Linux Audio

Check our new training course

Loading...
v4.6
   1/*
   2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
   3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
   4 *
   5 * This file is released under the GPL.
   6 */
   7
   8#include "dm.h"
 
   9#include "dm-uevent.h"
  10
  11#include <linux/init.h>
  12#include <linux/module.h>
  13#include <linux/mutex.h>
  14#include <linux/moduleparam.h>
  15#include <linux/blkpg.h>
  16#include <linux/bio.h>
  17#include <linux/mempool.h>
 
  18#include <linux/slab.h>
  19#include <linux/idr.h>
 
  20#include <linux/hdreg.h>
  21#include <linux/delay.h>
  22#include <linux/wait.h>
  23#include <linux/kthread.h>
  24#include <linux/ktime.h>
  25#include <linux/elevator.h> /* for rq_end_sector() */
  26#include <linux/blk-mq.h>
  27#include <linux/pr.h>
  28
  29#include <trace/events/block.h>
  30
  31#define DM_MSG_PREFIX "core"
  32
  33#ifdef CONFIG_PRINTK
  34/*
  35 * ratelimit state to be used in DMXXX_LIMIT().
  36 */
  37DEFINE_RATELIMIT_STATE(dm_ratelimit_state,
  38		       DEFAULT_RATELIMIT_INTERVAL,
  39		       DEFAULT_RATELIMIT_BURST);
  40EXPORT_SYMBOL(dm_ratelimit_state);
  41#endif
  42
  43/*
  44 * Cookies are numeric values sent with CHANGE and REMOVE
  45 * uevents while resuming, removing or renaming the device.
  46 */
  47#define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
  48#define DM_COOKIE_LENGTH 24
  49
  50static const char *_name = DM_NAME;
  51
  52static unsigned int major = 0;
  53static unsigned int _major = 0;
  54
  55static DEFINE_IDR(_minor_idr);
  56
  57static DEFINE_SPINLOCK(_minor_lock);
  58
  59static void do_deferred_remove(struct work_struct *w);
  60
  61static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
  62
  63static struct workqueue_struct *deferred_remove_workqueue;
  64
 
 
 
 
 
 
 
 
 
  65/*
  66 * For bio-based dm.
  67 * One of these is allocated per bio.
  68 */
  69struct dm_io {
  70	struct mapped_device *md;
  71	int error;
  72	atomic_t io_count;
  73	struct bio *bio;
  74	unsigned long start_time;
  75	spinlock_t endio_lock;
  76	struct dm_stats_aux stats_aux;
  77};
  78
  79/*
  80 * For request-based dm.
  81 * One of these is allocated per request.
  82 */
  83struct dm_rq_target_io {
  84	struct mapped_device *md;
 
 
  85	struct dm_target *ti;
  86	struct request *orig, *clone;
  87	struct kthread_work work;
  88	int error;
  89	union map_info info;
  90	struct dm_stats_aux stats_aux;
  91	unsigned long duration_jiffies;
  92	unsigned n_sectors;
  93};
  94
  95/*
  96 * For request-based dm - the bio clones we allocate are embedded in these
  97 * structs.
  98 *
  99 * We allocate these with bio_alloc_bioset, using the front_pad parameter when
 100 * the bioset is created - this means the bio has to come at the end of the
 101 * struct.
 102 */
 103struct dm_rq_clone_bio_info {
 104	struct bio *orig;
 105	struct dm_rq_target_io *tio;
 106	struct bio clone;
 
 
 
 
 107};
 108
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 109#define MINOR_ALLOCED ((void *)-1)
 110
 111/*
 112 * Bits for the md->flags field.
 113 */
 114#define DMF_BLOCK_IO_FOR_SUSPEND 0
 115#define DMF_SUSPENDED 1
 116#define DMF_FROZEN 2
 117#define DMF_FREEING 3
 118#define DMF_DELETING 4
 119#define DMF_NOFLUSH_SUSPENDING 5
 120#define DMF_DEFERRED_REMOVE 6
 121#define DMF_SUSPENDED_INTERNALLY 7
 122
 123/*
 124 * Work processed by per-device workqueue.
 125 */
 126struct mapped_device {
 127	struct srcu_struct io_barrier;
 128	struct mutex suspend_lock;
 129
 130	/*
 131	 * The current mapping (struct dm_table *).
 132	 * Use dm_get_live_table{_fast} or take suspend_lock for
 133	 * dereference.
 134	 */
 135	void __rcu *map;
 136
 137	struct list_head table_devices;
 138	struct mutex table_devices_lock;
 139
 140	unsigned long flags;
 141
 142	struct request_queue *queue;
 143	int numa_node_id;
 144
 145	unsigned type;
 146	/* Protect queue and type against concurrent access. */
 147	struct mutex type_lock;
 148
 149	atomic_t holders;
 150	atomic_t open_count;
 151
 152	struct dm_target *immutable_target;
 153	struct target_type *immutable_target_type;
 154
 155	struct gendisk *disk;
 156	char name[16];
 157
 158	void *interface_ptr;
 159
 160	/*
 161	 * A list of ios that arrived while we were suspended.
 162	 */
 163	atomic_t pending[2];
 164	wait_queue_head_t wait;
 165	struct work_struct work;
 166	spinlock_t deferred_lock;
 167	struct bio_list deferred;
 168
 169	/*
 170	 * Event handling.
 171	 */
 172	wait_queue_head_t eventq;
 173	atomic_t event_nr;
 174	atomic_t uevent_seq;
 175	struct list_head uevent_list;
 176	spinlock_t uevent_lock; /* Protect access to uevent_list */
 177
 178	/* the number of internal suspends */
 179	unsigned internal_suspend_count;
 180
 181	/*
 182	 * Processing queue (flush)
 183	 */
 184	struct workqueue_struct *wq;
 185
 186	/*
 187	 * io objects are allocated from here.
 188	 */
 189	mempool_t *io_pool;
 190	mempool_t *rq_pool;
 191
 192	struct bio_set *bs;
 193
 194	/*
 195	 * freeze/thaw support require holding onto a super block
 196	 */
 197	struct super_block *frozen_sb;
 198
 199	/* forced geometry settings */
 200	struct hd_geometry geometry;
 201
 202	struct block_device *bdev;
 203
 204	/* kobject and completion */
 205	struct dm_kobject_holder kobj_holder;
 206
 207	/* zero-length flush that will be cloned and submitted to targets */
 208	struct bio flush_bio;
 209
 210	struct dm_stats stats;
 211
 212	struct kthread_worker kworker;
 213	struct task_struct *kworker_task;
 214
 215	/* for request-based merge heuristic in dm_request_fn() */
 216	unsigned seq_rq_merge_deadline_usecs;
 217	int last_rq_rw;
 218	sector_t last_rq_pos;
 219	ktime_t last_rq_start_time;
 220
 221	/* for blk-mq request-based DM support */
 222	struct blk_mq_tag_set *tag_set;
 223	bool use_blk_mq:1;
 224	bool init_tio_pdu:1;
 225};
 226
 227#ifdef CONFIG_DM_MQ_DEFAULT
 228static bool use_blk_mq = true;
 229#else
 230static bool use_blk_mq = false;
 231#endif
 232
 233#define DM_MQ_NR_HW_QUEUES 1
 234#define DM_MQ_QUEUE_DEPTH 2048
 235#define DM_NUMA_NODE NUMA_NO_NODE
 236
 237static unsigned dm_mq_nr_hw_queues = DM_MQ_NR_HW_QUEUES;
 238static unsigned dm_mq_queue_depth = DM_MQ_QUEUE_DEPTH;
 239static int dm_numa_node = DM_NUMA_NODE;
 240
 241bool dm_use_blk_mq(struct mapped_device *md)
 242{
 243	return md->use_blk_mq;
 244}
 245EXPORT_SYMBOL_GPL(dm_use_blk_mq);
 246
 247/*
 248 * For mempools pre-allocation at the table loading time.
 249 */
 250struct dm_md_mempools {
 251	mempool_t *io_pool;
 252	mempool_t *rq_pool;
 253	struct bio_set *bs;
 254};
 255
 256struct table_device {
 257	struct list_head list;
 258	atomic_t count;
 259	struct dm_dev dm_dev;
 260};
 261
 262#define RESERVED_BIO_BASED_IOS		16
 263#define RESERVED_REQUEST_BASED_IOS	256
 264#define RESERVED_MAX_IOS		1024
 265static struct kmem_cache *_io_cache;
 266static struct kmem_cache *_rq_tio_cache;
 267static struct kmem_cache *_rq_cache;
 268
 269/*
 270 * Bio-based DM's mempools' reserved IOs set by the user.
 271 */
 
 272static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
 273
 274/*
 275 * Request-based DM's mempools' reserved IOs set by the user.
 276 */
 277static unsigned reserved_rq_based_ios = RESERVED_REQUEST_BASED_IOS;
 278
 279static int __dm_get_module_param_int(int *module_param, int min, int max)
 280{
 281	int param = ACCESS_ONCE(*module_param);
 282	int modified_param = 0;
 283	bool modified = true;
 284
 285	if (param < min)
 286		modified_param = min;
 287	else if (param > max)
 288		modified_param = max;
 289	else
 290		modified = false;
 291
 292	if (modified) {
 293		(void)cmpxchg(module_param, param, modified_param);
 294		param = modified_param;
 295	}
 296
 297	return param;
 298}
 299
 300static unsigned __dm_get_module_param(unsigned *module_param,
 301				      unsigned def, unsigned max)
 302{
 303	unsigned param = ACCESS_ONCE(*module_param);
 304	unsigned modified_param = 0;
 305
 306	if (!param)
 307		modified_param = def;
 308	else if (param > max)
 309		modified_param = max;
 310
 311	if (modified_param) {
 312		(void)cmpxchg(module_param, param, modified_param);
 313		param = modified_param;
 314	}
 315
 316	return param;
 317}
 318
 319unsigned dm_get_reserved_bio_based_ios(void)
 320{
 321	return __dm_get_module_param(&reserved_bio_based_ios,
 322				     RESERVED_BIO_BASED_IOS, RESERVED_MAX_IOS);
 323}
 324EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
 325
 326unsigned dm_get_reserved_rq_based_ios(void)
 327{
 328	return __dm_get_module_param(&reserved_rq_based_ios,
 329				     RESERVED_REQUEST_BASED_IOS, RESERVED_MAX_IOS);
 330}
 331EXPORT_SYMBOL_GPL(dm_get_reserved_rq_based_ios);
 332
 333static unsigned dm_get_blk_mq_nr_hw_queues(void)
 334{
 335	return __dm_get_module_param(&dm_mq_nr_hw_queues, 1, 32);
 336}
 337
 338static unsigned dm_get_blk_mq_queue_depth(void)
 339{
 340	return __dm_get_module_param(&dm_mq_queue_depth,
 341				     DM_MQ_QUEUE_DEPTH, BLK_MQ_MAX_DEPTH);
 342}
 343
 344static unsigned dm_get_numa_node(void)
 345{
 346	return __dm_get_module_param_int(&dm_numa_node,
 347					 DM_NUMA_NODE, num_online_nodes() - 1);
 348}
 349
 350static int __init local_init(void)
 351{
 352	int r = -ENOMEM;
 353
 354	/* allocate a slab for the dm_ios */
 355	_io_cache = KMEM_CACHE(dm_io, 0);
 356	if (!_io_cache)
 357		return r;
 358
 359	_rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
 360	if (!_rq_tio_cache)
 361		goto out_free_io_cache;
 362
 363	_rq_cache = kmem_cache_create("dm_old_clone_request", sizeof(struct request),
 364				      __alignof__(struct request), 0, NULL);
 365	if (!_rq_cache)
 366		goto out_free_rq_tio_cache;
 367
 368	r = dm_uevent_init();
 369	if (r)
 370		goto out_free_rq_cache;
 371
 372	deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
 373	if (!deferred_remove_workqueue) {
 374		r = -ENOMEM;
 375		goto out_uevent_exit;
 376	}
 377
 378	_major = major;
 379	r = register_blkdev(_major, _name);
 380	if (r < 0)
 381		goto out_free_workqueue;
 382
 383	if (!_major)
 384		_major = r;
 385
 386	return 0;
 387
 388out_free_workqueue:
 389	destroy_workqueue(deferred_remove_workqueue);
 390out_uevent_exit:
 391	dm_uevent_exit();
 392out_free_rq_cache:
 393	kmem_cache_destroy(_rq_cache);
 394out_free_rq_tio_cache:
 395	kmem_cache_destroy(_rq_tio_cache);
 396out_free_io_cache:
 397	kmem_cache_destroy(_io_cache);
 398
 399	return r;
 400}
 401
 402static void local_exit(void)
 403{
 404	flush_scheduled_work();
 405	destroy_workqueue(deferred_remove_workqueue);
 406
 407	kmem_cache_destroy(_rq_cache);
 408	kmem_cache_destroy(_rq_tio_cache);
 409	kmem_cache_destroy(_io_cache);
 410	unregister_blkdev(_major, _name);
 411	dm_uevent_exit();
 412
 413	_major = 0;
 414
 415	DMINFO("cleaned up");
 416}
 417
 418static int (*_inits[])(void) __initdata = {
 419	local_init,
 420	dm_target_init,
 421	dm_linear_init,
 422	dm_stripe_init,
 423	dm_io_init,
 424	dm_kcopyd_init,
 425	dm_interface_init,
 426	dm_statistics_init,
 427};
 428
 429static void (*_exits[])(void) = {
 430	local_exit,
 431	dm_target_exit,
 432	dm_linear_exit,
 433	dm_stripe_exit,
 434	dm_io_exit,
 435	dm_kcopyd_exit,
 436	dm_interface_exit,
 437	dm_statistics_exit,
 438};
 439
 440static int __init dm_init(void)
 441{
 442	const int count = ARRAY_SIZE(_inits);
 443
 444	int r, i;
 445
 446	for (i = 0; i < count; i++) {
 447		r = _inits[i]();
 448		if (r)
 449			goto bad;
 450	}
 451
 452	return 0;
 453
 454      bad:
 455	while (i--)
 456		_exits[i]();
 457
 458	return r;
 459}
 460
 461static void __exit dm_exit(void)
 462{
 463	int i = ARRAY_SIZE(_exits);
 464
 465	while (i--)
 466		_exits[i]();
 467
 468	/*
 469	 * Should be empty by this point.
 470	 */
 471	idr_destroy(&_minor_idr);
 472}
 473
 474/*
 475 * Block device functions
 476 */
 477int dm_deleting_md(struct mapped_device *md)
 478{
 479	return test_bit(DMF_DELETING, &md->flags);
 480}
 481
 482static int dm_blk_open(struct block_device *bdev, fmode_t mode)
 483{
 484	struct mapped_device *md;
 485
 486	spin_lock(&_minor_lock);
 487
 488	md = bdev->bd_disk->private_data;
 489	if (!md)
 490		goto out;
 491
 492	if (test_bit(DMF_FREEING, &md->flags) ||
 493	    dm_deleting_md(md)) {
 494		md = NULL;
 495		goto out;
 496	}
 497
 498	dm_get(md);
 499	atomic_inc(&md->open_count);
 500out:
 501	spin_unlock(&_minor_lock);
 502
 503	return md ? 0 : -ENXIO;
 504}
 505
 506static void dm_blk_close(struct gendisk *disk, fmode_t mode)
 507{
 508	struct mapped_device *md;
 509
 510	spin_lock(&_minor_lock);
 511
 512	md = disk->private_data;
 513	if (WARN_ON(!md))
 514		goto out;
 515
 516	if (atomic_dec_and_test(&md->open_count) &&
 517	    (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
 518		queue_work(deferred_remove_workqueue, &deferred_remove_work);
 519
 520	dm_put(md);
 521out:
 522	spin_unlock(&_minor_lock);
 523}
 524
 525int dm_open_count(struct mapped_device *md)
 526{
 527	return atomic_read(&md->open_count);
 528}
 529
 530/*
 531 * Guarantees nothing is using the device before it's deleted.
 532 */
 533int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
 534{
 535	int r = 0;
 536
 537	spin_lock(&_minor_lock);
 538
 539	if (dm_open_count(md)) {
 540		r = -EBUSY;
 541		if (mark_deferred)
 542			set_bit(DMF_DEFERRED_REMOVE, &md->flags);
 543	} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
 544		r = -EEXIST;
 545	else
 546		set_bit(DMF_DELETING, &md->flags);
 547
 548	spin_unlock(&_minor_lock);
 549
 550	return r;
 551}
 552
 553int dm_cancel_deferred_remove(struct mapped_device *md)
 554{
 555	int r = 0;
 556
 557	spin_lock(&_minor_lock);
 558
 559	if (test_bit(DMF_DELETING, &md->flags))
 560		r = -EBUSY;
 561	else
 562		clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
 563
 564	spin_unlock(&_minor_lock);
 565
 566	return r;
 567}
 568
 569static void do_deferred_remove(struct work_struct *w)
 570{
 571	dm_deferred_remove();
 572}
 573
 574sector_t dm_get_size(struct mapped_device *md)
 575{
 576	return get_capacity(md->disk);
 577}
 578
 579struct request_queue *dm_get_md_queue(struct mapped_device *md)
 580{
 581	return md->queue;
 582}
 583
 584struct dm_stats *dm_get_stats(struct mapped_device *md)
 585{
 586	return &md->stats;
 587}
 588
 589static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
 590{
 591	struct mapped_device *md = bdev->bd_disk->private_data;
 592
 593	return dm_get_geometry(md, geo);
 594}
 595
 596static int dm_grab_bdev_for_ioctl(struct mapped_device *md,
 597				  struct block_device **bdev,
 598				  fmode_t *mode)
 599{
 
 
 600	struct dm_target *tgt;
 601	struct dm_table *map;
 602	int srcu_idx, r;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 603
 604retry:
 605	r = -ENOTTY;
 606	map = dm_get_live_table(md, &srcu_idx);
 607	if (!map || !dm_table_get_size(map))
 608		goto out;
 609
 610	/* We only support devices that have a single target */
 611	if (dm_table_get_num_targets(map) != 1)
 612		goto out;
 613
 614	tgt = dm_table_get_target(map, 0);
 615	if (!tgt->type->prepare_ioctl)
 616		goto out;
 617
 618	if (dm_suspended_md(md)) {
 619		r = -EAGAIN;
 620		goto out;
 621	}
 622
 623	r = tgt->type->prepare_ioctl(tgt, bdev, mode);
 624	if (r < 0)
 625		goto out;
 626
 627	bdgrab(*bdev);
 628	dm_put_live_table(md, srcu_idx);
 629	return r;
 630
 631out:
 632	dm_put_live_table(md, srcu_idx);
 633	if (r == -ENOTCONN && !fatal_signal_pending(current)) {
 
 634		msleep(10);
 635		goto retry;
 636	}
 
 637	return r;
 638}
 639
 
 
 
 
 
 
 640static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
 641			unsigned int cmd, unsigned long arg)
 642{
 643	struct mapped_device *md = bdev->bd_disk->private_data;
 644	int r;
 645
 646	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
 647	if (r < 0)
 648		return r;
 649
 650	if (r > 0) {
 651		/*
 652		 * Target determined this ioctl is being issued against
 653		 * a logical partition of the parent bdev; so extra
 654		 * validation is needed.
 655		 */
 656		r = scsi_verify_blk_ioctl(NULL, cmd);
 657		if (r)
 
 
 
 658			goto out;
 
 659	}
 660
 661	r =  __blkdev_driver_ioctl(bdev, mode, cmd, arg);
 662out:
 663	bdput(bdev);
 664	return r;
 665}
 666
 667static struct dm_io *alloc_io(struct mapped_device *md)
 
 
 668{
 669	return mempool_alloc(md->io_pool, GFP_NOIO);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 670}
 671
 672static void free_io(struct mapped_device *md, struct dm_io *io)
 673{
 674	mempool_free(io, md->io_pool);
 675}
 676
 677static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
 
 678{
 679	bio_put(&tio->clone);
 680}
 681
 682static struct dm_rq_target_io *alloc_old_rq_tio(struct mapped_device *md,
 683						gfp_t gfp_mask)
 684{
 685	return mempool_alloc(md->io_pool, gfp_mask);
 686}
 
 
 687
 688static void free_old_rq_tio(struct dm_rq_target_io *tio)
 689{
 690	mempool_free(tio, tio->md->io_pool);
 
 
 
 
 
 
 
 691}
 692
 693static struct request *alloc_old_clone_request(struct mapped_device *md,
 694					       gfp_t gfp_mask)
 695{
 696	return mempool_alloc(md->rq_pool, gfp_mask);
 
 
 697}
 698
 699static void free_old_clone_request(struct mapped_device *md, struct request *rq)
 700{
 701	mempool_free(rq, md->rq_pool);
 
 
 
 
 
 
 
 
 
 702}
 703
 704static int md_in_flight(struct mapped_device *md)
 705{
 706	return atomic_read(&md->pending[READ]) +
 707	       atomic_read(&md->pending[WRITE]);
 
 
 708}
 709
 710static void start_io_acct(struct dm_io *io)
 711{
 712	struct mapped_device *md = io->md;
 713	struct bio *bio = io->bio;
 714	int cpu;
 715	int rw = bio_data_dir(bio);
 716
 717	io->start_time = jiffies;
 718
 719	cpu = part_stat_lock();
 720	part_round_stats(cpu, &dm_disk(md)->part0);
 721	part_stat_unlock();
 722	atomic_set(&dm_disk(md)->part0.in_flight[rw],
 723		atomic_inc_return(&md->pending[rw]));
 724
 725	if (unlikely(dm_stats_used(&md->stats)))
 726		dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_iter.bi_sector,
 727				    bio_sectors(bio), false, 0, &io->stats_aux);
 
 728}
 729
 730static void end_io_acct(struct dm_io *io)
 731{
 732	struct mapped_device *md = io->md;
 733	struct bio *bio = io->bio;
 734	unsigned long duration = jiffies - io->start_time;
 735	int pending;
 736	int rw = bio_data_dir(bio);
 737
 738	generic_end_io_acct(rw, &dm_disk(md)->part0, io->start_time);
 
 739
 740	if (unlikely(dm_stats_used(&md->stats)))
 741		dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_iter.bi_sector,
 742				    bio_sectors(bio), true, duration, &io->stats_aux);
 743
 744	/*
 745	 * After this is decremented the bio must not be touched if it is
 746	 * a flush.
 747	 */
 748	pending = atomic_dec_return(&md->pending[rw]);
 749	atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
 750	pending += atomic_read(&md->pending[rw^0x1]);
 751
 752	/* nudge anyone waiting on suspend queue */
 753	if (!pending)
 754		wake_up(&md->wait);
 755}
 756
 757/*
 758 * Add the bio to the list of deferred io.
 759 */
 760static void queue_io(struct mapped_device *md, struct bio *bio)
 761{
 762	unsigned long flags;
 763
 764	spin_lock_irqsave(&md->deferred_lock, flags);
 765	bio_list_add(&md->deferred, bio);
 766	spin_unlock_irqrestore(&md->deferred_lock, flags);
 767	queue_work(md->wq, &md->work);
 768}
 769
 770/*
 771 * Everyone (including functions in this file), should use this
 772 * function to access the md->map field, and make sure they call
 773 * dm_put_live_table() when finished.
 774 */
 775struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
 776{
 777	*srcu_idx = srcu_read_lock(&md->io_barrier);
 778
 779	return srcu_dereference(md->map, &md->io_barrier);
 780}
 781
 782void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
 783{
 784	srcu_read_unlock(&md->io_barrier, srcu_idx);
 785}
 786
 787void dm_sync_table(struct mapped_device *md)
 788{
 789	synchronize_srcu(&md->io_barrier);
 790	synchronize_rcu_expedited();
 791}
 792
 793/*
 794 * A fast alternative to dm_get_live_table/dm_put_live_table.
 795 * The caller must not block between these two functions.
 796 */
 797static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
 798{
 799	rcu_read_lock();
 800	return rcu_dereference(md->map);
 801}
 802
 803static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
 804{
 805	rcu_read_unlock();
 806}
 807
 
 
 808/*
 809 * Open a table device so we can use it as a map destination.
 810 */
 811static int open_table_device(struct table_device *td, dev_t dev,
 812			     struct mapped_device *md)
 813{
 814	static char *_claim_ptr = "I belong to device-mapper";
 815	struct block_device *bdev;
 816
 817	int r;
 818
 819	BUG_ON(td->dm_dev.bdev);
 820
 821	bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _claim_ptr);
 822	if (IS_ERR(bdev))
 823		return PTR_ERR(bdev);
 824
 825	r = bd_link_disk_holder(bdev, dm_disk(md));
 826	if (r) {
 827		blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
 828		return r;
 829	}
 830
 831	td->dm_dev.bdev = bdev;
 
 832	return 0;
 833}
 834
 835/*
 836 * Close a table device that we've been using.
 837 */
 838static void close_table_device(struct table_device *td, struct mapped_device *md)
 839{
 840	if (!td->dm_dev.bdev)
 841		return;
 842
 843	bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
 844	blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
 
 845	td->dm_dev.bdev = NULL;
 
 846}
 847
 848static struct table_device *find_table_device(struct list_head *l, dev_t dev,
 849					      fmode_t mode) {
 
 850	struct table_device *td;
 851
 852	list_for_each_entry(td, l, list)
 853		if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
 854			return td;
 855
 856	return NULL;
 857}
 858
 859int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
 860			struct dm_dev **result) {
 
 861	int r;
 862	struct table_device *td;
 863
 864	mutex_lock(&md->table_devices_lock);
 865	td = find_table_device(&md->table_devices, dev, mode);
 866	if (!td) {
 867		td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
 868		if (!td) {
 869			mutex_unlock(&md->table_devices_lock);
 870			return -ENOMEM;
 871		}
 872
 873		td->dm_dev.mode = mode;
 874		td->dm_dev.bdev = NULL;
 875
 876		if ((r = open_table_device(td, dev, md))) {
 877			mutex_unlock(&md->table_devices_lock);
 878			kfree(td);
 879			return r;
 880		}
 881
 882		format_dev_t(td->dm_dev.name, dev);
 883
 884		atomic_set(&td->count, 0);
 885		list_add(&td->list, &md->table_devices);
 
 
 886	}
 887	atomic_inc(&td->count);
 888	mutex_unlock(&md->table_devices_lock);
 889
 890	*result = &td->dm_dev;
 891	return 0;
 892}
 893EXPORT_SYMBOL_GPL(dm_get_table_device);
 894
 895void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
 896{
 897	struct table_device *td = container_of(d, struct table_device, dm_dev);
 898
 899	mutex_lock(&md->table_devices_lock);
 900	if (atomic_dec_and_test(&td->count)) {
 901		close_table_device(td, md);
 902		list_del(&td->list);
 903		kfree(td);
 904	}
 905	mutex_unlock(&md->table_devices_lock);
 906}
 907EXPORT_SYMBOL(dm_put_table_device);
 908
 909static void free_table_devices(struct list_head *devices)
 910{
 911	struct list_head *tmp, *next;
 912
 913	list_for_each_safe(tmp, next, devices) {
 914		struct table_device *td = list_entry(tmp, struct table_device, list);
 915
 916		DMWARN("dm_destroy: %s still exists with %d references",
 917		       td->dm_dev.name, atomic_read(&td->count));
 918		kfree(td);
 919	}
 920}
 921
 922/*
 923 * Get the geometry associated with a dm device
 924 */
 925int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
 926{
 927	*geo = md->geometry;
 928
 929	return 0;
 930}
 931
 932/*
 933 * Set the geometry of a device.
 934 */
 935int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
 936{
 937	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
 938
 939	if (geo->start > sz) {
 940		DMWARN("Start sector is beyond the geometry limits.");
 941		return -EINVAL;
 942	}
 943
 944	md->geometry = *geo;
 945
 946	return 0;
 947}
 948
 949/*-----------------------------------------------------------------
 950 * CRUD START:
 951 *   A more elegant soln is in the works that uses the queue
 952 *   merge fn, unfortunately there are a couple of changes to
 953 *   the block layer that I want to make for this.  So in the
 954 *   interests of getting something for people to use I give
 955 *   you this clearly demarcated crap.
 956 *---------------------------------------------------------------*/
 957
 958static int __noflush_suspending(struct mapped_device *md)
 959{
 960	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
 961}
 962
 963/*
 964 * Decrements the number of outstanding ios that a bio has been
 965 * cloned into, completing the original io if necc.
 966 */
 967static void dec_pending(struct dm_io *io, int error)
 968{
 969	unsigned long flags;
 970	int io_error;
 971	struct bio *bio;
 972	struct mapped_device *md = io->md;
 973
 974	/* Push-back supersedes any I/O errors */
 975	if (unlikely(error)) {
 976		spin_lock_irqsave(&io->endio_lock, flags);
 977		if (!(io->error > 0 && __noflush_suspending(md)))
 978			io->error = error;
 979		spin_unlock_irqrestore(&io->endio_lock, flags);
 980	}
 981
 982	if (atomic_dec_and_test(&io->io_count)) {
 983		if (io->error == DM_ENDIO_REQUEUE) {
 984			/*
 985			 * Target requested pushing back the I/O.
 986			 */
 987			spin_lock_irqsave(&md->deferred_lock, flags);
 988			if (__noflush_suspending(md))
 989				bio_list_add_head(&md->deferred, io->bio);
 
 990			else
 991				/* noflush suspend was interrupted. */
 992				io->error = -EIO;
 993			spin_unlock_irqrestore(&md->deferred_lock, flags);
 994		}
 995
 996		io_error = io->error;
 997		bio = io->bio;
 998		end_io_acct(io);
 999		free_io(md, io);
1000
1001		if (io_error == DM_ENDIO_REQUEUE)
1002			return;
1003
1004		if ((bio->bi_rw & REQ_FLUSH) && bio->bi_iter.bi_size) {
1005			/*
1006			 * Preflush done for flush with data, reissue
1007			 * without REQ_FLUSH.
1008			 */
1009			bio->bi_rw &= ~REQ_FLUSH;
1010			queue_io(md, bio);
1011		} else {
1012			/* done with normal IO or empty flush */
1013			trace_block_bio_complete(md->queue, bio, io_error);
1014			bio->bi_error = io_error;
1015			bio_endio(bio);
1016		}
1017	}
1018}
1019
1020static void disable_write_same(struct mapped_device *md)
 
 
 
 
 
 
 
 
 
1021{
1022	struct queue_limits *limits = dm_get_queue_limits(md);
1023
1024	/* device doesn't really support WRITE SAME, disable it */
1025	limits->max_write_same_sectors = 0;
1026}
1027
 
 
 
 
 
 
 
 
1028static void clone_endio(struct bio *bio)
1029{
1030	int error = bio->bi_error;
1031	int r = error;
1032	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1033	struct dm_io *io = tio->io;
1034	struct mapped_device *md = tio->io->md;
1035	dm_endio_fn endio = tio->ti->type->end_io;
1036
 
 
 
 
 
 
 
 
 
 
 
 
1037	if (endio) {
1038		r = endio(tio->ti, bio, error);
1039		if (r < 0 || r == DM_ENDIO_REQUEUE)
1040			/*
1041			 * error and requeue request are handled
1042			 * in dec_pending().
1043			 */
1044			error = r;
1045		else if (r == DM_ENDIO_INCOMPLETE)
1046			/* The target will handle the io */
1047			return;
1048		else if (r) {
1049			DMWARN("unimplemented target endio return value: %d", r);
1050			BUG();
1051		}
1052	}
1053
1054	if (unlikely(r == -EREMOTEIO && (bio->bi_rw & REQ_WRITE_SAME) &&
1055		     !bdev_get_queue(bio->bi_bdev)->limits.max_write_same_sectors))
1056		disable_write_same(md);
1057
1058	free_tio(md, tio);
1059	dec_pending(io, error);
1060}
1061
1062/*
1063 * Partial completion handling for request-based dm
 
1064 */
1065static void end_clone_bio(struct bio *clone)
1066{
1067	struct dm_rq_clone_bio_info *info =
1068		container_of(clone, struct dm_rq_clone_bio_info, clone);
1069	struct dm_rq_target_io *tio = info->tio;
1070	struct bio *bio = info->orig;
1071	unsigned int nr_bytes = info->orig->bi_iter.bi_size;
1072	int error = clone->bi_error;
1073
1074	bio_put(clone);
1075
1076	if (tio->error)
1077		/*
1078		 * An error has already been detected on the request.
1079		 * Once error occurred, just let clone->end_io() handle
1080		 * the remainder.
1081		 */
1082		return;
1083	else if (error) {
1084		/*
1085		 * Don't notice the error to the upper layer yet.
1086		 * The error handling decision is made by the target driver,
1087		 * when the request is completed.
1088		 */
1089		tio->error = error;
1090		return;
1091	}
1092
1093	/*
1094	 * I/O for the bio successfully completed.
1095	 * Notice the data completion to the upper layer.
1096	 */
1097
1098	/*
1099	 * bios are processed from the head of the list.
1100	 * So the completing bio should always be rq->bio.
1101	 * If it's not, something wrong is happening.
1102	 */
1103	if (tio->orig->bio != bio)
1104		DMERR("bio completion is going in the middle of the request");
1105
1106	/*
1107	 * Update the original request.
1108	 * Do not use blk_end_request() here, because it may complete
1109	 * the original request before the clone, and break the ordering.
1110	 */
1111	blk_update_request(tio->orig, 0, nr_bytes);
1112}
1113
1114static struct dm_rq_target_io *tio_from_request(struct request *rq)
1115{
1116	return (rq->q->mq_ops ? blk_mq_rq_to_pdu(rq) : rq->special);
1117}
1118
1119static void rq_end_stats(struct mapped_device *md, struct request *orig)
1120{
1121	if (unlikely(dm_stats_used(&md->stats))) {
1122		struct dm_rq_target_io *tio = tio_from_request(orig);
1123		tio->duration_jiffies = jiffies - tio->duration_jiffies;
1124		dm_stats_account_io(&md->stats, orig->cmd_flags, blk_rq_pos(orig),
1125				    tio->n_sectors, true, tio->duration_jiffies,
1126				    &tio->stats_aux);
1127	}
1128}
1129
1130/*
1131 * Don't touch any member of the md after calling this function because
1132 * the md may be freed in dm_put() at the end of this function.
1133 * Or do dm_get() before calling this function and dm_put() later.
1134 */
1135static void rq_completed(struct mapped_device *md, int rw, bool run_queue)
1136{
1137	atomic_dec(&md->pending[rw]);
1138
1139	/* nudge anyone waiting on suspend queue */
1140	if (!md_in_flight(md))
1141		wake_up(&md->wait);
1142
1143	/*
1144	 * Run this off this callpath, as drivers could invoke end_io while
1145	 * inside their request_fn (and holding the queue lock). Calling
1146	 * back into ->request_fn() could deadlock attempting to grab the
1147	 * queue lock again.
1148	 */
1149	if (!md->queue->mq_ops && run_queue)
1150		blk_run_queue_async(md->queue);
1151
1152	/*
1153	 * dm_put() must be at the end of this function. See the comment above
1154	 */
1155	dm_put(md);
1156}
1157
1158static void free_rq_clone(struct request *clone)
1159{
1160	struct dm_rq_target_io *tio = clone->end_io_data;
1161	struct mapped_device *md = tio->md;
1162
1163	blk_rq_unprep_clone(clone);
1164
1165	if (md->type == DM_TYPE_MQ_REQUEST_BASED)
1166		/* stacked on blk-mq queue(s) */
1167		tio->ti->type->release_clone_rq(clone);
1168	else if (!md->queue->mq_ops)
1169		/* request_fn queue stacked on request_fn queue(s) */
1170		free_old_clone_request(md, clone);
1171
1172	if (!md->queue->mq_ops)
1173		free_old_rq_tio(tio);
1174}
1175
1176/*
1177 * Complete the clone and the original request.
1178 * Must be called without clone's queue lock held,
1179 * see end_clone_request() for more details.
1180 */
1181static void dm_end_request(struct request *clone, int error)
1182{
1183	int rw = rq_data_dir(clone);
1184	struct dm_rq_target_io *tio = clone->end_io_data;
1185	struct mapped_device *md = tio->md;
1186	struct request *rq = tio->orig;
1187
1188	if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
1189		rq->errors = clone->errors;
1190		rq->resid_len = clone->resid_len;
1191
1192		if (rq->sense)
1193			/*
1194			 * We are using the sense buffer of the original
1195			 * request.
1196			 * So setting the length of the sense data is enough.
1197			 */
1198			rq->sense_len = clone->sense_len;
1199	}
1200
1201	free_rq_clone(clone);
1202	rq_end_stats(md, rq);
1203	if (!rq->q->mq_ops)
1204		blk_end_request_all(rq, error);
1205	else
1206		blk_mq_end_request(rq, error);
1207	rq_completed(md, rw, true);
1208}
1209
1210static void dm_unprep_request(struct request *rq)
1211{
1212	struct dm_rq_target_io *tio = tio_from_request(rq);
1213	struct request *clone = tio->clone;
1214
1215	if (!rq->q->mq_ops) {
1216		rq->special = NULL;
1217		rq->cmd_flags &= ~REQ_DONTPREP;
1218	}
1219
1220	if (clone)
1221		free_rq_clone(clone);
1222	else if (!tio->md->queue->mq_ops)
1223		free_old_rq_tio(tio);
1224}
1225
1226/*
1227 * Requeue the original request of a clone.
1228 */
1229static void dm_old_requeue_request(struct request *rq)
1230{
1231	struct request_queue *q = rq->q;
1232	unsigned long flags;
1233
1234	spin_lock_irqsave(q->queue_lock, flags);
1235	blk_requeue_request(q, rq);
1236	blk_run_queue_async(q);
1237	spin_unlock_irqrestore(q->queue_lock, flags);
1238}
1239
1240static void dm_mq_requeue_request(struct request *rq)
1241{
1242	struct request_queue *q = rq->q;
1243	unsigned long flags;
1244
1245	blk_mq_requeue_request(rq);
1246	spin_lock_irqsave(q->queue_lock, flags);
1247	if (!blk_queue_stopped(q))
1248		blk_mq_kick_requeue_list(q);
1249	spin_unlock_irqrestore(q->queue_lock, flags);
1250}
1251
1252static void dm_requeue_original_request(struct mapped_device *md,
1253					struct request *rq)
1254{
1255	int rw = rq_data_dir(rq);
1256
1257	rq_end_stats(md, rq);
1258	dm_unprep_request(rq);
1259
1260	if (!rq->q->mq_ops)
1261		dm_old_requeue_request(rq);
1262	else
1263		dm_mq_requeue_request(rq);
1264
1265	rq_completed(md, rw, false);
1266}
1267
1268static void dm_old_stop_queue(struct request_queue *q)
1269{
1270	unsigned long flags;
1271
1272	spin_lock_irqsave(q->queue_lock, flags);
1273	if (blk_queue_stopped(q)) {
1274		spin_unlock_irqrestore(q->queue_lock, flags);
1275		return;
1276	}
1277
1278	blk_stop_queue(q);
1279	spin_unlock_irqrestore(q->queue_lock, flags);
1280}
 
1281
1282static void dm_stop_queue(struct request_queue *q)
 
 
1283{
1284	if (!q->mq_ops)
1285		dm_old_stop_queue(q);
1286	else
1287		blk_mq_stop_hw_queues(q);
1288}
1289
1290static void dm_old_start_queue(struct request_queue *q)
1291{
1292	unsigned long flags;
1293
1294	spin_lock_irqsave(q->queue_lock, flags);
1295	if (blk_queue_stopped(q))
1296		blk_start_queue(q);
1297	spin_unlock_irqrestore(q->queue_lock, flags);
1298}
1299
1300static void dm_start_queue(struct request_queue *q)
1301{
1302	if (!q->mq_ops)
1303		dm_old_start_queue(q);
1304	else {
1305		blk_mq_start_stopped_hw_queues(q, true);
1306		blk_mq_kick_requeue_list(q);
1307	}
1308}
1309
1310static void dm_done(struct request *clone, int error, bool mapped)
 
1311{
1312	int r = error;
1313	struct dm_rq_target_io *tio = clone->end_io_data;
1314	dm_request_endio_fn rq_end_io = NULL;
 
 
1315
1316	if (tio->ti) {
1317		rq_end_io = tio->ti->type->rq_end_io;
1318
1319		if (mapped && rq_end_io)
1320			r = rq_end_io(tio->ti, clone, error, &tio->info);
1321	}
 
 
 
 
 
 
1322
1323	if (unlikely(r == -EREMOTEIO && (clone->cmd_flags & REQ_WRITE_SAME) &&
1324		     !clone->q->limits.max_write_same_sectors))
1325		disable_write_same(tio->md);
1326
1327	if (r <= 0)
1328		/* The target wants to complete the I/O */
1329		dm_end_request(clone, r);
1330	else if (r == DM_ENDIO_INCOMPLETE)
1331		/* The target will handle the I/O */
1332		return;
1333	else if (r == DM_ENDIO_REQUEUE)
1334		/* The target wants to requeue the I/O */
1335		dm_requeue_original_request(tio->md, tio->orig);
1336	else {
1337		DMWARN("unimplemented target endio return value: %d", r);
1338		BUG();
1339	}
1340}
1341
1342/*
1343 * Request completion handler for request-based dm
1344 */
1345static void dm_softirq_done(struct request *rq)
1346{
1347	bool mapped = true;
1348	struct dm_rq_target_io *tio = tio_from_request(rq);
1349	struct request *clone = tio->clone;
1350	int rw;
1351
1352	if (!clone) {
1353		rq_end_stats(tio->md, rq);
1354		rw = rq_data_dir(rq);
1355		if (!rq->q->mq_ops) {
1356			blk_end_request_all(rq, tio->error);
1357			rq_completed(tio->md, rw, false);
1358			free_old_rq_tio(tio);
1359		} else {
1360			blk_mq_end_request(rq, tio->error);
1361			rq_completed(tio->md, rw, false);
1362		}
1363		return;
1364	}
1365
1366	if (rq->cmd_flags & REQ_FAILED)
1367		mapped = false;
 
1368
1369	dm_done(clone, tio->error, mapped);
1370}
1371
1372/*
1373 * Complete the clone and the original request with the error status
1374 * through softirq context.
1375 */
1376static void dm_complete_request(struct request *rq, int error)
1377{
1378	struct dm_rq_target_io *tio = tio_from_request(rq);
1379
1380	tio->error = error;
1381	if (!rq->q->mq_ops)
1382		blk_complete_request(rq);
1383	else
1384		blk_mq_complete_request(rq, error);
1385}
1386
1387/*
1388 * Complete the not-mapped clone and the original request with the error status
1389 * through softirq context.
1390 * Target's rq_end_io() function isn't called.
1391 * This may be used when the target's map_rq() or clone_and_map_rq() functions fail.
1392 */
1393static void dm_kill_unmapped_request(struct request *rq, int error)
1394{
1395	rq->cmd_flags |= REQ_FAILED;
1396	dm_complete_request(rq, error);
1397}
 
 
1398
1399/*
1400 * Called with the clone's queue lock held (in the case of .request_fn)
1401 */
1402static void end_clone_request(struct request *clone, int error)
1403{
1404	struct dm_rq_target_io *tio = clone->end_io_data;
1405
1406	if (!clone->q->mq_ops) {
1407		/*
1408		 * For just cleaning up the information of the queue in which
1409		 * the clone was dispatched.
1410		 * The clone is *NOT* freed actually here because it is alloced
1411		 * from dm own mempool (REQ_ALLOCED isn't set).
1412		 */
1413		__blk_put_request(clone->q, clone);
1414	}
 
 
 
1415
1416	/*
1417	 * Actual request completion is done in a softirq context which doesn't
1418	 * hold the clone's queue lock.  Otherwise, deadlock could occur because:
1419	 *     - another request may be submitted by the upper level driver
1420	 *       of the stacking during the completion
1421	 *     - the submission which requires queue lock may be done
1422	 *       against this clone's queue
1423	 */
1424	dm_complete_request(tio->orig, error);
1425}
1426
1427/*
1428 * Return maximum size of I/O possible at the supplied sector up to the current
1429 * target boundary.
1430 */
1431static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
1432{
1433	sector_t target_offset = dm_target_offset(ti, sector);
1434
1435	return ti->len - target_offset;
1436}
1437
1438static sector_t max_io_len(sector_t sector, struct dm_target *ti)
 
1439{
1440	sector_t len = max_io_len_target_boundary(sector, ti);
1441	sector_t offset, max_len;
1442
1443	/*
1444	 * Does the target need to split even further?
1445	 */
1446	if (ti->max_io_len) {
1447		offset = dm_target_offset(ti, sector);
1448		if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
1449			max_len = sector_div(offset, ti->max_io_len);
1450		else
1451			max_len = offset & (ti->max_io_len - 1);
1452		max_len = ti->max_io_len - max_len;
1453
1454		if (len > max_len)
1455			len = max_len;
1456	}
1457
1458	return len;
1459}
1460
1461int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1462{
1463	if (len > UINT_MAX) {
1464		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1465		      (unsigned long long)len, UINT_MAX);
1466		ti->error = "Maximum size of target IO is too large";
1467		return -EINVAL;
1468	}
 
 
 
1469
1470	ti->max_io_len = (uint32_t) len;
1471
1472	return 0;
1473}
1474EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1475
1476/*
1477 * A target may call dm_accept_partial_bio only from the map routine.  It is
1478 * allowed for all bio types except REQ_FLUSH.
1479 *
1480 * dm_accept_partial_bio informs the dm that the target only wants to process
1481 * additional n_sectors sectors of the bio and the rest of the data should be
1482 * sent in a next bio.
1483 *
1484 * A diagram that explains the arithmetics:
1485 * +--------------------+---------------+-------+
1486 * |         1          |       2       |   3   |
1487 * +--------------------+---------------+-------+
1488 *
1489 * <-------------- *tio->len_ptr --------------->
1490 *                      <------- bi_size ------->
1491 *                      <-- n_sectors -->
1492 *
1493 * Region 1 was already iterated over with bio_advance or similar function.
1494 *	(it may be empty if the target doesn't use bio_advance)
1495 * Region 2 is the remaining bio size that the target wants to process.
1496 *	(it may be empty if region 1 is non-empty, although there is no reason
1497 *	 to make it empty)
1498 * The target requires that region 3 is to be sent in the next bio.
1499 *
1500 * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1501 * the partially processed part (the sum of regions 1+2) must be the same for all
1502 * copies of the bio.
1503 */
1504void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1505{
1506	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1507	unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1508	BUG_ON(bio->bi_rw & REQ_FLUSH);
1509	BUG_ON(bi_size > *tio->len_ptr);
1510	BUG_ON(n_sectors > bi_size);
1511	*tio->len_ptr -= bi_size - n_sectors;
1512	bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1513}
1514EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1515
1516static void __map_bio(struct dm_target_io *tio)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1517{
1518	int r;
1519	sector_t sector;
1520	struct mapped_device *md;
1521	struct bio *clone = &tio->clone;
 
 
1522	struct dm_target *ti = tio->ti;
 
1523
1524	clone->bi_end_io = clone_endio;
1525
1526	/*
1527	 * Map the clone.  If r == 0 we don't need to do
1528	 * anything, the target has assumed ownership of
1529	 * this io.
1530	 */
1531	atomic_inc(&tio->io->io_count);
1532	sector = clone->bi_iter.bi_sector;
 
1533	r = ti->type->map(ti, clone);
1534	if (r == DM_MAPIO_REMAPPED) {
 
 
 
1535		/* the bio has been remapped so dispatch it */
1536
1537		trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone,
1538				      tio->io->bio->bi_bdev->bd_dev, sector);
1539
1540		generic_make_request(clone);
1541	} else if (r < 0 || r == DM_MAPIO_REQUEUE) {
1542		/* error the io and bail out, or requeue it if needed */
1543		md = tio->io->md;
1544		dec_pending(tio->io, r);
1545		free_tio(md, tio);
1546	} else if (r != DM_MAPIO_SUBMITTED) {
 
 
 
 
 
1547		DMWARN("unimplemented target map return value: %d", r);
1548		BUG();
1549	}
1550}
1551
1552struct clone_info {
1553	struct mapped_device *md;
1554	struct dm_table *map;
1555	struct bio *bio;
1556	struct dm_io *io;
1557	sector_t sector;
1558	unsigned sector_count;
1559};
1560
1561static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1562{
1563	bio->bi_iter.bi_sector = sector;
1564	bio->bi_iter.bi_size = to_bytes(len);
1565}
1566
1567/*
1568 * Creates a bio that consists of range of complete bvecs.
1569 */
1570static int clone_bio(struct dm_target_io *tio, struct bio *bio,
1571		     sector_t sector, unsigned len)
1572{
1573	struct bio *clone = &tio->clone;
1574
1575	__bio_clone_fast(clone, bio);
1576
1577	if (bio_integrity(bio)) {
1578		int r = bio_integrity_clone(clone, bio, GFP_NOIO);
 
 
 
 
 
 
 
 
 
 
1579		if (r < 0)
1580			return r;
1581	}
1582
1583	bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1584	clone->bi_iter.bi_size = to_bytes(len);
1585
1586	if (bio_integrity(bio))
1587		bio_integrity_trim(clone, 0, len);
1588
1589	return 0;
1590}
1591
1592static struct dm_target_io *alloc_tio(struct clone_info *ci,
1593				      struct dm_target *ti,
1594				      unsigned target_bio_nr)
1595{
1596	struct dm_target_io *tio;
1597	struct bio *clone;
1598
1599	clone = bio_alloc_bioset(GFP_NOIO, 0, ci->md->bs);
1600	tio = container_of(clone, struct dm_target_io, clone);
1601
1602	tio->io = ci->io;
1603	tio->ti = ti;
1604	tio->target_bio_nr = target_bio_nr;
 
 
1605
1606	return tio;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1607}
1608
1609static void __clone_and_map_simple_bio(struct clone_info *ci,
1610				       struct dm_target *ti,
1611				       unsigned target_bio_nr, unsigned *len)
1612{
1613	struct dm_target_io *tio = alloc_tio(ci, ti, target_bio_nr);
1614	struct bio *clone = &tio->clone;
1615
1616	tio->len_ptr = len;
1617
1618	__bio_clone_fast(clone, ci->bio);
1619	if (len)
1620		bio_setup_sector(clone, ci->sector, *len);
1621
1622	__map_bio(tio);
1623}
1624
1625static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1626				  unsigned num_bios, unsigned *len)
1627{
1628	unsigned target_bio_nr;
 
 
 
 
1629
1630	for (target_bio_nr = 0; target_bio_nr < num_bios; target_bio_nr++)
1631		__clone_and_map_simple_bio(ci, ti, target_bio_nr, len);
 
 
1632}
1633
1634static int __send_empty_flush(struct clone_info *ci)
1635{
1636	unsigned target_nr = 0;
1637	struct dm_target *ti;
1638
 
 
 
 
 
 
 
 
 
1639	BUG_ON(bio_has_data(ci->bio));
1640	while ((ti = dm_table_get_target(ci->map, target_nr++)))
1641		__send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1642
 
 
1643	return 0;
1644}
1645
1646static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1647				     sector_t sector, unsigned *len)
1648{
1649	struct bio *bio = ci->bio;
1650	struct dm_target_io *tio;
1651	unsigned target_bio_nr;
1652	unsigned num_target_bios = 1;
1653	int r = 0;
1654
1655	/*
1656	 * Does the target want to receive duplicate copies of the bio?
1657	 */
1658	if (bio_data_dir(bio) == WRITE && ti->num_write_bios)
1659		num_target_bios = ti->num_write_bios(ti, bio);
1660
1661	for (target_bio_nr = 0; target_bio_nr < num_target_bios; target_bio_nr++) {
1662		tio = alloc_tio(ci, ti, target_bio_nr);
1663		tio->len_ptr = len;
1664		r = clone_bio(tio, bio, sector, *len);
1665		if (r < 0) {
1666			free_tio(ci->md, tio);
1667			break;
1668		}
1669		__map_bio(tio);
1670	}
 
1671
1672	return r;
1673}
1674
1675typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1676
1677static unsigned get_num_discard_bios(struct dm_target *ti)
1678{
1679	return ti->num_discard_bios;
1680}
1681
 
 
 
 
 
1682static unsigned get_num_write_same_bios(struct dm_target *ti)
1683{
1684	return ti->num_write_same_bios;
1685}
1686
1687typedef bool (*is_split_required_fn)(struct dm_target *ti);
1688
1689static bool is_split_required_for_discard(struct dm_target *ti)
1690{
1691	return ti->split_discard_bios;
1692}
1693
1694static int __send_changing_extent_only(struct clone_info *ci,
1695				       get_num_bios_fn get_num_bios,
1696				       is_split_required_fn is_split_required)
1697{
1698	struct dm_target *ti;
1699	unsigned len;
1700	unsigned num_bios;
1701
1702	do {
1703		ti = dm_table_find_target(ci->map, ci->sector);
1704		if (!dm_target_is_valid(ti))
1705			return -EIO;
1706
1707		/*
1708		 * Even though the device advertised support for this type of
1709		 * request, that does not mean every target supports it, and
1710		 * reconfiguration might also have changed that since the
1711		 * check was performed.
1712		 */
1713		num_bios = get_num_bios ? get_num_bios(ti) : 0;
1714		if (!num_bios)
1715			return -EOPNOTSUPP;
1716
1717		if (is_split_required && !is_split_required(ti))
1718			len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1719		else
1720			len = min((sector_t)ci->sector_count, max_io_len(ci->sector, ti));
1721
1722		__send_duplicate_bios(ci, ti, num_bios, &len);
1723
1724		ci->sector += len;
1725	} while (ci->sector_count -= len);
1726
1727	return 0;
1728}
1729
1730static int __send_discard(struct clone_info *ci)
1731{
1732	return __send_changing_extent_only(ci, get_num_discard_bios,
1733					   is_split_required_for_discard);
1734}
1735
1736static int __send_write_same(struct clone_info *ci)
1737{
1738	return __send_changing_extent_only(ci, get_num_write_same_bios, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1739}
1740
1741/*
1742 * Select the correct strategy for processing a non-flush bio.
1743 */
1744static int __split_and_process_non_flush(struct clone_info *ci)
1745{
1746	struct bio *bio = ci->bio;
1747	struct dm_target *ti;
1748	unsigned len;
1749	int r;
1750
1751	if (unlikely(bio->bi_rw & REQ_DISCARD))
1752		return __send_discard(ci);
1753	else if (unlikely(bio->bi_rw & REQ_WRITE_SAME))
1754		return __send_write_same(ci);
1755
1756	ti = dm_table_find_target(ci->map, ci->sector);
1757	if (!dm_target_is_valid(ti))
1758		return -EIO;
1759
 
 
 
1760	len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count);
1761
1762	r = __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1763	if (r < 0)
1764		return r;
1765
1766	ci->sector += len;
1767	ci->sector_count -= len;
1768
1769	return 0;
1770}
1771
 
 
 
 
 
 
 
 
 
 
 
1772/*
1773 * Entry point to split a bio into clones and submit them to the targets.
1774 */
1775static void __split_and_process_bio(struct mapped_device *md,
1776				    struct dm_table *map, struct bio *bio)
1777{
1778	struct clone_info ci;
 
1779	int error = 0;
1780
1781	if (unlikely(!map)) {
1782		bio_io_error(bio);
1783		return;
1784	}
1785
1786	ci.map = map;
1787	ci.md = md;
1788	ci.io = alloc_io(md);
1789	ci.io->error = 0;
1790	atomic_set(&ci.io->io_count, 1);
1791	ci.io->bio = bio;
1792	ci.io->md = md;
1793	spin_lock_init(&ci.io->endio_lock);
1794	ci.sector = bio->bi_iter.bi_sector;
1795
1796	start_io_acct(ci.io);
1797
1798	if (bio->bi_rw & REQ_FLUSH) {
1799		ci.bio = &ci.md->flush_bio;
 
 
 
 
1800		ci.sector_count = 0;
1801		error = __send_empty_flush(&ci);
1802		/* dec_pending submits any data associated with flush */
 
 
 
 
1803	} else {
1804		ci.bio = bio;
1805		ci.sector_count = bio_sectors(bio);
1806		while (ci.sector_count && !error)
1807			error = __split_and_process_non_flush(&ci);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1808	}
1809
1810	/* drop the extra reference count */
1811	dec_pending(ci.io, error);
 
1812}
1813/*-----------------------------------------------------------------
1814 * CRUD END
1815 *---------------------------------------------------------------*/
1816
1817/*
1818 * The request function that just remaps the bio built up by
1819 * dm_merge_bvec.
1820 */
1821static blk_qc_t dm_make_request(struct request_queue *q, struct bio *bio)
1822{
1823	int rw = bio_data_dir(bio);
1824	struct mapped_device *md = q->queuedata;
1825	int srcu_idx;
1826	struct dm_table *map;
1827
1828	map = dm_get_live_table(md, &srcu_idx);
1829
1830	generic_start_io_acct(rw, bio_sectors(bio), &dm_disk(md)->part0);
1831
1832	/* if we're suspended, we have to queue this io for later */
1833	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1834		dm_put_live_table(md, srcu_idx);
1835
1836		if (bio_rw(bio) != READA)
1837			queue_io(md, bio);
1838		else
1839			bio_io_error(bio);
1840		return BLK_QC_T_NONE;
1841	}
1842
1843	__split_and_process_bio(md, map, bio);
1844	dm_put_live_table(md, srcu_idx);
1845	return BLK_QC_T_NONE;
1846}
1847
1848int dm_request_based(struct mapped_device *md)
1849{
1850	return blk_queue_stackable(md->queue);
1851}
1852
1853static void dm_dispatch_clone_request(struct request *clone, struct request *rq)
1854{
1855	int r;
1856
1857	if (blk_queue_io_stat(clone->q))
1858		clone->cmd_flags |= REQ_IO_STAT;
1859
1860	clone->start_time = jiffies;
1861	r = blk_insert_cloned_request(clone->q, clone);
1862	if (r)
1863		/* must complete clone in terms of original request */
1864		dm_complete_request(rq, r);
1865}
1866
1867static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig,
1868				 void *data)
1869{
1870	struct dm_rq_target_io *tio = data;
1871	struct dm_rq_clone_bio_info *info =
1872		container_of(bio, struct dm_rq_clone_bio_info, clone);
1873
1874	info->orig = bio_orig;
1875	info->tio = tio;
1876	bio->bi_end_io = end_clone_bio;
1877
1878	return 0;
1879}
1880
1881static int setup_clone(struct request *clone, struct request *rq,
1882		       struct dm_rq_target_io *tio, gfp_t gfp_mask)
1883{
1884	int r;
1885
1886	r = blk_rq_prep_clone(clone, rq, tio->md->bs, gfp_mask,
1887			      dm_rq_bio_constructor, tio);
1888	if (r)
1889		return r;
1890
1891	clone->cmd = rq->cmd;
1892	clone->cmd_len = rq->cmd_len;
1893	clone->sense = rq->sense;
1894	clone->end_io = end_clone_request;
1895	clone->end_io_data = tio;
1896
1897	tio->clone = clone;
1898
1899	return 0;
1900}
1901
1902static struct request *clone_old_rq(struct request *rq, struct mapped_device *md,
1903				    struct dm_rq_target_io *tio, gfp_t gfp_mask)
1904{
1905	/*
1906	 * Create clone for use with .request_fn request_queue
1907	 */
1908	struct request *clone;
 
 
 
 
 
 
1909
1910	clone = alloc_old_clone_request(md, gfp_mask);
1911	if (!clone)
1912		return NULL;
 
1913
1914	blk_rq_init(NULL, clone);
1915	if (setup_clone(clone, rq, tio, gfp_mask)) {
1916		/* -ENOMEM */
1917		free_old_clone_request(md, clone);
1918		return NULL;
1919	}
1920
1921	return clone;
1922}
1923
1924static void map_tio_request(struct kthread_work *work);
1925
1926static void init_tio(struct dm_rq_target_io *tio, struct request *rq,
1927		     struct mapped_device *md)
1928{
1929	tio->md = md;
1930	tio->ti = NULL;
1931	tio->clone = NULL;
1932	tio->orig = rq;
1933	tio->error = 0;
1934	/*
1935	 * Avoid initializing info for blk-mq; it passes
1936	 * target-specific data through info.ptr
1937	 * (see: dm_mq_init_request)
1938	 */
1939	if (!md->init_tio_pdu)
1940		memset(&tio->info, 0, sizeof(tio->info));
1941	if (md->kworker_task)
1942		init_kthread_work(&tio->work, map_tio_request);
1943}
1944
1945static struct dm_rq_target_io *dm_old_prep_tio(struct request *rq,
1946					       struct mapped_device *md,
1947					       gfp_t gfp_mask)
1948{
1949	struct dm_rq_target_io *tio;
1950	int srcu_idx;
1951	struct dm_table *table;
1952
1953	tio = alloc_old_rq_tio(md, gfp_mask);
1954	if (!tio)
1955		return NULL;
1956
1957	init_tio(tio, rq, md);
 
1958
1959	table = dm_get_live_table(md, &srcu_idx);
1960	/*
1961	 * Must clone a request if this .request_fn DM device
1962	 * is stacked on .request_fn device(s).
1963	 */
1964	if (!dm_table_mq_request_based(table)) {
1965		if (!clone_old_rq(rq, md, tio, gfp_mask)) {
1966			dm_put_live_table(md, srcu_idx);
1967			free_old_rq_tio(tio);
1968			return NULL;
1969		}
1970	}
1971	dm_put_live_table(md, srcu_idx);
1972
1973	return tio;
1974}
1975
1976/*
1977 * Called with the queue lock held.
1978 */
1979static int dm_old_prep_fn(struct request_queue *q, struct request *rq)
1980{
1981	struct mapped_device *md = q->queuedata;
1982	struct dm_rq_target_io *tio;
1983
1984	if (unlikely(rq->special)) {
1985		DMWARN("Already has something in rq->special.");
1986		return BLKPREP_KILL;
1987	}
1988
1989	tio = dm_old_prep_tio(rq, md, GFP_ATOMIC);
1990	if (!tio)
1991		return BLKPREP_DEFER;
1992
1993	rq->special = tio;
1994	rq->cmd_flags |= REQ_DONTPREP;
1995
1996	return BLKPREP_OK;
1997}
1998
1999/*
2000 * Returns:
2001 * 0                : the request has been processed
2002 * DM_MAPIO_REQUEUE : the original request needs to be requeued
2003 * < 0              : the request was completed due to failure
2004 */
2005static int map_request(struct dm_rq_target_io *tio, struct request *rq,
2006		       struct mapped_device *md)
2007{
2008	int r;
2009	struct dm_target *ti = tio->ti;
2010	struct request *clone = NULL;
2011
2012	if (tio->clone) {
2013		clone = tio->clone;
2014		r = ti->type->map_rq(ti, clone, &tio->info);
2015	} else {
2016		r = ti->type->clone_and_map_rq(ti, rq, &tio->info, &clone);
2017		if (r < 0) {
2018			/* The target wants to complete the I/O */
2019			dm_kill_unmapped_request(rq, r);
2020			return r;
2021		}
2022		if (r != DM_MAPIO_REMAPPED)
2023			return r;
2024		if (setup_clone(clone, rq, tio, GFP_ATOMIC)) {
2025			/* -ENOMEM */
2026			ti->type->release_clone_rq(clone);
2027			return DM_MAPIO_REQUEUE;
2028		}
2029	}
2030
2031	switch (r) {
2032	case DM_MAPIO_SUBMITTED:
2033		/* The target has taken the I/O to submit by itself later */
2034		break;
2035	case DM_MAPIO_REMAPPED:
2036		/* The target has remapped the I/O so dispatch it */
2037		trace_block_rq_remap(clone->q, clone, disk_devt(dm_disk(md)),
2038				     blk_rq_pos(rq));
2039		dm_dispatch_clone_request(clone, rq);
2040		break;
2041	case DM_MAPIO_REQUEUE:
2042		/* The target wants to requeue the I/O */
2043		dm_requeue_original_request(md, tio->orig);
2044		break;
2045	default:
2046		if (r > 0) {
2047			DMWARN("unimplemented target map return value: %d", r);
2048			BUG();
2049		}
2050
2051		/* The target wants to complete the I/O */
2052		dm_kill_unmapped_request(rq, r);
2053		return r;
2054	}
2055
2056	return 0;
2057}
2058
2059static void map_tio_request(struct kthread_work *work)
2060{
2061	struct dm_rq_target_io *tio = container_of(work, struct dm_rq_target_io, work);
2062	struct request *rq = tio->orig;
2063	struct mapped_device *md = tio->md;
2064
2065	if (map_request(tio, rq, md) == DM_MAPIO_REQUEUE)
2066		dm_requeue_original_request(md, rq);
2067}
2068
2069static void dm_start_request(struct mapped_device *md, struct request *orig)
2070{
2071	if (!orig->q->mq_ops)
2072		blk_start_request(orig);
2073	else
2074		blk_mq_start_request(orig);
2075	atomic_inc(&md->pending[rq_data_dir(orig)]);
2076
2077	if (md->seq_rq_merge_deadline_usecs) {
2078		md->last_rq_pos = rq_end_sector(orig);
2079		md->last_rq_rw = rq_data_dir(orig);
2080		md->last_rq_start_time = ktime_get();
2081	}
2082
2083	if (unlikely(dm_stats_used(&md->stats))) {
2084		struct dm_rq_target_io *tio = tio_from_request(orig);
2085		tio->duration_jiffies = jiffies;
2086		tio->n_sectors = blk_rq_sectors(orig);
2087		dm_stats_account_io(&md->stats, orig->cmd_flags, blk_rq_pos(orig),
2088				    tio->n_sectors, false, 0, &tio->stats_aux);
2089	}
2090
2091	/*
2092	 * Hold the md reference here for the in-flight I/O.
2093	 * We can't rely on the reference count by device opener,
2094	 * because the device may be closed during the request completion
2095	 * when all bios are completed.
2096	 * See the comment in rq_completed() too.
2097	 */
2098	dm_get(md);
2099}
2100
2101#define MAX_SEQ_RQ_MERGE_DEADLINE_USECS 100000
2102
2103ssize_t dm_attr_rq_based_seq_io_merge_deadline_show(struct mapped_device *md, char *buf)
2104{
2105	return sprintf(buf, "%u\n", md->seq_rq_merge_deadline_usecs);
2106}
2107
2108ssize_t dm_attr_rq_based_seq_io_merge_deadline_store(struct mapped_device *md,
2109						     const char *buf, size_t count)
2110{
2111	unsigned deadline;
2112
2113	if (!dm_request_based(md) || md->use_blk_mq)
2114		return count;
2115
2116	if (kstrtouint(buf, 10, &deadline))
2117		return -EINVAL;
2118
2119	if (deadline > MAX_SEQ_RQ_MERGE_DEADLINE_USECS)
2120		deadline = MAX_SEQ_RQ_MERGE_DEADLINE_USECS;
2121
2122	md->seq_rq_merge_deadline_usecs = deadline;
2123
2124	return count;
2125}
2126
2127static bool dm_request_peeked_before_merge_deadline(struct mapped_device *md)
2128{
2129	ktime_t kt_deadline;
2130
2131	if (!md->seq_rq_merge_deadline_usecs)
2132		return false;
2133
2134	kt_deadline = ns_to_ktime((u64)md->seq_rq_merge_deadline_usecs * NSEC_PER_USEC);
2135	kt_deadline = ktime_add_safe(md->last_rq_start_time, kt_deadline);
2136
2137	return !ktime_after(ktime_get(), kt_deadline);
2138}
2139
2140/*
2141 * q->request_fn for request-based dm.
2142 * Called with the queue lock held.
2143 */
2144static void dm_request_fn(struct request_queue *q)
2145{
2146	struct mapped_device *md = q->queuedata;
2147	struct dm_target *ti = md->immutable_target;
2148	struct request *rq;
2149	struct dm_rq_target_io *tio;
2150	sector_t pos = 0;
2151
2152	if (unlikely(!ti)) {
2153		int srcu_idx;
2154		struct dm_table *map = dm_get_live_table(md, &srcu_idx);
2155
2156		ti = dm_table_find_target(map, pos);
2157		dm_put_live_table(md, srcu_idx);
2158	}
2159
2160	/*
2161	 * For suspend, check blk_queue_stopped() and increment
2162	 * ->pending within a single queue_lock not to increment the
2163	 * number of in-flight I/Os after the queue is stopped in
2164	 * dm_suspend().
2165	 */
2166	while (!blk_queue_stopped(q)) {
2167		rq = blk_peek_request(q);
2168		if (!rq)
2169			return;
2170
2171		/* always use block 0 to find the target for flushes for now */
2172		pos = 0;
2173		if (!(rq->cmd_flags & REQ_FLUSH))
2174			pos = blk_rq_pos(rq);
2175
2176		if ((dm_request_peeked_before_merge_deadline(md) &&
2177		     md_in_flight(md) && rq->bio && rq->bio->bi_vcnt == 1 &&
2178		     md->last_rq_pos == pos && md->last_rq_rw == rq_data_dir(rq)) ||
2179		    (ti->type->busy && ti->type->busy(ti))) {
2180			blk_delay_queue(q, HZ / 100);
2181			return;
2182		}
2183
2184		dm_start_request(md, rq);
2185
2186		tio = tio_from_request(rq);
2187		/* Establish tio->ti before queuing work (map_tio_request) */
2188		tio->ti = ti;
2189		queue_kthread_work(&md->kworker, &tio->work);
2190		BUG_ON(!irqs_disabled());
2191	}
2192}
2193
2194static int dm_any_congested(void *congested_data, int bdi_bits)
2195{
2196	int r = bdi_bits;
2197	struct mapped_device *md = congested_data;
2198	struct dm_table *map;
2199
2200	if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2201		if (dm_request_based(md)) {
2202			/*
2203			 * With request-based DM we only need to check the
2204			 * top-level queue for congestion.
2205			 */
2206			r = md->queue->backing_dev_info.wb.state & bdi_bits;
2207		} else {
2208			map = dm_get_live_table_fast(md);
2209			if (map)
2210				r = dm_table_any_congested(map, bdi_bits);
2211			dm_put_live_table_fast(md);
2212		}
2213	}
2214
2215	return r;
2216}
2217
2218/*-----------------------------------------------------------------
2219 * An IDR is used to keep track of allocated minor numbers.
2220 *---------------------------------------------------------------*/
2221static void free_minor(int minor)
2222{
2223	spin_lock(&_minor_lock);
2224	idr_remove(&_minor_idr, minor);
2225	spin_unlock(&_minor_lock);
2226}
2227
2228/*
2229 * See if the device with a specific minor # is free.
2230 */
2231static int specific_minor(int minor)
2232{
2233	int r;
2234
2235	if (minor >= (1 << MINORBITS))
2236		return -EINVAL;
2237
2238	idr_preload(GFP_KERNEL);
2239	spin_lock(&_minor_lock);
2240
2241	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
2242
2243	spin_unlock(&_minor_lock);
2244	idr_preload_end();
2245	if (r < 0)
2246		return r == -ENOSPC ? -EBUSY : r;
2247	return 0;
2248}
2249
2250static int next_free_minor(int *minor)
2251{
2252	int r;
2253
2254	idr_preload(GFP_KERNEL);
2255	spin_lock(&_minor_lock);
2256
2257	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
2258
2259	spin_unlock(&_minor_lock);
2260	idr_preload_end();
2261	if (r < 0)
2262		return r;
2263	*minor = r;
2264	return 0;
2265}
2266
2267static const struct block_device_operations dm_blk_dops;
 
2268
2269static void dm_wq_work(struct work_struct *work);
2270
2271static void dm_init_md_queue(struct mapped_device *md)
2272{
2273	/*
2274	 * Request-based dm devices cannot be stacked on top of bio-based dm
2275	 * devices.  The type of this dm device may not have been decided yet.
2276	 * The type is decided at the first table loading time.
2277	 * To prevent problematic device stacking, clear the queue flag
2278	 * for request stacking support until then.
2279	 *
2280	 * This queue is new, so no concurrency on the queue_flags.
2281	 */
2282	queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
2283
2284	/*
2285	 * Initialize data that will only be used by a non-blk-mq DM queue
2286	 * - must do so here (in alloc_dev callchain) before queue is used
2287	 */
2288	md->queue->queuedata = md;
2289	md->queue->backing_dev_info.congested_data = md;
2290}
2291
2292static void dm_init_normal_md_queue(struct mapped_device *md)
2293{
2294	md->use_blk_mq = false;
2295	dm_init_md_queue(md);
2296
2297	/*
2298	 * Initialize aspects of queue that aren't relevant for blk-mq
2299	 */
2300	md->queue->backing_dev_info.congested_fn = dm_any_congested;
2301	blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
2302}
2303
2304static void cleanup_mapped_device(struct mapped_device *md)
2305{
2306	if (md->wq)
2307		destroy_workqueue(md->wq);
2308	if (md->kworker_task)
2309		kthread_stop(md->kworker_task);
2310	mempool_destroy(md->io_pool);
2311	mempool_destroy(md->rq_pool);
2312	if (md->bs)
2313		bioset_free(md->bs);
2314
2315	cleanup_srcu_struct(&md->io_barrier);
 
 
 
 
2316
2317	if (md->disk) {
2318		spin_lock(&_minor_lock);
2319		md->disk->private_data = NULL;
2320		spin_unlock(&_minor_lock);
2321		del_gendisk(md->disk);
2322		put_disk(md->disk);
2323	}
2324
2325	if (md->queue)
2326		blk_cleanup_queue(md->queue);
2327
 
 
2328	if (md->bdev) {
2329		bdput(md->bdev);
2330		md->bdev = NULL;
2331	}
 
 
 
 
 
 
2332}
2333
2334/*
2335 * Allocate and initialise a blank device with a given minor.
2336 */
2337static struct mapped_device *alloc_dev(int minor)
2338{
2339	int r, numa_node_id = dm_get_numa_node();
2340	struct mapped_device *md;
2341	void *old_md;
2342
2343	md = kzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
2344	if (!md) {
2345		DMWARN("unable to allocate device, out of memory.");
2346		return NULL;
2347	}
2348
2349	if (!try_module_get(THIS_MODULE))
2350		goto bad_module_get;
2351
2352	/* get a minor number for the dev */
2353	if (minor == DM_ANY_MINOR)
2354		r = next_free_minor(&minor);
2355	else
2356		r = specific_minor(minor);
2357	if (r < 0)
2358		goto bad_minor;
2359
2360	r = init_srcu_struct(&md->io_barrier);
2361	if (r < 0)
2362		goto bad_io_barrier;
2363
2364	md->numa_node_id = numa_node_id;
2365	md->use_blk_mq = use_blk_mq;
2366	md->init_tio_pdu = false;
2367	md->type = DM_TYPE_NONE;
2368	mutex_init(&md->suspend_lock);
2369	mutex_init(&md->type_lock);
2370	mutex_init(&md->table_devices_lock);
2371	spin_lock_init(&md->deferred_lock);
2372	atomic_set(&md->holders, 1);
2373	atomic_set(&md->open_count, 0);
2374	atomic_set(&md->event_nr, 0);
2375	atomic_set(&md->uevent_seq, 0);
2376	INIT_LIST_HEAD(&md->uevent_list);
2377	INIT_LIST_HEAD(&md->table_devices);
2378	spin_lock_init(&md->uevent_lock);
2379
2380	md->queue = blk_alloc_queue_node(GFP_KERNEL, numa_node_id);
2381	if (!md->queue)
2382		goto bad;
 
 
2383
2384	dm_init_md_queue(md);
2385
2386	md->disk = alloc_disk_node(1, numa_node_id);
2387	if (!md->disk)
2388		goto bad;
2389
2390	atomic_set(&md->pending[0], 0);
2391	atomic_set(&md->pending[1], 0);
2392	init_waitqueue_head(&md->wait);
2393	INIT_WORK(&md->work, dm_wq_work);
2394	init_waitqueue_head(&md->eventq);
2395	init_completion(&md->kobj_holder.completion);
2396	md->kworker_task = NULL;
2397
2398	md->disk->major = _major;
2399	md->disk->first_minor = minor;
2400	md->disk->fops = &dm_blk_dops;
2401	md->disk->queue = md->queue;
2402	md->disk->private_data = md;
2403	sprintf(md->disk->disk_name, "dm-%d", minor);
2404	add_disk(md->disk);
 
 
 
 
 
 
 
 
2405	format_dev_t(md->name, MKDEV(_major, minor));
2406
2407	md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
2408	if (!md->wq)
2409		goto bad;
2410
2411	md->bdev = bdget_disk(md->disk, 0);
2412	if (!md->bdev)
2413		goto bad;
2414
2415	bio_init(&md->flush_bio);
2416	md->flush_bio.bi_bdev = md->bdev;
2417	md->flush_bio.bi_rw = WRITE_FLUSH;
2418
2419	dm_stats_init(&md->stats);
2420
2421	/* Populate the mapping, nobody knows we exist yet */
2422	spin_lock(&_minor_lock);
2423	old_md = idr_replace(&_minor_idr, md, minor);
2424	spin_unlock(&_minor_lock);
2425
2426	BUG_ON(old_md != MINOR_ALLOCED);
2427
2428	return md;
2429
2430bad:
2431	cleanup_mapped_device(md);
2432bad_io_barrier:
2433	free_minor(minor);
2434bad_minor:
2435	module_put(THIS_MODULE);
2436bad_module_get:
2437	kfree(md);
2438	return NULL;
2439}
2440
2441static void unlock_fs(struct mapped_device *md);
2442
2443static void free_dev(struct mapped_device *md)
2444{
2445	int minor = MINOR(disk_devt(md->disk));
2446
2447	unlock_fs(md);
2448
2449	cleanup_mapped_device(md);
2450	if (md->tag_set) {
2451		blk_mq_free_tag_set(md->tag_set);
2452		kfree(md->tag_set);
2453	}
2454
2455	free_table_devices(&md->table_devices);
2456	dm_stats_cleanup(&md->stats);
2457	free_minor(minor);
2458
2459	module_put(THIS_MODULE);
2460	kfree(md);
2461}
2462
2463static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
2464{
2465	struct dm_md_mempools *p = dm_table_get_md_mempools(t);
 
2466
2467	if (md->bs) {
2468		/* The md already has necessary mempools. */
2469		if (dm_table_get_type(t) == DM_TYPE_BIO_BASED) {
2470			/*
2471			 * Reload bioset because front_pad may have changed
2472			 * because a different table was loaded.
2473			 */
2474			bioset_free(md->bs);
2475			md->bs = p->bs;
2476			p->bs = NULL;
2477		}
2478		/*
2479		 * There's no need to reload with request-based dm
2480		 * because the size of front_pad doesn't change.
2481		 * Note for future: If you are to reload bioset,
2482		 * prep-ed requests in the queue may refer
2483		 * to bio from the old bioset, so you must walk
2484		 * through the queue to unprep.
2485		 */
2486		goto out;
2487	}
2488
2489	BUG_ON(!p || md->io_pool || md->rq_pool || md->bs);
2490
2491	md->io_pool = p->io_pool;
2492	p->io_pool = NULL;
2493	md->rq_pool = p->rq_pool;
2494	p->rq_pool = NULL;
2495	md->bs = p->bs;
2496	p->bs = NULL;
2497
 
 
 
 
 
 
2498out:
2499	/* mempool bind completed, no longer need any mempools in the table */
2500	dm_table_free_md_mempools(t);
 
2501}
2502
2503/*
2504 * Bind a table to the device.
2505 */
2506static void event_callback(void *context)
2507{
2508	unsigned long flags;
2509	LIST_HEAD(uevents);
2510	struct mapped_device *md = (struct mapped_device *) context;
2511
2512	spin_lock_irqsave(&md->uevent_lock, flags);
2513	list_splice_init(&md->uevent_list, &uevents);
2514	spin_unlock_irqrestore(&md->uevent_lock, flags);
2515
2516	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2517
2518	atomic_inc(&md->event_nr);
2519	wake_up(&md->eventq);
 
2520}
2521
2522/*
2523 * Protected by md->suspend_lock obtained by dm_swap_table().
2524 */
2525static void __set_size(struct mapped_device *md, sector_t size)
2526{
 
 
2527	set_capacity(md->disk, size);
2528
2529	i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
2530}
2531
2532/*
2533 * Returns old map, which caller must destroy.
2534 */
2535static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2536			       struct queue_limits *limits)
2537{
2538	struct dm_table *old_map;
2539	struct request_queue *q = md->queue;
 
2540	sector_t size;
 
 
 
2541
2542	size = dm_table_get_size(t);
2543
2544	/*
2545	 * Wipe any geometry if the size of the table changed.
2546	 */
2547	if (size != dm_get_size(md))
2548		memset(&md->geometry, 0, sizeof(md->geometry));
2549
2550	__set_size(md, size);
2551
2552	dm_table_event_callback(t, event_callback, md);
2553
2554	/*
2555	 * The queue hasn't been stopped yet, if the old table type wasn't
2556	 * for request-based during suspension.  So stop it to prevent
2557	 * I/O mapping before resume.
2558	 * This must be done before setting the queue restrictions,
2559	 * because request-based dm may be run just after the setting.
2560	 */
2561	if (dm_table_request_based(t)) {
2562		dm_stop_queue(q);
 
 
2563		/*
2564		 * Leverage the fact that request-based DM targets are
2565		 * immutable singletons and establish md->immutable_target
2566		 * - used to optimize both dm_request_fn and dm_mq_queue_rq
 
2567		 */
2568		md->immutable_target = dm_table_get_immutable_target(t);
2569	}
2570
2571	__bind_mempools(md, t);
 
 
 
 
2572
2573	old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2574	rcu_assign_pointer(md->map, (void *)t);
2575	md->immutable_target_type = dm_table_get_immutable_target_type(t);
2576
2577	dm_table_set_restrictions(t, q, limits);
2578	if (old_map)
2579		dm_sync_table(md);
2580
 
2581	return old_map;
2582}
2583
2584/*
2585 * Returns unbound table for the caller to free.
2586 */
2587static struct dm_table *__unbind(struct mapped_device *md)
2588{
2589	struct dm_table *map = rcu_dereference_protected(md->map, 1);
2590
2591	if (!map)
2592		return NULL;
2593
2594	dm_table_event_callback(map, NULL, NULL);
2595	RCU_INIT_POINTER(md->map, NULL);
2596	dm_sync_table(md);
2597
2598	return map;
2599}
2600
2601/*
2602 * Constructor for a new device.
2603 */
2604int dm_create(int minor, struct mapped_device **result)
2605{
 
2606	struct mapped_device *md;
2607
2608	md = alloc_dev(minor);
2609	if (!md)
2610		return -ENXIO;
2611
2612	dm_sysfs_init(md);
 
 
 
 
2613
2614	*result = md;
2615	return 0;
2616}
2617
2618/*
2619 * Functions to manage md->type.
2620 * All are required to hold md->type_lock.
2621 */
2622void dm_lock_md_type(struct mapped_device *md)
2623{
2624	mutex_lock(&md->type_lock);
2625}
2626
2627void dm_unlock_md_type(struct mapped_device *md)
2628{
2629	mutex_unlock(&md->type_lock);
2630}
2631
2632void dm_set_md_type(struct mapped_device *md, unsigned type)
2633{
2634	BUG_ON(!mutex_is_locked(&md->type_lock));
2635	md->type = type;
2636}
2637
2638unsigned dm_get_md_type(struct mapped_device *md)
2639{
2640	return md->type;
2641}
2642
2643struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2644{
2645	return md->immutable_target_type;
2646}
2647
2648/*
2649 * The queue_limits are only valid as long as you have a reference
2650 * count on 'md'.
2651 */
2652struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2653{
2654	BUG_ON(!atomic_read(&md->holders));
2655	return &md->queue->limits;
2656}
2657EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2658
2659static void dm_old_init_rq_based_worker_thread(struct mapped_device *md)
2660{
2661	/* Initialize the request-based DM worker thread */
2662	init_kthread_worker(&md->kworker);
2663	md->kworker_task = kthread_run(kthread_worker_fn, &md->kworker,
2664				       "kdmwork-%s", dm_device_name(md));
2665}
2666
2667/*
2668 * Fully initialize a .request_fn request-based queue.
2669 */
2670static int dm_old_init_request_queue(struct mapped_device *md)
2671{
2672	/* Fully initialize the queue */
2673	if (!blk_init_allocated_queue(md->queue, dm_request_fn, NULL))
2674		return -EINVAL;
2675
2676	/* disable dm_request_fn's merge heuristic by default */
2677	md->seq_rq_merge_deadline_usecs = 0;
2678
2679	dm_init_normal_md_queue(md);
2680	blk_queue_softirq_done(md->queue, dm_softirq_done);
2681	blk_queue_prep_rq(md->queue, dm_old_prep_fn);
2682
2683	dm_old_init_rq_based_worker_thread(md);
2684
2685	elv_register_queue(md->queue);
2686
2687	return 0;
2688}
2689
2690static int dm_mq_init_request(void *data, struct request *rq,
2691			      unsigned int hctx_idx, unsigned int request_idx,
2692			      unsigned int numa_node)
2693{
2694	struct mapped_device *md = data;
2695	struct dm_rq_target_io *tio = blk_mq_rq_to_pdu(rq);
2696
2697	/*
2698	 * Must initialize md member of tio, otherwise it won't
2699	 * be available in dm_mq_queue_rq.
2700	 */
2701	tio->md = md;
2702
2703	if (md->init_tio_pdu) {
2704		/* target-specific per-io data is immediately after the tio */
2705		tio->info.ptr = tio + 1;
2706	}
2707
2708	return 0;
2709}
2710
2711static int dm_mq_queue_rq(struct blk_mq_hw_ctx *hctx,
2712			  const struct blk_mq_queue_data *bd)
2713{
2714	struct request *rq = bd->rq;
2715	struct dm_rq_target_io *tio = blk_mq_rq_to_pdu(rq);
2716	struct mapped_device *md = tio->md;
2717	struct dm_target *ti = md->immutable_target;
2718
2719	if (unlikely(!ti)) {
2720		int srcu_idx;
2721		struct dm_table *map = dm_get_live_table(md, &srcu_idx);
2722
2723		ti = dm_table_find_target(map, 0);
2724		dm_put_live_table(md, srcu_idx);
2725	}
2726
2727	if (ti->type->busy && ti->type->busy(ti))
2728		return BLK_MQ_RQ_QUEUE_BUSY;
2729
2730	dm_start_request(md, rq);
2731
2732	/* Init tio using md established in .init_request */
2733	init_tio(tio, rq, md);
2734
2735	/*
2736	 * Establish tio->ti before queuing work (map_tio_request)
2737	 * or making direct call to map_request().
2738	 */
2739	tio->ti = ti;
2740
2741	/* Direct call is fine since .queue_rq allows allocations */
2742	if (map_request(tio, rq, md) == DM_MAPIO_REQUEUE) {
2743		/* Undo dm_start_request() before requeuing */
2744		rq_end_stats(md, rq);
2745		rq_completed(md, rq_data_dir(rq), false);
2746		return BLK_MQ_RQ_QUEUE_BUSY;
2747	}
2748
2749	return BLK_MQ_RQ_QUEUE_OK;
2750}
2751
2752static struct blk_mq_ops dm_mq_ops = {
2753	.queue_rq = dm_mq_queue_rq,
2754	.map_queue = blk_mq_map_queue,
2755	.complete = dm_softirq_done,
2756	.init_request = dm_mq_init_request,
2757};
2758
2759static int dm_mq_init_request_queue(struct mapped_device *md,
2760				    struct dm_target *immutable_tgt)
2761{
2762	struct request_queue *q;
2763	int err;
2764
2765	if (dm_get_md_type(md) == DM_TYPE_REQUEST_BASED) {
2766		DMERR("request-based dm-mq may only be stacked on blk-mq device(s)");
2767		return -EINVAL;
2768	}
2769
2770	md->tag_set = kzalloc_node(sizeof(struct blk_mq_tag_set), GFP_KERNEL, md->numa_node_id);
2771	if (!md->tag_set)
2772		return -ENOMEM;
2773
2774	md->tag_set->ops = &dm_mq_ops;
2775	md->tag_set->queue_depth = dm_get_blk_mq_queue_depth();
2776	md->tag_set->numa_node = md->numa_node_id;
2777	md->tag_set->flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
2778	md->tag_set->nr_hw_queues = dm_get_blk_mq_nr_hw_queues();
2779	md->tag_set->driver_data = md;
2780
2781	md->tag_set->cmd_size = sizeof(struct dm_rq_target_io);
2782	if (immutable_tgt && immutable_tgt->per_io_data_size) {
2783		/* any target-specific per-io data is immediately after the tio */
2784		md->tag_set->cmd_size += immutable_tgt->per_io_data_size;
2785		md->init_tio_pdu = true;
2786	}
2787
2788	err = blk_mq_alloc_tag_set(md->tag_set);
2789	if (err)
2790		goto out_kfree_tag_set;
2791
2792	q = blk_mq_init_allocated_queue(md->tag_set, md->queue);
2793	if (IS_ERR(q)) {
2794		err = PTR_ERR(q);
2795		goto out_tag_set;
2796	}
2797	dm_init_md_queue(md);
2798
2799	/* backfill 'mq' sysfs registration normally done in blk_register_queue */
2800	blk_mq_register_disk(md->disk);
2801
2802	return 0;
2803
2804out_tag_set:
2805	blk_mq_free_tag_set(md->tag_set);
2806out_kfree_tag_set:
2807	kfree(md->tag_set);
2808
2809	return err;
2810}
2811
2812static unsigned filter_md_type(unsigned type, struct mapped_device *md)
2813{
2814	if (type == DM_TYPE_BIO_BASED)
2815		return type;
2816
2817	return !md->use_blk_mq ? DM_TYPE_REQUEST_BASED : DM_TYPE_MQ_REQUEST_BASED;
2818}
2819
2820/*
2821 * Setup the DM device's queue based on md's type
2822 */
2823int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2824{
2825	int r;
2826	unsigned md_type = filter_md_type(dm_get_md_type(md), md);
 
2827
2828	switch (md_type) {
2829	case DM_TYPE_REQUEST_BASED:
2830		r = dm_old_init_request_queue(md);
2831		if (r) {
2832			DMERR("Cannot initialize queue for request-based mapped device");
2833			return r;
2834		}
2835		break;
2836	case DM_TYPE_MQ_REQUEST_BASED:
2837		r = dm_mq_init_request_queue(md, dm_table_get_immutable_target(t));
2838		if (r) {
2839			DMERR("Cannot initialize queue for request-based dm-mq mapped device");
2840			return r;
2841		}
2842		break;
2843	case DM_TYPE_BIO_BASED:
 
 
2844		dm_init_normal_md_queue(md);
2845		blk_queue_make_request(md->queue, dm_make_request);
2846		/*
2847		 * DM handles splitting bios as needed.  Free the bio_split bioset
2848		 * since it won't be used (saves 1 process per bio-based DM device).
2849		 */
2850		bioset_free(md->queue->bio_split);
2851		md->queue->bio_split = NULL;
2852		break;
 
 
 
 
 
 
 
 
 
2853	}
 
 
2854
2855	return 0;
2856}
2857
2858struct mapped_device *dm_get_md(dev_t dev)
2859{
2860	struct mapped_device *md;
2861	unsigned minor = MINOR(dev);
2862
2863	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2864		return NULL;
2865
2866	spin_lock(&_minor_lock);
2867
2868	md = idr_find(&_minor_idr, minor);
2869	if (md) {
2870		if ((md == MINOR_ALLOCED ||
2871		     (MINOR(disk_devt(dm_disk(md))) != minor) ||
2872		     dm_deleting_md(md) ||
2873		     test_bit(DMF_FREEING, &md->flags))) {
2874			md = NULL;
2875			goto out;
2876		}
2877		dm_get(md);
2878	}
2879
2880out:
2881	spin_unlock(&_minor_lock);
2882
2883	return md;
2884}
2885EXPORT_SYMBOL_GPL(dm_get_md);
2886
2887void *dm_get_mdptr(struct mapped_device *md)
2888{
2889	return md->interface_ptr;
2890}
2891
2892void dm_set_mdptr(struct mapped_device *md, void *ptr)
2893{
2894	md->interface_ptr = ptr;
2895}
2896
2897void dm_get(struct mapped_device *md)
2898{
2899	atomic_inc(&md->holders);
2900	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2901}
2902
2903int dm_hold(struct mapped_device *md)
2904{
2905	spin_lock(&_minor_lock);
2906	if (test_bit(DMF_FREEING, &md->flags)) {
2907		spin_unlock(&_minor_lock);
2908		return -EBUSY;
2909	}
2910	dm_get(md);
2911	spin_unlock(&_minor_lock);
2912	return 0;
2913}
2914EXPORT_SYMBOL_GPL(dm_hold);
2915
2916const char *dm_device_name(struct mapped_device *md)
2917{
2918	return md->name;
2919}
2920EXPORT_SYMBOL_GPL(dm_device_name);
2921
2922static void __dm_destroy(struct mapped_device *md, bool wait)
2923{
2924	struct dm_table *map;
2925	int srcu_idx;
2926
2927	might_sleep();
2928
2929	spin_lock(&_minor_lock);
2930	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2931	set_bit(DMF_FREEING, &md->flags);
2932	spin_unlock(&_minor_lock);
2933
2934	if (dm_request_based(md) && md->kworker_task)
2935		flush_kthread_worker(&md->kworker);
2936
2937	/*
2938	 * Take suspend_lock so that presuspend and postsuspend methods
2939	 * do not race with internal suspend.
2940	 */
2941	mutex_lock(&md->suspend_lock);
2942	map = dm_get_live_table(md, &srcu_idx);
2943	if (!dm_suspended_md(md)) {
2944		dm_table_presuspend_targets(map);
2945		dm_table_postsuspend_targets(map);
2946	}
2947	/* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2948	dm_put_live_table(md, srcu_idx);
2949	mutex_unlock(&md->suspend_lock);
2950
2951	/*
2952	 * Rare, but there may be I/O requests still going to complete,
2953	 * for example.  Wait for all references to disappear.
2954	 * No one should increment the reference count of the mapped_device,
2955	 * after the mapped_device state becomes DMF_FREEING.
2956	 */
2957	if (wait)
2958		while (atomic_read(&md->holders))
2959			msleep(1);
2960	else if (atomic_read(&md->holders))
2961		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2962		       dm_device_name(md), atomic_read(&md->holders));
2963
2964	dm_sysfs_exit(md);
2965	dm_table_destroy(__unbind(md));
2966	free_dev(md);
2967}
2968
2969void dm_destroy(struct mapped_device *md)
2970{
2971	__dm_destroy(md, true);
2972}
2973
2974void dm_destroy_immediate(struct mapped_device *md)
2975{
2976	__dm_destroy(md, false);
2977}
2978
2979void dm_put(struct mapped_device *md)
2980{
2981	atomic_dec(&md->holders);
2982}
2983EXPORT_SYMBOL_GPL(dm_put);
2984
2985static int dm_wait_for_completion(struct mapped_device *md, int interruptible)
2986{
2987	int r = 0;
2988	DECLARE_WAITQUEUE(wait, current);
2989
2990	add_wait_queue(&md->wait, &wait);
2991
2992	while (1) {
2993		set_current_state(interruptible);
2994
2995		if (!md_in_flight(md))
2996			break;
2997
2998		if (interruptible == TASK_INTERRUPTIBLE &&
2999		    signal_pending(current)) {
3000			r = -EINTR;
3001			break;
3002		}
3003
3004		io_schedule();
3005	}
3006	set_current_state(TASK_RUNNING);
3007
3008	remove_wait_queue(&md->wait, &wait);
3009
3010	return r;
3011}
3012
3013/*
3014 * Process the deferred bios
3015 */
3016static void dm_wq_work(struct work_struct *work)
3017{
3018	struct mapped_device *md = container_of(work, struct mapped_device,
3019						work);
3020	struct bio *c;
3021	int srcu_idx;
3022	struct dm_table *map;
3023
3024	map = dm_get_live_table(md, &srcu_idx);
3025
3026	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
3027		spin_lock_irq(&md->deferred_lock);
3028		c = bio_list_pop(&md->deferred);
3029		spin_unlock_irq(&md->deferred_lock);
3030
3031		if (!c)
3032			break;
3033
3034		if (dm_request_based(md))
3035			generic_make_request(c);
3036		else
3037			__split_and_process_bio(md, map, c);
3038	}
3039
3040	dm_put_live_table(md, srcu_idx);
3041}
3042
3043static void dm_queue_flush(struct mapped_device *md)
3044{
3045	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
3046	smp_mb__after_atomic();
3047	queue_work(md->wq, &md->work);
3048}
3049
3050/*
3051 * Swap in a new table, returning the old one for the caller to destroy.
3052 */
3053struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
3054{
3055	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
3056	struct queue_limits limits;
3057	int r;
3058
3059	mutex_lock(&md->suspend_lock);
3060
3061	/* device must be suspended */
3062	if (!dm_suspended_md(md))
3063		goto out;
3064
3065	/*
3066	 * If the new table has no data devices, retain the existing limits.
3067	 * This helps multipath with queue_if_no_path if all paths disappear,
3068	 * then new I/O is queued based on these limits, and then some paths
3069	 * reappear.
3070	 */
3071	if (dm_table_has_no_data_devices(table)) {
3072		live_map = dm_get_live_table_fast(md);
3073		if (live_map)
3074			limits = md->queue->limits;
3075		dm_put_live_table_fast(md);
3076	}
3077
3078	if (!live_map) {
3079		r = dm_calculate_queue_limits(table, &limits);
3080		if (r) {
3081			map = ERR_PTR(r);
3082			goto out;
3083		}
3084	}
3085
3086	map = __bind(md, table, &limits);
 
3087
3088out:
3089	mutex_unlock(&md->suspend_lock);
3090	return map;
3091}
3092
3093/*
3094 * Functions to lock and unlock any filesystem running on the
3095 * device.
3096 */
3097static int lock_fs(struct mapped_device *md)
3098{
3099	int r;
3100
3101	WARN_ON(md->frozen_sb);
3102
3103	md->frozen_sb = freeze_bdev(md->bdev);
3104	if (IS_ERR(md->frozen_sb)) {
3105		r = PTR_ERR(md->frozen_sb);
3106		md->frozen_sb = NULL;
3107		return r;
3108	}
3109
3110	set_bit(DMF_FROZEN, &md->flags);
3111
3112	return 0;
3113}
3114
3115static void unlock_fs(struct mapped_device *md)
3116{
3117	if (!test_bit(DMF_FROZEN, &md->flags))
3118		return;
3119
3120	thaw_bdev(md->bdev, md->frozen_sb);
3121	md->frozen_sb = NULL;
3122	clear_bit(DMF_FROZEN, &md->flags);
3123}
3124
3125/*
 
 
 
 
3126 * If __dm_suspend returns 0, the device is completely quiescent
3127 * now. There is no request-processing activity. All new requests
3128 * are being added to md->deferred list.
3129 *
3130 * Caller must hold md->suspend_lock
3131 */
3132static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
3133			unsigned suspend_flags, int interruptible)
 
3134{
3135	bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
3136	bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
3137	int r;
3138
 
 
3139	/*
3140	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
3141	 * This flag is cleared before dm_suspend returns.
3142	 */
3143	if (noflush)
3144		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
 
 
3145
3146	/*
3147	 * This gets reverted if there's an error later and the targets
3148	 * provide the .presuspend_undo hook.
3149	 */
3150	dm_table_presuspend_targets(map);
3151
3152	/*
3153	 * Flush I/O to the device.
3154	 * Any I/O submitted after lock_fs() may not be flushed.
3155	 * noflush takes precedence over do_lockfs.
3156	 * (lock_fs() flushes I/Os and waits for them to complete.)
3157	 */
3158	if (!noflush && do_lockfs) {
3159		r = lock_fs(md);
3160		if (r) {
3161			dm_table_presuspend_undo_targets(map);
3162			return r;
3163		}
3164	}
3165
3166	/*
3167	 * Here we must make sure that no processes are submitting requests
3168	 * to target drivers i.e. no one may be executing
3169	 * __split_and_process_bio. This is called from dm_request and
3170	 * dm_wq_work.
3171	 *
3172	 * To get all processes out of __split_and_process_bio in dm_request,
3173	 * we take the write lock. To prevent any process from reentering
3174	 * __split_and_process_bio from dm_request and quiesce the thread
3175	 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
3176	 * flush_workqueue(md->wq).
3177	 */
3178	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
3179	if (map)
3180		synchronize_srcu(&md->io_barrier);
3181
3182	/*
3183	 * Stop md->queue before flushing md->wq in case request-based
3184	 * dm defers requests to md->wq from md->queue.
3185	 */
3186	if (dm_request_based(md)) {
3187		dm_stop_queue(md->queue);
3188		if (md->kworker_task)
3189			flush_kthread_worker(&md->kworker);
3190	}
3191
3192	flush_workqueue(md->wq);
3193
3194	/*
3195	 * At this point no more requests are entering target request routines.
3196	 * We call dm_wait_for_completion to wait for all existing requests
3197	 * to finish.
3198	 */
3199	r = dm_wait_for_completion(md, interruptible);
 
 
3200
3201	if (noflush)
3202		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
3203	if (map)
3204		synchronize_srcu(&md->io_barrier);
3205
3206	/* were we interrupted ? */
3207	if (r < 0) {
3208		dm_queue_flush(md);
3209
3210		if (dm_request_based(md))
3211			dm_start_queue(md->queue);
3212
3213		unlock_fs(md);
3214		dm_table_presuspend_undo_targets(map);
3215		/* pushback list is already flushed, so skip flush */
3216	}
3217
3218	return r;
3219}
3220
3221/*
3222 * We need to be able to change a mapping table under a mounted
3223 * filesystem.  For example we might want to move some data in
3224 * the background.  Before the table can be swapped with
3225 * dm_bind_table, dm_suspend must be called to flush any in
3226 * flight bios and ensure that any further io gets deferred.
3227 */
3228/*
3229 * Suspend mechanism in request-based dm.
3230 *
3231 * 1. Flush all I/Os by lock_fs() if needed.
3232 * 2. Stop dispatching any I/O by stopping the request_queue.
3233 * 3. Wait for all in-flight I/Os to be completed or requeued.
3234 *
3235 * To abort suspend, start the request_queue.
3236 */
3237int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
3238{
3239	struct dm_table *map = NULL;
3240	int r = 0;
3241
3242retry:
3243	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
3244
3245	if (dm_suspended_md(md)) {
3246		r = -EINVAL;
3247		goto out_unlock;
3248	}
3249
3250	if (dm_suspended_internally_md(md)) {
3251		/* already internally suspended, wait for internal resume */
3252		mutex_unlock(&md->suspend_lock);
3253		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
3254		if (r)
3255			return r;
3256		goto retry;
3257	}
3258
3259	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3260
3261	r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE);
3262	if (r)
3263		goto out_unlock;
3264
3265	set_bit(DMF_SUSPENDED, &md->flags);
3266
3267	dm_table_postsuspend_targets(map);
3268
3269out_unlock:
3270	mutex_unlock(&md->suspend_lock);
3271	return r;
3272}
3273
3274static int __dm_resume(struct mapped_device *md, struct dm_table *map)
3275{
3276	if (map) {
3277		int r = dm_table_resume_targets(map);
3278		if (r)
3279			return r;
3280	}
3281
3282	dm_queue_flush(md);
3283
3284	/*
3285	 * Flushing deferred I/Os must be done after targets are resumed
3286	 * so that mapping of targets can work correctly.
3287	 * Request-based dm is queueing the deferred I/Os in its request_queue.
3288	 */
3289	if (dm_request_based(md))
3290		dm_start_queue(md->queue);
3291
3292	unlock_fs(md);
3293
3294	return 0;
3295}
3296
3297int dm_resume(struct mapped_device *md)
3298{
3299	int r = -EINVAL;
3300	struct dm_table *map = NULL;
3301
3302retry:
 
3303	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
3304
3305	if (!dm_suspended_md(md))
3306		goto out;
3307
3308	if (dm_suspended_internally_md(md)) {
3309		/* already internally suspended, wait for internal resume */
3310		mutex_unlock(&md->suspend_lock);
3311		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
3312		if (r)
3313			return r;
3314		goto retry;
3315	}
3316
3317	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3318	if (!map || !dm_table_get_size(map))
3319		goto out;
3320
3321	r = __dm_resume(md, map);
3322	if (r)
3323		goto out;
3324
3325	clear_bit(DMF_SUSPENDED, &md->flags);
3326
3327	r = 0;
3328out:
3329	mutex_unlock(&md->suspend_lock);
3330
3331	return r;
3332}
3333
3334/*
3335 * Internal suspend/resume works like userspace-driven suspend. It waits
3336 * until all bios finish and prevents issuing new bios to the target drivers.
3337 * It may be used only from the kernel.
3338 */
3339
3340static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
3341{
3342	struct dm_table *map = NULL;
3343
 
 
3344	if (md->internal_suspend_count++)
3345		return; /* nested internal suspend */
3346
3347	if (dm_suspended_md(md)) {
3348		set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3349		return; /* nest suspend */
3350	}
3351
3352	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3353
3354	/*
3355	 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
3356	 * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
3357	 * would require changing .presuspend to return an error -- avoid this
3358	 * until there is a need for more elaborate variants of internal suspend.
3359	 */
3360	(void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE);
3361
3362	set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3363
3364	dm_table_postsuspend_targets(map);
3365}
3366
3367static void __dm_internal_resume(struct mapped_device *md)
3368{
3369	BUG_ON(!md->internal_suspend_count);
3370
3371	if (--md->internal_suspend_count)
3372		return; /* resume from nested internal suspend */
3373
3374	if (dm_suspended_md(md))
3375		goto done; /* resume from nested suspend */
3376
3377	/*
3378	 * NOTE: existing callers don't need to call dm_table_resume_targets
3379	 * (which may fail -- so best to avoid it for now by passing NULL map)
3380	 */
3381	(void) __dm_resume(md, NULL);
3382
3383done:
3384	clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3385	smp_mb__after_atomic();
3386	wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
3387}
3388
3389void dm_internal_suspend_noflush(struct mapped_device *md)
3390{
3391	mutex_lock(&md->suspend_lock);
3392	__dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
3393	mutex_unlock(&md->suspend_lock);
3394}
3395EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
3396
3397void dm_internal_resume(struct mapped_device *md)
3398{
3399	mutex_lock(&md->suspend_lock);
3400	__dm_internal_resume(md);
3401	mutex_unlock(&md->suspend_lock);
3402}
3403EXPORT_SYMBOL_GPL(dm_internal_resume);
3404
3405/*
3406 * Fast variants of internal suspend/resume hold md->suspend_lock,
3407 * which prevents interaction with userspace-driven suspend.
3408 */
3409
3410void dm_internal_suspend_fast(struct mapped_device *md)
3411{
3412	mutex_lock(&md->suspend_lock);
3413	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3414		return;
3415
3416	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
3417	synchronize_srcu(&md->io_barrier);
3418	flush_workqueue(md->wq);
3419	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
3420}
3421EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
3422
3423void dm_internal_resume_fast(struct mapped_device *md)
3424{
3425	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3426		goto done;
3427
3428	dm_queue_flush(md);
3429
3430done:
3431	mutex_unlock(&md->suspend_lock);
3432}
3433EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
3434
3435/*-----------------------------------------------------------------
3436 * Event notification.
3437 *---------------------------------------------------------------*/
3438int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
3439		       unsigned cookie)
3440{
3441	char udev_cookie[DM_COOKIE_LENGTH];
3442	char *envp[] = { udev_cookie, NULL };
3443
3444	if (!cookie)
3445		return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
3446	else {
3447		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
3448			 DM_COOKIE_ENV_VAR_NAME, cookie);
3449		return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
3450					  action, envp);
3451	}
3452}
3453
3454uint32_t dm_next_uevent_seq(struct mapped_device *md)
3455{
3456	return atomic_add_return(1, &md->uevent_seq);
3457}
3458
3459uint32_t dm_get_event_nr(struct mapped_device *md)
3460{
3461	return atomic_read(&md->event_nr);
3462}
3463
3464int dm_wait_event(struct mapped_device *md, int event_nr)
3465{
3466	return wait_event_interruptible(md->eventq,
3467			(event_nr != atomic_read(&md->event_nr)));
3468}
3469
3470void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
3471{
3472	unsigned long flags;
3473
3474	spin_lock_irqsave(&md->uevent_lock, flags);
3475	list_add(elist, &md->uevent_list);
3476	spin_unlock_irqrestore(&md->uevent_lock, flags);
3477}
3478
3479/*
3480 * The gendisk is only valid as long as you have a reference
3481 * count on 'md'.
3482 */
3483struct gendisk *dm_disk(struct mapped_device *md)
3484{
3485	return md->disk;
3486}
3487EXPORT_SYMBOL_GPL(dm_disk);
3488
3489struct kobject *dm_kobject(struct mapped_device *md)
3490{
3491	return &md->kobj_holder.kobj;
3492}
3493
3494struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
3495{
3496	struct mapped_device *md;
3497
3498	md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
3499
3500	if (test_bit(DMF_FREEING, &md->flags) ||
3501	    dm_deleting_md(md))
3502		return NULL;
3503
 
3504	dm_get(md);
 
 
 
3505	return md;
3506}
3507
3508int dm_suspended_md(struct mapped_device *md)
3509{
3510	return test_bit(DMF_SUSPENDED, &md->flags);
3511}
3512
3513int dm_suspended_internally_md(struct mapped_device *md)
3514{
3515	return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3516}
3517
3518int dm_test_deferred_remove_flag(struct mapped_device *md)
3519{
3520	return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
3521}
3522
3523int dm_suspended(struct dm_target *ti)
3524{
3525	return dm_suspended_md(dm_table_get_md(ti->table));
3526}
3527EXPORT_SYMBOL_GPL(dm_suspended);
3528
3529int dm_noflush_suspending(struct dm_target *ti)
3530{
3531	return __noflush_suspending(dm_table_get_md(ti->table));
3532}
3533EXPORT_SYMBOL_GPL(dm_noflush_suspending);
3534
3535struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, unsigned type,
3536					    unsigned integrity, unsigned per_io_data_size)
 
3537{
3538	struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
3539	struct kmem_cache *cachep = NULL;
3540	unsigned int pool_size = 0;
3541	unsigned int front_pad;
 
3542
3543	if (!pools)
3544		return NULL;
3545
3546	type = filter_md_type(type, md);
3547
3548	switch (type) {
3549	case DM_TYPE_BIO_BASED:
3550		cachep = _io_cache;
3551		pool_size = dm_get_reserved_bio_based_ios();
 
3552		front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
 
 
 
 
 
 
3553		break;
3554	case DM_TYPE_REQUEST_BASED:
3555		cachep = _rq_tio_cache;
3556		pool_size = dm_get_reserved_rq_based_ios();
3557		pools->rq_pool = mempool_create_slab_pool(pool_size, _rq_cache);
3558		if (!pools->rq_pool)
3559			goto out;
3560		/* fall through to setup remaining rq-based pools */
3561	case DM_TYPE_MQ_REQUEST_BASED:
3562		if (!pool_size)
3563			pool_size = dm_get_reserved_rq_based_ios();
3564		front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
3565		/* per_io_data_size is used for blk-mq pdu at queue allocation */
3566		break;
3567	default:
3568		BUG();
3569	}
3570
3571	if (cachep) {
3572		pools->io_pool = mempool_create_slab_pool(pool_size, cachep);
3573		if (!pools->io_pool)
3574			goto out;
3575	}
3576
3577	pools->bs = bioset_create_nobvec(pool_size, front_pad);
3578	if (!pools->bs)
3579		goto out;
3580
3581	if (integrity && bioset_integrity_create(pools->bs, pool_size))
3582		goto out;
3583
3584	return pools;
3585
3586out:
3587	dm_free_md_mempools(pools);
3588
3589	return NULL;
3590}
3591
3592void dm_free_md_mempools(struct dm_md_mempools *pools)
3593{
3594	if (!pools)
3595		return;
3596
3597	mempool_destroy(pools->io_pool);
3598	mempool_destroy(pools->rq_pool);
3599
3600	if (pools->bs)
3601		bioset_free(pools->bs);
3602
3603	kfree(pools);
3604}
3605
3606static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
3607			  u32 flags)
 
 
 
 
 
 
 
3608{
3609	struct mapped_device *md = bdev->bd_disk->private_data;
3610	const struct pr_ops *ops;
3611	fmode_t mode;
3612	int r;
3613
3614	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
3615	if (r < 0)
3616		return r;
3617
3618	ops = bdev->bd_disk->fops->pr_ops;
3619	if (ops && ops->pr_register)
3620		r = ops->pr_register(bdev, old_key, new_key, flags);
3621	else
3622		r = -EOPNOTSUPP;
3623
3624	bdput(bdev);
3625	return r;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3626}
3627
3628static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3629			 u32 flags)
3630{
3631	struct mapped_device *md = bdev->bd_disk->private_data;
3632	const struct pr_ops *ops;
3633	fmode_t mode;
3634	int r;
3635
3636	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
3637	if (r < 0)
3638		return r;
3639
3640	ops = bdev->bd_disk->fops->pr_ops;
3641	if (ops && ops->pr_reserve)
3642		r = ops->pr_reserve(bdev, key, type, flags);
3643	else
3644		r = -EOPNOTSUPP;
3645
3646	bdput(bdev);
3647	return r;
3648}
3649
3650static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3651{
3652	struct mapped_device *md = bdev->bd_disk->private_data;
3653	const struct pr_ops *ops;
3654	fmode_t mode;
3655	int r;
3656
3657	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
3658	if (r < 0)
3659		return r;
3660
3661	ops = bdev->bd_disk->fops->pr_ops;
3662	if (ops && ops->pr_release)
3663		r = ops->pr_release(bdev, key, type);
3664	else
3665		r = -EOPNOTSUPP;
3666
3667	bdput(bdev);
3668	return r;
3669}
3670
3671static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3672			 enum pr_type type, bool abort)
3673{
3674	struct mapped_device *md = bdev->bd_disk->private_data;
3675	const struct pr_ops *ops;
3676	fmode_t mode;
3677	int r;
3678
3679	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
3680	if (r < 0)
3681		return r;
3682
3683	ops = bdev->bd_disk->fops->pr_ops;
3684	if (ops && ops->pr_preempt)
3685		r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
3686	else
3687		r = -EOPNOTSUPP;
3688
3689	bdput(bdev);
3690	return r;
3691}
3692
3693static int dm_pr_clear(struct block_device *bdev, u64 key)
3694{
3695	struct mapped_device *md = bdev->bd_disk->private_data;
3696	const struct pr_ops *ops;
3697	fmode_t mode;
3698	int r;
3699
3700	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
3701	if (r < 0)
3702		return r;
3703
3704	ops = bdev->bd_disk->fops->pr_ops;
3705	if (ops && ops->pr_clear)
3706		r = ops->pr_clear(bdev, key);
3707	else
3708		r = -EOPNOTSUPP;
3709
3710	bdput(bdev);
3711	return r;
3712}
3713
3714static const struct pr_ops dm_pr_ops = {
3715	.pr_register	= dm_pr_register,
3716	.pr_reserve	= dm_pr_reserve,
3717	.pr_release	= dm_pr_release,
3718	.pr_preempt	= dm_pr_preempt,
3719	.pr_clear	= dm_pr_clear,
3720};
3721
3722static const struct block_device_operations dm_blk_dops = {
3723	.open = dm_blk_open,
3724	.release = dm_blk_close,
3725	.ioctl = dm_blk_ioctl,
3726	.getgeo = dm_blk_getgeo,
 
3727	.pr_ops = &dm_pr_ops,
3728	.owner = THIS_MODULE
3729};
3730
 
 
 
 
 
 
 
3731/*
3732 * module hooks
3733 */
3734module_init(dm_init);
3735module_exit(dm_exit);
3736
3737module_param(major, uint, 0);
3738MODULE_PARM_DESC(major, "The major number of the device mapper");
3739
3740module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3741MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3742
3743module_param(reserved_rq_based_ios, uint, S_IRUGO | S_IWUSR);
3744MODULE_PARM_DESC(reserved_rq_based_ios, "Reserved IOs in request-based mempools");
3745
3746module_param(use_blk_mq, bool, S_IRUGO | S_IWUSR);
3747MODULE_PARM_DESC(use_blk_mq, "Use block multiqueue for request-based DM devices");
3748
3749module_param(dm_mq_nr_hw_queues, uint, S_IRUGO | S_IWUSR);
3750MODULE_PARM_DESC(dm_mq_nr_hw_queues, "Number of hardware queues for request-based dm-mq devices");
3751
3752module_param(dm_mq_queue_depth, uint, S_IRUGO | S_IWUSR);
3753MODULE_PARM_DESC(dm_mq_queue_depth, "Queue depth for request-based dm-mq devices");
3754
3755module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
3756MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3757
3758MODULE_DESCRIPTION(DM_NAME " driver");
3759MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3760MODULE_LICENSE("GPL");
v5.4
   1/*
   2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
   3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
   4 *
   5 * This file is released under the GPL.
   6 */
   7
   8#include "dm-core.h"
   9#include "dm-rq.h"
  10#include "dm-uevent.h"
  11
  12#include <linux/init.h>
  13#include <linux/module.h>
  14#include <linux/mutex.h>
  15#include <linux/sched/signal.h>
  16#include <linux/blkpg.h>
  17#include <linux/bio.h>
  18#include <linux/mempool.h>
  19#include <linux/dax.h>
  20#include <linux/slab.h>
  21#include <linux/idr.h>
  22#include <linux/uio.h>
  23#include <linux/hdreg.h>
  24#include <linux/delay.h>
  25#include <linux/wait.h>
 
 
 
 
  26#include <linux/pr.h>
  27#include <linux/refcount.h>
 
  28
  29#define DM_MSG_PREFIX "core"
  30
 
 
 
 
 
 
 
 
 
 
  31/*
  32 * Cookies are numeric values sent with CHANGE and REMOVE
  33 * uevents while resuming, removing or renaming the device.
  34 */
  35#define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
  36#define DM_COOKIE_LENGTH 24
  37
  38static const char *_name = DM_NAME;
  39
  40static unsigned int major = 0;
  41static unsigned int _major = 0;
  42
  43static DEFINE_IDR(_minor_idr);
  44
  45static DEFINE_SPINLOCK(_minor_lock);
  46
  47static void do_deferred_remove(struct work_struct *w);
  48
  49static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
  50
  51static struct workqueue_struct *deferred_remove_workqueue;
  52
  53atomic_t dm_global_event_nr = ATOMIC_INIT(0);
  54DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
  55
  56void dm_issue_global_event(void)
  57{
  58	atomic_inc(&dm_global_event_nr);
  59	wake_up(&dm_global_eventq);
  60}
  61
  62/*
  63 * One of these is allocated (on-stack) per original bio.
 
  64 */
  65struct clone_info {
  66	struct dm_table *map;
 
 
  67	struct bio *bio;
  68	struct dm_io *io;
  69	sector_t sector;
  70	unsigned sector_count;
  71};
  72
  73/*
  74 * One of these is allocated per clone bio.
 
  75 */
  76#define DM_TIO_MAGIC 7282014
  77struct dm_target_io {
  78	unsigned magic;
  79	struct dm_io *io;
  80	struct dm_target *ti;
  81	unsigned target_bio_nr;
  82	unsigned *len_ptr;
  83	bool inside_dm_io;
  84	struct bio clone;
 
 
 
  85};
  86
  87/*
  88 * One of these is allocated per original bio.
  89 * It contains the first clone used for that original.
  90 */
  91#define DM_IO_MAGIC 5191977
  92struct dm_io {
  93	unsigned magic;
  94	struct mapped_device *md;
  95	blk_status_t status;
  96	atomic_t io_count;
  97	struct bio *orig_bio;
  98	unsigned long start_time;
  99	spinlock_t endio_lock;
 100	struct dm_stats_aux stats_aux;
 101	/* last member of dm_target_io is 'struct bio' */
 102	struct dm_target_io tio;
 103};
 104
 105void *dm_per_bio_data(struct bio *bio, size_t data_size)
 106{
 107	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
 108	if (!tio->inside_dm_io)
 109		return (char *)bio - offsetof(struct dm_target_io, clone) - data_size;
 110	return (char *)bio - offsetof(struct dm_target_io, clone) - offsetof(struct dm_io, tio) - data_size;
 111}
 112EXPORT_SYMBOL_GPL(dm_per_bio_data);
 113
 114struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
 115{
 116	struct dm_io *io = (struct dm_io *)((char *)data + data_size);
 117	if (io->magic == DM_IO_MAGIC)
 118		return (struct bio *)((char *)io + offsetof(struct dm_io, tio) + offsetof(struct dm_target_io, clone));
 119	BUG_ON(io->magic != DM_TIO_MAGIC);
 120	return (struct bio *)((char *)io + offsetof(struct dm_target_io, clone));
 121}
 122EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
 123
 124unsigned dm_bio_get_target_bio_nr(const struct bio *bio)
 125{
 126	return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
 127}
 128EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
 129
 130#define MINOR_ALLOCED ((void *)-1)
 131
 132/*
 133 * Bits for the md->flags field.
 134 */
 135#define DMF_BLOCK_IO_FOR_SUSPEND 0
 136#define DMF_SUSPENDED 1
 137#define DMF_FROZEN 2
 138#define DMF_FREEING 3
 139#define DMF_DELETING 4
 140#define DMF_NOFLUSH_SUSPENDING 5
 141#define DMF_DEFERRED_REMOVE 6
 142#define DMF_SUSPENDED_INTERNALLY 7
 143
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 144#define DM_NUMA_NODE NUMA_NO_NODE
 
 
 
 145static int dm_numa_node = DM_NUMA_NODE;
 146
 
 
 
 
 
 
 147/*
 148 * For mempools pre-allocation at the table loading time.
 149 */
 150struct dm_md_mempools {
 151	struct bio_set bs;
 152	struct bio_set io_bs;
 
 153};
 154
 155struct table_device {
 156	struct list_head list;
 157	refcount_t count;
 158	struct dm_dev dm_dev;
 159};
 160
 
 
 
 
 
 
 
 161/*
 162 * Bio-based DM's mempools' reserved IOs set by the user.
 163 */
 164#define RESERVED_BIO_BASED_IOS		16
 165static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
 166
 
 
 
 
 
 167static int __dm_get_module_param_int(int *module_param, int min, int max)
 168{
 169	int param = READ_ONCE(*module_param);
 170	int modified_param = 0;
 171	bool modified = true;
 172
 173	if (param < min)
 174		modified_param = min;
 175	else if (param > max)
 176		modified_param = max;
 177	else
 178		modified = false;
 179
 180	if (modified) {
 181		(void)cmpxchg(module_param, param, modified_param);
 182		param = modified_param;
 183	}
 184
 185	return param;
 186}
 187
 188unsigned __dm_get_module_param(unsigned *module_param,
 189			       unsigned def, unsigned max)
 190{
 191	unsigned param = READ_ONCE(*module_param);
 192	unsigned modified_param = 0;
 193
 194	if (!param)
 195		modified_param = def;
 196	else if (param > max)
 197		modified_param = max;
 198
 199	if (modified_param) {
 200		(void)cmpxchg(module_param, param, modified_param);
 201		param = modified_param;
 202	}
 203
 204	return param;
 205}
 206
 207unsigned dm_get_reserved_bio_based_ios(void)
 208{
 209	return __dm_get_module_param(&reserved_bio_based_ios,
 210				     RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
 211}
 212EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
 213
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 214static unsigned dm_get_numa_node(void)
 215{
 216	return __dm_get_module_param_int(&dm_numa_node,
 217					 DM_NUMA_NODE, num_online_nodes() - 1);
 218}
 219
 220static int __init local_init(void)
 221{
 222	int r;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 223
 224	r = dm_uevent_init();
 225	if (r)
 226		return r;
 227
 228	deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
 229	if (!deferred_remove_workqueue) {
 230		r = -ENOMEM;
 231		goto out_uevent_exit;
 232	}
 233
 234	_major = major;
 235	r = register_blkdev(_major, _name);
 236	if (r < 0)
 237		goto out_free_workqueue;
 238
 239	if (!_major)
 240		_major = r;
 241
 242	return 0;
 243
 244out_free_workqueue:
 245	destroy_workqueue(deferred_remove_workqueue);
 246out_uevent_exit:
 247	dm_uevent_exit();
 
 
 
 
 
 
 248
 249	return r;
 250}
 251
 252static void local_exit(void)
 253{
 254	flush_scheduled_work();
 255	destroy_workqueue(deferred_remove_workqueue);
 256
 
 
 
 257	unregister_blkdev(_major, _name);
 258	dm_uevent_exit();
 259
 260	_major = 0;
 261
 262	DMINFO("cleaned up");
 263}
 264
 265static int (*_inits[])(void) __initdata = {
 266	local_init,
 267	dm_target_init,
 268	dm_linear_init,
 269	dm_stripe_init,
 270	dm_io_init,
 271	dm_kcopyd_init,
 272	dm_interface_init,
 273	dm_statistics_init,
 274};
 275
 276static void (*_exits[])(void) = {
 277	local_exit,
 278	dm_target_exit,
 279	dm_linear_exit,
 280	dm_stripe_exit,
 281	dm_io_exit,
 282	dm_kcopyd_exit,
 283	dm_interface_exit,
 284	dm_statistics_exit,
 285};
 286
 287static int __init dm_init(void)
 288{
 289	const int count = ARRAY_SIZE(_inits);
 290
 291	int r, i;
 292
 293	for (i = 0; i < count; i++) {
 294		r = _inits[i]();
 295		if (r)
 296			goto bad;
 297	}
 298
 299	return 0;
 300
 301      bad:
 302	while (i--)
 303		_exits[i]();
 304
 305	return r;
 306}
 307
 308static void __exit dm_exit(void)
 309{
 310	int i = ARRAY_SIZE(_exits);
 311
 312	while (i--)
 313		_exits[i]();
 314
 315	/*
 316	 * Should be empty by this point.
 317	 */
 318	idr_destroy(&_minor_idr);
 319}
 320
 321/*
 322 * Block device functions
 323 */
 324int dm_deleting_md(struct mapped_device *md)
 325{
 326	return test_bit(DMF_DELETING, &md->flags);
 327}
 328
 329static int dm_blk_open(struct block_device *bdev, fmode_t mode)
 330{
 331	struct mapped_device *md;
 332
 333	spin_lock(&_minor_lock);
 334
 335	md = bdev->bd_disk->private_data;
 336	if (!md)
 337		goto out;
 338
 339	if (test_bit(DMF_FREEING, &md->flags) ||
 340	    dm_deleting_md(md)) {
 341		md = NULL;
 342		goto out;
 343	}
 344
 345	dm_get(md);
 346	atomic_inc(&md->open_count);
 347out:
 348	spin_unlock(&_minor_lock);
 349
 350	return md ? 0 : -ENXIO;
 351}
 352
 353static void dm_blk_close(struct gendisk *disk, fmode_t mode)
 354{
 355	struct mapped_device *md;
 356
 357	spin_lock(&_minor_lock);
 358
 359	md = disk->private_data;
 360	if (WARN_ON(!md))
 361		goto out;
 362
 363	if (atomic_dec_and_test(&md->open_count) &&
 364	    (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
 365		queue_work(deferred_remove_workqueue, &deferred_remove_work);
 366
 367	dm_put(md);
 368out:
 369	spin_unlock(&_minor_lock);
 370}
 371
 372int dm_open_count(struct mapped_device *md)
 373{
 374	return atomic_read(&md->open_count);
 375}
 376
 377/*
 378 * Guarantees nothing is using the device before it's deleted.
 379 */
 380int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
 381{
 382	int r = 0;
 383
 384	spin_lock(&_minor_lock);
 385
 386	if (dm_open_count(md)) {
 387		r = -EBUSY;
 388		if (mark_deferred)
 389			set_bit(DMF_DEFERRED_REMOVE, &md->flags);
 390	} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
 391		r = -EEXIST;
 392	else
 393		set_bit(DMF_DELETING, &md->flags);
 394
 395	spin_unlock(&_minor_lock);
 396
 397	return r;
 398}
 399
 400int dm_cancel_deferred_remove(struct mapped_device *md)
 401{
 402	int r = 0;
 403
 404	spin_lock(&_minor_lock);
 405
 406	if (test_bit(DMF_DELETING, &md->flags))
 407		r = -EBUSY;
 408	else
 409		clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
 410
 411	spin_unlock(&_minor_lock);
 412
 413	return r;
 414}
 415
 416static void do_deferred_remove(struct work_struct *w)
 417{
 418	dm_deferred_remove();
 419}
 420
 421sector_t dm_get_size(struct mapped_device *md)
 422{
 423	return get_capacity(md->disk);
 424}
 425
 426struct request_queue *dm_get_md_queue(struct mapped_device *md)
 427{
 428	return md->queue;
 429}
 430
 431struct dm_stats *dm_get_stats(struct mapped_device *md)
 432{
 433	return &md->stats;
 434}
 435
 436static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
 437{
 438	struct mapped_device *md = bdev->bd_disk->private_data;
 439
 440	return dm_get_geometry(md, geo);
 441}
 442
 443static int dm_blk_report_zones(struct gendisk *disk, sector_t sector,
 444			       struct blk_zone *zones, unsigned int *nr_zones)
 
 445{
 446#ifdef CONFIG_BLK_DEV_ZONED
 447	struct mapped_device *md = disk->private_data;
 448	struct dm_target *tgt;
 449	struct dm_table *map;
 450	int srcu_idx, ret;
 451
 452	if (dm_suspended_md(md))
 453		return -EAGAIN;
 454
 455	map = dm_get_live_table(md, &srcu_idx);
 456	if (!map)
 457		return -EIO;
 458
 459	tgt = dm_table_find_target(map, sector);
 460	if (!tgt) {
 461		ret = -EIO;
 462		goto out;
 463	}
 464
 465	/*
 466	 * If we are executing this, we already know that the block device
 467	 * is a zoned device and so each target should have support for that
 468	 * type of drive. A missing report_zones method means that the target
 469	 * driver has a problem.
 470	 */
 471	if (WARN_ON(!tgt->type->report_zones)) {
 472		ret = -EIO;
 473		goto out;
 474	}
 475
 476	/*
 477	 * blkdev_report_zones() will loop and call this again to cover all the
 478	 * zones of the target, eventually moving on to the next target.
 479	 * So there is no need to loop here trying to fill the entire array
 480	 * of zones.
 481	 */
 482	ret = tgt->type->report_zones(tgt, sector, zones, nr_zones);
 483
 484out:
 485	dm_put_live_table(md, srcu_idx);
 486	return ret;
 487#else
 488	return -ENOTSUPP;
 489#endif
 490}
 491
 492static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
 493			    struct block_device **bdev)
 494	__acquires(md->io_barrier)
 495{
 496	struct dm_target *tgt;
 497	struct dm_table *map;
 498	int r;
 499
 500retry:
 501	r = -ENOTTY;
 502	map = dm_get_live_table(md, srcu_idx);
 503	if (!map || !dm_table_get_size(map))
 504		return r;
 505
 506	/* We only support devices that have a single target */
 507	if (dm_table_get_num_targets(map) != 1)
 508		return r;
 509
 510	tgt = dm_table_get_target(map, 0);
 511	if (!tgt->type->prepare_ioctl)
 512		return r;
 
 
 
 
 
 
 
 
 
 513
 514	if (dm_suspended_md(md))
 515		return -EAGAIN;
 
 516
 517	r = tgt->type->prepare_ioctl(tgt, bdev);
 
 518	if (r == -ENOTCONN && !fatal_signal_pending(current)) {
 519		dm_put_live_table(md, *srcu_idx);
 520		msleep(10);
 521		goto retry;
 522	}
 523
 524	return r;
 525}
 526
 527static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
 528	__releases(md->io_barrier)
 529{
 530	dm_put_live_table(md, srcu_idx);
 531}
 532
 533static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
 534			unsigned int cmd, unsigned long arg)
 535{
 536	struct mapped_device *md = bdev->bd_disk->private_data;
 537	int r, srcu_idx;
 538
 539	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
 540	if (r < 0)
 541		goto out;
 542
 543	if (r > 0) {
 544		/*
 545		 * Target determined this ioctl is being issued against a
 546		 * subset of the parent bdev; require extra privileges.
 
 547		 */
 548		if (!capable(CAP_SYS_RAWIO)) {
 549			DMWARN_LIMIT(
 550	"%s: sending ioctl %x to DM device without required privilege.",
 551				current->comm, cmd);
 552			r = -ENOIOCTLCMD;
 553			goto out;
 554		}
 555	}
 556
 557	r =  __blkdev_driver_ioctl(bdev, mode, cmd, arg);
 558out:
 559	dm_unprepare_ioctl(md, srcu_idx);
 560	return r;
 561}
 562
 563static void start_io_acct(struct dm_io *io);
 564
 565static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio)
 566{
 567	struct dm_io *io;
 568	struct dm_target_io *tio;
 569	struct bio *clone;
 570
 571	clone = bio_alloc_bioset(GFP_NOIO, 0, &md->io_bs);
 572	if (!clone)
 573		return NULL;
 574
 575	tio = container_of(clone, struct dm_target_io, clone);
 576	tio->inside_dm_io = true;
 577	tio->io = NULL;
 578
 579	io = container_of(tio, struct dm_io, tio);
 580	io->magic = DM_IO_MAGIC;
 581	io->status = 0;
 582	atomic_set(&io->io_count, 1);
 583	io->orig_bio = bio;
 584	io->md = md;
 585	spin_lock_init(&io->endio_lock);
 586
 587	start_io_acct(io);
 588
 589	return io;
 590}
 591
 592static void free_io(struct mapped_device *md, struct dm_io *io)
 593{
 594	bio_put(&io->tio.clone);
 595}
 596
 597static struct dm_target_io *alloc_tio(struct clone_info *ci, struct dm_target *ti,
 598				      unsigned target_bio_nr, gfp_t gfp_mask)
 599{
 600	struct dm_target_io *tio;
 
 601
 602	if (!ci->io->tio.io) {
 603		/* the dm_target_io embedded in ci->io is available */
 604		tio = &ci->io->tio;
 605	} else {
 606		struct bio *clone = bio_alloc_bioset(gfp_mask, 0, &ci->io->md->bs);
 607		if (!clone)
 608			return NULL;
 609
 610		tio = container_of(clone, struct dm_target_io, clone);
 611		tio->inside_dm_io = false;
 612	}
 613
 614	tio->magic = DM_TIO_MAGIC;
 615	tio->io = ci->io;
 616	tio->ti = ti;
 617	tio->target_bio_nr = target_bio_nr;
 618
 619	return tio;
 620}
 621
 622static void free_tio(struct dm_target_io *tio)
 
 623{
 624	if (tio->inside_dm_io)
 625		return;
 626	bio_put(&tio->clone);
 627}
 628
 629static bool md_in_flight_bios(struct mapped_device *md)
 630{
 631	int cpu;
 632	struct hd_struct *part = &dm_disk(md)->part0;
 633	long sum = 0;
 634
 635	for_each_possible_cpu(cpu) {
 636		sum += part_stat_local_read_cpu(part, in_flight[0], cpu);
 637		sum += part_stat_local_read_cpu(part, in_flight[1], cpu);
 638	}
 639
 640	return sum != 0;
 641}
 642
 643static bool md_in_flight(struct mapped_device *md)
 644{
 645	if (queue_is_mq(md->queue))
 646		return blk_mq_queue_inflight(md->queue);
 647	else
 648		return md_in_flight_bios(md);
 649}
 650
 651static void start_io_acct(struct dm_io *io)
 652{
 653	struct mapped_device *md = io->md;
 654	struct bio *bio = io->orig_bio;
 
 
 655
 656	io->start_time = jiffies;
 657
 658	generic_start_io_acct(md->queue, bio_op(bio), bio_sectors(bio),
 659			      &dm_disk(md)->part0);
 
 
 
 660
 661	if (unlikely(dm_stats_used(&md->stats)))
 662		dm_stats_account_io(&md->stats, bio_data_dir(bio),
 663				    bio->bi_iter.bi_sector, bio_sectors(bio),
 664				    false, 0, &io->stats_aux);
 665}
 666
 667static void end_io_acct(struct dm_io *io)
 668{
 669	struct mapped_device *md = io->md;
 670	struct bio *bio = io->orig_bio;
 671	unsigned long duration = jiffies - io->start_time;
 
 
 672
 673	generic_end_io_acct(md->queue, bio_op(bio), &dm_disk(md)->part0,
 674			    io->start_time);
 675
 676	if (unlikely(dm_stats_used(&md->stats)))
 677		dm_stats_account_io(&md->stats, bio_data_dir(bio),
 678				    bio->bi_iter.bi_sector, bio_sectors(bio),
 679				    true, duration, &io->stats_aux);
 
 
 
 
 
 
 
 680
 681	/* nudge anyone waiting on suspend queue */
 682	if (unlikely(wq_has_sleeper(&md->wait)))
 683		wake_up(&md->wait);
 684}
 685
 686/*
 687 * Add the bio to the list of deferred io.
 688 */
 689static void queue_io(struct mapped_device *md, struct bio *bio)
 690{
 691	unsigned long flags;
 692
 693	spin_lock_irqsave(&md->deferred_lock, flags);
 694	bio_list_add(&md->deferred, bio);
 695	spin_unlock_irqrestore(&md->deferred_lock, flags);
 696	queue_work(md->wq, &md->work);
 697}
 698
 699/*
 700 * Everyone (including functions in this file), should use this
 701 * function to access the md->map field, and make sure they call
 702 * dm_put_live_table() when finished.
 703 */
 704struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
 705{
 706	*srcu_idx = srcu_read_lock(&md->io_barrier);
 707
 708	return srcu_dereference(md->map, &md->io_barrier);
 709}
 710
 711void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
 712{
 713	srcu_read_unlock(&md->io_barrier, srcu_idx);
 714}
 715
 716void dm_sync_table(struct mapped_device *md)
 717{
 718	synchronize_srcu(&md->io_barrier);
 719	synchronize_rcu_expedited();
 720}
 721
 722/*
 723 * A fast alternative to dm_get_live_table/dm_put_live_table.
 724 * The caller must not block between these two functions.
 725 */
 726static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
 727{
 728	rcu_read_lock();
 729	return rcu_dereference(md->map);
 730}
 731
 732static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
 733{
 734	rcu_read_unlock();
 735}
 736
 737static char *_dm_claim_ptr = "I belong to device-mapper";
 738
 739/*
 740 * Open a table device so we can use it as a map destination.
 741 */
 742static int open_table_device(struct table_device *td, dev_t dev,
 743			     struct mapped_device *md)
 744{
 
 745	struct block_device *bdev;
 746
 747	int r;
 748
 749	BUG_ON(td->dm_dev.bdev);
 750
 751	bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _dm_claim_ptr);
 752	if (IS_ERR(bdev))
 753		return PTR_ERR(bdev);
 754
 755	r = bd_link_disk_holder(bdev, dm_disk(md));
 756	if (r) {
 757		blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
 758		return r;
 759	}
 760
 761	td->dm_dev.bdev = bdev;
 762	td->dm_dev.dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
 763	return 0;
 764}
 765
 766/*
 767 * Close a table device that we've been using.
 768 */
 769static void close_table_device(struct table_device *td, struct mapped_device *md)
 770{
 771	if (!td->dm_dev.bdev)
 772		return;
 773
 774	bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
 775	blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
 776	put_dax(td->dm_dev.dax_dev);
 777	td->dm_dev.bdev = NULL;
 778	td->dm_dev.dax_dev = NULL;
 779}
 780
 781static struct table_device *find_table_device(struct list_head *l, dev_t dev,
 782					      fmode_t mode)
 783{
 784	struct table_device *td;
 785
 786	list_for_each_entry(td, l, list)
 787		if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
 788			return td;
 789
 790	return NULL;
 791}
 792
 793int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
 794			struct dm_dev **result)
 795{
 796	int r;
 797	struct table_device *td;
 798
 799	mutex_lock(&md->table_devices_lock);
 800	td = find_table_device(&md->table_devices, dev, mode);
 801	if (!td) {
 802		td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
 803		if (!td) {
 804			mutex_unlock(&md->table_devices_lock);
 805			return -ENOMEM;
 806		}
 807
 808		td->dm_dev.mode = mode;
 809		td->dm_dev.bdev = NULL;
 810
 811		if ((r = open_table_device(td, dev, md))) {
 812			mutex_unlock(&md->table_devices_lock);
 813			kfree(td);
 814			return r;
 815		}
 816
 817		format_dev_t(td->dm_dev.name, dev);
 818
 819		refcount_set(&td->count, 1);
 820		list_add(&td->list, &md->table_devices);
 821	} else {
 822		refcount_inc(&td->count);
 823	}
 
 824	mutex_unlock(&md->table_devices_lock);
 825
 826	*result = &td->dm_dev;
 827	return 0;
 828}
 829EXPORT_SYMBOL_GPL(dm_get_table_device);
 830
 831void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
 832{
 833	struct table_device *td = container_of(d, struct table_device, dm_dev);
 834
 835	mutex_lock(&md->table_devices_lock);
 836	if (refcount_dec_and_test(&td->count)) {
 837		close_table_device(td, md);
 838		list_del(&td->list);
 839		kfree(td);
 840	}
 841	mutex_unlock(&md->table_devices_lock);
 842}
 843EXPORT_SYMBOL(dm_put_table_device);
 844
 845static void free_table_devices(struct list_head *devices)
 846{
 847	struct list_head *tmp, *next;
 848
 849	list_for_each_safe(tmp, next, devices) {
 850		struct table_device *td = list_entry(tmp, struct table_device, list);
 851
 852		DMWARN("dm_destroy: %s still exists with %d references",
 853		       td->dm_dev.name, refcount_read(&td->count));
 854		kfree(td);
 855	}
 856}
 857
 858/*
 859 * Get the geometry associated with a dm device
 860 */
 861int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
 862{
 863	*geo = md->geometry;
 864
 865	return 0;
 866}
 867
 868/*
 869 * Set the geometry of a device.
 870 */
 871int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
 872{
 873	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
 874
 875	if (geo->start > sz) {
 876		DMWARN("Start sector is beyond the geometry limits.");
 877		return -EINVAL;
 878	}
 879
 880	md->geometry = *geo;
 881
 882	return 0;
 883}
 884
 
 
 
 
 
 
 
 
 
 885static int __noflush_suspending(struct mapped_device *md)
 886{
 887	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
 888}
 889
 890/*
 891 * Decrements the number of outstanding ios that a bio has been
 892 * cloned into, completing the original io if necc.
 893 */
 894static void dec_pending(struct dm_io *io, blk_status_t error)
 895{
 896	unsigned long flags;
 897	blk_status_t io_error;
 898	struct bio *bio;
 899	struct mapped_device *md = io->md;
 900
 901	/* Push-back supersedes any I/O errors */
 902	if (unlikely(error)) {
 903		spin_lock_irqsave(&io->endio_lock, flags);
 904		if (!(io->status == BLK_STS_DM_REQUEUE && __noflush_suspending(md)))
 905			io->status = error;
 906		spin_unlock_irqrestore(&io->endio_lock, flags);
 907	}
 908
 909	if (atomic_dec_and_test(&io->io_count)) {
 910		if (io->status == BLK_STS_DM_REQUEUE) {
 911			/*
 912			 * Target requested pushing back the I/O.
 913			 */
 914			spin_lock_irqsave(&md->deferred_lock, flags);
 915			if (__noflush_suspending(md))
 916				/* NOTE early return due to BLK_STS_DM_REQUEUE below */
 917				bio_list_add_head(&md->deferred, io->orig_bio);
 918			else
 919				/* noflush suspend was interrupted. */
 920				io->status = BLK_STS_IOERR;
 921			spin_unlock_irqrestore(&md->deferred_lock, flags);
 922		}
 923
 924		io_error = io->status;
 925		bio = io->orig_bio;
 926		end_io_acct(io);
 927		free_io(md, io);
 928
 929		if (io_error == BLK_STS_DM_REQUEUE)
 930			return;
 931
 932		if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) {
 933			/*
 934			 * Preflush done for flush with data, reissue
 935			 * without REQ_PREFLUSH.
 936			 */
 937			bio->bi_opf &= ~REQ_PREFLUSH;
 938			queue_io(md, bio);
 939		} else {
 940			/* done with normal IO or empty flush */
 941			if (io_error)
 942				bio->bi_status = io_error;
 943			bio_endio(bio);
 944		}
 945	}
 946}
 947
 948void disable_discard(struct mapped_device *md)
 949{
 950	struct queue_limits *limits = dm_get_queue_limits(md);
 951
 952	/* device doesn't really support DISCARD, disable it */
 953	limits->max_discard_sectors = 0;
 954	blk_queue_flag_clear(QUEUE_FLAG_DISCARD, md->queue);
 955}
 956
 957void disable_write_same(struct mapped_device *md)
 958{
 959	struct queue_limits *limits = dm_get_queue_limits(md);
 960
 961	/* device doesn't really support WRITE SAME, disable it */
 962	limits->max_write_same_sectors = 0;
 963}
 964
 965void disable_write_zeroes(struct mapped_device *md)
 966{
 967	struct queue_limits *limits = dm_get_queue_limits(md);
 968
 969	/* device doesn't really support WRITE ZEROES, disable it */
 970	limits->max_write_zeroes_sectors = 0;
 971}
 972
 973static void clone_endio(struct bio *bio)
 974{
 975	blk_status_t error = bio->bi_status;
 
 976	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
 977	struct dm_io *io = tio->io;
 978	struct mapped_device *md = tio->io->md;
 979	dm_endio_fn endio = tio->ti->type->end_io;
 980
 981	if (unlikely(error == BLK_STS_TARGET) && md->type != DM_TYPE_NVME_BIO_BASED) {
 982		if (bio_op(bio) == REQ_OP_DISCARD &&
 983		    !bio->bi_disk->queue->limits.max_discard_sectors)
 984			disable_discard(md);
 985		else if (bio_op(bio) == REQ_OP_WRITE_SAME &&
 986			 !bio->bi_disk->queue->limits.max_write_same_sectors)
 987			disable_write_same(md);
 988		else if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
 989			 !bio->bi_disk->queue->limits.max_write_zeroes_sectors)
 990			disable_write_zeroes(md);
 991	}
 992
 993	if (endio) {
 994		int r = endio(tio->ti, bio, &error);
 995		switch (r) {
 996		case DM_ENDIO_REQUEUE:
 997			error = BLK_STS_DM_REQUEUE;
 998			/*FALLTHRU*/
 999		case DM_ENDIO_DONE:
1000			break;
1001		case DM_ENDIO_INCOMPLETE:
1002			/* The target will handle the io */
1003			return;
1004		default:
1005			DMWARN("unimplemented target endio return value: %d", r);
1006			BUG();
1007		}
1008	}
1009
1010	free_tio(tio);
 
 
 
 
1011	dec_pending(io, error);
1012}
1013
1014/*
1015 * Return maximum size of I/O possible at the supplied sector up to the current
1016 * target boundary.
1017 */
1018static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1019{
1020	sector_t target_offset = dm_target_offset(ti, sector);
 
1021
1022	return ti->len - target_offset;
 
 
 
 
 
 
 
 
1023}
1024
1025static sector_t max_io_len(sector_t sector, struct dm_target *ti)
 
 
 
 
 
1026{
1027	sector_t len = max_io_len_target_boundary(sector, ti);
1028	sector_t offset, max_len;
 
 
 
 
 
 
 
 
 
 
 
 
1029
1030	/*
1031	 * Does the target need to split even further?
1032	 */
1033	if (ti->max_io_len) {
1034		offset = dm_target_offset(ti, sector);
1035		if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
1036			max_len = sector_div(offset, ti->max_io_len);
1037		else
1038			max_len = offset & (ti->max_io_len - 1);
1039		max_len = ti->max_io_len - max_len;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1040
1041		if (len > max_len)
1042			len = max_len;
 
 
 
 
 
1043	}
1044
1045	return len;
 
 
 
 
 
 
1046}
1047
1048int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1049{
1050	if (len > UINT_MAX) {
1051		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1052		      (unsigned long long)len, UINT_MAX);
1053		ti->error = "Maximum size of target IO is too large";
1054		return -EINVAL;
 
1055	}
1056
1057	ti->max_io_len = (uint32_t) len;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1058
1059	return 0;
 
1060}
1061EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1062
1063static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
1064						sector_t sector, int *srcu_idx)
1065	__acquires(md->io_barrier)
1066{
1067	struct dm_table *map;
1068	struct dm_target *ti;
 
 
 
1069
1070	map = dm_get_live_table(md, srcu_idx);
1071	if (!map)
1072		return NULL;
1073
1074	ti = dm_table_find_target(map, sector);
1075	if (!ti)
1076		return NULL;
 
 
1077
1078	return ti;
 
 
 
 
 
 
 
1079}
1080
1081static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1082				 long nr_pages, void **kaddr, pfn_t *pfn)
1083{
1084	struct mapped_device *md = dax_get_private(dax_dev);
1085	sector_t sector = pgoff * PAGE_SECTORS;
1086	struct dm_target *ti;
1087	long len, ret = -EIO;
1088	int srcu_idx;
1089
1090	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
 
1091
1092	if (!ti)
1093		goto out;
1094	if (!ti->type->direct_access)
1095		goto out;
1096	len = max_io_len(sector, ti) / PAGE_SECTORS;
1097	if (len < 1)
1098		goto out;
1099	nr_pages = min(len, nr_pages);
1100	ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn);
1101
1102 out:
1103	dm_put_live_table(md, srcu_idx);
 
1104
1105	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
1106}
1107
1108static bool dm_dax_supported(struct dax_device *dax_dev, struct block_device *bdev,
1109		int blocksize, sector_t start, sector_t len)
 
 
1110{
1111	struct mapped_device *md = dax_get_private(dax_dev);
1112	struct dm_table *map;
1113	int srcu_idx;
1114	bool ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1115
1116	map = dm_get_live_table(md, &srcu_idx);
1117	if (!map)
1118		return false;
1119
1120	ret = dm_table_supports_dax(map, device_supports_dax, &blocksize);
 
1121
1122	dm_put_live_table(md, srcu_idx);
 
 
 
 
 
 
1123
1124	return ret;
 
 
 
 
1125}
1126
1127static size_t dm_dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1128				    void *addr, size_t bytes, struct iov_iter *i)
 
 
 
 
 
1129{
1130	struct mapped_device *md = dax_get_private(dax_dev);
1131	sector_t sector = pgoff * PAGE_SECTORS;
1132	struct dm_target *ti;
1133	long ret = 0;
1134	int srcu_idx;
1135
1136	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
 
 
 
 
 
1137
1138	if (!ti)
1139		goto out;
1140	if (!ti->type->dax_copy_from_iter) {
1141		ret = copy_from_iter(addr, bytes, i);
1142		goto out;
 
 
 
1143	}
1144	ret = ti->type->dax_copy_from_iter(ti, pgoff, addr, bytes, i);
1145 out:
1146	dm_put_live_table(md, srcu_idx);
1147
1148	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1149}
1150
1151static size_t dm_dax_copy_to_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1152		void *addr, size_t bytes, struct iov_iter *i)
1153{
1154	struct mapped_device *md = dax_get_private(dax_dev);
1155	sector_t sector = pgoff * PAGE_SECTORS;
1156	struct dm_target *ti;
1157	long ret = 0;
1158	int srcu_idx;
 
 
 
 
 
 
 
 
 
 
 
 
1159
1160	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
 
1161
1162	if (!ti)
1163		goto out;
1164	if (!ti->type->dax_copy_to_iter) {
1165		ret = copy_to_iter(addr, bytes, i);
1166		goto out;
 
 
1167	}
1168	ret = ti->type->dax_copy_to_iter(ti, pgoff, addr, bytes, i);
1169 out:
1170	dm_put_live_table(md, srcu_idx);
1171
1172	return ret;
 
 
1173}
 
1174
1175/*
1176 * A target may call dm_accept_partial_bio only from the map routine.  It is
1177 * allowed for all bio types except REQ_PREFLUSH and REQ_OP_ZONE_RESET.
1178 *
1179 * dm_accept_partial_bio informs the dm that the target only wants to process
1180 * additional n_sectors sectors of the bio and the rest of the data should be
1181 * sent in a next bio.
1182 *
1183 * A diagram that explains the arithmetics:
1184 * +--------------------+---------------+-------+
1185 * |         1          |       2       |   3   |
1186 * +--------------------+---------------+-------+
1187 *
1188 * <-------------- *tio->len_ptr --------------->
1189 *                      <------- bi_size ------->
1190 *                      <-- n_sectors -->
1191 *
1192 * Region 1 was already iterated over with bio_advance or similar function.
1193 *	(it may be empty if the target doesn't use bio_advance)
1194 * Region 2 is the remaining bio size that the target wants to process.
1195 *	(it may be empty if region 1 is non-empty, although there is no reason
1196 *	 to make it empty)
1197 * The target requires that region 3 is to be sent in the next bio.
1198 *
1199 * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1200 * the partially processed part (the sum of regions 1+2) must be the same for all
1201 * copies of the bio.
1202 */
1203void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1204{
1205	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1206	unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1207	BUG_ON(bio->bi_opf & REQ_PREFLUSH);
1208	BUG_ON(bi_size > *tio->len_ptr);
1209	BUG_ON(n_sectors > bi_size);
1210	*tio->len_ptr -= bi_size - n_sectors;
1211	bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1212}
1213EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1214
1215/*
1216 * The zone descriptors obtained with a zone report indicate
1217 * zone positions within the underlying device of the target. The zone
1218 * descriptors must be remapped to match their position within the dm device.
1219 * The caller target should obtain the zones information using
1220 * blkdev_report_zones() to ensure that remapping for partition offset is
1221 * already handled.
1222 */
1223void dm_remap_zone_report(struct dm_target *ti, sector_t start,
1224			  struct blk_zone *zones, unsigned int *nr_zones)
1225{
1226#ifdef CONFIG_BLK_DEV_ZONED
1227	struct blk_zone *zone;
1228	unsigned int nrz = *nr_zones;
1229	int i;
1230
1231	/*
1232	 * Remap the start sector and write pointer position of the zones in
1233	 * the array. Since we may have obtained from the target underlying
1234	 * device more zones that the target size, also adjust the number
1235	 * of zones.
1236	 */
1237	for (i = 0; i < nrz; i++) {
1238		zone = zones + i;
1239		if (zone->start >= start + ti->len) {
1240			memset(zone, 0, sizeof(struct blk_zone) * (nrz - i));
1241			break;
1242		}
1243
1244		zone->start = zone->start + ti->begin - start;
1245		if (zone->type == BLK_ZONE_TYPE_CONVENTIONAL)
1246			continue;
1247
1248		if (zone->cond == BLK_ZONE_COND_FULL)
1249			zone->wp = zone->start + zone->len;
1250		else if (zone->cond == BLK_ZONE_COND_EMPTY)
1251			zone->wp = zone->start;
1252		else
1253			zone->wp = zone->wp + ti->begin - start;
1254	}
1255
1256	*nr_zones = i;
1257#else /* !CONFIG_BLK_DEV_ZONED */
1258	*nr_zones = 0;
1259#endif
1260}
1261EXPORT_SYMBOL_GPL(dm_remap_zone_report);
1262
1263static blk_qc_t __map_bio(struct dm_target_io *tio)
1264{
1265	int r;
1266	sector_t sector;
 
1267	struct bio *clone = &tio->clone;
1268	struct dm_io *io = tio->io;
1269	struct mapped_device *md = io->md;
1270	struct dm_target *ti = tio->ti;
1271	blk_qc_t ret = BLK_QC_T_NONE;
1272
1273	clone->bi_end_io = clone_endio;
1274
1275	/*
1276	 * Map the clone.  If r == 0 we don't need to do
1277	 * anything, the target has assumed ownership of
1278	 * this io.
1279	 */
1280	atomic_inc(&io->io_count);
1281	sector = clone->bi_iter.bi_sector;
1282
1283	r = ti->type->map(ti, clone);
1284	switch (r) {
1285	case DM_MAPIO_SUBMITTED:
1286		break;
1287	case DM_MAPIO_REMAPPED:
1288		/* the bio has been remapped so dispatch it */
1289		trace_block_bio_remap(clone->bi_disk->queue, clone,
1290				      bio_dev(io->orig_bio), sector);
1291		if (md->type == DM_TYPE_NVME_BIO_BASED)
1292			ret = direct_make_request(clone);
1293		else
1294			ret = generic_make_request(clone);
1295		break;
1296	case DM_MAPIO_KILL:
1297		free_tio(tio);
1298		dec_pending(io, BLK_STS_IOERR);
1299		break;
1300	case DM_MAPIO_REQUEUE:
1301		free_tio(tio);
1302		dec_pending(io, BLK_STS_DM_REQUEUE);
1303		break;
1304	default:
1305		DMWARN("unimplemented target map return value: %d", r);
1306		BUG();
1307	}
 
1308
1309	return ret;
1310}
 
 
 
 
 
 
1311
1312static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1313{
1314	bio->bi_iter.bi_sector = sector;
1315	bio->bi_iter.bi_size = to_bytes(len);
1316}
1317
1318/*
1319 * Creates a bio that consists of range of complete bvecs.
1320 */
1321static int clone_bio(struct dm_target_io *tio, struct bio *bio,
1322		     sector_t sector, unsigned len)
1323{
1324	struct bio *clone = &tio->clone;
1325
1326	__bio_clone_fast(clone, bio);
1327
1328	if (bio_integrity(bio)) {
1329		int r;
1330
1331		if (unlikely(!dm_target_has_integrity(tio->ti->type) &&
1332			     !dm_target_passes_integrity(tio->ti->type))) {
1333			DMWARN("%s: the target %s doesn't support integrity data.",
1334				dm_device_name(tio->io->md),
1335				tio->ti->type->name);
1336			return -EIO;
1337		}
1338
1339		r = bio_integrity_clone(clone, bio, GFP_NOIO);
1340		if (r < 0)
1341			return r;
1342	}
1343
1344	bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1345	clone->bi_iter.bi_size = to_bytes(len);
1346
1347	if (bio_integrity(bio))
1348		bio_integrity_trim(clone);
1349
1350	return 0;
1351}
1352
1353static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1354				struct dm_target *ti, unsigned num_bios)
 
1355{
1356	struct dm_target_io *tio;
1357	int try;
1358
1359	if (!num_bios)
1360		return;
1361
1362	if (num_bios == 1) {
1363		tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1364		bio_list_add(blist, &tio->clone);
1365		return;
1366	}
1367
1368	for (try = 0; try < 2; try++) {
1369		int bio_nr;
1370		struct bio *bio;
1371
1372		if (try)
1373			mutex_lock(&ci->io->md->table_devices_lock);
1374		for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1375			tio = alloc_tio(ci, ti, bio_nr, try ? GFP_NOIO : GFP_NOWAIT);
1376			if (!tio)
1377				break;
1378
1379			bio_list_add(blist, &tio->clone);
1380		}
1381		if (try)
1382			mutex_unlock(&ci->io->md->table_devices_lock);
1383		if (bio_nr == num_bios)
1384			return;
1385
1386		while ((bio = bio_list_pop(blist))) {
1387			tio = container_of(bio, struct dm_target_io, clone);
1388			free_tio(tio);
1389		}
1390	}
1391}
1392
1393static blk_qc_t __clone_and_map_simple_bio(struct clone_info *ci,
1394					   struct dm_target_io *tio, unsigned *len)
 
1395{
 
1396	struct bio *clone = &tio->clone;
1397
1398	tio->len_ptr = len;
1399
1400	__bio_clone_fast(clone, ci->bio);
1401	if (len)
1402		bio_setup_sector(clone, ci->sector, *len);
1403
1404	return __map_bio(tio);
1405}
1406
1407static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1408				  unsigned num_bios, unsigned *len)
1409{
1410	struct bio_list blist = BIO_EMPTY_LIST;
1411	struct bio *bio;
1412	struct dm_target_io *tio;
1413
1414	alloc_multiple_bios(&blist, ci, ti, num_bios);
1415
1416	while ((bio = bio_list_pop(&blist))) {
1417		tio = container_of(bio, struct dm_target_io, clone);
1418		(void) __clone_and_map_simple_bio(ci, tio, len);
1419	}
1420}
1421
1422static int __send_empty_flush(struct clone_info *ci)
1423{
1424	unsigned target_nr = 0;
1425	struct dm_target *ti;
1426
1427	/*
1428	 * Empty flush uses a statically initialized bio, as the base for
1429	 * cloning.  However, blkg association requires that a bdev is
1430	 * associated with a gendisk, which doesn't happen until the bdev is
1431	 * opened.  So, blkg association is done at issue time of the flush
1432	 * rather than when the device is created in alloc_dev().
1433	 */
1434	bio_set_dev(ci->bio, ci->io->md->bdev);
1435
1436	BUG_ON(bio_has_data(ci->bio));
1437	while ((ti = dm_table_get_target(ci->map, target_nr++)))
1438		__send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1439
1440	bio_disassociate_blkg(ci->bio);
1441
1442	return 0;
1443}
1444
1445static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1446				    sector_t sector, unsigned *len)
1447{
1448	struct bio *bio = ci->bio;
1449	struct dm_target_io *tio;
1450	int r;
 
 
 
 
 
 
 
 
1451
1452	tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1453	tio->len_ptr = len;
1454	r = clone_bio(tio, bio, sector, *len);
1455	if (r < 0) {
1456		free_tio(tio);
1457		return r;
 
 
 
1458	}
1459	(void) __map_bio(tio);
1460
1461	return 0;
1462}
1463
1464typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1465
1466static unsigned get_num_discard_bios(struct dm_target *ti)
1467{
1468	return ti->num_discard_bios;
1469}
1470
1471static unsigned get_num_secure_erase_bios(struct dm_target *ti)
1472{
1473	return ti->num_secure_erase_bios;
1474}
1475
1476static unsigned get_num_write_same_bios(struct dm_target *ti)
1477{
1478	return ti->num_write_same_bios;
1479}
1480
1481static unsigned get_num_write_zeroes_bios(struct dm_target *ti)
 
 
1482{
1483	return ti->num_write_zeroes_bios;
1484}
1485
1486static int __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti,
1487				       unsigned num_bios)
 
1488{
 
1489	unsigned len;
 
 
 
 
 
 
1490
1491	/*
1492	 * Even though the device advertised support for this type of
1493	 * request, that does not mean every target supports it, and
1494	 * reconfiguration might also have changed that since the
1495	 * check was performed.
1496	 */
1497	if (!num_bios)
1498		return -EOPNOTSUPP;
 
1499
1500	len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
 
 
 
1501
1502	__send_duplicate_bios(ci, ti, num_bios, &len);
1503
1504	ci->sector += len;
1505	ci->sector_count -= len;
1506
1507	return 0;
1508}
1509
1510static int __send_discard(struct clone_info *ci, struct dm_target *ti)
1511{
1512	return __send_changing_extent_only(ci, ti, get_num_discard_bios(ti));
 
1513}
1514
1515static int __send_secure_erase(struct clone_info *ci, struct dm_target *ti)
1516{
1517	return __send_changing_extent_only(ci, ti, get_num_secure_erase_bios(ti));
1518}
1519
1520static int __send_write_same(struct clone_info *ci, struct dm_target *ti)
1521{
1522	return __send_changing_extent_only(ci, ti, get_num_write_same_bios(ti));
1523}
1524
1525static int __send_write_zeroes(struct clone_info *ci, struct dm_target *ti)
1526{
1527	return __send_changing_extent_only(ci, ti, get_num_write_zeroes_bios(ti));
1528}
1529
1530static bool is_abnormal_io(struct bio *bio)
1531{
1532	bool r = false;
1533
1534	switch (bio_op(bio)) {
1535	case REQ_OP_DISCARD:
1536	case REQ_OP_SECURE_ERASE:
1537	case REQ_OP_WRITE_SAME:
1538	case REQ_OP_WRITE_ZEROES:
1539		r = true;
1540		break;
1541	}
1542
1543	return r;
1544}
1545
1546static bool __process_abnormal_io(struct clone_info *ci, struct dm_target *ti,
1547				  int *result)
1548{
1549	struct bio *bio = ci->bio;
1550
1551	if (bio_op(bio) == REQ_OP_DISCARD)
1552		*result = __send_discard(ci, ti);
1553	else if (bio_op(bio) == REQ_OP_SECURE_ERASE)
1554		*result = __send_secure_erase(ci, ti);
1555	else if (bio_op(bio) == REQ_OP_WRITE_SAME)
1556		*result = __send_write_same(ci, ti);
1557	else if (bio_op(bio) == REQ_OP_WRITE_ZEROES)
1558		*result = __send_write_zeroes(ci, ti);
1559	else
1560		return false;
1561
1562	return true;
1563}
1564
1565/*
1566 * Select the correct strategy for processing a non-flush bio.
1567 */
1568static int __split_and_process_non_flush(struct clone_info *ci)
1569{
 
1570	struct dm_target *ti;
1571	unsigned len;
1572	int r;
1573
 
 
 
 
 
1574	ti = dm_table_find_target(ci->map, ci->sector);
1575	if (!ti)
1576		return -EIO;
1577
1578	if (__process_abnormal_io(ci, ti, &r))
1579		return r;
1580
1581	len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count);
1582
1583	r = __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1584	if (r < 0)
1585		return r;
1586
1587	ci->sector += len;
1588	ci->sector_count -= len;
1589
1590	return 0;
1591}
1592
1593static void init_clone_info(struct clone_info *ci, struct mapped_device *md,
1594			    struct dm_table *map, struct bio *bio)
1595{
1596	ci->map = map;
1597	ci->io = alloc_io(md, bio);
1598	ci->sector = bio->bi_iter.bi_sector;
1599}
1600
1601#define __dm_part_stat_sub(part, field, subnd)	\
1602	(part_stat_get(part, field) -= (subnd))
1603
1604/*
1605 * Entry point to split a bio into clones and submit them to the targets.
1606 */
1607static blk_qc_t __split_and_process_bio(struct mapped_device *md,
1608					struct dm_table *map, struct bio *bio)
1609{
1610	struct clone_info ci;
1611	blk_qc_t ret = BLK_QC_T_NONE;
1612	int error = 0;
1613
1614	init_clone_info(&ci, md, map, bio);
 
 
 
1615
1616	if (bio->bi_opf & REQ_PREFLUSH) {
1617		struct bio flush_bio;
 
 
 
 
 
 
 
1618
1619		/*
1620		 * Use an on-stack bio for this, it's safe since we don't
1621		 * need to reference it after submit. It's just used as
1622		 * the basis for the clone(s).
1623		 */
1624		bio_init(&flush_bio, NULL, 0);
1625		flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1626		ci.bio = &flush_bio;
1627		ci.sector_count = 0;
1628		error = __send_empty_flush(&ci);
1629		/* dec_pending submits any data associated with flush */
1630	} else if (bio_op(bio) == REQ_OP_ZONE_RESET) {
1631		ci.bio = bio;
1632		ci.sector_count = 0;
1633		error = __split_and_process_non_flush(&ci);
1634	} else {
1635		ci.bio = bio;
1636		ci.sector_count = bio_sectors(bio);
1637		while (ci.sector_count && !error) {
1638			error = __split_and_process_non_flush(&ci);
1639			if (current->bio_list && ci.sector_count && !error) {
1640				/*
1641				 * Remainder must be passed to generic_make_request()
1642				 * so that it gets handled *after* bios already submitted
1643				 * have been completely processed.
1644				 * We take a clone of the original to store in
1645				 * ci.io->orig_bio to be used by end_io_acct() and
1646				 * for dec_pending to use for completion handling.
1647				 */
1648				struct bio *b = bio_split(bio, bio_sectors(bio) - ci.sector_count,
1649							  GFP_NOIO, &md->queue->bio_split);
1650				ci.io->orig_bio = b;
1651
1652				/*
1653				 * Adjust IO stats for each split, otherwise upon queue
1654				 * reentry there will be redundant IO accounting.
1655				 * NOTE: this is a stop-gap fix, a proper fix involves
1656				 * significant refactoring of DM core's bio splitting
1657				 * (by eliminating DM's splitting and just using bio_split)
1658				 */
1659				part_stat_lock();
1660				__dm_part_stat_sub(&dm_disk(md)->part0,
1661						   sectors[op_stat_group(bio_op(bio))], ci.sector_count);
1662				part_stat_unlock();
1663
1664				bio_chain(b, bio);
1665				trace_block_split(md->queue, b, bio->bi_iter.bi_sector);
1666				ret = generic_make_request(bio);
1667				break;
1668			}
1669		}
1670	}
1671
1672	/* drop the extra reference count */
1673	dec_pending(ci.io, errno_to_blk_status(error));
1674	return ret;
1675}
 
 
 
1676
1677/*
1678 * Optimized variant of __split_and_process_bio that leverages the
1679 * fact that targets that use it do _not_ have a need to split bios.
1680 */
1681static blk_qc_t __process_bio(struct mapped_device *md, struct dm_table *map,
1682			      struct bio *bio, struct dm_target *ti)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1683{
1684	struct clone_info ci;
1685	blk_qc_t ret = BLK_QC_T_NONE;
1686	int error = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1687
1688	init_clone_info(&ci, md, map, bio);
1689
1690	if (bio->bi_opf & REQ_PREFLUSH) {
1691		struct bio flush_bio;
1692
1693		/*
1694		 * Use an on-stack bio for this, it's safe since we don't
1695		 * need to reference it after submit. It's just used as
1696		 * the basis for the clone(s).
1697		 */
1698		bio_init(&flush_bio, NULL, 0);
1699		flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1700		ci.bio = &flush_bio;
1701		ci.sector_count = 0;
1702		error = __send_empty_flush(&ci);
1703		/* dec_pending submits any data associated with flush */
1704	} else {
1705		struct dm_target_io *tio;
1706
1707		ci.bio = bio;
1708		ci.sector_count = bio_sectors(bio);
1709		if (__process_abnormal_io(&ci, ti, &error))
1710			goto out;
1711
1712		tio = alloc_tio(&ci, ti, 0, GFP_NOIO);
1713		ret = __clone_and_map_simple_bio(&ci, tio, NULL);
 
 
 
1714	}
1715out:
1716	/* drop the extra reference count */
1717	dec_pending(ci.io, errno_to_blk_status(error));
1718	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1719}
1720
1721static void dm_queue_split(struct mapped_device *md, struct dm_target *ti, struct bio **bio)
 
 
1722{
1723	unsigned len, sector_count;
 
 
1724
1725	sector_count = bio_sectors(*bio);
1726	len = min_t(sector_t, max_io_len((*bio)->bi_iter.bi_sector, ti), sector_count);
 
1727
1728	if (sector_count > len) {
1729		struct bio *split = bio_split(*bio, len, GFP_NOIO, &md->queue->bio_split);
1730
1731		bio_chain(split, *bio);
1732		trace_block_split(md->queue, split, (*bio)->bi_iter.bi_sector);
1733		generic_make_request(*bio);
1734		*bio = split;
 
 
 
 
 
 
 
1735	}
 
 
 
1736}
1737
1738static blk_qc_t dm_process_bio(struct mapped_device *md,
1739			       struct dm_table *map, struct bio *bio)
 
 
1740{
1741	blk_qc_t ret = BLK_QC_T_NONE;
1742	struct dm_target *ti = md->immutable_target;
1743
1744	if (unlikely(!map)) {
1745		bio_io_error(bio);
1746		return ret;
1747	}
1748
1749	if (!ti) {
1750		ti = dm_table_find_target(map, bio->bi_iter.bi_sector);
1751		if (unlikely(!ti)) {
1752			bio_io_error(bio);
1753			return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1754		}
1755	}
1756
1757	/*
1758	 * If in ->make_request_fn we need to use blk_queue_split(), otherwise
1759	 * queue_limits for abnormal requests (e.g. discard, writesame, etc)
1760	 * won't be imposed.
1761	 */
1762	if (current->bio_list) {
1763		blk_queue_split(md->queue, &bio);
1764		if (!is_abnormal_io(bio))
1765			dm_queue_split(md, ti, &bio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1766	}
1767
1768	if (dm_get_md_type(md) == DM_TYPE_NVME_BIO_BASED)
1769		return __process_bio(md, map, bio, ti);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1770	else
1771		return __split_and_process_bio(md, map, bio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1772}
1773
1774static blk_qc_t dm_make_request(struct request_queue *q, struct bio *bio)
 
 
 
 
1775{
1776	struct mapped_device *md = q->queuedata;
1777	blk_qc_t ret = BLK_QC_T_NONE;
1778	int srcu_idx;
1779	struct dm_table *map;
 
 
 
 
 
1780
1781	map = dm_get_live_table(md, &srcu_idx);
 
 
1782
1783	/* if we're suspended, we have to queue this io for later */
1784	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1785		dm_put_live_table(md, srcu_idx);
 
 
 
 
 
 
 
1786
1787		if (!(bio->bi_opf & REQ_RAHEAD))
1788			queue_io(md, bio);
1789		else
1790			bio_io_error(bio);
1791		return ret;
1792	}
 
 
 
 
 
 
1793
1794	ret = dm_process_bio(md, map, bio);
1795
1796	dm_put_live_table(md, srcu_idx);
1797	return ret;
 
 
 
 
1798}
1799
1800static int dm_any_congested(void *congested_data, int bdi_bits)
1801{
1802	int r = bdi_bits;
1803	struct mapped_device *md = congested_data;
1804	struct dm_table *map;
1805
1806	if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1807		if (dm_request_based(md)) {
1808			/*
1809			 * With request-based DM we only need to check the
1810			 * top-level queue for congestion.
1811			 */
1812			r = md->queue->backing_dev_info->wb.state & bdi_bits;
1813		} else {
1814			map = dm_get_live_table_fast(md);
1815			if (map)
1816				r = dm_table_any_congested(map, bdi_bits);
1817			dm_put_live_table_fast(md);
1818		}
1819	}
1820
1821	return r;
1822}
1823
1824/*-----------------------------------------------------------------
1825 * An IDR is used to keep track of allocated minor numbers.
1826 *---------------------------------------------------------------*/
1827static void free_minor(int minor)
1828{
1829	spin_lock(&_minor_lock);
1830	idr_remove(&_minor_idr, minor);
1831	spin_unlock(&_minor_lock);
1832}
1833
1834/*
1835 * See if the device with a specific minor # is free.
1836 */
1837static int specific_minor(int minor)
1838{
1839	int r;
1840
1841	if (minor >= (1 << MINORBITS))
1842		return -EINVAL;
1843
1844	idr_preload(GFP_KERNEL);
1845	spin_lock(&_minor_lock);
1846
1847	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1848
1849	spin_unlock(&_minor_lock);
1850	idr_preload_end();
1851	if (r < 0)
1852		return r == -ENOSPC ? -EBUSY : r;
1853	return 0;
1854}
1855
1856static int next_free_minor(int *minor)
1857{
1858	int r;
1859
1860	idr_preload(GFP_KERNEL);
1861	spin_lock(&_minor_lock);
1862
1863	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1864
1865	spin_unlock(&_minor_lock);
1866	idr_preload_end();
1867	if (r < 0)
1868		return r;
1869	*minor = r;
1870	return 0;
1871}
1872
1873static const struct block_device_operations dm_blk_dops;
1874static const struct dax_operations dm_dax_ops;
1875
1876static void dm_wq_work(struct work_struct *work);
1877
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1878static void dm_init_normal_md_queue(struct mapped_device *md)
1879{
 
 
 
1880	/*
1881	 * Initialize aspects of queue that aren't relevant for blk-mq
1882	 */
1883	md->queue->backing_dev_info->congested_fn = dm_any_congested;
 
1884}
1885
1886static void cleanup_mapped_device(struct mapped_device *md)
1887{
1888	if (md->wq)
1889		destroy_workqueue(md->wq);
1890	bioset_exit(&md->bs);
1891	bioset_exit(&md->io_bs);
 
 
 
 
1892
1893	if (md->dax_dev) {
1894		kill_dax(md->dax_dev);
1895		put_dax(md->dax_dev);
1896		md->dax_dev = NULL;
1897	}
1898
1899	if (md->disk) {
1900		spin_lock(&_minor_lock);
1901		md->disk->private_data = NULL;
1902		spin_unlock(&_minor_lock);
1903		del_gendisk(md->disk);
1904		put_disk(md->disk);
1905	}
1906
1907	if (md->queue)
1908		blk_cleanup_queue(md->queue);
1909
1910	cleanup_srcu_struct(&md->io_barrier);
1911
1912	if (md->bdev) {
1913		bdput(md->bdev);
1914		md->bdev = NULL;
1915	}
1916
1917	mutex_destroy(&md->suspend_lock);
1918	mutex_destroy(&md->type_lock);
1919	mutex_destroy(&md->table_devices_lock);
1920
1921	dm_mq_cleanup_mapped_device(md);
1922}
1923
1924/*
1925 * Allocate and initialise a blank device with a given minor.
1926 */
1927static struct mapped_device *alloc_dev(int minor)
1928{
1929	int r, numa_node_id = dm_get_numa_node();
1930	struct mapped_device *md;
1931	void *old_md;
1932
1933	md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
1934	if (!md) {
1935		DMWARN("unable to allocate device, out of memory.");
1936		return NULL;
1937	}
1938
1939	if (!try_module_get(THIS_MODULE))
1940		goto bad_module_get;
1941
1942	/* get a minor number for the dev */
1943	if (minor == DM_ANY_MINOR)
1944		r = next_free_minor(&minor);
1945	else
1946		r = specific_minor(minor);
1947	if (r < 0)
1948		goto bad_minor;
1949
1950	r = init_srcu_struct(&md->io_barrier);
1951	if (r < 0)
1952		goto bad_io_barrier;
1953
1954	md->numa_node_id = numa_node_id;
 
1955	md->init_tio_pdu = false;
1956	md->type = DM_TYPE_NONE;
1957	mutex_init(&md->suspend_lock);
1958	mutex_init(&md->type_lock);
1959	mutex_init(&md->table_devices_lock);
1960	spin_lock_init(&md->deferred_lock);
1961	atomic_set(&md->holders, 1);
1962	atomic_set(&md->open_count, 0);
1963	atomic_set(&md->event_nr, 0);
1964	atomic_set(&md->uevent_seq, 0);
1965	INIT_LIST_HEAD(&md->uevent_list);
1966	INIT_LIST_HEAD(&md->table_devices);
1967	spin_lock_init(&md->uevent_lock);
1968
1969	md->queue = blk_alloc_queue_node(GFP_KERNEL, numa_node_id);
1970	if (!md->queue)
1971		goto bad;
1972	md->queue->queuedata = md;
1973	md->queue->backing_dev_info->congested_data = md;
1974
1975	md->disk = alloc_disk_node(1, md->numa_node_id);
 
 
1976	if (!md->disk)
1977		goto bad;
1978
 
 
1979	init_waitqueue_head(&md->wait);
1980	INIT_WORK(&md->work, dm_wq_work);
1981	init_waitqueue_head(&md->eventq);
1982	init_completion(&md->kobj_holder.completion);
 
1983
1984	md->disk->major = _major;
1985	md->disk->first_minor = minor;
1986	md->disk->fops = &dm_blk_dops;
1987	md->disk->queue = md->queue;
1988	md->disk->private_data = md;
1989	sprintf(md->disk->disk_name, "dm-%d", minor);
1990
1991	if (IS_ENABLED(CONFIG_DAX_DRIVER)) {
1992		md->dax_dev = alloc_dax(md, md->disk->disk_name,
1993					&dm_dax_ops, 0);
1994		if (!md->dax_dev)
1995			goto bad;
1996	}
1997
1998	add_disk_no_queue_reg(md->disk);
1999	format_dev_t(md->name, MKDEV(_major, minor));
2000
2001	md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
2002	if (!md->wq)
2003		goto bad;
2004
2005	md->bdev = bdget_disk(md->disk, 0);
2006	if (!md->bdev)
2007		goto bad;
2008
 
 
 
 
2009	dm_stats_init(&md->stats);
2010
2011	/* Populate the mapping, nobody knows we exist yet */
2012	spin_lock(&_minor_lock);
2013	old_md = idr_replace(&_minor_idr, md, minor);
2014	spin_unlock(&_minor_lock);
2015
2016	BUG_ON(old_md != MINOR_ALLOCED);
2017
2018	return md;
2019
2020bad:
2021	cleanup_mapped_device(md);
2022bad_io_barrier:
2023	free_minor(minor);
2024bad_minor:
2025	module_put(THIS_MODULE);
2026bad_module_get:
2027	kvfree(md);
2028	return NULL;
2029}
2030
2031static void unlock_fs(struct mapped_device *md);
2032
2033static void free_dev(struct mapped_device *md)
2034{
2035	int minor = MINOR(disk_devt(md->disk));
2036
2037	unlock_fs(md);
2038
2039	cleanup_mapped_device(md);
 
 
 
 
2040
2041	free_table_devices(&md->table_devices);
2042	dm_stats_cleanup(&md->stats);
2043	free_minor(minor);
2044
2045	module_put(THIS_MODULE);
2046	kvfree(md);
2047}
2048
2049static int __bind_mempools(struct mapped_device *md, struct dm_table *t)
2050{
2051	struct dm_md_mempools *p = dm_table_get_md_mempools(t);
2052	int ret = 0;
2053
2054	if (dm_table_bio_based(t)) {
2055		/*
2056		 * The md may already have mempools that need changing.
2057		 * If so, reload bioset because front_pad may have changed
2058		 * because a different table was loaded.
2059		 */
2060		bioset_exit(&md->bs);
2061		bioset_exit(&md->io_bs);
2062
2063	} else if (bioset_initialized(&md->bs)) {
 
2064		/*
2065		 * There's no need to reload with request-based dm
2066		 * because the size of front_pad doesn't change.
2067		 * Note for future: If you are to reload bioset,
2068		 * prep-ed requests in the queue may refer
2069		 * to bio from the old bioset, so you must walk
2070		 * through the queue to unprep.
2071		 */
2072		goto out;
2073	}
2074
2075	BUG_ON(!p ||
2076	       bioset_initialized(&md->bs) ||
2077	       bioset_initialized(&md->io_bs));
 
 
 
 
 
2078
2079	ret = bioset_init_from_src(&md->bs, &p->bs);
2080	if (ret)
2081		goto out;
2082	ret = bioset_init_from_src(&md->io_bs, &p->io_bs);
2083	if (ret)
2084		bioset_exit(&md->bs);
2085out:
2086	/* mempool bind completed, no longer need any mempools in the table */
2087	dm_table_free_md_mempools(t);
2088	return ret;
2089}
2090
2091/*
2092 * Bind a table to the device.
2093 */
2094static void event_callback(void *context)
2095{
2096	unsigned long flags;
2097	LIST_HEAD(uevents);
2098	struct mapped_device *md = (struct mapped_device *) context;
2099
2100	spin_lock_irqsave(&md->uevent_lock, flags);
2101	list_splice_init(&md->uevent_list, &uevents);
2102	spin_unlock_irqrestore(&md->uevent_lock, flags);
2103
2104	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2105
2106	atomic_inc(&md->event_nr);
2107	wake_up(&md->eventq);
2108	dm_issue_global_event();
2109}
2110
2111/*
2112 * Protected by md->suspend_lock obtained by dm_swap_table().
2113 */
2114static void __set_size(struct mapped_device *md, sector_t size)
2115{
2116	lockdep_assert_held(&md->suspend_lock);
2117
2118	set_capacity(md->disk, size);
2119
2120	i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
2121}
2122
2123/*
2124 * Returns old map, which caller must destroy.
2125 */
2126static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2127			       struct queue_limits *limits)
2128{
2129	struct dm_table *old_map;
2130	struct request_queue *q = md->queue;
2131	bool request_based = dm_table_request_based(t);
2132	sector_t size;
2133	int ret;
2134
2135	lockdep_assert_held(&md->suspend_lock);
2136
2137	size = dm_table_get_size(t);
2138
2139	/*
2140	 * Wipe any geometry if the size of the table changed.
2141	 */
2142	if (size != dm_get_size(md))
2143		memset(&md->geometry, 0, sizeof(md->geometry));
2144
2145	__set_size(md, size);
2146
2147	dm_table_event_callback(t, event_callback, md);
2148
2149	/*
2150	 * The queue hasn't been stopped yet, if the old table type wasn't
2151	 * for request-based during suspension.  So stop it to prevent
2152	 * I/O mapping before resume.
2153	 * This must be done before setting the queue restrictions,
2154	 * because request-based dm may be run just after the setting.
2155	 */
2156	if (request_based)
2157		dm_stop_queue(q);
2158
2159	if (request_based || md->type == DM_TYPE_NVME_BIO_BASED) {
2160		/*
2161		 * Leverage the fact that request-based DM targets and
2162		 * NVMe bio based targets are immutable singletons
2163		 * - used to optimize both dm_request_fn and dm_mq_queue_rq;
2164		 *   and __process_bio.
2165		 */
2166		md->immutable_target = dm_table_get_immutable_target(t);
2167	}
2168
2169	ret = __bind_mempools(md, t);
2170	if (ret) {
2171		old_map = ERR_PTR(ret);
2172		goto out;
2173	}
2174
2175	old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2176	rcu_assign_pointer(md->map, (void *)t);
2177	md->immutable_target_type = dm_table_get_immutable_target_type(t);
2178
2179	dm_table_set_restrictions(t, q, limits);
2180	if (old_map)
2181		dm_sync_table(md);
2182
2183out:
2184	return old_map;
2185}
2186
2187/*
2188 * Returns unbound table for the caller to free.
2189 */
2190static struct dm_table *__unbind(struct mapped_device *md)
2191{
2192	struct dm_table *map = rcu_dereference_protected(md->map, 1);
2193
2194	if (!map)
2195		return NULL;
2196
2197	dm_table_event_callback(map, NULL, NULL);
2198	RCU_INIT_POINTER(md->map, NULL);
2199	dm_sync_table(md);
2200
2201	return map;
2202}
2203
2204/*
2205 * Constructor for a new device.
2206 */
2207int dm_create(int minor, struct mapped_device **result)
2208{
2209	int r;
2210	struct mapped_device *md;
2211
2212	md = alloc_dev(minor);
2213	if (!md)
2214		return -ENXIO;
2215
2216	r = dm_sysfs_init(md);
2217	if (r) {
2218		free_dev(md);
2219		return r;
2220	}
2221
2222	*result = md;
2223	return 0;
2224}
2225
2226/*
2227 * Functions to manage md->type.
2228 * All are required to hold md->type_lock.
2229 */
2230void dm_lock_md_type(struct mapped_device *md)
2231{
2232	mutex_lock(&md->type_lock);
2233}
2234
2235void dm_unlock_md_type(struct mapped_device *md)
2236{
2237	mutex_unlock(&md->type_lock);
2238}
2239
2240void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
2241{
2242	BUG_ON(!mutex_is_locked(&md->type_lock));
2243	md->type = type;
2244}
2245
2246enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2247{
2248	return md->type;
2249}
2250
2251struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2252{
2253	return md->immutable_target_type;
2254}
2255
2256/*
2257 * The queue_limits are only valid as long as you have a reference
2258 * count on 'md'.
2259 */
2260struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2261{
2262	BUG_ON(!atomic_read(&md->holders));
2263	return &md->queue->limits;
2264}
2265EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2266
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2267/*
2268 * Setup the DM device's queue based on md's type
2269 */
2270int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2271{
2272	int r;
2273	struct queue_limits limits;
2274	enum dm_queue_mode type = dm_get_md_type(md);
2275
2276	switch (type) {
2277	case DM_TYPE_REQUEST_BASED:
2278		r = dm_mq_init_request_queue(md, t);
 
 
 
 
 
 
 
2279		if (r) {
2280			DMERR("Cannot initialize queue for request-based dm-mq mapped device");
2281			return r;
2282		}
2283		break;
2284	case DM_TYPE_BIO_BASED:
2285	case DM_TYPE_DAX_BIO_BASED:
2286	case DM_TYPE_NVME_BIO_BASED:
2287		dm_init_normal_md_queue(md);
2288		blk_queue_make_request(md->queue, dm_make_request);
 
 
 
 
 
 
2289		break;
2290	case DM_TYPE_NONE:
2291		WARN_ON_ONCE(true);
2292		break;
2293	}
2294
2295	r = dm_calculate_queue_limits(t, &limits);
2296	if (r) {
2297		DMERR("Cannot calculate initial queue limits");
2298		return r;
2299	}
2300	dm_table_set_restrictions(t, md->queue, &limits);
2301	blk_register_queue(md->disk);
2302
2303	return 0;
2304}
2305
2306struct mapped_device *dm_get_md(dev_t dev)
2307{
2308	struct mapped_device *md;
2309	unsigned minor = MINOR(dev);
2310
2311	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2312		return NULL;
2313
2314	spin_lock(&_minor_lock);
2315
2316	md = idr_find(&_minor_idr, minor);
2317	if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2318	    test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2319		md = NULL;
2320		goto out;
 
 
 
 
 
2321	}
2322	dm_get(md);
2323out:
2324	spin_unlock(&_minor_lock);
2325
2326	return md;
2327}
2328EXPORT_SYMBOL_GPL(dm_get_md);
2329
2330void *dm_get_mdptr(struct mapped_device *md)
2331{
2332	return md->interface_ptr;
2333}
2334
2335void dm_set_mdptr(struct mapped_device *md, void *ptr)
2336{
2337	md->interface_ptr = ptr;
2338}
2339
2340void dm_get(struct mapped_device *md)
2341{
2342	atomic_inc(&md->holders);
2343	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2344}
2345
2346int dm_hold(struct mapped_device *md)
2347{
2348	spin_lock(&_minor_lock);
2349	if (test_bit(DMF_FREEING, &md->flags)) {
2350		spin_unlock(&_minor_lock);
2351		return -EBUSY;
2352	}
2353	dm_get(md);
2354	spin_unlock(&_minor_lock);
2355	return 0;
2356}
2357EXPORT_SYMBOL_GPL(dm_hold);
2358
2359const char *dm_device_name(struct mapped_device *md)
2360{
2361	return md->name;
2362}
2363EXPORT_SYMBOL_GPL(dm_device_name);
2364
2365static void __dm_destroy(struct mapped_device *md, bool wait)
2366{
2367	struct dm_table *map;
2368	int srcu_idx;
2369
2370	might_sleep();
2371
2372	spin_lock(&_minor_lock);
2373	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2374	set_bit(DMF_FREEING, &md->flags);
2375	spin_unlock(&_minor_lock);
2376
2377	blk_set_queue_dying(md->queue);
 
2378
2379	/*
2380	 * Take suspend_lock so that presuspend and postsuspend methods
2381	 * do not race with internal suspend.
2382	 */
2383	mutex_lock(&md->suspend_lock);
2384	map = dm_get_live_table(md, &srcu_idx);
2385	if (!dm_suspended_md(md)) {
2386		dm_table_presuspend_targets(map);
2387		dm_table_postsuspend_targets(map);
2388	}
2389	/* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2390	dm_put_live_table(md, srcu_idx);
2391	mutex_unlock(&md->suspend_lock);
2392
2393	/*
2394	 * Rare, but there may be I/O requests still going to complete,
2395	 * for example.  Wait for all references to disappear.
2396	 * No one should increment the reference count of the mapped_device,
2397	 * after the mapped_device state becomes DMF_FREEING.
2398	 */
2399	if (wait)
2400		while (atomic_read(&md->holders))
2401			msleep(1);
2402	else if (atomic_read(&md->holders))
2403		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2404		       dm_device_name(md), atomic_read(&md->holders));
2405
2406	dm_sysfs_exit(md);
2407	dm_table_destroy(__unbind(md));
2408	free_dev(md);
2409}
2410
2411void dm_destroy(struct mapped_device *md)
2412{
2413	__dm_destroy(md, true);
2414}
2415
2416void dm_destroy_immediate(struct mapped_device *md)
2417{
2418	__dm_destroy(md, false);
2419}
2420
2421void dm_put(struct mapped_device *md)
2422{
2423	atomic_dec(&md->holders);
2424}
2425EXPORT_SYMBOL_GPL(dm_put);
2426
2427static int dm_wait_for_completion(struct mapped_device *md, long task_state)
2428{
2429	int r = 0;
2430	DEFINE_WAIT(wait);
 
 
2431
2432	while (1) {
2433		prepare_to_wait(&md->wait, &wait, task_state);
2434
2435		if (!md_in_flight(md))
2436			break;
2437
2438		if (signal_pending_state(task_state, current)) {
 
2439			r = -EINTR;
2440			break;
2441		}
2442
2443		io_schedule();
2444	}
2445	finish_wait(&md->wait, &wait);
 
 
2446
2447	return r;
2448}
2449
2450/*
2451 * Process the deferred bios
2452 */
2453static void dm_wq_work(struct work_struct *work)
2454{
2455	struct mapped_device *md = container_of(work, struct mapped_device,
2456						work);
2457	struct bio *c;
2458	int srcu_idx;
2459	struct dm_table *map;
2460
2461	map = dm_get_live_table(md, &srcu_idx);
2462
2463	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2464		spin_lock_irq(&md->deferred_lock);
2465		c = bio_list_pop(&md->deferred);
2466		spin_unlock_irq(&md->deferred_lock);
2467
2468		if (!c)
2469			break;
2470
2471		if (dm_request_based(md))
2472			(void) generic_make_request(c);
2473		else
2474			(void) dm_process_bio(md, map, c);
2475	}
2476
2477	dm_put_live_table(md, srcu_idx);
2478}
2479
2480static void dm_queue_flush(struct mapped_device *md)
2481{
2482	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2483	smp_mb__after_atomic();
2484	queue_work(md->wq, &md->work);
2485}
2486
2487/*
2488 * Swap in a new table, returning the old one for the caller to destroy.
2489 */
2490struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2491{
2492	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2493	struct queue_limits limits;
2494	int r;
2495
2496	mutex_lock(&md->suspend_lock);
2497
2498	/* device must be suspended */
2499	if (!dm_suspended_md(md))
2500		goto out;
2501
2502	/*
2503	 * If the new table has no data devices, retain the existing limits.
2504	 * This helps multipath with queue_if_no_path if all paths disappear,
2505	 * then new I/O is queued based on these limits, and then some paths
2506	 * reappear.
2507	 */
2508	if (dm_table_has_no_data_devices(table)) {
2509		live_map = dm_get_live_table_fast(md);
2510		if (live_map)
2511			limits = md->queue->limits;
2512		dm_put_live_table_fast(md);
2513	}
2514
2515	if (!live_map) {
2516		r = dm_calculate_queue_limits(table, &limits);
2517		if (r) {
2518			map = ERR_PTR(r);
2519			goto out;
2520		}
2521	}
2522
2523	map = __bind(md, table, &limits);
2524	dm_issue_global_event();
2525
2526out:
2527	mutex_unlock(&md->suspend_lock);
2528	return map;
2529}
2530
2531/*
2532 * Functions to lock and unlock any filesystem running on the
2533 * device.
2534 */
2535static int lock_fs(struct mapped_device *md)
2536{
2537	int r;
2538
2539	WARN_ON(md->frozen_sb);
2540
2541	md->frozen_sb = freeze_bdev(md->bdev);
2542	if (IS_ERR(md->frozen_sb)) {
2543		r = PTR_ERR(md->frozen_sb);
2544		md->frozen_sb = NULL;
2545		return r;
2546	}
2547
2548	set_bit(DMF_FROZEN, &md->flags);
2549
2550	return 0;
2551}
2552
2553static void unlock_fs(struct mapped_device *md)
2554{
2555	if (!test_bit(DMF_FROZEN, &md->flags))
2556		return;
2557
2558	thaw_bdev(md->bdev, md->frozen_sb);
2559	md->frozen_sb = NULL;
2560	clear_bit(DMF_FROZEN, &md->flags);
2561}
2562
2563/*
2564 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2565 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2566 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2567 *
2568 * If __dm_suspend returns 0, the device is completely quiescent
2569 * now. There is no request-processing activity. All new requests
2570 * are being added to md->deferred list.
 
 
2571 */
2572static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2573			unsigned suspend_flags, long task_state,
2574			int dmf_suspended_flag)
2575{
2576	bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2577	bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2578	int r;
2579
2580	lockdep_assert_held(&md->suspend_lock);
2581
2582	/*
2583	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2584	 * This flag is cleared before dm_suspend returns.
2585	 */
2586	if (noflush)
2587		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2588	else
2589		pr_debug("%s: suspending with flush\n", dm_device_name(md));
2590
2591	/*
2592	 * This gets reverted if there's an error later and the targets
2593	 * provide the .presuspend_undo hook.
2594	 */
2595	dm_table_presuspend_targets(map);
2596
2597	/*
2598	 * Flush I/O to the device.
2599	 * Any I/O submitted after lock_fs() may not be flushed.
2600	 * noflush takes precedence over do_lockfs.
2601	 * (lock_fs() flushes I/Os and waits for them to complete.)
2602	 */
2603	if (!noflush && do_lockfs) {
2604		r = lock_fs(md);
2605		if (r) {
2606			dm_table_presuspend_undo_targets(map);
2607			return r;
2608		}
2609	}
2610
2611	/*
2612	 * Here we must make sure that no processes are submitting requests
2613	 * to target drivers i.e. no one may be executing
2614	 * __split_and_process_bio. This is called from dm_request and
2615	 * dm_wq_work.
2616	 *
2617	 * To get all processes out of __split_and_process_bio in dm_request,
2618	 * we take the write lock. To prevent any process from reentering
2619	 * __split_and_process_bio from dm_request and quiesce the thread
2620	 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2621	 * flush_workqueue(md->wq).
2622	 */
2623	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2624	if (map)
2625		synchronize_srcu(&md->io_barrier);
2626
2627	/*
2628	 * Stop md->queue before flushing md->wq in case request-based
2629	 * dm defers requests to md->wq from md->queue.
2630	 */
2631	if (dm_request_based(md))
2632		dm_stop_queue(md->queue);
 
 
 
2633
2634	flush_workqueue(md->wq);
2635
2636	/*
2637	 * At this point no more requests are entering target request routines.
2638	 * We call dm_wait_for_completion to wait for all existing requests
2639	 * to finish.
2640	 */
2641	r = dm_wait_for_completion(md, task_state);
2642	if (!r)
2643		set_bit(dmf_suspended_flag, &md->flags);
2644
2645	if (noflush)
2646		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2647	if (map)
2648		synchronize_srcu(&md->io_barrier);
2649
2650	/* were we interrupted ? */
2651	if (r < 0) {
2652		dm_queue_flush(md);
2653
2654		if (dm_request_based(md))
2655			dm_start_queue(md->queue);
2656
2657		unlock_fs(md);
2658		dm_table_presuspend_undo_targets(map);
2659		/* pushback list is already flushed, so skip flush */
2660	}
2661
2662	return r;
2663}
2664
2665/*
2666 * We need to be able to change a mapping table under a mounted
2667 * filesystem.  For example we might want to move some data in
2668 * the background.  Before the table can be swapped with
2669 * dm_bind_table, dm_suspend must be called to flush any in
2670 * flight bios and ensure that any further io gets deferred.
2671 */
2672/*
2673 * Suspend mechanism in request-based dm.
2674 *
2675 * 1. Flush all I/Os by lock_fs() if needed.
2676 * 2. Stop dispatching any I/O by stopping the request_queue.
2677 * 3. Wait for all in-flight I/Os to be completed or requeued.
2678 *
2679 * To abort suspend, start the request_queue.
2680 */
2681int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2682{
2683	struct dm_table *map = NULL;
2684	int r = 0;
2685
2686retry:
2687	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2688
2689	if (dm_suspended_md(md)) {
2690		r = -EINVAL;
2691		goto out_unlock;
2692	}
2693
2694	if (dm_suspended_internally_md(md)) {
2695		/* already internally suspended, wait for internal resume */
2696		mutex_unlock(&md->suspend_lock);
2697		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2698		if (r)
2699			return r;
2700		goto retry;
2701	}
2702
2703	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2704
2705	r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2706	if (r)
2707		goto out_unlock;
2708
 
 
2709	dm_table_postsuspend_targets(map);
2710
2711out_unlock:
2712	mutex_unlock(&md->suspend_lock);
2713	return r;
2714}
2715
2716static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2717{
2718	if (map) {
2719		int r = dm_table_resume_targets(map);
2720		if (r)
2721			return r;
2722	}
2723
2724	dm_queue_flush(md);
2725
2726	/*
2727	 * Flushing deferred I/Os must be done after targets are resumed
2728	 * so that mapping of targets can work correctly.
2729	 * Request-based dm is queueing the deferred I/Os in its request_queue.
2730	 */
2731	if (dm_request_based(md))
2732		dm_start_queue(md->queue);
2733
2734	unlock_fs(md);
2735
2736	return 0;
2737}
2738
2739int dm_resume(struct mapped_device *md)
2740{
2741	int r;
2742	struct dm_table *map = NULL;
2743
2744retry:
2745	r = -EINVAL;
2746	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2747
2748	if (!dm_suspended_md(md))
2749		goto out;
2750
2751	if (dm_suspended_internally_md(md)) {
2752		/* already internally suspended, wait for internal resume */
2753		mutex_unlock(&md->suspend_lock);
2754		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2755		if (r)
2756			return r;
2757		goto retry;
2758	}
2759
2760	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2761	if (!map || !dm_table_get_size(map))
2762		goto out;
2763
2764	r = __dm_resume(md, map);
2765	if (r)
2766		goto out;
2767
2768	clear_bit(DMF_SUSPENDED, &md->flags);
 
 
2769out:
2770	mutex_unlock(&md->suspend_lock);
2771
2772	return r;
2773}
2774
2775/*
2776 * Internal suspend/resume works like userspace-driven suspend. It waits
2777 * until all bios finish and prevents issuing new bios to the target drivers.
2778 * It may be used only from the kernel.
2779 */
2780
2781static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2782{
2783	struct dm_table *map = NULL;
2784
2785	lockdep_assert_held(&md->suspend_lock);
2786
2787	if (md->internal_suspend_count++)
2788		return; /* nested internal suspend */
2789
2790	if (dm_suspended_md(md)) {
2791		set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2792		return; /* nest suspend */
2793	}
2794
2795	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2796
2797	/*
2798	 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2799	 * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
2800	 * would require changing .presuspend to return an error -- avoid this
2801	 * until there is a need for more elaborate variants of internal suspend.
2802	 */
2803	(void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2804			    DMF_SUSPENDED_INTERNALLY);
 
2805
2806	dm_table_postsuspend_targets(map);
2807}
2808
2809static void __dm_internal_resume(struct mapped_device *md)
2810{
2811	BUG_ON(!md->internal_suspend_count);
2812
2813	if (--md->internal_suspend_count)
2814		return; /* resume from nested internal suspend */
2815
2816	if (dm_suspended_md(md))
2817		goto done; /* resume from nested suspend */
2818
2819	/*
2820	 * NOTE: existing callers don't need to call dm_table_resume_targets
2821	 * (which may fail -- so best to avoid it for now by passing NULL map)
2822	 */
2823	(void) __dm_resume(md, NULL);
2824
2825done:
2826	clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2827	smp_mb__after_atomic();
2828	wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2829}
2830
2831void dm_internal_suspend_noflush(struct mapped_device *md)
2832{
2833	mutex_lock(&md->suspend_lock);
2834	__dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2835	mutex_unlock(&md->suspend_lock);
2836}
2837EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2838
2839void dm_internal_resume(struct mapped_device *md)
2840{
2841	mutex_lock(&md->suspend_lock);
2842	__dm_internal_resume(md);
2843	mutex_unlock(&md->suspend_lock);
2844}
2845EXPORT_SYMBOL_GPL(dm_internal_resume);
2846
2847/*
2848 * Fast variants of internal suspend/resume hold md->suspend_lock,
2849 * which prevents interaction with userspace-driven suspend.
2850 */
2851
2852void dm_internal_suspend_fast(struct mapped_device *md)
2853{
2854	mutex_lock(&md->suspend_lock);
2855	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2856		return;
2857
2858	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2859	synchronize_srcu(&md->io_barrier);
2860	flush_workqueue(md->wq);
2861	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2862}
2863EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2864
2865void dm_internal_resume_fast(struct mapped_device *md)
2866{
2867	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2868		goto done;
2869
2870	dm_queue_flush(md);
2871
2872done:
2873	mutex_unlock(&md->suspend_lock);
2874}
2875EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2876
2877/*-----------------------------------------------------------------
2878 * Event notification.
2879 *---------------------------------------------------------------*/
2880int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2881		       unsigned cookie)
2882{
2883	char udev_cookie[DM_COOKIE_LENGTH];
2884	char *envp[] = { udev_cookie, NULL };
2885
2886	if (!cookie)
2887		return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2888	else {
2889		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2890			 DM_COOKIE_ENV_VAR_NAME, cookie);
2891		return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2892					  action, envp);
2893	}
2894}
2895
2896uint32_t dm_next_uevent_seq(struct mapped_device *md)
2897{
2898	return atomic_add_return(1, &md->uevent_seq);
2899}
2900
2901uint32_t dm_get_event_nr(struct mapped_device *md)
2902{
2903	return atomic_read(&md->event_nr);
2904}
2905
2906int dm_wait_event(struct mapped_device *md, int event_nr)
2907{
2908	return wait_event_interruptible(md->eventq,
2909			(event_nr != atomic_read(&md->event_nr)));
2910}
2911
2912void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2913{
2914	unsigned long flags;
2915
2916	spin_lock_irqsave(&md->uevent_lock, flags);
2917	list_add(elist, &md->uevent_list);
2918	spin_unlock_irqrestore(&md->uevent_lock, flags);
2919}
2920
2921/*
2922 * The gendisk is only valid as long as you have a reference
2923 * count on 'md'.
2924 */
2925struct gendisk *dm_disk(struct mapped_device *md)
2926{
2927	return md->disk;
2928}
2929EXPORT_SYMBOL_GPL(dm_disk);
2930
2931struct kobject *dm_kobject(struct mapped_device *md)
2932{
2933	return &md->kobj_holder.kobj;
2934}
2935
2936struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2937{
2938	struct mapped_device *md;
2939
2940	md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
2941
2942	spin_lock(&_minor_lock);
2943	if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2944		md = NULL;
2945		goto out;
2946	}
2947	dm_get(md);
2948out:
2949	spin_unlock(&_minor_lock);
2950
2951	return md;
2952}
2953
2954int dm_suspended_md(struct mapped_device *md)
2955{
2956	return test_bit(DMF_SUSPENDED, &md->flags);
2957}
2958
2959int dm_suspended_internally_md(struct mapped_device *md)
2960{
2961	return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2962}
2963
2964int dm_test_deferred_remove_flag(struct mapped_device *md)
2965{
2966	return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
2967}
2968
2969int dm_suspended(struct dm_target *ti)
2970{
2971	return dm_suspended_md(dm_table_get_md(ti->table));
2972}
2973EXPORT_SYMBOL_GPL(dm_suspended);
2974
2975int dm_noflush_suspending(struct dm_target *ti)
2976{
2977	return __noflush_suspending(dm_table_get_md(ti->table));
2978}
2979EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2980
2981struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type,
2982					    unsigned integrity, unsigned per_io_data_size,
2983					    unsigned min_pool_size)
2984{
2985	struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
 
2986	unsigned int pool_size = 0;
2987	unsigned int front_pad, io_front_pad;
2988	int ret;
2989
2990	if (!pools)
2991		return NULL;
2992
 
 
2993	switch (type) {
2994	case DM_TYPE_BIO_BASED:
2995	case DM_TYPE_DAX_BIO_BASED:
2996	case DM_TYPE_NVME_BIO_BASED:
2997		pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size);
2998		front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
2999		io_front_pad = roundup(front_pad,  __alignof__(struct dm_io)) + offsetof(struct dm_io, tio);
3000		ret = bioset_init(&pools->io_bs, pool_size, io_front_pad, 0);
3001		if (ret)
3002			goto out;
3003		if (integrity && bioset_integrity_create(&pools->io_bs, pool_size))
3004			goto out;
3005		break;
3006	case DM_TYPE_REQUEST_BASED:
3007		pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size);
 
 
 
 
 
 
 
 
3008		front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
3009		/* per_io_data_size is used for blk-mq pdu at queue allocation */
3010		break;
3011	default:
3012		BUG();
3013	}
3014
3015	ret = bioset_init(&pools->bs, pool_size, front_pad, 0);
3016	if (ret)
 
 
 
 
 
 
3017		goto out;
3018
3019	if (integrity && bioset_integrity_create(&pools->bs, pool_size))
3020		goto out;
3021
3022	return pools;
3023
3024out:
3025	dm_free_md_mempools(pools);
3026
3027	return NULL;
3028}
3029
3030void dm_free_md_mempools(struct dm_md_mempools *pools)
3031{
3032	if (!pools)
3033		return;
3034
3035	bioset_exit(&pools->bs);
3036	bioset_exit(&pools->io_bs);
 
 
 
3037
3038	kfree(pools);
3039}
3040
3041struct dm_pr {
3042	u64	old_key;
3043	u64	new_key;
3044	u32	flags;
3045	bool	fail_early;
3046};
3047
3048static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
3049		      void *data)
3050{
3051	struct mapped_device *md = bdev->bd_disk->private_data;
3052	struct dm_table *table;
3053	struct dm_target *ti;
3054	int ret = -ENOTTY, srcu_idx;
3055
3056	table = dm_get_live_table(md, &srcu_idx);
3057	if (!table || !dm_table_get_size(table))
3058		goto out;
3059
3060	/* We only support devices that have a single target */
3061	if (dm_table_get_num_targets(table) != 1)
3062		goto out;
3063	ti = dm_table_get_target(table, 0);
 
3064
3065	ret = -EINVAL;
3066	if (!ti->type->iterate_devices)
3067		goto out;
3068
3069	ret = ti->type->iterate_devices(ti, fn, data);
3070out:
3071	dm_put_live_table(md, srcu_idx);
3072	return ret;
3073}
3074
3075/*
3076 * For register / unregister we need to manually call out to every path.
3077 */
3078static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
3079			    sector_t start, sector_t len, void *data)
3080{
3081	struct dm_pr *pr = data;
3082	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3083
3084	if (!ops || !ops->pr_register)
3085		return -EOPNOTSUPP;
3086	return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
3087}
3088
3089static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
3090			  u32 flags)
3091{
3092	struct dm_pr pr = {
3093		.old_key	= old_key,
3094		.new_key	= new_key,
3095		.flags		= flags,
3096		.fail_early	= true,
3097	};
3098	int ret;
3099
3100	ret = dm_call_pr(bdev, __dm_pr_register, &pr);
3101	if (ret && new_key) {
3102		/* unregister all paths if we failed to register any path */
3103		pr.old_key = new_key;
3104		pr.new_key = 0;
3105		pr.flags = 0;
3106		pr.fail_early = false;
3107		dm_call_pr(bdev, __dm_pr_register, &pr);
3108	}
3109
3110	return ret;
3111}
3112
3113static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3114			 u32 flags)
3115{
3116	struct mapped_device *md = bdev->bd_disk->private_data;
3117	const struct pr_ops *ops;
3118	int r, srcu_idx;
 
3119
3120	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3121	if (r < 0)
3122		goto out;
3123
3124	ops = bdev->bd_disk->fops->pr_ops;
3125	if (ops && ops->pr_reserve)
3126		r = ops->pr_reserve(bdev, key, type, flags);
3127	else
3128		r = -EOPNOTSUPP;
3129out:
3130	dm_unprepare_ioctl(md, srcu_idx);
3131	return r;
3132}
3133
3134static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3135{
3136	struct mapped_device *md = bdev->bd_disk->private_data;
3137	const struct pr_ops *ops;
3138	int r, srcu_idx;
 
3139
3140	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3141	if (r < 0)
3142		goto out;
3143
3144	ops = bdev->bd_disk->fops->pr_ops;
3145	if (ops && ops->pr_release)
3146		r = ops->pr_release(bdev, key, type);
3147	else
3148		r = -EOPNOTSUPP;
3149out:
3150	dm_unprepare_ioctl(md, srcu_idx);
3151	return r;
3152}
3153
3154static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3155			 enum pr_type type, bool abort)
3156{
3157	struct mapped_device *md = bdev->bd_disk->private_data;
3158	const struct pr_ops *ops;
3159	int r, srcu_idx;
 
3160
3161	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3162	if (r < 0)
3163		goto out;
3164
3165	ops = bdev->bd_disk->fops->pr_ops;
3166	if (ops && ops->pr_preempt)
3167		r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
3168	else
3169		r = -EOPNOTSUPP;
3170out:
3171	dm_unprepare_ioctl(md, srcu_idx);
3172	return r;
3173}
3174
3175static int dm_pr_clear(struct block_device *bdev, u64 key)
3176{
3177	struct mapped_device *md = bdev->bd_disk->private_data;
3178	const struct pr_ops *ops;
3179	int r, srcu_idx;
 
3180
3181	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3182	if (r < 0)
3183		goto out;
3184
3185	ops = bdev->bd_disk->fops->pr_ops;
3186	if (ops && ops->pr_clear)
3187		r = ops->pr_clear(bdev, key);
3188	else
3189		r = -EOPNOTSUPP;
3190out:
3191	dm_unprepare_ioctl(md, srcu_idx);
3192	return r;
3193}
3194
3195static const struct pr_ops dm_pr_ops = {
3196	.pr_register	= dm_pr_register,
3197	.pr_reserve	= dm_pr_reserve,
3198	.pr_release	= dm_pr_release,
3199	.pr_preempt	= dm_pr_preempt,
3200	.pr_clear	= dm_pr_clear,
3201};
3202
3203static const struct block_device_operations dm_blk_dops = {
3204	.open = dm_blk_open,
3205	.release = dm_blk_close,
3206	.ioctl = dm_blk_ioctl,
3207	.getgeo = dm_blk_getgeo,
3208	.report_zones = dm_blk_report_zones,
3209	.pr_ops = &dm_pr_ops,
3210	.owner = THIS_MODULE
3211};
3212
3213static const struct dax_operations dm_dax_ops = {
3214	.direct_access = dm_dax_direct_access,
3215	.dax_supported = dm_dax_supported,
3216	.copy_from_iter = dm_dax_copy_from_iter,
3217	.copy_to_iter = dm_dax_copy_to_iter,
3218};
3219
3220/*
3221 * module hooks
3222 */
3223module_init(dm_init);
3224module_exit(dm_exit);
3225
3226module_param(major, uint, 0);
3227MODULE_PARM_DESC(major, "The major number of the device mapper");
3228
3229module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3230MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
 
 
 
 
 
 
 
 
 
 
 
 
3231
3232module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
3233MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3234
3235MODULE_DESCRIPTION(DM_NAME " driver");
3236MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3237MODULE_LICENSE("GPL");