Linux Audio

Check our new training course

Loading...
v4.6
   1/*
   2 * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved.
   3 *
   4 * This software is available to you under a choice of one of two
   5 * licenses.  You may choose to be licensed under the terms of the GNU
   6 * General Public License (GPL) Version 2, available from the file
   7 * COPYING in the main directory of this source tree, or the BSD-type
   8 * license below:
   9 *
  10 * Redistribution and use in source and binary forms, with or without
  11 * modification, are permitted provided that the following conditions
  12 * are met:
  13 *
  14 *      Redistributions of source code must retain the above copyright
  15 *      notice, this list of conditions and the following disclaimer.
  16 *
  17 *      Redistributions in binary form must reproduce the above
  18 *      copyright notice, this list of conditions and the following
  19 *      disclaimer in the documentation and/or other materials provided
  20 *      with the distribution.
  21 *
  22 *      Neither the name of the Network Appliance, Inc. nor the names of
  23 *      its contributors may be used to endorse or promote products
  24 *      derived from this software without specific prior written
  25 *      permission.
  26 *
  27 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  28 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  29 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  30 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  31 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  32 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  33 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  34 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  35 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  36 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  37 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  38 */
  39
  40/*
  41 * rpc_rdma.c
  42 *
  43 * This file contains the guts of the RPC RDMA protocol, and
  44 * does marshaling/unmarshaling, etc. It is also where interfacing
  45 * to the Linux RPC framework lives.
  46 */
  47
  48#include "xprt_rdma.h"
  49
  50#include <linux/highmem.h>
  51
  52#if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
  53# define RPCDBG_FACILITY	RPCDBG_TRANS
  54#endif
  55
  56enum rpcrdma_chunktype {
  57	rpcrdma_noch = 0,
  58	rpcrdma_readch,
  59	rpcrdma_areadch,
  60	rpcrdma_writech,
  61	rpcrdma_replych
  62};
  63
  64#if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
  65static const char transfertypes[][12] = {
  66	"pure inline",	/* no chunks */
  67	" read chunk",	/* some argument via rdma read */
  68	"*read chunk",	/* entire request via rdma read */
  69	"write chunk",	/* some result via rdma write */
  70	"reply chunk"	/* entire reply via rdma write */
  71};
  72#endif
  73
  74/* The client can send a request inline as long as the RPCRDMA header
  75 * plus the RPC call fit under the transport's inline limit. If the
  76 * combined call message size exceeds that limit, the client must use
  77 * the read chunk list for this operation.
  78 */
  79static bool rpcrdma_args_inline(struct rpc_rqst *rqst)
  80{
  81	unsigned int callsize = RPCRDMA_HDRLEN_MIN + rqst->rq_snd_buf.len;
  82
  83	return callsize <= RPCRDMA_INLINE_WRITE_THRESHOLD(rqst);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  84}
  85
  86/* The client can't know how large the actual reply will be. Thus it
  87 * plans for the largest possible reply for that particular ULP
  88 * operation. If the maximum combined reply message size exceeds that
  89 * limit, the client must provide a write list or a reply chunk for
  90 * this request.
  91 */
  92static bool rpcrdma_results_inline(struct rpc_rqst *rqst)
  93{
  94	unsigned int repsize = RPCRDMA_HDRLEN_MIN + rqst->rq_rcv_buf.buflen;
  95
  96	return repsize <= RPCRDMA_INLINE_READ_THRESHOLD(rqst);
 
 
 
 
 
 
 
 
 
 
 
  97}
  98
  99static int
 100rpcrdma_tail_pullup(struct xdr_buf *buf)
 101{
 102	size_t tlen = buf->tail[0].iov_len;
 103	size_t skip = tlen & 3;
 104
 105	/* Do not include the tail if it is only an XDR pad */
 106	if (tlen < 4)
 107		return 0;
 
 
 
 108
 109	/* xdr_write_pages() adds a pad at the beginning of the tail
 110	 * if the content in "buf->pages" is unaligned. Force the
 111	 * tail's actual content to land at the next XDR position
 112	 * after the head instead.
 113	 */
 114	if (skip) {
 115		unsigned char *src, *dst;
 116		unsigned int count;
 
 
 
 
 
 117
 118		src = buf->tail[0].iov_base;
 119		dst = buf->head[0].iov_base;
 120		dst += buf->head[0].iov_len;
 121
 122		src += skip;
 123		tlen -= skip;
 
 
 
 
 
 
 
 
 
 
 124
 125		dprintk("RPC:       %s: skip=%zu, memmove(%p, %p, %zu)\n",
 126			__func__, skip, dst, src, tlen);
 127
 128		for (count = tlen; count; count--)
 129			*dst++ = *src++;
 130	}
 
 
 
 
 
 
 
 131
 132	return tlen;
 133}
 134
 135/* Split "vec" on page boundaries into segments. FMR registers pages,
 136 * not a byte range. Other modes coalesce these segments into a single
 137 * MR when they can.
 138 */
 139static int
 140rpcrdma_convert_kvec(struct kvec *vec, struct rpcrdma_mr_seg *seg,
 141		     int n, int nsegs)
 142{
 143	size_t page_offset;
 144	u32 remaining;
 145	char *base;
 146
 147	base = vec->iov_base;
 148	page_offset = offset_in_page(base);
 149	remaining = vec->iov_len;
 150	while (remaining && n < nsegs) {
 151		seg[n].mr_page = NULL;
 152		seg[n].mr_offset = base;
 153		seg[n].mr_len = min_t(u32, PAGE_SIZE - page_offset, remaining);
 154		remaining -= seg[n].mr_len;
 155		base += seg[n].mr_len;
 156		++n;
 157		page_offset = 0;
 158	}
 159	return n;
 160}
 161
 162/*
 163 * Chunk assembly from upper layer xdr_buf.
 164 *
 165 * Prepare the passed-in xdr_buf into representation as RPC/RDMA chunk
 166 * elements. Segments are then coalesced when registered, if possible
 167 * within the selected memreg mode.
 168 *
 169 * Returns positive number of segments converted, or a negative errno.
 170 */
 171
 172static int
 173rpcrdma_convert_iovs(struct xdr_buf *xdrbuf, unsigned int pos,
 174	enum rpcrdma_chunktype type, struct rpcrdma_mr_seg *seg, int nsegs)
 
 175{
 176	int len, n = 0, p;
 177	int page_base;
 178	struct page **ppages;
 179
 
 180	if (pos == 0) {
 181		n = rpcrdma_convert_kvec(&xdrbuf->head[0], seg, n, nsegs);
 182		if (n == nsegs)
 183			return -EIO;
 184	}
 185
 186	len = xdrbuf->page_len;
 187	ppages = xdrbuf->pages + (xdrbuf->page_base >> PAGE_SHIFT);
 188	page_base = xdrbuf->page_base & ~PAGE_MASK;
 189	p = 0;
 190	while (len && n < nsegs) {
 191		if (!ppages[p]) {
 192			/* alloc the pagelist for receiving buffer */
 193			ppages[p] = alloc_page(GFP_ATOMIC);
 194			if (!ppages[p])
 195				return -ENOMEM;
 196		}
 197		seg[n].mr_page = ppages[p];
 198		seg[n].mr_offset = (void *)(unsigned long) page_base;
 199		seg[n].mr_len = min_t(u32, PAGE_SIZE - page_base, len);
 200		if (seg[n].mr_len > PAGE_SIZE)
 201			return -EIO;
 202		len -= seg[n].mr_len;
 203		++n;
 204		++p;
 205		page_base = 0;	/* page offset only applies to first page */
 206	}
 207
 208	/* Message overflows the seg array */
 209	if (len && n == nsegs)
 210		return -EIO;
 
 
 
 
 
 
 211
 212	/* When encoding the read list, the tail is always sent inline */
 213	if (type == rpcrdma_readch)
 
 
 
 
 214		return n;
 215
 216	if (xdrbuf->tail[0].iov_len) {
 217		/* the rpcrdma protocol allows us to omit any trailing
 218		 * xdr pad bytes, saving the server an RDMA operation. */
 219		if (xdrbuf->tail[0].iov_len < 4 && xprt_rdma_pad_optimize)
 220			return n;
 221		n = rpcrdma_convert_kvec(&xdrbuf->tail[0], seg, n, nsegs);
 222		if (n == nsegs)
 223			return -EIO;
 224	}
 225
 226	return n;
 
 
 
 
 227}
 228
 229/*
 230 * Create read/write chunk lists, and reply chunks, for RDMA
 231 *
 232 *   Assume check against THRESHOLD has been done, and chunks are required.
 233 *   Assume only encoding one list entry for read|write chunks. The NFSv3
 234 *     protocol is simple enough to allow this as it only has a single "bulk
 235 *     result" in each procedure - complicated NFSv4 COMPOUNDs are not. (The
 236 *     RDMA/Sessions NFSv4 proposal addresses this for future v4 revs.)
 237 *
 238 * When used for a single reply chunk (which is a special write
 239 * chunk used for the entire reply, rather than just the data), it
 240 * is used primarily for READDIR and READLINK which would otherwise
 241 * be severely size-limited by a small rdma inline read max. The server
 242 * response will come back as an RDMA Write, followed by a message
 243 * of type RDMA_NOMSG carrying the xid and length. As a result, reply
 244 * chunks do not provide data alignment, however they do not require
 245 * "fixup" (moving the response to the upper layer buffer) either.
 246 *
 247 * Encoding key for single-list chunks (HLOO = Handle32 Length32 Offset64):
 248 *
 249 *  Read chunklist (a linked list):
 250 *   N elements, position P (same P for all chunks of same arg!):
 251 *    1 - PHLOO - 1 - PHLOO - ... - 1 - PHLOO - 0
 252 *
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 253 *  Write chunklist (a list of (one) counted array):
 254 *   N elements:
 255 *    1 - N - HLOO - HLOO - ... - HLOO - 0
 256 *
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 257 *  Reply chunk (a counted array):
 258 *   N elements:
 259 *    1 - N - HLOO - HLOO - ... - HLOO
 260 *
 261 * Returns positive RPC/RDMA header size, or negative errno.
 
 262 */
 263
 264static ssize_t
 265rpcrdma_create_chunks(struct rpc_rqst *rqst, struct xdr_buf *target,
 266		struct rpcrdma_msg *headerp, enum rpcrdma_chunktype type)
 267{
 268	struct rpcrdma_req *req = rpcr_to_rdmar(rqst);
 269	struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(rqst->rq_xprt);
 270	int n, nsegs, nchunks = 0;
 271	unsigned int pos;
 272	struct rpcrdma_mr_seg *seg = req->rl_segments;
 273	struct rpcrdma_read_chunk *cur_rchunk = NULL;
 274	struct rpcrdma_write_array *warray = NULL;
 275	struct rpcrdma_write_chunk *cur_wchunk = NULL;
 276	__be32 *iptr = headerp->rm_body.rm_chunks;
 277	int (*map)(struct rpcrdma_xprt *, struct rpcrdma_mr_seg *, int, bool);
 278
 279	if (type == rpcrdma_readch || type == rpcrdma_areadch) {
 280		/* a read chunk - server will RDMA Read our memory */
 281		cur_rchunk = (struct rpcrdma_read_chunk *) iptr;
 282	} else {
 283		/* a write or reply chunk - server will RDMA Write our memory */
 284		*iptr++ = xdr_zero;	/* encode a NULL read chunk list */
 285		if (type == rpcrdma_replych)
 286			*iptr++ = xdr_zero;	/* a NULL write chunk list */
 287		warray = (struct rpcrdma_write_array *) iptr;
 288		cur_wchunk = (struct rpcrdma_write_chunk *) (warray + 1);
 289	}
 290
 291	if (type == rpcrdma_replych || type == rpcrdma_areadch)
 292		pos = 0;
 293	else
 294		pos = target->head[0].iov_len;
 295
 296	nsegs = rpcrdma_convert_iovs(target, pos, type, seg, RPCRDMA_MAX_SEGS);
 297	if (nsegs < 0)
 298		return nsegs;
 
 
 
 299
 300	map = r_xprt->rx_ia.ri_ops->ro_map;
 301	do {
 302		n = map(r_xprt, seg, nsegs, cur_wchunk != NULL);
 303		if (n <= 0)
 304			goto out;
 305		if (cur_rchunk) {	/* read */
 306			cur_rchunk->rc_discrim = xdr_one;
 307			/* all read chunks have the same "position" */
 308			cur_rchunk->rc_position = cpu_to_be32(pos);
 309			cur_rchunk->rc_target.rs_handle =
 310						cpu_to_be32(seg->mr_rkey);
 311			cur_rchunk->rc_target.rs_length =
 312						cpu_to_be32(seg->mr_len);
 313			xdr_encode_hyper(
 314					(__be32 *)&cur_rchunk->rc_target.rs_offset,
 315					seg->mr_base);
 316			dprintk("RPC:       %s: read chunk "
 317				"elem %d@0x%llx:0x%x pos %u (%s)\n", __func__,
 318				seg->mr_len, (unsigned long long)seg->mr_base,
 319				seg->mr_rkey, pos, n < nsegs ? "more" : "last");
 320			cur_rchunk++;
 321			r_xprt->rx_stats.read_chunk_count++;
 322		} else {		/* write/reply */
 323			cur_wchunk->wc_target.rs_handle =
 324						cpu_to_be32(seg->mr_rkey);
 325			cur_wchunk->wc_target.rs_length =
 326						cpu_to_be32(seg->mr_len);
 327			xdr_encode_hyper(
 328					(__be32 *)&cur_wchunk->wc_target.rs_offset,
 329					seg->mr_base);
 330			dprintk("RPC:       %s: %s chunk "
 331				"elem %d@0x%llx:0x%x (%s)\n", __func__,
 332				(type == rpcrdma_replych) ? "reply" : "write",
 333				seg->mr_len, (unsigned long long)seg->mr_base,
 334				seg->mr_rkey, n < nsegs ? "more" : "last");
 335			cur_wchunk++;
 336			if (type == rpcrdma_replych)
 337				r_xprt->rx_stats.reply_chunk_count++;
 338			else
 339				r_xprt->rx_stats.write_chunk_count++;
 340			r_xprt->rx_stats.total_rdma_request += seg->mr_len;
 341		}
 342		nchunks++;
 343		seg   += n;
 344		nsegs -= n;
 345	} while (nsegs);
 346
 347	/* success. all failures return above */
 348	req->rl_nchunks = nchunks;
 349
 350	/*
 351	 * finish off header. If write, marshal discrim and nchunks.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 352	 */
 353	if (cur_rchunk) {
 354		iptr = (__be32 *) cur_rchunk;
 355		*iptr++ = xdr_zero;	/* finish the read chunk list */
 356		*iptr++ = xdr_zero;	/* encode a NULL write chunk list */
 357		*iptr++ = xdr_zero;	/* encode a NULL reply chunk */
 358	} else {
 359		warray->wc_discrim = xdr_one;
 360		warray->wc_nchunks = cpu_to_be32(nchunks);
 361		iptr = (__be32 *) cur_wchunk;
 362		if (type == rpcrdma_writech) {
 363			*iptr++ = xdr_zero; /* finish the write chunk list */
 364			*iptr++ = xdr_zero; /* encode a NULL reply chunk */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 365		}
 366	}
 367
 368	/*
 369	 * Return header size.
 
 
 370	 */
 371	return (unsigned char *)iptr - (unsigned char *)headerp;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 372
 373out:
 374	for (pos = 0; nchunks--;)
 375		pos += r_xprt->rx_ia.ri_ops->ro_unmap(r_xprt,
 376						      &req->rl_segments[pos]);
 377	return n;
 
 
 
 
 
 
 378}
 379
 380/*
 381 * Copy write data inline.
 382 * This function is used for "small" requests. Data which is passed
 383 * to RPC via iovecs (or page list) is copied directly into the
 384 * pre-registered memory buffer for this request. For small amounts
 385 * of data, this is efficient. The cutoff value is tunable.
 386 */
 387static void rpcrdma_inline_pullup(struct rpc_rqst *rqst)
 388{
 389	int i, npages, curlen;
 390	int copy_len;
 391	unsigned char *srcp, *destp;
 392	struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(rqst->rq_xprt);
 393	int page_base;
 394	struct page **ppages;
 395
 396	destp = rqst->rq_svec[0].iov_base;
 397	curlen = rqst->rq_svec[0].iov_len;
 398	destp += curlen;
 399
 400	dprintk("RPC:       %s: destp 0x%p len %d hdrlen %d\n",
 401		__func__, destp, rqst->rq_slen, curlen);
 402
 403	copy_len = rqst->rq_snd_buf.page_len;
 404
 405	if (rqst->rq_snd_buf.tail[0].iov_len) {
 406		curlen = rqst->rq_snd_buf.tail[0].iov_len;
 407		if (destp + copy_len != rqst->rq_snd_buf.tail[0].iov_base) {
 408			memmove(destp + copy_len,
 409				rqst->rq_snd_buf.tail[0].iov_base, curlen);
 410			r_xprt->rx_stats.pullup_copy_count += curlen;
 411		}
 412		dprintk("RPC:       %s: tail destp 0x%p len %d\n",
 413			__func__, destp + copy_len, curlen);
 414		rqst->rq_svec[0].iov_len += curlen;
 415	}
 416	r_xprt->rx_stats.pullup_copy_count += copy_len;
 417
 418	page_base = rqst->rq_snd_buf.page_base;
 419	ppages = rqst->rq_snd_buf.pages + (page_base >> PAGE_SHIFT);
 420	page_base &= ~PAGE_MASK;
 421	npages = PAGE_ALIGN(page_base+copy_len) >> PAGE_SHIFT;
 422	for (i = 0; copy_len && i < npages; i++) {
 423		curlen = PAGE_SIZE - page_base;
 424		if (curlen > copy_len)
 425			curlen = copy_len;
 426		dprintk("RPC:       %s: page %d destp 0x%p len %d curlen %d\n",
 427			__func__, i, destp, copy_len, curlen);
 428		srcp = kmap_atomic(ppages[i]);
 429		memcpy(destp, srcp+page_base, curlen);
 430		kunmap_atomic(srcp);
 431		rqst->rq_svec[0].iov_len += curlen;
 432		destp += curlen;
 433		copy_len -= curlen;
 434		page_base = 0;
 435	}
 436	/* header now contains entire send message */
 
 
 
 
 437}
 438
 439/*
 440 * Marshal a request: the primary job of this routine is to choose
 441 * the transfer modes. See comments below.
 442 *
 443 * Uses multiple RDMA IOVs for a request:
 444 *  [0] -- RPC RDMA header, which uses memory from the *start* of the
 445 *         preregistered buffer that already holds the RPC data in
 446 *         its middle.
 447 *  [1] -- the RPC header/data, marshaled by RPC and the NFS protocol.
 448 *  [2] -- optional padding.
 449 *  [3] -- if padded, header only in [1] and data here.
 450 *
 451 * Returns zero on success, otherwise a negative errno.
 452 */
 453
 454int
 455rpcrdma_marshal_req(struct rpc_rqst *rqst)
 456{
 457	struct rpc_xprt *xprt = rqst->rq_xprt;
 458	struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
 459	struct rpcrdma_req *req = rpcr_to_rdmar(rqst);
 460	char *base;
 461	size_t rpclen;
 462	ssize_t hdrlen;
 463	enum rpcrdma_chunktype rtype, wtype;
 464	struct rpcrdma_msg *headerp;
 
 
 
 
 465
 466#if defined(CONFIG_SUNRPC_BACKCHANNEL)
 467	if (test_bit(RPC_BC_PA_IN_USE, &rqst->rq_bc_pa_state))
 468		return rpcrdma_bc_marshal_reply(rqst);
 469#endif
 470
 471	/*
 472	 * rpclen gets amount of data in first buffer, which is the
 473	 * pre-registered buffer.
 474	 */
 475	base = rqst->rq_svec[0].iov_base;
 476	rpclen = rqst->rq_svec[0].iov_len;
 477
 478	headerp = rdmab_to_msg(req->rl_rdmabuf);
 479	/* don't byte-swap XID, it's already done in request */
 480	headerp->rm_xid = rqst->rq_xid;
 481	headerp->rm_vers = rpcrdma_version;
 482	headerp->rm_credit = cpu_to_be32(r_xprt->rx_buf.rb_max_requests);
 483	headerp->rm_type = rdma_msg;
 484
 
 
 
 
 
 
 
 485	/*
 486	 * Chunks needed for results?
 487	 *
 488	 * o Read ops return data as write chunk(s), header as inline.
 489	 * o If the expected result is under the inline threshold, all ops
 490	 *   return as inline.
 
 
 491	 * o Large non-read ops return as a single reply chunk.
 492	 */
 493	if (rqst->rq_rcv_buf.flags & XDRBUF_READ)
 494		wtype = rpcrdma_writech;
 495	else if (rpcrdma_results_inline(rqst))
 496		wtype = rpcrdma_noch;
 
 
 497	else
 498		wtype = rpcrdma_replych;
 499
 500	/*
 501	 * Chunks needed for arguments?
 502	 *
 503	 * o If the total request is under the inline threshold, all ops
 504	 *   are sent as inline.
 505	 * o Large write ops transmit data as read chunk(s), header as
 506	 *   inline.
 507	 * o Large non-write ops are sent with the entire message as a
 508	 *   single read chunk (protocol 0-position special case).
 509	 *
 510	 * This assumes that the upper layer does not present a request
 511	 * that both has a data payload, and whose non-data arguments
 512	 * by themselves are larger than the inline threshold.
 513	 */
 514	if (rpcrdma_args_inline(rqst)) {
 515		rtype = rpcrdma_noch;
 516	} else if (rqst->rq_snd_buf.flags & XDRBUF_WRITE) {
 
 517		rtype = rpcrdma_readch;
 
 
 518	} else {
 519		r_xprt->rx_stats.nomsg_call_count++;
 520		headerp->rm_type = htonl(RDMA_NOMSG);
 521		rtype = rpcrdma_areadch;
 522		rpclen = 0;
 523	}
 524
 525	/* The following simplification is not true forever */
 526	if (rtype != rpcrdma_noch && wtype == rpcrdma_replych)
 527		wtype = rpcrdma_noch;
 528	if (rtype != rpcrdma_noch && wtype != rpcrdma_noch) {
 529		dprintk("RPC:       %s: cannot marshal multiple chunk lists\n",
 530			__func__);
 531		return -EIO;
 532	}
 533
 534	hdrlen = RPCRDMA_HDRLEN_MIN;
 535
 536	/*
 537	 * Pull up any extra send data into the preregistered buffer.
 538	 * When padding is in use and applies to the transfer, insert
 539	 * it and change the message type.
 
 
 
 
 
 
 540	 */
 541	if (rtype == rpcrdma_noch) {
 542
 543		rpcrdma_inline_pullup(rqst);
 544
 545		headerp->rm_body.rm_nochunks.rm_empty[0] = xdr_zero;
 546		headerp->rm_body.rm_nochunks.rm_empty[1] = xdr_zero;
 547		headerp->rm_body.rm_nochunks.rm_empty[2] = xdr_zero;
 548		/* new length after pullup */
 549		rpclen = rqst->rq_svec[0].iov_len;
 550	} else if (rtype == rpcrdma_readch)
 551		rpclen += rpcrdma_tail_pullup(&rqst->rq_snd_buf);
 552	if (rtype != rpcrdma_noch) {
 553		hdrlen = rpcrdma_create_chunks(rqst, &rqst->rq_snd_buf,
 554					       headerp, rtype);
 555		wtype = rtype;	/* simplify dprintk */
 556
 557	} else if (wtype != rpcrdma_noch) {
 558		hdrlen = rpcrdma_create_chunks(rqst, &rqst->rq_rcv_buf,
 559					       headerp, wtype);
 560	}
 561	if (hdrlen < 0)
 562		return hdrlen;
 563
 564	dprintk("RPC:       %s: %s: hdrlen %zd rpclen %zd"
 565		" headerp 0x%p base 0x%p lkey 0x%x\n",
 566		__func__, transfertypes[wtype], hdrlen, rpclen,
 567		headerp, base, rdmab_lkey(req->rl_rdmabuf));
 568
 569	/*
 570	 * initialize send_iov's - normally only two: rdma chunk header and
 571	 * single preregistered RPC header buffer, but if padding is present,
 572	 * then use a preregistered (and zeroed) pad buffer between the RPC
 573	 * header and any write data. In all non-rdma cases, any following
 574	 * data has been copied into the RPC header buffer.
 575	 */
 576	req->rl_send_iov[0].addr = rdmab_addr(req->rl_rdmabuf);
 577	req->rl_send_iov[0].length = hdrlen;
 578	req->rl_send_iov[0].lkey = rdmab_lkey(req->rl_rdmabuf);
 579
 580	req->rl_niovs = 1;
 581	if (rtype == rpcrdma_areadch)
 582		return 0;
 583
 584	req->rl_send_iov[1].addr = rdmab_addr(req->rl_sendbuf);
 585	req->rl_send_iov[1].length = rpclen;
 586	req->rl_send_iov[1].lkey = rdmab_lkey(req->rl_sendbuf);
 587
 588	req->rl_niovs = 2;
 589	return 0;
 
 
 
 
 590}
 591
 592/*
 593 * Chase down a received write or reply chunklist to get length
 594 * RDMA'd by server. See map at rpcrdma_create_chunks()! :-)
 595 */
 596static int
 597rpcrdma_count_chunks(struct rpcrdma_rep *rep, unsigned int max, int wrchunk, __be32 **iptrp)
 598{
 599	unsigned int i, total_len;
 600	struct rpcrdma_write_chunk *cur_wchunk;
 601	char *base = (char *)rdmab_to_msg(rep->rr_rdmabuf);
 602
 603	i = be32_to_cpu(**iptrp);
 604	if (i > max)
 605		return -1;
 606	cur_wchunk = (struct rpcrdma_write_chunk *) (*iptrp + 1);
 607	total_len = 0;
 608	while (i--) {
 609		struct rpcrdma_segment *seg = &cur_wchunk->wc_target;
 610		ifdebug(FACILITY) {
 611			u64 off;
 612			xdr_decode_hyper((__be32 *)&seg->rs_offset, &off);
 613			dprintk("RPC:       %s: chunk %d@0x%llx:0x%x\n",
 614				__func__,
 615				be32_to_cpu(seg->rs_length),
 616				(unsigned long long)off,
 617				be32_to_cpu(seg->rs_handle));
 618		}
 619		total_len += be32_to_cpu(seg->rs_length);
 620		++cur_wchunk;
 621	}
 622	/* check and adjust for properly terminated write chunk */
 623	if (wrchunk) {
 624		__be32 *w = (__be32 *) cur_wchunk;
 625		if (*w++ != xdr_zero)
 626			return -1;
 627		cur_wchunk = (struct rpcrdma_write_chunk *) w;
 628	}
 629	if ((char *)cur_wchunk > base + rep->rr_len)
 630		return -1;
 631
 632	*iptrp = (__be32 *) cur_wchunk;
 633	return total_len;
 634}
 635
 636/*
 637 * Scatter inline received data back into provided iov's.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 638 */
 639static void
 640rpcrdma_inline_fixup(struct rpc_rqst *rqst, char *srcp, int copy_len, int pad)
 641{
 642	int i, npages, curlen, olen;
 
 643	char *destp;
 644	struct page **ppages;
 645	int page_base;
 646
 
 
 
 
 
 
 
 
 
 647	curlen = rqst->rq_rcv_buf.head[0].iov_len;
 648	if (curlen > copy_len) {	/* write chunk header fixup */
 649		curlen = copy_len;
 650		rqst->rq_rcv_buf.head[0].iov_len = curlen;
 651	}
 652
 653	dprintk("RPC:       %s: srcp 0x%p len %d hdrlen %d\n",
 654		__func__, srcp, copy_len, curlen);
 655
 656	/* Shift pointer for first receive segment only */
 657	rqst->rq_rcv_buf.head[0].iov_base = srcp;
 658	srcp += curlen;
 659	copy_len -= curlen;
 660
 661	olen = copy_len;
 662	i = 0;
 663	rpcx_to_rdmax(rqst->rq_xprt)->rx_stats.fixup_copy_count += olen;
 664	page_base = rqst->rq_rcv_buf.page_base;
 665	ppages = rqst->rq_rcv_buf.pages + (page_base >> PAGE_SHIFT);
 666	page_base &= ~PAGE_MASK;
 667
 668	if (copy_len && rqst->rq_rcv_buf.page_len) {
 669		npages = PAGE_ALIGN(page_base +
 670			rqst->rq_rcv_buf.page_len) >> PAGE_SHIFT;
 671		for (; i < npages; i++) {
 
 
 
 
 672			curlen = PAGE_SIZE - page_base;
 673			if (curlen > copy_len)
 674				curlen = copy_len;
 
 675			dprintk("RPC:       %s: page %d"
 676				" srcp 0x%p len %d curlen %d\n",
 677				__func__, i, srcp, copy_len, curlen);
 678			destp = kmap_atomic(ppages[i]);
 679			memcpy(destp + page_base, srcp, curlen);
 680			flush_dcache_page(ppages[i]);
 681			kunmap_atomic(destp);
 682			srcp += curlen;
 683			copy_len -= curlen;
 684			if (copy_len == 0)
 
 
 685				break;
 686			page_base = 0;
 687		}
 688	}
 689
 690	if (copy_len && rqst->rq_rcv_buf.tail[0].iov_len) {
 691		curlen = copy_len;
 692		if (curlen > rqst->rq_rcv_buf.tail[0].iov_len)
 693			curlen = rqst->rq_rcv_buf.tail[0].iov_len;
 694		if (rqst->rq_rcv_buf.tail[0].iov_base != srcp)
 695			memmove(rqst->rq_rcv_buf.tail[0].iov_base, srcp, curlen);
 696		dprintk("RPC:       %s: tail srcp 0x%p len %d curlen %d\n",
 697			__func__, srcp, copy_len, curlen);
 698		rqst->rq_rcv_buf.tail[0].iov_len = curlen;
 699		copy_len -= curlen; ++i;
 700	} else
 701		rqst->rq_rcv_buf.tail[0].iov_len = 0;
 702
 703	if (pad) {
 704		/* implicit padding on terminal chunk */
 705		unsigned char *p = rqst->rq_rcv_buf.tail[0].iov_base;
 706		while (pad--)
 707			p[rqst->rq_rcv_buf.tail[0].iov_len++] = 0;
 708	}
 709
 710	if (copy_len)
 711		dprintk("RPC:       %s: %d bytes in"
 712			" %d extra segments (%d lost)\n",
 713			__func__, olen, i, copy_len);
 714
 715	/* TBD avoid a warning from call_decode() */
 716	rqst->rq_private_buf = rqst->rq_rcv_buf;
 717}
 718
 719void
 720rpcrdma_connect_worker(struct work_struct *work)
 721{
 722	struct rpcrdma_ep *ep =
 723		container_of(work, struct rpcrdma_ep, rep_connect_worker.work);
 724	struct rpcrdma_xprt *r_xprt =
 725		container_of(ep, struct rpcrdma_xprt, rx_ep);
 726	struct rpc_xprt *xprt = &r_xprt->rx_xprt;
 727
 728	spin_lock_bh(&xprt->transport_lock);
 729	if (++xprt->connect_cookie == 0)	/* maintain a reserved value */
 730		++xprt->connect_cookie;
 731	if (ep->rep_connected > 0) {
 732		if (!xprt_test_and_set_connected(xprt))
 733			xprt_wake_pending_tasks(xprt, 0);
 734	} else {
 735		if (xprt_test_and_clear_connected(xprt))
 736			xprt_wake_pending_tasks(xprt, -ENOTCONN);
 737	}
 738	spin_unlock_bh(&xprt->transport_lock);
 
 739}
 740
 741#if defined(CONFIG_SUNRPC_BACKCHANNEL)
 742/* By convention, backchannel calls arrive via rdma_msg type
 743 * messages, and never populate the chunk lists. This makes
 744 * the RPC/RDMA header small and fixed in size, so it is
 745 * straightforward to check the RPC header's direction field.
 746 */
 747static bool
 748rpcrdma_is_bcall(struct rpcrdma_msg *headerp)
 749{
 750	__be32 *p = (__be32 *)headerp;
 751
 752	if (headerp->rm_type != rdma_msg)
 753		return false;
 754	if (headerp->rm_body.rm_chunks[0] != xdr_zero)
 755		return false;
 756	if (headerp->rm_body.rm_chunks[1] != xdr_zero)
 757		return false;
 758	if (headerp->rm_body.rm_chunks[2] != xdr_zero)
 759		return false;
 760
 761	/* sanity */
 762	if (p[7] != headerp->rm_xid)
 763		return false;
 764	/* call direction */
 765	if (p[8] != cpu_to_be32(RPC_CALL))
 766		return false;
 767
 768	return true;
 769}
 770#endif	/* CONFIG_SUNRPC_BACKCHANNEL */
 771
 772/*
 773 * This function is called when an async event is posted to
 774 * the connection which changes the connection state. All it
 775 * does at this point is mark the connection up/down, the rpc
 776 * timers do the rest.
 777 */
 778void
 779rpcrdma_conn_func(struct rpcrdma_ep *ep)
 780{
 781	schedule_delayed_work(&ep->rep_connect_worker, 0);
 782}
 783
 784/* Process received RPC/RDMA messages.
 785 *
 786 * Errors must result in the RPC task either being awakened, or
 787 * allowed to timeout, to discover the errors at that time.
 788 */
 789void
 790rpcrdma_reply_handler(struct rpcrdma_rep *rep)
 791{
 
 
 792	struct rpcrdma_msg *headerp;
 793	struct rpcrdma_req *req;
 794	struct rpc_rqst *rqst;
 795	struct rpcrdma_xprt *r_xprt = rep->rr_rxprt;
 796	struct rpc_xprt *xprt = &r_xprt->rx_xprt;
 797	__be32 *iptr;
 798	int rdmalen, status, rmerr;
 799	unsigned long cwnd;
 800
 801	dprintk("RPC:       %s: incoming rep %p\n", __func__, rep);
 802
 803	if (rep->rr_len == RPCRDMA_BAD_LEN)
 804		goto out_badstatus;
 805	if (rep->rr_len < RPCRDMA_HDRLEN_ERR)
 806		goto out_shortreply;
 807
 808	headerp = rdmab_to_msg(rep->rr_rdmabuf);
 809#if defined(CONFIG_SUNRPC_BACKCHANNEL)
 810	if (rpcrdma_is_bcall(headerp))
 811		goto out_bcall;
 812#endif
 813
 814	/* Match incoming rpcrdma_rep to an rpcrdma_req to
 815	 * get context for handling any incoming chunks.
 816	 */
 817	spin_lock_bh(&xprt->transport_lock);
 818	rqst = xprt_lookup_rqst(xprt, headerp->rm_xid);
 819	if (!rqst)
 820		goto out_nomatch;
 821
 822	req = rpcr_to_rdmar(rqst);
 823	if (req->rl_reply)
 824		goto out_duplicate;
 825
 826	/* Sanity checking has passed. We are now committed
 827	 * to complete this transaction.
 828	 */
 829	list_del_init(&rqst->rq_list);
 830	spin_unlock_bh(&xprt->transport_lock);
 831	dprintk("RPC:       %s: reply %p completes request %p (xid 0x%08x)\n",
 832		__func__, rep, req, be32_to_cpu(headerp->rm_xid));
 833
 834	/* from here on, the reply is no longer an orphan */
 835	req->rl_reply = rep;
 836	xprt->reestablish_timeout = 0;
 837
 838	if (headerp->rm_vers != rpcrdma_version)
 839		goto out_badversion;
 840
 841	/* check for expected message types */
 842	/* The order of some of these tests is important. */
 843	switch (headerp->rm_type) {
 844	case rdma_msg:
 845		/* never expect read chunks */
 846		/* never expect reply chunks (two ways to check) */
 847		/* never expect write chunks without having offered RDMA */
 848		if (headerp->rm_body.rm_chunks[0] != xdr_zero ||
 849		    (headerp->rm_body.rm_chunks[1] == xdr_zero &&
 850		     headerp->rm_body.rm_chunks[2] != xdr_zero) ||
 851		    (headerp->rm_body.rm_chunks[1] != xdr_zero &&
 852		     req->rl_nchunks == 0))
 853			goto badheader;
 854		if (headerp->rm_body.rm_chunks[1] != xdr_zero) {
 855			/* count any expected write chunks in read reply */
 856			/* start at write chunk array count */
 857			iptr = &headerp->rm_body.rm_chunks[2];
 858			rdmalen = rpcrdma_count_chunks(rep,
 859						req->rl_nchunks, 1, &iptr);
 860			/* check for validity, and no reply chunk after */
 861			if (rdmalen < 0 || *iptr++ != xdr_zero)
 862				goto badheader;
 863			rep->rr_len -=
 864			    ((unsigned char *)iptr - (unsigned char *)headerp);
 865			status = rep->rr_len + rdmalen;
 866			r_xprt->rx_stats.total_rdma_reply += rdmalen;
 867			/* special case - last chunk may omit padding */
 868			if (rdmalen &= 3) {
 869				rdmalen = 4 - rdmalen;
 870				status += rdmalen;
 871			}
 872		} else {
 873			/* else ordinary inline */
 874			rdmalen = 0;
 875			iptr = (__be32 *)((unsigned char *)headerp +
 876							RPCRDMA_HDRLEN_MIN);
 877			rep->rr_len -= RPCRDMA_HDRLEN_MIN;
 878			status = rep->rr_len;
 879		}
 880		/* Fix up the rpc results for upper layer */
 881		rpcrdma_inline_fixup(rqst, (char *)iptr, rep->rr_len, rdmalen);
 
 
 882		break;
 883
 884	case rdma_nomsg:
 885		/* never expect read or write chunks, always reply chunks */
 886		if (headerp->rm_body.rm_chunks[0] != xdr_zero ||
 887		    headerp->rm_body.rm_chunks[1] != xdr_zero ||
 888		    headerp->rm_body.rm_chunks[2] != xdr_one ||
 889		    req->rl_nchunks == 0)
 890			goto badheader;
 891		iptr = (__be32 *)((unsigned char *)headerp +
 892							RPCRDMA_HDRLEN_MIN);
 893		rdmalen = rpcrdma_count_chunks(rep, req->rl_nchunks, 0, &iptr);
 894		if (rdmalen < 0)
 895			goto badheader;
 896		r_xprt->rx_stats.total_rdma_reply += rdmalen;
 897		/* Reply chunk buffer already is the reply vector - no fixup. */
 898		status = rdmalen;
 899		break;
 900
 901	case rdma_error:
 902		goto out_rdmaerr;
 903
 904badheader:
 905	default:
 906		dprintk("%s: invalid rpcrdma reply header (type %d):"
 907				" chunks[012] == %d %d %d"
 908				" expected chunks <= %d\n",
 909				__func__, be32_to_cpu(headerp->rm_type),
 910				headerp->rm_body.rm_chunks[0],
 911				headerp->rm_body.rm_chunks[1],
 912				headerp->rm_body.rm_chunks[2],
 913				req->rl_nchunks);
 914		status = -EIO;
 915		r_xprt->rx_stats.bad_reply_count++;
 916		break;
 917	}
 918
 919out:
 920	/* Invalidate and flush the data payloads before waking the
 921	 * waiting application. This guarantees the memory region is
 922	 * properly fenced from the server before the application
 923	 * accesses the data. It also ensures proper send flow
 924	 * control: waking the next RPC waits until this RPC has
 925	 * relinquished all its Send Queue entries.
 926	 */
 927	if (req->rl_nchunks)
 928		r_xprt->rx_ia.ri_ops->ro_unmap_sync(r_xprt, req);
 929
 930	spin_lock_bh(&xprt->transport_lock);
 931	cwnd = xprt->cwnd;
 932	xprt->cwnd = atomic_read(&r_xprt->rx_buf.rb_credits) << RPC_CWNDSHIFT;
 933	if (xprt->cwnd > cwnd)
 934		xprt_release_rqst_cong(rqst->rq_task);
 935
 936	xprt_complete_rqst(rqst->rq_task, status);
 937	spin_unlock_bh(&xprt->transport_lock);
 938	dprintk("RPC:       %s: xprt_complete_rqst(0x%p, 0x%p, %d)\n",
 939			__func__, xprt, rqst, status);
 940	return;
 941
 942out_badstatus:
 943	rpcrdma_recv_buffer_put(rep);
 944	if (r_xprt->rx_ep.rep_connected == 1) {
 945		r_xprt->rx_ep.rep_connected = -EIO;
 946		rpcrdma_conn_func(&r_xprt->rx_ep);
 947	}
 948	return;
 949
 950#if defined(CONFIG_SUNRPC_BACKCHANNEL)
 951out_bcall:
 952	rpcrdma_bc_receive_call(r_xprt, rep);
 953	return;
 954#endif
 955
 956/* If the incoming reply terminated a pending RPC, the next
 957 * RPC call will post a replacement receive buffer as it is
 958 * being marshaled.
 959 */
 960out_badversion:
 961	dprintk("RPC:       %s: invalid version %d\n",
 962		__func__, be32_to_cpu(headerp->rm_vers));
 963	status = -EIO;
 964	r_xprt->rx_stats.bad_reply_count++;
 965	goto out;
 966
 967out_rdmaerr:
 968	rmerr = be32_to_cpu(headerp->rm_body.rm_error.rm_err);
 969	switch (rmerr) {
 970	case ERR_VERS:
 971		pr_err("%s: server reports header version error (%u-%u)\n",
 972		       __func__,
 973		       be32_to_cpu(headerp->rm_body.rm_error.rm_vers_low),
 974		       be32_to_cpu(headerp->rm_body.rm_error.rm_vers_high));
 975		break;
 976	case ERR_CHUNK:
 977		pr_err("%s: server reports header decoding error\n",
 978		       __func__);
 979		break;
 980	default:
 981		pr_err("%s: server reports unknown error %d\n",
 982		       __func__, rmerr);
 983	}
 984	status = -EREMOTEIO;
 985	r_xprt->rx_stats.bad_reply_count++;
 986	goto out;
 987
 988/* If no pending RPC transaction was matched, post a replacement
 989 * receive buffer before returning.
 990 */
 991out_shortreply:
 992	dprintk("RPC:       %s: short/invalid reply\n", __func__);
 993	goto repost;
 994
 995out_nomatch:
 996	spin_unlock_bh(&xprt->transport_lock);
 997	dprintk("RPC:       %s: no match for incoming xid 0x%08x len %d\n",
 998		__func__, be32_to_cpu(headerp->rm_xid),
 999		rep->rr_len);
1000	goto repost;
1001
1002out_duplicate:
1003	spin_unlock_bh(&xprt->transport_lock);
1004	dprintk("RPC:       %s: "
1005		"duplicate reply %p to RPC request %p: xid 0x%08x\n",
1006		__func__, rep, req, be32_to_cpu(headerp->rm_xid));
1007
1008repost:
1009	r_xprt->rx_stats.bad_reply_count++;
1010	if (rpcrdma_ep_post_recv(&r_xprt->rx_ia, &r_xprt->rx_ep, rep))
1011		rpcrdma_recv_buffer_put(rep);
1012}
v4.10.11
   1/*
   2 * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved.
   3 *
   4 * This software is available to you under a choice of one of two
   5 * licenses.  You may choose to be licensed under the terms of the GNU
   6 * General Public License (GPL) Version 2, available from the file
   7 * COPYING in the main directory of this source tree, or the BSD-type
   8 * license below:
   9 *
  10 * Redistribution and use in source and binary forms, with or without
  11 * modification, are permitted provided that the following conditions
  12 * are met:
  13 *
  14 *      Redistributions of source code must retain the above copyright
  15 *      notice, this list of conditions and the following disclaimer.
  16 *
  17 *      Redistributions in binary form must reproduce the above
  18 *      copyright notice, this list of conditions and the following
  19 *      disclaimer in the documentation and/or other materials provided
  20 *      with the distribution.
  21 *
  22 *      Neither the name of the Network Appliance, Inc. nor the names of
  23 *      its contributors may be used to endorse or promote products
  24 *      derived from this software without specific prior written
  25 *      permission.
  26 *
  27 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  28 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  29 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  30 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  31 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  32 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  33 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  34 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  35 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  36 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  37 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  38 */
  39
  40/*
  41 * rpc_rdma.c
  42 *
  43 * This file contains the guts of the RPC RDMA protocol, and
  44 * does marshaling/unmarshaling, etc. It is also where interfacing
  45 * to the Linux RPC framework lives.
  46 */
  47
  48#include "xprt_rdma.h"
  49
  50#include <linux/highmem.h>
  51
  52#if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
  53# define RPCDBG_FACILITY	RPCDBG_TRANS
  54#endif
  55
 
 
 
 
 
 
 
 
 
  56static const char transfertypes[][12] = {
  57	"inline",	/* no chunks */
  58	"read list",	/* some argument via rdma read */
  59	"*read list",	/* entire request via rdma read */
  60	"write list",	/* some result via rdma write */
  61	"reply chunk"	/* entire reply via rdma write */
  62};
 
  63
  64/* Returns size of largest RPC-over-RDMA header in a Call message
  65 *
  66 * The largest Call header contains a full-size Read list and a
  67 * minimal Reply chunk.
  68 */
  69static unsigned int rpcrdma_max_call_header_size(unsigned int maxsegs)
  70{
  71	unsigned int size;
  72
  73	/* Fixed header fields and list discriminators */
  74	size = RPCRDMA_HDRLEN_MIN;
  75
  76	/* Maximum Read list size */
  77	maxsegs += 2;	/* segment for head and tail buffers */
  78	size = maxsegs * sizeof(struct rpcrdma_read_chunk);
  79
  80	/* Minimal Read chunk size */
  81	size += sizeof(__be32);	/* segment count */
  82	size += sizeof(struct rpcrdma_segment);
  83	size += sizeof(__be32);	/* list discriminator */
  84
  85	dprintk("RPC:       %s: max call header size = %u\n",
  86		__func__, size);
  87	return size;
  88}
  89
  90/* Returns size of largest RPC-over-RDMA header in a Reply message
  91 *
  92 * There is only one Write list or one Reply chunk per Reply
  93 * message.  The larger list is the Write list.
 
  94 */
  95static unsigned int rpcrdma_max_reply_header_size(unsigned int maxsegs)
  96{
  97	unsigned int size;
  98
  99	/* Fixed header fields and list discriminators */
 100	size = RPCRDMA_HDRLEN_MIN;
 101
 102	/* Maximum Write list size */
 103	maxsegs += 2;	/* segment for head and tail buffers */
 104	size = sizeof(__be32);		/* segment count */
 105	size += maxsegs * sizeof(struct rpcrdma_segment);
 106	size += sizeof(__be32);	/* list discriminator */
 107
 108	dprintk("RPC:       %s: max reply header size = %u\n",
 109		__func__, size);
 110	return size;
 111}
 112
 113void rpcrdma_set_max_header_sizes(struct rpcrdma_xprt *r_xprt)
 
 114{
 115	struct rpcrdma_create_data_internal *cdata = &r_xprt->rx_data;
 116	struct rpcrdma_ia *ia = &r_xprt->rx_ia;
 117	unsigned int maxsegs = ia->ri_max_segs;
 118
 119	ia->ri_max_inline_write = cdata->inline_wsize -
 120				  rpcrdma_max_call_header_size(maxsegs);
 121	ia->ri_max_inline_read = cdata->inline_rsize -
 122				 rpcrdma_max_reply_header_size(maxsegs);
 123}
 124
 125/* The client can send a request inline as long as the RPCRDMA header
 126 * plus the RPC call fit under the transport's inline limit. If the
 127 * combined call message size exceeds that limit, the client must use
 128 * a Read chunk for this operation.
 129 *
 130 * A Read chunk is also required if sending the RPC call inline would
 131 * exceed this device's max_sge limit.
 132 */
 133static bool rpcrdma_args_inline(struct rpcrdma_xprt *r_xprt,
 134				struct rpc_rqst *rqst)
 135{
 136	struct xdr_buf *xdr = &rqst->rq_snd_buf;
 137	unsigned int count, remaining, offset;
 138
 139	if (xdr->len > r_xprt->rx_ia.ri_max_inline_write)
 140		return false;
 
 141
 142	if (xdr->page_len) {
 143		remaining = xdr->page_len;
 144		offset = xdr->page_base & ~PAGE_MASK;
 145		count = 0;
 146		while (remaining) {
 147			remaining -= min_t(unsigned int,
 148					   PAGE_SIZE - offset, remaining);
 149			offset = 0;
 150			if (++count > r_xprt->rx_ia.ri_max_send_sges)
 151				return false;
 152		}
 153	}
 154
 155	return true;
 156}
 157
 158/* The client can't know how large the actual reply will be. Thus it
 159 * plans for the largest possible reply for that particular ULP
 160 * operation. If the maximum combined reply message size exceeds that
 161 * limit, the client must provide a write list or a reply chunk for
 162 * this request.
 163 */
 164static bool rpcrdma_results_inline(struct rpcrdma_xprt *r_xprt,
 165				   struct rpc_rqst *rqst)
 166{
 167	struct rpcrdma_ia *ia = &r_xprt->rx_ia;
 168
 169	return rqst->rq_rcv_buf.buflen <= ia->ri_max_inline_read;
 170}
 171
 172/* Split "vec" on page boundaries into segments. FMR registers pages,
 173 * not a byte range. Other modes coalesce these segments into a single
 174 * MR when they can.
 175 */
 176static int
 177rpcrdma_convert_kvec(struct kvec *vec, struct rpcrdma_mr_seg *seg, int n)
 
 178{
 179	size_t page_offset;
 180	u32 remaining;
 181	char *base;
 182
 183	base = vec->iov_base;
 184	page_offset = offset_in_page(base);
 185	remaining = vec->iov_len;
 186	while (remaining && n < RPCRDMA_MAX_SEGS) {
 187		seg[n].mr_page = NULL;
 188		seg[n].mr_offset = base;
 189		seg[n].mr_len = min_t(u32, PAGE_SIZE - page_offset, remaining);
 190		remaining -= seg[n].mr_len;
 191		base += seg[n].mr_len;
 192		++n;
 193		page_offset = 0;
 194	}
 195	return n;
 196}
 197
 198/*
 199 * Chunk assembly from upper layer xdr_buf.
 200 *
 201 * Prepare the passed-in xdr_buf into representation as RPC/RDMA chunk
 202 * elements. Segments are then coalesced when registered, if possible
 203 * within the selected memreg mode.
 204 *
 205 * Returns positive number of segments converted, or a negative errno.
 206 */
 207
 208static int
 209rpcrdma_convert_iovs(struct rpcrdma_xprt *r_xprt, struct xdr_buf *xdrbuf,
 210		     unsigned int pos, enum rpcrdma_chunktype type,
 211		     struct rpcrdma_mr_seg *seg)
 212{
 213	int len, n, p, page_base;
 
 214	struct page **ppages;
 215
 216	n = 0;
 217	if (pos == 0) {
 218		n = rpcrdma_convert_kvec(&xdrbuf->head[0], seg, n);
 219		if (n == RPCRDMA_MAX_SEGS)
 220			goto out_overflow;
 221	}
 222
 223	len = xdrbuf->page_len;
 224	ppages = xdrbuf->pages + (xdrbuf->page_base >> PAGE_SHIFT);
 225	page_base = xdrbuf->page_base & ~PAGE_MASK;
 226	p = 0;
 227	while (len && n < RPCRDMA_MAX_SEGS) {
 228		if (!ppages[p]) {
 229			/* alloc the pagelist for receiving buffer */
 230			ppages[p] = alloc_page(GFP_ATOMIC);
 231			if (!ppages[p])
 232				return -EAGAIN;
 233		}
 234		seg[n].mr_page = ppages[p];
 235		seg[n].mr_offset = (void *)(unsigned long) page_base;
 236		seg[n].mr_len = min_t(u32, PAGE_SIZE - page_base, len);
 237		if (seg[n].mr_len > PAGE_SIZE)
 238			goto out_overflow;
 239		len -= seg[n].mr_len;
 240		++n;
 241		++p;
 242		page_base = 0;	/* page offset only applies to first page */
 243	}
 244
 245	/* Message overflows the seg array */
 246	if (len && n == RPCRDMA_MAX_SEGS)
 247		goto out_overflow;
 248
 249	/* When encoding a Read chunk, the tail iovec contains an
 250	 * XDR pad and may be omitted.
 251	 */
 252	if (type == rpcrdma_readch && r_xprt->rx_ia.ri_implicit_roundup)
 253		return n;
 254
 255	/* When encoding a Write chunk, some servers need to see an
 256	 * extra segment for non-XDR-aligned Write chunks. The upper
 257	 * layer provides space in the tail iovec that may be used
 258	 * for this purpose.
 259	 */
 260	if (type == rpcrdma_writech && r_xprt->rx_ia.ri_implicit_roundup)
 261		return n;
 262
 263	if (xdrbuf->tail[0].iov_len) {
 264		n = rpcrdma_convert_kvec(&xdrbuf->tail[0], seg, n);
 265		if (n == RPCRDMA_MAX_SEGS)
 266			goto out_overflow;
 
 
 
 
 267	}
 268
 269	return n;
 270
 271out_overflow:
 272	pr_err("rpcrdma: segment array overflow\n");
 273	return -EIO;
 274}
 275
 276static inline __be32 *
 277xdr_encode_rdma_segment(__be32 *iptr, struct rpcrdma_mw *mw)
 278{
 279	*iptr++ = cpu_to_be32(mw->mw_handle);
 280	*iptr++ = cpu_to_be32(mw->mw_length);
 281	return xdr_encode_hyper(iptr, mw->mw_offset);
 282}
 283
 284/* XDR-encode the Read list. Supports encoding a list of read
 285 * segments that belong to a single read chunk.
 
 
 
 
 
 
 
 286 *
 287 * Encoding key for single-list chunks (HLOO = Handle32 Length32 Offset64):
 288 *
 289 *  Read chunklist (a linked list):
 290 *   N elements, position P (same P for all chunks of same arg!):
 291 *    1 - PHLOO - 1 - PHLOO - ... - 1 - PHLOO - 0
 292 *
 293 * Returns a pointer to the XDR word in the RDMA header following
 294 * the end of the Read list, or an error pointer.
 295 */
 296static __be32 *
 297rpcrdma_encode_read_list(struct rpcrdma_xprt *r_xprt,
 298			 struct rpcrdma_req *req, struct rpc_rqst *rqst,
 299			 __be32 *iptr, enum rpcrdma_chunktype rtype)
 300{
 301	struct rpcrdma_mr_seg *seg;
 302	struct rpcrdma_mw *mw;
 303	unsigned int pos;
 304	int n, nsegs;
 305
 306	if (rtype == rpcrdma_noch) {
 307		*iptr++ = xdr_zero;	/* item not present */
 308		return iptr;
 309	}
 310
 311	pos = rqst->rq_snd_buf.head[0].iov_len;
 312	if (rtype == rpcrdma_areadch)
 313		pos = 0;
 314	seg = req->rl_segments;
 315	nsegs = rpcrdma_convert_iovs(r_xprt, &rqst->rq_snd_buf, pos,
 316				     rtype, seg);
 317	if (nsegs < 0)
 318		return ERR_PTR(nsegs);
 319
 320	do {
 321		n = r_xprt->rx_ia.ri_ops->ro_map(r_xprt, seg, nsegs,
 322						 false, &mw);
 323		if (n < 0)
 324			return ERR_PTR(n);
 325		list_add(&mw->mw_list, &req->rl_registered);
 326
 327		*iptr++ = xdr_one;	/* item present */
 328
 329		/* All read segments in this chunk
 330		 * have the same "position".
 331		 */
 332		*iptr++ = cpu_to_be32(pos);
 333		iptr = xdr_encode_rdma_segment(iptr, mw);
 334
 335		dprintk("RPC: %5u %s: pos %u %u@0x%016llx:0x%08x (%s)\n",
 336			rqst->rq_task->tk_pid, __func__, pos,
 337			mw->mw_length, (unsigned long long)mw->mw_offset,
 338			mw->mw_handle, n < nsegs ? "more" : "last");
 339
 340		r_xprt->rx_stats.read_chunk_count++;
 341		seg += n;
 342		nsegs -= n;
 343	} while (nsegs);
 344
 345	/* Finish Read list */
 346	*iptr++ = xdr_zero;	/* Next item not present */
 347	return iptr;
 348}
 349
 350/* XDR-encode the Write list. Supports encoding a list containing
 351 * one array of plain segments that belong to a single write chunk.
 352 *
 353 * Encoding key for single-list chunks (HLOO = Handle32 Length32 Offset64):
 354 *
 355 *  Write chunklist (a list of (one) counted array):
 356 *   N elements:
 357 *    1 - N - HLOO - HLOO - ... - HLOO - 0
 358 *
 359 * Returns a pointer to the XDR word in the RDMA header following
 360 * the end of the Write list, or an error pointer.
 361 */
 362static __be32 *
 363rpcrdma_encode_write_list(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req,
 364			  struct rpc_rqst *rqst, __be32 *iptr,
 365			  enum rpcrdma_chunktype wtype)
 366{
 367	struct rpcrdma_mr_seg *seg;
 368	struct rpcrdma_mw *mw;
 369	int n, nsegs, nchunks;
 370	__be32 *segcount;
 371
 372	if (wtype != rpcrdma_writech) {
 373		*iptr++ = xdr_zero;	/* no Write list present */
 374		return iptr;
 375	}
 376
 377	seg = req->rl_segments;
 378	nsegs = rpcrdma_convert_iovs(r_xprt, &rqst->rq_rcv_buf,
 379				     rqst->rq_rcv_buf.head[0].iov_len,
 380				     wtype, seg);
 381	if (nsegs < 0)
 382		return ERR_PTR(nsegs);
 383
 384	*iptr++ = xdr_one;	/* Write list present */
 385	segcount = iptr++;	/* save location of segment count */
 386
 387	nchunks = 0;
 388	do {
 389		n = r_xprt->rx_ia.ri_ops->ro_map(r_xprt, seg, nsegs,
 390						 true, &mw);
 391		if (n < 0)
 392			return ERR_PTR(n);
 393		list_add(&mw->mw_list, &req->rl_registered);
 394
 395		iptr = xdr_encode_rdma_segment(iptr, mw);
 396
 397		dprintk("RPC: %5u %s: %u@0x016%llx:0x%08x (%s)\n",
 398			rqst->rq_task->tk_pid, __func__,
 399			mw->mw_length, (unsigned long long)mw->mw_offset,
 400			mw->mw_handle, n < nsegs ? "more" : "last");
 401
 402		r_xprt->rx_stats.write_chunk_count++;
 403		r_xprt->rx_stats.total_rdma_request += seg->mr_len;
 404		nchunks++;
 405		seg   += n;
 406		nsegs -= n;
 407	} while (nsegs);
 408
 409	/* Update count of segments in this Write chunk */
 410	*segcount = cpu_to_be32(nchunks);
 411
 412	/* Finish Write list */
 413	*iptr++ = xdr_zero;	/* Next item not present */
 414	return iptr;
 415}
 416
 417/* XDR-encode the Reply chunk. Supports encoding an array of plain
 418 * segments that belong to a single write (reply) chunk.
 419 *
 420 * Encoding key for single-list chunks (HLOO = Handle32 Length32 Offset64):
 421 *
 422 *  Reply chunk (a counted array):
 423 *   N elements:
 424 *    1 - N - HLOO - HLOO - ... - HLOO
 425 *
 426 * Returns a pointer to the XDR word in the RDMA header following
 427 * the end of the Reply chunk, or an error pointer.
 428 */
 429static __be32 *
 430rpcrdma_encode_reply_chunk(struct rpcrdma_xprt *r_xprt,
 431			   struct rpcrdma_req *req, struct rpc_rqst *rqst,
 432			   __be32 *iptr, enum rpcrdma_chunktype wtype)
 433{
 434	struct rpcrdma_mr_seg *seg;
 435	struct rpcrdma_mw *mw;
 436	int n, nsegs, nchunks;
 437	__be32 *segcount;
 438
 439	if (wtype != rpcrdma_replych) {
 440		*iptr++ = xdr_zero;	/* no Reply chunk present */
 441		return iptr;
 
 
 
 
 
 
 
 
 
 
 
 
 
 442	}
 443
 444	seg = req->rl_segments;
 445	nsegs = rpcrdma_convert_iovs(r_xprt, &rqst->rq_rcv_buf, 0, wtype, seg);
 
 
 
 
 446	if (nsegs < 0)
 447		return ERR_PTR(nsegs);
 448
 449	*iptr++ = xdr_one;	/* Reply chunk present */
 450	segcount = iptr++;	/* save location of segment count */
 451
 452	nchunks = 0;
 453	do {
 454		n = r_xprt->rx_ia.ri_ops->ro_map(r_xprt, seg, nsegs,
 455						 true, &mw);
 456		if (n < 0)
 457			return ERR_PTR(n);
 458		list_add(&mw->mw_list, &req->rl_registered);
 459
 460		iptr = xdr_encode_rdma_segment(iptr, mw);
 461
 462		dprintk("RPC: %5u %s: %u@0x%016llx:0x%08x (%s)\n",
 463			rqst->rq_task->tk_pid, __func__,
 464			mw->mw_length, (unsigned long long)mw->mw_offset,
 465			mw->mw_handle, n < nsegs ? "more" : "last");
 466
 467		r_xprt->rx_stats.reply_chunk_count++;
 468		r_xprt->rx_stats.total_rdma_request += seg->mr_len;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 469		nchunks++;
 470		seg   += n;
 471		nsegs -= n;
 472	} while (nsegs);
 473
 474	/* Update count of segments in the Reply chunk */
 475	*segcount = cpu_to_be32(nchunks);
 476
 477	return iptr;
 478}
 479
 480/* Prepare the RPC-over-RDMA header SGE.
 481 */
 482static bool
 483rpcrdma_prepare_hdr_sge(struct rpcrdma_ia *ia, struct rpcrdma_req *req,
 484			u32 len)
 485{
 486	struct rpcrdma_regbuf *rb = req->rl_rdmabuf;
 487	struct ib_sge *sge = &req->rl_send_sge[0];
 488
 489	if (unlikely(!rpcrdma_regbuf_is_mapped(rb))) {
 490		if (!__rpcrdma_dma_map_regbuf(ia, rb))
 491			return false;
 492		sge->addr = rdmab_addr(rb);
 493		sge->lkey = rdmab_lkey(rb);
 494	}
 495	sge->length = len;
 496
 497	ib_dma_sync_single_for_device(ia->ri_device, sge->addr,
 498				      sge->length, DMA_TO_DEVICE);
 499	req->rl_send_wr.num_sge++;
 500	return true;
 501}
 502
 503/* Prepare the Send SGEs. The head and tail iovec, and each entry
 504 * in the page list, gets its own SGE.
 505 */
 506static bool
 507rpcrdma_prepare_msg_sges(struct rpcrdma_ia *ia, struct rpcrdma_req *req,
 508			 struct xdr_buf *xdr, enum rpcrdma_chunktype rtype)
 509{
 510	unsigned int sge_no, page_base, len, remaining;
 511	struct rpcrdma_regbuf *rb = req->rl_sendbuf;
 512	struct ib_device *device = ia->ri_device;
 513	struct ib_sge *sge = req->rl_send_sge;
 514	u32 lkey = ia->ri_pd->local_dma_lkey;
 515	struct page *page, **ppages;
 516
 517	/* The head iovec is straightforward, as it is already
 518	 * DMA-mapped. Sync the content that has changed.
 519	 */
 520	if (!rpcrdma_dma_map_regbuf(ia, rb))
 521		return false;
 522	sge_no = 1;
 523	sge[sge_no].addr = rdmab_addr(rb);
 524	sge[sge_no].length = xdr->head[0].iov_len;
 525	sge[sge_no].lkey = rdmab_lkey(rb);
 526	ib_dma_sync_single_for_device(device, sge[sge_no].addr,
 527				      sge[sge_no].length, DMA_TO_DEVICE);
 528
 529	/* If there is a Read chunk, the page list is being handled
 530	 * via explicit RDMA, and thus is skipped here. However, the
 531	 * tail iovec may include an XDR pad for the page list, as
 532	 * well as additional content, and may not reside in the
 533	 * same page as the head iovec.
 534	 */
 535	if (rtype == rpcrdma_readch) {
 536		len = xdr->tail[0].iov_len;
 537
 538		/* Do not include the tail if it is only an XDR pad */
 539		if (len < 4)
 540			goto out;
 541
 542		page = virt_to_page(xdr->tail[0].iov_base);
 543		page_base = (unsigned long)xdr->tail[0].iov_base & ~PAGE_MASK;
 544
 545		/* If the content in the page list is an odd length,
 546		 * xdr_write_pages() has added a pad at the beginning
 547		 * of the tail iovec. Force the tail's non-pad content
 548		 * to land at the next XDR position in the Send message.
 549		 */
 550		page_base += len & 3;
 551		len -= len & 3;
 552		goto map_tail;
 553	}
 554
 555	/* If there is a page list present, temporarily DMA map
 556	 * and prepare an SGE for each page to be sent.
 557	 */
 558	if (xdr->page_len) {
 559		ppages = xdr->pages + (xdr->page_base >> PAGE_SHIFT);
 560		page_base = xdr->page_base & ~PAGE_MASK;
 561		remaining = xdr->page_len;
 562		while (remaining) {
 563			sge_no++;
 564			if (sge_no > RPCRDMA_MAX_SEND_SGES - 2)
 565				goto out_mapping_overflow;
 566
 567			len = min_t(u32, PAGE_SIZE - page_base, remaining);
 568			sge[sge_no].addr = ib_dma_map_page(device, *ppages,
 569							   page_base, len,
 570							   DMA_TO_DEVICE);
 571			if (ib_dma_mapping_error(device, sge[sge_no].addr))
 572				goto out_mapping_err;
 573			sge[sge_no].length = len;
 574			sge[sge_no].lkey = lkey;
 575
 576			req->rl_mapped_sges++;
 577			ppages++;
 578			remaining -= len;
 579			page_base = 0;
 580		}
 581	}
 582
 583	/* The tail iovec is not always constructed in the same
 584	 * page where the head iovec resides (see, for example,
 585	 * gss_wrap_req_priv). To neatly accommodate that case,
 586	 * DMA map it separately.
 587	 */
 588	if (xdr->tail[0].iov_len) {
 589		page = virt_to_page(xdr->tail[0].iov_base);
 590		page_base = (unsigned long)xdr->tail[0].iov_base & ~PAGE_MASK;
 591		len = xdr->tail[0].iov_len;
 592
 593map_tail:
 594		sge_no++;
 595		sge[sge_no].addr = ib_dma_map_page(device, page,
 596						   page_base, len,
 597						   DMA_TO_DEVICE);
 598		if (ib_dma_mapping_error(device, sge[sge_no].addr))
 599			goto out_mapping_err;
 600		sge[sge_no].length = len;
 601		sge[sge_no].lkey = lkey;
 602		req->rl_mapped_sges++;
 603	}
 604
 605out:
 606	req->rl_send_wr.num_sge = sge_no + 1;
 607	return true;
 608
 609out_mapping_overflow:
 610	pr_err("rpcrdma: too many Send SGEs (%u)\n", sge_no);
 611	return false;
 612
 613out_mapping_err:
 614	pr_err("rpcrdma: Send mapping error\n");
 615	return false;
 616}
 617
 618bool
 619rpcrdma_prepare_send_sges(struct rpcrdma_ia *ia, struct rpcrdma_req *req,
 620			  u32 hdrlen, struct xdr_buf *xdr,
 621			  enum rpcrdma_chunktype rtype)
 
 
 
 
 622{
 623	req->rl_send_wr.num_sge = 0;
 624	req->rl_mapped_sges = 0;
 
 
 
 
 625
 626	if (!rpcrdma_prepare_hdr_sge(ia, req, hdrlen))
 627		goto out_map;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 628
 629	if (rtype != rpcrdma_areadch)
 630		if (!rpcrdma_prepare_msg_sges(ia, req, xdr, rtype))
 631			goto out_map;
 632
 633	return true;
 634
 635out_map:
 636	pr_err("rpcrdma: failed to DMA map a Send buffer\n");
 637	return false;
 638}
 639
 640void
 641rpcrdma_unmap_sges(struct rpcrdma_ia *ia, struct rpcrdma_req *req)
 642{
 643	struct ib_device *device = ia->ri_device;
 644	struct ib_sge *sge;
 645	int count;
 646
 647	sge = &req->rl_send_sge[2];
 648	for (count = req->rl_mapped_sges; count--; sge++)
 649		ib_dma_unmap_page(device, sge->addr, sge->length,
 650				  DMA_TO_DEVICE);
 651	req->rl_mapped_sges = 0;
 652}
 653
 654/*
 655 * Marshal a request: the primary job of this routine is to choose
 656 * the transfer modes. See comments below.
 657 *
 
 
 
 
 
 
 
 
 658 * Returns zero on success, otherwise a negative errno.
 659 */
 660
 661int
 662rpcrdma_marshal_req(struct rpc_rqst *rqst)
 663{
 664	struct rpc_xprt *xprt = rqst->rq_xprt;
 665	struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
 666	struct rpcrdma_req *req = rpcr_to_rdmar(rqst);
 
 
 
 667	enum rpcrdma_chunktype rtype, wtype;
 668	struct rpcrdma_msg *headerp;
 669	bool ddp_allowed;
 670	ssize_t hdrlen;
 671	size_t rpclen;
 672	__be32 *iptr;
 673
 674#if defined(CONFIG_SUNRPC_BACKCHANNEL)
 675	if (test_bit(RPC_BC_PA_IN_USE, &rqst->rq_bc_pa_state))
 676		return rpcrdma_bc_marshal_reply(rqst);
 677#endif
 678
 
 
 
 
 
 
 
 679	headerp = rdmab_to_msg(req->rl_rdmabuf);
 680	/* don't byte-swap XID, it's already done in request */
 681	headerp->rm_xid = rqst->rq_xid;
 682	headerp->rm_vers = rpcrdma_version;
 683	headerp->rm_credit = cpu_to_be32(r_xprt->rx_buf.rb_max_requests);
 684	headerp->rm_type = rdma_msg;
 685
 686	/* When the ULP employs a GSS flavor that guarantees integrity
 687	 * or privacy, direct data placement of individual data items
 688	 * is not allowed.
 689	 */
 690	ddp_allowed = !(rqst->rq_cred->cr_auth->au_flags &
 691						RPCAUTH_AUTH_DATATOUCH);
 692
 693	/*
 694	 * Chunks needed for results?
 695	 *
 
 696	 * o If the expected result is under the inline threshold, all ops
 697	 *   return as inline.
 698	 * o Large read ops return data as write chunk(s), header as
 699	 *   inline.
 700	 * o Large non-read ops return as a single reply chunk.
 701	 */
 702	if (rpcrdma_results_inline(r_xprt, rqst))
 
 
 703		wtype = rpcrdma_noch;
 704	else if (ddp_allowed && rqst->rq_rcv_buf.flags & XDRBUF_READ)
 705		wtype = rpcrdma_writech;
 706	else
 707		wtype = rpcrdma_replych;
 708
 709	/*
 710	 * Chunks needed for arguments?
 711	 *
 712	 * o If the total request is under the inline threshold, all ops
 713	 *   are sent as inline.
 714	 * o Large write ops transmit data as read chunk(s), header as
 715	 *   inline.
 716	 * o Large non-write ops are sent with the entire message as a
 717	 *   single read chunk (protocol 0-position special case).
 718	 *
 719	 * This assumes that the upper layer does not present a request
 720	 * that both has a data payload, and whose non-data arguments
 721	 * by themselves are larger than the inline threshold.
 722	 */
 723	if (rpcrdma_args_inline(r_xprt, rqst)) {
 724		rtype = rpcrdma_noch;
 725		rpclen = rqst->rq_snd_buf.len;
 726	} else if (ddp_allowed && rqst->rq_snd_buf.flags & XDRBUF_WRITE) {
 727		rtype = rpcrdma_readch;
 728		rpclen = rqst->rq_snd_buf.head[0].iov_len +
 729			 rqst->rq_snd_buf.tail[0].iov_len;
 730	} else {
 731		r_xprt->rx_stats.nomsg_call_count++;
 732		headerp->rm_type = htonl(RDMA_NOMSG);
 733		rtype = rpcrdma_areadch;
 734		rpclen = 0;
 735	}
 736
 737	/* This implementation supports the following combinations
 738	 * of chunk lists in one RPC-over-RDMA Call message:
 739	 *
 740	 *   - Read list
 741	 *   - Write list
 742	 *   - Reply chunk
 743	 *   - Read list + Reply chunk
 744	 *
 745	 * It might not yet support the following combinations:
 746	 *
 747	 *   - Read list + Write list
 748	 *
 749	 * It does not support the following combinations:
 750	 *
 751	 *   - Write list + Reply chunk
 752	 *   - Read list + Write list + Reply chunk
 753	 *
 754	 * This implementation supports only a single chunk in each
 755	 * Read or Write list. Thus for example the client cannot
 756	 * send a Call message with a Position Zero Read chunk and a
 757	 * regular Read chunk at the same time.
 758	 */
 759	iptr = headerp->rm_body.rm_chunks;
 760	iptr = rpcrdma_encode_read_list(r_xprt, req, rqst, iptr, rtype);
 761	if (IS_ERR(iptr))
 762		goto out_unmap;
 763	iptr = rpcrdma_encode_write_list(r_xprt, req, rqst, iptr, wtype);
 764	if (IS_ERR(iptr))
 765		goto out_unmap;
 766	iptr = rpcrdma_encode_reply_chunk(r_xprt, req, rqst, iptr, wtype);
 767	if (IS_ERR(iptr))
 768		goto out_unmap;
 769	hdrlen = (unsigned char *)iptr - (unsigned char *)headerp;
 770
 771	dprintk("RPC: %5u %s: %s/%s: hdrlen %zd rpclen %zd\n",
 772		rqst->rq_task->tk_pid, __func__,
 773		transfertypes[rtype], transfertypes[wtype],
 774		hdrlen, rpclen);
 775
 776	if (!rpcrdma_prepare_send_sges(&r_xprt->rx_ia, req, hdrlen,
 777				       &rqst->rq_snd_buf, rtype)) {
 778		iptr = ERR_PTR(-EIO);
 779		goto out_unmap;
 780	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 781	return 0;
 782
 783out_unmap:
 784	r_xprt->rx_ia.ri_ops->ro_unmap_safe(r_xprt, req, false);
 785	return PTR_ERR(iptr);
 786}
 787
 788/*
 789 * Chase down a received write or reply chunklist to get length
 790 * RDMA'd by server. See map at rpcrdma_create_chunks()! :-)
 791 */
 792static int
 793rpcrdma_count_chunks(struct rpcrdma_rep *rep, int wrchunk, __be32 **iptrp)
 794{
 795	unsigned int i, total_len;
 796	struct rpcrdma_write_chunk *cur_wchunk;
 797	char *base = (char *)rdmab_to_msg(rep->rr_rdmabuf);
 798
 799	i = be32_to_cpu(**iptrp);
 
 
 800	cur_wchunk = (struct rpcrdma_write_chunk *) (*iptrp + 1);
 801	total_len = 0;
 802	while (i--) {
 803		struct rpcrdma_segment *seg = &cur_wchunk->wc_target;
 804		ifdebug(FACILITY) {
 805			u64 off;
 806			xdr_decode_hyper((__be32 *)&seg->rs_offset, &off);
 807			dprintk("RPC:       %s: chunk %d@0x%016llx:0x%08x\n",
 808				__func__,
 809				be32_to_cpu(seg->rs_length),
 810				(unsigned long long)off,
 811				be32_to_cpu(seg->rs_handle));
 812		}
 813		total_len += be32_to_cpu(seg->rs_length);
 814		++cur_wchunk;
 815	}
 816	/* check and adjust for properly terminated write chunk */
 817	if (wrchunk) {
 818		__be32 *w = (__be32 *) cur_wchunk;
 819		if (*w++ != xdr_zero)
 820			return -1;
 821		cur_wchunk = (struct rpcrdma_write_chunk *) w;
 822	}
 823	if ((char *)cur_wchunk > base + rep->rr_len)
 824		return -1;
 825
 826	*iptrp = (__be32 *) cur_wchunk;
 827	return total_len;
 828}
 829
 830/**
 831 * rpcrdma_inline_fixup - Scatter inline received data into rqst's iovecs
 832 * @rqst: controlling RPC request
 833 * @srcp: points to RPC message payload in receive buffer
 834 * @copy_len: remaining length of receive buffer content
 835 * @pad: Write chunk pad bytes needed (zero for pure inline)
 836 *
 837 * The upper layer has set the maximum number of bytes it can
 838 * receive in each component of rq_rcv_buf. These values are set in
 839 * the head.iov_len, page_len, tail.iov_len, and buflen fields.
 840 *
 841 * Unlike the TCP equivalent (xdr_partial_copy_from_skb), in
 842 * many cases this function simply updates iov_base pointers in
 843 * rq_rcv_buf to point directly to the received reply data, to
 844 * avoid copying reply data.
 845 *
 846 * Returns the count of bytes which had to be memcopied.
 847 */
 848static unsigned long
 849rpcrdma_inline_fixup(struct rpc_rqst *rqst, char *srcp, int copy_len, int pad)
 850{
 851	unsigned long fixup_copy_count;
 852	int i, npages, curlen;
 853	char *destp;
 854	struct page **ppages;
 855	int page_base;
 856
 857	/* The head iovec is redirected to the RPC reply message
 858	 * in the receive buffer, to avoid a memcopy.
 859	 */
 860	rqst->rq_rcv_buf.head[0].iov_base = srcp;
 861	rqst->rq_private_buf.head[0].iov_base = srcp;
 862
 863	/* The contents of the receive buffer that follow
 864	 * head.iov_len bytes are copied into the page list.
 865	 */
 866	curlen = rqst->rq_rcv_buf.head[0].iov_len;
 867	if (curlen > copy_len)
 868		curlen = copy_len;
 
 
 
 869	dprintk("RPC:       %s: srcp 0x%p len %d hdrlen %d\n",
 870		__func__, srcp, copy_len, curlen);
 
 
 
 871	srcp += curlen;
 872	copy_len -= curlen;
 873
 
 
 
 874	page_base = rqst->rq_rcv_buf.page_base;
 875	ppages = rqst->rq_rcv_buf.pages + (page_base >> PAGE_SHIFT);
 876	page_base &= ~PAGE_MASK;
 877	fixup_copy_count = 0;
 878	if (copy_len && rqst->rq_rcv_buf.page_len) {
 879		int pagelist_len;
 880
 881		pagelist_len = rqst->rq_rcv_buf.page_len;
 882		if (pagelist_len > copy_len)
 883			pagelist_len = copy_len;
 884		npages = PAGE_ALIGN(page_base + pagelist_len) >> PAGE_SHIFT;
 885		for (i = 0; i < npages; i++) {
 886			curlen = PAGE_SIZE - page_base;
 887			if (curlen > pagelist_len)
 888				curlen = pagelist_len;
 889
 890			dprintk("RPC:       %s: page %d"
 891				" srcp 0x%p len %d curlen %d\n",
 892				__func__, i, srcp, copy_len, curlen);
 893			destp = kmap_atomic(ppages[i]);
 894			memcpy(destp + page_base, srcp, curlen);
 895			flush_dcache_page(ppages[i]);
 896			kunmap_atomic(destp);
 897			srcp += curlen;
 898			copy_len -= curlen;
 899			fixup_copy_count += curlen;
 900			pagelist_len -= curlen;
 901			if (!pagelist_len)
 902				break;
 903			page_base = 0;
 904		}
 
 905
 906		/* Implicit padding for the last segment in a Write
 907		 * chunk is inserted inline at the front of the tail
 908		 * iovec. The upper layer ignores the content of
 909		 * the pad. Simply ensure inline content in the tail
 910		 * that follows the Write chunk is properly aligned.
 911		 */
 912		if (pad)
 913			srcp -= pad;
 914	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 915
 916	/* The tail iovec is redirected to the remaining data
 917	 * in the receive buffer, to avoid a memcopy.
 918	 */
 919	if (copy_len || pad) {
 920		rqst->rq_rcv_buf.tail[0].iov_base = srcp;
 921		rqst->rq_private_buf.tail[0].iov_base = srcp;
 
 
 
 922	}
 923
 924	return fixup_copy_count;
 925}
 926
 927#if defined(CONFIG_SUNRPC_BACKCHANNEL)
 928/* By convention, backchannel calls arrive via rdma_msg type
 929 * messages, and never populate the chunk lists. This makes
 930 * the RPC/RDMA header small and fixed in size, so it is
 931 * straightforward to check the RPC header's direction field.
 932 */
 933static bool
 934rpcrdma_is_bcall(struct rpcrdma_msg *headerp)
 935{
 936	__be32 *p = (__be32 *)headerp;
 937
 938	if (headerp->rm_type != rdma_msg)
 939		return false;
 940	if (headerp->rm_body.rm_chunks[0] != xdr_zero)
 941		return false;
 942	if (headerp->rm_body.rm_chunks[1] != xdr_zero)
 943		return false;
 944	if (headerp->rm_body.rm_chunks[2] != xdr_zero)
 945		return false;
 946
 947	/* sanity */
 948	if (p[7] != headerp->rm_xid)
 949		return false;
 950	/* call direction */
 951	if (p[8] != cpu_to_be32(RPC_CALL))
 952		return false;
 953
 954	return true;
 955}
 956#endif	/* CONFIG_SUNRPC_BACKCHANNEL */
 957
 
 
 
 
 
 
 
 
 
 
 
 
 958/* Process received RPC/RDMA messages.
 959 *
 960 * Errors must result in the RPC task either being awakened, or
 961 * allowed to timeout, to discover the errors at that time.
 962 */
 963void
 964rpcrdma_reply_handler(struct work_struct *work)
 965{
 966	struct rpcrdma_rep *rep =
 967			container_of(work, struct rpcrdma_rep, rr_work);
 968	struct rpcrdma_msg *headerp;
 969	struct rpcrdma_req *req;
 970	struct rpc_rqst *rqst;
 971	struct rpcrdma_xprt *r_xprt = rep->rr_rxprt;
 972	struct rpc_xprt *xprt = &r_xprt->rx_xprt;
 973	__be32 *iptr;
 974	int rdmalen, status, rmerr;
 975	unsigned long cwnd;
 976
 977	dprintk("RPC:       %s: incoming rep %p\n", __func__, rep);
 978
 979	if (rep->rr_len == RPCRDMA_BAD_LEN)
 980		goto out_badstatus;
 981	if (rep->rr_len < RPCRDMA_HDRLEN_ERR)
 982		goto out_shortreply;
 983
 984	headerp = rdmab_to_msg(rep->rr_rdmabuf);
 985#if defined(CONFIG_SUNRPC_BACKCHANNEL)
 986	if (rpcrdma_is_bcall(headerp))
 987		goto out_bcall;
 988#endif
 989
 990	/* Match incoming rpcrdma_rep to an rpcrdma_req to
 991	 * get context for handling any incoming chunks.
 992	 */
 993	spin_lock_bh(&xprt->transport_lock);
 994	rqst = xprt_lookup_rqst(xprt, headerp->rm_xid);
 995	if (!rqst)
 996		goto out_nomatch;
 997
 998	req = rpcr_to_rdmar(rqst);
 999	if (req->rl_reply)
1000		goto out_duplicate;
1001
1002	/* Sanity checking has passed. We are now committed
1003	 * to complete this transaction.
1004	 */
1005	list_del_init(&rqst->rq_list);
1006	spin_unlock_bh(&xprt->transport_lock);
1007	dprintk("RPC:       %s: reply %p completes request %p (xid 0x%08x)\n",
1008		__func__, rep, req, be32_to_cpu(headerp->rm_xid));
1009
1010	/* from here on, the reply is no longer an orphan */
1011	req->rl_reply = rep;
1012	xprt->reestablish_timeout = 0;
1013
1014	if (headerp->rm_vers != rpcrdma_version)
1015		goto out_badversion;
1016
1017	/* check for expected message types */
1018	/* The order of some of these tests is important. */
1019	switch (headerp->rm_type) {
1020	case rdma_msg:
1021		/* never expect read chunks */
1022		/* never expect reply chunks (two ways to check) */
1023		/* never expect write chunks without having offered RDMA */
1024		if (headerp->rm_body.rm_chunks[0] != xdr_zero ||
1025		    (headerp->rm_body.rm_chunks[1] == xdr_zero &&
1026		     headerp->rm_body.rm_chunks[2] != xdr_zero) ||
1027		    (headerp->rm_body.rm_chunks[1] != xdr_zero &&
1028		     list_empty(&req->rl_registered)))
1029			goto badheader;
1030		if (headerp->rm_body.rm_chunks[1] != xdr_zero) {
1031			/* count any expected write chunks in read reply */
1032			/* start at write chunk array count */
1033			iptr = &headerp->rm_body.rm_chunks[2];
1034			rdmalen = rpcrdma_count_chunks(rep, 1, &iptr);
 
1035			/* check for validity, and no reply chunk after */
1036			if (rdmalen < 0 || *iptr++ != xdr_zero)
1037				goto badheader;
1038			rep->rr_len -=
1039			    ((unsigned char *)iptr - (unsigned char *)headerp);
1040			status = rep->rr_len + rdmalen;
1041			r_xprt->rx_stats.total_rdma_reply += rdmalen;
1042			/* special case - last chunk may omit padding */
1043			if (rdmalen &= 3) {
1044				rdmalen = 4 - rdmalen;
1045				status += rdmalen;
1046			}
1047		} else {
1048			/* else ordinary inline */
1049			rdmalen = 0;
1050			iptr = (__be32 *)((unsigned char *)headerp +
1051							RPCRDMA_HDRLEN_MIN);
1052			rep->rr_len -= RPCRDMA_HDRLEN_MIN;
1053			status = rep->rr_len;
1054		}
1055
1056		r_xprt->rx_stats.fixup_copy_count +=
1057			rpcrdma_inline_fixup(rqst, (char *)iptr, rep->rr_len,
1058					     rdmalen);
1059		break;
1060
1061	case rdma_nomsg:
1062		/* never expect read or write chunks, always reply chunks */
1063		if (headerp->rm_body.rm_chunks[0] != xdr_zero ||
1064		    headerp->rm_body.rm_chunks[1] != xdr_zero ||
1065		    headerp->rm_body.rm_chunks[2] != xdr_one ||
1066		    list_empty(&req->rl_registered))
1067			goto badheader;
1068		iptr = (__be32 *)((unsigned char *)headerp +
1069							RPCRDMA_HDRLEN_MIN);
1070		rdmalen = rpcrdma_count_chunks(rep, 0, &iptr);
1071		if (rdmalen < 0)
1072			goto badheader;
1073		r_xprt->rx_stats.total_rdma_reply += rdmalen;
1074		/* Reply chunk buffer already is the reply vector - no fixup. */
1075		status = rdmalen;
1076		break;
1077
1078	case rdma_error:
1079		goto out_rdmaerr;
1080
1081badheader:
1082	default:
1083		dprintk("RPC: %5u %s: invalid rpcrdma reply (type %u)\n",
1084			rqst->rq_task->tk_pid, __func__,
1085			be32_to_cpu(headerp->rm_type));
 
 
 
 
 
1086		status = -EIO;
1087		r_xprt->rx_stats.bad_reply_count++;
1088		break;
1089	}
1090
1091out:
1092	/* Invalidate and flush the data payloads before waking the
1093	 * waiting application. This guarantees the memory region is
1094	 * properly fenced from the server before the application
1095	 * accesses the data. It also ensures proper send flow
1096	 * control: waking the next RPC waits until this RPC has
1097	 * relinquished all its Send Queue entries.
1098	 */
1099	if (!list_empty(&req->rl_registered))
1100		r_xprt->rx_ia.ri_ops->ro_unmap_sync(r_xprt, req);
1101
1102	spin_lock_bh(&xprt->transport_lock);
1103	cwnd = xprt->cwnd;
1104	xprt->cwnd = atomic_read(&r_xprt->rx_buf.rb_credits) << RPC_CWNDSHIFT;
1105	if (xprt->cwnd > cwnd)
1106		xprt_release_rqst_cong(rqst->rq_task);
1107
1108	xprt_complete_rqst(rqst->rq_task, status);
1109	spin_unlock_bh(&xprt->transport_lock);
1110	dprintk("RPC:       %s: xprt_complete_rqst(0x%p, 0x%p, %d)\n",
1111			__func__, xprt, rqst, status);
1112	return;
1113
1114out_badstatus:
1115	rpcrdma_recv_buffer_put(rep);
1116	if (r_xprt->rx_ep.rep_connected == 1) {
1117		r_xprt->rx_ep.rep_connected = -EIO;
1118		rpcrdma_conn_func(&r_xprt->rx_ep);
1119	}
1120	return;
1121
1122#if defined(CONFIG_SUNRPC_BACKCHANNEL)
1123out_bcall:
1124	rpcrdma_bc_receive_call(r_xprt, rep);
1125	return;
1126#endif
1127
1128/* If the incoming reply terminated a pending RPC, the next
1129 * RPC call will post a replacement receive buffer as it is
1130 * being marshaled.
1131 */
1132out_badversion:
1133	dprintk("RPC:       %s: invalid version %d\n",
1134		__func__, be32_to_cpu(headerp->rm_vers));
1135	status = -EIO;
1136	r_xprt->rx_stats.bad_reply_count++;
1137	goto out;
1138
1139out_rdmaerr:
1140	rmerr = be32_to_cpu(headerp->rm_body.rm_error.rm_err);
1141	switch (rmerr) {
1142	case ERR_VERS:
1143		pr_err("%s: server reports header version error (%u-%u)\n",
1144		       __func__,
1145		       be32_to_cpu(headerp->rm_body.rm_error.rm_vers_low),
1146		       be32_to_cpu(headerp->rm_body.rm_error.rm_vers_high));
1147		break;
1148	case ERR_CHUNK:
1149		pr_err("%s: server reports header decoding error\n",
1150		       __func__);
1151		break;
1152	default:
1153		pr_err("%s: server reports unknown error %d\n",
1154		       __func__, rmerr);
1155	}
1156	status = -EREMOTEIO;
1157	r_xprt->rx_stats.bad_reply_count++;
1158	goto out;
1159
1160/* If no pending RPC transaction was matched, post a replacement
1161 * receive buffer before returning.
1162 */
1163out_shortreply:
1164	dprintk("RPC:       %s: short/invalid reply\n", __func__);
1165	goto repost;
1166
1167out_nomatch:
1168	spin_unlock_bh(&xprt->transport_lock);
1169	dprintk("RPC:       %s: no match for incoming xid 0x%08x len %d\n",
1170		__func__, be32_to_cpu(headerp->rm_xid),
1171		rep->rr_len);
1172	goto repost;
1173
1174out_duplicate:
1175	spin_unlock_bh(&xprt->transport_lock);
1176	dprintk("RPC:       %s: "
1177		"duplicate reply %p to RPC request %p: xid 0x%08x\n",
1178		__func__, rep, req, be32_to_cpu(headerp->rm_xid));
1179
1180repost:
1181	r_xprt->rx_stats.bad_reply_count++;
1182	if (rpcrdma_ep_post_recv(&r_xprt->rx_ia, rep))
1183		rpcrdma_recv_buffer_put(rep);
1184}