Linux Audio

Check our new training course

Loading...
v4.6
 
   1/*
 
   2 * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved.
   3 *
   4 * This software is available to you under a choice of one of two
   5 * licenses.  You may choose to be licensed under the terms of the GNU
   6 * General Public License (GPL) Version 2, available from the file
   7 * COPYING in the main directory of this source tree, or the BSD-type
   8 * license below:
   9 *
  10 * Redistribution and use in source and binary forms, with or without
  11 * modification, are permitted provided that the following conditions
  12 * are met:
  13 *
  14 *      Redistributions of source code must retain the above copyright
  15 *      notice, this list of conditions and the following disclaimer.
  16 *
  17 *      Redistributions in binary form must reproduce the above
  18 *      copyright notice, this list of conditions and the following
  19 *      disclaimer in the documentation and/or other materials provided
  20 *      with the distribution.
  21 *
  22 *      Neither the name of the Network Appliance, Inc. nor the names of
  23 *      its contributors may be used to endorse or promote products
  24 *      derived from this software without specific prior written
  25 *      permission.
  26 *
  27 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  28 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  29 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  30 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  31 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  32 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  33 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  34 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  35 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  36 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  37 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  38 */
  39
  40/*
  41 * rpc_rdma.c
  42 *
  43 * This file contains the guts of the RPC RDMA protocol, and
  44 * does marshaling/unmarshaling, etc. It is also where interfacing
  45 * to the Linux RPC framework lives.
  46 */
  47
  48#include "xprt_rdma.h"
  49
  50#include <linux/highmem.h>
  51
 
 
 
 
 
  52#if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
  53# define RPCDBG_FACILITY	RPCDBG_TRANS
  54#endif
  55
  56enum rpcrdma_chunktype {
  57	rpcrdma_noch = 0,
  58	rpcrdma_readch,
  59	rpcrdma_areadch,
  60	rpcrdma_writech,
  61	rpcrdma_replych
  62};
 
  63
  64#if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
  65static const char transfertypes[][12] = {
  66	"pure inline",	/* no chunks */
  67	" read chunk",	/* some argument via rdma read */
  68	"*read chunk",	/* entire request via rdma read */
  69	"write chunk",	/* some result via rdma write */
  70	"reply chunk"	/* entire reply via rdma write */
  71};
  72#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  73
  74/* The client can send a request inline as long as the RPCRDMA header
  75 * plus the RPC call fit under the transport's inline limit. If the
  76 * combined call message size exceeds that limit, the client must use
  77 * the read chunk list for this operation.
 
 
 
  78 */
  79static bool rpcrdma_args_inline(struct rpc_rqst *rqst)
 
  80{
  81	unsigned int callsize = RPCRDMA_HDRLEN_MIN + rqst->rq_snd_buf.len;
 
 
  82
  83	return callsize <= RPCRDMA_INLINE_WRITE_THRESHOLD(rqst);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  84}
  85
  86/* The client can't know how large the actual reply will be. Thus it
  87 * plans for the largest possible reply for that particular ULP
  88 * operation. If the maximum combined reply message size exceeds that
  89 * limit, the client must provide a write list or a reply chunk for
  90 * this request.
  91 */
  92static bool rpcrdma_results_inline(struct rpc_rqst *rqst)
 
  93{
  94	unsigned int repsize = RPCRDMA_HDRLEN_MIN + rqst->rq_rcv_buf.buflen;
  95
  96	return repsize <= RPCRDMA_INLINE_READ_THRESHOLD(rqst);
  97}
  98
  99static int
 100rpcrdma_tail_pullup(struct xdr_buf *buf)
 
 
 
 
 
 101{
 102	size_t tlen = buf->tail[0].iov_len;
 103	size_t skip = tlen & 3;
 104
 105	/* Do not include the tail if it is only an XDR pad */
 106	if (tlen < 4)
 107		return 0;
 108
 109	/* xdr_write_pages() adds a pad at the beginning of the tail
 110	 * if the content in "buf->pages" is unaligned. Force the
 111	 * tail's actual content to land at the next XDR position
 112	 * after the head instead.
 113	 */
 114	if (skip) {
 115		unsigned char *src, *dst;
 116		unsigned int count;
 117
 118		src = buf->tail[0].iov_base;
 119		dst = buf->head[0].iov_base;
 120		dst += buf->head[0].iov_len;
 121
 122		src += skip;
 123		tlen -= skip;
 124
 125		dprintk("RPC:       %s: skip=%zu, memmove(%p, %p, %zu)\n",
 126			__func__, skip, dst, src, tlen);
 127
 128		for (count = tlen; count; count--)
 129			*dst++ = *src++;
 130	}
 131
 132	return tlen;
 133}
 134
 135/* Split "vec" on page boundaries into segments. FMR registers pages,
 136 * not a byte range. Other modes coalesce these segments into a single
 137 * MR when they can.
 
 
 
 138 */
 139static int
 140rpcrdma_convert_kvec(struct kvec *vec, struct rpcrdma_mr_seg *seg,
 141		     int n, int nsegs)
 142{
 143	size_t page_offset;
 144	u32 remaining;
 145	char *base;
 146
 147	base = vec->iov_base;
 148	page_offset = offset_in_page(base);
 149	remaining = vec->iov_len;
 150	while (remaining && n < nsegs) {
 151		seg[n].mr_page = NULL;
 152		seg[n].mr_offset = base;
 153		seg[n].mr_len = min_t(u32, PAGE_SIZE - page_offset, remaining);
 154		remaining -= seg[n].mr_len;
 155		base += seg[n].mr_len;
 156		++n;
 
 157		page_offset = 0;
 158	}
 159	return n;
 160}
 161
 162/*
 163 * Chunk assembly from upper layer xdr_buf.
 
 164 *
 165 * Prepare the passed-in xdr_buf into representation as RPC/RDMA chunk
 166 * elements. Segments are then coalesced when registered, if possible
 167 * within the selected memreg mode.
 168 *
 169 * Returns positive number of segments converted, or a negative errno.
 170 */
 171
 172static int
 173rpcrdma_convert_iovs(struct xdr_buf *xdrbuf, unsigned int pos,
 174	enum rpcrdma_chunktype type, struct rpcrdma_mr_seg *seg, int nsegs)
 
 175{
 176	int len, n = 0, p;
 177	int page_base;
 178	struct page **ppages;
 179
 180	if (pos == 0) {
 181		n = rpcrdma_convert_kvec(&xdrbuf->head[0], seg, n, nsegs);
 182		if (n == nsegs)
 183			return -EIO;
 184	}
 185
 186	len = xdrbuf->page_len;
 187	ppages = xdrbuf->pages + (xdrbuf->page_base >> PAGE_SHIFT);
 188	page_base = xdrbuf->page_base & ~PAGE_MASK;
 189	p = 0;
 190	while (len && n < nsegs) {
 191		if (!ppages[p]) {
 192			/* alloc the pagelist for receiving buffer */
 193			ppages[p] = alloc_page(GFP_ATOMIC);
 194			if (!ppages[p])
 195				return -ENOMEM;
 
 
 196		}
 197		seg[n].mr_page = ppages[p];
 198		seg[n].mr_offset = (void *)(unsigned long) page_base;
 199		seg[n].mr_len = min_t(u32, PAGE_SIZE - page_base, len);
 200		if (seg[n].mr_len > PAGE_SIZE)
 201			return -EIO;
 202		len -= seg[n].mr_len;
 203		++n;
 204		++p;
 205		page_base = 0;	/* page offset only applies to first page */
 206	}
 207
 208	/* Message overflows the seg array */
 209	if (len && n == nsegs)
 210		return -EIO;
 
 
 211
 212	/* When encoding the read list, the tail is always sent inline */
 213	if (type == rpcrdma_readch)
 214		return n;
 
 
 
 
 215
 216	if (xdrbuf->tail[0].iov_len) {
 217		/* the rpcrdma protocol allows us to omit any trailing
 218		 * xdr pad bytes, saving the server an RDMA operation. */
 219		if (xdrbuf->tail[0].iov_len < 4 && xprt_rdma_pad_optimize)
 220			return n;
 221		n = rpcrdma_convert_kvec(&xdrbuf->tail[0], seg, n, nsegs);
 222		if (n == nsegs)
 223			return -EIO;
 224	}
 225
 
 
 
 226	return n;
 227}
 228
 229/*
 230 * Create read/write chunk lists, and reply chunks, for RDMA
 231 *
 232 *   Assume check against THRESHOLD has been done, and chunks are required.
 233 *   Assume only encoding one list entry for read|write chunks. The NFSv3
 234 *     protocol is simple enough to allow this as it only has a single "bulk
 235 *     result" in each procedure - complicated NFSv4 COMPOUNDs are not. (The
 236 *     RDMA/Sessions NFSv4 proposal addresses this for future v4 revs.)
 237 *
 238 * When used for a single reply chunk (which is a special write
 239 * chunk used for the entire reply, rather than just the data), it
 240 * is used primarily for READDIR and READLINK which would otherwise
 241 * be severely size-limited by a small rdma inline read max. The server
 242 * response will come back as an RDMA Write, followed by a message
 243 * of type RDMA_NOMSG carrying the xid and length. As a result, reply
 244 * chunks do not provide data alignment, however they do not require
 245 * "fixup" (moving the response to the upper layer buffer) either.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 246 *
 247 * Encoding key for single-list chunks (HLOO = Handle32 Length32 Offset64):
 248 *
 249 *  Read chunklist (a linked list):
 250 *   N elements, position P (same P for all chunks of same arg!):
 251 *    1 - PHLOO - 1 - PHLOO - ... - 1 - PHLOO - 0
 252 *
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 253 *  Write chunklist (a list of (one) counted array):
 254 *   N elements:
 255 *    1 - N - HLOO - HLOO - ... - HLOO - 0
 256 *
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 257 *  Reply chunk (a counted array):
 258 *   N elements:
 259 *    1 - N - HLOO - HLOO - ... - HLOO
 260 *
 261 * Returns positive RPC/RDMA header size, or negative errno.
 
 262 */
 263
 264static ssize_t
 265rpcrdma_create_chunks(struct rpc_rqst *rqst, struct xdr_buf *target,
 266		struct rpcrdma_msg *headerp, enum rpcrdma_chunktype type)
 267{
 268	struct rpcrdma_req *req = rpcr_to_rdmar(rqst);
 269	struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(rqst->rq_xprt);
 270	int n, nsegs, nchunks = 0;
 271	unsigned int pos;
 272	struct rpcrdma_mr_seg *seg = req->rl_segments;
 273	struct rpcrdma_read_chunk *cur_rchunk = NULL;
 274	struct rpcrdma_write_array *warray = NULL;
 275	struct rpcrdma_write_chunk *cur_wchunk = NULL;
 276	__be32 *iptr = headerp->rm_body.rm_chunks;
 277	int (*map)(struct rpcrdma_xprt *, struct rpcrdma_mr_seg *, int, bool);
 278
 279	if (type == rpcrdma_readch || type == rpcrdma_areadch) {
 280		/* a read chunk - server will RDMA Read our memory */
 281		cur_rchunk = (struct rpcrdma_read_chunk *) iptr;
 282	} else {
 283		/* a write or reply chunk - server will RDMA Write our memory */
 284		*iptr++ = xdr_zero;	/* encode a NULL read chunk list */
 285		if (type == rpcrdma_replych)
 286			*iptr++ = xdr_zero;	/* a NULL write chunk list */
 287		warray = (struct rpcrdma_write_array *) iptr;
 288		cur_wchunk = (struct rpcrdma_write_chunk *) (warray + 1);
 289	}
 290
 291	if (type == rpcrdma_replych || type == rpcrdma_areadch)
 292		pos = 0;
 293	else
 294		pos = target->head[0].iov_len;
 295
 296	nsegs = rpcrdma_convert_iovs(target, pos, type, seg, RPCRDMA_MAX_SEGS);
 297	if (nsegs < 0)
 298		return nsegs;
 299
 300	map = r_xprt->rx_ia.ri_ops->ro_map;
 
 
 
 
 
 
 
 301	do {
 302		n = map(r_xprt, seg, nsegs, cur_wchunk != NULL);
 303		if (n <= 0)
 304			goto out;
 305		if (cur_rchunk) {	/* read */
 306			cur_rchunk->rc_discrim = xdr_one;
 307			/* all read chunks have the same "position" */
 308			cur_rchunk->rc_position = cpu_to_be32(pos);
 309			cur_rchunk->rc_target.rs_handle =
 310						cpu_to_be32(seg->mr_rkey);
 311			cur_rchunk->rc_target.rs_length =
 312						cpu_to_be32(seg->mr_len);
 313			xdr_encode_hyper(
 314					(__be32 *)&cur_rchunk->rc_target.rs_offset,
 315					seg->mr_base);
 316			dprintk("RPC:       %s: read chunk "
 317				"elem %d@0x%llx:0x%x pos %u (%s)\n", __func__,
 318				seg->mr_len, (unsigned long long)seg->mr_base,
 319				seg->mr_rkey, pos, n < nsegs ? "more" : "last");
 320			cur_rchunk++;
 321			r_xprt->rx_stats.read_chunk_count++;
 322		} else {		/* write/reply */
 323			cur_wchunk->wc_target.rs_handle =
 324						cpu_to_be32(seg->mr_rkey);
 325			cur_wchunk->wc_target.rs_length =
 326						cpu_to_be32(seg->mr_len);
 327			xdr_encode_hyper(
 328					(__be32 *)&cur_wchunk->wc_target.rs_offset,
 329					seg->mr_base);
 330			dprintk("RPC:       %s: %s chunk "
 331				"elem %d@0x%llx:0x%x (%s)\n", __func__,
 332				(type == rpcrdma_replych) ? "reply" : "write",
 333				seg->mr_len, (unsigned long long)seg->mr_base,
 334				seg->mr_rkey, n < nsegs ? "more" : "last");
 335			cur_wchunk++;
 336			if (type == rpcrdma_replych)
 337				r_xprt->rx_stats.reply_chunk_count++;
 338			else
 339				r_xprt->rx_stats.write_chunk_count++;
 340			r_xprt->rx_stats.total_rdma_request += seg->mr_len;
 341		}
 342		nchunks++;
 343		seg   += n;
 344		nsegs -= n;
 345	} while (nsegs);
 346
 347	/* success. all failures return above */
 348	req->rl_nchunks = nchunks;
 349
 350	/*
 351	 * finish off header. If write, marshal discrim and nchunks.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 352	 */
 353	if (cur_rchunk) {
 354		iptr = (__be32 *) cur_rchunk;
 355		*iptr++ = xdr_zero;	/* finish the read chunk list */
 356		*iptr++ = xdr_zero;	/* encode a NULL write chunk list */
 357		*iptr++ = xdr_zero;	/* encode a NULL reply chunk */
 358	} else {
 359		warray->wc_discrim = xdr_one;
 360		warray->wc_nchunks = cpu_to_be32(nchunks);
 361		iptr = (__be32 *) cur_wchunk;
 362		if (type == rpcrdma_writech) {
 363			*iptr++ = xdr_zero; /* finish the write chunk list */
 364			*iptr++ = xdr_zero; /* encode a NULL reply chunk */
 365		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 366	}
 367
 368	/*
 369	 * Return header size.
 370	 */
 371	return (unsigned char *)iptr - (unsigned char *)headerp;
 372
 373out:
 374	for (pos = 0; nchunks--;)
 375		pos += r_xprt->rx_ia.ri_ops->ro_unmap(r_xprt,
 376						      &req->rl_segments[pos]);
 377	return n;
 378}
 379
 380/*
 381 * Copy write data inline.
 382 * This function is used for "small" requests. Data which is passed
 383 * to RPC via iovecs (or page list) is copied directly into the
 384 * pre-registered memory buffer for this request. For small amounts
 385 * of data, this is efficient. The cutoff value is tunable.
 386 */
 387static void rpcrdma_inline_pullup(struct rpc_rqst *rqst)
 
 
 388{
 389	int i, npages, curlen;
 390	int copy_len;
 391	unsigned char *srcp, *destp;
 392	struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(rqst->rq_xprt);
 393	int page_base;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 394	struct page **ppages;
 
 395
 396	destp = rqst->rq_svec[0].iov_base;
 397	curlen = rqst->rq_svec[0].iov_len;
 398	destp += curlen;
 399
 400	dprintk("RPC:       %s: destp 0x%p len %d hdrlen %d\n",
 401		__func__, destp, rqst->rq_slen, curlen);
 402
 403	copy_len = rqst->rq_snd_buf.page_len;
 404
 405	if (rqst->rq_snd_buf.tail[0].iov_len) {
 406		curlen = rqst->rq_snd_buf.tail[0].iov_len;
 407		if (destp + copy_len != rqst->rq_snd_buf.tail[0].iov_base) {
 408			memmove(destp + copy_len,
 409				rqst->rq_snd_buf.tail[0].iov_base, curlen);
 410			r_xprt->rx_stats.pullup_copy_count += curlen;
 411		}
 412		dprintk("RPC:       %s: tail destp 0x%p len %d\n",
 413			__func__, destp + copy_len, curlen);
 414		rqst->rq_svec[0].iov_len += curlen;
 415	}
 416	r_xprt->rx_stats.pullup_copy_count += copy_len;
 417
 418	page_base = rqst->rq_snd_buf.page_base;
 419	ppages = rqst->rq_snd_buf.pages + (page_base >> PAGE_SHIFT);
 420	page_base &= ~PAGE_MASK;
 421	npages = PAGE_ALIGN(page_base+copy_len) >> PAGE_SHIFT;
 422	for (i = 0; copy_len && i < npages; i++) {
 423		curlen = PAGE_SIZE - page_base;
 424		if (curlen > copy_len)
 425			curlen = copy_len;
 426		dprintk("RPC:       %s: page %d destp 0x%p len %d curlen %d\n",
 427			__func__, i, destp, copy_len, curlen);
 428		srcp = kmap_atomic(ppages[i]);
 429		memcpy(destp, srcp+page_base, curlen);
 430		kunmap_atomic(srcp);
 431		rqst->rq_svec[0].iov_len += curlen;
 432		destp += curlen;
 433		copy_len -= curlen;
 434		page_base = 0;
 435	}
 436	/* header now contains entire send message */
 437}
 438
 439/*
 440 * Marshal a request: the primary job of this routine is to choose
 441 * the transfer modes. See comments below.
 
 442 *
 443 * Uses multiple RDMA IOVs for a request:
 444 *  [0] -- RPC RDMA header, which uses memory from the *start* of the
 445 *         preregistered buffer that already holds the RPC data in
 446 *         its middle.
 447 *  [1] -- the RPC header/data, marshaled by RPC and the NFS protocol.
 448 *  [2] -- optional padding.
 449 *  [3] -- if padded, header only in [1] and data here.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 450 *
 451 * Returns zero on success, otherwise a negative errno.
 452 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 453
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 454int
 455rpcrdma_marshal_req(struct rpc_rqst *rqst)
 456{
 457	struct rpc_xprt *xprt = rqst->rq_xprt;
 458	struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
 459	struct rpcrdma_req *req = rpcr_to_rdmar(rqst);
 460	char *base;
 461	size_t rpclen;
 462	ssize_t hdrlen;
 463	enum rpcrdma_chunktype rtype, wtype;
 464	struct rpcrdma_msg *headerp;
 465
 466#if defined(CONFIG_SUNRPC_BACKCHANNEL)
 467	if (test_bit(RPC_BC_PA_IN_USE, &rqst->rq_bc_pa_state))
 468		return rpcrdma_bc_marshal_reply(rqst);
 469#endif
 470
 471	/*
 472	 * rpclen gets amount of data in first buffer, which is the
 473	 * pre-registered buffer.
 
 
 
 
 
 
 
 
 
 
 
 474	 */
 475	base = rqst->rq_svec[0].iov_base;
 476	rpclen = rqst->rq_svec[0].iov_len;
 477
 478	headerp = rdmab_to_msg(req->rl_rdmabuf);
 479	/* don't byte-swap XID, it's already done in request */
 480	headerp->rm_xid = rqst->rq_xid;
 481	headerp->rm_vers = rpcrdma_version;
 482	headerp->rm_credit = cpu_to_be32(r_xprt->rx_buf.rb_max_requests);
 483	headerp->rm_type = rdma_msg;
 484
 485	/*
 486	 * Chunks needed for results?
 487	 *
 488	 * o Read ops return data as write chunk(s), header as inline.
 489	 * o If the expected result is under the inline threshold, all ops
 490	 *   return as inline.
 
 
 491	 * o Large non-read ops return as a single reply chunk.
 492	 */
 493	if (rqst->rq_rcv_buf.flags & XDRBUF_READ)
 494		wtype = rpcrdma_writech;
 495	else if (rpcrdma_results_inline(rqst))
 496		wtype = rpcrdma_noch;
 
 
 
 497	else
 498		wtype = rpcrdma_replych;
 499
 500	/*
 501	 * Chunks needed for arguments?
 502	 *
 503	 * o If the total request is under the inline threshold, all ops
 504	 *   are sent as inline.
 505	 * o Large write ops transmit data as read chunk(s), header as
 506	 *   inline.
 507	 * o Large non-write ops are sent with the entire message as a
 508	 *   single read chunk (protocol 0-position special case).
 509	 *
 510	 * This assumes that the upper layer does not present a request
 511	 * that both has a data payload, and whose non-data arguments
 512	 * by themselves are larger than the inline threshold.
 513	 */
 514	if (rpcrdma_args_inline(rqst)) {
 515		rtype = rpcrdma_noch;
 516	} else if (rqst->rq_snd_buf.flags & XDRBUF_WRITE) {
 
 
 
 517		rtype = rpcrdma_readch;
 518	} else {
 519		r_xprt->rx_stats.nomsg_call_count++;
 520		headerp->rm_type = htonl(RDMA_NOMSG);
 521		rtype = rpcrdma_areadch;
 522		rpclen = 0;
 523	}
 524
 525	/* The following simplification is not true forever */
 526	if (rtype != rpcrdma_noch && wtype == rpcrdma_replych)
 527		wtype = rpcrdma_noch;
 528	if (rtype != rpcrdma_noch && wtype != rpcrdma_noch) {
 529		dprintk("RPC:       %s: cannot marshal multiple chunk lists\n",
 530			__func__);
 531		return -EIO;
 532	}
 533
 534	hdrlen = RPCRDMA_HDRLEN_MIN;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 535
 536	/*
 537	 * Pull up any extra send data into the preregistered buffer.
 538	 * When padding is in use and applies to the transfer, insert
 539	 * it and change the message type.
 540	 */
 541	if (rtype == rpcrdma_noch) {
 542
 543		rpcrdma_inline_pullup(rqst);
 544
 545		headerp->rm_body.rm_nochunks.rm_empty[0] = xdr_zero;
 546		headerp->rm_body.rm_nochunks.rm_empty[1] = xdr_zero;
 547		headerp->rm_body.rm_nochunks.rm_empty[2] = xdr_zero;
 548		/* new length after pullup */
 549		rpclen = rqst->rq_svec[0].iov_len;
 550	} else if (rtype == rpcrdma_readch)
 551		rpclen += rpcrdma_tail_pullup(&rqst->rq_snd_buf);
 552	if (rtype != rpcrdma_noch) {
 553		hdrlen = rpcrdma_create_chunks(rqst, &rqst->rq_snd_buf,
 554					       headerp, rtype);
 555		wtype = rtype;	/* simplify dprintk */
 556
 557	} else if (wtype != rpcrdma_noch) {
 558		hdrlen = rpcrdma_create_chunks(rqst, &rqst->rq_rcv_buf,
 559					       headerp, wtype);
 560	}
 561	if (hdrlen < 0)
 562		return hdrlen;
 563
 564	dprintk("RPC:       %s: %s: hdrlen %zd rpclen %zd"
 565		" headerp 0x%p base 0x%p lkey 0x%x\n",
 566		__func__, transfertypes[wtype], hdrlen, rpclen,
 567		headerp, base, rdmab_lkey(req->rl_rdmabuf));
 568
 569	/*
 570	 * initialize send_iov's - normally only two: rdma chunk header and
 571	 * single preregistered RPC header buffer, but if padding is present,
 572	 * then use a preregistered (and zeroed) pad buffer between the RPC
 573	 * header and any write data. In all non-rdma cases, any following
 574	 * data has been copied into the RPC header buffer.
 575	 */
 576	req->rl_send_iov[0].addr = rdmab_addr(req->rl_rdmabuf);
 577	req->rl_send_iov[0].length = hdrlen;
 578	req->rl_send_iov[0].lkey = rdmab_lkey(req->rl_rdmabuf);
 579
 580	req->rl_niovs = 1;
 581	if (rtype == rpcrdma_areadch)
 582		return 0;
 
 
 
 
 583
 584	req->rl_send_iov[1].addr = rdmab_addr(req->rl_sendbuf);
 585	req->rl_send_iov[1].length = rpclen;
 586	req->rl_send_iov[1].lkey = rdmab_lkey(req->rl_sendbuf);
 587
 588	req->rl_niovs = 2;
 589	return 0;
 
 590}
 591
 592/*
 593 * Chase down a received write or reply chunklist to get length
 594 * RDMA'd by server. See map at rpcrdma_create_chunks()! :-)
 
 
 
 595 */
 596static int
 597rpcrdma_count_chunks(struct rpcrdma_rep *rep, unsigned int max, int wrchunk, __be32 **iptrp)
 598{
 599	unsigned int i, total_len;
 600	struct rpcrdma_write_chunk *cur_wchunk;
 601	char *base = (char *)rdmab_to_msg(rep->rr_rdmabuf);
 602
 603	i = be32_to_cpu(**iptrp);
 604	if (i > max)
 605		return -1;
 606	cur_wchunk = (struct rpcrdma_write_chunk *) (*iptrp + 1);
 607	total_len = 0;
 608	while (i--) {
 609		struct rpcrdma_segment *seg = &cur_wchunk->wc_target;
 610		ifdebug(FACILITY) {
 611			u64 off;
 612			xdr_decode_hyper((__be32 *)&seg->rs_offset, &off);
 613			dprintk("RPC:       %s: chunk %d@0x%llx:0x%x\n",
 614				__func__,
 615				be32_to_cpu(seg->rs_length),
 616				(unsigned long long)off,
 617				be32_to_cpu(seg->rs_handle));
 618		}
 619		total_len += be32_to_cpu(seg->rs_length);
 620		++cur_wchunk;
 621	}
 622	/* check and adjust for properly terminated write chunk */
 623	if (wrchunk) {
 624		__be32 *w = (__be32 *) cur_wchunk;
 625		if (*w++ != xdr_zero)
 626			return -1;
 627		cur_wchunk = (struct rpcrdma_write_chunk *) w;
 628	}
 629	if ((char *)cur_wchunk > base + rep->rr_len)
 630		return -1;
 631
 632	*iptrp = (__be32 *) cur_wchunk;
 633	return total_len;
 
 
 634}
 635
 636/*
 637 * Scatter inline received data back into provided iov's.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 638 */
 639static void
 640rpcrdma_inline_fixup(struct rpc_rqst *rqst, char *srcp, int copy_len, int pad)
 641{
 642	int i, npages, curlen, olen;
 
 643	char *destp;
 644	struct page **ppages;
 645	int page_base;
 646
 
 
 
 
 
 
 
 
 
 647	curlen = rqst->rq_rcv_buf.head[0].iov_len;
 648	if (curlen > copy_len) {	/* write chunk header fixup */
 649		curlen = copy_len;
 650		rqst->rq_rcv_buf.head[0].iov_len = curlen;
 651	}
 652
 653	dprintk("RPC:       %s: srcp 0x%p len %d hdrlen %d\n",
 654		__func__, srcp, copy_len, curlen);
 655
 656	/* Shift pointer for first receive segment only */
 657	rqst->rq_rcv_buf.head[0].iov_base = srcp;
 658	srcp += curlen;
 659	copy_len -= curlen;
 660
 661	olen = copy_len;
 662	i = 0;
 663	rpcx_to_rdmax(rqst->rq_xprt)->rx_stats.fixup_copy_count += olen;
 664	page_base = rqst->rq_rcv_buf.page_base;
 665	ppages = rqst->rq_rcv_buf.pages + (page_base >> PAGE_SHIFT);
 666	page_base &= ~PAGE_MASK;
 667
 668	if (copy_len && rqst->rq_rcv_buf.page_len) {
 669		npages = PAGE_ALIGN(page_base +
 670			rqst->rq_rcv_buf.page_len) >> PAGE_SHIFT;
 671		for (; i < npages; i++) {
 
 
 
 
 672			curlen = PAGE_SIZE - page_base;
 673			if (curlen > copy_len)
 674				curlen = copy_len;
 675			dprintk("RPC:       %s: page %d"
 676				" srcp 0x%p len %d curlen %d\n",
 677				__func__, i, srcp, copy_len, curlen);
 678			destp = kmap_atomic(ppages[i]);
 679			memcpy(destp + page_base, srcp, curlen);
 680			flush_dcache_page(ppages[i]);
 681			kunmap_atomic(destp);
 682			srcp += curlen;
 683			copy_len -= curlen;
 684			if (copy_len == 0)
 
 
 685				break;
 686			page_base = 0;
 687		}
 688	}
 689
 690	if (copy_len && rqst->rq_rcv_buf.tail[0].iov_len) {
 691		curlen = copy_len;
 692		if (curlen > rqst->rq_rcv_buf.tail[0].iov_len)
 693			curlen = rqst->rq_rcv_buf.tail[0].iov_len;
 694		if (rqst->rq_rcv_buf.tail[0].iov_base != srcp)
 695			memmove(rqst->rq_rcv_buf.tail[0].iov_base, srcp, curlen);
 696		dprintk("RPC:       %s: tail srcp 0x%p len %d curlen %d\n",
 697			__func__, srcp, copy_len, curlen);
 698		rqst->rq_rcv_buf.tail[0].iov_len = curlen;
 699		copy_len -= curlen; ++i;
 700	} else
 701		rqst->rq_rcv_buf.tail[0].iov_len = 0;
 702
 703	if (pad) {
 704		/* implicit padding on terminal chunk */
 705		unsigned char *p = rqst->rq_rcv_buf.tail[0].iov_base;
 706		while (pad--)
 707			p[rqst->rq_rcv_buf.tail[0].iov_len++] = 0;
 708	}
 709
 710	if (copy_len)
 711		dprintk("RPC:       %s: %d bytes in"
 712			" %d extra segments (%d lost)\n",
 713			__func__, olen, i, copy_len);
 714
 715	/* TBD avoid a warning from call_decode() */
 716	rqst->rq_private_buf = rqst->rq_rcv_buf;
 717}
 718
 719void
 720rpcrdma_connect_worker(struct work_struct *work)
 721{
 722	struct rpcrdma_ep *ep =
 723		container_of(work, struct rpcrdma_ep, rep_connect_worker.work);
 724	struct rpcrdma_xprt *r_xprt =
 725		container_of(ep, struct rpcrdma_xprt, rx_ep);
 726	struct rpc_xprt *xprt = &r_xprt->rx_xprt;
 727
 728	spin_lock_bh(&xprt->transport_lock);
 729	if (++xprt->connect_cookie == 0)	/* maintain a reserved value */
 730		++xprt->connect_cookie;
 731	if (ep->rep_connected > 0) {
 732		if (!xprt_test_and_set_connected(xprt))
 733			xprt_wake_pending_tasks(xprt, 0);
 734	} else {
 735		if (xprt_test_and_clear_connected(xprt))
 736			xprt_wake_pending_tasks(xprt, -ENOTCONN);
 737	}
 738	spin_unlock_bh(&xprt->transport_lock);
 
 
 
 739}
 740
 741#if defined(CONFIG_SUNRPC_BACKCHANNEL)
 742/* By convention, backchannel calls arrive via rdma_msg type
 743 * messages, and never populate the chunk lists. This makes
 744 * the RPC/RDMA header small and fixed in size, so it is
 745 * straightforward to check the RPC header's direction field.
 746 */
 747static bool
 748rpcrdma_is_bcall(struct rpcrdma_msg *headerp)
 
 749{
 750	__be32 *p = (__be32 *)headerp;
 
 751
 752	if (headerp->rm_type != rdma_msg)
 753		return false;
 754	if (headerp->rm_body.rm_chunks[0] != xdr_zero)
 
 
 
 
 
 755		return false;
 756	if (headerp->rm_body.rm_chunks[1] != xdr_zero)
 757		return false;
 758	if (headerp->rm_body.rm_chunks[2] != xdr_zero)
 759		return false;
 760
 761	/* sanity */
 762	if (p[7] != headerp->rm_xid)
 763		return false;
 764	/* call direction */
 765	if (p[8] != cpu_to_be32(RPC_CALL))
 766		return false;
 767
 
 
 
 
 
 
 
 
 768	return true;
 
 
 
 
 
 
 
 
 769}
 770#endif	/* CONFIG_SUNRPC_BACKCHANNEL */
 771
 772/*
 773 * This function is called when an async event is posted to
 774 * the connection which changes the connection state. All it
 775 * does at this point is mark the connection up/down, the rpc
 776 * timers do the rest.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 777 */
 778void
 779rpcrdma_conn_func(struct rpcrdma_ep *ep)
 780{
 781	schedule_delayed_work(&ep->rep_connect_worker, 0);
 
 
 
 
 
 
 
 782}
 783
 784/* Process received RPC/RDMA messages.
 785 *
 786 * Errors must result in the RPC task either being awakened, or
 787 * allowed to timeout, to discover the errors at that time.
 788 */
 789void
 790rpcrdma_reply_handler(struct rpcrdma_rep *rep)
 791{
 792	struct rpcrdma_msg *headerp;
 793	struct rpcrdma_req *req;
 794	struct rpc_rqst *rqst;
 795	struct rpcrdma_xprt *r_xprt = rep->rr_rxprt;
 796	struct rpc_xprt *xprt = &r_xprt->rx_xprt;
 797	__be32 *iptr;
 798	int rdmalen, status, rmerr;
 799	unsigned long cwnd;
 800
 801	dprintk("RPC:       %s: incoming rep %p\n", __func__, rep);
 802
 803	if (rep->rr_len == RPCRDMA_BAD_LEN)
 804		goto out_badstatus;
 805	if (rep->rr_len < RPCRDMA_HDRLEN_ERR)
 806		goto out_shortreply;
 807
 808	headerp = rdmab_to_msg(rep->rr_rdmabuf);
 809#if defined(CONFIG_SUNRPC_BACKCHANNEL)
 810	if (rpcrdma_is_bcall(headerp))
 811		goto out_bcall;
 812#endif
 
 
 
 
 
 813
 814	/* Match incoming rpcrdma_rep to an rpcrdma_req to
 815	 * get context for handling any incoming chunks.
 816	 */
 817	spin_lock_bh(&xprt->transport_lock);
 818	rqst = xprt_lookup_rqst(xprt, headerp->rm_xid);
 819	if (!rqst)
 820		goto out_nomatch;
 821
 822	req = rpcr_to_rdmar(rqst);
 823	if (req->rl_reply)
 824		goto out_duplicate;
 825
 826	/* Sanity checking has passed. We are now committed
 827	 * to complete this transaction.
 828	 */
 829	list_del_init(&rqst->rq_list);
 830	spin_unlock_bh(&xprt->transport_lock);
 831	dprintk("RPC:       %s: reply %p completes request %p (xid 0x%08x)\n",
 832		__func__, rep, req, be32_to_cpu(headerp->rm_xid));
 833
 834	/* from here on, the reply is no longer an orphan */
 835	req->rl_reply = rep;
 836	xprt->reestablish_timeout = 0;
 
 
 
 837
 838	if (headerp->rm_vers != rpcrdma_version)
 839		goto out_badversion;
 
 
 
 
 
 840
 841	/* check for expected message types */
 842	/* The order of some of these tests is important. */
 843	switch (headerp->rm_type) {
 844	case rdma_msg:
 845		/* never expect read chunks */
 846		/* never expect reply chunks (two ways to check) */
 847		/* never expect write chunks without having offered RDMA */
 848		if (headerp->rm_body.rm_chunks[0] != xdr_zero ||
 849		    (headerp->rm_body.rm_chunks[1] == xdr_zero &&
 850		     headerp->rm_body.rm_chunks[2] != xdr_zero) ||
 851		    (headerp->rm_body.rm_chunks[1] != xdr_zero &&
 852		     req->rl_nchunks == 0))
 853			goto badheader;
 854		if (headerp->rm_body.rm_chunks[1] != xdr_zero) {
 855			/* count any expected write chunks in read reply */
 856			/* start at write chunk array count */
 857			iptr = &headerp->rm_body.rm_chunks[2];
 858			rdmalen = rpcrdma_count_chunks(rep,
 859						req->rl_nchunks, 1, &iptr);
 860			/* check for validity, and no reply chunk after */
 861			if (rdmalen < 0 || *iptr++ != xdr_zero)
 862				goto badheader;
 863			rep->rr_len -=
 864			    ((unsigned char *)iptr - (unsigned char *)headerp);
 865			status = rep->rr_len + rdmalen;
 866			r_xprt->rx_stats.total_rdma_reply += rdmalen;
 867			/* special case - last chunk may omit padding */
 868			if (rdmalen &= 3) {
 869				rdmalen = 4 - rdmalen;
 870				status += rdmalen;
 871			}
 872		} else {
 873			/* else ordinary inline */
 874			rdmalen = 0;
 875			iptr = (__be32 *)((unsigned char *)headerp +
 876							RPCRDMA_HDRLEN_MIN);
 877			rep->rr_len -= RPCRDMA_HDRLEN_MIN;
 878			status = rep->rr_len;
 879		}
 880		/* Fix up the rpc results for upper layer */
 881		rpcrdma_inline_fixup(rqst, (char *)iptr, rep->rr_len, rdmalen);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 882		break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 883
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 884	case rdma_nomsg:
 885		/* never expect read or write chunks, always reply chunks */
 886		if (headerp->rm_body.rm_chunks[0] != xdr_zero ||
 887		    headerp->rm_body.rm_chunks[1] != xdr_zero ||
 888		    headerp->rm_body.rm_chunks[2] != xdr_one ||
 889		    req->rl_nchunks == 0)
 890			goto badheader;
 891		iptr = (__be32 *)((unsigned char *)headerp +
 892							RPCRDMA_HDRLEN_MIN);
 893		rdmalen = rpcrdma_count_chunks(rep, req->rl_nchunks, 0, &iptr);
 894		if (rdmalen < 0)
 895			goto badheader;
 896		r_xprt->rx_stats.total_rdma_reply += rdmalen;
 897		/* Reply chunk buffer already is the reply vector - no fixup. */
 898		status = rdmalen;
 899		break;
 900
 901	case rdma_error:
 902		goto out_rdmaerr;
 903
 904badheader:
 905	default:
 906		dprintk("%s: invalid rpcrdma reply header (type %d):"
 907				" chunks[012] == %d %d %d"
 908				" expected chunks <= %d\n",
 909				__func__, be32_to_cpu(headerp->rm_type),
 910				headerp->rm_body.rm_chunks[0],
 911				headerp->rm_body.rm_chunks[1],
 912				headerp->rm_body.rm_chunks[2],
 913				req->rl_nchunks);
 914		status = -EIO;
 915		r_xprt->rx_stats.bad_reply_count++;
 916		break;
 917	}
 
 
 918
 919out:
 920	/* Invalidate and flush the data payloads before waking the
 921	 * waiting application. This guarantees the memory region is
 922	 * properly fenced from the server before the application
 923	 * accesses the data. It also ensures proper send flow
 924	 * control: waking the next RPC waits until this RPC has
 925	 * relinquished all its Send Queue entries.
 926	 */
 927	if (req->rl_nchunks)
 928		r_xprt->rx_ia.ri_ops->ro_unmap_sync(r_xprt, req);
 929
 930	spin_lock_bh(&xprt->transport_lock);
 931	cwnd = xprt->cwnd;
 932	xprt->cwnd = atomic_read(&r_xprt->rx_buf.rb_credits) << RPC_CWNDSHIFT;
 933	if (xprt->cwnd > cwnd)
 934		xprt_release_rqst_cong(rqst->rq_task);
 935
 936	xprt_complete_rqst(rqst->rq_task, status);
 937	spin_unlock_bh(&xprt->transport_lock);
 938	dprintk("RPC:       %s: xprt_complete_rqst(0x%p, 0x%p, %d)\n",
 939			__func__, xprt, rqst, status);
 940	return;
 941
 942out_badstatus:
 943	rpcrdma_recv_buffer_put(rep);
 944	if (r_xprt->rx_ep.rep_connected == 1) {
 945		r_xprt->rx_ep.rep_connected = -EIO;
 946		rpcrdma_conn_func(&r_xprt->rx_ep);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 947	}
 948	return;
 
 949
 950#if defined(CONFIG_SUNRPC_BACKCHANNEL)
 951out_bcall:
 952	rpcrdma_bc_receive_call(r_xprt, rep);
 
 
 
 
 
 
 953	return;
 954#endif
 955
 956/* If the incoming reply terminated a pending RPC, the next
 957 * RPC call will post a replacement receive buffer as it is
 958 * being marshaled.
 959 */
 960out_badversion:
 961	dprintk("RPC:       %s: invalid version %d\n",
 962		__func__, be32_to_cpu(headerp->rm_vers));
 963	status = -EIO;
 964	r_xprt->rx_stats.bad_reply_count++;
 965	goto out;
 966
 967out_rdmaerr:
 968	rmerr = be32_to_cpu(headerp->rm_body.rm_error.rm_err);
 969	switch (rmerr) {
 970	case ERR_VERS:
 971		pr_err("%s: server reports header version error (%u-%u)\n",
 972		       __func__,
 973		       be32_to_cpu(headerp->rm_body.rm_error.rm_vers_low),
 974		       be32_to_cpu(headerp->rm_body.rm_error.rm_vers_high));
 975		break;
 976	case ERR_CHUNK:
 977		pr_err("%s: server reports header decoding error\n",
 978		       __func__);
 979		break;
 980	default:
 981		pr_err("%s: server reports unknown error %d\n",
 982		       __func__, rmerr);
 983	}
 984	status = -EREMOTEIO;
 985	r_xprt->rx_stats.bad_reply_count++;
 986	goto out;
 987
 988/* If no pending RPC transaction was matched, post a replacement
 989 * receive buffer before returning.
 990 */
 991out_shortreply:
 992	dprintk("RPC:       %s: short/invalid reply\n", __func__);
 993	goto repost;
 994
 995out_nomatch:
 996	spin_unlock_bh(&xprt->transport_lock);
 997	dprintk("RPC:       %s: no match for incoming xid 0x%08x len %d\n",
 998		__func__, be32_to_cpu(headerp->rm_xid),
 999		rep->rr_len);
1000	goto repost;
1001
1002out_duplicate:
1003	spin_unlock_bh(&xprt->transport_lock);
1004	dprintk("RPC:       %s: "
1005		"duplicate reply %p to RPC request %p: xid 0x%08x\n",
1006		__func__, rep, req, be32_to_cpu(headerp->rm_xid));
1007
1008repost:
1009	r_xprt->rx_stats.bad_reply_count++;
1010	if (rpcrdma_ep_post_recv(&r_xprt->rx_ia, &r_xprt->rx_ep, rep))
1011		rpcrdma_recv_buffer_put(rep);
1012}
v5.9
   1// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
   2/*
   3 * Copyright (c) 2014-2017 Oracle.  All rights reserved.
   4 * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved.
   5 *
   6 * This software is available to you under a choice of one of two
   7 * licenses.  You may choose to be licensed under the terms of the GNU
   8 * General Public License (GPL) Version 2, available from the file
   9 * COPYING in the main directory of this source tree, or the BSD-type
  10 * license below:
  11 *
  12 * Redistribution and use in source and binary forms, with or without
  13 * modification, are permitted provided that the following conditions
  14 * are met:
  15 *
  16 *      Redistributions of source code must retain the above copyright
  17 *      notice, this list of conditions and the following disclaimer.
  18 *
  19 *      Redistributions in binary form must reproduce the above
  20 *      copyright notice, this list of conditions and the following
  21 *      disclaimer in the documentation and/or other materials provided
  22 *      with the distribution.
  23 *
  24 *      Neither the name of the Network Appliance, Inc. nor the names of
  25 *      its contributors may be used to endorse or promote products
  26 *      derived from this software without specific prior written
  27 *      permission.
  28 *
  29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  40 */
  41
  42/*
  43 * rpc_rdma.c
  44 *
  45 * This file contains the guts of the RPC RDMA protocol, and
  46 * does marshaling/unmarshaling, etc. It is also where interfacing
  47 * to the Linux RPC framework lives.
  48 */
  49
 
 
  50#include <linux/highmem.h>
  51
  52#include <linux/sunrpc/svc_rdma.h>
  53
  54#include "xprt_rdma.h"
  55#include <trace/events/rpcrdma.h>
  56
  57#if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
  58# define RPCDBG_FACILITY	RPCDBG_TRANS
  59#endif
  60
  61/* Returns size of largest RPC-over-RDMA header in a Call message
  62 *
  63 * The largest Call header contains a full-size Read list and a
  64 * minimal Reply chunk.
  65 */
  66static unsigned int rpcrdma_max_call_header_size(unsigned int maxsegs)
  67{
  68	unsigned int size;
  69
  70	/* Fixed header fields and list discriminators */
  71	size = RPCRDMA_HDRLEN_MIN;
  72
  73	/* Maximum Read list size */
  74	size += maxsegs * rpcrdma_readchunk_maxsz * sizeof(__be32);
  75
  76	/* Minimal Read chunk size */
  77	size += sizeof(__be32);	/* segment count */
  78	size += rpcrdma_segment_maxsz * sizeof(__be32);
  79	size += sizeof(__be32);	/* list discriminator */
  80
  81	return size;
  82}
  83
  84/* Returns size of largest RPC-over-RDMA header in a Reply message
  85 *
  86 * There is only one Write list or one Reply chunk per Reply
  87 * message.  The larger list is the Write list.
  88 */
  89static unsigned int rpcrdma_max_reply_header_size(unsigned int maxsegs)
  90{
  91	unsigned int size;
  92
  93	/* Fixed header fields and list discriminators */
  94	size = RPCRDMA_HDRLEN_MIN;
  95
  96	/* Maximum Write list size */
  97	size += sizeof(__be32);		/* segment count */
  98	size += maxsegs * rpcrdma_segment_maxsz * sizeof(__be32);
  99	size += sizeof(__be32);	/* list discriminator */
 100
 101	return size;
 102}
 103
 104/**
 105 * rpcrdma_set_max_header_sizes - Initialize inline payload sizes
 106 * @ep: endpoint to initialize
 107 *
 108 * The max_inline fields contain the maximum size of an RPC message
 109 * so the marshaling code doesn't have to repeat this calculation
 110 * for every RPC.
 111 */
 112void rpcrdma_set_max_header_sizes(struct rpcrdma_ep *ep)
 113{
 114	unsigned int maxsegs = ep->re_max_rdma_segs;
 115
 116	ep->re_max_inline_send =
 117		ep->re_inline_send - rpcrdma_max_call_header_size(maxsegs);
 118	ep->re_max_inline_recv =
 119		ep->re_inline_recv - rpcrdma_max_reply_header_size(maxsegs);
 120}
 121
 122/* The client can send a request inline as long as the RPCRDMA header
 123 * plus the RPC call fit under the transport's inline limit. If the
 124 * combined call message size exceeds that limit, the client must use
 125 * a Read chunk for this operation.
 126 *
 127 * A Read chunk is also required if sending the RPC call inline would
 128 * exceed this device's max_sge limit.
 129 */
 130static bool rpcrdma_args_inline(struct rpcrdma_xprt *r_xprt,
 131				struct rpc_rqst *rqst)
 132{
 133	struct xdr_buf *xdr = &rqst->rq_snd_buf;
 134	struct rpcrdma_ep *ep = r_xprt->rx_ep;
 135	unsigned int count, remaining, offset;
 136
 137	if (xdr->len > ep->re_max_inline_send)
 138		return false;
 139
 140	if (xdr->page_len) {
 141		remaining = xdr->page_len;
 142		offset = offset_in_page(xdr->page_base);
 143		count = RPCRDMA_MIN_SEND_SGES;
 144		while (remaining) {
 145			remaining -= min_t(unsigned int,
 146					   PAGE_SIZE - offset, remaining);
 147			offset = 0;
 148			if (++count > ep->re_attr.cap.max_send_sge)
 149				return false;
 150		}
 151	}
 152
 153	return true;
 154}
 155
 156/* The client can't know how large the actual reply will be. Thus it
 157 * plans for the largest possible reply for that particular ULP
 158 * operation. If the maximum combined reply message size exceeds that
 159 * limit, the client must provide a write list or a reply chunk for
 160 * this request.
 161 */
 162static bool rpcrdma_results_inline(struct rpcrdma_xprt *r_xprt,
 163				   struct rpc_rqst *rqst)
 164{
 165	return rqst->rq_rcv_buf.buflen <= r_xprt->rx_ep->re_max_inline_recv;
 
 
 166}
 167
 168/* The client is required to provide a Reply chunk if the maximum
 169 * size of the non-payload part of the RPC Reply is larger than
 170 * the inline threshold.
 171 */
 172static bool
 173rpcrdma_nonpayload_inline(const struct rpcrdma_xprt *r_xprt,
 174			  const struct rpc_rqst *rqst)
 175{
 176	const struct xdr_buf *buf = &rqst->rq_rcv_buf;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 177
 178	return (buf->head[0].iov_len + buf->tail[0].iov_len) <
 179		r_xprt->rx_ep->re_max_inline_recv;
 
 
 
 180}
 181
 182/* Split @vec on page boundaries into SGEs. FMR registers pages, not
 183 * a byte range. Other modes coalesce these SGEs into a single MR
 184 * when they can.
 185 *
 186 * Returns pointer to next available SGE, and bumps the total number
 187 * of SGEs consumed.
 188 */
 189static struct rpcrdma_mr_seg *
 190rpcrdma_convert_kvec(struct kvec *vec, struct rpcrdma_mr_seg *seg,
 191		     unsigned int *n)
 192{
 193	u32 remaining, page_offset;
 
 194	char *base;
 195
 196	base = vec->iov_base;
 197	page_offset = offset_in_page(base);
 198	remaining = vec->iov_len;
 199	while (remaining) {
 200		seg->mr_page = NULL;
 201		seg->mr_offset = base;
 202		seg->mr_len = min_t(u32, PAGE_SIZE - page_offset, remaining);
 203		remaining -= seg->mr_len;
 204		base += seg->mr_len;
 205		++seg;
 206		++(*n);
 207		page_offset = 0;
 208	}
 209	return seg;
 210}
 211
 212/* Convert @xdrbuf into SGEs no larger than a page each. As they
 213 * are registered, these SGEs are then coalesced into RDMA segments
 214 * when the selected memreg mode supports it.
 215 *
 216 * Returns positive number of SGEs consumed, or a negative errno.
 
 
 
 
 217 */
 218
 219static int
 220rpcrdma_convert_iovs(struct rpcrdma_xprt *r_xprt, struct xdr_buf *xdrbuf,
 221		     unsigned int pos, enum rpcrdma_chunktype type,
 222		     struct rpcrdma_mr_seg *seg)
 223{
 224	unsigned long page_base;
 225	unsigned int len, n;
 226	struct page **ppages;
 227
 228	n = 0;
 229	if (pos == 0)
 230		seg = rpcrdma_convert_kvec(&xdrbuf->head[0], seg, &n);
 
 
 231
 232	len = xdrbuf->page_len;
 233	ppages = xdrbuf->pages + (xdrbuf->page_base >> PAGE_SHIFT);
 234	page_base = offset_in_page(xdrbuf->page_base);
 235	while (len) {
 236		/* ACL likes to be lazy in allocating pages - ACLs
 237		 * are small by default but can get huge.
 238		 */
 239		if (unlikely(xdrbuf->flags & XDRBUF_SPARSE_PAGES)) {
 240			if (!*ppages)
 241				*ppages = alloc_page(GFP_NOWAIT | __GFP_NOWARN);
 242			if (!*ppages)
 243				return -ENOBUFS;
 244		}
 245		seg->mr_page = *ppages;
 246		seg->mr_offset = (char *)page_base;
 247		seg->mr_len = min_t(u32, PAGE_SIZE - page_base, len);
 248		len -= seg->mr_len;
 249		++ppages;
 250		++seg;
 251		++n;
 252		page_base = 0;
 
 253	}
 254
 255	/* When encoding a Read chunk, the tail iovec contains an
 256	 * XDR pad and may be omitted.
 257	 */
 258	if (type == rpcrdma_readch && r_xprt->rx_ep->re_implicit_roundup)
 259		goto out;
 260
 261	/* When encoding a Write chunk, some servers need to see an
 262	 * extra segment for non-XDR-aligned Write chunks. The upper
 263	 * layer provides space in the tail iovec that may be used
 264	 * for this purpose.
 265	 */
 266	if (type == rpcrdma_writech && r_xprt->rx_ep->re_implicit_roundup)
 267		goto out;
 268
 269	if (xdrbuf->tail[0].iov_len)
 270		seg = rpcrdma_convert_kvec(&xdrbuf->tail[0], seg, &n);
 
 
 
 
 
 
 
 271
 272out:
 273	if (unlikely(n > RPCRDMA_MAX_SEGS))
 274		return -EIO;
 275	return n;
 276}
 277
 278static int
 279encode_rdma_segment(struct xdr_stream *xdr, struct rpcrdma_mr *mr)
 280{
 281	__be32 *p;
 282
 283	p = xdr_reserve_space(xdr, 4 * sizeof(*p));
 284	if (unlikely(!p))
 285		return -EMSGSIZE;
 286
 287	xdr_encode_rdma_segment(p, mr->mr_handle, mr->mr_length, mr->mr_offset);
 288	return 0;
 289}
 290
 291static int
 292encode_read_segment(struct xdr_stream *xdr, struct rpcrdma_mr *mr,
 293		    u32 position)
 294{
 295	__be32 *p;
 296
 297	p = xdr_reserve_space(xdr, 6 * sizeof(*p));
 298	if (unlikely(!p))
 299		return -EMSGSIZE;
 300
 301	*p++ = xdr_one;			/* Item present */
 302	xdr_encode_read_segment(p, position, mr->mr_handle, mr->mr_length,
 303				mr->mr_offset);
 304	return 0;
 305}
 306
 307static struct rpcrdma_mr_seg *rpcrdma_mr_prepare(struct rpcrdma_xprt *r_xprt,
 308						 struct rpcrdma_req *req,
 309						 struct rpcrdma_mr_seg *seg,
 310						 int nsegs, bool writing,
 311						 struct rpcrdma_mr **mr)
 312{
 313	*mr = rpcrdma_mr_pop(&req->rl_free_mrs);
 314	if (!*mr) {
 315		*mr = rpcrdma_mr_get(r_xprt);
 316		if (!*mr)
 317			goto out_getmr_err;
 318		trace_xprtrdma_mr_get(req);
 319		(*mr)->mr_req = req;
 320	}
 321
 322	rpcrdma_mr_push(*mr, &req->rl_registered);
 323	return frwr_map(r_xprt, seg, nsegs, writing, req->rl_slot.rq_xid, *mr);
 324
 325out_getmr_err:
 326	trace_xprtrdma_nomrs(req);
 327	xprt_wait_for_buffer_space(&r_xprt->rx_xprt);
 328	rpcrdma_mrs_refresh(r_xprt);
 329	return ERR_PTR(-EAGAIN);
 330}
 331
 332/* Register and XDR encode the Read list. Supports encoding a list of read
 333 * segments that belong to a single read chunk.
 334 *
 335 * Encoding key for single-list chunks (HLOO = Handle32 Length32 Offset64):
 336 *
 337 *  Read chunklist (a linked list):
 338 *   N elements, position P (same P for all chunks of same arg!):
 339 *    1 - PHLOO - 1 - PHLOO - ... - 1 - PHLOO - 0
 340 *
 341 * Returns zero on success, or a negative errno if a failure occurred.
 342 * @xdr is advanced to the next position in the stream.
 343 *
 344 * Only a single @pos value is currently supported.
 345 */
 346static int rpcrdma_encode_read_list(struct rpcrdma_xprt *r_xprt,
 347				    struct rpcrdma_req *req,
 348				    struct rpc_rqst *rqst,
 349				    enum rpcrdma_chunktype rtype)
 350{
 351	struct xdr_stream *xdr = &req->rl_stream;
 352	struct rpcrdma_mr_seg *seg;
 353	struct rpcrdma_mr *mr;
 354	unsigned int pos;
 355	int nsegs;
 356
 357	if (rtype == rpcrdma_noch_pullup || rtype == rpcrdma_noch_mapped)
 358		goto done;
 359
 360	pos = rqst->rq_snd_buf.head[0].iov_len;
 361	if (rtype == rpcrdma_areadch)
 362		pos = 0;
 363	seg = req->rl_segments;
 364	nsegs = rpcrdma_convert_iovs(r_xprt, &rqst->rq_snd_buf, pos,
 365				     rtype, seg);
 366	if (nsegs < 0)
 367		return nsegs;
 368
 369	do {
 370		seg = rpcrdma_mr_prepare(r_xprt, req, seg, nsegs, false, &mr);
 371		if (IS_ERR(seg))
 372			return PTR_ERR(seg);
 373
 374		if (encode_read_segment(xdr, mr, pos) < 0)
 375			return -EMSGSIZE;
 376
 377		trace_xprtrdma_chunk_read(rqst->rq_task, pos, mr, nsegs);
 378		r_xprt->rx_stats.read_chunk_count++;
 379		nsegs -= mr->mr_nents;
 380	} while (nsegs);
 381
 382done:
 383	if (xdr_stream_encode_item_absent(xdr) < 0)
 384		return -EMSGSIZE;
 385	return 0;
 386}
 387
 388/* Register and XDR encode the Write list. Supports encoding a list
 389 * containing one array of plain segments that belong to a single
 390 * write chunk.
 391 *
 392 * Encoding key for single-list chunks (HLOO = Handle32 Length32 Offset64):
 393 *
 394 *  Write chunklist (a list of (one) counted array):
 395 *   N elements:
 396 *    1 - N - HLOO - HLOO - ... - HLOO - 0
 397 *
 398 * Returns zero on success, or a negative errno if a failure occurred.
 399 * @xdr is advanced to the next position in the stream.
 400 *
 401 * Only a single Write chunk is currently supported.
 402 */
 403static int rpcrdma_encode_write_list(struct rpcrdma_xprt *r_xprt,
 404				     struct rpcrdma_req *req,
 405				     struct rpc_rqst *rqst,
 406				     enum rpcrdma_chunktype wtype)
 407{
 408	struct xdr_stream *xdr = &req->rl_stream;
 409	struct rpcrdma_mr_seg *seg;
 410	struct rpcrdma_mr *mr;
 411	int nsegs, nchunks;
 412	__be32 *segcount;
 413
 414	if (wtype != rpcrdma_writech)
 415		goto done;
 416
 417	seg = req->rl_segments;
 418	nsegs = rpcrdma_convert_iovs(r_xprt, &rqst->rq_rcv_buf,
 419				     rqst->rq_rcv_buf.head[0].iov_len,
 420				     wtype, seg);
 421	if (nsegs < 0)
 422		return nsegs;
 423
 424	if (xdr_stream_encode_item_present(xdr) < 0)
 425		return -EMSGSIZE;
 426	segcount = xdr_reserve_space(xdr, sizeof(*segcount));
 427	if (unlikely(!segcount))
 428		return -EMSGSIZE;
 429	/* Actual value encoded below */
 430
 431	nchunks = 0;
 432	do {
 433		seg = rpcrdma_mr_prepare(r_xprt, req, seg, nsegs, true, &mr);
 434		if (IS_ERR(seg))
 435			return PTR_ERR(seg);
 436
 437		if (encode_rdma_segment(xdr, mr) < 0)
 438			return -EMSGSIZE;
 439
 440		trace_xprtrdma_chunk_write(rqst->rq_task, mr, nsegs);
 441		r_xprt->rx_stats.write_chunk_count++;
 442		r_xprt->rx_stats.total_rdma_request += mr->mr_length;
 443		nchunks++;
 444		nsegs -= mr->mr_nents;
 445	} while (nsegs);
 446
 447	/* Update count of segments in this Write chunk */
 448	*segcount = cpu_to_be32(nchunks);
 449
 450done:
 451	if (xdr_stream_encode_item_absent(xdr) < 0)
 452		return -EMSGSIZE;
 453	return 0;
 454}
 455
 456/* Register and XDR encode the Reply chunk. Supports encoding an array
 457 * of plain segments that belong to a single write (reply) chunk.
 458 *
 459 * Encoding key for single-list chunks (HLOO = Handle32 Length32 Offset64):
 460 *
 461 *  Reply chunk (a counted array):
 462 *   N elements:
 463 *    1 - N - HLOO - HLOO - ... - HLOO
 464 *
 465 * Returns zero on success, or a negative errno if a failure occurred.
 466 * @xdr is advanced to the next position in the stream.
 467 */
 468static int rpcrdma_encode_reply_chunk(struct rpcrdma_xprt *r_xprt,
 469				      struct rpcrdma_req *req,
 470				      struct rpc_rqst *rqst,
 471				      enum rpcrdma_chunktype wtype)
 472{
 473	struct xdr_stream *xdr = &req->rl_stream;
 474	struct rpcrdma_mr_seg *seg;
 475	struct rpcrdma_mr *mr;
 476	int nsegs, nchunks;
 477	__be32 *segcount;
 478
 479	if (wtype != rpcrdma_replych) {
 480		if (xdr_stream_encode_item_absent(xdr) < 0)
 481			return -EMSGSIZE;
 482		return 0;
 
 
 
 
 
 
 
 
 
 
 
 483	}
 484
 485	seg = req->rl_segments;
 486	nsegs = rpcrdma_convert_iovs(r_xprt, &rqst->rq_rcv_buf, 0, wtype, seg);
 
 
 
 
 487	if (nsegs < 0)
 488		return nsegs;
 489
 490	if (xdr_stream_encode_item_present(xdr) < 0)
 491		return -EMSGSIZE;
 492	segcount = xdr_reserve_space(xdr, sizeof(*segcount));
 493	if (unlikely(!segcount))
 494		return -EMSGSIZE;
 495	/* Actual value encoded below */
 496
 497	nchunks = 0;
 498	do {
 499		seg = rpcrdma_mr_prepare(r_xprt, req, seg, nsegs, true, &mr);
 500		if (IS_ERR(seg))
 501			return PTR_ERR(seg);
 502
 503		if (encode_rdma_segment(xdr, mr) < 0)
 504			return -EMSGSIZE;
 505
 506		trace_xprtrdma_chunk_reply(rqst->rq_task, mr, nsegs);
 507		r_xprt->rx_stats.reply_chunk_count++;
 508		r_xprt->rx_stats.total_rdma_request += mr->mr_length;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 509		nchunks++;
 510		nsegs -= mr->mr_nents;
 
 511	} while (nsegs);
 512
 513	/* Update count of segments in the Reply chunk */
 514	*segcount = cpu_to_be32(nchunks);
 515
 516	return 0;
 517}
 518
 519static void rpcrdma_sendctx_done(struct kref *kref)
 520{
 521	struct rpcrdma_req *req =
 522		container_of(kref, struct rpcrdma_req, rl_kref);
 523	struct rpcrdma_rep *rep = req->rl_reply;
 524
 525	rpcrdma_complete_rqst(rep);
 526	rep->rr_rxprt->rx_stats.reply_waits_for_send++;
 527}
 528
 529/**
 530 * rpcrdma_sendctx_unmap - DMA-unmap Send buffer
 531 * @sc: sendctx containing SGEs to unmap
 532 *
 533 */
 534void rpcrdma_sendctx_unmap(struct rpcrdma_sendctx *sc)
 535{
 536	struct rpcrdma_regbuf *rb = sc->sc_req->rl_sendbuf;
 537	struct ib_sge *sge;
 538
 539	if (!sc->sc_unmap_count)
 540		return;
 541
 542	/* The first two SGEs contain the transport header and
 543	 * the inline buffer. These are always left mapped so
 544	 * they can be cheaply re-used.
 545	 */
 546	for (sge = &sc->sc_sges[2]; sc->sc_unmap_count;
 547	     ++sge, --sc->sc_unmap_count)
 548		ib_dma_unmap_page(rdmab_device(rb), sge->addr, sge->length,
 549				  DMA_TO_DEVICE);
 550
 551	kref_put(&sc->sc_req->rl_kref, rpcrdma_sendctx_done);
 552}
 553
 554/* Prepare an SGE for the RPC-over-RDMA transport header.
 555 */
 556static void rpcrdma_prepare_hdr_sge(struct rpcrdma_xprt *r_xprt,
 557				    struct rpcrdma_req *req, u32 len)
 558{
 559	struct rpcrdma_sendctx *sc = req->rl_sendctx;
 560	struct rpcrdma_regbuf *rb = req->rl_rdmabuf;
 561	struct ib_sge *sge = &sc->sc_sges[req->rl_wr.num_sge++];
 562
 563	sge->addr = rdmab_addr(rb);
 564	sge->length = len;
 565	sge->lkey = rdmab_lkey(rb);
 566
 567	ib_dma_sync_single_for_device(rdmab_device(rb), sge->addr, sge->length,
 568				      DMA_TO_DEVICE);
 569}
 570
 571/* The head iovec is straightforward, as it is usually already
 572 * DMA-mapped. Sync the content that has changed.
 573 */
 574static bool rpcrdma_prepare_head_iov(struct rpcrdma_xprt *r_xprt,
 575				     struct rpcrdma_req *req, unsigned int len)
 576{
 577	struct rpcrdma_sendctx *sc = req->rl_sendctx;
 578	struct ib_sge *sge = &sc->sc_sges[req->rl_wr.num_sge++];
 579	struct rpcrdma_regbuf *rb = req->rl_sendbuf;
 580
 581	if (!rpcrdma_regbuf_dma_map(r_xprt, rb))
 582		return false;
 583
 584	sge->addr = rdmab_addr(rb);
 585	sge->length = len;
 586	sge->lkey = rdmab_lkey(rb);
 587
 588	ib_dma_sync_single_for_device(rdmab_device(rb), sge->addr, sge->length,
 589				      DMA_TO_DEVICE);
 590	return true;
 591}
 592
 593/* If there is a page list present, DMA map and prepare an
 594 * SGE for each page to be sent.
 595 */
 596static bool rpcrdma_prepare_pagelist(struct rpcrdma_req *req,
 597				     struct xdr_buf *xdr)
 598{
 599	struct rpcrdma_sendctx *sc = req->rl_sendctx;
 600	struct rpcrdma_regbuf *rb = req->rl_sendbuf;
 601	unsigned int page_base, len, remaining;
 602	struct page **ppages;
 603	struct ib_sge *sge;
 604
 605	ppages = xdr->pages + (xdr->page_base >> PAGE_SHIFT);
 606	page_base = offset_in_page(xdr->page_base);
 607	remaining = xdr->page_len;
 608	while (remaining) {
 609		sge = &sc->sc_sges[req->rl_wr.num_sge++];
 610		len = min_t(unsigned int, PAGE_SIZE - page_base, remaining);
 611		sge->addr = ib_dma_map_page(rdmab_device(rb), *ppages,
 612					    page_base, len, DMA_TO_DEVICE);
 613		if (ib_dma_mapping_error(rdmab_device(rb), sge->addr))
 614			goto out_mapping_err;
 615
 616		sge->length = len;
 617		sge->lkey = rdmab_lkey(rb);
 618
 619		sc->sc_unmap_count++;
 620		ppages++;
 621		remaining -= len;
 622		page_base = 0;
 623	}
 624
 625	return true;
 
 
 
 626
 627out_mapping_err:
 628	trace_xprtrdma_dma_maperr(sge->addr);
 629	return false;
 
 
 630}
 631
 632/* The tail iovec may include an XDR pad for the page list,
 633 * as well as additional content, and may not reside in the
 634 * same page as the head iovec.
 
 
 
 635 */
 636static bool rpcrdma_prepare_tail_iov(struct rpcrdma_req *req,
 637				     struct xdr_buf *xdr,
 638				     unsigned int page_base, unsigned int len)
 639{
 640	struct rpcrdma_sendctx *sc = req->rl_sendctx;
 641	struct ib_sge *sge = &sc->sc_sges[req->rl_wr.num_sge++];
 642	struct rpcrdma_regbuf *rb = req->rl_sendbuf;
 643	struct page *page = virt_to_page(xdr->tail[0].iov_base);
 644
 645	sge->addr = ib_dma_map_page(rdmab_device(rb), page, page_base, len,
 646				    DMA_TO_DEVICE);
 647	if (ib_dma_mapping_error(rdmab_device(rb), sge->addr))
 648		goto out_mapping_err;
 649
 650	sge->length = len;
 651	sge->lkey = rdmab_lkey(rb);
 652	++sc->sc_unmap_count;
 653	return true;
 654
 655out_mapping_err:
 656	trace_xprtrdma_dma_maperr(sge->addr);
 657	return false;
 658}
 659
 660/* Copy the tail to the end of the head buffer.
 661 */
 662static void rpcrdma_pullup_tail_iov(struct rpcrdma_xprt *r_xprt,
 663				    struct rpcrdma_req *req,
 664				    struct xdr_buf *xdr)
 665{
 666	unsigned char *dst;
 667
 668	dst = (unsigned char *)xdr->head[0].iov_base;
 669	dst += xdr->head[0].iov_len + xdr->page_len;
 670	memmove(dst, xdr->tail[0].iov_base, xdr->tail[0].iov_len);
 671	r_xprt->rx_stats.pullup_copy_count += xdr->tail[0].iov_len;
 672}
 673
 674/* Copy pagelist content into the head buffer.
 675 */
 676static void rpcrdma_pullup_pagelist(struct rpcrdma_xprt *r_xprt,
 677				    struct rpcrdma_req *req,
 678				    struct xdr_buf *xdr)
 679{
 680	unsigned int len, page_base, remaining;
 681	struct page **ppages;
 682	unsigned char *src, *dst;
 683
 684	dst = (unsigned char *)xdr->head[0].iov_base;
 685	dst += xdr->head[0].iov_len;
 686	ppages = xdr->pages + (xdr->page_base >> PAGE_SHIFT);
 687	page_base = offset_in_page(xdr->page_base);
 688	remaining = xdr->page_len;
 689	while (remaining) {
 690		src = page_address(*ppages);
 691		src += page_base;
 692		len = min_t(unsigned int, PAGE_SIZE - page_base, remaining);
 693		memcpy(dst, src, len);
 694		r_xprt->rx_stats.pullup_copy_count += len;
 695
 696		ppages++;
 697		dst += len;
 698		remaining -= len;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 699		page_base = 0;
 700	}
 
 701}
 702
 703/* Copy the contents of @xdr into @rl_sendbuf and DMA sync it.
 704 * When the head, pagelist, and tail are small, a pull-up copy
 705 * is considerably less costly than DMA mapping the components
 706 * of @xdr.
 707 *
 708 * Assumptions:
 709 *  - the caller has already verified that the total length
 710 *    of the RPC Call body will fit into @rl_sendbuf.
 711 */
 712static bool rpcrdma_prepare_noch_pullup(struct rpcrdma_xprt *r_xprt,
 713					struct rpcrdma_req *req,
 714					struct xdr_buf *xdr)
 715{
 716	if (unlikely(xdr->tail[0].iov_len))
 717		rpcrdma_pullup_tail_iov(r_xprt, req, xdr);
 718
 719	if (unlikely(xdr->page_len))
 720		rpcrdma_pullup_pagelist(r_xprt, req, xdr);
 721
 722	/* The whole RPC message resides in the head iovec now */
 723	return rpcrdma_prepare_head_iov(r_xprt, req, xdr->len);
 724}
 725
 726static bool rpcrdma_prepare_noch_mapped(struct rpcrdma_xprt *r_xprt,
 727					struct rpcrdma_req *req,
 728					struct xdr_buf *xdr)
 729{
 730	struct kvec *tail = &xdr->tail[0];
 731
 732	if (!rpcrdma_prepare_head_iov(r_xprt, req, xdr->head[0].iov_len))
 733		return false;
 734	if (xdr->page_len)
 735		if (!rpcrdma_prepare_pagelist(req, xdr))
 736			return false;
 737	if (tail->iov_len)
 738		if (!rpcrdma_prepare_tail_iov(req, xdr,
 739					      offset_in_page(tail->iov_base),
 740					      tail->iov_len))
 741			return false;
 742
 743	if (req->rl_sendctx->sc_unmap_count)
 744		kref_get(&req->rl_kref);
 745	return true;
 746}
 747
 748static bool rpcrdma_prepare_readch(struct rpcrdma_xprt *r_xprt,
 749				   struct rpcrdma_req *req,
 750				   struct xdr_buf *xdr)
 751{
 752	if (!rpcrdma_prepare_head_iov(r_xprt, req, xdr->head[0].iov_len))
 753		return false;
 754
 755	/* If there is a Read chunk, the page list is being handled
 756	 * via explicit RDMA, and thus is skipped here.
 757	 */
 758
 759	/* Do not include the tail if it is only an XDR pad */
 760	if (xdr->tail[0].iov_len > 3) {
 761		unsigned int page_base, len;
 762
 763		/* If the content in the page list is an odd length,
 764		 * xdr_write_pages() adds a pad at the beginning of
 765		 * the tail iovec. Force the tail's non-pad content to
 766		 * land at the next XDR position in the Send message.
 767		 */
 768		page_base = offset_in_page(xdr->tail[0].iov_base);
 769		len = xdr->tail[0].iov_len;
 770		page_base += len & 3;
 771		len -= len & 3;
 772		if (!rpcrdma_prepare_tail_iov(req, xdr, page_base, len))
 773			return false;
 774		kref_get(&req->rl_kref);
 775	}
 776
 777	return true;
 778}
 779
 780/**
 781 * rpcrdma_prepare_send_sges - Construct SGEs for a Send WR
 782 * @r_xprt: controlling transport
 783 * @req: context of RPC Call being marshalled
 784 * @hdrlen: size of transport header, in bytes
 785 * @xdr: xdr_buf containing RPC Call
 786 * @rtype: chunk type being encoded
 787 *
 788 * Returns 0 on success; otherwise a negative errno is returned.
 789 */
 790inline int rpcrdma_prepare_send_sges(struct rpcrdma_xprt *r_xprt,
 791				     struct rpcrdma_req *req, u32 hdrlen,
 792				     struct xdr_buf *xdr,
 793				     enum rpcrdma_chunktype rtype)
 794{
 795	int ret;
 796
 797	ret = -EAGAIN;
 798	req->rl_sendctx = rpcrdma_sendctx_get_locked(r_xprt);
 799	if (!req->rl_sendctx)
 800		goto out_nosc;
 801	req->rl_sendctx->sc_unmap_count = 0;
 802	req->rl_sendctx->sc_req = req;
 803	kref_init(&req->rl_kref);
 804	req->rl_wr.wr_cqe = &req->rl_sendctx->sc_cqe;
 805	req->rl_wr.sg_list = req->rl_sendctx->sc_sges;
 806	req->rl_wr.num_sge = 0;
 807	req->rl_wr.opcode = IB_WR_SEND;
 808
 809	rpcrdma_prepare_hdr_sge(r_xprt, req, hdrlen);
 810
 811	ret = -EIO;
 812	switch (rtype) {
 813	case rpcrdma_noch_pullup:
 814		if (!rpcrdma_prepare_noch_pullup(r_xprt, req, xdr))
 815			goto out_unmap;
 816		break;
 817	case rpcrdma_noch_mapped:
 818		if (!rpcrdma_prepare_noch_mapped(r_xprt, req, xdr))
 819			goto out_unmap;
 820		break;
 821	case rpcrdma_readch:
 822		if (!rpcrdma_prepare_readch(r_xprt, req, xdr))
 823			goto out_unmap;
 824		break;
 825	case rpcrdma_areadch:
 826		break;
 827	default:
 828		goto out_unmap;
 829	}
 830
 831	return 0;
 832
 833out_unmap:
 834	rpcrdma_sendctx_unmap(req->rl_sendctx);
 835out_nosc:
 836	trace_xprtrdma_prepsend_failed(&req->rl_slot, ret);
 837	return ret;
 838}
 839
 840/**
 841 * rpcrdma_marshal_req - Marshal and send one RPC request
 842 * @r_xprt: controlling transport
 843 * @rqst: RPC request to be marshaled
 844 *
 845 * For the RPC in "rqst", this function:
 846 *  - Chooses the transfer mode (eg., RDMA_MSG or RDMA_NOMSG)
 847 *  - Registers Read, Write, and Reply chunks
 848 *  - Constructs the transport header
 849 *  - Posts a Send WR to send the transport header and request
 850 *
 851 * Returns:
 852 *	%0 if the RPC was sent successfully,
 853 *	%-ENOTCONN if the connection was lost,
 854 *	%-EAGAIN if the caller should call again with the same arguments,
 855 *	%-ENOBUFS if the caller should call again after a delay,
 856 *	%-EMSGSIZE if the transport header is too small,
 857 *	%-EIO if a permanent problem occurred while marshaling.
 858 */
 859int
 860rpcrdma_marshal_req(struct rpcrdma_xprt *r_xprt, struct rpc_rqst *rqst)
 861{
 
 
 862	struct rpcrdma_req *req = rpcr_to_rdmar(rqst);
 863	struct xdr_stream *xdr = &req->rl_stream;
 
 
 864	enum rpcrdma_chunktype rtype, wtype;
 865	struct xdr_buf *buf = &rqst->rq_snd_buf;
 866	bool ddp_allowed;
 867	__be32 *p;
 868	int ret;
 869
 870	rpcrdma_set_xdrlen(&req->rl_hdrbuf, 0);
 871	xdr_init_encode(xdr, &req->rl_hdrbuf, rdmab_data(req->rl_rdmabuf),
 872			rqst);
 873
 874	/* Fixed header fields */
 875	ret = -EMSGSIZE;
 876	p = xdr_reserve_space(xdr, 4 * sizeof(*p));
 877	if (!p)
 878		goto out_err;
 879	*p++ = rqst->rq_xid;
 880	*p++ = rpcrdma_version;
 881	*p++ = r_xprt->rx_buf.rb_max_requests;
 882
 883	/* When the ULP employs a GSS flavor that guarantees integrity
 884	 * or privacy, direct data placement of individual data items
 885	 * is not allowed.
 886	 */
 887	ddp_allowed = !test_bit(RPCAUTH_AUTH_DATATOUCH,
 888				&rqst->rq_cred->cr_auth->au_flags);
 
 
 
 
 
 
 
 889
 890	/*
 891	 * Chunks needed for results?
 892	 *
 
 893	 * o If the expected result is under the inline threshold, all ops
 894	 *   return as inline.
 895	 * o Large read ops return data as write chunk(s), header as
 896	 *   inline.
 897	 * o Large non-read ops return as a single reply chunk.
 898	 */
 899	if (rpcrdma_results_inline(r_xprt, rqst))
 
 
 900		wtype = rpcrdma_noch;
 901	else if ((ddp_allowed && rqst->rq_rcv_buf.flags & XDRBUF_READ) &&
 902		 rpcrdma_nonpayload_inline(r_xprt, rqst))
 903		wtype = rpcrdma_writech;
 904	else
 905		wtype = rpcrdma_replych;
 906
 907	/*
 908	 * Chunks needed for arguments?
 909	 *
 910	 * o If the total request is under the inline threshold, all ops
 911	 *   are sent as inline.
 912	 * o Large write ops transmit data as read chunk(s), header as
 913	 *   inline.
 914	 * o Large non-write ops are sent with the entire message as a
 915	 *   single read chunk (protocol 0-position special case).
 916	 *
 917	 * This assumes that the upper layer does not present a request
 918	 * that both has a data payload, and whose non-data arguments
 919	 * by themselves are larger than the inline threshold.
 920	 */
 921	if (rpcrdma_args_inline(r_xprt, rqst)) {
 922		*p++ = rdma_msg;
 923		rtype = buf->len < rdmab_length(req->rl_sendbuf) ?
 924			rpcrdma_noch_pullup : rpcrdma_noch_mapped;
 925	} else if (ddp_allowed && buf->flags & XDRBUF_WRITE) {
 926		*p++ = rdma_msg;
 927		rtype = rpcrdma_readch;
 928	} else {
 929		r_xprt->rx_stats.nomsg_call_count++;
 930		*p++ = rdma_nomsg;
 931		rtype = rpcrdma_areadch;
 
 932	}
 933
 934	/* This implementation supports the following combinations
 935	 * of chunk lists in one RPC-over-RDMA Call message:
 936	 *
 937	 *   - Read list
 938	 *   - Write list
 939	 *   - Reply chunk
 940	 *   - Read list + Reply chunk
 941	 *
 942	 * It might not yet support the following combinations:
 943	 *
 944	 *   - Read list + Write list
 945	 *
 946	 * It does not support the following combinations:
 947	 *
 948	 *   - Write list + Reply chunk
 949	 *   - Read list + Write list + Reply chunk
 950	 *
 951	 * This implementation supports only a single chunk in each
 952	 * Read or Write list. Thus for example the client cannot
 953	 * send a Call message with a Position Zero Read chunk and a
 954	 * regular Read chunk at the same time.
 955	 */
 956	ret = rpcrdma_encode_read_list(r_xprt, req, rqst, rtype);
 957	if (ret)
 958		goto out_err;
 959	ret = rpcrdma_encode_write_list(r_xprt, req, rqst, wtype);
 960	if (ret)
 961		goto out_err;
 962	ret = rpcrdma_encode_reply_chunk(r_xprt, req, rqst, wtype);
 963	if (ret)
 964		goto out_err;
 965
 966	ret = rpcrdma_prepare_send_sges(r_xprt, req, req->rl_hdrbuf.len,
 967					buf, rtype);
 968	if (ret)
 969		goto out_err;
 970
 971	trace_xprtrdma_marshal(req, rtype, wtype);
 972	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 973
 974out_err:
 975	trace_xprtrdma_marshal_failed(rqst, ret);
 976	r_xprt->rx_stats.failed_marshal_count++;
 977	frwr_reset(req);
 978	return ret;
 979}
 
 
 
 
 980
 981static void __rpcrdma_update_cwnd_locked(struct rpc_xprt *xprt,
 982					 struct rpcrdma_buffer *buf,
 983					 u32 grant)
 984{
 985	buf->rb_credits = grant;
 986	xprt->cwnd = grant << RPC_CWNDSHIFT;
 987}
 988
 989static void rpcrdma_update_cwnd(struct rpcrdma_xprt *r_xprt, u32 grant)
 990{
 991	struct rpc_xprt *xprt = &r_xprt->rx_xprt;
 992
 993	spin_lock(&xprt->transport_lock);
 994	__rpcrdma_update_cwnd_locked(xprt, &r_xprt->rx_buf, grant);
 995	spin_unlock(&xprt->transport_lock);
 996}
 997
 998/**
 999 * rpcrdma_reset_cwnd - Reset the xprt's congestion window
1000 * @r_xprt: controlling transport instance
1001 *
1002 * Prepare @r_xprt for the next connection by reinitializing
1003 * its credit grant to one (see RFC 8166, Section 3.3.3).
1004 */
1005void rpcrdma_reset_cwnd(struct rpcrdma_xprt *r_xprt)
 
1006{
1007	struct rpc_xprt *xprt = &r_xprt->rx_xprt;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1008
1009	spin_lock(&xprt->transport_lock);
1010	xprt->cong = 0;
1011	__rpcrdma_update_cwnd_locked(xprt, &r_xprt->rx_buf, 1);
1012	spin_unlock(&xprt->transport_lock);
1013}
1014
1015/**
1016 * rpcrdma_inline_fixup - Scatter inline received data into rqst's iovecs
1017 * @rqst: controlling RPC request
1018 * @srcp: points to RPC message payload in receive buffer
1019 * @copy_len: remaining length of receive buffer content
1020 * @pad: Write chunk pad bytes needed (zero for pure inline)
1021 *
1022 * The upper layer has set the maximum number of bytes it can
1023 * receive in each component of rq_rcv_buf. These values are set in
1024 * the head.iov_len, page_len, tail.iov_len, and buflen fields.
1025 *
1026 * Unlike the TCP equivalent (xdr_partial_copy_from_skb), in
1027 * many cases this function simply updates iov_base pointers in
1028 * rq_rcv_buf to point directly to the received reply data, to
1029 * avoid copying reply data.
1030 *
1031 * Returns the count of bytes which had to be memcopied.
1032 */
1033static unsigned long
1034rpcrdma_inline_fixup(struct rpc_rqst *rqst, char *srcp, int copy_len, int pad)
1035{
1036	unsigned long fixup_copy_count;
1037	int i, npages, curlen;
1038	char *destp;
1039	struct page **ppages;
1040	int page_base;
1041
1042	/* The head iovec is redirected to the RPC reply message
1043	 * in the receive buffer, to avoid a memcopy.
1044	 */
1045	rqst->rq_rcv_buf.head[0].iov_base = srcp;
1046	rqst->rq_private_buf.head[0].iov_base = srcp;
1047
1048	/* The contents of the receive buffer that follow
1049	 * head.iov_len bytes are copied into the page list.
1050	 */
1051	curlen = rqst->rq_rcv_buf.head[0].iov_len;
1052	if (curlen > copy_len)
1053		curlen = copy_len;
 
 
 
 
 
 
 
 
1054	srcp += curlen;
1055	copy_len -= curlen;
1056
1057	ppages = rqst->rq_rcv_buf.pages +
1058		(rqst->rq_rcv_buf.page_base >> PAGE_SHIFT);
1059	page_base = offset_in_page(rqst->rq_rcv_buf.page_base);
1060	fixup_copy_count = 0;
 
 
 
1061	if (copy_len && rqst->rq_rcv_buf.page_len) {
1062		int pagelist_len;
1063
1064		pagelist_len = rqst->rq_rcv_buf.page_len;
1065		if (pagelist_len > copy_len)
1066			pagelist_len = copy_len;
1067		npages = PAGE_ALIGN(page_base + pagelist_len) >> PAGE_SHIFT;
1068		for (i = 0; i < npages; i++) {
1069			curlen = PAGE_SIZE - page_base;
1070			if (curlen > pagelist_len)
1071				curlen = pagelist_len;
1072
 
 
1073			destp = kmap_atomic(ppages[i]);
1074			memcpy(destp + page_base, srcp, curlen);
1075			flush_dcache_page(ppages[i]);
1076			kunmap_atomic(destp);
1077			srcp += curlen;
1078			copy_len -= curlen;
1079			fixup_copy_count += curlen;
1080			pagelist_len -= curlen;
1081			if (!pagelist_len)
1082				break;
1083			page_base = 0;
1084		}
 
1085
1086		/* Implicit padding for the last segment in a Write
1087		 * chunk is inserted inline at the front of the tail
1088		 * iovec. The upper layer ignores the content of
1089		 * the pad. Simply ensure inline content in the tail
1090		 * that follows the Write chunk is properly aligned.
1091		 */
1092		if (pad)
1093			srcp -= pad;
1094	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1095
1096	/* The tail iovec is redirected to the remaining data
1097	 * in the receive buffer, to avoid a memcopy.
1098	 */
1099	if (copy_len || pad) {
1100		rqst->rq_rcv_buf.tail[0].iov_base = srcp;
1101		rqst->rq_private_buf.tail[0].iov_base = srcp;
 
 
 
1102	}
1103
1104	if (fixup_copy_count)
1105		trace_xprtrdma_fixup(rqst, fixup_copy_count);
1106	return fixup_copy_count;
1107}
1108
 
1109/* By convention, backchannel calls arrive via rdma_msg type
1110 * messages, and never populate the chunk lists. This makes
1111 * the RPC/RDMA header small and fixed in size, so it is
1112 * straightforward to check the RPC header's direction field.
1113 */
1114static bool
1115rpcrdma_is_bcall(struct rpcrdma_xprt *r_xprt, struct rpcrdma_rep *rep)
1116#if defined(CONFIG_SUNRPC_BACKCHANNEL)
1117{
1118	struct xdr_stream *xdr = &rep->rr_stream;
1119	__be32 *p;
1120
1121	if (rep->rr_proc != rdma_msg)
1122		return false;
1123
1124	/* Peek at stream contents without advancing. */
1125	p = xdr_inline_decode(xdr, 0);
1126
1127	/* Chunk lists */
1128	if (xdr_item_is_present(p++))
1129		return false;
1130	if (xdr_item_is_present(p++))
1131		return false;
1132	if (xdr_item_is_present(p++))
1133		return false;
1134
1135	/* RPC header */
1136	if (*p++ != rep->rr_xid)
1137		return false;
1138	if (*p != cpu_to_be32(RPC_CALL))
 
1139		return false;
1140
1141	/* Now that we are sure this is a backchannel call,
1142	 * advance to the RPC header.
1143	 */
1144	p = xdr_inline_decode(xdr, 3 * sizeof(*p));
1145	if (unlikely(!p))
1146		goto out_short;
1147
1148	rpcrdma_bc_receive_call(r_xprt, rep);
1149	return true;
1150
1151out_short:
1152	pr_warn("RPC/RDMA short backward direction call\n");
1153	return true;
1154}
1155#else	/* CONFIG_SUNRPC_BACKCHANNEL */
1156{
1157	return false;
1158}
1159#endif	/* CONFIG_SUNRPC_BACKCHANNEL */
1160
1161static int decode_rdma_segment(struct xdr_stream *xdr, u32 *length)
1162{
1163	u32 handle;
1164	u64 offset;
1165	__be32 *p;
1166
1167	p = xdr_inline_decode(xdr, 4 * sizeof(*p));
1168	if (unlikely(!p))
1169		return -EIO;
1170
1171	xdr_decode_rdma_segment(p, &handle, length, &offset);
1172	trace_xprtrdma_decode_seg(handle, *length, offset);
1173	return 0;
1174}
1175
1176static int decode_write_chunk(struct xdr_stream *xdr, u32 *length)
1177{
1178	u32 segcount, seglength;
1179	__be32 *p;
1180
1181	p = xdr_inline_decode(xdr, sizeof(*p));
1182	if (unlikely(!p))
1183		return -EIO;
1184
1185	*length = 0;
1186	segcount = be32_to_cpup(p);
1187	while (segcount--) {
1188		if (decode_rdma_segment(xdr, &seglength))
1189			return -EIO;
1190		*length += seglength;
1191	}
1192
1193	return 0;
1194}
1195
1196/* In RPC-over-RDMA Version One replies, a Read list is never
1197 * expected. This decoder is a stub that returns an error if
1198 * a Read list is present.
1199 */
1200static int decode_read_list(struct xdr_stream *xdr)
 
1201{
1202	__be32 *p;
1203
1204	p = xdr_inline_decode(xdr, sizeof(*p));
1205	if (unlikely(!p))
1206		return -EIO;
1207	if (unlikely(xdr_item_is_present(p)))
1208		return -EIO;
1209	return 0;
1210}
1211
1212/* Supports only one Write chunk in the Write list
 
 
 
1213 */
1214static int decode_write_list(struct xdr_stream *xdr, u32 *length)
 
1215{
1216	u32 chunklen;
1217	bool first;
1218	__be32 *p;
 
 
 
 
 
 
 
 
 
 
 
 
1219
1220	*length = 0;
1221	first = true;
1222	do {
1223		p = xdr_inline_decode(xdr, sizeof(*p));
1224		if (unlikely(!p))
1225			return -EIO;
1226		if (xdr_item_is_absent(p))
1227			break;
1228		if (!first)
1229			return -EIO;
1230
1231		if (decode_write_chunk(xdr, &chunklen))
1232			return -EIO;
1233		*length += chunklen;
1234		first = false;
1235	} while (true);
1236	return 0;
1237}
1238
1239static int decode_reply_chunk(struct xdr_stream *xdr, u32 *length)
1240{
1241	__be32 *p;
1242
1243	p = xdr_inline_decode(xdr, sizeof(*p));
1244	if (unlikely(!p))
1245		return -EIO;
 
 
 
 
1246
1247	*length = 0;
1248	if (xdr_item_is_present(p))
1249		if (decode_write_chunk(xdr, length))
1250			return -EIO;
1251	return 0;
1252}
1253
1254static int
1255rpcrdma_decode_msg(struct rpcrdma_xprt *r_xprt, struct rpcrdma_rep *rep,
1256		   struct rpc_rqst *rqst)
1257{
1258	struct xdr_stream *xdr = &rep->rr_stream;
1259	u32 writelist, replychunk, rpclen;
1260	char *base;
1261
1262	/* Decode the chunk lists */
1263	if (decode_read_list(xdr))
1264		return -EIO;
1265	if (decode_write_list(xdr, &writelist))
1266		return -EIO;
1267	if (decode_reply_chunk(xdr, &replychunk))
1268		return -EIO;
1269
1270	/* RDMA_MSG sanity checks */
1271	if (unlikely(replychunk))
1272		return -EIO;
1273
1274	/* Build the RPC reply's Payload stream in rqst->rq_rcv_buf */
1275	base = (char *)xdr_inline_decode(xdr, 0);
1276	rpclen = xdr_stream_remaining(xdr);
1277	r_xprt->rx_stats.fixup_copy_count +=
1278		rpcrdma_inline_fixup(rqst, base, rpclen, writelist & 3);
1279
1280	r_xprt->rx_stats.total_rdma_reply += writelist;
1281	return rpclen + xdr_align_size(writelist);
1282}
1283
1284static noinline int
1285rpcrdma_decode_nomsg(struct rpcrdma_xprt *r_xprt, struct rpcrdma_rep *rep)
1286{
1287	struct xdr_stream *xdr = &rep->rr_stream;
1288	u32 writelist, replychunk;
1289
1290	/* Decode the chunk lists */
1291	if (decode_read_list(xdr))
1292		return -EIO;
1293	if (decode_write_list(xdr, &writelist))
1294		return -EIO;
1295	if (decode_reply_chunk(xdr, &replychunk))
1296		return -EIO;
1297
1298	/* RDMA_NOMSG sanity checks */
1299	if (unlikely(writelist))
1300		return -EIO;
1301	if (unlikely(!replychunk))
1302		return -EIO;
1303
1304	/* Reply chunk buffer already is the reply vector */
1305	r_xprt->rx_stats.total_rdma_reply += replychunk;
1306	return replychunk;
1307}
1308
1309static noinline int
1310rpcrdma_decode_error(struct rpcrdma_xprt *r_xprt, struct rpcrdma_rep *rep,
1311		     struct rpc_rqst *rqst)
1312{
1313	struct xdr_stream *xdr = &rep->rr_stream;
1314	__be32 *p;
1315
1316	p = xdr_inline_decode(xdr, sizeof(*p));
1317	if (unlikely(!p))
1318		return -EIO;
1319
1320	switch (*p) {
1321	case err_vers:
1322		p = xdr_inline_decode(xdr, 2 * sizeof(*p));
1323		if (!p)
1324			break;
1325		dprintk("RPC:       %s: server reports "
1326			"version error (%u-%u), xid %08x\n", __func__,
1327			be32_to_cpup(p), be32_to_cpu(*(p + 1)),
1328			be32_to_cpu(rep->rr_xid));
1329		break;
1330	case err_chunk:
1331		dprintk("RPC:       %s: server reports "
1332			"header decoding error, xid %08x\n", __func__,
1333			be32_to_cpu(rep->rr_xid));
1334		break;
1335	default:
1336		dprintk("RPC:       %s: server reports "
1337			"unrecognized error %d, xid %08x\n", __func__,
1338			be32_to_cpup(p), be32_to_cpu(rep->rr_xid));
1339	}
1340
1341	return -EIO;
1342}
1343
1344/* Perform XID lookup, reconstruction of the RPC reply, and
1345 * RPC completion while holding the transport lock to ensure
1346 * the rep, rqst, and rq_task pointers remain stable.
1347 */
1348void rpcrdma_complete_rqst(struct rpcrdma_rep *rep)
1349{
1350	struct rpcrdma_xprt *r_xprt = rep->rr_rxprt;
1351	struct rpc_xprt *xprt = &r_xprt->rx_xprt;
1352	struct rpc_rqst *rqst = rep->rr_rqst;
1353	int status;
1354
1355	switch (rep->rr_proc) {
1356	case rdma_msg:
1357		status = rpcrdma_decode_msg(r_xprt, rep, rqst);
1358		break;
1359	case rdma_nomsg:
1360		status = rpcrdma_decode_nomsg(r_xprt, rep);
 
 
 
 
 
 
 
 
 
 
 
 
 
1361		break;
 
1362	case rdma_error:
1363		status = rpcrdma_decode_error(r_xprt, rep, rqst);
1364		break;
 
1365	default:
 
 
 
 
 
 
 
 
1366		status = -EIO;
 
 
1367	}
1368	if (status < 0)
1369		goto out_badheader;
1370
1371out:
1372	spin_lock(&xprt->queue_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1373	xprt_complete_rqst(rqst->rq_task, status);
1374	xprt_unpin_rqst(rqst);
1375	spin_unlock(&xprt->queue_lock);
 
1376	return;
1377
1378out_badheader:
1379	trace_xprtrdma_reply_hdr(rep);
1380	r_xprt->rx_stats.bad_reply_count++;
1381	rqst->rq_task->tk_status = status;
1382	status = 0;
1383	goto out;
1384}
1385
1386static void rpcrdma_reply_done(struct kref *kref)
1387{
1388	struct rpcrdma_req *req =
1389		container_of(kref, struct rpcrdma_req, rl_kref);
1390
1391	rpcrdma_complete_rqst(req->rl_reply);
1392}
1393
1394/**
1395 * rpcrdma_reply_handler - Process received RPC/RDMA messages
1396 * @rep: Incoming rpcrdma_rep object to process
1397 *
1398 * Errors must result in the RPC task either being awakened, or
1399 * allowed to timeout, to discover the errors at that time.
1400 */
1401void rpcrdma_reply_handler(struct rpcrdma_rep *rep)
1402{
1403	struct rpcrdma_xprt *r_xprt = rep->rr_rxprt;
1404	struct rpc_xprt *xprt = &r_xprt->rx_xprt;
1405	struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
1406	struct rpcrdma_req *req;
1407	struct rpc_rqst *rqst;
1408	u32 credits;
1409	__be32 *p;
1410
1411	/* Any data means we had a useful conversation, so
1412	 * then we don't need to delay the next reconnect.
1413	 */
1414	if (xprt->reestablish_timeout)
1415		xprt->reestablish_timeout = 0;
1416
1417	/* Fixed transport header fields */
1418	xdr_init_decode(&rep->rr_stream, &rep->rr_hdrbuf,
1419			rep->rr_hdrbuf.head[0].iov_base, NULL);
1420	p = xdr_inline_decode(&rep->rr_stream, 4 * sizeof(*p));
1421	if (unlikely(!p))
1422		goto out_shortreply;
1423	rep->rr_xid = *p++;
1424	rep->rr_vers = *p++;
1425	credits = be32_to_cpu(*p++);
1426	rep->rr_proc = *p++;
1427
1428	if (rep->rr_vers != rpcrdma_version)
1429		goto out_badversion;
1430
1431	if (rpcrdma_is_bcall(r_xprt, rep))
1432		return;
1433
1434	/* Match incoming rpcrdma_rep to an rpcrdma_req to
1435	 * get context for handling any incoming chunks.
1436	 */
1437	spin_lock(&xprt->queue_lock);
1438	rqst = xprt_lookup_rqst(xprt, rep->rr_xid);
1439	if (!rqst)
1440		goto out_norqst;
1441	xprt_pin_rqst(rqst);
1442	spin_unlock(&xprt->queue_lock);
1443
1444	if (credits == 0)
1445		credits = 1;	/* don't deadlock */
1446	else if (credits > r_xprt->rx_ep->re_max_requests)
1447		credits = r_xprt->rx_ep->re_max_requests;
1448	if (buf->rb_credits != credits)
1449		rpcrdma_update_cwnd(r_xprt, credits);
1450	rpcrdma_post_recvs(r_xprt, false);
1451
1452	req = rpcr_to_rdmar(rqst);
1453	if (req->rl_reply) {
1454		trace_xprtrdma_leaked_rep(rqst, req->rl_reply);
1455		rpcrdma_recv_buffer_put(req->rl_reply);
1456	}
1457	req->rl_reply = rep;
1458	rep->rr_rqst = rqst;
1459
1460	trace_xprtrdma_reply(rqst->rq_task, rep, req, credits);
1461
1462	if (rep->rr_wc_flags & IB_WC_WITH_INVALIDATE)
1463		frwr_reminv(rep, &req->rl_registered);
1464	if (!list_empty(&req->rl_registered))
1465		frwr_unmap_async(r_xprt, req);
1466		/* LocalInv completion will complete the RPC */
1467	else
1468		kref_put(&req->rl_kref, rpcrdma_reply_done);
1469	return;
 
1470
 
 
 
 
1471out_badversion:
1472	trace_xprtrdma_reply_vers(rep);
 
 
 
1473	goto out;
1474
1475out_norqst:
1476	spin_unlock(&xprt->queue_lock);
1477	trace_xprtrdma_reply_rqst(rep);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1478	goto out;
1479
 
 
 
1480out_shortreply:
1481	trace_xprtrdma_reply_short(rep);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1482
1483out:
1484	rpcrdma_recv_buffer_put(rep);
 
 
1485}