Loading...
1/*
2 * Kernel Debugger Architecture Independent Main Code
3 *
4 * This file is subject to the terms and conditions of the GNU General Public
5 * License. See the file "COPYING" in the main directory of this archive
6 * for more details.
7 *
8 * Copyright (C) 1999-2004 Silicon Graphics, Inc. All Rights Reserved.
9 * Copyright (C) 2000 Stephane Eranian <eranian@hpl.hp.com>
10 * Xscale (R) modifications copyright (C) 2003 Intel Corporation.
11 * Copyright (c) 2009 Wind River Systems, Inc. All Rights Reserved.
12 */
13
14#include <linux/ctype.h>
15#include <linux/types.h>
16#include <linux/string.h>
17#include <linux/kernel.h>
18#include <linux/kmsg_dump.h>
19#include <linux/reboot.h>
20#include <linux/sched.h>
21#include <linux/sysrq.h>
22#include <linux/smp.h>
23#include <linux/utsname.h>
24#include <linux/vmalloc.h>
25#include <linux/atomic.h>
26#include <linux/module.h>
27#include <linux/moduleparam.h>
28#include <linux/mm.h>
29#include <linux/init.h>
30#include <linux/kallsyms.h>
31#include <linux/kgdb.h>
32#include <linux/kdb.h>
33#include <linux/notifier.h>
34#include <linux/interrupt.h>
35#include <linux/delay.h>
36#include <linux/nmi.h>
37#include <linux/time.h>
38#include <linux/ptrace.h>
39#include <linux/sysctl.h>
40#include <linux/cpu.h>
41#include <linux/kdebug.h>
42#include <linux/proc_fs.h>
43#include <linux/uaccess.h>
44#include <linux/slab.h>
45#include "kdb_private.h"
46
47#undef MODULE_PARAM_PREFIX
48#define MODULE_PARAM_PREFIX "kdb."
49
50static int kdb_cmd_enabled = CONFIG_KDB_DEFAULT_ENABLE;
51module_param_named(cmd_enable, kdb_cmd_enabled, int, 0600);
52
53char kdb_grep_string[KDB_GREP_STRLEN];
54int kdb_grepping_flag;
55EXPORT_SYMBOL(kdb_grepping_flag);
56int kdb_grep_leading;
57int kdb_grep_trailing;
58
59/*
60 * Kernel debugger state flags
61 */
62int kdb_flags;
63atomic_t kdb_event;
64
65/*
66 * kdb_lock protects updates to kdb_initial_cpu. Used to
67 * single thread processors through the kernel debugger.
68 */
69int kdb_initial_cpu = -1; /* cpu number that owns kdb */
70int kdb_nextline = 1;
71int kdb_state; /* General KDB state */
72
73struct task_struct *kdb_current_task;
74EXPORT_SYMBOL(kdb_current_task);
75struct pt_regs *kdb_current_regs;
76
77const char *kdb_diemsg;
78static int kdb_go_count;
79#ifdef CONFIG_KDB_CONTINUE_CATASTROPHIC
80static unsigned int kdb_continue_catastrophic =
81 CONFIG_KDB_CONTINUE_CATASTROPHIC;
82#else
83static unsigned int kdb_continue_catastrophic;
84#endif
85
86/* kdb_commands describes the available commands. */
87static kdbtab_t *kdb_commands;
88#define KDB_BASE_CMD_MAX 50
89static int kdb_max_commands = KDB_BASE_CMD_MAX;
90static kdbtab_t kdb_base_commands[KDB_BASE_CMD_MAX];
91#define for_each_kdbcmd(cmd, num) \
92 for ((cmd) = kdb_base_commands, (num) = 0; \
93 num < kdb_max_commands; \
94 num++, num == KDB_BASE_CMD_MAX ? cmd = kdb_commands : cmd++)
95
96typedef struct _kdbmsg {
97 int km_diag; /* kdb diagnostic */
98 char *km_msg; /* Corresponding message text */
99} kdbmsg_t;
100
101#define KDBMSG(msgnum, text) \
102 { KDB_##msgnum, text }
103
104static kdbmsg_t kdbmsgs[] = {
105 KDBMSG(NOTFOUND, "Command Not Found"),
106 KDBMSG(ARGCOUNT, "Improper argument count, see usage."),
107 KDBMSG(BADWIDTH, "Illegal value for BYTESPERWORD use 1, 2, 4 or 8, "
108 "8 is only allowed on 64 bit systems"),
109 KDBMSG(BADRADIX, "Illegal value for RADIX use 8, 10 or 16"),
110 KDBMSG(NOTENV, "Cannot find environment variable"),
111 KDBMSG(NOENVVALUE, "Environment variable should have value"),
112 KDBMSG(NOTIMP, "Command not implemented"),
113 KDBMSG(ENVFULL, "Environment full"),
114 KDBMSG(ENVBUFFULL, "Environment buffer full"),
115 KDBMSG(TOOMANYBPT, "Too many breakpoints defined"),
116#ifdef CONFIG_CPU_XSCALE
117 KDBMSG(TOOMANYDBREGS, "More breakpoints than ibcr registers defined"),
118#else
119 KDBMSG(TOOMANYDBREGS, "More breakpoints than db registers defined"),
120#endif
121 KDBMSG(DUPBPT, "Duplicate breakpoint address"),
122 KDBMSG(BPTNOTFOUND, "Breakpoint not found"),
123 KDBMSG(BADMODE, "Invalid IDMODE"),
124 KDBMSG(BADINT, "Illegal numeric value"),
125 KDBMSG(INVADDRFMT, "Invalid symbolic address format"),
126 KDBMSG(BADREG, "Invalid register name"),
127 KDBMSG(BADCPUNUM, "Invalid cpu number"),
128 KDBMSG(BADLENGTH, "Invalid length field"),
129 KDBMSG(NOBP, "No Breakpoint exists"),
130 KDBMSG(BADADDR, "Invalid address"),
131 KDBMSG(NOPERM, "Permission denied"),
132};
133#undef KDBMSG
134
135static const int __nkdb_err = ARRAY_SIZE(kdbmsgs);
136
137
138/*
139 * Initial environment. This is all kept static and local to
140 * this file. We don't want to rely on the memory allocation
141 * mechanisms in the kernel, so we use a very limited allocate-only
142 * heap for new and altered environment variables. The entire
143 * environment is limited to a fixed number of entries (add more
144 * to __env[] if required) and a fixed amount of heap (add more to
145 * KDB_ENVBUFSIZE if required).
146 */
147
148static char *__env[] = {
149#if defined(CONFIG_SMP)
150 "PROMPT=[%d]kdb> ",
151#else
152 "PROMPT=kdb> ",
153#endif
154 "MOREPROMPT=more> ",
155 "RADIX=16",
156 "MDCOUNT=8", /* lines of md output */
157 KDB_PLATFORM_ENV,
158 "DTABCOUNT=30",
159 "NOSECT=1",
160 (char *)0,
161 (char *)0,
162 (char *)0,
163 (char *)0,
164 (char *)0,
165 (char *)0,
166 (char *)0,
167 (char *)0,
168 (char *)0,
169 (char *)0,
170 (char *)0,
171 (char *)0,
172 (char *)0,
173 (char *)0,
174 (char *)0,
175 (char *)0,
176 (char *)0,
177 (char *)0,
178 (char *)0,
179 (char *)0,
180 (char *)0,
181 (char *)0,
182 (char *)0,
183 (char *)0,
184};
185
186static const int __nenv = ARRAY_SIZE(__env);
187
188struct task_struct *kdb_curr_task(int cpu)
189{
190 struct task_struct *p = curr_task(cpu);
191#ifdef _TIF_MCA_INIT
192 if ((task_thread_info(p)->flags & _TIF_MCA_INIT) && KDB_TSK(cpu))
193 p = krp->p;
194#endif
195 return p;
196}
197
198/*
199 * Check whether the flags of the current command and the permissions
200 * of the kdb console has allow a command to be run.
201 */
202static inline bool kdb_check_flags(kdb_cmdflags_t flags, int permissions,
203 bool no_args)
204{
205 /* permissions comes from userspace so needs massaging slightly */
206 permissions &= KDB_ENABLE_MASK;
207 permissions |= KDB_ENABLE_ALWAYS_SAFE;
208
209 /* some commands change group when launched with no arguments */
210 if (no_args)
211 permissions |= permissions << KDB_ENABLE_NO_ARGS_SHIFT;
212
213 flags |= KDB_ENABLE_ALL;
214
215 return permissions & flags;
216}
217
218/*
219 * kdbgetenv - This function will return the character string value of
220 * an environment variable.
221 * Parameters:
222 * match A character string representing an environment variable.
223 * Returns:
224 * NULL No environment variable matches 'match'
225 * char* Pointer to string value of environment variable.
226 */
227char *kdbgetenv(const char *match)
228{
229 char **ep = __env;
230 int matchlen = strlen(match);
231 int i;
232
233 for (i = 0; i < __nenv; i++) {
234 char *e = *ep++;
235
236 if (!e)
237 continue;
238
239 if ((strncmp(match, e, matchlen) == 0)
240 && ((e[matchlen] == '\0')
241 || (e[matchlen] == '='))) {
242 char *cp = strchr(e, '=');
243 return cp ? ++cp : "";
244 }
245 }
246 return NULL;
247}
248
249/*
250 * kdballocenv - This function is used to allocate bytes for
251 * environment entries.
252 * Parameters:
253 * match A character string representing a numeric value
254 * Outputs:
255 * *value the unsigned long representation of the env variable 'match'
256 * Returns:
257 * Zero on success, a kdb diagnostic on failure.
258 * Remarks:
259 * We use a static environment buffer (envbuffer) to hold the values
260 * of dynamically generated environment variables (see kdb_set). Buffer
261 * space once allocated is never free'd, so over time, the amount of space
262 * (currently 512 bytes) will be exhausted if env variables are changed
263 * frequently.
264 */
265static char *kdballocenv(size_t bytes)
266{
267#define KDB_ENVBUFSIZE 512
268 static char envbuffer[KDB_ENVBUFSIZE];
269 static int envbufsize;
270 char *ep = NULL;
271
272 if ((KDB_ENVBUFSIZE - envbufsize) >= bytes) {
273 ep = &envbuffer[envbufsize];
274 envbufsize += bytes;
275 }
276 return ep;
277}
278
279/*
280 * kdbgetulenv - This function will return the value of an unsigned
281 * long-valued environment variable.
282 * Parameters:
283 * match A character string representing a numeric value
284 * Outputs:
285 * *value the unsigned long represntation of the env variable 'match'
286 * Returns:
287 * Zero on success, a kdb diagnostic on failure.
288 */
289static int kdbgetulenv(const char *match, unsigned long *value)
290{
291 char *ep;
292
293 ep = kdbgetenv(match);
294 if (!ep)
295 return KDB_NOTENV;
296 if (strlen(ep) == 0)
297 return KDB_NOENVVALUE;
298
299 *value = simple_strtoul(ep, NULL, 0);
300
301 return 0;
302}
303
304/*
305 * kdbgetintenv - This function will return the value of an
306 * integer-valued environment variable.
307 * Parameters:
308 * match A character string representing an integer-valued env variable
309 * Outputs:
310 * *value the integer representation of the environment variable 'match'
311 * Returns:
312 * Zero on success, a kdb diagnostic on failure.
313 */
314int kdbgetintenv(const char *match, int *value)
315{
316 unsigned long val;
317 int diag;
318
319 diag = kdbgetulenv(match, &val);
320 if (!diag)
321 *value = (int) val;
322 return diag;
323}
324
325/*
326 * kdbgetularg - This function will convert a numeric string into an
327 * unsigned long value.
328 * Parameters:
329 * arg A character string representing a numeric value
330 * Outputs:
331 * *value the unsigned long represntation of arg.
332 * Returns:
333 * Zero on success, a kdb diagnostic on failure.
334 */
335int kdbgetularg(const char *arg, unsigned long *value)
336{
337 char *endp;
338 unsigned long val;
339
340 val = simple_strtoul(arg, &endp, 0);
341
342 if (endp == arg) {
343 /*
344 * Also try base 16, for us folks too lazy to type the
345 * leading 0x...
346 */
347 val = simple_strtoul(arg, &endp, 16);
348 if (endp == arg)
349 return KDB_BADINT;
350 }
351
352 *value = val;
353
354 return 0;
355}
356
357int kdbgetu64arg(const char *arg, u64 *value)
358{
359 char *endp;
360 u64 val;
361
362 val = simple_strtoull(arg, &endp, 0);
363
364 if (endp == arg) {
365
366 val = simple_strtoull(arg, &endp, 16);
367 if (endp == arg)
368 return KDB_BADINT;
369 }
370
371 *value = val;
372
373 return 0;
374}
375
376/*
377 * kdb_set - This function implements the 'set' command. Alter an
378 * existing environment variable or create a new one.
379 */
380int kdb_set(int argc, const char **argv)
381{
382 int i;
383 char *ep;
384 size_t varlen, vallen;
385
386 /*
387 * we can be invoked two ways:
388 * set var=value argv[1]="var", argv[2]="value"
389 * set var = value argv[1]="var", argv[2]="=", argv[3]="value"
390 * - if the latter, shift 'em down.
391 */
392 if (argc == 3) {
393 argv[2] = argv[3];
394 argc--;
395 }
396
397 if (argc != 2)
398 return KDB_ARGCOUNT;
399
400 /*
401 * Check for internal variables
402 */
403 if (strcmp(argv[1], "KDBDEBUG") == 0) {
404 unsigned int debugflags;
405 char *cp;
406
407 debugflags = simple_strtoul(argv[2], &cp, 0);
408 if (cp == argv[2] || debugflags & ~KDB_DEBUG_FLAG_MASK) {
409 kdb_printf("kdb: illegal debug flags '%s'\n",
410 argv[2]);
411 return 0;
412 }
413 kdb_flags = (kdb_flags &
414 ~(KDB_DEBUG_FLAG_MASK << KDB_DEBUG_FLAG_SHIFT))
415 | (debugflags << KDB_DEBUG_FLAG_SHIFT);
416
417 return 0;
418 }
419
420 /*
421 * Tokenizer squashed the '=' sign. argv[1] is variable
422 * name, argv[2] = value.
423 */
424 varlen = strlen(argv[1]);
425 vallen = strlen(argv[2]);
426 ep = kdballocenv(varlen + vallen + 2);
427 if (ep == (char *)0)
428 return KDB_ENVBUFFULL;
429
430 sprintf(ep, "%s=%s", argv[1], argv[2]);
431
432 ep[varlen+vallen+1] = '\0';
433
434 for (i = 0; i < __nenv; i++) {
435 if (__env[i]
436 && ((strncmp(__env[i], argv[1], varlen) == 0)
437 && ((__env[i][varlen] == '\0')
438 || (__env[i][varlen] == '=')))) {
439 __env[i] = ep;
440 return 0;
441 }
442 }
443
444 /*
445 * Wasn't existing variable. Fit into slot.
446 */
447 for (i = 0; i < __nenv-1; i++) {
448 if (__env[i] == (char *)0) {
449 __env[i] = ep;
450 return 0;
451 }
452 }
453
454 return KDB_ENVFULL;
455}
456
457static int kdb_check_regs(void)
458{
459 if (!kdb_current_regs) {
460 kdb_printf("No current kdb registers."
461 " You may need to select another task\n");
462 return KDB_BADREG;
463 }
464 return 0;
465}
466
467/*
468 * kdbgetaddrarg - This function is responsible for parsing an
469 * address-expression and returning the value of the expression,
470 * symbol name, and offset to the caller.
471 *
472 * The argument may consist of a numeric value (decimal or
473 * hexidecimal), a symbol name, a register name (preceded by the
474 * percent sign), an environment variable with a numeric value
475 * (preceded by a dollar sign) or a simple arithmetic expression
476 * consisting of a symbol name, +/-, and a numeric constant value
477 * (offset).
478 * Parameters:
479 * argc - count of arguments in argv
480 * argv - argument vector
481 * *nextarg - index to next unparsed argument in argv[]
482 * regs - Register state at time of KDB entry
483 * Outputs:
484 * *value - receives the value of the address-expression
485 * *offset - receives the offset specified, if any
486 * *name - receives the symbol name, if any
487 * *nextarg - index to next unparsed argument in argv[]
488 * Returns:
489 * zero is returned on success, a kdb diagnostic code is
490 * returned on error.
491 */
492int kdbgetaddrarg(int argc, const char **argv, int *nextarg,
493 unsigned long *value, long *offset,
494 char **name)
495{
496 unsigned long addr;
497 unsigned long off = 0;
498 int positive;
499 int diag;
500 int found = 0;
501 char *symname;
502 char symbol = '\0';
503 char *cp;
504 kdb_symtab_t symtab;
505
506 /*
507 * If the enable flags prohibit both arbitrary memory access
508 * and flow control then there are no reasonable grounds to
509 * provide symbol lookup.
510 */
511 if (!kdb_check_flags(KDB_ENABLE_MEM_READ | KDB_ENABLE_FLOW_CTRL,
512 kdb_cmd_enabled, false))
513 return KDB_NOPERM;
514
515 /*
516 * Process arguments which follow the following syntax:
517 *
518 * symbol | numeric-address [+/- numeric-offset]
519 * %register
520 * $environment-variable
521 */
522
523 if (*nextarg > argc)
524 return KDB_ARGCOUNT;
525
526 symname = (char *)argv[*nextarg];
527
528 /*
529 * If there is no whitespace between the symbol
530 * or address and the '+' or '-' symbols, we
531 * remember the character and replace it with a
532 * null so the symbol/value can be properly parsed
533 */
534 cp = strpbrk(symname, "+-");
535 if (cp != NULL) {
536 symbol = *cp;
537 *cp++ = '\0';
538 }
539
540 if (symname[0] == '$') {
541 diag = kdbgetulenv(&symname[1], &addr);
542 if (diag)
543 return diag;
544 } else if (symname[0] == '%') {
545 diag = kdb_check_regs();
546 if (diag)
547 return diag;
548 /* Implement register values with % at a later time as it is
549 * arch optional.
550 */
551 return KDB_NOTIMP;
552 } else {
553 found = kdbgetsymval(symname, &symtab);
554 if (found) {
555 addr = symtab.sym_start;
556 } else {
557 diag = kdbgetularg(argv[*nextarg], &addr);
558 if (diag)
559 return diag;
560 }
561 }
562
563 if (!found)
564 found = kdbnearsym(addr, &symtab);
565
566 (*nextarg)++;
567
568 if (name)
569 *name = symname;
570 if (value)
571 *value = addr;
572 if (offset && name && *name)
573 *offset = addr - symtab.sym_start;
574
575 if ((*nextarg > argc)
576 && (symbol == '\0'))
577 return 0;
578
579 /*
580 * check for +/- and offset
581 */
582
583 if (symbol == '\0') {
584 if ((argv[*nextarg][0] != '+')
585 && (argv[*nextarg][0] != '-')) {
586 /*
587 * Not our argument. Return.
588 */
589 return 0;
590 } else {
591 positive = (argv[*nextarg][0] == '+');
592 (*nextarg)++;
593 }
594 } else
595 positive = (symbol == '+');
596
597 /*
598 * Now there must be an offset!
599 */
600 if ((*nextarg > argc)
601 && (symbol == '\0')) {
602 return KDB_INVADDRFMT;
603 }
604
605 if (!symbol) {
606 cp = (char *)argv[*nextarg];
607 (*nextarg)++;
608 }
609
610 diag = kdbgetularg(cp, &off);
611 if (diag)
612 return diag;
613
614 if (!positive)
615 off = -off;
616
617 if (offset)
618 *offset += off;
619
620 if (value)
621 *value += off;
622
623 return 0;
624}
625
626static void kdb_cmderror(int diag)
627{
628 int i;
629
630 if (diag >= 0) {
631 kdb_printf("no error detected (diagnostic is %d)\n", diag);
632 return;
633 }
634
635 for (i = 0; i < __nkdb_err; i++) {
636 if (kdbmsgs[i].km_diag == diag) {
637 kdb_printf("diag: %d: %s\n", diag, kdbmsgs[i].km_msg);
638 return;
639 }
640 }
641
642 kdb_printf("Unknown diag %d\n", -diag);
643}
644
645/*
646 * kdb_defcmd, kdb_defcmd2 - This function implements the 'defcmd'
647 * command which defines one command as a set of other commands,
648 * terminated by endefcmd. kdb_defcmd processes the initial
649 * 'defcmd' command, kdb_defcmd2 is invoked from kdb_parse for
650 * the following commands until 'endefcmd'.
651 * Inputs:
652 * argc argument count
653 * argv argument vector
654 * Returns:
655 * zero for success, a kdb diagnostic if error
656 */
657struct defcmd_set {
658 int count;
659 int usable;
660 char *name;
661 char *usage;
662 char *help;
663 char **command;
664};
665static struct defcmd_set *defcmd_set;
666static int defcmd_set_count;
667static int defcmd_in_progress;
668
669/* Forward references */
670static int kdb_exec_defcmd(int argc, const char **argv);
671
672static int kdb_defcmd2(const char *cmdstr, const char *argv0)
673{
674 struct defcmd_set *s = defcmd_set + defcmd_set_count - 1;
675 char **save_command = s->command;
676 if (strcmp(argv0, "endefcmd") == 0) {
677 defcmd_in_progress = 0;
678 if (!s->count)
679 s->usable = 0;
680 if (s->usable)
681 /* macros are always safe because when executed each
682 * internal command re-enters kdb_parse() and is
683 * safety checked individually.
684 */
685 kdb_register_flags(s->name, kdb_exec_defcmd, s->usage,
686 s->help, 0,
687 KDB_ENABLE_ALWAYS_SAFE);
688 return 0;
689 }
690 if (!s->usable)
691 return KDB_NOTIMP;
692 s->command = kzalloc((s->count + 1) * sizeof(*(s->command)), GFP_KDB);
693 if (!s->command) {
694 kdb_printf("Could not allocate new kdb_defcmd table for %s\n",
695 cmdstr);
696 s->usable = 0;
697 return KDB_NOTIMP;
698 }
699 memcpy(s->command, save_command, s->count * sizeof(*(s->command)));
700 s->command[s->count++] = kdb_strdup(cmdstr, GFP_KDB);
701 kfree(save_command);
702 return 0;
703}
704
705static int kdb_defcmd(int argc, const char **argv)
706{
707 struct defcmd_set *save_defcmd_set = defcmd_set, *s;
708 if (defcmd_in_progress) {
709 kdb_printf("kdb: nested defcmd detected, assuming missing "
710 "endefcmd\n");
711 kdb_defcmd2("endefcmd", "endefcmd");
712 }
713 if (argc == 0) {
714 int i;
715 for (s = defcmd_set; s < defcmd_set + defcmd_set_count; ++s) {
716 kdb_printf("defcmd %s \"%s\" \"%s\"\n", s->name,
717 s->usage, s->help);
718 for (i = 0; i < s->count; ++i)
719 kdb_printf("%s", s->command[i]);
720 kdb_printf("endefcmd\n");
721 }
722 return 0;
723 }
724 if (argc != 3)
725 return KDB_ARGCOUNT;
726 if (in_dbg_master()) {
727 kdb_printf("Command only available during kdb_init()\n");
728 return KDB_NOTIMP;
729 }
730 defcmd_set = kmalloc((defcmd_set_count + 1) * sizeof(*defcmd_set),
731 GFP_KDB);
732 if (!defcmd_set)
733 goto fail_defcmd;
734 memcpy(defcmd_set, save_defcmd_set,
735 defcmd_set_count * sizeof(*defcmd_set));
736 s = defcmd_set + defcmd_set_count;
737 memset(s, 0, sizeof(*s));
738 s->usable = 1;
739 s->name = kdb_strdup(argv[1], GFP_KDB);
740 if (!s->name)
741 goto fail_name;
742 s->usage = kdb_strdup(argv[2], GFP_KDB);
743 if (!s->usage)
744 goto fail_usage;
745 s->help = kdb_strdup(argv[3], GFP_KDB);
746 if (!s->help)
747 goto fail_help;
748 if (s->usage[0] == '"') {
749 strcpy(s->usage, argv[2]+1);
750 s->usage[strlen(s->usage)-1] = '\0';
751 }
752 if (s->help[0] == '"') {
753 strcpy(s->help, argv[3]+1);
754 s->help[strlen(s->help)-1] = '\0';
755 }
756 ++defcmd_set_count;
757 defcmd_in_progress = 1;
758 kfree(save_defcmd_set);
759 return 0;
760fail_help:
761 kfree(s->usage);
762fail_usage:
763 kfree(s->name);
764fail_name:
765 kfree(defcmd_set);
766fail_defcmd:
767 kdb_printf("Could not allocate new defcmd_set entry for %s\n", argv[1]);
768 defcmd_set = save_defcmd_set;
769 return KDB_NOTIMP;
770}
771
772/*
773 * kdb_exec_defcmd - Execute the set of commands associated with this
774 * defcmd name.
775 * Inputs:
776 * argc argument count
777 * argv argument vector
778 * Returns:
779 * zero for success, a kdb diagnostic if error
780 */
781static int kdb_exec_defcmd(int argc, const char **argv)
782{
783 int i, ret;
784 struct defcmd_set *s;
785 if (argc != 0)
786 return KDB_ARGCOUNT;
787 for (s = defcmd_set, i = 0; i < defcmd_set_count; ++i, ++s) {
788 if (strcmp(s->name, argv[0]) == 0)
789 break;
790 }
791 if (i == defcmd_set_count) {
792 kdb_printf("kdb_exec_defcmd: could not find commands for %s\n",
793 argv[0]);
794 return KDB_NOTIMP;
795 }
796 for (i = 0; i < s->count; ++i) {
797 /* Recursive use of kdb_parse, do not use argv after
798 * this point */
799 argv = NULL;
800 kdb_printf("[%s]kdb> %s\n", s->name, s->command[i]);
801 ret = kdb_parse(s->command[i]);
802 if (ret)
803 return ret;
804 }
805 return 0;
806}
807
808/* Command history */
809#define KDB_CMD_HISTORY_COUNT 32
810#define CMD_BUFLEN 200 /* kdb_printf: max printline
811 * size == 256 */
812static unsigned int cmd_head, cmd_tail;
813static unsigned int cmdptr;
814static char cmd_hist[KDB_CMD_HISTORY_COUNT][CMD_BUFLEN];
815static char cmd_cur[CMD_BUFLEN];
816
817/*
818 * The "str" argument may point to something like | grep xyz
819 */
820static void parse_grep(const char *str)
821{
822 int len;
823 char *cp = (char *)str, *cp2;
824
825 /* sanity check: we should have been called with the \ first */
826 if (*cp != '|')
827 return;
828 cp++;
829 while (isspace(*cp))
830 cp++;
831 if (strncmp(cp, "grep ", 5)) {
832 kdb_printf("invalid 'pipe', see grephelp\n");
833 return;
834 }
835 cp += 5;
836 while (isspace(*cp))
837 cp++;
838 cp2 = strchr(cp, '\n');
839 if (cp2)
840 *cp2 = '\0'; /* remove the trailing newline */
841 len = strlen(cp);
842 if (len == 0) {
843 kdb_printf("invalid 'pipe', see grephelp\n");
844 return;
845 }
846 /* now cp points to a nonzero length search string */
847 if (*cp == '"') {
848 /* allow it be "x y z" by removing the "'s - there must
849 be two of them */
850 cp++;
851 cp2 = strchr(cp, '"');
852 if (!cp2) {
853 kdb_printf("invalid quoted string, see grephelp\n");
854 return;
855 }
856 *cp2 = '\0'; /* end the string where the 2nd " was */
857 }
858 kdb_grep_leading = 0;
859 if (*cp == '^') {
860 kdb_grep_leading = 1;
861 cp++;
862 }
863 len = strlen(cp);
864 kdb_grep_trailing = 0;
865 if (*(cp+len-1) == '$') {
866 kdb_grep_trailing = 1;
867 *(cp+len-1) = '\0';
868 }
869 len = strlen(cp);
870 if (!len)
871 return;
872 if (len >= KDB_GREP_STRLEN) {
873 kdb_printf("search string too long\n");
874 return;
875 }
876 strcpy(kdb_grep_string, cp);
877 kdb_grepping_flag++;
878 return;
879}
880
881/*
882 * kdb_parse - Parse the command line, search the command table for a
883 * matching command and invoke the command function. This
884 * function may be called recursively, if it is, the second call
885 * will overwrite argv and cbuf. It is the caller's
886 * responsibility to save their argv if they recursively call
887 * kdb_parse().
888 * Parameters:
889 * cmdstr The input command line to be parsed.
890 * regs The registers at the time kdb was entered.
891 * Returns:
892 * Zero for success, a kdb diagnostic if failure.
893 * Remarks:
894 * Limited to 20 tokens.
895 *
896 * Real rudimentary tokenization. Basically only whitespace
897 * is considered a token delimeter (but special consideration
898 * is taken of the '=' sign as used by the 'set' command).
899 *
900 * The algorithm used to tokenize the input string relies on
901 * there being at least one whitespace (or otherwise useless)
902 * character between tokens as the character immediately following
903 * the token is altered in-place to a null-byte to terminate the
904 * token string.
905 */
906
907#define MAXARGC 20
908
909int kdb_parse(const char *cmdstr)
910{
911 static char *argv[MAXARGC];
912 static int argc;
913 static char cbuf[CMD_BUFLEN+2];
914 char *cp;
915 char *cpp, quoted;
916 kdbtab_t *tp;
917 int i, escaped, ignore_errors = 0, check_grep = 0;
918
919 /*
920 * First tokenize the command string.
921 */
922 cp = (char *)cmdstr;
923
924 if (KDB_FLAG(CMD_INTERRUPT)) {
925 /* Previous command was interrupted, newline must not
926 * repeat the command */
927 KDB_FLAG_CLEAR(CMD_INTERRUPT);
928 KDB_STATE_SET(PAGER);
929 argc = 0; /* no repeat */
930 }
931
932 if (*cp != '\n' && *cp != '\0') {
933 argc = 0;
934 cpp = cbuf;
935 while (*cp) {
936 /* skip whitespace */
937 while (isspace(*cp))
938 cp++;
939 if ((*cp == '\0') || (*cp == '\n') ||
940 (*cp == '#' && !defcmd_in_progress))
941 break;
942 /* special case: check for | grep pattern */
943 if (*cp == '|') {
944 check_grep++;
945 break;
946 }
947 if (cpp >= cbuf + CMD_BUFLEN) {
948 kdb_printf("kdb_parse: command buffer "
949 "overflow, command ignored\n%s\n",
950 cmdstr);
951 return KDB_NOTFOUND;
952 }
953 if (argc >= MAXARGC - 1) {
954 kdb_printf("kdb_parse: too many arguments, "
955 "command ignored\n%s\n", cmdstr);
956 return KDB_NOTFOUND;
957 }
958 argv[argc++] = cpp;
959 escaped = 0;
960 quoted = '\0';
961 /* Copy to next unquoted and unescaped
962 * whitespace or '=' */
963 while (*cp && *cp != '\n' &&
964 (escaped || quoted || !isspace(*cp))) {
965 if (cpp >= cbuf + CMD_BUFLEN)
966 break;
967 if (escaped) {
968 escaped = 0;
969 *cpp++ = *cp++;
970 continue;
971 }
972 if (*cp == '\\') {
973 escaped = 1;
974 ++cp;
975 continue;
976 }
977 if (*cp == quoted)
978 quoted = '\0';
979 else if (*cp == '\'' || *cp == '"')
980 quoted = *cp;
981 *cpp = *cp++;
982 if (*cpp == '=' && !quoted)
983 break;
984 ++cpp;
985 }
986 *cpp++ = '\0'; /* Squash a ws or '=' character */
987 }
988 }
989 if (!argc)
990 return 0;
991 if (check_grep)
992 parse_grep(cp);
993 if (defcmd_in_progress) {
994 int result = kdb_defcmd2(cmdstr, argv[0]);
995 if (!defcmd_in_progress) {
996 argc = 0; /* avoid repeat on endefcmd */
997 *(argv[0]) = '\0';
998 }
999 return result;
1000 }
1001 if (argv[0][0] == '-' && argv[0][1] &&
1002 (argv[0][1] < '0' || argv[0][1] > '9')) {
1003 ignore_errors = 1;
1004 ++argv[0];
1005 }
1006
1007 for_each_kdbcmd(tp, i) {
1008 if (tp->cmd_name) {
1009 /*
1010 * If this command is allowed to be abbreviated,
1011 * check to see if this is it.
1012 */
1013
1014 if (tp->cmd_minlen
1015 && (strlen(argv[0]) <= tp->cmd_minlen)) {
1016 if (strncmp(argv[0],
1017 tp->cmd_name,
1018 tp->cmd_minlen) == 0) {
1019 break;
1020 }
1021 }
1022
1023 if (strcmp(argv[0], tp->cmd_name) == 0)
1024 break;
1025 }
1026 }
1027
1028 /*
1029 * If we don't find a command by this name, see if the first
1030 * few characters of this match any of the known commands.
1031 * e.g., md1c20 should match md.
1032 */
1033 if (i == kdb_max_commands) {
1034 for_each_kdbcmd(tp, i) {
1035 if (tp->cmd_name) {
1036 if (strncmp(argv[0],
1037 tp->cmd_name,
1038 strlen(tp->cmd_name)) == 0) {
1039 break;
1040 }
1041 }
1042 }
1043 }
1044
1045 if (i < kdb_max_commands) {
1046 int result;
1047
1048 if (!kdb_check_flags(tp->cmd_flags, kdb_cmd_enabled, argc <= 1))
1049 return KDB_NOPERM;
1050
1051 KDB_STATE_SET(CMD);
1052 result = (*tp->cmd_func)(argc-1, (const char **)argv);
1053 if (result && ignore_errors && result > KDB_CMD_GO)
1054 result = 0;
1055 KDB_STATE_CLEAR(CMD);
1056
1057 if (tp->cmd_flags & KDB_REPEAT_WITH_ARGS)
1058 return result;
1059
1060 argc = tp->cmd_flags & KDB_REPEAT_NO_ARGS ? 1 : 0;
1061 if (argv[argc])
1062 *(argv[argc]) = '\0';
1063 return result;
1064 }
1065
1066 /*
1067 * If the input with which we were presented does not
1068 * map to an existing command, attempt to parse it as an
1069 * address argument and display the result. Useful for
1070 * obtaining the address of a variable, or the nearest symbol
1071 * to an address contained in a register.
1072 */
1073 {
1074 unsigned long value;
1075 char *name = NULL;
1076 long offset;
1077 int nextarg = 0;
1078
1079 if (kdbgetaddrarg(0, (const char **)argv, &nextarg,
1080 &value, &offset, &name)) {
1081 return KDB_NOTFOUND;
1082 }
1083
1084 kdb_printf("%s = ", argv[0]);
1085 kdb_symbol_print(value, NULL, KDB_SP_DEFAULT);
1086 kdb_printf("\n");
1087 return 0;
1088 }
1089}
1090
1091
1092static int handle_ctrl_cmd(char *cmd)
1093{
1094#define CTRL_P 16
1095#define CTRL_N 14
1096
1097 /* initial situation */
1098 if (cmd_head == cmd_tail)
1099 return 0;
1100 switch (*cmd) {
1101 case CTRL_P:
1102 if (cmdptr != cmd_tail)
1103 cmdptr = (cmdptr-1) % KDB_CMD_HISTORY_COUNT;
1104 strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1105 return 1;
1106 case CTRL_N:
1107 if (cmdptr != cmd_head)
1108 cmdptr = (cmdptr+1) % KDB_CMD_HISTORY_COUNT;
1109 strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1110 return 1;
1111 }
1112 return 0;
1113}
1114
1115/*
1116 * kdb_reboot - This function implements the 'reboot' command. Reboot
1117 * the system immediately, or loop for ever on failure.
1118 */
1119static int kdb_reboot(int argc, const char **argv)
1120{
1121 emergency_restart();
1122 kdb_printf("Hmm, kdb_reboot did not reboot, spinning here\n");
1123 while (1)
1124 cpu_relax();
1125 /* NOTREACHED */
1126 return 0;
1127}
1128
1129static void kdb_dumpregs(struct pt_regs *regs)
1130{
1131 int old_lvl = console_loglevel;
1132 console_loglevel = CONSOLE_LOGLEVEL_MOTORMOUTH;
1133 kdb_trap_printk++;
1134 show_regs(regs);
1135 kdb_trap_printk--;
1136 kdb_printf("\n");
1137 console_loglevel = old_lvl;
1138}
1139
1140void kdb_set_current_task(struct task_struct *p)
1141{
1142 kdb_current_task = p;
1143
1144 if (kdb_task_has_cpu(p)) {
1145 kdb_current_regs = KDB_TSKREGS(kdb_process_cpu(p));
1146 return;
1147 }
1148 kdb_current_regs = NULL;
1149}
1150
1151/*
1152 * kdb_local - The main code for kdb. This routine is invoked on a
1153 * specific processor, it is not global. The main kdb() routine
1154 * ensures that only one processor at a time is in this routine.
1155 * This code is called with the real reason code on the first
1156 * entry to a kdb session, thereafter it is called with reason
1157 * SWITCH, even if the user goes back to the original cpu.
1158 * Inputs:
1159 * reason The reason KDB was invoked
1160 * error The hardware-defined error code
1161 * regs The exception frame at time of fault/breakpoint.
1162 * db_result Result code from the break or debug point.
1163 * Returns:
1164 * 0 KDB was invoked for an event which it wasn't responsible
1165 * 1 KDB handled the event for which it was invoked.
1166 * KDB_CMD_GO User typed 'go'.
1167 * KDB_CMD_CPU User switched to another cpu.
1168 * KDB_CMD_SS Single step.
1169 */
1170static int kdb_local(kdb_reason_t reason, int error, struct pt_regs *regs,
1171 kdb_dbtrap_t db_result)
1172{
1173 char *cmdbuf;
1174 int diag;
1175 struct task_struct *kdb_current =
1176 kdb_curr_task(raw_smp_processor_id());
1177
1178 KDB_DEBUG_STATE("kdb_local 1", reason);
1179 kdb_go_count = 0;
1180 if (reason == KDB_REASON_DEBUG) {
1181 /* special case below */
1182 } else {
1183 kdb_printf("\nEntering kdb (current=0x%p, pid %d) ",
1184 kdb_current, kdb_current ? kdb_current->pid : 0);
1185#if defined(CONFIG_SMP)
1186 kdb_printf("on processor %d ", raw_smp_processor_id());
1187#endif
1188 }
1189
1190 switch (reason) {
1191 case KDB_REASON_DEBUG:
1192 {
1193 /*
1194 * If re-entering kdb after a single step
1195 * command, don't print the message.
1196 */
1197 switch (db_result) {
1198 case KDB_DB_BPT:
1199 kdb_printf("\nEntering kdb (0x%p, pid %d) ",
1200 kdb_current, kdb_current->pid);
1201#if defined(CONFIG_SMP)
1202 kdb_printf("on processor %d ", raw_smp_processor_id());
1203#endif
1204 kdb_printf("due to Debug @ " kdb_machreg_fmt "\n",
1205 instruction_pointer(regs));
1206 break;
1207 case KDB_DB_SS:
1208 break;
1209 case KDB_DB_SSBPT:
1210 KDB_DEBUG_STATE("kdb_local 4", reason);
1211 return 1; /* kdba_db_trap did the work */
1212 default:
1213 kdb_printf("kdb: Bad result from kdba_db_trap: %d\n",
1214 db_result);
1215 break;
1216 }
1217
1218 }
1219 break;
1220 case KDB_REASON_ENTER:
1221 if (KDB_STATE(KEYBOARD))
1222 kdb_printf("due to Keyboard Entry\n");
1223 else
1224 kdb_printf("due to KDB_ENTER()\n");
1225 break;
1226 case KDB_REASON_KEYBOARD:
1227 KDB_STATE_SET(KEYBOARD);
1228 kdb_printf("due to Keyboard Entry\n");
1229 break;
1230 case KDB_REASON_ENTER_SLAVE:
1231 /* drop through, slaves only get released via cpu switch */
1232 case KDB_REASON_SWITCH:
1233 kdb_printf("due to cpu switch\n");
1234 break;
1235 case KDB_REASON_OOPS:
1236 kdb_printf("Oops: %s\n", kdb_diemsg);
1237 kdb_printf("due to oops @ " kdb_machreg_fmt "\n",
1238 instruction_pointer(regs));
1239 kdb_dumpregs(regs);
1240 break;
1241 case KDB_REASON_SYSTEM_NMI:
1242 kdb_printf("due to System NonMaskable Interrupt\n");
1243 break;
1244 case KDB_REASON_NMI:
1245 kdb_printf("due to NonMaskable Interrupt @ "
1246 kdb_machreg_fmt "\n",
1247 instruction_pointer(regs));
1248 break;
1249 case KDB_REASON_SSTEP:
1250 case KDB_REASON_BREAK:
1251 kdb_printf("due to %s @ " kdb_machreg_fmt "\n",
1252 reason == KDB_REASON_BREAK ?
1253 "Breakpoint" : "SS trap", instruction_pointer(regs));
1254 /*
1255 * Determine if this breakpoint is one that we
1256 * are interested in.
1257 */
1258 if (db_result != KDB_DB_BPT) {
1259 kdb_printf("kdb: error return from kdba_bp_trap: %d\n",
1260 db_result);
1261 KDB_DEBUG_STATE("kdb_local 6", reason);
1262 return 0; /* Not for us, dismiss it */
1263 }
1264 break;
1265 case KDB_REASON_RECURSE:
1266 kdb_printf("due to Recursion @ " kdb_machreg_fmt "\n",
1267 instruction_pointer(regs));
1268 break;
1269 default:
1270 kdb_printf("kdb: unexpected reason code: %d\n", reason);
1271 KDB_DEBUG_STATE("kdb_local 8", reason);
1272 return 0; /* Not for us, dismiss it */
1273 }
1274
1275 while (1) {
1276 /*
1277 * Initialize pager context.
1278 */
1279 kdb_nextline = 1;
1280 KDB_STATE_CLEAR(SUPPRESS);
1281 kdb_grepping_flag = 0;
1282 /* ensure the old search does not leak into '/' commands */
1283 kdb_grep_string[0] = '\0';
1284
1285 cmdbuf = cmd_cur;
1286 *cmdbuf = '\0';
1287 *(cmd_hist[cmd_head]) = '\0';
1288
1289do_full_getstr:
1290#if defined(CONFIG_SMP)
1291 snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"),
1292 raw_smp_processor_id());
1293#else
1294 snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"));
1295#endif
1296 if (defcmd_in_progress)
1297 strncat(kdb_prompt_str, "[defcmd]", CMD_BUFLEN);
1298
1299 /*
1300 * Fetch command from keyboard
1301 */
1302 cmdbuf = kdb_getstr(cmdbuf, CMD_BUFLEN, kdb_prompt_str);
1303 if (*cmdbuf != '\n') {
1304 if (*cmdbuf < 32) {
1305 if (cmdptr == cmd_head) {
1306 strncpy(cmd_hist[cmd_head], cmd_cur,
1307 CMD_BUFLEN);
1308 *(cmd_hist[cmd_head] +
1309 strlen(cmd_hist[cmd_head])-1) = '\0';
1310 }
1311 if (!handle_ctrl_cmd(cmdbuf))
1312 *(cmd_cur+strlen(cmd_cur)-1) = '\0';
1313 cmdbuf = cmd_cur;
1314 goto do_full_getstr;
1315 } else {
1316 strncpy(cmd_hist[cmd_head], cmd_cur,
1317 CMD_BUFLEN);
1318 }
1319
1320 cmd_head = (cmd_head+1) % KDB_CMD_HISTORY_COUNT;
1321 if (cmd_head == cmd_tail)
1322 cmd_tail = (cmd_tail+1) % KDB_CMD_HISTORY_COUNT;
1323 }
1324
1325 cmdptr = cmd_head;
1326 diag = kdb_parse(cmdbuf);
1327 if (diag == KDB_NOTFOUND) {
1328 kdb_printf("Unknown kdb command: '%s'\n", cmdbuf);
1329 diag = 0;
1330 }
1331 if (diag == KDB_CMD_GO
1332 || diag == KDB_CMD_CPU
1333 || diag == KDB_CMD_SS
1334 || diag == KDB_CMD_KGDB)
1335 break;
1336
1337 if (diag)
1338 kdb_cmderror(diag);
1339 }
1340 KDB_DEBUG_STATE("kdb_local 9", diag);
1341 return diag;
1342}
1343
1344
1345/*
1346 * kdb_print_state - Print the state data for the current processor
1347 * for debugging.
1348 * Inputs:
1349 * text Identifies the debug point
1350 * value Any integer value to be printed, e.g. reason code.
1351 */
1352void kdb_print_state(const char *text, int value)
1353{
1354 kdb_printf("state: %s cpu %d value %d initial %d state %x\n",
1355 text, raw_smp_processor_id(), value, kdb_initial_cpu,
1356 kdb_state);
1357}
1358
1359/*
1360 * kdb_main_loop - After initial setup and assignment of the
1361 * controlling cpu, all cpus are in this loop. One cpu is in
1362 * control and will issue the kdb prompt, the others will spin
1363 * until 'go' or cpu switch.
1364 *
1365 * To get a consistent view of the kernel stacks for all
1366 * processes, this routine is invoked from the main kdb code via
1367 * an architecture specific routine. kdba_main_loop is
1368 * responsible for making the kernel stacks consistent for all
1369 * processes, there should be no difference between a blocked
1370 * process and a running process as far as kdb is concerned.
1371 * Inputs:
1372 * reason The reason KDB was invoked
1373 * error The hardware-defined error code
1374 * reason2 kdb's current reason code.
1375 * Initially error but can change
1376 * according to kdb state.
1377 * db_result Result code from break or debug point.
1378 * regs The exception frame at time of fault/breakpoint.
1379 * should always be valid.
1380 * Returns:
1381 * 0 KDB was invoked for an event which it wasn't responsible
1382 * 1 KDB handled the event for which it was invoked.
1383 */
1384int kdb_main_loop(kdb_reason_t reason, kdb_reason_t reason2, int error,
1385 kdb_dbtrap_t db_result, struct pt_regs *regs)
1386{
1387 int result = 1;
1388 /* Stay in kdb() until 'go', 'ss[b]' or an error */
1389 while (1) {
1390 /*
1391 * All processors except the one that is in control
1392 * will spin here.
1393 */
1394 KDB_DEBUG_STATE("kdb_main_loop 1", reason);
1395 while (KDB_STATE(HOLD_CPU)) {
1396 /* state KDB is turned off by kdb_cpu to see if the
1397 * other cpus are still live, each cpu in this loop
1398 * turns it back on.
1399 */
1400 if (!KDB_STATE(KDB))
1401 KDB_STATE_SET(KDB);
1402 }
1403
1404 KDB_STATE_CLEAR(SUPPRESS);
1405 KDB_DEBUG_STATE("kdb_main_loop 2", reason);
1406 if (KDB_STATE(LEAVING))
1407 break; /* Another cpu said 'go' */
1408 /* Still using kdb, this processor is in control */
1409 result = kdb_local(reason2, error, regs, db_result);
1410 KDB_DEBUG_STATE("kdb_main_loop 3", result);
1411
1412 if (result == KDB_CMD_CPU)
1413 break;
1414
1415 if (result == KDB_CMD_SS) {
1416 KDB_STATE_SET(DOING_SS);
1417 break;
1418 }
1419
1420 if (result == KDB_CMD_KGDB) {
1421 if (!KDB_STATE(DOING_KGDB))
1422 kdb_printf("Entering please attach debugger "
1423 "or use $D#44+ or $3#33\n");
1424 break;
1425 }
1426 if (result && result != 1 && result != KDB_CMD_GO)
1427 kdb_printf("\nUnexpected kdb_local return code %d\n",
1428 result);
1429 KDB_DEBUG_STATE("kdb_main_loop 4", reason);
1430 break;
1431 }
1432 if (KDB_STATE(DOING_SS))
1433 KDB_STATE_CLEAR(SSBPT);
1434
1435 /* Clean up any keyboard devices before leaving */
1436 kdb_kbd_cleanup_state();
1437
1438 return result;
1439}
1440
1441/*
1442 * kdb_mdr - This function implements the guts of the 'mdr', memory
1443 * read command.
1444 * mdr <addr arg>,<byte count>
1445 * Inputs:
1446 * addr Start address
1447 * count Number of bytes
1448 * Returns:
1449 * Always 0. Any errors are detected and printed by kdb_getarea.
1450 */
1451static int kdb_mdr(unsigned long addr, unsigned int count)
1452{
1453 unsigned char c;
1454 while (count--) {
1455 if (kdb_getarea(c, addr))
1456 return 0;
1457 kdb_printf("%02x", c);
1458 addr++;
1459 }
1460 kdb_printf("\n");
1461 return 0;
1462}
1463
1464/*
1465 * kdb_md - This function implements the 'md', 'md1', 'md2', 'md4',
1466 * 'md8' 'mdr' and 'mds' commands.
1467 *
1468 * md|mds [<addr arg> [<line count> [<radix>]]]
1469 * mdWcN [<addr arg> [<line count> [<radix>]]]
1470 * where W = is the width (1, 2, 4 or 8) and N is the count.
1471 * for eg., md1c20 reads 20 bytes, 1 at a time.
1472 * mdr <addr arg>,<byte count>
1473 */
1474static void kdb_md_line(const char *fmtstr, unsigned long addr,
1475 int symbolic, int nosect, int bytesperword,
1476 int num, int repeat, int phys)
1477{
1478 /* print just one line of data */
1479 kdb_symtab_t symtab;
1480 char cbuf[32];
1481 char *c = cbuf;
1482 int i;
1483 unsigned long word;
1484
1485 memset(cbuf, '\0', sizeof(cbuf));
1486 if (phys)
1487 kdb_printf("phys " kdb_machreg_fmt0 " ", addr);
1488 else
1489 kdb_printf(kdb_machreg_fmt0 " ", addr);
1490
1491 for (i = 0; i < num && repeat--; i++) {
1492 if (phys) {
1493 if (kdb_getphysword(&word, addr, bytesperword))
1494 break;
1495 } else if (kdb_getword(&word, addr, bytesperword))
1496 break;
1497 kdb_printf(fmtstr, word);
1498 if (symbolic)
1499 kdbnearsym(word, &symtab);
1500 else
1501 memset(&symtab, 0, sizeof(symtab));
1502 if (symtab.sym_name) {
1503 kdb_symbol_print(word, &symtab, 0);
1504 if (!nosect) {
1505 kdb_printf("\n");
1506 kdb_printf(" %s %s "
1507 kdb_machreg_fmt " "
1508 kdb_machreg_fmt " "
1509 kdb_machreg_fmt, symtab.mod_name,
1510 symtab.sec_name, symtab.sec_start,
1511 symtab.sym_start, symtab.sym_end);
1512 }
1513 addr += bytesperword;
1514 } else {
1515 union {
1516 u64 word;
1517 unsigned char c[8];
1518 } wc;
1519 unsigned char *cp;
1520#ifdef __BIG_ENDIAN
1521 cp = wc.c + 8 - bytesperword;
1522#else
1523 cp = wc.c;
1524#endif
1525 wc.word = word;
1526#define printable_char(c) \
1527 ({unsigned char __c = c; isascii(__c) && isprint(__c) ? __c : '.'; })
1528 switch (bytesperword) {
1529 case 8:
1530 *c++ = printable_char(*cp++);
1531 *c++ = printable_char(*cp++);
1532 *c++ = printable_char(*cp++);
1533 *c++ = printable_char(*cp++);
1534 addr += 4;
1535 case 4:
1536 *c++ = printable_char(*cp++);
1537 *c++ = printable_char(*cp++);
1538 addr += 2;
1539 case 2:
1540 *c++ = printable_char(*cp++);
1541 addr++;
1542 case 1:
1543 *c++ = printable_char(*cp++);
1544 addr++;
1545 break;
1546 }
1547#undef printable_char
1548 }
1549 }
1550 kdb_printf("%*s %s\n", (int)((num-i)*(2*bytesperword + 1)+1),
1551 " ", cbuf);
1552}
1553
1554static int kdb_md(int argc, const char **argv)
1555{
1556 static unsigned long last_addr;
1557 static int last_radix, last_bytesperword, last_repeat;
1558 int radix = 16, mdcount = 8, bytesperword = KDB_WORD_SIZE, repeat;
1559 int nosect = 0;
1560 char fmtchar, fmtstr[64];
1561 unsigned long addr;
1562 unsigned long word;
1563 long offset = 0;
1564 int symbolic = 0;
1565 int valid = 0;
1566 int phys = 0;
1567
1568 kdbgetintenv("MDCOUNT", &mdcount);
1569 kdbgetintenv("RADIX", &radix);
1570 kdbgetintenv("BYTESPERWORD", &bytesperword);
1571
1572 /* Assume 'md <addr>' and start with environment values */
1573 repeat = mdcount * 16 / bytesperword;
1574
1575 if (strcmp(argv[0], "mdr") == 0) {
1576 if (argc != 2)
1577 return KDB_ARGCOUNT;
1578 valid = 1;
1579 } else if (isdigit(argv[0][2])) {
1580 bytesperword = (int)(argv[0][2] - '0');
1581 if (bytesperword == 0) {
1582 bytesperword = last_bytesperword;
1583 if (bytesperword == 0)
1584 bytesperword = 4;
1585 }
1586 last_bytesperword = bytesperword;
1587 repeat = mdcount * 16 / bytesperword;
1588 if (!argv[0][3])
1589 valid = 1;
1590 else if (argv[0][3] == 'c' && argv[0][4]) {
1591 char *p;
1592 repeat = simple_strtoul(argv[0] + 4, &p, 10);
1593 mdcount = ((repeat * bytesperword) + 15) / 16;
1594 valid = !*p;
1595 }
1596 last_repeat = repeat;
1597 } else if (strcmp(argv[0], "md") == 0)
1598 valid = 1;
1599 else if (strcmp(argv[0], "mds") == 0)
1600 valid = 1;
1601 else if (strcmp(argv[0], "mdp") == 0) {
1602 phys = valid = 1;
1603 }
1604 if (!valid)
1605 return KDB_NOTFOUND;
1606
1607 if (argc == 0) {
1608 if (last_addr == 0)
1609 return KDB_ARGCOUNT;
1610 addr = last_addr;
1611 radix = last_radix;
1612 bytesperword = last_bytesperword;
1613 repeat = last_repeat;
1614 mdcount = ((repeat * bytesperword) + 15) / 16;
1615 }
1616
1617 if (argc) {
1618 unsigned long val;
1619 int diag, nextarg = 1;
1620 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr,
1621 &offset, NULL);
1622 if (diag)
1623 return diag;
1624 if (argc > nextarg+2)
1625 return KDB_ARGCOUNT;
1626
1627 if (argc >= nextarg) {
1628 diag = kdbgetularg(argv[nextarg], &val);
1629 if (!diag) {
1630 mdcount = (int) val;
1631 repeat = mdcount * 16 / bytesperword;
1632 }
1633 }
1634 if (argc >= nextarg+1) {
1635 diag = kdbgetularg(argv[nextarg+1], &val);
1636 if (!diag)
1637 radix = (int) val;
1638 }
1639 }
1640
1641 if (strcmp(argv[0], "mdr") == 0)
1642 return kdb_mdr(addr, mdcount);
1643
1644 switch (radix) {
1645 case 10:
1646 fmtchar = 'd';
1647 break;
1648 case 16:
1649 fmtchar = 'x';
1650 break;
1651 case 8:
1652 fmtchar = 'o';
1653 break;
1654 default:
1655 return KDB_BADRADIX;
1656 }
1657
1658 last_radix = radix;
1659
1660 if (bytesperword > KDB_WORD_SIZE)
1661 return KDB_BADWIDTH;
1662
1663 switch (bytesperword) {
1664 case 8:
1665 sprintf(fmtstr, "%%16.16l%c ", fmtchar);
1666 break;
1667 case 4:
1668 sprintf(fmtstr, "%%8.8l%c ", fmtchar);
1669 break;
1670 case 2:
1671 sprintf(fmtstr, "%%4.4l%c ", fmtchar);
1672 break;
1673 case 1:
1674 sprintf(fmtstr, "%%2.2l%c ", fmtchar);
1675 break;
1676 default:
1677 return KDB_BADWIDTH;
1678 }
1679
1680 last_repeat = repeat;
1681 last_bytesperword = bytesperword;
1682
1683 if (strcmp(argv[0], "mds") == 0) {
1684 symbolic = 1;
1685 /* Do not save these changes as last_*, they are temporary mds
1686 * overrides.
1687 */
1688 bytesperword = KDB_WORD_SIZE;
1689 repeat = mdcount;
1690 kdbgetintenv("NOSECT", &nosect);
1691 }
1692
1693 /* Round address down modulo BYTESPERWORD */
1694
1695 addr &= ~(bytesperword-1);
1696
1697 while (repeat > 0) {
1698 unsigned long a;
1699 int n, z, num = (symbolic ? 1 : (16 / bytesperword));
1700
1701 if (KDB_FLAG(CMD_INTERRUPT))
1702 return 0;
1703 for (a = addr, z = 0; z < repeat; a += bytesperword, ++z) {
1704 if (phys) {
1705 if (kdb_getphysword(&word, a, bytesperword)
1706 || word)
1707 break;
1708 } else if (kdb_getword(&word, a, bytesperword) || word)
1709 break;
1710 }
1711 n = min(num, repeat);
1712 kdb_md_line(fmtstr, addr, symbolic, nosect, bytesperword,
1713 num, repeat, phys);
1714 addr += bytesperword * n;
1715 repeat -= n;
1716 z = (z + num - 1) / num;
1717 if (z > 2) {
1718 int s = num * (z-2);
1719 kdb_printf(kdb_machreg_fmt0 "-" kdb_machreg_fmt0
1720 " zero suppressed\n",
1721 addr, addr + bytesperword * s - 1);
1722 addr += bytesperword * s;
1723 repeat -= s;
1724 }
1725 }
1726 last_addr = addr;
1727
1728 return 0;
1729}
1730
1731/*
1732 * kdb_mm - This function implements the 'mm' command.
1733 * mm address-expression new-value
1734 * Remarks:
1735 * mm works on machine words, mmW works on bytes.
1736 */
1737static int kdb_mm(int argc, const char **argv)
1738{
1739 int diag;
1740 unsigned long addr;
1741 long offset = 0;
1742 unsigned long contents;
1743 int nextarg;
1744 int width;
1745
1746 if (argv[0][2] && !isdigit(argv[0][2]))
1747 return KDB_NOTFOUND;
1748
1749 if (argc < 2)
1750 return KDB_ARGCOUNT;
1751
1752 nextarg = 1;
1753 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
1754 if (diag)
1755 return diag;
1756
1757 if (nextarg > argc)
1758 return KDB_ARGCOUNT;
1759 diag = kdbgetaddrarg(argc, argv, &nextarg, &contents, NULL, NULL);
1760 if (diag)
1761 return diag;
1762
1763 if (nextarg != argc + 1)
1764 return KDB_ARGCOUNT;
1765
1766 width = argv[0][2] ? (argv[0][2] - '0') : (KDB_WORD_SIZE);
1767 diag = kdb_putword(addr, contents, width);
1768 if (diag)
1769 return diag;
1770
1771 kdb_printf(kdb_machreg_fmt " = " kdb_machreg_fmt "\n", addr, contents);
1772
1773 return 0;
1774}
1775
1776/*
1777 * kdb_go - This function implements the 'go' command.
1778 * go [address-expression]
1779 */
1780static int kdb_go(int argc, const char **argv)
1781{
1782 unsigned long addr;
1783 int diag;
1784 int nextarg;
1785 long offset;
1786
1787 if (raw_smp_processor_id() != kdb_initial_cpu) {
1788 kdb_printf("go must execute on the entry cpu, "
1789 "please use \"cpu %d\" and then execute go\n",
1790 kdb_initial_cpu);
1791 return KDB_BADCPUNUM;
1792 }
1793 if (argc == 1) {
1794 nextarg = 1;
1795 diag = kdbgetaddrarg(argc, argv, &nextarg,
1796 &addr, &offset, NULL);
1797 if (diag)
1798 return diag;
1799 } else if (argc) {
1800 return KDB_ARGCOUNT;
1801 }
1802
1803 diag = KDB_CMD_GO;
1804 if (KDB_FLAG(CATASTROPHIC)) {
1805 kdb_printf("Catastrophic error detected\n");
1806 kdb_printf("kdb_continue_catastrophic=%d, ",
1807 kdb_continue_catastrophic);
1808 if (kdb_continue_catastrophic == 0 && kdb_go_count++ == 0) {
1809 kdb_printf("type go a second time if you really want "
1810 "to continue\n");
1811 return 0;
1812 }
1813 if (kdb_continue_catastrophic == 2) {
1814 kdb_printf("forcing reboot\n");
1815 kdb_reboot(0, NULL);
1816 }
1817 kdb_printf("attempting to continue\n");
1818 }
1819 return diag;
1820}
1821
1822/*
1823 * kdb_rd - This function implements the 'rd' command.
1824 */
1825static int kdb_rd(int argc, const char **argv)
1826{
1827 int len = kdb_check_regs();
1828#if DBG_MAX_REG_NUM > 0
1829 int i;
1830 char *rname;
1831 int rsize;
1832 u64 reg64;
1833 u32 reg32;
1834 u16 reg16;
1835 u8 reg8;
1836
1837 if (len)
1838 return len;
1839
1840 for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1841 rsize = dbg_reg_def[i].size * 2;
1842 if (rsize > 16)
1843 rsize = 2;
1844 if (len + strlen(dbg_reg_def[i].name) + 4 + rsize > 80) {
1845 len = 0;
1846 kdb_printf("\n");
1847 }
1848 if (len)
1849 len += kdb_printf(" ");
1850 switch(dbg_reg_def[i].size * 8) {
1851 case 8:
1852 rname = dbg_get_reg(i, ®8, kdb_current_regs);
1853 if (!rname)
1854 break;
1855 len += kdb_printf("%s: %02x", rname, reg8);
1856 break;
1857 case 16:
1858 rname = dbg_get_reg(i, ®16, kdb_current_regs);
1859 if (!rname)
1860 break;
1861 len += kdb_printf("%s: %04x", rname, reg16);
1862 break;
1863 case 32:
1864 rname = dbg_get_reg(i, ®32, kdb_current_regs);
1865 if (!rname)
1866 break;
1867 len += kdb_printf("%s: %08x", rname, reg32);
1868 break;
1869 case 64:
1870 rname = dbg_get_reg(i, ®64, kdb_current_regs);
1871 if (!rname)
1872 break;
1873 len += kdb_printf("%s: %016llx", rname, reg64);
1874 break;
1875 default:
1876 len += kdb_printf("%s: ??", dbg_reg_def[i].name);
1877 }
1878 }
1879 kdb_printf("\n");
1880#else
1881 if (len)
1882 return len;
1883
1884 kdb_dumpregs(kdb_current_regs);
1885#endif
1886 return 0;
1887}
1888
1889/*
1890 * kdb_rm - This function implements the 'rm' (register modify) command.
1891 * rm register-name new-contents
1892 * Remarks:
1893 * Allows register modification with the same restrictions as gdb
1894 */
1895static int kdb_rm(int argc, const char **argv)
1896{
1897#if DBG_MAX_REG_NUM > 0
1898 int diag;
1899 const char *rname;
1900 int i;
1901 u64 reg64;
1902 u32 reg32;
1903 u16 reg16;
1904 u8 reg8;
1905
1906 if (argc != 2)
1907 return KDB_ARGCOUNT;
1908 /*
1909 * Allow presence or absence of leading '%' symbol.
1910 */
1911 rname = argv[1];
1912 if (*rname == '%')
1913 rname++;
1914
1915 diag = kdbgetu64arg(argv[2], ®64);
1916 if (diag)
1917 return diag;
1918
1919 diag = kdb_check_regs();
1920 if (diag)
1921 return diag;
1922
1923 diag = KDB_BADREG;
1924 for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1925 if (strcmp(rname, dbg_reg_def[i].name) == 0) {
1926 diag = 0;
1927 break;
1928 }
1929 }
1930 if (!diag) {
1931 switch(dbg_reg_def[i].size * 8) {
1932 case 8:
1933 reg8 = reg64;
1934 dbg_set_reg(i, ®8, kdb_current_regs);
1935 break;
1936 case 16:
1937 reg16 = reg64;
1938 dbg_set_reg(i, ®16, kdb_current_regs);
1939 break;
1940 case 32:
1941 reg32 = reg64;
1942 dbg_set_reg(i, ®32, kdb_current_regs);
1943 break;
1944 case 64:
1945 dbg_set_reg(i, ®64, kdb_current_regs);
1946 break;
1947 }
1948 }
1949 return diag;
1950#else
1951 kdb_printf("ERROR: Register set currently not implemented\n");
1952 return 0;
1953#endif
1954}
1955
1956#if defined(CONFIG_MAGIC_SYSRQ)
1957/*
1958 * kdb_sr - This function implements the 'sr' (SYSRQ key) command
1959 * which interfaces to the soi-disant MAGIC SYSRQ functionality.
1960 * sr <magic-sysrq-code>
1961 */
1962static int kdb_sr(int argc, const char **argv)
1963{
1964 bool check_mask =
1965 !kdb_check_flags(KDB_ENABLE_ALL, kdb_cmd_enabled, false);
1966
1967 if (argc != 1)
1968 return KDB_ARGCOUNT;
1969
1970 kdb_trap_printk++;
1971 __handle_sysrq(*argv[1], check_mask);
1972 kdb_trap_printk--;
1973
1974 return 0;
1975}
1976#endif /* CONFIG_MAGIC_SYSRQ */
1977
1978/*
1979 * kdb_ef - This function implements the 'regs' (display exception
1980 * frame) command. This command takes an address and expects to
1981 * find an exception frame at that address, formats and prints
1982 * it.
1983 * regs address-expression
1984 * Remarks:
1985 * Not done yet.
1986 */
1987static int kdb_ef(int argc, const char **argv)
1988{
1989 int diag;
1990 unsigned long addr;
1991 long offset;
1992 int nextarg;
1993
1994 if (argc != 1)
1995 return KDB_ARGCOUNT;
1996
1997 nextarg = 1;
1998 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
1999 if (diag)
2000 return diag;
2001 show_regs((struct pt_regs *)addr);
2002 return 0;
2003}
2004
2005#if defined(CONFIG_MODULES)
2006/*
2007 * kdb_lsmod - This function implements the 'lsmod' command. Lists
2008 * currently loaded kernel modules.
2009 * Mostly taken from userland lsmod.
2010 */
2011static int kdb_lsmod(int argc, const char **argv)
2012{
2013 struct module *mod;
2014
2015 if (argc != 0)
2016 return KDB_ARGCOUNT;
2017
2018 kdb_printf("Module Size modstruct Used by\n");
2019 list_for_each_entry(mod, kdb_modules, list) {
2020 if (mod->state == MODULE_STATE_UNFORMED)
2021 continue;
2022
2023 kdb_printf("%-20s%8u 0x%p ", mod->name,
2024 mod->core_layout.size, (void *)mod);
2025#ifdef CONFIG_MODULE_UNLOAD
2026 kdb_printf("%4d ", module_refcount(mod));
2027#endif
2028 if (mod->state == MODULE_STATE_GOING)
2029 kdb_printf(" (Unloading)");
2030 else if (mod->state == MODULE_STATE_COMING)
2031 kdb_printf(" (Loading)");
2032 else
2033 kdb_printf(" (Live)");
2034 kdb_printf(" 0x%p", mod->core_layout.base);
2035
2036#ifdef CONFIG_MODULE_UNLOAD
2037 {
2038 struct module_use *use;
2039 kdb_printf(" [ ");
2040 list_for_each_entry(use, &mod->source_list,
2041 source_list)
2042 kdb_printf("%s ", use->target->name);
2043 kdb_printf("]\n");
2044 }
2045#endif
2046 }
2047
2048 return 0;
2049}
2050
2051#endif /* CONFIG_MODULES */
2052
2053/*
2054 * kdb_env - This function implements the 'env' command. Display the
2055 * current environment variables.
2056 */
2057
2058static int kdb_env(int argc, const char **argv)
2059{
2060 int i;
2061
2062 for (i = 0; i < __nenv; i++) {
2063 if (__env[i])
2064 kdb_printf("%s\n", __env[i]);
2065 }
2066
2067 if (KDB_DEBUG(MASK))
2068 kdb_printf("KDBFLAGS=0x%x\n", kdb_flags);
2069
2070 return 0;
2071}
2072
2073#ifdef CONFIG_PRINTK
2074/*
2075 * kdb_dmesg - This function implements the 'dmesg' command to display
2076 * the contents of the syslog buffer.
2077 * dmesg [lines] [adjust]
2078 */
2079static int kdb_dmesg(int argc, const char **argv)
2080{
2081 int diag;
2082 int logging;
2083 int lines = 0;
2084 int adjust = 0;
2085 int n = 0;
2086 int skip = 0;
2087 struct kmsg_dumper dumper = { .active = 1 };
2088 size_t len;
2089 char buf[201];
2090
2091 if (argc > 2)
2092 return KDB_ARGCOUNT;
2093 if (argc) {
2094 char *cp;
2095 lines = simple_strtol(argv[1], &cp, 0);
2096 if (*cp)
2097 lines = 0;
2098 if (argc > 1) {
2099 adjust = simple_strtoul(argv[2], &cp, 0);
2100 if (*cp || adjust < 0)
2101 adjust = 0;
2102 }
2103 }
2104
2105 /* disable LOGGING if set */
2106 diag = kdbgetintenv("LOGGING", &logging);
2107 if (!diag && logging) {
2108 const char *setargs[] = { "set", "LOGGING", "0" };
2109 kdb_set(2, setargs);
2110 }
2111
2112 kmsg_dump_rewind_nolock(&dumper);
2113 while (kmsg_dump_get_line_nolock(&dumper, 1, NULL, 0, NULL))
2114 n++;
2115
2116 if (lines < 0) {
2117 if (adjust >= n)
2118 kdb_printf("buffer only contains %d lines, nothing "
2119 "printed\n", n);
2120 else if (adjust - lines >= n)
2121 kdb_printf("buffer only contains %d lines, last %d "
2122 "lines printed\n", n, n - adjust);
2123 skip = adjust;
2124 lines = abs(lines);
2125 } else if (lines > 0) {
2126 skip = n - lines - adjust;
2127 lines = abs(lines);
2128 if (adjust >= n) {
2129 kdb_printf("buffer only contains %d lines, "
2130 "nothing printed\n", n);
2131 skip = n;
2132 } else if (skip < 0) {
2133 lines += skip;
2134 skip = 0;
2135 kdb_printf("buffer only contains %d lines, first "
2136 "%d lines printed\n", n, lines);
2137 }
2138 } else {
2139 lines = n;
2140 }
2141
2142 if (skip >= n || skip < 0)
2143 return 0;
2144
2145 kmsg_dump_rewind_nolock(&dumper);
2146 while (kmsg_dump_get_line_nolock(&dumper, 1, buf, sizeof(buf), &len)) {
2147 if (skip) {
2148 skip--;
2149 continue;
2150 }
2151 if (!lines--)
2152 break;
2153 if (KDB_FLAG(CMD_INTERRUPT))
2154 return 0;
2155
2156 kdb_printf("%.*s\n", (int)len - 1, buf);
2157 }
2158
2159 return 0;
2160}
2161#endif /* CONFIG_PRINTK */
2162
2163/* Make sure we balance enable/disable calls, must disable first. */
2164static atomic_t kdb_nmi_disabled;
2165
2166static int kdb_disable_nmi(int argc, const char *argv[])
2167{
2168 if (atomic_read(&kdb_nmi_disabled))
2169 return 0;
2170 atomic_set(&kdb_nmi_disabled, 1);
2171 arch_kgdb_ops.enable_nmi(0);
2172 return 0;
2173}
2174
2175static int kdb_param_enable_nmi(const char *val, const struct kernel_param *kp)
2176{
2177 if (!atomic_add_unless(&kdb_nmi_disabled, -1, 0))
2178 return -EINVAL;
2179 arch_kgdb_ops.enable_nmi(1);
2180 return 0;
2181}
2182
2183static const struct kernel_param_ops kdb_param_ops_enable_nmi = {
2184 .set = kdb_param_enable_nmi,
2185};
2186module_param_cb(enable_nmi, &kdb_param_ops_enable_nmi, NULL, 0600);
2187
2188/*
2189 * kdb_cpu - This function implements the 'cpu' command.
2190 * cpu [<cpunum>]
2191 * Returns:
2192 * KDB_CMD_CPU for success, a kdb diagnostic if error
2193 */
2194static void kdb_cpu_status(void)
2195{
2196 int i, start_cpu, first_print = 1;
2197 char state, prev_state = '?';
2198
2199 kdb_printf("Currently on cpu %d\n", raw_smp_processor_id());
2200 kdb_printf("Available cpus: ");
2201 for (start_cpu = -1, i = 0; i < NR_CPUS; i++) {
2202 if (!cpu_online(i)) {
2203 state = 'F'; /* cpu is offline */
2204 } else if (!kgdb_info[i].enter_kgdb) {
2205 state = 'D'; /* cpu is online but unresponsive */
2206 } else {
2207 state = ' '; /* cpu is responding to kdb */
2208 if (kdb_task_state_char(KDB_TSK(i)) == 'I')
2209 state = 'I'; /* idle task */
2210 }
2211 if (state != prev_state) {
2212 if (prev_state != '?') {
2213 if (!first_print)
2214 kdb_printf(", ");
2215 first_print = 0;
2216 kdb_printf("%d", start_cpu);
2217 if (start_cpu < i-1)
2218 kdb_printf("-%d", i-1);
2219 if (prev_state != ' ')
2220 kdb_printf("(%c)", prev_state);
2221 }
2222 prev_state = state;
2223 start_cpu = i;
2224 }
2225 }
2226 /* print the trailing cpus, ignoring them if they are all offline */
2227 if (prev_state != 'F') {
2228 if (!first_print)
2229 kdb_printf(", ");
2230 kdb_printf("%d", start_cpu);
2231 if (start_cpu < i-1)
2232 kdb_printf("-%d", i-1);
2233 if (prev_state != ' ')
2234 kdb_printf("(%c)", prev_state);
2235 }
2236 kdb_printf("\n");
2237}
2238
2239static int kdb_cpu(int argc, const char **argv)
2240{
2241 unsigned long cpunum;
2242 int diag;
2243
2244 if (argc == 0) {
2245 kdb_cpu_status();
2246 return 0;
2247 }
2248
2249 if (argc != 1)
2250 return KDB_ARGCOUNT;
2251
2252 diag = kdbgetularg(argv[1], &cpunum);
2253 if (diag)
2254 return diag;
2255
2256 /*
2257 * Validate cpunum
2258 */
2259 if ((cpunum >= CONFIG_NR_CPUS) || !kgdb_info[cpunum].enter_kgdb)
2260 return KDB_BADCPUNUM;
2261
2262 dbg_switch_cpu = cpunum;
2263
2264 /*
2265 * Switch to other cpu
2266 */
2267 return KDB_CMD_CPU;
2268}
2269
2270/* The user may not realize that ps/bta with no parameters does not print idle
2271 * or sleeping system daemon processes, so tell them how many were suppressed.
2272 */
2273void kdb_ps_suppressed(void)
2274{
2275 int idle = 0, daemon = 0;
2276 unsigned long mask_I = kdb_task_state_string("I"),
2277 mask_M = kdb_task_state_string("M");
2278 unsigned long cpu;
2279 const struct task_struct *p, *g;
2280 for_each_online_cpu(cpu) {
2281 p = kdb_curr_task(cpu);
2282 if (kdb_task_state(p, mask_I))
2283 ++idle;
2284 }
2285 kdb_do_each_thread(g, p) {
2286 if (kdb_task_state(p, mask_M))
2287 ++daemon;
2288 } kdb_while_each_thread(g, p);
2289 if (idle || daemon) {
2290 if (idle)
2291 kdb_printf("%d idle process%s (state I)%s\n",
2292 idle, idle == 1 ? "" : "es",
2293 daemon ? " and " : "");
2294 if (daemon)
2295 kdb_printf("%d sleeping system daemon (state M) "
2296 "process%s", daemon,
2297 daemon == 1 ? "" : "es");
2298 kdb_printf(" suppressed,\nuse 'ps A' to see all.\n");
2299 }
2300}
2301
2302/*
2303 * kdb_ps - This function implements the 'ps' command which shows a
2304 * list of the active processes.
2305 * ps [DRSTCZEUIMA] All processes, optionally filtered by state
2306 */
2307void kdb_ps1(const struct task_struct *p)
2308{
2309 int cpu;
2310 unsigned long tmp;
2311
2312 if (!p || probe_kernel_read(&tmp, (char *)p, sizeof(unsigned long)))
2313 return;
2314
2315 cpu = kdb_process_cpu(p);
2316 kdb_printf("0x%p %8d %8d %d %4d %c 0x%p %c%s\n",
2317 (void *)p, p->pid, p->parent->pid,
2318 kdb_task_has_cpu(p), kdb_process_cpu(p),
2319 kdb_task_state_char(p),
2320 (void *)(&p->thread),
2321 p == kdb_curr_task(raw_smp_processor_id()) ? '*' : ' ',
2322 p->comm);
2323 if (kdb_task_has_cpu(p)) {
2324 if (!KDB_TSK(cpu)) {
2325 kdb_printf(" Error: no saved data for this cpu\n");
2326 } else {
2327 if (KDB_TSK(cpu) != p)
2328 kdb_printf(" Error: does not match running "
2329 "process table (0x%p)\n", KDB_TSK(cpu));
2330 }
2331 }
2332}
2333
2334static int kdb_ps(int argc, const char **argv)
2335{
2336 struct task_struct *g, *p;
2337 unsigned long mask, cpu;
2338
2339 if (argc == 0)
2340 kdb_ps_suppressed();
2341 kdb_printf("%-*s Pid Parent [*] cpu State %-*s Command\n",
2342 (int)(2*sizeof(void *))+2, "Task Addr",
2343 (int)(2*sizeof(void *))+2, "Thread");
2344 mask = kdb_task_state_string(argc ? argv[1] : NULL);
2345 /* Run the active tasks first */
2346 for_each_online_cpu(cpu) {
2347 if (KDB_FLAG(CMD_INTERRUPT))
2348 return 0;
2349 p = kdb_curr_task(cpu);
2350 if (kdb_task_state(p, mask))
2351 kdb_ps1(p);
2352 }
2353 kdb_printf("\n");
2354 /* Now the real tasks */
2355 kdb_do_each_thread(g, p) {
2356 if (KDB_FLAG(CMD_INTERRUPT))
2357 return 0;
2358 if (kdb_task_state(p, mask))
2359 kdb_ps1(p);
2360 } kdb_while_each_thread(g, p);
2361
2362 return 0;
2363}
2364
2365/*
2366 * kdb_pid - This function implements the 'pid' command which switches
2367 * the currently active process.
2368 * pid [<pid> | R]
2369 */
2370static int kdb_pid(int argc, const char **argv)
2371{
2372 struct task_struct *p;
2373 unsigned long val;
2374 int diag;
2375
2376 if (argc > 1)
2377 return KDB_ARGCOUNT;
2378
2379 if (argc) {
2380 if (strcmp(argv[1], "R") == 0) {
2381 p = KDB_TSK(kdb_initial_cpu);
2382 } else {
2383 diag = kdbgetularg(argv[1], &val);
2384 if (diag)
2385 return KDB_BADINT;
2386
2387 p = find_task_by_pid_ns((pid_t)val, &init_pid_ns);
2388 if (!p) {
2389 kdb_printf("No task with pid=%d\n", (pid_t)val);
2390 return 0;
2391 }
2392 }
2393 kdb_set_current_task(p);
2394 }
2395 kdb_printf("KDB current process is %s(pid=%d)\n",
2396 kdb_current_task->comm,
2397 kdb_current_task->pid);
2398
2399 return 0;
2400}
2401
2402static int kdb_kgdb(int argc, const char **argv)
2403{
2404 return KDB_CMD_KGDB;
2405}
2406
2407/*
2408 * kdb_help - This function implements the 'help' and '?' commands.
2409 */
2410static int kdb_help(int argc, const char **argv)
2411{
2412 kdbtab_t *kt;
2413 int i;
2414
2415 kdb_printf("%-15.15s %-20.20s %s\n", "Command", "Usage", "Description");
2416 kdb_printf("-----------------------------"
2417 "-----------------------------\n");
2418 for_each_kdbcmd(kt, i) {
2419 char *space = "";
2420 if (KDB_FLAG(CMD_INTERRUPT))
2421 return 0;
2422 if (!kt->cmd_name)
2423 continue;
2424 if (!kdb_check_flags(kt->cmd_flags, kdb_cmd_enabled, true))
2425 continue;
2426 if (strlen(kt->cmd_usage) > 20)
2427 space = "\n ";
2428 kdb_printf("%-15.15s %-20s%s%s\n", kt->cmd_name,
2429 kt->cmd_usage, space, kt->cmd_help);
2430 }
2431 return 0;
2432}
2433
2434/*
2435 * kdb_kill - This function implements the 'kill' commands.
2436 */
2437static int kdb_kill(int argc, const char **argv)
2438{
2439 long sig, pid;
2440 char *endp;
2441 struct task_struct *p;
2442 struct siginfo info;
2443
2444 if (argc != 2)
2445 return KDB_ARGCOUNT;
2446
2447 sig = simple_strtol(argv[1], &endp, 0);
2448 if (*endp)
2449 return KDB_BADINT;
2450 if (sig >= 0) {
2451 kdb_printf("Invalid signal parameter.<-signal>\n");
2452 return 0;
2453 }
2454 sig = -sig;
2455
2456 pid = simple_strtol(argv[2], &endp, 0);
2457 if (*endp)
2458 return KDB_BADINT;
2459 if (pid <= 0) {
2460 kdb_printf("Process ID must be large than 0.\n");
2461 return 0;
2462 }
2463
2464 /* Find the process. */
2465 p = find_task_by_pid_ns(pid, &init_pid_ns);
2466 if (!p) {
2467 kdb_printf("The specified process isn't found.\n");
2468 return 0;
2469 }
2470 p = p->group_leader;
2471 info.si_signo = sig;
2472 info.si_errno = 0;
2473 info.si_code = SI_USER;
2474 info.si_pid = pid; /* same capabilities as process being signalled */
2475 info.si_uid = 0; /* kdb has root authority */
2476 kdb_send_sig_info(p, &info);
2477 return 0;
2478}
2479
2480struct kdb_tm {
2481 int tm_sec; /* seconds */
2482 int tm_min; /* minutes */
2483 int tm_hour; /* hours */
2484 int tm_mday; /* day of the month */
2485 int tm_mon; /* month */
2486 int tm_year; /* year */
2487};
2488
2489static void kdb_gmtime(struct timespec *tv, struct kdb_tm *tm)
2490{
2491 /* This will work from 1970-2099, 2100 is not a leap year */
2492 static int mon_day[] = { 31, 29, 31, 30, 31, 30, 31,
2493 31, 30, 31, 30, 31 };
2494 memset(tm, 0, sizeof(*tm));
2495 tm->tm_sec = tv->tv_sec % (24 * 60 * 60);
2496 tm->tm_mday = tv->tv_sec / (24 * 60 * 60) +
2497 (2 * 365 + 1); /* shift base from 1970 to 1968 */
2498 tm->tm_min = tm->tm_sec / 60 % 60;
2499 tm->tm_hour = tm->tm_sec / 60 / 60;
2500 tm->tm_sec = tm->tm_sec % 60;
2501 tm->tm_year = 68 + 4*(tm->tm_mday / (4*365+1));
2502 tm->tm_mday %= (4*365+1);
2503 mon_day[1] = 29;
2504 while (tm->tm_mday >= mon_day[tm->tm_mon]) {
2505 tm->tm_mday -= mon_day[tm->tm_mon];
2506 if (++tm->tm_mon == 12) {
2507 tm->tm_mon = 0;
2508 ++tm->tm_year;
2509 mon_day[1] = 28;
2510 }
2511 }
2512 ++tm->tm_mday;
2513}
2514
2515/*
2516 * Most of this code has been lifted from kernel/timer.c::sys_sysinfo().
2517 * I cannot call that code directly from kdb, it has an unconditional
2518 * cli()/sti() and calls routines that take locks which can stop the debugger.
2519 */
2520static void kdb_sysinfo(struct sysinfo *val)
2521{
2522 struct timespec uptime;
2523 ktime_get_ts(&uptime);
2524 memset(val, 0, sizeof(*val));
2525 val->uptime = uptime.tv_sec;
2526 val->loads[0] = avenrun[0];
2527 val->loads[1] = avenrun[1];
2528 val->loads[2] = avenrun[2];
2529 val->procs = nr_threads-1;
2530 si_meminfo(val);
2531
2532 return;
2533}
2534
2535/*
2536 * kdb_summary - This function implements the 'summary' command.
2537 */
2538static int kdb_summary(int argc, const char **argv)
2539{
2540 struct timespec now;
2541 struct kdb_tm tm;
2542 struct sysinfo val;
2543
2544 if (argc)
2545 return KDB_ARGCOUNT;
2546
2547 kdb_printf("sysname %s\n", init_uts_ns.name.sysname);
2548 kdb_printf("release %s\n", init_uts_ns.name.release);
2549 kdb_printf("version %s\n", init_uts_ns.name.version);
2550 kdb_printf("machine %s\n", init_uts_ns.name.machine);
2551 kdb_printf("nodename %s\n", init_uts_ns.name.nodename);
2552 kdb_printf("domainname %s\n", init_uts_ns.name.domainname);
2553 kdb_printf("ccversion %s\n", __stringify(CCVERSION));
2554
2555 now = __current_kernel_time();
2556 kdb_gmtime(&now, &tm);
2557 kdb_printf("date %04d-%02d-%02d %02d:%02d:%02d "
2558 "tz_minuteswest %d\n",
2559 1900+tm.tm_year, tm.tm_mon+1, tm.tm_mday,
2560 tm.tm_hour, tm.tm_min, tm.tm_sec,
2561 sys_tz.tz_minuteswest);
2562
2563 kdb_sysinfo(&val);
2564 kdb_printf("uptime ");
2565 if (val.uptime > (24*60*60)) {
2566 int days = val.uptime / (24*60*60);
2567 val.uptime %= (24*60*60);
2568 kdb_printf("%d day%s ", days, days == 1 ? "" : "s");
2569 }
2570 kdb_printf("%02ld:%02ld\n", val.uptime/(60*60), (val.uptime/60)%60);
2571
2572 /* lifted from fs/proc/proc_misc.c::loadavg_read_proc() */
2573
2574#define LOAD_INT(x) ((x) >> FSHIFT)
2575#define LOAD_FRAC(x) LOAD_INT(((x) & (FIXED_1-1)) * 100)
2576 kdb_printf("load avg %ld.%02ld %ld.%02ld %ld.%02ld\n",
2577 LOAD_INT(val.loads[0]), LOAD_FRAC(val.loads[0]),
2578 LOAD_INT(val.loads[1]), LOAD_FRAC(val.loads[1]),
2579 LOAD_INT(val.loads[2]), LOAD_FRAC(val.loads[2]));
2580#undef LOAD_INT
2581#undef LOAD_FRAC
2582 /* Display in kilobytes */
2583#define K(x) ((x) << (PAGE_SHIFT - 10))
2584 kdb_printf("\nMemTotal: %8lu kB\nMemFree: %8lu kB\n"
2585 "Buffers: %8lu kB\n",
2586 K(val.totalram), K(val.freeram), K(val.bufferram));
2587 return 0;
2588}
2589
2590/*
2591 * kdb_per_cpu - This function implements the 'per_cpu' command.
2592 */
2593static int kdb_per_cpu(int argc, const char **argv)
2594{
2595 char fmtstr[64];
2596 int cpu, diag, nextarg = 1;
2597 unsigned long addr, symaddr, val, bytesperword = 0, whichcpu = ~0UL;
2598
2599 if (argc < 1 || argc > 3)
2600 return KDB_ARGCOUNT;
2601
2602 diag = kdbgetaddrarg(argc, argv, &nextarg, &symaddr, NULL, NULL);
2603 if (diag)
2604 return diag;
2605
2606 if (argc >= 2) {
2607 diag = kdbgetularg(argv[2], &bytesperword);
2608 if (diag)
2609 return diag;
2610 }
2611 if (!bytesperword)
2612 bytesperword = KDB_WORD_SIZE;
2613 else if (bytesperword > KDB_WORD_SIZE)
2614 return KDB_BADWIDTH;
2615 sprintf(fmtstr, "%%0%dlx ", (int)(2*bytesperword));
2616 if (argc >= 3) {
2617 diag = kdbgetularg(argv[3], &whichcpu);
2618 if (diag)
2619 return diag;
2620 if (!cpu_online(whichcpu)) {
2621 kdb_printf("cpu %ld is not online\n", whichcpu);
2622 return KDB_BADCPUNUM;
2623 }
2624 }
2625
2626 /* Most architectures use __per_cpu_offset[cpu], some use
2627 * __per_cpu_offset(cpu), smp has no __per_cpu_offset.
2628 */
2629#ifdef __per_cpu_offset
2630#define KDB_PCU(cpu) __per_cpu_offset(cpu)
2631#else
2632#ifdef CONFIG_SMP
2633#define KDB_PCU(cpu) __per_cpu_offset[cpu]
2634#else
2635#define KDB_PCU(cpu) 0
2636#endif
2637#endif
2638 for_each_online_cpu(cpu) {
2639 if (KDB_FLAG(CMD_INTERRUPT))
2640 return 0;
2641
2642 if (whichcpu != ~0UL && whichcpu != cpu)
2643 continue;
2644 addr = symaddr + KDB_PCU(cpu);
2645 diag = kdb_getword(&val, addr, bytesperword);
2646 if (diag) {
2647 kdb_printf("%5d " kdb_bfd_vma_fmt0 " - unable to "
2648 "read, diag=%d\n", cpu, addr, diag);
2649 continue;
2650 }
2651 kdb_printf("%5d ", cpu);
2652 kdb_md_line(fmtstr, addr,
2653 bytesperword == KDB_WORD_SIZE,
2654 1, bytesperword, 1, 1, 0);
2655 }
2656#undef KDB_PCU
2657 return 0;
2658}
2659
2660/*
2661 * display help for the use of cmd | grep pattern
2662 */
2663static int kdb_grep_help(int argc, const char **argv)
2664{
2665 kdb_printf("Usage of cmd args | grep pattern:\n");
2666 kdb_printf(" Any command's output may be filtered through an ");
2667 kdb_printf("emulated 'pipe'.\n");
2668 kdb_printf(" 'grep' is just a key word.\n");
2669 kdb_printf(" The pattern may include a very limited set of "
2670 "metacharacters:\n");
2671 kdb_printf(" pattern or ^pattern or pattern$ or ^pattern$\n");
2672 kdb_printf(" And if there are spaces in the pattern, you may "
2673 "quote it:\n");
2674 kdb_printf(" \"pat tern\" or \"^pat tern\" or \"pat tern$\""
2675 " or \"^pat tern$\"\n");
2676 return 0;
2677}
2678
2679/*
2680 * kdb_register_flags - This function is used to register a kernel
2681 * debugger command.
2682 * Inputs:
2683 * cmd Command name
2684 * func Function to execute the command
2685 * usage A simple usage string showing arguments
2686 * help A simple help string describing command
2687 * repeat Does the command auto repeat on enter?
2688 * Returns:
2689 * zero for success, one if a duplicate command.
2690 */
2691#define kdb_command_extend 50 /* arbitrary */
2692int kdb_register_flags(char *cmd,
2693 kdb_func_t func,
2694 char *usage,
2695 char *help,
2696 short minlen,
2697 kdb_cmdflags_t flags)
2698{
2699 int i;
2700 kdbtab_t *kp;
2701
2702 /*
2703 * Brute force method to determine duplicates
2704 */
2705 for_each_kdbcmd(kp, i) {
2706 if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) {
2707 kdb_printf("Duplicate kdb command registered: "
2708 "%s, func %p help %s\n", cmd, func, help);
2709 return 1;
2710 }
2711 }
2712
2713 /*
2714 * Insert command into first available location in table
2715 */
2716 for_each_kdbcmd(kp, i) {
2717 if (kp->cmd_name == NULL)
2718 break;
2719 }
2720
2721 if (i >= kdb_max_commands) {
2722 kdbtab_t *new = kmalloc((kdb_max_commands - KDB_BASE_CMD_MAX +
2723 kdb_command_extend) * sizeof(*new), GFP_KDB);
2724 if (!new) {
2725 kdb_printf("Could not allocate new kdb_command "
2726 "table\n");
2727 return 1;
2728 }
2729 if (kdb_commands) {
2730 memcpy(new, kdb_commands,
2731 (kdb_max_commands - KDB_BASE_CMD_MAX) * sizeof(*new));
2732 kfree(kdb_commands);
2733 }
2734 memset(new + kdb_max_commands - KDB_BASE_CMD_MAX, 0,
2735 kdb_command_extend * sizeof(*new));
2736 kdb_commands = new;
2737 kp = kdb_commands + kdb_max_commands - KDB_BASE_CMD_MAX;
2738 kdb_max_commands += kdb_command_extend;
2739 }
2740
2741 kp->cmd_name = cmd;
2742 kp->cmd_func = func;
2743 kp->cmd_usage = usage;
2744 kp->cmd_help = help;
2745 kp->cmd_minlen = minlen;
2746 kp->cmd_flags = flags;
2747
2748 return 0;
2749}
2750EXPORT_SYMBOL_GPL(kdb_register_flags);
2751
2752
2753/*
2754 * kdb_register - Compatibility register function for commands that do
2755 * not need to specify a repeat state. Equivalent to
2756 * kdb_register_flags with flags set to 0.
2757 * Inputs:
2758 * cmd Command name
2759 * func Function to execute the command
2760 * usage A simple usage string showing arguments
2761 * help A simple help string describing command
2762 * Returns:
2763 * zero for success, one if a duplicate command.
2764 */
2765int kdb_register(char *cmd,
2766 kdb_func_t func,
2767 char *usage,
2768 char *help,
2769 short minlen)
2770{
2771 return kdb_register_flags(cmd, func, usage, help, minlen, 0);
2772}
2773EXPORT_SYMBOL_GPL(kdb_register);
2774
2775/*
2776 * kdb_unregister - This function is used to unregister a kernel
2777 * debugger command. It is generally called when a module which
2778 * implements kdb commands is unloaded.
2779 * Inputs:
2780 * cmd Command name
2781 * Returns:
2782 * zero for success, one command not registered.
2783 */
2784int kdb_unregister(char *cmd)
2785{
2786 int i;
2787 kdbtab_t *kp;
2788
2789 /*
2790 * find the command.
2791 */
2792 for_each_kdbcmd(kp, i) {
2793 if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) {
2794 kp->cmd_name = NULL;
2795 return 0;
2796 }
2797 }
2798
2799 /* Couldn't find it. */
2800 return 1;
2801}
2802EXPORT_SYMBOL_GPL(kdb_unregister);
2803
2804/* Initialize the kdb command table. */
2805static void __init kdb_inittab(void)
2806{
2807 int i;
2808 kdbtab_t *kp;
2809
2810 for_each_kdbcmd(kp, i)
2811 kp->cmd_name = NULL;
2812
2813 kdb_register_flags("md", kdb_md, "<vaddr>",
2814 "Display Memory Contents, also mdWcN, e.g. md8c1", 1,
2815 KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS);
2816 kdb_register_flags("mdr", kdb_md, "<vaddr> <bytes>",
2817 "Display Raw Memory", 0,
2818 KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS);
2819 kdb_register_flags("mdp", kdb_md, "<paddr> <bytes>",
2820 "Display Physical Memory", 0,
2821 KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS);
2822 kdb_register_flags("mds", kdb_md, "<vaddr>",
2823 "Display Memory Symbolically", 0,
2824 KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS);
2825 kdb_register_flags("mm", kdb_mm, "<vaddr> <contents>",
2826 "Modify Memory Contents", 0,
2827 KDB_ENABLE_MEM_WRITE | KDB_REPEAT_NO_ARGS);
2828 kdb_register_flags("go", kdb_go, "[<vaddr>]",
2829 "Continue Execution", 1,
2830 KDB_ENABLE_REG_WRITE | KDB_ENABLE_ALWAYS_SAFE_NO_ARGS);
2831 kdb_register_flags("rd", kdb_rd, "",
2832 "Display Registers", 0,
2833 KDB_ENABLE_REG_READ);
2834 kdb_register_flags("rm", kdb_rm, "<reg> <contents>",
2835 "Modify Registers", 0,
2836 KDB_ENABLE_REG_WRITE);
2837 kdb_register_flags("ef", kdb_ef, "<vaddr>",
2838 "Display exception frame", 0,
2839 KDB_ENABLE_MEM_READ);
2840 kdb_register_flags("bt", kdb_bt, "[<vaddr>]",
2841 "Stack traceback", 1,
2842 KDB_ENABLE_MEM_READ | KDB_ENABLE_INSPECT_NO_ARGS);
2843 kdb_register_flags("btp", kdb_bt, "<pid>",
2844 "Display stack for process <pid>", 0,
2845 KDB_ENABLE_INSPECT);
2846 kdb_register_flags("bta", kdb_bt, "[D|R|S|T|C|Z|E|U|I|M|A]",
2847 "Backtrace all processes matching state flag", 0,
2848 KDB_ENABLE_INSPECT);
2849 kdb_register_flags("btc", kdb_bt, "",
2850 "Backtrace current process on each cpu", 0,
2851 KDB_ENABLE_INSPECT);
2852 kdb_register_flags("btt", kdb_bt, "<vaddr>",
2853 "Backtrace process given its struct task address", 0,
2854 KDB_ENABLE_MEM_READ | KDB_ENABLE_INSPECT_NO_ARGS);
2855 kdb_register_flags("env", kdb_env, "",
2856 "Show environment variables", 0,
2857 KDB_ENABLE_ALWAYS_SAFE);
2858 kdb_register_flags("set", kdb_set, "",
2859 "Set environment variables", 0,
2860 KDB_ENABLE_ALWAYS_SAFE);
2861 kdb_register_flags("help", kdb_help, "",
2862 "Display Help Message", 1,
2863 KDB_ENABLE_ALWAYS_SAFE);
2864 kdb_register_flags("?", kdb_help, "",
2865 "Display Help Message", 0,
2866 KDB_ENABLE_ALWAYS_SAFE);
2867 kdb_register_flags("cpu", kdb_cpu, "<cpunum>",
2868 "Switch to new cpu", 0,
2869 KDB_ENABLE_ALWAYS_SAFE_NO_ARGS);
2870 kdb_register_flags("kgdb", kdb_kgdb, "",
2871 "Enter kgdb mode", 0, 0);
2872 kdb_register_flags("ps", kdb_ps, "[<flags>|A]",
2873 "Display active task list", 0,
2874 KDB_ENABLE_INSPECT);
2875 kdb_register_flags("pid", kdb_pid, "<pidnum>",
2876 "Switch to another task", 0,
2877 KDB_ENABLE_INSPECT);
2878 kdb_register_flags("reboot", kdb_reboot, "",
2879 "Reboot the machine immediately", 0,
2880 KDB_ENABLE_REBOOT);
2881#if defined(CONFIG_MODULES)
2882 kdb_register_flags("lsmod", kdb_lsmod, "",
2883 "List loaded kernel modules", 0,
2884 KDB_ENABLE_INSPECT);
2885#endif
2886#if defined(CONFIG_MAGIC_SYSRQ)
2887 kdb_register_flags("sr", kdb_sr, "<key>",
2888 "Magic SysRq key", 0,
2889 KDB_ENABLE_ALWAYS_SAFE);
2890#endif
2891#if defined(CONFIG_PRINTK)
2892 kdb_register_flags("dmesg", kdb_dmesg, "[lines]",
2893 "Display syslog buffer", 0,
2894 KDB_ENABLE_ALWAYS_SAFE);
2895#endif
2896 if (arch_kgdb_ops.enable_nmi) {
2897 kdb_register_flags("disable_nmi", kdb_disable_nmi, "",
2898 "Disable NMI entry to KDB", 0,
2899 KDB_ENABLE_ALWAYS_SAFE);
2900 }
2901 kdb_register_flags("defcmd", kdb_defcmd, "name \"usage\" \"help\"",
2902 "Define a set of commands, down to endefcmd", 0,
2903 KDB_ENABLE_ALWAYS_SAFE);
2904 kdb_register_flags("kill", kdb_kill, "<-signal> <pid>",
2905 "Send a signal to a process", 0,
2906 KDB_ENABLE_SIGNAL);
2907 kdb_register_flags("summary", kdb_summary, "",
2908 "Summarize the system", 4,
2909 KDB_ENABLE_ALWAYS_SAFE);
2910 kdb_register_flags("per_cpu", kdb_per_cpu, "<sym> [<bytes>] [<cpu>]",
2911 "Display per_cpu variables", 3,
2912 KDB_ENABLE_MEM_READ);
2913 kdb_register_flags("grephelp", kdb_grep_help, "",
2914 "Display help on | grep", 0,
2915 KDB_ENABLE_ALWAYS_SAFE);
2916}
2917
2918/* Execute any commands defined in kdb_cmds. */
2919static void __init kdb_cmd_init(void)
2920{
2921 int i, diag;
2922 for (i = 0; kdb_cmds[i]; ++i) {
2923 diag = kdb_parse(kdb_cmds[i]);
2924 if (diag)
2925 kdb_printf("kdb command %s failed, kdb diag %d\n",
2926 kdb_cmds[i], diag);
2927 }
2928 if (defcmd_in_progress) {
2929 kdb_printf("Incomplete 'defcmd' set, forcing endefcmd\n");
2930 kdb_parse("endefcmd");
2931 }
2932}
2933
2934/* Initialize kdb_printf, breakpoint tables and kdb state */
2935void __init kdb_init(int lvl)
2936{
2937 static int kdb_init_lvl = KDB_NOT_INITIALIZED;
2938 int i;
2939
2940 if (kdb_init_lvl == KDB_INIT_FULL || lvl <= kdb_init_lvl)
2941 return;
2942 for (i = kdb_init_lvl; i < lvl; i++) {
2943 switch (i) {
2944 case KDB_NOT_INITIALIZED:
2945 kdb_inittab(); /* Initialize Command Table */
2946 kdb_initbptab(); /* Initialize Breakpoints */
2947 break;
2948 case KDB_INIT_EARLY:
2949 kdb_cmd_init(); /* Build kdb_cmds tables */
2950 break;
2951 }
2952 }
2953 kdb_init_lvl = lvl;
2954}
1/*
2 * Kernel Debugger Architecture Independent Main Code
3 *
4 * This file is subject to the terms and conditions of the GNU General Public
5 * License. See the file "COPYING" in the main directory of this archive
6 * for more details.
7 *
8 * Copyright (C) 1999-2004 Silicon Graphics, Inc. All Rights Reserved.
9 * Copyright (C) 2000 Stephane Eranian <eranian@hpl.hp.com>
10 * Xscale (R) modifications copyright (C) 2003 Intel Corporation.
11 * Copyright (c) 2009 Wind River Systems, Inc. All Rights Reserved.
12 */
13
14#include <linux/ctype.h>
15#include <linux/types.h>
16#include <linux/string.h>
17#include <linux/kernel.h>
18#include <linux/kmsg_dump.h>
19#include <linux/reboot.h>
20#include <linux/sched.h>
21#include <linux/sched/loadavg.h>
22#include <linux/sched/stat.h>
23#include <linux/sched/debug.h>
24#include <linux/sysrq.h>
25#include <linux/smp.h>
26#include <linux/utsname.h>
27#include <linux/vmalloc.h>
28#include <linux/atomic.h>
29#include <linux/module.h>
30#include <linux/moduleparam.h>
31#include <linux/mm.h>
32#include <linux/init.h>
33#include <linux/kallsyms.h>
34#include <linux/kgdb.h>
35#include <linux/kdb.h>
36#include <linux/notifier.h>
37#include <linux/interrupt.h>
38#include <linux/delay.h>
39#include <linux/nmi.h>
40#include <linux/time.h>
41#include <linux/ptrace.h>
42#include <linux/sysctl.h>
43#include <linux/cpu.h>
44#include <linux/kdebug.h>
45#include <linux/proc_fs.h>
46#include <linux/uaccess.h>
47#include <linux/slab.h>
48#include "kdb_private.h"
49
50#undef MODULE_PARAM_PREFIX
51#define MODULE_PARAM_PREFIX "kdb."
52
53static int kdb_cmd_enabled = CONFIG_KDB_DEFAULT_ENABLE;
54module_param_named(cmd_enable, kdb_cmd_enabled, int, 0600);
55
56char kdb_grep_string[KDB_GREP_STRLEN];
57int kdb_grepping_flag;
58EXPORT_SYMBOL(kdb_grepping_flag);
59int kdb_grep_leading;
60int kdb_grep_trailing;
61
62/*
63 * Kernel debugger state flags
64 */
65unsigned int kdb_flags;
66
67/*
68 * kdb_lock protects updates to kdb_initial_cpu. Used to
69 * single thread processors through the kernel debugger.
70 */
71int kdb_initial_cpu = -1; /* cpu number that owns kdb */
72int kdb_nextline = 1;
73int kdb_state; /* General KDB state */
74
75struct task_struct *kdb_current_task;
76struct pt_regs *kdb_current_regs;
77
78const char *kdb_diemsg;
79static int kdb_go_count;
80#ifdef CONFIG_KDB_CONTINUE_CATASTROPHIC
81static unsigned int kdb_continue_catastrophic =
82 CONFIG_KDB_CONTINUE_CATASTROPHIC;
83#else
84static unsigned int kdb_continue_catastrophic;
85#endif
86
87/* kdb_commands describes the available commands. */
88static kdbtab_t *kdb_commands;
89#define KDB_BASE_CMD_MAX 50
90static int kdb_max_commands = KDB_BASE_CMD_MAX;
91static kdbtab_t kdb_base_commands[KDB_BASE_CMD_MAX];
92#define for_each_kdbcmd(cmd, num) \
93 for ((cmd) = kdb_base_commands, (num) = 0; \
94 num < kdb_max_commands; \
95 num++, num == KDB_BASE_CMD_MAX ? cmd = kdb_commands : cmd++)
96
97typedef struct _kdbmsg {
98 int km_diag; /* kdb diagnostic */
99 char *km_msg; /* Corresponding message text */
100} kdbmsg_t;
101
102#define KDBMSG(msgnum, text) \
103 { KDB_##msgnum, text }
104
105static kdbmsg_t kdbmsgs[] = {
106 KDBMSG(NOTFOUND, "Command Not Found"),
107 KDBMSG(ARGCOUNT, "Improper argument count, see usage."),
108 KDBMSG(BADWIDTH, "Illegal value for BYTESPERWORD use 1, 2, 4 or 8, "
109 "8 is only allowed on 64 bit systems"),
110 KDBMSG(BADRADIX, "Illegal value for RADIX use 8, 10 or 16"),
111 KDBMSG(NOTENV, "Cannot find environment variable"),
112 KDBMSG(NOENVVALUE, "Environment variable should have value"),
113 KDBMSG(NOTIMP, "Command not implemented"),
114 KDBMSG(ENVFULL, "Environment full"),
115 KDBMSG(ENVBUFFULL, "Environment buffer full"),
116 KDBMSG(TOOMANYBPT, "Too many breakpoints defined"),
117#ifdef CONFIG_CPU_XSCALE
118 KDBMSG(TOOMANYDBREGS, "More breakpoints than ibcr registers defined"),
119#else
120 KDBMSG(TOOMANYDBREGS, "More breakpoints than db registers defined"),
121#endif
122 KDBMSG(DUPBPT, "Duplicate breakpoint address"),
123 KDBMSG(BPTNOTFOUND, "Breakpoint not found"),
124 KDBMSG(BADMODE, "Invalid IDMODE"),
125 KDBMSG(BADINT, "Illegal numeric value"),
126 KDBMSG(INVADDRFMT, "Invalid symbolic address format"),
127 KDBMSG(BADREG, "Invalid register name"),
128 KDBMSG(BADCPUNUM, "Invalid cpu number"),
129 KDBMSG(BADLENGTH, "Invalid length field"),
130 KDBMSG(NOBP, "No Breakpoint exists"),
131 KDBMSG(BADADDR, "Invalid address"),
132 KDBMSG(NOPERM, "Permission denied"),
133};
134#undef KDBMSG
135
136static const int __nkdb_err = ARRAY_SIZE(kdbmsgs);
137
138
139/*
140 * Initial environment. This is all kept static and local to
141 * this file. We don't want to rely on the memory allocation
142 * mechanisms in the kernel, so we use a very limited allocate-only
143 * heap for new and altered environment variables. The entire
144 * environment is limited to a fixed number of entries (add more
145 * to __env[] if required) and a fixed amount of heap (add more to
146 * KDB_ENVBUFSIZE if required).
147 */
148
149static char *__env[] = {
150#if defined(CONFIG_SMP)
151 "PROMPT=[%d]kdb> ",
152#else
153 "PROMPT=kdb> ",
154#endif
155 "MOREPROMPT=more> ",
156 "RADIX=16",
157 "MDCOUNT=8", /* lines of md output */
158 KDB_PLATFORM_ENV,
159 "DTABCOUNT=30",
160 "NOSECT=1",
161 (char *)0,
162 (char *)0,
163 (char *)0,
164 (char *)0,
165 (char *)0,
166 (char *)0,
167 (char *)0,
168 (char *)0,
169 (char *)0,
170 (char *)0,
171 (char *)0,
172 (char *)0,
173 (char *)0,
174 (char *)0,
175 (char *)0,
176 (char *)0,
177 (char *)0,
178 (char *)0,
179 (char *)0,
180 (char *)0,
181 (char *)0,
182 (char *)0,
183 (char *)0,
184 (char *)0,
185};
186
187static const int __nenv = ARRAY_SIZE(__env);
188
189struct task_struct *kdb_curr_task(int cpu)
190{
191 struct task_struct *p = curr_task(cpu);
192#ifdef _TIF_MCA_INIT
193 if ((task_thread_info(p)->flags & _TIF_MCA_INIT) && KDB_TSK(cpu))
194 p = krp->p;
195#endif
196 return p;
197}
198
199/*
200 * Check whether the flags of the current command and the permissions
201 * of the kdb console has allow a command to be run.
202 */
203static inline bool kdb_check_flags(kdb_cmdflags_t flags, int permissions,
204 bool no_args)
205{
206 /* permissions comes from userspace so needs massaging slightly */
207 permissions &= KDB_ENABLE_MASK;
208 permissions |= KDB_ENABLE_ALWAYS_SAFE;
209
210 /* some commands change group when launched with no arguments */
211 if (no_args)
212 permissions |= permissions << KDB_ENABLE_NO_ARGS_SHIFT;
213
214 flags |= KDB_ENABLE_ALL;
215
216 return permissions & flags;
217}
218
219/*
220 * kdbgetenv - This function will return the character string value of
221 * an environment variable.
222 * Parameters:
223 * match A character string representing an environment variable.
224 * Returns:
225 * NULL No environment variable matches 'match'
226 * char* Pointer to string value of environment variable.
227 */
228char *kdbgetenv(const char *match)
229{
230 char **ep = __env;
231 int matchlen = strlen(match);
232 int i;
233
234 for (i = 0; i < __nenv; i++) {
235 char *e = *ep++;
236
237 if (!e)
238 continue;
239
240 if ((strncmp(match, e, matchlen) == 0)
241 && ((e[matchlen] == '\0')
242 || (e[matchlen] == '='))) {
243 char *cp = strchr(e, '=');
244 return cp ? ++cp : "";
245 }
246 }
247 return NULL;
248}
249
250/*
251 * kdballocenv - This function is used to allocate bytes for
252 * environment entries.
253 * Parameters:
254 * match A character string representing a numeric value
255 * Outputs:
256 * *value the unsigned long representation of the env variable 'match'
257 * Returns:
258 * Zero on success, a kdb diagnostic on failure.
259 * Remarks:
260 * We use a static environment buffer (envbuffer) to hold the values
261 * of dynamically generated environment variables (see kdb_set). Buffer
262 * space once allocated is never free'd, so over time, the amount of space
263 * (currently 512 bytes) will be exhausted if env variables are changed
264 * frequently.
265 */
266static char *kdballocenv(size_t bytes)
267{
268#define KDB_ENVBUFSIZE 512
269 static char envbuffer[KDB_ENVBUFSIZE];
270 static int envbufsize;
271 char *ep = NULL;
272
273 if ((KDB_ENVBUFSIZE - envbufsize) >= bytes) {
274 ep = &envbuffer[envbufsize];
275 envbufsize += bytes;
276 }
277 return ep;
278}
279
280/*
281 * kdbgetulenv - This function will return the value of an unsigned
282 * long-valued environment variable.
283 * Parameters:
284 * match A character string representing a numeric value
285 * Outputs:
286 * *value the unsigned long represntation of the env variable 'match'
287 * Returns:
288 * Zero on success, a kdb diagnostic on failure.
289 */
290static int kdbgetulenv(const char *match, unsigned long *value)
291{
292 char *ep;
293
294 ep = kdbgetenv(match);
295 if (!ep)
296 return KDB_NOTENV;
297 if (strlen(ep) == 0)
298 return KDB_NOENVVALUE;
299
300 *value = simple_strtoul(ep, NULL, 0);
301
302 return 0;
303}
304
305/*
306 * kdbgetintenv - This function will return the value of an
307 * integer-valued environment variable.
308 * Parameters:
309 * match A character string representing an integer-valued env variable
310 * Outputs:
311 * *value the integer representation of the environment variable 'match'
312 * Returns:
313 * Zero on success, a kdb diagnostic on failure.
314 */
315int kdbgetintenv(const char *match, int *value)
316{
317 unsigned long val;
318 int diag;
319
320 diag = kdbgetulenv(match, &val);
321 if (!diag)
322 *value = (int) val;
323 return diag;
324}
325
326/*
327 * kdbgetularg - This function will convert a numeric string into an
328 * unsigned long value.
329 * Parameters:
330 * arg A character string representing a numeric value
331 * Outputs:
332 * *value the unsigned long represntation of arg.
333 * Returns:
334 * Zero on success, a kdb diagnostic on failure.
335 */
336int kdbgetularg(const char *arg, unsigned long *value)
337{
338 char *endp;
339 unsigned long val;
340
341 val = simple_strtoul(arg, &endp, 0);
342
343 if (endp == arg) {
344 /*
345 * Also try base 16, for us folks too lazy to type the
346 * leading 0x...
347 */
348 val = simple_strtoul(arg, &endp, 16);
349 if (endp == arg)
350 return KDB_BADINT;
351 }
352
353 *value = val;
354
355 return 0;
356}
357
358int kdbgetu64arg(const char *arg, u64 *value)
359{
360 char *endp;
361 u64 val;
362
363 val = simple_strtoull(arg, &endp, 0);
364
365 if (endp == arg) {
366
367 val = simple_strtoull(arg, &endp, 16);
368 if (endp == arg)
369 return KDB_BADINT;
370 }
371
372 *value = val;
373
374 return 0;
375}
376
377/*
378 * kdb_set - This function implements the 'set' command. Alter an
379 * existing environment variable or create a new one.
380 */
381int kdb_set(int argc, const char **argv)
382{
383 int i;
384 char *ep;
385 size_t varlen, vallen;
386
387 /*
388 * we can be invoked two ways:
389 * set var=value argv[1]="var", argv[2]="value"
390 * set var = value argv[1]="var", argv[2]="=", argv[3]="value"
391 * - if the latter, shift 'em down.
392 */
393 if (argc == 3) {
394 argv[2] = argv[3];
395 argc--;
396 }
397
398 if (argc != 2)
399 return KDB_ARGCOUNT;
400
401 /*
402 * Censor sensitive variables
403 */
404 if (strcmp(argv[1], "PROMPT") == 0 &&
405 !kdb_check_flags(KDB_ENABLE_MEM_READ, kdb_cmd_enabled, false))
406 return KDB_NOPERM;
407
408 /*
409 * Check for internal variables
410 */
411 if (strcmp(argv[1], "KDBDEBUG") == 0) {
412 unsigned int debugflags;
413 char *cp;
414
415 debugflags = simple_strtoul(argv[2], &cp, 0);
416 if (cp == argv[2] || debugflags & ~KDB_DEBUG_FLAG_MASK) {
417 kdb_printf("kdb: illegal debug flags '%s'\n",
418 argv[2]);
419 return 0;
420 }
421 kdb_flags = (kdb_flags & ~KDB_DEBUG(MASK))
422 | (debugflags << KDB_DEBUG_FLAG_SHIFT);
423
424 return 0;
425 }
426
427 /*
428 * Tokenizer squashed the '=' sign. argv[1] is variable
429 * name, argv[2] = value.
430 */
431 varlen = strlen(argv[1]);
432 vallen = strlen(argv[2]);
433 ep = kdballocenv(varlen + vallen + 2);
434 if (ep == (char *)0)
435 return KDB_ENVBUFFULL;
436
437 sprintf(ep, "%s=%s", argv[1], argv[2]);
438
439 ep[varlen+vallen+1] = '\0';
440
441 for (i = 0; i < __nenv; i++) {
442 if (__env[i]
443 && ((strncmp(__env[i], argv[1], varlen) == 0)
444 && ((__env[i][varlen] == '\0')
445 || (__env[i][varlen] == '=')))) {
446 __env[i] = ep;
447 return 0;
448 }
449 }
450
451 /*
452 * Wasn't existing variable. Fit into slot.
453 */
454 for (i = 0; i < __nenv-1; i++) {
455 if (__env[i] == (char *)0) {
456 __env[i] = ep;
457 return 0;
458 }
459 }
460
461 return KDB_ENVFULL;
462}
463
464static int kdb_check_regs(void)
465{
466 if (!kdb_current_regs) {
467 kdb_printf("No current kdb registers."
468 " You may need to select another task\n");
469 return KDB_BADREG;
470 }
471 return 0;
472}
473
474/*
475 * kdbgetaddrarg - This function is responsible for parsing an
476 * address-expression and returning the value of the expression,
477 * symbol name, and offset to the caller.
478 *
479 * The argument may consist of a numeric value (decimal or
480 * hexidecimal), a symbol name, a register name (preceded by the
481 * percent sign), an environment variable with a numeric value
482 * (preceded by a dollar sign) or a simple arithmetic expression
483 * consisting of a symbol name, +/-, and a numeric constant value
484 * (offset).
485 * Parameters:
486 * argc - count of arguments in argv
487 * argv - argument vector
488 * *nextarg - index to next unparsed argument in argv[]
489 * regs - Register state at time of KDB entry
490 * Outputs:
491 * *value - receives the value of the address-expression
492 * *offset - receives the offset specified, if any
493 * *name - receives the symbol name, if any
494 * *nextarg - index to next unparsed argument in argv[]
495 * Returns:
496 * zero is returned on success, a kdb diagnostic code is
497 * returned on error.
498 */
499int kdbgetaddrarg(int argc, const char **argv, int *nextarg,
500 unsigned long *value, long *offset,
501 char **name)
502{
503 unsigned long addr;
504 unsigned long off = 0;
505 int positive;
506 int diag;
507 int found = 0;
508 char *symname;
509 char symbol = '\0';
510 char *cp;
511 kdb_symtab_t symtab;
512
513 /*
514 * If the enable flags prohibit both arbitrary memory access
515 * and flow control then there are no reasonable grounds to
516 * provide symbol lookup.
517 */
518 if (!kdb_check_flags(KDB_ENABLE_MEM_READ | KDB_ENABLE_FLOW_CTRL,
519 kdb_cmd_enabled, false))
520 return KDB_NOPERM;
521
522 /*
523 * Process arguments which follow the following syntax:
524 *
525 * symbol | numeric-address [+/- numeric-offset]
526 * %register
527 * $environment-variable
528 */
529
530 if (*nextarg > argc)
531 return KDB_ARGCOUNT;
532
533 symname = (char *)argv[*nextarg];
534
535 /*
536 * If there is no whitespace between the symbol
537 * or address and the '+' or '-' symbols, we
538 * remember the character and replace it with a
539 * null so the symbol/value can be properly parsed
540 */
541 cp = strpbrk(symname, "+-");
542 if (cp != NULL) {
543 symbol = *cp;
544 *cp++ = '\0';
545 }
546
547 if (symname[0] == '$') {
548 diag = kdbgetulenv(&symname[1], &addr);
549 if (diag)
550 return diag;
551 } else if (symname[0] == '%') {
552 diag = kdb_check_regs();
553 if (diag)
554 return diag;
555 /* Implement register values with % at a later time as it is
556 * arch optional.
557 */
558 return KDB_NOTIMP;
559 } else {
560 found = kdbgetsymval(symname, &symtab);
561 if (found) {
562 addr = symtab.sym_start;
563 } else {
564 diag = kdbgetularg(argv[*nextarg], &addr);
565 if (diag)
566 return diag;
567 }
568 }
569
570 if (!found)
571 found = kdbnearsym(addr, &symtab);
572
573 (*nextarg)++;
574
575 if (name)
576 *name = symname;
577 if (value)
578 *value = addr;
579 if (offset && name && *name)
580 *offset = addr - symtab.sym_start;
581
582 if ((*nextarg > argc)
583 && (symbol == '\0'))
584 return 0;
585
586 /*
587 * check for +/- and offset
588 */
589
590 if (symbol == '\0') {
591 if ((argv[*nextarg][0] != '+')
592 && (argv[*nextarg][0] != '-')) {
593 /*
594 * Not our argument. Return.
595 */
596 return 0;
597 } else {
598 positive = (argv[*nextarg][0] == '+');
599 (*nextarg)++;
600 }
601 } else
602 positive = (symbol == '+');
603
604 /*
605 * Now there must be an offset!
606 */
607 if ((*nextarg > argc)
608 && (symbol == '\0')) {
609 return KDB_INVADDRFMT;
610 }
611
612 if (!symbol) {
613 cp = (char *)argv[*nextarg];
614 (*nextarg)++;
615 }
616
617 diag = kdbgetularg(cp, &off);
618 if (diag)
619 return diag;
620
621 if (!positive)
622 off = -off;
623
624 if (offset)
625 *offset += off;
626
627 if (value)
628 *value += off;
629
630 return 0;
631}
632
633static void kdb_cmderror(int diag)
634{
635 int i;
636
637 if (diag >= 0) {
638 kdb_printf("no error detected (diagnostic is %d)\n", diag);
639 return;
640 }
641
642 for (i = 0; i < __nkdb_err; i++) {
643 if (kdbmsgs[i].km_diag == diag) {
644 kdb_printf("diag: %d: %s\n", diag, kdbmsgs[i].km_msg);
645 return;
646 }
647 }
648
649 kdb_printf("Unknown diag %d\n", -diag);
650}
651
652/*
653 * kdb_defcmd, kdb_defcmd2 - This function implements the 'defcmd'
654 * command which defines one command as a set of other commands,
655 * terminated by endefcmd. kdb_defcmd processes the initial
656 * 'defcmd' command, kdb_defcmd2 is invoked from kdb_parse for
657 * the following commands until 'endefcmd'.
658 * Inputs:
659 * argc argument count
660 * argv argument vector
661 * Returns:
662 * zero for success, a kdb diagnostic if error
663 */
664struct defcmd_set {
665 int count;
666 bool usable;
667 char *name;
668 char *usage;
669 char *help;
670 char **command;
671};
672static struct defcmd_set *defcmd_set;
673static int defcmd_set_count;
674static bool defcmd_in_progress;
675
676/* Forward references */
677static int kdb_exec_defcmd(int argc, const char **argv);
678
679static int kdb_defcmd2(const char *cmdstr, const char *argv0)
680{
681 struct defcmd_set *s = defcmd_set + defcmd_set_count - 1;
682 char **save_command = s->command;
683 if (strcmp(argv0, "endefcmd") == 0) {
684 defcmd_in_progress = false;
685 if (!s->count)
686 s->usable = false;
687 if (s->usable)
688 /* macros are always safe because when executed each
689 * internal command re-enters kdb_parse() and is
690 * safety checked individually.
691 */
692 kdb_register_flags(s->name, kdb_exec_defcmd, s->usage,
693 s->help, 0,
694 KDB_ENABLE_ALWAYS_SAFE);
695 return 0;
696 }
697 if (!s->usable)
698 return KDB_NOTIMP;
699 s->command = kcalloc(s->count + 1, sizeof(*(s->command)), GFP_KDB);
700 if (!s->command) {
701 kdb_printf("Could not allocate new kdb_defcmd table for %s\n",
702 cmdstr);
703 s->usable = false;
704 return KDB_NOTIMP;
705 }
706 memcpy(s->command, save_command, s->count * sizeof(*(s->command)));
707 s->command[s->count++] = kdb_strdup(cmdstr, GFP_KDB);
708 kfree(save_command);
709 return 0;
710}
711
712static int kdb_defcmd(int argc, const char **argv)
713{
714 struct defcmd_set *save_defcmd_set = defcmd_set, *s;
715 if (defcmd_in_progress) {
716 kdb_printf("kdb: nested defcmd detected, assuming missing "
717 "endefcmd\n");
718 kdb_defcmd2("endefcmd", "endefcmd");
719 }
720 if (argc == 0) {
721 int i;
722 for (s = defcmd_set; s < defcmd_set + defcmd_set_count; ++s) {
723 kdb_printf("defcmd %s \"%s\" \"%s\"\n", s->name,
724 s->usage, s->help);
725 for (i = 0; i < s->count; ++i)
726 kdb_printf("%s", s->command[i]);
727 kdb_printf("endefcmd\n");
728 }
729 return 0;
730 }
731 if (argc != 3)
732 return KDB_ARGCOUNT;
733 if (in_dbg_master()) {
734 kdb_printf("Command only available during kdb_init()\n");
735 return KDB_NOTIMP;
736 }
737 defcmd_set = kmalloc_array(defcmd_set_count + 1, sizeof(*defcmd_set),
738 GFP_KDB);
739 if (!defcmd_set)
740 goto fail_defcmd;
741 memcpy(defcmd_set, save_defcmd_set,
742 defcmd_set_count * sizeof(*defcmd_set));
743 s = defcmd_set + defcmd_set_count;
744 memset(s, 0, sizeof(*s));
745 s->usable = true;
746 s->name = kdb_strdup(argv[1], GFP_KDB);
747 if (!s->name)
748 goto fail_name;
749 s->usage = kdb_strdup(argv[2], GFP_KDB);
750 if (!s->usage)
751 goto fail_usage;
752 s->help = kdb_strdup(argv[3], GFP_KDB);
753 if (!s->help)
754 goto fail_help;
755 if (s->usage[0] == '"') {
756 strcpy(s->usage, argv[2]+1);
757 s->usage[strlen(s->usage)-1] = '\0';
758 }
759 if (s->help[0] == '"') {
760 strcpy(s->help, argv[3]+1);
761 s->help[strlen(s->help)-1] = '\0';
762 }
763 ++defcmd_set_count;
764 defcmd_in_progress = true;
765 kfree(save_defcmd_set);
766 return 0;
767fail_help:
768 kfree(s->usage);
769fail_usage:
770 kfree(s->name);
771fail_name:
772 kfree(defcmd_set);
773fail_defcmd:
774 kdb_printf("Could not allocate new defcmd_set entry for %s\n", argv[1]);
775 defcmd_set = save_defcmd_set;
776 return KDB_NOTIMP;
777}
778
779/*
780 * kdb_exec_defcmd - Execute the set of commands associated with this
781 * defcmd name.
782 * Inputs:
783 * argc argument count
784 * argv argument vector
785 * Returns:
786 * zero for success, a kdb diagnostic if error
787 */
788static int kdb_exec_defcmd(int argc, const char **argv)
789{
790 int i, ret;
791 struct defcmd_set *s;
792 if (argc != 0)
793 return KDB_ARGCOUNT;
794 for (s = defcmd_set, i = 0; i < defcmd_set_count; ++i, ++s) {
795 if (strcmp(s->name, argv[0]) == 0)
796 break;
797 }
798 if (i == defcmd_set_count) {
799 kdb_printf("kdb_exec_defcmd: could not find commands for %s\n",
800 argv[0]);
801 return KDB_NOTIMP;
802 }
803 for (i = 0; i < s->count; ++i) {
804 /* Recursive use of kdb_parse, do not use argv after
805 * this point */
806 argv = NULL;
807 kdb_printf("[%s]kdb> %s\n", s->name, s->command[i]);
808 ret = kdb_parse(s->command[i]);
809 if (ret)
810 return ret;
811 }
812 return 0;
813}
814
815/* Command history */
816#define KDB_CMD_HISTORY_COUNT 32
817#define CMD_BUFLEN 200 /* kdb_printf: max printline
818 * size == 256 */
819static unsigned int cmd_head, cmd_tail;
820static unsigned int cmdptr;
821static char cmd_hist[KDB_CMD_HISTORY_COUNT][CMD_BUFLEN];
822static char cmd_cur[CMD_BUFLEN];
823
824/*
825 * The "str" argument may point to something like | grep xyz
826 */
827static void parse_grep(const char *str)
828{
829 int len;
830 char *cp = (char *)str, *cp2;
831
832 /* sanity check: we should have been called with the \ first */
833 if (*cp != '|')
834 return;
835 cp++;
836 while (isspace(*cp))
837 cp++;
838 if (!str_has_prefix(cp, "grep ")) {
839 kdb_printf("invalid 'pipe', see grephelp\n");
840 return;
841 }
842 cp += 5;
843 while (isspace(*cp))
844 cp++;
845 cp2 = strchr(cp, '\n');
846 if (cp2)
847 *cp2 = '\0'; /* remove the trailing newline */
848 len = strlen(cp);
849 if (len == 0) {
850 kdb_printf("invalid 'pipe', see grephelp\n");
851 return;
852 }
853 /* now cp points to a nonzero length search string */
854 if (*cp == '"') {
855 /* allow it be "x y z" by removing the "'s - there must
856 be two of them */
857 cp++;
858 cp2 = strchr(cp, '"');
859 if (!cp2) {
860 kdb_printf("invalid quoted string, see grephelp\n");
861 return;
862 }
863 *cp2 = '\0'; /* end the string where the 2nd " was */
864 }
865 kdb_grep_leading = 0;
866 if (*cp == '^') {
867 kdb_grep_leading = 1;
868 cp++;
869 }
870 len = strlen(cp);
871 kdb_grep_trailing = 0;
872 if (*(cp+len-1) == '$') {
873 kdb_grep_trailing = 1;
874 *(cp+len-1) = '\0';
875 }
876 len = strlen(cp);
877 if (!len)
878 return;
879 if (len >= KDB_GREP_STRLEN) {
880 kdb_printf("search string too long\n");
881 return;
882 }
883 strcpy(kdb_grep_string, cp);
884 kdb_grepping_flag++;
885 return;
886}
887
888/*
889 * kdb_parse - Parse the command line, search the command table for a
890 * matching command and invoke the command function. This
891 * function may be called recursively, if it is, the second call
892 * will overwrite argv and cbuf. It is the caller's
893 * responsibility to save their argv if they recursively call
894 * kdb_parse().
895 * Parameters:
896 * cmdstr The input command line to be parsed.
897 * regs The registers at the time kdb was entered.
898 * Returns:
899 * Zero for success, a kdb diagnostic if failure.
900 * Remarks:
901 * Limited to 20 tokens.
902 *
903 * Real rudimentary tokenization. Basically only whitespace
904 * is considered a token delimeter (but special consideration
905 * is taken of the '=' sign as used by the 'set' command).
906 *
907 * The algorithm used to tokenize the input string relies on
908 * there being at least one whitespace (or otherwise useless)
909 * character between tokens as the character immediately following
910 * the token is altered in-place to a null-byte to terminate the
911 * token string.
912 */
913
914#define MAXARGC 20
915
916int kdb_parse(const char *cmdstr)
917{
918 static char *argv[MAXARGC];
919 static int argc;
920 static char cbuf[CMD_BUFLEN+2];
921 char *cp;
922 char *cpp, quoted;
923 kdbtab_t *tp;
924 int i, escaped, ignore_errors = 0, check_grep = 0;
925
926 /*
927 * First tokenize the command string.
928 */
929 cp = (char *)cmdstr;
930
931 if (KDB_FLAG(CMD_INTERRUPT)) {
932 /* Previous command was interrupted, newline must not
933 * repeat the command */
934 KDB_FLAG_CLEAR(CMD_INTERRUPT);
935 KDB_STATE_SET(PAGER);
936 argc = 0; /* no repeat */
937 }
938
939 if (*cp != '\n' && *cp != '\0') {
940 argc = 0;
941 cpp = cbuf;
942 while (*cp) {
943 /* skip whitespace */
944 while (isspace(*cp))
945 cp++;
946 if ((*cp == '\0') || (*cp == '\n') ||
947 (*cp == '#' && !defcmd_in_progress))
948 break;
949 /* special case: check for | grep pattern */
950 if (*cp == '|') {
951 check_grep++;
952 break;
953 }
954 if (cpp >= cbuf + CMD_BUFLEN) {
955 kdb_printf("kdb_parse: command buffer "
956 "overflow, command ignored\n%s\n",
957 cmdstr);
958 return KDB_NOTFOUND;
959 }
960 if (argc >= MAXARGC - 1) {
961 kdb_printf("kdb_parse: too many arguments, "
962 "command ignored\n%s\n", cmdstr);
963 return KDB_NOTFOUND;
964 }
965 argv[argc++] = cpp;
966 escaped = 0;
967 quoted = '\0';
968 /* Copy to next unquoted and unescaped
969 * whitespace or '=' */
970 while (*cp && *cp != '\n' &&
971 (escaped || quoted || !isspace(*cp))) {
972 if (cpp >= cbuf + CMD_BUFLEN)
973 break;
974 if (escaped) {
975 escaped = 0;
976 *cpp++ = *cp++;
977 continue;
978 }
979 if (*cp == '\\') {
980 escaped = 1;
981 ++cp;
982 continue;
983 }
984 if (*cp == quoted)
985 quoted = '\0';
986 else if (*cp == '\'' || *cp == '"')
987 quoted = *cp;
988 *cpp = *cp++;
989 if (*cpp == '=' && !quoted)
990 break;
991 ++cpp;
992 }
993 *cpp++ = '\0'; /* Squash a ws or '=' character */
994 }
995 }
996 if (!argc)
997 return 0;
998 if (check_grep)
999 parse_grep(cp);
1000 if (defcmd_in_progress) {
1001 int result = kdb_defcmd2(cmdstr, argv[0]);
1002 if (!defcmd_in_progress) {
1003 argc = 0; /* avoid repeat on endefcmd */
1004 *(argv[0]) = '\0';
1005 }
1006 return result;
1007 }
1008 if (argv[0][0] == '-' && argv[0][1] &&
1009 (argv[0][1] < '0' || argv[0][1] > '9')) {
1010 ignore_errors = 1;
1011 ++argv[0];
1012 }
1013
1014 for_each_kdbcmd(tp, i) {
1015 if (tp->cmd_name) {
1016 /*
1017 * If this command is allowed to be abbreviated,
1018 * check to see if this is it.
1019 */
1020
1021 if (tp->cmd_minlen
1022 && (strlen(argv[0]) <= tp->cmd_minlen)) {
1023 if (strncmp(argv[0],
1024 tp->cmd_name,
1025 tp->cmd_minlen) == 0) {
1026 break;
1027 }
1028 }
1029
1030 if (strcmp(argv[0], tp->cmd_name) == 0)
1031 break;
1032 }
1033 }
1034
1035 /*
1036 * If we don't find a command by this name, see if the first
1037 * few characters of this match any of the known commands.
1038 * e.g., md1c20 should match md.
1039 */
1040 if (i == kdb_max_commands) {
1041 for_each_kdbcmd(tp, i) {
1042 if (tp->cmd_name) {
1043 if (strncmp(argv[0],
1044 tp->cmd_name,
1045 strlen(tp->cmd_name)) == 0) {
1046 break;
1047 }
1048 }
1049 }
1050 }
1051
1052 if (i < kdb_max_commands) {
1053 int result;
1054
1055 if (!kdb_check_flags(tp->cmd_flags, kdb_cmd_enabled, argc <= 1))
1056 return KDB_NOPERM;
1057
1058 KDB_STATE_SET(CMD);
1059 result = (*tp->cmd_func)(argc-1, (const char **)argv);
1060 if (result && ignore_errors && result > KDB_CMD_GO)
1061 result = 0;
1062 KDB_STATE_CLEAR(CMD);
1063
1064 if (tp->cmd_flags & KDB_REPEAT_WITH_ARGS)
1065 return result;
1066
1067 argc = tp->cmd_flags & KDB_REPEAT_NO_ARGS ? 1 : 0;
1068 if (argv[argc])
1069 *(argv[argc]) = '\0';
1070 return result;
1071 }
1072
1073 /*
1074 * If the input with which we were presented does not
1075 * map to an existing command, attempt to parse it as an
1076 * address argument and display the result. Useful for
1077 * obtaining the address of a variable, or the nearest symbol
1078 * to an address contained in a register.
1079 */
1080 {
1081 unsigned long value;
1082 char *name = NULL;
1083 long offset;
1084 int nextarg = 0;
1085
1086 if (kdbgetaddrarg(0, (const char **)argv, &nextarg,
1087 &value, &offset, &name)) {
1088 return KDB_NOTFOUND;
1089 }
1090
1091 kdb_printf("%s = ", argv[0]);
1092 kdb_symbol_print(value, NULL, KDB_SP_DEFAULT);
1093 kdb_printf("\n");
1094 return 0;
1095 }
1096}
1097
1098
1099static int handle_ctrl_cmd(char *cmd)
1100{
1101#define CTRL_P 16
1102#define CTRL_N 14
1103
1104 /* initial situation */
1105 if (cmd_head == cmd_tail)
1106 return 0;
1107 switch (*cmd) {
1108 case CTRL_P:
1109 if (cmdptr != cmd_tail)
1110 cmdptr = (cmdptr + KDB_CMD_HISTORY_COUNT - 1) %
1111 KDB_CMD_HISTORY_COUNT;
1112 strscpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1113 return 1;
1114 case CTRL_N:
1115 if (cmdptr != cmd_head)
1116 cmdptr = (cmdptr+1) % KDB_CMD_HISTORY_COUNT;
1117 strscpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1118 return 1;
1119 }
1120 return 0;
1121}
1122
1123/*
1124 * kdb_reboot - This function implements the 'reboot' command. Reboot
1125 * the system immediately, or loop for ever on failure.
1126 */
1127static int kdb_reboot(int argc, const char **argv)
1128{
1129 emergency_restart();
1130 kdb_printf("Hmm, kdb_reboot did not reboot, spinning here\n");
1131 while (1)
1132 cpu_relax();
1133 /* NOTREACHED */
1134 return 0;
1135}
1136
1137static void kdb_dumpregs(struct pt_regs *regs)
1138{
1139 int old_lvl = console_loglevel;
1140 console_loglevel = CONSOLE_LOGLEVEL_MOTORMOUTH;
1141 kdb_trap_printk++;
1142 show_regs(regs);
1143 kdb_trap_printk--;
1144 kdb_printf("\n");
1145 console_loglevel = old_lvl;
1146}
1147
1148static void kdb_set_current_task(struct task_struct *p)
1149{
1150 kdb_current_task = p;
1151
1152 if (kdb_task_has_cpu(p)) {
1153 kdb_current_regs = KDB_TSKREGS(kdb_process_cpu(p));
1154 return;
1155 }
1156 kdb_current_regs = NULL;
1157}
1158
1159static void drop_newline(char *buf)
1160{
1161 size_t len = strlen(buf);
1162
1163 if (len == 0)
1164 return;
1165 if (*(buf + len - 1) == '\n')
1166 *(buf + len - 1) = '\0';
1167}
1168
1169/*
1170 * kdb_local - The main code for kdb. This routine is invoked on a
1171 * specific processor, it is not global. The main kdb() routine
1172 * ensures that only one processor at a time is in this routine.
1173 * This code is called with the real reason code on the first
1174 * entry to a kdb session, thereafter it is called with reason
1175 * SWITCH, even if the user goes back to the original cpu.
1176 * Inputs:
1177 * reason The reason KDB was invoked
1178 * error The hardware-defined error code
1179 * regs The exception frame at time of fault/breakpoint.
1180 * db_result Result code from the break or debug point.
1181 * Returns:
1182 * 0 KDB was invoked for an event which it wasn't responsible
1183 * 1 KDB handled the event for which it was invoked.
1184 * KDB_CMD_GO User typed 'go'.
1185 * KDB_CMD_CPU User switched to another cpu.
1186 * KDB_CMD_SS Single step.
1187 */
1188static int kdb_local(kdb_reason_t reason, int error, struct pt_regs *regs,
1189 kdb_dbtrap_t db_result)
1190{
1191 char *cmdbuf;
1192 int diag;
1193 struct task_struct *kdb_current =
1194 kdb_curr_task(raw_smp_processor_id());
1195
1196 KDB_DEBUG_STATE("kdb_local 1", reason);
1197 kdb_go_count = 0;
1198 if (reason == KDB_REASON_DEBUG) {
1199 /* special case below */
1200 } else {
1201 kdb_printf("\nEntering kdb (current=0x%px, pid %d) ",
1202 kdb_current, kdb_current ? kdb_current->pid : 0);
1203#if defined(CONFIG_SMP)
1204 kdb_printf("on processor %d ", raw_smp_processor_id());
1205#endif
1206 }
1207
1208 switch (reason) {
1209 case KDB_REASON_DEBUG:
1210 {
1211 /*
1212 * If re-entering kdb after a single step
1213 * command, don't print the message.
1214 */
1215 switch (db_result) {
1216 case KDB_DB_BPT:
1217 kdb_printf("\nEntering kdb (0x%px, pid %d) ",
1218 kdb_current, kdb_current->pid);
1219#if defined(CONFIG_SMP)
1220 kdb_printf("on processor %d ", raw_smp_processor_id());
1221#endif
1222 kdb_printf("due to Debug @ " kdb_machreg_fmt "\n",
1223 instruction_pointer(regs));
1224 break;
1225 case KDB_DB_SS:
1226 break;
1227 case KDB_DB_SSBPT:
1228 KDB_DEBUG_STATE("kdb_local 4", reason);
1229 return 1; /* kdba_db_trap did the work */
1230 default:
1231 kdb_printf("kdb: Bad result from kdba_db_trap: %d\n",
1232 db_result);
1233 break;
1234 }
1235
1236 }
1237 break;
1238 case KDB_REASON_ENTER:
1239 if (KDB_STATE(KEYBOARD))
1240 kdb_printf("due to Keyboard Entry\n");
1241 else
1242 kdb_printf("due to KDB_ENTER()\n");
1243 break;
1244 case KDB_REASON_KEYBOARD:
1245 KDB_STATE_SET(KEYBOARD);
1246 kdb_printf("due to Keyboard Entry\n");
1247 break;
1248 case KDB_REASON_ENTER_SLAVE:
1249 /* drop through, slaves only get released via cpu switch */
1250 case KDB_REASON_SWITCH:
1251 kdb_printf("due to cpu switch\n");
1252 break;
1253 case KDB_REASON_OOPS:
1254 kdb_printf("Oops: %s\n", kdb_diemsg);
1255 kdb_printf("due to oops @ " kdb_machreg_fmt "\n",
1256 instruction_pointer(regs));
1257 kdb_dumpregs(regs);
1258 break;
1259 case KDB_REASON_SYSTEM_NMI:
1260 kdb_printf("due to System NonMaskable Interrupt\n");
1261 break;
1262 case KDB_REASON_NMI:
1263 kdb_printf("due to NonMaskable Interrupt @ "
1264 kdb_machreg_fmt "\n",
1265 instruction_pointer(regs));
1266 break;
1267 case KDB_REASON_SSTEP:
1268 case KDB_REASON_BREAK:
1269 kdb_printf("due to %s @ " kdb_machreg_fmt "\n",
1270 reason == KDB_REASON_BREAK ?
1271 "Breakpoint" : "SS trap", instruction_pointer(regs));
1272 /*
1273 * Determine if this breakpoint is one that we
1274 * are interested in.
1275 */
1276 if (db_result != KDB_DB_BPT) {
1277 kdb_printf("kdb: error return from kdba_bp_trap: %d\n",
1278 db_result);
1279 KDB_DEBUG_STATE("kdb_local 6", reason);
1280 return 0; /* Not for us, dismiss it */
1281 }
1282 break;
1283 case KDB_REASON_RECURSE:
1284 kdb_printf("due to Recursion @ " kdb_machreg_fmt "\n",
1285 instruction_pointer(regs));
1286 break;
1287 default:
1288 kdb_printf("kdb: unexpected reason code: %d\n", reason);
1289 KDB_DEBUG_STATE("kdb_local 8", reason);
1290 return 0; /* Not for us, dismiss it */
1291 }
1292
1293 while (1) {
1294 /*
1295 * Initialize pager context.
1296 */
1297 kdb_nextline = 1;
1298 KDB_STATE_CLEAR(SUPPRESS);
1299 kdb_grepping_flag = 0;
1300 /* ensure the old search does not leak into '/' commands */
1301 kdb_grep_string[0] = '\0';
1302
1303 cmdbuf = cmd_cur;
1304 *cmdbuf = '\0';
1305 *(cmd_hist[cmd_head]) = '\0';
1306
1307do_full_getstr:
1308 /* PROMPT can only be set if we have MEM_READ permission. */
1309 snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"),
1310 raw_smp_processor_id());
1311 if (defcmd_in_progress)
1312 strncat(kdb_prompt_str, "[defcmd]", CMD_BUFLEN);
1313
1314 /*
1315 * Fetch command from keyboard
1316 */
1317 cmdbuf = kdb_getstr(cmdbuf, CMD_BUFLEN, kdb_prompt_str);
1318 if (*cmdbuf != '\n') {
1319 if (*cmdbuf < 32) {
1320 if (cmdptr == cmd_head) {
1321 strscpy(cmd_hist[cmd_head], cmd_cur,
1322 CMD_BUFLEN);
1323 *(cmd_hist[cmd_head] +
1324 strlen(cmd_hist[cmd_head])-1) = '\0';
1325 }
1326 if (!handle_ctrl_cmd(cmdbuf))
1327 *(cmd_cur+strlen(cmd_cur)-1) = '\0';
1328 cmdbuf = cmd_cur;
1329 goto do_full_getstr;
1330 } else {
1331 strscpy(cmd_hist[cmd_head], cmd_cur,
1332 CMD_BUFLEN);
1333 }
1334
1335 cmd_head = (cmd_head+1) % KDB_CMD_HISTORY_COUNT;
1336 if (cmd_head == cmd_tail)
1337 cmd_tail = (cmd_tail+1) % KDB_CMD_HISTORY_COUNT;
1338 }
1339
1340 cmdptr = cmd_head;
1341 diag = kdb_parse(cmdbuf);
1342 if (diag == KDB_NOTFOUND) {
1343 drop_newline(cmdbuf);
1344 kdb_printf("Unknown kdb command: '%s'\n", cmdbuf);
1345 diag = 0;
1346 }
1347 if (diag == KDB_CMD_GO
1348 || diag == KDB_CMD_CPU
1349 || diag == KDB_CMD_SS
1350 || diag == KDB_CMD_KGDB)
1351 break;
1352
1353 if (diag)
1354 kdb_cmderror(diag);
1355 }
1356 KDB_DEBUG_STATE("kdb_local 9", diag);
1357 return diag;
1358}
1359
1360
1361/*
1362 * kdb_print_state - Print the state data for the current processor
1363 * for debugging.
1364 * Inputs:
1365 * text Identifies the debug point
1366 * value Any integer value to be printed, e.g. reason code.
1367 */
1368void kdb_print_state(const char *text, int value)
1369{
1370 kdb_printf("state: %s cpu %d value %d initial %d state %x\n",
1371 text, raw_smp_processor_id(), value, kdb_initial_cpu,
1372 kdb_state);
1373}
1374
1375/*
1376 * kdb_main_loop - After initial setup and assignment of the
1377 * controlling cpu, all cpus are in this loop. One cpu is in
1378 * control and will issue the kdb prompt, the others will spin
1379 * until 'go' or cpu switch.
1380 *
1381 * To get a consistent view of the kernel stacks for all
1382 * processes, this routine is invoked from the main kdb code via
1383 * an architecture specific routine. kdba_main_loop is
1384 * responsible for making the kernel stacks consistent for all
1385 * processes, there should be no difference between a blocked
1386 * process and a running process as far as kdb is concerned.
1387 * Inputs:
1388 * reason The reason KDB was invoked
1389 * error The hardware-defined error code
1390 * reason2 kdb's current reason code.
1391 * Initially error but can change
1392 * according to kdb state.
1393 * db_result Result code from break or debug point.
1394 * regs The exception frame at time of fault/breakpoint.
1395 * should always be valid.
1396 * Returns:
1397 * 0 KDB was invoked for an event which it wasn't responsible
1398 * 1 KDB handled the event for which it was invoked.
1399 */
1400int kdb_main_loop(kdb_reason_t reason, kdb_reason_t reason2, int error,
1401 kdb_dbtrap_t db_result, struct pt_regs *regs)
1402{
1403 int result = 1;
1404 /* Stay in kdb() until 'go', 'ss[b]' or an error */
1405 while (1) {
1406 /*
1407 * All processors except the one that is in control
1408 * will spin here.
1409 */
1410 KDB_DEBUG_STATE("kdb_main_loop 1", reason);
1411 while (KDB_STATE(HOLD_CPU)) {
1412 /* state KDB is turned off by kdb_cpu to see if the
1413 * other cpus are still live, each cpu in this loop
1414 * turns it back on.
1415 */
1416 if (!KDB_STATE(KDB))
1417 KDB_STATE_SET(KDB);
1418 }
1419
1420 KDB_STATE_CLEAR(SUPPRESS);
1421 KDB_DEBUG_STATE("kdb_main_loop 2", reason);
1422 if (KDB_STATE(LEAVING))
1423 break; /* Another cpu said 'go' */
1424 /* Still using kdb, this processor is in control */
1425 result = kdb_local(reason2, error, regs, db_result);
1426 KDB_DEBUG_STATE("kdb_main_loop 3", result);
1427
1428 if (result == KDB_CMD_CPU)
1429 break;
1430
1431 if (result == KDB_CMD_SS) {
1432 KDB_STATE_SET(DOING_SS);
1433 break;
1434 }
1435
1436 if (result == KDB_CMD_KGDB) {
1437 if (!KDB_STATE(DOING_KGDB))
1438 kdb_printf("Entering please attach debugger "
1439 "or use $D#44+ or $3#33\n");
1440 break;
1441 }
1442 if (result && result != 1 && result != KDB_CMD_GO)
1443 kdb_printf("\nUnexpected kdb_local return code %d\n",
1444 result);
1445 KDB_DEBUG_STATE("kdb_main_loop 4", reason);
1446 break;
1447 }
1448 if (KDB_STATE(DOING_SS))
1449 KDB_STATE_CLEAR(SSBPT);
1450
1451 /* Clean up any keyboard devices before leaving */
1452 kdb_kbd_cleanup_state();
1453
1454 return result;
1455}
1456
1457/*
1458 * kdb_mdr - This function implements the guts of the 'mdr', memory
1459 * read command.
1460 * mdr <addr arg>,<byte count>
1461 * Inputs:
1462 * addr Start address
1463 * count Number of bytes
1464 * Returns:
1465 * Always 0. Any errors are detected and printed by kdb_getarea.
1466 */
1467static int kdb_mdr(unsigned long addr, unsigned int count)
1468{
1469 unsigned char c;
1470 while (count--) {
1471 if (kdb_getarea(c, addr))
1472 return 0;
1473 kdb_printf("%02x", c);
1474 addr++;
1475 }
1476 kdb_printf("\n");
1477 return 0;
1478}
1479
1480/*
1481 * kdb_md - This function implements the 'md', 'md1', 'md2', 'md4',
1482 * 'md8' 'mdr' and 'mds' commands.
1483 *
1484 * md|mds [<addr arg> [<line count> [<radix>]]]
1485 * mdWcN [<addr arg> [<line count> [<radix>]]]
1486 * where W = is the width (1, 2, 4 or 8) and N is the count.
1487 * for eg., md1c20 reads 20 bytes, 1 at a time.
1488 * mdr <addr arg>,<byte count>
1489 */
1490static void kdb_md_line(const char *fmtstr, unsigned long addr,
1491 int symbolic, int nosect, int bytesperword,
1492 int num, int repeat, int phys)
1493{
1494 /* print just one line of data */
1495 kdb_symtab_t symtab;
1496 char cbuf[32];
1497 char *c = cbuf;
1498 int i;
1499 int j;
1500 unsigned long word;
1501
1502 memset(cbuf, '\0', sizeof(cbuf));
1503 if (phys)
1504 kdb_printf("phys " kdb_machreg_fmt0 " ", addr);
1505 else
1506 kdb_printf(kdb_machreg_fmt0 " ", addr);
1507
1508 for (i = 0; i < num && repeat--; i++) {
1509 if (phys) {
1510 if (kdb_getphysword(&word, addr, bytesperword))
1511 break;
1512 } else if (kdb_getword(&word, addr, bytesperword))
1513 break;
1514 kdb_printf(fmtstr, word);
1515 if (symbolic)
1516 kdbnearsym(word, &symtab);
1517 else
1518 memset(&symtab, 0, sizeof(symtab));
1519 if (symtab.sym_name) {
1520 kdb_symbol_print(word, &symtab, 0);
1521 if (!nosect) {
1522 kdb_printf("\n");
1523 kdb_printf(" %s %s "
1524 kdb_machreg_fmt " "
1525 kdb_machreg_fmt " "
1526 kdb_machreg_fmt, symtab.mod_name,
1527 symtab.sec_name, symtab.sec_start,
1528 symtab.sym_start, symtab.sym_end);
1529 }
1530 addr += bytesperword;
1531 } else {
1532 union {
1533 u64 word;
1534 unsigned char c[8];
1535 } wc;
1536 unsigned char *cp;
1537#ifdef __BIG_ENDIAN
1538 cp = wc.c + 8 - bytesperword;
1539#else
1540 cp = wc.c;
1541#endif
1542 wc.word = word;
1543#define printable_char(c) \
1544 ({unsigned char __c = c; isascii(__c) && isprint(__c) ? __c : '.'; })
1545 for (j = 0; j < bytesperword; j++)
1546 *c++ = printable_char(*cp++);
1547 addr += bytesperword;
1548#undef printable_char
1549 }
1550 }
1551 kdb_printf("%*s %s\n", (int)((num-i)*(2*bytesperword + 1)+1),
1552 " ", cbuf);
1553}
1554
1555static int kdb_md(int argc, const char **argv)
1556{
1557 static unsigned long last_addr;
1558 static int last_radix, last_bytesperword, last_repeat;
1559 int radix = 16, mdcount = 8, bytesperword = KDB_WORD_SIZE, repeat;
1560 int nosect = 0;
1561 char fmtchar, fmtstr[64];
1562 unsigned long addr;
1563 unsigned long word;
1564 long offset = 0;
1565 int symbolic = 0;
1566 int valid = 0;
1567 int phys = 0;
1568 int raw = 0;
1569
1570 kdbgetintenv("MDCOUNT", &mdcount);
1571 kdbgetintenv("RADIX", &radix);
1572 kdbgetintenv("BYTESPERWORD", &bytesperword);
1573
1574 /* Assume 'md <addr>' and start with environment values */
1575 repeat = mdcount * 16 / bytesperword;
1576
1577 if (strcmp(argv[0], "mdr") == 0) {
1578 if (argc == 2 || (argc == 0 && last_addr != 0))
1579 valid = raw = 1;
1580 else
1581 return KDB_ARGCOUNT;
1582 } else if (isdigit(argv[0][2])) {
1583 bytesperword = (int)(argv[0][2] - '0');
1584 if (bytesperword == 0) {
1585 bytesperword = last_bytesperword;
1586 if (bytesperword == 0)
1587 bytesperword = 4;
1588 }
1589 last_bytesperword = bytesperword;
1590 repeat = mdcount * 16 / bytesperword;
1591 if (!argv[0][3])
1592 valid = 1;
1593 else if (argv[0][3] == 'c' && argv[0][4]) {
1594 char *p;
1595 repeat = simple_strtoul(argv[0] + 4, &p, 10);
1596 mdcount = ((repeat * bytesperword) + 15) / 16;
1597 valid = !*p;
1598 }
1599 last_repeat = repeat;
1600 } else if (strcmp(argv[0], "md") == 0)
1601 valid = 1;
1602 else if (strcmp(argv[0], "mds") == 0)
1603 valid = 1;
1604 else if (strcmp(argv[0], "mdp") == 0) {
1605 phys = valid = 1;
1606 }
1607 if (!valid)
1608 return KDB_NOTFOUND;
1609
1610 if (argc == 0) {
1611 if (last_addr == 0)
1612 return KDB_ARGCOUNT;
1613 addr = last_addr;
1614 radix = last_radix;
1615 bytesperword = last_bytesperword;
1616 repeat = last_repeat;
1617 if (raw)
1618 mdcount = repeat;
1619 else
1620 mdcount = ((repeat * bytesperword) + 15) / 16;
1621 }
1622
1623 if (argc) {
1624 unsigned long val;
1625 int diag, nextarg = 1;
1626 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr,
1627 &offset, NULL);
1628 if (diag)
1629 return diag;
1630 if (argc > nextarg+2)
1631 return KDB_ARGCOUNT;
1632
1633 if (argc >= nextarg) {
1634 diag = kdbgetularg(argv[nextarg], &val);
1635 if (!diag) {
1636 mdcount = (int) val;
1637 if (raw)
1638 repeat = mdcount;
1639 else
1640 repeat = mdcount * 16 / bytesperword;
1641 }
1642 }
1643 if (argc >= nextarg+1) {
1644 diag = kdbgetularg(argv[nextarg+1], &val);
1645 if (!diag)
1646 radix = (int) val;
1647 }
1648 }
1649
1650 if (strcmp(argv[0], "mdr") == 0) {
1651 int ret;
1652 last_addr = addr;
1653 ret = kdb_mdr(addr, mdcount);
1654 last_addr += mdcount;
1655 last_repeat = mdcount;
1656 last_bytesperword = bytesperword; // to make REPEAT happy
1657 return ret;
1658 }
1659
1660 switch (radix) {
1661 case 10:
1662 fmtchar = 'd';
1663 break;
1664 case 16:
1665 fmtchar = 'x';
1666 break;
1667 case 8:
1668 fmtchar = 'o';
1669 break;
1670 default:
1671 return KDB_BADRADIX;
1672 }
1673
1674 last_radix = radix;
1675
1676 if (bytesperword > KDB_WORD_SIZE)
1677 return KDB_BADWIDTH;
1678
1679 switch (bytesperword) {
1680 case 8:
1681 sprintf(fmtstr, "%%16.16l%c ", fmtchar);
1682 break;
1683 case 4:
1684 sprintf(fmtstr, "%%8.8l%c ", fmtchar);
1685 break;
1686 case 2:
1687 sprintf(fmtstr, "%%4.4l%c ", fmtchar);
1688 break;
1689 case 1:
1690 sprintf(fmtstr, "%%2.2l%c ", fmtchar);
1691 break;
1692 default:
1693 return KDB_BADWIDTH;
1694 }
1695
1696 last_repeat = repeat;
1697 last_bytesperword = bytesperword;
1698
1699 if (strcmp(argv[0], "mds") == 0) {
1700 symbolic = 1;
1701 /* Do not save these changes as last_*, they are temporary mds
1702 * overrides.
1703 */
1704 bytesperword = KDB_WORD_SIZE;
1705 repeat = mdcount;
1706 kdbgetintenv("NOSECT", &nosect);
1707 }
1708
1709 /* Round address down modulo BYTESPERWORD */
1710
1711 addr &= ~(bytesperword-1);
1712
1713 while (repeat > 0) {
1714 unsigned long a;
1715 int n, z, num = (symbolic ? 1 : (16 / bytesperword));
1716
1717 if (KDB_FLAG(CMD_INTERRUPT))
1718 return 0;
1719 for (a = addr, z = 0; z < repeat; a += bytesperword, ++z) {
1720 if (phys) {
1721 if (kdb_getphysword(&word, a, bytesperword)
1722 || word)
1723 break;
1724 } else if (kdb_getword(&word, a, bytesperword) || word)
1725 break;
1726 }
1727 n = min(num, repeat);
1728 kdb_md_line(fmtstr, addr, symbolic, nosect, bytesperword,
1729 num, repeat, phys);
1730 addr += bytesperword * n;
1731 repeat -= n;
1732 z = (z + num - 1) / num;
1733 if (z > 2) {
1734 int s = num * (z-2);
1735 kdb_printf(kdb_machreg_fmt0 "-" kdb_machreg_fmt0
1736 " zero suppressed\n",
1737 addr, addr + bytesperword * s - 1);
1738 addr += bytesperword * s;
1739 repeat -= s;
1740 }
1741 }
1742 last_addr = addr;
1743
1744 return 0;
1745}
1746
1747/*
1748 * kdb_mm - This function implements the 'mm' command.
1749 * mm address-expression new-value
1750 * Remarks:
1751 * mm works on machine words, mmW works on bytes.
1752 */
1753static int kdb_mm(int argc, const char **argv)
1754{
1755 int diag;
1756 unsigned long addr;
1757 long offset = 0;
1758 unsigned long contents;
1759 int nextarg;
1760 int width;
1761
1762 if (argv[0][2] && !isdigit(argv[0][2]))
1763 return KDB_NOTFOUND;
1764
1765 if (argc < 2)
1766 return KDB_ARGCOUNT;
1767
1768 nextarg = 1;
1769 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
1770 if (diag)
1771 return diag;
1772
1773 if (nextarg > argc)
1774 return KDB_ARGCOUNT;
1775 diag = kdbgetaddrarg(argc, argv, &nextarg, &contents, NULL, NULL);
1776 if (diag)
1777 return diag;
1778
1779 if (nextarg != argc + 1)
1780 return KDB_ARGCOUNT;
1781
1782 width = argv[0][2] ? (argv[0][2] - '0') : (KDB_WORD_SIZE);
1783 diag = kdb_putword(addr, contents, width);
1784 if (diag)
1785 return diag;
1786
1787 kdb_printf(kdb_machreg_fmt " = " kdb_machreg_fmt "\n", addr, contents);
1788
1789 return 0;
1790}
1791
1792/*
1793 * kdb_go - This function implements the 'go' command.
1794 * go [address-expression]
1795 */
1796static int kdb_go(int argc, const char **argv)
1797{
1798 unsigned long addr;
1799 int diag;
1800 int nextarg;
1801 long offset;
1802
1803 if (raw_smp_processor_id() != kdb_initial_cpu) {
1804 kdb_printf("go must execute on the entry cpu, "
1805 "please use \"cpu %d\" and then execute go\n",
1806 kdb_initial_cpu);
1807 return KDB_BADCPUNUM;
1808 }
1809 if (argc == 1) {
1810 nextarg = 1;
1811 diag = kdbgetaddrarg(argc, argv, &nextarg,
1812 &addr, &offset, NULL);
1813 if (diag)
1814 return diag;
1815 } else if (argc) {
1816 return KDB_ARGCOUNT;
1817 }
1818
1819 diag = KDB_CMD_GO;
1820 if (KDB_FLAG(CATASTROPHIC)) {
1821 kdb_printf("Catastrophic error detected\n");
1822 kdb_printf("kdb_continue_catastrophic=%d, ",
1823 kdb_continue_catastrophic);
1824 if (kdb_continue_catastrophic == 0 && kdb_go_count++ == 0) {
1825 kdb_printf("type go a second time if you really want "
1826 "to continue\n");
1827 return 0;
1828 }
1829 if (kdb_continue_catastrophic == 2) {
1830 kdb_printf("forcing reboot\n");
1831 kdb_reboot(0, NULL);
1832 }
1833 kdb_printf("attempting to continue\n");
1834 }
1835 return diag;
1836}
1837
1838/*
1839 * kdb_rd - This function implements the 'rd' command.
1840 */
1841static int kdb_rd(int argc, const char **argv)
1842{
1843 int len = kdb_check_regs();
1844#if DBG_MAX_REG_NUM > 0
1845 int i;
1846 char *rname;
1847 int rsize;
1848 u64 reg64;
1849 u32 reg32;
1850 u16 reg16;
1851 u8 reg8;
1852
1853 if (len)
1854 return len;
1855
1856 for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1857 rsize = dbg_reg_def[i].size * 2;
1858 if (rsize > 16)
1859 rsize = 2;
1860 if (len + strlen(dbg_reg_def[i].name) + 4 + rsize > 80) {
1861 len = 0;
1862 kdb_printf("\n");
1863 }
1864 if (len)
1865 len += kdb_printf(" ");
1866 switch(dbg_reg_def[i].size * 8) {
1867 case 8:
1868 rname = dbg_get_reg(i, ®8, kdb_current_regs);
1869 if (!rname)
1870 break;
1871 len += kdb_printf("%s: %02x", rname, reg8);
1872 break;
1873 case 16:
1874 rname = dbg_get_reg(i, ®16, kdb_current_regs);
1875 if (!rname)
1876 break;
1877 len += kdb_printf("%s: %04x", rname, reg16);
1878 break;
1879 case 32:
1880 rname = dbg_get_reg(i, ®32, kdb_current_regs);
1881 if (!rname)
1882 break;
1883 len += kdb_printf("%s: %08x", rname, reg32);
1884 break;
1885 case 64:
1886 rname = dbg_get_reg(i, ®64, kdb_current_regs);
1887 if (!rname)
1888 break;
1889 len += kdb_printf("%s: %016llx", rname, reg64);
1890 break;
1891 default:
1892 len += kdb_printf("%s: ??", dbg_reg_def[i].name);
1893 }
1894 }
1895 kdb_printf("\n");
1896#else
1897 if (len)
1898 return len;
1899
1900 kdb_dumpregs(kdb_current_regs);
1901#endif
1902 return 0;
1903}
1904
1905/*
1906 * kdb_rm - This function implements the 'rm' (register modify) command.
1907 * rm register-name new-contents
1908 * Remarks:
1909 * Allows register modification with the same restrictions as gdb
1910 */
1911static int kdb_rm(int argc, const char **argv)
1912{
1913#if DBG_MAX_REG_NUM > 0
1914 int diag;
1915 const char *rname;
1916 int i;
1917 u64 reg64;
1918 u32 reg32;
1919 u16 reg16;
1920 u8 reg8;
1921
1922 if (argc != 2)
1923 return KDB_ARGCOUNT;
1924 /*
1925 * Allow presence or absence of leading '%' symbol.
1926 */
1927 rname = argv[1];
1928 if (*rname == '%')
1929 rname++;
1930
1931 diag = kdbgetu64arg(argv[2], ®64);
1932 if (diag)
1933 return diag;
1934
1935 diag = kdb_check_regs();
1936 if (diag)
1937 return diag;
1938
1939 diag = KDB_BADREG;
1940 for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1941 if (strcmp(rname, dbg_reg_def[i].name) == 0) {
1942 diag = 0;
1943 break;
1944 }
1945 }
1946 if (!diag) {
1947 switch(dbg_reg_def[i].size * 8) {
1948 case 8:
1949 reg8 = reg64;
1950 dbg_set_reg(i, ®8, kdb_current_regs);
1951 break;
1952 case 16:
1953 reg16 = reg64;
1954 dbg_set_reg(i, ®16, kdb_current_regs);
1955 break;
1956 case 32:
1957 reg32 = reg64;
1958 dbg_set_reg(i, ®32, kdb_current_regs);
1959 break;
1960 case 64:
1961 dbg_set_reg(i, ®64, kdb_current_regs);
1962 break;
1963 }
1964 }
1965 return diag;
1966#else
1967 kdb_printf("ERROR: Register set currently not implemented\n");
1968 return 0;
1969#endif
1970}
1971
1972#if defined(CONFIG_MAGIC_SYSRQ)
1973/*
1974 * kdb_sr - This function implements the 'sr' (SYSRQ key) command
1975 * which interfaces to the soi-disant MAGIC SYSRQ functionality.
1976 * sr <magic-sysrq-code>
1977 */
1978static int kdb_sr(int argc, const char **argv)
1979{
1980 bool check_mask =
1981 !kdb_check_flags(KDB_ENABLE_ALL, kdb_cmd_enabled, false);
1982
1983 if (argc != 1)
1984 return KDB_ARGCOUNT;
1985
1986 kdb_trap_printk++;
1987 __handle_sysrq(*argv[1], check_mask);
1988 kdb_trap_printk--;
1989
1990 return 0;
1991}
1992#endif /* CONFIG_MAGIC_SYSRQ */
1993
1994/*
1995 * kdb_ef - This function implements the 'regs' (display exception
1996 * frame) command. This command takes an address and expects to
1997 * find an exception frame at that address, formats and prints
1998 * it.
1999 * regs address-expression
2000 * Remarks:
2001 * Not done yet.
2002 */
2003static int kdb_ef(int argc, const char **argv)
2004{
2005 int diag;
2006 unsigned long addr;
2007 long offset;
2008 int nextarg;
2009
2010 if (argc != 1)
2011 return KDB_ARGCOUNT;
2012
2013 nextarg = 1;
2014 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
2015 if (diag)
2016 return diag;
2017 show_regs((struct pt_regs *)addr);
2018 return 0;
2019}
2020
2021#if defined(CONFIG_MODULES)
2022/*
2023 * kdb_lsmod - This function implements the 'lsmod' command. Lists
2024 * currently loaded kernel modules.
2025 * Mostly taken from userland lsmod.
2026 */
2027static int kdb_lsmod(int argc, const char **argv)
2028{
2029 struct module *mod;
2030
2031 if (argc != 0)
2032 return KDB_ARGCOUNT;
2033
2034 kdb_printf("Module Size modstruct Used by\n");
2035 list_for_each_entry(mod, kdb_modules, list) {
2036 if (mod->state == MODULE_STATE_UNFORMED)
2037 continue;
2038
2039 kdb_printf("%-20s%8u 0x%px ", mod->name,
2040 mod->core_layout.size, (void *)mod);
2041#ifdef CONFIG_MODULE_UNLOAD
2042 kdb_printf("%4d ", module_refcount(mod));
2043#endif
2044 if (mod->state == MODULE_STATE_GOING)
2045 kdb_printf(" (Unloading)");
2046 else if (mod->state == MODULE_STATE_COMING)
2047 kdb_printf(" (Loading)");
2048 else
2049 kdb_printf(" (Live)");
2050 kdb_printf(" 0x%px", mod->core_layout.base);
2051
2052#ifdef CONFIG_MODULE_UNLOAD
2053 {
2054 struct module_use *use;
2055 kdb_printf(" [ ");
2056 list_for_each_entry(use, &mod->source_list,
2057 source_list)
2058 kdb_printf("%s ", use->target->name);
2059 kdb_printf("]\n");
2060 }
2061#endif
2062 }
2063
2064 return 0;
2065}
2066
2067#endif /* CONFIG_MODULES */
2068
2069/*
2070 * kdb_env - This function implements the 'env' command. Display the
2071 * current environment variables.
2072 */
2073
2074static int kdb_env(int argc, const char **argv)
2075{
2076 int i;
2077
2078 for (i = 0; i < __nenv; i++) {
2079 if (__env[i])
2080 kdb_printf("%s\n", __env[i]);
2081 }
2082
2083 if (KDB_DEBUG(MASK))
2084 kdb_printf("KDBDEBUG=0x%x\n",
2085 (kdb_flags & KDB_DEBUG(MASK)) >> KDB_DEBUG_FLAG_SHIFT);
2086
2087 return 0;
2088}
2089
2090#ifdef CONFIG_PRINTK
2091/*
2092 * kdb_dmesg - This function implements the 'dmesg' command to display
2093 * the contents of the syslog buffer.
2094 * dmesg [lines] [adjust]
2095 */
2096static int kdb_dmesg(int argc, const char **argv)
2097{
2098 int diag;
2099 int logging;
2100 int lines = 0;
2101 int adjust = 0;
2102 int n = 0;
2103 int skip = 0;
2104 struct kmsg_dumper dumper = { .active = 1 };
2105 size_t len;
2106 char buf[201];
2107
2108 if (argc > 2)
2109 return KDB_ARGCOUNT;
2110 if (argc) {
2111 char *cp;
2112 lines = simple_strtol(argv[1], &cp, 0);
2113 if (*cp)
2114 lines = 0;
2115 if (argc > 1) {
2116 adjust = simple_strtoul(argv[2], &cp, 0);
2117 if (*cp || adjust < 0)
2118 adjust = 0;
2119 }
2120 }
2121
2122 /* disable LOGGING if set */
2123 diag = kdbgetintenv("LOGGING", &logging);
2124 if (!diag && logging) {
2125 const char *setargs[] = { "set", "LOGGING", "0" };
2126 kdb_set(2, setargs);
2127 }
2128
2129 kmsg_dump_rewind_nolock(&dumper);
2130 while (kmsg_dump_get_line_nolock(&dumper, 1, NULL, 0, NULL))
2131 n++;
2132
2133 if (lines < 0) {
2134 if (adjust >= n)
2135 kdb_printf("buffer only contains %d lines, nothing "
2136 "printed\n", n);
2137 else if (adjust - lines >= n)
2138 kdb_printf("buffer only contains %d lines, last %d "
2139 "lines printed\n", n, n - adjust);
2140 skip = adjust;
2141 lines = abs(lines);
2142 } else if (lines > 0) {
2143 skip = n - lines - adjust;
2144 lines = abs(lines);
2145 if (adjust >= n) {
2146 kdb_printf("buffer only contains %d lines, "
2147 "nothing printed\n", n);
2148 skip = n;
2149 } else if (skip < 0) {
2150 lines += skip;
2151 skip = 0;
2152 kdb_printf("buffer only contains %d lines, first "
2153 "%d lines printed\n", n, lines);
2154 }
2155 } else {
2156 lines = n;
2157 }
2158
2159 if (skip >= n || skip < 0)
2160 return 0;
2161
2162 kmsg_dump_rewind_nolock(&dumper);
2163 while (kmsg_dump_get_line_nolock(&dumper, 1, buf, sizeof(buf), &len)) {
2164 if (skip) {
2165 skip--;
2166 continue;
2167 }
2168 if (!lines--)
2169 break;
2170 if (KDB_FLAG(CMD_INTERRUPT))
2171 return 0;
2172
2173 kdb_printf("%.*s\n", (int)len - 1, buf);
2174 }
2175
2176 return 0;
2177}
2178#endif /* CONFIG_PRINTK */
2179
2180/* Make sure we balance enable/disable calls, must disable first. */
2181static atomic_t kdb_nmi_disabled;
2182
2183static int kdb_disable_nmi(int argc, const char *argv[])
2184{
2185 if (atomic_read(&kdb_nmi_disabled))
2186 return 0;
2187 atomic_set(&kdb_nmi_disabled, 1);
2188 arch_kgdb_ops.enable_nmi(0);
2189 return 0;
2190}
2191
2192static int kdb_param_enable_nmi(const char *val, const struct kernel_param *kp)
2193{
2194 if (!atomic_add_unless(&kdb_nmi_disabled, -1, 0))
2195 return -EINVAL;
2196 arch_kgdb_ops.enable_nmi(1);
2197 return 0;
2198}
2199
2200static const struct kernel_param_ops kdb_param_ops_enable_nmi = {
2201 .set = kdb_param_enable_nmi,
2202};
2203module_param_cb(enable_nmi, &kdb_param_ops_enable_nmi, NULL, 0600);
2204
2205/*
2206 * kdb_cpu - This function implements the 'cpu' command.
2207 * cpu [<cpunum>]
2208 * Returns:
2209 * KDB_CMD_CPU for success, a kdb diagnostic if error
2210 */
2211static void kdb_cpu_status(void)
2212{
2213 int i, start_cpu, first_print = 1;
2214 char state, prev_state = '?';
2215
2216 kdb_printf("Currently on cpu %d\n", raw_smp_processor_id());
2217 kdb_printf("Available cpus: ");
2218 for (start_cpu = -1, i = 0; i < NR_CPUS; i++) {
2219 if (!cpu_online(i)) {
2220 state = 'F'; /* cpu is offline */
2221 } else if (!kgdb_info[i].enter_kgdb) {
2222 state = 'D'; /* cpu is online but unresponsive */
2223 } else {
2224 state = ' '; /* cpu is responding to kdb */
2225 if (kdb_task_state_char(KDB_TSK(i)) == 'I')
2226 state = 'I'; /* idle task */
2227 }
2228 if (state != prev_state) {
2229 if (prev_state != '?') {
2230 if (!first_print)
2231 kdb_printf(", ");
2232 first_print = 0;
2233 kdb_printf("%d", start_cpu);
2234 if (start_cpu < i-1)
2235 kdb_printf("-%d", i-1);
2236 if (prev_state != ' ')
2237 kdb_printf("(%c)", prev_state);
2238 }
2239 prev_state = state;
2240 start_cpu = i;
2241 }
2242 }
2243 /* print the trailing cpus, ignoring them if they are all offline */
2244 if (prev_state != 'F') {
2245 if (!first_print)
2246 kdb_printf(", ");
2247 kdb_printf("%d", start_cpu);
2248 if (start_cpu < i-1)
2249 kdb_printf("-%d", i-1);
2250 if (prev_state != ' ')
2251 kdb_printf("(%c)", prev_state);
2252 }
2253 kdb_printf("\n");
2254}
2255
2256static int kdb_cpu(int argc, const char **argv)
2257{
2258 unsigned long cpunum;
2259 int diag;
2260
2261 if (argc == 0) {
2262 kdb_cpu_status();
2263 return 0;
2264 }
2265
2266 if (argc != 1)
2267 return KDB_ARGCOUNT;
2268
2269 diag = kdbgetularg(argv[1], &cpunum);
2270 if (diag)
2271 return diag;
2272
2273 /*
2274 * Validate cpunum
2275 */
2276 if ((cpunum >= CONFIG_NR_CPUS) || !kgdb_info[cpunum].enter_kgdb)
2277 return KDB_BADCPUNUM;
2278
2279 dbg_switch_cpu = cpunum;
2280
2281 /*
2282 * Switch to other cpu
2283 */
2284 return KDB_CMD_CPU;
2285}
2286
2287/* The user may not realize that ps/bta with no parameters does not print idle
2288 * or sleeping system daemon processes, so tell them how many were suppressed.
2289 */
2290void kdb_ps_suppressed(void)
2291{
2292 int idle = 0, daemon = 0;
2293 unsigned long mask_I = kdb_task_state_string("I"),
2294 mask_M = kdb_task_state_string("M");
2295 unsigned long cpu;
2296 const struct task_struct *p, *g;
2297 for_each_online_cpu(cpu) {
2298 p = kdb_curr_task(cpu);
2299 if (kdb_task_state(p, mask_I))
2300 ++idle;
2301 }
2302 kdb_do_each_thread(g, p) {
2303 if (kdb_task_state(p, mask_M))
2304 ++daemon;
2305 } kdb_while_each_thread(g, p);
2306 if (idle || daemon) {
2307 if (idle)
2308 kdb_printf("%d idle process%s (state I)%s\n",
2309 idle, idle == 1 ? "" : "es",
2310 daemon ? " and " : "");
2311 if (daemon)
2312 kdb_printf("%d sleeping system daemon (state M) "
2313 "process%s", daemon,
2314 daemon == 1 ? "" : "es");
2315 kdb_printf(" suppressed,\nuse 'ps A' to see all.\n");
2316 }
2317}
2318
2319/*
2320 * kdb_ps - This function implements the 'ps' command which shows a
2321 * list of the active processes.
2322 * ps [DRSTCZEUIMA] All processes, optionally filtered by state
2323 */
2324void kdb_ps1(const struct task_struct *p)
2325{
2326 int cpu;
2327 unsigned long tmp;
2328
2329 if (!p ||
2330 copy_from_kernel_nofault(&tmp, (char *)p, sizeof(unsigned long)))
2331 return;
2332
2333 cpu = kdb_process_cpu(p);
2334 kdb_printf("0x%px %8d %8d %d %4d %c 0x%px %c%s\n",
2335 (void *)p, p->pid, p->parent->pid,
2336 kdb_task_has_cpu(p), kdb_process_cpu(p),
2337 kdb_task_state_char(p),
2338 (void *)(&p->thread),
2339 p == kdb_curr_task(raw_smp_processor_id()) ? '*' : ' ',
2340 p->comm);
2341 if (kdb_task_has_cpu(p)) {
2342 if (!KDB_TSK(cpu)) {
2343 kdb_printf(" Error: no saved data for this cpu\n");
2344 } else {
2345 if (KDB_TSK(cpu) != p)
2346 kdb_printf(" Error: does not match running "
2347 "process table (0x%px)\n", KDB_TSK(cpu));
2348 }
2349 }
2350}
2351
2352static int kdb_ps(int argc, const char **argv)
2353{
2354 struct task_struct *g, *p;
2355 unsigned long mask, cpu;
2356
2357 if (argc == 0)
2358 kdb_ps_suppressed();
2359 kdb_printf("%-*s Pid Parent [*] cpu State %-*s Command\n",
2360 (int)(2*sizeof(void *))+2, "Task Addr",
2361 (int)(2*sizeof(void *))+2, "Thread");
2362 mask = kdb_task_state_string(argc ? argv[1] : NULL);
2363 /* Run the active tasks first */
2364 for_each_online_cpu(cpu) {
2365 if (KDB_FLAG(CMD_INTERRUPT))
2366 return 0;
2367 p = kdb_curr_task(cpu);
2368 if (kdb_task_state(p, mask))
2369 kdb_ps1(p);
2370 }
2371 kdb_printf("\n");
2372 /* Now the real tasks */
2373 kdb_do_each_thread(g, p) {
2374 if (KDB_FLAG(CMD_INTERRUPT))
2375 return 0;
2376 if (kdb_task_state(p, mask))
2377 kdb_ps1(p);
2378 } kdb_while_each_thread(g, p);
2379
2380 return 0;
2381}
2382
2383/*
2384 * kdb_pid - This function implements the 'pid' command which switches
2385 * the currently active process.
2386 * pid [<pid> | R]
2387 */
2388static int kdb_pid(int argc, const char **argv)
2389{
2390 struct task_struct *p;
2391 unsigned long val;
2392 int diag;
2393
2394 if (argc > 1)
2395 return KDB_ARGCOUNT;
2396
2397 if (argc) {
2398 if (strcmp(argv[1], "R") == 0) {
2399 p = KDB_TSK(kdb_initial_cpu);
2400 } else {
2401 diag = kdbgetularg(argv[1], &val);
2402 if (diag)
2403 return KDB_BADINT;
2404
2405 p = find_task_by_pid_ns((pid_t)val, &init_pid_ns);
2406 if (!p) {
2407 kdb_printf("No task with pid=%d\n", (pid_t)val);
2408 return 0;
2409 }
2410 }
2411 kdb_set_current_task(p);
2412 }
2413 kdb_printf("KDB current process is %s(pid=%d)\n",
2414 kdb_current_task->comm,
2415 kdb_current_task->pid);
2416
2417 return 0;
2418}
2419
2420static int kdb_kgdb(int argc, const char **argv)
2421{
2422 return KDB_CMD_KGDB;
2423}
2424
2425/*
2426 * kdb_help - This function implements the 'help' and '?' commands.
2427 */
2428static int kdb_help(int argc, const char **argv)
2429{
2430 kdbtab_t *kt;
2431 int i;
2432
2433 kdb_printf("%-15.15s %-20.20s %s\n", "Command", "Usage", "Description");
2434 kdb_printf("-----------------------------"
2435 "-----------------------------\n");
2436 for_each_kdbcmd(kt, i) {
2437 char *space = "";
2438 if (KDB_FLAG(CMD_INTERRUPT))
2439 return 0;
2440 if (!kt->cmd_name)
2441 continue;
2442 if (!kdb_check_flags(kt->cmd_flags, kdb_cmd_enabled, true))
2443 continue;
2444 if (strlen(kt->cmd_usage) > 20)
2445 space = "\n ";
2446 kdb_printf("%-15.15s %-20s%s%s\n", kt->cmd_name,
2447 kt->cmd_usage, space, kt->cmd_help);
2448 }
2449 return 0;
2450}
2451
2452/*
2453 * kdb_kill - This function implements the 'kill' commands.
2454 */
2455static int kdb_kill(int argc, const char **argv)
2456{
2457 long sig, pid;
2458 char *endp;
2459 struct task_struct *p;
2460
2461 if (argc != 2)
2462 return KDB_ARGCOUNT;
2463
2464 sig = simple_strtol(argv[1], &endp, 0);
2465 if (*endp)
2466 return KDB_BADINT;
2467 if ((sig >= 0) || !valid_signal(-sig)) {
2468 kdb_printf("Invalid signal parameter.<-signal>\n");
2469 return 0;
2470 }
2471 sig = -sig;
2472
2473 pid = simple_strtol(argv[2], &endp, 0);
2474 if (*endp)
2475 return KDB_BADINT;
2476 if (pid <= 0) {
2477 kdb_printf("Process ID must be large than 0.\n");
2478 return 0;
2479 }
2480
2481 /* Find the process. */
2482 p = find_task_by_pid_ns(pid, &init_pid_ns);
2483 if (!p) {
2484 kdb_printf("The specified process isn't found.\n");
2485 return 0;
2486 }
2487 p = p->group_leader;
2488 kdb_send_sig(p, sig);
2489 return 0;
2490}
2491
2492/*
2493 * Most of this code has been lifted from kernel/timer.c::sys_sysinfo().
2494 * I cannot call that code directly from kdb, it has an unconditional
2495 * cli()/sti() and calls routines that take locks which can stop the debugger.
2496 */
2497static void kdb_sysinfo(struct sysinfo *val)
2498{
2499 u64 uptime = ktime_get_mono_fast_ns();
2500
2501 memset(val, 0, sizeof(*val));
2502 val->uptime = div_u64(uptime, NSEC_PER_SEC);
2503 val->loads[0] = avenrun[0];
2504 val->loads[1] = avenrun[1];
2505 val->loads[2] = avenrun[2];
2506 val->procs = nr_threads-1;
2507 si_meminfo(val);
2508
2509 return;
2510}
2511
2512/*
2513 * kdb_summary - This function implements the 'summary' command.
2514 */
2515static int kdb_summary(int argc, const char **argv)
2516{
2517 time64_t now;
2518 struct tm tm;
2519 struct sysinfo val;
2520
2521 if (argc)
2522 return KDB_ARGCOUNT;
2523
2524 kdb_printf("sysname %s\n", init_uts_ns.name.sysname);
2525 kdb_printf("release %s\n", init_uts_ns.name.release);
2526 kdb_printf("version %s\n", init_uts_ns.name.version);
2527 kdb_printf("machine %s\n", init_uts_ns.name.machine);
2528 kdb_printf("nodename %s\n", init_uts_ns.name.nodename);
2529 kdb_printf("domainname %s\n", init_uts_ns.name.domainname);
2530
2531 now = __ktime_get_real_seconds();
2532 time64_to_tm(now, 0, &tm);
2533 kdb_printf("date %04ld-%02d-%02d %02d:%02d:%02d "
2534 "tz_minuteswest %d\n",
2535 1900+tm.tm_year, tm.tm_mon+1, tm.tm_mday,
2536 tm.tm_hour, tm.tm_min, tm.tm_sec,
2537 sys_tz.tz_minuteswest);
2538
2539 kdb_sysinfo(&val);
2540 kdb_printf("uptime ");
2541 if (val.uptime > (24*60*60)) {
2542 int days = val.uptime / (24*60*60);
2543 val.uptime %= (24*60*60);
2544 kdb_printf("%d day%s ", days, days == 1 ? "" : "s");
2545 }
2546 kdb_printf("%02ld:%02ld\n", val.uptime/(60*60), (val.uptime/60)%60);
2547
2548 kdb_printf("load avg %ld.%02ld %ld.%02ld %ld.%02ld\n",
2549 LOAD_INT(val.loads[0]), LOAD_FRAC(val.loads[0]),
2550 LOAD_INT(val.loads[1]), LOAD_FRAC(val.loads[1]),
2551 LOAD_INT(val.loads[2]), LOAD_FRAC(val.loads[2]));
2552
2553 /* Display in kilobytes */
2554#define K(x) ((x) << (PAGE_SHIFT - 10))
2555 kdb_printf("\nMemTotal: %8lu kB\nMemFree: %8lu kB\n"
2556 "Buffers: %8lu kB\n",
2557 K(val.totalram), K(val.freeram), K(val.bufferram));
2558 return 0;
2559}
2560
2561/*
2562 * kdb_per_cpu - This function implements the 'per_cpu' command.
2563 */
2564static int kdb_per_cpu(int argc, const char **argv)
2565{
2566 char fmtstr[64];
2567 int cpu, diag, nextarg = 1;
2568 unsigned long addr, symaddr, val, bytesperword = 0, whichcpu = ~0UL;
2569
2570 if (argc < 1 || argc > 3)
2571 return KDB_ARGCOUNT;
2572
2573 diag = kdbgetaddrarg(argc, argv, &nextarg, &symaddr, NULL, NULL);
2574 if (diag)
2575 return diag;
2576
2577 if (argc >= 2) {
2578 diag = kdbgetularg(argv[2], &bytesperword);
2579 if (diag)
2580 return diag;
2581 }
2582 if (!bytesperword)
2583 bytesperword = KDB_WORD_SIZE;
2584 else if (bytesperword > KDB_WORD_SIZE)
2585 return KDB_BADWIDTH;
2586 sprintf(fmtstr, "%%0%dlx ", (int)(2*bytesperword));
2587 if (argc >= 3) {
2588 diag = kdbgetularg(argv[3], &whichcpu);
2589 if (diag)
2590 return diag;
2591 if (whichcpu >= nr_cpu_ids || !cpu_online(whichcpu)) {
2592 kdb_printf("cpu %ld is not online\n", whichcpu);
2593 return KDB_BADCPUNUM;
2594 }
2595 }
2596
2597 /* Most architectures use __per_cpu_offset[cpu], some use
2598 * __per_cpu_offset(cpu), smp has no __per_cpu_offset.
2599 */
2600#ifdef __per_cpu_offset
2601#define KDB_PCU(cpu) __per_cpu_offset(cpu)
2602#else
2603#ifdef CONFIG_SMP
2604#define KDB_PCU(cpu) __per_cpu_offset[cpu]
2605#else
2606#define KDB_PCU(cpu) 0
2607#endif
2608#endif
2609 for_each_online_cpu(cpu) {
2610 if (KDB_FLAG(CMD_INTERRUPT))
2611 return 0;
2612
2613 if (whichcpu != ~0UL && whichcpu != cpu)
2614 continue;
2615 addr = symaddr + KDB_PCU(cpu);
2616 diag = kdb_getword(&val, addr, bytesperword);
2617 if (diag) {
2618 kdb_printf("%5d " kdb_bfd_vma_fmt0 " - unable to "
2619 "read, diag=%d\n", cpu, addr, diag);
2620 continue;
2621 }
2622 kdb_printf("%5d ", cpu);
2623 kdb_md_line(fmtstr, addr,
2624 bytesperword == KDB_WORD_SIZE,
2625 1, bytesperword, 1, 1, 0);
2626 }
2627#undef KDB_PCU
2628 return 0;
2629}
2630
2631/*
2632 * display help for the use of cmd | grep pattern
2633 */
2634static int kdb_grep_help(int argc, const char **argv)
2635{
2636 kdb_printf("Usage of cmd args | grep pattern:\n");
2637 kdb_printf(" Any command's output may be filtered through an ");
2638 kdb_printf("emulated 'pipe'.\n");
2639 kdb_printf(" 'grep' is just a key word.\n");
2640 kdb_printf(" The pattern may include a very limited set of "
2641 "metacharacters:\n");
2642 kdb_printf(" pattern or ^pattern or pattern$ or ^pattern$\n");
2643 kdb_printf(" And if there are spaces in the pattern, you may "
2644 "quote it:\n");
2645 kdb_printf(" \"pat tern\" or \"^pat tern\" or \"pat tern$\""
2646 " or \"^pat tern$\"\n");
2647 return 0;
2648}
2649
2650/*
2651 * kdb_register_flags - This function is used to register a kernel
2652 * debugger command.
2653 * Inputs:
2654 * cmd Command name
2655 * func Function to execute the command
2656 * usage A simple usage string showing arguments
2657 * help A simple help string describing command
2658 * repeat Does the command auto repeat on enter?
2659 * Returns:
2660 * zero for success, one if a duplicate command.
2661 */
2662#define kdb_command_extend 50 /* arbitrary */
2663int kdb_register_flags(char *cmd,
2664 kdb_func_t func,
2665 char *usage,
2666 char *help,
2667 short minlen,
2668 kdb_cmdflags_t flags)
2669{
2670 int i;
2671 kdbtab_t *kp;
2672
2673 /*
2674 * Brute force method to determine duplicates
2675 */
2676 for_each_kdbcmd(kp, i) {
2677 if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) {
2678 kdb_printf("Duplicate kdb command registered: "
2679 "%s, func %px help %s\n", cmd, func, help);
2680 return 1;
2681 }
2682 }
2683
2684 /*
2685 * Insert command into first available location in table
2686 */
2687 for_each_kdbcmd(kp, i) {
2688 if (kp->cmd_name == NULL)
2689 break;
2690 }
2691
2692 if (i >= kdb_max_commands) {
2693 kdbtab_t *new = kmalloc_array(kdb_max_commands -
2694 KDB_BASE_CMD_MAX +
2695 kdb_command_extend,
2696 sizeof(*new),
2697 GFP_KDB);
2698 if (!new) {
2699 kdb_printf("Could not allocate new kdb_command "
2700 "table\n");
2701 return 1;
2702 }
2703 if (kdb_commands) {
2704 memcpy(new, kdb_commands,
2705 (kdb_max_commands - KDB_BASE_CMD_MAX) * sizeof(*new));
2706 kfree(kdb_commands);
2707 }
2708 memset(new + kdb_max_commands - KDB_BASE_CMD_MAX, 0,
2709 kdb_command_extend * sizeof(*new));
2710 kdb_commands = new;
2711 kp = kdb_commands + kdb_max_commands - KDB_BASE_CMD_MAX;
2712 kdb_max_commands += kdb_command_extend;
2713 }
2714
2715 kp->cmd_name = cmd;
2716 kp->cmd_func = func;
2717 kp->cmd_usage = usage;
2718 kp->cmd_help = help;
2719 kp->cmd_minlen = minlen;
2720 kp->cmd_flags = flags;
2721
2722 return 0;
2723}
2724EXPORT_SYMBOL_GPL(kdb_register_flags);
2725
2726
2727/*
2728 * kdb_register - Compatibility register function for commands that do
2729 * not need to specify a repeat state. Equivalent to
2730 * kdb_register_flags with flags set to 0.
2731 * Inputs:
2732 * cmd Command name
2733 * func Function to execute the command
2734 * usage A simple usage string showing arguments
2735 * help A simple help string describing command
2736 * Returns:
2737 * zero for success, one if a duplicate command.
2738 */
2739int kdb_register(char *cmd,
2740 kdb_func_t func,
2741 char *usage,
2742 char *help,
2743 short minlen)
2744{
2745 return kdb_register_flags(cmd, func, usage, help, minlen, 0);
2746}
2747EXPORT_SYMBOL_GPL(kdb_register);
2748
2749/*
2750 * kdb_unregister - This function is used to unregister a kernel
2751 * debugger command. It is generally called when a module which
2752 * implements kdb commands is unloaded.
2753 * Inputs:
2754 * cmd Command name
2755 * Returns:
2756 * zero for success, one command not registered.
2757 */
2758int kdb_unregister(char *cmd)
2759{
2760 int i;
2761 kdbtab_t *kp;
2762
2763 /*
2764 * find the command.
2765 */
2766 for_each_kdbcmd(kp, i) {
2767 if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) {
2768 kp->cmd_name = NULL;
2769 return 0;
2770 }
2771 }
2772
2773 /* Couldn't find it. */
2774 return 1;
2775}
2776EXPORT_SYMBOL_GPL(kdb_unregister);
2777
2778/* Initialize the kdb command table. */
2779static void __init kdb_inittab(void)
2780{
2781 int i;
2782 kdbtab_t *kp;
2783
2784 for_each_kdbcmd(kp, i)
2785 kp->cmd_name = NULL;
2786
2787 kdb_register_flags("md", kdb_md, "<vaddr>",
2788 "Display Memory Contents, also mdWcN, e.g. md8c1", 1,
2789 KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS);
2790 kdb_register_flags("mdr", kdb_md, "<vaddr> <bytes>",
2791 "Display Raw Memory", 0,
2792 KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS);
2793 kdb_register_flags("mdp", kdb_md, "<paddr> <bytes>",
2794 "Display Physical Memory", 0,
2795 KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS);
2796 kdb_register_flags("mds", kdb_md, "<vaddr>",
2797 "Display Memory Symbolically", 0,
2798 KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS);
2799 kdb_register_flags("mm", kdb_mm, "<vaddr> <contents>",
2800 "Modify Memory Contents", 0,
2801 KDB_ENABLE_MEM_WRITE | KDB_REPEAT_NO_ARGS);
2802 kdb_register_flags("go", kdb_go, "[<vaddr>]",
2803 "Continue Execution", 1,
2804 KDB_ENABLE_REG_WRITE | KDB_ENABLE_ALWAYS_SAFE_NO_ARGS);
2805 kdb_register_flags("rd", kdb_rd, "",
2806 "Display Registers", 0,
2807 KDB_ENABLE_REG_READ);
2808 kdb_register_flags("rm", kdb_rm, "<reg> <contents>",
2809 "Modify Registers", 0,
2810 KDB_ENABLE_REG_WRITE);
2811 kdb_register_flags("ef", kdb_ef, "<vaddr>",
2812 "Display exception frame", 0,
2813 KDB_ENABLE_MEM_READ);
2814 kdb_register_flags("bt", kdb_bt, "[<vaddr>]",
2815 "Stack traceback", 1,
2816 KDB_ENABLE_MEM_READ | KDB_ENABLE_INSPECT_NO_ARGS);
2817 kdb_register_flags("btp", kdb_bt, "<pid>",
2818 "Display stack for process <pid>", 0,
2819 KDB_ENABLE_INSPECT);
2820 kdb_register_flags("bta", kdb_bt, "[D|R|S|T|C|Z|E|U|I|M|A]",
2821 "Backtrace all processes matching state flag", 0,
2822 KDB_ENABLE_INSPECT);
2823 kdb_register_flags("btc", kdb_bt, "",
2824 "Backtrace current process on each cpu", 0,
2825 KDB_ENABLE_INSPECT);
2826 kdb_register_flags("btt", kdb_bt, "<vaddr>",
2827 "Backtrace process given its struct task address", 0,
2828 KDB_ENABLE_MEM_READ | KDB_ENABLE_INSPECT_NO_ARGS);
2829 kdb_register_flags("env", kdb_env, "",
2830 "Show environment variables", 0,
2831 KDB_ENABLE_ALWAYS_SAFE);
2832 kdb_register_flags("set", kdb_set, "",
2833 "Set environment variables", 0,
2834 KDB_ENABLE_ALWAYS_SAFE);
2835 kdb_register_flags("help", kdb_help, "",
2836 "Display Help Message", 1,
2837 KDB_ENABLE_ALWAYS_SAFE);
2838 kdb_register_flags("?", kdb_help, "",
2839 "Display Help Message", 0,
2840 KDB_ENABLE_ALWAYS_SAFE);
2841 kdb_register_flags("cpu", kdb_cpu, "<cpunum>",
2842 "Switch to new cpu", 0,
2843 KDB_ENABLE_ALWAYS_SAFE_NO_ARGS);
2844 kdb_register_flags("kgdb", kdb_kgdb, "",
2845 "Enter kgdb mode", 0, 0);
2846 kdb_register_flags("ps", kdb_ps, "[<flags>|A]",
2847 "Display active task list", 0,
2848 KDB_ENABLE_INSPECT);
2849 kdb_register_flags("pid", kdb_pid, "<pidnum>",
2850 "Switch to another task", 0,
2851 KDB_ENABLE_INSPECT);
2852 kdb_register_flags("reboot", kdb_reboot, "",
2853 "Reboot the machine immediately", 0,
2854 KDB_ENABLE_REBOOT);
2855#if defined(CONFIG_MODULES)
2856 kdb_register_flags("lsmod", kdb_lsmod, "",
2857 "List loaded kernel modules", 0,
2858 KDB_ENABLE_INSPECT);
2859#endif
2860#if defined(CONFIG_MAGIC_SYSRQ)
2861 kdb_register_flags("sr", kdb_sr, "<key>",
2862 "Magic SysRq key", 0,
2863 KDB_ENABLE_ALWAYS_SAFE);
2864#endif
2865#if defined(CONFIG_PRINTK)
2866 kdb_register_flags("dmesg", kdb_dmesg, "[lines]",
2867 "Display syslog buffer", 0,
2868 KDB_ENABLE_ALWAYS_SAFE);
2869#endif
2870 if (arch_kgdb_ops.enable_nmi) {
2871 kdb_register_flags("disable_nmi", kdb_disable_nmi, "",
2872 "Disable NMI entry to KDB", 0,
2873 KDB_ENABLE_ALWAYS_SAFE);
2874 }
2875 kdb_register_flags("defcmd", kdb_defcmd, "name \"usage\" \"help\"",
2876 "Define a set of commands, down to endefcmd", 0,
2877 KDB_ENABLE_ALWAYS_SAFE);
2878 kdb_register_flags("kill", kdb_kill, "<-signal> <pid>",
2879 "Send a signal to a process", 0,
2880 KDB_ENABLE_SIGNAL);
2881 kdb_register_flags("summary", kdb_summary, "",
2882 "Summarize the system", 4,
2883 KDB_ENABLE_ALWAYS_SAFE);
2884 kdb_register_flags("per_cpu", kdb_per_cpu, "<sym> [<bytes>] [<cpu>]",
2885 "Display per_cpu variables", 3,
2886 KDB_ENABLE_MEM_READ);
2887 kdb_register_flags("grephelp", kdb_grep_help, "",
2888 "Display help on | grep", 0,
2889 KDB_ENABLE_ALWAYS_SAFE);
2890}
2891
2892/* Execute any commands defined in kdb_cmds. */
2893static void __init kdb_cmd_init(void)
2894{
2895 int i, diag;
2896 for (i = 0; kdb_cmds[i]; ++i) {
2897 diag = kdb_parse(kdb_cmds[i]);
2898 if (diag)
2899 kdb_printf("kdb command %s failed, kdb diag %d\n",
2900 kdb_cmds[i], diag);
2901 }
2902 if (defcmd_in_progress) {
2903 kdb_printf("Incomplete 'defcmd' set, forcing endefcmd\n");
2904 kdb_parse("endefcmd");
2905 }
2906}
2907
2908/* Initialize kdb_printf, breakpoint tables and kdb state */
2909void __init kdb_init(int lvl)
2910{
2911 static int kdb_init_lvl = KDB_NOT_INITIALIZED;
2912 int i;
2913
2914 if (kdb_init_lvl == KDB_INIT_FULL || lvl <= kdb_init_lvl)
2915 return;
2916 for (i = kdb_init_lvl; i < lvl; i++) {
2917 switch (i) {
2918 case KDB_NOT_INITIALIZED:
2919 kdb_inittab(); /* Initialize Command Table */
2920 kdb_initbptab(); /* Initialize Breakpoints */
2921 break;
2922 case KDB_INIT_EARLY:
2923 kdb_cmd_init(); /* Build kdb_cmds tables */
2924 break;
2925 }
2926 }
2927 kdb_init_lvl = lvl;
2928}