if (mss) {
3154 u8 hdr_len;
3155 max_per_txd = min(mss << 2, max_per_txd);
3156 max_txd_pwr = fls(max_per_txd) - 1;
3157
3158 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3159 if (skb->data_len && hdr_len == len) {
3160 switch (hw->mac_type) {
3161 unsigned int pull_size;
3162 case e1000_82544:
3163 /* Make sure we have room to chop off 4 bytes,
3164 * and that the end alignment will work out to
3165 * this hardware's requirements
3166 * NOTE: this is a TSO only workaround
3167 * if end byte alignment not correct move us
3168 * into the next dword
3169 */
3170 if ((unsigned long)(skb_tail_pointer(skb) - 1)
3171 & 4)
3172 break;
3173 /* fall through */
3174 pull_size = min((unsigned int)4, skb->data_len);
3175 if (!__pskb_pull_tail(skb, pull_size)) {
3176 e_err(drv, "__pskb_pull_tail "
3177 "failed.\n");
3178 dev_kfree_skb_any(skb);
3179 return NETDEV_TX_OK;
3180 }
3181 len = skb_headlen(skb);
3182 break;
3183 default:
3184 /* do nothing */
3185 break;
3186 }
3187 }
3188 }
3189
3190 /* reserve a descriptor for the offload context */
3191 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3192 count++;
3193 count++;
3194
3195 /* Controller Erratum workaround */
3196 if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3197 count++;
3198
3199 count += TXD_USE_COUNT(len, max_txd_pwr);
3200
3201 if (adapter->pcix_82544)
3202 count++;
3203
3204 /* work-around for errata 10 and it applies to all controllers
3205 * in PCI-X mode, so add one more descriptor to the count
3206 */
3207 if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
3208 (len > 2015)))
3209 count++;
3210
3211 nr_frags = skb_shinfo(skb)->nr_frags;
3212 for (f = 0; f < nr_frags; f++)
3213 count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->frags[f]),
3214 max_txd_pwr);
3215 if (adapter->pcix_82544)
3216 count += nr_frags;
3217
3218 /* need: count + 2 desc gap to keep tail from touching
3219 * head, otherwise try next time
3220 */
3221 if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2)))
3222 return NETDEV_TX_BUSY;
3223
3224 if (unlikely((hw->mac_type == e1000_82547) &&
3225 (e1000_82547_fifo_workaround(adapter, skb)))) {
3226 netif_stop_queue(netdev);
3227 if (!test_bit(__E1000_DOWN, &adapter->flags))
3228 schedule_delayed_work(&adapter->fifo_stall_task, 1);
3229 return NETDEV_TX_BUSY;
3230 }
3231
3232 if (skb_vlan_tag_present(skb)) {
3233 tx_flags |= E1000_TX_FLAGS_VLAN;
3234 tx_flags |= (skb_vlan_tag_get(skb) <<
3235 E1000_TX_FLAGS_VLAN_SHIFT);
3236 }
3237
3238 first = tx_ring->next_to_use;
3239
3240 tso = e1000_tso(adapter, tx_ring, skb, protocol);
3241 if (tso < 0) {
3242 dev_kfree_skb_any(skb);
3243 return NETDEV_TX_OK;
3244 }
3245
3246 if (likely(tso)) {
3247 if (likely(hw->mac_type != e1000_82544))
3248 tx_ring->last_tx_tso = true;
3249 tx_flags |= E1000_TX_FLAGS_TSO;
3250 } else if (likely(e1000_tx_csum(adapter, tx_ring, skb, protocol)))
3251 tx_flags |= E1000_TX_FLAGS_CSUM;
3252
3253 if (protocol == htons(ETH_P_IP))
3254 tx_flags |= E1000_TX_FLAGS_IPV4;
3255
3256 if (unlikely(skb->no_fcs))
3257 tx_flags |= E1000_TX_FLAGS_NO_FCS;
3258
3259 count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd,
3260 nr_frags, mss);
3261
3262 if (count) {
3263 /* The descriptors needed is higher than other Intel drivers
3264 * due to a number of workarounds. The breakdown is below:
3265 * Data descriptors: MAX_SKB_FRAGS + 1
3266 * Context Descriptor: 1
3267 * Keep head from touching tail: 2
3268 * Workarounds: 3
3269 */
3270 int desc_needed = MAX_SKB_FRAGS + 7;
3271
3272 netdev_sent_queue(netdev, skb->len);
3273 skb_tx_timestamp(skb);
3274
3275 e1000_tx_queue(adapter, tx_ring, tx_flags, count);
3276
3277 /* 82544 potentially requires twice as many data descriptors
3278 * in order to guarantee buffers don't end on evenly-aligned
3279 * dwords
3280 */
3281 if (adapter->pcix_82544)
3282 desc_needed += MAX_SKB_FRAGS + 1;
3283
3284 /* Make sure there is space in the ring for the next send. */
3285 e1000_maybe_stop_tx(netdev, tx_ring, desc_needed);
3286
3287 if (!skb->xmit_more ||
3288 netif_xmit_stopped(netdev_get_tx_queue(netdev, 0))) {
3289 writel(tx_ring->next_to_use, hw->hw_addr + tx_ring->tdt);
3290 /* we need this if more than one processor can write to
3291 * our tail at a time, it synchronizes IO on IA64/Altix
3292 * systems
3293 */
3294 mmiowb();
3295 }
3296 } else {
3297 dev_kfree_skb_any(skb);
3298 tx_ring->buffer_info[first].time_stamp = 0;
3299 tx_ring->next_to_use = first;
3300 }
3301
3302 return NETDEV_TX_OK;
3303}
3304
3305#define NUM_REGS 38 /* 1 based count */
3306static void e1000_regdump(struct e1000_adapter *adapter)
3307{
3308 struct e1000_hw *hw = &adapter->hw;
3309 u32 regs[NUM_REGS];
3310 u32 *regs_buff = regs;
3311 int i = 0;
3312
3313 static const char * const reg_name[] = {
3314 "CTRL", "STATUS",
3315 "RCTL", "RDLEN", "RDH", "RDT", "RDTR",
3316 "TCTL", "TDBAL", "TDBAH", "TDLEN", "TDH", "TDT",
3317 "TIDV", "TXDCTL", "TADV", "TARC0",
3318 "TDBAL1", "TDBAH1", "TDLEN1", "TDH1", "TDT1",
3319 "TXDCTL1", "TARC1",
3320 "CTRL_EXT", "ERT", "RDBAL", "RDBAH",
3321 "TDFH", "TDFT", "TDFHS", "TDFTS", "TDFPC",
3322 "RDFH", "RDFT", "RDFHS", "RDFTS", "RDFPC"
3323 };
3324
3325 regs_buff[0] = er32(CTRL);
3326 regs_buff[1] = er32(STATUS);
3327
3328 regs_buff[2] = er32(RCTL);
3329 regs_buff[3] = er32(RDLEN);
3330 regs_buff[4] = er32(RDH);
3331 regs_buff[5] = er32(RDT);
3332 regs_buff[6] = er32(RDTR);
3333
3334 regs_buff[7] = er32(TCTL);
3335 regs_buff[8] = er32(TDBAL);
3336 regs_buff[9] = er32(TDBAH);
3337 regs_buff[10] = er32(TDLEN);
3338 regs_buff[11] = er32(TDH);
3339 regs_buff[12] = er32(TDT);
3340 regs_buff[13] = er32(TIDV);
3341 regs_buff[14] = er32(TXDCTL);
3342 regs_buff[15] = er32(TADV);
3343 regs_buff[16] = er32(TARC0);
3344
3345 regs_buff[17] = er32(TDBAL1);
3346 regs_buff[18] = er32(TDBAH1);
3347 regs_buff[19] = er32(TDLEN1);
3348 regs_buff[20] = er32(TDH1);
3349 regs_buff[21] = er32(TDT1);
3350 regs_buff[22] = er32(TXDCTL1);
3351 regs_buff[23] = er32(TARC1);
3352 regs_buff[24] = er32(CTRL_EXT);
3353 regs_buff[25] = er32(ERT);
3354 regs_buff[26] = er32(RDBAL0);
3355 regs_buff[27] = er32(RDBAH0);
3356 regs_buff[28] = er32(TDFH);
3357 regs_buff[29] = er32(TDFT);
3358 regs_buff[30] = er32(TDFHS);
3359 regs_buff[31] = er32(TDFTS);
3360 regs_buff[32] = er32(TDFPC);
3361 regs_buff[33] = er32(RDFH);
3362 regs_buff[34] = er32(RDFT);
3363 regs_buff[35] = er32(RDFHS);
3364 regs_buff[36] = er32(RDFTS);
3365 regs_buff[37] = er32(RDFPC);
3366
3367 pr_info("Register dump\n");
3368 for (i = 0; i < NUM_REGS; i++)
3369 pr_info("%-15s %08x\n", reg_name[i], regs_buff[i]);
3370}
3371
3372/*
3373 * e1000_dump: Print registers, tx ring and rx ring
3374 */
3375static void e1000_dump(struct e1000_adapter *adapter)
3376{
3377 /* this code doesn't handle multiple rings */
3378 struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3379 struct e1000_rx_ring *rx_ring = adapter->rx_ring;
3380 int i;
3381
3382 if (!netif_msg_hw(adapter))
3383 return;
3384
3385 /* Print Registers */
3386 e1000_regdump(adapter);
3387
3388 /* transmit dump */
3389 pr_info("TX Desc ring0 dump\n");
3390
3391 /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
3392 *
3393 * Legacy Transmit Descriptor
3394 * +--------------------------------------------------------------+
3395 * 0 | Buffer Address [63:0] (Reserved on Write Back) |
3396 * +--------------------------------------------------------------+
3397 * 8 | Special | CSS | Status | CMD | CSO | Length |
3398 * +--------------------------------------------------------------+
3399 * 63 48 47 36 35 32 31 24 23 16 15 0
3400 *
3401 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
3402 * 63 48 47 40 39 32 31 16 15 8 7 0
3403 * +----------------------------------------------------------------+
3404 * 0 | TUCSE | TUCS0 | TUCSS | IPCSE | IPCS0 | IPCSS |
3405 * +----------------------------------------------------------------+
3406 * 8 | MSS | HDRLEN | RSV | STA | TUCMD | DTYP | PAYLEN |
3407 * +----------------------------------------------------------------+
3408 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
3409 *
3410 * Extended Data Descriptor (DTYP=0x1)
3411 * +----------------------------------------------------------------+
3412 * 0 | Buffer Address [63:0] |
3413 * +----------------------------------------------------------------+
3414 * 8 | VLAN tag | POPTS | Rsvd | Status | Command | DTYP | DTALEN |
3415 * +----------------------------------------------------------------+
3416 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
3417 */
3418 pr_info("Tc[desc] [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma ] leng ntw timestmp bi->skb\n");
3419 pr_info("Td[desc] [address 63:0 ] [VlaPoRSCm1Dlen] [bi->dma ] leng ntw timestmp bi->skb\n");
3420
3421 if (!netif_msg_tx_done(adapter))
3422 goto rx_ring_summary;
3423
3424 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
3425 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
3426 struct e1000_tx_buffer *buffer_info = &tx_ring->buffer_info[i];
3427 struct my_u { __le64 a; __le64 b; };
3428 struct my_u *u = (struct my_u *)tx_desc;
3429 const char *type;
3430
3431 if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
3432 type = "NTC/U";
3433 else if (i == tx_ring->next_to_use)
3434 type = "NTU";
3435 else if (i == tx_ring->next_to_clean)
3436 type = "NTC";
3437 else
3438 type = "";
3439
3440 pr_info("T%c[0x%03X] %016llX %016llX %016llX %04X %3X %016llX %p %s\n",
3441 ((le64_to_cpu(u->b) & (1<<20)) ? 'd' : 'c'), i,
3442 le64_to_cpu(u->a), le64_to_cpu(u->b),
3443 (u64)buffer_info->dma, buffer_info->length,
3444 buffer_info->next_to_watch,
3445 (u64)buffer_info->time_stamp, buffer_info->skb, type);
3446 }
3447
3448rx_ring_summary:
3449 /* receive dump */
3450 pr_info("\nRX Desc ring dump\n");
3451
3452 /* Legacy Receive Descriptor Format
3453 *
3454 * +-----------------------------------------------------+
3455 * | Buffer Address [63:0] |
3456 * +-----------------------------------------------------+
3457 * | VLAN Tag | Errors | Status 0 | Packet csum | Length |
3458 * +-----------------------------------------------------+
3459 * 63 48 47 40 39 32 31 16 15 0
3460 */
3461 pr_info("R[desc] [address 63:0 ] [vl er S cks ln] [bi->dma ] [bi->skb]\n");
3462
3463 if (!netif_msg_rx_status(adapter))
3464 goto exit;
3465
3466 for (i = 0; rx_ring->desc && (i < rx_ring->count); i++) {
3467 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
3468 struct e1000_rx_buffer *buffer_info = &rx_ring->buffer_info[i];
3469 struct my_u { __le64 a; __le64 b; };
3470 struct my_u *u = (struct my_u *)rx_desc;
3471 const char *type;
3472
3473 if (i == rx_ring->next_to_use)
3474 type = "NTU";
3475 else if (i == rx_ring->next_to_clean)
3476 type = "NTC";
3477 else
3478 type = "";
3479
3480 pr_info("R[0x%03X] %016llX %016llX %016llX %p %s\n",
3481 i, le64_to_cpu(u->a), le64_to_cpu(u->b),
3482 (u64)buffer_info->dma, buffer_info->rxbuf.data, type);
3483 } /* for */
3484
3485 /* dump the descriptor caches */
3486 /* rx */
3487 pr_info("Rx descriptor cache in 64bit format\n");
3488 for (i = 0x6000; i <= 0x63FF ; i += 0x10) {
3489 pr_info("R%04X: %08X|%08X %08X|%08X\n",
3490 i,
3491 readl(adapter->hw.hw_addr + i+4),
3492 readl(adapter->hw.hw_addr + i),
3493 readl(adapter->hw.hw_addr + i+12),
3494 readl(adapter->hw.hw_addr + i+8));
3495 }
3496 /* tx */
3497 pr_info("Tx descriptor cache in 64bit format\n");
3498 for (i = 0x7000; i <= 0x73FF ; i += 0x10) {
3499 pr_info("T%04X: %08X|%08X %08X|%08X\n",
3500 i,
3501 readl(adapter->hw.hw_addr + i+4),
3502 readl(adapter->hw.hw_addr + i),
3503 readl(adapter->hw.hw_addr + i+12),
3504 readl(adapter->hw.hw_addr + i+8));
3505 }
3506exit:
3507 return;
3508}
3509
3510/**
3511 * e1000_tx_timeout - Respond to a Tx Hang
3512 * @netdev: network interface device structure
3513 **/
3514static void e1000_tx_timeout(struct net_device *netdev)
3515{
3516 struct e1000_adapter *adapter = netdev_priv(netdev);
3517
3518 /* Do the reset outside of interrupt context */
3519 adapter->tx_timeout_count++;
3520 schedule_work(&adapter->reset_task);
3521}
3522
3523static void e1000_reset_task(struct work_struct *work)
3524{
3525 struct e1000_adapter *adapter =
3526 container_of(work, struct e1000_adapter, reset_task);
3527
3528 e_err(drv, "Reset adapter\n");
3529 e1000_reinit_locked(adapter);
3530}
3531
3532/**
3533 * e1000_get_stats - Get System Network Statistics
3534 * @netdev: network interface device structure
3535 *
3536 * Returns the address of the device statistics structure.
3537 * The statistics are actually updated from the watchdog.
3538 **/
3539static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
3540{
3541 /* only return the current stats */
3542 return &netdev->stats;
3543}
3544
3545/**
3546 * e1000_change_mtu - Change the Maximum Transfer Unit
3547 * @netdev: network interface device structure
3548 * @new_mtu: new value for maximum frame size
3549 *
3550 * Returns 0 on success, negative on failure
3551 **/
3552static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
3553{
3554 struct e1000_adapter *adapter = netdev_priv(netdev);
3555 struct e1000_hw *hw = &adapter->hw;
3556 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3557
3558 /* Adapter-specific max frame size limits. */
3559 switch (hw->mac_type) {
3560 case e1000_undefined ... e1000_82542_rev2_1:
3561 if (max_frame > (ETH_FRAME_LEN + ETH_FCS_LEN)) {
3562 e_err(probe, "Jumbo Frames not supported.\n");
3563 return -EINVAL;
3564 }
3565 break;
3566 default:
3567 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3568 break;
3569 }
3570
3571 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
3572 msleep(1);
3573 /* e1000_down has a dependency on max_frame_size */
3574 hw->max_frame_size = max_frame;
3575 if (netif_running(netdev)) {
3576 /* prevent buffers from being reallocated */
3577 adapter->alloc_rx_buf = e1000_alloc_dummy_rx_buffers;
3578 e1000_down(adapter);
3579 }
3580
3581 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3582 * means we reserve 2 more, this pushes us to allocate from the next
3583 * larger slab size.
3584 * i.e. RXBUFFER_2048 --> size-4096 slab
3585 * however with the new *_jumbo_rx* routines, jumbo receives will use
3586 * fragmented skbs
3587 */
3588
3589 if (max_frame <= E1000_RXBUFFER_2048)
3590 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3591 else
3592#if (PAGE_SIZE >= E1000_RXBUFFER_16384)
3593 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3594#elif (PAGE_SIZE >= E1000_RXBUFFER_4096)
3595 adapter->rx_buffer_len = PAGE_SIZE;
3596#endif
3597
3598 /* adjust allocation if LPE protects us, and we aren't using SBP */
3599 if (!hw->tbi_compatibility_on &&
3600 ((max_frame == (ETH_FRAME_LEN + ETH_FCS_LEN)) ||
3601 (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3602 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3603
3604 pr_info("%s changing MTU from %d to %d\n",
3605 netdev->name, netdev->mtu, new_mtu);
3606 netdev->mtu = new_mtu;
3607
3608 if (netif_running(netdev))
3609 e1000_up(adapter);
3610 else
3611 e1000_reset(adapter);
3612
3613 clear_bit(__E1000_RESETTING, &adapter->flags);
3614
3615 return 0;
3616}
3617
3618/**
3619 * e1000_update_stats - Update the board statistics counters
3620 * @adapter: board private structure
3621 **/
3622void e1000_update_stats(struct e1000_adapter *adapter)
3623{
3624 struct net_device *netdev = adapter->netdev;
3625 struct e1000_hw *hw = &adapter->hw;
3626 struct pci_dev *pdev = adapter->pdev;
3627 unsigned long flags;
3628 u16 phy_tmp;
3629
3630#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3631
3632 /* Prevent stats update while adapter is being reset, or if the pci
3633 * connection is down.
3634 */
3635 if (adapter->link_speed == 0)
3636 return;
3637 if (pci_channel_offline(pdev))
3638 return;
3639
3640 spin_lock_irqsave(&adapter->stats_lock, flags);
3641
3642 /* these counters are modified from e1000_tbi_adjust_stats,
3643 * called from the interrupt context, so they must only
3644 * be written while holding adapter->stats_lock
3645 */
3646
3647 adapter->stats.crcerrs += er32(CRCERRS);
3648 adapter->stats.gprc += er32(GPRC);
3649 adapter->stats.gorcl += er32(GORCL);
3650 adapter->stats.gorch += er32(GORCH);
3651 adapter->stats.bprc += er32(BPRC);
3652 adapter->stats.mprc += er32(MPRC);
3653 adapter->stats.roc += er32(ROC);
3654
3655 adapter->stats.prc64 += er32(PRC64);
3656 adapter->stats.prc127 += er32(PRC127);
3657 adapter->stats.prc255 += er32(PRC255);
3658 adapter->stats.prc511 += er32(PRC511);
3659 adapter->stats.prc1023 += er32(PRC1023);
3660 adapter->stats.prc1522 += er32(PRC1522);
3661
3662 adapter->stats.symerrs += er32(SYMERRS);
3663 adapter->stats.mpc += er32(MPC);
3664 adapter->stats.scc += er32(SCC);
3665 adapter->stats.ecol += er32(ECOL);
3666 adapter->stats.mcc += er32(MCC);
3667 adapter->stats.latecol += er32(LATECOL);
3668 adapter->stats.dc += er32(DC);
3669 adapter->stats.sec += er32(SEC);
3670 adapter->stats.rlec += er32(RLEC);
3671 adapter->stats.xonrxc += er32(XONRXC);
3672 adapter->stats.xontxc += er32(XONTXC);
3673 adapter->stats.xoffrxc += er32(XOFFRXC);
3674 adapter->stats.xofftxc += er32(XOFFTXC);
3675 adapter->stats.fcruc += er32(FCRUC);
3676 adapter->stats.gptc += er32(GPTC);
3677 adapter->stats.gotcl += er32(GOTCL);
3678 adapter->stats.gotch += er32(GOTCH);
3679 adapter->stats.rnbc += er32(RNBC);
3680 adapter->stats.ruc += er32(RUC);
3681 adapter->stats.rfc += er32(RFC);
3682 adapter->stats.rjc += er32(RJC);
3683 adapter->stats.torl += er32(TORL);
3684 adapter->stats.torh += er32(TORH);
3685 adapter->stats.totl += er32(TOTL);
3686 adapter->stats.toth += er32(TOTH);
3687 adapter->stats.tpr += er32(TPR);
3688
3689 adapter->stats.ptc64 += er32(PTC64);
3690 adapter->stats.ptc127 += er32(PTC127);
3691 adapter->stats.ptc255 += er32(PTC255);
3692 adapter->stats.ptc511 += er32(PTC511);
3693 adapter->stats.ptc1023 += er32(PTC1023);
3694 adapter->stats.ptc1522 += er32(PTC1522);
3695
3696 adapter->stats.mptc += er32(MPTC);
3697 adapter->stats.bptc += er32(BPTC);
3698
3699 /* used for adaptive IFS */
3700
3701 hw->tx_packet_delta = er32(TPT);
3702 adapter->stats.tpt += hw->tx_packet_delta;
3703 hw->collision_delta = er32(COLC);
3704 adapter->stats.colc += hw->collision_delta;
3705
3706 if (hw->mac_type >= e1000_82543) {
3707 adapter->stats.algnerrc += er32(ALGNERRC);
3708 adapter->stats.rxerrc += er32(RXERRC);
3709 adapter->stats.tncrs += er32(TNCRS);
3710 adapter->stats.cexterr += er32(CEXTERR);
3711 adapter->stats.tsctc += er32(TSCTC);
3712 adapter->stats.tsctfc += er32(TSCTFC);
3713 }
3714
3715 /* Fill out the OS statistics structure */
3716 netdev->stats.multicast = adapter->stats.mprc;
3717 netdev->stats.collisions = adapter->stats.colc;
3718
3719 /* Rx Errors */
3720
3721 /* RLEC on some newer hardware can be incorrect so build
3722 * our own version based on RUC and ROC
3723 */
3724 netdev->stats.rx_errors = adapter->stats.rxerrc +
3725 adapter->stats.crcerrs + adapter->stats.algnerrc +
3726 adapter->stats.ruc + adapter->stats.roc +
3727 adapter->stats.cexterr;
3728 adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3729 netdev->stats.rx_length_errors = adapter->stats.rlerrc;
3730 netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
3731 netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
3732 netdev->stats.rx_missed_errors = adapter->stats.mpc;
3733
3734 /* Tx Errors */
3735 adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3736 netdev->stats.tx_errors = adapter->stats.txerrc;
3737 netdev->stats.tx_aborted_errors = adapter->stats.ecol;
3738 netdev->stats.tx_window_errors = adapter->stats.latecol;
3739 netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
3740 if (hw->bad_tx_carr_stats_fd &&
3741 adapter->link_duplex == FULL_DUPLEX) {
3742 netdev->stats.tx_carrier_errors = 0;
3743 adapter->stats.tncrs = 0;
3744 }
3745
3746 /* Tx Dropped needs to be maintained elsewhere */
3747
3748 /* Phy Stats */
3749 if (hw->media_type == e1000_media_type_copper) {
3750 if ((adapter->link_speed == SPEED_1000) &&
3751 (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3752 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3753 adapter->phy_stats.idle_errors += phy_tmp;
3754 }
3755
3756 if ((hw->mac_type <= e1000_82546) &&
3757 (hw->phy_type == e1000_phy_m88) &&
3758 !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3759 adapter->phy_stats.receive_errors += phy_tmp;
3760 }
3761
3762 /* Management Stats */
3763 if (hw->has_smbus) {
3764 adapter->stats.mgptc += er32(MGTPTC);
3765 adapter->stats.mgprc += er32(MGTPRC);
3766 adapter->stats.mgpdc += er32(MGTPDC);
3767 }
3768
3769 spin_unlock_irqrestore(&adapter->stats_lock, flags);
3770}
3771
3772/**
3773 * e1000_intr - Interrupt Handler
3774 * @irq: interrupt number
3775 * @data: pointer to a network interface device structure
3776 **/
3777static irqreturn_t e1000_intr(int irq, void *data)
3778{
3779 struct net_device *netdev = data;
3780 struct e1000_adapter *adapter = netdev_priv(netdev);
3781 struct e1000_hw *hw = &adapter->hw;
3782 u32 icr = er32(ICR);
3783
3784 if (unlikely((!icr)))
3785 return IRQ_NONE; /* Not our interrupt */
3786
3787 /* we might have caused the interrupt, but the above
3788 * read cleared it, and just in case the driver is
3789 * down there is nothing to do so return handled
3790 */
3791 if (unlikely(test_bit(__E1000_DOWN, &adapter->flags)))
3792 return IRQ_HANDLED;
3793
3794 if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3795 hw->get_link_status = 1;
3796 /* guard against interrupt when we're going down */
3797 if (!test_bit(__E1000_DOWN, &adapter->flags))
3798 schedule_delayed_work(&adapter->watchdog_task, 1);
3799 }
3800
3801 /* disable interrupts, without the synchronize_irq bit */
3802 ew32(IMC, ~0);
3803 E1000_WRITE_FLUSH();
3804
3805 if (likely(napi_schedule_prep(&adapter->napi))) {
3806 adapter->total_tx_bytes = 0;
3807 adapter->total_tx_packets = 0;
3808 adapter->total_rx_bytes = 0;
3809 adapter->total_rx_packets = 0;
3810 __napi_schedule(&adapter->napi);
3811 } else {
3812 /* this really should not happen! if it does it is basically a
3813 * bug, but not a hard error, so enable ints and continue
3814 */
3815 if (!test_bit(__E1000_DOWN, &adapter->flags))
3816 e1000_irq_enable(adapter);
3817 }
3818
3819 return IRQ_HANDLED;
3820}
3821
3822/**
3823 * e1000_clean - NAPI Rx polling callback
3824 * @adapter: board private structure
3825 **/
3826static int e1000_clean(struct napi_struct *napi, int budget)
3827{
3828 struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
3829 napi);
3830 int tx_clean_complete = 0, work_done = 0;
3831
3832 tx_clean_complete = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]);
3833
3834 adapter->clean_rx(adapter, &adapter->rx_ring[0], &work_done, budget);
3835
3836 if (!tx_clean_complete)
3837 work_done = budget;
3838
3839 /* If budget not fully consumed, exit the polling mode */
3840 if (work_done < budget) {
3841 if (likely(adapter->itr_setting & 3))
3842 e1000_set_itr(adapter);
3843 napi_complete_done(napi, work_done);
3844 if (!test_bit(__E1000_DOWN, &adapter->flags))
3845 e1000_irq_enable(adapter);
3846 }
3847
3848 return work_done;
3849}
3850
3851/**
3852 * e1000_clean_tx_irq - Reclaim resources after transmit completes
3853 * @adapter: board private structure
3854 **/
3855static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
3856 struct e1000_tx_ring *tx_ring)
3857{
3858 struct e1000_hw *hw = &adapter->hw;
3859 struct net_device *netdev = adapter->netdev;
3860 struct e1000_tx_desc *tx_desc, *eop_desc;
3861 struct e1000_tx_buffer *buffer_info;
3862 unsigned int i, eop;
3863 unsigned int count = 0;
3864 unsigned int total_tx_bytes = 0, total_tx_packets = 0;
3865 unsigned int bytes_compl = 0, pkts_compl = 0;
3866
3867 i = tx_ring->next_to_clean;
3868 eop = tx_ring->buffer_info[i].next_to_watch;
3869 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3870
3871 while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
3872 (count < tx_ring->count)) {
3873 bool cleaned = false;
3874 dma_rmb(); /* read buffer_info after eop_desc */
3875 for ( ; !cleaned; count++) {
3876 tx_desc = E1000_TX_DESC(*tx_ring, i);
3877 buffer_info = &tx_ring->buffer_info[i];
3878 cleaned = (i == eop);
3879
3880 if (cleaned) {
3881 total_tx_packets += buffer_info->segs;
3882 total_tx_bytes += buffer_info->bytecount;
3883 if (buffer_info->skb) {
3884 bytes_compl += buffer_info->skb->len;
3885 pkts_compl++;
3886 }
3887
3888 }
3889 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
3890 tx_desc->upper.data = 0;
3891
3892 if (unlikely(++i == tx_ring->count))
3893 i = 0;
3894 }
3895
3896 eop = tx_ring->buffer_info[i].next_to_watch;
3897 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3898 }
3899
3900 /* Synchronize with E1000_DESC_UNUSED called from e1000_xmit_frame,
3901 * which will reuse the cleaned buffers.
3902 */
3903 smp_store_release(&tx_ring->next_to_clean, i);
3904
3905 netdev_completed_queue(netdev, pkts_compl, bytes_compl);
3906
3907#define TX_WAKE_THRESHOLD 32
3908 if (unlikely(count && netif_carrier_ok(netdev) &&
3909 E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3910 /* Make sure that anybody stopping the queue after this
3911 * sees the new next_to_clean.
3912 */
3913 smp_mb();
3914
3915 if (netif_queue_stopped(netdev) &&
3916 !(test_bit(__E1000_DOWN, &adapter->flags))) {
3917 netif_wake_queue(netdev);
3918 ++adapter->restart_queue;
3919 }
3920 }
3921
3922 if (adapter->detect_tx_hung) {
3923 /* Detect a transmit hang in hardware, this serializes the
3924 * check with the clearing of time_stamp and movement of i
3925 */
3926 adapter->detect_tx_hung = false;
3927 if (tx_ring->buffer_info[eop].time_stamp &&
3928 time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3929 (adapter->tx_timeout_factor * HZ)) &&
3930 !(er32(STATUS) & E1000_STATUS_TXOFF)) {
3931
3932 /* detected Tx unit hang */
3933 e_err(drv, "Detected Tx Unit Hang\n"
3934 " Tx Queue <%lu>\n"
3935 " TDH <%x>\n"
3936 " TDT <%x>\n"
3937 " next_to_use <%x>\n"
3938 " next_to_clean <%x>\n"
3939 "buffer_info[next_to_clean]\n"
3940 " time_stamp <%lx>\n"
3941 " next_to_watch <%x>\n"
3942 " jiffies <%lx>\n"
3943 " next_to_watch.status <%x>\n",
3944 (unsigned long)(tx_ring - adapter->tx_ring),
3945 readl(hw->hw_addr + tx_ring->tdh),
3946 readl(hw->hw_addr + tx_ring->tdt),
3947 tx_ring->next_to_use,
3948 tx_ring->next_to_clean,
3949 tx_ring->buffer_info[eop].time_stamp,
3950 eop,
3951 jiffies,
3952 eop_desc->upper.fields.status);
3953 e1000_dump(adapter);
3954 netif_stop_queue(netdev);
3955 }
3956 }
3957 adapter->total_tx_bytes += total_tx_bytes;
3958 adapter->total_tx_packets += total_tx_packets;
3959 netdev->stats.tx_bytes += total_tx_bytes;
3960 netdev->stats.tx_packets += total_tx_packets;
3961 return count < tx_ring->count;
3962}
3963
3964/**
3965 * e1000_rx_checksum - Receive Checksum Offload for 82543
3966 * @adapter: board private structure
3967 * @status_err: receive descriptor status and error fields
3968 * @csum: receive descriptor csum field
3969 * @sk_buff: socket buffer with received data
3970 **/
3971static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
3972 u32 csum, struct sk_buff *skb)
3973{
3974 struct e1000_hw *hw = &adapter->hw;
3975 u16 status = (u16)status_err;
3976 u8 errors = (u8)(status_err >> 24);
3977
3978 skb_checksum_none_assert(skb);
3979
3980 /* 82543 or newer only */
3981 if (unlikely(hw->mac_type < e1000_82543))
3982 return;
3983 /* Ignore Checksum bit is set */
3984 if (unlikely(status & E1000_RXD_STAT_IXSM))
3985 return;
3986 /* TCP/UDP checksum error bit is set */
3987 if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3988 /* let the stack verify checksum errors */
3989 adapter->hw_csum_err++;
3990 return;
3991 }
3992 /* TCP/UDP Checksum has not been calculated */
3993 if (!(status & E1000_RXD_STAT_TCPCS))
3994 return;
3995
3996 /* It must be a TCP or UDP packet with a valid checksum */
3997 if (likely(status & E1000_RXD_STAT_TCPCS)) {
3998 /* TCP checksum is good */
3999 skb->ip_summed = CHECKSUM_UNNECESSARY;
4000 }
4001 adapter->hw_csum_good++;
4002}
4003
4004/**
4005 * e1000_consume_page - helper function for jumbo Rx path
4006 **/
4007static void e1000_consume_page(struct e1000_rx_buffer *bi, struct sk_buff *skb,
4008 u16 length)
4009{
4010 bi->rxbuf.page = NULL;
4011 skb->len += length;
4012 skb->data_len += length;
4013 skb->truesize += PAGE_SIZE;
4014}
4015
4016/**
4017 * e1000_receive_skb - helper function to handle rx indications
4018 * @adapter: board private structure
4019 * @status: descriptor status field as written by hardware
4020 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
4021 * @skb: pointer to sk_buff to be indicated to stack
4022 */
4023static void e1000_receive_skb(struct e1000_adapter *adapter, u8 status,
4024 __le16 vlan, struct sk_buff *skb)
4025{
4026 skb->protocol = eth_type_trans(skb, adapter->netdev);
4027
4028 if (status & E1000_RXD_STAT_VP) {
4029 u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
4030
4031 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
4032 }
4033 napi_gro_receive(&adapter->napi, skb);
4034}
4035
4036/**
4037 * e1000_tbi_adjust_stats
4038 * @hw: Struct containing variables accessed by shared code
4039 * @frame_len: The length of the frame in question
4040 * @mac_addr: The Ethernet destination address of the frame in question
4041 *
4042 * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT
4043 */
4044static void e1000_tbi_adjust_stats(struct e1000_hw *hw,
4045 struct e1000_hw_stats *stats,
4046 u32 frame_len, const u8 *mac_addr)
4047{
4048 u64 carry_bit;
4049
4050 /* First adjust the frame length. */
4051 frame_len--;
4052 /* We need to adjust the statistics counters, since the hardware
4053 * counters overcount this packet as a CRC error and undercount
4054 * the packet as a good packet
4055 */
4056 /* This packet should not be counted as a CRC error. */
4057 stats->crcerrs--;
4058 /* This packet does count as a Good Packet Received. */
4059 stats->gprc++;
4060
4061 /* Adjust the Good Octets received counters */
4062 carry_bit = 0x80000000 & stats->gorcl;
4063 stats->gorcl += frame_len;
4064 /* If the high bit of Gorcl (the low 32 bits of the Good Octets
4065 * Received Count) was one before the addition,
4066 * AND it is zero after, then we lost the carry out,
4067 * need to add one to Gorch (Good Octets Received Count High).
4068 * This could be simplified if all environments supported
4069 * 64-bit integers.
4070 */
4071 if (carry_bit && ((stats->gorcl & 0x80000000) == 0))
4072 stats->gorch++;
4073 /* Is this a broadcast or multicast? Check broadcast first,
4074 * since the test for a multicast frame will test positive on
4075 * a broadcast frame.
4076 */
4077 if (is_broadcast_ether_addr(mac_addr))
4078 stats->bprc++;
4079 else if (is_multicast_ether_addr(mac_addr))
4080 stats->mprc++;
4081
4082 if (frame_len == hw->max_frame_size) {
4083 /* In this case, the hardware has overcounted the number of
4084 * oversize frames.
4085 */
4086 if (stats->roc > 0)
4087 stats->roc--;
4088 }
4089
4090 /* Adjust the bin counters when the extra byte put the frame in the
4091 * wrong bin. Remember that the frame_len was adjusted above.
4092 */
4093 if (frame_len == 64) {
4094 stats->prc64++;
4095 stats->prc127--;
4096 } else if (frame_len == 127) {
4097 stats->prc127++;
4098 stats->prc255--;
4099 } else if (frame_len == 255) {
4100 stats->prc255++;
4101 stats->prc511--;
4102 } else if (frame_len == 511) {
4103 stats->prc511++;
4104 stats->prc1023--;
4105 } else if (frame_len == 1023) {
4106 stats->prc1023++;
4107 stats->prc1522--;
4108 } else if (frame_len == 1522) {
4109 stats->prc1522++;
4110 }
4111}
4112
4113static bool e1000_tbi_should_accept(struct e1000_adapter *adapter,
4114 u8 status, u8 errors,
4115 u32 length, const u8 *data)
4116{
4117 struct e1000_hw *hw = &adapter->hw;
4118 u8 last_byte = *(data + length - 1);
4119
4120 if (TBI_ACCEPT(hw, status, errors, length, last_byte)) {
4121 unsigned long irq_flags;
4122
4123 spin_lock_irqsave(&adapter->stats_lock, irq_flags);
4124 e1000_tbi_adjust_stats(hw, &adapter->stats, length, data);
4125 spin_unlock_irqrestore(&adapter->stats_lock, irq_flags);
4126
4127 return true;
4128 }
4129
4130 return false;
4131}
4132
4133static struct sk_buff *e1000_alloc_rx_skb(struct e1000_adapter *adapter,
4134 unsigned int bufsz)
4135{
4136 struct sk_buff *skb = napi_alloc_skb(&adapter->napi, bufsz);
4137
4138 if (unlikely(!skb))
4139 adapter->alloc_rx_buff_failed++;
4140 return skb;
4141}
4142
4143/**
4144 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
4145 * @adapter: board private structure
4146 * @rx_ring: ring to clean
4147 * @work_done: amount of napi work completed this call
4148 * @work_to_do: max amount of work allowed for this call to do
4149 *
4150 * the return value indicates whether actual cleaning was done, there
4151 * is no guarantee that everything was cleaned
4152 */
4153static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
4154 struct e1000_rx_ring *rx_ring,
4155 int *work_done, int work_to_do)
4156{
4157 struct net_device *netdev = adapter->netdev;
4158 struct pci_dev *pdev = adapter->pdev;
4159 struct e1000_rx_desc *rx_desc, *next_rxd;
4160 struct e1000_rx_buffer *buffer_info, *next_buffer;
4161 u32 length;
4162 unsigned int i;
4163 int cleaned_count = 0;
4164 bool cleaned = false;
4165 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
4166
4167 i = rx_ring->next_to_clean;
4168 rx_desc = E1000_RX_DESC(*rx_ring, i);
4169 buffer_info = &rx_ring->buffer_info[i];
4170
4171 while (rx_desc->status & E1000_RXD_STAT_DD) {
4172 struct sk_buff *skb;
4173 u8 status;
4174
4175 if (*work_done >= work_to_do)
4176 break;
4177 (*work_done)++;
4178 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
4179
4180 status = rx_desc->status;
4181
4182 if (++i == rx_ring->count)
4183 i = 0;
4184
4185 next_rxd = E1000_RX_DESC(*rx_ring, i);
4186 prefetch(next_rxd);
4187
4188 next_buffer = &rx_ring->buffer_info[i];
4189
4190 cleaned = true;
4191 cleaned_count++;
4192 dma_unmap_page(&pdev->dev, buffer_info->dma,
4193 adapter->rx_buffer_len, DMA_FROM_DEVICE);
4194 buffer_info->dma = 0;
4195
4196 length = le16_to_cpu(rx_desc->length);
4197
4198 /* errors is only valid for DD + EOP descriptors */
4199 if (unlikely((status & E1000_RXD_STAT_EOP) &&
4200 (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
4201 u8 *mapped = page_address(buffer_info->rxbuf.page);
4202
4203 if (e1000_tbi_should_accept(adapter, status,
4204 rx_desc->errors,
4205 length, mapped)) {
4206 length--;
4207 } else if (netdev->features & NETIF_F_RXALL) {
4208 goto process_skb;
4209 } else {
4210 /* an error means any chain goes out the window
4211 * too
4212 */
4213 if (rx_ring->rx_skb_top)
4214 dev_kfree_skb(rx_ring->rx_skb_top);
4215 rx_ring->rx_skb_top = NULL;
4216 goto next_desc;
4217 }
4218 }
4219
4220#define rxtop rx_ring->rx_skb_top
4221process_skb:
4222 if (!(status & E1000_RXD_STAT_EOP)) {
4223 /* this descriptor is only the beginning (or middle) */
4224 if (!rxtop) {
4225 /* this is the beginning of a chain */
4226 rxtop = napi_get_frags(&adapter->napi);
4227 if (!rxtop)
4228 break;
4229
4230 skb_fill_page_desc(rxtop, 0,
4231 buffer_info->rxbuf.page,
4232 0, length);
4233 } else {
4234 /* this is the middle of a chain */
4235 skb_fill_page_desc(rxtop,
4236 skb_shinfo(rxtop)->nr_frags,
4237 buffer_info->rxbuf.page, 0, length);
4238 }
4239 e1000_consume_page(buffer_info, rxtop, length);
4240 goto next_desc;
4241 } else {
4242 if (rxtop) {
4243 /* end of the chain */
4244 skb_fill_page_desc(rxtop,
4245 skb_shinfo(rxtop)->nr_frags,
4246 buffer_info->rxbuf.page, 0, length);
4247 skb = rxtop;
4248 rxtop = NULL;
4249 e1000_consume_page(buffer_info, skb, length);
4250 } else {
4251 struct page *p;
4252 /* no chain, got EOP, this buf is the packet
4253 * copybreak to save the put_page/alloc_page
4254 */
4255 p = buffer_info->rxbuf.page;
4256 if (length <= copybreak) {
4257 u8 *vaddr;
4258
4259 if (likely(!(netdev->features & NETIF_F_RXFCS)))
4260 length -= 4;
4261 skb = e1000_alloc_rx_skb(adapter,
4262 length);
4263 if (!skb)
4264 break;
4265
4266 vaddr = kmap_atomic(p);
4267 memcpy(skb_tail_pointer(skb), vaddr,
4268 length);
4269 kunmap_atomic(vaddr);
4270 /* re-use the page, so don't erase
4271 * buffer_info->rxbuf.page
4272 */
4273 skb_put(skb, length);
4274 e1000_rx_checksum(adapter,
4275 status | rx_desc->errors << 24,
4276 le16_to_cpu(rx_desc->csum), skb);
4277
4278 total_rx_bytes += skb->len;
4279 total_rx_packets++;
4280
4281 e1000_receive_skb(adapter, status,
4282 rx_desc->special, skb);
4283 goto next_desc;
4284 } else {
4285 skb = napi_get_frags(&adapter->napi);
4286 if (!skb) {
4287 adapter->alloc_rx_buff_failed++;
4288 break;
4289 }
4290 skb_fill_page_desc(skb, 0, p, 0,
4291 length);
4292 e1000_consume_page(buffer_info, skb,
4293 length);
4294 }
4295 }
4296 }
4297
4298 /* Receive Checksum Offload XXX recompute due to CRC strip? */
4299 e1000_rx_checksum(adapter,
4300 (u32)(status) |
4301 ((u32)(rx_desc->errors) << 24),
4302 le16_to_cpu(rx_desc->csum), skb);
4303
4304 total_rx_bytes += (skb->len - 4); /* don't count FCS */
4305 if (likely(!(netdev->features & NETIF_F_RXFCS)))
4306 pskb_trim(skb, skb->len - 4);
4307 total_rx_packets++;
4308
4309 if (status & E1000_RXD_STAT_VP) {
4310 __le16 vlan = rx_desc->special;
4311 u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
4312
4313 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
4314 }
4315
4316 napi_gro_frags(&adapter->napi);
4317
4318next_desc:
4319 rx_desc->status = 0;
4320
4321 /* return some buffers to hardware, one at a time is too slow */
4322 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4323 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4324 cleaned_count = 0;
4325 }
4326
4327 /* use prefetched values */
4328 rx_desc = next_rxd;
4329 buffer_info = next_buffer;
4330 }
4331 rx_ring->next_to_clean = i;
4332
4333 cleaned_count = E1000_DESC_UNUSED(rx_ring);
4334 if (cleaned_count)
4335 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4336
4337 adapter->total_rx_packets += total_rx_packets;
4338 adapter->total_rx_bytes += total_rx_bytes;
4339 netdev->stats.rx_bytes += total_rx_bytes;
4340 netdev->stats.rx_packets += total_rx_packets;
4341 return cleaned;
4342}
4343
4344/* this should improve performance for small packets with large amounts
4345 * of reassembly being done in the stack
4346 */
4347static struct sk_buff *e1000_copybreak(struct e1000_adapter *adapter,
4348 struct e1000_rx_buffer *buffer_info,
4349 u32 length, const void *data)
4350{
4351 struct sk_buff *skb;
4352
4353 if (length > copybreak)
4354 return NULL;
4355
4356 skb = e1000_alloc_rx_skb(adapter, length);
4357 if (!skb)
4358 return NULL;
4359
4360 dma_sync_single_for_cpu(&adapter->pdev->dev, buffer_info->dma,
4361 length, DMA_FROM_DEVICE);
4362
4363 memcpy(skb_put(skb, length), data, length);
4364
4365 return skb;
4366}
4367
4368/**
4369 * e1000_clean_rx_irq - Send received data up the network stack; legacy
4370 * @adapter: board private structure
4371 * @rx_ring: ring to clean
4372 * @work_done: amount of napi work completed this call
4373 * @work_to_do: max amount of work allowed for this call to do
4374 */
4375static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
4376 struct e1000_rx_ring *rx_ring,
4377 int *work_done, int work_to_do)
4378{
4379 struct net_device *netdev = adapter->netdev;
4380 struct pci_dev *pdev = adapter->pdev;
4381 struct e1000_rx_desc *rx_desc, *next_rxd;
4382 struct e1000_rx_buffer *buffer_info, *next_buffer;
4383 u32 length;
4384 unsigned int i;
4385 int cleaned_count = 0;
4386 bool cleaned = false;
4387 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
4388
4389 i = rx_ring->next_to_clean;
4390 rx_desc = E1000_RX_DESC(*rx_ring, i);
4391 buffer_info = &rx_ring->buffer_info[i];
4392
4393 while (rx_desc->status & E1000_RXD_STAT_DD) {
4394 struct sk_buff *skb;
4395 u8 *data;
4396 u8 status;
4397
4398 if (*work_done >= work_to_do)
4399 break;
4400 (*work_done)++;
4401 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
4402
4403 status = rx_desc->status;
4404 length = le16_to_cpu(rx_desc->length);
4405
4406 data = buffer_info->rxbuf.data;
4407 prefetch(data);
4408 skb = e1000_copybreak(adapter, buffer_info, length, data);
4409 if (!skb) {
4410 unsigned int frag_len = e1000_frag_len(adapter);
4411
4412 skb = build_skb(data - E1000_HEADROOM, frag_len);
4413 if (!skb) {
4414 adapter->alloc_rx_buff_failed++;
4415 break;
4416 }
4417
4418 skb_reserve(skb, E1000_HEADROOM);
4419 dma_unmap_single(&pdev->dev, buffer_info->dma,
4420 adapter->rx_buffer_len,
4421 DMA_FROM_DEVICE);
4422 buffer_info->dma = 0;
4423 buffer_info->rxbuf.data = NULL;
4424 }
4425
4426 if (++i == rx_ring->count)
4427 i = 0;
4428
4429 next_rxd = E1000_RX_DESC(*rx_ring, i);
4430 prefetch(next_rxd);
4431
4432 next_buffer = &rx_ring->buffer_info[i];
4433
4434 cleaned = true;
4435 cleaned_count++;
4436
4437 /* !EOP means multiple descriptors were used to store a single
4438 * packet, if thats the case we need to toss it. In fact, we
4439 * to toss every packet with the EOP bit clear and the next
4440 * frame that _does_ have the EOP bit set, as it is by
4441 * definition only a frame fragment
4442 */
4443 if (unlikely(!(status & E1000_RXD_STAT_EOP)))
4444 adapter->discarding = true;
4445
4446 if (adapter->discarding) {
4447 /* All receives must fit into a single buffer */
4448 netdev_dbg(netdev, "Receive packet consumed multiple buffers\n");
4449 dev_kfree_skb(skb);
4450 if (status & E1000_RXD_STAT_EOP)
4451 adapter->discarding = false;
4452 goto next_desc;
4453 }
4454
4455 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
4456 if (e1000_tbi_should_accept(adapter, status,
4457 rx_desc->errors,
4458 length, data)) {
4459 length--;
4460 } else if (netdev->features & NETIF_F_RXALL) {
4461 goto process_skb;
4462 } else {
4463 dev_kfree_skb(skb);
4464 goto next_desc;
4465 }
4466 }
4467
4468process_skb:
4469 total_rx_bytes += (length - 4); /* don't count FCS */
4470 total_rx_packets++;
4471
4472 if (likely(!(netdev->features & NETIF_F_RXFCS)))
4473 /* adjust length to remove Ethernet CRC, this must be
4474 * done after the TBI_ACCEPT workaround above
4475 */
4476 length -= 4;
4477
4478 if (buffer_info->rxbuf.data == NULL)
4479 skb_put(skb, length);
4480 else /* copybreak skb */
4481 skb_trim(skb, length);
4482
4483 /* Receive Checksum Offload */
4484 e1000_rx_checksum(adapter,
4485 (u32)(status) |
4486 ((u32)(rx_desc->errors) << 24),
4487 le16_to_cpu(rx_desc->csum), skb);
4488
4489 e1000_receive_skb(adapter, status, rx_desc->special, skb);
4490
4491next_desc:
4492 rx_desc->status = 0;
4493
4494 /* return some buffers to hardware, one at a time is too slow */
4495 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4496 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4497 cleaned_count = 0;
4498 }
4499
4500 /* use prefetched values */
4501 rx_desc = next_rxd;
4502 buffer_info = next_buffer;
4503 }
4504 rx_ring->next_to_clean = i;
4505
4506 cleaned_count = E1000_DESC_UNUSED(rx_ring);
4507 if (cleaned_count)
4508 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4509
4510 adapter->total_rx_packets += total_rx_packets;
4511 adapter->total_rx_bytes += total_rx_bytes;
4512 netdev->stats.rx_bytes += total_rx_bytes;
4513 netdev->stats.rx_packets += total_rx_packets;
4514 return cleaned;
4515}
4516
4517/**
4518 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
4519 * @adapter: address of board private structure
4520 * @rx_ring: pointer to receive ring structure
4521 * @cleaned_count: number of buffers to allocate this pass
4522 **/
4523static void
4524e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
4525 struct e1000_rx_ring *rx_ring, int cleaned_count)
4526{
4527 struct pci_dev *pdev = adapter->pdev;
4528 struct e1000_rx_desc *rx_desc;
4529 struct e1000_rx_buffer *buffer_info;
4530 unsigned int i;
4531
4532 i = rx_ring->next_to_use;
4533 buffer_info = &rx_ring->buffer_info[i];
4534
4535 while (cleaned_count--) {
4536 /* allocate a new page if necessary */
4537 if (!buffer_info->rxbuf.page) {
4538 buffer_info->rxbuf.page = alloc_page(GFP_ATOMIC);
4539 if (unlikely(!buffer_info->rxbuf.page)) {
4540 adapter->alloc_rx_buff_failed++;
4541 break;
4542 }
4543 }
4544
4545 if (!buffer_info->dma) {
4546 buffer_info->dma = dma_map_page(&pdev->dev,
4547 buffer_info->rxbuf.page, 0,
4548 adapter->rx_buffer_len,
4549 DMA_FROM_DEVICE);
4550 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4551 put_page(buffer_info->rxbuf.page);
4552 buffer_info->rxbuf.page = NULL;
4553 buffer_info->dma = 0;
4554 adapter->alloc_rx_buff_failed++;
4555 break;
4556 }
4557 }
4558
4559 rx_desc = E1000_RX_DESC(*rx_ring, i);
4560 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4561
4562 if (unlikely(++i == rx_ring->count))
4563 i = 0;
4564 buffer_info = &rx_ring->buffer_info[i];
4565 }
4566
4567 if (likely(rx_ring->next_to_use != i)) {
4568 rx_ring->next_to_use = i;
4569 if (unlikely(i-- == 0))
4570 i = (rx_ring->count - 1);
4571
4572 /* Force memory writes to complete before letting h/w
4573 * know there are new descriptors to fetch. (Only
4574 * applicable for weak-ordered memory model archs,
4575 * such as IA-64).
4576 */
4577 wmb();
4578 writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4579 }
4580}
4581
4582/**
4583 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4584 * @adapter: address of board private structure
4585 **/
4586static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4587 struct e1000_rx_ring *rx_ring,
4588 int cleaned_count)
4589{
4590 struct e1000_hw *hw = &adapter->hw;
4591 struct pci_dev *pdev = adapter->pdev;
4592 struct e1000_rx_desc *rx_desc;
4593 struct e1000_rx_buffer *buffer_info;
4594 unsigned int i;
4595 unsigned int bufsz = adapter->rx_buffer_len;
4596
4597 i = rx_ring->next_to_use;
4598 buffer_info = &rx_ring->buffer_info[i];
4599
4600 while (cleaned_count--) {
4601 void *data;
4602
4603 if (buffer_info->rxbuf.data)
4604 goto skip;
4605
4606 data = e1000_alloc_frag(adapter);
4607 if (!data) {
4608 /* Better luck next round */
4609 adapter->alloc_rx_buff_failed++;
4610 break;
4611 }
4612
4613 /* Fix for errata 23, can't cross 64kB boundary */
4614 if (!e1000_check_64k_bound(adapter, data, bufsz)) {
4615 void *olddata = data;
4616 e_err(rx_err, "skb align check failed: %u bytes at "
4617 "%p\n", bufsz, data);
4618 /* Try again, without freeing the previous */
4619 data = e1000_alloc_frag(adapter);
4620 /* Failed allocation, critical failure */
4621 if (!data) {
4622 skb_free_frag(olddata);
4623 adapter->alloc_rx_buff_failed++;
4624 break;
4625 }
4626
4627 if (!e1000_check_64k_bound(adapter, data, bufsz)) {
4628 /* give up */
4629 skb_free_frag(data);
4630 skb_free_frag(olddata);
4631 adapter->alloc_rx_buff_failed++;
4632 break;
4633 }
4634
4635 /* Use new allocation */
4636 skb_free_frag(olddata);
4637 }
4638 buffer_info->dma = dma_map_single(&pdev->dev,
4639 data,
4640 adapter->rx_buffer_len,
4641 DMA_FROM_DEVICE);
4642 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4643 skb_free_frag(data);
4644 buffer_info->dma = 0;
4645 adapter->alloc_rx_buff_failed++;
4646 break;
4647 }
4648
4649 /* XXX if it was allocated cleanly it will never map to a
4650 * boundary crossing
4651 */
4652
4653 /* Fix for errata 23, can't cross 64kB boundary */
4654 if (!e1000_check_64k_bound(adapter,
4655 (void *)(unsigned long)buffer_info->dma,
4656 adapter->rx_buffer_len)) {
4657 e_err(rx_err, "dma align check failed: %u bytes at "
4658 "%p\n", adapter->rx_buffer_len,
4659 (void *)(unsigned long)buffer_info->dma);
4660
4661 dma_unmap_single(&pdev->dev, buffer_info->dma,
4662 adapter->rx_buffer_len,
4663 DMA_FROM_DEVICE);
4664
4665 skb_free_frag(data);
4666 buffer_info->rxbuf.data = NULL;
4667 buffer_info->dma = 0;
4668
4669 adapter->alloc_rx_buff_failed++;
4670 break;
4671 }
4672 buffer_info->rxbuf.data = data;
4673 skip:
4674 rx_desc = E1000_RX_DESC(*rx_ring, i);
4675 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4676
4677 if (unlikely(++i == rx_ring->count))
4678 i = 0;
4679 buffer_info = &rx_ring->buffer_info[i];
4680 }
4681
4682 if (likely(rx_ring->next_to_use != i)) {
4683 rx_ring->next_to_use = i;
4684 if (unlikely(i-- == 0))
4685 i = (rx_ring->count - 1);
4686
4687 /* Force memory writes to complete before letting h/w
4688 * know there are new descriptors to fetch. (Only
4689 * applicable for weak-ordered memory model archs,
4690 * such as IA-64).
4691 */
4692 wmb();
4693 writel(i, hw->hw_addr + rx_ring->rdt);
4694 }
4695}
4696
4697/**
4698 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4699 * @adapter:
4700 **/
4701static void e1000_smartspeed(struct e1000_adapter *adapter)
4702{
4703 struct e1000_hw *hw = &adapter->hw;
4704 u16 phy_status;
4705 u16 phy_ctrl;
4706
4707 if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg ||
4708 !(hw->autoneg_advertised & ADVERTISE_1000_FULL))
4709 return;
4710
4711 if (adapter->smartspeed == 0) {
4712 /* If Master/Slave config fault is asserted twice,
4713 * we assume back-to-back
4714 */
4715 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4716 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
4717 return;
4718 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4719 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
4720 return;
4721 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4722 if (phy_ctrl & CR_1000T_MS_ENABLE) {
4723 phy_ctrl &= ~CR_1000T_MS_ENABLE;
4724 e1000_write_phy_reg(hw, PHY_1000T_CTRL,
4725 phy_ctrl);
4726 adapter->smartspeed++;
4727 if (!e1000_phy_setup_autoneg(hw) &&
4728 !e1000_read_phy_reg(hw, PHY_CTRL,
4729 &phy_ctrl)) {
4730 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4731 MII_CR_RESTART_AUTO_NEG);
4732 e1000_write_phy_reg(hw, PHY_CTRL,
4733 phy_ctrl);
4734 }
4735 }
4736 return;
4737 } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4738 /* If still no link, perhaps using 2/3 pair cable */
4739 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4740 phy_ctrl |= CR_1000T_MS_ENABLE;
4741 e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
4742 if (!e1000_phy_setup_autoneg(hw) &&
4743 !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) {
4744 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4745 MII_CR_RESTART_AUTO_NEG);
4746 e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl);
4747 }
4748 }
4749 /* Restart process after E1000_SMARTSPEED_MAX iterations */
4750 if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4751 adapter->smartspeed = 0;
4752}
4753
4754/**
4755 * e1000_ioctl -
4756 * @netdev:
4757 * @ifreq:
4758 * @cmd:
4759 **/
4760static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4761{
4762 switch (cmd) {
4763 case SIOCGMIIPHY:
4764 case SIOCGMIIREG:
4765 case SIOCSMIIREG:
4766 return e1000_mii_ioctl(netdev, ifr, cmd);
4767 default:
4768 return -EOPNOTSUPP;
4769 }
4770}
4771
4772/**
4773 * e1000_mii_ioctl -
4774 * @netdev:
4775 * @ifreq:
4776 * @cmd:
4777 **/
4778static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4779 int cmd)
4780{
4781 struct e1000_adapter *adapter = netdev_priv(netdev);
4782 struct e1000_hw *hw = &adapter->hw;
4783 struct mii_ioctl_data *data = if_mii(ifr);
4784 int retval;
4785 u16 mii_reg;
4786 unsigned long flags;
4787
4788 if (hw->media_type != e1000_media_type_copper)
4789 return -EOPNOTSUPP;
4790
4791 switch (cmd) {
4792 case SIOCGMIIPHY:
4793 data->phy_id = hw->phy_addr;
4794 break;
4795 case SIOCGMIIREG:
4796 spin_lock_irqsave(&adapter->stats_lock, flags);
4797 if (e1000_read_phy_reg(hw, data->reg_num & 0x1F,
4798 &data->val_out)) {
4799 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4800 return -EIO;
4801 }
4802 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4803 break;
4804 case SIOCSMIIREG:
4805 if (data->reg_num & ~(0x1F))
4806 return -EFAULT;
4807 mii_reg = data->val_in;
4808 spin_lock_irqsave(&adapter->stats_lock, flags);
4809 if (e1000_write_phy_reg(hw, data->reg_num,
4810 mii_reg)) {
4811 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4812 return -EIO;
4813 }
4814 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4815 if (hw->media_type == e1000_media_type_copper) {
4816 switch (data->reg_num) {
4817 case PHY_CTRL:
4818 if (mii_reg & MII_CR_POWER_DOWN)
4819 break;
4820 if (mii_reg & MII_CR_AUTO_NEG_EN) {
4821 hw->autoneg = 1;
4822 hw->autoneg_advertised = 0x2F;
4823 } else {
4824 u32 speed;
4825 if (mii_reg & 0x40)
4826 speed = SPEED_1000;
4827 else if (mii_reg & 0x2000)
4828 speed = SPEED_100;
4829 else
4830 speed = SPEED_10;
4831 retval = e1000_set_spd_dplx(
4832 adapter, speed,
4833 ((mii_reg & 0x100)
4834 ? DUPLEX_FULL :
4835 DUPLEX_HALF));
4836 if (retval)
4837 return retval;
4838 }
4839 if (netif_running(adapter->netdev))
4840 e1000_reinit_locked(adapter);
4841 else
4842 e1000_reset(adapter);
4843 break;
4844 case M88E1000_PHY_SPEC_CTRL:
4845 case M88E1000_EXT_PHY_SPEC_CTRL:
4846 if (e1000_phy_reset(hw))
4847 return -EIO;
4848 break;
4849 }
4850 } else {
4851 switch (data->reg_num) {
4852 case PHY_CTRL:
4853 if (mii_reg & MII_CR_POWER_DOWN)
4854 break;
4855 if (netif_running(adapter->netdev))
4856 e1000_reinit_locked(adapter);
4857 else
4858 e1000_reset(adapter);
4859 break;
4860 }
4861 }
4862 break;
4863 default:
4864 return -EOPNOTSUPP;
4865 }
4866 return E1000_SUCCESS;
4867}
4868
4869void e1000_pci_set_mwi(struct e1000_hw *hw)
4870{
4871 struct e1000_adapter *adapter = hw->back;
4872 int ret_val = pci_set_mwi(adapter->pdev);
4873
4874 if (ret_val)
4875 e_err(probe, "Error in setting MWI\n");
4876}
4877
4878void e1000_pci_clear_mwi(struct e1000_hw *hw)
4879{
4880 struct e1000_adapter *adapter = hw->back;
4881
4882 pci_clear_mwi(adapter->pdev);
4883}
4884
4885int e1000_pcix_get_mmrbc(struct e1000_hw *hw)
4886{
4887 struct e1000_adapter *adapter = hw->back;
4888 return pcix_get_mmrbc(adapter->pdev);
4889}
4890
4891void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
4892{
4893 struct e1000_adapter *adapter = hw->back;
4894 pcix_set_mmrbc(adapter->pdev, mmrbc);
4895}
4896
4897void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value)
4898{
4899 outl(value, port);
4900}
4901
4902static bool e1000_vlan_used(struct e1000_adapter *adapter)
4903{
4904 u16 vid;
4905
4906 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
4907 return true;
4908 return false;
4909}
4910
4911static void __e1000_vlan_mode(struct e1000_adapter *adapter,
4912 netdev_features_t features)
4913{
4914 struct e1000_hw *hw = &adapter->hw;
4915 u32 ctrl;
4916
4917 ctrl = er32(CTRL);
4918 if (features & NETIF_F_HW_VLAN_CTAG_RX) {
4919 /* enable VLAN tag insert/strip */
4920 ctrl |= E1000_CTRL_VME;
4921 } else {
4922 /* disable VLAN tag insert/strip */
4923 ctrl &= ~E1000_CTRL_VME;
4924 }
4925 ew32(CTRL, ctrl);
4926}
4927static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
4928 bool filter_on)
4929{
4930 struct e1000_hw *hw = &adapter->hw;
4931 u32 rctl;
4932
4933 if (!test_bit(__E1000_DOWN, &adapter->flags))
4934 e1000_irq_disable(adapter);
4935
4936 __e1000_vlan_mode(adapter, adapter->netdev->features);
4937 if (filter_on) {
4938 /* enable VLAN receive filtering */
4939 rctl = er32(RCTL);
4940 rctl &= ~E1000_RCTL_CFIEN;
4941 if (!(adapter->netdev->flags & IFF_PROMISC))
4942 rctl |= E1000_RCTL_VFE;
4943 ew32(RCTL, rctl);
4944 e1000_update_mng_vlan(adapter);
4945 } else {
4946 /* disable VLAN receive filtering */
4947 rctl = er32(RCTL);
4948 rctl &= ~E1000_RCTL_VFE;
4949 ew32(RCTL, rctl);
4950 }
4951
4952 if (!test_bit(__E1000_DOWN, &adapter->flags))
4953 e1000_irq_enable(adapter);
4954}
4955
4956static void e1000_vlan_mode(struct net_device *netdev,
4957 netdev_features_t features)
4958{
4959 struct e1000_adapter *adapter = netdev_priv(netdev);
4960
4961 if (!test_bit(__E1000_DOWN, &adapter->flags))
4962 e1000_irq_disable(adapter);
4963
4964 __e1000_vlan_mode(adapter, features);
4965
4966 if (!test_bit(__E1000_DOWN, &adapter->flags))
4967 e1000_irq_enable(adapter);
4968}
4969
4970static int e1000_vlan_rx_add_vid(struct net_device *netdev,
4971 __be16 proto, u16 vid)
4972{
4973 struct e1000_adapter *adapter = netdev_priv(netdev);
4974 struct e1000_hw *hw = &adapter->hw;
4975 u32 vfta, index;
4976
4977 if ((hw->mng_cookie.status &
4978 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4979 (vid == adapter->mng_vlan_id))
4980 return 0;
4981
4982 if (!e1000_vlan_used(adapter))
4983 e1000_vlan_filter_on_off(adapter, true);
4984
4985 /* add VID to filter table */
4986 index = (vid >> 5) & 0x7F;
4987 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4988 vfta |= (1 << (vid & 0x1F));
4989 e1000_write_vfta(hw, index, vfta);
4990
4991 set_bit(vid, adapter->active_vlans);
4992
4993 return 0;
4994}
4995
4996static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
4997 __be16 proto, u16 vid)
4998{
4999 struct e1000_adapter *adapter = netdev_priv(netdev);
5000 struct e1000_hw *hw = &adapter->hw;
5001 u32 vfta, index;
5002
5003 if (!test_bit(__E1000_DOWN, &adapter->flags))
5004 e1000_irq_disable(adapter);
5005 if (!test_bit(__E1000_DOWN, &adapter->flags))
5006 e1000_irq_enable(adapter);
5007
5008 /* remove VID from filter table */
5009 index = (vid >> 5) & 0x7F;
5010 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
5011 vfta &= ~(1 << (vid & 0x1F));
5012 e1000_write_vfta(hw, index, vfta);
5013
5014 clear_bit(vid, adapter->active_vlans);
5015
5016 if (!e1000_vlan_used(adapter))
5017 e1000_vlan_filter_on_off(adapter, false);
5018
5019 return 0;
5020}
5021
5022static void e1000_restore_vlan(struct e1000_adapter *adapter)
5023{
5024 u16 vid;
5025
5026 if (!e1000_vlan_used(adapter))
5027 return;
5028
5029 e1000_vlan_filter_on_off(adapter, true);
5030 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
5031 e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
5032}
5033
5034int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
5035{
5036 struct e1000_hw *hw = &adapter->hw;
5037
5038 hw->autoneg = 0;
5039
5040 /* Make sure dplx is at most 1 bit and lsb of speed is not set
5041 * for the switch() below to work
5042 */
5043 if ((spd & 1) || (dplx & ~1))
5044 goto err_inval;
5045
5046 /* Fiber NICs only allow 1000 gbps Full duplex */
5047 if ((hw->media_type == e1000_media_type_fiber) &&
5048 spd != SPEED_1000 &&
5049 dplx != DUPLEX_FULL)
5050 goto err_inval;
5051
5052 switch (spd + dplx) {
5053 case SPEED_10 + DUPLEX_HALF:
5054 hw->forced_speed_duplex = e1000_10_half;
5055 break;
5056 case SPEED_10 + DUPLEX_FULL:
5057 hw->forced_speed_duplex = e1000_10_full;
5058 break;
5059 case SPEED_100 + DUPLEX_HALF:
5060 hw->forced_speed_duplex = e1000_100_half;
5061 break;
5062 case SPEED_100 + DUPLEX_FULL:
5063 hw->forced_speed_duplex = e1000_100_full;
5064 break;
5065 case SPEED_1000 + DUPLEX_FULL:
5066 hw->autoneg = 1;
5067 hw->autoneg_advertised = ADVERTISE_1000_FULL;
5068 break;
5069 case SPEED_1000 + DUPLEX_HALF: /* not supported */
5070 default:
5071 goto err_inval;
5072 }
5073
5074 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
5075 hw->mdix = AUTO_ALL_MODES;
5076
5077 return 0;
5078
5079err_inval:
5080 e_err(probe, "Unsupported Speed/Duplex configuration\n");
5081 return -EINVAL;
5082}
5083
5084static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake)
5085{
5086 struct net_device *netdev = pci_get_drvdata(pdev);
5087 struct e1000_adapter *adapter = netdev_priv(netdev);
5088 struct e1000_hw *hw = &adapter->hw;
5089 u32 ctrl, ctrl_ext, rctl, status;
5090 u32 wufc = adapter->wol;
5091#ifdef CONFIG_PM
5092 int retval = 0;
5093#endif
5094
5095 netif_device_detach(netdev);
5096
5097 if (netif_running(netdev)) {
5098 int count = E1000_CHECK_RESET_COUNT;
5099
5100 while (test_bit(__E1000_RESETTING, &adapter->flags) && count--)
5101 usleep_range(10000, 20000);
5102
5103 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
5104 e1000_down(adapter);
5105 }
5106
5107#ifdef CONFIG_PM
5108 retval = pci_save_state(pdev);
5109 if (retval)
5110 return retval;
5111#endif
5112
5113 status = er32(STATUS);
5114 if (status & E1000_STATUS_LU)
5115 wufc &= ~E1000_WUFC_LNKC;
5116
5117 if (wufc) {
5118 e1000_setup_rctl(adapter);
5119 e1000_set_rx_mode(netdev);
5120
5121 rctl = er32(RCTL);
5122
5123 /* turn on all-multi mode if wake on multicast is enabled */
5124 if (wufc & E1000_WUFC_MC)
5125 rctl |= E1000_RCTL_MPE;
5126
5127 /* enable receives in the hardware */
5128 ew32(RCTL, rctl | E1000_RCTL_EN);
5129
5130 if (hw->mac_type >= e1000_82540) {
5131 ctrl = er32(CTRL);
5132 /* advertise wake from D3Cold */
5133 #define E1000_CTRL_ADVD3WUC 0x00100000
5134 /* phy power management enable */
5135 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5136 ctrl |= E1000_CTRL_ADVD3WUC |
5137 E1000_CTRL_EN_PHY_PWR_MGMT;
5138 ew32(CTRL, ctrl);
5139 }
5140
5141 if (hw->media_type == e1000_media_type_fiber ||
5142 hw->media_type == e1000_media_type_internal_serdes) {
5143 /* keep the laser running in D3 */
5144 ctrl_ext = er32(CTRL_EXT);
5145 ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
5146 ew32(CTRL_EXT, ctrl_ext);
5147 }
5148
5149 ew32(WUC, E1000_WUC_PME_EN);
5150 ew32(WUFC, wufc);
5151 } else {
5152 ew32(WUC, 0);
5153 ew32(WUFC, 0);
5154 }
5155
5156 e1000_release_manageability(adapter);
5157
5158 *enable_wake = !!wufc;
5159
5160 /* make sure adapter isn't asleep if manageability is enabled */
5161 if (adapter->en_mng_pt)
5162 *enable_wake = true;
5163
5164 if (netif_running(netdev))
5165 e1000_free_irq(adapter);
5166
5167 pci_disable_device(pdev);
5168
5169 return 0;
5170}
5171
5172#ifdef CONFIG_PM
5173static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
5174{
5175 int retval;
5176 bool wake;
5177
5178 retval = __e1000_shutdown(pdev, &wake);
5179 if (retval)
5180 return retval;
5181
5182 if (wake) {
5183 pci_prepare_to_sleep(pdev);
5184 } else {
5185 pci_wake_from_d3(pdev, false);
5186 pci_set_power_state(pdev, PCI_D3hot);
5187 }
5188
5189 return 0;
5190}
5191
5192static int e1000_resume(struct pci_dev *pdev)
5193{
5194 struct net_device *netdev = pci_get_drvdata(pdev);
5195 struct e1000_adapter *adapter = netdev_priv(netdev);
5196 struct e1000_hw *hw = &adapter->hw;
5197 u32 err;
5198
5199 pci_set_power_state(pdev, PCI_D0);
5200 pci_restore_state(pdev);
5201 pci_save_state(pdev);
5202
5203 if (adapter->need_ioport)
5204 err = pci_enable_device(pdev);
5205 else
5206 err = pci_enable_device_mem(pdev);
5207 if (err) {
5208 pr_err("Cannot enable PCI device from suspend\n");
5209 return err;
5210 }
5211 pci_set_master(pdev);
5212
5213 pci_enable_wake(pdev, PCI_D3hot, 0);
5214 pci_enable_wake(pdev, PCI_D3cold, 0);
5215
5216 if (netif_running(netdev)) {
5217 err = e1000_request_irq(adapter);
5218 if (err)
5219 return err;
5220 }
5221
5222 e1000_power_up_phy(adapter);
5223 e1000_reset(adapter);
5224 ew32(WUS, ~0);
5225
5226 e1000_init_manageability(adapter);
5227
5228 if (netif_running(netdev))
5229 e1000_up(adapter);
5230
5231 netif_device_attach(netdev);
5232
5233 return 0;
5234}
5235#endif
5236
5237static void e1000_shutdown(struct pci_dev *pdev)
5238{
5239 bool wake;
5240
5241 __e1000_shutdown(pdev, &wake);
5242
5243 if (system_state == SYSTEM_POWER_OFF) {
5244 pci_wake_from_d3(pdev, wake);
5245 pci_set_power_state(pdev, PCI_D3hot);
5246 }
5247}
5248
5249#ifdef CONFIG_NET_POLL_CONTROLLER
5250/* Polling 'interrupt' - used by things like netconsole to send skbs
5251 * without having to re-enable interrupts. It's not called while
5252 * the interrupt routine is executing.
5253 */
5254static void e1000_netpoll(struct net_device *netdev)
5255{
5256 struct e1000_adapter *adapter = netdev_priv(netdev);
5257
5258 if (disable_hardirq(adapter->pdev->irq))
5259 e1000_intr(adapter->pdev->irq, netdev);
5260 enable_irq(adapter->pdev->irq);
5261}
5262#endif
5263
5264/**
5265 * e1000_io_error_detected - called when PCI error is detected
5266 * @pdev: Pointer to PCI device
5267 * @state: The current pci connection state
5268 *
5269 * This function is called after a PCI bus error affecting
5270 * this device has been detected.
5271 */
5272static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
5273 pci_channel_state_t state)
5274{
5275 struct net_device *netdev = pci_get_drvdata(pdev);
5276 struct e1000_adapter *adapter = netdev_priv(netdev);
5277
5278 netif_device_detach(netdev);
5279
5280 if (state == pci_channel_io_perm_failure)
5281 return PCI_ERS_RESULT_DISCONNECT;
5282
5283 if (netif_running(netdev))
5284 e1000_down(adapter);
5285 pci_disable_device(pdev);
5286
5287 /* Request a slot slot reset. */
5288 return PCI_ERS_RESULT_NEED_RESET;
5289}
5290
5291/**
5292 * e1000_io_slot_reset - called after the pci bus has been reset.
5293 * @pdev: Pointer to PCI device
5294 *
5295 * Restart the card from scratch, as if from a cold-boot. Implementation
5296 * resembles the first-half of the e1000_resume routine.
5297 */
5298static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
5299{
5300 struct net_device *netdev = pci_get_drvdata(pdev);
5301 struct e1000_adapter *adapter = netdev_priv(netdev);
5302 struct e1000_hw *hw = &adapter->hw;
5303 int err;
5304
5305 if (adapter->need_ioport)
5306 err = pci_enable_device(pdev);
5307 else
5308 err = pci_enable_device_mem(pdev);
5309 if (err) {
5310 pr_err("Cannot re-enable PCI device after reset.\n");
5311 return PCI_ERS_RESULT_DISCONNECT;
5312 }
5313 pci_set_master(pdev);
5314
5315 pci_enable_wake(pdev, PCI_D3hot, 0);
5316 pci_enable_wake(pdev, PCI_D3cold, 0);
5317
5318 e1000_reset(adapter);
5319 ew32(WUS, ~0);
5320
5321 return PCI_ERS_RESULT_RECOVERED;
5322}
5323
5324/**
5325 * e1000_io_resume - called when traffic can start flowing again.
5326 * @pdev: Pointer to PCI device
5327 *
5328 * This callback is called when the error recovery driver tells us that
5329 * its OK to resume normal operation. Implementation resembles the
5330 * second-half of the e1000_resume routine.
5331 */
5332static void e1000_io_resume(struct pci_dev *pdev)
5333{
5334 struct net_device *netdev = pci_get_drvdata(pdev);
5335 struct e1000_adapter *adapter = netdev_priv(netdev);
5336
5337 e1000_init_manageability(adapter);
5338
5339 if (netif_running(netdev)) {
5340 if (e1000_up(adapter)) {
5341 pr_info("can't bring device back up after reset\n");
5342 return;
5343 }
5344 }
5345
5346 netif_device_attach(netdev);
5347}
5348
5349/* e1000_main.c */