Linux Audio

Check our new training course

Loading...
v4.6
  1/*
  2 * arch/arm/kernel/topology.c
  3 *
  4 * Copyright (C) 2011 Linaro Limited.
  5 * Written by: Vincent Guittot
  6 *
  7 * based on arch/sh/kernel/topology.c
  8 *
  9 * This file is subject to the terms and conditions of the GNU General Public
 10 * License.  See the file "COPYING" in the main directory of this archive
 11 * for more details.
 12 */
 13
 14#include <linux/cpu.h>
 15#include <linux/cpumask.h>
 16#include <linux/export.h>
 17#include <linux/init.h>
 18#include <linux/percpu.h>
 19#include <linux/node.h>
 20#include <linux/nodemask.h>
 21#include <linux/of.h>
 22#include <linux/sched.h>
 23#include <linux/slab.h>
 24
 25#include <asm/cputype.h>
 26#include <asm/topology.h>
 27
 28/*
 29 * cpu capacity scale management
 30 */
 31
 32/*
 33 * cpu capacity table
 34 * This per cpu data structure describes the relative capacity of each core.
 35 * On a heteregenous system, cores don't have the same computation capacity
 36 * and we reflect that difference in the cpu_capacity field so the scheduler
 37 * can take this difference into account during load balance. A per cpu
 38 * structure is preferred because each CPU updates its own cpu_capacity field
 39 * during the load balance except for idle cores. One idle core is selected
 40 * to run the rebalance_domains for all idle cores and the cpu_capacity can be
 41 * updated during this sequence.
 42 */
 43static DEFINE_PER_CPU(unsigned long, cpu_scale) = SCHED_CAPACITY_SCALE;
 44
 45unsigned long arch_scale_cpu_capacity(struct sched_domain *sd, int cpu)
 46{
 47	return per_cpu(cpu_scale, cpu);
 48}
 49
 50static void set_capacity_scale(unsigned int cpu, unsigned long capacity)
 51{
 52	per_cpu(cpu_scale, cpu) = capacity;
 53}
 54
 55#ifdef CONFIG_OF
 56struct cpu_efficiency {
 57	const char *compatible;
 58	unsigned long efficiency;
 59};
 60
 61/*
 62 * Table of relative efficiency of each processors
 63 * The efficiency value must fit in 20bit and the final
 64 * cpu_scale value must be in the range
 65 *   0 < cpu_scale < 3*SCHED_CAPACITY_SCALE/2
 66 * in order to return at most 1 when DIV_ROUND_CLOSEST
 67 * is used to compute the capacity of a CPU.
 68 * Processors that are not defined in the table,
 69 * use the default SCHED_CAPACITY_SCALE value for cpu_scale.
 70 */
 71static const struct cpu_efficiency table_efficiency[] = {
 72	{"arm,cortex-a15", 3891},
 73	{"arm,cortex-a7",  2048},
 74	{NULL, },
 75};
 76
 77static unsigned long *__cpu_capacity;
 78#define cpu_capacity(cpu)	__cpu_capacity[cpu]
 79
 80static unsigned long middle_capacity = 1;
 81
 82/*
 83 * Iterate all CPUs' descriptor in DT and compute the efficiency
 84 * (as per table_efficiency). Also calculate a middle efficiency
 85 * as close as possible to  (max{eff_i} - min{eff_i}) / 2
 86 * This is later used to scale the cpu_capacity field such that an
 87 * 'average' CPU is of middle capacity. Also see the comments near
 88 * table_efficiency[] and update_cpu_capacity().
 89 */
 90static void __init parse_dt_topology(void)
 91{
 92	const struct cpu_efficiency *cpu_eff;
 93	struct device_node *cn = NULL;
 94	unsigned long min_capacity = ULONG_MAX;
 95	unsigned long max_capacity = 0;
 96	unsigned long capacity = 0;
 97	int cpu = 0;
 98
 99	__cpu_capacity = kcalloc(nr_cpu_ids, sizeof(*__cpu_capacity),
100				 GFP_NOWAIT);
101
102	for_each_possible_cpu(cpu) {
103		const u32 *rate;
104		int len;
105
106		/* too early to use cpu->of_node */
107		cn = of_get_cpu_node(cpu, NULL);
108		if (!cn) {
109			pr_err("missing device node for CPU %d\n", cpu);
110			continue;
111		}
112
113		for (cpu_eff = table_efficiency; cpu_eff->compatible; cpu_eff++)
114			if (of_device_is_compatible(cn, cpu_eff->compatible))
115				break;
116
117		if (cpu_eff->compatible == NULL)
118			continue;
119
120		rate = of_get_property(cn, "clock-frequency", &len);
121		if (!rate || len != 4) {
122			pr_err("%s missing clock-frequency property\n",
123				cn->full_name);
124			continue;
125		}
126
127		capacity = ((be32_to_cpup(rate)) >> 20) * cpu_eff->efficiency;
128
129		/* Save min capacity of the system */
130		if (capacity < min_capacity)
131			min_capacity = capacity;
132
133		/* Save max capacity of the system */
134		if (capacity > max_capacity)
135			max_capacity = capacity;
136
137		cpu_capacity(cpu) = capacity;
138	}
139
140	/* If min and max capacities are equals, we bypass the update of the
141	 * cpu_scale because all CPUs have the same capacity. Otherwise, we
142	 * compute a middle_capacity factor that will ensure that the capacity
143	 * of an 'average' CPU of the system will be as close as possible to
144	 * SCHED_CAPACITY_SCALE, which is the default value, but with the
145	 * constraint explained near table_efficiency[].
146	 */
147	if (4*max_capacity < (3*(max_capacity + min_capacity)))
148		middle_capacity = (min_capacity + max_capacity)
149				>> (SCHED_CAPACITY_SHIFT+1);
150	else
151		middle_capacity = ((max_capacity / 3)
152				>> (SCHED_CAPACITY_SHIFT-1)) + 1;
153
154}
155
156/*
157 * Look for a customed capacity of a CPU in the cpu_capacity table during the
158 * boot. The update of all CPUs is in O(n^2) for heteregeneous system but the
159 * function returns directly for SMP system.
160 */
161static void update_cpu_capacity(unsigned int cpu)
162{
163	if (!cpu_capacity(cpu))
164		return;
165
166	set_capacity_scale(cpu, cpu_capacity(cpu) / middle_capacity);
 
167
168	pr_info("CPU%u: update cpu_capacity %lu\n",
169		cpu, arch_scale_cpu_capacity(NULL, cpu));
170}
171
172#else
173static inline void parse_dt_topology(void) {}
174static inline void update_cpu_capacity(unsigned int cpuid) {}
175#endif
176
177 /*
178 * cpu topology table
179 */
180struct cputopo_arm cpu_topology[NR_CPUS];
181EXPORT_SYMBOL_GPL(cpu_topology);
182
183const struct cpumask *cpu_coregroup_mask(int cpu)
184{
185	return &cpu_topology[cpu].core_sibling;
186}
187
188/*
189 * The current assumption is that we can power gate each core independently.
190 * This will be superseded by DT binding once available.
191 */
192const struct cpumask *cpu_corepower_mask(int cpu)
193{
194	return &cpu_topology[cpu].thread_sibling;
195}
196
197static void update_siblings_masks(unsigned int cpuid)
198{
199	struct cputopo_arm *cpu_topo, *cpuid_topo = &cpu_topology[cpuid];
200	int cpu;
201
202	/* update core and thread sibling masks */
203	for_each_possible_cpu(cpu) {
204		cpu_topo = &cpu_topology[cpu];
205
206		if (cpuid_topo->socket_id != cpu_topo->socket_id)
207			continue;
208
209		cpumask_set_cpu(cpuid, &cpu_topo->core_sibling);
210		if (cpu != cpuid)
211			cpumask_set_cpu(cpu, &cpuid_topo->core_sibling);
212
213		if (cpuid_topo->core_id != cpu_topo->core_id)
214			continue;
215
216		cpumask_set_cpu(cpuid, &cpu_topo->thread_sibling);
217		if (cpu != cpuid)
218			cpumask_set_cpu(cpu, &cpuid_topo->thread_sibling);
219	}
220	smp_wmb();
221}
222
223/*
224 * store_cpu_topology is called at boot when only one cpu is running
225 * and with the mutex cpu_hotplug.lock locked, when several cpus have booted,
226 * which prevents simultaneous write access to cpu_topology array
227 */
228void store_cpu_topology(unsigned int cpuid)
229{
230	struct cputopo_arm *cpuid_topo = &cpu_topology[cpuid];
231	unsigned int mpidr;
 
232
233	/* If the cpu topology has been already set, just return */
234	if (cpuid_topo->core_id != -1)
235		return;
236
237	mpidr = read_cpuid_mpidr();
238
239	/* create cpu topology mapping */
240	if ((mpidr & MPIDR_SMP_BITMASK) == MPIDR_SMP_VALUE) {
241		/*
242		 * This is a multiprocessor system
243		 * multiprocessor format & multiprocessor mode field are set
244		 */
245
246		if (mpidr & MPIDR_MT_BITMASK) {
247			/* core performance interdependency */
248			cpuid_topo->thread_id = MPIDR_AFFINITY_LEVEL(mpidr, 0);
249			cpuid_topo->core_id = MPIDR_AFFINITY_LEVEL(mpidr, 1);
250			cpuid_topo->socket_id = MPIDR_AFFINITY_LEVEL(mpidr, 2);
 
 
 
251		} else {
252			/* largely independent cores */
253			cpuid_topo->thread_id = -1;
254			cpuid_topo->core_id = MPIDR_AFFINITY_LEVEL(mpidr, 0);
255			cpuid_topo->socket_id = MPIDR_AFFINITY_LEVEL(mpidr, 1);
 
 
256		}
257	} else {
258		/*
259		 * This is an uniprocessor system
260		 * we are in multiprocessor format but uniprocessor system
261		 * or in the old uniprocessor format
262		 */
263		cpuid_topo->thread_id = -1;
264		cpuid_topo->core_id = 0;
265		cpuid_topo->socket_id = -1;
266	}
267
268	update_siblings_masks(cpuid);
 
 
269
270	update_cpu_capacity(cpuid);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
271
272	pr_info("CPU%u: thread %d, cpu %d, socket %d, mpidr %x\n",
273		cpuid, cpu_topology[cpuid].thread_id,
274		cpu_topology[cpuid].core_id,
275		cpu_topology[cpuid].socket_id, mpidr);
276}
277
278static inline int cpu_corepower_flags(void)
279{
280	return SD_SHARE_PKG_RESOURCES  | SD_SHARE_POWERDOMAIN;
281}
282
283static struct sched_domain_topology_level arm_topology[] = {
284#ifdef CONFIG_SCHED_MC
285	{ cpu_corepower_mask, cpu_corepower_flags, SD_INIT_NAME(GMC) },
286	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
287#endif
288	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
289	{ NULL, },
290};
291
292/*
293 * init_cpu_topology is called at boot when only one cpu is running
294 * which prevent simultaneous write access to cpu_topology array
295 */
296void __init init_cpu_topology(void)
297{
298	unsigned int cpu;
299
300	/* init core mask and capacity */
301	for_each_possible_cpu(cpu) {
302		struct cputopo_arm *cpu_topo = &(cpu_topology[cpu]);
303
304		cpu_topo->thread_id = -1;
305		cpu_topo->core_id =  -1;
306		cpu_topo->socket_id = -1;
307		cpumask_clear(&cpu_topo->core_sibling);
308		cpumask_clear(&cpu_topo->thread_sibling);
309	}
310	smp_wmb();
311
312	parse_dt_topology();
313
314	/* Set scheduler topology descriptor */
315	set_sched_topology(arm_topology);
316}
v3.5.6
  1/*
  2 * arch/arm/kernel/topology.c
  3 *
  4 * Copyright (C) 2011 Linaro Limited.
  5 * Written by: Vincent Guittot
  6 *
  7 * based on arch/sh/kernel/topology.c
  8 *
  9 * This file is subject to the terms and conditions of the GNU General Public
 10 * License.  See the file "COPYING" in the main directory of this archive
 11 * for more details.
 12 */
 13
 14#include <linux/cpu.h>
 15#include <linux/cpumask.h>
 
 16#include <linux/init.h>
 17#include <linux/percpu.h>
 18#include <linux/node.h>
 19#include <linux/nodemask.h>
 
 20#include <linux/sched.h>
 
 21
 22#include <asm/cputype.h>
 23#include <asm/topology.h>
 24
 25#define MPIDR_SMP_BITMASK (0x3 << 30)
 26#define MPIDR_SMP_VALUE (0x2 << 30)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 27
 28#define MPIDR_MT_BITMASK (0x1 << 24)
 29
 30/*
 31 * These masks reflect the current use of the affinity levels.
 32 * The affinity level can be up to 16 bits according to ARM ARM
 
 33 */
 
 
 
 
 34
 35#define MPIDR_LEVEL0_MASK 0x3
 36#define MPIDR_LEVEL0_SHIFT 0
 37
 38#define MPIDR_LEVEL1_MASK 0xF
 39#define MPIDR_LEVEL1_SHIFT 8
 
 40
 41#define MPIDR_LEVEL2_MASK 0xFF
 42#define MPIDR_LEVEL2_SHIFT 16
 
 
 43
 
 
 
 44struct cputopo_arm cpu_topology[NR_CPUS];
 
 45
 46const struct cpumask *cpu_coregroup_mask(int cpu)
 47{
 48	return &cpu_topology[cpu].core_sibling;
 49}
 50
 51/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 52 * store_cpu_topology is called at boot when only one cpu is running
 53 * and with the mutex cpu_hotplug.lock locked, when several cpus have booted,
 54 * which prevents simultaneous write access to cpu_topology array
 55 */
 56void store_cpu_topology(unsigned int cpuid)
 57{
 58	struct cputopo_arm *cpuid_topo = &cpu_topology[cpuid];
 59	unsigned int mpidr;
 60	unsigned int cpu;
 61
 62	/* If the cpu topology has been already set, just return */
 63	if (cpuid_topo->core_id != -1)
 64		return;
 65
 66	mpidr = read_cpuid_mpidr();
 67
 68	/* create cpu topology mapping */
 69	if ((mpidr & MPIDR_SMP_BITMASK) == MPIDR_SMP_VALUE) {
 70		/*
 71		 * This is a multiprocessor system
 72		 * multiprocessor format & multiprocessor mode field are set
 73		 */
 74
 75		if (mpidr & MPIDR_MT_BITMASK) {
 76			/* core performance interdependency */
 77			cpuid_topo->thread_id = (mpidr >> MPIDR_LEVEL0_SHIFT)
 78				& MPIDR_LEVEL0_MASK;
 79			cpuid_topo->core_id = (mpidr >> MPIDR_LEVEL1_SHIFT)
 80				& MPIDR_LEVEL1_MASK;
 81			cpuid_topo->socket_id = (mpidr >> MPIDR_LEVEL2_SHIFT)
 82				& MPIDR_LEVEL2_MASK;
 83		} else {
 84			/* largely independent cores */
 85			cpuid_topo->thread_id = -1;
 86			cpuid_topo->core_id = (mpidr >> MPIDR_LEVEL0_SHIFT)
 87				& MPIDR_LEVEL0_MASK;
 88			cpuid_topo->socket_id = (mpidr >> MPIDR_LEVEL1_SHIFT)
 89				& MPIDR_LEVEL1_MASK;
 90		}
 91	} else {
 92		/*
 93		 * This is an uniprocessor system
 94		 * we are in multiprocessor format but uniprocessor system
 95		 * or in the old uniprocessor format
 96		 */
 97		cpuid_topo->thread_id = -1;
 98		cpuid_topo->core_id = 0;
 99		cpuid_topo->socket_id = -1;
100	}
101
102	/* update core and thread sibling masks */
103	for_each_possible_cpu(cpu) {
104		struct cputopo_arm *cpu_topo = &cpu_topology[cpu];
105
106		if (cpuid_topo->socket_id == cpu_topo->socket_id) {
107			cpumask_set_cpu(cpuid, &cpu_topo->core_sibling);
108			if (cpu != cpuid)
109				cpumask_set_cpu(cpu,
110					&cpuid_topo->core_sibling);
111
112			if (cpuid_topo->core_id == cpu_topo->core_id) {
113				cpumask_set_cpu(cpuid,
114					&cpu_topo->thread_sibling);
115				if (cpu != cpuid)
116					cpumask_set_cpu(cpu,
117						&cpuid_topo->thread_sibling);
118			}
119		}
120	}
121	smp_wmb();
122
123	printk(KERN_INFO "CPU%u: thread %d, cpu %d, socket %d, mpidr %x\n",
124		cpuid, cpu_topology[cpuid].thread_id,
125		cpu_topology[cpuid].core_id,
126		cpu_topology[cpuid].socket_id, mpidr);
127}
128
 
 
 
 
 
 
 
 
 
 
 
 
 
 
129/*
130 * init_cpu_topology is called at boot when only one cpu is running
131 * which prevent simultaneous write access to cpu_topology array
132 */
133void init_cpu_topology(void)
134{
135	unsigned int cpu;
136
137	/* init core mask */
138	for_each_possible_cpu(cpu) {
139		struct cputopo_arm *cpu_topo = &(cpu_topology[cpu]);
140
141		cpu_topo->thread_id = -1;
142		cpu_topo->core_id =  -1;
143		cpu_topo->socket_id = -1;
144		cpumask_clear(&cpu_topo->core_sibling);
145		cpumask_clear(&cpu_topo->thread_sibling);
146	}
147	smp_wmb();
 
 
 
 
 
148}