Linux Audio

Check our new training course

Loading...
v4.6
   1/*
   2 * Kernel Debugger Architecture Independent Main Code
   3 *
   4 * This file is subject to the terms and conditions of the GNU General Public
   5 * License.  See the file "COPYING" in the main directory of this archive
   6 * for more details.
   7 *
   8 * Copyright (C) 1999-2004 Silicon Graphics, Inc.  All Rights Reserved.
   9 * Copyright (C) 2000 Stephane Eranian <eranian@hpl.hp.com>
  10 * Xscale (R) modifications copyright (C) 2003 Intel Corporation.
  11 * Copyright (c) 2009 Wind River Systems, Inc.  All Rights Reserved.
  12 */
  13
  14#include <linux/ctype.h>
  15#include <linux/types.h>
  16#include <linux/string.h>
  17#include <linux/kernel.h>
  18#include <linux/kmsg_dump.h>
  19#include <linux/reboot.h>
  20#include <linux/sched.h>
  21#include <linux/sysrq.h>
  22#include <linux/smp.h>
  23#include <linux/utsname.h>
  24#include <linux/vmalloc.h>
  25#include <linux/atomic.h>
  26#include <linux/module.h>
  27#include <linux/moduleparam.h>
  28#include <linux/mm.h>
  29#include <linux/init.h>
  30#include <linux/kallsyms.h>
  31#include <linux/kgdb.h>
  32#include <linux/kdb.h>
  33#include <linux/notifier.h>
  34#include <linux/interrupt.h>
  35#include <linux/delay.h>
  36#include <linux/nmi.h>
  37#include <linux/time.h>
  38#include <linux/ptrace.h>
  39#include <linux/sysctl.h>
  40#include <linux/cpu.h>
  41#include <linux/kdebug.h>
  42#include <linux/proc_fs.h>
  43#include <linux/uaccess.h>
  44#include <linux/slab.h>
  45#include "kdb_private.h"
  46
  47#undef	MODULE_PARAM_PREFIX
  48#define	MODULE_PARAM_PREFIX "kdb."
  49
  50static int kdb_cmd_enabled = CONFIG_KDB_DEFAULT_ENABLE;
  51module_param_named(cmd_enable, kdb_cmd_enabled, int, 0600);
  52
  53char kdb_grep_string[KDB_GREP_STRLEN];
  54int kdb_grepping_flag;
  55EXPORT_SYMBOL(kdb_grepping_flag);
  56int kdb_grep_leading;
  57int kdb_grep_trailing;
  58
  59/*
  60 * Kernel debugger state flags
  61 */
  62int kdb_flags;
  63atomic_t kdb_event;
  64
  65/*
  66 * kdb_lock protects updates to kdb_initial_cpu.  Used to
  67 * single thread processors through the kernel debugger.
  68 */
  69int kdb_initial_cpu = -1;	/* cpu number that owns kdb */
  70int kdb_nextline = 1;
  71int kdb_state;			/* General KDB state */
  72
  73struct task_struct *kdb_current_task;
  74EXPORT_SYMBOL(kdb_current_task);
  75struct pt_regs *kdb_current_regs;
  76
  77const char *kdb_diemsg;
  78static int kdb_go_count;
  79#ifdef CONFIG_KDB_CONTINUE_CATASTROPHIC
  80static unsigned int kdb_continue_catastrophic =
  81	CONFIG_KDB_CONTINUE_CATASTROPHIC;
  82#else
  83static unsigned int kdb_continue_catastrophic;
  84#endif
  85
  86/* kdb_commands describes the available commands. */
  87static kdbtab_t *kdb_commands;
  88#define KDB_BASE_CMD_MAX 50
  89static int kdb_max_commands = KDB_BASE_CMD_MAX;
  90static kdbtab_t kdb_base_commands[KDB_BASE_CMD_MAX];
  91#define for_each_kdbcmd(cmd, num)					\
  92	for ((cmd) = kdb_base_commands, (num) = 0;			\
  93	     num < kdb_max_commands;					\
  94	     num++, num == KDB_BASE_CMD_MAX ? cmd = kdb_commands : cmd++)
  95
  96typedef struct _kdbmsg {
  97	int	km_diag;	/* kdb diagnostic */
  98	char	*km_msg;	/* Corresponding message text */
  99} kdbmsg_t;
 100
 101#define KDBMSG(msgnum, text) \
 102	{ KDB_##msgnum, text }
 103
 104static kdbmsg_t kdbmsgs[] = {
 105	KDBMSG(NOTFOUND, "Command Not Found"),
 106	KDBMSG(ARGCOUNT, "Improper argument count, see usage."),
 107	KDBMSG(BADWIDTH, "Illegal value for BYTESPERWORD use 1, 2, 4 or 8, "
 108	       "8 is only allowed on 64 bit systems"),
 109	KDBMSG(BADRADIX, "Illegal value for RADIX use 8, 10 or 16"),
 110	KDBMSG(NOTENV, "Cannot find environment variable"),
 111	KDBMSG(NOENVVALUE, "Environment variable should have value"),
 112	KDBMSG(NOTIMP, "Command not implemented"),
 113	KDBMSG(ENVFULL, "Environment full"),
 114	KDBMSG(ENVBUFFULL, "Environment buffer full"),
 115	KDBMSG(TOOMANYBPT, "Too many breakpoints defined"),
 116#ifdef CONFIG_CPU_XSCALE
 117	KDBMSG(TOOMANYDBREGS, "More breakpoints than ibcr registers defined"),
 118#else
 119	KDBMSG(TOOMANYDBREGS, "More breakpoints than db registers defined"),
 120#endif
 121	KDBMSG(DUPBPT, "Duplicate breakpoint address"),
 122	KDBMSG(BPTNOTFOUND, "Breakpoint not found"),
 123	KDBMSG(BADMODE, "Invalid IDMODE"),
 124	KDBMSG(BADINT, "Illegal numeric value"),
 125	KDBMSG(INVADDRFMT, "Invalid symbolic address format"),
 126	KDBMSG(BADREG, "Invalid register name"),
 127	KDBMSG(BADCPUNUM, "Invalid cpu number"),
 128	KDBMSG(BADLENGTH, "Invalid length field"),
 129	KDBMSG(NOBP, "No Breakpoint exists"),
 130	KDBMSG(BADADDR, "Invalid address"),
 131	KDBMSG(NOPERM, "Permission denied"),
 132};
 133#undef KDBMSG
 134
 135static const int __nkdb_err = ARRAY_SIZE(kdbmsgs);
 136
 137
 138/*
 139 * Initial environment.   This is all kept static and local to
 140 * this file.   We don't want to rely on the memory allocation
 141 * mechanisms in the kernel, so we use a very limited allocate-only
 142 * heap for new and altered environment variables.  The entire
 143 * environment is limited to a fixed number of entries (add more
 144 * to __env[] if required) and a fixed amount of heap (add more to
 145 * KDB_ENVBUFSIZE if required).
 146 */
 147
 148static char *__env[] = {
 149#if defined(CONFIG_SMP)
 150 "PROMPT=[%d]kdb> ",
 151#else
 152 "PROMPT=kdb> ",
 153#endif
 154 "MOREPROMPT=more> ",
 155 "RADIX=16",
 156 "MDCOUNT=8",			/* lines of md output */
 157 KDB_PLATFORM_ENV,
 158 "DTABCOUNT=30",
 159 "NOSECT=1",
 160 (char *)0,
 161 (char *)0,
 162 (char *)0,
 163 (char *)0,
 164 (char *)0,
 165 (char *)0,
 166 (char *)0,
 167 (char *)0,
 168 (char *)0,
 169 (char *)0,
 170 (char *)0,
 171 (char *)0,
 172 (char *)0,
 173 (char *)0,
 174 (char *)0,
 175 (char *)0,
 176 (char *)0,
 177 (char *)0,
 178 (char *)0,
 179 (char *)0,
 180 (char *)0,
 181 (char *)0,
 182 (char *)0,
 183 (char *)0,
 184};
 185
 186static const int __nenv = ARRAY_SIZE(__env);
 187
 188struct task_struct *kdb_curr_task(int cpu)
 189{
 190	struct task_struct *p = curr_task(cpu);
 191#ifdef	_TIF_MCA_INIT
 192	if ((task_thread_info(p)->flags & _TIF_MCA_INIT) && KDB_TSK(cpu))
 193		p = krp->p;
 194#endif
 195	return p;
 196}
 197
 198/*
 199 * Check whether the flags of the current command and the permissions
 200 * of the kdb console has allow a command to be run.
 201 */
 202static inline bool kdb_check_flags(kdb_cmdflags_t flags, int permissions,
 203				   bool no_args)
 204{
 205	/* permissions comes from userspace so needs massaging slightly */
 206	permissions &= KDB_ENABLE_MASK;
 207	permissions |= KDB_ENABLE_ALWAYS_SAFE;
 208
 209	/* some commands change group when launched with no arguments */
 210	if (no_args)
 211		permissions |= permissions << KDB_ENABLE_NO_ARGS_SHIFT;
 212
 213	flags |= KDB_ENABLE_ALL;
 214
 215	return permissions & flags;
 216}
 217
 218/*
 219 * kdbgetenv - This function will return the character string value of
 220 *	an environment variable.
 221 * Parameters:
 222 *	match	A character string representing an environment variable.
 223 * Returns:
 224 *	NULL	No environment variable matches 'match'
 225 *	char*	Pointer to string value of environment variable.
 226 */
 227char *kdbgetenv(const char *match)
 228{
 229	char **ep = __env;
 230	int matchlen = strlen(match);
 231	int i;
 232
 233	for (i = 0; i < __nenv; i++) {
 234		char *e = *ep++;
 235
 236		if (!e)
 237			continue;
 238
 239		if ((strncmp(match, e, matchlen) == 0)
 240		 && ((e[matchlen] == '\0')
 241		   || (e[matchlen] == '='))) {
 242			char *cp = strchr(e, '=');
 243			return cp ? ++cp : "";
 244		}
 245	}
 246	return NULL;
 247}
 248
 249/*
 250 * kdballocenv - This function is used to allocate bytes for
 251 *	environment entries.
 252 * Parameters:
 253 *	match	A character string representing a numeric value
 254 * Outputs:
 255 *	*value  the unsigned long representation of the env variable 'match'
 256 * Returns:
 257 *	Zero on success, a kdb diagnostic on failure.
 258 * Remarks:
 259 *	We use a static environment buffer (envbuffer) to hold the values
 260 *	of dynamically generated environment variables (see kdb_set).  Buffer
 261 *	space once allocated is never free'd, so over time, the amount of space
 262 *	(currently 512 bytes) will be exhausted if env variables are changed
 263 *	frequently.
 264 */
 265static char *kdballocenv(size_t bytes)
 266{
 267#define	KDB_ENVBUFSIZE	512
 268	static char envbuffer[KDB_ENVBUFSIZE];
 269	static int envbufsize;
 270	char *ep = NULL;
 271
 272	if ((KDB_ENVBUFSIZE - envbufsize) >= bytes) {
 273		ep = &envbuffer[envbufsize];
 274		envbufsize += bytes;
 275	}
 276	return ep;
 277}
 278
 279/*
 280 * kdbgetulenv - This function will return the value of an unsigned
 281 *	long-valued environment variable.
 282 * Parameters:
 283 *	match	A character string representing a numeric value
 284 * Outputs:
 285 *	*value  the unsigned long represntation of the env variable 'match'
 286 * Returns:
 287 *	Zero on success, a kdb diagnostic on failure.
 288 */
 289static int kdbgetulenv(const char *match, unsigned long *value)
 290{
 291	char *ep;
 292
 293	ep = kdbgetenv(match);
 294	if (!ep)
 295		return KDB_NOTENV;
 296	if (strlen(ep) == 0)
 297		return KDB_NOENVVALUE;
 298
 299	*value = simple_strtoul(ep, NULL, 0);
 300
 301	return 0;
 302}
 303
 304/*
 305 * kdbgetintenv - This function will return the value of an
 306 *	integer-valued environment variable.
 307 * Parameters:
 308 *	match	A character string representing an integer-valued env variable
 309 * Outputs:
 310 *	*value  the integer representation of the environment variable 'match'
 311 * Returns:
 312 *	Zero on success, a kdb diagnostic on failure.
 313 */
 314int kdbgetintenv(const char *match, int *value)
 315{
 316	unsigned long val;
 317	int diag;
 318
 319	diag = kdbgetulenv(match, &val);
 320	if (!diag)
 321		*value = (int) val;
 322	return diag;
 323}
 324
 325/*
 326 * kdbgetularg - This function will convert a numeric string into an
 327 *	unsigned long value.
 328 * Parameters:
 329 *	arg	A character string representing a numeric value
 330 * Outputs:
 331 *	*value  the unsigned long represntation of arg.
 332 * Returns:
 333 *	Zero on success, a kdb diagnostic on failure.
 334 */
 335int kdbgetularg(const char *arg, unsigned long *value)
 336{
 337	char *endp;
 338	unsigned long val;
 339
 340	val = simple_strtoul(arg, &endp, 0);
 341
 342	if (endp == arg) {
 343		/*
 344		 * Also try base 16, for us folks too lazy to type the
 345		 * leading 0x...
 346		 */
 347		val = simple_strtoul(arg, &endp, 16);
 348		if (endp == arg)
 349			return KDB_BADINT;
 350	}
 351
 352	*value = val;
 353
 354	return 0;
 355}
 356
 357int kdbgetu64arg(const char *arg, u64 *value)
 358{
 359	char *endp;
 360	u64 val;
 361
 362	val = simple_strtoull(arg, &endp, 0);
 363
 364	if (endp == arg) {
 365
 366		val = simple_strtoull(arg, &endp, 16);
 367		if (endp == arg)
 368			return KDB_BADINT;
 369	}
 370
 371	*value = val;
 372
 373	return 0;
 374}
 375
 376/*
 377 * kdb_set - This function implements the 'set' command.  Alter an
 378 *	existing environment variable or create a new one.
 379 */
 380int kdb_set(int argc, const char **argv)
 381{
 382	int i;
 383	char *ep;
 384	size_t varlen, vallen;
 385
 386	/*
 387	 * we can be invoked two ways:
 388	 *   set var=value    argv[1]="var", argv[2]="value"
 389	 *   set var = value  argv[1]="var", argv[2]="=", argv[3]="value"
 390	 * - if the latter, shift 'em down.
 391	 */
 392	if (argc == 3) {
 393		argv[2] = argv[3];
 394		argc--;
 395	}
 396
 397	if (argc != 2)
 398		return KDB_ARGCOUNT;
 399
 400	/*
 401	 * Check for internal variables
 402	 */
 403	if (strcmp(argv[1], "KDBDEBUG") == 0) {
 404		unsigned int debugflags;
 405		char *cp;
 406
 407		debugflags = simple_strtoul(argv[2], &cp, 0);
 408		if (cp == argv[2] || debugflags & ~KDB_DEBUG_FLAG_MASK) {
 409			kdb_printf("kdb: illegal debug flags '%s'\n",
 410				    argv[2]);
 411			return 0;
 412		}
 413		kdb_flags = (kdb_flags &
 414			     ~(KDB_DEBUG_FLAG_MASK << KDB_DEBUG_FLAG_SHIFT))
 415			| (debugflags << KDB_DEBUG_FLAG_SHIFT);
 416
 417		return 0;
 418	}
 419
 420	/*
 421	 * Tokenizer squashed the '=' sign.  argv[1] is variable
 422	 * name, argv[2] = value.
 423	 */
 424	varlen = strlen(argv[1]);
 425	vallen = strlen(argv[2]);
 426	ep = kdballocenv(varlen + vallen + 2);
 427	if (ep == (char *)0)
 428		return KDB_ENVBUFFULL;
 429
 430	sprintf(ep, "%s=%s", argv[1], argv[2]);
 431
 432	ep[varlen+vallen+1] = '\0';
 433
 434	for (i = 0; i < __nenv; i++) {
 435		if (__env[i]
 436		 && ((strncmp(__env[i], argv[1], varlen) == 0)
 437		   && ((__env[i][varlen] == '\0')
 438		    || (__env[i][varlen] == '=')))) {
 439			__env[i] = ep;
 440			return 0;
 441		}
 442	}
 443
 444	/*
 445	 * Wasn't existing variable.  Fit into slot.
 446	 */
 447	for (i = 0; i < __nenv-1; i++) {
 448		if (__env[i] == (char *)0) {
 449			__env[i] = ep;
 450			return 0;
 451		}
 452	}
 453
 454	return KDB_ENVFULL;
 455}
 456
 457static int kdb_check_regs(void)
 458{
 459	if (!kdb_current_regs) {
 460		kdb_printf("No current kdb registers."
 461			   "  You may need to select another task\n");
 462		return KDB_BADREG;
 463	}
 464	return 0;
 465}
 466
 467/*
 468 * kdbgetaddrarg - This function is responsible for parsing an
 469 *	address-expression and returning the value of the expression,
 470 *	symbol name, and offset to the caller.
 471 *
 472 *	The argument may consist of a numeric value (decimal or
 473 *	hexidecimal), a symbol name, a register name (preceded by the
 474 *	percent sign), an environment variable with a numeric value
 475 *	(preceded by a dollar sign) or a simple arithmetic expression
 476 *	consisting of a symbol name, +/-, and a numeric constant value
 477 *	(offset).
 478 * Parameters:
 479 *	argc	- count of arguments in argv
 480 *	argv	- argument vector
 481 *	*nextarg - index to next unparsed argument in argv[]
 482 *	regs	- Register state at time of KDB entry
 483 * Outputs:
 484 *	*value	- receives the value of the address-expression
 485 *	*offset - receives the offset specified, if any
 486 *	*name   - receives the symbol name, if any
 487 *	*nextarg - index to next unparsed argument in argv[]
 488 * Returns:
 489 *	zero is returned on success, a kdb diagnostic code is
 490 *      returned on error.
 491 */
 492int kdbgetaddrarg(int argc, const char **argv, int *nextarg,
 493		  unsigned long *value,  long *offset,
 494		  char **name)
 495{
 496	unsigned long addr;
 497	unsigned long off = 0;
 498	int positive;
 499	int diag;
 500	int found = 0;
 501	char *symname;
 502	char symbol = '\0';
 503	char *cp;
 504	kdb_symtab_t symtab;
 505
 506	/*
 507	 * If the enable flags prohibit both arbitrary memory access
 508	 * and flow control then there are no reasonable grounds to
 509	 * provide symbol lookup.
 510	 */
 511	if (!kdb_check_flags(KDB_ENABLE_MEM_READ | KDB_ENABLE_FLOW_CTRL,
 512			     kdb_cmd_enabled, false))
 513		return KDB_NOPERM;
 514
 515	/*
 516	 * Process arguments which follow the following syntax:
 517	 *
 518	 *  symbol | numeric-address [+/- numeric-offset]
 519	 *  %register
 520	 *  $environment-variable
 521	 */
 522
 523	if (*nextarg > argc)
 524		return KDB_ARGCOUNT;
 525
 526	symname = (char *)argv[*nextarg];
 527
 528	/*
 529	 * If there is no whitespace between the symbol
 530	 * or address and the '+' or '-' symbols, we
 531	 * remember the character and replace it with a
 532	 * null so the symbol/value can be properly parsed
 533	 */
 534	cp = strpbrk(symname, "+-");
 535	if (cp != NULL) {
 536		symbol = *cp;
 537		*cp++ = '\0';
 538	}
 539
 540	if (symname[0] == '$') {
 541		diag = kdbgetulenv(&symname[1], &addr);
 542		if (diag)
 543			return diag;
 544	} else if (symname[0] == '%') {
 545		diag = kdb_check_regs();
 546		if (diag)
 547			return diag;
 548		/* Implement register values with % at a later time as it is
 549		 * arch optional.
 550		 */
 551		return KDB_NOTIMP;
 552	} else {
 553		found = kdbgetsymval(symname, &symtab);
 554		if (found) {
 555			addr = symtab.sym_start;
 556		} else {
 557			diag = kdbgetularg(argv[*nextarg], &addr);
 558			if (diag)
 559				return diag;
 560		}
 561	}
 562
 563	if (!found)
 564		found = kdbnearsym(addr, &symtab);
 565
 566	(*nextarg)++;
 567
 568	if (name)
 569		*name = symname;
 570	if (value)
 571		*value = addr;
 572	if (offset && name && *name)
 573		*offset = addr - symtab.sym_start;
 574
 575	if ((*nextarg > argc)
 576	 && (symbol == '\0'))
 577		return 0;
 578
 579	/*
 580	 * check for +/- and offset
 581	 */
 582
 583	if (symbol == '\0') {
 584		if ((argv[*nextarg][0] != '+')
 585		 && (argv[*nextarg][0] != '-')) {
 586			/*
 587			 * Not our argument.  Return.
 588			 */
 589			return 0;
 590		} else {
 591			positive = (argv[*nextarg][0] == '+');
 592			(*nextarg)++;
 593		}
 594	} else
 595		positive = (symbol == '+');
 596
 597	/*
 598	 * Now there must be an offset!
 599	 */
 600	if ((*nextarg > argc)
 601	 && (symbol == '\0')) {
 602		return KDB_INVADDRFMT;
 603	}
 604
 605	if (!symbol) {
 606		cp = (char *)argv[*nextarg];
 607		(*nextarg)++;
 608	}
 609
 610	diag = kdbgetularg(cp, &off);
 611	if (diag)
 612		return diag;
 613
 614	if (!positive)
 615		off = -off;
 616
 617	if (offset)
 618		*offset += off;
 619
 620	if (value)
 621		*value += off;
 622
 623	return 0;
 624}
 625
 626static void kdb_cmderror(int diag)
 627{
 628	int i;
 629
 630	if (diag >= 0) {
 631		kdb_printf("no error detected (diagnostic is %d)\n", diag);
 632		return;
 633	}
 634
 635	for (i = 0; i < __nkdb_err; i++) {
 636		if (kdbmsgs[i].km_diag == diag) {
 637			kdb_printf("diag: %d: %s\n", diag, kdbmsgs[i].km_msg);
 638			return;
 639		}
 640	}
 641
 642	kdb_printf("Unknown diag %d\n", -diag);
 643}
 644
 645/*
 646 * kdb_defcmd, kdb_defcmd2 - This function implements the 'defcmd'
 647 *	command which defines one command as a set of other commands,
 648 *	terminated by endefcmd.  kdb_defcmd processes the initial
 649 *	'defcmd' command, kdb_defcmd2 is invoked from kdb_parse for
 650 *	the following commands until 'endefcmd'.
 651 * Inputs:
 652 *	argc	argument count
 653 *	argv	argument vector
 654 * Returns:
 655 *	zero for success, a kdb diagnostic if error
 656 */
 657struct defcmd_set {
 658	int count;
 659	int usable;
 660	char *name;
 661	char *usage;
 662	char *help;
 663	char **command;
 664};
 665static struct defcmd_set *defcmd_set;
 666static int defcmd_set_count;
 667static int defcmd_in_progress;
 668
 669/* Forward references */
 670static int kdb_exec_defcmd(int argc, const char **argv);
 671
 672static int kdb_defcmd2(const char *cmdstr, const char *argv0)
 673{
 674	struct defcmd_set *s = defcmd_set + defcmd_set_count - 1;
 675	char **save_command = s->command;
 676	if (strcmp(argv0, "endefcmd") == 0) {
 677		defcmd_in_progress = 0;
 678		if (!s->count)
 679			s->usable = 0;
 680		if (s->usable)
 681			/* macros are always safe because when executed each
 682			 * internal command re-enters kdb_parse() and is
 683			 * safety checked individually.
 684			 */
 685			kdb_register_flags(s->name, kdb_exec_defcmd, s->usage,
 686					   s->help, 0,
 687					   KDB_ENABLE_ALWAYS_SAFE);
 688		return 0;
 689	}
 690	if (!s->usable)
 691		return KDB_NOTIMP;
 692	s->command = kzalloc((s->count + 1) * sizeof(*(s->command)), GFP_KDB);
 693	if (!s->command) {
 694		kdb_printf("Could not allocate new kdb_defcmd table for %s\n",
 695			   cmdstr);
 696		s->usable = 0;
 697		return KDB_NOTIMP;
 698	}
 699	memcpy(s->command, save_command, s->count * sizeof(*(s->command)));
 700	s->command[s->count++] = kdb_strdup(cmdstr, GFP_KDB);
 701	kfree(save_command);
 702	return 0;
 703}
 704
 705static int kdb_defcmd(int argc, const char **argv)
 706{
 707	struct defcmd_set *save_defcmd_set = defcmd_set, *s;
 708	if (defcmd_in_progress) {
 709		kdb_printf("kdb: nested defcmd detected, assuming missing "
 710			   "endefcmd\n");
 711		kdb_defcmd2("endefcmd", "endefcmd");
 712	}
 713	if (argc == 0) {
 714		int i;
 715		for (s = defcmd_set; s < defcmd_set + defcmd_set_count; ++s) {
 716			kdb_printf("defcmd %s \"%s\" \"%s\"\n", s->name,
 717				   s->usage, s->help);
 718			for (i = 0; i < s->count; ++i)
 719				kdb_printf("%s", s->command[i]);
 720			kdb_printf("endefcmd\n");
 721		}
 722		return 0;
 723	}
 724	if (argc != 3)
 725		return KDB_ARGCOUNT;
 726	if (in_dbg_master()) {
 727		kdb_printf("Command only available during kdb_init()\n");
 728		return KDB_NOTIMP;
 729	}
 730	defcmd_set = kmalloc((defcmd_set_count + 1) * sizeof(*defcmd_set),
 731			     GFP_KDB);
 732	if (!defcmd_set)
 733		goto fail_defcmd;
 734	memcpy(defcmd_set, save_defcmd_set,
 735	       defcmd_set_count * sizeof(*defcmd_set));
 736	s = defcmd_set + defcmd_set_count;
 737	memset(s, 0, sizeof(*s));
 738	s->usable = 1;
 739	s->name = kdb_strdup(argv[1], GFP_KDB);
 740	if (!s->name)
 741		goto fail_name;
 742	s->usage = kdb_strdup(argv[2], GFP_KDB);
 743	if (!s->usage)
 744		goto fail_usage;
 745	s->help = kdb_strdup(argv[3], GFP_KDB);
 746	if (!s->help)
 747		goto fail_help;
 748	if (s->usage[0] == '"') {
 749		strcpy(s->usage, argv[2]+1);
 750		s->usage[strlen(s->usage)-1] = '\0';
 751	}
 752	if (s->help[0] == '"') {
 753		strcpy(s->help, argv[3]+1);
 754		s->help[strlen(s->help)-1] = '\0';
 755	}
 756	++defcmd_set_count;
 757	defcmd_in_progress = 1;
 758	kfree(save_defcmd_set);
 759	return 0;
 760fail_help:
 761	kfree(s->usage);
 762fail_usage:
 763	kfree(s->name);
 764fail_name:
 765	kfree(defcmd_set);
 766fail_defcmd:
 767	kdb_printf("Could not allocate new defcmd_set entry for %s\n", argv[1]);
 768	defcmd_set = save_defcmd_set;
 769	return KDB_NOTIMP;
 770}
 771
 772/*
 773 * kdb_exec_defcmd - Execute the set of commands associated with this
 774 *	defcmd name.
 775 * Inputs:
 776 *	argc	argument count
 777 *	argv	argument vector
 778 * Returns:
 779 *	zero for success, a kdb diagnostic if error
 780 */
 781static int kdb_exec_defcmd(int argc, const char **argv)
 782{
 783	int i, ret;
 784	struct defcmd_set *s;
 785	if (argc != 0)
 786		return KDB_ARGCOUNT;
 787	for (s = defcmd_set, i = 0; i < defcmd_set_count; ++i, ++s) {
 788		if (strcmp(s->name, argv[0]) == 0)
 789			break;
 790	}
 791	if (i == defcmd_set_count) {
 792		kdb_printf("kdb_exec_defcmd: could not find commands for %s\n",
 793			   argv[0]);
 794		return KDB_NOTIMP;
 795	}
 796	for (i = 0; i < s->count; ++i) {
 797		/* Recursive use of kdb_parse, do not use argv after
 798		 * this point */
 799		argv = NULL;
 800		kdb_printf("[%s]kdb> %s\n", s->name, s->command[i]);
 801		ret = kdb_parse(s->command[i]);
 802		if (ret)
 803			return ret;
 804	}
 805	return 0;
 806}
 807
 808/* Command history */
 809#define KDB_CMD_HISTORY_COUNT	32
 810#define CMD_BUFLEN		200	/* kdb_printf: max printline
 811					 * size == 256 */
 812static unsigned int cmd_head, cmd_tail;
 813static unsigned int cmdptr;
 814static char cmd_hist[KDB_CMD_HISTORY_COUNT][CMD_BUFLEN];
 815static char cmd_cur[CMD_BUFLEN];
 816
 817/*
 818 * The "str" argument may point to something like  | grep xyz
 819 */
 820static void parse_grep(const char *str)
 821{
 822	int	len;
 823	char	*cp = (char *)str, *cp2;
 824
 825	/* sanity check: we should have been called with the \ first */
 826	if (*cp != '|')
 827		return;
 828	cp++;
 829	while (isspace(*cp))
 830		cp++;
 831	if (strncmp(cp, "grep ", 5)) {
 832		kdb_printf("invalid 'pipe', see grephelp\n");
 833		return;
 834	}
 835	cp += 5;
 836	while (isspace(*cp))
 837		cp++;
 838	cp2 = strchr(cp, '\n');
 839	if (cp2)
 840		*cp2 = '\0'; /* remove the trailing newline */
 841	len = strlen(cp);
 842	if (len == 0) {
 843		kdb_printf("invalid 'pipe', see grephelp\n");
 844		return;
 845	}
 846	/* now cp points to a nonzero length search string */
 847	if (*cp == '"') {
 848		/* allow it be "x y z" by removing the "'s - there must
 849		   be two of them */
 850		cp++;
 851		cp2 = strchr(cp, '"');
 852		if (!cp2) {
 853			kdb_printf("invalid quoted string, see grephelp\n");
 854			return;
 855		}
 856		*cp2 = '\0'; /* end the string where the 2nd " was */
 857	}
 858	kdb_grep_leading = 0;
 859	if (*cp == '^') {
 860		kdb_grep_leading = 1;
 861		cp++;
 862	}
 863	len = strlen(cp);
 864	kdb_grep_trailing = 0;
 865	if (*(cp+len-1) == '$') {
 866		kdb_grep_trailing = 1;
 867		*(cp+len-1) = '\0';
 868	}
 869	len = strlen(cp);
 870	if (!len)
 871		return;
 872	if (len >= KDB_GREP_STRLEN) {
 873		kdb_printf("search string too long\n");
 874		return;
 875	}
 876	strcpy(kdb_grep_string, cp);
 877	kdb_grepping_flag++;
 878	return;
 879}
 880
 881/*
 882 * kdb_parse - Parse the command line, search the command table for a
 883 *	matching command and invoke the command function.  This
 884 *	function may be called recursively, if it is, the second call
 885 *	will overwrite argv and cbuf.  It is the caller's
 886 *	responsibility to save their argv if they recursively call
 887 *	kdb_parse().
 888 * Parameters:
 889 *      cmdstr	The input command line to be parsed.
 890 *	regs	The registers at the time kdb was entered.
 891 * Returns:
 892 *	Zero for success, a kdb diagnostic if failure.
 893 * Remarks:
 894 *	Limited to 20 tokens.
 895 *
 896 *	Real rudimentary tokenization. Basically only whitespace
 897 *	is considered a token delimeter (but special consideration
 898 *	is taken of the '=' sign as used by the 'set' command).
 899 *
 900 *	The algorithm used to tokenize the input string relies on
 901 *	there being at least one whitespace (or otherwise useless)
 902 *	character between tokens as the character immediately following
 903 *	the token is altered in-place to a null-byte to terminate the
 904 *	token string.
 905 */
 906
 907#define MAXARGC	20
 908
 909int kdb_parse(const char *cmdstr)
 910{
 911	static char *argv[MAXARGC];
 912	static int argc;
 913	static char cbuf[CMD_BUFLEN+2];
 914	char *cp;
 915	char *cpp, quoted;
 916	kdbtab_t *tp;
 917	int i, escaped, ignore_errors = 0, check_grep = 0;
 918
 919	/*
 920	 * First tokenize the command string.
 921	 */
 922	cp = (char *)cmdstr;
 923
 924	if (KDB_FLAG(CMD_INTERRUPT)) {
 925		/* Previous command was interrupted, newline must not
 926		 * repeat the command */
 927		KDB_FLAG_CLEAR(CMD_INTERRUPT);
 928		KDB_STATE_SET(PAGER);
 929		argc = 0;	/* no repeat */
 930	}
 931
 932	if (*cp != '\n' && *cp != '\0') {
 933		argc = 0;
 934		cpp = cbuf;
 935		while (*cp) {
 936			/* skip whitespace */
 937			while (isspace(*cp))
 938				cp++;
 939			if ((*cp == '\0') || (*cp == '\n') ||
 940			    (*cp == '#' && !defcmd_in_progress))
 941				break;
 942			/* special case: check for | grep pattern */
 943			if (*cp == '|') {
 944				check_grep++;
 945				break;
 946			}
 947			if (cpp >= cbuf + CMD_BUFLEN) {
 948				kdb_printf("kdb_parse: command buffer "
 949					   "overflow, command ignored\n%s\n",
 950					   cmdstr);
 951				return KDB_NOTFOUND;
 952			}
 953			if (argc >= MAXARGC - 1) {
 954				kdb_printf("kdb_parse: too many arguments, "
 955					   "command ignored\n%s\n", cmdstr);
 956				return KDB_NOTFOUND;
 957			}
 958			argv[argc++] = cpp;
 959			escaped = 0;
 960			quoted = '\0';
 961			/* Copy to next unquoted and unescaped
 962			 * whitespace or '=' */
 963			while (*cp && *cp != '\n' &&
 964			       (escaped || quoted || !isspace(*cp))) {
 965				if (cpp >= cbuf + CMD_BUFLEN)
 966					break;
 967				if (escaped) {
 968					escaped = 0;
 969					*cpp++ = *cp++;
 970					continue;
 971				}
 972				if (*cp == '\\') {
 973					escaped = 1;
 974					++cp;
 975					continue;
 976				}
 977				if (*cp == quoted)
 978					quoted = '\0';
 979				else if (*cp == '\'' || *cp == '"')
 980					quoted = *cp;
 981				*cpp = *cp++;
 982				if (*cpp == '=' && !quoted)
 983					break;
 984				++cpp;
 985			}
 986			*cpp++ = '\0';	/* Squash a ws or '=' character */
 987		}
 988	}
 989	if (!argc)
 990		return 0;
 991	if (check_grep)
 992		parse_grep(cp);
 993	if (defcmd_in_progress) {
 994		int result = kdb_defcmd2(cmdstr, argv[0]);
 995		if (!defcmd_in_progress) {
 996			argc = 0;	/* avoid repeat on endefcmd */
 997			*(argv[0]) = '\0';
 998		}
 999		return result;
1000	}
1001	if (argv[0][0] == '-' && argv[0][1] &&
1002	    (argv[0][1] < '0' || argv[0][1] > '9')) {
1003		ignore_errors = 1;
1004		++argv[0];
1005	}
1006
1007	for_each_kdbcmd(tp, i) {
1008		if (tp->cmd_name) {
1009			/*
1010			 * If this command is allowed to be abbreviated,
1011			 * check to see if this is it.
1012			 */
1013
1014			if (tp->cmd_minlen
1015			 && (strlen(argv[0]) <= tp->cmd_minlen)) {
1016				if (strncmp(argv[0],
1017					    tp->cmd_name,
1018					    tp->cmd_minlen) == 0) {
1019					break;
1020				}
1021			}
1022
1023			if (strcmp(argv[0], tp->cmd_name) == 0)
1024				break;
1025		}
1026	}
1027
1028	/*
1029	 * If we don't find a command by this name, see if the first
1030	 * few characters of this match any of the known commands.
1031	 * e.g., md1c20 should match md.
1032	 */
1033	if (i == kdb_max_commands) {
1034		for_each_kdbcmd(tp, i) {
1035			if (tp->cmd_name) {
1036				if (strncmp(argv[0],
1037					    tp->cmd_name,
1038					    strlen(tp->cmd_name)) == 0) {
1039					break;
1040				}
1041			}
1042		}
1043	}
1044
1045	if (i < kdb_max_commands) {
1046		int result;
1047
1048		if (!kdb_check_flags(tp->cmd_flags, kdb_cmd_enabled, argc <= 1))
1049			return KDB_NOPERM;
1050
1051		KDB_STATE_SET(CMD);
1052		result = (*tp->cmd_func)(argc-1, (const char **)argv);
1053		if (result && ignore_errors && result > KDB_CMD_GO)
1054			result = 0;
1055		KDB_STATE_CLEAR(CMD);
1056
1057		if (tp->cmd_flags & KDB_REPEAT_WITH_ARGS)
1058			return result;
1059
1060		argc = tp->cmd_flags & KDB_REPEAT_NO_ARGS ? 1 : 0;
1061		if (argv[argc])
1062			*(argv[argc]) = '\0';
1063		return result;
1064	}
1065
1066	/*
1067	 * If the input with which we were presented does not
1068	 * map to an existing command, attempt to parse it as an
1069	 * address argument and display the result.   Useful for
1070	 * obtaining the address of a variable, or the nearest symbol
1071	 * to an address contained in a register.
1072	 */
1073	{
1074		unsigned long value;
1075		char *name = NULL;
1076		long offset;
1077		int nextarg = 0;
1078
1079		if (kdbgetaddrarg(0, (const char **)argv, &nextarg,
1080				  &value, &offset, &name)) {
1081			return KDB_NOTFOUND;
1082		}
1083
1084		kdb_printf("%s = ", argv[0]);
1085		kdb_symbol_print(value, NULL, KDB_SP_DEFAULT);
1086		kdb_printf("\n");
1087		return 0;
1088	}
1089}
1090
1091
1092static int handle_ctrl_cmd(char *cmd)
1093{
1094#define CTRL_P	16
1095#define CTRL_N	14
1096
1097	/* initial situation */
1098	if (cmd_head == cmd_tail)
1099		return 0;
1100	switch (*cmd) {
1101	case CTRL_P:
1102		if (cmdptr != cmd_tail)
1103			cmdptr = (cmdptr-1) % KDB_CMD_HISTORY_COUNT;
1104		strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1105		return 1;
1106	case CTRL_N:
1107		if (cmdptr != cmd_head)
1108			cmdptr = (cmdptr+1) % KDB_CMD_HISTORY_COUNT;
1109		strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1110		return 1;
1111	}
1112	return 0;
1113}
1114
1115/*
1116 * kdb_reboot - This function implements the 'reboot' command.  Reboot
1117 *	the system immediately, or loop for ever on failure.
1118 */
1119static int kdb_reboot(int argc, const char **argv)
1120{
1121	emergency_restart();
1122	kdb_printf("Hmm, kdb_reboot did not reboot, spinning here\n");
1123	while (1)
1124		cpu_relax();
1125	/* NOTREACHED */
1126	return 0;
1127}
1128
1129static void kdb_dumpregs(struct pt_regs *regs)
1130{
1131	int old_lvl = console_loglevel;
1132	console_loglevel = CONSOLE_LOGLEVEL_MOTORMOUTH;
1133	kdb_trap_printk++;
1134	show_regs(regs);
1135	kdb_trap_printk--;
1136	kdb_printf("\n");
1137	console_loglevel = old_lvl;
1138}
1139
1140void kdb_set_current_task(struct task_struct *p)
1141{
1142	kdb_current_task = p;
1143
1144	if (kdb_task_has_cpu(p)) {
1145		kdb_current_regs = KDB_TSKREGS(kdb_process_cpu(p));
1146		return;
1147	}
1148	kdb_current_regs = NULL;
1149}
1150
1151/*
1152 * kdb_local - The main code for kdb.  This routine is invoked on a
1153 *	specific processor, it is not global.  The main kdb() routine
1154 *	ensures that only one processor at a time is in this routine.
1155 *	This code is called with the real reason code on the first
1156 *	entry to a kdb session, thereafter it is called with reason
1157 *	SWITCH, even if the user goes back to the original cpu.
1158 * Inputs:
1159 *	reason		The reason KDB was invoked
1160 *	error		The hardware-defined error code
1161 *	regs		The exception frame at time of fault/breakpoint.
1162 *	db_result	Result code from the break or debug point.
1163 * Returns:
1164 *	0	KDB was invoked for an event which it wasn't responsible
1165 *	1	KDB handled the event for which it was invoked.
1166 *	KDB_CMD_GO	User typed 'go'.
1167 *	KDB_CMD_CPU	User switched to another cpu.
1168 *	KDB_CMD_SS	Single step.
1169 */
1170static int kdb_local(kdb_reason_t reason, int error, struct pt_regs *regs,
1171		     kdb_dbtrap_t db_result)
1172{
1173	char *cmdbuf;
1174	int diag;
1175	struct task_struct *kdb_current =
1176		kdb_curr_task(raw_smp_processor_id());
1177
1178	KDB_DEBUG_STATE("kdb_local 1", reason);
1179	kdb_go_count = 0;
1180	if (reason == KDB_REASON_DEBUG) {
1181		/* special case below */
1182	} else {
1183		kdb_printf("\nEntering kdb (current=0x%p, pid %d) ",
1184			   kdb_current, kdb_current ? kdb_current->pid : 0);
1185#if defined(CONFIG_SMP)
1186		kdb_printf("on processor %d ", raw_smp_processor_id());
1187#endif
1188	}
1189
1190	switch (reason) {
1191	case KDB_REASON_DEBUG:
1192	{
1193		/*
1194		 * If re-entering kdb after a single step
1195		 * command, don't print the message.
1196		 */
1197		switch (db_result) {
1198		case KDB_DB_BPT:
1199			kdb_printf("\nEntering kdb (0x%p, pid %d) ",
1200				   kdb_current, kdb_current->pid);
1201#if defined(CONFIG_SMP)
1202			kdb_printf("on processor %d ", raw_smp_processor_id());
1203#endif
1204			kdb_printf("due to Debug @ " kdb_machreg_fmt "\n",
1205				   instruction_pointer(regs));
1206			break;
1207		case KDB_DB_SS:
1208			break;
1209		case KDB_DB_SSBPT:
1210			KDB_DEBUG_STATE("kdb_local 4", reason);
1211			return 1;	/* kdba_db_trap did the work */
1212		default:
1213			kdb_printf("kdb: Bad result from kdba_db_trap: %d\n",
1214				   db_result);
1215			break;
1216		}
1217
1218	}
1219		break;
1220	case KDB_REASON_ENTER:
1221		if (KDB_STATE(KEYBOARD))
1222			kdb_printf("due to Keyboard Entry\n");
1223		else
1224			kdb_printf("due to KDB_ENTER()\n");
1225		break;
1226	case KDB_REASON_KEYBOARD:
1227		KDB_STATE_SET(KEYBOARD);
1228		kdb_printf("due to Keyboard Entry\n");
1229		break;
1230	case KDB_REASON_ENTER_SLAVE:
1231		/* drop through, slaves only get released via cpu switch */
1232	case KDB_REASON_SWITCH:
1233		kdb_printf("due to cpu switch\n");
1234		break;
1235	case KDB_REASON_OOPS:
1236		kdb_printf("Oops: %s\n", kdb_diemsg);
1237		kdb_printf("due to oops @ " kdb_machreg_fmt "\n",
1238			   instruction_pointer(regs));
1239		kdb_dumpregs(regs);
1240		break;
1241	case KDB_REASON_SYSTEM_NMI:
1242		kdb_printf("due to System NonMaskable Interrupt\n");
1243		break;
1244	case KDB_REASON_NMI:
1245		kdb_printf("due to NonMaskable Interrupt @ "
1246			   kdb_machreg_fmt "\n",
1247			   instruction_pointer(regs));
1248		break;
1249	case KDB_REASON_SSTEP:
1250	case KDB_REASON_BREAK:
1251		kdb_printf("due to %s @ " kdb_machreg_fmt "\n",
1252			   reason == KDB_REASON_BREAK ?
1253			   "Breakpoint" : "SS trap", instruction_pointer(regs));
1254		/*
1255		 * Determine if this breakpoint is one that we
1256		 * are interested in.
1257		 */
1258		if (db_result != KDB_DB_BPT) {
1259			kdb_printf("kdb: error return from kdba_bp_trap: %d\n",
1260				   db_result);
1261			KDB_DEBUG_STATE("kdb_local 6", reason);
1262			return 0;	/* Not for us, dismiss it */
1263		}
1264		break;
1265	case KDB_REASON_RECURSE:
1266		kdb_printf("due to Recursion @ " kdb_machreg_fmt "\n",
1267			   instruction_pointer(regs));
1268		break;
1269	default:
1270		kdb_printf("kdb: unexpected reason code: %d\n", reason);
1271		KDB_DEBUG_STATE("kdb_local 8", reason);
1272		return 0;	/* Not for us, dismiss it */
1273	}
1274
1275	while (1) {
1276		/*
1277		 * Initialize pager context.
1278		 */
1279		kdb_nextline = 1;
1280		KDB_STATE_CLEAR(SUPPRESS);
1281		kdb_grepping_flag = 0;
1282		/* ensure the old search does not leak into '/' commands */
1283		kdb_grep_string[0] = '\0';
1284
1285		cmdbuf = cmd_cur;
1286		*cmdbuf = '\0';
1287		*(cmd_hist[cmd_head]) = '\0';
1288
1289do_full_getstr:
1290#if defined(CONFIG_SMP)
1291		snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"),
1292			 raw_smp_processor_id());
1293#else
1294		snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"));
1295#endif
1296		if (defcmd_in_progress)
1297			strncat(kdb_prompt_str, "[defcmd]", CMD_BUFLEN);
1298
1299		/*
1300		 * Fetch command from keyboard
1301		 */
1302		cmdbuf = kdb_getstr(cmdbuf, CMD_BUFLEN, kdb_prompt_str);
1303		if (*cmdbuf != '\n') {
1304			if (*cmdbuf < 32) {
1305				if (cmdptr == cmd_head) {
1306					strncpy(cmd_hist[cmd_head], cmd_cur,
1307						CMD_BUFLEN);
1308					*(cmd_hist[cmd_head] +
1309					  strlen(cmd_hist[cmd_head])-1) = '\0';
1310				}
1311				if (!handle_ctrl_cmd(cmdbuf))
1312					*(cmd_cur+strlen(cmd_cur)-1) = '\0';
1313				cmdbuf = cmd_cur;
1314				goto do_full_getstr;
1315			} else {
1316				strncpy(cmd_hist[cmd_head], cmd_cur,
1317					CMD_BUFLEN);
1318			}
1319
1320			cmd_head = (cmd_head+1) % KDB_CMD_HISTORY_COUNT;
1321			if (cmd_head == cmd_tail)
1322				cmd_tail = (cmd_tail+1) % KDB_CMD_HISTORY_COUNT;
1323		}
1324
1325		cmdptr = cmd_head;
1326		diag = kdb_parse(cmdbuf);
1327		if (diag == KDB_NOTFOUND) {
1328			kdb_printf("Unknown kdb command: '%s'\n", cmdbuf);
1329			diag = 0;
1330		}
1331		if (diag == KDB_CMD_GO
1332		 || diag == KDB_CMD_CPU
1333		 || diag == KDB_CMD_SS
1334		 || diag == KDB_CMD_KGDB)
1335			break;
1336
1337		if (diag)
1338			kdb_cmderror(diag);
1339	}
1340	KDB_DEBUG_STATE("kdb_local 9", diag);
1341	return diag;
1342}
1343
1344
1345/*
1346 * kdb_print_state - Print the state data for the current processor
1347 *	for debugging.
1348 * Inputs:
1349 *	text		Identifies the debug point
1350 *	value		Any integer value to be printed, e.g. reason code.
1351 */
1352void kdb_print_state(const char *text, int value)
1353{
1354	kdb_printf("state: %s cpu %d value %d initial %d state %x\n",
1355		   text, raw_smp_processor_id(), value, kdb_initial_cpu,
1356		   kdb_state);
1357}
1358
1359/*
1360 * kdb_main_loop - After initial setup and assignment of the
1361 *	controlling cpu, all cpus are in this loop.  One cpu is in
1362 *	control and will issue the kdb prompt, the others will spin
1363 *	until 'go' or cpu switch.
1364 *
1365 *	To get a consistent view of the kernel stacks for all
1366 *	processes, this routine is invoked from the main kdb code via
1367 *	an architecture specific routine.  kdba_main_loop is
1368 *	responsible for making the kernel stacks consistent for all
1369 *	processes, there should be no difference between a blocked
1370 *	process and a running process as far as kdb is concerned.
1371 * Inputs:
1372 *	reason		The reason KDB was invoked
1373 *	error		The hardware-defined error code
1374 *	reason2		kdb's current reason code.
1375 *			Initially error but can change
1376 *			according to kdb state.
1377 *	db_result	Result code from break or debug point.
1378 *	regs		The exception frame at time of fault/breakpoint.
1379 *			should always be valid.
1380 * Returns:
1381 *	0	KDB was invoked for an event which it wasn't responsible
1382 *	1	KDB handled the event for which it was invoked.
1383 */
1384int kdb_main_loop(kdb_reason_t reason, kdb_reason_t reason2, int error,
1385	      kdb_dbtrap_t db_result, struct pt_regs *regs)
1386{
1387	int result = 1;
1388	/* Stay in kdb() until 'go', 'ss[b]' or an error */
1389	while (1) {
1390		/*
1391		 * All processors except the one that is in control
1392		 * will spin here.
1393		 */
1394		KDB_DEBUG_STATE("kdb_main_loop 1", reason);
1395		while (KDB_STATE(HOLD_CPU)) {
1396			/* state KDB is turned off by kdb_cpu to see if the
1397			 * other cpus are still live, each cpu in this loop
1398			 * turns it back on.
1399			 */
1400			if (!KDB_STATE(KDB))
1401				KDB_STATE_SET(KDB);
1402		}
1403
1404		KDB_STATE_CLEAR(SUPPRESS);
1405		KDB_DEBUG_STATE("kdb_main_loop 2", reason);
1406		if (KDB_STATE(LEAVING))
1407			break;	/* Another cpu said 'go' */
1408		/* Still using kdb, this processor is in control */
1409		result = kdb_local(reason2, error, regs, db_result);
1410		KDB_DEBUG_STATE("kdb_main_loop 3", result);
1411
1412		if (result == KDB_CMD_CPU)
1413			break;
1414
1415		if (result == KDB_CMD_SS) {
1416			KDB_STATE_SET(DOING_SS);
1417			break;
1418		}
1419
1420		if (result == KDB_CMD_KGDB) {
1421			if (!KDB_STATE(DOING_KGDB))
1422				kdb_printf("Entering please attach debugger "
1423					   "or use $D#44+ or $3#33\n");
1424			break;
1425		}
1426		if (result && result != 1 && result != KDB_CMD_GO)
1427			kdb_printf("\nUnexpected kdb_local return code %d\n",
1428				   result);
1429		KDB_DEBUG_STATE("kdb_main_loop 4", reason);
1430		break;
1431	}
1432	if (KDB_STATE(DOING_SS))
1433		KDB_STATE_CLEAR(SSBPT);
1434
1435	/* Clean up any keyboard devices before leaving */
1436	kdb_kbd_cleanup_state();
1437
1438	return result;
1439}
1440
1441/*
1442 * kdb_mdr - This function implements the guts of the 'mdr', memory
1443 * read command.
1444 *	mdr  <addr arg>,<byte count>
1445 * Inputs:
1446 *	addr	Start address
1447 *	count	Number of bytes
1448 * Returns:
1449 *	Always 0.  Any errors are detected and printed by kdb_getarea.
1450 */
1451static int kdb_mdr(unsigned long addr, unsigned int count)
1452{
1453	unsigned char c;
1454	while (count--) {
1455		if (kdb_getarea(c, addr))
1456			return 0;
1457		kdb_printf("%02x", c);
1458		addr++;
1459	}
1460	kdb_printf("\n");
1461	return 0;
1462}
1463
1464/*
1465 * kdb_md - This function implements the 'md', 'md1', 'md2', 'md4',
1466 *	'md8' 'mdr' and 'mds' commands.
1467 *
1468 *	md|mds  [<addr arg> [<line count> [<radix>]]]
1469 *	mdWcN	[<addr arg> [<line count> [<radix>]]]
1470 *		where W = is the width (1, 2, 4 or 8) and N is the count.
1471 *		for eg., md1c20 reads 20 bytes, 1 at a time.
1472 *	mdr  <addr arg>,<byte count>
1473 */
1474static void kdb_md_line(const char *fmtstr, unsigned long addr,
1475			int symbolic, int nosect, int bytesperword,
1476			int num, int repeat, int phys)
1477{
1478	/* print just one line of data */
1479	kdb_symtab_t symtab;
1480	char cbuf[32];
1481	char *c = cbuf;
1482	int i;
1483	unsigned long word;
1484
1485	memset(cbuf, '\0', sizeof(cbuf));
1486	if (phys)
1487		kdb_printf("phys " kdb_machreg_fmt0 " ", addr);
1488	else
1489		kdb_printf(kdb_machreg_fmt0 " ", addr);
1490
1491	for (i = 0; i < num && repeat--; i++) {
1492		if (phys) {
1493			if (kdb_getphysword(&word, addr, bytesperword))
1494				break;
1495		} else if (kdb_getword(&word, addr, bytesperword))
1496			break;
1497		kdb_printf(fmtstr, word);
1498		if (symbolic)
1499			kdbnearsym(word, &symtab);
1500		else
1501			memset(&symtab, 0, sizeof(symtab));
1502		if (symtab.sym_name) {
1503			kdb_symbol_print(word, &symtab, 0);
1504			if (!nosect) {
1505				kdb_printf("\n");
1506				kdb_printf("                       %s %s "
1507					   kdb_machreg_fmt " "
1508					   kdb_machreg_fmt " "
1509					   kdb_machreg_fmt, symtab.mod_name,
1510					   symtab.sec_name, symtab.sec_start,
1511					   symtab.sym_start, symtab.sym_end);
1512			}
1513			addr += bytesperword;
1514		} else {
1515			union {
1516				u64 word;
1517				unsigned char c[8];
1518			} wc;
1519			unsigned char *cp;
1520#ifdef	__BIG_ENDIAN
1521			cp = wc.c + 8 - bytesperword;
1522#else
1523			cp = wc.c;
1524#endif
1525			wc.word = word;
1526#define printable_char(c) \
1527	({unsigned char __c = c; isascii(__c) && isprint(__c) ? __c : '.'; })
1528			switch (bytesperword) {
1529			case 8:
1530				*c++ = printable_char(*cp++);
1531				*c++ = printable_char(*cp++);
1532				*c++ = printable_char(*cp++);
1533				*c++ = printable_char(*cp++);
1534				addr += 4;
1535			case 4:
1536				*c++ = printable_char(*cp++);
1537				*c++ = printable_char(*cp++);
1538				addr += 2;
1539			case 2:
1540				*c++ = printable_char(*cp++);
1541				addr++;
1542			case 1:
1543				*c++ = printable_char(*cp++);
1544				addr++;
1545				break;
1546			}
1547#undef printable_char
1548		}
1549	}
1550	kdb_printf("%*s %s\n", (int)((num-i)*(2*bytesperword + 1)+1),
1551		   " ", cbuf);
1552}
1553
1554static int kdb_md(int argc, const char **argv)
1555{
1556	static unsigned long last_addr;
1557	static int last_radix, last_bytesperword, last_repeat;
1558	int radix = 16, mdcount = 8, bytesperword = KDB_WORD_SIZE, repeat;
1559	int nosect = 0;
1560	char fmtchar, fmtstr[64];
1561	unsigned long addr;
1562	unsigned long word;
1563	long offset = 0;
1564	int symbolic = 0;
1565	int valid = 0;
1566	int phys = 0;
1567
1568	kdbgetintenv("MDCOUNT", &mdcount);
1569	kdbgetintenv("RADIX", &radix);
1570	kdbgetintenv("BYTESPERWORD", &bytesperword);
1571
1572	/* Assume 'md <addr>' and start with environment values */
1573	repeat = mdcount * 16 / bytesperword;
1574
1575	if (strcmp(argv[0], "mdr") == 0) {
1576		if (argc != 2)
1577			return KDB_ARGCOUNT;
1578		valid = 1;
1579	} else if (isdigit(argv[0][2])) {
1580		bytesperword = (int)(argv[0][2] - '0');
1581		if (bytesperword == 0) {
1582			bytesperword = last_bytesperword;
1583			if (bytesperword == 0)
1584				bytesperword = 4;
1585		}
1586		last_bytesperword = bytesperword;
1587		repeat = mdcount * 16 / bytesperword;
1588		if (!argv[0][3])
1589			valid = 1;
1590		else if (argv[0][3] == 'c' && argv[0][4]) {
1591			char *p;
1592			repeat = simple_strtoul(argv[0] + 4, &p, 10);
1593			mdcount = ((repeat * bytesperword) + 15) / 16;
1594			valid = !*p;
1595		}
1596		last_repeat = repeat;
1597	} else if (strcmp(argv[0], "md") == 0)
1598		valid = 1;
1599	else if (strcmp(argv[0], "mds") == 0)
1600		valid = 1;
1601	else if (strcmp(argv[0], "mdp") == 0) {
1602		phys = valid = 1;
1603	}
1604	if (!valid)
1605		return KDB_NOTFOUND;
1606
1607	if (argc == 0) {
1608		if (last_addr == 0)
1609			return KDB_ARGCOUNT;
1610		addr = last_addr;
1611		radix = last_radix;
1612		bytesperword = last_bytesperword;
1613		repeat = last_repeat;
1614		mdcount = ((repeat * bytesperword) + 15) / 16;
1615	}
1616
1617	if (argc) {
1618		unsigned long val;
1619		int diag, nextarg = 1;
1620		diag = kdbgetaddrarg(argc, argv, &nextarg, &addr,
1621				     &offset, NULL);
1622		if (diag)
1623			return diag;
1624		if (argc > nextarg+2)
1625			return KDB_ARGCOUNT;
1626
1627		if (argc >= nextarg) {
1628			diag = kdbgetularg(argv[nextarg], &val);
1629			if (!diag) {
1630				mdcount = (int) val;
1631				repeat = mdcount * 16 / bytesperword;
1632			}
1633		}
1634		if (argc >= nextarg+1) {
1635			diag = kdbgetularg(argv[nextarg+1], &val);
1636			if (!diag)
1637				radix = (int) val;
1638		}
1639	}
1640
1641	if (strcmp(argv[0], "mdr") == 0)
1642		return kdb_mdr(addr, mdcount);
1643
1644	switch (radix) {
1645	case 10:
1646		fmtchar = 'd';
1647		break;
1648	case 16:
1649		fmtchar = 'x';
1650		break;
1651	case 8:
1652		fmtchar = 'o';
1653		break;
1654	default:
1655		return KDB_BADRADIX;
1656	}
1657
1658	last_radix = radix;
1659
1660	if (bytesperword > KDB_WORD_SIZE)
1661		return KDB_BADWIDTH;
1662
1663	switch (bytesperword) {
1664	case 8:
1665		sprintf(fmtstr, "%%16.16l%c ", fmtchar);
1666		break;
1667	case 4:
1668		sprintf(fmtstr, "%%8.8l%c ", fmtchar);
1669		break;
1670	case 2:
1671		sprintf(fmtstr, "%%4.4l%c ", fmtchar);
1672		break;
1673	case 1:
1674		sprintf(fmtstr, "%%2.2l%c ", fmtchar);
1675		break;
1676	default:
1677		return KDB_BADWIDTH;
1678	}
1679
1680	last_repeat = repeat;
1681	last_bytesperword = bytesperword;
1682
1683	if (strcmp(argv[0], "mds") == 0) {
1684		symbolic = 1;
1685		/* Do not save these changes as last_*, they are temporary mds
1686		 * overrides.
1687		 */
1688		bytesperword = KDB_WORD_SIZE;
1689		repeat = mdcount;
1690		kdbgetintenv("NOSECT", &nosect);
1691	}
1692
1693	/* Round address down modulo BYTESPERWORD */
1694
1695	addr &= ~(bytesperword-1);
1696
1697	while (repeat > 0) {
1698		unsigned long a;
1699		int n, z, num = (symbolic ? 1 : (16 / bytesperword));
1700
1701		if (KDB_FLAG(CMD_INTERRUPT))
1702			return 0;
1703		for (a = addr, z = 0; z < repeat; a += bytesperword, ++z) {
1704			if (phys) {
1705				if (kdb_getphysword(&word, a, bytesperword)
1706						|| word)
1707					break;
1708			} else if (kdb_getword(&word, a, bytesperword) || word)
1709				break;
1710		}
1711		n = min(num, repeat);
1712		kdb_md_line(fmtstr, addr, symbolic, nosect, bytesperword,
1713			    num, repeat, phys);
1714		addr += bytesperword * n;
1715		repeat -= n;
1716		z = (z + num - 1) / num;
1717		if (z > 2) {
1718			int s = num * (z-2);
1719			kdb_printf(kdb_machreg_fmt0 "-" kdb_machreg_fmt0
1720				   " zero suppressed\n",
1721				addr, addr + bytesperword * s - 1);
1722			addr += bytesperword * s;
1723			repeat -= s;
1724		}
1725	}
1726	last_addr = addr;
1727
1728	return 0;
1729}
1730
1731/*
1732 * kdb_mm - This function implements the 'mm' command.
1733 *	mm address-expression new-value
1734 * Remarks:
1735 *	mm works on machine words, mmW works on bytes.
1736 */
1737static int kdb_mm(int argc, const char **argv)
1738{
1739	int diag;
1740	unsigned long addr;
1741	long offset = 0;
1742	unsigned long contents;
1743	int nextarg;
1744	int width;
1745
1746	if (argv[0][2] && !isdigit(argv[0][2]))
1747		return KDB_NOTFOUND;
1748
1749	if (argc < 2)
1750		return KDB_ARGCOUNT;
1751
1752	nextarg = 1;
1753	diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
1754	if (diag)
1755		return diag;
1756
1757	if (nextarg > argc)
1758		return KDB_ARGCOUNT;
1759	diag = kdbgetaddrarg(argc, argv, &nextarg, &contents, NULL, NULL);
1760	if (diag)
1761		return diag;
1762
1763	if (nextarg != argc + 1)
1764		return KDB_ARGCOUNT;
1765
1766	width = argv[0][2] ? (argv[0][2] - '0') : (KDB_WORD_SIZE);
1767	diag = kdb_putword(addr, contents, width);
1768	if (diag)
1769		return diag;
1770
1771	kdb_printf(kdb_machreg_fmt " = " kdb_machreg_fmt "\n", addr, contents);
1772
1773	return 0;
1774}
1775
1776/*
1777 * kdb_go - This function implements the 'go' command.
1778 *	go [address-expression]
1779 */
1780static int kdb_go(int argc, const char **argv)
1781{
1782	unsigned long addr;
1783	int diag;
1784	int nextarg;
1785	long offset;
1786
1787	if (raw_smp_processor_id() != kdb_initial_cpu) {
1788		kdb_printf("go must execute on the entry cpu, "
1789			   "please use \"cpu %d\" and then execute go\n",
1790			   kdb_initial_cpu);
1791		return KDB_BADCPUNUM;
1792	}
1793	if (argc == 1) {
1794		nextarg = 1;
1795		diag = kdbgetaddrarg(argc, argv, &nextarg,
1796				     &addr, &offset, NULL);
1797		if (diag)
1798			return diag;
1799	} else if (argc) {
1800		return KDB_ARGCOUNT;
1801	}
1802
1803	diag = KDB_CMD_GO;
1804	if (KDB_FLAG(CATASTROPHIC)) {
1805		kdb_printf("Catastrophic error detected\n");
1806		kdb_printf("kdb_continue_catastrophic=%d, ",
1807			kdb_continue_catastrophic);
1808		if (kdb_continue_catastrophic == 0 && kdb_go_count++ == 0) {
1809			kdb_printf("type go a second time if you really want "
1810				   "to continue\n");
1811			return 0;
1812		}
1813		if (kdb_continue_catastrophic == 2) {
1814			kdb_printf("forcing reboot\n");
1815			kdb_reboot(0, NULL);
1816		}
1817		kdb_printf("attempting to continue\n");
1818	}
1819	return diag;
1820}
1821
1822/*
1823 * kdb_rd - This function implements the 'rd' command.
1824 */
1825static int kdb_rd(int argc, const char **argv)
1826{
1827	int len = kdb_check_regs();
1828#if DBG_MAX_REG_NUM > 0
1829	int i;
1830	char *rname;
1831	int rsize;
1832	u64 reg64;
1833	u32 reg32;
1834	u16 reg16;
1835	u8 reg8;
1836
1837	if (len)
1838		return len;
1839
1840	for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1841		rsize = dbg_reg_def[i].size * 2;
1842		if (rsize > 16)
1843			rsize = 2;
1844		if (len + strlen(dbg_reg_def[i].name) + 4 + rsize > 80) {
1845			len = 0;
1846			kdb_printf("\n");
1847		}
1848		if (len)
1849			len += kdb_printf("  ");
1850		switch(dbg_reg_def[i].size * 8) {
1851		case 8:
1852			rname = dbg_get_reg(i, &reg8, kdb_current_regs);
1853			if (!rname)
1854				break;
1855			len += kdb_printf("%s: %02x", rname, reg8);
1856			break;
1857		case 16:
1858			rname = dbg_get_reg(i, &reg16, kdb_current_regs);
1859			if (!rname)
1860				break;
1861			len += kdb_printf("%s: %04x", rname, reg16);
1862			break;
1863		case 32:
1864			rname = dbg_get_reg(i, &reg32, kdb_current_regs);
1865			if (!rname)
1866				break;
1867			len += kdb_printf("%s: %08x", rname, reg32);
1868			break;
1869		case 64:
1870			rname = dbg_get_reg(i, &reg64, kdb_current_regs);
1871			if (!rname)
1872				break;
1873			len += kdb_printf("%s: %016llx", rname, reg64);
1874			break;
1875		default:
1876			len += kdb_printf("%s: ??", dbg_reg_def[i].name);
1877		}
1878	}
1879	kdb_printf("\n");
1880#else
1881	if (len)
1882		return len;
1883
1884	kdb_dumpregs(kdb_current_regs);
1885#endif
1886	return 0;
1887}
1888
1889/*
1890 * kdb_rm - This function implements the 'rm' (register modify)  command.
1891 *	rm register-name new-contents
1892 * Remarks:
1893 *	Allows register modification with the same restrictions as gdb
1894 */
1895static int kdb_rm(int argc, const char **argv)
1896{
1897#if DBG_MAX_REG_NUM > 0
1898	int diag;
1899	const char *rname;
1900	int i;
1901	u64 reg64;
1902	u32 reg32;
1903	u16 reg16;
1904	u8 reg8;
1905
1906	if (argc != 2)
1907		return KDB_ARGCOUNT;
1908	/*
1909	 * Allow presence or absence of leading '%' symbol.
1910	 */
1911	rname = argv[1];
1912	if (*rname == '%')
1913		rname++;
1914
1915	diag = kdbgetu64arg(argv[2], &reg64);
1916	if (diag)
1917		return diag;
1918
1919	diag = kdb_check_regs();
1920	if (diag)
1921		return diag;
1922
1923	diag = KDB_BADREG;
1924	for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1925		if (strcmp(rname, dbg_reg_def[i].name) == 0) {
1926			diag = 0;
1927			break;
1928		}
1929	}
1930	if (!diag) {
1931		switch(dbg_reg_def[i].size * 8) {
1932		case 8:
1933			reg8 = reg64;
1934			dbg_set_reg(i, &reg8, kdb_current_regs);
1935			break;
1936		case 16:
1937			reg16 = reg64;
1938			dbg_set_reg(i, &reg16, kdb_current_regs);
1939			break;
1940		case 32:
1941			reg32 = reg64;
1942			dbg_set_reg(i, &reg32, kdb_current_regs);
1943			break;
1944		case 64:
1945			dbg_set_reg(i, &reg64, kdb_current_regs);
1946			break;
1947		}
1948	}
1949	return diag;
1950#else
1951	kdb_printf("ERROR: Register set currently not implemented\n");
1952    return 0;
1953#endif
1954}
1955
1956#if defined(CONFIG_MAGIC_SYSRQ)
1957/*
1958 * kdb_sr - This function implements the 'sr' (SYSRQ key) command
1959 *	which interfaces to the soi-disant MAGIC SYSRQ functionality.
1960 *		sr <magic-sysrq-code>
1961 */
1962static int kdb_sr(int argc, const char **argv)
1963{
1964	bool check_mask =
1965	    !kdb_check_flags(KDB_ENABLE_ALL, kdb_cmd_enabled, false);
1966
1967	if (argc != 1)
1968		return KDB_ARGCOUNT;
1969
1970	kdb_trap_printk++;
1971	__handle_sysrq(*argv[1], check_mask);
1972	kdb_trap_printk--;
1973
1974	return 0;
1975}
1976#endif	/* CONFIG_MAGIC_SYSRQ */
1977
1978/*
1979 * kdb_ef - This function implements the 'regs' (display exception
1980 *	frame) command.  This command takes an address and expects to
1981 *	find an exception frame at that address, formats and prints
1982 *	it.
1983 *		regs address-expression
1984 * Remarks:
1985 *	Not done yet.
1986 */
1987static int kdb_ef(int argc, const char **argv)
1988{
1989	int diag;
1990	unsigned long addr;
1991	long offset;
1992	int nextarg;
1993
1994	if (argc != 1)
1995		return KDB_ARGCOUNT;
1996
1997	nextarg = 1;
1998	diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
1999	if (diag)
2000		return diag;
2001	show_regs((struct pt_regs *)addr);
2002	return 0;
2003}
2004
2005#if defined(CONFIG_MODULES)
2006/*
2007 * kdb_lsmod - This function implements the 'lsmod' command.  Lists
2008 *	currently loaded kernel modules.
2009 *	Mostly taken from userland lsmod.
2010 */
2011static int kdb_lsmod(int argc, const char **argv)
2012{
2013	struct module *mod;
2014
2015	if (argc != 0)
2016		return KDB_ARGCOUNT;
2017
2018	kdb_printf("Module                  Size  modstruct     Used by\n");
2019	list_for_each_entry(mod, kdb_modules, list) {
2020		if (mod->state == MODULE_STATE_UNFORMED)
2021			continue;
2022
2023		kdb_printf("%-20s%8u  0x%p ", mod->name,
2024			   mod->core_layout.size, (void *)mod);
2025#ifdef CONFIG_MODULE_UNLOAD
2026		kdb_printf("%4d ", module_refcount(mod));
2027#endif
2028		if (mod->state == MODULE_STATE_GOING)
2029			kdb_printf(" (Unloading)");
2030		else if (mod->state == MODULE_STATE_COMING)
2031			kdb_printf(" (Loading)");
2032		else
2033			kdb_printf(" (Live)");
2034		kdb_printf(" 0x%p", mod->core_layout.base);
2035
2036#ifdef CONFIG_MODULE_UNLOAD
2037		{
2038			struct module_use *use;
2039			kdb_printf(" [ ");
2040			list_for_each_entry(use, &mod->source_list,
2041					    source_list)
2042				kdb_printf("%s ", use->target->name);
2043			kdb_printf("]\n");
2044		}
2045#endif
2046	}
2047
2048	return 0;
2049}
2050
2051#endif	/* CONFIG_MODULES */
2052
2053/*
2054 * kdb_env - This function implements the 'env' command.  Display the
2055 *	current environment variables.
2056 */
2057
2058static int kdb_env(int argc, const char **argv)
2059{
2060	int i;
2061
2062	for (i = 0; i < __nenv; i++) {
2063		if (__env[i])
2064			kdb_printf("%s\n", __env[i]);
2065	}
2066
2067	if (KDB_DEBUG(MASK))
2068		kdb_printf("KDBFLAGS=0x%x\n", kdb_flags);
2069
2070	return 0;
2071}
2072
2073#ifdef CONFIG_PRINTK
2074/*
2075 * kdb_dmesg - This function implements the 'dmesg' command to display
2076 *	the contents of the syslog buffer.
2077 *		dmesg [lines] [adjust]
2078 */
2079static int kdb_dmesg(int argc, const char **argv)
2080{
2081	int diag;
2082	int logging;
2083	int lines = 0;
2084	int adjust = 0;
2085	int n = 0;
2086	int skip = 0;
2087	struct kmsg_dumper dumper = { .active = 1 };
2088	size_t len;
2089	char buf[201];
2090
2091	if (argc > 2)
2092		return KDB_ARGCOUNT;
2093	if (argc) {
2094		char *cp;
2095		lines = simple_strtol(argv[1], &cp, 0);
2096		if (*cp)
2097			lines = 0;
2098		if (argc > 1) {
2099			adjust = simple_strtoul(argv[2], &cp, 0);
2100			if (*cp || adjust < 0)
2101				adjust = 0;
2102		}
2103	}
2104
2105	/* disable LOGGING if set */
2106	diag = kdbgetintenv("LOGGING", &logging);
2107	if (!diag && logging) {
2108		const char *setargs[] = { "set", "LOGGING", "0" };
2109		kdb_set(2, setargs);
2110	}
2111
2112	kmsg_dump_rewind_nolock(&dumper);
2113	while (kmsg_dump_get_line_nolock(&dumper, 1, NULL, 0, NULL))
2114		n++;
2115
2116	if (lines < 0) {
2117		if (adjust >= n)
2118			kdb_printf("buffer only contains %d lines, nothing "
2119				   "printed\n", n);
2120		else if (adjust - lines >= n)
2121			kdb_printf("buffer only contains %d lines, last %d "
2122				   "lines printed\n", n, n - adjust);
2123		skip = adjust;
2124		lines = abs(lines);
2125	} else if (lines > 0) {
2126		skip = n - lines - adjust;
2127		lines = abs(lines);
2128		if (adjust >= n) {
2129			kdb_printf("buffer only contains %d lines, "
2130				   "nothing printed\n", n);
2131			skip = n;
2132		} else if (skip < 0) {
2133			lines += skip;
2134			skip = 0;
2135			kdb_printf("buffer only contains %d lines, first "
2136				   "%d lines printed\n", n, lines);
2137		}
2138	} else {
2139		lines = n;
2140	}
2141
2142	if (skip >= n || skip < 0)
2143		return 0;
2144
2145	kmsg_dump_rewind_nolock(&dumper);
2146	while (kmsg_dump_get_line_nolock(&dumper, 1, buf, sizeof(buf), &len)) {
2147		if (skip) {
2148			skip--;
2149			continue;
2150		}
2151		if (!lines--)
2152			break;
2153		if (KDB_FLAG(CMD_INTERRUPT))
2154			return 0;
2155
2156		kdb_printf("%.*s\n", (int)len - 1, buf);
2157	}
2158
2159	return 0;
2160}
2161#endif /* CONFIG_PRINTK */
2162
2163/* Make sure we balance enable/disable calls, must disable first. */
2164static atomic_t kdb_nmi_disabled;
2165
2166static int kdb_disable_nmi(int argc, const char *argv[])
2167{
2168	if (atomic_read(&kdb_nmi_disabled))
2169		return 0;
2170	atomic_set(&kdb_nmi_disabled, 1);
2171	arch_kgdb_ops.enable_nmi(0);
2172	return 0;
2173}
2174
2175static int kdb_param_enable_nmi(const char *val, const struct kernel_param *kp)
2176{
2177	if (!atomic_add_unless(&kdb_nmi_disabled, -1, 0))
2178		return -EINVAL;
2179	arch_kgdb_ops.enable_nmi(1);
2180	return 0;
2181}
2182
2183static const struct kernel_param_ops kdb_param_ops_enable_nmi = {
2184	.set = kdb_param_enable_nmi,
2185};
2186module_param_cb(enable_nmi, &kdb_param_ops_enable_nmi, NULL, 0600);
2187
2188/*
2189 * kdb_cpu - This function implements the 'cpu' command.
2190 *	cpu	[<cpunum>]
2191 * Returns:
2192 *	KDB_CMD_CPU for success, a kdb diagnostic if error
2193 */
2194static void kdb_cpu_status(void)
2195{
2196	int i, start_cpu, first_print = 1;
2197	char state, prev_state = '?';
2198
2199	kdb_printf("Currently on cpu %d\n", raw_smp_processor_id());
2200	kdb_printf("Available cpus: ");
2201	for (start_cpu = -1, i = 0; i < NR_CPUS; i++) {
2202		if (!cpu_online(i)) {
2203			state = 'F';	/* cpu is offline */
2204		} else if (!kgdb_info[i].enter_kgdb) {
2205			state = 'D';	/* cpu is online but unresponsive */
2206		} else {
2207			state = ' ';	/* cpu is responding to kdb */
2208			if (kdb_task_state_char(KDB_TSK(i)) == 'I')
2209				state = 'I';	/* idle task */
2210		}
2211		if (state != prev_state) {
2212			if (prev_state != '?') {
2213				if (!first_print)
2214					kdb_printf(", ");
2215				first_print = 0;
2216				kdb_printf("%d", start_cpu);
2217				if (start_cpu < i-1)
2218					kdb_printf("-%d", i-1);
2219				if (prev_state != ' ')
2220					kdb_printf("(%c)", prev_state);
2221			}
2222			prev_state = state;
2223			start_cpu = i;
2224		}
2225	}
2226	/* print the trailing cpus, ignoring them if they are all offline */
2227	if (prev_state != 'F') {
2228		if (!first_print)
2229			kdb_printf(", ");
2230		kdb_printf("%d", start_cpu);
2231		if (start_cpu < i-1)
2232			kdb_printf("-%d", i-1);
2233		if (prev_state != ' ')
2234			kdb_printf("(%c)", prev_state);
2235	}
2236	kdb_printf("\n");
2237}
2238
2239static int kdb_cpu(int argc, const char **argv)
2240{
2241	unsigned long cpunum;
2242	int diag;
2243
2244	if (argc == 0) {
2245		kdb_cpu_status();
2246		return 0;
2247	}
2248
2249	if (argc != 1)
2250		return KDB_ARGCOUNT;
2251
2252	diag = kdbgetularg(argv[1], &cpunum);
2253	if (diag)
2254		return diag;
2255
2256	/*
2257	 * Validate cpunum
2258	 */
2259	if ((cpunum >= CONFIG_NR_CPUS) || !kgdb_info[cpunum].enter_kgdb)
2260		return KDB_BADCPUNUM;
2261
2262	dbg_switch_cpu = cpunum;
2263
2264	/*
2265	 * Switch to other cpu
2266	 */
2267	return KDB_CMD_CPU;
2268}
2269
2270/* The user may not realize that ps/bta with no parameters does not print idle
2271 * or sleeping system daemon processes, so tell them how many were suppressed.
2272 */
2273void kdb_ps_suppressed(void)
2274{
2275	int idle = 0, daemon = 0;
2276	unsigned long mask_I = kdb_task_state_string("I"),
2277		      mask_M = kdb_task_state_string("M");
2278	unsigned long cpu;
2279	const struct task_struct *p, *g;
2280	for_each_online_cpu(cpu) {
2281		p = kdb_curr_task(cpu);
2282		if (kdb_task_state(p, mask_I))
2283			++idle;
2284	}
2285	kdb_do_each_thread(g, p) {
2286		if (kdb_task_state(p, mask_M))
2287			++daemon;
2288	} kdb_while_each_thread(g, p);
2289	if (idle || daemon) {
2290		if (idle)
2291			kdb_printf("%d idle process%s (state I)%s\n",
2292				   idle, idle == 1 ? "" : "es",
2293				   daemon ? " and " : "");
2294		if (daemon)
2295			kdb_printf("%d sleeping system daemon (state M) "
2296				   "process%s", daemon,
2297				   daemon == 1 ? "" : "es");
2298		kdb_printf(" suppressed,\nuse 'ps A' to see all.\n");
2299	}
2300}
2301
2302/*
2303 * kdb_ps - This function implements the 'ps' command which shows a
2304 *	list of the active processes.
2305 *		ps [DRSTCZEUIMA]   All processes, optionally filtered by state
2306 */
2307void kdb_ps1(const struct task_struct *p)
2308{
2309	int cpu;
2310	unsigned long tmp;
2311
2312	if (!p || probe_kernel_read(&tmp, (char *)p, sizeof(unsigned long)))
2313		return;
2314
2315	cpu = kdb_process_cpu(p);
2316	kdb_printf("0x%p %8d %8d  %d %4d   %c  0x%p %c%s\n",
2317		   (void *)p, p->pid, p->parent->pid,
2318		   kdb_task_has_cpu(p), kdb_process_cpu(p),
2319		   kdb_task_state_char(p),
2320		   (void *)(&p->thread),
2321		   p == kdb_curr_task(raw_smp_processor_id()) ? '*' : ' ',
2322		   p->comm);
2323	if (kdb_task_has_cpu(p)) {
2324		if (!KDB_TSK(cpu)) {
2325			kdb_printf("  Error: no saved data for this cpu\n");
2326		} else {
2327			if (KDB_TSK(cpu) != p)
2328				kdb_printf("  Error: does not match running "
2329				   "process table (0x%p)\n", KDB_TSK(cpu));
2330		}
2331	}
2332}
2333
2334static int kdb_ps(int argc, const char **argv)
2335{
2336	struct task_struct *g, *p;
2337	unsigned long mask, cpu;
2338
2339	if (argc == 0)
2340		kdb_ps_suppressed();
2341	kdb_printf("%-*s      Pid   Parent [*] cpu State %-*s Command\n",
2342		(int)(2*sizeof(void *))+2, "Task Addr",
2343		(int)(2*sizeof(void *))+2, "Thread");
2344	mask = kdb_task_state_string(argc ? argv[1] : NULL);
2345	/* Run the active tasks first */
2346	for_each_online_cpu(cpu) {
2347		if (KDB_FLAG(CMD_INTERRUPT))
2348			return 0;
2349		p = kdb_curr_task(cpu);
2350		if (kdb_task_state(p, mask))
2351			kdb_ps1(p);
2352	}
2353	kdb_printf("\n");
2354	/* Now the real tasks */
2355	kdb_do_each_thread(g, p) {
2356		if (KDB_FLAG(CMD_INTERRUPT))
2357			return 0;
2358		if (kdb_task_state(p, mask))
2359			kdb_ps1(p);
2360	} kdb_while_each_thread(g, p);
2361
2362	return 0;
2363}
2364
2365/*
2366 * kdb_pid - This function implements the 'pid' command which switches
2367 *	the currently active process.
2368 *		pid [<pid> | R]
2369 */
2370static int kdb_pid(int argc, const char **argv)
2371{
2372	struct task_struct *p;
2373	unsigned long val;
2374	int diag;
2375
2376	if (argc > 1)
2377		return KDB_ARGCOUNT;
2378
2379	if (argc) {
2380		if (strcmp(argv[1], "R") == 0) {
2381			p = KDB_TSK(kdb_initial_cpu);
2382		} else {
2383			diag = kdbgetularg(argv[1], &val);
2384			if (diag)
2385				return KDB_BADINT;
2386
2387			p = find_task_by_pid_ns((pid_t)val,	&init_pid_ns);
2388			if (!p) {
2389				kdb_printf("No task with pid=%d\n", (pid_t)val);
2390				return 0;
2391			}
2392		}
2393		kdb_set_current_task(p);
2394	}
2395	kdb_printf("KDB current process is %s(pid=%d)\n",
2396		   kdb_current_task->comm,
2397		   kdb_current_task->pid);
2398
2399	return 0;
2400}
2401
2402static int kdb_kgdb(int argc, const char **argv)
2403{
2404	return KDB_CMD_KGDB;
2405}
2406
2407/*
2408 * kdb_help - This function implements the 'help' and '?' commands.
2409 */
2410static int kdb_help(int argc, const char **argv)
2411{
2412	kdbtab_t *kt;
2413	int i;
2414
2415	kdb_printf("%-15.15s %-20.20s %s\n", "Command", "Usage", "Description");
2416	kdb_printf("-----------------------------"
2417		   "-----------------------------\n");
2418	for_each_kdbcmd(kt, i) {
2419		char *space = "";
2420		if (KDB_FLAG(CMD_INTERRUPT))
2421			return 0;
2422		if (!kt->cmd_name)
2423			continue;
2424		if (!kdb_check_flags(kt->cmd_flags, kdb_cmd_enabled, true))
2425			continue;
2426		if (strlen(kt->cmd_usage) > 20)
2427			space = "\n                                    ";
2428		kdb_printf("%-15.15s %-20s%s%s\n", kt->cmd_name,
2429			   kt->cmd_usage, space, kt->cmd_help);
2430	}
2431	return 0;
2432}
2433
2434/*
2435 * kdb_kill - This function implements the 'kill' commands.
2436 */
2437static int kdb_kill(int argc, const char **argv)
2438{
2439	long sig, pid;
2440	char *endp;
2441	struct task_struct *p;
2442	struct siginfo info;
2443
2444	if (argc != 2)
2445		return KDB_ARGCOUNT;
2446
2447	sig = simple_strtol(argv[1], &endp, 0);
2448	if (*endp)
2449		return KDB_BADINT;
2450	if (sig >= 0) {
2451		kdb_printf("Invalid signal parameter.<-signal>\n");
2452		return 0;
2453	}
2454	sig = -sig;
2455
2456	pid = simple_strtol(argv[2], &endp, 0);
2457	if (*endp)
2458		return KDB_BADINT;
2459	if (pid <= 0) {
2460		kdb_printf("Process ID must be large than 0.\n");
2461		return 0;
2462	}
2463
2464	/* Find the process. */
2465	p = find_task_by_pid_ns(pid, &init_pid_ns);
2466	if (!p) {
2467		kdb_printf("The specified process isn't found.\n");
2468		return 0;
2469	}
2470	p = p->group_leader;
2471	info.si_signo = sig;
2472	info.si_errno = 0;
2473	info.si_code = SI_USER;
2474	info.si_pid = pid;  /* same capabilities as process being signalled */
2475	info.si_uid = 0;    /* kdb has root authority */
2476	kdb_send_sig_info(p, &info);
2477	return 0;
2478}
2479
2480struct kdb_tm {
2481	int tm_sec;	/* seconds */
2482	int tm_min;	/* minutes */
2483	int tm_hour;	/* hours */
2484	int tm_mday;	/* day of the month */
2485	int tm_mon;	/* month */
2486	int tm_year;	/* year */
2487};
2488
2489static void kdb_gmtime(struct timespec *tv, struct kdb_tm *tm)
2490{
2491	/* This will work from 1970-2099, 2100 is not a leap year */
2492	static int mon_day[] = { 31, 29, 31, 30, 31, 30, 31,
2493				 31, 30, 31, 30, 31 };
2494	memset(tm, 0, sizeof(*tm));
2495	tm->tm_sec  = tv->tv_sec % (24 * 60 * 60);
2496	tm->tm_mday = tv->tv_sec / (24 * 60 * 60) +
2497		(2 * 365 + 1); /* shift base from 1970 to 1968 */
2498	tm->tm_min =  tm->tm_sec / 60 % 60;
2499	tm->tm_hour = tm->tm_sec / 60 / 60;
2500	tm->tm_sec =  tm->tm_sec % 60;
2501	tm->tm_year = 68 + 4*(tm->tm_mday / (4*365+1));
2502	tm->tm_mday %= (4*365+1);
2503	mon_day[1] = 29;
2504	while (tm->tm_mday >= mon_day[tm->tm_mon]) {
2505		tm->tm_mday -= mon_day[tm->tm_mon];
2506		if (++tm->tm_mon == 12) {
2507			tm->tm_mon = 0;
2508			++tm->tm_year;
2509			mon_day[1] = 28;
2510		}
2511	}
2512	++tm->tm_mday;
2513}
2514
2515/*
2516 * Most of this code has been lifted from kernel/timer.c::sys_sysinfo().
2517 * I cannot call that code directly from kdb, it has an unconditional
2518 * cli()/sti() and calls routines that take locks which can stop the debugger.
2519 */
2520static void kdb_sysinfo(struct sysinfo *val)
2521{
2522	struct timespec uptime;
2523	ktime_get_ts(&uptime);
2524	memset(val, 0, sizeof(*val));
2525	val->uptime = uptime.tv_sec;
2526	val->loads[0] = avenrun[0];
2527	val->loads[1] = avenrun[1];
2528	val->loads[2] = avenrun[2];
2529	val->procs = nr_threads-1;
2530	si_meminfo(val);
2531
2532	return;
2533}
2534
2535/*
2536 * kdb_summary - This function implements the 'summary' command.
2537 */
2538static int kdb_summary(int argc, const char **argv)
2539{
2540	struct timespec now;
2541	struct kdb_tm tm;
2542	struct sysinfo val;
2543
2544	if (argc)
2545		return KDB_ARGCOUNT;
2546
2547	kdb_printf("sysname    %s\n", init_uts_ns.name.sysname);
2548	kdb_printf("release    %s\n", init_uts_ns.name.release);
2549	kdb_printf("version    %s\n", init_uts_ns.name.version);
2550	kdb_printf("machine    %s\n", init_uts_ns.name.machine);
2551	kdb_printf("nodename   %s\n", init_uts_ns.name.nodename);
2552	kdb_printf("domainname %s\n", init_uts_ns.name.domainname);
2553	kdb_printf("ccversion  %s\n", __stringify(CCVERSION));
2554
2555	now = __current_kernel_time();
2556	kdb_gmtime(&now, &tm);
2557	kdb_printf("date       %04d-%02d-%02d %02d:%02d:%02d "
2558		   "tz_minuteswest %d\n",
2559		1900+tm.tm_year, tm.tm_mon+1, tm.tm_mday,
2560		tm.tm_hour, tm.tm_min, tm.tm_sec,
2561		sys_tz.tz_minuteswest);
2562
2563	kdb_sysinfo(&val);
2564	kdb_printf("uptime     ");
2565	if (val.uptime > (24*60*60)) {
2566		int days = val.uptime / (24*60*60);
2567		val.uptime %= (24*60*60);
2568		kdb_printf("%d day%s ", days, days == 1 ? "" : "s");
2569	}
2570	kdb_printf("%02ld:%02ld\n", val.uptime/(60*60), (val.uptime/60)%60);
2571
2572	/* lifted from fs/proc/proc_misc.c::loadavg_read_proc() */
2573
2574#define LOAD_INT(x) ((x) >> FSHIFT)
2575#define LOAD_FRAC(x) LOAD_INT(((x) & (FIXED_1-1)) * 100)
2576	kdb_printf("load avg   %ld.%02ld %ld.%02ld %ld.%02ld\n",
2577		LOAD_INT(val.loads[0]), LOAD_FRAC(val.loads[0]),
2578		LOAD_INT(val.loads[1]), LOAD_FRAC(val.loads[1]),
2579		LOAD_INT(val.loads[2]), LOAD_FRAC(val.loads[2]));
2580#undef LOAD_INT
2581#undef LOAD_FRAC
2582	/* Display in kilobytes */
2583#define K(x) ((x) << (PAGE_SHIFT - 10))
2584	kdb_printf("\nMemTotal:       %8lu kB\nMemFree:        %8lu kB\n"
2585		   "Buffers:        %8lu kB\n",
2586		   K(val.totalram), K(val.freeram), K(val.bufferram));
2587	return 0;
2588}
2589
2590/*
2591 * kdb_per_cpu - This function implements the 'per_cpu' command.
2592 */
2593static int kdb_per_cpu(int argc, const char **argv)
2594{
2595	char fmtstr[64];
2596	int cpu, diag, nextarg = 1;
2597	unsigned long addr, symaddr, val, bytesperword = 0, whichcpu = ~0UL;
2598
2599	if (argc < 1 || argc > 3)
2600		return KDB_ARGCOUNT;
2601
2602	diag = kdbgetaddrarg(argc, argv, &nextarg, &symaddr, NULL, NULL);
2603	if (diag)
2604		return diag;
2605
2606	if (argc >= 2) {
2607		diag = kdbgetularg(argv[2], &bytesperword);
2608		if (diag)
2609			return diag;
2610	}
2611	if (!bytesperword)
2612		bytesperword = KDB_WORD_SIZE;
2613	else if (bytesperword > KDB_WORD_SIZE)
2614		return KDB_BADWIDTH;
2615	sprintf(fmtstr, "%%0%dlx ", (int)(2*bytesperword));
2616	if (argc >= 3) {
2617		diag = kdbgetularg(argv[3], &whichcpu);
2618		if (diag)
2619			return diag;
2620		if (!cpu_online(whichcpu)) {
2621			kdb_printf("cpu %ld is not online\n", whichcpu);
2622			return KDB_BADCPUNUM;
2623		}
2624	}
2625
2626	/* Most architectures use __per_cpu_offset[cpu], some use
2627	 * __per_cpu_offset(cpu), smp has no __per_cpu_offset.
2628	 */
2629#ifdef	__per_cpu_offset
2630#define KDB_PCU(cpu) __per_cpu_offset(cpu)
2631#else
2632#ifdef	CONFIG_SMP
2633#define KDB_PCU(cpu) __per_cpu_offset[cpu]
2634#else
2635#define KDB_PCU(cpu) 0
2636#endif
2637#endif
2638	for_each_online_cpu(cpu) {
2639		if (KDB_FLAG(CMD_INTERRUPT))
2640			return 0;
2641
2642		if (whichcpu != ~0UL && whichcpu != cpu)
2643			continue;
2644		addr = symaddr + KDB_PCU(cpu);
2645		diag = kdb_getword(&val, addr, bytesperword);
2646		if (diag) {
2647			kdb_printf("%5d " kdb_bfd_vma_fmt0 " - unable to "
2648				   "read, diag=%d\n", cpu, addr, diag);
2649			continue;
2650		}
2651		kdb_printf("%5d ", cpu);
2652		kdb_md_line(fmtstr, addr,
2653			bytesperword == KDB_WORD_SIZE,
2654			1, bytesperword, 1, 1, 0);
2655	}
2656#undef KDB_PCU
2657	return 0;
2658}
2659
2660/*
2661 * display help for the use of cmd | grep pattern
2662 */
2663static int kdb_grep_help(int argc, const char **argv)
2664{
2665	kdb_printf("Usage of  cmd args | grep pattern:\n");
2666	kdb_printf("  Any command's output may be filtered through an ");
2667	kdb_printf("emulated 'pipe'.\n");
2668	kdb_printf("  'grep' is just a key word.\n");
2669	kdb_printf("  The pattern may include a very limited set of "
2670		   "metacharacters:\n");
2671	kdb_printf("   pattern or ^pattern or pattern$ or ^pattern$\n");
2672	kdb_printf("  And if there are spaces in the pattern, you may "
2673		   "quote it:\n");
2674	kdb_printf("   \"pat tern\" or \"^pat tern\" or \"pat tern$\""
2675		   " or \"^pat tern$\"\n");
2676	return 0;
2677}
2678
2679/*
2680 * kdb_register_flags - This function is used to register a kernel
2681 * 	debugger command.
2682 * Inputs:
2683 *	cmd	Command name
2684 *	func	Function to execute the command
2685 *	usage	A simple usage string showing arguments
2686 *	help	A simple help string describing command
2687 *	repeat	Does the command auto repeat on enter?
2688 * Returns:
2689 *	zero for success, one if a duplicate command.
2690 */
2691#define kdb_command_extend 50	/* arbitrary */
2692int kdb_register_flags(char *cmd,
2693		       kdb_func_t func,
2694		       char *usage,
2695		       char *help,
2696		       short minlen,
2697		       kdb_cmdflags_t flags)
2698{
2699	int i;
2700	kdbtab_t *kp;
2701
2702	/*
2703	 *  Brute force method to determine duplicates
2704	 */
2705	for_each_kdbcmd(kp, i) {
2706		if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) {
2707			kdb_printf("Duplicate kdb command registered: "
2708				"%s, func %p help %s\n", cmd, func, help);
2709			return 1;
2710		}
2711	}
2712
2713	/*
2714	 * Insert command into first available location in table
2715	 */
2716	for_each_kdbcmd(kp, i) {
2717		if (kp->cmd_name == NULL)
2718			break;
2719	}
2720
2721	if (i >= kdb_max_commands) {
2722		kdbtab_t *new = kmalloc((kdb_max_commands - KDB_BASE_CMD_MAX +
2723			 kdb_command_extend) * sizeof(*new), GFP_KDB);
2724		if (!new) {
2725			kdb_printf("Could not allocate new kdb_command "
2726				   "table\n");
2727			return 1;
2728		}
2729		if (kdb_commands) {
2730			memcpy(new, kdb_commands,
2731			  (kdb_max_commands - KDB_BASE_CMD_MAX) * sizeof(*new));
2732			kfree(kdb_commands);
2733		}
2734		memset(new + kdb_max_commands - KDB_BASE_CMD_MAX, 0,
2735		       kdb_command_extend * sizeof(*new));
2736		kdb_commands = new;
2737		kp = kdb_commands + kdb_max_commands - KDB_BASE_CMD_MAX;
2738		kdb_max_commands += kdb_command_extend;
2739	}
2740
2741	kp->cmd_name   = cmd;
2742	kp->cmd_func   = func;
2743	kp->cmd_usage  = usage;
2744	kp->cmd_help   = help;
2745	kp->cmd_minlen = minlen;
2746	kp->cmd_flags  = flags;
2747
2748	return 0;
2749}
2750EXPORT_SYMBOL_GPL(kdb_register_flags);
2751
2752
2753/*
2754 * kdb_register - Compatibility register function for commands that do
2755 *	not need to specify a repeat state.  Equivalent to
2756 *	kdb_register_flags with flags set to 0.
2757 * Inputs:
2758 *	cmd	Command name
2759 *	func	Function to execute the command
2760 *	usage	A simple usage string showing arguments
2761 *	help	A simple help string describing command
2762 * Returns:
2763 *	zero for success, one if a duplicate command.
2764 */
2765int kdb_register(char *cmd,
2766	     kdb_func_t func,
2767	     char *usage,
2768	     char *help,
2769	     short minlen)
2770{
2771	return kdb_register_flags(cmd, func, usage, help, minlen, 0);
2772}
2773EXPORT_SYMBOL_GPL(kdb_register);
2774
2775/*
2776 * kdb_unregister - This function is used to unregister a kernel
2777 *	debugger command.  It is generally called when a module which
2778 *	implements kdb commands is unloaded.
2779 * Inputs:
2780 *	cmd	Command name
2781 * Returns:
2782 *	zero for success, one command not registered.
2783 */
2784int kdb_unregister(char *cmd)
2785{
2786	int i;
2787	kdbtab_t *kp;
2788
2789	/*
2790	 *  find the command.
2791	 */
2792	for_each_kdbcmd(kp, i) {
2793		if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) {
2794			kp->cmd_name = NULL;
2795			return 0;
2796		}
2797	}
2798
2799	/* Couldn't find it.  */
2800	return 1;
2801}
2802EXPORT_SYMBOL_GPL(kdb_unregister);
2803
2804/* Initialize the kdb command table. */
2805static void __init kdb_inittab(void)
2806{
2807	int i;
2808	kdbtab_t *kp;
2809
2810	for_each_kdbcmd(kp, i)
2811		kp->cmd_name = NULL;
2812
2813	kdb_register_flags("md", kdb_md, "<vaddr>",
2814	  "Display Memory Contents, also mdWcN, e.g. md8c1", 1,
2815	  KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS);
2816	kdb_register_flags("mdr", kdb_md, "<vaddr> <bytes>",
2817	  "Display Raw Memory", 0,
2818	  KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS);
2819	kdb_register_flags("mdp", kdb_md, "<paddr> <bytes>",
2820	  "Display Physical Memory", 0,
2821	  KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS);
2822	kdb_register_flags("mds", kdb_md, "<vaddr>",
2823	  "Display Memory Symbolically", 0,
2824	  KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS);
2825	kdb_register_flags("mm", kdb_mm, "<vaddr> <contents>",
2826	  "Modify Memory Contents", 0,
2827	  KDB_ENABLE_MEM_WRITE | KDB_REPEAT_NO_ARGS);
2828	kdb_register_flags("go", kdb_go, "[<vaddr>]",
2829	  "Continue Execution", 1,
2830	  KDB_ENABLE_REG_WRITE | KDB_ENABLE_ALWAYS_SAFE_NO_ARGS);
2831	kdb_register_flags("rd", kdb_rd, "",
2832	  "Display Registers", 0,
2833	  KDB_ENABLE_REG_READ);
2834	kdb_register_flags("rm", kdb_rm, "<reg> <contents>",
2835	  "Modify Registers", 0,
2836	  KDB_ENABLE_REG_WRITE);
2837	kdb_register_flags("ef", kdb_ef, "<vaddr>",
2838	  "Display exception frame", 0,
2839	  KDB_ENABLE_MEM_READ);
2840	kdb_register_flags("bt", kdb_bt, "[<vaddr>]",
2841	  "Stack traceback", 1,
2842	  KDB_ENABLE_MEM_READ | KDB_ENABLE_INSPECT_NO_ARGS);
2843	kdb_register_flags("btp", kdb_bt, "<pid>",
2844	  "Display stack for process <pid>", 0,
2845	  KDB_ENABLE_INSPECT);
2846	kdb_register_flags("bta", kdb_bt, "[D|R|S|T|C|Z|E|U|I|M|A]",
2847	  "Backtrace all processes matching state flag", 0,
2848	  KDB_ENABLE_INSPECT);
2849	kdb_register_flags("btc", kdb_bt, "",
2850	  "Backtrace current process on each cpu", 0,
2851	  KDB_ENABLE_INSPECT);
2852	kdb_register_flags("btt", kdb_bt, "<vaddr>",
2853	  "Backtrace process given its struct task address", 0,
2854	  KDB_ENABLE_MEM_READ | KDB_ENABLE_INSPECT_NO_ARGS);
2855	kdb_register_flags("env", kdb_env, "",
2856	  "Show environment variables", 0,
2857	  KDB_ENABLE_ALWAYS_SAFE);
2858	kdb_register_flags("set", kdb_set, "",
2859	  "Set environment variables", 0,
2860	  KDB_ENABLE_ALWAYS_SAFE);
2861	kdb_register_flags("help", kdb_help, "",
2862	  "Display Help Message", 1,
2863	  KDB_ENABLE_ALWAYS_SAFE);
2864	kdb_register_flags("?", kdb_help, "",
2865	  "Display Help Message", 0,
2866	  KDB_ENABLE_ALWAYS_SAFE);
2867	kdb_register_flags("cpu", kdb_cpu, "<cpunum>",
2868	  "Switch to new cpu", 0,
2869	  KDB_ENABLE_ALWAYS_SAFE_NO_ARGS);
2870	kdb_register_flags("kgdb", kdb_kgdb, "",
2871	  "Enter kgdb mode", 0, 0);
2872	kdb_register_flags("ps", kdb_ps, "[<flags>|A]",
2873	  "Display active task list", 0,
2874	  KDB_ENABLE_INSPECT);
2875	kdb_register_flags("pid", kdb_pid, "<pidnum>",
2876	  "Switch to another task", 0,
2877	  KDB_ENABLE_INSPECT);
2878	kdb_register_flags("reboot", kdb_reboot, "",
2879	  "Reboot the machine immediately", 0,
2880	  KDB_ENABLE_REBOOT);
2881#if defined(CONFIG_MODULES)
2882	kdb_register_flags("lsmod", kdb_lsmod, "",
2883	  "List loaded kernel modules", 0,
2884	  KDB_ENABLE_INSPECT);
2885#endif
2886#if defined(CONFIG_MAGIC_SYSRQ)
2887	kdb_register_flags("sr", kdb_sr, "<key>",
2888	  "Magic SysRq key", 0,
2889	  KDB_ENABLE_ALWAYS_SAFE);
2890#endif
2891#if defined(CONFIG_PRINTK)
2892	kdb_register_flags("dmesg", kdb_dmesg, "[lines]",
2893	  "Display syslog buffer", 0,
2894	  KDB_ENABLE_ALWAYS_SAFE);
2895#endif
2896	if (arch_kgdb_ops.enable_nmi) {
2897		kdb_register_flags("disable_nmi", kdb_disable_nmi, "",
2898		  "Disable NMI entry to KDB", 0,
2899		  KDB_ENABLE_ALWAYS_SAFE);
2900	}
2901	kdb_register_flags("defcmd", kdb_defcmd, "name \"usage\" \"help\"",
2902	  "Define a set of commands, down to endefcmd", 0,
2903	  KDB_ENABLE_ALWAYS_SAFE);
2904	kdb_register_flags("kill", kdb_kill, "<-signal> <pid>",
2905	  "Send a signal to a process", 0,
2906	  KDB_ENABLE_SIGNAL);
2907	kdb_register_flags("summary", kdb_summary, "",
2908	  "Summarize the system", 4,
2909	  KDB_ENABLE_ALWAYS_SAFE);
2910	kdb_register_flags("per_cpu", kdb_per_cpu, "<sym> [<bytes>] [<cpu>]",
2911	  "Display per_cpu variables", 3,
2912	  KDB_ENABLE_MEM_READ);
2913	kdb_register_flags("grephelp", kdb_grep_help, "",
2914	  "Display help on | grep", 0,
2915	  KDB_ENABLE_ALWAYS_SAFE);
2916}
2917
2918/* Execute any commands defined in kdb_cmds.  */
2919static void __init kdb_cmd_init(void)
2920{
2921	int i, diag;
2922	for (i = 0; kdb_cmds[i]; ++i) {
2923		diag = kdb_parse(kdb_cmds[i]);
2924		if (diag)
2925			kdb_printf("kdb command %s failed, kdb diag %d\n",
2926				kdb_cmds[i], diag);
2927	}
2928	if (defcmd_in_progress) {
2929		kdb_printf("Incomplete 'defcmd' set, forcing endefcmd\n");
2930		kdb_parse("endefcmd");
2931	}
2932}
2933
2934/* Initialize kdb_printf, breakpoint tables and kdb state */
2935void __init kdb_init(int lvl)
2936{
2937	static int kdb_init_lvl = KDB_NOT_INITIALIZED;
2938	int i;
2939
2940	if (kdb_init_lvl == KDB_INIT_FULL || lvl <= kdb_init_lvl)
2941		return;
2942	for (i = kdb_init_lvl; i < lvl; i++) {
2943		switch (i) {
2944		case KDB_NOT_INITIALIZED:
2945			kdb_inittab();		/* Initialize Command Table */
2946			kdb_initbptab();	/* Initialize Breakpoints */
2947			break;
2948		case KDB_INIT_EARLY:
2949			kdb_cmd_init();		/* Build kdb_cmds tables */
2950			break;
2951		}
2952	}
2953	kdb_init_lvl = lvl;
2954}
v4.10.11
   1/*
   2 * Kernel Debugger Architecture Independent Main Code
   3 *
   4 * This file is subject to the terms and conditions of the GNU General Public
   5 * License.  See the file "COPYING" in the main directory of this archive
   6 * for more details.
   7 *
   8 * Copyright (C) 1999-2004 Silicon Graphics, Inc.  All Rights Reserved.
   9 * Copyright (C) 2000 Stephane Eranian <eranian@hpl.hp.com>
  10 * Xscale (R) modifications copyright (C) 2003 Intel Corporation.
  11 * Copyright (c) 2009 Wind River Systems, Inc.  All Rights Reserved.
  12 */
  13
  14#include <linux/ctype.h>
  15#include <linux/types.h>
  16#include <linux/string.h>
  17#include <linux/kernel.h>
  18#include <linux/kmsg_dump.h>
  19#include <linux/reboot.h>
  20#include <linux/sched.h>
  21#include <linux/sysrq.h>
  22#include <linux/smp.h>
  23#include <linux/utsname.h>
  24#include <linux/vmalloc.h>
  25#include <linux/atomic.h>
  26#include <linux/module.h>
  27#include <linux/moduleparam.h>
  28#include <linux/mm.h>
  29#include <linux/init.h>
  30#include <linux/kallsyms.h>
  31#include <linux/kgdb.h>
  32#include <linux/kdb.h>
  33#include <linux/notifier.h>
  34#include <linux/interrupt.h>
  35#include <linux/delay.h>
  36#include <linux/nmi.h>
  37#include <linux/time.h>
  38#include <linux/ptrace.h>
  39#include <linux/sysctl.h>
  40#include <linux/cpu.h>
  41#include <linux/kdebug.h>
  42#include <linux/proc_fs.h>
  43#include <linux/uaccess.h>
  44#include <linux/slab.h>
  45#include "kdb_private.h"
  46
  47#undef	MODULE_PARAM_PREFIX
  48#define	MODULE_PARAM_PREFIX "kdb."
  49
  50static int kdb_cmd_enabled = CONFIG_KDB_DEFAULT_ENABLE;
  51module_param_named(cmd_enable, kdb_cmd_enabled, int, 0600);
  52
  53char kdb_grep_string[KDB_GREP_STRLEN];
  54int kdb_grepping_flag;
  55EXPORT_SYMBOL(kdb_grepping_flag);
  56int kdb_grep_leading;
  57int kdb_grep_trailing;
  58
  59/*
  60 * Kernel debugger state flags
  61 */
  62int kdb_flags;
 
  63
  64/*
  65 * kdb_lock protects updates to kdb_initial_cpu.  Used to
  66 * single thread processors through the kernel debugger.
  67 */
  68int kdb_initial_cpu = -1;	/* cpu number that owns kdb */
  69int kdb_nextline = 1;
  70int kdb_state;			/* General KDB state */
  71
  72struct task_struct *kdb_current_task;
  73EXPORT_SYMBOL(kdb_current_task);
  74struct pt_regs *kdb_current_regs;
  75
  76const char *kdb_diemsg;
  77static int kdb_go_count;
  78#ifdef CONFIG_KDB_CONTINUE_CATASTROPHIC
  79static unsigned int kdb_continue_catastrophic =
  80	CONFIG_KDB_CONTINUE_CATASTROPHIC;
  81#else
  82static unsigned int kdb_continue_catastrophic;
  83#endif
  84
  85/* kdb_commands describes the available commands. */
  86static kdbtab_t *kdb_commands;
  87#define KDB_BASE_CMD_MAX 50
  88static int kdb_max_commands = KDB_BASE_CMD_MAX;
  89static kdbtab_t kdb_base_commands[KDB_BASE_CMD_MAX];
  90#define for_each_kdbcmd(cmd, num)					\
  91	for ((cmd) = kdb_base_commands, (num) = 0;			\
  92	     num < kdb_max_commands;					\
  93	     num++, num == KDB_BASE_CMD_MAX ? cmd = kdb_commands : cmd++)
  94
  95typedef struct _kdbmsg {
  96	int	km_diag;	/* kdb diagnostic */
  97	char	*km_msg;	/* Corresponding message text */
  98} kdbmsg_t;
  99
 100#define KDBMSG(msgnum, text) \
 101	{ KDB_##msgnum, text }
 102
 103static kdbmsg_t kdbmsgs[] = {
 104	KDBMSG(NOTFOUND, "Command Not Found"),
 105	KDBMSG(ARGCOUNT, "Improper argument count, see usage."),
 106	KDBMSG(BADWIDTH, "Illegal value for BYTESPERWORD use 1, 2, 4 or 8, "
 107	       "8 is only allowed on 64 bit systems"),
 108	KDBMSG(BADRADIX, "Illegal value for RADIX use 8, 10 or 16"),
 109	KDBMSG(NOTENV, "Cannot find environment variable"),
 110	KDBMSG(NOENVVALUE, "Environment variable should have value"),
 111	KDBMSG(NOTIMP, "Command not implemented"),
 112	KDBMSG(ENVFULL, "Environment full"),
 113	KDBMSG(ENVBUFFULL, "Environment buffer full"),
 114	KDBMSG(TOOMANYBPT, "Too many breakpoints defined"),
 115#ifdef CONFIG_CPU_XSCALE
 116	KDBMSG(TOOMANYDBREGS, "More breakpoints than ibcr registers defined"),
 117#else
 118	KDBMSG(TOOMANYDBREGS, "More breakpoints than db registers defined"),
 119#endif
 120	KDBMSG(DUPBPT, "Duplicate breakpoint address"),
 121	KDBMSG(BPTNOTFOUND, "Breakpoint not found"),
 122	KDBMSG(BADMODE, "Invalid IDMODE"),
 123	KDBMSG(BADINT, "Illegal numeric value"),
 124	KDBMSG(INVADDRFMT, "Invalid symbolic address format"),
 125	KDBMSG(BADREG, "Invalid register name"),
 126	KDBMSG(BADCPUNUM, "Invalid cpu number"),
 127	KDBMSG(BADLENGTH, "Invalid length field"),
 128	KDBMSG(NOBP, "No Breakpoint exists"),
 129	KDBMSG(BADADDR, "Invalid address"),
 130	KDBMSG(NOPERM, "Permission denied"),
 131};
 132#undef KDBMSG
 133
 134static const int __nkdb_err = ARRAY_SIZE(kdbmsgs);
 135
 136
 137/*
 138 * Initial environment.   This is all kept static and local to
 139 * this file.   We don't want to rely on the memory allocation
 140 * mechanisms in the kernel, so we use a very limited allocate-only
 141 * heap for new and altered environment variables.  The entire
 142 * environment is limited to a fixed number of entries (add more
 143 * to __env[] if required) and a fixed amount of heap (add more to
 144 * KDB_ENVBUFSIZE if required).
 145 */
 146
 147static char *__env[] = {
 148#if defined(CONFIG_SMP)
 149 "PROMPT=[%d]kdb> ",
 150#else
 151 "PROMPT=kdb> ",
 152#endif
 153 "MOREPROMPT=more> ",
 154 "RADIX=16",
 155 "MDCOUNT=8",			/* lines of md output */
 156 KDB_PLATFORM_ENV,
 157 "DTABCOUNT=30",
 158 "NOSECT=1",
 159 (char *)0,
 160 (char *)0,
 161 (char *)0,
 162 (char *)0,
 163 (char *)0,
 164 (char *)0,
 165 (char *)0,
 166 (char *)0,
 167 (char *)0,
 168 (char *)0,
 169 (char *)0,
 170 (char *)0,
 171 (char *)0,
 172 (char *)0,
 173 (char *)0,
 174 (char *)0,
 175 (char *)0,
 176 (char *)0,
 177 (char *)0,
 178 (char *)0,
 179 (char *)0,
 180 (char *)0,
 181 (char *)0,
 182 (char *)0,
 183};
 184
 185static const int __nenv = ARRAY_SIZE(__env);
 186
 187struct task_struct *kdb_curr_task(int cpu)
 188{
 189	struct task_struct *p = curr_task(cpu);
 190#ifdef	_TIF_MCA_INIT
 191	if ((task_thread_info(p)->flags & _TIF_MCA_INIT) && KDB_TSK(cpu))
 192		p = krp->p;
 193#endif
 194	return p;
 195}
 196
 197/*
 198 * Check whether the flags of the current command and the permissions
 199 * of the kdb console has allow a command to be run.
 200 */
 201static inline bool kdb_check_flags(kdb_cmdflags_t flags, int permissions,
 202				   bool no_args)
 203{
 204	/* permissions comes from userspace so needs massaging slightly */
 205	permissions &= KDB_ENABLE_MASK;
 206	permissions |= KDB_ENABLE_ALWAYS_SAFE;
 207
 208	/* some commands change group when launched with no arguments */
 209	if (no_args)
 210		permissions |= permissions << KDB_ENABLE_NO_ARGS_SHIFT;
 211
 212	flags |= KDB_ENABLE_ALL;
 213
 214	return permissions & flags;
 215}
 216
 217/*
 218 * kdbgetenv - This function will return the character string value of
 219 *	an environment variable.
 220 * Parameters:
 221 *	match	A character string representing an environment variable.
 222 * Returns:
 223 *	NULL	No environment variable matches 'match'
 224 *	char*	Pointer to string value of environment variable.
 225 */
 226char *kdbgetenv(const char *match)
 227{
 228	char **ep = __env;
 229	int matchlen = strlen(match);
 230	int i;
 231
 232	for (i = 0; i < __nenv; i++) {
 233		char *e = *ep++;
 234
 235		if (!e)
 236			continue;
 237
 238		if ((strncmp(match, e, matchlen) == 0)
 239		 && ((e[matchlen] == '\0')
 240		   || (e[matchlen] == '='))) {
 241			char *cp = strchr(e, '=');
 242			return cp ? ++cp : "";
 243		}
 244	}
 245	return NULL;
 246}
 247
 248/*
 249 * kdballocenv - This function is used to allocate bytes for
 250 *	environment entries.
 251 * Parameters:
 252 *	match	A character string representing a numeric value
 253 * Outputs:
 254 *	*value  the unsigned long representation of the env variable 'match'
 255 * Returns:
 256 *	Zero on success, a kdb diagnostic on failure.
 257 * Remarks:
 258 *	We use a static environment buffer (envbuffer) to hold the values
 259 *	of dynamically generated environment variables (see kdb_set).  Buffer
 260 *	space once allocated is never free'd, so over time, the amount of space
 261 *	(currently 512 bytes) will be exhausted if env variables are changed
 262 *	frequently.
 263 */
 264static char *kdballocenv(size_t bytes)
 265{
 266#define	KDB_ENVBUFSIZE	512
 267	static char envbuffer[KDB_ENVBUFSIZE];
 268	static int envbufsize;
 269	char *ep = NULL;
 270
 271	if ((KDB_ENVBUFSIZE - envbufsize) >= bytes) {
 272		ep = &envbuffer[envbufsize];
 273		envbufsize += bytes;
 274	}
 275	return ep;
 276}
 277
 278/*
 279 * kdbgetulenv - This function will return the value of an unsigned
 280 *	long-valued environment variable.
 281 * Parameters:
 282 *	match	A character string representing a numeric value
 283 * Outputs:
 284 *	*value  the unsigned long represntation of the env variable 'match'
 285 * Returns:
 286 *	Zero on success, a kdb diagnostic on failure.
 287 */
 288static int kdbgetulenv(const char *match, unsigned long *value)
 289{
 290	char *ep;
 291
 292	ep = kdbgetenv(match);
 293	if (!ep)
 294		return KDB_NOTENV;
 295	if (strlen(ep) == 0)
 296		return KDB_NOENVVALUE;
 297
 298	*value = simple_strtoul(ep, NULL, 0);
 299
 300	return 0;
 301}
 302
 303/*
 304 * kdbgetintenv - This function will return the value of an
 305 *	integer-valued environment variable.
 306 * Parameters:
 307 *	match	A character string representing an integer-valued env variable
 308 * Outputs:
 309 *	*value  the integer representation of the environment variable 'match'
 310 * Returns:
 311 *	Zero on success, a kdb diagnostic on failure.
 312 */
 313int kdbgetintenv(const char *match, int *value)
 314{
 315	unsigned long val;
 316	int diag;
 317
 318	diag = kdbgetulenv(match, &val);
 319	if (!diag)
 320		*value = (int) val;
 321	return diag;
 322}
 323
 324/*
 325 * kdbgetularg - This function will convert a numeric string into an
 326 *	unsigned long value.
 327 * Parameters:
 328 *	arg	A character string representing a numeric value
 329 * Outputs:
 330 *	*value  the unsigned long represntation of arg.
 331 * Returns:
 332 *	Zero on success, a kdb diagnostic on failure.
 333 */
 334int kdbgetularg(const char *arg, unsigned long *value)
 335{
 336	char *endp;
 337	unsigned long val;
 338
 339	val = simple_strtoul(arg, &endp, 0);
 340
 341	if (endp == arg) {
 342		/*
 343		 * Also try base 16, for us folks too lazy to type the
 344		 * leading 0x...
 345		 */
 346		val = simple_strtoul(arg, &endp, 16);
 347		if (endp == arg)
 348			return KDB_BADINT;
 349	}
 350
 351	*value = val;
 352
 353	return 0;
 354}
 355
 356int kdbgetu64arg(const char *arg, u64 *value)
 357{
 358	char *endp;
 359	u64 val;
 360
 361	val = simple_strtoull(arg, &endp, 0);
 362
 363	if (endp == arg) {
 364
 365		val = simple_strtoull(arg, &endp, 16);
 366		if (endp == arg)
 367			return KDB_BADINT;
 368	}
 369
 370	*value = val;
 371
 372	return 0;
 373}
 374
 375/*
 376 * kdb_set - This function implements the 'set' command.  Alter an
 377 *	existing environment variable or create a new one.
 378 */
 379int kdb_set(int argc, const char **argv)
 380{
 381	int i;
 382	char *ep;
 383	size_t varlen, vallen;
 384
 385	/*
 386	 * we can be invoked two ways:
 387	 *   set var=value    argv[1]="var", argv[2]="value"
 388	 *   set var = value  argv[1]="var", argv[2]="=", argv[3]="value"
 389	 * - if the latter, shift 'em down.
 390	 */
 391	if (argc == 3) {
 392		argv[2] = argv[3];
 393		argc--;
 394	}
 395
 396	if (argc != 2)
 397		return KDB_ARGCOUNT;
 398
 399	/*
 400	 * Check for internal variables
 401	 */
 402	if (strcmp(argv[1], "KDBDEBUG") == 0) {
 403		unsigned int debugflags;
 404		char *cp;
 405
 406		debugflags = simple_strtoul(argv[2], &cp, 0);
 407		if (cp == argv[2] || debugflags & ~KDB_DEBUG_FLAG_MASK) {
 408			kdb_printf("kdb: illegal debug flags '%s'\n",
 409				    argv[2]);
 410			return 0;
 411		}
 412		kdb_flags = (kdb_flags &
 413			     ~(KDB_DEBUG_FLAG_MASK << KDB_DEBUG_FLAG_SHIFT))
 414			| (debugflags << KDB_DEBUG_FLAG_SHIFT);
 415
 416		return 0;
 417	}
 418
 419	/*
 420	 * Tokenizer squashed the '=' sign.  argv[1] is variable
 421	 * name, argv[2] = value.
 422	 */
 423	varlen = strlen(argv[1]);
 424	vallen = strlen(argv[2]);
 425	ep = kdballocenv(varlen + vallen + 2);
 426	if (ep == (char *)0)
 427		return KDB_ENVBUFFULL;
 428
 429	sprintf(ep, "%s=%s", argv[1], argv[2]);
 430
 431	ep[varlen+vallen+1] = '\0';
 432
 433	for (i = 0; i < __nenv; i++) {
 434		if (__env[i]
 435		 && ((strncmp(__env[i], argv[1], varlen) == 0)
 436		   && ((__env[i][varlen] == '\0')
 437		    || (__env[i][varlen] == '=')))) {
 438			__env[i] = ep;
 439			return 0;
 440		}
 441	}
 442
 443	/*
 444	 * Wasn't existing variable.  Fit into slot.
 445	 */
 446	for (i = 0; i < __nenv-1; i++) {
 447		if (__env[i] == (char *)0) {
 448			__env[i] = ep;
 449			return 0;
 450		}
 451	}
 452
 453	return KDB_ENVFULL;
 454}
 455
 456static int kdb_check_regs(void)
 457{
 458	if (!kdb_current_regs) {
 459		kdb_printf("No current kdb registers."
 460			   "  You may need to select another task\n");
 461		return KDB_BADREG;
 462	}
 463	return 0;
 464}
 465
 466/*
 467 * kdbgetaddrarg - This function is responsible for parsing an
 468 *	address-expression and returning the value of the expression,
 469 *	symbol name, and offset to the caller.
 470 *
 471 *	The argument may consist of a numeric value (decimal or
 472 *	hexidecimal), a symbol name, a register name (preceded by the
 473 *	percent sign), an environment variable with a numeric value
 474 *	(preceded by a dollar sign) or a simple arithmetic expression
 475 *	consisting of a symbol name, +/-, and a numeric constant value
 476 *	(offset).
 477 * Parameters:
 478 *	argc	- count of arguments in argv
 479 *	argv	- argument vector
 480 *	*nextarg - index to next unparsed argument in argv[]
 481 *	regs	- Register state at time of KDB entry
 482 * Outputs:
 483 *	*value	- receives the value of the address-expression
 484 *	*offset - receives the offset specified, if any
 485 *	*name   - receives the symbol name, if any
 486 *	*nextarg - index to next unparsed argument in argv[]
 487 * Returns:
 488 *	zero is returned on success, a kdb diagnostic code is
 489 *      returned on error.
 490 */
 491int kdbgetaddrarg(int argc, const char **argv, int *nextarg,
 492		  unsigned long *value,  long *offset,
 493		  char **name)
 494{
 495	unsigned long addr;
 496	unsigned long off = 0;
 497	int positive;
 498	int diag;
 499	int found = 0;
 500	char *symname;
 501	char symbol = '\0';
 502	char *cp;
 503	kdb_symtab_t symtab;
 504
 505	/*
 506	 * If the enable flags prohibit both arbitrary memory access
 507	 * and flow control then there are no reasonable grounds to
 508	 * provide symbol lookup.
 509	 */
 510	if (!kdb_check_flags(KDB_ENABLE_MEM_READ | KDB_ENABLE_FLOW_CTRL,
 511			     kdb_cmd_enabled, false))
 512		return KDB_NOPERM;
 513
 514	/*
 515	 * Process arguments which follow the following syntax:
 516	 *
 517	 *  symbol | numeric-address [+/- numeric-offset]
 518	 *  %register
 519	 *  $environment-variable
 520	 */
 521
 522	if (*nextarg > argc)
 523		return KDB_ARGCOUNT;
 524
 525	symname = (char *)argv[*nextarg];
 526
 527	/*
 528	 * If there is no whitespace between the symbol
 529	 * or address and the '+' or '-' symbols, we
 530	 * remember the character and replace it with a
 531	 * null so the symbol/value can be properly parsed
 532	 */
 533	cp = strpbrk(symname, "+-");
 534	if (cp != NULL) {
 535		symbol = *cp;
 536		*cp++ = '\0';
 537	}
 538
 539	if (symname[0] == '$') {
 540		diag = kdbgetulenv(&symname[1], &addr);
 541		if (diag)
 542			return diag;
 543	} else if (symname[0] == '%') {
 544		diag = kdb_check_regs();
 545		if (diag)
 546			return diag;
 547		/* Implement register values with % at a later time as it is
 548		 * arch optional.
 549		 */
 550		return KDB_NOTIMP;
 551	} else {
 552		found = kdbgetsymval(symname, &symtab);
 553		if (found) {
 554			addr = symtab.sym_start;
 555		} else {
 556			diag = kdbgetularg(argv[*nextarg], &addr);
 557			if (diag)
 558				return diag;
 559		}
 560	}
 561
 562	if (!found)
 563		found = kdbnearsym(addr, &symtab);
 564
 565	(*nextarg)++;
 566
 567	if (name)
 568		*name = symname;
 569	if (value)
 570		*value = addr;
 571	if (offset && name && *name)
 572		*offset = addr - symtab.sym_start;
 573
 574	if ((*nextarg > argc)
 575	 && (symbol == '\0'))
 576		return 0;
 577
 578	/*
 579	 * check for +/- and offset
 580	 */
 581
 582	if (symbol == '\0') {
 583		if ((argv[*nextarg][0] != '+')
 584		 && (argv[*nextarg][0] != '-')) {
 585			/*
 586			 * Not our argument.  Return.
 587			 */
 588			return 0;
 589		} else {
 590			positive = (argv[*nextarg][0] == '+');
 591			(*nextarg)++;
 592		}
 593	} else
 594		positive = (symbol == '+');
 595
 596	/*
 597	 * Now there must be an offset!
 598	 */
 599	if ((*nextarg > argc)
 600	 && (symbol == '\0')) {
 601		return KDB_INVADDRFMT;
 602	}
 603
 604	if (!symbol) {
 605		cp = (char *)argv[*nextarg];
 606		(*nextarg)++;
 607	}
 608
 609	diag = kdbgetularg(cp, &off);
 610	if (diag)
 611		return diag;
 612
 613	if (!positive)
 614		off = -off;
 615
 616	if (offset)
 617		*offset += off;
 618
 619	if (value)
 620		*value += off;
 621
 622	return 0;
 623}
 624
 625static void kdb_cmderror(int diag)
 626{
 627	int i;
 628
 629	if (diag >= 0) {
 630		kdb_printf("no error detected (diagnostic is %d)\n", diag);
 631		return;
 632	}
 633
 634	for (i = 0; i < __nkdb_err; i++) {
 635		if (kdbmsgs[i].km_diag == diag) {
 636			kdb_printf("diag: %d: %s\n", diag, kdbmsgs[i].km_msg);
 637			return;
 638		}
 639	}
 640
 641	kdb_printf("Unknown diag %d\n", -diag);
 642}
 643
 644/*
 645 * kdb_defcmd, kdb_defcmd2 - This function implements the 'defcmd'
 646 *	command which defines one command as a set of other commands,
 647 *	terminated by endefcmd.  kdb_defcmd processes the initial
 648 *	'defcmd' command, kdb_defcmd2 is invoked from kdb_parse for
 649 *	the following commands until 'endefcmd'.
 650 * Inputs:
 651 *	argc	argument count
 652 *	argv	argument vector
 653 * Returns:
 654 *	zero for success, a kdb diagnostic if error
 655 */
 656struct defcmd_set {
 657	int count;
 658	int usable;
 659	char *name;
 660	char *usage;
 661	char *help;
 662	char **command;
 663};
 664static struct defcmd_set *defcmd_set;
 665static int defcmd_set_count;
 666static int defcmd_in_progress;
 667
 668/* Forward references */
 669static int kdb_exec_defcmd(int argc, const char **argv);
 670
 671static int kdb_defcmd2(const char *cmdstr, const char *argv0)
 672{
 673	struct defcmd_set *s = defcmd_set + defcmd_set_count - 1;
 674	char **save_command = s->command;
 675	if (strcmp(argv0, "endefcmd") == 0) {
 676		defcmd_in_progress = 0;
 677		if (!s->count)
 678			s->usable = 0;
 679		if (s->usable)
 680			/* macros are always safe because when executed each
 681			 * internal command re-enters kdb_parse() and is
 682			 * safety checked individually.
 683			 */
 684			kdb_register_flags(s->name, kdb_exec_defcmd, s->usage,
 685					   s->help, 0,
 686					   KDB_ENABLE_ALWAYS_SAFE);
 687		return 0;
 688	}
 689	if (!s->usable)
 690		return KDB_NOTIMP;
 691	s->command = kzalloc((s->count + 1) * sizeof(*(s->command)), GFP_KDB);
 692	if (!s->command) {
 693		kdb_printf("Could not allocate new kdb_defcmd table for %s\n",
 694			   cmdstr);
 695		s->usable = 0;
 696		return KDB_NOTIMP;
 697	}
 698	memcpy(s->command, save_command, s->count * sizeof(*(s->command)));
 699	s->command[s->count++] = kdb_strdup(cmdstr, GFP_KDB);
 700	kfree(save_command);
 701	return 0;
 702}
 703
 704static int kdb_defcmd(int argc, const char **argv)
 705{
 706	struct defcmd_set *save_defcmd_set = defcmd_set, *s;
 707	if (defcmd_in_progress) {
 708		kdb_printf("kdb: nested defcmd detected, assuming missing "
 709			   "endefcmd\n");
 710		kdb_defcmd2("endefcmd", "endefcmd");
 711	}
 712	if (argc == 0) {
 713		int i;
 714		for (s = defcmd_set; s < defcmd_set + defcmd_set_count; ++s) {
 715			kdb_printf("defcmd %s \"%s\" \"%s\"\n", s->name,
 716				   s->usage, s->help);
 717			for (i = 0; i < s->count; ++i)
 718				kdb_printf("%s", s->command[i]);
 719			kdb_printf("endefcmd\n");
 720		}
 721		return 0;
 722	}
 723	if (argc != 3)
 724		return KDB_ARGCOUNT;
 725	if (in_dbg_master()) {
 726		kdb_printf("Command only available during kdb_init()\n");
 727		return KDB_NOTIMP;
 728	}
 729	defcmd_set = kmalloc((defcmd_set_count + 1) * sizeof(*defcmd_set),
 730			     GFP_KDB);
 731	if (!defcmd_set)
 732		goto fail_defcmd;
 733	memcpy(defcmd_set, save_defcmd_set,
 734	       defcmd_set_count * sizeof(*defcmd_set));
 735	s = defcmd_set + defcmd_set_count;
 736	memset(s, 0, sizeof(*s));
 737	s->usable = 1;
 738	s->name = kdb_strdup(argv[1], GFP_KDB);
 739	if (!s->name)
 740		goto fail_name;
 741	s->usage = kdb_strdup(argv[2], GFP_KDB);
 742	if (!s->usage)
 743		goto fail_usage;
 744	s->help = kdb_strdup(argv[3], GFP_KDB);
 745	if (!s->help)
 746		goto fail_help;
 747	if (s->usage[0] == '"') {
 748		strcpy(s->usage, argv[2]+1);
 749		s->usage[strlen(s->usage)-1] = '\0';
 750	}
 751	if (s->help[0] == '"') {
 752		strcpy(s->help, argv[3]+1);
 753		s->help[strlen(s->help)-1] = '\0';
 754	}
 755	++defcmd_set_count;
 756	defcmd_in_progress = 1;
 757	kfree(save_defcmd_set);
 758	return 0;
 759fail_help:
 760	kfree(s->usage);
 761fail_usage:
 762	kfree(s->name);
 763fail_name:
 764	kfree(defcmd_set);
 765fail_defcmd:
 766	kdb_printf("Could not allocate new defcmd_set entry for %s\n", argv[1]);
 767	defcmd_set = save_defcmd_set;
 768	return KDB_NOTIMP;
 769}
 770
 771/*
 772 * kdb_exec_defcmd - Execute the set of commands associated with this
 773 *	defcmd name.
 774 * Inputs:
 775 *	argc	argument count
 776 *	argv	argument vector
 777 * Returns:
 778 *	zero for success, a kdb diagnostic if error
 779 */
 780static int kdb_exec_defcmd(int argc, const char **argv)
 781{
 782	int i, ret;
 783	struct defcmd_set *s;
 784	if (argc != 0)
 785		return KDB_ARGCOUNT;
 786	for (s = defcmd_set, i = 0; i < defcmd_set_count; ++i, ++s) {
 787		if (strcmp(s->name, argv[0]) == 0)
 788			break;
 789	}
 790	if (i == defcmd_set_count) {
 791		kdb_printf("kdb_exec_defcmd: could not find commands for %s\n",
 792			   argv[0]);
 793		return KDB_NOTIMP;
 794	}
 795	for (i = 0; i < s->count; ++i) {
 796		/* Recursive use of kdb_parse, do not use argv after
 797		 * this point */
 798		argv = NULL;
 799		kdb_printf("[%s]kdb> %s\n", s->name, s->command[i]);
 800		ret = kdb_parse(s->command[i]);
 801		if (ret)
 802			return ret;
 803	}
 804	return 0;
 805}
 806
 807/* Command history */
 808#define KDB_CMD_HISTORY_COUNT	32
 809#define CMD_BUFLEN		200	/* kdb_printf: max printline
 810					 * size == 256 */
 811static unsigned int cmd_head, cmd_tail;
 812static unsigned int cmdptr;
 813static char cmd_hist[KDB_CMD_HISTORY_COUNT][CMD_BUFLEN];
 814static char cmd_cur[CMD_BUFLEN];
 815
 816/*
 817 * The "str" argument may point to something like  | grep xyz
 818 */
 819static void parse_grep(const char *str)
 820{
 821	int	len;
 822	char	*cp = (char *)str, *cp2;
 823
 824	/* sanity check: we should have been called with the \ first */
 825	if (*cp != '|')
 826		return;
 827	cp++;
 828	while (isspace(*cp))
 829		cp++;
 830	if (strncmp(cp, "grep ", 5)) {
 831		kdb_printf("invalid 'pipe', see grephelp\n");
 832		return;
 833	}
 834	cp += 5;
 835	while (isspace(*cp))
 836		cp++;
 837	cp2 = strchr(cp, '\n');
 838	if (cp2)
 839		*cp2 = '\0'; /* remove the trailing newline */
 840	len = strlen(cp);
 841	if (len == 0) {
 842		kdb_printf("invalid 'pipe', see grephelp\n");
 843		return;
 844	}
 845	/* now cp points to a nonzero length search string */
 846	if (*cp == '"') {
 847		/* allow it be "x y z" by removing the "'s - there must
 848		   be two of them */
 849		cp++;
 850		cp2 = strchr(cp, '"');
 851		if (!cp2) {
 852			kdb_printf("invalid quoted string, see grephelp\n");
 853			return;
 854		}
 855		*cp2 = '\0'; /* end the string where the 2nd " was */
 856	}
 857	kdb_grep_leading = 0;
 858	if (*cp == '^') {
 859		kdb_grep_leading = 1;
 860		cp++;
 861	}
 862	len = strlen(cp);
 863	kdb_grep_trailing = 0;
 864	if (*(cp+len-1) == '$') {
 865		kdb_grep_trailing = 1;
 866		*(cp+len-1) = '\0';
 867	}
 868	len = strlen(cp);
 869	if (!len)
 870		return;
 871	if (len >= KDB_GREP_STRLEN) {
 872		kdb_printf("search string too long\n");
 873		return;
 874	}
 875	strcpy(kdb_grep_string, cp);
 876	kdb_grepping_flag++;
 877	return;
 878}
 879
 880/*
 881 * kdb_parse - Parse the command line, search the command table for a
 882 *	matching command and invoke the command function.  This
 883 *	function may be called recursively, if it is, the second call
 884 *	will overwrite argv and cbuf.  It is the caller's
 885 *	responsibility to save their argv if they recursively call
 886 *	kdb_parse().
 887 * Parameters:
 888 *      cmdstr	The input command line to be parsed.
 889 *	regs	The registers at the time kdb was entered.
 890 * Returns:
 891 *	Zero for success, a kdb diagnostic if failure.
 892 * Remarks:
 893 *	Limited to 20 tokens.
 894 *
 895 *	Real rudimentary tokenization. Basically only whitespace
 896 *	is considered a token delimeter (but special consideration
 897 *	is taken of the '=' sign as used by the 'set' command).
 898 *
 899 *	The algorithm used to tokenize the input string relies on
 900 *	there being at least one whitespace (or otherwise useless)
 901 *	character between tokens as the character immediately following
 902 *	the token is altered in-place to a null-byte to terminate the
 903 *	token string.
 904 */
 905
 906#define MAXARGC	20
 907
 908int kdb_parse(const char *cmdstr)
 909{
 910	static char *argv[MAXARGC];
 911	static int argc;
 912	static char cbuf[CMD_BUFLEN+2];
 913	char *cp;
 914	char *cpp, quoted;
 915	kdbtab_t *tp;
 916	int i, escaped, ignore_errors = 0, check_grep = 0;
 917
 918	/*
 919	 * First tokenize the command string.
 920	 */
 921	cp = (char *)cmdstr;
 922
 923	if (KDB_FLAG(CMD_INTERRUPT)) {
 924		/* Previous command was interrupted, newline must not
 925		 * repeat the command */
 926		KDB_FLAG_CLEAR(CMD_INTERRUPT);
 927		KDB_STATE_SET(PAGER);
 928		argc = 0;	/* no repeat */
 929	}
 930
 931	if (*cp != '\n' && *cp != '\0') {
 932		argc = 0;
 933		cpp = cbuf;
 934		while (*cp) {
 935			/* skip whitespace */
 936			while (isspace(*cp))
 937				cp++;
 938			if ((*cp == '\0') || (*cp == '\n') ||
 939			    (*cp == '#' && !defcmd_in_progress))
 940				break;
 941			/* special case: check for | grep pattern */
 942			if (*cp == '|') {
 943				check_grep++;
 944				break;
 945			}
 946			if (cpp >= cbuf + CMD_BUFLEN) {
 947				kdb_printf("kdb_parse: command buffer "
 948					   "overflow, command ignored\n%s\n",
 949					   cmdstr);
 950				return KDB_NOTFOUND;
 951			}
 952			if (argc >= MAXARGC - 1) {
 953				kdb_printf("kdb_parse: too many arguments, "
 954					   "command ignored\n%s\n", cmdstr);
 955				return KDB_NOTFOUND;
 956			}
 957			argv[argc++] = cpp;
 958			escaped = 0;
 959			quoted = '\0';
 960			/* Copy to next unquoted and unescaped
 961			 * whitespace or '=' */
 962			while (*cp && *cp != '\n' &&
 963			       (escaped || quoted || !isspace(*cp))) {
 964				if (cpp >= cbuf + CMD_BUFLEN)
 965					break;
 966				if (escaped) {
 967					escaped = 0;
 968					*cpp++ = *cp++;
 969					continue;
 970				}
 971				if (*cp == '\\') {
 972					escaped = 1;
 973					++cp;
 974					continue;
 975				}
 976				if (*cp == quoted)
 977					quoted = '\0';
 978				else if (*cp == '\'' || *cp == '"')
 979					quoted = *cp;
 980				*cpp = *cp++;
 981				if (*cpp == '=' && !quoted)
 982					break;
 983				++cpp;
 984			}
 985			*cpp++ = '\0';	/* Squash a ws or '=' character */
 986		}
 987	}
 988	if (!argc)
 989		return 0;
 990	if (check_grep)
 991		parse_grep(cp);
 992	if (defcmd_in_progress) {
 993		int result = kdb_defcmd2(cmdstr, argv[0]);
 994		if (!defcmd_in_progress) {
 995			argc = 0;	/* avoid repeat on endefcmd */
 996			*(argv[0]) = '\0';
 997		}
 998		return result;
 999	}
1000	if (argv[0][0] == '-' && argv[0][1] &&
1001	    (argv[0][1] < '0' || argv[0][1] > '9')) {
1002		ignore_errors = 1;
1003		++argv[0];
1004	}
1005
1006	for_each_kdbcmd(tp, i) {
1007		if (tp->cmd_name) {
1008			/*
1009			 * If this command is allowed to be abbreviated,
1010			 * check to see if this is it.
1011			 */
1012
1013			if (tp->cmd_minlen
1014			 && (strlen(argv[0]) <= tp->cmd_minlen)) {
1015				if (strncmp(argv[0],
1016					    tp->cmd_name,
1017					    tp->cmd_minlen) == 0) {
1018					break;
1019				}
1020			}
1021
1022			if (strcmp(argv[0], tp->cmd_name) == 0)
1023				break;
1024		}
1025	}
1026
1027	/*
1028	 * If we don't find a command by this name, see if the first
1029	 * few characters of this match any of the known commands.
1030	 * e.g., md1c20 should match md.
1031	 */
1032	if (i == kdb_max_commands) {
1033		for_each_kdbcmd(tp, i) {
1034			if (tp->cmd_name) {
1035				if (strncmp(argv[0],
1036					    tp->cmd_name,
1037					    strlen(tp->cmd_name)) == 0) {
1038					break;
1039				}
1040			}
1041		}
1042	}
1043
1044	if (i < kdb_max_commands) {
1045		int result;
1046
1047		if (!kdb_check_flags(tp->cmd_flags, kdb_cmd_enabled, argc <= 1))
1048			return KDB_NOPERM;
1049
1050		KDB_STATE_SET(CMD);
1051		result = (*tp->cmd_func)(argc-1, (const char **)argv);
1052		if (result && ignore_errors && result > KDB_CMD_GO)
1053			result = 0;
1054		KDB_STATE_CLEAR(CMD);
1055
1056		if (tp->cmd_flags & KDB_REPEAT_WITH_ARGS)
1057			return result;
1058
1059		argc = tp->cmd_flags & KDB_REPEAT_NO_ARGS ? 1 : 0;
1060		if (argv[argc])
1061			*(argv[argc]) = '\0';
1062		return result;
1063	}
1064
1065	/*
1066	 * If the input with which we were presented does not
1067	 * map to an existing command, attempt to parse it as an
1068	 * address argument and display the result.   Useful for
1069	 * obtaining the address of a variable, or the nearest symbol
1070	 * to an address contained in a register.
1071	 */
1072	{
1073		unsigned long value;
1074		char *name = NULL;
1075		long offset;
1076		int nextarg = 0;
1077
1078		if (kdbgetaddrarg(0, (const char **)argv, &nextarg,
1079				  &value, &offset, &name)) {
1080			return KDB_NOTFOUND;
1081		}
1082
1083		kdb_printf("%s = ", argv[0]);
1084		kdb_symbol_print(value, NULL, KDB_SP_DEFAULT);
1085		kdb_printf("\n");
1086		return 0;
1087	}
1088}
1089
1090
1091static int handle_ctrl_cmd(char *cmd)
1092{
1093#define CTRL_P	16
1094#define CTRL_N	14
1095
1096	/* initial situation */
1097	if (cmd_head == cmd_tail)
1098		return 0;
1099	switch (*cmd) {
1100	case CTRL_P:
1101		if (cmdptr != cmd_tail)
1102			cmdptr = (cmdptr-1) % KDB_CMD_HISTORY_COUNT;
1103		strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1104		return 1;
1105	case CTRL_N:
1106		if (cmdptr != cmd_head)
1107			cmdptr = (cmdptr+1) % KDB_CMD_HISTORY_COUNT;
1108		strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1109		return 1;
1110	}
1111	return 0;
1112}
1113
1114/*
1115 * kdb_reboot - This function implements the 'reboot' command.  Reboot
1116 *	the system immediately, or loop for ever on failure.
1117 */
1118static int kdb_reboot(int argc, const char **argv)
1119{
1120	emergency_restart();
1121	kdb_printf("Hmm, kdb_reboot did not reboot, spinning here\n");
1122	while (1)
1123		cpu_relax();
1124	/* NOTREACHED */
1125	return 0;
1126}
1127
1128static void kdb_dumpregs(struct pt_regs *regs)
1129{
1130	int old_lvl = console_loglevel;
1131	console_loglevel = CONSOLE_LOGLEVEL_MOTORMOUTH;
1132	kdb_trap_printk++;
1133	show_regs(regs);
1134	kdb_trap_printk--;
1135	kdb_printf("\n");
1136	console_loglevel = old_lvl;
1137}
1138
1139void kdb_set_current_task(struct task_struct *p)
1140{
1141	kdb_current_task = p;
1142
1143	if (kdb_task_has_cpu(p)) {
1144		kdb_current_regs = KDB_TSKREGS(kdb_process_cpu(p));
1145		return;
1146	}
1147	kdb_current_regs = NULL;
1148}
1149
1150/*
1151 * kdb_local - The main code for kdb.  This routine is invoked on a
1152 *	specific processor, it is not global.  The main kdb() routine
1153 *	ensures that only one processor at a time is in this routine.
1154 *	This code is called with the real reason code on the first
1155 *	entry to a kdb session, thereafter it is called with reason
1156 *	SWITCH, even if the user goes back to the original cpu.
1157 * Inputs:
1158 *	reason		The reason KDB was invoked
1159 *	error		The hardware-defined error code
1160 *	regs		The exception frame at time of fault/breakpoint.
1161 *	db_result	Result code from the break or debug point.
1162 * Returns:
1163 *	0	KDB was invoked for an event which it wasn't responsible
1164 *	1	KDB handled the event for which it was invoked.
1165 *	KDB_CMD_GO	User typed 'go'.
1166 *	KDB_CMD_CPU	User switched to another cpu.
1167 *	KDB_CMD_SS	Single step.
1168 */
1169static int kdb_local(kdb_reason_t reason, int error, struct pt_regs *regs,
1170		     kdb_dbtrap_t db_result)
1171{
1172	char *cmdbuf;
1173	int diag;
1174	struct task_struct *kdb_current =
1175		kdb_curr_task(raw_smp_processor_id());
1176
1177	KDB_DEBUG_STATE("kdb_local 1", reason);
1178	kdb_go_count = 0;
1179	if (reason == KDB_REASON_DEBUG) {
1180		/* special case below */
1181	} else {
1182		kdb_printf("\nEntering kdb (current=0x%p, pid %d) ",
1183			   kdb_current, kdb_current ? kdb_current->pid : 0);
1184#if defined(CONFIG_SMP)
1185		kdb_printf("on processor %d ", raw_smp_processor_id());
1186#endif
1187	}
1188
1189	switch (reason) {
1190	case KDB_REASON_DEBUG:
1191	{
1192		/*
1193		 * If re-entering kdb after a single step
1194		 * command, don't print the message.
1195		 */
1196		switch (db_result) {
1197		case KDB_DB_BPT:
1198			kdb_printf("\nEntering kdb (0x%p, pid %d) ",
1199				   kdb_current, kdb_current->pid);
1200#if defined(CONFIG_SMP)
1201			kdb_printf("on processor %d ", raw_smp_processor_id());
1202#endif
1203			kdb_printf("due to Debug @ " kdb_machreg_fmt "\n",
1204				   instruction_pointer(regs));
1205			break;
1206		case KDB_DB_SS:
1207			break;
1208		case KDB_DB_SSBPT:
1209			KDB_DEBUG_STATE("kdb_local 4", reason);
1210			return 1;	/* kdba_db_trap did the work */
1211		default:
1212			kdb_printf("kdb: Bad result from kdba_db_trap: %d\n",
1213				   db_result);
1214			break;
1215		}
1216
1217	}
1218		break;
1219	case KDB_REASON_ENTER:
1220		if (KDB_STATE(KEYBOARD))
1221			kdb_printf("due to Keyboard Entry\n");
1222		else
1223			kdb_printf("due to KDB_ENTER()\n");
1224		break;
1225	case KDB_REASON_KEYBOARD:
1226		KDB_STATE_SET(KEYBOARD);
1227		kdb_printf("due to Keyboard Entry\n");
1228		break;
1229	case KDB_REASON_ENTER_SLAVE:
1230		/* drop through, slaves only get released via cpu switch */
1231	case KDB_REASON_SWITCH:
1232		kdb_printf("due to cpu switch\n");
1233		break;
1234	case KDB_REASON_OOPS:
1235		kdb_printf("Oops: %s\n", kdb_diemsg);
1236		kdb_printf("due to oops @ " kdb_machreg_fmt "\n",
1237			   instruction_pointer(regs));
1238		kdb_dumpregs(regs);
1239		break;
1240	case KDB_REASON_SYSTEM_NMI:
1241		kdb_printf("due to System NonMaskable Interrupt\n");
1242		break;
1243	case KDB_REASON_NMI:
1244		kdb_printf("due to NonMaskable Interrupt @ "
1245			   kdb_machreg_fmt "\n",
1246			   instruction_pointer(regs));
1247		break;
1248	case KDB_REASON_SSTEP:
1249	case KDB_REASON_BREAK:
1250		kdb_printf("due to %s @ " kdb_machreg_fmt "\n",
1251			   reason == KDB_REASON_BREAK ?
1252			   "Breakpoint" : "SS trap", instruction_pointer(regs));
1253		/*
1254		 * Determine if this breakpoint is one that we
1255		 * are interested in.
1256		 */
1257		if (db_result != KDB_DB_BPT) {
1258			kdb_printf("kdb: error return from kdba_bp_trap: %d\n",
1259				   db_result);
1260			KDB_DEBUG_STATE("kdb_local 6", reason);
1261			return 0;	/* Not for us, dismiss it */
1262		}
1263		break;
1264	case KDB_REASON_RECURSE:
1265		kdb_printf("due to Recursion @ " kdb_machreg_fmt "\n",
1266			   instruction_pointer(regs));
1267		break;
1268	default:
1269		kdb_printf("kdb: unexpected reason code: %d\n", reason);
1270		KDB_DEBUG_STATE("kdb_local 8", reason);
1271		return 0;	/* Not for us, dismiss it */
1272	}
1273
1274	while (1) {
1275		/*
1276		 * Initialize pager context.
1277		 */
1278		kdb_nextline = 1;
1279		KDB_STATE_CLEAR(SUPPRESS);
1280		kdb_grepping_flag = 0;
1281		/* ensure the old search does not leak into '/' commands */
1282		kdb_grep_string[0] = '\0';
1283
1284		cmdbuf = cmd_cur;
1285		*cmdbuf = '\0';
1286		*(cmd_hist[cmd_head]) = '\0';
1287
1288do_full_getstr:
1289#if defined(CONFIG_SMP)
1290		snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"),
1291			 raw_smp_processor_id());
1292#else
1293		snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"));
1294#endif
1295		if (defcmd_in_progress)
1296			strncat(kdb_prompt_str, "[defcmd]", CMD_BUFLEN);
1297
1298		/*
1299		 * Fetch command from keyboard
1300		 */
1301		cmdbuf = kdb_getstr(cmdbuf, CMD_BUFLEN, kdb_prompt_str);
1302		if (*cmdbuf != '\n') {
1303			if (*cmdbuf < 32) {
1304				if (cmdptr == cmd_head) {
1305					strncpy(cmd_hist[cmd_head], cmd_cur,
1306						CMD_BUFLEN);
1307					*(cmd_hist[cmd_head] +
1308					  strlen(cmd_hist[cmd_head])-1) = '\0';
1309				}
1310				if (!handle_ctrl_cmd(cmdbuf))
1311					*(cmd_cur+strlen(cmd_cur)-1) = '\0';
1312				cmdbuf = cmd_cur;
1313				goto do_full_getstr;
1314			} else {
1315				strncpy(cmd_hist[cmd_head], cmd_cur,
1316					CMD_BUFLEN);
1317			}
1318
1319			cmd_head = (cmd_head+1) % KDB_CMD_HISTORY_COUNT;
1320			if (cmd_head == cmd_tail)
1321				cmd_tail = (cmd_tail+1) % KDB_CMD_HISTORY_COUNT;
1322		}
1323
1324		cmdptr = cmd_head;
1325		diag = kdb_parse(cmdbuf);
1326		if (diag == KDB_NOTFOUND) {
1327			kdb_printf("Unknown kdb command: '%s'\n", cmdbuf);
1328			diag = 0;
1329		}
1330		if (diag == KDB_CMD_GO
1331		 || diag == KDB_CMD_CPU
1332		 || diag == KDB_CMD_SS
1333		 || diag == KDB_CMD_KGDB)
1334			break;
1335
1336		if (diag)
1337			kdb_cmderror(diag);
1338	}
1339	KDB_DEBUG_STATE("kdb_local 9", diag);
1340	return diag;
1341}
1342
1343
1344/*
1345 * kdb_print_state - Print the state data for the current processor
1346 *	for debugging.
1347 * Inputs:
1348 *	text		Identifies the debug point
1349 *	value		Any integer value to be printed, e.g. reason code.
1350 */
1351void kdb_print_state(const char *text, int value)
1352{
1353	kdb_printf("state: %s cpu %d value %d initial %d state %x\n",
1354		   text, raw_smp_processor_id(), value, kdb_initial_cpu,
1355		   kdb_state);
1356}
1357
1358/*
1359 * kdb_main_loop - After initial setup and assignment of the
1360 *	controlling cpu, all cpus are in this loop.  One cpu is in
1361 *	control and will issue the kdb prompt, the others will spin
1362 *	until 'go' or cpu switch.
1363 *
1364 *	To get a consistent view of the kernel stacks for all
1365 *	processes, this routine is invoked from the main kdb code via
1366 *	an architecture specific routine.  kdba_main_loop is
1367 *	responsible for making the kernel stacks consistent for all
1368 *	processes, there should be no difference between a blocked
1369 *	process and a running process as far as kdb is concerned.
1370 * Inputs:
1371 *	reason		The reason KDB was invoked
1372 *	error		The hardware-defined error code
1373 *	reason2		kdb's current reason code.
1374 *			Initially error but can change
1375 *			according to kdb state.
1376 *	db_result	Result code from break or debug point.
1377 *	regs		The exception frame at time of fault/breakpoint.
1378 *			should always be valid.
1379 * Returns:
1380 *	0	KDB was invoked for an event which it wasn't responsible
1381 *	1	KDB handled the event for which it was invoked.
1382 */
1383int kdb_main_loop(kdb_reason_t reason, kdb_reason_t reason2, int error,
1384	      kdb_dbtrap_t db_result, struct pt_regs *regs)
1385{
1386	int result = 1;
1387	/* Stay in kdb() until 'go', 'ss[b]' or an error */
1388	while (1) {
1389		/*
1390		 * All processors except the one that is in control
1391		 * will spin here.
1392		 */
1393		KDB_DEBUG_STATE("kdb_main_loop 1", reason);
1394		while (KDB_STATE(HOLD_CPU)) {
1395			/* state KDB is turned off by kdb_cpu to see if the
1396			 * other cpus are still live, each cpu in this loop
1397			 * turns it back on.
1398			 */
1399			if (!KDB_STATE(KDB))
1400				KDB_STATE_SET(KDB);
1401		}
1402
1403		KDB_STATE_CLEAR(SUPPRESS);
1404		KDB_DEBUG_STATE("kdb_main_loop 2", reason);
1405		if (KDB_STATE(LEAVING))
1406			break;	/* Another cpu said 'go' */
1407		/* Still using kdb, this processor is in control */
1408		result = kdb_local(reason2, error, regs, db_result);
1409		KDB_DEBUG_STATE("kdb_main_loop 3", result);
1410
1411		if (result == KDB_CMD_CPU)
1412			break;
1413
1414		if (result == KDB_CMD_SS) {
1415			KDB_STATE_SET(DOING_SS);
1416			break;
1417		}
1418
1419		if (result == KDB_CMD_KGDB) {
1420			if (!KDB_STATE(DOING_KGDB))
1421				kdb_printf("Entering please attach debugger "
1422					   "or use $D#44+ or $3#33\n");
1423			break;
1424		}
1425		if (result && result != 1 && result != KDB_CMD_GO)
1426			kdb_printf("\nUnexpected kdb_local return code %d\n",
1427				   result);
1428		KDB_DEBUG_STATE("kdb_main_loop 4", reason);
1429		break;
1430	}
1431	if (KDB_STATE(DOING_SS))
1432		KDB_STATE_CLEAR(SSBPT);
1433
1434	/* Clean up any keyboard devices before leaving */
1435	kdb_kbd_cleanup_state();
1436
1437	return result;
1438}
1439
1440/*
1441 * kdb_mdr - This function implements the guts of the 'mdr', memory
1442 * read command.
1443 *	mdr  <addr arg>,<byte count>
1444 * Inputs:
1445 *	addr	Start address
1446 *	count	Number of bytes
1447 * Returns:
1448 *	Always 0.  Any errors are detected and printed by kdb_getarea.
1449 */
1450static int kdb_mdr(unsigned long addr, unsigned int count)
1451{
1452	unsigned char c;
1453	while (count--) {
1454		if (kdb_getarea(c, addr))
1455			return 0;
1456		kdb_printf("%02x", c);
1457		addr++;
1458	}
1459	kdb_printf("\n");
1460	return 0;
1461}
1462
1463/*
1464 * kdb_md - This function implements the 'md', 'md1', 'md2', 'md4',
1465 *	'md8' 'mdr' and 'mds' commands.
1466 *
1467 *	md|mds  [<addr arg> [<line count> [<radix>]]]
1468 *	mdWcN	[<addr arg> [<line count> [<radix>]]]
1469 *		where W = is the width (1, 2, 4 or 8) and N is the count.
1470 *		for eg., md1c20 reads 20 bytes, 1 at a time.
1471 *	mdr  <addr arg>,<byte count>
1472 */
1473static void kdb_md_line(const char *fmtstr, unsigned long addr,
1474			int symbolic, int nosect, int bytesperword,
1475			int num, int repeat, int phys)
1476{
1477	/* print just one line of data */
1478	kdb_symtab_t symtab;
1479	char cbuf[32];
1480	char *c = cbuf;
1481	int i;
1482	unsigned long word;
1483
1484	memset(cbuf, '\0', sizeof(cbuf));
1485	if (phys)
1486		kdb_printf("phys " kdb_machreg_fmt0 " ", addr);
1487	else
1488		kdb_printf(kdb_machreg_fmt0 " ", addr);
1489
1490	for (i = 0; i < num && repeat--; i++) {
1491		if (phys) {
1492			if (kdb_getphysword(&word, addr, bytesperword))
1493				break;
1494		} else if (kdb_getword(&word, addr, bytesperword))
1495			break;
1496		kdb_printf(fmtstr, word);
1497		if (symbolic)
1498			kdbnearsym(word, &symtab);
1499		else
1500			memset(&symtab, 0, sizeof(symtab));
1501		if (symtab.sym_name) {
1502			kdb_symbol_print(word, &symtab, 0);
1503			if (!nosect) {
1504				kdb_printf("\n");
1505				kdb_printf("                       %s %s "
1506					   kdb_machreg_fmt " "
1507					   kdb_machreg_fmt " "
1508					   kdb_machreg_fmt, symtab.mod_name,
1509					   symtab.sec_name, symtab.sec_start,
1510					   symtab.sym_start, symtab.sym_end);
1511			}
1512			addr += bytesperword;
1513		} else {
1514			union {
1515				u64 word;
1516				unsigned char c[8];
1517			} wc;
1518			unsigned char *cp;
1519#ifdef	__BIG_ENDIAN
1520			cp = wc.c + 8 - bytesperword;
1521#else
1522			cp = wc.c;
1523#endif
1524			wc.word = word;
1525#define printable_char(c) \
1526	({unsigned char __c = c; isascii(__c) && isprint(__c) ? __c : '.'; })
1527			switch (bytesperword) {
1528			case 8:
1529				*c++ = printable_char(*cp++);
1530				*c++ = printable_char(*cp++);
1531				*c++ = printable_char(*cp++);
1532				*c++ = printable_char(*cp++);
1533				addr += 4;
1534			case 4:
1535				*c++ = printable_char(*cp++);
1536				*c++ = printable_char(*cp++);
1537				addr += 2;
1538			case 2:
1539				*c++ = printable_char(*cp++);
1540				addr++;
1541			case 1:
1542				*c++ = printable_char(*cp++);
1543				addr++;
1544				break;
1545			}
1546#undef printable_char
1547		}
1548	}
1549	kdb_printf("%*s %s\n", (int)((num-i)*(2*bytesperword + 1)+1),
1550		   " ", cbuf);
1551}
1552
1553static int kdb_md(int argc, const char **argv)
1554{
1555	static unsigned long last_addr;
1556	static int last_radix, last_bytesperword, last_repeat;
1557	int radix = 16, mdcount = 8, bytesperword = KDB_WORD_SIZE, repeat;
1558	int nosect = 0;
1559	char fmtchar, fmtstr[64];
1560	unsigned long addr;
1561	unsigned long word;
1562	long offset = 0;
1563	int symbolic = 0;
1564	int valid = 0;
1565	int phys = 0;
1566
1567	kdbgetintenv("MDCOUNT", &mdcount);
1568	kdbgetintenv("RADIX", &radix);
1569	kdbgetintenv("BYTESPERWORD", &bytesperword);
1570
1571	/* Assume 'md <addr>' and start with environment values */
1572	repeat = mdcount * 16 / bytesperword;
1573
1574	if (strcmp(argv[0], "mdr") == 0) {
1575		if (argc != 2)
1576			return KDB_ARGCOUNT;
1577		valid = 1;
1578	} else if (isdigit(argv[0][2])) {
1579		bytesperword = (int)(argv[0][2] - '0');
1580		if (bytesperword == 0) {
1581			bytesperword = last_bytesperword;
1582			if (bytesperword == 0)
1583				bytesperword = 4;
1584		}
1585		last_bytesperword = bytesperword;
1586		repeat = mdcount * 16 / bytesperword;
1587		if (!argv[0][3])
1588			valid = 1;
1589		else if (argv[0][3] == 'c' && argv[0][4]) {
1590			char *p;
1591			repeat = simple_strtoul(argv[0] + 4, &p, 10);
1592			mdcount = ((repeat * bytesperword) + 15) / 16;
1593			valid = !*p;
1594		}
1595		last_repeat = repeat;
1596	} else if (strcmp(argv[0], "md") == 0)
1597		valid = 1;
1598	else if (strcmp(argv[0], "mds") == 0)
1599		valid = 1;
1600	else if (strcmp(argv[0], "mdp") == 0) {
1601		phys = valid = 1;
1602	}
1603	if (!valid)
1604		return KDB_NOTFOUND;
1605
1606	if (argc == 0) {
1607		if (last_addr == 0)
1608			return KDB_ARGCOUNT;
1609		addr = last_addr;
1610		radix = last_radix;
1611		bytesperword = last_bytesperword;
1612		repeat = last_repeat;
1613		mdcount = ((repeat * bytesperword) + 15) / 16;
1614	}
1615
1616	if (argc) {
1617		unsigned long val;
1618		int diag, nextarg = 1;
1619		diag = kdbgetaddrarg(argc, argv, &nextarg, &addr,
1620				     &offset, NULL);
1621		if (diag)
1622			return diag;
1623		if (argc > nextarg+2)
1624			return KDB_ARGCOUNT;
1625
1626		if (argc >= nextarg) {
1627			diag = kdbgetularg(argv[nextarg], &val);
1628			if (!diag) {
1629				mdcount = (int) val;
1630				repeat = mdcount * 16 / bytesperword;
1631			}
1632		}
1633		if (argc >= nextarg+1) {
1634			diag = kdbgetularg(argv[nextarg+1], &val);
1635			if (!diag)
1636				radix = (int) val;
1637		}
1638	}
1639
1640	if (strcmp(argv[0], "mdr") == 0)
1641		return kdb_mdr(addr, mdcount);
1642
1643	switch (radix) {
1644	case 10:
1645		fmtchar = 'd';
1646		break;
1647	case 16:
1648		fmtchar = 'x';
1649		break;
1650	case 8:
1651		fmtchar = 'o';
1652		break;
1653	default:
1654		return KDB_BADRADIX;
1655	}
1656
1657	last_radix = radix;
1658
1659	if (bytesperword > KDB_WORD_SIZE)
1660		return KDB_BADWIDTH;
1661
1662	switch (bytesperword) {
1663	case 8:
1664		sprintf(fmtstr, "%%16.16l%c ", fmtchar);
1665		break;
1666	case 4:
1667		sprintf(fmtstr, "%%8.8l%c ", fmtchar);
1668		break;
1669	case 2:
1670		sprintf(fmtstr, "%%4.4l%c ", fmtchar);
1671		break;
1672	case 1:
1673		sprintf(fmtstr, "%%2.2l%c ", fmtchar);
1674		break;
1675	default:
1676		return KDB_BADWIDTH;
1677	}
1678
1679	last_repeat = repeat;
1680	last_bytesperword = bytesperword;
1681
1682	if (strcmp(argv[0], "mds") == 0) {
1683		symbolic = 1;
1684		/* Do not save these changes as last_*, they are temporary mds
1685		 * overrides.
1686		 */
1687		bytesperword = KDB_WORD_SIZE;
1688		repeat = mdcount;
1689		kdbgetintenv("NOSECT", &nosect);
1690	}
1691
1692	/* Round address down modulo BYTESPERWORD */
1693
1694	addr &= ~(bytesperword-1);
1695
1696	while (repeat > 0) {
1697		unsigned long a;
1698		int n, z, num = (symbolic ? 1 : (16 / bytesperword));
1699
1700		if (KDB_FLAG(CMD_INTERRUPT))
1701			return 0;
1702		for (a = addr, z = 0; z < repeat; a += bytesperword, ++z) {
1703			if (phys) {
1704				if (kdb_getphysword(&word, a, bytesperword)
1705						|| word)
1706					break;
1707			} else if (kdb_getword(&word, a, bytesperword) || word)
1708				break;
1709		}
1710		n = min(num, repeat);
1711		kdb_md_line(fmtstr, addr, symbolic, nosect, bytesperword,
1712			    num, repeat, phys);
1713		addr += bytesperword * n;
1714		repeat -= n;
1715		z = (z + num - 1) / num;
1716		if (z > 2) {
1717			int s = num * (z-2);
1718			kdb_printf(kdb_machreg_fmt0 "-" kdb_machreg_fmt0
1719				   " zero suppressed\n",
1720				addr, addr + bytesperword * s - 1);
1721			addr += bytesperword * s;
1722			repeat -= s;
1723		}
1724	}
1725	last_addr = addr;
1726
1727	return 0;
1728}
1729
1730/*
1731 * kdb_mm - This function implements the 'mm' command.
1732 *	mm address-expression new-value
1733 * Remarks:
1734 *	mm works on machine words, mmW works on bytes.
1735 */
1736static int kdb_mm(int argc, const char **argv)
1737{
1738	int diag;
1739	unsigned long addr;
1740	long offset = 0;
1741	unsigned long contents;
1742	int nextarg;
1743	int width;
1744
1745	if (argv[0][2] && !isdigit(argv[0][2]))
1746		return KDB_NOTFOUND;
1747
1748	if (argc < 2)
1749		return KDB_ARGCOUNT;
1750
1751	nextarg = 1;
1752	diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
1753	if (diag)
1754		return diag;
1755
1756	if (nextarg > argc)
1757		return KDB_ARGCOUNT;
1758	diag = kdbgetaddrarg(argc, argv, &nextarg, &contents, NULL, NULL);
1759	if (diag)
1760		return diag;
1761
1762	if (nextarg != argc + 1)
1763		return KDB_ARGCOUNT;
1764
1765	width = argv[0][2] ? (argv[0][2] - '0') : (KDB_WORD_SIZE);
1766	diag = kdb_putword(addr, contents, width);
1767	if (diag)
1768		return diag;
1769
1770	kdb_printf(kdb_machreg_fmt " = " kdb_machreg_fmt "\n", addr, contents);
1771
1772	return 0;
1773}
1774
1775/*
1776 * kdb_go - This function implements the 'go' command.
1777 *	go [address-expression]
1778 */
1779static int kdb_go(int argc, const char **argv)
1780{
1781	unsigned long addr;
1782	int diag;
1783	int nextarg;
1784	long offset;
1785
1786	if (raw_smp_processor_id() != kdb_initial_cpu) {
1787		kdb_printf("go must execute on the entry cpu, "
1788			   "please use \"cpu %d\" and then execute go\n",
1789			   kdb_initial_cpu);
1790		return KDB_BADCPUNUM;
1791	}
1792	if (argc == 1) {
1793		nextarg = 1;
1794		diag = kdbgetaddrarg(argc, argv, &nextarg,
1795				     &addr, &offset, NULL);
1796		if (diag)
1797			return diag;
1798	} else if (argc) {
1799		return KDB_ARGCOUNT;
1800	}
1801
1802	diag = KDB_CMD_GO;
1803	if (KDB_FLAG(CATASTROPHIC)) {
1804		kdb_printf("Catastrophic error detected\n");
1805		kdb_printf("kdb_continue_catastrophic=%d, ",
1806			kdb_continue_catastrophic);
1807		if (kdb_continue_catastrophic == 0 && kdb_go_count++ == 0) {
1808			kdb_printf("type go a second time if you really want "
1809				   "to continue\n");
1810			return 0;
1811		}
1812		if (kdb_continue_catastrophic == 2) {
1813			kdb_printf("forcing reboot\n");
1814			kdb_reboot(0, NULL);
1815		}
1816		kdb_printf("attempting to continue\n");
1817	}
1818	return diag;
1819}
1820
1821/*
1822 * kdb_rd - This function implements the 'rd' command.
1823 */
1824static int kdb_rd(int argc, const char **argv)
1825{
1826	int len = kdb_check_regs();
1827#if DBG_MAX_REG_NUM > 0
1828	int i;
1829	char *rname;
1830	int rsize;
1831	u64 reg64;
1832	u32 reg32;
1833	u16 reg16;
1834	u8 reg8;
1835
1836	if (len)
1837		return len;
1838
1839	for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1840		rsize = dbg_reg_def[i].size * 2;
1841		if (rsize > 16)
1842			rsize = 2;
1843		if (len + strlen(dbg_reg_def[i].name) + 4 + rsize > 80) {
1844			len = 0;
1845			kdb_printf("\n");
1846		}
1847		if (len)
1848			len += kdb_printf("  ");
1849		switch(dbg_reg_def[i].size * 8) {
1850		case 8:
1851			rname = dbg_get_reg(i, &reg8, kdb_current_regs);
1852			if (!rname)
1853				break;
1854			len += kdb_printf("%s: %02x", rname, reg8);
1855			break;
1856		case 16:
1857			rname = dbg_get_reg(i, &reg16, kdb_current_regs);
1858			if (!rname)
1859				break;
1860			len += kdb_printf("%s: %04x", rname, reg16);
1861			break;
1862		case 32:
1863			rname = dbg_get_reg(i, &reg32, kdb_current_regs);
1864			if (!rname)
1865				break;
1866			len += kdb_printf("%s: %08x", rname, reg32);
1867			break;
1868		case 64:
1869			rname = dbg_get_reg(i, &reg64, kdb_current_regs);
1870			if (!rname)
1871				break;
1872			len += kdb_printf("%s: %016llx", rname, reg64);
1873			break;
1874		default:
1875			len += kdb_printf("%s: ??", dbg_reg_def[i].name);
1876		}
1877	}
1878	kdb_printf("\n");
1879#else
1880	if (len)
1881		return len;
1882
1883	kdb_dumpregs(kdb_current_regs);
1884#endif
1885	return 0;
1886}
1887
1888/*
1889 * kdb_rm - This function implements the 'rm' (register modify)  command.
1890 *	rm register-name new-contents
1891 * Remarks:
1892 *	Allows register modification with the same restrictions as gdb
1893 */
1894static int kdb_rm(int argc, const char **argv)
1895{
1896#if DBG_MAX_REG_NUM > 0
1897	int diag;
1898	const char *rname;
1899	int i;
1900	u64 reg64;
1901	u32 reg32;
1902	u16 reg16;
1903	u8 reg8;
1904
1905	if (argc != 2)
1906		return KDB_ARGCOUNT;
1907	/*
1908	 * Allow presence or absence of leading '%' symbol.
1909	 */
1910	rname = argv[1];
1911	if (*rname == '%')
1912		rname++;
1913
1914	diag = kdbgetu64arg(argv[2], &reg64);
1915	if (diag)
1916		return diag;
1917
1918	diag = kdb_check_regs();
1919	if (diag)
1920		return diag;
1921
1922	diag = KDB_BADREG;
1923	for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1924		if (strcmp(rname, dbg_reg_def[i].name) == 0) {
1925			diag = 0;
1926			break;
1927		}
1928	}
1929	if (!diag) {
1930		switch(dbg_reg_def[i].size * 8) {
1931		case 8:
1932			reg8 = reg64;
1933			dbg_set_reg(i, &reg8, kdb_current_regs);
1934			break;
1935		case 16:
1936			reg16 = reg64;
1937			dbg_set_reg(i, &reg16, kdb_current_regs);
1938			break;
1939		case 32:
1940			reg32 = reg64;
1941			dbg_set_reg(i, &reg32, kdb_current_regs);
1942			break;
1943		case 64:
1944			dbg_set_reg(i, &reg64, kdb_current_regs);
1945			break;
1946		}
1947	}
1948	return diag;
1949#else
1950	kdb_printf("ERROR: Register set currently not implemented\n");
1951    return 0;
1952#endif
1953}
1954
1955#if defined(CONFIG_MAGIC_SYSRQ)
1956/*
1957 * kdb_sr - This function implements the 'sr' (SYSRQ key) command
1958 *	which interfaces to the soi-disant MAGIC SYSRQ functionality.
1959 *		sr <magic-sysrq-code>
1960 */
1961static int kdb_sr(int argc, const char **argv)
1962{
1963	bool check_mask =
1964	    !kdb_check_flags(KDB_ENABLE_ALL, kdb_cmd_enabled, false);
1965
1966	if (argc != 1)
1967		return KDB_ARGCOUNT;
1968
1969	kdb_trap_printk++;
1970	__handle_sysrq(*argv[1], check_mask);
1971	kdb_trap_printk--;
1972
1973	return 0;
1974}
1975#endif	/* CONFIG_MAGIC_SYSRQ */
1976
1977/*
1978 * kdb_ef - This function implements the 'regs' (display exception
1979 *	frame) command.  This command takes an address and expects to
1980 *	find an exception frame at that address, formats and prints
1981 *	it.
1982 *		regs address-expression
1983 * Remarks:
1984 *	Not done yet.
1985 */
1986static int kdb_ef(int argc, const char **argv)
1987{
1988	int diag;
1989	unsigned long addr;
1990	long offset;
1991	int nextarg;
1992
1993	if (argc != 1)
1994		return KDB_ARGCOUNT;
1995
1996	nextarg = 1;
1997	diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
1998	if (diag)
1999		return diag;
2000	show_regs((struct pt_regs *)addr);
2001	return 0;
2002}
2003
2004#if defined(CONFIG_MODULES)
2005/*
2006 * kdb_lsmod - This function implements the 'lsmod' command.  Lists
2007 *	currently loaded kernel modules.
2008 *	Mostly taken from userland lsmod.
2009 */
2010static int kdb_lsmod(int argc, const char **argv)
2011{
2012	struct module *mod;
2013
2014	if (argc != 0)
2015		return KDB_ARGCOUNT;
2016
2017	kdb_printf("Module                  Size  modstruct     Used by\n");
2018	list_for_each_entry(mod, kdb_modules, list) {
2019		if (mod->state == MODULE_STATE_UNFORMED)
2020			continue;
2021
2022		kdb_printf("%-20s%8u  0x%p ", mod->name,
2023			   mod->core_layout.size, (void *)mod);
2024#ifdef CONFIG_MODULE_UNLOAD
2025		kdb_printf("%4d ", module_refcount(mod));
2026#endif
2027		if (mod->state == MODULE_STATE_GOING)
2028			kdb_printf(" (Unloading)");
2029		else if (mod->state == MODULE_STATE_COMING)
2030			kdb_printf(" (Loading)");
2031		else
2032			kdb_printf(" (Live)");
2033		kdb_printf(" 0x%p", mod->core_layout.base);
2034
2035#ifdef CONFIG_MODULE_UNLOAD
2036		{
2037			struct module_use *use;
2038			kdb_printf(" [ ");
2039			list_for_each_entry(use, &mod->source_list,
2040					    source_list)
2041				kdb_printf("%s ", use->target->name);
2042			kdb_printf("]\n");
2043		}
2044#endif
2045	}
2046
2047	return 0;
2048}
2049
2050#endif	/* CONFIG_MODULES */
2051
2052/*
2053 * kdb_env - This function implements the 'env' command.  Display the
2054 *	current environment variables.
2055 */
2056
2057static int kdb_env(int argc, const char **argv)
2058{
2059	int i;
2060
2061	for (i = 0; i < __nenv; i++) {
2062		if (__env[i])
2063			kdb_printf("%s\n", __env[i]);
2064	}
2065
2066	if (KDB_DEBUG(MASK))
2067		kdb_printf("KDBFLAGS=0x%x\n", kdb_flags);
2068
2069	return 0;
2070}
2071
2072#ifdef CONFIG_PRINTK
2073/*
2074 * kdb_dmesg - This function implements the 'dmesg' command to display
2075 *	the contents of the syslog buffer.
2076 *		dmesg [lines] [adjust]
2077 */
2078static int kdb_dmesg(int argc, const char **argv)
2079{
2080	int diag;
2081	int logging;
2082	int lines = 0;
2083	int adjust = 0;
2084	int n = 0;
2085	int skip = 0;
2086	struct kmsg_dumper dumper = { .active = 1 };
2087	size_t len;
2088	char buf[201];
2089
2090	if (argc > 2)
2091		return KDB_ARGCOUNT;
2092	if (argc) {
2093		char *cp;
2094		lines = simple_strtol(argv[1], &cp, 0);
2095		if (*cp)
2096			lines = 0;
2097		if (argc > 1) {
2098			adjust = simple_strtoul(argv[2], &cp, 0);
2099			if (*cp || adjust < 0)
2100				adjust = 0;
2101		}
2102	}
2103
2104	/* disable LOGGING if set */
2105	diag = kdbgetintenv("LOGGING", &logging);
2106	if (!diag && logging) {
2107		const char *setargs[] = { "set", "LOGGING", "0" };
2108		kdb_set(2, setargs);
2109	}
2110
2111	kmsg_dump_rewind_nolock(&dumper);
2112	while (kmsg_dump_get_line_nolock(&dumper, 1, NULL, 0, NULL))
2113		n++;
2114
2115	if (lines < 0) {
2116		if (adjust >= n)
2117			kdb_printf("buffer only contains %d lines, nothing "
2118				   "printed\n", n);
2119		else if (adjust - lines >= n)
2120			kdb_printf("buffer only contains %d lines, last %d "
2121				   "lines printed\n", n, n - adjust);
2122		skip = adjust;
2123		lines = abs(lines);
2124	} else if (lines > 0) {
2125		skip = n - lines - adjust;
2126		lines = abs(lines);
2127		if (adjust >= n) {
2128			kdb_printf("buffer only contains %d lines, "
2129				   "nothing printed\n", n);
2130			skip = n;
2131		} else if (skip < 0) {
2132			lines += skip;
2133			skip = 0;
2134			kdb_printf("buffer only contains %d lines, first "
2135				   "%d lines printed\n", n, lines);
2136		}
2137	} else {
2138		lines = n;
2139	}
2140
2141	if (skip >= n || skip < 0)
2142		return 0;
2143
2144	kmsg_dump_rewind_nolock(&dumper);
2145	while (kmsg_dump_get_line_nolock(&dumper, 1, buf, sizeof(buf), &len)) {
2146		if (skip) {
2147			skip--;
2148			continue;
2149		}
2150		if (!lines--)
2151			break;
2152		if (KDB_FLAG(CMD_INTERRUPT))
2153			return 0;
2154
2155		kdb_printf("%.*s\n", (int)len - 1, buf);
2156	}
2157
2158	return 0;
2159}
2160#endif /* CONFIG_PRINTK */
2161
2162/* Make sure we balance enable/disable calls, must disable first. */
2163static atomic_t kdb_nmi_disabled;
2164
2165static int kdb_disable_nmi(int argc, const char *argv[])
2166{
2167	if (atomic_read(&kdb_nmi_disabled))
2168		return 0;
2169	atomic_set(&kdb_nmi_disabled, 1);
2170	arch_kgdb_ops.enable_nmi(0);
2171	return 0;
2172}
2173
2174static int kdb_param_enable_nmi(const char *val, const struct kernel_param *kp)
2175{
2176	if (!atomic_add_unless(&kdb_nmi_disabled, -1, 0))
2177		return -EINVAL;
2178	arch_kgdb_ops.enable_nmi(1);
2179	return 0;
2180}
2181
2182static const struct kernel_param_ops kdb_param_ops_enable_nmi = {
2183	.set = kdb_param_enable_nmi,
2184};
2185module_param_cb(enable_nmi, &kdb_param_ops_enable_nmi, NULL, 0600);
2186
2187/*
2188 * kdb_cpu - This function implements the 'cpu' command.
2189 *	cpu	[<cpunum>]
2190 * Returns:
2191 *	KDB_CMD_CPU for success, a kdb diagnostic if error
2192 */
2193static void kdb_cpu_status(void)
2194{
2195	int i, start_cpu, first_print = 1;
2196	char state, prev_state = '?';
2197
2198	kdb_printf("Currently on cpu %d\n", raw_smp_processor_id());
2199	kdb_printf("Available cpus: ");
2200	for (start_cpu = -1, i = 0; i < NR_CPUS; i++) {
2201		if (!cpu_online(i)) {
2202			state = 'F';	/* cpu is offline */
2203		} else if (!kgdb_info[i].enter_kgdb) {
2204			state = 'D';	/* cpu is online but unresponsive */
2205		} else {
2206			state = ' ';	/* cpu is responding to kdb */
2207			if (kdb_task_state_char(KDB_TSK(i)) == 'I')
2208				state = 'I';	/* idle task */
2209		}
2210		if (state != prev_state) {
2211			if (prev_state != '?') {
2212				if (!first_print)
2213					kdb_printf(", ");
2214				first_print = 0;
2215				kdb_printf("%d", start_cpu);
2216				if (start_cpu < i-1)
2217					kdb_printf("-%d", i-1);
2218				if (prev_state != ' ')
2219					kdb_printf("(%c)", prev_state);
2220			}
2221			prev_state = state;
2222			start_cpu = i;
2223		}
2224	}
2225	/* print the trailing cpus, ignoring them if they are all offline */
2226	if (prev_state != 'F') {
2227		if (!first_print)
2228			kdb_printf(", ");
2229		kdb_printf("%d", start_cpu);
2230		if (start_cpu < i-1)
2231			kdb_printf("-%d", i-1);
2232		if (prev_state != ' ')
2233			kdb_printf("(%c)", prev_state);
2234	}
2235	kdb_printf("\n");
2236}
2237
2238static int kdb_cpu(int argc, const char **argv)
2239{
2240	unsigned long cpunum;
2241	int diag;
2242
2243	if (argc == 0) {
2244		kdb_cpu_status();
2245		return 0;
2246	}
2247
2248	if (argc != 1)
2249		return KDB_ARGCOUNT;
2250
2251	diag = kdbgetularg(argv[1], &cpunum);
2252	if (diag)
2253		return diag;
2254
2255	/*
2256	 * Validate cpunum
2257	 */
2258	if ((cpunum >= CONFIG_NR_CPUS) || !kgdb_info[cpunum].enter_kgdb)
2259		return KDB_BADCPUNUM;
2260
2261	dbg_switch_cpu = cpunum;
2262
2263	/*
2264	 * Switch to other cpu
2265	 */
2266	return KDB_CMD_CPU;
2267}
2268
2269/* The user may not realize that ps/bta with no parameters does not print idle
2270 * or sleeping system daemon processes, so tell them how many were suppressed.
2271 */
2272void kdb_ps_suppressed(void)
2273{
2274	int idle = 0, daemon = 0;
2275	unsigned long mask_I = kdb_task_state_string("I"),
2276		      mask_M = kdb_task_state_string("M");
2277	unsigned long cpu;
2278	const struct task_struct *p, *g;
2279	for_each_online_cpu(cpu) {
2280		p = kdb_curr_task(cpu);
2281		if (kdb_task_state(p, mask_I))
2282			++idle;
2283	}
2284	kdb_do_each_thread(g, p) {
2285		if (kdb_task_state(p, mask_M))
2286			++daemon;
2287	} kdb_while_each_thread(g, p);
2288	if (idle || daemon) {
2289		if (idle)
2290			kdb_printf("%d idle process%s (state I)%s\n",
2291				   idle, idle == 1 ? "" : "es",
2292				   daemon ? " and " : "");
2293		if (daemon)
2294			kdb_printf("%d sleeping system daemon (state M) "
2295				   "process%s", daemon,
2296				   daemon == 1 ? "" : "es");
2297		kdb_printf(" suppressed,\nuse 'ps A' to see all.\n");
2298	}
2299}
2300
2301/*
2302 * kdb_ps - This function implements the 'ps' command which shows a
2303 *	list of the active processes.
2304 *		ps [DRSTCZEUIMA]   All processes, optionally filtered by state
2305 */
2306void kdb_ps1(const struct task_struct *p)
2307{
2308	int cpu;
2309	unsigned long tmp;
2310
2311	if (!p || probe_kernel_read(&tmp, (char *)p, sizeof(unsigned long)))
2312		return;
2313
2314	cpu = kdb_process_cpu(p);
2315	kdb_printf("0x%p %8d %8d  %d %4d   %c  0x%p %c%s\n",
2316		   (void *)p, p->pid, p->parent->pid,
2317		   kdb_task_has_cpu(p), kdb_process_cpu(p),
2318		   kdb_task_state_char(p),
2319		   (void *)(&p->thread),
2320		   p == kdb_curr_task(raw_smp_processor_id()) ? '*' : ' ',
2321		   p->comm);
2322	if (kdb_task_has_cpu(p)) {
2323		if (!KDB_TSK(cpu)) {
2324			kdb_printf("  Error: no saved data for this cpu\n");
2325		} else {
2326			if (KDB_TSK(cpu) != p)
2327				kdb_printf("  Error: does not match running "
2328				   "process table (0x%p)\n", KDB_TSK(cpu));
2329		}
2330	}
2331}
2332
2333static int kdb_ps(int argc, const char **argv)
2334{
2335	struct task_struct *g, *p;
2336	unsigned long mask, cpu;
2337
2338	if (argc == 0)
2339		kdb_ps_suppressed();
2340	kdb_printf("%-*s      Pid   Parent [*] cpu State %-*s Command\n",
2341		(int)(2*sizeof(void *))+2, "Task Addr",
2342		(int)(2*sizeof(void *))+2, "Thread");
2343	mask = kdb_task_state_string(argc ? argv[1] : NULL);
2344	/* Run the active tasks first */
2345	for_each_online_cpu(cpu) {
2346		if (KDB_FLAG(CMD_INTERRUPT))
2347			return 0;
2348		p = kdb_curr_task(cpu);
2349		if (kdb_task_state(p, mask))
2350			kdb_ps1(p);
2351	}
2352	kdb_printf("\n");
2353	/* Now the real tasks */
2354	kdb_do_each_thread(g, p) {
2355		if (KDB_FLAG(CMD_INTERRUPT))
2356			return 0;
2357		if (kdb_task_state(p, mask))
2358			kdb_ps1(p);
2359	} kdb_while_each_thread(g, p);
2360
2361	return 0;
2362}
2363
2364/*
2365 * kdb_pid - This function implements the 'pid' command which switches
2366 *	the currently active process.
2367 *		pid [<pid> | R]
2368 */
2369static int kdb_pid(int argc, const char **argv)
2370{
2371	struct task_struct *p;
2372	unsigned long val;
2373	int diag;
2374
2375	if (argc > 1)
2376		return KDB_ARGCOUNT;
2377
2378	if (argc) {
2379		if (strcmp(argv[1], "R") == 0) {
2380			p = KDB_TSK(kdb_initial_cpu);
2381		} else {
2382			diag = kdbgetularg(argv[1], &val);
2383			if (diag)
2384				return KDB_BADINT;
2385
2386			p = find_task_by_pid_ns((pid_t)val,	&init_pid_ns);
2387			if (!p) {
2388				kdb_printf("No task with pid=%d\n", (pid_t)val);
2389				return 0;
2390			}
2391		}
2392		kdb_set_current_task(p);
2393	}
2394	kdb_printf("KDB current process is %s(pid=%d)\n",
2395		   kdb_current_task->comm,
2396		   kdb_current_task->pid);
2397
2398	return 0;
2399}
2400
2401static int kdb_kgdb(int argc, const char **argv)
2402{
2403	return KDB_CMD_KGDB;
2404}
2405
2406/*
2407 * kdb_help - This function implements the 'help' and '?' commands.
2408 */
2409static int kdb_help(int argc, const char **argv)
2410{
2411	kdbtab_t *kt;
2412	int i;
2413
2414	kdb_printf("%-15.15s %-20.20s %s\n", "Command", "Usage", "Description");
2415	kdb_printf("-----------------------------"
2416		   "-----------------------------\n");
2417	for_each_kdbcmd(kt, i) {
2418		char *space = "";
2419		if (KDB_FLAG(CMD_INTERRUPT))
2420			return 0;
2421		if (!kt->cmd_name)
2422			continue;
2423		if (!kdb_check_flags(kt->cmd_flags, kdb_cmd_enabled, true))
2424			continue;
2425		if (strlen(kt->cmd_usage) > 20)
2426			space = "\n                                    ";
2427		kdb_printf("%-15.15s %-20s%s%s\n", kt->cmd_name,
2428			   kt->cmd_usage, space, kt->cmd_help);
2429	}
2430	return 0;
2431}
2432
2433/*
2434 * kdb_kill - This function implements the 'kill' commands.
2435 */
2436static int kdb_kill(int argc, const char **argv)
2437{
2438	long sig, pid;
2439	char *endp;
2440	struct task_struct *p;
2441	struct siginfo info;
2442
2443	if (argc != 2)
2444		return KDB_ARGCOUNT;
2445
2446	sig = simple_strtol(argv[1], &endp, 0);
2447	if (*endp)
2448		return KDB_BADINT;
2449	if (sig >= 0) {
2450		kdb_printf("Invalid signal parameter.<-signal>\n");
2451		return 0;
2452	}
2453	sig = -sig;
2454
2455	pid = simple_strtol(argv[2], &endp, 0);
2456	if (*endp)
2457		return KDB_BADINT;
2458	if (pid <= 0) {
2459		kdb_printf("Process ID must be large than 0.\n");
2460		return 0;
2461	}
2462
2463	/* Find the process. */
2464	p = find_task_by_pid_ns(pid, &init_pid_ns);
2465	if (!p) {
2466		kdb_printf("The specified process isn't found.\n");
2467		return 0;
2468	}
2469	p = p->group_leader;
2470	info.si_signo = sig;
2471	info.si_errno = 0;
2472	info.si_code = SI_USER;
2473	info.si_pid = pid;  /* same capabilities as process being signalled */
2474	info.si_uid = 0;    /* kdb has root authority */
2475	kdb_send_sig_info(p, &info);
2476	return 0;
2477}
2478
2479struct kdb_tm {
2480	int tm_sec;	/* seconds */
2481	int tm_min;	/* minutes */
2482	int tm_hour;	/* hours */
2483	int tm_mday;	/* day of the month */
2484	int tm_mon;	/* month */
2485	int tm_year;	/* year */
2486};
2487
2488static void kdb_gmtime(struct timespec *tv, struct kdb_tm *tm)
2489{
2490	/* This will work from 1970-2099, 2100 is not a leap year */
2491	static int mon_day[] = { 31, 29, 31, 30, 31, 30, 31,
2492				 31, 30, 31, 30, 31 };
2493	memset(tm, 0, sizeof(*tm));
2494	tm->tm_sec  = tv->tv_sec % (24 * 60 * 60);
2495	tm->tm_mday = tv->tv_sec / (24 * 60 * 60) +
2496		(2 * 365 + 1); /* shift base from 1970 to 1968 */
2497	tm->tm_min =  tm->tm_sec / 60 % 60;
2498	tm->tm_hour = tm->tm_sec / 60 / 60;
2499	tm->tm_sec =  tm->tm_sec % 60;
2500	tm->tm_year = 68 + 4*(tm->tm_mday / (4*365+1));
2501	tm->tm_mday %= (4*365+1);
2502	mon_day[1] = 29;
2503	while (tm->tm_mday >= mon_day[tm->tm_mon]) {
2504		tm->tm_mday -= mon_day[tm->tm_mon];
2505		if (++tm->tm_mon == 12) {
2506			tm->tm_mon = 0;
2507			++tm->tm_year;
2508			mon_day[1] = 28;
2509		}
2510	}
2511	++tm->tm_mday;
2512}
2513
2514/*
2515 * Most of this code has been lifted from kernel/timer.c::sys_sysinfo().
2516 * I cannot call that code directly from kdb, it has an unconditional
2517 * cli()/sti() and calls routines that take locks which can stop the debugger.
2518 */
2519static void kdb_sysinfo(struct sysinfo *val)
2520{
2521	struct timespec uptime;
2522	ktime_get_ts(&uptime);
2523	memset(val, 0, sizeof(*val));
2524	val->uptime = uptime.tv_sec;
2525	val->loads[0] = avenrun[0];
2526	val->loads[1] = avenrun[1];
2527	val->loads[2] = avenrun[2];
2528	val->procs = nr_threads-1;
2529	si_meminfo(val);
2530
2531	return;
2532}
2533
2534/*
2535 * kdb_summary - This function implements the 'summary' command.
2536 */
2537static int kdb_summary(int argc, const char **argv)
2538{
2539	struct timespec now;
2540	struct kdb_tm tm;
2541	struct sysinfo val;
2542
2543	if (argc)
2544		return KDB_ARGCOUNT;
2545
2546	kdb_printf("sysname    %s\n", init_uts_ns.name.sysname);
2547	kdb_printf("release    %s\n", init_uts_ns.name.release);
2548	kdb_printf("version    %s\n", init_uts_ns.name.version);
2549	kdb_printf("machine    %s\n", init_uts_ns.name.machine);
2550	kdb_printf("nodename   %s\n", init_uts_ns.name.nodename);
2551	kdb_printf("domainname %s\n", init_uts_ns.name.domainname);
2552	kdb_printf("ccversion  %s\n", __stringify(CCVERSION));
2553
2554	now = __current_kernel_time();
2555	kdb_gmtime(&now, &tm);
2556	kdb_printf("date       %04d-%02d-%02d %02d:%02d:%02d "
2557		   "tz_minuteswest %d\n",
2558		1900+tm.tm_year, tm.tm_mon+1, tm.tm_mday,
2559		tm.tm_hour, tm.tm_min, tm.tm_sec,
2560		sys_tz.tz_minuteswest);
2561
2562	kdb_sysinfo(&val);
2563	kdb_printf("uptime     ");
2564	if (val.uptime > (24*60*60)) {
2565		int days = val.uptime / (24*60*60);
2566		val.uptime %= (24*60*60);
2567		kdb_printf("%d day%s ", days, days == 1 ? "" : "s");
2568	}
2569	kdb_printf("%02ld:%02ld\n", val.uptime/(60*60), (val.uptime/60)%60);
2570
2571	/* lifted from fs/proc/proc_misc.c::loadavg_read_proc() */
2572
2573#define LOAD_INT(x) ((x) >> FSHIFT)
2574#define LOAD_FRAC(x) LOAD_INT(((x) & (FIXED_1-1)) * 100)
2575	kdb_printf("load avg   %ld.%02ld %ld.%02ld %ld.%02ld\n",
2576		LOAD_INT(val.loads[0]), LOAD_FRAC(val.loads[0]),
2577		LOAD_INT(val.loads[1]), LOAD_FRAC(val.loads[1]),
2578		LOAD_INT(val.loads[2]), LOAD_FRAC(val.loads[2]));
2579#undef LOAD_INT
2580#undef LOAD_FRAC
2581	/* Display in kilobytes */
2582#define K(x) ((x) << (PAGE_SHIFT - 10))
2583	kdb_printf("\nMemTotal:       %8lu kB\nMemFree:        %8lu kB\n"
2584		   "Buffers:        %8lu kB\n",
2585		   K(val.totalram), K(val.freeram), K(val.bufferram));
2586	return 0;
2587}
2588
2589/*
2590 * kdb_per_cpu - This function implements the 'per_cpu' command.
2591 */
2592static int kdb_per_cpu(int argc, const char **argv)
2593{
2594	char fmtstr[64];
2595	int cpu, diag, nextarg = 1;
2596	unsigned long addr, symaddr, val, bytesperword = 0, whichcpu = ~0UL;
2597
2598	if (argc < 1 || argc > 3)
2599		return KDB_ARGCOUNT;
2600
2601	diag = kdbgetaddrarg(argc, argv, &nextarg, &symaddr, NULL, NULL);
2602	if (diag)
2603		return diag;
2604
2605	if (argc >= 2) {
2606		diag = kdbgetularg(argv[2], &bytesperword);
2607		if (diag)
2608			return diag;
2609	}
2610	if (!bytesperword)
2611		bytesperword = KDB_WORD_SIZE;
2612	else if (bytesperword > KDB_WORD_SIZE)
2613		return KDB_BADWIDTH;
2614	sprintf(fmtstr, "%%0%dlx ", (int)(2*bytesperword));
2615	if (argc >= 3) {
2616		diag = kdbgetularg(argv[3], &whichcpu);
2617		if (diag)
2618			return diag;
2619		if (!cpu_online(whichcpu)) {
2620			kdb_printf("cpu %ld is not online\n", whichcpu);
2621			return KDB_BADCPUNUM;
2622		}
2623	}
2624
2625	/* Most architectures use __per_cpu_offset[cpu], some use
2626	 * __per_cpu_offset(cpu), smp has no __per_cpu_offset.
2627	 */
2628#ifdef	__per_cpu_offset
2629#define KDB_PCU(cpu) __per_cpu_offset(cpu)
2630#else
2631#ifdef	CONFIG_SMP
2632#define KDB_PCU(cpu) __per_cpu_offset[cpu]
2633#else
2634#define KDB_PCU(cpu) 0
2635#endif
2636#endif
2637	for_each_online_cpu(cpu) {
2638		if (KDB_FLAG(CMD_INTERRUPT))
2639			return 0;
2640
2641		if (whichcpu != ~0UL && whichcpu != cpu)
2642			continue;
2643		addr = symaddr + KDB_PCU(cpu);
2644		diag = kdb_getword(&val, addr, bytesperword);
2645		if (diag) {
2646			kdb_printf("%5d " kdb_bfd_vma_fmt0 " - unable to "
2647				   "read, diag=%d\n", cpu, addr, diag);
2648			continue;
2649		}
2650		kdb_printf("%5d ", cpu);
2651		kdb_md_line(fmtstr, addr,
2652			bytesperword == KDB_WORD_SIZE,
2653			1, bytesperword, 1, 1, 0);
2654	}
2655#undef KDB_PCU
2656	return 0;
2657}
2658
2659/*
2660 * display help for the use of cmd | grep pattern
2661 */
2662static int kdb_grep_help(int argc, const char **argv)
2663{
2664	kdb_printf("Usage of  cmd args | grep pattern:\n");
2665	kdb_printf("  Any command's output may be filtered through an ");
2666	kdb_printf("emulated 'pipe'.\n");
2667	kdb_printf("  'grep' is just a key word.\n");
2668	kdb_printf("  The pattern may include a very limited set of "
2669		   "metacharacters:\n");
2670	kdb_printf("   pattern or ^pattern or pattern$ or ^pattern$\n");
2671	kdb_printf("  And if there are spaces in the pattern, you may "
2672		   "quote it:\n");
2673	kdb_printf("   \"pat tern\" or \"^pat tern\" or \"pat tern$\""
2674		   " or \"^pat tern$\"\n");
2675	return 0;
2676}
2677
2678/*
2679 * kdb_register_flags - This function is used to register a kernel
2680 * 	debugger command.
2681 * Inputs:
2682 *	cmd	Command name
2683 *	func	Function to execute the command
2684 *	usage	A simple usage string showing arguments
2685 *	help	A simple help string describing command
2686 *	repeat	Does the command auto repeat on enter?
2687 * Returns:
2688 *	zero for success, one if a duplicate command.
2689 */
2690#define kdb_command_extend 50	/* arbitrary */
2691int kdb_register_flags(char *cmd,
2692		       kdb_func_t func,
2693		       char *usage,
2694		       char *help,
2695		       short minlen,
2696		       kdb_cmdflags_t flags)
2697{
2698	int i;
2699	kdbtab_t *kp;
2700
2701	/*
2702	 *  Brute force method to determine duplicates
2703	 */
2704	for_each_kdbcmd(kp, i) {
2705		if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) {
2706			kdb_printf("Duplicate kdb command registered: "
2707				"%s, func %p help %s\n", cmd, func, help);
2708			return 1;
2709		}
2710	}
2711
2712	/*
2713	 * Insert command into first available location in table
2714	 */
2715	for_each_kdbcmd(kp, i) {
2716		if (kp->cmd_name == NULL)
2717			break;
2718	}
2719
2720	if (i >= kdb_max_commands) {
2721		kdbtab_t *new = kmalloc((kdb_max_commands - KDB_BASE_CMD_MAX +
2722			 kdb_command_extend) * sizeof(*new), GFP_KDB);
2723		if (!new) {
2724			kdb_printf("Could not allocate new kdb_command "
2725				   "table\n");
2726			return 1;
2727		}
2728		if (kdb_commands) {
2729			memcpy(new, kdb_commands,
2730			  (kdb_max_commands - KDB_BASE_CMD_MAX) * sizeof(*new));
2731			kfree(kdb_commands);
2732		}
2733		memset(new + kdb_max_commands - KDB_BASE_CMD_MAX, 0,
2734		       kdb_command_extend * sizeof(*new));
2735		kdb_commands = new;
2736		kp = kdb_commands + kdb_max_commands - KDB_BASE_CMD_MAX;
2737		kdb_max_commands += kdb_command_extend;
2738	}
2739
2740	kp->cmd_name   = cmd;
2741	kp->cmd_func   = func;
2742	kp->cmd_usage  = usage;
2743	kp->cmd_help   = help;
2744	kp->cmd_minlen = minlen;
2745	kp->cmd_flags  = flags;
2746
2747	return 0;
2748}
2749EXPORT_SYMBOL_GPL(kdb_register_flags);
2750
2751
2752/*
2753 * kdb_register - Compatibility register function for commands that do
2754 *	not need to specify a repeat state.  Equivalent to
2755 *	kdb_register_flags with flags set to 0.
2756 * Inputs:
2757 *	cmd	Command name
2758 *	func	Function to execute the command
2759 *	usage	A simple usage string showing arguments
2760 *	help	A simple help string describing command
2761 * Returns:
2762 *	zero for success, one if a duplicate command.
2763 */
2764int kdb_register(char *cmd,
2765	     kdb_func_t func,
2766	     char *usage,
2767	     char *help,
2768	     short minlen)
2769{
2770	return kdb_register_flags(cmd, func, usage, help, minlen, 0);
2771}
2772EXPORT_SYMBOL_GPL(kdb_register);
2773
2774/*
2775 * kdb_unregister - This function is used to unregister a kernel
2776 *	debugger command.  It is generally called when a module which
2777 *	implements kdb commands is unloaded.
2778 * Inputs:
2779 *	cmd	Command name
2780 * Returns:
2781 *	zero for success, one command not registered.
2782 */
2783int kdb_unregister(char *cmd)
2784{
2785	int i;
2786	kdbtab_t *kp;
2787
2788	/*
2789	 *  find the command.
2790	 */
2791	for_each_kdbcmd(kp, i) {
2792		if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) {
2793			kp->cmd_name = NULL;
2794			return 0;
2795		}
2796	}
2797
2798	/* Couldn't find it.  */
2799	return 1;
2800}
2801EXPORT_SYMBOL_GPL(kdb_unregister);
2802
2803/* Initialize the kdb command table. */
2804static void __init kdb_inittab(void)
2805{
2806	int i;
2807	kdbtab_t *kp;
2808
2809	for_each_kdbcmd(kp, i)
2810		kp->cmd_name = NULL;
2811
2812	kdb_register_flags("md", kdb_md, "<vaddr>",
2813	  "Display Memory Contents, also mdWcN, e.g. md8c1", 1,
2814	  KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS);
2815	kdb_register_flags("mdr", kdb_md, "<vaddr> <bytes>",
2816	  "Display Raw Memory", 0,
2817	  KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS);
2818	kdb_register_flags("mdp", kdb_md, "<paddr> <bytes>",
2819	  "Display Physical Memory", 0,
2820	  KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS);
2821	kdb_register_flags("mds", kdb_md, "<vaddr>",
2822	  "Display Memory Symbolically", 0,
2823	  KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS);
2824	kdb_register_flags("mm", kdb_mm, "<vaddr> <contents>",
2825	  "Modify Memory Contents", 0,
2826	  KDB_ENABLE_MEM_WRITE | KDB_REPEAT_NO_ARGS);
2827	kdb_register_flags("go", kdb_go, "[<vaddr>]",
2828	  "Continue Execution", 1,
2829	  KDB_ENABLE_REG_WRITE | KDB_ENABLE_ALWAYS_SAFE_NO_ARGS);
2830	kdb_register_flags("rd", kdb_rd, "",
2831	  "Display Registers", 0,
2832	  KDB_ENABLE_REG_READ);
2833	kdb_register_flags("rm", kdb_rm, "<reg> <contents>",
2834	  "Modify Registers", 0,
2835	  KDB_ENABLE_REG_WRITE);
2836	kdb_register_flags("ef", kdb_ef, "<vaddr>",
2837	  "Display exception frame", 0,
2838	  KDB_ENABLE_MEM_READ);
2839	kdb_register_flags("bt", kdb_bt, "[<vaddr>]",
2840	  "Stack traceback", 1,
2841	  KDB_ENABLE_MEM_READ | KDB_ENABLE_INSPECT_NO_ARGS);
2842	kdb_register_flags("btp", kdb_bt, "<pid>",
2843	  "Display stack for process <pid>", 0,
2844	  KDB_ENABLE_INSPECT);
2845	kdb_register_flags("bta", kdb_bt, "[D|R|S|T|C|Z|E|U|I|M|A]",
2846	  "Backtrace all processes matching state flag", 0,
2847	  KDB_ENABLE_INSPECT);
2848	kdb_register_flags("btc", kdb_bt, "",
2849	  "Backtrace current process on each cpu", 0,
2850	  KDB_ENABLE_INSPECT);
2851	kdb_register_flags("btt", kdb_bt, "<vaddr>",
2852	  "Backtrace process given its struct task address", 0,
2853	  KDB_ENABLE_MEM_READ | KDB_ENABLE_INSPECT_NO_ARGS);
2854	kdb_register_flags("env", kdb_env, "",
2855	  "Show environment variables", 0,
2856	  KDB_ENABLE_ALWAYS_SAFE);
2857	kdb_register_flags("set", kdb_set, "",
2858	  "Set environment variables", 0,
2859	  KDB_ENABLE_ALWAYS_SAFE);
2860	kdb_register_flags("help", kdb_help, "",
2861	  "Display Help Message", 1,
2862	  KDB_ENABLE_ALWAYS_SAFE);
2863	kdb_register_flags("?", kdb_help, "",
2864	  "Display Help Message", 0,
2865	  KDB_ENABLE_ALWAYS_SAFE);
2866	kdb_register_flags("cpu", kdb_cpu, "<cpunum>",
2867	  "Switch to new cpu", 0,
2868	  KDB_ENABLE_ALWAYS_SAFE_NO_ARGS);
2869	kdb_register_flags("kgdb", kdb_kgdb, "",
2870	  "Enter kgdb mode", 0, 0);
2871	kdb_register_flags("ps", kdb_ps, "[<flags>|A]",
2872	  "Display active task list", 0,
2873	  KDB_ENABLE_INSPECT);
2874	kdb_register_flags("pid", kdb_pid, "<pidnum>",
2875	  "Switch to another task", 0,
2876	  KDB_ENABLE_INSPECT);
2877	kdb_register_flags("reboot", kdb_reboot, "",
2878	  "Reboot the machine immediately", 0,
2879	  KDB_ENABLE_REBOOT);
2880#if defined(CONFIG_MODULES)
2881	kdb_register_flags("lsmod", kdb_lsmod, "",
2882	  "List loaded kernel modules", 0,
2883	  KDB_ENABLE_INSPECT);
2884#endif
2885#if defined(CONFIG_MAGIC_SYSRQ)
2886	kdb_register_flags("sr", kdb_sr, "<key>",
2887	  "Magic SysRq key", 0,
2888	  KDB_ENABLE_ALWAYS_SAFE);
2889#endif
2890#if defined(CONFIG_PRINTK)
2891	kdb_register_flags("dmesg", kdb_dmesg, "[lines]",
2892	  "Display syslog buffer", 0,
2893	  KDB_ENABLE_ALWAYS_SAFE);
2894#endif
2895	if (arch_kgdb_ops.enable_nmi) {
2896		kdb_register_flags("disable_nmi", kdb_disable_nmi, "",
2897		  "Disable NMI entry to KDB", 0,
2898		  KDB_ENABLE_ALWAYS_SAFE);
2899	}
2900	kdb_register_flags("defcmd", kdb_defcmd, "name \"usage\" \"help\"",
2901	  "Define a set of commands, down to endefcmd", 0,
2902	  KDB_ENABLE_ALWAYS_SAFE);
2903	kdb_register_flags("kill", kdb_kill, "<-signal> <pid>",
2904	  "Send a signal to a process", 0,
2905	  KDB_ENABLE_SIGNAL);
2906	kdb_register_flags("summary", kdb_summary, "",
2907	  "Summarize the system", 4,
2908	  KDB_ENABLE_ALWAYS_SAFE);
2909	kdb_register_flags("per_cpu", kdb_per_cpu, "<sym> [<bytes>] [<cpu>]",
2910	  "Display per_cpu variables", 3,
2911	  KDB_ENABLE_MEM_READ);
2912	kdb_register_flags("grephelp", kdb_grep_help, "",
2913	  "Display help on | grep", 0,
2914	  KDB_ENABLE_ALWAYS_SAFE);
2915}
2916
2917/* Execute any commands defined in kdb_cmds.  */
2918static void __init kdb_cmd_init(void)
2919{
2920	int i, diag;
2921	for (i = 0; kdb_cmds[i]; ++i) {
2922		diag = kdb_parse(kdb_cmds[i]);
2923		if (diag)
2924			kdb_printf("kdb command %s failed, kdb diag %d\n",
2925				kdb_cmds[i], diag);
2926	}
2927	if (defcmd_in_progress) {
2928		kdb_printf("Incomplete 'defcmd' set, forcing endefcmd\n");
2929		kdb_parse("endefcmd");
2930	}
2931}
2932
2933/* Initialize kdb_printf, breakpoint tables and kdb state */
2934void __init kdb_init(int lvl)
2935{
2936	static int kdb_init_lvl = KDB_NOT_INITIALIZED;
2937	int i;
2938
2939	if (kdb_init_lvl == KDB_INIT_FULL || lvl <= kdb_init_lvl)
2940		return;
2941	for (i = kdb_init_lvl; i < lvl; i++) {
2942		switch (i) {
2943		case KDB_NOT_INITIALIZED:
2944			kdb_inittab();		/* Initialize Command Table */
2945			kdb_initbptab();	/* Initialize Breakpoints */
2946			break;
2947		case KDB_INIT_EARLY:
2948			kdb_cmd_init();		/* Build kdb_cmds tables */
2949			break;
2950		}
2951	}
2952	kdb_init_lvl = lvl;
2953}