Linux Audio

Check our new training course

Loading...
v4.6
 
   1/*
   2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
   3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
   4 *
   5 * This file is released under the GPL.
   6 */
   7
   8#include "dm.h"
 
   9#include "dm-uevent.h"
 
  10
 
  11#include <linux/init.h>
  12#include <linux/module.h>
  13#include <linux/mutex.h>
  14#include <linux/moduleparam.h>
 
  15#include <linux/blkpg.h>
  16#include <linux/bio.h>
  17#include <linux/mempool.h>
 
  18#include <linux/slab.h>
  19#include <linux/idr.h>
 
  20#include <linux/hdreg.h>
  21#include <linux/delay.h>
  22#include <linux/wait.h>
  23#include <linux/kthread.h>
  24#include <linux/ktime.h>
  25#include <linux/elevator.h> /* for rq_end_sector() */
  26#include <linux/blk-mq.h>
  27#include <linux/pr.h>
  28
  29#include <trace/events/block.h>
 
 
  30
  31#define DM_MSG_PREFIX "core"
  32
  33#ifdef CONFIG_PRINTK
  34/*
  35 * ratelimit state to be used in DMXXX_LIMIT().
  36 */
  37DEFINE_RATELIMIT_STATE(dm_ratelimit_state,
  38		       DEFAULT_RATELIMIT_INTERVAL,
  39		       DEFAULT_RATELIMIT_BURST);
  40EXPORT_SYMBOL(dm_ratelimit_state);
  41#endif
  42
  43/*
  44 * Cookies are numeric values sent with CHANGE and REMOVE
  45 * uevents while resuming, removing or renaming the device.
  46 */
  47#define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
  48#define DM_COOKIE_LENGTH 24
  49
 
 
 
 
 
 
 
  50static const char *_name = DM_NAME;
  51
  52static unsigned int major = 0;
  53static unsigned int _major = 0;
  54
  55static DEFINE_IDR(_minor_idr);
  56
  57static DEFINE_SPINLOCK(_minor_lock);
  58
  59static void do_deferred_remove(struct work_struct *w);
  60
  61static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
  62
  63static struct workqueue_struct *deferred_remove_workqueue;
  64
  65/*
  66 * For bio-based dm.
  67 * One of these is allocated per bio.
  68 */
  69struct dm_io {
  70	struct mapped_device *md;
  71	int error;
  72	atomic_t io_count;
  73	struct bio *bio;
  74	unsigned long start_time;
  75	spinlock_t endio_lock;
  76	struct dm_stats_aux stats_aux;
  77};
  78
  79/*
  80 * For request-based dm.
  81 * One of these is allocated per request.
  82 */
  83struct dm_rq_target_io {
  84	struct mapped_device *md;
  85	struct dm_target *ti;
  86	struct request *orig, *clone;
  87	struct kthread_work work;
  88	int error;
  89	union map_info info;
  90	struct dm_stats_aux stats_aux;
  91	unsigned long duration_jiffies;
  92	unsigned n_sectors;
  93};
  94
  95/*
  96 * For request-based dm - the bio clones we allocate are embedded in these
  97 * structs.
  98 *
  99 * We allocate these with bio_alloc_bioset, using the front_pad parameter when
 100 * the bioset is created - this means the bio has to come at the end of the
 101 * struct.
 102 */
 103struct dm_rq_clone_bio_info {
 104	struct bio *orig;
 105	struct dm_rq_target_io *tio;
 106	struct bio clone;
 107};
 108
 109#define MINOR_ALLOCED ((void *)-1)
 110
 111/*
 112 * Bits for the md->flags field.
 113 */
 114#define DMF_BLOCK_IO_FOR_SUSPEND 0
 115#define DMF_SUSPENDED 1
 116#define DMF_FROZEN 2
 117#define DMF_FREEING 3
 118#define DMF_DELETING 4
 119#define DMF_NOFLUSH_SUSPENDING 5
 120#define DMF_DEFERRED_REMOVE 6
 121#define DMF_SUSPENDED_INTERNALLY 7
 122
 123/*
 124 * Work processed by per-device workqueue.
 125 */
 126struct mapped_device {
 127	struct srcu_struct io_barrier;
 128	struct mutex suspend_lock;
 129
 130	/*
 131	 * The current mapping (struct dm_table *).
 132	 * Use dm_get_live_table{_fast} or take suspend_lock for
 133	 * dereference.
 134	 */
 135	void __rcu *map;
 136
 137	struct list_head table_devices;
 138	struct mutex table_devices_lock;
 139
 140	unsigned long flags;
 141
 142	struct request_queue *queue;
 143	int numa_node_id;
 144
 145	unsigned type;
 146	/* Protect queue and type against concurrent access. */
 147	struct mutex type_lock;
 148
 149	atomic_t holders;
 150	atomic_t open_count;
 151
 152	struct dm_target *immutable_target;
 153	struct target_type *immutable_target_type;
 154
 155	struct gendisk *disk;
 156	char name[16];
 157
 158	void *interface_ptr;
 159
 160	/*
 161	 * A list of ios that arrived while we were suspended.
 162	 */
 163	atomic_t pending[2];
 164	wait_queue_head_t wait;
 165	struct work_struct work;
 166	spinlock_t deferred_lock;
 167	struct bio_list deferred;
 168
 169	/*
 170	 * Event handling.
 171	 */
 172	wait_queue_head_t eventq;
 173	atomic_t event_nr;
 174	atomic_t uevent_seq;
 175	struct list_head uevent_list;
 176	spinlock_t uevent_lock; /* Protect access to uevent_list */
 177
 178	/* the number of internal suspends */
 179	unsigned internal_suspend_count;
 180
 181	/*
 182	 * Processing queue (flush)
 183	 */
 184	struct workqueue_struct *wq;
 185
 186	/*
 187	 * io objects are allocated from here.
 188	 */
 189	mempool_t *io_pool;
 190	mempool_t *rq_pool;
 191
 192	struct bio_set *bs;
 193
 194	/*
 195	 * freeze/thaw support require holding onto a super block
 196	 */
 197	struct super_block *frozen_sb;
 198
 199	/* forced geometry settings */
 200	struct hd_geometry geometry;
 201
 202	struct block_device *bdev;
 203
 204	/* kobject and completion */
 205	struct dm_kobject_holder kobj_holder;
 
 
 206
 207	/* zero-length flush that will be cloned and submitted to targets */
 208	struct bio flush_bio;
 
 
 
 
 
 209
 210	struct dm_stats stats;
 
 
 211
 212	struct kthread_worker kworker;
 213	struct task_struct *kworker_task;
 
 
 
 
 214
 215	/* for request-based merge heuristic in dm_request_fn() */
 216	unsigned seq_rq_merge_deadline_usecs;
 217	int last_rq_rw;
 218	sector_t last_rq_pos;
 219	ktime_t last_rq_start_time;
 220
 221	/* for blk-mq request-based DM support */
 222	struct blk_mq_tag_set *tag_set;
 223	bool use_blk_mq:1;
 224	bool init_tio_pdu:1;
 225};
 226
 227#ifdef CONFIG_DM_MQ_DEFAULT
 228static bool use_blk_mq = true;
 229#else
 230static bool use_blk_mq = false;
 231#endif
 232
 233#define DM_MQ_NR_HW_QUEUES 1
 234#define DM_MQ_QUEUE_DEPTH 2048
 235#define DM_NUMA_NODE NUMA_NO_NODE
 236
 237static unsigned dm_mq_nr_hw_queues = DM_MQ_NR_HW_QUEUES;
 238static unsigned dm_mq_queue_depth = DM_MQ_QUEUE_DEPTH;
 239static int dm_numa_node = DM_NUMA_NODE;
 240
 241bool dm_use_blk_mq(struct mapped_device *md)
 242{
 243	return md->use_blk_mq;
 
 
 
 
 
 
 244}
 245EXPORT_SYMBOL_GPL(dm_use_blk_mq);
 246
 247/*
 248 * For mempools pre-allocation at the table loading time.
 249 */
 250struct dm_md_mempools {
 251	mempool_t *io_pool;
 252	mempool_t *rq_pool;
 253	struct bio_set *bs;
 254};
 255
 256struct table_device {
 257	struct list_head list;
 258	atomic_t count;
 259	struct dm_dev dm_dev;
 260};
 261
 262#define RESERVED_BIO_BASED_IOS		16
 263#define RESERVED_REQUEST_BASED_IOS	256
 264#define RESERVED_MAX_IOS		1024
 265static struct kmem_cache *_io_cache;
 266static struct kmem_cache *_rq_tio_cache;
 267static struct kmem_cache *_rq_cache;
 268
 269/*
 270 * Bio-based DM's mempools' reserved IOs set by the user.
 271 */
 272static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
 273
 274/*
 275 * Request-based DM's mempools' reserved IOs set by the user.
 276 */
 277static unsigned reserved_rq_based_ios = RESERVED_REQUEST_BASED_IOS;
 278
 279static int __dm_get_module_param_int(int *module_param, int min, int max)
 280{
 281	int param = ACCESS_ONCE(*module_param);
 282	int modified_param = 0;
 283	bool modified = true;
 284
 285	if (param < min)
 286		modified_param = min;
 287	else if (param > max)
 288		modified_param = max;
 289	else
 290		modified = false;
 291
 292	if (modified) {
 293		(void)cmpxchg(module_param, param, modified_param);
 294		param = modified_param;
 295	}
 296
 297	return param;
 298}
 299
 300static unsigned __dm_get_module_param(unsigned *module_param,
 301				      unsigned def, unsigned max)
 302{
 303	unsigned param = ACCESS_ONCE(*module_param);
 304	unsigned modified_param = 0;
 305
 306	if (!param)
 307		modified_param = def;
 308	else if (param > max)
 309		modified_param = max;
 310
 311	if (modified_param) {
 312		(void)cmpxchg(module_param, param, modified_param);
 313		param = modified_param;
 314	}
 315
 316	return param;
 317}
 318
 319unsigned dm_get_reserved_bio_based_ios(void)
 320{
 321	return __dm_get_module_param(&reserved_bio_based_ios,
 322				     RESERVED_BIO_BASED_IOS, RESERVED_MAX_IOS);
 323}
 324EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
 325
 326unsigned dm_get_reserved_rq_based_ios(void)
 327{
 328	return __dm_get_module_param(&reserved_rq_based_ios,
 329				     RESERVED_REQUEST_BASED_IOS, RESERVED_MAX_IOS);
 330}
 331EXPORT_SYMBOL_GPL(dm_get_reserved_rq_based_ios);
 332
 333static unsigned dm_get_blk_mq_nr_hw_queues(void)
 334{
 335	return __dm_get_module_param(&dm_mq_nr_hw_queues, 1, 32);
 336}
 337
 338static unsigned dm_get_blk_mq_queue_depth(void)
 339{
 340	return __dm_get_module_param(&dm_mq_queue_depth,
 341				     DM_MQ_QUEUE_DEPTH, BLK_MQ_MAX_DEPTH);
 342}
 343
 344static unsigned dm_get_numa_node(void)
 345{
 346	return __dm_get_module_param_int(&dm_numa_node,
 347					 DM_NUMA_NODE, num_online_nodes() - 1);
 348}
 349
 350static int __init local_init(void)
 351{
 352	int r = -ENOMEM;
 353
 354	/* allocate a slab for the dm_ios */
 355	_io_cache = KMEM_CACHE(dm_io, 0);
 356	if (!_io_cache)
 357		return r;
 358
 359	_rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
 360	if (!_rq_tio_cache)
 361		goto out_free_io_cache;
 362
 363	_rq_cache = kmem_cache_create("dm_old_clone_request", sizeof(struct request),
 364				      __alignof__(struct request), 0, NULL);
 365	if (!_rq_cache)
 366		goto out_free_rq_tio_cache;
 367
 368	r = dm_uevent_init();
 369	if (r)
 370		goto out_free_rq_cache;
 371
 372	deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
 373	if (!deferred_remove_workqueue) {
 374		r = -ENOMEM;
 375		goto out_uevent_exit;
 376	}
 377
 378	_major = major;
 379	r = register_blkdev(_major, _name);
 380	if (r < 0)
 381		goto out_free_workqueue;
 382
 383	if (!_major)
 384		_major = r;
 385
 386	return 0;
 387
 388out_free_workqueue:
 389	destroy_workqueue(deferred_remove_workqueue);
 390out_uevent_exit:
 391	dm_uevent_exit();
 392out_free_rq_cache:
 393	kmem_cache_destroy(_rq_cache);
 394out_free_rq_tio_cache:
 395	kmem_cache_destroy(_rq_tio_cache);
 396out_free_io_cache:
 397	kmem_cache_destroy(_io_cache);
 398
 399	return r;
 400}
 401
 402static void local_exit(void)
 403{
 404	flush_scheduled_work();
 405	destroy_workqueue(deferred_remove_workqueue);
 406
 407	kmem_cache_destroy(_rq_cache);
 408	kmem_cache_destroy(_rq_tio_cache);
 409	kmem_cache_destroy(_io_cache);
 410	unregister_blkdev(_major, _name);
 411	dm_uevent_exit();
 412
 413	_major = 0;
 414
 415	DMINFO("cleaned up");
 416}
 417
 418static int (*_inits[])(void) __initdata = {
 419	local_init,
 420	dm_target_init,
 421	dm_linear_init,
 422	dm_stripe_init,
 423	dm_io_init,
 424	dm_kcopyd_init,
 425	dm_interface_init,
 426	dm_statistics_init,
 427};
 428
 429static void (*_exits[])(void) = {
 430	local_exit,
 431	dm_target_exit,
 432	dm_linear_exit,
 433	dm_stripe_exit,
 434	dm_io_exit,
 435	dm_kcopyd_exit,
 436	dm_interface_exit,
 437	dm_statistics_exit,
 438};
 439
 440static int __init dm_init(void)
 441{
 442	const int count = ARRAY_SIZE(_inits);
 443
 444	int r, i;
 445
 
 
 
 
 
 446	for (i = 0; i < count; i++) {
 447		r = _inits[i]();
 448		if (r)
 449			goto bad;
 450	}
 451
 452	return 0;
 453
 454      bad:
 455	while (i--)
 456		_exits[i]();
 457
 458	return r;
 459}
 460
 461static void __exit dm_exit(void)
 462{
 463	int i = ARRAY_SIZE(_exits);
 464
 465	while (i--)
 466		_exits[i]();
 467
 468	/*
 469	 * Should be empty by this point.
 470	 */
 471	idr_destroy(&_minor_idr);
 472}
 473
 474/*
 475 * Block device functions
 476 */
 477int dm_deleting_md(struct mapped_device *md)
 478{
 479	return test_bit(DMF_DELETING, &md->flags);
 480}
 481
 482static int dm_blk_open(struct block_device *bdev, fmode_t mode)
 483{
 484	struct mapped_device *md;
 485
 486	spin_lock(&_minor_lock);
 487
 488	md = bdev->bd_disk->private_data;
 489	if (!md)
 490		goto out;
 491
 492	if (test_bit(DMF_FREEING, &md->flags) ||
 493	    dm_deleting_md(md)) {
 494		md = NULL;
 495		goto out;
 496	}
 497
 498	dm_get(md);
 499	atomic_inc(&md->open_count);
 500out:
 501	spin_unlock(&_minor_lock);
 502
 503	return md ? 0 : -ENXIO;
 504}
 505
 506static void dm_blk_close(struct gendisk *disk, fmode_t mode)
 507{
 508	struct mapped_device *md;
 509
 510	spin_lock(&_minor_lock);
 511
 512	md = disk->private_data;
 513	if (WARN_ON(!md))
 514		goto out;
 515
 516	if (atomic_dec_and_test(&md->open_count) &&
 517	    (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
 518		queue_work(deferred_remove_workqueue, &deferred_remove_work);
 519
 520	dm_put(md);
 521out:
 522	spin_unlock(&_minor_lock);
 523}
 524
 525int dm_open_count(struct mapped_device *md)
 526{
 527	return atomic_read(&md->open_count);
 528}
 529
 530/*
 531 * Guarantees nothing is using the device before it's deleted.
 532 */
 533int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
 534{
 535	int r = 0;
 536
 537	spin_lock(&_minor_lock);
 538
 539	if (dm_open_count(md)) {
 540		r = -EBUSY;
 541		if (mark_deferred)
 542			set_bit(DMF_DEFERRED_REMOVE, &md->flags);
 543	} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
 544		r = -EEXIST;
 545	else
 546		set_bit(DMF_DELETING, &md->flags);
 547
 548	spin_unlock(&_minor_lock);
 549
 550	return r;
 551}
 552
 553int dm_cancel_deferred_remove(struct mapped_device *md)
 554{
 555	int r = 0;
 556
 557	spin_lock(&_minor_lock);
 558
 559	if (test_bit(DMF_DELETING, &md->flags))
 560		r = -EBUSY;
 561	else
 562		clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
 563
 564	spin_unlock(&_minor_lock);
 565
 566	return r;
 567}
 568
 569static void do_deferred_remove(struct work_struct *w)
 570{
 571	dm_deferred_remove();
 572}
 573
 574sector_t dm_get_size(struct mapped_device *md)
 575{
 576	return get_capacity(md->disk);
 577}
 578
 579struct request_queue *dm_get_md_queue(struct mapped_device *md)
 580{
 581	return md->queue;
 582}
 583
 584struct dm_stats *dm_get_stats(struct mapped_device *md)
 585{
 586	return &md->stats;
 587}
 588
 589static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
 590{
 591	struct mapped_device *md = bdev->bd_disk->private_data;
 592
 593	return dm_get_geometry(md, geo);
 594}
 595
 596static int dm_grab_bdev_for_ioctl(struct mapped_device *md,
 597				  struct block_device **bdev,
 598				  fmode_t *mode)
 599{
 600	struct dm_target *tgt;
 601	struct dm_table *map;
 602	int srcu_idx, r;
 603
 604retry:
 605	r = -ENOTTY;
 606	map = dm_get_live_table(md, &srcu_idx);
 607	if (!map || !dm_table_get_size(map))
 608		goto out;
 609
 610	/* We only support devices that have a single target */
 611	if (dm_table_get_num_targets(map) != 1)
 612		goto out;
 613
 614	tgt = dm_table_get_target(map, 0);
 615	if (!tgt->type->prepare_ioctl)
 616		goto out;
 617
 618	if (dm_suspended_md(md)) {
 619		r = -EAGAIN;
 620		goto out;
 621	}
 622
 623	r = tgt->type->prepare_ioctl(tgt, bdev, mode);
 624	if (r < 0)
 625		goto out;
 626
 627	bdgrab(*bdev);
 628	dm_put_live_table(md, srcu_idx);
 629	return r;
 630
 631out:
 632	dm_put_live_table(md, srcu_idx);
 633	if (r == -ENOTCONN && !fatal_signal_pending(current)) {
 634		msleep(10);
 
 635		goto retry;
 636	}
 
 637	return r;
 638}
 639
 640static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
 
 
 
 
 
 641			unsigned int cmd, unsigned long arg)
 642{
 643	struct mapped_device *md = bdev->bd_disk->private_data;
 644	int r;
 645
 646	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
 647	if (r < 0)
 648		return r;
 649
 650	if (r > 0) {
 651		/*
 652		 * Target determined this ioctl is being issued against
 653		 * a logical partition of the parent bdev; so extra
 654		 * validation is needed.
 655		 */
 656		r = scsi_verify_blk_ioctl(NULL, cmd);
 657		if (r)
 
 
 
 658			goto out;
 
 659	}
 660
 661	r =  __blkdev_driver_ioctl(bdev, mode, cmd, arg);
 
 
 
 662out:
 663	bdput(bdev);
 664	return r;
 665}
 666
 667static struct dm_io *alloc_io(struct mapped_device *md)
 668{
 669	return mempool_alloc(md->io_pool, GFP_NOIO);
 670}
 
 671
 672static void free_io(struct mapped_device *md, struct dm_io *io)
 673{
 674	mempool_free(io, md->io_pool);
 675}
 676
 677static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
 678{
 679	bio_put(&tio->clone);
 
 
 
 
 
 
 
 
 680}
 681
 682static struct dm_rq_target_io *alloc_old_rq_tio(struct mapped_device *md,
 683						gfp_t gfp_mask)
 684{
 685	return mempool_alloc(md->io_pool, gfp_mask);
 686}
 687
 688static void free_old_rq_tio(struct dm_rq_target_io *tio)
 689{
 690	mempool_free(tio, tio->md->io_pool);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 691}
 692
 693static struct request *alloc_old_clone_request(struct mapped_device *md,
 694					       gfp_t gfp_mask)
 695{
 696	return mempool_alloc(md->rq_pool, gfp_mask);
 697}
 698
 699static void free_old_clone_request(struct mapped_device *md, struct request *rq)
 700{
 701	mempool_free(rq, md->rq_pool);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 702}
 703
 704static int md_in_flight(struct mapped_device *md)
 705{
 706	return atomic_read(&md->pending[READ]) +
 707	       atomic_read(&md->pending[WRITE]);
 708}
 709
 710static void start_io_acct(struct dm_io *io)
 711{
 712	struct mapped_device *md = io->md;
 713	struct bio *bio = io->bio;
 714	int cpu;
 715	int rw = bio_data_dir(bio);
 716
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 717	io->start_time = jiffies;
 
 
 
 
 
 
 
 718
 719	cpu = part_stat_lock();
 720	part_round_stats(cpu, &dm_disk(md)->part0);
 721	part_stat_unlock();
 722	atomic_set(&dm_disk(md)->part0.in_flight[rw],
 723		atomic_inc_return(&md->pending[rw]));
 724
 725	if (unlikely(dm_stats_used(&md->stats)))
 726		dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_iter.bi_sector,
 727				    bio_sectors(bio), false, 0, &io->stats_aux);
 728}
 729
 730static void end_io_acct(struct dm_io *io)
 731{
 732	struct mapped_device *md = io->md;
 733	struct bio *bio = io->bio;
 734	unsigned long duration = jiffies - io->start_time;
 735	int pending;
 736	int rw = bio_data_dir(bio);
 737
 738	generic_end_io_acct(rw, &dm_disk(md)->part0, io->start_time);
 
 
 
 
 
 739
 740	if (unlikely(dm_stats_used(&md->stats)))
 741		dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_iter.bi_sector,
 742				    bio_sectors(bio), true, duration, &io->stats_aux);
 
 
 
 
 
 
 
 743
 744	/*
 745	 * After this is decremented the bio must not be touched if it is
 746	 * a flush.
 747	 */
 748	pending = atomic_dec_return(&md->pending[rw]);
 749	atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
 750	pending += atomic_read(&md->pending[rw^0x1]);
 751
 752	/* nudge anyone waiting on suspend queue */
 753	if (!pending)
 754		wake_up(&md->wait);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 755}
 756
 757/*
 758 * Add the bio to the list of deferred io.
 759 */
 760static void queue_io(struct mapped_device *md, struct bio *bio)
 761{
 762	unsigned long flags;
 763
 764	spin_lock_irqsave(&md->deferred_lock, flags);
 765	bio_list_add(&md->deferred, bio);
 766	spin_unlock_irqrestore(&md->deferred_lock, flags);
 767	queue_work(md->wq, &md->work);
 768}
 769
 770/*
 771 * Everyone (including functions in this file), should use this
 772 * function to access the md->map field, and make sure they call
 773 * dm_put_live_table() when finished.
 774 */
 775struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
 
 776{
 777	*srcu_idx = srcu_read_lock(&md->io_barrier);
 778
 779	return srcu_dereference(md->map, &md->io_barrier);
 780}
 781
 782void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
 
 783{
 784	srcu_read_unlock(&md->io_barrier, srcu_idx);
 785}
 786
 787void dm_sync_table(struct mapped_device *md)
 788{
 789	synchronize_srcu(&md->io_barrier);
 790	synchronize_rcu_expedited();
 791}
 792
 793/*
 794 * A fast alternative to dm_get_live_table/dm_put_live_table.
 795 * The caller must not block between these two functions.
 796 */
 797static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
 798{
 799	rcu_read_lock();
 800	return rcu_dereference(md->map);
 801}
 802
 803static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
 804{
 805	rcu_read_unlock();
 806}
 807
 
 
 808/*
 809 * Open a table device so we can use it as a map destination.
 810 */
 811static int open_table_device(struct table_device *td, dev_t dev,
 812			     struct mapped_device *md)
 813{
 814	static char *_claim_ptr = "I belong to device-mapper";
 
 815	struct block_device *bdev;
 816
 817	int r;
 818
 819	BUG_ON(td->dm_dev.bdev);
 
 
 
 820
 821	bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _claim_ptr);
 822	if (IS_ERR(bdev))
 823		return PTR_ERR(bdev);
 
 
 824
 825	r = bd_link_disk_holder(bdev, dm_disk(md));
 826	if (r) {
 827		blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
 828		return r;
 
 
 
 
 
 
 
 829	}
 830
 
 831	td->dm_dev.bdev = bdev;
 832	return 0;
 
 
 
 
 
 
 
 
 
 
 
 833}
 834
 835/*
 836 * Close a table device that we've been using.
 837 */
 838static void close_table_device(struct table_device *td, struct mapped_device *md)
 839{
 840	if (!td->dm_dev.bdev)
 841		return;
 842
 843	bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
 844	blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
 845	td->dm_dev.bdev = NULL;
 
 
 
 
 
 
 846}
 847
 848static struct table_device *find_table_device(struct list_head *l, dev_t dev,
 849					      fmode_t mode) {
 
 850	struct table_device *td;
 851
 852	list_for_each_entry(td, l, list)
 853		if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
 854			return td;
 855
 856	return NULL;
 857}
 858
 859int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
 860			struct dm_dev **result) {
 861	int r;
 862	struct table_device *td;
 863
 864	mutex_lock(&md->table_devices_lock);
 865	td = find_table_device(&md->table_devices, dev, mode);
 866	if (!td) {
 867		td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
 868		if (!td) {
 869			mutex_unlock(&md->table_devices_lock);
 870			return -ENOMEM;
 871		}
 872
 873		td->dm_dev.mode = mode;
 874		td->dm_dev.bdev = NULL;
 875
 876		if ((r = open_table_device(td, dev, md))) {
 877			mutex_unlock(&md->table_devices_lock);
 878			kfree(td);
 879			return r;
 880		}
 881
 882		format_dev_t(td->dm_dev.name, dev);
 883
 884		atomic_set(&td->count, 0);
 885		list_add(&td->list, &md->table_devices);
 886	}
 887	atomic_inc(&td->count);
 888	mutex_unlock(&md->table_devices_lock);
 889
 890	*result = &td->dm_dev;
 891	return 0;
 892}
 893EXPORT_SYMBOL_GPL(dm_get_table_device);
 894
 895void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
 896{
 897	struct table_device *td = container_of(d, struct table_device, dm_dev);
 898
 899	mutex_lock(&md->table_devices_lock);
 900	if (atomic_dec_and_test(&td->count)) {
 901		close_table_device(td, md);
 902		list_del(&td->list);
 903		kfree(td);
 904	}
 905	mutex_unlock(&md->table_devices_lock);
 906}
 907EXPORT_SYMBOL(dm_put_table_device);
 908
 909static void free_table_devices(struct list_head *devices)
 910{
 911	struct list_head *tmp, *next;
 912
 913	list_for_each_safe(tmp, next, devices) {
 914		struct table_device *td = list_entry(tmp, struct table_device, list);
 915
 916		DMWARN("dm_destroy: %s still exists with %d references",
 917		       td->dm_dev.name, atomic_read(&td->count));
 918		kfree(td);
 919	}
 920}
 921
 922/*
 923 * Get the geometry associated with a dm device
 924 */
 925int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
 926{
 927	*geo = md->geometry;
 928
 929	return 0;
 930}
 931
 932/*
 933 * Set the geometry of a device.
 934 */
 935int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
 936{
 937	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
 938
 939	if (geo->start > sz) {
 940		DMWARN("Start sector is beyond the geometry limits.");
 941		return -EINVAL;
 942	}
 943
 944	md->geometry = *geo;
 945
 946	return 0;
 947}
 948
 949/*-----------------------------------------------------------------
 950 * CRUD START:
 951 *   A more elegant soln is in the works that uses the queue
 952 *   merge fn, unfortunately there are a couple of changes to
 953 *   the block layer that I want to make for this.  So in the
 954 *   interests of getting something for people to use I give
 955 *   you this clearly demarcated crap.
 956 *---------------------------------------------------------------*/
 957
 958static int __noflush_suspending(struct mapped_device *md)
 959{
 960	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
 961}
 962
 963/*
 964 * Decrements the number of outstanding ios that a bio has been
 965 * cloned into, completing the original io if necc.
 966 */
 967static void dec_pending(struct dm_io *io, int error)
 968{
 969	unsigned long flags;
 970	int io_error;
 971	struct bio *bio;
 972	struct mapped_device *md = io->md;
 973
 974	/* Push-back supersedes any I/O errors */
 975	if (unlikely(error)) {
 976		spin_lock_irqsave(&io->endio_lock, flags);
 977		if (!(io->error > 0 && __noflush_suspending(md)))
 978			io->error = error;
 979		spin_unlock_irqrestore(&io->endio_lock, flags);
 980	}
 981
 982	if (atomic_dec_and_test(&io->io_count)) {
 983		if (io->error == DM_ENDIO_REQUEUE) {
 984			/*
 985			 * Target requested pushing back the I/O.
 986			 */
 987			spin_lock_irqsave(&md->deferred_lock, flags);
 988			if (__noflush_suspending(md))
 989				bio_list_add_head(&md->deferred, io->bio);
 990			else
 991				/* noflush suspend was interrupted. */
 992				io->error = -EIO;
 993			spin_unlock_irqrestore(&md->deferred_lock, flags);
 994		}
 995
 996		io_error = io->error;
 997		bio = io->bio;
 998		end_io_acct(io);
 999		free_io(md, io);
1000
1001		if (io_error == DM_ENDIO_REQUEUE)
1002			return;
1003
1004		if ((bio->bi_rw & REQ_FLUSH) && bio->bi_iter.bi_size) {
1005			/*
1006			 * Preflush done for flush with data, reissue
1007			 * without REQ_FLUSH.
1008			 */
1009			bio->bi_rw &= ~REQ_FLUSH;
1010			queue_io(md, bio);
1011		} else {
1012			/* done with normal IO or empty flush */
1013			trace_block_bio_complete(md->queue, bio, io_error);
1014			bio->bi_error = io_error;
1015			bio_endio(bio);
1016		}
1017	}
1018}
1019
1020static void disable_write_same(struct mapped_device *md)
1021{
1022	struct queue_limits *limits = dm_get_queue_limits(md);
1023
1024	/* device doesn't really support WRITE SAME, disable it */
1025	limits->max_write_same_sectors = 0;
1026}
1027
1028static void clone_endio(struct bio *bio)
 
 
 
 
1029{
1030	int error = bio->bi_error;
1031	int r = error;
1032	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1033	struct dm_io *io = tio->io;
1034	struct mapped_device *md = tio->io->md;
1035	dm_endio_fn endio = tio->ti->type->end_io;
1036
1037	if (endio) {
1038		r = endio(tio->ti, bio, error);
1039		if (r < 0 || r == DM_ENDIO_REQUEUE)
 
1040			/*
1041			 * error and requeue request are handled
1042			 * in dec_pending().
 
1043			 */
1044			error = r;
1045		else if (r == DM_ENDIO_INCOMPLETE)
1046			/* The target will handle the io */
1047			return;
1048		else if (r) {
1049			DMWARN("unimplemented target endio return value: %d", r);
1050			BUG();
 
 
 
 
 
 
 
 
 
 
 
 
1051		}
 
1052	}
1053
1054	if (unlikely(r == -EREMOTEIO && (bio->bi_rw & REQ_WRITE_SAME) &&
1055		     !bdev_get_queue(bio->bi_bdev)->limits.max_write_same_sectors))
1056		disable_write_same(md);
1057
1058	free_tio(md, tio);
1059	dec_pending(io, error);
1060}
1061
1062/*
1063 * Partial completion handling for request-based dm
1064 */
1065static void end_clone_bio(struct bio *clone)
1066{
1067	struct dm_rq_clone_bio_info *info =
1068		container_of(clone, struct dm_rq_clone_bio_info, clone);
1069	struct dm_rq_target_io *tio = info->tio;
1070	struct bio *bio = info->orig;
1071	unsigned int nr_bytes = info->orig->bi_iter.bi_size;
1072	int error = clone->bi_error;
1073
1074	bio_put(clone);
 
 
1075
1076	if (tio->error)
 
 
 
1077		/*
1078		 * An error has already been detected on the request.
1079		 * Once error occurred, just let clone->end_io() handle
1080		 * the remainder.
1081		 */
 
 
 
 
 
 
 
 
 
 
 
 
 
1082		return;
1083	else if (error) {
 
1084		/*
1085		 * Don't notice the error to the upper layer yet.
1086		 * The error handling decision is made by the target driver,
1087		 * when the request is completed.
1088		 */
1089		tio->error = error;
1090		return;
 
 
 
 
 
1091	}
 
1092
1093	/*
1094	 * I/O for the bio successfully completed.
1095	 * Notice the data completion to the upper layer.
1096	 */
 
 
1097
1098	/*
1099	 * bios are processed from the head of the list.
1100	 * So the completing bio should always be rq->bio.
1101	 * If it's not, something wrong is happening.
1102	 */
1103	if (tio->orig->bio != bio)
1104		DMERR("bio completion is going in the middle of the request");
1105
1106	/*
1107	 * Update the original request.
1108	 * Do not use blk_end_request() here, because it may complete
1109	 * the original request before the clone, and break the ordering.
1110	 */
1111	blk_update_request(tio->orig, 0, nr_bytes);
1112}
1113
1114static struct dm_rq_target_io *tio_from_request(struct request *rq)
1115{
1116	return (rq->q->mq_ops ? blk_mq_rq_to_pdu(rq) : rq->special);
1117}
1118
1119static void rq_end_stats(struct mapped_device *md, struct request *orig)
1120{
1121	if (unlikely(dm_stats_used(&md->stats))) {
1122		struct dm_rq_target_io *tio = tio_from_request(orig);
1123		tio->duration_jiffies = jiffies - tio->duration_jiffies;
1124		dm_stats_account_io(&md->stats, orig->cmd_flags, blk_rq_pos(orig),
1125				    tio->n_sectors, true, tio->duration_jiffies,
1126				    &tio->stats_aux);
1127	}
1128}
1129
1130/*
1131 * Don't touch any member of the md after calling this function because
1132 * the md may be freed in dm_put() at the end of this function.
1133 * Or do dm_get() before calling this function and dm_put() later.
 
 
 
1134 */
1135static void rq_completed(struct mapped_device *md, int rw, bool run_queue)
1136{
1137	atomic_dec(&md->pending[rw]);
1138
1139	/* nudge anyone waiting on suspend queue */
1140	if (!md_in_flight(md))
1141		wake_up(&md->wait);
1142
1143	/*
1144	 * Run this off this callpath, as drivers could invoke end_io while
1145	 * inside their request_fn (and holding the queue lock). Calling
1146	 * back into ->request_fn() could deadlock attempting to grab the
1147	 * queue lock again.
1148	 */
1149	if (!md->queue->mq_ops && run_queue)
1150		blk_run_queue_async(md->queue);
1151
1152	/*
1153	 * dm_put() must be at the end of this function. See the comment above
1154	 */
1155	dm_put(md);
1156}
1157
1158static void free_rq_clone(struct request *clone)
1159{
1160	struct dm_rq_target_io *tio = clone->end_io_data;
1161	struct mapped_device *md = tio->md;
1162
1163	blk_rq_unprep_clone(clone);
1164
1165	if (md->type == DM_TYPE_MQ_REQUEST_BASED)
1166		/* stacked on blk-mq queue(s) */
1167		tio->ti->type->release_clone_rq(clone);
1168	else if (!md->queue->mq_ops)
1169		/* request_fn queue stacked on request_fn queue(s) */
1170		free_old_clone_request(md, clone);
1171
1172	if (!md->queue->mq_ops)
1173		free_old_rq_tio(tio);
1174}
1175
1176/*
1177 * Complete the clone and the original request.
1178 * Must be called without clone's queue lock held,
1179 * see end_clone_request() for more details.
1180 */
1181static void dm_end_request(struct request *clone, int error)
1182{
1183	int rw = rq_data_dir(clone);
1184	struct dm_rq_target_io *tio = clone->end_io_data;
1185	struct mapped_device *md = tio->md;
1186	struct request *rq = tio->orig;
1187
1188	if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
1189		rq->errors = clone->errors;
1190		rq->resid_len = clone->resid_len;
1191
1192		if (rq->sense)
1193			/*
1194			 * We are using the sense buffer of the original
1195			 * request.
1196			 * So setting the length of the sense data is enough.
1197			 */
1198			rq->sense_len = clone->sense_len;
1199	}
1200
1201	free_rq_clone(clone);
1202	rq_end_stats(md, rq);
1203	if (!rq->q->mq_ops)
1204		blk_end_request_all(rq, error);
1205	else
1206		blk_mq_end_request(rq, error);
1207	rq_completed(md, rw, true);
1208}
1209
1210static void dm_unprep_request(struct request *rq)
1211{
1212	struct dm_rq_target_io *tio = tio_from_request(rq);
1213	struct request *clone = tio->clone;
1214
1215	if (!rq->q->mq_ops) {
1216		rq->special = NULL;
1217		rq->cmd_flags &= ~REQ_DONTPREP;
 
 
1218	}
1219
1220	if (clone)
1221		free_rq_clone(clone);
1222	else if (!tio->md->queue->mq_ops)
1223		free_old_rq_tio(tio);
1224}
1225
1226/*
1227 * Requeue the original request of a clone.
1228 */
1229static void dm_old_requeue_request(struct request *rq)
1230{
1231	struct request_queue *q = rq->q;
1232	unsigned long flags;
1233
1234	spin_lock_irqsave(q->queue_lock, flags);
1235	blk_requeue_request(q, rq);
1236	blk_run_queue_async(q);
1237	spin_unlock_irqrestore(q->queue_lock, flags);
1238}
1239
1240static void dm_mq_requeue_request(struct request *rq)
 
 
 
 
1241{
1242	struct request_queue *q = rq->q;
1243	unsigned long flags;
1244
1245	blk_mq_requeue_request(rq);
1246	spin_lock_irqsave(q->queue_lock, flags);
1247	if (!blk_queue_stopped(q))
1248		blk_mq_kick_requeue_list(q);
1249	spin_unlock_irqrestore(q->queue_lock, flags);
1250}
1251
1252static void dm_requeue_original_request(struct mapped_device *md,
1253					struct request *rq)
1254{
1255	int rw = rq_data_dir(rq);
1256
1257	rq_end_stats(md, rq);
1258	dm_unprep_request(rq);
1259
1260	if (!rq->q->mq_ops)
1261		dm_old_requeue_request(rq);
1262	else
1263		dm_mq_requeue_request(rq);
1264
1265	rq_completed(md, rw, false);
 
1266}
1267
1268static void dm_old_stop_queue(struct request_queue *q)
1269{
1270	unsigned long flags;
1271
1272	spin_lock_irqsave(q->queue_lock, flags);
1273	if (blk_queue_stopped(q)) {
1274		spin_unlock_irqrestore(q->queue_lock, flags);
1275		return;
1276	}
1277
1278	blk_stop_queue(q);
1279	spin_unlock_irqrestore(q->queue_lock, flags);
1280}
1281
1282static void dm_stop_queue(struct request_queue *q)
1283{
1284	if (!q->mq_ops)
1285		dm_old_stop_queue(q);
1286	else
1287		blk_mq_stop_hw_queues(q);
1288}
1289
1290static void dm_old_start_queue(struct request_queue *q)
1291{
1292	unsigned long flags;
1293
1294	spin_lock_irqsave(q->queue_lock, flags);
1295	if (blk_queue_stopped(q))
1296		blk_start_queue(q);
1297	spin_unlock_irqrestore(q->queue_lock, flags);
1298}
1299
1300static void dm_start_queue(struct request_queue *q)
1301{
1302	if (!q->mq_ops)
1303		dm_old_start_queue(q);
1304	else {
1305		blk_mq_start_stopped_hw_queues(q, true);
1306		blk_mq_kick_requeue_list(q);
1307	}
1308}
1309
1310static void dm_done(struct request *clone, int error, bool mapped)
1311{
1312	int r = error;
1313	struct dm_rq_target_io *tio = clone->end_io_data;
1314	dm_request_endio_fn rq_end_io = NULL;
1315
1316	if (tio->ti) {
1317		rq_end_io = tio->ti->type->rq_end_io;
1318
1319		if (mapped && rq_end_io)
1320			r = rq_end_io(tio->ti, clone, error, &tio->info);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1321	}
1322
1323	if (unlikely(r == -EREMOTEIO && (clone->cmd_flags & REQ_WRITE_SAME) &&
1324		     !clone->q->limits.max_write_same_sectors))
1325		disable_write_same(tio->md);
1326
1327	if (r <= 0)
1328		/* The target wants to complete the I/O */
1329		dm_end_request(clone, r);
1330	else if (r == DM_ENDIO_INCOMPLETE)
1331		/* The target will handle the I/O */
1332		return;
1333	else if (r == DM_ENDIO_REQUEUE)
1334		/* The target wants to requeue the I/O */
1335		dm_requeue_original_request(tio->md, tio->orig);
1336	else {
1337		DMWARN("unimplemented target endio return value: %d", r);
1338		BUG();
1339	}
1340}
1341
1342/*
1343 * Request completion handler for request-based dm
 
1344 */
1345static void dm_softirq_done(struct request *rq)
 
1346{
1347	bool mapped = true;
1348	struct dm_rq_target_io *tio = tio_from_request(rq);
1349	struct request *clone = tio->clone;
1350	int rw;
1351
1352	if (!clone) {
1353		rq_end_stats(tio->md, rq);
1354		rw = rq_data_dir(rq);
1355		if (!rq->q->mq_ops) {
1356			blk_end_request_all(rq, tio->error);
1357			rq_completed(tio->md, rw, false);
1358			free_old_rq_tio(tio);
1359		} else {
1360			blk_mq_end_request(rq, tio->error);
1361			rq_completed(tio->md, rw, false);
1362		}
1363		return;
1364	}
1365
1366	if (rq->cmd_flags & REQ_FAILED)
1367		mapped = false;
 
 
 
 
1368
1369	dm_done(clone, tio->error, mapped);
 
 
 
 
 
 
 
 
 
 
1370}
1371
1372/*
1373 * Complete the clone and the original request with the error status
1374 * through softirq context.
1375 */
1376static void dm_complete_request(struct request *rq, int error)
1377{
1378	struct dm_rq_target_io *tio = tio_from_request(rq);
1379
1380	tio->error = error;
1381	if (!rq->q->mq_ops)
1382		blk_complete_request(rq);
1383	else
1384		blk_mq_complete_request(rq, error);
1385}
1386
1387/*
1388 * Complete the not-mapped clone and the original request with the error status
1389 * through softirq context.
1390 * Target's rq_end_io() function isn't called.
1391 * This may be used when the target's map_rq() or clone_and_map_rq() functions fail.
1392 */
1393static void dm_kill_unmapped_request(struct request *rq, int error)
1394{
1395	rq->cmd_flags |= REQ_FAILED;
1396	dm_complete_request(rq, error);
 
 
 
 
 
 
 
 
1397}
 
1398
1399/*
1400 * Called with the clone's queue lock held (in the case of .request_fn)
1401 */
1402static void end_clone_request(struct request *clone, int error)
1403{
1404	struct dm_rq_target_io *tio = clone->end_io_data;
 
1405
1406	if (!clone->q->mq_ops) {
1407		/*
1408		 * For just cleaning up the information of the queue in which
1409		 * the clone was dispatched.
1410		 * The clone is *NOT* freed actually here because it is alloced
1411		 * from dm own mempool (REQ_ALLOCED isn't set).
1412		 */
1413		__blk_put_request(clone->q, clone);
1414	}
1415
1416	/*
1417	 * Actual request completion is done in a softirq context which doesn't
1418	 * hold the clone's queue lock.  Otherwise, deadlock could occur because:
1419	 *     - another request may be submitted by the upper level driver
1420	 *       of the stacking during the completion
1421	 *     - the submission which requires queue lock may be done
1422	 *       against this clone's queue
1423	 */
1424	dm_complete_request(tio->orig, error);
1425}
1426
1427/*
1428 * Return maximum size of I/O possible at the supplied sector up to the current
1429 * target boundary.
1430 */
1431static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
1432{
1433	sector_t target_offset = dm_target_offset(ti, sector);
 
 
 
 
1434
1435	return ti->len - target_offset;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1436}
1437
1438static sector_t max_io_len(sector_t sector, struct dm_target *ti)
 
1439{
1440	sector_t len = max_io_len_target_boundary(sector, ti);
1441	sector_t offset, max_len;
 
 
 
1442
1443	/*
1444	 * Does the target need to split even further?
1445	 */
1446	if (ti->max_io_len) {
1447		offset = dm_target_offset(ti, sector);
1448		if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
1449			max_len = sector_div(offset, ti->max_io_len);
1450		else
1451			max_len = offset & (ti->max_io_len - 1);
1452		max_len = ti->max_io_len - max_len;
1453
1454		if (len > max_len)
1455			len = max_len;
 
 
 
 
 
 
1456	}
 
 
 
1457
1458	return len;
1459}
1460
1461int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
 
1462{
1463	if (len > UINT_MAX) {
1464		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1465		      (unsigned long long)len, UINT_MAX);
1466		ti->error = "Maximum size of target IO is too large";
1467		return -EINVAL;
1468	}
1469
1470	ti->max_io_len = (uint32_t) len;
 
 
1471
1472	return 0;
 
 
 
1473}
1474EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1475
1476/*
1477 * A target may call dm_accept_partial_bio only from the map routine.  It is
1478 * allowed for all bio types except REQ_FLUSH.
 
 
1479 *
1480 * dm_accept_partial_bio informs the dm that the target only wants to process
1481 * additional n_sectors sectors of the bio and the rest of the data should be
1482 * sent in a next bio.
1483 *
1484 * A diagram that explains the arithmetics:
1485 * +--------------------+---------------+-------+
1486 * |         1          |       2       |   3   |
1487 * +--------------------+---------------+-------+
1488 *
1489 * <-------------- *tio->len_ptr --------------->
1490 *                      <------- bi_size ------->
1491 *                      <-- n_sectors -->
1492 *
1493 * Region 1 was already iterated over with bio_advance or similar function.
1494 *	(it may be empty if the target doesn't use bio_advance)
1495 * Region 2 is the remaining bio size that the target wants to process.
1496 *	(it may be empty if region 1 is non-empty, although there is no reason
1497 *	 to make it empty)
1498 * The target requires that region 3 is to be sent in the next bio.
1499 *
1500 * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1501 * the partially processed part (the sum of regions 1+2) must be the same for all
1502 * copies of the bio.
1503 */
1504void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1505{
1506	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1507	unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1508	BUG_ON(bio->bi_rw & REQ_FLUSH);
1509	BUG_ON(bi_size > *tio->len_ptr);
1510	BUG_ON(n_sectors > bi_size);
1511	*tio->len_ptr -= bi_size - n_sectors;
 
 
 
 
 
1512	bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
 
 
 
 
 
 
 
 
1513}
1514EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1515
1516static void __map_bio(struct dm_target_io *tio)
 
 
 
 
 
 
 
 
 
1517{
1518	int r;
1519	sector_t sector;
1520	struct mapped_device *md;
1521	struct bio *clone = &tio->clone;
1522	struct dm_target *ti = tio->ti;
1523
1524	clone->bi_end_io = clone_endio;
 
 
1525
1526	/*
1527	 * Map the clone.  If r == 0 we don't need to do
1528	 * anything, the target has assumed ownership of
1529	 * this io.
1530	 */
1531	atomic_inc(&tio->io->io_count);
1532	sector = clone->bi_iter.bi_sector;
1533	r = ti->type->map(ti, clone);
1534	if (r == DM_MAPIO_REMAPPED) {
1535		/* the bio has been remapped so dispatch it */
1536
1537		trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone,
1538				      tio->io->bio->bi_bdev->bd_dev, sector);
1539
1540		generic_make_request(clone);
1541	} else if (r < 0 || r == DM_MAPIO_REQUEUE) {
1542		/* error the io and bail out, or requeue it if needed */
1543		md = tio->io->md;
1544		dec_pending(tio->io, r);
1545		free_tio(md, tio);
1546	} else if (r != DM_MAPIO_SUBMITTED) {
1547		DMWARN("unimplemented target map return value: %d", r);
1548		BUG();
1549	}
1550}
1551
1552struct clone_info {
1553	struct mapped_device *md;
1554	struct dm_table *map;
1555	struct bio *bio;
1556	struct dm_io *io;
1557	sector_t sector;
1558	unsigned sector_count;
1559};
1560
1561static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1562{
1563	bio->bi_iter.bi_sector = sector;
1564	bio->bi_iter.bi_size = to_bytes(len);
 
 
 
 
 
 
 
 
 
 
1565}
1566
1567/*
1568 * Creates a bio that consists of range of complete bvecs.
1569 */
1570static int clone_bio(struct dm_target_io *tio, struct bio *bio,
1571		     sector_t sector, unsigned len)
1572{
1573	struct bio *clone = &tio->clone;
 
 
 
 
1574
1575	__bio_clone_fast(clone, bio);
1576
1577	if (bio_integrity(bio)) {
1578		int r = bio_integrity_clone(clone, bio, GFP_NOIO);
1579		if (r < 0)
1580			return r;
 
 
 
 
 
 
 
 
1581	}
1582
1583	bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1584	clone->bi_iter.bi_size = to_bytes(len);
 
 
 
 
1585
1586	if (bio_integrity(bio))
1587		bio_integrity_trim(clone, 0, len);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1588
1589	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
1590}
1591
1592static struct dm_target_io *alloc_tio(struct clone_info *ci,
1593				      struct dm_target *ti,
1594				      unsigned target_bio_nr)
1595{
1596	struct dm_target_io *tio;
1597	struct bio *clone;
1598
1599	clone = bio_alloc_bioset(GFP_NOIO, 0, ci->md->bs);
1600	tio = container_of(clone, struct dm_target_io, clone);
1601
1602	tio->io = ci->io;
1603	tio->ti = ti;
1604	tio->target_bio_nr = target_bio_nr;
 
 
 
 
1605
1606	return tio;
 
 
 
 
 
 
 
 
 
1607}
1608
1609static void __clone_and_map_simple_bio(struct clone_info *ci,
1610				       struct dm_target *ti,
1611				       unsigned target_bio_nr, unsigned *len)
1612{
1613	struct dm_target_io *tio = alloc_tio(ci, ti, target_bio_nr);
1614	struct bio *clone = &tio->clone;
 
1615
1616	tio->len_ptr = len;
 
1617
1618	__bio_clone_fast(clone, ci->bio);
1619	if (len)
1620		bio_setup_sector(clone, ci->sector, *len);
1621
1622	__map_bio(tio);
1623}
1624
1625static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1626				  unsigned num_bios, unsigned *len)
1627{
1628	unsigned target_bio_nr;
 
 
 
 
 
 
 
1629
1630	for (target_bio_nr = 0; target_bio_nr < num_bios; target_bio_nr++)
1631		__clone_and_map_simple_bio(ci, ti, target_bio_nr, len);
1632}
1633
1634static int __send_empty_flush(struct clone_info *ci)
1635{
1636	unsigned target_nr = 0;
1637	struct dm_target *ti;
1638
1639	BUG_ON(bio_has_data(ci->bio));
1640	while ((ti = dm_table_get_target(ci->map, target_nr++)))
1641		__send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1642
1643	return 0;
 
 
 
 
 
 
1644}
1645
1646static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1647				     sector_t sector, unsigned *len)
 
1648{
1649	struct bio *bio = ci->bio;
1650	struct dm_target_io *tio;
1651	unsigned target_bio_nr;
1652	unsigned num_target_bios = 1;
1653	int r = 0;
1654
 
 
 
 
 
1655	/*
1656	 * Does the target want to receive duplicate copies of the bio?
 
1657	 */
1658	if (bio_data_dir(bio) == WRITE && ti->num_write_bios)
1659		num_target_bios = ti->num_write_bios(ti, bio);
1660
1661	for (target_bio_nr = 0; target_bio_nr < num_target_bios; target_bio_nr++) {
1662		tio = alloc_tio(ci, ti, target_bio_nr);
1663		tio->len_ptr = len;
1664		r = clone_bio(tio, bio, sector, *len);
1665		if (r < 0) {
1666			free_tio(ci->md, tio);
1667			break;
1668		}
1669		__map_bio(tio);
1670	}
1671
1672	return r;
 
1673}
1674
1675typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1676
1677static unsigned get_num_discard_bios(struct dm_target *ti)
1678{
1679	return ti->num_discard_bios;
 
 
 
 
 
 
 
 
 
 
 
 
1680}
1681
1682static unsigned get_num_write_same_bios(struct dm_target *ti)
 
1683{
1684	return ti->num_write_same_bios;
1685}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1686
1687typedef bool (*is_split_required_fn)(struct dm_target *ti);
 
 
 
 
 
 
 
1688
1689static bool is_split_required_for_discard(struct dm_target *ti)
1690{
1691	return ti->split_discard_bios;
1692}
1693
1694static int __send_changing_extent_only(struct clone_info *ci,
1695				       get_num_bios_fn get_num_bios,
1696				       is_split_required_fn is_split_required)
 
 
 
 
 
 
 
1697{
1698	struct dm_target *ti;
1699	unsigned len;
1700	unsigned num_bios;
1701
1702	do {
1703		ti = dm_table_find_target(ci->map, ci->sector);
1704		if (!dm_target_is_valid(ti))
1705			return -EIO;
1706
 
 
1707		/*
1708		 * Even though the device advertised support for this type of
1709		 * request, that does not mean every target supports it, and
1710		 * reconfiguration might also have changed that since the
1711		 * check was performed.
1712		 */
1713		num_bios = get_num_bios ? get_num_bios(ti) : 0;
1714		if (!num_bios)
1715			return -EOPNOTSUPP;
1716
1717		if (is_split_required && !is_split_required(ti))
1718			len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1719		else
1720			len = min((sector_t)ci->sector_count, max_io_len(ci->sector, ti));
1721
1722		__send_duplicate_bios(ci, ti, num_bios, &len);
1723
1724		ci->sector += len;
1725	} while (ci->sector_count -= len);
1726
1727	return 0;
1728}
1729
1730static int __send_discard(struct clone_info *ci)
1731{
1732	return __send_changing_extent_only(ci, get_num_discard_bios,
1733					   is_split_required_for_discard);
1734}
 
1735
1736static int __send_write_same(struct clone_info *ci)
1737{
1738	return __send_changing_extent_only(ci, get_num_write_same_bios, NULL);
1739}
1740
1741/*
1742 * Select the correct strategy for processing a non-flush bio.
1743 */
1744static int __split_and_process_non_flush(struct clone_info *ci)
1745{
1746	struct bio *bio = ci->bio;
1747	struct dm_target *ti;
1748	unsigned len;
1749	int r;
1750
1751	if (unlikely(bio->bi_rw & REQ_DISCARD))
1752		return __send_discard(ci);
1753	else if (unlikely(bio->bi_rw & REQ_WRITE_SAME))
1754		return __send_write_same(ci);
1755
1756	ti = dm_table_find_target(ci->map, ci->sector);
1757	if (!dm_target_is_valid(ti))
1758		return -EIO;
1759
1760	len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count);
1761
1762	r = __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1763	if (r < 0)
1764		return r;
1765
1766	ci->sector += len;
1767	ci->sector_count -= len;
1768
1769	return 0;
1770}
 
 
 
1771
1772/*
1773 * Entry point to split a bio into clones and submit them to the targets.
1774 */
1775static void __split_and_process_bio(struct mapped_device *md,
1776				    struct dm_table *map, struct bio *bio)
1777{
1778	struct clone_info ci;
1779	int error = 0;
1780
1781	if (unlikely(!map)) {
1782		bio_io_error(bio);
1783		return;
1784	}
1785
1786	ci.map = map;
1787	ci.md = md;
1788	ci.io = alloc_io(md);
1789	ci.io->error = 0;
1790	atomic_set(&ci.io->io_count, 1);
1791	ci.io->bio = bio;
1792	ci.io->md = md;
1793	spin_lock_init(&ci.io->endio_lock);
1794	ci.sector = bio->bi_iter.bi_sector;
1795
1796	start_io_acct(ci.io);
1797
1798	if (bio->bi_rw & REQ_FLUSH) {
1799		ci.bio = &ci.md->flush_bio;
1800		ci.sector_count = 0;
1801		error = __send_empty_flush(&ci);
1802		/* dec_pending submits any data associated with flush */
1803	} else {
1804		ci.bio = bio;
1805		ci.sector_count = bio_sectors(bio);
1806		while (ci.sector_count && !error)
1807			error = __split_and_process_non_flush(&ci);
1808	}
 
 
 
 
1809
1810	/* drop the extra reference count */
1811	dec_pending(ci.io, error);
1812}
1813/*-----------------------------------------------------------------
1814 * CRUD END
1815 *---------------------------------------------------------------*/
1816
1817/*
1818 * The request function that just remaps the bio built up by
1819 * dm_merge_bvec.
1820 */
1821static blk_qc_t dm_make_request(struct request_queue *q, struct bio *bio)
1822{
1823	int rw = bio_data_dir(bio);
1824	struct mapped_device *md = q->queuedata;
1825	int srcu_idx;
1826	struct dm_table *map;
1827
1828	map = dm_get_live_table(md, &srcu_idx);
1829
1830	generic_start_io_acct(rw, bio_sectors(bio), &dm_disk(md)->part0);
1831
1832	/* if we're suspended, we have to queue this io for later */
1833	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1834		dm_put_live_table(md, srcu_idx);
1835
1836		if (bio_rw(bio) != READA)
1837			queue_io(md, bio);
1838		else
1839			bio_io_error(bio);
1840		return BLK_QC_T_NONE;
1841	}
1842
1843	__split_and_process_bio(md, map, bio);
1844	dm_put_live_table(md, srcu_idx);
1845	return BLK_QC_T_NONE;
1846}
1847
1848int dm_request_based(struct mapped_device *md)
 
 
1849{
1850	return blk_queue_stackable(md->queue);
 
 
 
 
 
1851}
1852
1853static void dm_dispatch_clone_request(struct request *clone, struct request *rq)
1854{
1855	int r;
1856
1857	if (blk_queue_io_stat(clone->q))
1858		clone->cmd_flags |= REQ_IO_STAT;
1859
1860	clone->start_time = jiffies;
1861	r = blk_insert_cloned_request(clone->q, clone);
1862	if (r)
1863		/* must complete clone in terms of original request */
1864		dm_complete_request(rq, r);
1865}
1866
1867static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig,
1868				 void *data)
1869{
1870	struct dm_rq_target_io *tio = data;
1871	struct dm_rq_clone_bio_info *info =
1872		container_of(bio, struct dm_rq_clone_bio_info, clone);
 
 
 
 
 
 
 
1873
1874	info->orig = bio_orig;
1875	info->tio = tio;
1876	bio->bi_end_io = end_clone_bio;
 
1877
1878	return 0;
1879}
 
 
 
 
1880
1881static int setup_clone(struct request *clone, struct request *rq,
1882		       struct dm_rq_target_io *tio, gfp_t gfp_mask)
1883{
1884	int r;
1885
1886	r = blk_rq_prep_clone(clone, rq, tio->md->bs, gfp_mask,
1887			      dm_rq_bio_constructor, tio);
1888	if (r)
1889		return r;
1890
1891	clone->cmd = rq->cmd;
1892	clone->cmd_len = rq->cmd_len;
1893	clone->sense = rq->sense;
1894	clone->end_io = end_clone_request;
1895	clone->end_io_data = tio;
1896
1897	tio->clone = clone;
 
 
 
1898
1899	return 0;
1900}
 
 
1901
1902static struct request *clone_old_rq(struct request *rq, struct mapped_device *md,
1903				    struct dm_rq_target_io *tio, gfp_t gfp_mask)
1904{
1905	/*
1906	 * Create clone for use with .request_fn request_queue
1907	 */
1908	struct request *clone;
1909
1910	clone = alloc_old_clone_request(md, gfp_mask);
1911	if (!clone)
1912		return NULL;
 
 
 
 
1913
1914	blk_rq_init(NULL, clone);
1915	if (setup_clone(clone, rq, tio, gfp_mask)) {
1916		/* -ENOMEM */
1917		free_old_clone_request(md, clone);
1918		return NULL;
1919	}
1920
1921	return clone;
1922}
 
1923
1924static void map_tio_request(struct kthread_work *work);
 
1925
1926static void init_tio(struct dm_rq_target_io *tio, struct request *rq,
1927		     struct mapped_device *md)
1928{
1929	tio->md = md;
1930	tio->ti = NULL;
1931	tio->clone = NULL;
1932	tio->orig = rq;
1933	tio->error = 0;
1934	/*
1935	 * Avoid initializing info for blk-mq; it passes
1936	 * target-specific data through info.ptr
1937	 * (see: dm_mq_init_request)
1938	 */
1939	if (!md->init_tio_pdu)
1940		memset(&tio->info, 0, sizeof(tio->info));
1941	if (md->kworker_task)
1942		init_kthread_work(&tio->work, map_tio_request);
1943}
1944
1945static struct dm_rq_target_io *dm_old_prep_tio(struct request *rq,
1946					       struct mapped_device *md,
1947					       gfp_t gfp_mask)
1948{
1949	struct dm_rq_target_io *tio;
1950	int srcu_idx;
1951	struct dm_table *table;
1952
1953	tio = alloc_old_rq_tio(md, gfp_mask);
1954	if (!tio)
1955		return NULL;
1956
1957	init_tio(tio, rq, md);
1958
1959	table = dm_get_live_table(md, &srcu_idx);
1960	/*
1961	 * Must clone a request if this .request_fn DM device
1962	 * is stacked on .request_fn device(s).
1963	 */
1964	if (!dm_table_mq_request_based(table)) {
1965		if (!clone_old_rq(rq, md, tio, gfp_mask)) {
1966			dm_put_live_table(md, srcu_idx);
1967			free_old_rq_tio(tio);
1968			return NULL;
1969		}
1970	}
1971	dm_put_live_table(md, srcu_idx);
1972
1973	return tio;
1974}
1975
1976/*
1977 * Called with the queue lock held.
1978 */
1979static int dm_old_prep_fn(struct request_queue *q, struct request *rq)
1980{
1981	struct mapped_device *md = q->queuedata;
1982	struct dm_rq_target_io *tio;
 
 
 
1983
1984	if (unlikely(rq->special)) {
1985		DMWARN("Already has something in rq->special.");
1986		return BLKPREP_KILL;
 
 
 
 
 
1987	}
1988
1989	tio = dm_old_prep_tio(rq, md, GFP_ATOMIC);
1990	if (!tio)
1991		return BLKPREP_DEFER;
1992
1993	rq->special = tio;
1994	rq->cmd_flags |= REQ_DONTPREP;
1995
1996	return BLKPREP_OK;
 
 
 
 
 
 
 
 
 
 
 
 
1997}
 
1998
1999/*
2000 * Returns:
2001 * 0                : the request has been processed
2002 * DM_MAPIO_REQUEUE : the original request needs to be requeued
2003 * < 0              : the request was completed due to failure
2004 */
2005static int map_request(struct dm_rq_target_io *tio, struct request *rq,
2006		       struct mapped_device *md)
2007{
2008	int r;
2009	struct dm_target *ti = tio->ti;
2010	struct request *clone = NULL;
 
2011
2012	if (tio->clone) {
2013		clone = tio->clone;
2014		r = ti->type->map_rq(ti, clone, &tio->info);
 
 
2015	} else {
2016		r = ti->type->clone_and_map_rq(ti, rq, &tio->info, &clone);
2017		if (r < 0) {
2018			/* The target wants to complete the I/O */
2019			dm_kill_unmapped_request(rq, r);
2020			return r;
2021		}
2022		if (r != DM_MAPIO_REMAPPED)
2023			return r;
2024		if (setup_clone(clone, rq, tio, GFP_ATOMIC)) {
2025			/* -ENOMEM */
2026			ti->type->release_clone_rq(clone);
2027			return DM_MAPIO_REQUEUE;
2028		}
2029	}
2030
2031	switch (r) {
2032	case DM_MAPIO_SUBMITTED:
2033		/* The target has taken the I/O to submit by itself later */
2034		break;
2035	case DM_MAPIO_REMAPPED:
2036		/* The target has remapped the I/O so dispatch it */
2037		trace_block_rq_remap(clone->q, clone, disk_devt(dm_disk(md)),
2038				     blk_rq_pos(rq));
2039		dm_dispatch_clone_request(clone, rq);
2040		break;
2041	case DM_MAPIO_REQUEUE:
2042		/* The target wants to requeue the I/O */
2043		dm_requeue_original_request(md, tio->orig);
2044		break;
2045	default:
2046		if (r > 0) {
2047			DMWARN("unimplemented target map return value: %d", r);
2048			BUG();
2049		}
2050
2051		/* The target wants to complete the I/O */
2052		dm_kill_unmapped_request(rq, r);
2053		return r;
2054	}
2055
2056	return 0;
2057}
2058
2059static void map_tio_request(struct kthread_work *work)
2060{
2061	struct dm_rq_target_io *tio = container_of(work, struct dm_rq_target_io, work);
2062	struct request *rq = tio->orig;
2063	struct mapped_device *md = tio->md;
2064
2065	if (map_request(tio, rq, md) == DM_MAPIO_REQUEUE)
2066		dm_requeue_original_request(md, rq);
2067}
2068
2069static void dm_start_request(struct mapped_device *md, struct request *orig)
2070{
2071	if (!orig->q->mq_ops)
2072		blk_start_request(orig);
2073	else
2074		blk_mq_start_request(orig);
2075	atomic_inc(&md->pending[rq_data_dir(orig)]);
 
 
 
 
 
2076
2077	if (md->seq_rq_merge_deadline_usecs) {
2078		md->last_rq_pos = rq_end_sector(orig);
2079		md->last_rq_rw = rq_data_dir(orig);
2080		md->last_rq_start_time = ktime_get();
2081	}
2082
2083	if (unlikely(dm_stats_used(&md->stats))) {
2084		struct dm_rq_target_io *tio = tio_from_request(orig);
2085		tio->duration_jiffies = jiffies;
2086		tio->n_sectors = blk_rq_sectors(orig);
2087		dm_stats_account_io(&md->stats, orig->cmd_flags, blk_rq_pos(orig),
2088				    tio->n_sectors, false, 0, &tio->stats_aux);
2089	}
2090
 
 
 
2091	/*
2092	 * Hold the md reference here for the in-flight I/O.
2093	 * We can't rely on the reference count by device opener,
2094	 * because the device may be closed during the request completion
2095	 * when all bios are completed.
2096	 * See the comment in rq_completed() too.
2097	 */
2098	dm_get(md);
2099}
2100
2101#define MAX_SEQ_RQ_MERGE_DEADLINE_USECS 100000
2102
2103ssize_t dm_attr_rq_based_seq_io_merge_deadline_show(struct mapped_device *md, char *buf)
2104{
2105	return sprintf(buf, "%u\n", md->seq_rq_merge_deadline_usecs);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2106}
2107
2108ssize_t dm_attr_rq_based_seq_io_merge_deadline_store(struct mapped_device *md,
2109						     const char *buf, size_t count)
2110{
2111	unsigned deadline;
2112
2113	if (!dm_request_based(md) || md->use_blk_mq)
2114		return count;
2115
2116	if (kstrtouint(buf, 10, &deadline))
2117		return -EINVAL;
2118
2119	if (deadline > MAX_SEQ_RQ_MERGE_DEADLINE_USECS)
2120		deadline = MAX_SEQ_RQ_MERGE_DEADLINE_USECS;
 
 
 
 
 
2121
2122	md->seq_rq_merge_deadline_usecs = deadline;
 
 
 
 
 
 
 
 
 
2123
2124	return count;
 
 
2125}
2126
2127static bool dm_request_peeked_before_merge_deadline(struct mapped_device *md)
 
2128{
2129	ktime_t kt_deadline;
2130
2131	if (!md->seq_rq_merge_deadline_usecs)
2132		return false;
2133
2134	kt_deadline = ns_to_ktime((u64)md->seq_rq_merge_deadline_usecs * NSEC_PER_USEC);
2135	kt_deadline = ktime_add_safe(md->last_rq_start_time, kt_deadline);
2136
2137	return !ktime_after(ktime_get(), kt_deadline);
 
2138}
2139
2140/*
2141 * q->request_fn for request-based dm.
2142 * Called with the queue lock held.
2143 */
2144static void dm_request_fn(struct request_queue *q)
2145{
2146	struct mapped_device *md = q->queuedata;
2147	struct dm_target *ti = md->immutable_target;
2148	struct request *rq;
2149	struct dm_rq_target_io *tio;
2150	sector_t pos = 0;
2151
2152	if (unlikely(!ti)) {
2153		int srcu_idx;
2154		struct dm_table *map = dm_get_live_table(md, &srcu_idx);
2155
2156		ti = dm_table_find_target(map, pos);
2157		dm_put_live_table(md, srcu_idx);
2158	}
2159
2160	/*
2161	 * For suspend, check blk_queue_stopped() and increment
2162	 * ->pending within a single queue_lock not to increment the
2163	 * number of in-flight I/Os after the queue is stopped in
2164	 * dm_suspend().
2165	 */
2166	while (!blk_queue_stopped(q)) {
2167		rq = blk_peek_request(q);
2168		if (!rq)
2169			return;
2170
2171		/* always use block 0 to find the target for flushes for now */
2172		pos = 0;
2173		if (!(rq->cmd_flags & REQ_FLUSH))
2174			pos = blk_rq_pos(rq);
2175
2176		if ((dm_request_peeked_before_merge_deadline(md) &&
2177		     md_in_flight(md) && rq->bio && rq->bio->bi_vcnt == 1 &&
2178		     md->last_rq_pos == pos && md->last_rq_rw == rq_data_dir(rq)) ||
2179		    (ti->type->busy && ti->type->busy(ti))) {
2180			blk_delay_queue(q, HZ / 100);
2181			return;
2182		}
2183
2184		dm_start_request(md, rq);
2185
2186		tio = tio_from_request(rq);
2187		/* Establish tio->ti before queuing work (map_tio_request) */
2188		tio->ti = ti;
2189		queue_kthread_work(&md->kworker, &tio->work);
2190		BUG_ON(!irqs_disabled());
2191	}
2192}
2193
2194static int dm_any_congested(void *congested_data, int bdi_bits)
2195{
2196	int r = bdi_bits;
2197	struct mapped_device *md = congested_data;
2198	struct dm_table *map;
2199
2200	if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2201		if (dm_request_based(md)) {
2202			/*
2203			 * With request-based DM we only need to check the
2204			 * top-level queue for congestion.
2205			 */
2206			r = md->queue->backing_dev_info.wb.state & bdi_bits;
2207		} else {
2208			map = dm_get_live_table_fast(md);
2209			if (map)
2210				r = dm_table_any_congested(map, bdi_bits);
2211			dm_put_live_table_fast(md);
2212		}
2213	}
2214
2215	return r;
 
 
 
 
 
 
 
2216}
2217
2218/*-----------------------------------------------------------------
 
2219 * An IDR is used to keep track of allocated minor numbers.
2220 *---------------------------------------------------------------*/
 
2221static void free_minor(int minor)
2222{
2223	spin_lock(&_minor_lock);
2224	idr_remove(&_minor_idr, minor);
2225	spin_unlock(&_minor_lock);
2226}
2227
2228/*
2229 * See if the device with a specific minor # is free.
2230 */
2231static int specific_minor(int minor)
2232{
2233	int r;
2234
2235	if (minor >= (1 << MINORBITS))
2236		return -EINVAL;
2237
2238	idr_preload(GFP_KERNEL);
2239	spin_lock(&_minor_lock);
2240
2241	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
2242
2243	spin_unlock(&_minor_lock);
2244	idr_preload_end();
2245	if (r < 0)
2246		return r == -ENOSPC ? -EBUSY : r;
2247	return 0;
2248}
2249
2250static int next_free_minor(int *minor)
2251{
2252	int r;
2253
2254	idr_preload(GFP_KERNEL);
2255	spin_lock(&_minor_lock);
2256
2257	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
2258
2259	spin_unlock(&_minor_lock);
2260	idr_preload_end();
2261	if (r < 0)
2262		return r;
2263	*minor = r;
2264	return 0;
2265}
2266
2267static const struct block_device_operations dm_blk_dops;
 
 
2268
2269static void dm_wq_work(struct work_struct *work);
2270
2271static void dm_init_md_queue(struct mapped_device *md)
 
2272{
2273	/*
2274	 * Request-based dm devices cannot be stacked on top of bio-based dm
2275	 * devices.  The type of this dm device may not have been decided yet.
2276	 * The type is decided at the first table loading time.
2277	 * To prevent problematic device stacking, clear the queue flag
2278	 * for request stacking support until then.
2279	 *
2280	 * This queue is new, so no concurrency on the queue_flags.
2281	 */
2282	queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
2283
2284	/*
2285	 * Initialize data that will only be used by a non-blk-mq DM queue
2286	 * - must do so here (in alloc_dev callchain) before queue is used
2287	 */
2288	md->queue->queuedata = md;
2289	md->queue->backing_dev_info.congested_data = md;
2290}
2291
2292static void dm_init_normal_md_queue(struct mapped_device *md)
2293{
2294	md->use_blk_mq = false;
2295	dm_init_md_queue(md);
2296
2297	/*
2298	 * Initialize aspects of queue that aren't relevant for blk-mq
2299	 */
2300	md->queue->backing_dev_info.congested_fn = dm_any_congested;
2301	blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
2302}
 
2303
2304static void cleanup_mapped_device(struct mapped_device *md)
2305{
2306	if (md->wq)
2307		destroy_workqueue(md->wq);
2308	if (md->kworker_task)
2309		kthread_stop(md->kworker_task);
2310	mempool_destroy(md->io_pool);
2311	mempool_destroy(md->rq_pool);
2312	if (md->bs)
2313		bioset_free(md->bs);
2314
2315	cleanup_srcu_struct(&md->io_barrier);
 
 
 
 
 
2316
2317	if (md->disk) {
2318		spin_lock(&_minor_lock);
2319		md->disk->private_data = NULL;
2320		spin_unlock(&_minor_lock);
2321		del_gendisk(md->disk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2322		put_disk(md->disk);
2323	}
2324
2325	if (md->queue)
2326		blk_cleanup_queue(md->queue);
2327
2328	if (md->bdev) {
2329		bdput(md->bdev);
2330		md->bdev = NULL;
2331	}
 
 
 
 
 
 
 
 
 
2332}
2333
2334/*
2335 * Allocate and initialise a blank device with a given minor.
2336 */
2337static struct mapped_device *alloc_dev(int minor)
2338{
2339	int r, numa_node_id = dm_get_numa_node();
 
2340	struct mapped_device *md;
2341	void *old_md;
2342
2343	md = kzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
2344	if (!md) {
2345		DMWARN("unable to allocate device, out of memory.");
2346		return NULL;
2347	}
2348
2349	if (!try_module_get(THIS_MODULE))
2350		goto bad_module_get;
2351
2352	/* get a minor number for the dev */
2353	if (minor == DM_ANY_MINOR)
2354		r = next_free_minor(&minor);
2355	else
2356		r = specific_minor(minor);
2357	if (r < 0)
2358		goto bad_minor;
2359
2360	r = init_srcu_struct(&md->io_barrier);
2361	if (r < 0)
2362		goto bad_io_barrier;
2363
2364	md->numa_node_id = numa_node_id;
2365	md->use_blk_mq = use_blk_mq;
2366	md->init_tio_pdu = false;
2367	md->type = DM_TYPE_NONE;
2368	mutex_init(&md->suspend_lock);
2369	mutex_init(&md->type_lock);
2370	mutex_init(&md->table_devices_lock);
2371	spin_lock_init(&md->deferred_lock);
2372	atomic_set(&md->holders, 1);
2373	atomic_set(&md->open_count, 0);
2374	atomic_set(&md->event_nr, 0);
2375	atomic_set(&md->uevent_seq, 0);
2376	INIT_LIST_HEAD(&md->uevent_list);
2377	INIT_LIST_HEAD(&md->table_devices);
2378	spin_lock_init(&md->uevent_lock);
2379
2380	md->queue = blk_alloc_queue_node(GFP_KERNEL, numa_node_id);
2381	if (!md->queue)
2382		goto bad;
2383
2384	dm_init_md_queue(md);
2385
2386	md->disk = alloc_disk_node(1, numa_node_id);
2387	if (!md->disk)
2388		goto bad;
 
 
2389
2390	atomic_set(&md->pending[0], 0);
2391	atomic_set(&md->pending[1], 0);
2392	init_waitqueue_head(&md->wait);
2393	INIT_WORK(&md->work, dm_wq_work);
 
2394	init_waitqueue_head(&md->eventq);
2395	init_completion(&md->kobj_holder.completion);
2396	md->kworker_task = NULL;
 
 
 
 
2397
2398	md->disk->major = _major;
2399	md->disk->first_minor = minor;
 
 
2400	md->disk->fops = &dm_blk_dops;
2401	md->disk->queue = md->queue;
2402	md->disk->private_data = md;
2403	sprintf(md->disk->disk_name, "dm-%d", minor);
2404	add_disk(md->disk);
 
 
 
 
 
 
 
 
 
 
 
 
2405	format_dev_t(md->name, MKDEV(_major, minor));
2406
2407	md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
2408	if (!md->wq)
2409		goto bad;
2410
2411	md->bdev = bdget_disk(md->disk, 0);
2412	if (!md->bdev)
2413		goto bad;
2414
2415	bio_init(&md->flush_bio);
2416	md->flush_bio.bi_bdev = md->bdev;
2417	md->flush_bio.bi_rw = WRITE_FLUSH;
2418
2419	dm_stats_init(&md->stats);
2420
2421	/* Populate the mapping, nobody knows we exist yet */
2422	spin_lock(&_minor_lock);
2423	old_md = idr_replace(&_minor_idr, md, minor);
2424	spin_unlock(&_minor_lock);
2425
2426	BUG_ON(old_md != MINOR_ALLOCED);
2427
2428	return md;
2429
2430bad:
2431	cleanup_mapped_device(md);
2432bad_io_barrier:
2433	free_minor(minor);
2434bad_minor:
2435	module_put(THIS_MODULE);
2436bad_module_get:
2437	kfree(md);
2438	return NULL;
2439}
2440
2441static void unlock_fs(struct mapped_device *md);
2442
2443static void free_dev(struct mapped_device *md)
2444{
2445	int minor = MINOR(disk_devt(md->disk));
2446
2447	unlock_fs(md);
2448
2449	cleanup_mapped_device(md);
2450	if (md->tag_set) {
2451		blk_mq_free_tag_set(md->tag_set);
2452		kfree(md->tag_set);
2453	}
2454
2455	free_table_devices(&md->table_devices);
2456	dm_stats_cleanup(&md->stats);
2457	free_minor(minor);
2458
2459	module_put(THIS_MODULE);
2460	kfree(md);
2461}
2462
2463static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
2464{
2465	struct dm_md_mempools *p = dm_table_get_md_mempools(t);
2466
2467	if (md->bs) {
2468		/* The md already has necessary mempools. */
2469		if (dm_table_get_type(t) == DM_TYPE_BIO_BASED) {
2470			/*
2471			 * Reload bioset because front_pad may have changed
2472			 * because a different table was loaded.
2473			 */
2474			bioset_free(md->bs);
2475			md->bs = p->bs;
2476			p->bs = NULL;
2477		}
2478		/*
2479		 * There's no need to reload with request-based dm
2480		 * because the size of front_pad doesn't change.
2481		 * Note for future: If you are to reload bioset,
2482		 * prep-ed requests in the queue may refer
2483		 * to bio from the old bioset, so you must walk
2484		 * through the queue to unprep.
2485		 */
2486		goto out;
2487	}
2488
2489	BUG_ON(!p || md->io_pool || md->rq_pool || md->bs);
2490
2491	md->io_pool = p->io_pool;
2492	p->io_pool = NULL;
2493	md->rq_pool = p->rq_pool;
2494	p->rq_pool = NULL;
2495	md->bs = p->bs;
2496	p->bs = NULL;
2497
2498out:
2499	/* mempool bind completed, no longer need any mempools in the table */
2500	dm_table_free_md_mempools(t);
2501}
2502
2503/*
2504 * Bind a table to the device.
2505 */
2506static void event_callback(void *context)
2507{
2508	unsigned long flags;
2509	LIST_HEAD(uevents);
2510	struct mapped_device *md = (struct mapped_device *) context;
2511
2512	spin_lock_irqsave(&md->uevent_lock, flags);
2513	list_splice_init(&md->uevent_list, &uevents);
2514	spin_unlock_irqrestore(&md->uevent_lock, flags);
2515
2516	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2517
2518	atomic_inc(&md->event_nr);
2519	wake_up(&md->eventq);
2520}
2521
2522/*
2523 * Protected by md->suspend_lock obtained by dm_swap_table().
2524 */
2525static void __set_size(struct mapped_device *md, sector_t size)
2526{
2527	set_capacity(md->disk, size);
2528
2529	i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
2530}
2531
2532/*
2533 * Returns old map, which caller must destroy.
2534 */
2535static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2536			       struct queue_limits *limits)
2537{
2538	struct dm_table *old_map;
2539	struct request_queue *q = md->queue;
2540	sector_t size;
 
 
 
2541
2542	size = dm_table_get_size(t);
2543
2544	/*
2545	 * Wipe any geometry if the size of the table changed.
2546	 */
2547	if (size != dm_get_size(md))
2548		memset(&md->geometry, 0, sizeof(md->geometry));
2549
2550	__set_size(md, size);
2551
2552	dm_table_event_callback(t, event_callback, md);
2553
2554	/*
2555	 * The queue hasn't been stopped yet, if the old table type wasn't
2556	 * for request-based during suspension.  So stop it to prevent
2557	 * I/O mapping before resume.
2558	 * This must be done before setting the queue restrictions,
2559	 * because request-based dm may be run just after the setting.
2560	 */
2561	if (dm_table_request_based(t)) {
2562		dm_stop_queue(q);
2563		/*
2564		 * Leverage the fact that request-based DM targets are
2565		 * immutable singletons and establish md->immutable_target
2566		 * - used to optimize both dm_request_fn and dm_mq_queue_rq
2567		 */
2568		md->immutable_target = dm_table_get_immutable_target(t);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2569	}
2570
2571	__bind_mempools(md, t);
 
 
 
 
2572
2573	old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2574	rcu_assign_pointer(md->map, (void *)t);
2575	md->immutable_target_type = dm_table_get_immutable_target_type(t);
2576
2577	dm_table_set_restrictions(t, q, limits);
2578	if (old_map)
2579		dm_sync_table(md);
2580
2581	return old_map;
2582}
2583
2584/*
2585 * Returns unbound table for the caller to free.
2586 */
2587static struct dm_table *__unbind(struct mapped_device *md)
2588{
2589	struct dm_table *map = rcu_dereference_protected(md->map, 1);
2590
2591	if (!map)
2592		return NULL;
2593
2594	dm_table_event_callback(map, NULL, NULL);
2595	RCU_INIT_POINTER(md->map, NULL);
2596	dm_sync_table(md);
2597
2598	return map;
2599}
2600
2601/*
2602 * Constructor for a new device.
2603 */
2604int dm_create(int minor, struct mapped_device **result)
2605{
2606	struct mapped_device *md;
2607
2608	md = alloc_dev(minor);
2609	if (!md)
2610		return -ENXIO;
2611
2612	dm_sysfs_init(md);
2613
2614	*result = md;
2615	return 0;
2616}
2617
2618/*
2619 * Functions to manage md->type.
2620 * All are required to hold md->type_lock.
2621 */
2622void dm_lock_md_type(struct mapped_device *md)
2623{
2624	mutex_lock(&md->type_lock);
2625}
2626
2627void dm_unlock_md_type(struct mapped_device *md)
2628{
2629	mutex_unlock(&md->type_lock);
2630}
2631
2632void dm_set_md_type(struct mapped_device *md, unsigned type)
2633{
2634	BUG_ON(!mutex_is_locked(&md->type_lock));
2635	md->type = type;
2636}
2637
2638unsigned dm_get_md_type(struct mapped_device *md)
2639{
2640	return md->type;
2641}
2642
2643struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2644{
2645	return md->immutable_target_type;
2646}
2647
2648/*
2649 * The queue_limits are only valid as long as you have a reference
2650 * count on 'md'.
2651 */
2652struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2653{
2654	BUG_ON(!atomic_read(&md->holders));
2655	return &md->queue->limits;
2656}
2657EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2658
2659static void dm_old_init_rq_based_worker_thread(struct mapped_device *md)
2660{
2661	/* Initialize the request-based DM worker thread */
2662	init_kthread_worker(&md->kworker);
2663	md->kworker_task = kthread_run(kthread_worker_fn, &md->kworker,
2664				       "kdmwork-%s", dm_device_name(md));
2665}
2666
2667/*
2668 * Fully initialize a .request_fn request-based queue.
2669 */
2670static int dm_old_init_request_queue(struct mapped_device *md)
2671{
2672	/* Fully initialize the queue */
2673	if (!blk_init_allocated_queue(md->queue, dm_request_fn, NULL))
2674		return -EINVAL;
2675
2676	/* disable dm_request_fn's merge heuristic by default */
2677	md->seq_rq_merge_deadline_usecs = 0;
2678
2679	dm_init_normal_md_queue(md);
2680	blk_queue_softirq_done(md->queue, dm_softirq_done);
2681	blk_queue_prep_rq(md->queue, dm_old_prep_fn);
2682
2683	dm_old_init_rq_based_worker_thread(md);
2684
2685	elv_register_queue(md->queue);
2686
2687	return 0;
2688}
2689
2690static int dm_mq_init_request(void *data, struct request *rq,
2691			      unsigned int hctx_idx, unsigned int request_idx,
2692			      unsigned int numa_node)
2693{
2694	struct mapped_device *md = data;
2695	struct dm_rq_target_io *tio = blk_mq_rq_to_pdu(rq);
 
 
2696
2697	/*
2698	 * Must initialize md member of tio, otherwise it won't
2699	 * be available in dm_mq_queue_rq.
2700	 */
2701	tio->md = md;
2702
2703	if (md->init_tio_pdu) {
2704		/* target-specific per-io data is immediately after the tio */
2705		tio->info.ptr = tio + 1;
 
 
 
 
2706	}
2707
2708	return 0;
2709}
2710
2711static int dm_mq_queue_rq(struct blk_mq_hw_ctx *hctx,
2712			  const struct blk_mq_queue_data *bd)
2713{
2714	struct request *rq = bd->rq;
2715	struct dm_rq_target_io *tio = blk_mq_rq_to_pdu(rq);
2716	struct mapped_device *md = tio->md;
2717	struct dm_target *ti = md->immutable_target;
2718
2719	if (unlikely(!ti)) {
2720		int srcu_idx;
2721		struct dm_table *map = dm_get_live_table(md, &srcu_idx);
2722
2723		ti = dm_table_find_target(map, 0);
2724		dm_put_live_table(md, srcu_idx);
2725	}
2726
2727	if (ti->type->busy && ti->type->busy(ti))
2728		return BLK_MQ_RQ_QUEUE_BUSY;
2729
2730	dm_start_request(md, rq);
2731
2732	/* Init tio using md established in .init_request */
2733	init_tio(tio, rq, md);
2734
2735	/*
2736	 * Establish tio->ti before queuing work (map_tio_request)
2737	 * or making direct call to map_request().
2738	 */
2739	tio->ti = ti;
2740
2741	/* Direct call is fine since .queue_rq allows allocations */
2742	if (map_request(tio, rq, md) == DM_MAPIO_REQUEUE) {
2743		/* Undo dm_start_request() before requeuing */
2744		rq_end_stats(md, rq);
2745		rq_completed(md, rq_data_dir(rq), false);
2746		return BLK_MQ_RQ_QUEUE_BUSY;
2747	}
2748
2749	return BLK_MQ_RQ_QUEUE_OK;
2750}
2751
2752static struct blk_mq_ops dm_mq_ops = {
2753	.queue_rq = dm_mq_queue_rq,
2754	.map_queue = blk_mq_map_queue,
2755	.complete = dm_softirq_done,
2756	.init_request = dm_mq_init_request,
2757};
2758
2759static int dm_mq_init_request_queue(struct mapped_device *md,
2760				    struct dm_target *immutable_tgt)
2761{
2762	struct request_queue *q;
2763	int err;
2764
2765	if (dm_get_md_type(md) == DM_TYPE_REQUEST_BASED) {
2766		DMERR("request-based dm-mq may only be stacked on blk-mq device(s)");
2767		return -EINVAL;
2768	}
2769
2770	md->tag_set = kzalloc_node(sizeof(struct blk_mq_tag_set), GFP_KERNEL, md->numa_node_id);
2771	if (!md->tag_set)
2772		return -ENOMEM;
2773
2774	md->tag_set->ops = &dm_mq_ops;
2775	md->tag_set->queue_depth = dm_get_blk_mq_queue_depth();
2776	md->tag_set->numa_node = md->numa_node_id;
2777	md->tag_set->flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
2778	md->tag_set->nr_hw_queues = dm_get_blk_mq_nr_hw_queues();
2779	md->tag_set->driver_data = md;
2780
2781	md->tag_set->cmd_size = sizeof(struct dm_rq_target_io);
2782	if (immutable_tgt && immutable_tgt->per_io_data_size) {
2783		/* any target-specific per-io data is immediately after the tio */
2784		md->tag_set->cmd_size += immutable_tgt->per_io_data_size;
2785		md->init_tio_pdu = true;
2786	}
2787
2788	err = blk_mq_alloc_tag_set(md->tag_set);
2789	if (err)
2790		goto out_kfree_tag_set;
2791
2792	q = blk_mq_init_allocated_queue(md->tag_set, md->queue);
2793	if (IS_ERR(q)) {
2794		err = PTR_ERR(q);
2795		goto out_tag_set;
2796	}
2797	dm_init_md_queue(md);
2798
2799	/* backfill 'mq' sysfs registration normally done in blk_register_queue */
2800	blk_mq_register_disk(md->disk);
 
2801
 
2802	return 0;
2803
2804out_tag_set:
2805	blk_mq_free_tag_set(md->tag_set);
2806out_kfree_tag_set:
2807	kfree(md->tag_set);
2808
2809	return err;
2810}
2811
2812static unsigned filter_md_type(unsigned type, struct mapped_device *md)
2813{
2814	if (type == DM_TYPE_BIO_BASED)
2815		return type;
2816
2817	return !md->use_blk_mq ? DM_TYPE_REQUEST_BASED : DM_TYPE_MQ_REQUEST_BASED;
2818}
2819
2820/*
2821 * Setup the DM device's queue based on md's type
2822 */
2823int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2824{
2825	int r;
2826	unsigned md_type = filter_md_type(dm_get_md_type(md), md);
2827
2828	switch (md_type) {
2829	case DM_TYPE_REQUEST_BASED:
2830		r = dm_old_init_request_queue(md);
2831		if (r) {
2832			DMERR("Cannot initialize queue for request-based mapped device");
2833			return r;
2834		}
2835		break;
2836	case DM_TYPE_MQ_REQUEST_BASED:
2837		r = dm_mq_init_request_queue(md, dm_table_get_immutable_target(t));
2838		if (r) {
2839			DMERR("Cannot initialize queue for request-based dm-mq mapped device");
2840			return r;
2841		}
2842		break;
2843	case DM_TYPE_BIO_BASED:
2844		dm_init_normal_md_queue(md);
2845		blk_queue_make_request(md->queue, dm_make_request);
2846		/*
2847		 * DM handles splitting bios as needed.  Free the bio_split bioset
2848		 * since it won't be used (saves 1 process per bio-based DM device).
2849		 */
2850		bioset_free(md->queue->bio_split);
2851		md->queue->bio_split = NULL;
2852		break;
2853	}
2854
2855	return 0;
2856}
2857
2858struct mapped_device *dm_get_md(dev_t dev)
2859{
2860	struct mapped_device *md;
2861	unsigned minor = MINOR(dev);
2862
2863	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2864		return NULL;
2865
2866	spin_lock(&_minor_lock);
2867
2868	md = idr_find(&_minor_idr, minor);
2869	if (md) {
2870		if ((md == MINOR_ALLOCED ||
2871		     (MINOR(disk_devt(dm_disk(md))) != minor) ||
2872		     dm_deleting_md(md) ||
2873		     test_bit(DMF_FREEING, &md->flags))) {
2874			md = NULL;
2875			goto out;
2876		}
2877		dm_get(md);
2878	}
2879
2880out:
2881	spin_unlock(&_minor_lock);
2882
2883	return md;
2884}
2885EXPORT_SYMBOL_GPL(dm_get_md);
2886
2887void *dm_get_mdptr(struct mapped_device *md)
2888{
2889	return md->interface_ptr;
2890}
2891
2892void dm_set_mdptr(struct mapped_device *md, void *ptr)
2893{
2894	md->interface_ptr = ptr;
2895}
2896
2897void dm_get(struct mapped_device *md)
2898{
2899	atomic_inc(&md->holders);
2900	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2901}
2902
2903int dm_hold(struct mapped_device *md)
2904{
2905	spin_lock(&_minor_lock);
2906	if (test_bit(DMF_FREEING, &md->flags)) {
2907		spin_unlock(&_minor_lock);
2908		return -EBUSY;
2909	}
2910	dm_get(md);
2911	spin_unlock(&_minor_lock);
2912	return 0;
2913}
2914EXPORT_SYMBOL_GPL(dm_hold);
2915
2916const char *dm_device_name(struct mapped_device *md)
2917{
2918	return md->name;
2919}
2920EXPORT_SYMBOL_GPL(dm_device_name);
2921
2922static void __dm_destroy(struct mapped_device *md, bool wait)
2923{
2924	struct dm_table *map;
2925	int srcu_idx;
2926
2927	might_sleep();
2928
2929	spin_lock(&_minor_lock);
2930	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2931	set_bit(DMF_FREEING, &md->flags);
2932	spin_unlock(&_minor_lock);
2933
2934	if (dm_request_based(md) && md->kworker_task)
2935		flush_kthread_worker(&md->kworker);
2936
2937	/*
2938	 * Take suspend_lock so that presuspend and postsuspend methods
2939	 * do not race with internal suspend.
2940	 */
2941	mutex_lock(&md->suspend_lock);
2942	map = dm_get_live_table(md, &srcu_idx);
2943	if (!dm_suspended_md(md)) {
2944		dm_table_presuspend_targets(map);
 
 
2945		dm_table_postsuspend_targets(map);
2946	}
2947	/* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2948	dm_put_live_table(md, srcu_idx);
2949	mutex_unlock(&md->suspend_lock);
2950
2951	/*
2952	 * Rare, but there may be I/O requests still going to complete,
2953	 * for example.  Wait for all references to disappear.
2954	 * No one should increment the reference count of the mapped_device,
2955	 * after the mapped_device state becomes DMF_FREEING.
2956	 */
2957	if (wait)
2958		while (atomic_read(&md->holders))
2959			msleep(1);
2960	else if (atomic_read(&md->holders))
2961		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2962		       dm_device_name(md), atomic_read(&md->holders));
2963
2964	dm_sysfs_exit(md);
2965	dm_table_destroy(__unbind(md));
2966	free_dev(md);
2967}
2968
2969void dm_destroy(struct mapped_device *md)
2970{
2971	__dm_destroy(md, true);
2972}
2973
2974void dm_destroy_immediate(struct mapped_device *md)
2975{
2976	__dm_destroy(md, false);
2977}
2978
2979void dm_put(struct mapped_device *md)
2980{
2981	atomic_dec(&md->holders);
2982}
2983EXPORT_SYMBOL_GPL(dm_put);
2984
2985static int dm_wait_for_completion(struct mapped_device *md, int interruptible)
2986{
2987	int r = 0;
2988	DECLARE_WAITQUEUE(wait, current);
 
 
 
2989
2990	add_wait_queue(&md->wait, &wait);
 
2991
2992	while (1) {
2993		set_current_state(interruptible);
 
 
2994
2995		if (!md_in_flight(md))
 
 
 
2996			break;
2997
2998		if (interruptible == TASK_INTERRUPTIBLE &&
2999		    signal_pending(current)) {
3000			r = -EINTR;
3001			break;
3002		}
3003
3004		io_schedule();
3005	}
3006	set_current_state(TASK_RUNNING);
 
 
 
 
 
 
 
 
 
 
 
 
3007
3008	remove_wait_queue(&md->wait, &wait);
 
 
 
 
 
 
 
 
 
 
3009
3010	return r;
3011}
3012
3013/*
3014 * Process the deferred bios
3015 */
3016static void dm_wq_work(struct work_struct *work)
3017{
3018	struct mapped_device *md = container_of(work, struct mapped_device,
3019						work);
3020	struct bio *c;
3021	int srcu_idx;
3022	struct dm_table *map;
3023
3024	map = dm_get_live_table(md, &srcu_idx);
3025
3026	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
3027		spin_lock_irq(&md->deferred_lock);
3028		c = bio_list_pop(&md->deferred);
3029		spin_unlock_irq(&md->deferred_lock);
3030
3031		if (!c)
3032			break;
3033
3034		if (dm_request_based(md))
3035			generic_make_request(c);
3036		else
3037			__split_and_process_bio(md, map, c);
3038	}
3039
3040	dm_put_live_table(md, srcu_idx);
3041}
3042
3043static void dm_queue_flush(struct mapped_device *md)
3044{
3045	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
3046	smp_mb__after_atomic();
3047	queue_work(md->wq, &md->work);
3048}
3049
3050/*
3051 * Swap in a new table, returning the old one for the caller to destroy.
3052 */
3053struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
3054{
3055	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
3056	struct queue_limits limits;
3057	int r;
3058
3059	mutex_lock(&md->suspend_lock);
3060
3061	/* device must be suspended */
3062	if (!dm_suspended_md(md))
3063		goto out;
3064
3065	/*
3066	 * If the new table has no data devices, retain the existing limits.
3067	 * This helps multipath with queue_if_no_path if all paths disappear,
3068	 * then new I/O is queued based on these limits, and then some paths
3069	 * reappear.
3070	 */
3071	if (dm_table_has_no_data_devices(table)) {
3072		live_map = dm_get_live_table_fast(md);
3073		if (live_map)
3074			limits = md->queue->limits;
3075		dm_put_live_table_fast(md);
3076	}
3077
3078	if (!live_map) {
3079		r = dm_calculate_queue_limits(table, &limits);
3080		if (r) {
3081			map = ERR_PTR(r);
3082			goto out;
3083		}
3084	}
3085
3086	map = __bind(md, table, &limits);
 
3087
3088out:
3089	mutex_unlock(&md->suspend_lock);
3090	return map;
3091}
3092
3093/*
3094 * Functions to lock and unlock any filesystem running on the
3095 * device.
3096 */
3097static int lock_fs(struct mapped_device *md)
3098{
3099	int r;
3100
3101	WARN_ON(md->frozen_sb);
3102
3103	md->frozen_sb = freeze_bdev(md->bdev);
3104	if (IS_ERR(md->frozen_sb)) {
3105		r = PTR_ERR(md->frozen_sb);
3106		md->frozen_sb = NULL;
3107		return r;
3108	}
3109
3110	set_bit(DMF_FROZEN, &md->flags);
3111
3112	return 0;
 
 
 
3113}
3114
3115static void unlock_fs(struct mapped_device *md)
3116{
3117	if (!test_bit(DMF_FROZEN, &md->flags))
3118		return;
3119
3120	thaw_bdev(md->bdev, md->frozen_sb);
3121	md->frozen_sb = NULL;
3122	clear_bit(DMF_FROZEN, &md->flags);
3123}
3124
3125/*
 
 
 
 
3126 * If __dm_suspend returns 0, the device is completely quiescent
3127 * now. There is no request-processing activity. All new requests
3128 * are being added to md->deferred list.
3129 *
3130 * Caller must hold md->suspend_lock
3131 */
3132static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
3133			unsigned suspend_flags, int interruptible)
 
3134{
3135	bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
3136	bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
3137	int r;
3138
 
 
3139	/*
3140	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
3141	 * This flag is cleared before dm_suspend returns.
3142	 */
3143	if (noflush)
3144		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
 
 
3145
3146	/*
3147	 * This gets reverted if there's an error later and the targets
3148	 * provide the .presuspend_undo hook.
3149	 */
3150	dm_table_presuspend_targets(map);
3151
3152	/*
3153	 * Flush I/O to the device.
3154	 * Any I/O submitted after lock_fs() may not be flushed.
3155	 * noflush takes precedence over do_lockfs.
3156	 * (lock_fs() flushes I/Os and waits for them to complete.)
3157	 */
3158	if (!noflush && do_lockfs) {
3159		r = lock_fs(md);
3160		if (r) {
3161			dm_table_presuspend_undo_targets(map);
3162			return r;
3163		}
3164	}
3165
3166	/*
3167	 * Here we must make sure that no processes are submitting requests
3168	 * to target drivers i.e. no one may be executing
3169	 * __split_and_process_bio. This is called from dm_request and
3170	 * dm_wq_work.
3171	 *
3172	 * To get all processes out of __split_and_process_bio in dm_request,
3173	 * we take the write lock. To prevent any process from reentering
3174	 * __split_and_process_bio from dm_request and quiesce the thread
3175	 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
3176	 * flush_workqueue(md->wq).
3177	 */
3178	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
3179	if (map)
3180		synchronize_srcu(&md->io_barrier);
3181
3182	/*
3183	 * Stop md->queue before flushing md->wq in case request-based
3184	 * dm defers requests to md->wq from md->queue.
3185	 */
3186	if (dm_request_based(md)) {
3187		dm_stop_queue(md->queue);
3188		if (md->kworker_task)
3189			flush_kthread_worker(&md->kworker);
3190	}
3191
3192	flush_workqueue(md->wq);
3193
3194	/*
3195	 * At this point no more requests are entering target request routines.
3196	 * We call dm_wait_for_completion to wait for all existing requests
3197	 * to finish.
3198	 */
3199	r = dm_wait_for_completion(md, interruptible);
 
 
3200
3201	if (noflush)
3202		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
3203	if (map)
3204		synchronize_srcu(&md->io_barrier);
3205
3206	/* were we interrupted ? */
3207	if (r < 0) {
3208		dm_queue_flush(md);
3209
3210		if (dm_request_based(md))
3211			dm_start_queue(md->queue);
3212
3213		unlock_fs(md);
3214		dm_table_presuspend_undo_targets(map);
3215		/* pushback list is already flushed, so skip flush */
3216	}
3217
3218	return r;
3219}
3220
3221/*
3222 * We need to be able to change a mapping table under a mounted
3223 * filesystem.  For example we might want to move some data in
3224 * the background.  Before the table can be swapped with
3225 * dm_bind_table, dm_suspend must be called to flush any in
3226 * flight bios and ensure that any further io gets deferred.
3227 */
3228/*
3229 * Suspend mechanism in request-based dm.
3230 *
3231 * 1. Flush all I/Os by lock_fs() if needed.
3232 * 2. Stop dispatching any I/O by stopping the request_queue.
3233 * 3. Wait for all in-flight I/Os to be completed or requeued.
3234 *
3235 * To abort suspend, start the request_queue.
3236 */
3237int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
3238{
3239	struct dm_table *map = NULL;
3240	int r = 0;
3241
3242retry:
3243	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
3244
3245	if (dm_suspended_md(md)) {
3246		r = -EINVAL;
3247		goto out_unlock;
3248	}
3249
3250	if (dm_suspended_internally_md(md)) {
3251		/* already internally suspended, wait for internal resume */
3252		mutex_unlock(&md->suspend_lock);
3253		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
3254		if (r)
3255			return r;
3256		goto retry;
3257	}
3258
3259	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
 
 
 
 
3260
3261	r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE);
3262	if (r)
3263		goto out_unlock;
3264
3265	set_bit(DMF_SUSPENDED, &md->flags);
3266
3267	dm_table_postsuspend_targets(map);
 
3268
3269out_unlock:
3270	mutex_unlock(&md->suspend_lock);
3271	return r;
3272}
3273
3274static int __dm_resume(struct mapped_device *md, struct dm_table *map)
3275{
3276	if (map) {
3277		int r = dm_table_resume_targets(map);
 
3278		if (r)
3279			return r;
3280	}
3281
3282	dm_queue_flush(md);
3283
3284	/*
3285	 * Flushing deferred I/Os must be done after targets are resumed
3286	 * so that mapping of targets can work correctly.
3287	 * Request-based dm is queueing the deferred I/Os in its request_queue.
3288	 */
3289	if (dm_request_based(md))
3290		dm_start_queue(md->queue);
3291
3292	unlock_fs(md);
3293
3294	return 0;
3295}
3296
3297int dm_resume(struct mapped_device *md)
3298{
3299	int r = -EINVAL;
3300	struct dm_table *map = NULL;
3301
3302retry:
 
3303	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
3304
3305	if (!dm_suspended_md(md))
3306		goto out;
3307
3308	if (dm_suspended_internally_md(md)) {
3309		/* already internally suspended, wait for internal resume */
3310		mutex_unlock(&md->suspend_lock);
3311		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
3312		if (r)
3313			return r;
3314		goto retry;
3315	}
3316
3317	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3318	if (!map || !dm_table_get_size(map))
3319		goto out;
3320
3321	r = __dm_resume(md, map);
3322	if (r)
3323		goto out;
3324
3325	clear_bit(DMF_SUSPENDED, &md->flags);
3326
3327	r = 0;
3328out:
3329	mutex_unlock(&md->suspend_lock);
3330
3331	return r;
3332}
3333
3334/*
3335 * Internal suspend/resume works like userspace-driven suspend. It waits
3336 * until all bios finish and prevents issuing new bios to the target drivers.
3337 * It may be used only from the kernel.
3338 */
3339
3340static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
3341{
3342	struct dm_table *map = NULL;
3343
 
 
3344	if (md->internal_suspend_count++)
3345		return; /* nested internal suspend */
3346
3347	if (dm_suspended_md(md)) {
3348		set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3349		return; /* nest suspend */
3350	}
3351
3352	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3353
3354	/*
3355	 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
3356	 * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
3357	 * would require changing .presuspend to return an error -- avoid this
3358	 * until there is a need for more elaborate variants of internal suspend.
3359	 */
3360	(void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE);
3361
3362	set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3363
 
3364	dm_table_postsuspend_targets(map);
 
3365}
3366
3367static void __dm_internal_resume(struct mapped_device *md)
3368{
 
 
 
3369	BUG_ON(!md->internal_suspend_count);
3370
3371	if (--md->internal_suspend_count)
3372		return; /* resume from nested internal suspend */
3373
3374	if (dm_suspended_md(md))
3375		goto done; /* resume from nested suspend */
3376
3377	/*
3378	 * NOTE: existing callers don't need to call dm_table_resume_targets
3379	 * (which may fail -- so best to avoid it for now by passing NULL map)
3380	 */
3381	(void) __dm_resume(md, NULL);
3382
 
 
 
 
 
 
 
 
 
 
 
3383done:
3384	clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3385	smp_mb__after_atomic();
3386	wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
3387}
3388
3389void dm_internal_suspend_noflush(struct mapped_device *md)
3390{
3391	mutex_lock(&md->suspend_lock);
3392	__dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
3393	mutex_unlock(&md->suspend_lock);
3394}
3395EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
3396
3397void dm_internal_resume(struct mapped_device *md)
3398{
3399	mutex_lock(&md->suspend_lock);
3400	__dm_internal_resume(md);
3401	mutex_unlock(&md->suspend_lock);
3402}
3403EXPORT_SYMBOL_GPL(dm_internal_resume);
3404
3405/*
3406 * Fast variants of internal suspend/resume hold md->suspend_lock,
3407 * which prevents interaction with userspace-driven suspend.
3408 */
3409
3410void dm_internal_suspend_fast(struct mapped_device *md)
3411{
3412	mutex_lock(&md->suspend_lock);
3413	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3414		return;
3415
3416	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
3417	synchronize_srcu(&md->io_barrier);
3418	flush_workqueue(md->wq);
3419	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
3420}
3421EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
3422
3423void dm_internal_resume_fast(struct mapped_device *md)
3424{
3425	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3426		goto done;
3427
3428	dm_queue_flush(md);
3429
3430done:
3431	mutex_unlock(&md->suspend_lock);
3432}
3433EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
3434
3435/*-----------------------------------------------------------------
 
3436 * Event notification.
3437 *---------------------------------------------------------------*/
 
3438int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
3439		       unsigned cookie)
3440{
 
 
3441	char udev_cookie[DM_COOKIE_LENGTH];
3442	char *envp[] = { udev_cookie, NULL };
3443
3444	if (!cookie)
3445		return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
3446	else {
3447		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
3448			 DM_COOKIE_ENV_VAR_NAME, cookie);
3449		return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
3450					  action, envp);
3451	}
 
 
 
 
 
 
 
 
 
 
 
3452}
3453
3454uint32_t dm_next_uevent_seq(struct mapped_device *md)
3455{
3456	return atomic_add_return(1, &md->uevent_seq);
3457}
3458
3459uint32_t dm_get_event_nr(struct mapped_device *md)
3460{
3461	return atomic_read(&md->event_nr);
3462}
3463
3464int dm_wait_event(struct mapped_device *md, int event_nr)
3465{
3466	return wait_event_interruptible(md->eventq,
3467			(event_nr != atomic_read(&md->event_nr)));
3468}
3469
3470void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
3471{
3472	unsigned long flags;
3473
3474	spin_lock_irqsave(&md->uevent_lock, flags);
3475	list_add(elist, &md->uevent_list);
3476	spin_unlock_irqrestore(&md->uevent_lock, flags);
3477}
3478
3479/*
3480 * The gendisk is only valid as long as you have a reference
3481 * count on 'md'.
3482 */
3483struct gendisk *dm_disk(struct mapped_device *md)
3484{
3485	return md->disk;
3486}
3487EXPORT_SYMBOL_GPL(dm_disk);
3488
3489struct kobject *dm_kobject(struct mapped_device *md)
3490{
3491	return &md->kobj_holder.kobj;
3492}
3493
3494struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
3495{
3496	struct mapped_device *md;
3497
3498	md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
3499
3500	if (test_bit(DMF_FREEING, &md->flags) ||
3501	    dm_deleting_md(md))
3502		return NULL;
3503
 
3504	dm_get(md);
 
 
 
3505	return md;
3506}
3507
3508int dm_suspended_md(struct mapped_device *md)
3509{
3510	return test_bit(DMF_SUSPENDED, &md->flags);
3511}
3512
 
 
 
 
 
3513int dm_suspended_internally_md(struct mapped_device *md)
3514{
3515	return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3516}
3517
3518int dm_test_deferred_remove_flag(struct mapped_device *md)
3519{
3520	return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
3521}
3522
3523int dm_suspended(struct dm_target *ti)
3524{
3525	return dm_suspended_md(dm_table_get_md(ti->table));
3526}
3527EXPORT_SYMBOL_GPL(dm_suspended);
3528
 
 
 
 
 
 
3529int dm_noflush_suspending(struct dm_target *ti)
3530{
3531	return __noflush_suspending(dm_table_get_md(ti->table));
3532}
3533EXPORT_SYMBOL_GPL(dm_noflush_suspending);
3534
3535struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, unsigned type,
3536					    unsigned integrity, unsigned per_io_data_size)
3537{
3538	struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
3539	struct kmem_cache *cachep = NULL;
3540	unsigned int pool_size = 0;
3541	unsigned int front_pad;
3542
3543	if (!pools)
3544		return NULL;
3545
3546	type = filter_md_type(type, md);
 
3547
3548	switch (type) {
3549	case DM_TYPE_BIO_BASED:
3550		cachep = _io_cache;
3551		pool_size = dm_get_reserved_bio_based_ios();
3552		front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
3553		break;
3554	case DM_TYPE_REQUEST_BASED:
3555		cachep = _rq_tio_cache;
3556		pool_size = dm_get_reserved_rq_based_ios();
3557		pools->rq_pool = mempool_create_slab_pool(pool_size, _rq_cache);
3558		if (!pools->rq_pool)
3559			goto out;
3560		/* fall through to setup remaining rq-based pools */
3561	case DM_TYPE_MQ_REQUEST_BASED:
3562		if (!pool_size)
3563			pool_size = dm_get_reserved_rq_based_ios();
3564		front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
3565		/* per_io_data_size is used for blk-mq pdu at queue allocation */
3566		break;
3567	default:
3568		BUG();
3569	}
3570
3571	if (cachep) {
3572		pools->io_pool = mempool_create_slab_pool(pool_size, cachep);
3573		if (!pools->io_pool)
3574			goto out;
3575	}
 
 
 
 
 
 
 
 
3576
3577	pools->bs = bioset_create_nobvec(pool_size, front_pad);
3578	if (!pools->bs)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3579		goto out;
3580
3581	if (integrity && bioset_integrity_create(pools->bs, pool_size))
 
3582		goto out;
 
3583
3584	return pools;
 
3585
 
3586out:
3587	dm_free_md_mempools(pools);
 
 
3588
3589	return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3590}
3591
3592void dm_free_md_mempools(struct dm_md_mempools *pools)
 
 
 
 
3593{
3594	if (!pools)
3595		return;
 
3596
3597	mempool_destroy(pools->io_pool);
3598	mempool_destroy(pools->rq_pool);
 
 
3599
3600	if (pools->bs)
3601		bioset_free(pools->bs);
 
3602
3603	kfree(pools);
 
 
 
 
 
 
3604}
3605
3606static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
3607			  u32 flags)
3608{
3609	struct mapped_device *md = bdev->bd_disk->private_data;
3610	const struct pr_ops *ops;
3611	fmode_t mode;
3612	int r;
 
 
 
 
3613
3614	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
3615	if (r < 0)
3616		return r;
 
 
3617
3618	ops = bdev->bd_disk->fops->pr_ops;
3619	if (ops && ops->pr_register)
3620		r = ops->pr_register(bdev, old_key, new_key, flags);
3621	else
3622		r = -EOPNOTSUPP;
3623
3624	bdput(bdev);
3625	return r;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3626}
3627
3628static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3629			 u32 flags)
3630{
3631	struct mapped_device *md = bdev->bd_disk->private_data;
3632	const struct pr_ops *ops;
3633	fmode_t mode;
3634	int r;
 
 
 
 
3635
3636	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
3637	if (r < 0)
3638		return r;
3639
3640	ops = bdev->bd_disk->fops->pr_ops;
3641	if (ops && ops->pr_reserve)
3642		r = ops->pr_reserve(bdev, key, type, flags);
3643	else
3644		r = -EOPNOTSUPP;
3645
3646	bdput(bdev);
3647	return r;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3648}
3649
3650static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3651{
3652	struct mapped_device *md = bdev->bd_disk->private_data;
3653	const struct pr_ops *ops;
3654	fmode_t mode;
3655	int r;
 
 
3656
3657	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
3658	if (r < 0)
3659		return r;
3660
3661	ops = bdev->bd_disk->fops->pr_ops;
3662	if (ops && ops->pr_release)
3663		r = ops->pr_release(bdev, key, type);
3664	else
3665		r = -EOPNOTSUPP;
3666
3667	bdput(bdev);
3668	return r;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3669}
3670
3671static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3672			 enum pr_type type, bool abort)
3673{
3674	struct mapped_device *md = bdev->bd_disk->private_data;
3675	const struct pr_ops *ops;
3676	fmode_t mode;
3677	int r;
3678
3679	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
3680	if (r < 0)
3681		return r;
3682
3683	ops = bdev->bd_disk->fops->pr_ops;
3684	if (ops && ops->pr_preempt)
3685		r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
3686	else
3687		r = -EOPNOTSUPP;
3688
3689	bdput(bdev);
3690	return r;
3691}
3692
3693static int dm_pr_clear(struct block_device *bdev, u64 key)
3694{
3695	struct mapped_device *md = bdev->bd_disk->private_data;
3696	const struct pr_ops *ops;
3697	fmode_t mode;
3698	int r;
3699
3700	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
3701	if (r < 0)
3702		return r;
3703
3704	ops = bdev->bd_disk->fops->pr_ops;
3705	if (ops && ops->pr_clear)
3706		r = ops->pr_clear(bdev, key);
3707	else
3708		r = -EOPNOTSUPP;
3709
3710	bdput(bdev);
3711	return r;
3712}
3713
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3714static const struct pr_ops dm_pr_ops = {
3715	.pr_register	= dm_pr_register,
3716	.pr_reserve	= dm_pr_reserve,
3717	.pr_release	= dm_pr_release,
3718	.pr_preempt	= dm_pr_preempt,
3719	.pr_clear	= dm_pr_clear,
 
 
3720};
3721
3722static const struct block_device_operations dm_blk_dops = {
 
 
3723	.open = dm_blk_open,
3724	.release = dm_blk_close,
3725	.ioctl = dm_blk_ioctl,
3726	.getgeo = dm_blk_getgeo,
 
 
3727	.pr_ops = &dm_pr_ops,
3728	.owner = THIS_MODULE
3729};
3730
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3731/*
3732 * module hooks
3733 */
3734module_init(dm_init);
3735module_exit(dm_exit);
3736
3737module_param(major, uint, 0);
3738MODULE_PARM_DESC(major, "The major number of the device mapper");
3739
3740module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3741MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3742
3743module_param(reserved_rq_based_ios, uint, S_IRUGO | S_IWUSR);
3744MODULE_PARM_DESC(reserved_rq_based_ios, "Reserved IOs in request-based mempools");
3745
3746module_param(use_blk_mq, bool, S_IRUGO | S_IWUSR);
3747MODULE_PARM_DESC(use_blk_mq, "Use block multiqueue for request-based DM devices");
3748
3749module_param(dm_mq_nr_hw_queues, uint, S_IRUGO | S_IWUSR);
3750MODULE_PARM_DESC(dm_mq_nr_hw_queues, "Number of hardware queues for request-based dm-mq devices");
3751
3752module_param(dm_mq_queue_depth, uint, S_IRUGO | S_IWUSR);
3753MODULE_PARM_DESC(dm_mq_queue_depth, "Queue depth for request-based dm-mq devices");
3754
3755module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
3756MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3757
 
 
 
3758MODULE_DESCRIPTION(DM_NAME " driver");
3759MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3760MODULE_LICENSE("GPL");
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
   4 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
   5 *
   6 * This file is released under the GPL.
   7 */
   8
   9#include "dm-core.h"
  10#include "dm-rq.h"
  11#include "dm-uevent.h"
  12#include "dm-ima.h"
  13
  14#include <linux/bio-integrity.h>
  15#include <linux/init.h>
  16#include <linux/module.h>
  17#include <linux/mutex.h>
  18#include <linux/sched/mm.h>
  19#include <linux/sched/signal.h>
  20#include <linux/blkpg.h>
  21#include <linux/bio.h>
  22#include <linux/mempool.h>
  23#include <linux/dax.h>
  24#include <linux/slab.h>
  25#include <linux/idr.h>
  26#include <linux/uio.h>
  27#include <linux/hdreg.h>
  28#include <linux/delay.h>
  29#include <linux/wait.h>
 
 
 
 
  30#include <linux/pr.h>
  31#include <linux/refcount.h>
  32#include <linux/part_stat.h>
  33#include <linux/blk-crypto.h>
  34#include <linux/blk-crypto-profile.h>
  35
  36#define DM_MSG_PREFIX "core"
  37
 
 
 
 
 
 
 
 
 
 
  38/*
  39 * Cookies are numeric values sent with CHANGE and REMOVE
  40 * uevents while resuming, removing or renaming the device.
  41 */
  42#define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
  43#define DM_COOKIE_LENGTH 24
  44
  45/*
  46 * For REQ_POLLED fs bio, this flag is set if we link mapped underlying
  47 * dm_io into one list, and reuse bio->bi_private as the list head. Before
  48 * ending this fs bio, we will recover its ->bi_private.
  49 */
  50#define REQ_DM_POLL_LIST	REQ_DRV
  51
  52static const char *_name = DM_NAME;
  53
  54static unsigned int major;
  55static unsigned int _major;
  56
  57static DEFINE_IDR(_minor_idr);
  58
  59static DEFINE_SPINLOCK(_minor_lock);
  60
  61static void do_deferred_remove(struct work_struct *w);
  62
  63static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
  64
  65static struct workqueue_struct *deferred_remove_workqueue;
  66
  67atomic_t dm_global_event_nr = ATOMIC_INIT(0);
  68DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  69
  70void dm_issue_global_event(void)
  71{
  72	atomic_inc(&dm_global_event_nr);
  73	wake_up(&dm_global_eventq);
  74}
 
 
 
 
 
 
 
 
 
 
  75
  76DEFINE_STATIC_KEY_FALSE(stats_enabled);
  77DEFINE_STATIC_KEY_FALSE(swap_bios_enabled);
  78DEFINE_STATIC_KEY_FALSE(zoned_enabled);
 
 
 
 
 
 
 
 
  79
  80/*
  81 * One of these is allocated (on-stack) per original bio.
  82 */
  83struct clone_info {
  84	struct dm_table *map;
  85	struct bio *bio;
  86	struct dm_io *io;
  87	sector_t sector;
  88	unsigned int sector_count;
  89	bool is_abnormal_io:1;
  90	bool submit_as_polled:1;
  91};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  92
  93static inline struct dm_target_io *clone_to_tio(struct bio *clone)
  94{
  95	return container_of(clone, struct dm_target_io, clone);
  96}
  97
  98void *dm_per_bio_data(struct bio *bio, size_t data_size)
  99{
 100	if (!dm_tio_flagged(clone_to_tio(bio), DM_TIO_INSIDE_DM_IO))
 101		return (char *)bio - DM_TARGET_IO_BIO_OFFSET - data_size;
 102	return (char *)bio - DM_IO_BIO_OFFSET - data_size;
 103}
 104EXPORT_SYMBOL_GPL(dm_per_bio_data);
 105
 106struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
 107{
 108	struct dm_io *io = (struct dm_io *)((char *)data + data_size);
 109
 110	if (io->magic == DM_IO_MAGIC)
 111		return (struct bio *)((char *)io + DM_IO_BIO_OFFSET);
 112	BUG_ON(io->magic != DM_TIO_MAGIC);
 113	return (struct bio *)((char *)io + DM_TARGET_IO_BIO_OFFSET);
 114}
 115EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
 116
 117unsigned int dm_bio_get_target_bio_nr(const struct bio *bio)
 118{
 119	return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
 120}
 121EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
 
 
 
 
 
 
 122
 123#define MINOR_ALLOCED ((void *)-1)
 
 
 
 
 124
 
 
 125#define DM_NUMA_NODE NUMA_NO_NODE
 
 
 
 126static int dm_numa_node = DM_NUMA_NODE;
 127
 128#define DEFAULT_SWAP_BIOS	(8 * 1048576 / PAGE_SIZE)
 129static int swap_bios = DEFAULT_SWAP_BIOS;
 130static int get_swap_bios(void)
 131{
 132	int latch = READ_ONCE(swap_bios);
 133
 134	if (unlikely(latch <= 0))
 135		latch = DEFAULT_SWAP_BIOS;
 136	return latch;
 137}
 
 
 
 
 
 
 
 
 
 
 138
 139struct table_device {
 140	struct list_head list;
 141	refcount_t count;
 142	struct dm_dev dm_dev;
 143};
 144
 
 
 
 
 
 
 
 145/*
 146 * Bio-based DM's mempools' reserved IOs set by the user.
 147 */
 148#define RESERVED_BIO_BASED_IOS		16
 149static unsigned int reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
 
 
 
 
 150
 151static int __dm_get_module_param_int(int *module_param, int min, int max)
 152{
 153	int param = READ_ONCE(*module_param);
 154	int modified_param = 0;
 155	bool modified = true;
 156
 157	if (param < min)
 158		modified_param = min;
 159	else if (param > max)
 160		modified_param = max;
 161	else
 162		modified = false;
 163
 164	if (modified) {
 165		(void)cmpxchg(module_param, param, modified_param);
 166		param = modified_param;
 167	}
 168
 169	return param;
 170}
 171
 172unsigned int __dm_get_module_param(unsigned int *module_param, unsigned int def, unsigned int max)
 
 173{
 174	unsigned int param = READ_ONCE(*module_param);
 175	unsigned int modified_param = 0;
 176
 177	if (!param)
 178		modified_param = def;
 179	else if (param > max)
 180		modified_param = max;
 181
 182	if (modified_param) {
 183		(void)cmpxchg(module_param, param, modified_param);
 184		param = modified_param;
 185	}
 186
 187	return param;
 188}
 189
 190unsigned int dm_get_reserved_bio_based_ios(void)
 191{
 192	return __dm_get_module_param(&reserved_bio_based_ios,
 193				     RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
 194}
 195EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
 196
 197static unsigned int dm_get_numa_node(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 198{
 199	return __dm_get_module_param_int(&dm_numa_node,
 200					 DM_NUMA_NODE, num_online_nodes() - 1);
 201}
 202
 203static int __init local_init(void)
 204{
 205	int r;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 206
 207	r = dm_uevent_init();
 208	if (r)
 209		return r;
 210
 211	deferred_remove_workqueue = alloc_ordered_workqueue("kdmremove", 0);
 212	if (!deferred_remove_workqueue) {
 213		r = -ENOMEM;
 214		goto out_uevent_exit;
 215	}
 216
 217	_major = major;
 218	r = register_blkdev(_major, _name);
 219	if (r < 0)
 220		goto out_free_workqueue;
 221
 222	if (!_major)
 223		_major = r;
 224
 225	return 0;
 226
 227out_free_workqueue:
 228	destroy_workqueue(deferred_remove_workqueue);
 229out_uevent_exit:
 230	dm_uevent_exit();
 
 
 
 
 
 
 231
 232	return r;
 233}
 234
 235static void local_exit(void)
 236{
 
 237	destroy_workqueue(deferred_remove_workqueue);
 238
 
 
 
 239	unregister_blkdev(_major, _name);
 240	dm_uevent_exit();
 241
 242	_major = 0;
 243
 244	DMINFO("cleaned up");
 245}
 246
 247static int (*_inits[])(void) __initdata = {
 248	local_init,
 249	dm_target_init,
 250	dm_linear_init,
 251	dm_stripe_init,
 252	dm_io_init,
 253	dm_kcopyd_init,
 254	dm_interface_init,
 255	dm_statistics_init,
 256};
 257
 258static void (*_exits[])(void) = {
 259	local_exit,
 260	dm_target_exit,
 261	dm_linear_exit,
 262	dm_stripe_exit,
 263	dm_io_exit,
 264	dm_kcopyd_exit,
 265	dm_interface_exit,
 266	dm_statistics_exit,
 267};
 268
 269static int __init dm_init(void)
 270{
 271	const int count = ARRAY_SIZE(_inits);
 
 272	int r, i;
 273
 274#if (IS_ENABLED(CONFIG_IMA) && !IS_ENABLED(CONFIG_IMA_DISABLE_HTABLE))
 275	DMWARN("CONFIG_IMA_DISABLE_HTABLE is disabled."
 276	       " Duplicate IMA measurements will not be recorded in the IMA log.");
 277#endif
 278
 279	for (i = 0; i < count; i++) {
 280		r = _inits[i]();
 281		if (r)
 282			goto bad;
 283	}
 284
 285	return 0;
 286bad:
 
 287	while (i--)
 288		_exits[i]();
 289
 290	return r;
 291}
 292
 293static void __exit dm_exit(void)
 294{
 295	int i = ARRAY_SIZE(_exits);
 296
 297	while (i--)
 298		_exits[i]();
 299
 300	/*
 301	 * Should be empty by this point.
 302	 */
 303	idr_destroy(&_minor_idr);
 304}
 305
 306/*
 307 * Block device functions
 308 */
 309int dm_deleting_md(struct mapped_device *md)
 310{
 311	return test_bit(DMF_DELETING, &md->flags);
 312}
 313
 314static int dm_blk_open(struct gendisk *disk, blk_mode_t mode)
 315{
 316	struct mapped_device *md;
 317
 318	spin_lock(&_minor_lock);
 319
 320	md = disk->private_data;
 321	if (!md)
 322		goto out;
 323
 324	if (test_bit(DMF_FREEING, &md->flags) ||
 325	    dm_deleting_md(md)) {
 326		md = NULL;
 327		goto out;
 328	}
 329
 330	dm_get(md);
 331	atomic_inc(&md->open_count);
 332out:
 333	spin_unlock(&_minor_lock);
 334
 335	return md ? 0 : -ENXIO;
 336}
 337
 338static void dm_blk_close(struct gendisk *disk)
 339{
 340	struct mapped_device *md;
 341
 342	spin_lock(&_minor_lock);
 343
 344	md = disk->private_data;
 345	if (WARN_ON(!md))
 346		goto out;
 347
 348	if (atomic_dec_and_test(&md->open_count) &&
 349	    (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
 350		queue_work(deferred_remove_workqueue, &deferred_remove_work);
 351
 352	dm_put(md);
 353out:
 354	spin_unlock(&_minor_lock);
 355}
 356
 357int dm_open_count(struct mapped_device *md)
 358{
 359	return atomic_read(&md->open_count);
 360}
 361
 362/*
 363 * Guarantees nothing is using the device before it's deleted.
 364 */
 365int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
 366{
 367	int r = 0;
 368
 369	spin_lock(&_minor_lock);
 370
 371	if (dm_open_count(md)) {
 372		r = -EBUSY;
 373		if (mark_deferred)
 374			set_bit(DMF_DEFERRED_REMOVE, &md->flags);
 375	} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
 376		r = -EEXIST;
 377	else
 378		set_bit(DMF_DELETING, &md->flags);
 379
 380	spin_unlock(&_minor_lock);
 381
 382	return r;
 383}
 384
 385int dm_cancel_deferred_remove(struct mapped_device *md)
 386{
 387	int r = 0;
 388
 389	spin_lock(&_minor_lock);
 390
 391	if (test_bit(DMF_DELETING, &md->flags))
 392		r = -EBUSY;
 393	else
 394		clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
 395
 396	spin_unlock(&_minor_lock);
 397
 398	return r;
 399}
 400
 401static void do_deferred_remove(struct work_struct *w)
 402{
 403	dm_deferred_remove();
 404}
 405
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 406static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
 407{
 408	struct mapped_device *md = bdev->bd_disk->private_data;
 409
 410	return dm_get_geometry(md, geo);
 411}
 412
 413static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
 414			    struct block_device **bdev)
 
 415{
 416	struct dm_target *ti;
 417	struct dm_table *map;
 418	int r;
 419
 420retry:
 421	r = -ENOTTY;
 422	map = dm_get_live_table(md, srcu_idx);
 423	if (!map || !dm_table_get_size(map))
 424		return r;
 425
 426	/* We only support devices that have a single target */
 427	if (map->num_targets != 1)
 428		return r;
 
 
 
 
 
 
 
 
 
 429
 430	ti = dm_table_get_target(map, 0);
 431	if (!ti->type->prepare_ioctl)
 432		return r;
 433
 434	if (dm_suspended_md(md))
 435		return -EAGAIN;
 
 436
 437	r = ti->type->prepare_ioctl(ti, bdev);
 
 438	if (r == -ENOTCONN && !fatal_signal_pending(current)) {
 439		dm_put_live_table(md, *srcu_idx);
 440		fsleep(10000);
 441		goto retry;
 442	}
 443
 444	return r;
 445}
 446
 447static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
 448{
 449	dm_put_live_table(md, srcu_idx);
 450}
 451
 452static int dm_blk_ioctl(struct block_device *bdev, blk_mode_t mode,
 453			unsigned int cmd, unsigned long arg)
 454{
 455	struct mapped_device *md = bdev->bd_disk->private_data;
 456	int r, srcu_idx;
 457
 458	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
 459	if (r < 0)
 460		goto out;
 461
 462	if (r > 0) {
 463		/*
 464		 * Target determined this ioctl is being issued against a
 465		 * subset of the parent bdev; require extra privileges.
 
 466		 */
 467		if (!capable(CAP_SYS_RAWIO)) {
 468			DMDEBUG_LIMIT(
 469	"%s: sending ioctl %x to DM device without required privilege.",
 470				current->comm, cmd);
 471			r = -ENOIOCTLCMD;
 472			goto out;
 473		}
 474	}
 475
 476	if (!bdev->bd_disk->fops->ioctl)
 477		r = -ENOTTY;
 478	else
 479		r = bdev->bd_disk->fops->ioctl(bdev, mode, cmd, arg);
 480out:
 481	dm_unprepare_ioctl(md, srcu_idx);
 482	return r;
 483}
 484
 485u64 dm_start_time_ns_from_clone(struct bio *bio)
 486{
 487	return jiffies_to_nsecs(clone_to_tio(bio)->io->start_time);
 488}
 489EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone);
 490
 491static inline bool bio_is_flush_with_data(struct bio *bio)
 492{
 493	return ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size);
 494}
 495
 496static inline unsigned int dm_io_sectors(struct dm_io *io, struct bio *bio)
 497{
 498	/*
 499	 * If REQ_PREFLUSH set, don't account payload, it will be
 500	 * submitted (and accounted) after this flush completes.
 501	 */
 502	if (bio_is_flush_with_data(bio))
 503		return 0;
 504	if (unlikely(dm_io_flagged(io, DM_IO_WAS_SPLIT)))
 505		return io->sectors;
 506	return bio_sectors(bio);
 507}
 508
 509static void dm_io_acct(struct dm_io *io, bool end)
 
 510{
 511	struct bio *bio = io->orig_bio;
 
 512
 513	if (dm_io_flagged(io, DM_IO_BLK_STAT)) {
 514		if (!end)
 515			bdev_start_io_acct(bio->bi_bdev, bio_op(bio),
 516					   io->start_time);
 517		else
 518			bdev_end_io_acct(bio->bi_bdev, bio_op(bio),
 519					 dm_io_sectors(io, bio),
 520					 io->start_time);
 521	}
 522
 523	if (static_branch_unlikely(&stats_enabled) &&
 524	    unlikely(dm_stats_used(&io->md->stats))) {
 525		sector_t sector;
 526
 527		if (unlikely(dm_io_flagged(io, DM_IO_WAS_SPLIT)))
 528			sector = bio_end_sector(bio) - io->sector_offset;
 529		else
 530			sector = bio->bi_iter.bi_sector;
 531
 532		dm_stats_account_io(&io->md->stats, bio_data_dir(bio),
 533				    sector, dm_io_sectors(io, bio),
 534				    end, io->start_time, &io->stats_aux);
 535	}
 536}
 537
 538static void __dm_start_io_acct(struct dm_io *io)
 
 539{
 540	dm_io_acct(io, false);
 541}
 542
 543static void dm_start_io_acct(struct dm_io *io, struct bio *clone)
 544{
 545	/*
 546	 * Ensure IO accounting is only ever started once.
 547	 */
 548	if (dm_io_flagged(io, DM_IO_ACCOUNTED))
 549		return;
 550
 551	/* Expect no possibility for race unless DM_TIO_IS_DUPLICATE_BIO. */
 552	if (!clone || likely(dm_tio_is_normal(clone_to_tio(clone)))) {
 553		dm_io_set_flag(io, DM_IO_ACCOUNTED);
 554	} else {
 555		unsigned long flags;
 556		/* Can afford locking given DM_TIO_IS_DUPLICATE_BIO */
 557		spin_lock_irqsave(&io->lock, flags);
 558		if (dm_io_flagged(io, DM_IO_ACCOUNTED)) {
 559			spin_unlock_irqrestore(&io->lock, flags);
 560			return;
 561		}
 562		dm_io_set_flag(io, DM_IO_ACCOUNTED);
 563		spin_unlock_irqrestore(&io->lock, flags);
 564	}
 565
 566	__dm_start_io_acct(io);
 567}
 568
 569static void dm_end_io_acct(struct dm_io *io)
 570{
 571	dm_io_acct(io, true);
 
 572}
 573
 574static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio, gfp_t gfp_mask)
 575{
 576	struct dm_io *io;
 577	struct dm_target_io *tio;
 578	struct bio *clone;
 
 579
 580	clone = bio_alloc_clone(NULL, bio, gfp_mask, &md->mempools->io_bs);
 581	if (unlikely(!clone))
 582		return NULL;
 583	tio = clone_to_tio(clone);
 584	tio->flags = 0;
 585	dm_tio_set_flag(tio, DM_TIO_INSIDE_DM_IO);
 586	tio->io = NULL;
 587
 588	io = container_of(tio, struct dm_io, tio);
 589	io->magic = DM_IO_MAGIC;
 590	io->status = BLK_STS_OK;
 591
 592	/* one ref is for submission, the other is for completion */
 593	atomic_set(&io->io_count, 2);
 594	this_cpu_inc(*md->pending_io);
 595	io->orig_bio = bio;
 596	io->md = md;
 597	spin_lock_init(&io->lock);
 598	io->start_time = jiffies;
 599	io->flags = 0;
 600	if (blk_queue_io_stat(md->queue))
 601		dm_io_set_flag(io, DM_IO_BLK_STAT);
 602
 603	if (static_branch_unlikely(&stats_enabled) &&
 604	    unlikely(dm_stats_used(&md->stats)))
 605		dm_stats_record_start(&md->stats, &io->stats_aux);
 606
 607	return io;
 
 
 
 
 
 
 
 
 608}
 609
 610static void free_io(struct dm_io *io)
 611{
 612	bio_put(&io->tio.clone);
 613}
 
 
 
 614
 615static struct bio *alloc_tio(struct clone_info *ci, struct dm_target *ti,
 616			     unsigned int target_bio_nr, unsigned int *len, gfp_t gfp_mask)
 617{
 618	struct mapped_device *md = ci->io->md;
 619	struct dm_target_io *tio;
 620	struct bio *clone;
 621
 622	if (!ci->io->tio.io) {
 623		/* the dm_target_io embedded in ci->io is available */
 624		tio = &ci->io->tio;
 625		/* alloc_io() already initialized embedded clone */
 626		clone = &tio->clone;
 627	} else {
 628		clone = bio_alloc_clone(NULL, ci->bio, gfp_mask,
 629					&md->mempools->bs);
 630		if (!clone)
 631			return NULL;
 632
 633		/* REQ_DM_POLL_LIST shouldn't be inherited */
 634		clone->bi_opf &= ~REQ_DM_POLL_LIST;
 
 
 
 
 
 635
 636		tio = clone_to_tio(clone);
 637		tio->flags = 0; /* also clears DM_TIO_INSIDE_DM_IO */
 638	}
 639
 640	tio->magic = DM_TIO_MAGIC;
 641	tio->io = ci->io;
 642	tio->ti = ti;
 643	tio->target_bio_nr = target_bio_nr;
 644	tio->len_ptr = len;
 645	tio->old_sector = 0;
 646
 647	/* Set default bdev, but target must bio_set_dev() before issuing IO */
 648	clone->bi_bdev = md->disk->part0;
 649	if (likely(ti != NULL) && unlikely(ti->needs_bio_set_dev))
 650		bio_set_dev(clone, md->disk->part0);
 651
 652	if (len) {
 653		clone->bi_iter.bi_size = to_bytes(*len);
 654		if (bio_integrity(clone))
 655			bio_integrity_trim(clone);
 656	}
 657
 658	return clone;
 659}
 660
 661static void free_tio(struct bio *clone)
 662{
 663	if (dm_tio_flagged(clone_to_tio(clone), DM_TIO_INSIDE_DM_IO))
 664		return;
 665	bio_put(clone);
 666}
 667
 668/*
 669 * Add the bio to the list of deferred io.
 670 */
 671static void queue_io(struct mapped_device *md, struct bio *bio)
 672{
 673	unsigned long flags;
 674
 675	spin_lock_irqsave(&md->deferred_lock, flags);
 676	bio_list_add(&md->deferred, bio);
 677	spin_unlock_irqrestore(&md->deferred_lock, flags);
 678	queue_work(md->wq, &md->work);
 679}
 680
 681/*
 682 * Everyone (including functions in this file), should use this
 683 * function to access the md->map field, and make sure they call
 684 * dm_put_live_table() when finished.
 685 */
 686struct dm_table *dm_get_live_table(struct mapped_device *md,
 687				   int *srcu_idx) __acquires(md->io_barrier)
 688{
 689	*srcu_idx = srcu_read_lock(&md->io_barrier);
 690
 691	return srcu_dereference(md->map, &md->io_barrier);
 692}
 693
 694void dm_put_live_table(struct mapped_device *md,
 695		       int srcu_idx) __releases(md->io_barrier)
 696{
 697	srcu_read_unlock(&md->io_barrier, srcu_idx);
 698}
 699
 700void dm_sync_table(struct mapped_device *md)
 701{
 702	synchronize_srcu(&md->io_barrier);
 703	synchronize_rcu_expedited();
 704}
 705
 706/*
 707 * A fast alternative to dm_get_live_table/dm_put_live_table.
 708 * The caller must not block between these two functions.
 709 */
 710static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
 711{
 712	rcu_read_lock();
 713	return rcu_dereference(md->map);
 714}
 715
 716static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
 717{
 718	rcu_read_unlock();
 719}
 720
 721static char *_dm_claim_ptr = "I belong to device-mapper";
 722
 723/*
 724 * Open a table device so we can use it as a map destination.
 725 */
 726static struct table_device *open_table_device(struct mapped_device *md,
 727		dev_t dev, blk_mode_t mode)
 728{
 729	struct table_device *td;
 730	struct file *bdev_file;
 731	struct block_device *bdev;
 732	u64 part_off;
 733	int r;
 734
 735	td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
 736	if (!td)
 737		return ERR_PTR(-ENOMEM);
 738	refcount_set(&td->count, 1);
 739
 740	bdev_file = bdev_file_open_by_dev(dev, mode, _dm_claim_ptr, NULL);
 741	if (IS_ERR(bdev_file)) {
 742		r = PTR_ERR(bdev_file);
 743		goto out_free_td;
 744	}
 745
 746	bdev = file_bdev(bdev_file);
 747
 748	/*
 749	 * We can be called before the dm disk is added.  In that case we can't
 750	 * register the holder relation here.  It will be done once add_disk was
 751	 * called.
 752	 */
 753	if (md->disk->slave_dir) {
 754		r = bd_link_disk_holder(bdev, md->disk);
 755		if (r)
 756			goto out_blkdev_put;
 757	}
 758
 759	td->dm_dev.mode = mode;
 760	td->dm_dev.bdev = bdev;
 761	td->dm_dev.bdev_file = bdev_file;
 762	td->dm_dev.dax_dev = fs_dax_get_by_bdev(bdev, &part_off,
 763						NULL, NULL);
 764	format_dev_t(td->dm_dev.name, dev);
 765	list_add(&td->list, &md->table_devices);
 766	return td;
 767
 768out_blkdev_put:
 769	__fput_sync(bdev_file);
 770out_free_td:
 771	kfree(td);
 772	return ERR_PTR(r);
 773}
 774
 775/*
 776 * Close a table device that we've been using.
 777 */
 778static void close_table_device(struct table_device *td, struct mapped_device *md)
 779{
 780	if (md->disk->slave_dir)
 781		bd_unlink_disk_holder(td->dm_dev.bdev, md->disk);
 782
 783	/* Leverage async fput() if DMF_DEFERRED_REMOVE set */
 784	if (unlikely(test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
 785		fput(td->dm_dev.bdev_file);
 786	else
 787		__fput_sync(td->dm_dev.bdev_file);
 788
 789	put_dax(td->dm_dev.dax_dev);
 790	list_del(&td->list);
 791	kfree(td);
 792}
 793
 794static struct table_device *find_table_device(struct list_head *l, dev_t dev,
 795					      blk_mode_t mode)
 796{
 797	struct table_device *td;
 798
 799	list_for_each_entry(td, l, list)
 800		if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
 801			return td;
 802
 803	return NULL;
 804}
 805
 806int dm_get_table_device(struct mapped_device *md, dev_t dev, blk_mode_t mode,
 807			struct dm_dev **result)
 808{
 809	struct table_device *td;
 810
 811	mutex_lock(&md->table_devices_lock);
 812	td = find_table_device(&md->table_devices, dev, mode);
 813	if (!td) {
 814		td = open_table_device(md, dev, mode);
 815		if (IS_ERR(td)) {
 816			mutex_unlock(&md->table_devices_lock);
 817			return PTR_ERR(td);
 818		}
 819	} else {
 820		refcount_inc(&td->count);
 
 
 
 
 
 
 
 
 
 
 
 
 821	}
 
 822	mutex_unlock(&md->table_devices_lock);
 823
 824	*result = &td->dm_dev;
 825	return 0;
 826}
 
 827
 828void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
 829{
 830	struct table_device *td = container_of(d, struct table_device, dm_dev);
 831
 832	mutex_lock(&md->table_devices_lock);
 833	if (refcount_dec_and_test(&td->count))
 834		close_table_device(td, md);
 
 
 
 835	mutex_unlock(&md->table_devices_lock);
 836}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 837
 838/*
 839 * Get the geometry associated with a dm device
 840 */
 841int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
 842{
 843	*geo = md->geometry;
 844
 845	return 0;
 846}
 847
 848/*
 849 * Set the geometry of a device.
 850 */
 851int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
 852{
 853	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
 854
 855	if (geo->start > sz) {
 856		DMERR("Start sector is beyond the geometry limits.");
 857		return -EINVAL;
 858	}
 859
 860	md->geometry = *geo;
 861
 862	return 0;
 863}
 864
 
 
 
 
 
 
 
 
 
 865static int __noflush_suspending(struct mapped_device *md)
 866{
 867	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
 868}
 869
 870static void dm_requeue_add_io(struct dm_io *io, bool first_stage)
 
 
 
 
 871{
 
 
 
 872	struct mapped_device *md = io->md;
 873
 874	if (first_stage) {
 875		struct dm_io *next = md->requeue_list;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 876
 877		md->requeue_list = io;
 878		io->next = next;
 879	} else {
 880		bio_list_add_head(&md->deferred, io->orig_bio);
 
 
 
 
 
 
 
 
 
 
 
 
 881	}
 882}
 883
 884static void dm_kick_requeue(struct mapped_device *md, bool first_stage)
 885{
 886	if (first_stage)
 887		queue_work(md->wq, &md->requeue_work);
 888	else
 889		queue_work(md->wq, &md->work);
 890}
 891
 892/*
 893 * Return true if the dm_io's original bio is requeued.
 894 * io->status is updated with error if requeue disallowed.
 895 */
 896static bool dm_handle_requeue(struct dm_io *io, bool first_stage)
 897{
 898	struct bio *bio = io->orig_bio;
 899	bool handle_requeue = (io->status == BLK_STS_DM_REQUEUE);
 900	bool handle_polled_eagain = ((io->status == BLK_STS_AGAIN) &&
 901				     (bio->bi_opf & REQ_POLLED));
 902	struct mapped_device *md = io->md;
 903	bool requeued = false;
 904
 905	if (handle_requeue || handle_polled_eagain) {
 906		unsigned long flags;
 907
 908		if (bio->bi_opf & REQ_POLLED) {
 909			/*
 910			 * Upper layer won't help us poll split bio
 911			 * (io->orig_bio may only reflect a subset of the
 912			 * pre-split original) so clear REQ_POLLED.
 913			 */
 914			bio_clear_polled(bio);
 915		}
 916
 917		/*
 918		 * Target requested pushing back the I/O or
 919		 * polled IO hit BLK_STS_AGAIN.
 920		 */
 921		spin_lock_irqsave(&md->deferred_lock, flags);
 922		if ((__noflush_suspending(md) &&
 923		     !WARN_ON_ONCE(dm_is_zone_write(md, bio))) ||
 924		    handle_polled_eagain || first_stage) {
 925			dm_requeue_add_io(io, first_stage);
 926			requeued = true;
 927		} else {
 928			/*
 929			 * noflush suspend was interrupted or this is
 930			 * a write to a zoned target.
 931			 */
 932			io->status = BLK_STS_IOERR;
 933		}
 934		spin_unlock_irqrestore(&md->deferred_lock, flags);
 935	}
 936
 937	if (requeued)
 938		dm_kick_requeue(md, first_stage);
 
 939
 940	return requeued;
 
 941}
 942
 943static void __dm_io_complete(struct dm_io *io, bool first_stage)
 
 
 
 944{
 945	struct bio *bio = io->orig_bio;
 946	struct mapped_device *md = io->md;
 947	blk_status_t io_error;
 948	bool requeued;
 
 
 949
 950	requeued = dm_handle_requeue(io, first_stage);
 951	if (requeued && first_stage)
 952		return;
 953
 954	io_error = io->status;
 955	if (dm_io_flagged(io, DM_IO_ACCOUNTED))
 956		dm_end_io_acct(io);
 957	else if (!io_error) {
 958		/*
 959		 * Must handle target that DM_MAPIO_SUBMITTED only to
 960		 * then bio_endio() rather than dm_submit_bio_remap()
 
 961		 */
 962		__dm_start_io_acct(io);
 963		dm_end_io_acct(io);
 964	}
 965	free_io(io);
 966	smp_wmb();
 967	this_cpu_dec(*md->pending_io);
 968
 969	/* nudge anyone waiting on suspend queue */
 970	if (unlikely(wq_has_sleeper(&md->wait)))
 971		wake_up(&md->wait);
 972
 973	/* Return early if the original bio was requeued */
 974	if (requeued)
 975		return;
 976
 977	if (bio_is_flush_with_data(bio)) {
 978		/*
 979		 * Preflush done for flush with data, reissue
 980		 * without REQ_PREFLUSH.
 
 981		 */
 982		bio->bi_opf &= ~REQ_PREFLUSH;
 983		queue_io(md, bio);
 984	} else {
 985		/* done with normal IO or empty flush */
 986		if (io_error)
 987			bio->bi_status = io_error;
 988		bio_endio(bio);
 989	}
 990}
 991
 992static void dm_wq_requeue_work(struct work_struct *work)
 993{
 994	struct mapped_device *md = container_of(work, struct mapped_device,
 995						requeue_work);
 996	unsigned long flags;
 997	struct dm_io *io;
 998
 999	/* reuse deferred lock to simplify dm_handle_requeue */
1000	spin_lock_irqsave(&md->deferred_lock, flags);
1001	io = md->requeue_list;
1002	md->requeue_list = NULL;
1003	spin_unlock_irqrestore(&md->deferred_lock, flags);
 
 
1004
1005	while (io) {
1006		struct dm_io *next = io->next;
 
 
 
 
 
1007
1008		dm_io_rewind(io, &md->disk->bio_split);
 
 
 
1009
1010		io->next = NULL;
1011		__dm_io_complete(io, false);
1012		io = next;
1013		cond_resched();
 
 
 
 
1014	}
1015}
1016
1017/*
1018 * Two staged requeue:
1019 *
1020 * 1) io->orig_bio points to the real original bio, and the part mapped to
1021 *    this io must be requeued, instead of other parts of the original bio.
1022 *
1023 * 2) io->orig_bio points to new cloned bio which matches the requeued dm_io.
1024 */
1025static void dm_io_complete(struct dm_io *io)
1026{
1027	bool first_requeue;
 
 
 
 
1028
1029	/*
1030	 * Only dm_io that has been split needs two stage requeue, otherwise
1031	 * we may run into long bio clone chain during suspend and OOM could
1032	 * be triggered.
1033	 *
1034	 * Also flush data dm_io won't be marked as DM_IO_WAS_SPLIT, so they
1035	 * also aren't handled via the first stage requeue.
 
 
 
 
1036	 */
1037	if (dm_io_flagged(io, DM_IO_WAS_SPLIT))
1038		first_requeue = true;
1039	else
1040		first_requeue = false;
 
 
 
 
 
 
 
 
 
 
 
 
1041
1042	__dm_io_complete(io, first_requeue);
 
1043}
1044
1045/*
1046 * Decrements the number of outstanding ios that a bio has been
1047 * cloned into, completing the original io if necc.
 
1048 */
1049static inline void __dm_io_dec_pending(struct dm_io *io)
1050{
1051	if (atomic_dec_and_test(&io->io_count))
1052		dm_io_complete(io);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1053}
1054
1055static void dm_io_set_error(struct dm_io *io, blk_status_t error)
1056{
1057	unsigned long flags;
 
1058
1059	/* Push-back supersedes any I/O errors */
1060	spin_lock_irqsave(&io->lock, flags);
1061	if (!(io->status == BLK_STS_DM_REQUEUE &&
1062	      __noflush_suspending(io->md))) {
1063		io->status = error;
1064	}
1065	spin_unlock_irqrestore(&io->lock, flags);
 
 
 
 
1066}
1067
1068static void dm_io_dec_pending(struct dm_io *io, blk_status_t error)
 
 
 
1069{
1070	if (unlikely(error))
1071		dm_io_set_error(io, error);
1072
1073	__dm_io_dec_pending(io);
 
 
 
1074}
1075
1076/*
1077 * The queue_limits are only valid as long as you have a reference
1078 * count on 'md'. But _not_ imposing verification to avoid atomic_read(),
1079 */
1080static inline struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
1081{
1082	return &md->queue->limits;
 
 
 
 
 
 
 
1083}
1084
1085void disable_discard(struct mapped_device *md)
 
1086{
1087	struct queue_limits *limits = dm_get_queue_limits(md);
 
 
 
 
 
 
 
 
1088
1089	/* device doesn't really support DISCARD, disable it */
1090	limits->max_hw_discard_sectors = 0;
1091}
1092
1093void disable_write_zeroes(struct mapped_device *md)
1094{
1095	struct queue_limits *limits = dm_get_queue_limits(md);
 
 
 
 
 
 
1096
1097	/* device doesn't really support WRITE ZEROES, disable it */
1098	limits->max_write_zeroes_sectors = 0;
1099}
1100
1101static bool swap_bios_limit(struct dm_target *ti, struct bio *bio)
1102{
1103	return unlikely((bio->bi_opf & REQ_SWAP) != 0) && unlikely(ti->limit_swap_bios);
 
 
 
1104}
1105
1106static void clone_endio(struct bio *bio)
1107{
1108	blk_status_t error = bio->bi_status;
1109	struct dm_target_io *tio = clone_to_tio(bio);
1110	struct dm_target *ti = tio->ti;
1111	dm_endio_fn endio = likely(ti != NULL) ? ti->type->end_io : NULL;
1112	struct dm_io *io = tio->io;
1113	struct mapped_device *md = io->md;
 
1114
1115	if (unlikely(error == BLK_STS_TARGET)) {
1116		if (bio_op(bio) == REQ_OP_DISCARD &&
1117		    !bdev_max_discard_sectors(bio->bi_bdev))
1118			disable_discard(md);
1119		else if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
1120			 !bdev_write_zeroes_sectors(bio->bi_bdev))
1121			disable_write_zeroes(md);
1122	}
 
1123
1124	if (static_branch_unlikely(&zoned_enabled) &&
1125	    unlikely(bdev_is_zoned(bio->bi_bdev)))
1126		dm_zone_endio(io, bio);
 
 
1127
1128	if (endio) {
1129		int r = endio(ti, bio, &error);
1130
1131		switch (r) {
1132		case DM_ENDIO_REQUEUE:
1133			if (static_branch_unlikely(&zoned_enabled)) {
1134				/*
1135				 * Requeuing writes to a sequential zone of a zoned
1136				 * target will break the sequential write pattern:
1137				 * fail such IO.
1138				 */
1139				if (WARN_ON_ONCE(dm_is_zone_write(md, bio)))
1140					error = BLK_STS_IOERR;
1141				else
1142					error = BLK_STS_DM_REQUEUE;
1143			} else
1144				error = BLK_STS_DM_REQUEUE;
1145			fallthrough;
1146		case DM_ENDIO_DONE:
1147			break;
1148		case DM_ENDIO_INCOMPLETE:
1149			/* The target will handle the io */
1150			return;
1151		default:
1152			DMCRIT("unimplemented target endio return value: %d", r);
1153			BUG();
1154		}
1155	}
1156
1157	if (static_branch_unlikely(&swap_bios_enabled) &&
1158	    likely(ti != NULL) && unlikely(swap_bios_limit(ti, bio)))
1159		up(&md->swap_bios_semaphore);
1160
1161	free_tio(bio);
1162	dm_io_dec_pending(io, error);
 
 
 
 
 
 
 
 
 
 
 
1163}
1164
1165/*
1166 * Return maximum size of I/O possible at the supplied sector up to the current
1167 * target boundary.
1168 */
1169static inline sector_t max_io_len_target_boundary(struct dm_target *ti,
1170						  sector_t target_offset)
1171{
1172	return ti->len - target_offset;
1173}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1174
1175static sector_t __max_io_len(struct dm_target *ti, sector_t sector,
1176			     unsigned int max_granularity,
1177			     unsigned int max_sectors)
1178{
1179	sector_t target_offset = dm_target_offset(ti, sector);
1180	sector_t len = max_io_len_target_boundary(ti, target_offset);
1181
1182	/*
1183	 * Does the target need to split IO even further?
1184	 * - varied (per target) IO splitting is a tenet of DM; this
1185	 *   explains why stacked chunk_sectors based splitting via
1186	 *   bio_split_to_limits() isn't possible here.
1187	 */
1188	if (!max_granularity)
1189		return len;
1190	return min_t(sector_t, len,
1191		min(max_sectors ? : queue_max_sectors(ti->table->md->queue),
1192		    blk_boundary_sectors_left(target_offset, max_granularity)));
1193}
1194
1195static inline sector_t max_io_len(struct dm_target *ti, sector_t sector)
 
 
 
 
1196{
1197	return __max_io_len(ti, sector, ti->max_io_len, 0);
 
 
 
 
 
 
1198}
1199
1200int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
 
 
 
 
 
 
1201{
1202	if (len > UINT_MAX) {
1203		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1204		      (unsigned long long)len, UINT_MAX);
1205		ti->error = "Maximum size of target IO is too large";
1206		return -EINVAL;
1207	}
1208
1209	ti->max_io_len = (uint32_t) len;
1210
1211	return 0;
1212}
1213EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1214
1215static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
1216						sector_t sector, int *srcu_idx)
1217	__acquires(md->io_barrier)
 
1218{
1219	struct dm_table *map;
1220	struct dm_target *ti;
1221
1222	map = dm_get_live_table(md, srcu_idx);
1223	if (!map)
1224		return NULL;
 
 
 
 
 
 
1225
1226	ti = dm_table_find_target(map, sector);
1227	if (!ti)
1228		return NULL;
1229
1230	return ti;
 
 
 
 
1231}
1232
1233static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1234		long nr_pages, enum dax_access_mode mode, void **kaddr,
1235		pfn_t *pfn)
 
 
1236{
1237	struct mapped_device *md = dax_get_private(dax_dev);
1238	sector_t sector = pgoff * PAGE_SECTORS;
1239	struct dm_target *ti;
1240	long len, ret = -EIO;
1241	int srcu_idx;
1242
1243	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1244
1245	if (!ti)
1246		goto out;
1247	if (!ti->type->direct_access)
1248		goto out;
1249	len = max_io_len(ti, sector) / PAGE_SECTORS;
1250	if (len < 1)
1251		goto out;
1252	nr_pages = min(len, nr_pages);
1253	ret = ti->type->direct_access(ti, pgoff, nr_pages, mode, kaddr, pfn);
1254
1255 out:
1256	dm_put_live_table(md, srcu_idx);
1257
1258	return ret;
1259}
1260
1261static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff,
1262				  size_t nr_pages)
1263{
1264	struct mapped_device *md = dax_get_private(dax_dev);
1265	sector_t sector = pgoff * PAGE_SECTORS;
1266	struct dm_target *ti;
1267	int ret = -EIO;
1268	int srcu_idx;
1269
1270	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
 
 
 
 
 
 
 
 
 
1271
1272	if (!ti)
1273		goto out;
1274	if (WARN_ON(!ti->type->dax_zero_page_range)) {
1275		/*
1276		 * ->zero_page_range() is mandatory dax operation. If we are
1277		 *  here, something is wrong.
1278		 */
1279		goto out;
1280	}
1281	ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages);
1282 out:
1283	dm_put_live_table(md, srcu_idx);
1284
1285	return ret;
1286}
1287
1288static size_t dm_dax_recovery_write(struct dax_device *dax_dev, pgoff_t pgoff,
1289		void *addr, size_t bytes, struct iov_iter *i)
1290{
1291	struct mapped_device *md = dax_get_private(dax_dev);
1292	sector_t sector = pgoff * PAGE_SECTORS;
1293	struct dm_target *ti;
1294	int srcu_idx;
1295	long ret = 0;
 
1296
1297	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1298	if (!ti || !ti->type->dax_recovery_write)
1299		goto out;
1300
1301	ret = ti->type->dax_recovery_write(ti, pgoff, addr, bytes, i);
1302out:
1303	dm_put_live_table(md, srcu_idx);
1304	return ret;
1305}
 
1306
1307/*
1308 * A target may call dm_accept_partial_bio only from the map routine.  It is
1309 * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_* zone management
1310 * operations, REQ_OP_ZONE_APPEND (zone append writes) and any bio serviced by
1311 * __send_duplicate_bios().
1312 *
1313 * dm_accept_partial_bio informs the dm that the target only wants to process
1314 * additional n_sectors sectors of the bio and the rest of the data should be
1315 * sent in a next bio.
1316 *
1317 * A diagram that explains the arithmetics:
1318 * +--------------------+---------------+-------+
1319 * |         1          |       2       |   3   |
1320 * +--------------------+---------------+-------+
1321 *
1322 * <-------------- *tio->len_ptr --------------->
1323 *                      <----- bio_sectors ----->
1324 *                      <-- n_sectors -->
1325 *
1326 * Region 1 was already iterated over with bio_advance or similar function.
1327 *	(it may be empty if the target doesn't use bio_advance)
1328 * Region 2 is the remaining bio size that the target wants to process.
1329 *	(it may be empty if region 1 is non-empty, although there is no reason
1330 *	 to make it empty)
1331 * The target requires that region 3 is to be sent in the next bio.
1332 *
1333 * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1334 * the partially processed part (the sum of regions 1+2) must be the same for all
1335 * copies of the bio.
1336 */
1337void dm_accept_partial_bio(struct bio *bio, unsigned int n_sectors)
1338{
1339	struct dm_target_io *tio = clone_to_tio(bio);
1340	struct dm_io *io = tio->io;
1341	unsigned int bio_sectors = bio_sectors(bio);
1342
1343	BUG_ON(dm_tio_flagged(tio, DM_TIO_IS_DUPLICATE_BIO));
1344	BUG_ON(op_is_zone_mgmt(bio_op(bio)));
1345	BUG_ON(bio_op(bio) == REQ_OP_ZONE_APPEND);
1346	BUG_ON(bio_sectors > *tio->len_ptr);
1347	BUG_ON(n_sectors > bio_sectors);
1348
1349	*tio->len_ptr -= bio_sectors - n_sectors;
1350	bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1351
1352	/*
1353	 * __split_and_process_bio() may have already saved mapped part
1354	 * for accounting but it is being reduced so update accordingly.
1355	 */
1356	dm_io_set_flag(io, DM_IO_WAS_SPLIT);
1357	io->sectors = n_sectors;
1358	io->sector_offset = bio_sectors(io->orig_bio);
1359}
1360EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1361
1362/*
1363 * @clone: clone bio that DM core passed to target's .map function
1364 * @tgt_clone: clone of @clone bio that target needs submitted
1365 *
1366 * Targets should use this interface to submit bios they take
1367 * ownership of when returning DM_MAPIO_SUBMITTED.
1368 *
1369 * Target should also enable ti->accounts_remapped_io
1370 */
1371void dm_submit_bio_remap(struct bio *clone, struct bio *tgt_clone)
1372{
1373	struct dm_target_io *tio = clone_to_tio(clone);
1374	struct dm_io *io = tio->io;
 
 
 
1375
1376	/* establish bio that will get submitted */
1377	if (!tgt_clone)
1378		tgt_clone = clone;
1379
1380	/*
1381	 * Account io->origin_bio to DM dev on behalf of target
1382	 * that took ownership of IO with DM_MAPIO_SUBMITTED.
1383	 */
1384	dm_start_io_acct(io, clone);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1385
1386	trace_block_bio_remap(tgt_clone, disk_devt(io->md->disk),
1387			      tio->old_sector);
1388	submit_bio_noacct(tgt_clone);
1389}
1390EXPORT_SYMBOL_GPL(dm_submit_bio_remap);
 
 
 
1391
1392static noinline void __set_swap_bios_limit(struct mapped_device *md, int latch)
1393{
1394	mutex_lock(&md->swap_bios_lock);
1395	while (latch < md->swap_bios) {
1396		cond_resched();
1397		down(&md->swap_bios_semaphore);
1398		md->swap_bios--;
1399	}
1400	while (latch > md->swap_bios) {
1401		cond_resched();
1402		up(&md->swap_bios_semaphore);
1403		md->swap_bios++;
1404	}
1405	mutex_unlock(&md->swap_bios_lock);
1406}
1407
1408static void __map_bio(struct bio *clone)
 
 
 
 
1409{
1410	struct dm_target_io *tio = clone_to_tio(clone);
1411	struct dm_target *ti = tio->ti;
1412	struct dm_io *io = tio->io;
1413	struct mapped_device *md = io->md;
1414	int r;
1415
1416	clone->bi_end_io = clone_endio;
1417
1418	/*
1419	 * Map the clone.
1420	 */
1421	tio->old_sector = clone->bi_iter.bi_sector;
1422
1423	if (static_branch_unlikely(&swap_bios_enabled) &&
1424	    unlikely(swap_bios_limit(ti, clone))) {
1425		int latch = get_swap_bios();
1426
1427		if (unlikely(latch != md->swap_bios))
1428			__set_swap_bios_limit(md, latch);
1429		down(&md->swap_bios_semaphore);
1430	}
1431
1432	if (likely(ti->type->map == linear_map))
1433		r = linear_map(ti, clone);
1434	else if (ti->type->map == stripe_map)
1435		r = stripe_map(ti, clone);
1436	else
1437		r = ti->type->map(ti, clone);
1438
1439	switch (r) {
1440	case DM_MAPIO_SUBMITTED:
1441		/* target has assumed ownership of this io */
1442		if (!ti->accounts_remapped_io)
1443			dm_start_io_acct(io, clone);
1444		break;
1445	case DM_MAPIO_REMAPPED:
1446		dm_submit_bio_remap(clone, NULL);
1447		break;
1448	case DM_MAPIO_KILL:
1449	case DM_MAPIO_REQUEUE:
1450		if (static_branch_unlikely(&swap_bios_enabled) &&
1451		    unlikely(swap_bios_limit(ti, clone)))
1452			up(&md->swap_bios_semaphore);
1453		free_tio(clone);
1454		if (r == DM_MAPIO_KILL)
1455			dm_io_dec_pending(io, BLK_STS_IOERR);
1456		else
1457			dm_io_dec_pending(io, BLK_STS_DM_REQUEUE);
1458		break;
1459	default:
1460		DMCRIT("unimplemented target map return value: %d", r);
1461		BUG();
1462	}
1463}
1464
1465static void setup_split_accounting(struct clone_info *ci, unsigned int len)
1466{
1467	struct dm_io *io = ci->io;
1468
1469	if (ci->sector_count > len) {
1470		/*
1471		 * Split needed, save the mapped part for accounting.
1472		 * NOTE: dm_accept_partial_bio() will update accordingly.
1473		 */
1474		dm_io_set_flag(io, DM_IO_WAS_SPLIT);
1475		io->sectors = len;
1476		io->sector_offset = bio_sectors(ci->bio);
1477	}
1478}
1479
1480static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1481				struct dm_target *ti, unsigned int num_bios,
1482				unsigned *len, gfp_t gfp_flag)
1483{
1484	struct bio *bio;
1485	int try = (gfp_flag & GFP_NOWAIT) ? 0 : 1;
1486
1487	for (; try < 2; try++) {
1488		int bio_nr;
1489
1490		if (try && num_bios > 1)
1491			mutex_lock(&ci->io->md->table_devices_lock);
1492		for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1493			bio = alloc_tio(ci, ti, bio_nr, len,
1494					try ? GFP_NOIO : GFP_NOWAIT);
1495			if (!bio)
1496				break;
1497
1498			bio_list_add(blist, bio);
1499		}
1500		if (try && num_bios > 1)
1501			mutex_unlock(&ci->io->md->table_devices_lock);
1502		if (bio_nr == num_bios)
1503			return;
1504
1505		while ((bio = bio_list_pop(blist)))
1506			free_tio(bio);
1507	}
1508}
1509
1510static unsigned int __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1511					  unsigned int num_bios, unsigned int *len,
1512					  gfp_t gfp_flag)
1513{
1514	struct bio_list blist = BIO_EMPTY_LIST;
1515	struct bio *clone;
1516	unsigned int ret = 0;
1517
1518	if (WARN_ON_ONCE(num_bios == 0)) /* num_bios = 0 is a bug in caller */
1519		return 0;
1520
1521	/* dm_accept_partial_bio() is not supported with shared tio->len_ptr */
1522	if (len)
1523		setup_split_accounting(ci, *len);
 
 
 
1524
1525	/*
1526	 * Using alloc_multiple_bios(), even if num_bios is 1, to consistently
1527	 * support allocating using GFP_NOWAIT with GFP_NOIO fallback.
1528	 */
1529	alloc_multiple_bios(&blist, ci, ti, num_bios, len, gfp_flag);
1530	while ((clone = bio_list_pop(&blist))) {
1531		if (num_bios > 1)
1532			dm_tio_set_flag(clone_to_tio(clone), DM_TIO_IS_DUPLICATE_BIO);
1533		__map_bio(clone);
1534		ret += 1;
1535	}
1536
1537	return ret;
 
1538}
1539
1540static void __send_empty_flush(struct clone_info *ci)
1541{
1542	struct dm_table *t = ci->map;
1543	struct bio flush_bio;
1544
1545	/*
1546	 * Use an on-stack bio for this, it's safe since we don't
1547	 * need to reference it after submit. It's just used as
1548	 * the basis for the clone(s).
1549	 */
1550	bio_init(&flush_bio, ci->io->md->disk->part0, NULL, 0,
1551		 REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC);
1552
1553	ci->bio = &flush_bio;
1554	ci->sector_count = 0;
1555	ci->io->tio.clone.bi_iter.bi_size = 0;
1556
1557	if (!t->flush_bypasses_map) {
1558		for (unsigned int i = 0; i < t->num_targets; i++) {
1559			unsigned int bios;
1560			struct dm_target *ti = dm_table_get_target(t, i);
1561
1562			if (unlikely(ti->num_flush_bios == 0))
1563				continue;
1564
1565			atomic_add(ti->num_flush_bios, &ci->io->io_count);
1566			bios = __send_duplicate_bios(ci, ti, ti->num_flush_bios,
1567						     NULL, GFP_NOWAIT);
1568			atomic_sub(ti->num_flush_bios - bios, &ci->io->io_count);
1569		}
1570	} else {
1571		/*
1572		 * Note that there's no need to grab t->devices_lock here
1573		 * because the targets that support flush optimization don't
1574		 * modify the list of devices.
1575		 */
1576		struct list_head *devices = dm_table_get_devices(t);
1577		unsigned int len = 0;
1578		struct dm_dev_internal *dd;
1579		list_for_each_entry(dd, devices, list) {
1580			struct bio *clone;
1581			/*
1582			 * Note that the structure dm_target_io is not
1583			 * associated with any target (because the device may be
1584			 * used by multiple targets), so we set tio->ti = NULL.
1585			 * We must check for NULL in the I/O processing path, to
1586			 * avoid NULL pointer dereference.
1587			 */
1588			clone = alloc_tio(ci, NULL, 0, &len, GFP_NOIO);
1589			atomic_add(1, &ci->io->io_count);
1590			bio_set_dev(clone, dd->dm_dev->bdev);
1591			clone->bi_end_io = clone_endio;
1592			dm_submit_bio_remap(clone, NULL);
1593		}
1594	}
1595
1596	/*
1597	 * alloc_io() takes one extra reference for submission, so the
1598	 * reference won't reach 0 without the following subtraction
1599	 */
1600	atomic_sub(1, &ci->io->io_count);
1601
1602	bio_uninit(ci->bio);
1603}
1604
1605static void __send_abnormal_io(struct clone_info *ci, struct dm_target *ti,
1606			       unsigned int num_bios, unsigned int max_granularity,
1607			       unsigned int max_sectors)
1608{
1609	unsigned int len, bios;
 
 
 
 
1610
1611	len = min_t(sector_t, ci->sector_count,
1612		    __max_io_len(ti, ci->sector, max_granularity, max_sectors));
1613
1614	atomic_add(num_bios, &ci->io->io_count);
1615	bios = __send_duplicate_bios(ci, ti, num_bios, &len, GFP_NOIO);
1616	/*
1617	 * alloc_io() takes one extra reference for submission, so the
1618	 * reference won't reach 0 without the following (+1) subtraction
1619	 */
1620	atomic_sub(num_bios - bios + 1, &ci->io->io_count);
 
 
 
 
 
 
 
 
 
 
 
 
1621
1622	ci->sector += len;
1623	ci->sector_count -= len;
1624}
1625
1626static bool is_abnormal_io(struct bio *bio)
 
 
1627{
1628	switch (bio_op(bio)) {
1629	case REQ_OP_READ:
1630	case REQ_OP_WRITE:
1631	case REQ_OP_FLUSH:
1632		return false;
1633	case REQ_OP_DISCARD:
1634	case REQ_OP_SECURE_ERASE:
1635	case REQ_OP_WRITE_ZEROES:
1636	case REQ_OP_ZONE_RESET_ALL:
1637		return true;
1638	default:
1639		return false;
1640	}
1641}
1642
1643static blk_status_t __process_abnormal_io(struct clone_info *ci,
1644					  struct dm_target *ti)
1645{
1646	unsigned int num_bios = 0;
1647	unsigned int max_granularity = 0;
1648	unsigned int max_sectors = 0;
1649	struct queue_limits *limits = dm_get_queue_limits(ti->table->md);
1650
1651	switch (bio_op(ci->bio)) {
1652	case REQ_OP_DISCARD:
1653		num_bios = ti->num_discard_bios;
1654		max_sectors = limits->max_discard_sectors;
1655		if (ti->max_discard_granularity)
1656			max_granularity = max_sectors;
1657		break;
1658	case REQ_OP_SECURE_ERASE:
1659		num_bios = ti->num_secure_erase_bios;
1660		max_sectors = limits->max_secure_erase_sectors;
1661		break;
1662	case REQ_OP_WRITE_ZEROES:
1663		num_bios = ti->num_write_zeroes_bios;
1664		max_sectors = limits->max_write_zeroes_sectors;
1665		break;
1666	default:
1667		break;
1668	}
1669
1670	/*
1671	 * Even though the device advertised support for this type of
1672	 * request, that does not mean every target supports it, and
1673	 * reconfiguration might also have changed that since the
1674	 * check was performed.
1675	 */
1676	if (unlikely(!num_bios))
1677		return BLK_STS_NOTSUPP;
1678
1679	__send_abnormal_io(ci, ti, num_bios, max_granularity, max_sectors);
1680
1681	return BLK_STS_OK;
1682}
1683
1684/*
1685 * Reuse ->bi_private as dm_io list head for storing all dm_io instances
1686 * associated with this bio, and this bio's bi_private needs to be
1687 * stored in dm_io->data before the reuse.
1688 *
1689 * bio->bi_private is owned by fs or upper layer, so block layer won't
1690 * touch it after splitting. Meantime it won't be changed by anyone after
1691 * bio is submitted. So this reuse is safe.
1692 */
1693static inline struct dm_io **dm_poll_list_head(struct bio *bio)
1694{
1695	return (struct dm_io **)&bio->bi_private;
1696}
 
1697
1698static void dm_queue_poll_io(struct bio *bio, struct dm_io *io)
1699{
1700	struct dm_io **head = dm_poll_list_head(bio);
 
1701
1702	if (!(bio->bi_opf & REQ_DM_POLL_LIST)) {
1703		bio->bi_opf |= REQ_DM_POLL_LIST;
1704		/*
1705		 * Save .bi_private into dm_io, so that we can reuse
1706		 * .bi_private as dm_io list head for storing dm_io list
 
 
1707		 */
1708		io->data = bio->bi_private;
 
 
 
 
 
 
 
 
 
1709
1710		/* tell block layer to poll for completion */
1711		bio->bi_cookie = ~BLK_QC_T_NONE;
1712
1713		io->next = NULL;
1714	} else {
1715		/*
1716		 * bio recursed due to split, reuse original poll list,
1717		 * and save bio->bi_private too.
1718		 */
1719		io->data = (*head)->data;
1720		io->next = *head;
1721	}
1722
1723	*head = io;
 
 
1724}
1725
1726/*
1727 * Select the correct strategy for processing a non-flush bio.
1728 */
1729static blk_status_t __split_and_process_bio(struct clone_info *ci)
1730{
1731	struct bio *clone;
1732	struct dm_target *ti;
1733	unsigned int len;
 
 
 
 
 
 
1734
1735	ti = dm_table_find_target(ci->map, ci->sector);
1736	if (unlikely(!ti))
1737		return BLK_STS_IOERR;
 
 
1738
1739	if (unlikely(ci->is_abnormal_io))
1740		return __process_abnormal_io(ci, ti);
 
 
 
 
1741
1742	/*
1743	 * Only support bio polling for normal IO, and the target io is
1744	 * exactly inside the dm_io instance (verified in dm_poll_dm_io)
1745	 */
1746	ci->submit_as_polled = !!(ci->bio->bi_opf & REQ_POLLED);
1747
1748	len = min_t(sector_t, max_io_len(ti, ci->sector), ci->sector_count);
1749	setup_split_accounting(ci, len);
 
 
 
 
 
 
1750
1751	if (unlikely(ci->bio->bi_opf & REQ_NOWAIT)) {
1752		if (unlikely(!dm_target_supports_nowait(ti->type)))
1753			return BLK_STS_NOTSUPP;
 
1754
1755		clone = alloc_tio(ci, ti, 0, &len, GFP_NOWAIT);
1756		if (unlikely(!clone))
1757			return BLK_STS_AGAIN;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1758	} else {
1759		clone = alloc_tio(ci, ti, 0, &len, GFP_NOIO);
 
 
 
1760	}
1761	__map_bio(clone);
1762
1763	ci->sector += len;
1764	ci->sector_count -= len;
1765
1766	return BLK_STS_OK;
 
1767}
 
 
 
1768
1769static void init_clone_info(struct clone_info *ci, struct dm_io *io,
1770			    struct dm_table *map, struct bio *bio, bool is_abnormal)
 
 
 
1771{
1772	ci->map = map;
1773	ci->io = io;
1774	ci->bio = bio;
1775	ci->is_abnormal_io = is_abnormal;
1776	ci->submit_as_polled = false;
1777	ci->sector = bio->bi_iter.bi_sector;
1778	ci->sector_count = bio_sectors(bio);
 
 
 
 
 
1779
1780	/* Shouldn't happen but sector_count was being set to 0 so... */
1781	if (static_branch_unlikely(&zoned_enabled) &&
1782	    WARN_ON_ONCE(op_is_zone_mgmt(bio_op(bio)) && ci->sector_count))
1783		ci->sector_count = 0;
 
 
 
 
 
 
1784}
1785
1786#ifdef CONFIG_BLK_DEV_ZONED
1787static inline bool dm_zone_bio_needs_split(struct mapped_device *md,
1788					   struct bio *bio)
1789{
1790	/*
1791	 * For mapped device that need zone append emulation, we must
1792	 * split any large BIO that straddles zone boundaries.
1793	 */
1794	return dm_emulate_zone_append(md) && bio_straddles_zones(bio) &&
1795		!bio_flagged(bio, BIO_ZONE_WRITE_PLUGGING);
1796}
1797static inline bool dm_zone_plug_bio(struct mapped_device *md, struct bio *bio)
 
1798{
1799	return dm_emulate_zone_append(md) && blk_zone_plug_bio(bio, 0);
 
 
 
 
 
 
 
 
 
1800}
1801
1802static blk_status_t __send_zone_reset_all_emulated(struct clone_info *ci,
1803						   struct dm_target *ti)
1804{
1805	struct bio_list blist = BIO_EMPTY_LIST;
1806	struct mapped_device *md = ci->io->md;
1807	unsigned int zone_sectors = md->disk->queue->limits.chunk_sectors;
1808	unsigned long *need_reset;
1809	unsigned int i, nr_zones, nr_reset;
1810	unsigned int num_bios = 0;
1811	blk_status_t sts = BLK_STS_OK;
1812	sector_t sector = ti->begin;
1813	struct bio *clone;
1814	int ret;
1815
1816	nr_zones = ti->len >> ilog2(zone_sectors);
1817	need_reset = bitmap_zalloc(nr_zones, GFP_NOIO);
1818	if (!need_reset)
1819		return BLK_STS_RESOURCE;
1820
1821	ret = dm_zone_get_reset_bitmap(md, ci->map, ti->begin,
1822				       nr_zones, need_reset);
1823	if (ret) {
1824		sts = BLK_STS_IOERR;
1825		goto free_bitmap;
1826	}
1827
1828	/* If we have no zone to reset, we are done. */
1829	nr_reset = bitmap_weight(need_reset, nr_zones);
1830	if (!nr_reset)
1831		goto free_bitmap;
1832
1833	atomic_add(nr_zones, &ci->io->io_count);
 
 
 
1834
1835	for (i = 0; i < nr_zones; i++) {
 
 
 
 
1836
1837		if (!test_bit(i, need_reset)) {
1838			sector += zone_sectors;
1839			continue;
1840		}
1841
1842		if (bio_list_empty(&blist)) {
1843			/* This may take a while, so be nice to others */
1844			if (num_bios)
1845				cond_resched();
1846
1847			/*
1848			 * We may need to reset thousands of zones, so let's
1849			 * not go crazy with the clone allocation.
1850			 */
1851			alloc_multiple_bios(&blist, ci, ti, min(nr_reset, 32),
1852					    NULL, GFP_NOIO);
1853		}
1854
1855		/* Get a clone and change it to a regular reset operation. */
1856		clone = bio_list_pop(&blist);
1857		clone->bi_opf &= ~REQ_OP_MASK;
1858		clone->bi_opf |= REQ_OP_ZONE_RESET | REQ_SYNC;
1859		clone->bi_iter.bi_sector = sector;
1860		clone->bi_iter.bi_size = 0;
1861		__map_bio(clone);
1862
1863		sector += zone_sectors;
1864		num_bios++;
1865		nr_reset--;
 
 
1866	}
1867
1868	WARN_ON_ONCE(!bio_list_empty(&blist));
1869	atomic_sub(nr_zones - num_bios, &ci->io->io_count);
1870	ci->sector_count = 0;
1871
1872free_bitmap:
1873	bitmap_free(need_reset);
1874
1875	return sts;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1876}
1877
1878static void __send_zone_reset_all_native(struct clone_info *ci,
1879					 struct dm_target *ti)
 
1880{
1881	unsigned int bios;
 
 
 
 
 
 
 
 
1882
1883	atomic_add(1, &ci->io->io_count);
1884	bios = __send_duplicate_bios(ci, ti, 1, NULL, GFP_NOIO);
1885	atomic_sub(1 - bios, &ci->io->io_count);
 
 
 
 
 
 
 
 
 
 
1886
1887	ci->sector_count = 0;
1888}
1889
1890static blk_status_t __send_zone_reset_all(struct clone_info *ci)
 
 
 
1891{
1892	struct dm_table *t = ci->map;
1893	blk_status_t sts = BLK_STS_OK;
1894
1895	for (unsigned int i = 0; i < t->num_targets; i++) {
1896		struct dm_target *ti = dm_table_get_target(t, i);
1897
1898		if (ti->zone_reset_all_supported) {
1899			__send_zone_reset_all_native(ci, ti);
1900			continue;
1901		}
1902
1903		sts = __send_zone_reset_all_emulated(ci, ti);
1904		if (sts != BLK_STS_OK)
1905			break;
1906	}
1907
1908	/* Release the reference that alloc_io() took for submission. */
1909	atomic_sub(1, &ci->io->io_count);
 
1910
1911	return sts;
1912}
1913
1914#else
1915static inline bool dm_zone_bio_needs_split(struct mapped_device *md,
1916					   struct bio *bio)
1917{
1918	return false;
1919}
1920static inline bool dm_zone_plug_bio(struct mapped_device *md, struct bio *bio)
1921{
1922	return false;
1923}
1924static blk_status_t __send_zone_reset_all(struct clone_info *ci)
1925{
1926	return BLK_STS_NOTSUPP;
1927}
1928#endif
1929
1930/*
1931 * Entry point to split a bio into clones and submit them to the targets.
 
 
 
1932 */
1933static void dm_split_and_process_bio(struct mapped_device *md,
1934				     struct dm_table *map, struct bio *bio)
1935{
1936	struct clone_info ci;
1937	struct dm_io *io;
1938	blk_status_t error = BLK_STS_OK;
1939	bool is_abnormal, need_split;
1940
1941	is_abnormal = is_abnormal_io(bio);
1942	if (static_branch_unlikely(&zoned_enabled)) {
1943		/* Special case REQ_OP_ZONE_RESET_ALL as it cannot be split. */
1944		need_split = (bio_op(bio) != REQ_OP_ZONE_RESET_ALL) &&
1945			(is_abnormal || dm_zone_bio_needs_split(md, bio));
1946	} else {
1947		need_split = is_abnormal;
 
 
 
 
 
 
 
 
 
 
 
 
1948	}
1949
1950	if (unlikely(need_split)) {
1951		/*
1952		 * Use bio_split_to_limits() for abnormal IO (e.g. discard, etc)
1953		 * otherwise associated queue_limits won't be imposed.
1954		 * Also split the BIO for mapped devices needing zone append
1955		 * emulation to ensure that the BIO does not cross zone
1956		 * boundaries.
1957		 */
1958		bio = bio_split_to_limits(bio);
1959		if (!bio)
1960			return;
 
 
 
 
 
 
 
 
 
 
 
 
1961	}
1962
1963	/*
1964	 * Use the block layer zone write plugging for mapped devices that
1965	 * need zone append emulation (e.g. dm-crypt).
1966	 */
1967	if (static_branch_unlikely(&zoned_enabled) && dm_zone_plug_bio(md, bio))
1968		return;
 
 
 
 
 
 
1969
1970	/* Only support nowait for normal IO */
1971	if (unlikely(bio->bi_opf & REQ_NOWAIT) && !is_abnormal) {
1972		io = alloc_io(md, bio, GFP_NOWAIT);
1973		if (unlikely(!io)) {
1974			/* Unable to do anything without dm_io. */
1975			bio_wouldblock_error(bio);
1976			return;
1977		}
1978	} else {
1979		io = alloc_io(md, bio, GFP_NOIO);
1980	}
1981	init_clone_info(&ci, io, map, bio, is_abnormal);
1982
1983	if (bio->bi_opf & REQ_PREFLUSH) {
1984		__send_empty_flush(&ci);
1985		/* dm_io_complete submits any data associated with flush */
1986		goto out;
1987	}
1988
1989	if (static_branch_unlikely(&zoned_enabled) &&
1990	    (bio_op(bio) == REQ_OP_ZONE_RESET_ALL)) {
1991		error = __send_zone_reset_all(&ci);
1992		goto out;
 
 
1993	}
1994
1995	error = __split_and_process_bio(&ci);
1996	if (error || !ci.sector_count)
1997		goto out;
1998	/*
1999	 * Remainder must be passed to submit_bio_noacct() so it gets handled
2000	 * *after* bios already submitted have been completely processed.
 
 
 
2001	 */
2002	bio_trim(bio, io->sectors, ci.sector_count);
2003	trace_block_split(bio, bio->bi_iter.bi_sector);
2004	bio_inc_remaining(bio);
2005	submit_bio_noacct(bio);
2006out:
2007	/*
2008	 * Drop the extra reference count for non-POLLED bio, and hold one
2009	 * reference for POLLED bio, which will be released in dm_poll_bio
2010	 *
2011	 * Add every dm_io instance into the dm_io list head which is stored
2012	 * in bio->bi_private, so that dm_poll_bio can poll them all.
2013	 */
2014	if (error || !ci.submit_as_polled) {
2015		/*
2016		 * In case of submission failure, the extra reference for
2017		 * submitting io isn't consumed yet
2018		 */
2019		if (error)
2020			atomic_dec(&io->io_count);
2021		dm_io_dec_pending(io, error);
2022	} else
2023		dm_queue_poll_io(bio, io);
2024}
2025
2026static void dm_submit_bio(struct bio *bio)
 
2027{
2028	struct mapped_device *md = bio->bi_bdev->bd_disk->private_data;
2029	int srcu_idx;
2030	struct dm_table *map;
 
 
 
 
2031
2032	map = dm_get_live_table(md, &srcu_idx);
2033	if (unlikely(!map)) {
2034		DMERR_LIMIT("%s: mapping table unavailable, erroring io",
2035			    dm_device_name(md));
2036		bio_io_error(bio);
2037		goto out;
2038	}
2039
2040	/* If suspended, queue this IO for later */
2041	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
2042		if (bio->bi_opf & REQ_NOWAIT)
2043			bio_wouldblock_error(bio);
2044		else if (bio->bi_opf & REQ_RAHEAD)
2045			bio_io_error(bio);
2046		else
2047			queue_io(md, bio);
2048		goto out;
2049	}
2050
2051	dm_split_and_process_bio(md, map, bio);
2052out:
2053	dm_put_live_table(md, srcu_idx);
2054}
2055
2056static bool dm_poll_dm_io(struct dm_io *io, struct io_comp_batch *iob,
2057			  unsigned int flags)
2058{
2059	WARN_ON_ONCE(!dm_tio_is_normal(&io->tio));
2060
2061	/* don't poll if the mapped io is done */
2062	if (atomic_read(&io->io_count) > 1)
2063		bio_poll(&io->tio.clone, iob, flags);
 
 
2064
2065	/* bio_poll holds the last reference */
2066	return atomic_read(&io->io_count) == 1;
2067}
2068
2069static int dm_poll_bio(struct bio *bio, struct io_comp_batch *iob,
2070		       unsigned int flags)
 
 
 
2071{
2072	struct dm_io **head = dm_poll_list_head(bio);
2073	struct dm_io *list = *head;
2074	struct dm_io *tmp = NULL;
2075	struct dm_io *curr, *next;
 
2076
2077	/* Only poll normal bio which was marked as REQ_DM_POLL_LIST */
2078	if (!(bio->bi_opf & REQ_DM_POLL_LIST))
2079		return 0;
2080
2081	WARN_ON_ONCE(!list);
 
 
2082
2083	/*
2084	 * Restore .bi_private before possibly completing dm_io.
2085	 *
2086	 * bio_poll() is only possible once @bio has been completely
2087	 * submitted via submit_bio_noacct()'s depth-first submission.
2088	 * So there is no dm_queue_poll_io() race associated with
2089	 * clearing REQ_DM_POLL_LIST here.
2090	 */
2091	bio->bi_opf &= ~REQ_DM_POLL_LIST;
2092	bio->bi_private = list->data;
2093
2094	for (curr = list, next = curr->next; curr; curr = next, next =
2095			curr ? curr->next : NULL) {
2096		if (dm_poll_dm_io(curr, iob, flags)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2097			/*
2098			 * clone_endio() has already occurred, so no
2099			 * error handling is needed here.
2100			 */
2101			__dm_io_dec_pending(curr);
2102		} else {
2103			curr->next = tmp;
2104			tmp = curr;
 
 
2105		}
2106	}
2107
2108	/* Not done? */
2109	if (tmp) {
2110		bio->bi_opf |= REQ_DM_POLL_LIST;
2111		/* Reset bio->bi_private to dm_io list head */
2112		*head = tmp;
2113		return 0;
2114	}
2115	return 1;
2116}
2117
2118/*
2119 *---------------------------------------------------------------
2120 * An IDR is used to keep track of allocated minor numbers.
2121 *---------------------------------------------------------------
2122 */
2123static void free_minor(int minor)
2124{
2125	spin_lock(&_minor_lock);
2126	idr_remove(&_minor_idr, minor);
2127	spin_unlock(&_minor_lock);
2128}
2129
2130/*
2131 * See if the device with a specific minor # is free.
2132 */
2133static int specific_minor(int minor)
2134{
2135	int r;
2136
2137	if (minor >= (1 << MINORBITS))
2138		return -EINVAL;
2139
2140	idr_preload(GFP_KERNEL);
2141	spin_lock(&_minor_lock);
2142
2143	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
2144
2145	spin_unlock(&_minor_lock);
2146	idr_preload_end();
2147	if (r < 0)
2148		return r == -ENOSPC ? -EBUSY : r;
2149	return 0;
2150}
2151
2152static int next_free_minor(int *minor)
2153{
2154	int r;
2155
2156	idr_preload(GFP_KERNEL);
2157	spin_lock(&_minor_lock);
2158
2159	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
2160
2161	spin_unlock(&_minor_lock);
2162	idr_preload_end();
2163	if (r < 0)
2164		return r;
2165	*minor = r;
2166	return 0;
2167}
2168
2169static const struct block_device_operations dm_blk_dops;
2170static const struct block_device_operations dm_rq_blk_dops;
2171static const struct dax_operations dm_dax_ops;
2172
2173static void dm_wq_work(struct work_struct *work);
2174
2175#ifdef CONFIG_BLK_INLINE_ENCRYPTION
2176static void dm_queue_destroy_crypto_profile(struct request_queue *q)
2177{
2178	dm_destroy_crypto_profile(q->crypto_profile);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2179}
2180
2181#else /* CONFIG_BLK_INLINE_ENCRYPTION */
 
 
 
2182
2183static inline void dm_queue_destroy_crypto_profile(struct request_queue *q)
2184{
 
 
 
2185}
2186#endif /* !CONFIG_BLK_INLINE_ENCRYPTION */
2187
2188static void cleanup_mapped_device(struct mapped_device *md)
2189{
2190	if (md->wq)
2191		destroy_workqueue(md->wq);
2192	dm_free_md_mempools(md->mempools);
 
 
 
 
 
2193
2194	if (md->dax_dev) {
2195		dax_remove_host(md->disk);
2196		kill_dax(md->dax_dev);
2197		put_dax(md->dax_dev);
2198		md->dax_dev = NULL;
2199	}
2200
2201	if (md->disk) {
2202		spin_lock(&_minor_lock);
2203		md->disk->private_data = NULL;
2204		spin_unlock(&_minor_lock);
2205		if (dm_get_md_type(md) != DM_TYPE_NONE) {
2206			struct table_device *td;
2207
2208			dm_sysfs_exit(md);
2209			list_for_each_entry(td, &md->table_devices, list) {
2210				bd_unlink_disk_holder(td->dm_dev.bdev,
2211						      md->disk);
2212			}
2213
2214			/*
2215			 * Hold lock to make sure del_gendisk() won't concurrent
2216			 * with open/close_table_device().
2217			 */
2218			mutex_lock(&md->table_devices_lock);
2219			del_gendisk(md->disk);
2220			mutex_unlock(&md->table_devices_lock);
2221		}
2222		dm_queue_destroy_crypto_profile(md->queue);
2223		put_disk(md->disk);
2224	}
2225
2226	if (md->pending_io) {
2227		free_percpu(md->pending_io);
2228		md->pending_io = NULL;
 
 
 
2229	}
2230
2231	cleanup_srcu_struct(&md->io_barrier);
2232
2233	mutex_destroy(&md->suspend_lock);
2234	mutex_destroy(&md->type_lock);
2235	mutex_destroy(&md->table_devices_lock);
2236	mutex_destroy(&md->swap_bios_lock);
2237
2238	dm_mq_cleanup_mapped_device(md);
2239}
2240
2241/*
2242 * Allocate and initialise a blank device with a given minor.
2243 */
2244static struct mapped_device *alloc_dev(int minor)
2245{
2246	int r, numa_node_id = dm_get_numa_node();
2247	struct dax_device *dax_dev;
2248	struct mapped_device *md;
2249	void *old_md;
2250
2251	md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
2252	if (!md) {
2253		DMERR("unable to allocate device, out of memory.");
2254		return NULL;
2255	}
2256
2257	if (!try_module_get(THIS_MODULE))
2258		goto bad_module_get;
2259
2260	/* get a minor number for the dev */
2261	if (minor == DM_ANY_MINOR)
2262		r = next_free_minor(&minor);
2263	else
2264		r = specific_minor(minor);
2265	if (r < 0)
2266		goto bad_minor;
2267
2268	r = init_srcu_struct(&md->io_barrier);
2269	if (r < 0)
2270		goto bad_io_barrier;
2271
2272	md->numa_node_id = numa_node_id;
 
2273	md->init_tio_pdu = false;
2274	md->type = DM_TYPE_NONE;
2275	mutex_init(&md->suspend_lock);
2276	mutex_init(&md->type_lock);
2277	mutex_init(&md->table_devices_lock);
2278	spin_lock_init(&md->deferred_lock);
2279	atomic_set(&md->holders, 1);
2280	atomic_set(&md->open_count, 0);
2281	atomic_set(&md->event_nr, 0);
2282	atomic_set(&md->uevent_seq, 0);
2283	INIT_LIST_HEAD(&md->uevent_list);
2284	INIT_LIST_HEAD(&md->table_devices);
2285	spin_lock_init(&md->uevent_lock);
2286
2287	/*
2288	 * default to bio-based until DM table is loaded and md->type
2289	 * established. If request-based table is loaded: blk-mq will
2290	 * override accordingly.
2291	 */
2292	md->disk = blk_alloc_disk(NULL, md->numa_node_id);
2293	if (IS_ERR(md->disk)) {
2294		md->disk = NULL;
2295		goto bad;
2296	}
2297	md->queue = md->disk->queue;
2298
 
 
2299	init_waitqueue_head(&md->wait);
2300	INIT_WORK(&md->work, dm_wq_work);
2301	INIT_WORK(&md->requeue_work, dm_wq_requeue_work);
2302	init_waitqueue_head(&md->eventq);
2303	init_completion(&md->kobj_holder.completion);
2304
2305	md->requeue_list = NULL;
2306	md->swap_bios = get_swap_bios();
2307	sema_init(&md->swap_bios_semaphore, md->swap_bios);
2308	mutex_init(&md->swap_bios_lock);
2309
2310	md->disk->major = _major;
2311	md->disk->first_minor = minor;
2312	md->disk->minors = 1;
2313	md->disk->flags |= GENHD_FL_NO_PART;
2314	md->disk->fops = &dm_blk_dops;
 
2315	md->disk->private_data = md;
2316	sprintf(md->disk->disk_name, "dm-%d", minor);
2317
2318	dax_dev = alloc_dax(md, &dm_dax_ops);
2319	if (IS_ERR(dax_dev)) {
2320		if (PTR_ERR(dax_dev) != -EOPNOTSUPP)
2321			goto bad;
2322	} else {
2323		set_dax_nocache(dax_dev);
2324		set_dax_nomc(dax_dev);
2325		md->dax_dev = dax_dev;
2326		if (dax_add_host(dax_dev, md->disk))
2327			goto bad;
2328	}
2329
2330	format_dev_t(md->name, MKDEV(_major, minor));
2331
2332	md->wq = alloc_workqueue("kdmflush/%s", WQ_MEM_RECLAIM, 0, md->name);
2333	if (!md->wq)
2334		goto bad;
2335
2336	md->pending_io = alloc_percpu(unsigned long);
2337	if (!md->pending_io)
2338		goto bad;
2339
2340	r = dm_stats_init(&md->stats);
2341	if (r < 0)
2342		goto bad;
 
 
2343
2344	/* Populate the mapping, nobody knows we exist yet */
2345	spin_lock(&_minor_lock);
2346	old_md = idr_replace(&_minor_idr, md, minor);
2347	spin_unlock(&_minor_lock);
2348
2349	BUG_ON(old_md != MINOR_ALLOCED);
2350
2351	return md;
2352
2353bad:
2354	cleanup_mapped_device(md);
2355bad_io_barrier:
2356	free_minor(minor);
2357bad_minor:
2358	module_put(THIS_MODULE);
2359bad_module_get:
2360	kvfree(md);
2361	return NULL;
2362}
2363
2364static void unlock_fs(struct mapped_device *md);
2365
2366static void free_dev(struct mapped_device *md)
2367{
2368	int minor = MINOR(disk_devt(md->disk));
2369
2370	unlock_fs(md);
2371
2372	cleanup_mapped_device(md);
 
 
 
 
2373
2374	WARN_ON_ONCE(!list_empty(&md->table_devices));
2375	dm_stats_cleanup(&md->stats);
2376	free_minor(minor);
2377
2378	module_put(THIS_MODULE);
2379	kvfree(md);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2380}
2381
2382/*
2383 * Bind a table to the device.
2384 */
2385static void event_callback(void *context)
2386{
2387	unsigned long flags;
2388	LIST_HEAD(uevents);
2389	struct mapped_device *md = context;
2390
2391	spin_lock_irqsave(&md->uevent_lock, flags);
2392	list_splice_init(&md->uevent_list, &uevents);
2393	spin_unlock_irqrestore(&md->uevent_lock, flags);
2394
2395	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2396
2397	atomic_inc(&md->event_nr);
2398	wake_up(&md->eventq);
2399	dm_issue_global_event();
 
 
 
 
 
 
 
 
 
2400}
2401
2402/*
2403 * Returns old map, which caller must destroy.
2404 */
2405static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2406			       struct queue_limits *limits)
2407{
2408	struct dm_table *old_map;
 
2409	sector_t size;
2410	int ret;
2411
2412	lockdep_assert_held(&md->suspend_lock);
2413
2414	size = dm_table_get_size(t);
2415
2416	/*
2417	 * Wipe any geometry if the size of the table changed.
2418	 */
2419	if (size != dm_get_size(md))
2420		memset(&md->geometry, 0, sizeof(md->geometry));
2421
2422	set_capacity(md->disk, size);
2423
2424	dm_table_event_callback(t, event_callback, md);
2425
 
 
 
 
 
 
 
2426	if (dm_table_request_based(t)) {
 
2427		/*
2428		 * Leverage the fact that request-based DM targets are
2429		 * immutable singletons - used to optimize dm_mq_queue_rq.
 
2430		 */
2431		md->immutable_target = dm_table_get_immutable_target(t);
2432
2433		/*
2434		 * There is no need to reload with request-based dm because the
2435		 * size of front_pad doesn't change.
2436		 *
2437		 * Note for future: If you are to reload bioset, prep-ed
2438		 * requests in the queue may refer to bio from the old bioset,
2439		 * so you must walk through the queue to unprep.
2440		 */
2441		if (!md->mempools) {
2442			md->mempools = t->mempools;
2443			t->mempools = NULL;
2444		}
2445	} else {
2446		/*
2447		 * The md may already have mempools that need changing.
2448		 * If so, reload bioset because front_pad may have changed
2449		 * because a different table was loaded.
2450		 */
2451		dm_free_md_mempools(md->mempools);
2452		md->mempools = t->mempools;
2453		t->mempools = NULL;
2454	}
2455
2456	ret = dm_table_set_restrictions(t, md->queue, limits);
2457	if (ret) {
2458		old_map = ERR_PTR(ret);
2459		goto out;
2460	}
2461
2462	old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2463	rcu_assign_pointer(md->map, (void *)t);
2464	md->immutable_target_type = dm_table_get_immutable_target_type(t);
2465
 
2466	if (old_map)
2467		dm_sync_table(md);
2468out:
2469	return old_map;
2470}
2471
2472/*
2473 * Returns unbound table for the caller to free.
2474 */
2475static struct dm_table *__unbind(struct mapped_device *md)
2476{
2477	struct dm_table *map = rcu_dereference_protected(md->map, 1);
2478
2479	if (!map)
2480		return NULL;
2481
2482	dm_table_event_callback(map, NULL, NULL);
2483	RCU_INIT_POINTER(md->map, NULL);
2484	dm_sync_table(md);
2485
2486	return map;
2487}
2488
2489/*
2490 * Constructor for a new device.
2491 */
2492int dm_create(int minor, struct mapped_device **result)
2493{
2494	struct mapped_device *md;
2495
2496	md = alloc_dev(minor);
2497	if (!md)
2498		return -ENXIO;
2499
2500	dm_ima_reset_data(md);
2501
2502	*result = md;
2503	return 0;
2504}
2505
2506/*
2507 * Functions to manage md->type.
2508 * All are required to hold md->type_lock.
2509 */
2510void dm_lock_md_type(struct mapped_device *md)
2511{
2512	mutex_lock(&md->type_lock);
2513}
2514
2515void dm_unlock_md_type(struct mapped_device *md)
2516{
2517	mutex_unlock(&md->type_lock);
2518}
2519
2520enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
 
 
 
 
 
 
2521{
2522	return md->type;
2523}
2524
2525struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2526{
2527	return md->immutable_target_type;
2528}
2529
2530/*
2531 * Setup the DM device's queue based on md's type
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2532 */
2533int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2534{
2535	enum dm_queue_mode type = dm_table_get_type(t);
2536	struct queue_limits limits;
2537	struct table_device *td;
2538	int r;
2539
2540	WARN_ON_ONCE(type == DM_TYPE_NONE);
 
 
 
 
2541
2542	if (type == DM_TYPE_REQUEST_BASED) {
2543		md->disk->fops = &dm_rq_blk_dops;
2544		r = dm_mq_init_request_queue(md, t);
2545		if (r) {
2546			DMERR("Cannot initialize queue for request-based dm mapped device");
2547			return r;
2548		}
2549	}
2550
2551	r = dm_calculate_queue_limits(t, &limits);
2552	if (r) {
2553		DMERR("Cannot calculate initial queue limits");
2554		return r;
 
 
 
 
 
 
 
 
 
 
 
 
 
2555	}
2556	r = dm_table_set_restrictions(t, md->queue, &limits);
2557	if (r)
2558		return r;
 
 
 
 
 
2559
2560	/*
2561	 * Hold lock to make sure add_disk() and del_gendisk() won't concurrent
2562	 * with open_table_device() and close_table_device().
2563	 */
2564	mutex_lock(&md->table_devices_lock);
2565	r = add_disk(md->disk);
2566	mutex_unlock(&md->table_devices_lock);
2567	if (r)
2568		return r;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2569
2570	/*
2571	 * Register the holder relationship for devices added before the disk
2572	 * was live.
2573	 */
2574	list_for_each_entry(td, &md->table_devices, list) {
2575		r = bd_link_disk_holder(td->dm_dev.bdev, md->disk);
2576		if (r)
2577			goto out_undo_holders;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2578	}
 
2579
2580	r = dm_sysfs_init(md);
2581	if (r)
2582		goto out_undo_holders;
2583
2584	md->type = type;
2585	return 0;
2586
2587out_undo_holders:
2588	list_for_each_entry_continue_reverse(td, &md->table_devices, list)
2589		bd_unlink_disk_holder(td->dm_dev.bdev, md->disk);
2590	mutex_lock(&md->table_devices_lock);
2591	del_gendisk(md->disk);
2592	mutex_unlock(&md->table_devices_lock);
2593	return r;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2594}
2595
2596struct mapped_device *dm_get_md(dev_t dev)
2597{
2598	struct mapped_device *md;
2599	unsigned int minor = MINOR(dev);
2600
2601	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2602		return NULL;
2603
2604	spin_lock(&_minor_lock);
2605
2606	md = idr_find(&_minor_idr, minor);
2607	if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2608	    test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2609		md = NULL;
2610		goto out;
 
 
 
 
 
2611	}
2612	dm_get(md);
2613out:
2614	spin_unlock(&_minor_lock);
2615
2616	return md;
2617}
2618EXPORT_SYMBOL_GPL(dm_get_md);
2619
2620void *dm_get_mdptr(struct mapped_device *md)
2621{
2622	return md->interface_ptr;
2623}
2624
2625void dm_set_mdptr(struct mapped_device *md, void *ptr)
2626{
2627	md->interface_ptr = ptr;
2628}
2629
2630void dm_get(struct mapped_device *md)
2631{
2632	atomic_inc(&md->holders);
2633	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2634}
2635
2636int dm_hold(struct mapped_device *md)
2637{
2638	spin_lock(&_minor_lock);
2639	if (test_bit(DMF_FREEING, &md->flags)) {
2640		spin_unlock(&_minor_lock);
2641		return -EBUSY;
2642	}
2643	dm_get(md);
2644	spin_unlock(&_minor_lock);
2645	return 0;
2646}
2647EXPORT_SYMBOL_GPL(dm_hold);
2648
2649const char *dm_device_name(struct mapped_device *md)
2650{
2651	return md->name;
2652}
2653EXPORT_SYMBOL_GPL(dm_device_name);
2654
2655static void __dm_destroy(struct mapped_device *md, bool wait)
2656{
2657	struct dm_table *map;
2658	int srcu_idx;
2659
2660	might_sleep();
2661
2662	spin_lock(&_minor_lock);
2663	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2664	set_bit(DMF_FREEING, &md->flags);
2665	spin_unlock(&_minor_lock);
2666
2667	blk_mark_disk_dead(md->disk);
 
2668
2669	/*
2670	 * Take suspend_lock so that presuspend and postsuspend methods
2671	 * do not race with internal suspend.
2672	 */
2673	mutex_lock(&md->suspend_lock);
2674	map = dm_get_live_table(md, &srcu_idx);
2675	if (!dm_suspended_md(md)) {
2676		dm_table_presuspend_targets(map);
2677		set_bit(DMF_SUSPENDED, &md->flags);
2678		set_bit(DMF_POST_SUSPENDING, &md->flags);
2679		dm_table_postsuspend_targets(map);
2680	}
2681	/* dm_put_live_table must be before fsleep, otherwise deadlock is possible */
2682	dm_put_live_table(md, srcu_idx);
2683	mutex_unlock(&md->suspend_lock);
2684
2685	/*
2686	 * Rare, but there may be I/O requests still going to complete,
2687	 * for example.  Wait for all references to disappear.
2688	 * No one should increment the reference count of the mapped_device,
2689	 * after the mapped_device state becomes DMF_FREEING.
2690	 */
2691	if (wait)
2692		while (atomic_read(&md->holders))
2693			fsleep(1000);
2694	else if (atomic_read(&md->holders))
2695		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2696		       dm_device_name(md), atomic_read(&md->holders));
2697
 
2698	dm_table_destroy(__unbind(md));
2699	free_dev(md);
2700}
2701
2702void dm_destroy(struct mapped_device *md)
2703{
2704	__dm_destroy(md, true);
2705}
2706
2707void dm_destroy_immediate(struct mapped_device *md)
2708{
2709	__dm_destroy(md, false);
2710}
2711
2712void dm_put(struct mapped_device *md)
2713{
2714	atomic_dec(&md->holders);
2715}
2716EXPORT_SYMBOL_GPL(dm_put);
2717
2718static bool dm_in_flight_bios(struct mapped_device *md)
2719{
2720	int cpu;
2721	unsigned long sum = 0;
2722
2723	for_each_possible_cpu(cpu)
2724		sum += *per_cpu_ptr(md->pending_io, cpu);
2725
2726	return sum != 0;
2727}
2728
2729static int dm_wait_for_bios_completion(struct mapped_device *md, unsigned int task_state)
2730{
2731	int r = 0;
2732	DEFINE_WAIT(wait);
2733
2734	while (true) {
2735		prepare_to_wait(&md->wait, &wait, task_state);
2736
2737		if (!dm_in_flight_bios(md))
2738			break;
2739
2740		if (signal_pending_state(task_state, current)) {
2741			r = -ERESTARTSYS;
 
2742			break;
2743		}
2744
2745		io_schedule();
2746	}
2747	finish_wait(&md->wait, &wait);
2748
2749	smp_rmb();
2750
2751	return r;
2752}
2753
2754static int dm_wait_for_completion(struct mapped_device *md, unsigned int task_state)
2755{
2756	int r = 0;
2757
2758	if (!queue_is_mq(md->queue))
2759		return dm_wait_for_bios_completion(md, task_state);
2760
2761	while (true) {
2762		if (!blk_mq_queue_inflight(md->queue))
2763			break;
2764
2765		if (signal_pending_state(task_state, current)) {
2766			r = -ERESTARTSYS;
2767			break;
2768		}
2769
2770		fsleep(5000);
2771	}
2772
2773	return r;
2774}
2775
2776/*
2777 * Process the deferred bios
2778 */
2779static void dm_wq_work(struct work_struct *work)
2780{
2781	struct mapped_device *md = container_of(work, struct mapped_device, work);
2782	struct bio *bio;
 
 
 
 
 
2783
2784	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2785		spin_lock_irq(&md->deferred_lock);
2786		bio = bio_list_pop(&md->deferred);
2787		spin_unlock_irq(&md->deferred_lock);
2788
2789		if (!bio)
2790			break;
2791
2792		submit_bio_noacct(bio);
2793		cond_resched();
 
 
2794	}
 
 
2795}
2796
2797static void dm_queue_flush(struct mapped_device *md)
2798{
2799	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2800	smp_mb__after_atomic();
2801	queue_work(md->wq, &md->work);
2802}
2803
2804/*
2805 * Swap in a new table, returning the old one for the caller to destroy.
2806 */
2807struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2808{
2809	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2810	struct queue_limits limits;
2811	int r;
2812
2813	mutex_lock(&md->suspend_lock);
2814
2815	/* device must be suspended */
2816	if (!dm_suspended_md(md))
2817		goto out;
2818
2819	/*
2820	 * If the new table has no data devices, retain the existing limits.
2821	 * This helps multipath with queue_if_no_path if all paths disappear,
2822	 * then new I/O is queued based on these limits, and then some paths
2823	 * reappear.
2824	 */
2825	if (dm_table_has_no_data_devices(table)) {
2826		live_map = dm_get_live_table_fast(md);
2827		if (live_map)
2828			limits = md->queue->limits;
2829		dm_put_live_table_fast(md);
2830	}
2831
2832	if (!live_map) {
2833		r = dm_calculate_queue_limits(table, &limits);
2834		if (r) {
2835			map = ERR_PTR(r);
2836			goto out;
2837		}
2838	}
2839
2840	map = __bind(md, table, &limits);
2841	dm_issue_global_event();
2842
2843out:
2844	mutex_unlock(&md->suspend_lock);
2845	return map;
2846}
2847
2848/*
2849 * Functions to lock and unlock any filesystem running on the
2850 * device.
2851 */
2852static int lock_fs(struct mapped_device *md)
2853{
2854	int r;
2855
2856	WARN_ON(test_bit(DMF_FROZEN, &md->flags));
 
 
 
 
 
 
 
 
 
2857
2858	r = bdev_freeze(md->disk->part0);
2859	if (!r)
2860		set_bit(DMF_FROZEN, &md->flags);
2861	return r;
2862}
2863
2864static void unlock_fs(struct mapped_device *md)
2865{
2866	if (!test_bit(DMF_FROZEN, &md->flags))
2867		return;
2868	bdev_thaw(md->disk->part0);
 
 
2869	clear_bit(DMF_FROZEN, &md->flags);
2870}
2871
2872/*
2873 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2874 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2875 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2876 *
2877 * If __dm_suspend returns 0, the device is completely quiescent
2878 * now. There is no request-processing activity. All new requests
2879 * are being added to md->deferred list.
 
 
2880 */
2881static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2882			unsigned int suspend_flags, unsigned int task_state,
2883			int dmf_suspended_flag)
2884{
2885	bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2886	bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2887	int r;
2888
2889	lockdep_assert_held(&md->suspend_lock);
2890
2891	/*
2892	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2893	 * This flag is cleared before dm_suspend returns.
2894	 */
2895	if (noflush)
2896		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2897	else
2898		DMDEBUG("%s: suspending with flush", dm_device_name(md));
2899
2900	/*
2901	 * This gets reverted if there's an error later and the targets
2902	 * provide the .presuspend_undo hook.
2903	 */
2904	dm_table_presuspend_targets(map);
2905
2906	/*
2907	 * Flush I/O to the device.
2908	 * Any I/O submitted after lock_fs() may not be flushed.
2909	 * noflush takes precedence over do_lockfs.
2910	 * (lock_fs() flushes I/Os and waits for them to complete.)
2911	 */
2912	if (!noflush && do_lockfs) {
2913		r = lock_fs(md);
2914		if (r) {
2915			dm_table_presuspend_undo_targets(map);
2916			return r;
2917		}
2918	}
2919
2920	/*
2921	 * Here we must make sure that no processes are submitting requests
2922	 * to target drivers i.e. no one may be executing
2923	 * dm_split_and_process_bio from dm_submit_bio.
 
2924	 *
2925	 * To get all processes out of dm_split_and_process_bio in dm_submit_bio,
2926	 * we take the write lock. To prevent any process from reentering
2927	 * dm_split_and_process_bio from dm_submit_bio and quiesce the thread
2928	 * (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND and call
2929	 * flush_workqueue(md->wq).
2930	 */
2931	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2932	if (map)
2933		synchronize_srcu(&md->io_barrier);
2934
2935	/*
2936	 * Stop md->queue before flushing md->wq in case request-based
2937	 * dm defers requests to md->wq from md->queue.
2938	 */
2939	if (dm_request_based(md))
2940		dm_stop_queue(md->queue);
 
 
 
2941
2942	flush_workqueue(md->wq);
2943
2944	/*
2945	 * At this point no more requests are entering target request routines.
2946	 * We call dm_wait_for_completion to wait for all existing requests
2947	 * to finish.
2948	 */
2949	r = dm_wait_for_completion(md, task_state);
2950	if (!r)
2951		set_bit(dmf_suspended_flag, &md->flags);
2952
2953	if (noflush)
2954		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2955	if (map)
2956		synchronize_srcu(&md->io_barrier);
2957
2958	/* were we interrupted ? */
2959	if (r < 0) {
2960		dm_queue_flush(md);
2961
2962		if (dm_request_based(md))
2963			dm_start_queue(md->queue);
2964
2965		unlock_fs(md);
2966		dm_table_presuspend_undo_targets(map);
2967		/* pushback list is already flushed, so skip flush */
2968	}
2969
2970	return r;
2971}
2972
2973/*
2974 * We need to be able to change a mapping table under a mounted
2975 * filesystem.  For example we might want to move some data in
2976 * the background.  Before the table can be swapped with
2977 * dm_bind_table, dm_suspend must be called to flush any in
2978 * flight bios and ensure that any further io gets deferred.
2979 */
2980/*
2981 * Suspend mechanism in request-based dm.
2982 *
2983 * 1. Flush all I/Os by lock_fs() if needed.
2984 * 2. Stop dispatching any I/O by stopping the request_queue.
2985 * 3. Wait for all in-flight I/Os to be completed or requeued.
2986 *
2987 * To abort suspend, start the request_queue.
2988 */
2989int dm_suspend(struct mapped_device *md, unsigned int suspend_flags)
2990{
2991	struct dm_table *map = NULL;
2992	int r = 0;
2993
2994retry:
2995	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2996
2997	if (dm_suspended_md(md)) {
2998		r = -EINVAL;
2999		goto out_unlock;
3000	}
3001
3002	if (dm_suspended_internally_md(md)) {
3003		/* already internally suspended, wait for internal resume */
3004		mutex_unlock(&md->suspend_lock);
3005		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
3006		if (r)
3007			return r;
3008		goto retry;
3009	}
3010
3011	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3012	if (!map) {
3013		/* avoid deadlock with fs/namespace.c:do_mount() */
3014		suspend_flags &= ~DM_SUSPEND_LOCKFS_FLAG;
3015	}
3016
3017	r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
3018	if (r)
3019		goto out_unlock;
3020
3021	set_bit(DMF_POST_SUSPENDING, &md->flags);
 
3022	dm_table_postsuspend_targets(map);
3023	clear_bit(DMF_POST_SUSPENDING, &md->flags);
3024
3025out_unlock:
3026	mutex_unlock(&md->suspend_lock);
3027	return r;
3028}
3029
3030static int __dm_resume(struct mapped_device *md, struct dm_table *map)
3031{
3032	if (map) {
3033		int r = dm_table_resume_targets(map);
3034
3035		if (r)
3036			return r;
3037	}
3038
3039	dm_queue_flush(md);
3040
3041	/*
3042	 * Flushing deferred I/Os must be done after targets are resumed
3043	 * so that mapping of targets can work correctly.
3044	 * Request-based dm is queueing the deferred I/Os in its request_queue.
3045	 */
3046	if (dm_request_based(md))
3047		dm_start_queue(md->queue);
3048
3049	unlock_fs(md);
3050
3051	return 0;
3052}
3053
3054int dm_resume(struct mapped_device *md)
3055{
3056	int r;
3057	struct dm_table *map = NULL;
3058
3059retry:
3060	r = -EINVAL;
3061	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
3062
3063	if (!dm_suspended_md(md))
3064		goto out;
3065
3066	if (dm_suspended_internally_md(md)) {
3067		/* already internally suspended, wait for internal resume */
3068		mutex_unlock(&md->suspend_lock);
3069		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
3070		if (r)
3071			return r;
3072		goto retry;
3073	}
3074
3075	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3076	if (!map || !dm_table_get_size(map))
3077		goto out;
3078
3079	r = __dm_resume(md, map);
3080	if (r)
3081		goto out;
3082
3083	clear_bit(DMF_SUSPENDED, &md->flags);
 
 
3084out:
3085	mutex_unlock(&md->suspend_lock);
3086
3087	return r;
3088}
3089
3090/*
3091 * Internal suspend/resume works like userspace-driven suspend. It waits
3092 * until all bios finish and prevents issuing new bios to the target drivers.
3093 * It may be used only from the kernel.
3094 */
3095
3096static void __dm_internal_suspend(struct mapped_device *md, unsigned int suspend_flags)
3097{
3098	struct dm_table *map = NULL;
3099
3100	lockdep_assert_held(&md->suspend_lock);
3101
3102	if (md->internal_suspend_count++)
3103		return; /* nested internal suspend */
3104
3105	if (dm_suspended_md(md)) {
3106		set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3107		return; /* nest suspend */
3108	}
3109
3110	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3111
3112	/*
3113	 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
3114	 * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
3115	 * would require changing .presuspend to return an error -- avoid this
3116	 * until there is a need for more elaborate variants of internal suspend.
3117	 */
3118	(void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
3119			    DMF_SUSPENDED_INTERNALLY);
 
3120
3121	set_bit(DMF_POST_SUSPENDING, &md->flags);
3122	dm_table_postsuspend_targets(map);
3123	clear_bit(DMF_POST_SUSPENDING, &md->flags);
3124}
3125
3126static void __dm_internal_resume(struct mapped_device *md)
3127{
3128	int r;
3129	struct dm_table *map;
3130
3131	BUG_ON(!md->internal_suspend_count);
3132
3133	if (--md->internal_suspend_count)
3134		return; /* resume from nested internal suspend */
3135
3136	if (dm_suspended_md(md))
3137		goto done; /* resume from nested suspend */
3138
3139	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3140	r = __dm_resume(md, map);
3141	if (r) {
3142		/*
3143		 * If a preresume method of some target failed, we are in a
3144		 * tricky situation. We can't return an error to the caller. We
3145		 * can't fake success because then the "resume" and
3146		 * "postsuspend" methods would not be paired correctly, and it
3147		 * would break various targets, for example it would cause list
3148		 * corruption in the "origin" target.
3149		 *
3150		 * So, we fake normal suspend here, to make sure that the
3151		 * "resume" and "postsuspend" methods will be paired correctly.
3152		 */
3153		DMERR("Preresume method failed: %d", r);
3154		set_bit(DMF_SUSPENDED, &md->flags);
3155	}
3156done:
3157	clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3158	smp_mb__after_atomic();
3159	wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
3160}
3161
3162void dm_internal_suspend_noflush(struct mapped_device *md)
3163{
3164	mutex_lock(&md->suspend_lock);
3165	__dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
3166	mutex_unlock(&md->suspend_lock);
3167}
3168EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
3169
3170void dm_internal_resume(struct mapped_device *md)
3171{
3172	mutex_lock(&md->suspend_lock);
3173	__dm_internal_resume(md);
3174	mutex_unlock(&md->suspend_lock);
3175}
3176EXPORT_SYMBOL_GPL(dm_internal_resume);
3177
3178/*
3179 * Fast variants of internal suspend/resume hold md->suspend_lock,
3180 * which prevents interaction with userspace-driven suspend.
3181 */
3182
3183void dm_internal_suspend_fast(struct mapped_device *md)
3184{
3185	mutex_lock(&md->suspend_lock);
3186	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3187		return;
3188
3189	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
3190	synchronize_srcu(&md->io_barrier);
3191	flush_workqueue(md->wq);
3192	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
3193}
3194EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
3195
3196void dm_internal_resume_fast(struct mapped_device *md)
3197{
3198	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3199		goto done;
3200
3201	dm_queue_flush(md);
3202
3203done:
3204	mutex_unlock(&md->suspend_lock);
3205}
3206EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
3207
3208/*
3209 *---------------------------------------------------------------
3210 * Event notification.
3211 *---------------------------------------------------------------
3212 */
3213int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
3214		      unsigned int cookie, bool need_resize_uevent)
3215{
3216	int r;
3217	unsigned int noio_flag;
3218	char udev_cookie[DM_COOKIE_LENGTH];
3219	char *envp[3] = { NULL, NULL, NULL };
3220	char **envpp = envp;
3221	if (cookie) {
 
 
3222		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
3223			 DM_COOKIE_ENV_VAR_NAME, cookie);
3224		*envpp++ = udev_cookie;
 
3225	}
3226	if (need_resize_uevent) {
3227		*envpp++ = "RESIZE=1";
3228	}
3229
3230	noio_flag = memalloc_noio_save();
3231
3232	r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj, action, envp);
3233
3234	memalloc_noio_restore(noio_flag);
3235
3236	return r;
3237}
3238
3239uint32_t dm_next_uevent_seq(struct mapped_device *md)
3240{
3241	return atomic_add_return(1, &md->uevent_seq);
3242}
3243
3244uint32_t dm_get_event_nr(struct mapped_device *md)
3245{
3246	return atomic_read(&md->event_nr);
3247}
3248
3249int dm_wait_event(struct mapped_device *md, int event_nr)
3250{
3251	return wait_event_interruptible(md->eventq,
3252			(event_nr != atomic_read(&md->event_nr)));
3253}
3254
3255void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
3256{
3257	unsigned long flags;
3258
3259	spin_lock_irqsave(&md->uevent_lock, flags);
3260	list_add(elist, &md->uevent_list);
3261	spin_unlock_irqrestore(&md->uevent_lock, flags);
3262}
3263
3264/*
3265 * The gendisk is only valid as long as you have a reference
3266 * count on 'md'.
3267 */
3268struct gendisk *dm_disk(struct mapped_device *md)
3269{
3270	return md->disk;
3271}
3272EXPORT_SYMBOL_GPL(dm_disk);
3273
3274struct kobject *dm_kobject(struct mapped_device *md)
3275{
3276	return &md->kobj_holder.kobj;
3277}
3278
3279struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
3280{
3281	struct mapped_device *md;
3282
3283	md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
3284
3285	spin_lock(&_minor_lock);
3286	if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
3287		md = NULL;
3288		goto out;
3289	}
3290	dm_get(md);
3291out:
3292	spin_unlock(&_minor_lock);
3293
3294	return md;
3295}
3296
3297int dm_suspended_md(struct mapped_device *md)
3298{
3299	return test_bit(DMF_SUSPENDED, &md->flags);
3300}
3301
3302static int dm_post_suspending_md(struct mapped_device *md)
3303{
3304	return test_bit(DMF_POST_SUSPENDING, &md->flags);
3305}
3306
3307int dm_suspended_internally_md(struct mapped_device *md)
3308{
3309	return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3310}
3311
3312int dm_test_deferred_remove_flag(struct mapped_device *md)
3313{
3314	return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
3315}
3316
3317int dm_suspended(struct dm_target *ti)
3318{
3319	return dm_suspended_md(ti->table->md);
3320}
3321EXPORT_SYMBOL_GPL(dm_suspended);
3322
3323int dm_post_suspending(struct dm_target *ti)
3324{
3325	return dm_post_suspending_md(ti->table->md);
3326}
3327EXPORT_SYMBOL_GPL(dm_post_suspending);
3328
3329int dm_noflush_suspending(struct dm_target *ti)
3330{
3331	return __noflush_suspending(ti->table->md);
3332}
3333EXPORT_SYMBOL_GPL(dm_noflush_suspending);
3334
3335void dm_free_md_mempools(struct dm_md_mempools *pools)
 
3336{
 
 
 
 
 
3337	if (!pools)
3338		return;
3339
3340	bioset_exit(&pools->bs);
3341	bioset_exit(&pools->io_bs);
3342
3343	kfree(pools);
3344}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3345
3346struct dm_blkdev_id {
3347	u8 *id;
3348	enum blk_unique_id type;
3349};
3350
3351static int __dm_get_unique_id(struct dm_target *ti, struct dm_dev *dev,
3352				sector_t start, sector_t len, void *data)
3353{
3354	struct dm_blkdev_id *dm_id = data;
3355	const struct block_device_operations *fops = dev->bdev->bd_disk->fops;
3356
3357	if (!fops->get_unique_id)
3358		return 0;
3359
3360	return fops->get_unique_id(dev->bdev->bd_disk, dm_id->id, dm_id->type);
3361}
3362
3363/*
3364 * Allow access to get_unique_id() for the first device returning a
3365 * non-zero result.  Reasonable use expects all devices to have the
3366 * same unique id.
3367 */
3368static int dm_blk_get_unique_id(struct gendisk *disk, u8 *id,
3369		enum blk_unique_id type)
3370{
3371	struct mapped_device *md = disk->private_data;
3372	struct dm_table *table;
3373	struct dm_target *ti;
3374	int ret = 0, srcu_idx;
3375
3376	struct dm_blkdev_id dm_id = {
3377		.id = id,
3378		.type = type,
3379	};
3380
3381	table = dm_get_live_table(md, &srcu_idx);
3382	if (!table || !dm_table_get_size(table))
3383		goto out;
3384
3385	/* We only support devices that have a single target */
3386	if (table->num_targets != 1)
3387		goto out;
3388	ti = dm_table_get_target(table, 0);
3389
3390	if (!ti->type->iterate_devices)
3391		goto out;
3392
3393	ret = ti->type->iterate_devices(ti, __dm_get_unique_id, &dm_id);
3394out:
3395	dm_put_live_table(md, srcu_idx);
3396	return ret;
3397}
3398
3399struct dm_pr {
3400	u64	old_key;
3401	u64	new_key;
3402	u32	flags;
3403	bool	abort;
3404	bool	fail_early;
3405	int	ret;
3406	enum pr_type type;
3407	struct pr_keys *read_keys;
3408	struct pr_held_reservation *rsv;
3409};
3410
3411static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
3412		      struct dm_pr *pr)
3413{
3414	struct mapped_device *md = bdev->bd_disk->private_data;
3415	struct dm_table *table;
3416	struct dm_target *ti;
3417	int ret = -ENOTTY, srcu_idx;
3418
3419	table = dm_get_live_table(md, &srcu_idx);
3420	if (!table || !dm_table_get_size(table))
3421		goto out;
3422
3423	/* We only support devices that have a single target */
3424	if (table->num_targets != 1)
3425		goto out;
3426	ti = dm_table_get_target(table, 0);
3427
3428	if (dm_suspended_md(md)) {
3429		ret = -EAGAIN;
3430		goto out;
3431	}
3432
3433	ret = -EINVAL;
3434	if (!ti->type->iterate_devices)
3435		goto out;
3436
3437	ti->type->iterate_devices(ti, fn, pr);
3438	ret = 0;
3439out:
3440	dm_put_live_table(md, srcu_idx);
3441	return ret;
3442}
3443
3444/*
3445 * For register / unregister we need to manually call out to every path.
3446 */
3447static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
3448			    sector_t start, sector_t len, void *data)
3449{
3450	struct dm_pr *pr = data;
3451	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3452	int ret;
3453
3454	if (!ops || !ops->pr_register) {
3455		pr->ret = -EOPNOTSUPP;
3456		return -1;
3457	}
3458
3459	ret = ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
3460	if (!ret)
3461		return 0;
3462
3463	if (!pr->ret)
3464		pr->ret = ret;
3465
3466	if (pr->fail_early)
3467		return -1;
3468
3469	return 0;
3470}
3471
3472static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
3473			  u32 flags)
3474{
3475	struct dm_pr pr = {
3476		.old_key	= old_key,
3477		.new_key	= new_key,
3478		.flags		= flags,
3479		.fail_early	= true,
3480		.ret		= 0,
3481	};
3482	int ret;
3483
3484	ret = dm_call_pr(bdev, __dm_pr_register, &pr);
3485	if (ret) {
3486		/* Didn't even get to register a path */
3487		return ret;
3488	}
3489
3490	if (!pr.ret)
3491		return 0;
3492	ret = pr.ret;
 
 
3493
3494	if (!new_key)
3495		return ret;
3496
3497	/* unregister all paths if we failed to register any path */
3498	pr.old_key = new_key;
3499	pr.new_key = 0;
3500	pr.flags = 0;
3501	pr.fail_early = false;
3502	(void) dm_call_pr(bdev, __dm_pr_register, &pr);
3503	return ret;
3504}
3505
3506
3507static int __dm_pr_reserve(struct dm_target *ti, struct dm_dev *dev,
3508			   sector_t start, sector_t len, void *data)
3509{
3510	struct dm_pr *pr = data;
3511	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3512
3513	if (!ops || !ops->pr_reserve) {
3514		pr->ret = -EOPNOTSUPP;
3515		return -1;
3516	}
3517
3518	pr->ret = ops->pr_reserve(dev->bdev, pr->old_key, pr->type, pr->flags);
3519	if (!pr->ret)
3520		return -1;
3521
3522	return 0;
3523}
3524
3525static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3526			 u32 flags)
3527{
3528	struct dm_pr pr = {
3529		.old_key	= key,
3530		.flags		= flags,
3531		.type		= type,
3532		.fail_early	= false,
3533		.ret		= 0,
3534	};
3535	int ret;
3536
3537	ret = dm_call_pr(bdev, __dm_pr_reserve, &pr);
3538	if (ret)
3539		return ret;
3540
3541	return pr.ret;
3542}
 
 
 
3543
3544/*
3545 * If there is a non-All Registrants type of reservation, the release must be
3546 * sent down the holding path. For the cases where there is no reservation or
3547 * the path is not the holder the device will also return success, so we must
3548 * try each path to make sure we got the correct path.
3549 */
3550static int __dm_pr_release(struct dm_target *ti, struct dm_dev *dev,
3551			   sector_t start, sector_t len, void *data)
3552{
3553	struct dm_pr *pr = data;
3554	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3555
3556	if (!ops || !ops->pr_release) {
3557		pr->ret = -EOPNOTSUPP;
3558		return -1;
3559	}
3560
3561	pr->ret = ops->pr_release(dev->bdev, pr->old_key, pr->type);
3562	if (pr->ret)
3563		return -1;
3564
3565	return 0;
3566}
3567
3568static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3569{
3570	struct dm_pr pr = {
3571		.old_key	= key,
3572		.type		= type,
3573		.fail_early	= false,
3574	};
3575	int ret;
3576
3577	ret = dm_call_pr(bdev, __dm_pr_release, &pr);
3578	if (ret)
3579		return ret;
3580
3581	return pr.ret;
3582}
 
 
 
3583
3584static int __dm_pr_preempt(struct dm_target *ti, struct dm_dev *dev,
3585			   sector_t start, sector_t len, void *data)
3586{
3587	struct dm_pr *pr = data;
3588	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3589
3590	if (!ops || !ops->pr_preempt) {
3591		pr->ret = -EOPNOTSUPP;
3592		return -1;
3593	}
3594
3595	pr->ret = ops->pr_preempt(dev->bdev, pr->old_key, pr->new_key, pr->type,
3596				  pr->abort);
3597	if (!pr->ret)
3598		return -1;
3599
3600	return 0;
3601}
3602
3603static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3604			 enum pr_type type, bool abort)
3605{
3606	struct dm_pr pr = {
3607		.new_key	= new_key,
3608		.old_key	= old_key,
3609		.type		= type,
3610		.fail_early	= false,
3611	};
3612	int ret;
3613
3614	ret = dm_call_pr(bdev, __dm_pr_preempt, &pr);
3615	if (ret)
3616		return ret;
 
 
 
3617
3618	return pr.ret;
 
3619}
3620
3621static int dm_pr_clear(struct block_device *bdev, u64 key)
3622{
3623	struct mapped_device *md = bdev->bd_disk->private_data;
3624	const struct pr_ops *ops;
3625	int r, srcu_idx;
 
3626
3627	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3628	if (r < 0)
3629		goto out;
3630
3631	ops = bdev->bd_disk->fops->pr_ops;
3632	if (ops && ops->pr_clear)
3633		r = ops->pr_clear(bdev, key);
3634	else
3635		r = -EOPNOTSUPP;
3636out:
3637	dm_unprepare_ioctl(md, srcu_idx);
3638	return r;
3639}
3640
3641static int __dm_pr_read_keys(struct dm_target *ti, struct dm_dev *dev,
3642			     sector_t start, sector_t len, void *data)
3643{
3644	struct dm_pr *pr = data;
3645	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3646
3647	if (!ops || !ops->pr_read_keys) {
3648		pr->ret = -EOPNOTSUPP;
3649		return -1;
3650	}
3651
3652	pr->ret = ops->pr_read_keys(dev->bdev, pr->read_keys);
3653	if (!pr->ret)
3654		return -1;
3655
3656	return 0;
3657}
3658
3659static int dm_pr_read_keys(struct block_device *bdev, struct pr_keys *keys)
3660{
3661	struct dm_pr pr = {
3662		.read_keys = keys,
3663	};
3664	int ret;
3665
3666	ret = dm_call_pr(bdev, __dm_pr_read_keys, &pr);
3667	if (ret)
3668		return ret;
3669
3670	return pr.ret;
3671}
3672
3673static int __dm_pr_read_reservation(struct dm_target *ti, struct dm_dev *dev,
3674				    sector_t start, sector_t len, void *data)
3675{
3676	struct dm_pr *pr = data;
3677	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3678
3679	if (!ops || !ops->pr_read_reservation) {
3680		pr->ret = -EOPNOTSUPP;
3681		return -1;
3682	}
3683
3684	pr->ret = ops->pr_read_reservation(dev->bdev, pr->rsv);
3685	if (!pr->ret)
3686		return -1;
3687
3688	return 0;
3689}
3690
3691static int dm_pr_read_reservation(struct block_device *bdev,
3692				  struct pr_held_reservation *rsv)
3693{
3694	struct dm_pr pr = {
3695		.rsv = rsv,
3696	};
3697	int ret;
3698
3699	ret = dm_call_pr(bdev, __dm_pr_read_reservation, &pr);
3700	if (ret)
3701		return ret;
3702
3703	return pr.ret;
3704}
3705
3706static const struct pr_ops dm_pr_ops = {
3707	.pr_register	= dm_pr_register,
3708	.pr_reserve	= dm_pr_reserve,
3709	.pr_release	= dm_pr_release,
3710	.pr_preempt	= dm_pr_preempt,
3711	.pr_clear	= dm_pr_clear,
3712	.pr_read_keys	= dm_pr_read_keys,
3713	.pr_read_reservation = dm_pr_read_reservation,
3714};
3715
3716static const struct block_device_operations dm_blk_dops = {
3717	.submit_bio = dm_submit_bio,
3718	.poll_bio = dm_poll_bio,
3719	.open = dm_blk_open,
3720	.release = dm_blk_close,
3721	.ioctl = dm_blk_ioctl,
3722	.getgeo = dm_blk_getgeo,
3723	.report_zones = dm_blk_report_zones,
3724	.get_unique_id = dm_blk_get_unique_id,
3725	.pr_ops = &dm_pr_ops,
3726	.owner = THIS_MODULE
3727};
3728
3729static const struct block_device_operations dm_rq_blk_dops = {
3730	.open = dm_blk_open,
3731	.release = dm_blk_close,
3732	.ioctl = dm_blk_ioctl,
3733	.getgeo = dm_blk_getgeo,
3734	.get_unique_id = dm_blk_get_unique_id,
3735	.pr_ops = &dm_pr_ops,
3736	.owner = THIS_MODULE
3737};
3738
3739static const struct dax_operations dm_dax_ops = {
3740	.direct_access = dm_dax_direct_access,
3741	.zero_page_range = dm_dax_zero_page_range,
3742	.recovery_write = dm_dax_recovery_write,
3743};
3744
3745/*
3746 * module hooks
3747 */
3748module_init(dm_init);
3749module_exit(dm_exit);
3750
3751module_param(major, uint, 0);
3752MODULE_PARM_DESC(major, "The major number of the device mapper");
3753
3754module_param(reserved_bio_based_ios, uint, 0644);
3755MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3756
3757module_param(dm_numa_node, int, 0644);
 
 
 
 
 
 
 
 
 
 
 
 
3758MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3759
3760module_param(swap_bios, int, 0644);
3761MODULE_PARM_DESC(swap_bios, "Maximum allowed inflight swap IOs");
3762
3763MODULE_DESCRIPTION(DM_NAME " driver");
3764MODULE_AUTHOR("Joe Thornber <dm-devel@lists.linux.dev>");
3765MODULE_LICENSE("GPL");