Loading...
1/*
2 * An async IO implementation for Linux
3 * Written by Benjamin LaHaise <bcrl@kvack.org>
4 *
5 * Implements an efficient asynchronous io interface.
6 *
7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved.
8 *
9 * See ../COPYING for licensing terms.
10 */
11#define pr_fmt(fmt) "%s: " fmt, __func__
12
13#include <linux/kernel.h>
14#include <linux/init.h>
15#include <linux/errno.h>
16#include <linux/time.h>
17#include <linux/aio_abi.h>
18#include <linux/export.h>
19#include <linux/syscalls.h>
20#include <linux/backing-dev.h>
21#include <linux/uio.h>
22
23#include <linux/sched.h>
24#include <linux/fs.h>
25#include <linux/file.h>
26#include <linux/mm.h>
27#include <linux/mman.h>
28#include <linux/mmu_context.h>
29#include <linux/percpu.h>
30#include <linux/slab.h>
31#include <linux/timer.h>
32#include <linux/aio.h>
33#include <linux/highmem.h>
34#include <linux/workqueue.h>
35#include <linux/security.h>
36#include <linux/eventfd.h>
37#include <linux/blkdev.h>
38#include <linux/compat.h>
39#include <linux/migrate.h>
40#include <linux/ramfs.h>
41#include <linux/percpu-refcount.h>
42#include <linux/mount.h>
43
44#include <asm/kmap_types.h>
45#include <asm/uaccess.h>
46
47#include "internal.h"
48
49#define AIO_RING_MAGIC 0xa10a10a1
50#define AIO_RING_COMPAT_FEATURES 1
51#define AIO_RING_INCOMPAT_FEATURES 0
52struct aio_ring {
53 unsigned id; /* kernel internal index number */
54 unsigned nr; /* number of io_events */
55 unsigned head; /* Written to by userland or under ring_lock
56 * mutex by aio_read_events_ring(). */
57 unsigned tail;
58
59 unsigned magic;
60 unsigned compat_features;
61 unsigned incompat_features;
62 unsigned header_length; /* size of aio_ring */
63
64
65 struct io_event io_events[0];
66}; /* 128 bytes + ring size */
67
68#define AIO_RING_PAGES 8
69
70struct kioctx_table {
71 struct rcu_head rcu;
72 unsigned nr;
73 struct kioctx *table[];
74};
75
76struct kioctx_cpu {
77 unsigned reqs_available;
78};
79
80struct ctx_rq_wait {
81 struct completion comp;
82 atomic_t count;
83};
84
85struct kioctx {
86 struct percpu_ref users;
87 atomic_t dead;
88
89 struct percpu_ref reqs;
90
91 unsigned long user_id;
92
93 struct __percpu kioctx_cpu *cpu;
94
95 /*
96 * For percpu reqs_available, number of slots we move to/from global
97 * counter at a time:
98 */
99 unsigned req_batch;
100 /*
101 * This is what userspace passed to io_setup(), it's not used for
102 * anything but counting against the global max_reqs quota.
103 *
104 * The real limit is nr_events - 1, which will be larger (see
105 * aio_setup_ring())
106 */
107 unsigned max_reqs;
108
109 /* Size of ringbuffer, in units of struct io_event */
110 unsigned nr_events;
111
112 unsigned long mmap_base;
113 unsigned long mmap_size;
114
115 struct page **ring_pages;
116 long nr_pages;
117
118 struct work_struct free_work;
119
120 /*
121 * signals when all in-flight requests are done
122 */
123 struct ctx_rq_wait *rq_wait;
124
125 struct {
126 /*
127 * This counts the number of available slots in the ringbuffer,
128 * so we avoid overflowing it: it's decremented (if positive)
129 * when allocating a kiocb and incremented when the resulting
130 * io_event is pulled off the ringbuffer.
131 *
132 * We batch accesses to it with a percpu version.
133 */
134 atomic_t reqs_available;
135 } ____cacheline_aligned_in_smp;
136
137 struct {
138 spinlock_t ctx_lock;
139 struct list_head active_reqs; /* used for cancellation */
140 } ____cacheline_aligned_in_smp;
141
142 struct {
143 struct mutex ring_lock;
144 wait_queue_head_t wait;
145 } ____cacheline_aligned_in_smp;
146
147 struct {
148 unsigned tail;
149 unsigned completed_events;
150 spinlock_t completion_lock;
151 } ____cacheline_aligned_in_smp;
152
153 struct page *internal_pages[AIO_RING_PAGES];
154 struct file *aio_ring_file;
155
156 unsigned id;
157};
158
159/*
160 * We use ki_cancel == KIOCB_CANCELLED to indicate that a kiocb has been either
161 * cancelled or completed (this makes a certain amount of sense because
162 * successful cancellation - io_cancel() - does deliver the completion to
163 * userspace).
164 *
165 * And since most things don't implement kiocb cancellation and we'd really like
166 * kiocb completion to be lockless when possible, we use ki_cancel to
167 * synchronize cancellation and completion - we only set it to KIOCB_CANCELLED
168 * with xchg() or cmpxchg(), see batch_complete_aio() and kiocb_cancel().
169 */
170#define KIOCB_CANCELLED ((void *) (~0ULL))
171
172struct aio_kiocb {
173 struct kiocb common;
174
175 struct kioctx *ki_ctx;
176 kiocb_cancel_fn *ki_cancel;
177
178 struct iocb __user *ki_user_iocb; /* user's aiocb */
179 __u64 ki_user_data; /* user's data for completion */
180
181 struct list_head ki_list; /* the aio core uses this
182 * for cancellation */
183
184 /*
185 * If the aio_resfd field of the userspace iocb is not zero,
186 * this is the underlying eventfd context to deliver events to.
187 */
188 struct eventfd_ctx *ki_eventfd;
189};
190
191/*------ sysctl variables----*/
192static DEFINE_SPINLOCK(aio_nr_lock);
193unsigned long aio_nr; /* current system wide number of aio requests */
194unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
195/*----end sysctl variables---*/
196
197static struct kmem_cache *kiocb_cachep;
198static struct kmem_cache *kioctx_cachep;
199
200static struct vfsmount *aio_mnt;
201
202static const struct file_operations aio_ring_fops;
203static const struct address_space_operations aio_ctx_aops;
204
205static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages)
206{
207 struct qstr this = QSTR_INIT("[aio]", 5);
208 struct file *file;
209 struct path path;
210 struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb);
211 if (IS_ERR(inode))
212 return ERR_CAST(inode);
213
214 inode->i_mapping->a_ops = &aio_ctx_aops;
215 inode->i_mapping->private_data = ctx;
216 inode->i_size = PAGE_SIZE * nr_pages;
217
218 path.dentry = d_alloc_pseudo(aio_mnt->mnt_sb, &this);
219 if (!path.dentry) {
220 iput(inode);
221 return ERR_PTR(-ENOMEM);
222 }
223 path.mnt = mntget(aio_mnt);
224
225 d_instantiate(path.dentry, inode);
226 file = alloc_file(&path, FMODE_READ | FMODE_WRITE, &aio_ring_fops);
227 if (IS_ERR(file)) {
228 path_put(&path);
229 return file;
230 }
231
232 file->f_flags = O_RDWR;
233 return file;
234}
235
236static struct dentry *aio_mount(struct file_system_type *fs_type,
237 int flags, const char *dev_name, void *data)
238{
239 static const struct dentry_operations ops = {
240 .d_dname = simple_dname,
241 };
242 return mount_pseudo(fs_type, "aio:", NULL, &ops, AIO_RING_MAGIC);
243}
244
245/* aio_setup
246 * Creates the slab caches used by the aio routines, panic on
247 * failure as this is done early during the boot sequence.
248 */
249static int __init aio_setup(void)
250{
251 static struct file_system_type aio_fs = {
252 .name = "aio",
253 .mount = aio_mount,
254 .kill_sb = kill_anon_super,
255 };
256 aio_mnt = kern_mount(&aio_fs);
257 if (IS_ERR(aio_mnt))
258 panic("Failed to create aio fs mount.");
259
260 kiocb_cachep = KMEM_CACHE(aio_kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
261 kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
262
263 pr_debug("sizeof(struct page) = %zu\n", sizeof(struct page));
264
265 return 0;
266}
267__initcall(aio_setup);
268
269static void put_aio_ring_file(struct kioctx *ctx)
270{
271 struct file *aio_ring_file = ctx->aio_ring_file;
272 if (aio_ring_file) {
273 truncate_setsize(aio_ring_file->f_inode, 0);
274
275 /* Prevent further access to the kioctx from migratepages */
276 spin_lock(&aio_ring_file->f_inode->i_mapping->private_lock);
277 aio_ring_file->f_inode->i_mapping->private_data = NULL;
278 ctx->aio_ring_file = NULL;
279 spin_unlock(&aio_ring_file->f_inode->i_mapping->private_lock);
280
281 fput(aio_ring_file);
282 }
283}
284
285static void aio_free_ring(struct kioctx *ctx)
286{
287 int i;
288
289 /* Disconnect the kiotx from the ring file. This prevents future
290 * accesses to the kioctx from page migration.
291 */
292 put_aio_ring_file(ctx);
293
294 for (i = 0; i < ctx->nr_pages; i++) {
295 struct page *page;
296 pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i,
297 page_count(ctx->ring_pages[i]));
298 page = ctx->ring_pages[i];
299 if (!page)
300 continue;
301 ctx->ring_pages[i] = NULL;
302 put_page(page);
303 }
304
305 if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) {
306 kfree(ctx->ring_pages);
307 ctx->ring_pages = NULL;
308 }
309}
310
311static int aio_ring_mremap(struct vm_area_struct *vma)
312{
313 struct file *file = vma->vm_file;
314 struct mm_struct *mm = vma->vm_mm;
315 struct kioctx_table *table;
316 int i, res = -EINVAL;
317
318 spin_lock(&mm->ioctx_lock);
319 rcu_read_lock();
320 table = rcu_dereference(mm->ioctx_table);
321 for (i = 0; i < table->nr; i++) {
322 struct kioctx *ctx;
323
324 ctx = table->table[i];
325 if (ctx && ctx->aio_ring_file == file) {
326 if (!atomic_read(&ctx->dead)) {
327 ctx->user_id = ctx->mmap_base = vma->vm_start;
328 res = 0;
329 }
330 break;
331 }
332 }
333
334 rcu_read_unlock();
335 spin_unlock(&mm->ioctx_lock);
336 return res;
337}
338
339static const struct vm_operations_struct aio_ring_vm_ops = {
340 .mremap = aio_ring_mremap,
341#if IS_ENABLED(CONFIG_MMU)
342 .fault = filemap_fault,
343 .map_pages = filemap_map_pages,
344 .page_mkwrite = filemap_page_mkwrite,
345#endif
346};
347
348static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma)
349{
350 vma->vm_flags |= VM_DONTEXPAND;
351 vma->vm_ops = &aio_ring_vm_ops;
352 return 0;
353}
354
355static const struct file_operations aio_ring_fops = {
356 .mmap = aio_ring_mmap,
357};
358
359#if IS_ENABLED(CONFIG_MIGRATION)
360static int aio_migratepage(struct address_space *mapping, struct page *new,
361 struct page *old, enum migrate_mode mode)
362{
363 struct kioctx *ctx;
364 unsigned long flags;
365 pgoff_t idx;
366 int rc;
367
368 rc = 0;
369
370 /* mapping->private_lock here protects against the kioctx teardown. */
371 spin_lock(&mapping->private_lock);
372 ctx = mapping->private_data;
373 if (!ctx) {
374 rc = -EINVAL;
375 goto out;
376 }
377
378 /* The ring_lock mutex. The prevents aio_read_events() from writing
379 * to the ring's head, and prevents page migration from mucking in
380 * a partially initialized kiotx.
381 */
382 if (!mutex_trylock(&ctx->ring_lock)) {
383 rc = -EAGAIN;
384 goto out;
385 }
386
387 idx = old->index;
388 if (idx < (pgoff_t)ctx->nr_pages) {
389 /* Make sure the old page hasn't already been changed */
390 if (ctx->ring_pages[idx] != old)
391 rc = -EAGAIN;
392 } else
393 rc = -EINVAL;
394
395 if (rc != 0)
396 goto out_unlock;
397
398 /* Writeback must be complete */
399 BUG_ON(PageWriteback(old));
400 get_page(new);
401
402 rc = migrate_page_move_mapping(mapping, new, old, NULL, mode, 1);
403 if (rc != MIGRATEPAGE_SUCCESS) {
404 put_page(new);
405 goto out_unlock;
406 }
407
408 /* Take completion_lock to prevent other writes to the ring buffer
409 * while the old page is copied to the new. This prevents new
410 * events from being lost.
411 */
412 spin_lock_irqsave(&ctx->completion_lock, flags);
413 migrate_page_copy(new, old);
414 BUG_ON(ctx->ring_pages[idx] != old);
415 ctx->ring_pages[idx] = new;
416 spin_unlock_irqrestore(&ctx->completion_lock, flags);
417
418 /* The old page is no longer accessible. */
419 put_page(old);
420
421out_unlock:
422 mutex_unlock(&ctx->ring_lock);
423out:
424 spin_unlock(&mapping->private_lock);
425 return rc;
426}
427#endif
428
429static const struct address_space_operations aio_ctx_aops = {
430 .set_page_dirty = __set_page_dirty_no_writeback,
431#if IS_ENABLED(CONFIG_MIGRATION)
432 .migratepage = aio_migratepage,
433#endif
434};
435
436static int aio_setup_ring(struct kioctx *ctx)
437{
438 struct aio_ring *ring;
439 unsigned nr_events = ctx->max_reqs;
440 struct mm_struct *mm = current->mm;
441 unsigned long size, unused;
442 int nr_pages;
443 int i;
444 struct file *file;
445
446 /* Compensate for the ring buffer's head/tail overlap entry */
447 nr_events += 2; /* 1 is required, 2 for good luck */
448
449 size = sizeof(struct aio_ring);
450 size += sizeof(struct io_event) * nr_events;
451
452 nr_pages = PFN_UP(size);
453 if (nr_pages < 0)
454 return -EINVAL;
455
456 file = aio_private_file(ctx, nr_pages);
457 if (IS_ERR(file)) {
458 ctx->aio_ring_file = NULL;
459 return -ENOMEM;
460 }
461
462 ctx->aio_ring_file = file;
463 nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring))
464 / sizeof(struct io_event);
465
466 ctx->ring_pages = ctx->internal_pages;
467 if (nr_pages > AIO_RING_PAGES) {
468 ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *),
469 GFP_KERNEL);
470 if (!ctx->ring_pages) {
471 put_aio_ring_file(ctx);
472 return -ENOMEM;
473 }
474 }
475
476 for (i = 0; i < nr_pages; i++) {
477 struct page *page;
478 page = find_or_create_page(file->f_inode->i_mapping,
479 i, GFP_HIGHUSER | __GFP_ZERO);
480 if (!page)
481 break;
482 pr_debug("pid(%d) page[%d]->count=%d\n",
483 current->pid, i, page_count(page));
484 SetPageUptodate(page);
485 unlock_page(page);
486
487 ctx->ring_pages[i] = page;
488 }
489 ctx->nr_pages = i;
490
491 if (unlikely(i != nr_pages)) {
492 aio_free_ring(ctx);
493 return -ENOMEM;
494 }
495
496 ctx->mmap_size = nr_pages * PAGE_SIZE;
497 pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size);
498
499 down_write(&mm->mmap_sem);
500 ctx->mmap_base = do_mmap_pgoff(ctx->aio_ring_file, 0, ctx->mmap_size,
501 PROT_READ | PROT_WRITE,
502 MAP_SHARED, 0, &unused);
503 up_write(&mm->mmap_sem);
504 if (IS_ERR((void *)ctx->mmap_base)) {
505 ctx->mmap_size = 0;
506 aio_free_ring(ctx);
507 return -ENOMEM;
508 }
509
510 pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base);
511
512 ctx->user_id = ctx->mmap_base;
513 ctx->nr_events = nr_events; /* trusted copy */
514
515 ring = kmap_atomic(ctx->ring_pages[0]);
516 ring->nr = nr_events; /* user copy */
517 ring->id = ~0U;
518 ring->head = ring->tail = 0;
519 ring->magic = AIO_RING_MAGIC;
520 ring->compat_features = AIO_RING_COMPAT_FEATURES;
521 ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
522 ring->header_length = sizeof(struct aio_ring);
523 kunmap_atomic(ring);
524 flush_dcache_page(ctx->ring_pages[0]);
525
526 return 0;
527}
528
529#define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event))
530#define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
531#define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
532
533void kiocb_set_cancel_fn(struct kiocb *iocb, kiocb_cancel_fn *cancel)
534{
535 struct aio_kiocb *req = container_of(iocb, struct aio_kiocb, common);
536 struct kioctx *ctx = req->ki_ctx;
537 unsigned long flags;
538
539 spin_lock_irqsave(&ctx->ctx_lock, flags);
540
541 if (!req->ki_list.next)
542 list_add(&req->ki_list, &ctx->active_reqs);
543
544 req->ki_cancel = cancel;
545
546 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
547}
548EXPORT_SYMBOL(kiocb_set_cancel_fn);
549
550static int kiocb_cancel(struct aio_kiocb *kiocb)
551{
552 kiocb_cancel_fn *old, *cancel;
553
554 /*
555 * Don't want to set kiocb->ki_cancel = KIOCB_CANCELLED unless it
556 * actually has a cancel function, hence the cmpxchg()
557 */
558
559 cancel = ACCESS_ONCE(kiocb->ki_cancel);
560 do {
561 if (!cancel || cancel == KIOCB_CANCELLED)
562 return -EINVAL;
563
564 old = cancel;
565 cancel = cmpxchg(&kiocb->ki_cancel, old, KIOCB_CANCELLED);
566 } while (cancel != old);
567
568 return cancel(&kiocb->common);
569}
570
571static void free_ioctx(struct work_struct *work)
572{
573 struct kioctx *ctx = container_of(work, struct kioctx, free_work);
574
575 pr_debug("freeing %p\n", ctx);
576
577 aio_free_ring(ctx);
578 free_percpu(ctx->cpu);
579 percpu_ref_exit(&ctx->reqs);
580 percpu_ref_exit(&ctx->users);
581 kmem_cache_free(kioctx_cachep, ctx);
582}
583
584static void free_ioctx_reqs(struct percpu_ref *ref)
585{
586 struct kioctx *ctx = container_of(ref, struct kioctx, reqs);
587
588 /* At this point we know that there are no any in-flight requests */
589 if (ctx->rq_wait && atomic_dec_and_test(&ctx->rq_wait->count))
590 complete(&ctx->rq_wait->comp);
591
592 INIT_WORK(&ctx->free_work, free_ioctx);
593 schedule_work(&ctx->free_work);
594}
595
596/*
597 * When this function runs, the kioctx has been removed from the "hash table"
598 * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
599 * now it's safe to cancel any that need to be.
600 */
601static void free_ioctx_users(struct percpu_ref *ref)
602{
603 struct kioctx *ctx = container_of(ref, struct kioctx, users);
604 struct aio_kiocb *req;
605
606 spin_lock_irq(&ctx->ctx_lock);
607
608 while (!list_empty(&ctx->active_reqs)) {
609 req = list_first_entry(&ctx->active_reqs,
610 struct aio_kiocb, ki_list);
611
612 list_del_init(&req->ki_list);
613 kiocb_cancel(req);
614 }
615
616 spin_unlock_irq(&ctx->ctx_lock);
617
618 percpu_ref_kill(&ctx->reqs);
619 percpu_ref_put(&ctx->reqs);
620}
621
622static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm)
623{
624 unsigned i, new_nr;
625 struct kioctx_table *table, *old;
626 struct aio_ring *ring;
627
628 spin_lock(&mm->ioctx_lock);
629 table = rcu_dereference_raw(mm->ioctx_table);
630
631 while (1) {
632 if (table)
633 for (i = 0; i < table->nr; i++)
634 if (!table->table[i]) {
635 ctx->id = i;
636 table->table[i] = ctx;
637 spin_unlock(&mm->ioctx_lock);
638
639 /* While kioctx setup is in progress,
640 * we are protected from page migration
641 * changes ring_pages by ->ring_lock.
642 */
643 ring = kmap_atomic(ctx->ring_pages[0]);
644 ring->id = ctx->id;
645 kunmap_atomic(ring);
646 return 0;
647 }
648
649 new_nr = (table ? table->nr : 1) * 4;
650 spin_unlock(&mm->ioctx_lock);
651
652 table = kzalloc(sizeof(*table) + sizeof(struct kioctx *) *
653 new_nr, GFP_KERNEL);
654 if (!table)
655 return -ENOMEM;
656
657 table->nr = new_nr;
658
659 spin_lock(&mm->ioctx_lock);
660 old = rcu_dereference_raw(mm->ioctx_table);
661
662 if (!old) {
663 rcu_assign_pointer(mm->ioctx_table, table);
664 } else if (table->nr > old->nr) {
665 memcpy(table->table, old->table,
666 old->nr * sizeof(struct kioctx *));
667
668 rcu_assign_pointer(mm->ioctx_table, table);
669 kfree_rcu(old, rcu);
670 } else {
671 kfree(table);
672 table = old;
673 }
674 }
675}
676
677static void aio_nr_sub(unsigned nr)
678{
679 spin_lock(&aio_nr_lock);
680 if (WARN_ON(aio_nr - nr > aio_nr))
681 aio_nr = 0;
682 else
683 aio_nr -= nr;
684 spin_unlock(&aio_nr_lock);
685}
686
687/* ioctx_alloc
688 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed.
689 */
690static struct kioctx *ioctx_alloc(unsigned nr_events)
691{
692 struct mm_struct *mm = current->mm;
693 struct kioctx *ctx;
694 int err = -ENOMEM;
695
696 /*
697 * We keep track of the number of available ringbuffer slots, to prevent
698 * overflow (reqs_available), and we also use percpu counters for this.
699 *
700 * So since up to half the slots might be on other cpu's percpu counters
701 * and unavailable, double nr_events so userspace sees what they
702 * expected: additionally, we move req_batch slots to/from percpu
703 * counters at a time, so make sure that isn't 0:
704 */
705 nr_events = max(nr_events, num_possible_cpus() * 4);
706 nr_events *= 2;
707
708 /* Prevent overflows */
709 if (nr_events > (0x10000000U / sizeof(struct io_event))) {
710 pr_debug("ENOMEM: nr_events too high\n");
711 return ERR_PTR(-EINVAL);
712 }
713
714 if (!nr_events || (unsigned long)nr_events > (aio_max_nr * 2UL))
715 return ERR_PTR(-EAGAIN);
716
717 ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
718 if (!ctx)
719 return ERR_PTR(-ENOMEM);
720
721 ctx->max_reqs = nr_events;
722
723 spin_lock_init(&ctx->ctx_lock);
724 spin_lock_init(&ctx->completion_lock);
725 mutex_init(&ctx->ring_lock);
726 /* Protect against page migration throughout kiotx setup by keeping
727 * the ring_lock mutex held until setup is complete. */
728 mutex_lock(&ctx->ring_lock);
729 init_waitqueue_head(&ctx->wait);
730
731 INIT_LIST_HEAD(&ctx->active_reqs);
732
733 if (percpu_ref_init(&ctx->users, free_ioctx_users, 0, GFP_KERNEL))
734 goto err;
735
736 if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs, 0, GFP_KERNEL))
737 goto err;
738
739 ctx->cpu = alloc_percpu(struct kioctx_cpu);
740 if (!ctx->cpu)
741 goto err;
742
743 err = aio_setup_ring(ctx);
744 if (err < 0)
745 goto err;
746
747 atomic_set(&ctx->reqs_available, ctx->nr_events - 1);
748 ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4);
749 if (ctx->req_batch < 1)
750 ctx->req_batch = 1;
751
752 /* limit the number of system wide aios */
753 spin_lock(&aio_nr_lock);
754 if (aio_nr + nr_events > (aio_max_nr * 2UL) ||
755 aio_nr + nr_events < aio_nr) {
756 spin_unlock(&aio_nr_lock);
757 err = -EAGAIN;
758 goto err_ctx;
759 }
760 aio_nr += ctx->max_reqs;
761 spin_unlock(&aio_nr_lock);
762
763 percpu_ref_get(&ctx->users); /* io_setup() will drop this ref */
764 percpu_ref_get(&ctx->reqs); /* free_ioctx_users() will drop this */
765
766 err = ioctx_add_table(ctx, mm);
767 if (err)
768 goto err_cleanup;
769
770 /* Release the ring_lock mutex now that all setup is complete. */
771 mutex_unlock(&ctx->ring_lock);
772
773 pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
774 ctx, ctx->user_id, mm, ctx->nr_events);
775 return ctx;
776
777err_cleanup:
778 aio_nr_sub(ctx->max_reqs);
779err_ctx:
780 atomic_set(&ctx->dead, 1);
781 if (ctx->mmap_size)
782 vm_munmap(ctx->mmap_base, ctx->mmap_size);
783 aio_free_ring(ctx);
784err:
785 mutex_unlock(&ctx->ring_lock);
786 free_percpu(ctx->cpu);
787 percpu_ref_exit(&ctx->reqs);
788 percpu_ref_exit(&ctx->users);
789 kmem_cache_free(kioctx_cachep, ctx);
790 pr_debug("error allocating ioctx %d\n", err);
791 return ERR_PTR(err);
792}
793
794/* kill_ioctx
795 * Cancels all outstanding aio requests on an aio context. Used
796 * when the processes owning a context have all exited to encourage
797 * the rapid destruction of the kioctx.
798 */
799static int kill_ioctx(struct mm_struct *mm, struct kioctx *ctx,
800 struct ctx_rq_wait *wait)
801{
802 struct kioctx_table *table;
803
804 spin_lock(&mm->ioctx_lock);
805 if (atomic_xchg(&ctx->dead, 1)) {
806 spin_unlock(&mm->ioctx_lock);
807 return -EINVAL;
808 }
809
810 table = rcu_dereference_raw(mm->ioctx_table);
811 WARN_ON(ctx != table->table[ctx->id]);
812 table->table[ctx->id] = NULL;
813 spin_unlock(&mm->ioctx_lock);
814
815 /* percpu_ref_kill() will do the necessary call_rcu() */
816 wake_up_all(&ctx->wait);
817
818 /*
819 * It'd be more correct to do this in free_ioctx(), after all
820 * the outstanding kiocbs have finished - but by then io_destroy
821 * has already returned, so io_setup() could potentially return
822 * -EAGAIN with no ioctxs actually in use (as far as userspace
823 * could tell).
824 */
825 aio_nr_sub(ctx->max_reqs);
826
827 if (ctx->mmap_size)
828 vm_munmap(ctx->mmap_base, ctx->mmap_size);
829
830 ctx->rq_wait = wait;
831 percpu_ref_kill(&ctx->users);
832 return 0;
833}
834
835/*
836 * exit_aio: called when the last user of mm goes away. At this point, there is
837 * no way for any new requests to be submited or any of the io_* syscalls to be
838 * called on the context.
839 *
840 * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
841 * them.
842 */
843void exit_aio(struct mm_struct *mm)
844{
845 struct kioctx_table *table = rcu_dereference_raw(mm->ioctx_table);
846 struct ctx_rq_wait wait;
847 int i, skipped;
848
849 if (!table)
850 return;
851
852 atomic_set(&wait.count, table->nr);
853 init_completion(&wait.comp);
854
855 skipped = 0;
856 for (i = 0; i < table->nr; ++i) {
857 struct kioctx *ctx = table->table[i];
858
859 if (!ctx) {
860 skipped++;
861 continue;
862 }
863
864 /*
865 * We don't need to bother with munmap() here - exit_mmap(mm)
866 * is coming and it'll unmap everything. And we simply can't,
867 * this is not necessarily our ->mm.
868 * Since kill_ioctx() uses non-zero ->mmap_size as indicator
869 * that it needs to unmap the area, just set it to 0.
870 */
871 ctx->mmap_size = 0;
872 kill_ioctx(mm, ctx, &wait);
873 }
874
875 if (!atomic_sub_and_test(skipped, &wait.count)) {
876 /* Wait until all IO for the context are done. */
877 wait_for_completion(&wait.comp);
878 }
879
880 RCU_INIT_POINTER(mm->ioctx_table, NULL);
881 kfree(table);
882}
883
884static void put_reqs_available(struct kioctx *ctx, unsigned nr)
885{
886 struct kioctx_cpu *kcpu;
887 unsigned long flags;
888
889 local_irq_save(flags);
890 kcpu = this_cpu_ptr(ctx->cpu);
891 kcpu->reqs_available += nr;
892
893 while (kcpu->reqs_available >= ctx->req_batch * 2) {
894 kcpu->reqs_available -= ctx->req_batch;
895 atomic_add(ctx->req_batch, &ctx->reqs_available);
896 }
897
898 local_irq_restore(flags);
899}
900
901static bool get_reqs_available(struct kioctx *ctx)
902{
903 struct kioctx_cpu *kcpu;
904 bool ret = false;
905 unsigned long flags;
906
907 local_irq_save(flags);
908 kcpu = this_cpu_ptr(ctx->cpu);
909 if (!kcpu->reqs_available) {
910 int old, avail = atomic_read(&ctx->reqs_available);
911
912 do {
913 if (avail < ctx->req_batch)
914 goto out;
915
916 old = avail;
917 avail = atomic_cmpxchg(&ctx->reqs_available,
918 avail, avail - ctx->req_batch);
919 } while (avail != old);
920
921 kcpu->reqs_available += ctx->req_batch;
922 }
923
924 ret = true;
925 kcpu->reqs_available--;
926out:
927 local_irq_restore(flags);
928 return ret;
929}
930
931/* refill_reqs_available
932 * Updates the reqs_available reference counts used for tracking the
933 * number of free slots in the completion ring. This can be called
934 * from aio_complete() (to optimistically update reqs_available) or
935 * from aio_get_req() (the we're out of events case). It must be
936 * called holding ctx->completion_lock.
937 */
938static void refill_reqs_available(struct kioctx *ctx, unsigned head,
939 unsigned tail)
940{
941 unsigned events_in_ring, completed;
942
943 /* Clamp head since userland can write to it. */
944 head %= ctx->nr_events;
945 if (head <= tail)
946 events_in_ring = tail - head;
947 else
948 events_in_ring = ctx->nr_events - (head - tail);
949
950 completed = ctx->completed_events;
951 if (events_in_ring < completed)
952 completed -= events_in_ring;
953 else
954 completed = 0;
955
956 if (!completed)
957 return;
958
959 ctx->completed_events -= completed;
960 put_reqs_available(ctx, completed);
961}
962
963/* user_refill_reqs_available
964 * Called to refill reqs_available when aio_get_req() encounters an
965 * out of space in the completion ring.
966 */
967static void user_refill_reqs_available(struct kioctx *ctx)
968{
969 spin_lock_irq(&ctx->completion_lock);
970 if (ctx->completed_events) {
971 struct aio_ring *ring;
972 unsigned head;
973
974 /* Access of ring->head may race with aio_read_events_ring()
975 * here, but that's okay since whether we read the old version
976 * or the new version, and either will be valid. The important
977 * part is that head cannot pass tail since we prevent
978 * aio_complete() from updating tail by holding
979 * ctx->completion_lock. Even if head is invalid, the check
980 * against ctx->completed_events below will make sure we do the
981 * safe/right thing.
982 */
983 ring = kmap_atomic(ctx->ring_pages[0]);
984 head = ring->head;
985 kunmap_atomic(ring);
986
987 refill_reqs_available(ctx, head, ctx->tail);
988 }
989
990 spin_unlock_irq(&ctx->completion_lock);
991}
992
993/* aio_get_req
994 * Allocate a slot for an aio request.
995 * Returns NULL if no requests are free.
996 */
997static inline struct aio_kiocb *aio_get_req(struct kioctx *ctx)
998{
999 struct aio_kiocb *req;
1000
1001 if (!get_reqs_available(ctx)) {
1002 user_refill_reqs_available(ctx);
1003 if (!get_reqs_available(ctx))
1004 return NULL;
1005 }
1006
1007 req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL|__GFP_ZERO);
1008 if (unlikely(!req))
1009 goto out_put;
1010
1011 percpu_ref_get(&ctx->reqs);
1012
1013 req->ki_ctx = ctx;
1014 return req;
1015out_put:
1016 put_reqs_available(ctx, 1);
1017 return NULL;
1018}
1019
1020static void kiocb_free(struct aio_kiocb *req)
1021{
1022 if (req->common.ki_filp)
1023 fput(req->common.ki_filp);
1024 if (req->ki_eventfd != NULL)
1025 eventfd_ctx_put(req->ki_eventfd);
1026 kmem_cache_free(kiocb_cachep, req);
1027}
1028
1029static struct kioctx *lookup_ioctx(unsigned long ctx_id)
1030{
1031 struct aio_ring __user *ring = (void __user *)ctx_id;
1032 struct mm_struct *mm = current->mm;
1033 struct kioctx *ctx, *ret = NULL;
1034 struct kioctx_table *table;
1035 unsigned id;
1036
1037 if (get_user(id, &ring->id))
1038 return NULL;
1039
1040 rcu_read_lock();
1041 table = rcu_dereference(mm->ioctx_table);
1042
1043 if (!table || id >= table->nr)
1044 goto out;
1045
1046 ctx = table->table[id];
1047 if (ctx && ctx->user_id == ctx_id) {
1048 percpu_ref_get(&ctx->users);
1049 ret = ctx;
1050 }
1051out:
1052 rcu_read_unlock();
1053 return ret;
1054}
1055
1056/* aio_complete
1057 * Called when the io request on the given iocb is complete.
1058 */
1059static void aio_complete(struct kiocb *kiocb, long res, long res2)
1060{
1061 struct aio_kiocb *iocb = container_of(kiocb, struct aio_kiocb, common);
1062 struct kioctx *ctx = iocb->ki_ctx;
1063 struct aio_ring *ring;
1064 struct io_event *ev_page, *event;
1065 unsigned tail, pos, head;
1066 unsigned long flags;
1067
1068 /*
1069 * Special case handling for sync iocbs:
1070 * - events go directly into the iocb for fast handling
1071 * - the sync task with the iocb in its stack holds the single iocb
1072 * ref, no other paths have a way to get another ref
1073 * - the sync task helpfully left a reference to itself in the iocb
1074 */
1075 BUG_ON(is_sync_kiocb(kiocb));
1076
1077 if (iocb->ki_list.next) {
1078 unsigned long flags;
1079
1080 spin_lock_irqsave(&ctx->ctx_lock, flags);
1081 list_del(&iocb->ki_list);
1082 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1083 }
1084
1085 /*
1086 * Add a completion event to the ring buffer. Must be done holding
1087 * ctx->completion_lock to prevent other code from messing with the tail
1088 * pointer since we might be called from irq context.
1089 */
1090 spin_lock_irqsave(&ctx->completion_lock, flags);
1091
1092 tail = ctx->tail;
1093 pos = tail + AIO_EVENTS_OFFSET;
1094
1095 if (++tail >= ctx->nr_events)
1096 tail = 0;
1097
1098 ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1099 event = ev_page + pos % AIO_EVENTS_PER_PAGE;
1100
1101 event->obj = (u64)(unsigned long)iocb->ki_user_iocb;
1102 event->data = iocb->ki_user_data;
1103 event->res = res;
1104 event->res2 = res2;
1105
1106 kunmap_atomic(ev_page);
1107 flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1108
1109 pr_debug("%p[%u]: %p: %p %Lx %lx %lx\n",
1110 ctx, tail, iocb, iocb->ki_user_iocb, iocb->ki_user_data,
1111 res, res2);
1112
1113 /* after flagging the request as done, we
1114 * must never even look at it again
1115 */
1116 smp_wmb(); /* make event visible before updating tail */
1117
1118 ctx->tail = tail;
1119
1120 ring = kmap_atomic(ctx->ring_pages[0]);
1121 head = ring->head;
1122 ring->tail = tail;
1123 kunmap_atomic(ring);
1124 flush_dcache_page(ctx->ring_pages[0]);
1125
1126 ctx->completed_events++;
1127 if (ctx->completed_events > 1)
1128 refill_reqs_available(ctx, head, tail);
1129 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1130
1131 pr_debug("added to ring %p at [%u]\n", iocb, tail);
1132
1133 /*
1134 * Check if the user asked us to deliver the result through an
1135 * eventfd. The eventfd_signal() function is safe to be called
1136 * from IRQ context.
1137 */
1138 if (iocb->ki_eventfd != NULL)
1139 eventfd_signal(iocb->ki_eventfd, 1);
1140
1141 /* everything turned out well, dispose of the aiocb. */
1142 kiocb_free(iocb);
1143
1144 /*
1145 * We have to order our ring_info tail store above and test
1146 * of the wait list below outside the wait lock. This is
1147 * like in wake_up_bit() where clearing a bit has to be
1148 * ordered with the unlocked test.
1149 */
1150 smp_mb();
1151
1152 if (waitqueue_active(&ctx->wait))
1153 wake_up(&ctx->wait);
1154
1155 percpu_ref_put(&ctx->reqs);
1156}
1157
1158/* aio_read_events_ring
1159 * Pull an event off of the ioctx's event ring. Returns the number of
1160 * events fetched
1161 */
1162static long aio_read_events_ring(struct kioctx *ctx,
1163 struct io_event __user *event, long nr)
1164{
1165 struct aio_ring *ring;
1166 unsigned head, tail, pos;
1167 long ret = 0;
1168 int copy_ret;
1169
1170 /*
1171 * The mutex can block and wake us up and that will cause
1172 * wait_event_interruptible_hrtimeout() to schedule without sleeping
1173 * and repeat. This should be rare enough that it doesn't cause
1174 * peformance issues. See the comment in read_events() for more detail.
1175 */
1176 sched_annotate_sleep();
1177 mutex_lock(&ctx->ring_lock);
1178
1179 /* Access to ->ring_pages here is protected by ctx->ring_lock. */
1180 ring = kmap_atomic(ctx->ring_pages[0]);
1181 head = ring->head;
1182 tail = ring->tail;
1183 kunmap_atomic(ring);
1184
1185 /*
1186 * Ensure that once we've read the current tail pointer, that
1187 * we also see the events that were stored up to the tail.
1188 */
1189 smp_rmb();
1190
1191 pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events);
1192
1193 if (head == tail)
1194 goto out;
1195
1196 head %= ctx->nr_events;
1197 tail %= ctx->nr_events;
1198
1199 while (ret < nr) {
1200 long avail;
1201 struct io_event *ev;
1202 struct page *page;
1203
1204 avail = (head <= tail ? tail : ctx->nr_events) - head;
1205 if (head == tail)
1206 break;
1207
1208 avail = min(avail, nr - ret);
1209 avail = min_t(long, avail, AIO_EVENTS_PER_PAGE -
1210 ((head + AIO_EVENTS_OFFSET) % AIO_EVENTS_PER_PAGE));
1211
1212 pos = head + AIO_EVENTS_OFFSET;
1213 page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE];
1214 pos %= AIO_EVENTS_PER_PAGE;
1215
1216 ev = kmap(page);
1217 copy_ret = copy_to_user(event + ret, ev + pos,
1218 sizeof(*ev) * avail);
1219 kunmap(page);
1220
1221 if (unlikely(copy_ret)) {
1222 ret = -EFAULT;
1223 goto out;
1224 }
1225
1226 ret += avail;
1227 head += avail;
1228 head %= ctx->nr_events;
1229 }
1230
1231 ring = kmap_atomic(ctx->ring_pages[0]);
1232 ring->head = head;
1233 kunmap_atomic(ring);
1234 flush_dcache_page(ctx->ring_pages[0]);
1235
1236 pr_debug("%li h%u t%u\n", ret, head, tail);
1237out:
1238 mutex_unlock(&ctx->ring_lock);
1239
1240 return ret;
1241}
1242
1243static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr,
1244 struct io_event __user *event, long *i)
1245{
1246 long ret = aio_read_events_ring(ctx, event + *i, nr - *i);
1247
1248 if (ret > 0)
1249 *i += ret;
1250
1251 if (unlikely(atomic_read(&ctx->dead)))
1252 ret = -EINVAL;
1253
1254 if (!*i)
1255 *i = ret;
1256
1257 return ret < 0 || *i >= min_nr;
1258}
1259
1260static long read_events(struct kioctx *ctx, long min_nr, long nr,
1261 struct io_event __user *event,
1262 struct timespec __user *timeout)
1263{
1264 ktime_t until = { .tv64 = KTIME_MAX };
1265 long ret = 0;
1266
1267 if (timeout) {
1268 struct timespec ts;
1269
1270 if (unlikely(copy_from_user(&ts, timeout, sizeof(ts))))
1271 return -EFAULT;
1272
1273 until = timespec_to_ktime(ts);
1274 }
1275
1276 /*
1277 * Note that aio_read_events() is being called as the conditional - i.e.
1278 * we're calling it after prepare_to_wait() has set task state to
1279 * TASK_INTERRUPTIBLE.
1280 *
1281 * But aio_read_events() can block, and if it blocks it's going to flip
1282 * the task state back to TASK_RUNNING.
1283 *
1284 * This should be ok, provided it doesn't flip the state back to
1285 * TASK_RUNNING and return 0 too much - that causes us to spin. That
1286 * will only happen if the mutex_lock() call blocks, and we then find
1287 * the ringbuffer empty. So in practice we should be ok, but it's
1288 * something to be aware of when touching this code.
1289 */
1290 if (until.tv64 == 0)
1291 aio_read_events(ctx, min_nr, nr, event, &ret);
1292 else
1293 wait_event_interruptible_hrtimeout(ctx->wait,
1294 aio_read_events(ctx, min_nr, nr, event, &ret),
1295 until);
1296
1297 if (!ret && signal_pending(current))
1298 ret = -EINTR;
1299
1300 return ret;
1301}
1302
1303/* sys_io_setup:
1304 * Create an aio_context capable of receiving at least nr_events.
1305 * ctxp must not point to an aio_context that already exists, and
1306 * must be initialized to 0 prior to the call. On successful
1307 * creation of the aio_context, *ctxp is filled in with the resulting
1308 * handle. May fail with -EINVAL if *ctxp is not initialized,
1309 * if the specified nr_events exceeds internal limits. May fail
1310 * with -EAGAIN if the specified nr_events exceeds the user's limit
1311 * of available events. May fail with -ENOMEM if insufficient kernel
1312 * resources are available. May fail with -EFAULT if an invalid
1313 * pointer is passed for ctxp. Will fail with -ENOSYS if not
1314 * implemented.
1315 */
1316SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1317{
1318 struct kioctx *ioctx = NULL;
1319 unsigned long ctx;
1320 long ret;
1321
1322 ret = get_user(ctx, ctxp);
1323 if (unlikely(ret))
1324 goto out;
1325
1326 ret = -EINVAL;
1327 if (unlikely(ctx || nr_events == 0)) {
1328 pr_debug("EINVAL: ctx %lu nr_events %u\n",
1329 ctx, nr_events);
1330 goto out;
1331 }
1332
1333 ioctx = ioctx_alloc(nr_events);
1334 ret = PTR_ERR(ioctx);
1335 if (!IS_ERR(ioctx)) {
1336 ret = put_user(ioctx->user_id, ctxp);
1337 if (ret)
1338 kill_ioctx(current->mm, ioctx, NULL);
1339 percpu_ref_put(&ioctx->users);
1340 }
1341
1342out:
1343 return ret;
1344}
1345
1346/* sys_io_destroy:
1347 * Destroy the aio_context specified. May cancel any outstanding
1348 * AIOs and block on completion. Will fail with -ENOSYS if not
1349 * implemented. May fail with -EINVAL if the context pointed to
1350 * is invalid.
1351 */
1352SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1353{
1354 struct kioctx *ioctx = lookup_ioctx(ctx);
1355 if (likely(NULL != ioctx)) {
1356 struct ctx_rq_wait wait;
1357 int ret;
1358
1359 init_completion(&wait.comp);
1360 atomic_set(&wait.count, 1);
1361
1362 /* Pass requests_done to kill_ioctx() where it can be set
1363 * in a thread-safe way. If we try to set it here then we have
1364 * a race condition if two io_destroy() called simultaneously.
1365 */
1366 ret = kill_ioctx(current->mm, ioctx, &wait);
1367 percpu_ref_put(&ioctx->users);
1368
1369 /* Wait until all IO for the context are done. Otherwise kernel
1370 * keep using user-space buffers even if user thinks the context
1371 * is destroyed.
1372 */
1373 if (!ret)
1374 wait_for_completion(&wait.comp);
1375
1376 return ret;
1377 }
1378 pr_debug("EINVAL: invalid context id\n");
1379 return -EINVAL;
1380}
1381
1382typedef ssize_t (rw_iter_op)(struct kiocb *, struct iov_iter *);
1383
1384static int aio_setup_vectored_rw(int rw, char __user *buf, size_t len,
1385 struct iovec **iovec,
1386 bool compat,
1387 struct iov_iter *iter)
1388{
1389#ifdef CONFIG_COMPAT
1390 if (compat)
1391 return compat_import_iovec(rw,
1392 (struct compat_iovec __user *)buf,
1393 len, UIO_FASTIOV, iovec, iter);
1394#endif
1395 return import_iovec(rw, (struct iovec __user *)buf,
1396 len, UIO_FASTIOV, iovec, iter);
1397}
1398
1399/*
1400 * aio_run_iocb:
1401 * Performs the initial checks and io submission.
1402 */
1403static ssize_t aio_run_iocb(struct kiocb *req, unsigned opcode,
1404 char __user *buf, size_t len, bool compat)
1405{
1406 struct file *file = req->ki_filp;
1407 ssize_t ret;
1408 int rw;
1409 fmode_t mode;
1410 rw_iter_op *iter_op;
1411 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1412 struct iov_iter iter;
1413
1414 switch (opcode) {
1415 case IOCB_CMD_PREAD:
1416 case IOCB_CMD_PREADV:
1417 mode = FMODE_READ;
1418 rw = READ;
1419 iter_op = file->f_op->read_iter;
1420 goto rw_common;
1421
1422 case IOCB_CMD_PWRITE:
1423 case IOCB_CMD_PWRITEV:
1424 mode = FMODE_WRITE;
1425 rw = WRITE;
1426 iter_op = file->f_op->write_iter;
1427 goto rw_common;
1428rw_common:
1429 if (unlikely(!(file->f_mode & mode)))
1430 return -EBADF;
1431
1432 if (!iter_op)
1433 return -EINVAL;
1434
1435 if (opcode == IOCB_CMD_PREADV || opcode == IOCB_CMD_PWRITEV)
1436 ret = aio_setup_vectored_rw(rw, buf, len,
1437 &iovec, compat, &iter);
1438 else {
1439 ret = import_single_range(rw, buf, len, iovec, &iter);
1440 iovec = NULL;
1441 }
1442 if (!ret)
1443 ret = rw_verify_area(rw, file, &req->ki_pos,
1444 iov_iter_count(&iter));
1445 if (ret < 0) {
1446 kfree(iovec);
1447 return ret;
1448 }
1449
1450 len = ret;
1451
1452 if (rw == WRITE)
1453 file_start_write(file);
1454
1455 ret = iter_op(req, &iter);
1456
1457 if (rw == WRITE)
1458 file_end_write(file);
1459 kfree(iovec);
1460 break;
1461
1462 case IOCB_CMD_FDSYNC:
1463 if (!file->f_op->aio_fsync)
1464 return -EINVAL;
1465
1466 ret = file->f_op->aio_fsync(req, 1);
1467 break;
1468
1469 case IOCB_CMD_FSYNC:
1470 if (!file->f_op->aio_fsync)
1471 return -EINVAL;
1472
1473 ret = file->f_op->aio_fsync(req, 0);
1474 break;
1475
1476 default:
1477 pr_debug("EINVAL: no operation provided\n");
1478 return -EINVAL;
1479 }
1480
1481 if (ret != -EIOCBQUEUED) {
1482 /*
1483 * There's no easy way to restart the syscall since other AIO's
1484 * may be already running. Just fail this IO with EINTR.
1485 */
1486 if (unlikely(ret == -ERESTARTSYS || ret == -ERESTARTNOINTR ||
1487 ret == -ERESTARTNOHAND ||
1488 ret == -ERESTART_RESTARTBLOCK))
1489 ret = -EINTR;
1490 aio_complete(req, ret, 0);
1491 }
1492
1493 return 0;
1494}
1495
1496static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1497 struct iocb *iocb, bool compat)
1498{
1499 struct aio_kiocb *req;
1500 ssize_t ret;
1501
1502 /* enforce forwards compatibility on users */
1503 if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2)) {
1504 pr_debug("EINVAL: reserve field set\n");
1505 return -EINVAL;
1506 }
1507
1508 /* prevent overflows */
1509 if (unlikely(
1510 (iocb->aio_buf != (unsigned long)iocb->aio_buf) ||
1511 (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) ||
1512 ((ssize_t)iocb->aio_nbytes < 0)
1513 )) {
1514 pr_debug("EINVAL: overflow check\n");
1515 return -EINVAL;
1516 }
1517
1518 req = aio_get_req(ctx);
1519 if (unlikely(!req))
1520 return -EAGAIN;
1521
1522 req->common.ki_filp = fget(iocb->aio_fildes);
1523 if (unlikely(!req->common.ki_filp)) {
1524 ret = -EBADF;
1525 goto out_put_req;
1526 }
1527 req->common.ki_pos = iocb->aio_offset;
1528 req->common.ki_complete = aio_complete;
1529 req->common.ki_flags = iocb_flags(req->common.ki_filp);
1530
1531 if (iocb->aio_flags & IOCB_FLAG_RESFD) {
1532 /*
1533 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1534 * instance of the file* now. The file descriptor must be
1535 * an eventfd() fd, and will be signaled for each completed
1536 * event using the eventfd_signal() function.
1537 */
1538 req->ki_eventfd = eventfd_ctx_fdget((int) iocb->aio_resfd);
1539 if (IS_ERR(req->ki_eventfd)) {
1540 ret = PTR_ERR(req->ki_eventfd);
1541 req->ki_eventfd = NULL;
1542 goto out_put_req;
1543 }
1544
1545 req->common.ki_flags |= IOCB_EVENTFD;
1546 }
1547
1548 ret = put_user(KIOCB_KEY, &user_iocb->aio_key);
1549 if (unlikely(ret)) {
1550 pr_debug("EFAULT: aio_key\n");
1551 goto out_put_req;
1552 }
1553
1554 req->ki_user_iocb = user_iocb;
1555 req->ki_user_data = iocb->aio_data;
1556
1557 ret = aio_run_iocb(&req->common, iocb->aio_lio_opcode,
1558 (char __user *)(unsigned long)iocb->aio_buf,
1559 iocb->aio_nbytes,
1560 compat);
1561 if (ret)
1562 goto out_put_req;
1563
1564 return 0;
1565out_put_req:
1566 put_reqs_available(ctx, 1);
1567 percpu_ref_put(&ctx->reqs);
1568 kiocb_free(req);
1569 return ret;
1570}
1571
1572long do_io_submit(aio_context_t ctx_id, long nr,
1573 struct iocb __user *__user *iocbpp, bool compat)
1574{
1575 struct kioctx *ctx;
1576 long ret = 0;
1577 int i = 0;
1578 struct blk_plug plug;
1579
1580 if (unlikely(nr < 0))
1581 return -EINVAL;
1582
1583 if (unlikely(nr > LONG_MAX/sizeof(*iocbpp)))
1584 nr = LONG_MAX/sizeof(*iocbpp);
1585
1586 if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp)))))
1587 return -EFAULT;
1588
1589 ctx = lookup_ioctx(ctx_id);
1590 if (unlikely(!ctx)) {
1591 pr_debug("EINVAL: invalid context id\n");
1592 return -EINVAL;
1593 }
1594
1595 blk_start_plug(&plug);
1596
1597 /*
1598 * AKPM: should this return a partial result if some of the IOs were
1599 * successfully submitted?
1600 */
1601 for (i=0; i<nr; i++) {
1602 struct iocb __user *user_iocb;
1603 struct iocb tmp;
1604
1605 if (unlikely(__get_user(user_iocb, iocbpp + i))) {
1606 ret = -EFAULT;
1607 break;
1608 }
1609
1610 if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) {
1611 ret = -EFAULT;
1612 break;
1613 }
1614
1615 ret = io_submit_one(ctx, user_iocb, &tmp, compat);
1616 if (ret)
1617 break;
1618 }
1619 blk_finish_plug(&plug);
1620
1621 percpu_ref_put(&ctx->users);
1622 return i ? i : ret;
1623}
1624
1625/* sys_io_submit:
1626 * Queue the nr iocbs pointed to by iocbpp for processing. Returns
1627 * the number of iocbs queued. May return -EINVAL if the aio_context
1628 * specified by ctx_id is invalid, if nr is < 0, if the iocb at
1629 * *iocbpp[0] is not properly initialized, if the operation specified
1630 * is invalid for the file descriptor in the iocb. May fail with
1631 * -EFAULT if any of the data structures point to invalid data. May
1632 * fail with -EBADF if the file descriptor specified in the first
1633 * iocb is invalid. May fail with -EAGAIN if insufficient resources
1634 * are available to queue any iocbs. Will return 0 if nr is 0. Will
1635 * fail with -ENOSYS if not implemented.
1636 */
1637SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
1638 struct iocb __user * __user *, iocbpp)
1639{
1640 return do_io_submit(ctx_id, nr, iocbpp, 0);
1641}
1642
1643/* lookup_kiocb
1644 * Finds a given iocb for cancellation.
1645 */
1646static struct aio_kiocb *
1647lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb, u32 key)
1648{
1649 struct aio_kiocb *kiocb;
1650
1651 assert_spin_locked(&ctx->ctx_lock);
1652
1653 if (key != KIOCB_KEY)
1654 return NULL;
1655
1656 /* TODO: use a hash or array, this sucks. */
1657 list_for_each_entry(kiocb, &ctx->active_reqs, ki_list) {
1658 if (kiocb->ki_user_iocb == iocb)
1659 return kiocb;
1660 }
1661 return NULL;
1662}
1663
1664/* sys_io_cancel:
1665 * Attempts to cancel an iocb previously passed to io_submit. If
1666 * the operation is successfully cancelled, the resulting event is
1667 * copied into the memory pointed to by result without being placed
1668 * into the completion queue and 0 is returned. May fail with
1669 * -EFAULT if any of the data structures pointed to are invalid.
1670 * May fail with -EINVAL if aio_context specified by ctx_id is
1671 * invalid. May fail with -EAGAIN if the iocb specified was not
1672 * cancelled. Will fail with -ENOSYS if not implemented.
1673 */
1674SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
1675 struct io_event __user *, result)
1676{
1677 struct kioctx *ctx;
1678 struct aio_kiocb *kiocb;
1679 u32 key;
1680 int ret;
1681
1682 ret = get_user(key, &iocb->aio_key);
1683 if (unlikely(ret))
1684 return -EFAULT;
1685
1686 ctx = lookup_ioctx(ctx_id);
1687 if (unlikely(!ctx))
1688 return -EINVAL;
1689
1690 spin_lock_irq(&ctx->ctx_lock);
1691
1692 kiocb = lookup_kiocb(ctx, iocb, key);
1693 if (kiocb)
1694 ret = kiocb_cancel(kiocb);
1695 else
1696 ret = -EINVAL;
1697
1698 spin_unlock_irq(&ctx->ctx_lock);
1699
1700 if (!ret) {
1701 /*
1702 * The result argument is no longer used - the io_event is
1703 * always delivered via the ring buffer. -EINPROGRESS indicates
1704 * cancellation is progress:
1705 */
1706 ret = -EINPROGRESS;
1707 }
1708
1709 percpu_ref_put(&ctx->users);
1710
1711 return ret;
1712}
1713
1714/* io_getevents:
1715 * Attempts to read at least min_nr events and up to nr events from
1716 * the completion queue for the aio_context specified by ctx_id. If
1717 * it succeeds, the number of read events is returned. May fail with
1718 * -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
1719 * out of range, if timeout is out of range. May fail with -EFAULT
1720 * if any of the memory specified is invalid. May return 0 or
1721 * < min_nr if the timeout specified by timeout has elapsed
1722 * before sufficient events are available, where timeout == NULL
1723 * specifies an infinite timeout. Note that the timeout pointed to by
1724 * timeout is relative. Will fail with -ENOSYS if not implemented.
1725 */
1726SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
1727 long, min_nr,
1728 long, nr,
1729 struct io_event __user *, events,
1730 struct timespec __user *, timeout)
1731{
1732 struct kioctx *ioctx = lookup_ioctx(ctx_id);
1733 long ret = -EINVAL;
1734
1735 if (likely(ioctx)) {
1736 if (likely(min_nr <= nr && min_nr >= 0))
1737 ret = read_events(ioctx, min_nr, nr, events, timeout);
1738 percpu_ref_put(&ioctx->users);
1739 }
1740 return ret;
1741}
1/*
2 * An async IO implementation for Linux
3 * Written by Benjamin LaHaise <bcrl@kvack.org>
4 *
5 * Implements an efficient asynchronous io interface.
6 *
7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved.
8 * Copyright 2018 Christoph Hellwig.
9 *
10 * See ../COPYING for licensing terms.
11 */
12#define pr_fmt(fmt) "%s: " fmt, __func__
13
14#include <linux/kernel.h>
15#include <linux/init.h>
16#include <linux/errno.h>
17#include <linux/time.h>
18#include <linux/aio_abi.h>
19#include <linux/export.h>
20#include <linux/syscalls.h>
21#include <linux/backing-dev.h>
22#include <linux/refcount.h>
23#include <linux/uio.h>
24
25#include <linux/sched/signal.h>
26#include <linux/fs.h>
27#include <linux/file.h>
28#include <linux/mm.h>
29#include <linux/mman.h>
30#include <linux/percpu.h>
31#include <linux/slab.h>
32#include <linux/timer.h>
33#include <linux/aio.h>
34#include <linux/highmem.h>
35#include <linux/workqueue.h>
36#include <linux/security.h>
37#include <linux/eventfd.h>
38#include <linux/blkdev.h>
39#include <linux/compat.h>
40#include <linux/migrate.h>
41#include <linux/ramfs.h>
42#include <linux/percpu-refcount.h>
43#include <linux/mount.h>
44#include <linux/pseudo_fs.h>
45
46#include <asm/kmap_types.h>
47#include <linux/uaccess.h>
48#include <linux/nospec.h>
49
50#include "internal.h"
51
52#define KIOCB_KEY 0
53
54#define AIO_RING_MAGIC 0xa10a10a1
55#define AIO_RING_COMPAT_FEATURES 1
56#define AIO_RING_INCOMPAT_FEATURES 0
57struct aio_ring {
58 unsigned id; /* kernel internal index number */
59 unsigned nr; /* number of io_events */
60 unsigned head; /* Written to by userland or under ring_lock
61 * mutex by aio_read_events_ring(). */
62 unsigned tail;
63
64 unsigned magic;
65 unsigned compat_features;
66 unsigned incompat_features;
67 unsigned header_length; /* size of aio_ring */
68
69
70 struct io_event io_events[];
71}; /* 128 bytes + ring size */
72
73/*
74 * Plugging is meant to work with larger batches of IOs. If we don't
75 * have more than the below, then don't bother setting up a plug.
76 */
77#define AIO_PLUG_THRESHOLD 2
78
79#define AIO_RING_PAGES 8
80
81struct kioctx_table {
82 struct rcu_head rcu;
83 unsigned nr;
84 struct kioctx __rcu *table[];
85};
86
87struct kioctx_cpu {
88 unsigned reqs_available;
89};
90
91struct ctx_rq_wait {
92 struct completion comp;
93 atomic_t count;
94};
95
96struct kioctx {
97 struct percpu_ref users;
98 atomic_t dead;
99
100 struct percpu_ref reqs;
101
102 unsigned long user_id;
103
104 struct __percpu kioctx_cpu *cpu;
105
106 /*
107 * For percpu reqs_available, number of slots we move to/from global
108 * counter at a time:
109 */
110 unsigned req_batch;
111 /*
112 * This is what userspace passed to io_setup(), it's not used for
113 * anything but counting against the global max_reqs quota.
114 *
115 * The real limit is nr_events - 1, which will be larger (see
116 * aio_setup_ring())
117 */
118 unsigned max_reqs;
119
120 /* Size of ringbuffer, in units of struct io_event */
121 unsigned nr_events;
122
123 unsigned long mmap_base;
124 unsigned long mmap_size;
125
126 struct page **ring_pages;
127 long nr_pages;
128
129 struct rcu_work free_rwork; /* see free_ioctx() */
130
131 /*
132 * signals when all in-flight requests are done
133 */
134 struct ctx_rq_wait *rq_wait;
135
136 struct {
137 /*
138 * This counts the number of available slots in the ringbuffer,
139 * so we avoid overflowing it: it's decremented (if positive)
140 * when allocating a kiocb and incremented when the resulting
141 * io_event is pulled off the ringbuffer.
142 *
143 * We batch accesses to it with a percpu version.
144 */
145 atomic_t reqs_available;
146 } ____cacheline_aligned_in_smp;
147
148 struct {
149 spinlock_t ctx_lock;
150 struct list_head active_reqs; /* used for cancellation */
151 } ____cacheline_aligned_in_smp;
152
153 struct {
154 struct mutex ring_lock;
155 wait_queue_head_t wait;
156 } ____cacheline_aligned_in_smp;
157
158 struct {
159 unsigned tail;
160 unsigned completed_events;
161 spinlock_t completion_lock;
162 } ____cacheline_aligned_in_smp;
163
164 struct page *internal_pages[AIO_RING_PAGES];
165 struct file *aio_ring_file;
166
167 unsigned id;
168};
169
170/*
171 * First field must be the file pointer in all the
172 * iocb unions! See also 'struct kiocb' in <linux/fs.h>
173 */
174struct fsync_iocb {
175 struct file *file;
176 struct work_struct work;
177 bool datasync;
178 struct cred *creds;
179};
180
181struct poll_iocb {
182 struct file *file;
183 struct wait_queue_head *head;
184 __poll_t events;
185 bool done;
186 bool cancelled;
187 struct wait_queue_entry wait;
188 struct work_struct work;
189};
190
191/*
192 * NOTE! Each of the iocb union members has the file pointer
193 * as the first entry in their struct definition. So you can
194 * access the file pointer through any of the sub-structs,
195 * or directly as just 'ki_filp' in this struct.
196 */
197struct aio_kiocb {
198 union {
199 struct file *ki_filp;
200 struct kiocb rw;
201 struct fsync_iocb fsync;
202 struct poll_iocb poll;
203 };
204
205 struct kioctx *ki_ctx;
206 kiocb_cancel_fn *ki_cancel;
207
208 struct io_event ki_res;
209
210 struct list_head ki_list; /* the aio core uses this
211 * for cancellation */
212 refcount_t ki_refcnt;
213
214 /*
215 * If the aio_resfd field of the userspace iocb is not zero,
216 * this is the underlying eventfd context to deliver events to.
217 */
218 struct eventfd_ctx *ki_eventfd;
219};
220
221/*------ sysctl variables----*/
222static DEFINE_SPINLOCK(aio_nr_lock);
223unsigned long aio_nr; /* current system wide number of aio requests */
224unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
225/*----end sysctl variables---*/
226
227static struct kmem_cache *kiocb_cachep;
228static struct kmem_cache *kioctx_cachep;
229
230static struct vfsmount *aio_mnt;
231
232static const struct file_operations aio_ring_fops;
233static const struct address_space_operations aio_ctx_aops;
234
235static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages)
236{
237 struct file *file;
238 struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb);
239 if (IS_ERR(inode))
240 return ERR_CAST(inode);
241
242 inode->i_mapping->a_ops = &aio_ctx_aops;
243 inode->i_mapping->private_data = ctx;
244 inode->i_size = PAGE_SIZE * nr_pages;
245
246 file = alloc_file_pseudo(inode, aio_mnt, "[aio]",
247 O_RDWR, &aio_ring_fops);
248 if (IS_ERR(file))
249 iput(inode);
250 return file;
251}
252
253static int aio_init_fs_context(struct fs_context *fc)
254{
255 if (!init_pseudo(fc, AIO_RING_MAGIC))
256 return -ENOMEM;
257 fc->s_iflags |= SB_I_NOEXEC;
258 return 0;
259}
260
261/* aio_setup
262 * Creates the slab caches used by the aio routines, panic on
263 * failure as this is done early during the boot sequence.
264 */
265static int __init aio_setup(void)
266{
267 static struct file_system_type aio_fs = {
268 .name = "aio",
269 .init_fs_context = aio_init_fs_context,
270 .kill_sb = kill_anon_super,
271 };
272 aio_mnt = kern_mount(&aio_fs);
273 if (IS_ERR(aio_mnt))
274 panic("Failed to create aio fs mount.");
275
276 kiocb_cachep = KMEM_CACHE(aio_kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
277 kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
278 return 0;
279}
280__initcall(aio_setup);
281
282static void put_aio_ring_file(struct kioctx *ctx)
283{
284 struct file *aio_ring_file = ctx->aio_ring_file;
285 struct address_space *i_mapping;
286
287 if (aio_ring_file) {
288 truncate_setsize(file_inode(aio_ring_file), 0);
289
290 /* Prevent further access to the kioctx from migratepages */
291 i_mapping = aio_ring_file->f_mapping;
292 spin_lock(&i_mapping->private_lock);
293 i_mapping->private_data = NULL;
294 ctx->aio_ring_file = NULL;
295 spin_unlock(&i_mapping->private_lock);
296
297 fput(aio_ring_file);
298 }
299}
300
301static void aio_free_ring(struct kioctx *ctx)
302{
303 int i;
304
305 /* Disconnect the kiotx from the ring file. This prevents future
306 * accesses to the kioctx from page migration.
307 */
308 put_aio_ring_file(ctx);
309
310 for (i = 0; i < ctx->nr_pages; i++) {
311 struct page *page;
312 pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i,
313 page_count(ctx->ring_pages[i]));
314 page = ctx->ring_pages[i];
315 if (!page)
316 continue;
317 ctx->ring_pages[i] = NULL;
318 put_page(page);
319 }
320
321 if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) {
322 kfree(ctx->ring_pages);
323 ctx->ring_pages = NULL;
324 }
325}
326
327static int aio_ring_mremap(struct vm_area_struct *vma)
328{
329 struct file *file = vma->vm_file;
330 struct mm_struct *mm = vma->vm_mm;
331 struct kioctx_table *table;
332 int i, res = -EINVAL;
333
334 spin_lock(&mm->ioctx_lock);
335 rcu_read_lock();
336 table = rcu_dereference(mm->ioctx_table);
337 for (i = 0; i < table->nr; i++) {
338 struct kioctx *ctx;
339
340 ctx = rcu_dereference(table->table[i]);
341 if (ctx && ctx->aio_ring_file == file) {
342 if (!atomic_read(&ctx->dead)) {
343 ctx->user_id = ctx->mmap_base = vma->vm_start;
344 res = 0;
345 }
346 break;
347 }
348 }
349
350 rcu_read_unlock();
351 spin_unlock(&mm->ioctx_lock);
352 return res;
353}
354
355static const struct vm_operations_struct aio_ring_vm_ops = {
356 .mremap = aio_ring_mremap,
357#if IS_ENABLED(CONFIG_MMU)
358 .fault = filemap_fault,
359 .map_pages = filemap_map_pages,
360 .page_mkwrite = filemap_page_mkwrite,
361#endif
362};
363
364static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma)
365{
366 vma->vm_flags |= VM_DONTEXPAND;
367 vma->vm_ops = &aio_ring_vm_ops;
368 return 0;
369}
370
371static const struct file_operations aio_ring_fops = {
372 .mmap = aio_ring_mmap,
373};
374
375#if IS_ENABLED(CONFIG_MIGRATION)
376static int aio_migratepage(struct address_space *mapping, struct page *new,
377 struct page *old, enum migrate_mode mode)
378{
379 struct kioctx *ctx;
380 unsigned long flags;
381 pgoff_t idx;
382 int rc;
383
384 /*
385 * We cannot support the _NO_COPY case here, because copy needs to
386 * happen under the ctx->completion_lock. That does not work with the
387 * migration workflow of MIGRATE_SYNC_NO_COPY.
388 */
389 if (mode == MIGRATE_SYNC_NO_COPY)
390 return -EINVAL;
391
392 rc = 0;
393
394 /* mapping->private_lock here protects against the kioctx teardown. */
395 spin_lock(&mapping->private_lock);
396 ctx = mapping->private_data;
397 if (!ctx) {
398 rc = -EINVAL;
399 goto out;
400 }
401
402 /* The ring_lock mutex. The prevents aio_read_events() from writing
403 * to the ring's head, and prevents page migration from mucking in
404 * a partially initialized kiotx.
405 */
406 if (!mutex_trylock(&ctx->ring_lock)) {
407 rc = -EAGAIN;
408 goto out;
409 }
410
411 idx = old->index;
412 if (idx < (pgoff_t)ctx->nr_pages) {
413 /* Make sure the old page hasn't already been changed */
414 if (ctx->ring_pages[idx] != old)
415 rc = -EAGAIN;
416 } else
417 rc = -EINVAL;
418
419 if (rc != 0)
420 goto out_unlock;
421
422 /* Writeback must be complete */
423 BUG_ON(PageWriteback(old));
424 get_page(new);
425
426 rc = migrate_page_move_mapping(mapping, new, old, 1);
427 if (rc != MIGRATEPAGE_SUCCESS) {
428 put_page(new);
429 goto out_unlock;
430 }
431
432 /* Take completion_lock to prevent other writes to the ring buffer
433 * while the old page is copied to the new. This prevents new
434 * events from being lost.
435 */
436 spin_lock_irqsave(&ctx->completion_lock, flags);
437 migrate_page_copy(new, old);
438 BUG_ON(ctx->ring_pages[idx] != old);
439 ctx->ring_pages[idx] = new;
440 spin_unlock_irqrestore(&ctx->completion_lock, flags);
441
442 /* The old page is no longer accessible. */
443 put_page(old);
444
445out_unlock:
446 mutex_unlock(&ctx->ring_lock);
447out:
448 spin_unlock(&mapping->private_lock);
449 return rc;
450}
451#endif
452
453static const struct address_space_operations aio_ctx_aops = {
454 .set_page_dirty = __set_page_dirty_no_writeback,
455#if IS_ENABLED(CONFIG_MIGRATION)
456 .migratepage = aio_migratepage,
457#endif
458};
459
460static int aio_setup_ring(struct kioctx *ctx, unsigned int nr_events)
461{
462 struct aio_ring *ring;
463 struct mm_struct *mm = current->mm;
464 unsigned long size, unused;
465 int nr_pages;
466 int i;
467 struct file *file;
468
469 /* Compensate for the ring buffer's head/tail overlap entry */
470 nr_events += 2; /* 1 is required, 2 for good luck */
471
472 size = sizeof(struct aio_ring);
473 size += sizeof(struct io_event) * nr_events;
474
475 nr_pages = PFN_UP(size);
476 if (nr_pages < 0)
477 return -EINVAL;
478
479 file = aio_private_file(ctx, nr_pages);
480 if (IS_ERR(file)) {
481 ctx->aio_ring_file = NULL;
482 return -ENOMEM;
483 }
484
485 ctx->aio_ring_file = file;
486 nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring))
487 / sizeof(struct io_event);
488
489 ctx->ring_pages = ctx->internal_pages;
490 if (nr_pages > AIO_RING_PAGES) {
491 ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *),
492 GFP_KERNEL);
493 if (!ctx->ring_pages) {
494 put_aio_ring_file(ctx);
495 return -ENOMEM;
496 }
497 }
498
499 for (i = 0; i < nr_pages; i++) {
500 struct page *page;
501 page = find_or_create_page(file->f_mapping,
502 i, GFP_HIGHUSER | __GFP_ZERO);
503 if (!page)
504 break;
505 pr_debug("pid(%d) page[%d]->count=%d\n",
506 current->pid, i, page_count(page));
507 SetPageUptodate(page);
508 unlock_page(page);
509
510 ctx->ring_pages[i] = page;
511 }
512 ctx->nr_pages = i;
513
514 if (unlikely(i != nr_pages)) {
515 aio_free_ring(ctx);
516 return -ENOMEM;
517 }
518
519 ctx->mmap_size = nr_pages * PAGE_SIZE;
520 pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size);
521
522 if (mmap_write_lock_killable(mm)) {
523 ctx->mmap_size = 0;
524 aio_free_ring(ctx);
525 return -EINTR;
526 }
527
528 ctx->mmap_base = do_mmap(ctx->aio_ring_file, 0, ctx->mmap_size,
529 PROT_READ | PROT_WRITE,
530 MAP_SHARED, 0, &unused, NULL);
531 mmap_write_unlock(mm);
532 if (IS_ERR((void *)ctx->mmap_base)) {
533 ctx->mmap_size = 0;
534 aio_free_ring(ctx);
535 return -ENOMEM;
536 }
537
538 pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base);
539
540 ctx->user_id = ctx->mmap_base;
541 ctx->nr_events = nr_events; /* trusted copy */
542
543 ring = kmap_atomic(ctx->ring_pages[0]);
544 ring->nr = nr_events; /* user copy */
545 ring->id = ~0U;
546 ring->head = ring->tail = 0;
547 ring->magic = AIO_RING_MAGIC;
548 ring->compat_features = AIO_RING_COMPAT_FEATURES;
549 ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
550 ring->header_length = sizeof(struct aio_ring);
551 kunmap_atomic(ring);
552 flush_dcache_page(ctx->ring_pages[0]);
553
554 return 0;
555}
556
557#define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event))
558#define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
559#define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
560
561void kiocb_set_cancel_fn(struct kiocb *iocb, kiocb_cancel_fn *cancel)
562{
563 struct aio_kiocb *req = container_of(iocb, struct aio_kiocb, rw);
564 struct kioctx *ctx = req->ki_ctx;
565 unsigned long flags;
566
567 if (WARN_ON_ONCE(!list_empty(&req->ki_list)))
568 return;
569
570 spin_lock_irqsave(&ctx->ctx_lock, flags);
571 list_add_tail(&req->ki_list, &ctx->active_reqs);
572 req->ki_cancel = cancel;
573 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
574}
575EXPORT_SYMBOL(kiocb_set_cancel_fn);
576
577/*
578 * free_ioctx() should be RCU delayed to synchronize against the RCU
579 * protected lookup_ioctx() and also needs process context to call
580 * aio_free_ring(). Use rcu_work.
581 */
582static void free_ioctx(struct work_struct *work)
583{
584 struct kioctx *ctx = container_of(to_rcu_work(work), struct kioctx,
585 free_rwork);
586 pr_debug("freeing %p\n", ctx);
587
588 aio_free_ring(ctx);
589 free_percpu(ctx->cpu);
590 percpu_ref_exit(&ctx->reqs);
591 percpu_ref_exit(&ctx->users);
592 kmem_cache_free(kioctx_cachep, ctx);
593}
594
595static void free_ioctx_reqs(struct percpu_ref *ref)
596{
597 struct kioctx *ctx = container_of(ref, struct kioctx, reqs);
598
599 /* At this point we know that there are no any in-flight requests */
600 if (ctx->rq_wait && atomic_dec_and_test(&ctx->rq_wait->count))
601 complete(&ctx->rq_wait->comp);
602
603 /* Synchronize against RCU protected table->table[] dereferences */
604 INIT_RCU_WORK(&ctx->free_rwork, free_ioctx);
605 queue_rcu_work(system_wq, &ctx->free_rwork);
606}
607
608/*
609 * When this function runs, the kioctx has been removed from the "hash table"
610 * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
611 * now it's safe to cancel any that need to be.
612 */
613static void free_ioctx_users(struct percpu_ref *ref)
614{
615 struct kioctx *ctx = container_of(ref, struct kioctx, users);
616 struct aio_kiocb *req;
617
618 spin_lock_irq(&ctx->ctx_lock);
619
620 while (!list_empty(&ctx->active_reqs)) {
621 req = list_first_entry(&ctx->active_reqs,
622 struct aio_kiocb, ki_list);
623 req->ki_cancel(&req->rw);
624 list_del_init(&req->ki_list);
625 }
626
627 spin_unlock_irq(&ctx->ctx_lock);
628
629 percpu_ref_kill(&ctx->reqs);
630 percpu_ref_put(&ctx->reqs);
631}
632
633static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm)
634{
635 unsigned i, new_nr;
636 struct kioctx_table *table, *old;
637 struct aio_ring *ring;
638
639 spin_lock(&mm->ioctx_lock);
640 table = rcu_dereference_raw(mm->ioctx_table);
641
642 while (1) {
643 if (table)
644 for (i = 0; i < table->nr; i++)
645 if (!rcu_access_pointer(table->table[i])) {
646 ctx->id = i;
647 rcu_assign_pointer(table->table[i], ctx);
648 spin_unlock(&mm->ioctx_lock);
649
650 /* While kioctx setup is in progress,
651 * we are protected from page migration
652 * changes ring_pages by ->ring_lock.
653 */
654 ring = kmap_atomic(ctx->ring_pages[0]);
655 ring->id = ctx->id;
656 kunmap_atomic(ring);
657 return 0;
658 }
659
660 new_nr = (table ? table->nr : 1) * 4;
661 spin_unlock(&mm->ioctx_lock);
662
663 table = kzalloc(sizeof(*table) + sizeof(struct kioctx *) *
664 new_nr, GFP_KERNEL);
665 if (!table)
666 return -ENOMEM;
667
668 table->nr = new_nr;
669
670 spin_lock(&mm->ioctx_lock);
671 old = rcu_dereference_raw(mm->ioctx_table);
672
673 if (!old) {
674 rcu_assign_pointer(mm->ioctx_table, table);
675 } else if (table->nr > old->nr) {
676 memcpy(table->table, old->table,
677 old->nr * sizeof(struct kioctx *));
678
679 rcu_assign_pointer(mm->ioctx_table, table);
680 kfree_rcu(old, rcu);
681 } else {
682 kfree(table);
683 table = old;
684 }
685 }
686}
687
688static void aio_nr_sub(unsigned nr)
689{
690 spin_lock(&aio_nr_lock);
691 if (WARN_ON(aio_nr - nr > aio_nr))
692 aio_nr = 0;
693 else
694 aio_nr -= nr;
695 spin_unlock(&aio_nr_lock);
696}
697
698/* ioctx_alloc
699 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed.
700 */
701static struct kioctx *ioctx_alloc(unsigned nr_events)
702{
703 struct mm_struct *mm = current->mm;
704 struct kioctx *ctx;
705 int err = -ENOMEM;
706
707 /*
708 * Store the original nr_events -- what userspace passed to io_setup(),
709 * for counting against the global limit -- before it changes.
710 */
711 unsigned int max_reqs = nr_events;
712
713 /*
714 * We keep track of the number of available ringbuffer slots, to prevent
715 * overflow (reqs_available), and we also use percpu counters for this.
716 *
717 * So since up to half the slots might be on other cpu's percpu counters
718 * and unavailable, double nr_events so userspace sees what they
719 * expected: additionally, we move req_batch slots to/from percpu
720 * counters at a time, so make sure that isn't 0:
721 */
722 nr_events = max(nr_events, num_possible_cpus() * 4);
723 nr_events *= 2;
724
725 /* Prevent overflows */
726 if (nr_events > (0x10000000U / sizeof(struct io_event))) {
727 pr_debug("ENOMEM: nr_events too high\n");
728 return ERR_PTR(-EINVAL);
729 }
730
731 if (!nr_events || (unsigned long)max_reqs > aio_max_nr)
732 return ERR_PTR(-EAGAIN);
733
734 ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
735 if (!ctx)
736 return ERR_PTR(-ENOMEM);
737
738 ctx->max_reqs = max_reqs;
739
740 spin_lock_init(&ctx->ctx_lock);
741 spin_lock_init(&ctx->completion_lock);
742 mutex_init(&ctx->ring_lock);
743 /* Protect against page migration throughout kiotx setup by keeping
744 * the ring_lock mutex held until setup is complete. */
745 mutex_lock(&ctx->ring_lock);
746 init_waitqueue_head(&ctx->wait);
747
748 INIT_LIST_HEAD(&ctx->active_reqs);
749
750 if (percpu_ref_init(&ctx->users, free_ioctx_users, 0, GFP_KERNEL))
751 goto err;
752
753 if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs, 0, GFP_KERNEL))
754 goto err;
755
756 ctx->cpu = alloc_percpu(struct kioctx_cpu);
757 if (!ctx->cpu)
758 goto err;
759
760 err = aio_setup_ring(ctx, nr_events);
761 if (err < 0)
762 goto err;
763
764 atomic_set(&ctx->reqs_available, ctx->nr_events - 1);
765 ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4);
766 if (ctx->req_batch < 1)
767 ctx->req_batch = 1;
768
769 /* limit the number of system wide aios */
770 spin_lock(&aio_nr_lock);
771 if (aio_nr + ctx->max_reqs > aio_max_nr ||
772 aio_nr + ctx->max_reqs < aio_nr) {
773 spin_unlock(&aio_nr_lock);
774 err = -EAGAIN;
775 goto err_ctx;
776 }
777 aio_nr += ctx->max_reqs;
778 spin_unlock(&aio_nr_lock);
779
780 percpu_ref_get(&ctx->users); /* io_setup() will drop this ref */
781 percpu_ref_get(&ctx->reqs); /* free_ioctx_users() will drop this */
782
783 err = ioctx_add_table(ctx, mm);
784 if (err)
785 goto err_cleanup;
786
787 /* Release the ring_lock mutex now that all setup is complete. */
788 mutex_unlock(&ctx->ring_lock);
789
790 pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
791 ctx, ctx->user_id, mm, ctx->nr_events);
792 return ctx;
793
794err_cleanup:
795 aio_nr_sub(ctx->max_reqs);
796err_ctx:
797 atomic_set(&ctx->dead, 1);
798 if (ctx->mmap_size)
799 vm_munmap(ctx->mmap_base, ctx->mmap_size);
800 aio_free_ring(ctx);
801err:
802 mutex_unlock(&ctx->ring_lock);
803 free_percpu(ctx->cpu);
804 percpu_ref_exit(&ctx->reqs);
805 percpu_ref_exit(&ctx->users);
806 kmem_cache_free(kioctx_cachep, ctx);
807 pr_debug("error allocating ioctx %d\n", err);
808 return ERR_PTR(err);
809}
810
811/* kill_ioctx
812 * Cancels all outstanding aio requests on an aio context. Used
813 * when the processes owning a context have all exited to encourage
814 * the rapid destruction of the kioctx.
815 */
816static int kill_ioctx(struct mm_struct *mm, struct kioctx *ctx,
817 struct ctx_rq_wait *wait)
818{
819 struct kioctx_table *table;
820
821 spin_lock(&mm->ioctx_lock);
822 if (atomic_xchg(&ctx->dead, 1)) {
823 spin_unlock(&mm->ioctx_lock);
824 return -EINVAL;
825 }
826
827 table = rcu_dereference_raw(mm->ioctx_table);
828 WARN_ON(ctx != rcu_access_pointer(table->table[ctx->id]));
829 RCU_INIT_POINTER(table->table[ctx->id], NULL);
830 spin_unlock(&mm->ioctx_lock);
831
832 /* free_ioctx_reqs() will do the necessary RCU synchronization */
833 wake_up_all(&ctx->wait);
834
835 /*
836 * It'd be more correct to do this in free_ioctx(), after all
837 * the outstanding kiocbs have finished - but by then io_destroy
838 * has already returned, so io_setup() could potentially return
839 * -EAGAIN with no ioctxs actually in use (as far as userspace
840 * could tell).
841 */
842 aio_nr_sub(ctx->max_reqs);
843
844 if (ctx->mmap_size)
845 vm_munmap(ctx->mmap_base, ctx->mmap_size);
846
847 ctx->rq_wait = wait;
848 percpu_ref_kill(&ctx->users);
849 return 0;
850}
851
852/*
853 * exit_aio: called when the last user of mm goes away. At this point, there is
854 * no way for any new requests to be submited or any of the io_* syscalls to be
855 * called on the context.
856 *
857 * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
858 * them.
859 */
860void exit_aio(struct mm_struct *mm)
861{
862 struct kioctx_table *table = rcu_dereference_raw(mm->ioctx_table);
863 struct ctx_rq_wait wait;
864 int i, skipped;
865
866 if (!table)
867 return;
868
869 atomic_set(&wait.count, table->nr);
870 init_completion(&wait.comp);
871
872 skipped = 0;
873 for (i = 0; i < table->nr; ++i) {
874 struct kioctx *ctx =
875 rcu_dereference_protected(table->table[i], true);
876
877 if (!ctx) {
878 skipped++;
879 continue;
880 }
881
882 /*
883 * We don't need to bother with munmap() here - exit_mmap(mm)
884 * is coming and it'll unmap everything. And we simply can't,
885 * this is not necessarily our ->mm.
886 * Since kill_ioctx() uses non-zero ->mmap_size as indicator
887 * that it needs to unmap the area, just set it to 0.
888 */
889 ctx->mmap_size = 0;
890 kill_ioctx(mm, ctx, &wait);
891 }
892
893 if (!atomic_sub_and_test(skipped, &wait.count)) {
894 /* Wait until all IO for the context are done. */
895 wait_for_completion(&wait.comp);
896 }
897
898 RCU_INIT_POINTER(mm->ioctx_table, NULL);
899 kfree(table);
900}
901
902static void put_reqs_available(struct kioctx *ctx, unsigned nr)
903{
904 struct kioctx_cpu *kcpu;
905 unsigned long flags;
906
907 local_irq_save(flags);
908 kcpu = this_cpu_ptr(ctx->cpu);
909 kcpu->reqs_available += nr;
910
911 while (kcpu->reqs_available >= ctx->req_batch * 2) {
912 kcpu->reqs_available -= ctx->req_batch;
913 atomic_add(ctx->req_batch, &ctx->reqs_available);
914 }
915
916 local_irq_restore(flags);
917}
918
919static bool __get_reqs_available(struct kioctx *ctx)
920{
921 struct kioctx_cpu *kcpu;
922 bool ret = false;
923 unsigned long flags;
924
925 local_irq_save(flags);
926 kcpu = this_cpu_ptr(ctx->cpu);
927 if (!kcpu->reqs_available) {
928 int old, avail = atomic_read(&ctx->reqs_available);
929
930 do {
931 if (avail < ctx->req_batch)
932 goto out;
933
934 old = avail;
935 avail = atomic_cmpxchg(&ctx->reqs_available,
936 avail, avail - ctx->req_batch);
937 } while (avail != old);
938
939 kcpu->reqs_available += ctx->req_batch;
940 }
941
942 ret = true;
943 kcpu->reqs_available--;
944out:
945 local_irq_restore(flags);
946 return ret;
947}
948
949/* refill_reqs_available
950 * Updates the reqs_available reference counts used for tracking the
951 * number of free slots in the completion ring. This can be called
952 * from aio_complete() (to optimistically update reqs_available) or
953 * from aio_get_req() (the we're out of events case). It must be
954 * called holding ctx->completion_lock.
955 */
956static void refill_reqs_available(struct kioctx *ctx, unsigned head,
957 unsigned tail)
958{
959 unsigned events_in_ring, completed;
960
961 /* Clamp head since userland can write to it. */
962 head %= ctx->nr_events;
963 if (head <= tail)
964 events_in_ring = tail - head;
965 else
966 events_in_ring = ctx->nr_events - (head - tail);
967
968 completed = ctx->completed_events;
969 if (events_in_ring < completed)
970 completed -= events_in_ring;
971 else
972 completed = 0;
973
974 if (!completed)
975 return;
976
977 ctx->completed_events -= completed;
978 put_reqs_available(ctx, completed);
979}
980
981/* user_refill_reqs_available
982 * Called to refill reqs_available when aio_get_req() encounters an
983 * out of space in the completion ring.
984 */
985static void user_refill_reqs_available(struct kioctx *ctx)
986{
987 spin_lock_irq(&ctx->completion_lock);
988 if (ctx->completed_events) {
989 struct aio_ring *ring;
990 unsigned head;
991
992 /* Access of ring->head may race with aio_read_events_ring()
993 * here, but that's okay since whether we read the old version
994 * or the new version, and either will be valid. The important
995 * part is that head cannot pass tail since we prevent
996 * aio_complete() from updating tail by holding
997 * ctx->completion_lock. Even if head is invalid, the check
998 * against ctx->completed_events below will make sure we do the
999 * safe/right thing.
1000 */
1001 ring = kmap_atomic(ctx->ring_pages[0]);
1002 head = ring->head;
1003 kunmap_atomic(ring);
1004
1005 refill_reqs_available(ctx, head, ctx->tail);
1006 }
1007
1008 spin_unlock_irq(&ctx->completion_lock);
1009}
1010
1011static bool get_reqs_available(struct kioctx *ctx)
1012{
1013 if (__get_reqs_available(ctx))
1014 return true;
1015 user_refill_reqs_available(ctx);
1016 return __get_reqs_available(ctx);
1017}
1018
1019/* aio_get_req
1020 * Allocate a slot for an aio request.
1021 * Returns NULL if no requests are free.
1022 *
1023 * The refcount is initialized to 2 - one for the async op completion,
1024 * one for the synchronous code that does this.
1025 */
1026static inline struct aio_kiocb *aio_get_req(struct kioctx *ctx)
1027{
1028 struct aio_kiocb *req;
1029
1030 req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL);
1031 if (unlikely(!req))
1032 return NULL;
1033
1034 if (unlikely(!get_reqs_available(ctx))) {
1035 kmem_cache_free(kiocb_cachep, req);
1036 return NULL;
1037 }
1038
1039 percpu_ref_get(&ctx->reqs);
1040 req->ki_ctx = ctx;
1041 INIT_LIST_HEAD(&req->ki_list);
1042 refcount_set(&req->ki_refcnt, 2);
1043 req->ki_eventfd = NULL;
1044 return req;
1045}
1046
1047static struct kioctx *lookup_ioctx(unsigned long ctx_id)
1048{
1049 struct aio_ring __user *ring = (void __user *)ctx_id;
1050 struct mm_struct *mm = current->mm;
1051 struct kioctx *ctx, *ret = NULL;
1052 struct kioctx_table *table;
1053 unsigned id;
1054
1055 if (get_user(id, &ring->id))
1056 return NULL;
1057
1058 rcu_read_lock();
1059 table = rcu_dereference(mm->ioctx_table);
1060
1061 if (!table || id >= table->nr)
1062 goto out;
1063
1064 id = array_index_nospec(id, table->nr);
1065 ctx = rcu_dereference(table->table[id]);
1066 if (ctx && ctx->user_id == ctx_id) {
1067 if (percpu_ref_tryget_live(&ctx->users))
1068 ret = ctx;
1069 }
1070out:
1071 rcu_read_unlock();
1072 return ret;
1073}
1074
1075static inline void iocb_destroy(struct aio_kiocb *iocb)
1076{
1077 if (iocb->ki_eventfd)
1078 eventfd_ctx_put(iocb->ki_eventfd);
1079 if (iocb->ki_filp)
1080 fput(iocb->ki_filp);
1081 percpu_ref_put(&iocb->ki_ctx->reqs);
1082 kmem_cache_free(kiocb_cachep, iocb);
1083}
1084
1085/* aio_complete
1086 * Called when the io request on the given iocb is complete.
1087 */
1088static void aio_complete(struct aio_kiocb *iocb)
1089{
1090 struct kioctx *ctx = iocb->ki_ctx;
1091 struct aio_ring *ring;
1092 struct io_event *ev_page, *event;
1093 unsigned tail, pos, head;
1094 unsigned long flags;
1095
1096 /*
1097 * Add a completion event to the ring buffer. Must be done holding
1098 * ctx->completion_lock to prevent other code from messing with the tail
1099 * pointer since we might be called from irq context.
1100 */
1101 spin_lock_irqsave(&ctx->completion_lock, flags);
1102
1103 tail = ctx->tail;
1104 pos = tail + AIO_EVENTS_OFFSET;
1105
1106 if (++tail >= ctx->nr_events)
1107 tail = 0;
1108
1109 ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1110 event = ev_page + pos % AIO_EVENTS_PER_PAGE;
1111
1112 *event = iocb->ki_res;
1113
1114 kunmap_atomic(ev_page);
1115 flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1116
1117 pr_debug("%p[%u]: %p: %p %Lx %Lx %Lx\n", ctx, tail, iocb,
1118 (void __user *)(unsigned long)iocb->ki_res.obj,
1119 iocb->ki_res.data, iocb->ki_res.res, iocb->ki_res.res2);
1120
1121 /* after flagging the request as done, we
1122 * must never even look at it again
1123 */
1124 smp_wmb(); /* make event visible before updating tail */
1125
1126 ctx->tail = tail;
1127
1128 ring = kmap_atomic(ctx->ring_pages[0]);
1129 head = ring->head;
1130 ring->tail = tail;
1131 kunmap_atomic(ring);
1132 flush_dcache_page(ctx->ring_pages[0]);
1133
1134 ctx->completed_events++;
1135 if (ctx->completed_events > 1)
1136 refill_reqs_available(ctx, head, tail);
1137 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1138
1139 pr_debug("added to ring %p at [%u]\n", iocb, tail);
1140
1141 /*
1142 * Check if the user asked us to deliver the result through an
1143 * eventfd. The eventfd_signal() function is safe to be called
1144 * from IRQ context.
1145 */
1146 if (iocb->ki_eventfd)
1147 eventfd_signal(iocb->ki_eventfd, 1);
1148
1149 /*
1150 * We have to order our ring_info tail store above and test
1151 * of the wait list below outside the wait lock. This is
1152 * like in wake_up_bit() where clearing a bit has to be
1153 * ordered with the unlocked test.
1154 */
1155 smp_mb();
1156
1157 if (waitqueue_active(&ctx->wait))
1158 wake_up(&ctx->wait);
1159}
1160
1161static inline void iocb_put(struct aio_kiocb *iocb)
1162{
1163 if (refcount_dec_and_test(&iocb->ki_refcnt)) {
1164 aio_complete(iocb);
1165 iocb_destroy(iocb);
1166 }
1167}
1168
1169/* aio_read_events_ring
1170 * Pull an event off of the ioctx's event ring. Returns the number of
1171 * events fetched
1172 */
1173static long aio_read_events_ring(struct kioctx *ctx,
1174 struct io_event __user *event, long nr)
1175{
1176 struct aio_ring *ring;
1177 unsigned head, tail, pos;
1178 long ret = 0;
1179 int copy_ret;
1180
1181 /*
1182 * The mutex can block and wake us up and that will cause
1183 * wait_event_interruptible_hrtimeout() to schedule without sleeping
1184 * and repeat. This should be rare enough that it doesn't cause
1185 * peformance issues. See the comment in read_events() for more detail.
1186 */
1187 sched_annotate_sleep();
1188 mutex_lock(&ctx->ring_lock);
1189
1190 /* Access to ->ring_pages here is protected by ctx->ring_lock. */
1191 ring = kmap_atomic(ctx->ring_pages[0]);
1192 head = ring->head;
1193 tail = ring->tail;
1194 kunmap_atomic(ring);
1195
1196 /*
1197 * Ensure that once we've read the current tail pointer, that
1198 * we also see the events that were stored up to the tail.
1199 */
1200 smp_rmb();
1201
1202 pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events);
1203
1204 if (head == tail)
1205 goto out;
1206
1207 head %= ctx->nr_events;
1208 tail %= ctx->nr_events;
1209
1210 while (ret < nr) {
1211 long avail;
1212 struct io_event *ev;
1213 struct page *page;
1214
1215 avail = (head <= tail ? tail : ctx->nr_events) - head;
1216 if (head == tail)
1217 break;
1218
1219 pos = head + AIO_EVENTS_OFFSET;
1220 page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE];
1221 pos %= AIO_EVENTS_PER_PAGE;
1222
1223 avail = min(avail, nr - ret);
1224 avail = min_t(long, avail, AIO_EVENTS_PER_PAGE - pos);
1225
1226 ev = kmap(page);
1227 copy_ret = copy_to_user(event + ret, ev + pos,
1228 sizeof(*ev) * avail);
1229 kunmap(page);
1230
1231 if (unlikely(copy_ret)) {
1232 ret = -EFAULT;
1233 goto out;
1234 }
1235
1236 ret += avail;
1237 head += avail;
1238 head %= ctx->nr_events;
1239 }
1240
1241 ring = kmap_atomic(ctx->ring_pages[0]);
1242 ring->head = head;
1243 kunmap_atomic(ring);
1244 flush_dcache_page(ctx->ring_pages[0]);
1245
1246 pr_debug("%li h%u t%u\n", ret, head, tail);
1247out:
1248 mutex_unlock(&ctx->ring_lock);
1249
1250 return ret;
1251}
1252
1253static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr,
1254 struct io_event __user *event, long *i)
1255{
1256 long ret = aio_read_events_ring(ctx, event + *i, nr - *i);
1257
1258 if (ret > 0)
1259 *i += ret;
1260
1261 if (unlikely(atomic_read(&ctx->dead)))
1262 ret = -EINVAL;
1263
1264 if (!*i)
1265 *i = ret;
1266
1267 return ret < 0 || *i >= min_nr;
1268}
1269
1270static long read_events(struct kioctx *ctx, long min_nr, long nr,
1271 struct io_event __user *event,
1272 ktime_t until)
1273{
1274 long ret = 0;
1275
1276 /*
1277 * Note that aio_read_events() is being called as the conditional - i.e.
1278 * we're calling it after prepare_to_wait() has set task state to
1279 * TASK_INTERRUPTIBLE.
1280 *
1281 * But aio_read_events() can block, and if it blocks it's going to flip
1282 * the task state back to TASK_RUNNING.
1283 *
1284 * This should be ok, provided it doesn't flip the state back to
1285 * TASK_RUNNING and return 0 too much - that causes us to spin. That
1286 * will only happen if the mutex_lock() call blocks, and we then find
1287 * the ringbuffer empty. So in practice we should be ok, but it's
1288 * something to be aware of when touching this code.
1289 */
1290 if (until == 0)
1291 aio_read_events(ctx, min_nr, nr, event, &ret);
1292 else
1293 wait_event_interruptible_hrtimeout(ctx->wait,
1294 aio_read_events(ctx, min_nr, nr, event, &ret),
1295 until);
1296 return ret;
1297}
1298
1299/* sys_io_setup:
1300 * Create an aio_context capable of receiving at least nr_events.
1301 * ctxp must not point to an aio_context that already exists, and
1302 * must be initialized to 0 prior to the call. On successful
1303 * creation of the aio_context, *ctxp is filled in with the resulting
1304 * handle. May fail with -EINVAL if *ctxp is not initialized,
1305 * if the specified nr_events exceeds internal limits. May fail
1306 * with -EAGAIN if the specified nr_events exceeds the user's limit
1307 * of available events. May fail with -ENOMEM if insufficient kernel
1308 * resources are available. May fail with -EFAULT if an invalid
1309 * pointer is passed for ctxp. Will fail with -ENOSYS if not
1310 * implemented.
1311 */
1312SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1313{
1314 struct kioctx *ioctx = NULL;
1315 unsigned long ctx;
1316 long ret;
1317
1318 ret = get_user(ctx, ctxp);
1319 if (unlikely(ret))
1320 goto out;
1321
1322 ret = -EINVAL;
1323 if (unlikely(ctx || nr_events == 0)) {
1324 pr_debug("EINVAL: ctx %lu nr_events %u\n",
1325 ctx, nr_events);
1326 goto out;
1327 }
1328
1329 ioctx = ioctx_alloc(nr_events);
1330 ret = PTR_ERR(ioctx);
1331 if (!IS_ERR(ioctx)) {
1332 ret = put_user(ioctx->user_id, ctxp);
1333 if (ret)
1334 kill_ioctx(current->mm, ioctx, NULL);
1335 percpu_ref_put(&ioctx->users);
1336 }
1337
1338out:
1339 return ret;
1340}
1341
1342#ifdef CONFIG_COMPAT
1343COMPAT_SYSCALL_DEFINE2(io_setup, unsigned, nr_events, u32 __user *, ctx32p)
1344{
1345 struct kioctx *ioctx = NULL;
1346 unsigned long ctx;
1347 long ret;
1348
1349 ret = get_user(ctx, ctx32p);
1350 if (unlikely(ret))
1351 goto out;
1352
1353 ret = -EINVAL;
1354 if (unlikely(ctx || nr_events == 0)) {
1355 pr_debug("EINVAL: ctx %lu nr_events %u\n",
1356 ctx, nr_events);
1357 goto out;
1358 }
1359
1360 ioctx = ioctx_alloc(nr_events);
1361 ret = PTR_ERR(ioctx);
1362 if (!IS_ERR(ioctx)) {
1363 /* truncating is ok because it's a user address */
1364 ret = put_user((u32)ioctx->user_id, ctx32p);
1365 if (ret)
1366 kill_ioctx(current->mm, ioctx, NULL);
1367 percpu_ref_put(&ioctx->users);
1368 }
1369
1370out:
1371 return ret;
1372}
1373#endif
1374
1375/* sys_io_destroy:
1376 * Destroy the aio_context specified. May cancel any outstanding
1377 * AIOs and block on completion. Will fail with -ENOSYS if not
1378 * implemented. May fail with -EINVAL if the context pointed to
1379 * is invalid.
1380 */
1381SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1382{
1383 struct kioctx *ioctx = lookup_ioctx(ctx);
1384 if (likely(NULL != ioctx)) {
1385 struct ctx_rq_wait wait;
1386 int ret;
1387
1388 init_completion(&wait.comp);
1389 atomic_set(&wait.count, 1);
1390
1391 /* Pass requests_done to kill_ioctx() where it can be set
1392 * in a thread-safe way. If we try to set it here then we have
1393 * a race condition if two io_destroy() called simultaneously.
1394 */
1395 ret = kill_ioctx(current->mm, ioctx, &wait);
1396 percpu_ref_put(&ioctx->users);
1397
1398 /* Wait until all IO for the context are done. Otherwise kernel
1399 * keep using user-space buffers even if user thinks the context
1400 * is destroyed.
1401 */
1402 if (!ret)
1403 wait_for_completion(&wait.comp);
1404
1405 return ret;
1406 }
1407 pr_debug("EINVAL: invalid context id\n");
1408 return -EINVAL;
1409}
1410
1411static void aio_remove_iocb(struct aio_kiocb *iocb)
1412{
1413 struct kioctx *ctx = iocb->ki_ctx;
1414 unsigned long flags;
1415
1416 spin_lock_irqsave(&ctx->ctx_lock, flags);
1417 list_del(&iocb->ki_list);
1418 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1419}
1420
1421static void aio_complete_rw(struct kiocb *kiocb, long res, long res2)
1422{
1423 struct aio_kiocb *iocb = container_of(kiocb, struct aio_kiocb, rw);
1424
1425 if (!list_empty_careful(&iocb->ki_list))
1426 aio_remove_iocb(iocb);
1427
1428 if (kiocb->ki_flags & IOCB_WRITE) {
1429 struct inode *inode = file_inode(kiocb->ki_filp);
1430
1431 /*
1432 * Tell lockdep we inherited freeze protection from submission
1433 * thread.
1434 */
1435 if (S_ISREG(inode->i_mode))
1436 __sb_writers_acquired(inode->i_sb, SB_FREEZE_WRITE);
1437 file_end_write(kiocb->ki_filp);
1438 }
1439
1440 iocb->ki_res.res = res;
1441 iocb->ki_res.res2 = res2;
1442 iocb_put(iocb);
1443}
1444
1445static int aio_prep_rw(struct kiocb *req, const struct iocb *iocb)
1446{
1447 int ret;
1448
1449 req->ki_complete = aio_complete_rw;
1450 req->private = NULL;
1451 req->ki_pos = iocb->aio_offset;
1452 req->ki_flags = iocb_flags(req->ki_filp);
1453 if (iocb->aio_flags & IOCB_FLAG_RESFD)
1454 req->ki_flags |= IOCB_EVENTFD;
1455 req->ki_hint = ki_hint_validate(file_write_hint(req->ki_filp));
1456 if (iocb->aio_flags & IOCB_FLAG_IOPRIO) {
1457 /*
1458 * If the IOCB_FLAG_IOPRIO flag of aio_flags is set, then
1459 * aio_reqprio is interpreted as an I/O scheduling
1460 * class and priority.
1461 */
1462 ret = ioprio_check_cap(iocb->aio_reqprio);
1463 if (ret) {
1464 pr_debug("aio ioprio check cap error: %d\n", ret);
1465 return ret;
1466 }
1467
1468 req->ki_ioprio = iocb->aio_reqprio;
1469 } else
1470 req->ki_ioprio = get_current_ioprio();
1471
1472 ret = kiocb_set_rw_flags(req, iocb->aio_rw_flags);
1473 if (unlikely(ret))
1474 return ret;
1475
1476 req->ki_flags &= ~IOCB_HIPRI; /* no one is going to poll for this I/O */
1477 return 0;
1478}
1479
1480static ssize_t aio_setup_rw(int rw, const struct iocb *iocb,
1481 struct iovec **iovec, bool vectored, bool compat,
1482 struct iov_iter *iter)
1483{
1484 void __user *buf = (void __user *)(uintptr_t)iocb->aio_buf;
1485 size_t len = iocb->aio_nbytes;
1486
1487 if (!vectored) {
1488 ssize_t ret = import_single_range(rw, buf, len, *iovec, iter);
1489 *iovec = NULL;
1490 return ret;
1491 }
1492#ifdef CONFIG_COMPAT
1493 if (compat)
1494 return compat_import_iovec(rw, buf, len, UIO_FASTIOV, iovec,
1495 iter);
1496#endif
1497 return import_iovec(rw, buf, len, UIO_FASTIOV, iovec, iter);
1498}
1499
1500static inline void aio_rw_done(struct kiocb *req, ssize_t ret)
1501{
1502 switch (ret) {
1503 case -EIOCBQUEUED:
1504 break;
1505 case -ERESTARTSYS:
1506 case -ERESTARTNOINTR:
1507 case -ERESTARTNOHAND:
1508 case -ERESTART_RESTARTBLOCK:
1509 /*
1510 * There's no easy way to restart the syscall since other AIO's
1511 * may be already running. Just fail this IO with EINTR.
1512 */
1513 ret = -EINTR;
1514 fallthrough;
1515 default:
1516 req->ki_complete(req, ret, 0);
1517 }
1518}
1519
1520static int aio_read(struct kiocb *req, const struct iocb *iocb,
1521 bool vectored, bool compat)
1522{
1523 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1524 struct iov_iter iter;
1525 struct file *file;
1526 int ret;
1527
1528 ret = aio_prep_rw(req, iocb);
1529 if (ret)
1530 return ret;
1531 file = req->ki_filp;
1532 if (unlikely(!(file->f_mode & FMODE_READ)))
1533 return -EBADF;
1534 ret = -EINVAL;
1535 if (unlikely(!file->f_op->read_iter))
1536 return -EINVAL;
1537
1538 ret = aio_setup_rw(READ, iocb, &iovec, vectored, compat, &iter);
1539 if (ret < 0)
1540 return ret;
1541 ret = rw_verify_area(READ, file, &req->ki_pos, iov_iter_count(&iter));
1542 if (!ret)
1543 aio_rw_done(req, call_read_iter(file, req, &iter));
1544 kfree(iovec);
1545 return ret;
1546}
1547
1548static int aio_write(struct kiocb *req, const struct iocb *iocb,
1549 bool vectored, bool compat)
1550{
1551 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1552 struct iov_iter iter;
1553 struct file *file;
1554 int ret;
1555
1556 ret = aio_prep_rw(req, iocb);
1557 if (ret)
1558 return ret;
1559 file = req->ki_filp;
1560
1561 if (unlikely(!(file->f_mode & FMODE_WRITE)))
1562 return -EBADF;
1563 if (unlikely(!file->f_op->write_iter))
1564 return -EINVAL;
1565
1566 ret = aio_setup_rw(WRITE, iocb, &iovec, vectored, compat, &iter);
1567 if (ret < 0)
1568 return ret;
1569 ret = rw_verify_area(WRITE, file, &req->ki_pos, iov_iter_count(&iter));
1570 if (!ret) {
1571 /*
1572 * Open-code file_start_write here to grab freeze protection,
1573 * which will be released by another thread in
1574 * aio_complete_rw(). Fool lockdep by telling it the lock got
1575 * released so that it doesn't complain about the held lock when
1576 * we return to userspace.
1577 */
1578 if (S_ISREG(file_inode(file)->i_mode)) {
1579 __sb_start_write(file_inode(file)->i_sb, SB_FREEZE_WRITE, true);
1580 __sb_writers_release(file_inode(file)->i_sb, SB_FREEZE_WRITE);
1581 }
1582 req->ki_flags |= IOCB_WRITE;
1583 aio_rw_done(req, call_write_iter(file, req, &iter));
1584 }
1585 kfree(iovec);
1586 return ret;
1587}
1588
1589static void aio_fsync_work(struct work_struct *work)
1590{
1591 struct aio_kiocb *iocb = container_of(work, struct aio_kiocb, fsync.work);
1592 const struct cred *old_cred = override_creds(iocb->fsync.creds);
1593
1594 iocb->ki_res.res = vfs_fsync(iocb->fsync.file, iocb->fsync.datasync);
1595 revert_creds(old_cred);
1596 put_cred(iocb->fsync.creds);
1597 iocb_put(iocb);
1598}
1599
1600static int aio_fsync(struct fsync_iocb *req, const struct iocb *iocb,
1601 bool datasync)
1602{
1603 if (unlikely(iocb->aio_buf || iocb->aio_offset || iocb->aio_nbytes ||
1604 iocb->aio_rw_flags))
1605 return -EINVAL;
1606
1607 if (unlikely(!req->file->f_op->fsync))
1608 return -EINVAL;
1609
1610 req->creds = prepare_creds();
1611 if (!req->creds)
1612 return -ENOMEM;
1613
1614 req->datasync = datasync;
1615 INIT_WORK(&req->work, aio_fsync_work);
1616 schedule_work(&req->work);
1617 return 0;
1618}
1619
1620static void aio_poll_put_work(struct work_struct *work)
1621{
1622 struct poll_iocb *req = container_of(work, struct poll_iocb, work);
1623 struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1624
1625 iocb_put(iocb);
1626}
1627
1628static void aio_poll_complete_work(struct work_struct *work)
1629{
1630 struct poll_iocb *req = container_of(work, struct poll_iocb, work);
1631 struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1632 struct poll_table_struct pt = { ._key = req->events };
1633 struct kioctx *ctx = iocb->ki_ctx;
1634 __poll_t mask = 0;
1635
1636 if (!READ_ONCE(req->cancelled))
1637 mask = vfs_poll(req->file, &pt) & req->events;
1638
1639 /*
1640 * Note that ->ki_cancel callers also delete iocb from active_reqs after
1641 * calling ->ki_cancel. We need the ctx_lock roundtrip here to
1642 * synchronize with them. In the cancellation case the list_del_init
1643 * itself is not actually needed, but harmless so we keep it in to
1644 * avoid further branches in the fast path.
1645 */
1646 spin_lock_irq(&ctx->ctx_lock);
1647 if (!mask && !READ_ONCE(req->cancelled)) {
1648 add_wait_queue(req->head, &req->wait);
1649 spin_unlock_irq(&ctx->ctx_lock);
1650 return;
1651 }
1652 list_del_init(&iocb->ki_list);
1653 iocb->ki_res.res = mangle_poll(mask);
1654 req->done = true;
1655 spin_unlock_irq(&ctx->ctx_lock);
1656
1657 iocb_put(iocb);
1658}
1659
1660/* assumes we are called with irqs disabled */
1661static int aio_poll_cancel(struct kiocb *iocb)
1662{
1663 struct aio_kiocb *aiocb = container_of(iocb, struct aio_kiocb, rw);
1664 struct poll_iocb *req = &aiocb->poll;
1665
1666 spin_lock(&req->head->lock);
1667 WRITE_ONCE(req->cancelled, true);
1668 if (!list_empty(&req->wait.entry)) {
1669 list_del_init(&req->wait.entry);
1670 schedule_work(&aiocb->poll.work);
1671 }
1672 spin_unlock(&req->head->lock);
1673
1674 return 0;
1675}
1676
1677static int aio_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
1678 void *key)
1679{
1680 struct poll_iocb *req = container_of(wait, struct poll_iocb, wait);
1681 struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1682 __poll_t mask = key_to_poll(key);
1683 unsigned long flags;
1684
1685 /* for instances that support it check for an event match first: */
1686 if (mask && !(mask & req->events))
1687 return 0;
1688
1689 list_del_init(&req->wait.entry);
1690
1691 if (mask && spin_trylock_irqsave(&iocb->ki_ctx->ctx_lock, flags)) {
1692 struct kioctx *ctx = iocb->ki_ctx;
1693
1694 /*
1695 * Try to complete the iocb inline if we can. Use
1696 * irqsave/irqrestore because not all filesystems (e.g. fuse)
1697 * call this function with IRQs disabled and because IRQs
1698 * have to be disabled before ctx_lock is obtained.
1699 */
1700 list_del(&iocb->ki_list);
1701 iocb->ki_res.res = mangle_poll(mask);
1702 req->done = true;
1703 if (iocb->ki_eventfd && eventfd_signal_count()) {
1704 iocb = NULL;
1705 INIT_WORK(&req->work, aio_poll_put_work);
1706 schedule_work(&req->work);
1707 }
1708 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1709 if (iocb)
1710 iocb_put(iocb);
1711 } else {
1712 schedule_work(&req->work);
1713 }
1714 return 1;
1715}
1716
1717struct aio_poll_table {
1718 struct poll_table_struct pt;
1719 struct aio_kiocb *iocb;
1720 int error;
1721};
1722
1723static void
1724aio_poll_queue_proc(struct file *file, struct wait_queue_head *head,
1725 struct poll_table_struct *p)
1726{
1727 struct aio_poll_table *pt = container_of(p, struct aio_poll_table, pt);
1728
1729 /* multiple wait queues per file are not supported */
1730 if (unlikely(pt->iocb->poll.head)) {
1731 pt->error = -EINVAL;
1732 return;
1733 }
1734
1735 pt->error = 0;
1736 pt->iocb->poll.head = head;
1737 add_wait_queue(head, &pt->iocb->poll.wait);
1738}
1739
1740static int aio_poll(struct aio_kiocb *aiocb, const struct iocb *iocb)
1741{
1742 struct kioctx *ctx = aiocb->ki_ctx;
1743 struct poll_iocb *req = &aiocb->poll;
1744 struct aio_poll_table apt;
1745 bool cancel = false;
1746 __poll_t mask;
1747
1748 /* reject any unknown events outside the normal event mask. */
1749 if ((u16)iocb->aio_buf != iocb->aio_buf)
1750 return -EINVAL;
1751 /* reject fields that are not defined for poll */
1752 if (iocb->aio_offset || iocb->aio_nbytes || iocb->aio_rw_flags)
1753 return -EINVAL;
1754
1755 INIT_WORK(&req->work, aio_poll_complete_work);
1756 req->events = demangle_poll(iocb->aio_buf) | EPOLLERR | EPOLLHUP;
1757
1758 req->head = NULL;
1759 req->done = false;
1760 req->cancelled = false;
1761
1762 apt.pt._qproc = aio_poll_queue_proc;
1763 apt.pt._key = req->events;
1764 apt.iocb = aiocb;
1765 apt.error = -EINVAL; /* same as no support for IOCB_CMD_POLL */
1766
1767 /* initialized the list so that we can do list_empty checks */
1768 INIT_LIST_HEAD(&req->wait.entry);
1769 init_waitqueue_func_entry(&req->wait, aio_poll_wake);
1770
1771 mask = vfs_poll(req->file, &apt.pt) & req->events;
1772 spin_lock_irq(&ctx->ctx_lock);
1773 if (likely(req->head)) {
1774 spin_lock(&req->head->lock);
1775 if (unlikely(list_empty(&req->wait.entry))) {
1776 if (apt.error)
1777 cancel = true;
1778 apt.error = 0;
1779 mask = 0;
1780 }
1781 if (mask || apt.error) {
1782 list_del_init(&req->wait.entry);
1783 } else if (cancel) {
1784 WRITE_ONCE(req->cancelled, true);
1785 } else if (!req->done) { /* actually waiting for an event */
1786 list_add_tail(&aiocb->ki_list, &ctx->active_reqs);
1787 aiocb->ki_cancel = aio_poll_cancel;
1788 }
1789 spin_unlock(&req->head->lock);
1790 }
1791 if (mask) { /* no async, we'd stolen it */
1792 aiocb->ki_res.res = mangle_poll(mask);
1793 apt.error = 0;
1794 }
1795 spin_unlock_irq(&ctx->ctx_lock);
1796 if (mask)
1797 iocb_put(aiocb);
1798 return apt.error;
1799}
1800
1801static int __io_submit_one(struct kioctx *ctx, const struct iocb *iocb,
1802 struct iocb __user *user_iocb, struct aio_kiocb *req,
1803 bool compat)
1804{
1805 req->ki_filp = fget(iocb->aio_fildes);
1806 if (unlikely(!req->ki_filp))
1807 return -EBADF;
1808
1809 if (iocb->aio_flags & IOCB_FLAG_RESFD) {
1810 struct eventfd_ctx *eventfd;
1811 /*
1812 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1813 * instance of the file* now. The file descriptor must be
1814 * an eventfd() fd, and will be signaled for each completed
1815 * event using the eventfd_signal() function.
1816 */
1817 eventfd = eventfd_ctx_fdget(iocb->aio_resfd);
1818 if (IS_ERR(eventfd))
1819 return PTR_ERR(eventfd);
1820
1821 req->ki_eventfd = eventfd;
1822 }
1823
1824 if (unlikely(put_user(KIOCB_KEY, &user_iocb->aio_key))) {
1825 pr_debug("EFAULT: aio_key\n");
1826 return -EFAULT;
1827 }
1828
1829 req->ki_res.obj = (u64)(unsigned long)user_iocb;
1830 req->ki_res.data = iocb->aio_data;
1831 req->ki_res.res = 0;
1832 req->ki_res.res2 = 0;
1833
1834 switch (iocb->aio_lio_opcode) {
1835 case IOCB_CMD_PREAD:
1836 return aio_read(&req->rw, iocb, false, compat);
1837 case IOCB_CMD_PWRITE:
1838 return aio_write(&req->rw, iocb, false, compat);
1839 case IOCB_CMD_PREADV:
1840 return aio_read(&req->rw, iocb, true, compat);
1841 case IOCB_CMD_PWRITEV:
1842 return aio_write(&req->rw, iocb, true, compat);
1843 case IOCB_CMD_FSYNC:
1844 return aio_fsync(&req->fsync, iocb, false);
1845 case IOCB_CMD_FDSYNC:
1846 return aio_fsync(&req->fsync, iocb, true);
1847 case IOCB_CMD_POLL:
1848 return aio_poll(req, iocb);
1849 default:
1850 pr_debug("invalid aio operation %d\n", iocb->aio_lio_opcode);
1851 return -EINVAL;
1852 }
1853}
1854
1855static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1856 bool compat)
1857{
1858 struct aio_kiocb *req;
1859 struct iocb iocb;
1860 int err;
1861
1862 if (unlikely(copy_from_user(&iocb, user_iocb, sizeof(iocb))))
1863 return -EFAULT;
1864
1865 /* enforce forwards compatibility on users */
1866 if (unlikely(iocb.aio_reserved2)) {
1867 pr_debug("EINVAL: reserve field set\n");
1868 return -EINVAL;
1869 }
1870
1871 /* prevent overflows */
1872 if (unlikely(
1873 (iocb.aio_buf != (unsigned long)iocb.aio_buf) ||
1874 (iocb.aio_nbytes != (size_t)iocb.aio_nbytes) ||
1875 ((ssize_t)iocb.aio_nbytes < 0)
1876 )) {
1877 pr_debug("EINVAL: overflow check\n");
1878 return -EINVAL;
1879 }
1880
1881 req = aio_get_req(ctx);
1882 if (unlikely(!req))
1883 return -EAGAIN;
1884
1885 err = __io_submit_one(ctx, &iocb, user_iocb, req, compat);
1886
1887 /* Done with the synchronous reference */
1888 iocb_put(req);
1889
1890 /*
1891 * If err is 0, we'd either done aio_complete() ourselves or have
1892 * arranged for that to be done asynchronously. Anything non-zero
1893 * means that we need to destroy req ourselves.
1894 */
1895 if (unlikely(err)) {
1896 iocb_destroy(req);
1897 put_reqs_available(ctx, 1);
1898 }
1899 return err;
1900}
1901
1902/* sys_io_submit:
1903 * Queue the nr iocbs pointed to by iocbpp for processing. Returns
1904 * the number of iocbs queued. May return -EINVAL if the aio_context
1905 * specified by ctx_id is invalid, if nr is < 0, if the iocb at
1906 * *iocbpp[0] is not properly initialized, if the operation specified
1907 * is invalid for the file descriptor in the iocb. May fail with
1908 * -EFAULT if any of the data structures point to invalid data. May
1909 * fail with -EBADF if the file descriptor specified in the first
1910 * iocb is invalid. May fail with -EAGAIN if insufficient resources
1911 * are available to queue any iocbs. Will return 0 if nr is 0. Will
1912 * fail with -ENOSYS if not implemented.
1913 */
1914SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
1915 struct iocb __user * __user *, iocbpp)
1916{
1917 struct kioctx *ctx;
1918 long ret = 0;
1919 int i = 0;
1920 struct blk_plug plug;
1921
1922 if (unlikely(nr < 0))
1923 return -EINVAL;
1924
1925 ctx = lookup_ioctx(ctx_id);
1926 if (unlikely(!ctx)) {
1927 pr_debug("EINVAL: invalid context id\n");
1928 return -EINVAL;
1929 }
1930
1931 if (nr > ctx->nr_events)
1932 nr = ctx->nr_events;
1933
1934 if (nr > AIO_PLUG_THRESHOLD)
1935 blk_start_plug(&plug);
1936 for (i = 0; i < nr; i++) {
1937 struct iocb __user *user_iocb;
1938
1939 if (unlikely(get_user(user_iocb, iocbpp + i))) {
1940 ret = -EFAULT;
1941 break;
1942 }
1943
1944 ret = io_submit_one(ctx, user_iocb, false);
1945 if (ret)
1946 break;
1947 }
1948 if (nr > AIO_PLUG_THRESHOLD)
1949 blk_finish_plug(&plug);
1950
1951 percpu_ref_put(&ctx->users);
1952 return i ? i : ret;
1953}
1954
1955#ifdef CONFIG_COMPAT
1956COMPAT_SYSCALL_DEFINE3(io_submit, compat_aio_context_t, ctx_id,
1957 int, nr, compat_uptr_t __user *, iocbpp)
1958{
1959 struct kioctx *ctx;
1960 long ret = 0;
1961 int i = 0;
1962 struct blk_plug plug;
1963
1964 if (unlikely(nr < 0))
1965 return -EINVAL;
1966
1967 ctx = lookup_ioctx(ctx_id);
1968 if (unlikely(!ctx)) {
1969 pr_debug("EINVAL: invalid context id\n");
1970 return -EINVAL;
1971 }
1972
1973 if (nr > ctx->nr_events)
1974 nr = ctx->nr_events;
1975
1976 if (nr > AIO_PLUG_THRESHOLD)
1977 blk_start_plug(&plug);
1978 for (i = 0; i < nr; i++) {
1979 compat_uptr_t user_iocb;
1980
1981 if (unlikely(get_user(user_iocb, iocbpp + i))) {
1982 ret = -EFAULT;
1983 break;
1984 }
1985
1986 ret = io_submit_one(ctx, compat_ptr(user_iocb), true);
1987 if (ret)
1988 break;
1989 }
1990 if (nr > AIO_PLUG_THRESHOLD)
1991 blk_finish_plug(&plug);
1992
1993 percpu_ref_put(&ctx->users);
1994 return i ? i : ret;
1995}
1996#endif
1997
1998/* sys_io_cancel:
1999 * Attempts to cancel an iocb previously passed to io_submit. If
2000 * the operation is successfully cancelled, the resulting event is
2001 * copied into the memory pointed to by result without being placed
2002 * into the completion queue and 0 is returned. May fail with
2003 * -EFAULT if any of the data structures pointed to are invalid.
2004 * May fail with -EINVAL if aio_context specified by ctx_id is
2005 * invalid. May fail with -EAGAIN if the iocb specified was not
2006 * cancelled. Will fail with -ENOSYS if not implemented.
2007 */
2008SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
2009 struct io_event __user *, result)
2010{
2011 struct kioctx *ctx;
2012 struct aio_kiocb *kiocb;
2013 int ret = -EINVAL;
2014 u32 key;
2015 u64 obj = (u64)(unsigned long)iocb;
2016
2017 if (unlikely(get_user(key, &iocb->aio_key)))
2018 return -EFAULT;
2019 if (unlikely(key != KIOCB_KEY))
2020 return -EINVAL;
2021
2022 ctx = lookup_ioctx(ctx_id);
2023 if (unlikely(!ctx))
2024 return -EINVAL;
2025
2026 spin_lock_irq(&ctx->ctx_lock);
2027 /* TODO: use a hash or array, this sucks. */
2028 list_for_each_entry(kiocb, &ctx->active_reqs, ki_list) {
2029 if (kiocb->ki_res.obj == obj) {
2030 ret = kiocb->ki_cancel(&kiocb->rw);
2031 list_del_init(&kiocb->ki_list);
2032 break;
2033 }
2034 }
2035 spin_unlock_irq(&ctx->ctx_lock);
2036
2037 if (!ret) {
2038 /*
2039 * The result argument is no longer used - the io_event is
2040 * always delivered via the ring buffer. -EINPROGRESS indicates
2041 * cancellation is progress:
2042 */
2043 ret = -EINPROGRESS;
2044 }
2045
2046 percpu_ref_put(&ctx->users);
2047
2048 return ret;
2049}
2050
2051static long do_io_getevents(aio_context_t ctx_id,
2052 long min_nr,
2053 long nr,
2054 struct io_event __user *events,
2055 struct timespec64 *ts)
2056{
2057 ktime_t until = ts ? timespec64_to_ktime(*ts) : KTIME_MAX;
2058 struct kioctx *ioctx = lookup_ioctx(ctx_id);
2059 long ret = -EINVAL;
2060
2061 if (likely(ioctx)) {
2062 if (likely(min_nr <= nr && min_nr >= 0))
2063 ret = read_events(ioctx, min_nr, nr, events, until);
2064 percpu_ref_put(&ioctx->users);
2065 }
2066
2067 return ret;
2068}
2069
2070/* io_getevents:
2071 * Attempts to read at least min_nr events and up to nr events from
2072 * the completion queue for the aio_context specified by ctx_id. If
2073 * it succeeds, the number of read events is returned. May fail with
2074 * -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
2075 * out of range, if timeout is out of range. May fail with -EFAULT
2076 * if any of the memory specified is invalid. May return 0 or
2077 * < min_nr if the timeout specified by timeout has elapsed
2078 * before sufficient events are available, where timeout == NULL
2079 * specifies an infinite timeout. Note that the timeout pointed to by
2080 * timeout is relative. Will fail with -ENOSYS if not implemented.
2081 */
2082#ifdef CONFIG_64BIT
2083
2084SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
2085 long, min_nr,
2086 long, nr,
2087 struct io_event __user *, events,
2088 struct __kernel_timespec __user *, timeout)
2089{
2090 struct timespec64 ts;
2091 int ret;
2092
2093 if (timeout && unlikely(get_timespec64(&ts, timeout)))
2094 return -EFAULT;
2095
2096 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2097 if (!ret && signal_pending(current))
2098 ret = -EINTR;
2099 return ret;
2100}
2101
2102#endif
2103
2104struct __aio_sigset {
2105 const sigset_t __user *sigmask;
2106 size_t sigsetsize;
2107};
2108
2109SYSCALL_DEFINE6(io_pgetevents,
2110 aio_context_t, ctx_id,
2111 long, min_nr,
2112 long, nr,
2113 struct io_event __user *, events,
2114 struct __kernel_timespec __user *, timeout,
2115 const struct __aio_sigset __user *, usig)
2116{
2117 struct __aio_sigset ksig = { NULL, };
2118 struct timespec64 ts;
2119 bool interrupted;
2120 int ret;
2121
2122 if (timeout && unlikely(get_timespec64(&ts, timeout)))
2123 return -EFAULT;
2124
2125 if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2126 return -EFAULT;
2127
2128 ret = set_user_sigmask(ksig.sigmask, ksig.sigsetsize);
2129 if (ret)
2130 return ret;
2131
2132 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2133
2134 interrupted = signal_pending(current);
2135 restore_saved_sigmask_unless(interrupted);
2136 if (interrupted && !ret)
2137 ret = -ERESTARTNOHAND;
2138
2139 return ret;
2140}
2141
2142#if defined(CONFIG_COMPAT_32BIT_TIME) && !defined(CONFIG_64BIT)
2143
2144SYSCALL_DEFINE6(io_pgetevents_time32,
2145 aio_context_t, ctx_id,
2146 long, min_nr,
2147 long, nr,
2148 struct io_event __user *, events,
2149 struct old_timespec32 __user *, timeout,
2150 const struct __aio_sigset __user *, usig)
2151{
2152 struct __aio_sigset ksig = { NULL, };
2153 struct timespec64 ts;
2154 bool interrupted;
2155 int ret;
2156
2157 if (timeout && unlikely(get_old_timespec32(&ts, timeout)))
2158 return -EFAULT;
2159
2160 if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2161 return -EFAULT;
2162
2163
2164 ret = set_user_sigmask(ksig.sigmask, ksig.sigsetsize);
2165 if (ret)
2166 return ret;
2167
2168 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2169
2170 interrupted = signal_pending(current);
2171 restore_saved_sigmask_unless(interrupted);
2172 if (interrupted && !ret)
2173 ret = -ERESTARTNOHAND;
2174
2175 return ret;
2176}
2177
2178#endif
2179
2180#if defined(CONFIG_COMPAT_32BIT_TIME)
2181
2182SYSCALL_DEFINE5(io_getevents_time32, __u32, ctx_id,
2183 __s32, min_nr,
2184 __s32, nr,
2185 struct io_event __user *, events,
2186 struct old_timespec32 __user *, timeout)
2187{
2188 struct timespec64 t;
2189 int ret;
2190
2191 if (timeout && get_old_timespec32(&t, timeout))
2192 return -EFAULT;
2193
2194 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2195 if (!ret && signal_pending(current))
2196 ret = -EINTR;
2197 return ret;
2198}
2199
2200#endif
2201
2202#ifdef CONFIG_COMPAT
2203
2204struct __compat_aio_sigset {
2205 compat_uptr_t sigmask;
2206 compat_size_t sigsetsize;
2207};
2208
2209#if defined(CONFIG_COMPAT_32BIT_TIME)
2210
2211COMPAT_SYSCALL_DEFINE6(io_pgetevents,
2212 compat_aio_context_t, ctx_id,
2213 compat_long_t, min_nr,
2214 compat_long_t, nr,
2215 struct io_event __user *, events,
2216 struct old_timespec32 __user *, timeout,
2217 const struct __compat_aio_sigset __user *, usig)
2218{
2219 struct __compat_aio_sigset ksig = { 0, };
2220 struct timespec64 t;
2221 bool interrupted;
2222 int ret;
2223
2224 if (timeout && get_old_timespec32(&t, timeout))
2225 return -EFAULT;
2226
2227 if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2228 return -EFAULT;
2229
2230 ret = set_compat_user_sigmask(compat_ptr(ksig.sigmask), ksig.sigsetsize);
2231 if (ret)
2232 return ret;
2233
2234 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2235
2236 interrupted = signal_pending(current);
2237 restore_saved_sigmask_unless(interrupted);
2238 if (interrupted && !ret)
2239 ret = -ERESTARTNOHAND;
2240
2241 return ret;
2242}
2243
2244#endif
2245
2246COMPAT_SYSCALL_DEFINE6(io_pgetevents_time64,
2247 compat_aio_context_t, ctx_id,
2248 compat_long_t, min_nr,
2249 compat_long_t, nr,
2250 struct io_event __user *, events,
2251 struct __kernel_timespec __user *, timeout,
2252 const struct __compat_aio_sigset __user *, usig)
2253{
2254 struct __compat_aio_sigset ksig = { 0, };
2255 struct timespec64 t;
2256 bool interrupted;
2257 int ret;
2258
2259 if (timeout && get_timespec64(&t, timeout))
2260 return -EFAULT;
2261
2262 if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2263 return -EFAULT;
2264
2265 ret = set_compat_user_sigmask(compat_ptr(ksig.sigmask), ksig.sigsetsize);
2266 if (ret)
2267 return ret;
2268
2269 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2270
2271 interrupted = signal_pending(current);
2272 restore_saved_sigmask_unless(interrupted);
2273 if (interrupted && !ret)
2274 ret = -ERESTARTNOHAND;
2275
2276 return ret;
2277}
2278#endif