Linux Audio

Check our new training course

Loading...
v4.6
  1/*
  2 * arch/arm/kernel/topology.c
  3 *
  4 * Copyright (C) 2011 Linaro Limited.
  5 * Written by: Vincent Guittot
  6 *
  7 * based on arch/sh/kernel/topology.c
  8 *
  9 * This file is subject to the terms and conditions of the GNU General Public
 10 * License.  See the file "COPYING" in the main directory of this archive
 11 * for more details.
 12 */
 13
 
 14#include <linux/cpu.h>
 
 15#include <linux/cpumask.h>
 16#include <linux/export.h>
 17#include <linux/init.h>
 18#include <linux/percpu.h>
 19#include <linux/node.h>
 20#include <linux/nodemask.h>
 21#include <linux/of.h>
 22#include <linux/sched.h>
 
 23#include <linux/slab.h>
 
 24
 
 25#include <asm/cputype.h>
 26#include <asm/topology.h>
 27
 28/*
 29 * cpu capacity scale management
 30 */
 31
 32/*
 33 * cpu capacity table
 34 * This per cpu data structure describes the relative capacity of each core.
 35 * On a heteregenous system, cores don't have the same computation capacity
 36 * and we reflect that difference in the cpu_capacity field so the scheduler
 37 * can take this difference into account during load balance. A per cpu
 38 * structure is preferred because each CPU updates its own cpu_capacity field
 39 * during the load balance except for idle cores. One idle core is selected
 40 * to run the rebalance_domains for all idle cores and the cpu_capacity can be
 41 * updated during this sequence.
 42 */
 43static DEFINE_PER_CPU(unsigned long, cpu_scale) = SCHED_CAPACITY_SCALE;
 44
 45unsigned long arch_scale_cpu_capacity(struct sched_domain *sd, int cpu)
 46{
 47	return per_cpu(cpu_scale, cpu);
 48}
 49
 50static void set_capacity_scale(unsigned int cpu, unsigned long capacity)
 51{
 52	per_cpu(cpu_scale, cpu) = capacity;
 53}
 54
 55#ifdef CONFIG_OF
 56struct cpu_efficiency {
 57	const char *compatible;
 58	unsigned long efficiency;
 59};
 60
 61/*
 62 * Table of relative efficiency of each processors
 63 * The efficiency value must fit in 20bit and the final
 64 * cpu_scale value must be in the range
 65 *   0 < cpu_scale < 3*SCHED_CAPACITY_SCALE/2
 66 * in order to return at most 1 when DIV_ROUND_CLOSEST
 67 * is used to compute the capacity of a CPU.
 68 * Processors that are not defined in the table,
 69 * use the default SCHED_CAPACITY_SCALE value for cpu_scale.
 70 */
 71static const struct cpu_efficiency table_efficiency[] = {
 72	{"arm,cortex-a15", 3891},
 73	{"arm,cortex-a7",  2048},
 74	{NULL, },
 75};
 76
 77static unsigned long *__cpu_capacity;
 78#define cpu_capacity(cpu)	__cpu_capacity[cpu]
 79
 80static unsigned long middle_capacity = 1;
 
 81
 82/*
 83 * Iterate all CPUs' descriptor in DT and compute the efficiency
 84 * (as per table_efficiency). Also calculate a middle efficiency
 85 * as close as possible to  (max{eff_i} - min{eff_i}) / 2
 86 * This is later used to scale the cpu_capacity field such that an
 87 * 'average' CPU is of middle capacity. Also see the comments near
 88 * table_efficiency[] and update_cpu_capacity().
 89 */
 90static void __init parse_dt_topology(void)
 91{
 92	const struct cpu_efficiency *cpu_eff;
 93	struct device_node *cn = NULL;
 94	unsigned long min_capacity = ULONG_MAX;
 95	unsigned long max_capacity = 0;
 96	unsigned long capacity = 0;
 97	int cpu = 0;
 98
 99	__cpu_capacity = kcalloc(nr_cpu_ids, sizeof(*__cpu_capacity),
100				 GFP_NOWAIT);
101
102	for_each_possible_cpu(cpu) {
103		const u32 *rate;
104		int len;
105
106		/* too early to use cpu->of_node */
107		cn = of_get_cpu_node(cpu, NULL);
108		if (!cn) {
109			pr_err("missing device node for CPU %d\n", cpu);
110			continue;
111		}
112
 
 
 
 
 
 
 
113		for (cpu_eff = table_efficiency; cpu_eff->compatible; cpu_eff++)
114			if (of_device_is_compatible(cn, cpu_eff->compatible))
115				break;
116
117		if (cpu_eff->compatible == NULL)
118			continue;
119
120		rate = of_get_property(cn, "clock-frequency", &len);
121		if (!rate || len != 4) {
122			pr_err("%s missing clock-frequency property\n",
123				cn->full_name);
124			continue;
125		}
126
127		capacity = ((be32_to_cpup(rate)) >> 20) * cpu_eff->efficiency;
128
129		/* Save min capacity of the system */
130		if (capacity < min_capacity)
131			min_capacity = capacity;
132
133		/* Save max capacity of the system */
134		if (capacity > max_capacity)
135			max_capacity = capacity;
136
137		cpu_capacity(cpu) = capacity;
138	}
139
140	/* If min and max capacities are equals, we bypass the update of the
141	 * cpu_scale because all CPUs have the same capacity. Otherwise, we
142	 * compute a middle_capacity factor that will ensure that the capacity
143	 * of an 'average' CPU of the system will be as close as possible to
144	 * SCHED_CAPACITY_SCALE, which is the default value, but with the
145	 * constraint explained near table_efficiency[].
146	 */
147	if (4*max_capacity < (3*(max_capacity + min_capacity)))
148		middle_capacity = (min_capacity + max_capacity)
149				>> (SCHED_CAPACITY_SHIFT+1);
150	else
151		middle_capacity = ((max_capacity / 3)
152				>> (SCHED_CAPACITY_SHIFT-1)) + 1;
153
 
 
154}
155
156/*
157 * Look for a customed capacity of a CPU in the cpu_capacity table during the
158 * boot. The update of all CPUs is in O(n^2) for heteregeneous system but the
159 * function returns directly for SMP system.
160 */
161static void update_cpu_capacity(unsigned int cpu)
162{
163	if (!cpu_capacity(cpu))
164		return;
165
166	set_capacity_scale(cpu, cpu_capacity(cpu) / middle_capacity);
167
168	pr_info("CPU%u: update cpu_capacity %lu\n",
169		cpu, arch_scale_cpu_capacity(NULL, cpu));
170}
171
172#else
173static inline void parse_dt_topology(void) {}
174static inline void update_cpu_capacity(unsigned int cpuid) {}
175#endif
176
177 /*
178 * cpu topology table
179 */
180struct cputopo_arm cpu_topology[NR_CPUS];
181EXPORT_SYMBOL_GPL(cpu_topology);
182
183const struct cpumask *cpu_coregroup_mask(int cpu)
184{
185	return &cpu_topology[cpu].core_sibling;
186}
187
188/*
189 * The current assumption is that we can power gate each core independently.
190 * This will be superseded by DT binding once available.
191 */
192const struct cpumask *cpu_corepower_mask(int cpu)
193{
194	return &cpu_topology[cpu].thread_sibling;
195}
196
197static void update_siblings_masks(unsigned int cpuid)
198{
199	struct cputopo_arm *cpu_topo, *cpuid_topo = &cpu_topology[cpuid];
200	int cpu;
201
202	/* update core and thread sibling masks */
203	for_each_possible_cpu(cpu) {
204		cpu_topo = &cpu_topology[cpu];
205
206		if (cpuid_topo->socket_id != cpu_topo->socket_id)
207			continue;
208
209		cpumask_set_cpu(cpuid, &cpu_topo->core_sibling);
210		if (cpu != cpuid)
211			cpumask_set_cpu(cpu, &cpuid_topo->core_sibling);
212
213		if (cpuid_topo->core_id != cpu_topo->core_id)
214			continue;
215
216		cpumask_set_cpu(cpuid, &cpu_topo->thread_sibling);
217		if (cpu != cpuid)
218			cpumask_set_cpu(cpu, &cpuid_topo->thread_sibling);
219	}
220	smp_wmb();
221}
222
223/*
224 * store_cpu_topology is called at boot when only one cpu is running
225 * and with the mutex cpu_hotplug.lock locked, when several cpus have booted,
226 * which prevents simultaneous write access to cpu_topology array
227 */
228void store_cpu_topology(unsigned int cpuid)
229{
230	struct cputopo_arm *cpuid_topo = &cpu_topology[cpuid];
231	unsigned int mpidr;
232
233	/* If the cpu topology has been already set, just return */
234	if (cpuid_topo->core_id != -1)
235		return;
236
237	mpidr = read_cpuid_mpidr();
238
239	/* create cpu topology mapping */
240	if ((mpidr & MPIDR_SMP_BITMASK) == MPIDR_SMP_VALUE) {
241		/*
242		 * This is a multiprocessor system
243		 * multiprocessor format & multiprocessor mode field are set
244		 */
245
246		if (mpidr & MPIDR_MT_BITMASK) {
247			/* core performance interdependency */
248			cpuid_topo->thread_id = MPIDR_AFFINITY_LEVEL(mpidr, 0);
249			cpuid_topo->core_id = MPIDR_AFFINITY_LEVEL(mpidr, 1);
250			cpuid_topo->socket_id = MPIDR_AFFINITY_LEVEL(mpidr, 2);
251		} else {
252			/* largely independent cores */
253			cpuid_topo->thread_id = -1;
254			cpuid_topo->core_id = MPIDR_AFFINITY_LEVEL(mpidr, 0);
255			cpuid_topo->socket_id = MPIDR_AFFINITY_LEVEL(mpidr, 1);
256		}
257	} else {
258		/*
259		 * This is an uniprocessor system
260		 * we are in multiprocessor format but uniprocessor system
261		 * or in the old uniprocessor format
262		 */
263		cpuid_topo->thread_id = -1;
264		cpuid_topo->core_id = 0;
265		cpuid_topo->socket_id = -1;
266	}
267
268	update_siblings_masks(cpuid);
269
270	update_cpu_capacity(cpuid);
271
272	pr_info("CPU%u: thread %d, cpu %d, socket %d, mpidr %x\n",
273		cpuid, cpu_topology[cpuid].thread_id,
274		cpu_topology[cpuid].core_id,
275		cpu_topology[cpuid].socket_id, mpidr);
276}
277
278static inline int cpu_corepower_flags(void)
279{
280	return SD_SHARE_PKG_RESOURCES  | SD_SHARE_POWERDOMAIN;
281}
282
283static struct sched_domain_topology_level arm_topology[] = {
284#ifdef CONFIG_SCHED_MC
285	{ cpu_corepower_mask, cpu_corepower_flags, SD_INIT_NAME(GMC) },
286	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
287#endif
288	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
289	{ NULL, },
290};
291
292/*
293 * init_cpu_topology is called at boot when only one cpu is running
294 * which prevent simultaneous write access to cpu_topology array
295 */
296void __init init_cpu_topology(void)
297{
298	unsigned int cpu;
299
300	/* init core mask and capacity */
301	for_each_possible_cpu(cpu) {
302		struct cputopo_arm *cpu_topo = &(cpu_topology[cpu]);
303
304		cpu_topo->thread_id = -1;
305		cpu_topo->core_id =  -1;
306		cpu_topo->socket_id = -1;
307		cpumask_clear(&cpu_topo->core_sibling);
308		cpumask_clear(&cpu_topo->thread_sibling);
309	}
310	smp_wmb();
311
312	parse_dt_topology();
313
314	/* Set scheduler topology descriptor */
315	set_sched_topology(arm_topology);
316}
v6.13.7
  1/*
  2 * arch/arm/kernel/topology.c
  3 *
  4 * Copyright (C) 2011 Linaro Limited.
  5 * Written by: Vincent Guittot
  6 *
  7 * based on arch/sh/kernel/topology.c
  8 *
  9 * This file is subject to the terms and conditions of the GNU General Public
 10 * License.  See the file "COPYING" in the main directory of this archive
 11 * for more details.
 12 */
 13
 14#include <linux/arch_topology.h>
 15#include <linux/cpu.h>
 16#include <linux/cpufreq.h>
 17#include <linux/cpumask.h>
 18#include <linux/export.h>
 19#include <linux/init.h>
 20#include <linux/percpu.h>
 21#include <linux/node.h>
 22#include <linux/nodemask.h>
 23#include <linux/of.h>
 24#include <linux/sched.h>
 25#include <linux/sched/topology.h>
 26#include <linux/slab.h>
 27#include <linux/string.h>
 28
 29#include <asm/cpu.h>
 30#include <asm/cputype.h>
 31#include <asm/topology.h>
 32
 33/*
 34 * cpu capacity scale management
 35 */
 36
 37/*
 38 * cpu capacity table
 39 * This per cpu data structure describes the relative capacity of each core.
 40 * On a heteregenous system, cores don't have the same computation capacity
 41 * and we reflect that difference in the cpu_capacity field so the scheduler
 42 * can take this difference into account during load balance. A per cpu
 43 * structure is preferred because each CPU updates its own cpu_capacity field
 44 * during the load balance except for idle cores. One idle core is selected
 45 * to run the sched_balance_domains for all idle cores and the cpu_capacity can be
 46 * updated during this sequence.
 47 */
 
 
 
 
 
 
 
 
 
 
 
 48
 49#ifdef CONFIG_OF
 50struct cpu_efficiency {
 51	const char *compatible;
 52	unsigned long efficiency;
 53};
 54
 55/*
 56 * Table of relative efficiency of each processors
 57 * The efficiency value must fit in 20bit and the final
 58 * cpu_scale value must be in the range
 59 *   0 < cpu_scale < 3*SCHED_CAPACITY_SCALE/2
 60 * in order to return at most 1 when DIV_ROUND_CLOSEST
 61 * is used to compute the capacity of a CPU.
 62 * Processors that are not defined in the table,
 63 * use the default SCHED_CAPACITY_SCALE value for cpu_scale.
 64 */
 65static const struct cpu_efficiency table_efficiency[] = {
 66	{"arm,cortex-a15", 3891},
 67	{"arm,cortex-a7",  2048},
 68	{NULL, },
 69};
 70
 71static unsigned long *__cpu_capacity;
 72#define cpu_capacity(cpu)	__cpu_capacity[cpu]
 73
 74static unsigned long middle_capacity = 1;
 75static bool cap_from_dt = true;
 76
 77/*
 78 * Iterate all CPUs' descriptor in DT and compute the efficiency
 79 * (as per table_efficiency). Also calculate a middle efficiency
 80 * as close as possible to  (max{eff_i} - min{eff_i}) / 2
 81 * This is later used to scale the cpu_capacity field such that an
 82 * 'average' CPU is of middle capacity. Also see the comments near
 83 * table_efficiency[] and update_cpu_capacity().
 84 */
 85static void __init parse_dt_topology(void)
 86{
 87	const struct cpu_efficiency *cpu_eff;
 88	struct device_node *cn = NULL;
 89	unsigned long min_capacity = ULONG_MAX;
 90	unsigned long max_capacity = 0;
 91	unsigned long capacity = 0;
 92	int cpu = 0;
 93
 94	__cpu_capacity = kcalloc(nr_cpu_ids, sizeof(*__cpu_capacity),
 95				 GFP_NOWAIT);
 96
 97	for_each_possible_cpu(cpu) {
 98		const __be32 *rate;
 99		int len;
100
101		/* too early to use cpu->of_node */
102		cn = of_get_cpu_node(cpu, NULL);
103		if (!cn) {
104			pr_err("missing device node for CPU %d\n", cpu);
105			continue;
106		}
107
108		if (topology_parse_cpu_capacity(cn, cpu)) {
109			of_node_put(cn);
110			continue;
111		}
112
113		cap_from_dt = false;
114
115		for (cpu_eff = table_efficiency; cpu_eff->compatible; cpu_eff++)
116			if (of_device_is_compatible(cn, cpu_eff->compatible))
117				break;
118
119		if (cpu_eff->compatible == NULL)
120			continue;
121
122		rate = of_get_property(cn, "clock-frequency", &len);
123		if (!rate || len != 4) {
124			pr_err("%pOF missing clock-frequency property\n", cn);
 
125			continue;
126		}
127
128		capacity = ((be32_to_cpup(rate)) >> 20) * cpu_eff->efficiency;
129
130		/* Save min capacity of the system */
131		if (capacity < min_capacity)
132			min_capacity = capacity;
133
134		/* Save max capacity of the system */
135		if (capacity > max_capacity)
136			max_capacity = capacity;
137
138		cpu_capacity(cpu) = capacity;
139	}
140
141	/* If min and max capacities are equals, we bypass the update of the
142	 * cpu_scale because all CPUs have the same capacity. Otherwise, we
143	 * compute a middle_capacity factor that will ensure that the capacity
144	 * of an 'average' CPU of the system will be as close as possible to
145	 * SCHED_CAPACITY_SCALE, which is the default value, but with the
146	 * constraint explained near table_efficiency[].
147	 */
148	if (4*max_capacity < (3*(max_capacity + min_capacity)))
149		middle_capacity = (min_capacity + max_capacity)
150				>> (SCHED_CAPACITY_SHIFT+1);
151	else
152		middle_capacity = ((max_capacity / 3)
153				>> (SCHED_CAPACITY_SHIFT-1)) + 1;
154
155	if (cap_from_dt)
156		topology_normalize_cpu_scale();
157}
158
159/*
160 * Look for a customed capacity of a CPU in the cpu_capacity table during the
161 * boot. The update of all CPUs is in O(n^2) for heteregeneous system but the
162 * function returns directly for SMP system.
163 */
164static void update_cpu_capacity(unsigned int cpu)
165{
166	if (!cpu_capacity(cpu) || cap_from_dt)
167		return;
168
169	topology_set_cpu_scale(cpu, cpu_capacity(cpu) / middle_capacity);
170
171	pr_info("CPU%u: update cpu_capacity %lu\n",
172		cpu, topology_get_cpu_scale(cpu));
173}
174
175#else
176static inline void parse_dt_topology(void) {}
177static inline void update_cpu_capacity(unsigned int cpuid) {}
178#endif
179
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
180/*
181 * store_cpu_topology is called at boot when only one cpu is running
182 * and with the mutex cpu_hotplug.lock locked, when several cpus have booted,
183 * which prevents simultaneous write access to cpu_topology array
184 */
185void store_cpu_topology(unsigned int cpuid)
186{
187	struct cpu_topology *cpuid_topo = &cpu_topology[cpuid];
188	unsigned int mpidr;
189
190	if (cpuid_topo->package_id != -1)
191		goto topology_populated;
 
192
193	mpidr = read_cpuid_mpidr();
194
195	/* create cpu topology mapping */
196	if ((mpidr & MPIDR_SMP_BITMASK) == MPIDR_SMP_VALUE) {
197		/*
198		 * This is a multiprocessor system
199		 * multiprocessor format & multiprocessor mode field are set
200		 */
201
202		if (mpidr & MPIDR_MT_BITMASK) {
203			/* core performance interdependency */
204			cpuid_topo->thread_id = MPIDR_AFFINITY_LEVEL(mpidr, 0);
205			cpuid_topo->core_id = MPIDR_AFFINITY_LEVEL(mpidr, 1);
206			cpuid_topo->package_id = MPIDR_AFFINITY_LEVEL(mpidr, 2);
207		} else {
208			/* largely independent cores */
209			cpuid_topo->thread_id = -1;
210			cpuid_topo->core_id = MPIDR_AFFINITY_LEVEL(mpidr, 0);
211			cpuid_topo->package_id = MPIDR_AFFINITY_LEVEL(mpidr, 1);
212		}
213	} else {
214		/*
215		 * This is an uniprocessor system
216		 * we are in multiprocessor format but uniprocessor system
217		 * or in the old uniprocessor format
218		 */
219		cpuid_topo->thread_id = -1;
220		cpuid_topo->core_id = 0;
221		cpuid_topo->package_id = -1;
222	}
223
 
 
224	update_cpu_capacity(cpuid);
225
226	pr_info("CPU%u: thread %d, cpu %d, socket %d, mpidr %x\n",
227		cpuid, cpu_topology[cpuid].thread_id,
228		cpu_topology[cpuid].core_id,
229		cpu_topology[cpuid].package_id, mpidr);
 
230
231topology_populated:
232	update_siblings_masks(cpuid);
 
233}
234
 
 
 
 
 
 
 
 
 
235/*
236 * init_cpu_topology is called at boot when only one cpu is running
237 * which prevent simultaneous write access to cpu_topology array
238 */
239void __init init_cpu_topology(void)
240{
241	reset_cpu_topology();
 
 
 
 
 
 
 
 
 
 
 
242	smp_wmb();
243
244	parse_dt_topology();
 
 
 
245}