Linux Audio

Check our new training course

Loading...
v4.6
   1/*
   2 * Kernel Debugger Architecture Independent Main Code
   3 *
   4 * This file is subject to the terms and conditions of the GNU General Public
   5 * License.  See the file "COPYING" in the main directory of this archive
   6 * for more details.
   7 *
   8 * Copyright (C) 1999-2004 Silicon Graphics, Inc.  All Rights Reserved.
   9 * Copyright (C) 2000 Stephane Eranian <eranian@hpl.hp.com>
  10 * Xscale (R) modifications copyright (C) 2003 Intel Corporation.
  11 * Copyright (c) 2009 Wind River Systems, Inc.  All Rights Reserved.
  12 */
  13
  14#include <linux/ctype.h>
  15#include <linux/types.h>
  16#include <linux/string.h>
  17#include <linux/kernel.h>
  18#include <linux/kmsg_dump.h>
  19#include <linux/reboot.h>
  20#include <linux/sched.h>
 
 
 
  21#include <linux/sysrq.h>
  22#include <linux/smp.h>
  23#include <linux/utsname.h>
  24#include <linux/vmalloc.h>
  25#include <linux/atomic.h>
  26#include <linux/module.h>
  27#include <linux/moduleparam.h>
  28#include <linux/mm.h>
  29#include <linux/init.h>
  30#include <linux/kallsyms.h>
  31#include <linux/kgdb.h>
  32#include <linux/kdb.h>
  33#include <linux/notifier.h>
  34#include <linux/interrupt.h>
  35#include <linux/delay.h>
  36#include <linux/nmi.h>
  37#include <linux/time.h>
  38#include <linux/ptrace.h>
  39#include <linux/sysctl.h>
  40#include <linux/cpu.h>
  41#include <linux/kdebug.h>
  42#include <linux/proc_fs.h>
  43#include <linux/uaccess.h>
  44#include <linux/slab.h>
  45#include "kdb_private.h"
  46
  47#undef	MODULE_PARAM_PREFIX
  48#define	MODULE_PARAM_PREFIX "kdb."
  49
  50static int kdb_cmd_enabled = CONFIG_KDB_DEFAULT_ENABLE;
  51module_param_named(cmd_enable, kdb_cmd_enabled, int, 0600);
  52
  53char kdb_grep_string[KDB_GREP_STRLEN];
  54int kdb_grepping_flag;
  55EXPORT_SYMBOL(kdb_grepping_flag);
  56int kdb_grep_leading;
  57int kdb_grep_trailing;
  58
  59/*
  60 * Kernel debugger state flags
  61 */
  62int kdb_flags;
  63atomic_t kdb_event;
  64
  65/*
  66 * kdb_lock protects updates to kdb_initial_cpu.  Used to
  67 * single thread processors through the kernel debugger.
  68 */
  69int kdb_initial_cpu = -1;	/* cpu number that owns kdb */
  70int kdb_nextline = 1;
  71int kdb_state;			/* General KDB state */
  72
  73struct task_struct *kdb_current_task;
  74EXPORT_SYMBOL(kdb_current_task);
  75struct pt_regs *kdb_current_regs;
  76
  77const char *kdb_diemsg;
  78static int kdb_go_count;
  79#ifdef CONFIG_KDB_CONTINUE_CATASTROPHIC
  80static unsigned int kdb_continue_catastrophic =
  81	CONFIG_KDB_CONTINUE_CATASTROPHIC;
  82#else
  83static unsigned int kdb_continue_catastrophic;
  84#endif
  85
  86/* kdb_commands describes the available commands. */
  87static kdbtab_t *kdb_commands;
  88#define KDB_BASE_CMD_MAX 50
  89static int kdb_max_commands = KDB_BASE_CMD_MAX;
  90static kdbtab_t kdb_base_commands[KDB_BASE_CMD_MAX];
  91#define for_each_kdbcmd(cmd, num)					\
  92	for ((cmd) = kdb_base_commands, (num) = 0;			\
  93	     num < kdb_max_commands;					\
  94	     num++, num == KDB_BASE_CMD_MAX ? cmd = kdb_commands : cmd++)
  95
  96typedef struct _kdbmsg {
  97	int	km_diag;	/* kdb diagnostic */
  98	char	*km_msg;	/* Corresponding message text */
  99} kdbmsg_t;
 100
 101#define KDBMSG(msgnum, text) \
 102	{ KDB_##msgnum, text }
 103
 104static kdbmsg_t kdbmsgs[] = {
 105	KDBMSG(NOTFOUND, "Command Not Found"),
 106	KDBMSG(ARGCOUNT, "Improper argument count, see usage."),
 107	KDBMSG(BADWIDTH, "Illegal value for BYTESPERWORD use 1, 2, 4 or 8, "
 108	       "8 is only allowed on 64 bit systems"),
 109	KDBMSG(BADRADIX, "Illegal value for RADIX use 8, 10 or 16"),
 110	KDBMSG(NOTENV, "Cannot find environment variable"),
 111	KDBMSG(NOENVVALUE, "Environment variable should have value"),
 112	KDBMSG(NOTIMP, "Command not implemented"),
 113	KDBMSG(ENVFULL, "Environment full"),
 114	KDBMSG(ENVBUFFULL, "Environment buffer full"),
 115	KDBMSG(TOOMANYBPT, "Too many breakpoints defined"),
 116#ifdef CONFIG_CPU_XSCALE
 117	KDBMSG(TOOMANYDBREGS, "More breakpoints than ibcr registers defined"),
 118#else
 119	KDBMSG(TOOMANYDBREGS, "More breakpoints than db registers defined"),
 120#endif
 121	KDBMSG(DUPBPT, "Duplicate breakpoint address"),
 122	KDBMSG(BPTNOTFOUND, "Breakpoint not found"),
 123	KDBMSG(BADMODE, "Invalid IDMODE"),
 124	KDBMSG(BADINT, "Illegal numeric value"),
 125	KDBMSG(INVADDRFMT, "Invalid symbolic address format"),
 126	KDBMSG(BADREG, "Invalid register name"),
 127	KDBMSG(BADCPUNUM, "Invalid cpu number"),
 128	KDBMSG(BADLENGTH, "Invalid length field"),
 129	KDBMSG(NOBP, "No Breakpoint exists"),
 130	KDBMSG(BADADDR, "Invalid address"),
 131	KDBMSG(NOPERM, "Permission denied"),
 132};
 133#undef KDBMSG
 134
 135static const int __nkdb_err = ARRAY_SIZE(kdbmsgs);
 136
 137
 138/*
 139 * Initial environment.   This is all kept static and local to
 140 * this file.   We don't want to rely on the memory allocation
 141 * mechanisms in the kernel, so we use a very limited allocate-only
 142 * heap for new and altered environment variables.  The entire
 143 * environment is limited to a fixed number of entries (add more
 144 * to __env[] if required) and a fixed amount of heap (add more to
 145 * KDB_ENVBUFSIZE if required).
 146 */
 147
 148static char *__env[] = {
 149#if defined(CONFIG_SMP)
 150 "PROMPT=[%d]kdb> ",
 151#else
 152 "PROMPT=kdb> ",
 153#endif
 154 "MOREPROMPT=more> ",
 155 "RADIX=16",
 156 "MDCOUNT=8",			/* lines of md output */
 157 KDB_PLATFORM_ENV,
 158 "DTABCOUNT=30",
 159 "NOSECT=1",
 160 (char *)0,
 161 (char *)0,
 162 (char *)0,
 163 (char *)0,
 164 (char *)0,
 165 (char *)0,
 166 (char *)0,
 167 (char *)0,
 168 (char *)0,
 169 (char *)0,
 170 (char *)0,
 171 (char *)0,
 172 (char *)0,
 173 (char *)0,
 174 (char *)0,
 175 (char *)0,
 176 (char *)0,
 177 (char *)0,
 178 (char *)0,
 179 (char *)0,
 180 (char *)0,
 181 (char *)0,
 182 (char *)0,
 183 (char *)0,
 184};
 185
 186static const int __nenv = ARRAY_SIZE(__env);
 187
 188struct task_struct *kdb_curr_task(int cpu)
 189{
 190	struct task_struct *p = curr_task(cpu);
 191#ifdef	_TIF_MCA_INIT
 192	if ((task_thread_info(p)->flags & _TIF_MCA_INIT) && KDB_TSK(cpu))
 193		p = krp->p;
 194#endif
 195	return p;
 196}
 197
 198/*
 199 * Check whether the flags of the current command and the permissions
 200 * of the kdb console has allow a command to be run.
 201 */
 202static inline bool kdb_check_flags(kdb_cmdflags_t flags, int permissions,
 203				   bool no_args)
 204{
 205	/* permissions comes from userspace so needs massaging slightly */
 206	permissions &= KDB_ENABLE_MASK;
 207	permissions |= KDB_ENABLE_ALWAYS_SAFE;
 208
 209	/* some commands change group when launched with no arguments */
 210	if (no_args)
 211		permissions |= permissions << KDB_ENABLE_NO_ARGS_SHIFT;
 212
 213	flags |= KDB_ENABLE_ALL;
 214
 215	return permissions & flags;
 216}
 217
 218/*
 219 * kdbgetenv - This function will return the character string value of
 220 *	an environment variable.
 221 * Parameters:
 222 *	match	A character string representing an environment variable.
 223 * Returns:
 224 *	NULL	No environment variable matches 'match'
 225 *	char*	Pointer to string value of environment variable.
 226 */
 227char *kdbgetenv(const char *match)
 228{
 229	char **ep = __env;
 230	int matchlen = strlen(match);
 231	int i;
 232
 233	for (i = 0; i < __nenv; i++) {
 234		char *e = *ep++;
 235
 236		if (!e)
 237			continue;
 238
 239		if ((strncmp(match, e, matchlen) == 0)
 240		 && ((e[matchlen] == '\0')
 241		   || (e[matchlen] == '='))) {
 242			char *cp = strchr(e, '=');
 243			return cp ? ++cp : "";
 244		}
 245	}
 246	return NULL;
 247}
 248
 249/*
 250 * kdballocenv - This function is used to allocate bytes for
 251 *	environment entries.
 252 * Parameters:
 253 *	match	A character string representing a numeric value
 254 * Outputs:
 255 *	*value  the unsigned long representation of the env variable 'match'
 256 * Returns:
 257 *	Zero on success, a kdb diagnostic on failure.
 258 * Remarks:
 259 *	We use a static environment buffer (envbuffer) to hold the values
 260 *	of dynamically generated environment variables (see kdb_set).  Buffer
 261 *	space once allocated is never free'd, so over time, the amount of space
 262 *	(currently 512 bytes) will be exhausted if env variables are changed
 263 *	frequently.
 264 */
 265static char *kdballocenv(size_t bytes)
 266{
 267#define	KDB_ENVBUFSIZE	512
 268	static char envbuffer[KDB_ENVBUFSIZE];
 269	static int envbufsize;
 270	char *ep = NULL;
 271
 272	if ((KDB_ENVBUFSIZE - envbufsize) >= bytes) {
 273		ep = &envbuffer[envbufsize];
 274		envbufsize += bytes;
 275	}
 276	return ep;
 277}
 278
 279/*
 280 * kdbgetulenv - This function will return the value of an unsigned
 281 *	long-valued environment variable.
 282 * Parameters:
 283 *	match	A character string representing a numeric value
 284 * Outputs:
 285 *	*value  the unsigned long represntation of the env variable 'match'
 286 * Returns:
 287 *	Zero on success, a kdb diagnostic on failure.
 288 */
 289static int kdbgetulenv(const char *match, unsigned long *value)
 290{
 291	char *ep;
 292
 293	ep = kdbgetenv(match);
 294	if (!ep)
 295		return KDB_NOTENV;
 296	if (strlen(ep) == 0)
 297		return KDB_NOENVVALUE;
 298
 299	*value = simple_strtoul(ep, NULL, 0);
 300
 301	return 0;
 302}
 303
 304/*
 305 * kdbgetintenv - This function will return the value of an
 306 *	integer-valued environment variable.
 307 * Parameters:
 308 *	match	A character string representing an integer-valued env variable
 309 * Outputs:
 310 *	*value  the integer representation of the environment variable 'match'
 311 * Returns:
 312 *	Zero on success, a kdb diagnostic on failure.
 313 */
 314int kdbgetintenv(const char *match, int *value)
 315{
 316	unsigned long val;
 317	int diag;
 318
 319	diag = kdbgetulenv(match, &val);
 320	if (!diag)
 321		*value = (int) val;
 322	return diag;
 323}
 324
 325/*
 326 * kdbgetularg - This function will convert a numeric string into an
 327 *	unsigned long value.
 328 * Parameters:
 329 *	arg	A character string representing a numeric value
 330 * Outputs:
 331 *	*value  the unsigned long represntation of arg.
 332 * Returns:
 333 *	Zero on success, a kdb diagnostic on failure.
 334 */
 335int kdbgetularg(const char *arg, unsigned long *value)
 336{
 337	char *endp;
 338	unsigned long val;
 339
 340	val = simple_strtoul(arg, &endp, 0);
 341
 342	if (endp == arg) {
 343		/*
 344		 * Also try base 16, for us folks too lazy to type the
 345		 * leading 0x...
 346		 */
 347		val = simple_strtoul(arg, &endp, 16);
 348		if (endp == arg)
 349			return KDB_BADINT;
 350	}
 351
 352	*value = val;
 353
 354	return 0;
 355}
 356
 357int kdbgetu64arg(const char *arg, u64 *value)
 358{
 359	char *endp;
 360	u64 val;
 361
 362	val = simple_strtoull(arg, &endp, 0);
 363
 364	if (endp == arg) {
 365
 366		val = simple_strtoull(arg, &endp, 16);
 367		if (endp == arg)
 368			return KDB_BADINT;
 369	}
 370
 371	*value = val;
 372
 373	return 0;
 374}
 375
 376/*
 377 * kdb_set - This function implements the 'set' command.  Alter an
 378 *	existing environment variable or create a new one.
 379 */
 380int kdb_set(int argc, const char **argv)
 381{
 382	int i;
 383	char *ep;
 384	size_t varlen, vallen;
 385
 386	/*
 387	 * we can be invoked two ways:
 388	 *   set var=value    argv[1]="var", argv[2]="value"
 389	 *   set var = value  argv[1]="var", argv[2]="=", argv[3]="value"
 390	 * - if the latter, shift 'em down.
 391	 */
 392	if (argc == 3) {
 393		argv[2] = argv[3];
 394		argc--;
 395	}
 396
 397	if (argc != 2)
 398		return KDB_ARGCOUNT;
 399
 400	/*
 
 
 
 
 
 
 
 401	 * Check for internal variables
 402	 */
 403	if (strcmp(argv[1], "KDBDEBUG") == 0) {
 404		unsigned int debugflags;
 405		char *cp;
 406
 407		debugflags = simple_strtoul(argv[2], &cp, 0);
 408		if (cp == argv[2] || debugflags & ~KDB_DEBUG_FLAG_MASK) {
 409			kdb_printf("kdb: illegal debug flags '%s'\n",
 410				    argv[2]);
 411			return 0;
 412		}
 413		kdb_flags = (kdb_flags &
 414			     ~(KDB_DEBUG_FLAG_MASK << KDB_DEBUG_FLAG_SHIFT))
 415			| (debugflags << KDB_DEBUG_FLAG_SHIFT);
 416
 417		return 0;
 418	}
 419
 420	/*
 421	 * Tokenizer squashed the '=' sign.  argv[1] is variable
 422	 * name, argv[2] = value.
 423	 */
 424	varlen = strlen(argv[1]);
 425	vallen = strlen(argv[2]);
 426	ep = kdballocenv(varlen + vallen + 2);
 427	if (ep == (char *)0)
 428		return KDB_ENVBUFFULL;
 429
 430	sprintf(ep, "%s=%s", argv[1], argv[2]);
 431
 432	ep[varlen+vallen+1] = '\0';
 433
 434	for (i = 0; i < __nenv; i++) {
 435		if (__env[i]
 436		 && ((strncmp(__env[i], argv[1], varlen) == 0)
 437		   && ((__env[i][varlen] == '\0')
 438		    || (__env[i][varlen] == '=')))) {
 439			__env[i] = ep;
 440			return 0;
 441		}
 442	}
 443
 444	/*
 445	 * Wasn't existing variable.  Fit into slot.
 446	 */
 447	for (i = 0; i < __nenv-1; i++) {
 448		if (__env[i] == (char *)0) {
 449			__env[i] = ep;
 450			return 0;
 451		}
 452	}
 453
 454	return KDB_ENVFULL;
 455}
 456
 457static int kdb_check_regs(void)
 458{
 459	if (!kdb_current_regs) {
 460		kdb_printf("No current kdb registers."
 461			   "  You may need to select another task\n");
 462		return KDB_BADREG;
 463	}
 464	return 0;
 465}
 466
 467/*
 468 * kdbgetaddrarg - This function is responsible for parsing an
 469 *	address-expression and returning the value of the expression,
 470 *	symbol name, and offset to the caller.
 471 *
 472 *	The argument may consist of a numeric value (decimal or
 473 *	hexidecimal), a symbol name, a register name (preceded by the
 474 *	percent sign), an environment variable with a numeric value
 475 *	(preceded by a dollar sign) or a simple arithmetic expression
 476 *	consisting of a symbol name, +/-, and a numeric constant value
 477 *	(offset).
 478 * Parameters:
 479 *	argc	- count of arguments in argv
 480 *	argv	- argument vector
 481 *	*nextarg - index to next unparsed argument in argv[]
 482 *	regs	- Register state at time of KDB entry
 483 * Outputs:
 484 *	*value	- receives the value of the address-expression
 485 *	*offset - receives the offset specified, if any
 486 *	*name   - receives the symbol name, if any
 487 *	*nextarg - index to next unparsed argument in argv[]
 488 * Returns:
 489 *	zero is returned on success, a kdb diagnostic code is
 490 *      returned on error.
 491 */
 492int kdbgetaddrarg(int argc, const char **argv, int *nextarg,
 493		  unsigned long *value,  long *offset,
 494		  char **name)
 495{
 496	unsigned long addr;
 497	unsigned long off = 0;
 498	int positive;
 499	int diag;
 500	int found = 0;
 501	char *symname;
 502	char symbol = '\0';
 503	char *cp;
 504	kdb_symtab_t symtab;
 505
 506	/*
 507	 * If the enable flags prohibit both arbitrary memory access
 508	 * and flow control then there are no reasonable grounds to
 509	 * provide symbol lookup.
 510	 */
 511	if (!kdb_check_flags(KDB_ENABLE_MEM_READ | KDB_ENABLE_FLOW_CTRL,
 512			     kdb_cmd_enabled, false))
 513		return KDB_NOPERM;
 514
 515	/*
 516	 * Process arguments which follow the following syntax:
 517	 *
 518	 *  symbol | numeric-address [+/- numeric-offset]
 519	 *  %register
 520	 *  $environment-variable
 521	 */
 522
 523	if (*nextarg > argc)
 524		return KDB_ARGCOUNT;
 525
 526	symname = (char *)argv[*nextarg];
 527
 528	/*
 529	 * If there is no whitespace between the symbol
 530	 * or address and the '+' or '-' symbols, we
 531	 * remember the character and replace it with a
 532	 * null so the symbol/value can be properly parsed
 533	 */
 534	cp = strpbrk(symname, "+-");
 535	if (cp != NULL) {
 536		symbol = *cp;
 537		*cp++ = '\0';
 538	}
 539
 540	if (symname[0] == '$') {
 541		diag = kdbgetulenv(&symname[1], &addr);
 542		if (diag)
 543			return diag;
 544	} else if (symname[0] == '%') {
 545		diag = kdb_check_regs();
 546		if (diag)
 547			return diag;
 548		/* Implement register values with % at a later time as it is
 549		 * arch optional.
 550		 */
 551		return KDB_NOTIMP;
 552	} else {
 553		found = kdbgetsymval(symname, &symtab);
 554		if (found) {
 555			addr = symtab.sym_start;
 556		} else {
 557			diag = kdbgetularg(argv[*nextarg], &addr);
 558			if (diag)
 559				return diag;
 560		}
 561	}
 562
 563	if (!found)
 564		found = kdbnearsym(addr, &symtab);
 565
 566	(*nextarg)++;
 567
 568	if (name)
 569		*name = symname;
 570	if (value)
 571		*value = addr;
 572	if (offset && name && *name)
 573		*offset = addr - symtab.sym_start;
 574
 575	if ((*nextarg > argc)
 576	 && (symbol == '\0'))
 577		return 0;
 578
 579	/*
 580	 * check for +/- and offset
 581	 */
 582
 583	if (symbol == '\0') {
 584		if ((argv[*nextarg][0] != '+')
 585		 && (argv[*nextarg][0] != '-')) {
 586			/*
 587			 * Not our argument.  Return.
 588			 */
 589			return 0;
 590		} else {
 591			positive = (argv[*nextarg][0] == '+');
 592			(*nextarg)++;
 593		}
 594	} else
 595		positive = (symbol == '+');
 596
 597	/*
 598	 * Now there must be an offset!
 599	 */
 600	if ((*nextarg > argc)
 601	 && (symbol == '\0')) {
 602		return KDB_INVADDRFMT;
 603	}
 604
 605	if (!symbol) {
 606		cp = (char *)argv[*nextarg];
 607		(*nextarg)++;
 608	}
 609
 610	diag = kdbgetularg(cp, &off);
 611	if (diag)
 612		return diag;
 613
 614	if (!positive)
 615		off = -off;
 616
 617	if (offset)
 618		*offset += off;
 619
 620	if (value)
 621		*value += off;
 622
 623	return 0;
 624}
 625
 626static void kdb_cmderror(int diag)
 627{
 628	int i;
 629
 630	if (diag >= 0) {
 631		kdb_printf("no error detected (diagnostic is %d)\n", diag);
 632		return;
 633	}
 634
 635	for (i = 0; i < __nkdb_err; i++) {
 636		if (kdbmsgs[i].km_diag == diag) {
 637			kdb_printf("diag: %d: %s\n", diag, kdbmsgs[i].km_msg);
 638			return;
 639		}
 640	}
 641
 642	kdb_printf("Unknown diag %d\n", -diag);
 643}
 644
 645/*
 646 * kdb_defcmd, kdb_defcmd2 - This function implements the 'defcmd'
 647 *	command which defines one command as a set of other commands,
 648 *	terminated by endefcmd.  kdb_defcmd processes the initial
 649 *	'defcmd' command, kdb_defcmd2 is invoked from kdb_parse for
 650 *	the following commands until 'endefcmd'.
 651 * Inputs:
 652 *	argc	argument count
 653 *	argv	argument vector
 654 * Returns:
 655 *	zero for success, a kdb diagnostic if error
 656 */
 657struct defcmd_set {
 658	int count;
 659	int usable;
 660	char *name;
 661	char *usage;
 662	char *help;
 663	char **command;
 664};
 665static struct defcmd_set *defcmd_set;
 666static int defcmd_set_count;
 667static int defcmd_in_progress;
 668
 669/* Forward references */
 670static int kdb_exec_defcmd(int argc, const char **argv);
 671
 672static int kdb_defcmd2(const char *cmdstr, const char *argv0)
 673{
 674	struct defcmd_set *s = defcmd_set + defcmd_set_count - 1;
 675	char **save_command = s->command;
 676	if (strcmp(argv0, "endefcmd") == 0) {
 677		defcmd_in_progress = 0;
 678		if (!s->count)
 679			s->usable = 0;
 680		if (s->usable)
 681			/* macros are always safe because when executed each
 682			 * internal command re-enters kdb_parse() and is
 683			 * safety checked individually.
 684			 */
 685			kdb_register_flags(s->name, kdb_exec_defcmd, s->usage,
 686					   s->help, 0,
 687					   KDB_ENABLE_ALWAYS_SAFE);
 688		return 0;
 689	}
 690	if (!s->usable)
 691		return KDB_NOTIMP;
 692	s->command = kzalloc((s->count + 1) * sizeof(*(s->command)), GFP_KDB);
 693	if (!s->command) {
 694		kdb_printf("Could not allocate new kdb_defcmd table for %s\n",
 695			   cmdstr);
 696		s->usable = 0;
 697		return KDB_NOTIMP;
 698	}
 699	memcpy(s->command, save_command, s->count * sizeof(*(s->command)));
 700	s->command[s->count++] = kdb_strdup(cmdstr, GFP_KDB);
 701	kfree(save_command);
 702	return 0;
 703}
 704
 705static int kdb_defcmd(int argc, const char **argv)
 706{
 707	struct defcmd_set *save_defcmd_set = defcmd_set, *s;
 708	if (defcmd_in_progress) {
 709		kdb_printf("kdb: nested defcmd detected, assuming missing "
 710			   "endefcmd\n");
 711		kdb_defcmd2("endefcmd", "endefcmd");
 712	}
 713	if (argc == 0) {
 714		int i;
 715		for (s = defcmd_set; s < defcmd_set + defcmd_set_count; ++s) {
 716			kdb_printf("defcmd %s \"%s\" \"%s\"\n", s->name,
 717				   s->usage, s->help);
 718			for (i = 0; i < s->count; ++i)
 719				kdb_printf("%s", s->command[i]);
 720			kdb_printf("endefcmd\n");
 721		}
 722		return 0;
 723	}
 724	if (argc != 3)
 725		return KDB_ARGCOUNT;
 726	if (in_dbg_master()) {
 727		kdb_printf("Command only available during kdb_init()\n");
 728		return KDB_NOTIMP;
 729	}
 730	defcmd_set = kmalloc((defcmd_set_count + 1) * sizeof(*defcmd_set),
 731			     GFP_KDB);
 732	if (!defcmd_set)
 733		goto fail_defcmd;
 734	memcpy(defcmd_set, save_defcmd_set,
 735	       defcmd_set_count * sizeof(*defcmd_set));
 736	s = defcmd_set + defcmd_set_count;
 737	memset(s, 0, sizeof(*s));
 738	s->usable = 1;
 739	s->name = kdb_strdup(argv[1], GFP_KDB);
 740	if (!s->name)
 741		goto fail_name;
 742	s->usage = kdb_strdup(argv[2], GFP_KDB);
 743	if (!s->usage)
 744		goto fail_usage;
 745	s->help = kdb_strdup(argv[3], GFP_KDB);
 746	if (!s->help)
 747		goto fail_help;
 748	if (s->usage[0] == '"') {
 749		strcpy(s->usage, argv[2]+1);
 750		s->usage[strlen(s->usage)-1] = '\0';
 751	}
 752	if (s->help[0] == '"') {
 753		strcpy(s->help, argv[3]+1);
 754		s->help[strlen(s->help)-1] = '\0';
 755	}
 756	++defcmd_set_count;
 757	defcmd_in_progress = 1;
 758	kfree(save_defcmd_set);
 759	return 0;
 760fail_help:
 761	kfree(s->usage);
 762fail_usage:
 763	kfree(s->name);
 764fail_name:
 765	kfree(defcmd_set);
 766fail_defcmd:
 767	kdb_printf("Could not allocate new defcmd_set entry for %s\n", argv[1]);
 768	defcmd_set = save_defcmd_set;
 769	return KDB_NOTIMP;
 770}
 771
 772/*
 773 * kdb_exec_defcmd - Execute the set of commands associated with this
 774 *	defcmd name.
 775 * Inputs:
 776 *	argc	argument count
 777 *	argv	argument vector
 778 * Returns:
 779 *	zero for success, a kdb diagnostic if error
 780 */
 781static int kdb_exec_defcmd(int argc, const char **argv)
 782{
 783	int i, ret;
 784	struct defcmd_set *s;
 785	if (argc != 0)
 786		return KDB_ARGCOUNT;
 787	for (s = defcmd_set, i = 0; i < defcmd_set_count; ++i, ++s) {
 788		if (strcmp(s->name, argv[0]) == 0)
 789			break;
 790	}
 791	if (i == defcmd_set_count) {
 792		kdb_printf("kdb_exec_defcmd: could not find commands for %s\n",
 793			   argv[0]);
 794		return KDB_NOTIMP;
 795	}
 796	for (i = 0; i < s->count; ++i) {
 797		/* Recursive use of kdb_parse, do not use argv after
 798		 * this point */
 799		argv = NULL;
 800		kdb_printf("[%s]kdb> %s\n", s->name, s->command[i]);
 801		ret = kdb_parse(s->command[i]);
 802		if (ret)
 803			return ret;
 804	}
 805	return 0;
 806}
 807
 808/* Command history */
 809#define KDB_CMD_HISTORY_COUNT	32
 810#define CMD_BUFLEN		200	/* kdb_printf: max printline
 811					 * size == 256 */
 812static unsigned int cmd_head, cmd_tail;
 813static unsigned int cmdptr;
 814static char cmd_hist[KDB_CMD_HISTORY_COUNT][CMD_BUFLEN];
 815static char cmd_cur[CMD_BUFLEN];
 816
 817/*
 818 * The "str" argument may point to something like  | grep xyz
 819 */
 820static void parse_grep(const char *str)
 821{
 822	int	len;
 823	char	*cp = (char *)str, *cp2;
 824
 825	/* sanity check: we should have been called with the \ first */
 826	if (*cp != '|')
 827		return;
 828	cp++;
 829	while (isspace(*cp))
 830		cp++;
 831	if (strncmp(cp, "grep ", 5)) {
 832		kdb_printf("invalid 'pipe', see grephelp\n");
 833		return;
 834	}
 835	cp += 5;
 836	while (isspace(*cp))
 837		cp++;
 838	cp2 = strchr(cp, '\n');
 839	if (cp2)
 840		*cp2 = '\0'; /* remove the trailing newline */
 841	len = strlen(cp);
 842	if (len == 0) {
 843		kdb_printf("invalid 'pipe', see grephelp\n");
 844		return;
 845	}
 846	/* now cp points to a nonzero length search string */
 847	if (*cp == '"') {
 848		/* allow it be "x y z" by removing the "'s - there must
 849		   be two of them */
 850		cp++;
 851		cp2 = strchr(cp, '"');
 852		if (!cp2) {
 853			kdb_printf("invalid quoted string, see grephelp\n");
 854			return;
 855		}
 856		*cp2 = '\0'; /* end the string where the 2nd " was */
 857	}
 858	kdb_grep_leading = 0;
 859	if (*cp == '^') {
 860		kdb_grep_leading = 1;
 861		cp++;
 862	}
 863	len = strlen(cp);
 864	kdb_grep_trailing = 0;
 865	if (*(cp+len-1) == '$') {
 866		kdb_grep_trailing = 1;
 867		*(cp+len-1) = '\0';
 868	}
 869	len = strlen(cp);
 870	if (!len)
 871		return;
 872	if (len >= KDB_GREP_STRLEN) {
 873		kdb_printf("search string too long\n");
 874		return;
 875	}
 876	strcpy(kdb_grep_string, cp);
 877	kdb_grepping_flag++;
 878	return;
 879}
 880
 881/*
 882 * kdb_parse - Parse the command line, search the command table for a
 883 *	matching command and invoke the command function.  This
 884 *	function may be called recursively, if it is, the second call
 885 *	will overwrite argv and cbuf.  It is the caller's
 886 *	responsibility to save their argv if they recursively call
 887 *	kdb_parse().
 888 * Parameters:
 889 *      cmdstr	The input command line to be parsed.
 890 *	regs	The registers at the time kdb was entered.
 891 * Returns:
 892 *	Zero for success, a kdb diagnostic if failure.
 893 * Remarks:
 894 *	Limited to 20 tokens.
 895 *
 896 *	Real rudimentary tokenization. Basically only whitespace
 897 *	is considered a token delimeter (but special consideration
 898 *	is taken of the '=' sign as used by the 'set' command).
 899 *
 900 *	The algorithm used to tokenize the input string relies on
 901 *	there being at least one whitespace (or otherwise useless)
 902 *	character between tokens as the character immediately following
 903 *	the token is altered in-place to a null-byte to terminate the
 904 *	token string.
 905 */
 906
 907#define MAXARGC	20
 908
 909int kdb_parse(const char *cmdstr)
 910{
 911	static char *argv[MAXARGC];
 912	static int argc;
 913	static char cbuf[CMD_BUFLEN+2];
 914	char *cp;
 915	char *cpp, quoted;
 916	kdbtab_t *tp;
 917	int i, escaped, ignore_errors = 0, check_grep = 0;
 918
 919	/*
 920	 * First tokenize the command string.
 921	 */
 922	cp = (char *)cmdstr;
 923
 924	if (KDB_FLAG(CMD_INTERRUPT)) {
 925		/* Previous command was interrupted, newline must not
 926		 * repeat the command */
 927		KDB_FLAG_CLEAR(CMD_INTERRUPT);
 928		KDB_STATE_SET(PAGER);
 929		argc = 0;	/* no repeat */
 930	}
 931
 932	if (*cp != '\n' && *cp != '\0') {
 933		argc = 0;
 934		cpp = cbuf;
 935		while (*cp) {
 936			/* skip whitespace */
 937			while (isspace(*cp))
 938				cp++;
 939			if ((*cp == '\0') || (*cp == '\n') ||
 940			    (*cp == '#' && !defcmd_in_progress))
 941				break;
 942			/* special case: check for | grep pattern */
 943			if (*cp == '|') {
 944				check_grep++;
 945				break;
 946			}
 947			if (cpp >= cbuf + CMD_BUFLEN) {
 948				kdb_printf("kdb_parse: command buffer "
 949					   "overflow, command ignored\n%s\n",
 950					   cmdstr);
 951				return KDB_NOTFOUND;
 952			}
 953			if (argc >= MAXARGC - 1) {
 954				kdb_printf("kdb_parse: too many arguments, "
 955					   "command ignored\n%s\n", cmdstr);
 956				return KDB_NOTFOUND;
 957			}
 958			argv[argc++] = cpp;
 959			escaped = 0;
 960			quoted = '\0';
 961			/* Copy to next unquoted and unescaped
 962			 * whitespace or '=' */
 963			while (*cp && *cp != '\n' &&
 964			       (escaped || quoted || !isspace(*cp))) {
 965				if (cpp >= cbuf + CMD_BUFLEN)
 966					break;
 967				if (escaped) {
 968					escaped = 0;
 969					*cpp++ = *cp++;
 970					continue;
 971				}
 972				if (*cp == '\\') {
 973					escaped = 1;
 974					++cp;
 975					continue;
 976				}
 977				if (*cp == quoted)
 978					quoted = '\0';
 979				else if (*cp == '\'' || *cp == '"')
 980					quoted = *cp;
 981				*cpp = *cp++;
 982				if (*cpp == '=' && !quoted)
 983					break;
 984				++cpp;
 985			}
 986			*cpp++ = '\0';	/* Squash a ws or '=' character */
 987		}
 988	}
 989	if (!argc)
 990		return 0;
 991	if (check_grep)
 992		parse_grep(cp);
 993	if (defcmd_in_progress) {
 994		int result = kdb_defcmd2(cmdstr, argv[0]);
 995		if (!defcmd_in_progress) {
 996			argc = 0;	/* avoid repeat on endefcmd */
 997			*(argv[0]) = '\0';
 998		}
 999		return result;
1000	}
1001	if (argv[0][0] == '-' && argv[0][1] &&
1002	    (argv[0][1] < '0' || argv[0][1] > '9')) {
1003		ignore_errors = 1;
1004		++argv[0];
1005	}
1006
1007	for_each_kdbcmd(tp, i) {
1008		if (tp->cmd_name) {
1009			/*
1010			 * If this command is allowed to be abbreviated,
1011			 * check to see if this is it.
1012			 */
1013
1014			if (tp->cmd_minlen
1015			 && (strlen(argv[0]) <= tp->cmd_minlen)) {
1016				if (strncmp(argv[0],
1017					    tp->cmd_name,
1018					    tp->cmd_minlen) == 0) {
1019					break;
1020				}
1021			}
1022
1023			if (strcmp(argv[0], tp->cmd_name) == 0)
1024				break;
1025		}
1026	}
1027
1028	/*
1029	 * If we don't find a command by this name, see if the first
1030	 * few characters of this match any of the known commands.
1031	 * e.g., md1c20 should match md.
1032	 */
1033	if (i == kdb_max_commands) {
1034		for_each_kdbcmd(tp, i) {
1035			if (tp->cmd_name) {
1036				if (strncmp(argv[0],
1037					    tp->cmd_name,
1038					    strlen(tp->cmd_name)) == 0) {
1039					break;
1040				}
1041			}
1042		}
1043	}
1044
1045	if (i < kdb_max_commands) {
1046		int result;
1047
1048		if (!kdb_check_flags(tp->cmd_flags, kdb_cmd_enabled, argc <= 1))
1049			return KDB_NOPERM;
1050
1051		KDB_STATE_SET(CMD);
1052		result = (*tp->cmd_func)(argc-1, (const char **)argv);
1053		if (result && ignore_errors && result > KDB_CMD_GO)
1054			result = 0;
1055		KDB_STATE_CLEAR(CMD);
1056
1057		if (tp->cmd_flags & KDB_REPEAT_WITH_ARGS)
1058			return result;
1059
1060		argc = tp->cmd_flags & KDB_REPEAT_NO_ARGS ? 1 : 0;
1061		if (argv[argc])
1062			*(argv[argc]) = '\0';
1063		return result;
1064	}
1065
1066	/*
1067	 * If the input with which we were presented does not
1068	 * map to an existing command, attempt to parse it as an
1069	 * address argument and display the result.   Useful for
1070	 * obtaining the address of a variable, or the nearest symbol
1071	 * to an address contained in a register.
1072	 */
1073	{
1074		unsigned long value;
1075		char *name = NULL;
1076		long offset;
1077		int nextarg = 0;
1078
1079		if (kdbgetaddrarg(0, (const char **)argv, &nextarg,
1080				  &value, &offset, &name)) {
1081			return KDB_NOTFOUND;
1082		}
1083
1084		kdb_printf("%s = ", argv[0]);
1085		kdb_symbol_print(value, NULL, KDB_SP_DEFAULT);
1086		kdb_printf("\n");
1087		return 0;
1088	}
1089}
1090
1091
1092static int handle_ctrl_cmd(char *cmd)
1093{
1094#define CTRL_P	16
1095#define CTRL_N	14
1096
1097	/* initial situation */
1098	if (cmd_head == cmd_tail)
1099		return 0;
1100	switch (*cmd) {
1101	case CTRL_P:
1102		if (cmdptr != cmd_tail)
1103			cmdptr = (cmdptr-1) % KDB_CMD_HISTORY_COUNT;
1104		strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
 
1105		return 1;
1106	case CTRL_N:
1107		if (cmdptr != cmd_head)
1108			cmdptr = (cmdptr+1) % KDB_CMD_HISTORY_COUNT;
1109		strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1110		return 1;
1111	}
1112	return 0;
1113}
1114
1115/*
1116 * kdb_reboot - This function implements the 'reboot' command.  Reboot
1117 *	the system immediately, or loop for ever on failure.
1118 */
1119static int kdb_reboot(int argc, const char **argv)
1120{
1121	emergency_restart();
1122	kdb_printf("Hmm, kdb_reboot did not reboot, spinning here\n");
1123	while (1)
1124		cpu_relax();
1125	/* NOTREACHED */
1126	return 0;
1127}
1128
1129static void kdb_dumpregs(struct pt_regs *regs)
1130{
1131	int old_lvl = console_loglevel;
1132	console_loglevel = CONSOLE_LOGLEVEL_MOTORMOUTH;
1133	kdb_trap_printk++;
1134	show_regs(regs);
1135	kdb_trap_printk--;
1136	kdb_printf("\n");
1137	console_loglevel = old_lvl;
1138}
1139
1140void kdb_set_current_task(struct task_struct *p)
1141{
1142	kdb_current_task = p;
1143
1144	if (kdb_task_has_cpu(p)) {
1145		kdb_current_regs = KDB_TSKREGS(kdb_process_cpu(p));
1146		return;
1147	}
1148	kdb_current_regs = NULL;
1149}
1150
 
 
 
 
 
 
 
 
 
 
1151/*
1152 * kdb_local - The main code for kdb.  This routine is invoked on a
1153 *	specific processor, it is not global.  The main kdb() routine
1154 *	ensures that only one processor at a time is in this routine.
1155 *	This code is called with the real reason code on the first
1156 *	entry to a kdb session, thereafter it is called with reason
1157 *	SWITCH, even if the user goes back to the original cpu.
1158 * Inputs:
1159 *	reason		The reason KDB was invoked
1160 *	error		The hardware-defined error code
1161 *	regs		The exception frame at time of fault/breakpoint.
1162 *	db_result	Result code from the break or debug point.
1163 * Returns:
1164 *	0	KDB was invoked for an event which it wasn't responsible
1165 *	1	KDB handled the event for which it was invoked.
1166 *	KDB_CMD_GO	User typed 'go'.
1167 *	KDB_CMD_CPU	User switched to another cpu.
1168 *	KDB_CMD_SS	Single step.
1169 */
1170static int kdb_local(kdb_reason_t reason, int error, struct pt_regs *regs,
1171		     kdb_dbtrap_t db_result)
1172{
1173	char *cmdbuf;
1174	int diag;
1175	struct task_struct *kdb_current =
1176		kdb_curr_task(raw_smp_processor_id());
1177
1178	KDB_DEBUG_STATE("kdb_local 1", reason);
1179	kdb_go_count = 0;
1180	if (reason == KDB_REASON_DEBUG) {
1181		/* special case below */
1182	} else {
1183		kdb_printf("\nEntering kdb (current=0x%p, pid %d) ",
1184			   kdb_current, kdb_current ? kdb_current->pid : 0);
1185#if defined(CONFIG_SMP)
1186		kdb_printf("on processor %d ", raw_smp_processor_id());
1187#endif
1188	}
1189
1190	switch (reason) {
1191	case KDB_REASON_DEBUG:
1192	{
1193		/*
1194		 * If re-entering kdb after a single step
1195		 * command, don't print the message.
1196		 */
1197		switch (db_result) {
1198		case KDB_DB_BPT:
1199			kdb_printf("\nEntering kdb (0x%p, pid %d) ",
1200				   kdb_current, kdb_current->pid);
1201#if defined(CONFIG_SMP)
1202			kdb_printf("on processor %d ", raw_smp_processor_id());
1203#endif
1204			kdb_printf("due to Debug @ " kdb_machreg_fmt "\n",
1205				   instruction_pointer(regs));
1206			break;
1207		case KDB_DB_SS:
1208			break;
1209		case KDB_DB_SSBPT:
1210			KDB_DEBUG_STATE("kdb_local 4", reason);
1211			return 1;	/* kdba_db_trap did the work */
1212		default:
1213			kdb_printf("kdb: Bad result from kdba_db_trap: %d\n",
1214				   db_result);
1215			break;
1216		}
1217
1218	}
1219		break;
1220	case KDB_REASON_ENTER:
1221		if (KDB_STATE(KEYBOARD))
1222			kdb_printf("due to Keyboard Entry\n");
1223		else
1224			kdb_printf("due to KDB_ENTER()\n");
1225		break;
1226	case KDB_REASON_KEYBOARD:
1227		KDB_STATE_SET(KEYBOARD);
1228		kdb_printf("due to Keyboard Entry\n");
1229		break;
1230	case KDB_REASON_ENTER_SLAVE:
1231		/* drop through, slaves only get released via cpu switch */
1232	case KDB_REASON_SWITCH:
1233		kdb_printf("due to cpu switch\n");
1234		break;
1235	case KDB_REASON_OOPS:
1236		kdb_printf("Oops: %s\n", kdb_diemsg);
1237		kdb_printf("due to oops @ " kdb_machreg_fmt "\n",
1238			   instruction_pointer(regs));
1239		kdb_dumpregs(regs);
1240		break;
1241	case KDB_REASON_SYSTEM_NMI:
1242		kdb_printf("due to System NonMaskable Interrupt\n");
1243		break;
1244	case KDB_REASON_NMI:
1245		kdb_printf("due to NonMaskable Interrupt @ "
1246			   kdb_machreg_fmt "\n",
1247			   instruction_pointer(regs));
1248		break;
1249	case KDB_REASON_SSTEP:
1250	case KDB_REASON_BREAK:
1251		kdb_printf("due to %s @ " kdb_machreg_fmt "\n",
1252			   reason == KDB_REASON_BREAK ?
1253			   "Breakpoint" : "SS trap", instruction_pointer(regs));
1254		/*
1255		 * Determine if this breakpoint is one that we
1256		 * are interested in.
1257		 */
1258		if (db_result != KDB_DB_BPT) {
1259			kdb_printf("kdb: error return from kdba_bp_trap: %d\n",
1260				   db_result);
1261			KDB_DEBUG_STATE("kdb_local 6", reason);
1262			return 0;	/* Not for us, dismiss it */
1263		}
1264		break;
1265	case KDB_REASON_RECURSE:
1266		kdb_printf("due to Recursion @ " kdb_machreg_fmt "\n",
1267			   instruction_pointer(regs));
1268		break;
1269	default:
1270		kdb_printf("kdb: unexpected reason code: %d\n", reason);
1271		KDB_DEBUG_STATE("kdb_local 8", reason);
1272		return 0;	/* Not for us, dismiss it */
1273	}
1274
1275	while (1) {
1276		/*
1277		 * Initialize pager context.
1278		 */
1279		kdb_nextline = 1;
1280		KDB_STATE_CLEAR(SUPPRESS);
1281		kdb_grepping_flag = 0;
1282		/* ensure the old search does not leak into '/' commands */
1283		kdb_grep_string[0] = '\0';
1284
1285		cmdbuf = cmd_cur;
1286		*cmdbuf = '\0';
1287		*(cmd_hist[cmd_head]) = '\0';
1288
1289do_full_getstr:
1290#if defined(CONFIG_SMP)
1291		snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"),
1292			 raw_smp_processor_id());
1293#else
1294		snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"));
1295#endif
1296		if (defcmd_in_progress)
1297			strncat(kdb_prompt_str, "[defcmd]", CMD_BUFLEN);
1298
1299		/*
1300		 * Fetch command from keyboard
1301		 */
1302		cmdbuf = kdb_getstr(cmdbuf, CMD_BUFLEN, kdb_prompt_str);
1303		if (*cmdbuf != '\n') {
1304			if (*cmdbuf < 32) {
1305				if (cmdptr == cmd_head) {
1306					strncpy(cmd_hist[cmd_head], cmd_cur,
1307						CMD_BUFLEN);
1308					*(cmd_hist[cmd_head] +
1309					  strlen(cmd_hist[cmd_head])-1) = '\0';
1310				}
1311				if (!handle_ctrl_cmd(cmdbuf))
1312					*(cmd_cur+strlen(cmd_cur)-1) = '\0';
1313				cmdbuf = cmd_cur;
1314				goto do_full_getstr;
1315			} else {
1316				strncpy(cmd_hist[cmd_head], cmd_cur,
1317					CMD_BUFLEN);
1318			}
1319
1320			cmd_head = (cmd_head+1) % KDB_CMD_HISTORY_COUNT;
1321			if (cmd_head == cmd_tail)
1322				cmd_tail = (cmd_tail+1) % KDB_CMD_HISTORY_COUNT;
1323		}
1324
1325		cmdptr = cmd_head;
1326		diag = kdb_parse(cmdbuf);
1327		if (diag == KDB_NOTFOUND) {
 
1328			kdb_printf("Unknown kdb command: '%s'\n", cmdbuf);
1329			diag = 0;
1330		}
1331		if (diag == KDB_CMD_GO
1332		 || diag == KDB_CMD_CPU
1333		 || diag == KDB_CMD_SS
1334		 || diag == KDB_CMD_KGDB)
1335			break;
1336
1337		if (diag)
1338			kdb_cmderror(diag);
1339	}
1340	KDB_DEBUG_STATE("kdb_local 9", diag);
1341	return diag;
1342}
1343
1344
1345/*
1346 * kdb_print_state - Print the state data for the current processor
1347 *	for debugging.
1348 * Inputs:
1349 *	text		Identifies the debug point
1350 *	value		Any integer value to be printed, e.g. reason code.
1351 */
1352void kdb_print_state(const char *text, int value)
1353{
1354	kdb_printf("state: %s cpu %d value %d initial %d state %x\n",
1355		   text, raw_smp_processor_id(), value, kdb_initial_cpu,
1356		   kdb_state);
1357}
1358
1359/*
1360 * kdb_main_loop - After initial setup and assignment of the
1361 *	controlling cpu, all cpus are in this loop.  One cpu is in
1362 *	control and will issue the kdb prompt, the others will spin
1363 *	until 'go' or cpu switch.
1364 *
1365 *	To get a consistent view of the kernel stacks for all
1366 *	processes, this routine is invoked from the main kdb code via
1367 *	an architecture specific routine.  kdba_main_loop is
1368 *	responsible for making the kernel stacks consistent for all
1369 *	processes, there should be no difference between a blocked
1370 *	process and a running process as far as kdb is concerned.
1371 * Inputs:
1372 *	reason		The reason KDB was invoked
1373 *	error		The hardware-defined error code
1374 *	reason2		kdb's current reason code.
1375 *			Initially error but can change
1376 *			according to kdb state.
1377 *	db_result	Result code from break or debug point.
1378 *	regs		The exception frame at time of fault/breakpoint.
1379 *			should always be valid.
1380 * Returns:
1381 *	0	KDB was invoked for an event which it wasn't responsible
1382 *	1	KDB handled the event for which it was invoked.
1383 */
1384int kdb_main_loop(kdb_reason_t reason, kdb_reason_t reason2, int error,
1385	      kdb_dbtrap_t db_result, struct pt_regs *regs)
1386{
1387	int result = 1;
1388	/* Stay in kdb() until 'go', 'ss[b]' or an error */
1389	while (1) {
1390		/*
1391		 * All processors except the one that is in control
1392		 * will spin here.
1393		 */
1394		KDB_DEBUG_STATE("kdb_main_loop 1", reason);
1395		while (KDB_STATE(HOLD_CPU)) {
1396			/* state KDB is turned off by kdb_cpu to see if the
1397			 * other cpus are still live, each cpu in this loop
1398			 * turns it back on.
1399			 */
1400			if (!KDB_STATE(KDB))
1401				KDB_STATE_SET(KDB);
1402		}
1403
1404		KDB_STATE_CLEAR(SUPPRESS);
1405		KDB_DEBUG_STATE("kdb_main_loop 2", reason);
1406		if (KDB_STATE(LEAVING))
1407			break;	/* Another cpu said 'go' */
1408		/* Still using kdb, this processor is in control */
1409		result = kdb_local(reason2, error, regs, db_result);
1410		KDB_DEBUG_STATE("kdb_main_loop 3", result);
1411
1412		if (result == KDB_CMD_CPU)
1413			break;
1414
1415		if (result == KDB_CMD_SS) {
1416			KDB_STATE_SET(DOING_SS);
1417			break;
1418		}
1419
1420		if (result == KDB_CMD_KGDB) {
1421			if (!KDB_STATE(DOING_KGDB))
1422				kdb_printf("Entering please attach debugger "
1423					   "or use $D#44+ or $3#33\n");
1424			break;
1425		}
1426		if (result && result != 1 && result != KDB_CMD_GO)
1427			kdb_printf("\nUnexpected kdb_local return code %d\n",
1428				   result);
1429		KDB_DEBUG_STATE("kdb_main_loop 4", reason);
1430		break;
1431	}
1432	if (KDB_STATE(DOING_SS))
1433		KDB_STATE_CLEAR(SSBPT);
1434
1435	/* Clean up any keyboard devices before leaving */
1436	kdb_kbd_cleanup_state();
1437
1438	return result;
1439}
1440
1441/*
1442 * kdb_mdr - This function implements the guts of the 'mdr', memory
1443 * read command.
1444 *	mdr  <addr arg>,<byte count>
1445 * Inputs:
1446 *	addr	Start address
1447 *	count	Number of bytes
1448 * Returns:
1449 *	Always 0.  Any errors are detected and printed by kdb_getarea.
1450 */
1451static int kdb_mdr(unsigned long addr, unsigned int count)
1452{
1453	unsigned char c;
1454	while (count--) {
1455		if (kdb_getarea(c, addr))
1456			return 0;
1457		kdb_printf("%02x", c);
1458		addr++;
1459	}
1460	kdb_printf("\n");
1461	return 0;
1462}
1463
1464/*
1465 * kdb_md - This function implements the 'md', 'md1', 'md2', 'md4',
1466 *	'md8' 'mdr' and 'mds' commands.
1467 *
1468 *	md|mds  [<addr arg> [<line count> [<radix>]]]
1469 *	mdWcN	[<addr arg> [<line count> [<radix>]]]
1470 *		where W = is the width (1, 2, 4 or 8) and N is the count.
1471 *		for eg., md1c20 reads 20 bytes, 1 at a time.
1472 *	mdr  <addr arg>,<byte count>
1473 */
1474static void kdb_md_line(const char *fmtstr, unsigned long addr,
1475			int symbolic, int nosect, int bytesperword,
1476			int num, int repeat, int phys)
1477{
1478	/* print just one line of data */
1479	kdb_symtab_t symtab;
1480	char cbuf[32];
1481	char *c = cbuf;
1482	int i;
 
1483	unsigned long word;
1484
1485	memset(cbuf, '\0', sizeof(cbuf));
1486	if (phys)
1487		kdb_printf("phys " kdb_machreg_fmt0 " ", addr);
1488	else
1489		kdb_printf(kdb_machreg_fmt0 " ", addr);
1490
1491	for (i = 0; i < num && repeat--; i++) {
1492		if (phys) {
1493			if (kdb_getphysword(&word, addr, bytesperword))
1494				break;
1495		} else if (kdb_getword(&word, addr, bytesperword))
1496			break;
1497		kdb_printf(fmtstr, word);
1498		if (symbolic)
1499			kdbnearsym(word, &symtab);
1500		else
1501			memset(&symtab, 0, sizeof(symtab));
1502		if (symtab.sym_name) {
1503			kdb_symbol_print(word, &symtab, 0);
1504			if (!nosect) {
1505				kdb_printf("\n");
1506				kdb_printf("                       %s %s "
1507					   kdb_machreg_fmt " "
1508					   kdb_machreg_fmt " "
1509					   kdb_machreg_fmt, symtab.mod_name,
1510					   symtab.sec_name, symtab.sec_start,
1511					   symtab.sym_start, symtab.sym_end);
1512			}
1513			addr += bytesperword;
1514		} else {
1515			union {
1516				u64 word;
1517				unsigned char c[8];
1518			} wc;
1519			unsigned char *cp;
1520#ifdef	__BIG_ENDIAN
1521			cp = wc.c + 8 - bytesperword;
1522#else
1523			cp = wc.c;
1524#endif
1525			wc.word = word;
1526#define printable_char(c) \
1527	({unsigned char __c = c; isascii(__c) && isprint(__c) ? __c : '.'; })
1528			switch (bytesperword) {
1529			case 8:
1530				*c++ = printable_char(*cp++);
1531				*c++ = printable_char(*cp++);
1532				*c++ = printable_char(*cp++);
1533				*c++ = printable_char(*cp++);
1534				addr += 4;
1535			case 4:
1536				*c++ = printable_char(*cp++);
1537				*c++ = printable_char(*cp++);
1538				addr += 2;
1539			case 2:
1540				*c++ = printable_char(*cp++);
1541				addr++;
1542			case 1:
1543				*c++ = printable_char(*cp++);
1544				addr++;
1545				break;
1546			}
1547#undef printable_char
1548		}
1549	}
1550	kdb_printf("%*s %s\n", (int)((num-i)*(2*bytesperword + 1)+1),
1551		   " ", cbuf);
1552}
1553
1554static int kdb_md(int argc, const char **argv)
1555{
1556	static unsigned long last_addr;
1557	static int last_radix, last_bytesperword, last_repeat;
1558	int radix = 16, mdcount = 8, bytesperword = KDB_WORD_SIZE, repeat;
1559	int nosect = 0;
1560	char fmtchar, fmtstr[64];
1561	unsigned long addr;
1562	unsigned long word;
1563	long offset = 0;
1564	int symbolic = 0;
1565	int valid = 0;
1566	int phys = 0;
 
1567
1568	kdbgetintenv("MDCOUNT", &mdcount);
1569	kdbgetintenv("RADIX", &radix);
1570	kdbgetintenv("BYTESPERWORD", &bytesperword);
1571
1572	/* Assume 'md <addr>' and start with environment values */
1573	repeat = mdcount * 16 / bytesperword;
1574
1575	if (strcmp(argv[0], "mdr") == 0) {
1576		if (argc != 2)
 
 
1577			return KDB_ARGCOUNT;
1578		valid = 1;
1579	} else if (isdigit(argv[0][2])) {
1580		bytesperword = (int)(argv[0][2] - '0');
1581		if (bytesperword == 0) {
1582			bytesperword = last_bytesperword;
1583			if (bytesperword == 0)
1584				bytesperword = 4;
1585		}
1586		last_bytesperword = bytesperword;
1587		repeat = mdcount * 16 / bytesperword;
1588		if (!argv[0][3])
1589			valid = 1;
1590		else if (argv[0][3] == 'c' && argv[0][4]) {
1591			char *p;
1592			repeat = simple_strtoul(argv[0] + 4, &p, 10);
1593			mdcount = ((repeat * bytesperword) + 15) / 16;
1594			valid = !*p;
1595		}
1596		last_repeat = repeat;
1597	} else if (strcmp(argv[0], "md") == 0)
1598		valid = 1;
1599	else if (strcmp(argv[0], "mds") == 0)
1600		valid = 1;
1601	else if (strcmp(argv[0], "mdp") == 0) {
1602		phys = valid = 1;
1603	}
1604	if (!valid)
1605		return KDB_NOTFOUND;
1606
1607	if (argc == 0) {
1608		if (last_addr == 0)
1609			return KDB_ARGCOUNT;
1610		addr = last_addr;
1611		radix = last_radix;
1612		bytesperword = last_bytesperword;
1613		repeat = last_repeat;
1614		mdcount = ((repeat * bytesperword) + 15) / 16;
 
 
 
1615	}
1616
1617	if (argc) {
1618		unsigned long val;
1619		int diag, nextarg = 1;
1620		diag = kdbgetaddrarg(argc, argv, &nextarg, &addr,
1621				     &offset, NULL);
1622		if (diag)
1623			return diag;
1624		if (argc > nextarg+2)
1625			return KDB_ARGCOUNT;
1626
1627		if (argc >= nextarg) {
1628			diag = kdbgetularg(argv[nextarg], &val);
1629			if (!diag) {
1630				mdcount = (int) val;
1631				repeat = mdcount * 16 / bytesperword;
 
 
 
1632			}
1633		}
1634		if (argc >= nextarg+1) {
1635			diag = kdbgetularg(argv[nextarg+1], &val);
1636			if (!diag)
1637				radix = (int) val;
1638		}
1639	}
1640
1641	if (strcmp(argv[0], "mdr") == 0)
1642		return kdb_mdr(addr, mdcount);
 
 
 
 
 
 
 
1643
1644	switch (radix) {
1645	case 10:
1646		fmtchar = 'd';
1647		break;
1648	case 16:
1649		fmtchar = 'x';
1650		break;
1651	case 8:
1652		fmtchar = 'o';
1653		break;
1654	default:
1655		return KDB_BADRADIX;
1656	}
1657
1658	last_radix = radix;
1659
1660	if (bytesperword > KDB_WORD_SIZE)
1661		return KDB_BADWIDTH;
1662
1663	switch (bytesperword) {
1664	case 8:
1665		sprintf(fmtstr, "%%16.16l%c ", fmtchar);
1666		break;
1667	case 4:
1668		sprintf(fmtstr, "%%8.8l%c ", fmtchar);
1669		break;
1670	case 2:
1671		sprintf(fmtstr, "%%4.4l%c ", fmtchar);
1672		break;
1673	case 1:
1674		sprintf(fmtstr, "%%2.2l%c ", fmtchar);
1675		break;
1676	default:
1677		return KDB_BADWIDTH;
1678	}
1679
1680	last_repeat = repeat;
1681	last_bytesperword = bytesperword;
1682
1683	if (strcmp(argv[0], "mds") == 0) {
1684		symbolic = 1;
1685		/* Do not save these changes as last_*, they are temporary mds
1686		 * overrides.
1687		 */
1688		bytesperword = KDB_WORD_SIZE;
1689		repeat = mdcount;
1690		kdbgetintenv("NOSECT", &nosect);
1691	}
1692
1693	/* Round address down modulo BYTESPERWORD */
1694
1695	addr &= ~(bytesperword-1);
1696
1697	while (repeat > 0) {
1698		unsigned long a;
1699		int n, z, num = (symbolic ? 1 : (16 / bytesperword));
1700
1701		if (KDB_FLAG(CMD_INTERRUPT))
1702			return 0;
1703		for (a = addr, z = 0; z < repeat; a += bytesperword, ++z) {
1704			if (phys) {
1705				if (kdb_getphysword(&word, a, bytesperword)
1706						|| word)
1707					break;
1708			} else if (kdb_getword(&word, a, bytesperword) || word)
1709				break;
1710		}
1711		n = min(num, repeat);
1712		kdb_md_line(fmtstr, addr, symbolic, nosect, bytesperword,
1713			    num, repeat, phys);
1714		addr += bytesperword * n;
1715		repeat -= n;
1716		z = (z + num - 1) / num;
1717		if (z > 2) {
1718			int s = num * (z-2);
1719			kdb_printf(kdb_machreg_fmt0 "-" kdb_machreg_fmt0
1720				   " zero suppressed\n",
1721				addr, addr + bytesperword * s - 1);
1722			addr += bytesperword * s;
1723			repeat -= s;
1724		}
1725	}
1726	last_addr = addr;
1727
1728	return 0;
1729}
1730
1731/*
1732 * kdb_mm - This function implements the 'mm' command.
1733 *	mm address-expression new-value
1734 * Remarks:
1735 *	mm works on machine words, mmW works on bytes.
1736 */
1737static int kdb_mm(int argc, const char **argv)
1738{
1739	int diag;
1740	unsigned long addr;
1741	long offset = 0;
1742	unsigned long contents;
1743	int nextarg;
1744	int width;
1745
1746	if (argv[0][2] && !isdigit(argv[0][2]))
1747		return KDB_NOTFOUND;
1748
1749	if (argc < 2)
1750		return KDB_ARGCOUNT;
1751
1752	nextarg = 1;
1753	diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
1754	if (diag)
1755		return diag;
1756
1757	if (nextarg > argc)
1758		return KDB_ARGCOUNT;
1759	diag = kdbgetaddrarg(argc, argv, &nextarg, &contents, NULL, NULL);
1760	if (diag)
1761		return diag;
1762
1763	if (nextarg != argc + 1)
1764		return KDB_ARGCOUNT;
1765
1766	width = argv[0][2] ? (argv[0][2] - '0') : (KDB_WORD_SIZE);
1767	diag = kdb_putword(addr, contents, width);
1768	if (diag)
1769		return diag;
1770
1771	kdb_printf(kdb_machreg_fmt " = " kdb_machreg_fmt "\n", addr, contents);
1772
1773	return 0;
1774}
1775
1776/*
1777 * kdb_go - This function implements the 'go' command.
1778 *	go [address-expression]
1779 */
1780static int kdb_go(int argc, const char **argv)
1781{
1782	unsigned long addr;
1783	int diag;
1784	int nextarg;
1785	long offset;
1786
1787	if (raw_smp_processor_id() != kdb_initial_cpu) {
1788		kdb_printf("go must execute on the entry cpu, "
1789			   "please use \"cpu %d\" and then execute go\n",
1790			   kdb_initial_cpu);
1791		return KDB_BADCPUNUM;
1792	}
1793	if (argc == 1) {
1794		nextarg = 1;
1795		diag = kdbgetaddrarg(argc, argv, &nextarg,
1796				     &addr, &offset, NULL);
1797		if (diag)
1798			return diag;
1799	} else if (argc) {
1800		return KDB_ARGCOUNT;
1801	}
1802
1803	diag = KDB_CMD_GO;
1804	if (KDB_FLAG(CATASTROPHIC)) {
1805		kdb_printf("Catastrophic error detected\n");
1806		kdb_printf("kdb_continue_catastrophic=%d, ",
1807			kdb_continue_catastrophic);
1808		if (kdb_continue_catastrophic == 0 && kdb_go_count++ == 0) {
1809			kdb_printf("type go a second time if you really want "
1810				   "to continue\n");
1811			return 0;
1812		}
1813		if (kdb_continue_catastrophic == 2) {
1814			kdb_printf("forcing reboot\n");
1815			kdb_reboot(0, NULL);
1816		}
1817		kdb_printf("attempting to continue\n");
1818	}
1819	return diag;
1820}
1821
1822/*
1823 * kdb_rd - This function implements the 'rd' command.
1824 */
1825static int kdb_rd(int argc, const char **argv)
1826{
1827	int len = kdb_check_regs();
1828#if DBG_MAX_REG_NUM > 0
1829	int i;
1830	char *rname;
1831	int rsize;
1832	u64 reg64;
1833	u32 reg32;
1834	u16 reg16;
1835	u8 reg8;
1836
1837	if (len)
1838		return len;
1839
1840	for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1841		rsize = dbg_reg_def[i].size * 2;
1842		if (rsize > 16)
1843			rsize = 2;
1844		if (len + strlen(dbg_reg_def[i].name) + 4 + rsize > 80) {
1845			len = 0;
1846			kdb_printf("\n");
1847		}
1848		if (len)
1849			len += kdb_printf("  ");
1850		switch(dbg_reg_def[i].size * 8) {
1851		case 8:
1852			rname = dbg_get_reg(i, &reg8, kdb_current_regs);
1853			if (!rname)
1854				break;
1855			len += kdb_printf("%s: %02x", rname, reg8);
1856			break;
1857		case 16:
1858			rname = dbg_get_reg(i, &reg16, kdb_current_regs);
1859			if (!rname)
1860				break;
1861			len += kdb_printf("%s: %04x", rname, reg16);
1862			break;
1863		case 32:
1864			rname = dbg_get_reg(i, &reg32, kdb_current_regs);
1865			if (!rname)
1866				break;
1867			len += kdb_printf("%s: %08x", rname, reg32);
1868			break;
1869		case 64:
1870			rname = dbg_get_reg(i, &reg64, kdb_current_regs);
1871			if (!rname)
1872				break;
1873			len += kdb_printf("%s: %016llx", rname, reg64);
1874			break;
1875		default:
1876			len += kdb_printf("%s: ??", dbg_reg_def[i].name);
1877		}
1878	}
1879	kdb_printf("\n");
1880#else
1881	if (len)
1882		return len;
1883
1884	kdb_dumpregs(kdb_current_regs);
1885#endif
1886	return 0;
1887}
1888
1889/*
1890 * kdb_rm - This function implements the 'rm' (register modify)  command.
1891 *	rm register-name new-contents
1892 * Remarks:
1893 *	Allows register modification with the same restrictions as gdb
1894 */
1895static int kdb_rm(int argc, const char **argv)
1896{
1897#if DBG_MAX_REG_NUM > 0
1898	int diag;
1899	const char *rname;
1900	int i;
1901	u64 reg64;
1902	u32 reg32;
1903	u16 reg16;
1904	u8 reg8;
1905
1906	if (argc != 2)
1907		return KDB_ARGCOUNT;
1908	/*
1909	 * Allow presence or absence of leading '%' symbol.
1910	 */
1911	rname = argv[1];
1912	if (*rname == '%')
1913		rname++;
1914
1915	diag = kdbgetu64arg(argv[2], &reg64);
1916	if (diag)
1917		return diag;
1918
1919	diag = kdb_check_regs();
1920	if (diag)
1921		return diag;
1922
1923	diag = KDB_BADREG;
1924	for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1925		if (strcmp(rname, dbg_reg_def[i].name) == 0) {
1926			diag = 0;
1927			break;
1928		}
1929	}
1930	if (!diag) {
1931		switch(dbg_reg_def[i].size * 8) {
1932		case 8:
1933			reg8 = reg64;
1934			dbg_set_reg(i, &reg8, kdb_current_regs);
1935			break;
1936		case 16:
1937			reg16 = reg64;
1938			dbg_set_reg(i, &reg16, kdb_current_regs);
1939			break;
1940		case 32:
1941			reg32 = reg64;
1942			dbg_set_reg(i, &reg32, kdb_current_regs);
1943			break;
1944		case 64:
1945			dbg_set_reg(i, &reg64, kdb_current_regs);
1946			break;
1947		}
1948	}
1949	return diag;
1950#else
1951	kdb_printf("ERROR: Register set currently not implemented\n");
1952    return 0;
1953#endif
1954}
1955
1956#if defined(CONFIG_MAGIC_SYSRQ)
1957/*
1958 * kdb_sr - This function implements the 'sr' (SYSRQ key) command
1959 *	which interfaces to the soi-disant MAGIC SYSRQ functionality.
1960 *		sr <magic-sysrq-code>
1961 */
1962static int kdb_sr(int argc, const char **argv)
1963{
1964	bool check_mask =
1965	    !kdb_check_flags(KDB_ENABLE_ALL, kdb_cmd_enabled, false);
1966
1967	if (argc != 1)
1968		return KDB_ARGCOUNT;
1969
1970	kdb_trap_printk++;
1971	__handle_sysrq(*argv[1], check_mask);
1972	kdb_trap_printk--;
1973
1974	return 0;
1975}
1976#endif	/* CONFIG_MAGIC_SYSRQ */
1977
1978/*
1979 * kdb_ef - This function implements the 'regs' (display exception
1980 *	frame) command.  This command takes an address and expects to
1981 *	find an exception frame at that address, formats and prints
1982 *	it.
1983 *		regs address-expression
1984 * Remarks:
1985 *	Not done yet.
1986 */
1987static int kdb_ef(int argc, const char **argv)
1988{
1989	int diag;
1990	unsigned long addr;
1991	long offset;
1992	int nextarg;
1993
1994	if (argc != 1)
1995		return KDB_ARGCOUNT;
1996
1997	nextarg = 1;
1998	diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
1999	if (diag)
2000		return diag;
2001	show_regs((struct pt_regs *)addr);
2002	return 0;
2003}
2004
2005#if defined(CONFIG_MODULES)
2006/*
2007 * kdb_lsmod - This function implements the 'lsmod' command.  Lists
2008 *	currently loaded kernel modules.
2009 *	Mostly taken from userland lsmod.
2010 */
2011static int kdb_lsmod(int argc, const char **argv)
2012{
2013	struct module *mod;
2014
2015	if (argc != 0)
2016		return KDB_ARGCOUNT;
2017
2018	kdb_printf("Module                  Size  modstruct     Used by\n");
2019	list_for_each_entry(mod, kdb_modules, list) {
2020		if (mod->state == MODULE_STATE_UNFORMED)
2021			continue;
2022
2023		kdb_printf("%-20s%8u  0x%p ", mod->name,
2024			   mod->core_layout.size, (void *)mod);
2025#ifdef CONFIG_MODULE_UNLOAD
2026		kdb_printf("%4d ", module_refcount(mod));
2027#endif
2028		if (mod->state == MODULE_STATE_GOING)
2029			kdb_printf(" (Unloading)");
2030		else if (mod->state == MODULE_STATE_COMING)
2031			kdb_printf(" (Loading)");
2032		else
2033			kdb_printf(" (Live)");
2034		kdb_printf(" 0x%p", mod->core_layout.base);
2035
2036#ifdef CONFIG_MODULE_UNLOAD
2037		{
2038			struct module_use *use;
2039			kdb_printf(" [ ");
2040			list_for_each_entry(use, &mod->source_list,
2041					    source_list)
2042				kdb_printf("%s ", use->target->name);
2043			kdb_printf("]\n");
2044		}
2045#endif
2046	}
2047
2048	return 0;
2049}
2050
2051#endif	/* CONFIG_MODULES */
2052
2053/*
2054 * kdb_env - This function implements the 'env' command.  Display the
2055 *	current environment variables.
2056 */
2057
2058static int kdb_env(int argc, const char **argv)
2059{
2060	int i;
2061
2062	for (i = 0; i < __nenv; i++) {
2063		if (__env[i])
2064			kdb_printf("%s\n", __env[i]);
2065	}
2066
2067	if (KDB_DEBUG(MASK))
2068		kdb_printf("KDBFLAGS=0x%x\n", kdb_flags);
 
2069
2070	return 0;
2071}
2072
2073#ifdef CONFIG_PRINTK
2074/*
2075 * kdb_dmesg - This function implements the 'dmesg' command to display
2076 *	the contents of the syslog buffer.
2077 *		dmesg [lines] [adjust]
2078 */
2079static int kdb_dmesg(int argc, const char **argv)
2080{
2081	int diag;
2082	int logging;
2083	int lines = 0;
2084	int adjust = 0;
2085	int n = 0;
2086	int skip = 0;
2087	struct kmsg_dumper dumper = { .active = 1 };
2088	size_t len;
2089	char buf[201];
2090
2091	if (argc > 2)
2092		return KDB_ARGCOUNT;
2093	if (argc) {
2094		char *cp;
2095		lines = simple_strtol(argv[1], &cp, 0);
2096		if (*cp)
2097			lines = 0;
2098		if (argc > 1) {
2099			adjust = simple_strtoul(argv[2], &cp, 0);
2100			if (*cp || adjust < 0)
2101				adjust = 0;
2102		}
2103	}
2104
2105	/* disable LOGGING if set */
2106	diag = kdbgetintenv("LOGGING", &logging);
2107	if (!diag && logging) {
2108		const char *setargs[] = { "set", "LOGGING", "0" };
2109		kdb_set(2, setargs);
2110	}
2111
2112	kmsg_dump_rewind_nolock(&dumper);
2113	while (kmsg_dump_get_line_nolock(&dumper, 1, NULL, 0, NULL))
2114		n++;
2115
2116	if (lines < 0) {
2117		if (adjust >= n)
2118			kdb_printf("buffer only contains %d lines, nothing "
2119				   "printed\n", n);
2120		else if (adjust - lines >= n)
2121			kdb_printf("buffer only contains %d lines, last %d "
2122				   "lines printed\n", n, n - adjust);
2123		skip = adjust;
2124		lines = abs(lines);
2125	} else if (lines > 0) {
2126		skip = n - lines - adjust;
2127		lines = abs(lines);
2128		if (adjust >= n) {
2129			kdb_printf("buffer only contains %d lines, "
2130				   "nothing printed\n", n);
2131			skip = n;
2132		} else if (skip < 0) {
2133			lines += skip;
2134			skip = 0;
2135			kdb_printf("buffer only contains %d lines, first "
2136				   "%d lines printed\n", n, lines);
2137		}
2138	} else {
2139		lines = n;
2140	}
2141
2142	if (skip >= n || skip < 0)
2143		return 0;
2144
2145	kmsg_dump_rewind_nolock(&dumper);
2146	while (kmsg_dump_get_line_nolock(&dumper, 1, buf, sizeof(buf), &len)) {
2147		if (skip) {
2148			skip--;
2149			continue;
2150		}
2151		if (!lines--)
2152			break;
2153		if (KDB_FLAG(CMD_INTERRUPT))
2154			return 0;
2155
2156		kdb_printf("%.*s\n", (int)len - 1, buf);
2157	}
2158
2159	return 0;
2160}
2161#endif /* CONFIG_PRINTK */
2162
2163/* Make sure we balance enable/disable calls, must disable first. */
2164static atomic_t kdb_nmi_disabled;
2165
2166static int kdb_disable_nmi(int argc, const char *argv[])
2167{
2168	if (atomic_read(&kdb_nmi_disabled))
2169		return 0;
2170	atomic_set(&kdb_nmi_disabled, 1);
2171	arch_kgdb_ops.enable_nmi(0);
2172	return 0;
2173}
2174
2175static int kdb_param_enable_nmi(const char *val, const struct kernel_param *kp)
2176{
2177	if (!atomic_add_unless(&kdb_nmi_disabled, -1, 0))
2178		return -EINVAL;
2179	arch_kgdb_ops.enable_nmi(1);
2180	return 0;
2181}
2182
2183static const struct kernel_param_ops kdb_param_ops_enable_nmi = {
2184	.set = kdb_param_enable_nmi,
2185};
2186module_param_cb(enable_nmi, &kdb_param_ops_enable_nmi, NULL, 0600);
2187
2188/*
2189 * kdb_cpu - This function implements the 'cpu' command.
2190 *	cpu	[<cpunum>]
2191 * Returns:
2192 *	KDB_CMD_CPU for success, a kdb diagnostic if error
2193 */
2194static void kdb_cpu_status(void)
2195{
2196	int i, start_cpu, first_print = 1;
2197	char state, prev_state = '?';
2198
2199	kdb_printf("Currently on cpu %d\n", raw_smp_processor_id());
2200	kdb_printf("Available cpus: ");
2201	for (start_cpu = -1, i = 0; i < NR_CPUS; i++) {
2202		if (!cpu_online(i)) {
2203			state = 'F';	/* cpu is offline */
2204		} else if (!kgdb_info[i].enter_kgdb) {
2205			state = 'D';	/* cpu is online but unresponsive */
2206		} else {
2207			state = ' ';	/* cpu is responding to kdb */
2208			if (kdb_task_state_char(KDB_TSK(i)) == 'I')
2209				state = 'I';	/* idle task */
2210		}
2211		if (state != prev_state) {
2212			if (prev_state != '?') {
2213				if (!first_print)
2214					kdb_printf(", ");
2215				first_print = 0;
2216				kdb_printf("%d", start_cpu);
2217				if (start_cpu < i-1)
2218					kdb_printf("-%d", i-1);
2219				if (prev_state != ' ')
2220					kdb_printf("(%c)", prev_state);
2221			}
2222			prev_state = state;
2223			start_cpu = i;
2224		}
2225	}
2226	/* print the trailing cpus, ignoring them if they are all offline */
2227	if (prev_state != 'F') {
2228		if (!first_print)
2229			kdb_printf(", ");
2230		kdb_printf("%d", start_cpu);
2231		if (start_cpu < i-1)
2232			kdb_printf("-%d", i-1);
2233		if (prev_state != ' ')
2234			kdb_printf("(%c)", prev_state);
2235	}
2236	kdb_printf("\n");
2237}
2238
2239static int kdb_cpu(int argc, const char **argv)
2240{
2241	unsigned long cpunum;
2242	int diag;
2243
2244	if (argc == 0) {
2245		kdb_cpu_status();
2246		return 0;
2247	}
2248
2249	if (argc != 1)
2250		return KDB_ARGCOUNT;
2251
2252	diag = kdbgetularg(argv[1], &cpunum);
2253	if (diag)
2254		return diag;
2255
2256	/*
2257	 * Validate cpunum
2258	 */
2259	if ((cpunum >= CONFIG_NR_CPUS) || !kgdb_info[cpunum].enter_kgdb)
2260		return KDB_BADCPUNUM;
2261
2262	dbg_switch_cpu = cpunum;
2263
2264	/*
2265	 * Switch to other cpu
2266	 */
2267	return KDB_CMD_CPU;
2268}
2269
2270/* The user may not realize that ps/bta with no parameters does not print idle
2271 * or sleeping system daemon processes, so tell them how many were suppressed.
2272 */
2273void kdb_ps_suppressed(void)
2274{
2275	int idle = 0, daemon = 0;
2276	unsigned long mask_I = kdb_task_state_string("I"),
2277		      mask_M = kdb_task_state_string("M");
2278	unsigned long cpu;
2279	const struct task_struct *p, *g;
2280	for_each_online_cpu(cpu) {
2281		p = kdb_curr_task(cpu);
2282		if (kdb_task_state(p, mask_I))
2283			++idle;
2284	}
2285	kdb_do_each_thread(g, p) {
2286		if (kdb_task_state(p, mask_M))
2287			++daemon;
2288	} kdb_while_each_thread(g, p);
2289	if (idle || daemon) {
2290		if (idle)
2291			kdb_printf("%d idle process%s (state I)%s\n",
2292				   idle, idle == 1 ? "" : "es",
2293				   daemon ? " and " : "");
2294		if (daemon)
2295			kdb_printf("%d sleeping system daemon (state M) "
2296				   "process%s", daemon,
2297				   daemon == 1 ? "" : "es");
2298		kdb_printf(" suppressed,\nuse 'ps A' to see all.\n");
2299	}
2300}
2301
2302/*
2303 * kdb_ps - This function implements the 'ps' command which shows a
2304 *	list of the active processes.
2305 *		ps [DRSTCZEUIMA]   All processes, optionally filtered by state
2306 */
2307void kdb_ps1(const struct task_struct *p)
2308{
2309	int cpu;
2310	unsigned long tmp;
2311
2312	if (!p || probe_kernel_read(&tmp, (char *)p, sizeof(unsigned long)))
 
2313		return;
2314
2315	cpu = kdb_process_cpu(p);
2316	kdb_printf("0x%p %8d %8d  %d %4d   %c  0x%p %c%s\n",
2317		   (void *)p, p->pid, p->parent->pid,
2318		   kdb_task_has_cpu(p), kdb_process_cpu(p),
2319		   kdb_task_state_char(p),
2320		   (void *)(&p->thread),
2321		   p == kdb_curr_task(raw_smp_processor_id()) ? '*' : ' ',
2322		   p->comm);
2323	if (kdb_task_has_cpu(p)) {
2324		if (!KDB_TSK(cpu)) {
2325			kdb_printf("  Error: no saved data for this cpu\n");
2326		} else {
2327			if (KDB_TSK(cpu) != p)
2328				kdb_printf("  Error: does not match running "
2329				   "process table (0x%p)\n", KDB_TSK(cpu));
2330		}
2331	}
2332}
2333
2334static int kdb_ps(int argc, const char **argv)
2335{
2336	struct task_struct *g, *p;
2337	unsigned long mask, cpu;
2338
2339	if (argc == 0)
2340		kdb_ps_suppressed();
2341	kdb_printf("%-*s      Pid   Parent [*] cpu State %-*s Command\n",
2342		(int)(2*sizeof(void *))+2, "Task Addr",
2343		(int)(2*sizeof(void *))+2, "Thread");
2344	mask = kdb_task_state_string(argc ? argv[1] : NULL);
2345	/* Run the active tasks first */
2346	for_each_online_cpu(cpu) {
2347		if (KDB_FLAG(CMD_INTERRUPT))
2348			return 0;
2349		p = kdb_curr_task(cpu);
2350		if (kdb_task_state(p, mask))
2351			kdb_ps1(p);
2352	}
2353	kdb_printf("\n");
2354	/* Now the real tasks */
2355	kdb_do_each_thread(g, p) {
2356		if (KDB_FLAG(CMD_INTERRUPT))
2357			return 0;
2358		if (kdb_task_state(p, mask))
2359			kdb_ps1(p);
2360	} kdb_while_each_thread(g, p);
2361
2362	return 0;
2363}
2364
2365/*
2366 * kdb_pid - This function implements the 'pid' command which switches
2367 *	the currently active process.
2368 *		pid [<pid> | R]
2369 */
2370static int kdb_pid(int argc, const char **argv)
2371{
2372	struct task_struct *p;
2373	unsigned long val;
2374	int diag;
2375
2376	if (argc > 1)
2377		return KDB_ARGCOUNT;
2378
2379	if (argc) {
2380		if (strcmp(argv[1], "R") == 0) {
2381			p = KDB_TSK(kdb_initial_cpu);
2382		} else {
2383			diag = kdbgetularg(argv[1], &val);
2384			if (diag)
2385				return KDB_BADINT;
2386
2387			p = find_task_by_pid_ns((pid_t)val,	&init_pid_ns);
2388			if (!p) {
2389				kdb_printf("No task with pid=%d\n", (pid_t)val);
2390				return 0;
2391			}
2392		}
2393		kdb_set_current_task(p);
2394	}
2395	kdb_printf("KDB current process is %s(pid=%d)\n",
2396		   kdb_current_task->comm,
2397		   kdb_current_task->pid);
2398
2399	return 0;
2400}
2401
2402static int kdb_kgdb(int argc, const char **argv)
2403{
2404	return KDB_CMD_KGDB;
2405}
2406
2407/*
2408 * kdb_help - This function implements the 'help' and '?' commands.
2409 */
2410static int kdb_help(int argc, const char **argv)
2411{
2412	kdbtab_t *kt;
2413	int i;
2414
2415	kdb_printf("%-15.15s %-20.20s %s\n", "Command", "Usage", "Description");
2416	kdb_printf("-----------------------------"
2417		   "-----------------------------\n");
2418	for_each_kdbcmd(kt, i) {
2419		char *space = "";
2420		if (KDB_FLAG(CMD_INTERRUPT))
2421			return 0;
2422		if (!kt->cmd_name)
2423			continue;
2424		if (!kdb_check_flags(kt->cmd_flags, kdb_cmd_enabled, true))
2425			continue;
2426		if (strlen(kt->cmd_usage) > 20)
2427			space = "\n                                    ";
2428		kdb_printf("%-15.15s %-20s%s%s\n", kt->cmd_name,
2429			   kt->cmd_usage, space, kt->cmd_help);
2430	}
2431	return 0;
2432}
2433
2434/*
2435 * kdb_kill - This function implements the 'kill' commands.
2436 */
2437static int kdb_kill(int argc, const char **argv)
2438{
2439	long sig, pid;
2440	char *endp;
2441	struct task_struct *p;
2442	struct siginfo info;
2443
2444	if (argc != 2)
2445		return KDB_ARGCOUNT;
2446
2447	sig = simple_strtol(argv[1], &endp, 0);
2448	if (*endp)
2449		return KDB_BADINT;
2450	if (sig >= 0) {
2451		kdb_printf("Invalid signal parameter.<-signal>\n");
2452		return 0;
2453	}
2454	sig = -sig;
2455
2456	pid = simple_strtol(argv[2], &endp, 0);
2457	if (*endp)
2458		return KDB_BADINT;
2459	if (pid <= 0) {
2460		kdb_printf("Process ID must be large than 0.\n");
2461		return 0;
2462	}
2463
2464	/* Find the process. */
2465	p = find_task_by_pid_ns(pid, &init_pid_ns);
2466	if (!p) {
2467		kdb_printf("The specified process isn't found.\n");
2468		return 0;
2469	}
2470	p = p->group_leader;
2471	info.si_signo = sig;
2472	info.si_errno = 0;
2473	info.si_code = SI_USER;
2474	info.si_pid = pid;  /* same capabilities as process being signalled */
2475	info.si_uid = 0;    /* kdb has root authority */
2476	kdb_send_sig_info(p, &info);
2477	return 0;
2478}
2479
2480struct kdb_tm {
2481	int tm_sec;	/* seconds */
2482	int tm_min;	/* minutes */
2483	int tm_hour;	/* hours */
2484	int tm_mday;	/* day of the month */
2485	int tm_mon;	/* month */
2486	int tm_year;	/* year */
2487};
2488
2489static void kdb_gmtime(struct timespec *tv, struct kdb_tm *tm)
2490{
2491	/* This will work from 1970-2099, 2100 is not a leap year */
2492	static int mon_day[] = { 31, 29, 31, 30, 31, 30, 31,
2493				 31, 30, 31, 30, 31 };
2494	memset(tm, 0, sizeof(*tm));
2495	tm->tm_sec  = tv->tv_sec % (24 * 60 * 60);
2496	tm->tm_mday = tv->tv_sec / (24 * 60 * 60) +
2497		(2 * 365 + 1); /* shift base from 1970 to 1968 */
2498	tm->tm_min =  tm->tm_sec / 60 % 60;
2499	tm->tm_hour = tm->tm_sec / 60 / 60;
2500	tm->tm_sec =  tm->tm_sec % 60;
2501	tm->tm_year = 68 + 4*(tm->tm_mday / (4*365+1));
2502	tm->tm_mday %= (4*365+1);
2503	mon_day[1] = 29;
2504	while (tm->tm_mday >= mon_day[tm->tm_mon]) {
2505		tm->tm_mday -= mon_day[tm->tm_mon];
2506		if (++tm->tm_mon == 12) {
2507			tm->tm_mon = 0;
2508			++tm->tm_year;
2509			mon_day[1] = 28;
2510		}
2511	}
2512	++tm->tm_mday;
2513}
2514
2515/*
2516 * Most of this code has been lifted from kernel/timer.c::sys_sysinfo().
2517 * I cannot call that code directly from kdb, it has an unconditional
2518 * cli()/sti() and calls routines that take locks which can stop the debugger.
2519 */
2520static void kdb_sysinfo(struct sysinfo *val)
2521{
2522	struct timespec uptime;
2523	ktime_get_ts(&uptime);
2524	memset(val, 0, sizeof(*val));
2525	val->uptime = uptime.tv_sec;
2526	val->loads[0] = avenrun[0];
2527	val->loads[1] = avenrun[1];
2528	val->loads[2] = avenrun[2];
2529	val->procs = nr_threads-1;
2530	si_meminfo(val);
2531
2532	return;
2533}
2534
2535/*
2536 * kdb_summary - This function implements the 'summary' command.
2537 */
2538static int kdb_summary(int argc, const char **argv)
2539{
2540	struct timespec now;
2541	struct kdb_tm tm;
2542	struct sysinfo val;
2543
2544	if (argc)
2545		return KDB_ARGCOUNT;
2546
2547	kdb_printf("sysname    %s\n", init_uts_ns.name.sysname);
2548	kdb_printf("release    %s\n", init_uts_ns.name.release);
2549	kdb_printf("version    %s\n", init_uts_ns.name.version);
2550	kdb_printf("machine    %s\n", init_uts_ns.name.machine);
2551	kdb_printf("nodename   %s\n", init_uts_ns.name.nodename);
2552	kdb_printf("domainname %s\n", init_uts_ns.name.domainname);
2553	kdb_printf("ccversion  %s\n", __stringify(CCVERSION));
2554
2555	now = __current_kernel_time();
2556	kdb_gmtime(&now, &tm);
2557	kdb_printf("date       %04d-%02d-%02d %02d:%02d:%02d "
2558		   "tz_minuteswest %d\n",
2559		1900+tm.tm_year, tm.tm_mon+1, tm.tm_mday,
2560		tm.tm_hour, tm.tm_min, tm.tm_sec,
2561		sys_tz.tz_minuteswest);
2562
2563	kdb_sysinfo(&val);
2564	kdb_printf("uptime     ");
2565	if (val.uptime > (24*60*60)) {
2566		int days = val.uptime / (24*60*60);
2567		val.uptime %= (24*60*60);
2568		kdb_printf("%d day%s ", days, days == 1 ? "" : "s");
2569	}
2570	kdb_printf("%02ld:%02ld\n", val.uptime/(60*60), (val.uptime/60)%60);
2571
2572	/* lifted from fs/proc/proc_misc.c::loadavg_read_proc() */
2573
2574#define LOAD_INT(x) ((x) >> FSHIFT)
2575#define LOAD_FRAC(x) LOAD_INT(((x) & (FIXED_1-1)) * 100)
2576	kdb_printf("load avg   %ld.%02ld %ld.%02ld %ld.%02ld\n",
2577		LOAD_INT(val.loads[0]), LOAD_FRAC(val.loads[0]),
2578		LOAD_INT(val.loads[1]), LOAD_FRAC(val.loads[1]),
2579		LOAD_INT(val.loads[2]), LOAD_FRAC(val.loads[2]));
2580#undef LOAD_INT
2581#undef LOAD_FRAC
2582	/* Display in kilobytes */
2583#define K(x) ((x) << (PAGE_SHIFT - 10))
2584	kdb_printf("\nMemTotal:       %8lu kB\nMemFree:        %8lu kB\n"
2585		   "Buffers:        %8lu kB\n",
2586		   K(val.totalram), K(val.freeram), K(val.bufferram));
2587	return 0;
2588}
2589
2590/*
2591 * kdb_per_cpu - This function implements the 'per_cpu' command.
2592 */
2593static int kdb_per_cpu(int argc, const char **argv)
2594{
2595	char fmtstr[64];
2596	int cpu, diag, nextarg = 1;
2597	unsigned long addr, symaddr, val, bytesperword = 0, whichcpu = ~0UL;
2598
2599	if (argc < 1 || argc > 3)
2600		return KDB_ARGCOUNT;
2601
2602	diag = kdbgetaddrarg(argc, argv, &nextarg, &symaddr, NULL, NULL);
2603	if (diag)
2604		return diag;
2605
2606	if (argc >= 2) {
2607		diag = kdbgetularg(argv[2], &bytesperword);
2608		if (diag)
2609			return diag;
2610	}
2611	if (!bytesperword)
2612		bytesperword = KDB_WORD_SIZE;
2613	else if (bytesperword > KDB_WORD_SIZE)
2614		return KDB_BADWIDTH;
2615	sprintf(fmtstr, "%%0%dlx ", (int)(2*bytesperword));
2616	if (argc >= 3) {
2617		diag = kdbgetularg(argv[3], &whichcpu);
2618		if (diag)
2619			return diag;
2620		if (!cpu_online(whichcpu)) {
2621			kdb_printf("cpu %ld is not online\n", whichcpu);
2622			return KDB_BADCPUNUM;
2623		}
2624	}
2625
2626	/* Most architectures use __per_cpu_offset[cpu], some use
2627	 * __per_cpu_offset(cpu), smp has no __per_cpu_offset.
2628	 */
2629#ifdef	__per_cpu_offset
2630#define KDB_PCU(cpu) __per_cpu_offset(cpu)
2631#else
2632#ifdef	CONFIG_SMP
2633#define KDB_PCU(cpu) __per_cpu_offset[cpu]
2634#else
2635#define KDB_PCU(cpu) 0
2636#endif
2637#endif
2638	for_each_online_cpu(cpu) {
2639		if (KDB_FLAG(CMD_INTERRUPT))
2640			return 0;
2641
2642		if (whichcpu != ~0UL && whichcpu != cpu)
2643			continue;
2644		addr = symaddr + KDB_PCU(cpu);
2645		diag = kdb_getword(&val, addr, bytesperword);
2646		if (diag) {
2647			kdb_printf("%5d " kdb_bfd_vma_fmt0 " - unable to "
2648				   "read, diag=%d\n", cpu, addr, diag);
2649			continue;
2650		}
2651		kdb_printf("%5d ", cpu);
2652		kdb_md_line(fmtstr, addr,
2653			bytesperword == KDB_WORD_SIZE,
2654			1, bytesperword, 1, 1, 0);
2655	}
2656#undef KDB_PCU
2657	return 0;
2658}
2659
2660/*
2661 * display help for the use of cmd | grep pattern
2662 */
2663static int kdb_grep_help(int argc, const char **argv)
2664{
2665	kdb_printf("Usage of  cmd args | grep pattern:\n");
2666	kdb_printf("  Any command's output may be filtered through an ");
2667	kdb_printf("emulated 'pipe'.\n");
2668	kdb_printf("  'grep' is just a key word.\n");
2669	kdb_printf("  The pattern may include a very limited set of "
2670		   "metacharacters:\n");
2671	kdb_printf("   pattern or ^pattern or pattern$ or ^pattern$\n");
2672	kdb_printf("  And if there are spaces in the pattern, you may "
2673		   "quote it:\n");
2674	kdb_printf("   \"pat tern\" or \"^pat tern\" or \"pat tern$\""
2675		   " or \"^pat tern$\"\n");
2676	return 0;
2677}
2678
2679/*
2680 * kdb_register_flags - This function is used to register a kernel
2681 * 	debugger command.
2682 * Inputs:
2683 *	cmd	Command name
2684 *	func	Function to execute the command
2685 *	usage	A simple usage string showing arguments
2686 *	help	A simple help string describing command
2687 *	repeat	Does the command auto repeat on enter?
2688 * Returns:
2689 *	zero for success, one if a duplicate command.
2690 */
2691#define kdb_command_extend 50	/* arbitrary */
2692int kdb_register_flags(char *cmd,
2693		       kdb_func_t func,
2694		       char *usage,
2695		       char *help,
2696		       short minlen,
2697		       kdb_cmdflags_t flags)
2698{
2699	int i;
2700	kdbtab_t *kp;
2701
2702	/*
2703	 *  Brute force method to determine duplicates
2704	 */
2705	for_each_kdbcmd(kp, i) {
2706		if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) {
2707			kdb_printf("Duplicate kdb command registered: "
2708				"%s, func %p help %s\n", cmd, func, help);
2709			return 1;
2710		}
2711	}
2712
2713	/*
2714	 * Insert command into first available location in table
2715	 */
2716	for_each_kdbcmd(kp, i) {
2717		if (kp->cmd_name == NULL)
2718			break;
2719	}
2720
2721	if (i >= kdb_max_commands) {
2722		kdbtab_t *new = kmalloc((kdb_max_commands - KDB_BASE_CMD_MAX +
2723			 kdb_command_extend) * sizeof(*new), GFP_KDB);
 
 
 
2724		if (!new) {
2725			kdb_printf("Could not allocate new kdb_command "
2726				   "table\n");
2727			return 1;
2728		}
2729		if (kdb_commands) {
2730			memcpy(new, kdb_commands,
2731			  (kdb_max_commands - KDB_BASE_CMD_MAX) * sizeof(*new));
2732			kfree(kdb_commands);
2733		}
2734		memset(new + kdb_max_commands - KDB_BASE_CMD_MAX, 0,
2735		       kdb_command_extend * sizeof(*new));
2736		kdb_commands = new;
2737		kp = kdb_commands + kdb_max_commands - KDB_BASE_CMD_MAX;
2738		kdb_max_commands += kdb_command_extend;
2739	}
2740
2741	kp->cmd_name   = cmd;
2742	kp->cmd_func   = func;
2743	kp->cmd_usage  = usage;
2744	kp->cmd_help   = help;
2745	kp->cmd_minlen = minlen;
2746	kp->cmd_flags  = flags;
2747
2748	return 0;
2749}
2750EXPORT_SYMBOL_GPL(kdb_register_flags);
2751
2752
2753/*
2754 * kdb_register - Compatibility register function for commands that do
2755 *	not need to specify a repeat state.  Equivalent to
2756 *	kdb_register_flags with flags set to 0.
2757 * Inputs:
2758 *	cmd	Command name
2759 *	func	Function to execute the command
2760 *	usage	A simple usage string showing arguments
2761 *	help	A simple help string describing command
2762 * Returns:
2763 *	zero for success, one if a duplicate command.
2764 */
2765int kdb_register(char *cmd,
2766	     kdb_func_t func,
2767	     char *usage,
2768	     char *help,
2769	     short minlen)
2770{
2771	return kdb_register_flags(cmd, func, usage, help, minlen, 0);
2772}
2773EXPORT_SYMBOL_GPL(kdb_register);
2774
2775/*
2776 * kdb_unregister - This function is used to unregister a kernel
2777 *	debugger command.  It is generally called when a module which
2778 *	implements kdb commands is unloaded.
2779 * Inputs:
2780 *	cmd	Command name
2781 * Returns:
2782 *	zero for success, one command not registered.
2783 */
2784int kdb_unregister(char *cmd)
2785{
2786	int i;
2787	kdbtab_t *kp;
2788
2789	/*
2790	 *  find the command.
2791	 */
2792	for_each_kdbcmd(kp, i) {
2793		if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) {
2794			kp->cmd_name = NULL;
2795			return 0;
2796		}
2797	}
2798
2799	/* Couldn't find it.  */
2800	return 1;
2801}
2802EXPORT_SYMBOL_GPL(kdb_unregister);
2803
2804/* Initialize the kdb command table. */
2805static void __init kdb_inittab(void)
2806{
2807	int i;
2808	kdbtab_t *kp;
2809
2810	for_each_kdbcmd(kp, i)
2811		kp->cmd_name = NULL;
2812
2813	kdb_register_flags("md", kdb_md, "<vaddr>",
2814	  "Display Memory Contents, also mdWcN, e.g. md8c1", 1,
2815	  KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS);
2816	kdb_register_flags("mdr", kdb_md, "<vaddr> <bytes>",
2817	  "Display Raw Memory", 0,
2818	  KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS);
2819	kdb_register_flags("mdp", kdb_md, "<paddr> <bytes>",
2820	  "Display Physical Memory", 0,
2821	  KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS);
2822	kdb_register_flags("mds", kdb_md, "<vaddr>",
2823	  "Display Memory Symbolically", 0,
2824	  KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS);
2825	kdb_register_flags("mm", kdb_mm, "<vaddr> <contents>",
2826	  "Modify Memory Contents", 0,
2827	  KDB_ENABLE_MEM_WRITE | KDB_REPEAT_NO_ARGS);
2828	kdb_register_flags("go", kdb_go, "[<vaddr>]",
2829	  "Continue Execution", 1,
2830	  KDB_ENABLE_REG_WRITE | KDB_ENABLE_ALWAYS_SAFE_NO_ARGS);
2831	kdb_register_flags("rd", kdb_rd, "",
2832	  "Display Registers", 0,
2833	  KDB_ENABLE_REG_READ);
2834	kdb_register_flags("rm", kdb_rm, "<reg> <contents>",
2835	  "Modify Registers", 0,
2836	  KDB_ENABLE_REG_WRITE);
2837	kdb_register_flags("ef", kdb_ef, "<vaddr>",
2838	  "Display exception frame", 0,
2839	  KDB_ENABLE_MEM_READ);
2840	kdb_register_flags("bt", kdb_bt, "[<vaddr>]",
2841	  "Stack traceback", 1,
2842	  KDB_ENABLE_MEM_READ | KDB_ENABLE_INSPECT_NO_ARGS);
2843	kdb_register_flags("btp", kdb_bt, "<pid>",
2844	  "Display stack for process <pid>", 0,
2845	  KDB_ENABLE_INSPECT);
2846	kdb_register_flags("bta", kdb_bt, "[D|R|S|T|C|Z|E|U|I|M|A]",
2847	  "Backtrace all processes matching state flag", 0,
2848	  KDB_ENABLE_INSPECT);
2849	kdb_register_flags("btc", kdb_bt, "",
2850	  "Backtrace current process on each cpu", 0,
2851	  KDB_ENABLE_INSPECT);
2852	kdb_register_flags("btt", kdb_bt, "<vaddr>",
2853	  "Backtrace process given its struct task address", 0,
2854	  KDB_ENABLE_MEM_READ | KDB_ENABLE_INSPECT_NO_ARGS);
2855	kdb_register_flags("env", kdb_env, "",
2856	  "Show environment variables", 0,
2857	  KDB_ENABLE_ALWAYS_SAFE);
2858	kdb_register_flags("set", kdb_set, "",
2859	  "Set environment variables", 0,
2860	  KDB_ENABLE_ALWAYS_SAFE);
2861	kdb_register_flags("help", kdb_help, "",
2862	  "Display Help Message", 1,
2863	  KDB_ENABLE_ALWAYS_SAFE);
2864	kdb_register_flags("?", kdb_help, "",
2865	  "Display Help Message", 0,
2866	  KDB_ENABLE_ALWAYS_SAFE);
2867	kdb_register_flags("cpu", kdb_cpu, "<cpunum>",
2868	  "Switch to new cpu", 0,
2869	  KDB_ENABLE_ALWAYS_SAFE_NO_ARGS);
2870	kdb_register_flags("kgdb", kdb_kgdb, "",
2871	  "Enter kgdb mode", 0, 0);
2872	kdb_register_flags("ps", kdb_ps, "[<flags>|A]",
2873	  "Display active task list", 0,
2874	  KDB_ENABLE_INSPECT);
2875	kdb_register_flags("pid", kdb_pid, "<pidnum>",
2876	  "Switch to another task", 0,
2877	  KDB_ENABLE_INSPECT);
2878	kdb_register_flags("reboot", kdb_reboot, "",
2879	  "Reboot the machine immediately", 0,
2880	  KDB_ENABLE_REBOOT);
2881#if defined(CONFIG_MODULES)
2882	kdb_register_flags("lsmod", kdb_lsmod, "",
2883	  "List loaded kernel modules", 0,
2884	  KDB_ENABLE_INSPECT);
2885#endif
2886#if defined(CONFIG_MAGIC_SYSRQ)
2887	kdb_register_flags("sr", kdb_sr, "<key>",
2888	  "Magic SysRq key", 0,
2889	  KDB_ENABLE_ALWAYS_SAFE);
2890#endif
2891#if defined(CONFIG_PRINTK)
2892	kdb_register_flags("dmesg", kdb_dmesg, "[lines]",
2893	  "Display syslog buffer", 0,
2894	  KDB_ENABLE_ALWAYS_SAFE);
2895#endif
2896	if (arch_kgdb_ops.enable_nmi) {
2897		kdb_register_flags("disable_nmi", kdb_disable_nmi, "",
2898		  "Disable NMI entry to KDB", 0,
2899		  KDB_ENABLE_ALWAYS_SAFE);
2900	}
2901	kdb_register_flags("defcmd", kdb_defcmd, "name \"usage\" \"help\"",
2902	  "Define a set of commands, down to endefcmd", 0,
2903	  KDB_ENABLE_ALWAYS_SAFE);
2904	kdb_register_flags("kill", kdb_kill, "<-signal> <pid>",
2905	  "Send a signal to a process", 0,
2906	  KDB_ENABLE_SIGNAL);
2907	kdb_register_flags("summary", kdb_summary, "",
2908	  "Summarize the system", 4,
2909	  KDB_ENABLE_ALWAYS_SAFE);
2910	kdb_register_flags("per_cpu", kdb_per_cpu, "<sym> [<bytes>] [<cpu>]",
2911	  "Display per_cpu variables", 3,
2912	  KDB_ENABLE_MEM_READ);
2913	kdb_register_flags("grephelp", kdb_grep_help, "",
2914	  "Display help on | grep", 0,
2915	  KDB_ENABLE_ALWAYS_SAFE);
2916}
2917
2918/* Execute any commands defined in kdb_cmds.  */
2919static void __init kdb_cmd_init(void)
2920{
2921	int i, diag;
2922	for (i = 0; kdb_cmds[i]; ++i) {
2923		diag = kdb_parse(kdb_cmds[i]);
2924		if (diag)
2925			kdb_printf("kdb command %s failed, kdb diag %d\n",
2926				kdb_cmds[i], diag);
2927	}
2928	if (defcmd_in_progress) {
2929		kdb_printf("Incomplete 'defcmd' set, forcing endefcmd\n");
2930		kdb_parse("endefcmd");
2931	}
2932}
2933
2934/* Initialize kdb_printf, breakpoint tables and kdb state */
2935void __init kdb_init(int lvl)
2936{
2937	static int kdb_init_lvl = KDB_NOT_INITIALIZED;
2938	int i;
2939
2940	if (kdb_init_lvl == KDB_INIT_FULL || lvl <= kdb_init_lvl)
2941		return;
2942	for (i = kdb_init_lvl; i < lvl; i++) {
2943		switch (i) {
2944		case KDB_NOT_INITIALIZED:
2945			kdb_inittab();		/* Initialize Command Table */
2946			kdb_initbptab();	/* Initialize Breakpoints */
2947			break;
2948		case KDB_INIT_EARLY:
2949			kdb_cmd_init();		/* Build kdb_cmds tables */
2950			break;
2951		}
2952	}
2953	kdb_init_lvl = lvl;
2954}
v5.9
   1/*
   2 * Kernel Debugger Architecture Independent Main Code
   3 *
   4 * This file is subject to the terms and conditions of the GNU General Public
   5 * License.  See the file "COPYING" in the main directory of this archive
   6 * for more details.
   7 *
   8 * Copyright (C) 1999-2004 Silicon Graphics, Inc.  All Rights Reserved.
   9 * Copyright (C) 2000 Stephane Eranian <eranian@hpl.hp.com>
  10 * Xscale (R) modifications copyright (C) 2003 Intel Corporation.
  11 * Copyright (c) 2009 Wind River Systems, Inc.  All Rights Reserved.
  12 */
  13
  14#include <linux/ctype.h>
  15#include <linux/types.h>
  16#include <linux/string.h>
  17#include <linux/kernel.h>
  18#include <linux/kmsg_dump.h>
  19#include <linux/reboot.h>
  20#include <linux/sched.h>
  21#include <linux/sched/loadavg.h>
  22#include <linux/sched/stat.h>
  23#include <linux/sched/debug.h>
  24#include <linux/sysrq.h>
  25#include <linux/smp.h>
  26#include <linux/utsname.h>
  27#include <linux/vmalloc.h>
  28#include <linux/atomic.h>
  29#include <linux/module.h>
  30#include <linux/moduleparam.h>
  31#include <linux/mm.h>
  32#include <linux/init.h>
  33#include <linux/kallsyms.h>
  34#include <linux/kgdb.h>
  35#include <linux/kdb.h>
  36#include <linux/notifier.h>
  37#include <linux/interrupt.h>
  38#include <linux/delay.h>
  39#include <linux/nmi.h>
  40#include <linux/time.h>
  41#include <linux/ptrace.h>
  42#include <linux/sysctl.h>
  43#include <linux/cpu.h>
  44#include <linux/kdebug.h>
  45#include <linux/proc_fs.h>
  46#include <linux/uaccess.h>
  47#include <linux/slab.h>
  48#include "kdb_private.h"
  49
  50#undef	MODULE_PARAM_PREFIX
  51#define	MODULE_PARAM_PREFIX "kdb."
  52
  53static int kdb_cmd_enabled = CONFIG_KDB_DEFAULT_ENABLE;
  54module_param_named(cmd_enable, kdb_cmd_enabled, int, 0600);
  55
  56char kdb_grep_string[KDB_GREP_STRLEN];
  57int kdb_grepping_flag;
  58EXPORT_SYMBOL(kdb_grepping_flag);
  59int kdb_grep_leading;
  60int kdb_grep_trailing;
  61
  62/*
  63 * Kernel debugger state flags
  64 */
  65unsigned int kdb_flags;
 
  66
  67/*
  68 * kdb_lock protects updates to kdb_initial_cpu.  Used to
  69 * single thread processors through the kernel debugger.
  70 */
  71int kdb_initial_cpu = -1;	/* cpu number that owns kdb */
  72int kdb_nextline = 1;
  73int kdb_state;			/* General KDB state */
  74
  75struct task_struct *kdb_current_task;
 
  76struct pt_regs *kdb_current_regs;
  77
  78const char *kdb_diemsg;
  79static int kdb_go_count;
  80#ifdef CONFIG_KDB_CONTINUE_CATASTROPHIC
  81static unsigned int kdb_continue_catastrophic =
  82	CONFIG_KDB_CONTINUE_CATASTROPHIC;
  83#else
  84static unsigned int kdb_continue_catastrophic;
  85#endif
  86
  87/* kdb_commands describes the available commands. */
  88static kdbtab_t *kdb_commands;
  89#define KDB_BASE_CMD_MAX 50
  90static int kdb_max_commands = KDB_BASE_CMD_MAX;
  91static kdbtab_t kdb_base_commands[KDB_BASE_CMD_MAX];
  92#define for_each_kdbcmd(cmd, num)					\
  93	for ((cmd) = kdb_base_commands, (num) = 0;			\
  94	     num < kdb_max_commands;					\
  95	     num++, num == KDB_BASE_CMD_MAX ? cmd = kdb_commands : cmd++)
  96
  97typedef struct _kdbmsg {
  98	int	km_diag;	/* kdb diagnostic */
  99	char	*km_msg;	/* Corresponding message text */
 100} kdbmsg_t;
 101
 102#define KDBMSG(msgnum, text) \
 103	{ KDB_##msgnum, text }
 104
 105static kdbmsg_t kdbmsgs[] = {
 106	KDBMSG(NOTFOUND, "Command Not Found"),
 107	KDBMSG(ARGCOUNT, "Improper argument count, see usage."),
 108	KDBMSG(BADWIDTH, "Illegal value for BYTESPERWORD use 1, 2, 4 or 8, "
 109	       "8 is only allowed on 64 bit systems"),
 110	KDBMSG(BADRADIX, "Illegal value for RADIX use 8, 10 or 16"),
 111	KDBMSG(NOTENV, "Cannot find environment variable"),
 112	KDBMSG(NOENVVALUE, "Environment variable should have value"),
 113	KDBMSG(NOTIMP, "Command not implemented"),
 114	KDBMSG(ENVFULL, "Environment full"),
 115	KDBMSG(ENVBUFFULL, "Environment buffer full"),
 116	KDBMSG(TOOMANYBPT, "Too many breakpoints defined"),
 117#ifdef CONFIG_CPU_XSCALE
 118	KDBMSG(TOOMANYDBREGS, "More breakpoints than ibcr registers defined"),
 119#else
 120	KDBMSG(TOOMANYDBREGS, "More breakpoints than db registers defined"),
 121#endif
 122	KDBMSG(DUPBPT, "Duplicate breakpoint address"),
 123	KDBMSG(BPTNOTFOUND, "Breakpoint not found"),
 124	KDBMSG(BADMODE, "Invalid IDMODE"),
 125	KDBMSG(BADINT, "Illegal numeric value"),
 126	KDBMSG(INVADDRFMT, "Invalid symbolic address format"),
 127	KDBMSG(BADREG, "Invalid register name"),
 128	KDBMSG(BADCPUNUM, "Invalid cpu number"),
 129	KDBMSG(BADLENGTH, "Invalid length field"),
 130	KDBMSG(NOBP, "No Breakpoint exists"),
 131	KDBMSG(BADADDR, "Invalid address"),
 132	KDBMSG(NOPERM, "Permission denied"),
 133};
 134#undef KDBMSG
 135
 136static const int __nkdb_err = ARRAY_SIZE(kdbmsgs);
 137
 138
 139/*
 140 * Initial environment.   This is all kept static and local to
 141 * this file.   We don't want to rely on the memory allocation
 142 * mechanisms in the kernel, so we use a very limited allocate-only
 143 * heap for new and altered environment variables.  The entire
 144 * environment is limited to a fixed number of entries (add more
 145 * to __env[] if required) and a fixed amount of heap (add more to
 146 * KDB_ENVBUFSIZE if required).
 147 */
 148
 149static char *__env[] = {
 150#if defined(CONFIG_SMP)
 151 "PROMPT=[%d]kdb> ",
 152#else
 153 "PROMPT=kdb> ",
 154#endif
 155 "MOREPROMPT=more> ",
 156 "RADIX=16",
 157 "MDCOUNT=8",			/* lines of md output */
 158 KDB_PLATFORM_ENV,
 159 "DTABCOUNT=30",
 160 "NOSECT=1",
 161 (char *)0,
 162 (char *)0,
 163 (char *)0,
 164 (char *)0,
 165 (char *)0,
 166 (char *)0,
 167 (char *)0,
 168 (char *)0,
 169 (char *)0,
 170 (char *)0,
 171 (char *)0,
 172 (char *)0,
 173 (char *)0,
 174 (char *)0,
 175 (char *)0,
 176 (char *)0,
 177 (char *)0,
 178 (char *)0,
 179 (char *)0,
 180 (char *)0,
 181 (char *)0,
 182 (char *)0,
 183 (char *)0,
 184 (char *)0,
 185};
 186
 187static const int __nenv = ARRAY_SIZE(__env);
 188
 189struct task_struct *kdb_curr_task(int cpu)
 190{
 191	struct task_struct *p = curr_task(cpu);
 192#ifdef	_TIF_MCA_INIT
 193	if ((task_thread_info(p)->flags & _TIF_MCA_INIT) && KDB_TSK(cpu))
 194		p = krp->p;
 195#endif
 196	return p;
 197}
 198
 199/*
 200 * Check whether the flags of the current command and the permissions
 201 * of the kdb console has allow a command to be run.
 202 */
 203static inline bool kdb_check_flags(kdb_cmdflags_t flags, int permissions,
 204				   bool no_args)
 205{
 206	/* permissions comes from userspace so needs massaging slightly */
 207	permissions &= KDB_ENABLE_MASK;
 208	permissions |= KDB_ENABLE_ALWAYS_SAFE;
 209
 210	/* some commands change group when launched with no arguments */
 211	if (no_args)
 212		permissions |= permissions << KDB_ENABLE_NO_ARGS_SHIFT;
 213
 214	flags |= KDB_ENABLE_ALL;
 215
 216	return permissions & flags;
 217}
 218
 219/*
 220 * kdbgetenv - This function will return the character string value of
 221 *	an environment variable.
 222 * Parameters:
 223 *	match	A character string representing an environment variable.
 224 * Returns:
 225 *	NULL	No environment variable matches 'match'
 226 *	char*	Pointer to string value of environment variable.
 227 */
 228char *kdbgetenv(const char *match)
 229{
 230	char **ep = __env;
 231	int matchlen = strlen(match);
 232	int i;
 233
 234	for (i = 0; i < __nenv; i++) {
 235		char *e = *ep++;
 236
 237		if (!e)
 238			continue;
 239
 240		if ((strncmp(match, e, matchlen) == 0)
 241		 && ((e[matchlen] == '\0')
 242		   || (e[matchlen] == '='))) {
 243			char *cp = strchr(e, '=');
 244			return cp ? ++cp : "";
 245		}
 246	}
 247	return NULL;
 248}
 249
 250/*
 251 * kdballocenv - This function is used to allocate bytes for
 252 *	environment entries.
 253 * Parameters:
 254 *	match	A character string representing a numeric value
 255 * Outputs:
 256 *	*value  the unsigned long representation of the env variable 'match'
 257 * Returns:
 258 *	Zero on success, a kdb diagnostic on failure.
 259 * Remarks:
 260 *	We use a static environment buffer (envbuffer) to hold the values
 261 *	of dynamically generated environment variables (see kdb_set).  Buffer
 262 *	space once allocated is never free'd, so over time, the amount of space
 263 *	(currently 512 bytes) will be exhausted if env variables are changed
 264 *	frequently.
 265 */
 266static char *kdballocenv(size_t bytes)
 267{
 268#define	KDB_ENVBUFSIZE	512
 269	static char envbuffer[KDB_ENVBUFSIZE];
 270	static int envbufsize;
 271	char *ep = NULL;
 272
 273	if ((KDB_ENVBUFSIZE - envbufsize) >= bytes) {
 274		ep = &envbuffer[envbufsize];
 275		envbufsize += bytes;
 276	}
 277	return ep;
 278}
 279
 280/*
 281 * kdbgetulenv - This function will return the value of an unsigned
 282 *	long-valued environment variable.
 283 * Parameters:
 284 *	match	A character string representing a numeric value
 285 * Outputs:
 286 *	*value  the unsigned long represntation of the env variable 'match'
 287 * Returns:
 288 *	Zero on success, a kdb diagnostic on failure.
 289 */
 290static int kdbgetulenv(const char *match, unsigned long *value)
 291{
 292	char *ep;
 293
 294	ep = kdbgetenv(match);
 295	if (!ep)
 296		return KDB_NOTENV;
 297	if (strlen(ep) == 0)
 298		return KDB_NOENVVALUE;
 299
 300	*value = simple_strtoul(ep, NULL, 0);
 301
 302	return 0;
 303}
 304
 305/*
 306 * kdbgetintenv - This function will return the value of an
 307 *	integer-valued environment variable.
 308 * Parameters:
 309 *	match	A character string representing an integer-valued env variable
 310 * Outputs:
 311 *	*value  the integer representation of the environment variable 'match'
 312 * Returns:
 313 *	Zero on success, a kdb diagnostic on failure.
 314 */
 315int kdbgetintenv(const char *match, int *value)
 316{
 317	unsigned long val;
 318	int diag;
 319
 320	diag = kdbgetulenv(match, &val);
 321	if (!diag)
 322		*value = (int) val;
 323	return diag;
 324}
 325
 326/*
 327 * kdbgetularg - This function will convert a numeric string into an
 328 *	unsigned long value.
 329 * Parameters:
 330 *	arg	A character string representing a numeric value
 331 * Outputs:
 332 *	*value  the unsigned long represntation of arg.
 333 * Returns:
 334 *	Zero on success, a kdb diagnostic on failure.
 335 */
 336int kdbgetularg(const char *arg, unsigned long *value)
 337{
 338	char *endp;
 339	unsigned long val;
 340
 341	val = simple_strtoul(arg, &endp, 0);
 342
 343	if (endp == arg) {
 344		/*
 345		 * Also try base 16, for us folks too lazy to type the
 346		 * leading 0x...
 347		 */
 348		val = simple_strtoul(arg, &endp, 16);
 349		if (endp == arg)
 350			return KDB_BADINT;
 351	}
 352
 353	*value = val;
 354
 355	return 0;
 356}
 357
 358int kdbgetu64arg(const char *arg, u64 *value)
 359{
 360	char *endp;
 361	u64 val;
 362
 363	val = simple_strtoull(arg, &endp, 0);
 364
 365	if (endp == arg) {
 366
 367		val = simple_strtoull(arg, &endp, 16);
 368		if (endp == arg)
 369			return KDB_BADINT;
 370	}
 371
 372	*value = val;
 373
 374	return 0;
 375}
 376
 377/*
 378 * kdb_set - This function implements the 'set' command.  Alter an
 379 *	existing environment variable or create a new one.
 380 */
 381int kdb_set(int argc, const char **argv)
 382{
 383	int i;
 384	char *ep;
 385	size_t varlen, vallen;
 386
 387	/*
 388	 * we can be invoked two ways:
 389	 *   set var=value    argv[1]="var", argv[2]="value"
 390	 *   set var = value  argv[1]="var", argv[2]="=", argv[3]="value"
 391	 * - if the latter, shift 'em down.
 392	 */
 393	if (argc == 3) {
 394		argv[2] = argv[3];
 395		argc--;
 396	}
 397
 398	if (argc != 2)
 399		return KDB_ARGCOUNT;
 400
 401	/*
 402	 * Censor sensitive variables
 403	 */
 404	if (strcmp(argv[1], "PROMPT") == 0 &&
 405	    !kdb_check_flags(KDB_ENABLE_MEM_READ, kdb_cmd_enabled, false))
 406		return KDB_NOPERM;
 407
 408	/*
 409	 * Check for internal variables
 410	 */
 411	if (strcmp(argv[1], "KDBDEBUG") == 0) {
 412		unsigned int debugflags;
 413		char *cp;
 414
 415		debugflags = simple_strtoul(argv[2], &cp, 0);
 416		if (cp == argv[2] || debugflags & ~KDB_DEBUG_FLAG_MASK) {
 417			kdb_printf("kdb: illegal debug flags '%s'\n",
 418				    argv[2]);
 419			return 0;
 420		}
 421		kdb_flags = (kdb_flags & ~KDB_DEBUG(MASK))
 
 422			| (debugflags << KDB_DEBUG_FLAG_SHIFT);
 423
 424		return 0;
 425	}
 426
 427	/*
 428	 * Tokenizer squashed the '=' sign.  argv[1] is variable
 429	 * name, argv[2] = value.
 430	 */
 431	varlen = strlen(argv[1]);
 432	vallen = strlen(argv[2]);
 433	ep = kdballocenv(varlen + vallen + 2);
 434	if (ep == (char *)0)
 435		return KDB_ENVBUFFULL;
 436
 437	sprintf(ep, "%s=%s", argv[1], argv[2]);
 438
 439	ep[varlen+vallen+1] = '\0';
 440
 441	for (i = 0; i < __nenv; i++) {
 442		if (__env[i]
 443		 && ((strncmp(__env[i], argv[1], varlen) == 0)
 444		   && ((__env[i][varlen] == '\0')
 445		    || (__env[i][varlen] == '=')))) {
 446			__env[i] = ep;
 447			return 0;
 448		}
 449	}
 450
 451	/*
 452	 * Wasn't existing variable.  Fit into slot.
 453	 */
 454	for (i = 0; i < __nenv-1; i++) {
 455		if (__env[i] == (char *)0) {
 456			__env[i] = ep;
 457			return 0;
 458		}
 459	}
 460
 461	return KDB_ENVFULL;
 462}
 463
 464static int kdb_check_regs(void)
 465{
 466	if (!kdb_current_regs) {
 467		kdb_printf("No current kdb registers."
 468			   "  You may need to select another task\n");
 469		return KDB_BADREG;
 470	}
 471	return 0;
 472}
 473
 474/*
 475 * kdbgetaddrarg - This function is responsible for parsing an
 476 *	address-expression and returning the value of the expression,
 477 *	symbol name, and offset to the caller.
 478 *
 479 *	The argument may consist of a numeric value (decimal or
 480 *	hexidecimal), a symbol name, a register name (preceded by the
 481 *	percent sign), an environment variable with a numeric value
 482 *	(preceded by a dollar sign) or a simple arithmetic expression
 483 *	consisting of a symbol name, +/-, and a numeric constant value
 484 *	(offset).
 485 * Parameters:
 486 *	argc	- count of arguments in argv
 487 *	argv	- argument vector
 488 *	*nextarg - index to next unparsed argument in argv[]
 489 *	regs	- Register state at time of KDB entry
 490 * Outputs:
 491 *	*value	- receives the value of the address-expression
 492 *	*offset - receives the offset specified, if any
 493 *	*name   - receives the symbol name, if any
 494 *	*nextarg - index to next unparsed argument in argv[]
 495 * Returns:
 496 *	zero is returned on success, a kdb diagnostic code is
 497 *      returned on error.
 498 */
 499int kdbgetaddrarg(int argc, const char **argv, int *nextarg,
 500		  unsigned long *value,  long *offset,
 501		  char **name)
 502{
 503	unsigned long addr;
 504	unsigned long off = 0;
 505	int positive;
 506	int diag;
 507	int found = 0;
 508	char *symname;
 509	char symbol = '\0';
 510	char *cp;
 511	kdb_symtab_t symtab;
 512
 513	/*
 514	 * If the enable flags prohibit both arbitrary memory access
 515	 * and flow control then there are no reasonable grounds to
 516	 * provide symbol lookup.
 517	 */
 518	if (!kdb_check_flags(KDB_ENABLE_MEM_READ | KDB_ENABLE_FLOW_CTRL,
 519			     kdb_cmd_enabled, false))
 520		return KDB_NOPERM;
 521
 522	/*
 523	 * Process arguments which follow the following syntax:
 524	 *
 525	 *  symbol | numeric-address [+/- numeric-offset]
 526	 *  %register
 527	 *  $environment-variable
 528	 */
 529
 530	if (*nextarg > argc)
 531		return KDB_ARGCOUNT;
 532
 533	symname = (char *)argv[*nextarg];
 534
 535	/*
 536	 * If there is no whitespace between the symbol
 537	 * or address and the '+' or '-' symbols, we
 538	 * remember the character and replace it with a
 539	 * null so the symbol/value can be properly parsed
 540	 */
 541	cp = strpbrk(symname, "+-");
 542	if (cp != NULL) {
 543		symbol = *cp;
 544		*cp++ = '\0';
 545	}
 546
 547	if (symname[0] == '$') {
 548		diag = kdbgetulenv(&symname[1], &addr);
 549		if (diag)
 550			return diag;
 551	} else if (symname[0] == '%') {
 552		diag = kdb_check_regs();
 553		if (diag)
 554			return diag;
 555		/* Implement register values with % at a later time as it is
 556		 * arch optional.
 557		 */
 558		return KDB_NOTIMP;
 559	} else {
 560		found = kdbgetsymval(symname, &symtab);
 561		if (found) {
 562			addr = symtab.sym_start;
 563		} else {
 564			diag = kdbgetularg(argv[*nextarg], &addr);
 565			if (diag)
 566				return diag;
 567		}
 568	}
 569
 570	if (!found)
 571		found = kdbnearsym(addr, &symtab);
 572
 573	(*nextarg)++;
 574
 575	if (name)
 576		*name = symname;
 577	if (value)
 578		*value = addr;
 579	if (offset && name && *name)
 580		*offset = addr - symtab.sym_start;
 581
 582	if ((*nextarg > argc)
 583	 && (symbol == '\0'))
 584		return 0;
 585
 586	/*
 587	 * check for +/- and offset
 588	 */
 589
 590	if (symbol == '\0') {
 591		if ((argv[*nextarg][0] != '+')
 592		 && (argv[*nextarg][0] != '-')) {
 593			/*
 594			 * Not our argument.  Return.
 595			 */
 596			return 0;
 597		} else {
 598			positive = (argv[*nextarg][0] == '+');
 599			(*nextarg)++;
 600		}
 601	} else
 602		positive = (symbol == '+');
 603
 604	/*
 605	 * Now there must be an offset!
 606	 */
 607	if ((*nextarg > argc)
 608	 && (symbol == '\0')) {
 609		return KDB_INVADDRFMT;
 610	}
 611
 612	if (!symbol) {
 613		cp = (char *)argv[*nextarg];
 614		(*nextarg)++;
 615	}
 616
 617	diag = kdbgetularg(cp, &off);
 618	if (diag)
 619		return diag;
 620
 621	if (!positive)
 622		off = -off;
 623
 624	if (offset)
 625		*offset += off;
 626
 627	if (value)
 628		*value += off;
 629
 630	return 0;
 631}
 632
 633static void kdb_cmderror(int diag)
 634{
 635	int i;
 636
 637	if (diag >= 0) {
 638		kdb_printf("no error detected (diagnostic is %d)\n", diag);
 639		return;
 640	}
 641
 642	for (i = 0; i < __nkdb_err; i++) {
 643		if (kdbmsgs[i].km_diag == diag) {
 644			kdb_printf("diag: %d: %s\n", diag, kdbmsgs[i].km_msg);
 645			return;
 646		}
 647	}
 648
 649	kdb_printf("Unknown diag %d\n", -diag);
 650}
 651
 652/*
 653 * kdb_defcmd, kdb_defcmd2 - This function implements the 'defcmd'
 654 *	command which defines one command as a set of other commands,
 655 *	terminated by endefcmd.  kdb_defcmd processes the initial
 656 *	'defcmd' command, kdb_defcmd2 is invoked from kdb_parse for
 657 *	the following commands until 'endefcmd'.
 658 * Inputs:
 659 *	argc	argument count
 660 *	argv	argument vector
 661 * Returns:
 662 *	zero for success, a kdb diagnostic if error
 663 */
 664struct defcmd_set {
 665	int count;
 666	bool usable;
 667	char *name;
 668	char *usage;
 669	char *help;
 670	char **command;
 671};
 672static struct defcmd_set *defcmd_set;
 673static int defcmd_set_count;
 674static bool defcmd_in_progress;
 675
 676/* Forward references */
 677static int kdb_exec_defcmd(int argc, const char **argv);
 678
 679static int kdb_defcmd2(const char *cmdstr, const char *argv0)
 680{
 681	struct defcmd_set *s = defcmd_set + defcmd_set_count - 1;
 682	char **save_command = s->command;
 683	if (strcmp(argv0, "endefcmd") == 0) {
 684		defcmd_in_progress = false;
 685		if (!s->count)
 686			s->usable = false;
 687		if (s->usable)
 688			/* macros are always safe because when executed each
 689			 * internal command re-enters kdb_parse() and is
 690			 * safety checked individually.
 691			 */
 692			kdb_register_flags(s->name, kdb_exec_defcmd, s->usage,
 693					   s->help, 0,
 694					   KDB_ENABLE_ALWAYS_SAFE);
 695		return 0;
 696	}
 697	if (!s->usable)
 698		return KDB_NOTIMP;
 699	s->command = kcalloc(s->count + 1, sizeof(*(s->command)), GFP_KDB);
 700	if (!s->command) {
 701		kdb_printf("Could not allocate new kdb_defcmd table for %s\n",
 702			   cmdstr);
 703		s->usable = false;
 704		return KDB_NOTIMP;
 705	}
 706	memcpy(s->command, save_command, s->count * sizeof(*(s->command)));
 707	s->command[s->count++] = kdb_strdup(cmdstr, GFP_KDB);
 708	kfree(save_command);
 709	return 0;
 710}
 711
 712static int kdb_defcmd(int argc, const char **argv)
 713{
 714	struct defcmd_set *save_defcmd_set = defcmd_set, *s;
 715	if (defcmd_in_progress) {
 716		kdb_printf("kdb: nested defcmd detected, assuming missing "
 717			   "endefcmd\n");
 718		kdb_defcmd2("endefcmd", "endefcmd");
 719	}
 720	if (argc == 0) {
 721		int i;
 722		for (s = defcmd_set; s < defcmd_set + defcmd_set_count; ++s) {
 723			kdb_printf("defcmd %s \"%s\" \"%s\"\n", s->name,
 724				   s->usage, s->help);
 725			for (i = 0; i < s->count; ++i)
 726				kdb_printf("%s", s->command[i]);
 727			kdb_printf("endefcmd\n");
 728		}
 729		return 0;
 730	}
 731	if (argc != 3)
 732		return KDB_ARGCOUNT;
 733	if (in_dbg_master()) {
 734		kdb_printf("Command only available during kdb_init()\n");
 735		return KDB_NOTIMP;
 736	}
 737	defcmd_set = kmalloc_array(defcmd_set_count + 1, sizeof(*defcmd_set),
 738				   GFP_KDB);
 739	if (!defcmd_set)
 740		goto fail_defcmd;
 741	memcpy(defcmd_set, save_defcmd_set,
 742	       defcmd_set_count * sizeof(*defcmd_set));
 743	s = defcmd_set + defcmd_set_count;
 744	memset(s, 0, sizeof(*s));
 745	s->usable = true;
 746	s->name = kdb_strdup(argv[1], GFP_KDB);
 747	if (!s->name)
 748		goto fail_name;
 749	s->usage = kdb_strdup(argv[2], GFP_KDB);
 750	if (!s->usage)
 751		goto fail_usage;
 752	s->help = kdb_strdup(argv[3], GFP_KDB);
 753	if (!s->help)
 754		goto fail_help;
 755	if (s->usage[0] == '"') {
 756		strcpy(s->usage, argv[2]+1);
 757		s->usage[strlen(s->usage)-1] = '\0';
 758	}
 759	if (s->help[0] == '"') {
 760		strcpy(s->help, argv[3]+1);
 761		s->help[strlen(s->help)-1] = '\0';
 762	}
 763	++defcmd_set_count;
 764	defcmd_in_progress = true;
 765	kfree(save_defcmd_set);
 766	return 0;
 767fail_help:
 768	kfree(s->usage);
 769fail_usage:
 770	kfree(s->name);
 771fail_name:
 772	kfree(defcmd_set);
 773fail_defcmd:
 774	kdb_printf("Could not allocate new defcmd_set entry for %s\n", argv[1]);
 775	defcmd_set = save_defcmd_set;
 776	return KDB_NOTIMP;
 777}
 778
 779/*
 780 * kdb_exec_defcmd - Execute the set of commands associated with this
 781 *	defcmd name.
 782 * Inputs:
 783 *	argc	argument count
 784 *	argv	argument vector
 785 * Returns:
 786 *	zero for success, a kdb diagnostic if error
 787 */
 788static int kdb_exec_defcmd(int argc, const char **argv)
 789{
 790	int i, ret;
 791	struct defcmd_set *s;
 792	if (argc != 0)
 793		return KDB_ARGCOUNT;
 794	for (s = defcmd_set, i = 0; i < defcmd_set_count; ++i, ++s) {
 795		if (strcmp(s->name, argv[0]) == 0)
 796			break;
 797	}
 798	if (i == defcmd_set_count) {
 799		kdb_printf("kdb_exec_defcmd: could not find commands for %s\n",
 800			   argv[0]);
 801		return KDB_NOTIMP;
 802	}
 803	for (i = 0; i < s->count; ++i) {
 804		/* Recursive use of kdb_parse, do not use argv after
 805		 * this point */
 806		argv = NULL;
 807		kdb_printf("[%s]kdb> %s\n", s->name, s->command[i]);
 808		ret = kdb_parse(s->command[i]);
 809		if (ret)
 810			return ret;
 811	}
 812	return 0;
 813}
 814
 815/* Command history */
 816#define KDB_CMD_HISTORY_COUNT	32
 817#define CMD_BUFLEN		200	/* kdb_printf: max printline
 818					 * size == 256 */
 819static unsigned int cmd_head, cmd_tail;
 820static unsigned int cmdptr;
 821static char cmd_hist[KDB_CMD_HISTORY_COUNT][CMD_BUFLEN];
 822static char cmd_cur[CMD_BUFLEN];
 823
 824/*
 825 * The "str" argument may point to something like  | grep xyz
 826 */
 827static void parse_grep(const char *str)
 828{
 829	int	len;
 830	char	*cp = (char *)str, *cp2;
 831
 832	/* sanity check: we should have been called with the \ first */
 833	if (*cp != '|')
 834		return;
 835	cp++;
 836	while (isspace(*cp))
 837		cp++;
 838	if (!str_has_prefix(cp, "grep ")) {
 839		kdb_printf("invalid 'pipe', see grephelp\n");
 840		return;
 841	}
 842	cp += 5;
 843	while (isspace(*cp))
 844		cp++;
 845	cp2 = strchr(cp, '\n');
 846	if (cp2)
 847		*cp2 = '\0'; /* remove the trailing newline */
 848	len = strlen(cp);
 849	if (len == 0) {
 850		kdb_printf("invalid 'pipe', see grephelp\n");
 851		return;
 852	}
 853	/* now cp points to a nonzero length search string */
 854	if (*cp == '"') {
 855		/* allow it be "x y z" by removing the "'s - there must
 856		   be two of them */
 857		cp++;
 858		cp2 = strchr(cp, '"');
 859		if (!cp2) {
 860			kdb_printf("invalid quoted string, see grephelp\n");
 861			return;
 862		}
 863		*cp2 = '\0'; /* end the string where the 2nd " was */
 864	}
 865	kdb_grep_leading = 0;
 866	if (*cp == '^') {
 867		kdb_grep_leading = 1;
 868		cp++;
 869	}
 870	len = strlen(cp);
 871	kdb_grep_trailing = 0;
 872	if (*(cp+len-1) == '$') {
 873		kdb_grep_trailing = 1;
 874		*(cp+len-1) = '\0';
 875	}
 876	len = strlen(cp);
 877	if (!len)
 878		return;
 879	if (len >= KDB_GREP_STRLEN) {
 880		kdb_printf("search string too long\n");
 881		return;
 882	}
 883	strcpy(kdb_grep_string, cp);
 884	kdb_grepping_flag++;
 885	return;
 886}
 887
 888/*
 889 * kdb_parse - Parse the command line, search the command table for a
 890 *	matching command and invoke the command function.  This
 891 *	function may be called recursively, if it is, the second call
 892 *	will overwrite argv and cbuf.  It is the caller's
 893 *	responsibility to save their argv if they recursively call
 894 *	kdb_parse().
 895 * Parameters:
 896 *      cmdstr	The input command line to be parsed.
 897 *	regs	The registers at the time kdb was entered.
 898 * Returns:
 899 *	Zero for success, a kdb diagnostic if failure.
 900 * Remarks:
 901 *	Limited to 20 tokens.
 902 *
 903 *	Real rudimentary tokenization. Basically only whitespace
 904 *	is considered a token delimeter (but special consideration
 905 *	is taken of the '=' sign as used by the 'set' command).
 906 *
 907 *	The algorithm used to tokenize the input string relies on
 908 *	there being at least one whitespace (or otherwise useless)
 909 *	character between tokens as the character immediately following
 910 *	the token is altered in-place to a null-byte to terminate the
 911 *	token string.
 912 */
 913
 914#define MAXARGC	20
 915
 916int kdb_parse(const char *cmdstr)
 917{
 918	static char *argv[MAXARGC];
 919	static int argc;
 920	static char cbuf[CMD_BUFLEN+2];
 921	char *cp;
 922	char *cpp, quoted;
 923	kdbtab_t *tp;
 924	int i, escaped, ignore_errors = 0, check_grep = 0;
 925
 926	/*
 927	 * First tokenize the command string.
 928	 */
 929	cp = (char *)cmdstr;
 930
 931	if (KDB_FLAG(CMD_INTERRUPT)) {
 932		/* Previous command was interrupted, newline must not
 933		 * repeat the command */
 934		KDB_FLAG_CLEAR(CMD_INTERRUPT);
 935		KDB_STATE_SET(PAGER);
 936		argc = 0;	/* no repeat */
 937	}
 938
 939	if (*cp != '\n' && *cp != '\0') {
 940		argc = 0;
 941		cpp = cbuf;
 942		while (*cp) {
 943			/* skip whitespace */
 944			while (isspace(*cp))
 945				cp++;
 946			if ((*cp == '\0') || (*cp == '\n') ||
 947			    (*cp == '#' && !defcmd_in_progress))
 948				break;
 949			/* special case: check for | grep pattern */
 950			if (*cp == '|') {
 951				check_grep++;
 952				break;
 953			}
 954			if (cpp >= cbuf + CMD_BUFLEN) {
 955				kdb_printf("kdb_parse: command buffer "
 956					   "overflow, command ignored\n%s\n",
 957					   cmdstr);
 958				return KDB_NOTFOUND;
 959			}
 960			if (argc >= MAXARGC - 1) {
 961				kdb_printf("kdb_parse: too many arguments, "
 962					   "command ignored\n%s\n", cmdstr);
 963				return KDB_NOTFOUND;
 964			}
 965			argv[argc++] = cpp;
 966			escaped = 0;
 967			quoted = '\0';
 968			/* Copy to next unquoted and unescaped
 969			 * whitespace or '=' */
 970			while (*cp && *cp != '\n' &&
 971			       (escaped || quoted || !isspace(*cp))) {
 972				if (cpp >= cbuf + CMD_BUFLEN)
 973					break;
 974				if (escaped) {
 975					escaped = 0;
 976					*cpp++ = *cp++;
 977					continue;
 978				}
 979				if (*cp == '\\') {
 980					escaped = 1;
 981					++cp;
 982					continue;
 983				}
 984				if (*cp == quoted)
 985					quoted = '\0';
 986				else if (*cp == '\'' || *cp == '"')
 987					quoted = *cp;
 988				*cpp = *cp++;
 989				if (*cpp == '=' && !quoted)
 990					break;
 991				++cpp;
 992			}
 993			*cpp++ = '\0';	/* Squash a ws or '=' character */
 994		}
 995	}
 996	if (!argc)
 997		return 0;
 998	if (check_grep)
 999		parse_grep(cp);
1000	if (defcmd_in_progress) {
1001		int result = kdb_defcmd2(cmdstr, argv[0]);
1002		if (!defcmd_in_progress) {
1003			argc = 0;	/* avoid repeat on endefcmd */
1004			*(argv[0]) = '\0';
1005		}
1006		return result;
1007	}
1008	if (argv[0][0] == '-' && argv[0][1] &&
1009	    (argv[0][1] < '0' || argv[0][1] > '9')) {
1010		ignore_errors = 1;
1011		++argv[0];
1012	}
1013
1014	for_each_kdbcmd(tp, i) {
1015		if (tp->cmd_name) {
1016			/*
1017			 * If this command is allowed to be abbreviated,
1018			 * check to see if this is it.
1019			 */
1020
1021			if (tp->cmd_minlen
1022			 && (strlen(argv[0]) <= tp->cmd_minlen)) {
1023				if (strncmp(argv[0],
1024					    tp->cmd_name,
1025					    tp->cmd_minlen) == 0) {
1026					break;
1027				}
1028			}
1029
1030			if (strcmp(argv[0], tp->cmd_name) == 0)
1031				break;
1032		}
1033	}
1034
1035	/*
1036	 * If we don't find a command by this name, see if the first
1037	 * few characters of this match any of the known commands.
1038	 * e.g., md1c20 should match md.
1039	 */
1040	if (i == kdb_max_commands) {
1041		for_each_kdbcmd(tp, i) {
1042			if (tp->cmd_name) {
1043				if (strncmp(argv[0],
1044					    tp->cmd_name,
1045					    strlen(tp->cmd_name)) == 0) {
1046					break;
1047				}
1048			}
1049		}
1050	}
1051
1052	if (i < kdb_max_commands) {
1053		int result;
1054
1055		if (!kdb_check_flags(tp->cmd_flags, kdb_cmd_enabled, argc <= 1))
1056			return KDB_NOPERM;
1057
1058		KDB_STATE_SET(CMD);
1059		result = (*tp->cmd_func)(argc-1, (const char **)argv);
1060		if (result && ignore_errors && result > KDB_CMD_GO)
1061			result = 0;
1062		KDB_STATE_CLEAR(CMD);
1063
1064		if (tp->cmd_flags & KDB_REPEAT_WITH_ARGS)
1065			return result;
1066
1067		argc = tp->cmd_flags & KDB_REPEAT_NO_ARGS ? 1 : 0;
1068		if (argv[argc])
1069			*(argv[argc]) = '\0';
1070		return result;
1071	}
1072
1073	/*
1074	 * If the input with which we were presented does not
1075	 * map to an existing command, attempt to parse it as an
1076	 * address argument and display the result.   Useful for
1077	 * obtaining the address of a variable, or the nearest symbol
1078	 * to an address contained in a register.
1079	 */
1080	{
1081		unsigned long value;
1082		char *name = NULL;
1083		long offset;
1084		int nextarg = 0;
1085
1086		if (kdbgetaddrarg(0, (const char **)argv, &nextarg,
1087				  &value, &offset, &name)) {
1088			return KDB_NOTFOUND;
1089		}
1090
1091		kdb_printf("%s = ", argv[0]);
1092		kdb_symbol_print(value, NULL, KDB_SP_DEFAULT);
1093		kdb_printf("\n");
1094		return 0;
1095	}
1096}
1097
1098
1099static int handle_ctrl_cmd(char *cmd)
1100{
1101#define CTRL_P	16
1102#define CTRL_N	14
1103
1104	/* initial situation */
1105	if (cmd_head == cmd_tail)
1106		return 0;
1107	switch (*cmd) {
1108	case CTRL_P:
1109		if (cmdptr != cmd_tail)
1110			cmdptr = (cmdptr + KDB_CMD_HISTORY_COUNT - 1) %
1111				 KDB_CMD_HISTORY_COUNT;
1112		strscpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1113		return 1;
1114	case CTRL_N:
1115		if (cmdptr != cmd_head)
1116			cmdptr = (cmdptr+1) % KDB_CMD_HISTORY_COUNT;
1117		strscpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1118		return 1;
1119	}
1120	return 0;
1121}
1122
1123/*
1124 * kdb_reboot - This function implements the 'reboot' command.  Reboot
1125 *	the system immediately, or loop for ever on failure.
1126 */
1127static int kdb_reboot(int argc, const char **argv)
1128{
1129	emergency_restart();
1130	kdb_printf("Hmm, kdb_reboot did not reboot, spinning here\n");
1131	while (1)
1132		cpu_relax();
1133	/* NOTREACHED */
1134	return 0;
1135}
1136
1137static void kdb_dumpregs(struct pt_regs *regs)
1138{
1139	int old_lvl = console_loglevel;
1140	console_loglevel = CONSOLE_LOGLEVEL_MOTORMOUTH;
1141	kdb_trap_printk++;
1142	show_regs(regs);
1143	kdb_trap_printk--;
1144	kdb_printf("\n");
1145	console_loglevel = old_lvl;
1146}
1147
1148static void kdb_set_current_task(struct task_struct *p)
1149{
1150	kdb_current_task = p;
1151
1152	if (kdb_task_has_cpu(p)) {
1153		kdb_current_regs = KDB_TSKREGS(kdb_process_cpu(p));
1154		return;
1155	}
1156	kdb_current_regs = NULL;
1157}
1158
1159static void drop_newline(char *buf)
1160{
1161	size_t len = strlen(buf);
1162
1163	if (len == 0)
1164		return;
1165	if (*(buf + len - 1) == '\n')
1166		*(buf + len - 1) = '\0';
1167}
1168
1169/*
1170 * kdb_local - The main code for kdb.  This routine is invoked on a
1171 *	specific processor, it is not global.  The main kdb() routine
1172 *	ensures that only one processor at a time is in this routine.
1173 *	This code is called with the real reason code on the first
1174 *	entry to a kdb session, thereafter it is called with reason
1175 *	SWITCH, even if the user goes back to the original cpu.
1176 * Inputs:
1177 *	reason		The reason KDB was invoked
1178 *	error		The hardware-defined error code
1179 *	regs		The exception frame at time of fault/breakpoint.
1180 *	db_result	Result code from the break or debug point.
1181 * Returns:
1182 *	0	KDB was invoked for an event which it wasn't responsible
1183 *	1	KDB handled the event for which it was invoked.
1184 *	KDB_CMD_GO	User typed 'go'.
1185 *	KDB_CMD_CPU	User switched to another cpu.
1186 *	KDB_CMD_SS	Single step.
1187 */
1188static int kdb_local(kdb_reason_t reason, int error, struct pt_regs *regs,
1189		     kdb_dbtrap_t db_result)
1190{
1191	char *cmdbuf;
1192	int diag;
1193	struct task_struct *kdb_current =
1194		kdb_curr_task(raw_smp_processor_id());
1195
1196	KDB_DEBUG_STATE("kdb_local 1", reason);
1197	kdb_go_count = 0;
1198	if (reason == KDB_REASON_DEBUG) {
1199		/* special case below */
1200	} else {
1201		kdb_printf("\nEntering kdb (current=0x%px, pid %d) ",
1202			   kdb_current, kdb_current ? kdb_current->pid : 0);
1203#if defined(CONFIG_SMP)
1204		kdb_printf("on processor %d ", raw_smp_processor_id());
1205#endif
1206	}
1207
1208	switch (reason) {
1209	case KDB_REASON_DEBUG:
1210	{
1211		/*
1212		 * If re-entering kdb after a single step
1213		 * command, don't print the message.
1214		 */
1215		switch (db_result) {
1216		case KDB_DB_BPT:
1217			kdb_printf("\nEntering kdb (0x%px, pid %d) ",
1218				   kdb_current, kdb_current->pid);
1219#if defined(CONFIG_SMP)
1220			kdb_printf("on processor %d ", raw_smp_processor_id());
1221#endif
1222			kdb_printf("due to Debug @ " kdb_machreg_fmt "\n",
1223				   instruction_pointer(regs));
1224			break;
1225		case KDB_DB_SS:
1226			break;
1227		case KDB_DB_SSBPT:
1228			KDB_DEBUG_STATE("kdb_local 4", reason);
1229			return 1;	/* kdba_db_trap did the work */
1230		default:
1231			kdb_printf("kdb: Bad result from kdba_db_trap: %d\n",
1232				   db_result);
1233			break;
1234		}
1235
1236	}
1237		break;
1238	case KDB_REASON_ENTER:
1239		if (KDB_STATE(KEYBOARD))
1240			kdb_printf("due to Keyboard Entry\n");
1241		else
1242			kdb_printf("due to KDB_ENTER()\n");
1243		break;
1244	case KDB_REASON_KEYBOARD:
1245		KDB_STATE_SET(KEYBOARD);
1246		kdb_printf("due to Keyboard Entry\n");
1247		break;
1248	case KDB_REASON_ENTER_SLAVE:
1249		/* drop through, slaves only get released via cpu switch */
1250	case KDB_REASON_SWITCH:
1251		kdb_printf("due to cpu switch\n");
1252		break;
1253	case KDB_REASON_OOPS:
1254		kdb_printf("Oops: %s\n", kdb_diemsg);
1255		kdb_printf("due to oops @ " kdb_machreg_fmt "\n",
1256			   instruction_pointer(regs));
1257		kdb_dumpregs(regs);
1258		break;
1259	case KDB_REASON_SYSTEM_NMI:
1260		kdb_printf("due to System NonMaskable Interrupt\n");
1261		break;
1262	case KDB_REASON_NMI:
1263		kdb_printf("due to NonMaskable Interrupt @ "
1264			   kdb_machreg_fmt "\n",
1265			   instruction_pointer(regs));
1266		break;
1267	case KDB_REASON_SSTEP:
1268	case KDB_REASON_BREAK:
1269		kdb_printf("due to %s @ " kdb_machreg_fmt "\n",
1270			   reason == KDB_REASON_BREAK ?
1271			   "Breakpoint" : "SS trap", instruction_pointer(regs));
1272		/*
1273		 * Determine if this breakpoint is one that we
1274		 * are interested in.
1275		 */
1276		if (db_result != KDB_DB_BPT) {
1277			kdb_printf("kdb: error return from kdba_bp_trap: %d\n",
1278				   db_result);
1279			KDB_DEBUG_STATE("kdb_local 6", reason);
1280			return 0;	/* Not for us, dismiss it */
1281		}
1282		break;
1283	case KDB_REASON_RECURSE:
1284		kdb_printf("due to Recursion @ " kdb_machreg_fmt "\n",
1285			   instruction_pointer(regs));
1286		break;
1287	default:
1288		kdb_printf("kdb: unexpected reason code: %d\n", reason);
1289		KDB_DEBUG_STATE("kdb_local 8", reason);
1290		return 0;	/* Not for us, dismiss it */
1291	}
1292
1293	while (1) {
1294		/*
1295		 * Initialize pager context.
1296		 */
1297		kdb_nextline = 1;
1298		KDB_STATE_CLEAR(SUPPRESS);
1299		kdb_grepping_flag = 0;
1300		/* ensure the old search does not leak into '/' commands */
1301		kdb_grep_string[0] = '\0';
1302
1303		cmdbuf = cmd_cur;
1304		*cmdbuf = '\0';
1305		*(cmd_hist[cmd_head]) = '\0';
1306
1307do_full_getstr:
1308		/* PROMPT can only be set if we have MEM_READ permission. */
1309		snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"),
1310			 raw_smp_processor_id());
 
 
 
1311		if (defcmd_in_progress)
1312			strncat(kdb_prompt_str, "[defcmd]", CMD_BUFLEN);
1313
1314		/*
1315		 * Fetch command from keyboard
1316		 */
1317		cmdbuf = kdb_getstr(cmdbuf, CMD_BUFLEN, kdb_prompt_str);
1318		if (*cmdbuf != '\n') {
1319			if (*cmdbuf < 32) {
1320				if (cmdptr == cmd_head) {
1321					strscpy(cmd_hist[cmd_head], cmd_cur,
1322						CMD_BUFLEN);
1323					*(cmd_hist[cmd_head] +
1324					  strlen(cmd_hist[cmd_head])-1) = '\0';
1325				}
1326				if (!handle_ctrl_cmd(cmdbuf))
1327					*(cmd_cur+strlen(cmd_cur)-1) = '\0';
1328				cmdbuf = cmd_cur;
1329				goto do_full_getstr;
1330			} else {
1331				strscpy(cmd_hist[cmd_head], cmd_cur,
1332					CMD_BUFLEN);
1333			}
1334
1335			cmd_head = (cmd_head+1) % KDB_CMD_HISTORY_COUNT;
1336			if (cmd_head == cmd_tail)
1337				cmd_tail = (cmd_tail+1) % KDB_CMD_HISTORY_COUNT;
1338		}
1339
1340		cmdptr = cmd_head;
1341		diag = kdb_parse(cmdbuf);
1342		if (diag == KDB_NOTFOUND) {
1343			drop_newline(cmdbuf);
1344			kdb_printf("Unknown kdb command: '%s'\n", cmdbuf);
1345			diag = 0;
1346		}
1347		if (diag == KDB_CMD_GO
1348		 || diag == KDB_CMD_CPU
1349		 || diag == KDB_CMD_SS
1350		 || diag == KDB_CMD_KGDB)
1351			break;
1352
1353		if (diag)
1354			kdb_cmderror(diag);
1355	}
1356	KDB_DEBUG_STATE("kdb_local 9", diag);
1357	return diag;
1358}
1359
1360
1361/*
1362 * kdb_print_state - Print the state data for the current processor
1363 *	for debugging.
1364 * Inputs:
1365 *	text		Identifies the debug point
1366 *	value		Any integer value to be printed, e.g. reason code.
1367 */
1368void kdb_print_state(const char *text, int value)
1369{
1370	kdb_printf("state: %s cpu %d value %d initial %d state %x\n",
1371		   text, raw_smp_processor_id(), value, kdb_initial_cpu,
1372		   kdb_state);
1373}
1374
1375/*
1376 * kdb_main_loop - After initial setup and assignment of the
1377 *	controlling cpu, all cpus are in this loop.  One cpu is in
1378 *	control and will issue the kdb prompt, the others will spin
1379 *	until 'go' or cpu switch.
1380 *
1381 *	To get a consistent view of the kernel stacks for all
1382 *	processes, this routine is invoked from the main kdb code via
1383 *	an architecture specific routine.  kdba_main_loop is
1384 *	responsible for making the kernel stacks consistent for all
1385 *	processes, there should be no difference between a blocked
1386 *	process and a running process as far as kdb is concerned.
1387 * Inputs:
1388 *	reason		The reason KDB was invoked
1389 *	error		The hardware-defined error code
1390 *	reason2		kdb's current reason code.
1391 *			Initially error but can change
1392 *			according to kdb state.
1393 *	db_result	Result code from break or debug point.
1394 *	regs		The exception frame at time of fault/breakpoint.
1395 *			should always be valid.
1396 * Returns:
1397 *	0	KDB was invoked for an event which it wasn't responsible
1398 *	1	KDB handled the event for which it was invoked.
1399 */
1400int kdb_main_loop(kdb_reason_t reason, kdb_reason_t reason2, int error,
1401	      kdb_dbtrap_t db_result, struct pt_regs *regs)
1402{
1403	int result = 1;
1404	/* Stay in kdb() until 'go', 'ss[b]' or an error */
1405	while (1) {
1406		/*
1407		 * All processors except the one that is in control
1408		 * will spin here.
1409		 */
1410		KDB_DEBUG_STATE("kdb_main_loop 1", reason);
1411		while (KDB_STATE(HOLD_CPU)) {
1412			/* state KDB is turned off by kdb_cpu to see if the
1413			 * other cpus are still live, each cpu in this loop
1414			 * turns it back on.
1415			 */
1416			if (!KDB_STATE(KDB))
1417				KDB_STATE_SET(KDB);
1418		}
1419
1420		KDB_STATE_CLEAR(SUPPRESS);
1421		KDB_DEBUG_STATE("kdb_main_loop 2", reason);
1422		if (KDB_STATE(LEAVING))
1423			break;	/* Another cpu said 'go' */
1424		/* Still using kdb, this processor is in control */
1425		result = kdb_local(reason2, error, regs, db_result);
1426		KDB_DEBUG_STATE("kdb_main_loop 3", result);
1427
1428		if (result == KDB_CMD_CPU)
1429			break;
1430
1431		if (result == KDB_CMD_SS) {
1432			KDB_STATE_SET(DOING_SS);
1433			break;
1434		}
1435
1436		if (result == KDB_CMD_KGDB) {
1437			if (!KDB_STATE(DOING_KGDB))
1438				kdb_printf("Entering please attach debugger "
1439					   "or use $D#44+ or $3#33\n");
1440			break;
1441		}
1442		if (result && result != 1 && result != KDB_CMD_GO)
1443			kdb_printf("\nUnexpected kdb_local return code %d\n",
1444				   result);
1445		KDB_DEBUG_STATE("kdb_main_loop 4", reason);
1446		break;
1447	}
1448	if (KDB_STATE(DOING_SS))
1449		KDB_STATE_CLEAR(SSBPT);
1450
1451	/* Clean up any keyboard devices before leaving */
1452	kdb_kbd_cleanup_state();
1453
1454	return result;
1455}
1456
1457/*
1458 * kdb_mdr - This function implements the guts of the 'mdr', memory
1459 * read command.
1460 *	mdr  <addr arg>,<byte count>
1461 * Inputs:
1462 *	addr	Start address
1463 *	count	Number of bytes
1464 * Returns:
1465 *	Always 0.  Any errors are detected and printed by kdb_getarea.
1466 */
1467static int kdb_mdr(unsigned long addr, unsigned int count)
1468{
1469	unsigned char c;
1470	while (count--) {
1471		if (kdb_getarea(c, addr))
1472			return 0;
1473		kdb_printf("%02x", c);
1474		addr++;
1475	}
1476	kdb_printf("\n");
1477	return 0;
1478}
1479
1480/*
1481 * kdb_md - This function implements the 'md', 'md1', 'md2', 'md4',
1482 *	'md8' 'mdr' and 'mds' commands.
1483 *
1484 *	md|mds  [<addr arg> [<line count> [<radix>]]]
1485 *	mdWcN	[<addr arg> [<line count> [<radix>]]]
1486 *		where W = is the width (1, 2, 4 or 8) and N is the count.
1487 *		for eg., md1c20 reads 20 bytes, 1 at a time.
1488 *	mdr  <addr arg>,<byte count>
1489 */
1490static void kdb_md_line(const char *fmtstr, unsigned long addr,
1491			int symbolic, int nosect, int bytesperword,
1492			int num, int repeat, int phys)
1493{
1494	/* print just one line of data */
1495	kdb_symtab_t symtab;
1496	char cbuf[32];
1497	char *c = cbuf;
1498	int i;
1499	int j;
1500	unsigned long word;
1501
1502	memset(cbuf, '\0', sizeof(cbuf));
1503	if (phys)
1504		kdb_printf("phys " kdb_machreg_fmt0 " ", addr);
1505	else
1506		kdb_printf(kdb_machreg_fmt0 " ", addr);
1507
1508	for (i = 0; i < num && repeat--; i++) {
1509		if (phys) {
1510			if (kdb_getphysword(&word, addr, bytesperword))
1511				break;
1512		} else if (kdb_getword(&word, addr, bytesperword))
1513			break;
1514		kdb_printf(fmtstr, word);
1515		if (symbolic)
1516			kdbnearsym(word, &symtab);
1517		else
1518			memset(&symtab, 0, sizeof(symtab));
1519		if (symtab.sym_name) {
1520			kdb_symbol_print(word, &symtab, 0);
1521			if (!nosect) {
1522				kdb_printf("\n");
1523				kdb_printf("                       %s %s "
1524					   kdb_machreg_fmt " "
1525					   kdb_machreg_fmt " "
1526					   kdb_machreg_fmt, symtab.mod_name,
1527					   symtab.sec_name, symtab.sec_start,
1528					   symtab.sym_start, symtab.sym_end);
1529			}
1530			addr += bytesperword;
1531		} else {
1532			union {
1533				u64 word;
1534				unsigned char c[8];
1535			} wc;
1536			unsigned char *cp;
1537#ifdef	__BIG_ENDIAN
1538			cp = wc.c + 8 - bytesperword;
1539#else
1540			cp = wc.c;
1541#endif
1542			wc.word = word;
1543#define printable_char(c) \
1544	({unsigned char __c = c; isascii(__c) && isprint(__c) ? __c : '.'; })
1545			for (j = 0; j < bytesperword; j++)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1546				*c++ = printable_char(*cp++);
1547			addr += bytesperword;
 
 
1548#undef printable_char
1549		}
1550	}
1551	kdb_printf("%*s %s\n", (int)((num-i)*(2*bytesperword + 1)+1),
1552		   " ", cbuf);
1553}
1554
1555static int kdb_md(int argc, const char **argv)
1556{
1557	static unsigned long last_addr;
1558	static int last_radix, last_bytesperword, last_repeat;
1559	int radix = 16, mdcount = 8, bytesperword = KDB_WORD_SIZE, repeat;
1560	int nosect = 0;
1561	char fmtchar, fmtstr[64];
1562	unsigned long addr;
1563	unsigned long word;
1564	long offset = 0;
1565	int symbolic = 0;
1566	int valid = 0;
1567	int phys = 0;
1568	int raw = 0;
1569
1570	kdbgetintenv("MDCOUNT", &mdcount);
1571	kdbgetintenv("RADIX", &radix);
1572	kdbgetintenv("BYTESPERWORD", &bytesperword);
1573
1574	/* Assume 'md <addr>' and start with environment values */
1575	repeat = mdcount * 16 / bytesperword;
1576
1577	if (strcmp(argv[0], "mdr") == 0) {
1578		if (argc == 2 || (argc == 0 && last_addr != 0))
1579			valid = raw = 1;
1580		else
1581			return KDB_ARGCOUNT;
 
1582	} else if (isdigit(argv[0][2])) {
1583		bytesperword = (int)(argv[0][2] - '0');
1584		if (bytesperword == 0) {
1585			bytesperword = last_bytesperword;
1586			if (bytesperword == 0)
1587				bytesperword = 4;
1588		}
1589		last_bytesperword = bytesperword;
1590		repeat = mdcount * 16 / bytesperword;
1591		if (!argv[0][3])
1592			valid = 1;
1593		else if (argv[0][3] == 'c' && argv[0][4]) {
1594			char *p;
1595			repeat = simple_strtoul(argv[0] + 4, &p, 10);
1596			mdcount = ((repeat * bytesperword) + 15) / 16;
1597			valid = !*p;
1598		}
1599		last_repeat = repeat;
1600	} else if (strcmp(argv[0], "md") == 0)
1601		valid = 1;
1602	else if (strcmp(argv[0], "mds") == 0)
1603		valid = 1;
1604	else if (strcmp(argv[0], "mdp") == 0) {
1605		phys = valid = 1;
1606	}
1607	if (!valid)
1608		return KDB_NOTFOUND;
1609
1610	if (argc == 0) {
1611		if (last_addr == 0)
1612			return KDB_ARGCOUNT;
1613		addr = last_addr;
1614		radix = last_radix;
1615		bytesperword = last_bytesperword;
1616		repeat = last_repeat;
1617		if (raw)
1618			mdcount = repeat;
1619		else
1620			mdcount = ((repeat * bytesperword) + 15) / 16;
1621	}
1622
1623	if (argc) {
1624		unsigned long val;
1625		int diag, nextarg = 1;
1626		diag = kdbgetaddrarg(argc, argv, &nextarg, &addr,
1627				     &offset, NULL);
1628		if (diag)
1629			return diag;
1630		if (argc > nextarg+2)
1631			return KDB_ARGCOUNT;
1632
1633		if (argc >= nextarg) {
1634			diag = kdbgetularg(argv[nextarg], &val);
1635			if (!diag) {
1636				mdcount = (int) val;
1637				if (raw)
1638					repeat = mdcount;
1639				else
1640					repeat = mdcount * 16 / bytesperword;
1641			}
1642		}
1643		if (argc >= nextarg+1) {
1644			diag = kdbgetularg(argv[nextarg+1], &val);
1645			if (!diag)
1646				radix = (int) val;
1647		}
1648	}
1649
1650	if (strcmp(argv[0], "mdr") == 0) {
1651		int ret;
1652		last_addr = addr;
1653		ret = kdb_mdr(addr, mdcount);
1654		last_addr += mdcount;
1655		last_repeat = mdcount;
1656		last_bytesperword = bytesperword; // to make REPEAT happy
1657		return ret;
1658	}
1659
1660	switch (radix) {
1661	case 10:
1662		fmtchar = 'd';
1663		break;
1664	case 16:
1665		fmtchar = 'x';
1666		break;
1667	case 8:
1668		fmtchar = 'o';
1669		break;
1670	default:
1671		return KDB_BADRADIX;
1672	}
1673
1674	last_radix = radix;
1675
1676	if (bytesperword > KDB_WORD_SIZE)
1677		return KDB_BADWIDTH;
1678
1679	switch (bytesperword) {
1680	case 8:
1681		sprintf(fmtstr, "%%16.16l%c ", fmtchar);
1682		break;
1683	case 4:
1684		sprintf(fmtstr, "%%8.8l%c ", fmtchar);
1685		break;
1686	case 2:
1687		sprintf(fmtstr, "%%4.4l%c ", fmtchar);
1688		break;
1689	case 1:
1690		sprintf(fmtstr, "%%2.2l%c ", fmtchar);
1691		break;
1692	default:
1693		return KDB_BADWIDTH;
1694	}
1695
1696	last_repeat = repeat;
1697	last_bytesperword = bytesperword;
1698
1699	if (strcmp(argv[0], "mds") == 0) {
1700		symbolic = 1;
1701		/* Do not save these changes as last_*, they are temporary mds
1702		 * overrides.
1703		 */
1704		bytesperword = KDB_WORD_SIZE;
1705		repeat = mdcount;
1706		kdbgetintenv("NOSECT", &nosect);
1707	}
1708
1709	/* Round address down modulo BYTESPERWORD */
1710
1711	addr &= ~(bytesperword-1);
1712
1713	while (repeat > 0) {
1714		unsigned long a;
1715		int n, z, num = (symbolic ? 1 : (16 / bytesperword));
1716
1717		if (KDB_FLAG(CMD_INTERRUPT))
1718			return 0;
1719		for (a = addr, z = 0; z < repeat; a += bytesperword, ++z) {
1720			if (phys) {
1721				if (kdb_getphysword(&word, a, bytesperword)
1722						|| word)
1723					break;
1724			} else if (kdb_getword(&word, a, bytesperword) || word)
1725				break;
1726		}
1727		n = min(num, repeat);
1728		kdb_md_line(fmtstr, addr, symbolic, nosect, bytesperword,
1729			    num, repeat, phys);
1730		addr += bytesperword * n;
1731		repeat -= n;
1732		z = (z + num - 1) / num;
1733		if (z > 2) {
1734			int s = num * (z-2);
1735			kdb_printf(kdb_machreg_fmt0 "-" kdb_machreg_fmt0
1736				   " zero suppressed\n",
1737				addr, addr + bytesperword * s - 1);
1738			addr += bytesperword * s;
1739			repeat -= s;
1740		}
1741	}
1742	last_addr = addr;
1743
1744	return 0;
1745}
1746
1747/*
1748 * kdb_mm - This function implements the 'mm' command.
1749 *	mm address-expression new-value
1750 * Remarks:
1751 *	mm works on machine words, mmW works on bytes.
1752 */
1753static int kdb_mm(int argc, const char **argv)
1754{
1755	int diag;
1756	unsigned long addr;
1757	long offset = 0;
1758	unsigned long contents;
1759	int nextarg;
1760	int width;
1761
1762	if (argv[0][2] && !isdigit(argv[0][2]))
1763		return KDB_NOTFOUND;
1764
1765	if (argc < 2)
1766		return KDB_ARGCOUNT;
1767
1768	nextarg = 1;
1769	diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
1770	if (diag)
1771		return diag;
1772
1773	if (nextarg > argc)
1774		return KDB_ARGCOUNT;
1775	diag = kdbgetaddrarg(argc, argv, &nextarg, &contents, NULL, NULL);
1776	if (diag)
1777		return diag;
1778
1779	if (nextarg != argc + 1)
1780		return KDB_ARGCOUNT;
1781
1782	width = argv[0][2] ? (argv[0][2] - '0') : (KDB_WORD_SIZE);
1783	diag = kdb_putword(addr, contents, width);
1784	if (diag)
1785		return diag;
1786
1787	kdb_printf(kdb_machreg_fmt " = " kdb_machreg_fmt "\n", addr, contents);
1788
1789	return 0;
1790}
1791
1792/*
1793 * kdb_go - This function implements the 'go' command.
1794 *	go [address-expression]
1795 */
1796static int kdb_go(int argc, const char **argv)
1797{
1798	unsigned long addr;
1799	int diag;
1800	int nextarg;
1801	long offset;
1802
1803	if (raw_smp_processor_id() != kdb_initial_cpu) {
1804		kdb_printf("go must execute on the entry cpu, "
1805			   "please use \"cpu %d\" and then execute go\n",
1806			   kdb_initial_cpu);
1807		return KDB_BADCPUNUM;
1808	}
1809	if (argc == 1) {
1810		nextarg = 1;
1811		diag = kdbgetaddrarg(argc, argv, &nextarg,
1812				     &addr, &offset, NULL);
1813		if (diag)
1814			return diag;
1815	} else if (argc) {
1816		return KDB_ARGCOUNT;
1817	}
1818
1819	diag = KDB_CMD_GO;
1820	if (KDB_FLAG(CATASTROPHIC)) {
1821		kdb_printf("Catastrophic error detected\n");
1822		kdb_printf("kdb_continue_catastrophic=%d, ",
1823			kdb_continue_catastrophic);
1824		if (kdb_continue_catastrophic == 0 && kdb_go_count++ == 0) {
1825			kdb_printf("type go a second time if you really want "
1826				   "to continue\n");
1827			return 0;
1828		}
1829		if (kdb_continue_catastrophic == 2) {
1830			kdb_printf("forcing reboot\n");
1831			kdb_reboot(0, NULL);
1832		}
1833		kdb_printf("attempting to continue\n");
1834	}
1835	return diag;
1836}
1837
1838/*
1839 * kdb_rd - This function implements the 'rd' command.
1840 */
1841static int kdb_rd(int argc, const char **argv)
1842{
1843	int len = kdb_check_regs();
1844#if DBG_MAX_REG_NUM > 0
1845	int i;
1846	char *rname;
1847	int rsize;
1848	u64 reg64;
1849	u32 reg32;
1850	u16 reg16;
1851	u8 reg8;
1852
1853	if (len)
1854		return len;
1855
1856	for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1857		rsize = dbg_reg_def[i].size * 2;
1858		if (rsize > 16)
1859			rsize = 2;
1860		if (len + strlen(dbg_reg_def[i].name) + 4 + rsize > 80) {
1861			len = 0;
1862			kdb_printf("\n");
1863		}
1864		if (len)
1865			len += kdb_printf("  ");
1866		switch(dbg_reg_def[i].size * 8) {
1867		case 8:
1868			rname = dbg_get_reg(i, &reg8, kdb_current_regs);
1869			if (!rname)
1870				break;
1871			len += kdb_printf("%s: %02x", rname, reg8);
1872			break;
1873		case 16:
1874			rname = dbg_get_reg(i, &reg16, kdb_current_regs);
1875			if (!rname)
1876				break;
1877			len += kdb_printf("%s: %04x", rname, reg16);
1878			break;
1879		case 32:
1880			rname = dbg_get_reg(i, &reg32, kdb_current_regs);
1881			if (!rname)
1882				break;
1883			len += kdb_printf("%s: %08x", rname, reg32);
1884			break;
1885		case 64:
1886			rname = dbg_get_reg(i, &reg64, kdb_current_regs);
1887			if (!rname)
1888				break;
1889			len += kdb_printf("%s: %016llx", rname, reg64);
1890			break;
1891		default:
1892			len += kdb_printf("%s: ??", dbg_reg_def[i].name);
1893		}
1894	}
1895	kdb_printf("\n");
1896#else
1897	if (len)
1898		return len;
1899
1900	kdb_dumpregs(kdb_current_regs);
1901#endif
1902	return 0;
1903}
1904
1905/*
1906 * kdb_rm - This function implements the 'rm' (register modify)  command.
1907 *	rm register-name new-contents
1908 * Remarks:
1909 *	Allows register modification with the same restrictions as gdb
1910 */
1911static int kdb_rm(int argc, const char **argv)
1912{
1913#if DBG_MAX_REG_NUM > 0
1914	int diag;
1915	const char *rname;
1916	int i;
1917	u64 reg64;
1918	u32 reg32;
1919	u16 reg16;
1920	u8 reg8;
1921
1922	if (argc != 2)
1923		return KDB_ARGCOUNT;
1924	/*
1925	 * Allow presence or absence of leading '%' symbol.
1926	 */
1927	rname = argv[1];
1928	if (*rname == '%')
1929		rname++;
1930
1931	diag = kdbgetu64arg(argv[2], &reg64);
1932	if (diag)
1933		return diag;
1934
1935	diag = kdb_check_regs();
1936	if (diag)
1937		return diag;
1938
1939	diag = KDB_BADREG;
1940	for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1941		if (strcmp(rname, dbg_reg_def[i].name) == 0) {
1942			diag = 0;
1943			break;
1944		}
1945	}
1946	if (!diag) {
1947		switch(dbg_reg_def[i].size * 8) {
1948		case 8:
1949			reg8 = reg64;
1950			dbg_set_reg(i, &reg8, kdb_current_regs);
1951			break;
1952		case 16:
1953			reg16 = reg64;
1954			dbg_set_reg(i, &reg16, kdb_current_regs);
1955			break;
1956		case 32:
1957			reg32 = reg64;
1958			dbg_set_reg(i, &reg32, kdb_current_regs);
1959			break;
1960		case 64:
1961			dbg_set_reg(i, &reg64, kdb_current_regs);
1962			break;
1963		}
1964	}
1965	return diag;
1966#else
1967	kdb_printf("ERROR: Register set currently not implemented\n");
1968    return 0;
1969#endif
1970}
1971
1972#if defined(CONFIG_MAGIC_SYSRQ)
1973/*
1974 * kdb_sr - This function implements the 'sr' (SYSRQ key) command
1975 *	which interfaces to the soi-disant MAGIC SYSRQ functionality.
1976 *		sr <magic-sysrq-code>
1977 */
1978static int kdb_sr(int argc, const char **argv)
1979{
1980	bool check_mask =
1981	    !kdb_check_flags(KDB_ENABLE_ALL, kdb_cmd_enabled, false);
1982
1983	if (argc != 1)
1984		return KDB_ARGCOUNT;
1985
1986	kdb_trap_printk++;
1987	__handle_sysrq(*argv[1], check_mask);
1988	kdb_trap_printk--;
1989
1990	return 0;
1991}
1992#endif	/* CONFIG_MAGIC_SYSRQ */
1993
1994/*
1995 * kdb_ef - This function implements the 'regs' (display exception
1996 *	frame) command.  This command takes an address and expects to
1997 *	find an exception frame at that address, formats and prints
1998 *	it.
1999 *		regs address-expression
2000 * Remarks:
2001 *	Not done yet.
2002 */
2003static int kdb_ef(int argc, const char **argv)
2004{
2005	int diag;
2006	unsigned long addr;
2007	long offset;
2008	int nextarg;
2009
2010	if (argc != 1)
2011		return KDB_ARGCOUNT;
2012
2013	nextarg = 1;
2014	diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
2015	if (diag)
2016		return diag;
2017	show_regs((struct pt_regs *)addr);
2018	return 0;
2019}
2020
2021#if defined(CONFIG_MODULES)
2022/*
2023 * kdb_lsmod - This function implements the 'lsmod' command.  Lists
2024 *	currently loaded kernel modules.
2025 *	Mostly taken from userland lsmod.
2026 */
2027static int kdb_lsmod(int argc, const char **argv)
2028{
2029	struct module *mod;
2030
2031	if (argc != 0)
2032		return KDB_ARGCOUNT;
2033
2034	kdb_printf("Module                  Size  modstruct     Used by\n");
2035	list_for_each_entry(mod, kdb_modules, list) {
2036		if (mod->state == MODULE_STATE_UNFORMED)
2037			continue;
2038
2039		kdb_printf("%-20s%8u  0x%px ", mod->name,
2040			   mod->core_layout.size, (void *)mod);
2041#ifdef CONFIG_MODULE_UNLOAD
2042		kdb_printf("%4d ", module_refcount(mod));
2043#endif
2044		if (mod->state == MODULE_STATE_GOING)
2045			kdb_printf(" (Unloading)");
2046		else if (mod->state == MODULE_STATE_COMING)
2047			kdb_printf(" (Loading)");
2048		else
2049			kdb_printf(" (Live)");
2050		kdb_printf(" 0x%px", mod->core_layout.base);
2051
2052#ifdef CONFIG_MODULE_UNLOAD
2053		{
2054			struct module_use *use;
2055			kdb_printf(" [ ");
2056			list_for_each_entry(use, &mod->source_list,
2057					    source_list)
2058				kdb_printf("%s ", use->target->name);
2059			kdb_printf("]\n");
2060		}
2061#endif
2062	}
2063
2064	return 0;
2065}
2066
2067#endif	/* CONFIG_MODULES */
2068
2069/*
2070 * kdb_env - This function implements the 'env' command.  Display the
2071 *	current environment variables.
2072 */
2073
2074static int kdb_env(int argc, const char **argv)
2075{
2076	int i;
2077
2078	for (i = 0; i < __nenv; i++) {
2079		if (__env[i])
2080			kdb_printf("%s\n", __env[i]);
2081	}
2082
2083	if (KDB_DEBUG(MASK))
2084		kdb_printf("KDBDEBUG=0x%x\n",
2085			(kdb_flags & KDB_DEBUG(MASK)) >> KDB_DEBUG_FLAG_SHIFT);
2086
2087	return 0;
2088}
2089
2090#ifdef CONFIG_PRINTK
2091/*
2092 * kdb_dmesg - This function implements the 'dmesg' command to display
2093 *	the contents of the syslog buffer.
2094 *		dmesg [lines] [adjust]
2095 */
2096static int kdb_dmesg(int argc, const char **argv)
2097{
2098	int diag;
2099	int logging;
2100	int lines = 0;
2101	int adjust = 0;
2102	int n = 0;
2103	int skip = 0;
2104	struct kmsg_dumper dumper = { .active = 1 };
2105	size_t len;
2106	char buf[201];
2107
2108	if (argc > 2)
2109		return KDB_ARGCOUNT;
2110	if (argc) {
2111		char *cp;
2112		lines = simple_strtol(argv[1], &cp, 0);
2113		if (*cp)
2114			lines = 0;
2115		if (argc > 1) {
2116			adjust = simple_strtoul(argv[2], &cp, 0);
2117			if (*cp || adjust < 0)
2118				adjust = 0;
2119		}
2120	}
2121
2122	/* disable LOGGING if set */
2123	diag = kdbgetintenv("LOGGING", &logging);
2124	if (!diag && logging) {
2125		const char *setargs[] = { "set", "LOGGING", "0" };
2126		kdb_set(2, setargs);
2127	}
2128
2129	kmsg_dump_rewind_nolock(&dumper);
2130	while (kmsg_dump_get_line_nolock(&dumper, 1, NULL, 0, NULL))
2131		n++;
2132
2133	if (lines < 0) {
2134		if (adjust >= n)
2135			kdb_printf("buffer only contains %d lines, nothing "
2136				   "printed\n", n);
2137		else if (adjust - lines >= n)
2138			kdb_printf("buffer only contains %d lines, last %d "
2139				   "lines printed\n", n, n - adjust);
2140		skip = adjust;
2141		lines = abs(lines);
2142	} else if (lines > 0) {
2143		skip = n - lines - adjust;
2144		lines = abs(lines);
2145		if (adjust >= n) {
2146			kdb_printf("buffer only contains %d lines, "
2147				   "nothing printed\n", n);
2148			skip = n;
2149		} else if (skip < 0) {
2150			lines += skip;
2151			skip = 0;
2152			kdb_printf("buffer only contains %d lines, first "
2153				   "%d lines printed\n", n, lines);
2154		}
2155	} else {
2156		lines = n;
2157	}
2158
2159	if (skip >= n || skip < 0)
2160		return 0;
2161
2162	kmsg_dump_rewind_nolock(&dumper);
2163	while (kmsg_dump_get_line_nolock(&dumper, 1, buf, sizeof(buf), &len)) {
2164		if (skip) {
2165			skip--;
2166			continue;
2167		}
2168		if (!lines--)
2169			break;
2170		if (KDB_FLAG(CMD_INTERRUPT))
2171			return 0;
2172
2173		kdb_printf("%.*s\n", (int)len - 1, buf);
2174	}
2175
2176	return 0;
2177}
2178#endif /* CONFIG_PRINTK */
2179
2180/* Make sure we balance enable/disable calls, must disable first. */
2181static atomic_t kdb_nmi_disabled;
2182
2183static int kdb_disable_nmi(int argc, const char *argv[])
2184{
2185	if (atomic_read(&kdb_nmi_disabled))
2186		return 0;
2187	atomic_set(&kdb_nmi_disabled, 1);
2188	arch_kgdb_ops.enable_nmi(0);
2189	return 0;
2190}
2191
2192static int kdb_param_enable_nmi(const char *val, const struct kernel_param *kp)
2193{
2194	if (!atomic_add_unless(&kdb_nmi_disabled, -1, 0))
2195		return -EINVAL;
2196	arch_kgdb_ops.enable_nmi(1);
2197	return 0;
2198}
2199
2200static const struct kernel_param_ops kdb_param_ops_enable_nmi = {
2201	.set = kdb_param_enable_nmi,
2202};
2203module_param_cb(enable_nmi, &kdb_param_ops_enable_nmi, NULL, 0600);
2204
2205/*
2206 * kdb_cpu - This function implements the 'cpu' command.
2207 *	cpu	[<cpunum>]
2208 * Returns:
2209 *	KDB_CMD_CPU for success, a kdb diagnostic if error
2210 */
2211static void kdb_cpu_status(void)
2212{
2213	int i, start_cpu, first_print = 1;
2214	char state, prev_state = '?';
2215
2216	kdb_printf("Currently on cpu %d\n", raw_smp_processor_id());
2217	kdb_printf("Available cpus: ");
2218	for (start_cpu = -1, i = 0; i < NR_CPUS; i++) {
2219		if (!cpu_online(i)) {
2220			state = 'F';	/* cpu is offline */
2221		} else if (!kgdb_info[i].enter_kgdb) {
2222			state = 'D';	/* cpu is online but unresponsive */
2223		} else {
2224			state = ' ';	/* cpu is responding to kdb */
2225			if (kdb_task_state_char(KDB_TSK(i)) == 'I')
2226				state = 'I';	/* idle task */
2227		}
2228		if (state != prev_state) {
2229			if (prev_state != '?') {
2230				if (!first_print)
2231					kdb_printf(", ");
2232				first_print = 0;
2233				kdb_printf("%d", start_cpu);
2234				if (start_cpu < i-1)
2235					kdb_printf("-%d", i-1);
2236				if (prev_state != ' ')
2237					kdb_printf("(%c)", prev_state);
2238			}
2239			prev_state = state;
2240			start_cpu = i;
2241		}
2242	}
2243	/* print the trailing cpus, ignoring them if they are all offline */
2244	if (prev_state != 'F') {
2245		if (!first_print)
2246			kdb_printf(", ");
2247		kdb_printf("%d", start_cpu);
2248		if (start_cpu < i-1)
2249			kdb_printf("-%d", i-1);
2250		if (prev_state != ' ')
2251			kdb_printf("(%c)", prev_state);
2252	}
2253	kdb_printf("\n");
2254}
2255
2256static int kdb_cpu(int argc, const char **argv)
2257{
2258	unsigned long cpunum;
2259	int diag;
2260
2261	if (argc == 0) {
2262		kdb_cpu_status();
2263		return 0;
2264	}
2265
2266	if (argc != 1)
2267		return KDB_ARGCOUNT;
2268
2269	diag = kdbgetularg(argv[1], &cpunum);
2270	if (diag)
2271		return diag;
2272
2273	/*
2274	 * Validate cpunum
2275	 */
2276	if ((cpunum >= CONFIG_NR_CPUS) || !kgdb_info[cpunum].enter_kgdb)
2277		return KDB_BADCPUNUM;
2278
2279	dbg_switch_cpu = cpunum;
2280
2281	/*
2282	 * Switch to other cpu
2283	 */
2284	return KDB_CMD_CPU;
2285}
2286
2287/* The user may not realize that ps/bta with no parameters does not print idle
2288 * or sleeping system daemon processes, so tell them how many were suppressed.
2289 */
2290void kdb_ps_suppressed(void)
2291{
2292	int idle = 0, daemon = 0;
2293	unsigned long mask_I = kdb_task_state_string("I"),
2294		      mask_M = kdb_task_state_string("M");
2295	unsigned long cpu;
2296	const struct task_struct *p, *g;
2297	for_each_online_cpu(cpu) {
2298		p = kdb_curr_task(cpu);
2299		if (kdb_task_state(p, mask_I))
2300			++idle;
2301	}
2302	kdb_do_each_thread(g, p) {
2303		if (kdb_task_state(p, mask_M))
2304			++daemon;
2305	} kdb_while_each_thread(g, p);
2306	if (idle || daemon) {
2307		if (idle)
2308			kdb_printf("%d idle process%s (state I)%s\n",
2309				   idle, idle == 1 ? "" : "es",
2310				   daemon ? " and " : "");
2311		if (daemon)
2312			kdb_printf("%d sleeping system daemon (state M) "
2313				   "process%s", daemon,
2314				   daemon == 1 ? "" : "es");
2315		kdb_printf(" suppressed,\nuse 'ps A' to see all.\n");
2316	}
2317}
2318
2319/*
2320 * kdb_ps - This function implements the 'ps' command which shows a
2321 *	list of the active processes.
2322 *		ps [DRSTCZEUIMA]   All processes, optionally filtered by state
2323 */
2324void kdb_ps1(const struct task_struct *p)
2325{
2326	int cpu;
2327	unsigned long tmp;
2328
2329	if (!p ||
2330	    copy_from_kernel_nofault(&tmp, (char *)p, sizeof(unsigned long)))
2331		return;
2332
2333	cpu = kdb_process_cpu(p);
2334	kdb_printf("0x%px %8d %8d  %d %4d   %c  0x%px %c%s\n",
2335		   (void *)p, p->pid, p->parent->pid,
2336		   kdb_task_has_cpu(p), kdb_process_cpu(p),
2337		   kdb_task_state_char(p),
2338		   (void *)(&p->thread),
2339		   p == kdb_curr_task(raw_smp_processor_id()) ? '*' : ' ',
2340		   p->comm);
2341	if (kdb_task_has_cpu(p)) {
2342		if (!KDB_TSK(cpu)) {
2343			kdb_printf("  Error: no saved data for this cpu\n");
2344		} else {
2345			if (KDB_TSK(cpu) != p)
2346				kdb_printf("  Error: does not match running "
2347				   "process table (0x%px)\n", KDB_TSK(cpu));
2348		}
2349	}
2350}
2351
2352static int kdb_ps(int argc, const char **argv)
2353{
2354	struct task_struct *g, *p;
2355	unsigned long mask, cpu;
2356
2357	if (argc == 0)
2358		kdb_ps_suppressed();
2359	kdb_printf("%-*s      Pid   Parent [*] cpu State %-*s Command\n",
2360		(int)(2*sizeof(void *))+2, "Task Addr",
2361		(int)(2*sizeof(void *))+2, "Thread");
2362	mask = kdb_task_state_string(argc ? argv[1] : NULL);
2363	/* Run the active tasks first */
2364	for_each_online_cpu(cpu) {
2365		if (KDB_FLAG(CMD_INTERRUPT))
2366			return 0;
2367		p = kdb_curr_task(cpu);
2368		if (kdb_task_state(p, mask))
2369			kdb_ps1(p);
2370	}
2371	kdb_printf("\n");
2372	/* Now the real tasks */
2373	kdb_do_each_thread(g, p) {
2374		if (KDB_FLAG(CMD_INTERRUPT))
2375			return 0;
2376		if (kdb_task_state(p, mask))
2377			kdb_ps1(p);
2378	} kdb_while_each_thread(g, p);
2379
2380	return 0;
2381}
2382
2383/*
2384 * kdb_pid - This function implements the 'pid' command which switches
2385 *	the currently active process.
2386 *		pid [<pid> | R]
2387 */
2388static int kdb_pid(int argc, const char **argv)
2389{
2390	struct task_struct *p;
2391	unsigned long val;
2392	int diag;
2393
2394	if (argc > 1)
2395		return KDB_ARGCOUNT;
2396
2397	if (argc) {
2398		if (strcmp(argv[1], "R") == 0) {
2399			p = KDB_TSK(kdb_initial_cpu);
2400		} else {
2401			diag = kdbgetularg(argv[1], &val);
2402			if (diag)
2403				return KDB_BADINT;
2404
2405			p = find_task_by_pid_ns((pid_t)val,	&init_pid_ns);
2406			if (!p) {
2407				kdb_printf("No task with pid=%d\n", (pid_t)val);
2408				return 0;
2409			}
2410		}
2411		kdb_set_current_task(p);
2412	}
2413	kdb_printf("KDB current process is %s(pid=%d)\n",
2414		   kdb_current_task->comm,
2415		   kdb_current_task->pid);
2416
2417	return 0;
2418}
2419
2420static int kdb_kgdb(int argc, const char **argv)
2421{
2422	return KDB_CMD_KGDB;
2423}
2424
2425/*
2426 * kdb_help - This function implements the 'help' and '?' commands.
2427 */
2428static int kdb_help(int argc, const char **argv)
2429{
2430	kdbtab_t *kt;
2431	int i;
2432
2433	kdb_printf("%-15.15s %-20.20s %s\n", "Command", "Usage", "Description");
2434	kdb_printf("-----------------------------"
2435		   "-----------------------------\n");
2436	for_each_kdbcmd(kt, i) {
2437		char *space = "";
2438		if (KDB_FLAG(CMD_INTERRUPT))
2439			return 0;
2440		if (!kt->cmd_name)
2441			continue;
2442		if (!kdb_check_flags(kt->cmd_flags, kdb_cmd_enabled, true))
2443			continue;
2444		if (strlen(kt->cmd_usage) > 20)
2445			space = "\n                                    ";
2446		kdb_printf("%-15.15s %-20s%s%s\n", kt->cmd_name,
2447			   kt->cmd_usage, space, kt->cmd_help);
2448	}
2449	return 0;
2450}
2451
2452/*
2453 * kdb_kill - This function implements the 'kill' commands.
2454 */
2455static int kdb_kill(int argc, const char **argv)
2456{
2457	long sig, pid;
2458	char *endp;
2459	struct task_struct *p;
 
2460
2461	if (argc != 2)
2462		return KDB_ARGCOUNT;
2463
2464	sig = simple_strtol(argv[1], &endp, 0);
2465	if (*endp)
2466		return KDB_BADINT;
2467	if ((sig >= 0) || !valid_signal(-sig)) {
2468		kdb_printf("Invalid signal parameter.<-signal>\n");
2469		return 0;
2470	}
2471	sig = -sig;
2472
2473	pid = simple_strtol(argv[2], &endp, 0);
2474	if (*endp)
2475		return KDB_BADINT;
2476	if (pid <= 0) {
2477		kdb_printf("Process ID must be large than 0.\n");
2478		return 0;
2479	}
2480
2481	/* Find the process. */
2482	p = find_task_by_pid_ns(pid, &init_pid_ns);
2483	if (!p) {
2484		kdb_printf("The specified process isn't found.\n");
2485		return 0;
2486	}
2487	p = p->group_leader;
2488	kdb_send_sig(p, sig);
 
 
 
 
 
2489	return 0;
2490}
2491
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2492/*
2493 * Most of this code has been lifted from kernel/timer.c::sys_sysinfo().
2494 * I cannot call that code directly from kdb, it has an unconditional
2495 * cli()/sti() and calls routines that take locks which can stop the debugger.
2496 */
2497static void kdb_sysinfo(struct sysinfo *val)
2498{
2499	u64 uptime = ktime_get_mono_fast_ns();
2500
2501	memset(val, 0, sizeof(*val));
2502	val->uptime = div_u64(uptime, NSEC_PER_SEC);
2503	val->loads[0] = avenrun[0];
2504	val->loads[1] = avenrun[1];
2505	val->loads[2] = avenrun[2];
2506	val->procs = nr_threads-1;
2507	si_meminfo(val);
2508
2509	return;
2510}
2511
2512/*
2513 * kdb_summary - This function implements the 'summary' command.
2514 */
2515static int kdb_summary(int argc, const char **argv)
2516{
2517	time64_t now;
2518	struct tm tm;
2519	struct sysinfo val;
2520
2521	if (argc)
2522		return KDB_ARGCOUNT;
2523
2524	kdb_printf("sysname    %s\n", init_uts_ns.name.sysname);
2525	kdb_printf("release    %s\n", init_uts_ns.name.release);
2526	kdb_printf("version    %s\n", init_uts_ns.name.version);
2527	kdb_printf("machine    %s\n", init_uts_ns.name.machine);
2528	kdb_printf("nodename   %s\n", init_uts_ns.name.nodename);
2529	kdb_printf("domainname %s\n", init_uts_ns.name.domainname);
 
2530
2531	now = __ktime_get_real_seconds();
2532	time64_to_tm(now, 0, &tm);
2533	kdb_printf("date       %04ld-%02d-%02d %02d:%02d:%02d "
2534		   "tz_minuteswest %d\n",
2535		1900+tm.tm_year, tm.tm_mon+1, tm.tm_mday,
2536		tm.tm_hour, tm.tm_min, tm.tm_sec,
2537		sys_tz.tz_minuteswest);
2538
2539	kdb_sysinfo(&val);
2540	kdb_printf("uptime     ");
2541	if (val.uptime > (24*60*60)) {
2542		int days = val.uptime / (24*60*60);
2543		val.uptime %= (24*60*60);
2544		kdb_printf("%d day%s ", days, days == 1 ? "" : "s");
2545	}
2546	kdb_printf("%02ld:%02ld\n", val.uptime/(60*60), (val.uptime/60)%60);
2547
 
 
 
 
2548	kdb_printf("load avg   %ld.%02ld %ld.%02ld %ld.%02ld\n",
2549		LOAD_INT(val.loads[0]), LOAD_FRAC(val.loads[0]),
2550		LOAD_INT(val.loads[1]), LOAD_FRAC(val.loads[1]),
2551		LOAD_INT(val.loads[2]), LOAD_FRAC(val.loads[2]));
2552
 
2553	/* Display in kilobytes */
2554#define K(x) ((x) << (PAGE_SHIFT - 10))
2555	kdb_printf("\nMemTotal:       %8lu kB\nMemFree:        %8lu kB\n"
2556		   "Buffers:        %8lu kB\n",
2557		   K(val.totalram), K(val.freeram), K(val.bufferram));
2558	return 0;
2559}
2560
2561/*
2562 * kdb_per_cpu - This function implements the 'per_cpu' command.
2563 */
2564static int kdb_per_cpu(int argc, const char **argv)
2565{
2566	char fmtstr[64];
2567	int cpu, diag, nextarg = 1;
2568	unsigned long addr, symaddr, val, bytesperword = 0, whichcpu = ~0UL;
2569
2570	if (argc < 1 || argc > 3)
2571		return KDB_ARGCOUNT;
2572
2573	diag = kdbgetaddrarg(argc, argv, &nextarg, &symaddr, NULL, NULL);
2574	if (diag)
2575		return diag;
2576
2577	if (argc >= 2) {
2578		diag = kdbgetularg(argv[2], &bytesperword);
2579		if (diag)
2580			return diag;
2581	}
2582	if (!bytesperword)
2583		bytesperword = KDB_WORD_SIZE;
2584	else if (bytesperword > KDB_WORD_SIZE)
2585		return KDB_BADWIDTH;
2586	sprintf(fmtstr, "%%0%dlx ", (int)(2*bytesperword));
2587	if (argc >= 3) {
2588		diag = kdbgetularg(argv[3], &whichcpu);
2589		if (diag)
2590			return diag;
2591		if (whichcpu >= nr_cpu_ids || !cpu_online(whichcpu)) {
2592			kdb_printf("cpu %ld is not online\n", whichcpu);
2593			return KDB_BADCPUNUM;
2594		}
2595	}
2596
2597	/* Most architectures use __per_cpu_offset[cpu], some use
2598	 * __per_cpu_offset(cpu), smp has no __per_cpu_offset.
2599	 */
2600#ifdef	__per_cpu_offset
2601#define KDB_PCU(cpu) __per_cpu_offset(cpu)
2602#else
2603#ifdef	CONFIG_SMP
2604#define KDB_PCU(cpu) __per_cpu_offset[cpu]
2605#else
2606#define KDB_PCU(cpu) 0
2607#endif
2608#endif
2609	for_each_online_cpu(cpu) {
2610		if (KDB_FLAG(CMD_INTERRUPT))
2611			return 0;
2612
2613		if (whichcpu != ~0UL && whichcpu != cpu)
2614			continue;
2615		addr = symaddr + KDB_PCU(cpu);
2616		diag = kdb_getword(&val, addr, bytesperword);
2617		if (diag) {
2618			kdb_printf("%5d " kdb_bfd_vma_fmt0 " - unable to "
2619				   "read, diag=%d\n", cpu, addr, diag);
2620			continue;
2621		}
2622		kdb_printf("%5d ", cpu);
2623		kdb_md_line(fmtstr, addr,
2624			bytesperword == KDB_WORD_SIZE,
2625			1, bytesperword, 1, 1, 0);
2626	}
2627#undef KDB_PCU
2628	return 0;
2629}
2630
2631/*
2632 * display help for the use of cmd | grep pattern
2633 */
2634static int kdb_grep_help(int argc, const char **argv)
2635{
2636	kdb_printf("Usage of  cmd args | grep pattern:\n");
2637	kdb_printf("  Any command's output may be filtered through an ");
2638	kdb_printf("emulated 'pipe'.\n");
2639	kdb_printf("  'grep' is just a key word.\n");
2640	kdb_printf("  The pattern may include a very limited set of "
2641		   "metacharacters:\n");
2642	kdb_printf("   pattern or ^pattern or pattern$ or ^pattern$\n");
2643	kdb_printf("  And if there are spaces in the pattern, you may "
2644		   "quote it:\n");
2645	kdb_printf("   \"pat tern\" or \"^pat tern\" or \"pat tern$\""
2646		   " or \"^pat tern$\"\n");
2647	return 0;
2648}
2649
2650/*
2651 * kdb_register_flags - This function is used to register a kernel
2652 * 	debugger command.
2653 * Inputs:
2654 *	cmd	Command name
2655 *	func	Function to execute the command
2656 *	usage	A simple usage string showing arguments
2657 *	help	A simple help string describing command
2658 *	repeat	Does the command auto repeat on enter?
2659 * Returns:
2660 *	zero for success, one if a duplicate command.
2661 */
2662#define kdb_command_extend 50	/* arbitrary */
2663int kdb_register_flags(char *cmd,
2664		       kdb_func_t func,
2665		       char *usage,
2666		       char *help,
2667		       short minlen,
2668		       kdb_cmdflags_t flags)
2669{
2670	int i;
2671	kdbtab_t *kp;
2672
2673	/*
2674	 *  Brute force method to determine duplicates
2675	 */
2676	for_each_kdbcmd(kp, i) {
2677		if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) {
2678			kdb_printf("Duplicate kdb command registered: "
2679				"%s, func %px help %s\n", cmd, func, help);
2680			return 1;
2681		}
2682	}
2683
2684	/*
2685	 * Insert command into first available location in table
2686	 */
2687	for_each_kdbcmd(kp, i) {
2688		if (kp->cmd_name == NULL)
2689			break;
2690	}
2691
2692	if (i >= kdb_max_commands) {
2693		kdbtab_t *new = kmalloc_array(kdb_max_commands -
2694						KDB_BASE_CMD_MAX +
2695						kdb_command_extend,
2696					      sizeof(*new),
2697					      GFP_KDB);
2698		if (!new) {
2699			kdb_printf("Could not allocate new kdb_command "
2700				   "table\n");
2701			return 1;
2702		}
2703		if (kdb_commands) {
2704			memcpy(new, kdb_commands,
2705			  (kdb_max_commands - KDB_BASE_CMD_MAX) * sizeof(*new));
2706			kfree(kdb_commands);
2707		}
2708		memset(new + kdb_max_commands - KDB_BASE_CMD_MAX, 0,
2709		       kdb_command_extend * sizeof(*new));
2710		kdb_commands = new;
2711		kp = kdb_commands + kdb_max_commands - KDB_BASE_CMD_MAX;
2712		kdb_max_commands += kdb_command_extend;
2713	}
2714
2715	kp->cmd_name   = cmd;
2716	kp->cmd_func   = func;
2717	kp->cmd_usage  = usage;
2718	kp->cmd_help   = help;
2719	kp->cmd_minlen = minlen;
2720	kp->cmd_flags  = flags;
2721
2722	return 0;
2723}
2724EXPORT_SYMBOL_GPL(kdb_register_flags);
2725
2726
2727/*
2728 * kdb_register - Compatibility register function for commands that do
2729 *	not need to specify a repeat state.  Equivalent to
2730 *	kdb_register_flags with flags set to 0.
2731 * Inputs:
2732 *	cmd	Command name
2733 *	func	Function to execute the command
2734 *	usage	A simple usage string showing arguments
2735 *	help	A simple help string describing command
2736 * Returns:
2737 *	zero for success, one if a duplicate command.
2738 */
2739int kdb_register(char *cmd,
2740	     kdb_func_t func,
2741	     char *usage,
2742	     char *help,
2743	     short minlen)
2744{
2745	return kdb_register_flags(cmd, func, usage, help, minlen, 0);
2746}
2747EXPORT_SYMBOL_GPL(kdb_register);
2748
2749/*
2750 * kdb_unregister - This function is used to unregister a kernel
2751 *	debugger command.  It is generally called when a module which
2752 *	implements kdb commands is unloaded.
2753 * Inputs:
2754 *	cmd	Command name
2755 * Returns:
2756 *	zero for success, one command not registered.
2757 */
2758int kdb_unregister(char *cmd)
2759{
2760	int i;
2761	kdbtab_t *kp;
2762
2763	/*
2764	 *  find the command.
2765	 */
2766	for_each_kdbcmd(kp, i) {
2767		if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) {
2768			kp->cmd_name = NULL;
2769			return 0;
2770		}
2771	}
2772
2773	/* Couldn't find it.  */
2774	return 1;
2775}
2776EXPORT_SYMBOL_GPL(kdb_unregister);
2777
2778/* Initialize the kdb command table. */
2779static void __init kdb_inittab(void)
2780{
2781	int i;
2782	kdbtab_t *kp;
2783
2784	for_each_kdbcmd(kp, i)
2785		kp->cmd_name = NULL;
2786
2787	kdb_register_flags("md", kdb_md, "<vaddr>",
2788	  "Display Memory Contents, also mdWcN, e.g. md8c1", 1,
2789	  KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS);
2790	kdb_register_flags("mdr", kdb_md, "<vaddr> <bytes>",
2791	  "Display Raw Memory", 0,
2792	  KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS);
2793	kdb_register_flags("mdp", kdb_md, "<paddr> <bytes>",
2794	  "Display Physical Memory", 0,
2795	  KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS);
2796	kdb_register_flags("mds", kdb_md, "<vaddr>",
2797	  "Display Memory Symbolically", 0,
2798	  KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS);
2799	kdb_register_flags("mm", kdb_mm, "<vaddr> <contents>",
2800	  "Modify Memory Contents", 0,
2801	  KDB_ENABLE_MEM_WRITE | KDB_REPEAT_NO_ARGS);
2802	kdb_register_flags("go", kdb_go, "[<vaddr>]",
2803	  "Continue Execution", 1,
2804	  KDB_ENABLE_REG_WRITE | KDB_ENABLE_ALWAYS_SAFE_NO_ARGS);
2805	kdb_register_flags("rd", kdb_rd, "",
2806	  "Display Registers", 0,
2807	  KDB_ENABLE_REG_READ);
2808	kdb_register_flags("rm", kdb_rm, "<reg> <contents>",
2809	  "Modify Registers", 0,
2810	  KDB_ENABLE_REG_WRITE);
2811	kdb_register_flags("ef", kdb_ef, "<vaddr>",
2812	  "Display exception frame", 0,
2813	  KDB_ENABLE_MEM_READ);
2814	kdb_register_flags("bt", kdb_bt, "[<vaddr>]",
2815	  "Stack traceback", 1,
2816	  KDB_ENABLE_MEM_READ | KDB_ENABLE_INSPECT_NO_ARGS);
2817	kdb_register_flags("btp", kdb_bt, "<pid>",
2818	  "Display stack for process <pid>", 0,
2819	  KDB_ENABLE_INSPECT);
2820	kdb_register_flags("bta", kdb_bt, "[D|R|S|T|C|Z|E|U|I|M|A]",
2821	  "Backtrace all processes matching state flag", 0,
2822	  KDB_ENABLE_INSPECT);
2823	kdb_register_flags("btc", kdb_bt, "",
2824	  "Backtrace current process on each cpu", 0,
2825	  KDB_ENABLE_INSPECT);
2826	kdb_register_flags("btt", kdb_bt, "<vaddr>",
2827	  "Backtrace process given its struct task address", 0,
2828	  KDB_ENABLE_MEM_READ | KDB_ENABLE_INSPECT_NO_ARGS);
2829	kdb_register_flags("env", kdb_env, "",
2830	  "Show environment variables", 0,
2831	  KDB_ENABLE_ALWAYS_SAFE);
2832	kdb_register_flags("set", kdb_set, "",
2833	  "Set environment variables", 0,
2834	  KDB_ENABLE_ALWAYS_SAFE);
2835	kdb_register_flags("help", kdb_help, "",
2836	  "Display Help Message", 1,
2837	  KDB_ENABLE_ALWAYS_SAFE);
2838	kdb_register_flags("?", kdb_help, "",
2839	  "Display Help Message", 0,
2840	  KDB_ENABLE_ALWAYS_SAFE);
2841	kdb_register_flags("cpu", kdb_cpu, "<cpunum>",
2842	  "Switch to new cpu", 0,
2843	  KDB_ENABLE_ALWAYS_SAFE_NO_ARGS);
2844	kdb_register_flags("kgdb", kdb_kgdb, "",
2845	  "Enter kgdb mode", 0, 0);
2846	kdb_register_flags("ps", kdb_ps, "[<flags>|A]",
2847	  "Display active task list", 0,
2848	  KDB_ENABLE_INSPECT);
2849	kdb_register_flags("pid", kdb_pid, "<pidnum>",
2850	  "Switch to another task", 0,
2851	  KDB_ENABLE_INSPECT);
2852	kdb_register_flags("reboot", kdb_reboot, "",
2853	  "Reboot the machine immediately", 0,
2854	  KDB_ENABLE_REBOOT);
2855#if defined(CONFIG_MODULES)
2856	kdb_register_flags("lsmod", kdb_lsmod, "",
2857	  "List loaded kernel modules", 0,
2858	  KDB_ENABLE_INSPECT);
2859#endif
2860#if defined(CONFIG_MAGIC_SYSRQ)
2861	kdb_register_flags("sr", kdb_sr, "<key>",
2862	  "Magic SysRq key", 0,
2863	  KDB_ENABLE_ALWAYS_SAFE);
2864#endif
2865#if defined(CONFIG_PRINTK)
2866	kdb_register_flags("dmesg", kdb_dmesg, "[lines]",
2867	  "Display syslog buffer", 0,
2868	  KDB_ENABLE_ALWAYS_SAFE);
2869#endif
2870	if (arch_kgdb_ops.enable_nmi) {
2871		kdb_register_flags("disable_nmi", kdb_disable_nmi, "",
2872		  "Disable NMI entry to KDB", 0,
2873		  KDB_ENABLE_ALWAYS_SAFE);
2874	}
2875	kdb_register_flags("defcmd", kdb_defcmd, "name \"usage\" \"help\"",
2876	  "Define a set of commands, down to endefcmd", 0,
2877	  KDB_ENABLE_ALWAYS_SAFE);
2878	kdb_register_flags("kill", kdb_kill, "<-signal> <pid>",
2879	  "Send a signal to a process", 0,
2880	  KDB_ENABLE_SIGNAL);
2881	kdb_register_flags("summary", kdb_summary, "",
2882	  "Summarize the system", 4,
2883	  KDB_ENABLE_ALWAYS_SAFE);
2884	kdb_register_flags("per_cpu", kdb_per_cpu, "<sym> [<bytes>] [<cpu>]",
2885	  "Display per_cpu variables", 3,
2886	  KDB_ENABLE_MEM_READ);
2887	kdb_register_flags("grephelp", kdb_grep_help, "",
2888	  "Display help on | grep", 0,
2889	  KDB_ENABLE_ALWAYS_SAFE);
2890}
2891
2892/* Execute any commands defined in kdb_cmds.  */
2893static void __init kdb_cmd_init(void)
2894{
2895	int i, diag;
2896	for (i = 0; kdb_cmds[i]; ++i) {
2897		diag = kdb_parse(kdb_cmds[i]);
2898		if (diag)
2899			kdb_printf("kdb command %s failed, kdb diag %d\n",
2900				kdb_cmds[i], diag);
2901	}
2902	if (defcmd_in_progress) {
2903		kdb_printf("Incomplete 'defcmd' set, forcing endefcmd\n");
2904		kdb_parse("endefcmd");
2905	}
2906}
2907
2908/* Initialize kdb_printf, breakpoint tables and kdb state */
2909void __init kdb_init(int lvl)
2910{
2911	static int kdb_init_lvl = KDB_NOT_INITIALIZED;
2912	int i;
2913
2914	if (kdb_init_lvl == KDB_INIT_FULL || lvl <= kdb_init_lvl)
2915		return;
2916	for (i = kdb_init_lvl; i < lvl; i++) {
2917		switch (i) {
2918		case KDB_NOT_INITIALIZED:
2919			kdb_inittab();		/* Initialize Command Table */
2920			kdb_initbptab();	/* Initialize Breakpoints */
2921			break;
2922		case KDB_INIT_EARLY:
2923			kdb_cmd_init();		/* Build kdb_cmds tables */
2924			break;
2925		}
2926	}
2927	kdb_init_lvl = lvl;
2928}