Linux Audio

Check our new training course

Linux debugging, profiling, tracing and performance analysis training

Mar 24-27, 2025, special US time zones
Register
Loading...
v4.6
 
   1/*
   2 * Copyright (C) 1991, 1992 Linus Torvalds
   3 * Copyright (C) 1994,      Karl Keyte: Added support for disk statistics
   4 * Elevator latency, (C) 2000  Andrea Arcangeli <andrea@suse.de> SuSE
   5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
   6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
   7 *	-  July2000
   8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
   9 */
  10
  11/*
  12 * This handles all read/write requests to block devices
  13 */
  14#include <linux/kernel.h>
  15#include <linux/module.h>
  16#include <linux/backing-dev.h>
  17#include <linux/bio.h>
  18#include <linux/blkdev.h>
  19#include <linux/blk-mq.h>
  20#include <linux/highmem.h>
  21#include <linux/mm.h>
 
  22#include <linux/kernel_stat.h>
  23#include <linux/string.h>
  24#include <linux/init.h>
  25#include <linux/completion.h>
  26#include <linux/slab.h>
  27#include <linux/swap.h>
  28#include <linux/writeback.h>
  29#include <linux/task_io_accounting_ops.h>
  30#include <linux/fault-inject.h>
  31#include <linux/list_sort.h>
  32#include <linux/delay.h>
  33#include <linux/ratelimit.h>
  34#include <linux/pm_runtime.h>
  35#include <linux/blk-cgroup.h>
 
 
 
 
 
 
  36
  37#define CREATE_TRACE_POINTS
  38#include <trace/events/block.h>
  39
  40#include "blk.h"
  41#include "blk-mq.h"
 
 
 
 
 
  42
  43EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
  44EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
  45EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
  46EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
  47EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
  48
  49DEFINE_IDA(blk_queue_ida);
  50
  51/*
  52 * For the allocated request tables
  53 */
  54struct kmem_cache *request_cachep;
  55
  56/*
  57 * For queue allocation
  58 */
  59struct kmem_cache *blk_requestq_cachep;
  60
  61/*
  62 * Controlling structure to kblockd
  63 */
  64static struct workqueue_struct *kblockd_workqueue;
  65
  66static void blk_clear_congested(struct request_list *rl, int sync)
  67{
  68#ifdef CONFIG_CGROUP_WRITEBACK
  69	clear_wb_congested(rl->blkg->wb_congested, sync);
  70#else
  71	/*
  72	 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't
  73	 * flip its congestion state for events on other blkcgs.
  74	 */
  75	if (rl == &rl->q->root_rl)
  76		clear_wb_congested(rl->q->backing_dev_info.wb.congested, sync);
  77#endif
  78}
  79
  80static void blk_set_congested(struct request_list *rl, int sync)
  81{
  82#ifdef CONFIG_CGROUP_WRITEBACK
  83	set_wb_congested(rl->blkg->wb_congested, sync);
  84#else
  85	/* see blk_clear_congested() */
  86	if (rl == &rl->q->root_rl)
  87		set_wb_congested(rl->q->backing_dev_info.wb.congested, sync);
  88#endif
  89}
 
  90
  91void blk_queue_congestion_threshold(struct request_queue *q)
 
 
 
 
 
  92{
  93	int nr;
  94
  95	nr = q->nr_requests - (q->nr_requests / 8) + 1;
  96	if (nr > q->nr_requests)
  97		nr = q->nr_requests;
  98	q->nr_congestion_on = nr;
  99
 100	nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
 101	if (nr < 1)
 102		nr = 1;
 103	q->nr_congestion_off = nr;
 104}
 
 105
 106/**
 107 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
 108 * @bdev:	device
 
 109 *
 110 * Locates the passed device's request queue and returns the address of its
 111 * backing_dev_info.  This function can only be called if @bdev is opened
 112 * and the return value is never NULL.
 113 */
 114struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
 115{
 116	struct request_queue *q = bdev_get_queue(bdev);
 117
 118	return &q->backing_dev_info;
 119}
 120EXPORT_SYMBOL(blk_get_backing_dev_info);
 121
 122void blk_rq_init(struct request_queue *q, struct request *rq)
 123{
 124	memset(rq, 0, sizeof(*rq));
 125
 126	INIT_LIST_HEAD(&rq->queuelist);
 127	INIT_LIST_HEAD(&rq->timeout_list);
 128	rq->cpu = -1;
 129	rq->q = q;
 130	rq->__sector = (sector_t) -1;
 131	INIT_HLIST_NODE(&rq->hash);
 132	RB_CLEAR_NODE(&rq->rb_node);
 133	rq->cmd = rq->__cmd;
 134	rq->cmd_len = BLK_MAX_CDB;
 135	rq->tag = -1;
 136	rq->start_time = jiffies;
 137	set_start_time_ns(rq);
 138	rq->part = NULL;
 
 
 139}
 140EXPORT_SYMBOL(blk_rq_init);
 141
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 142static void req_bio_endio(struct request *rq, struct bio *bio,
 143			  unsigned int nbytes, int error)
 144{
 145	if (error)
 146		bio->bi_error = error;
 147
 148	if (unlikely(rq->cmd_flags & REQ_QUIET))
 149		bio_set_flag(bio, BIO_QUIET);
 150
 151	bio_advance(bio, nbytes);
 152
 
 
 
 
 
 
 
 
 
 
 
 153	/* don't actually finish bio if it's part of flush sequence */
 154	if (bio->bi_iter.bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
 155		bio_endio(bio);
 156}
 157
 158void blk_dump_rq_flags(struct request *rq, char *msg)
 159{
 160	int bit;
 161
 162	printk(KERN_INFO "%s: dev %s: type=%x, flags=%llx\n", msg,
 163		rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
 164		(unsigned long long) rq->cmd_flags);
 165
 166	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
 167	       (unsigned long long)blk_rq_pos(rq),
 168	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
 169	printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
 170	       rq->bio, rq->biotail, blk_rq_bytes(rq));
 171
 172	if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
 173		printk(KERN_INFO "  cdb: ");
 174		for (bit = 0; bit < BLK_MAX_CDB; bit++)
 175			printk("%02x ", rq->cmd[bit]);
 176		printk("\n");
 177	}
 178}
 179EXPORT_SYMBOL(blk_dump_rq_flags);
 180
 181static void blk_delay_work(struct work_struct *work)
 182{
 183	struct request_queue *q;
 184
 185	q = container_of(work, struct request_queue, delay_work.work);
 186	spin_lock_irq(q->queue_lock);
 187	__blk_run_queue(q);
 188	spin_unlock_irq(q->queue_lock);
 189}
 190
 191/**
 192 * blk_delay_queue - restart queueing after defined interval
 193 * @q:		The &struct request_queue in question
 194 * @msecs:	Delay in msecs
 195 *
 196 * Description:
 197 *   Sometimes queueing needs to be postponed for a little while, to allow
 198 *   resources to come back. This function will make sure that queueing is
 199 *   restarted around the specified time. Queue lock must be held.
 200 */
 201void blk_delay_queue(struct request_queue *q, unsigned long msecs)
 202{
 203	if (likely(!blk_queue_dead(q)))
 204		queue_delayed_work(kblockd_workqueue, &q->delay_work,
 205				   msecs_to_jiffies(msecs));
 206}
 207EXPORT_SYMBOL(blk_delay_queue);
 208
 209/**
 210 * blk_start_queue_async - asynchronously restart a previously stopped queue
 211 * @q:    The &struct request_queue in question
 212 *
 213 * Description:
 214 *   blk_start_queue_async() will clear the stop flag on the queue, and
 215 *   ensure that the request_fn for the queue is run from an async
 216 *   context.
 217 **/
 218void blk_start_queue_async(struct request_queue *q)
 219{
 220	queue_flag_clear(QUEUE_FLAG_STOPPED, q);
 221	blk_run_queue_async(q);
 222}
 223EXPORT_SYMBOL(blk_start_queue_async);
 224
 225/**
 226 * blk_start_queue - restart a previously stopped queue
 227 * @q:    The &struct request_queue in question
 228 *
 229 * Description:
 230 *   blk_start_queue() will clear the stop flag on the queue, and call
 231 *   the request_fn for the queue if it was in a stopped state when
 232 *   entered. Also see blk_stop_queue(). Queue lock must be held.
 233 **/
 234void blk_start_queue(struct request_queue *q)
 235{
 236	WARN_ON(!irqs_disabled());
 237
 238	queue_flag_clear(QUEUE_FLAG_STOPPED, q);
 239	__blk_run_queue(q);
 240}
 241EXPORT_SYMBOL(blk_start_queue);
 242
 243/**
 244 * blk_stop_queue - stop a queue
 245 * @q:    The &struct request_queue in question
 246 *
 247 * Description:
 248 *   The Linux block layer assumes that a block driver will consume all
 249 *   entries on the request queue when the request_fn strategy is called.
 250 *   Often this will not happen, because of hardware limitations (queue
 251 *   depth settings). If a device driver gets a 'queue full' response,
 252 *   or if it simply chooses not to queue more I/O at one point, it can
 253 *   call this function to prevent the request_fn from being called until
 254 *   the driver has signalled it's ready to go again. This happens by calling
 255 *   blk_start_queue() to restart queue operations. Queue lock must be held.
 256 **/
 257void blk_stop_queue(struct request_queue *q)
 258{
 259	cancel_delayed_work(&q->delay_work);
 260	queue_flag_set(QUEUE_FLAG_STOPPED, q);
 261}
 262EXPORT_SYMBOL(blk_stop_queue);
 263
 264/**
 265 * blk_sync_queue - cancel any pending callbacks on a queue
 266 * @q: the queue
 267 *
 268 * Description:
 269 *     The block layer may perform asynchronous callback activity
 270 *     on a queue, such as calling the unplug function after a timeout.
 271 *     A block device may call blk_sync_queue to ensure that any
 272 *     such activity is cancelled, thus allowing it to release resources
 273 *     that the callbacks might use. The caller must already have made sure
 274 *     that its ->make_request_fn will not re-add plugging prior to calling
 275 *     this function.
 276 *
 277 *     This function does not cancel any asynchronous activity arising
 278 *     out of elevator or throttling code. That would require elevator_exit()
 279 *     and blkcg_exit_queue() to be called with queue lock initialized.
 280 *
 281 */
 282void blk_sync_queue(struct request_queue *q)
 283{
 284	del_timer_sync(&q->timeout);
 285
 286	if (q->mq_ops) {
 287		struct blk_mq_hw_ctx *hctx;
 288		int i;
 289
 290		queue_for_each_hw_ctx(q, hctx, i) {
 291			cancel_delayed_work_sync(&hctx->run_work);
 292			cancel_delayed_work_sync(&hctx->delay_work);
 293		}
 294	} else {
 295		cancel_delayed_work_sync(&q->delay_work);
 296	}
 297}
 298EXPORT_SYMBOL(blk_sync_queue);
 299
 300/**
 301 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
 302 * @q:	The queue to run
 303 *
 304 * Description:
 305 *    Invoke request handling on a queue if there are any pending requests.
 306 *    May be used to restart request handling after a request has completed.
 307 *    This variant runs the queue whether or not the queue has been
 308 *    stopped. Must be called with the queue lock held and interrupts
 309 *    disabled. See also @blk_run_queue.
 310 */
 311inline void __blk_run_queue_uncond(struct request_queue *q)
 312{
 313	if (unlikely(blk_queue_dead(q)))
 314		return;
 315
 316	/*
 317	 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
 318	 * the queue lock internally. As a result multiple threads may be
 319	 * running such a request function concurrently. Keep track of the
 320	 * number of active request_fn invocations such that blk_drain_queue()
 321	 * can wait until all these request_fn calls have finished.
 322	 */
 323	q->request_fn_active++;
 324	q->request_fn(q);
 325	q->request_fn_active--;
 326}
 327EXPORT_SYMBOL_GPL(__blk_run_queue_uncond);
 328
 329/**
 330 * __blk_run_queue - run a single device queue
 331 * @q:	The queue to run
 332 *
 333 * Description:
 334 *    See @blk_run_queue. This variant must be called with the queue lock
 335 *    held and interrupts disabled.
 336 */
 337void __blk_run_queue(struct request_queue *q)
 338{
 339	if (unlikely(blk_queue_stopped(q)))
 340		return;
 341
 342	__blk_run_queue_uncond(q);
 
 
 
 343}
 344EXPORT_SYMBOL(__blk_run_queue);
 345
 346/**
 347 * blk_run_queue_async - run a single device queue in workqueue context
 348 * @q:	The queue to run
 349 *
 350 * Description:
 351 *    Tells kblockd to perform the equivalent of @blk_run_queue on behalf
 352 *    of us. The caller must hold the queue lock.
 353 */
 354void blk_run_queue_async(struct request_queue *q)
 355{
 356	if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
 357		mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
 358}
 359EXPORT_SYMBOL(blk_run_queue_async);
 360
 361/**
 362 * blk_run_queue - run a single device queue
 363 * @q: The queue to run
 364 *
 365 * Description:
 366 *    Invoke request handling on this queue, if it has pending work to do.
 367 *    May be used to restart queueing when a request has completed.
 368 */
 369void blk_run_queue(struct request_queue *q)
 370{
 371	unsigned long flags;
 372
 373	spin_lock_irqsave(q->queue_lock, flags);
 374	__blk_run_queue(q);
 375	spin_unlock_irqrestore(q->queue_lock, flags);
 376}
 377EXPORT_SYMBOL(blk_run_queue);
 378
 379void blk_put_queue(struct request_queue *q)
 380{
 381	kobject_put(&q->kobj);
 382}
 383EXPORT_SYMBOL(blk_put_queue);
 384
 385/**
 386 * __blk_drain_queue - drain requests from request_queue
 387 * @q: queue to drain
 388 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
 389 *
 390 * Drain requests from @q.  If @drain_all is set, all requests are drained.
 391 * If not, only ELVPRIV requests are drained.  The caller is responsible
 392 * for ensuring that no new requests which need to be drained are queued.
 393 */
 394static void __blk_drain_queue(struct request_queue *q, bool drain_all)
 395	__releases(q->queue_lock)
 396	__acquires(q->queue_lock)
 397{
 398	int i;
 399
 400	lockdep_assert_held(q->queue_lock);
 401
 402	while (true) {
 403		bool drain = false;
 404
 405		/*
 406		 * The caller might be trying to drain @q before its
 407		 * elevator is initialized.
 408		 */
 409		if (q->elevator)
 410			elv_drain_elevator(q);
 411
 412		blkcg_drain_queue(q);
 413
 414		/*
 415		 * This function might be called on a queue which failed
 416		 * driver init after queue creation or is not yet fully
 417		 * active yet.  Some drivers (e.g. fd and loop) get unhappy
 418		 * in such cases.  Kick queue iff dispatch queue has
 419		 * something on it and @q has request_fn set.
 420		 */
 421		if (!list_empty(&q->queue_head) && q->request_fn)
 422			__blk_run_queue(q);
 423
 424		drain |= q->nr_rqs_elvpriv;
 425		drain |= q->request_fn_active;
 426
 427		/*
 428		 * Unfortunately, requests are queued at and tracked from
 429		 * multiple places and there's no single counter which can
 430		 * be drained.  Check all the queues and counters.
 431		 */
 432		if (drain_all) {
 433			struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
 434			drain |= !list_empty(&q->queue_head);
 435			for (i = 0; i < 2; i++) {
 436				drain |= q->nr_rqs[i];
 437				drain |= q->in_flight[i];
 438				if (fq)
 439				    drain |= !list_empty(&fq->flush_queue[i]);
 440			}
 441		}
 442
 443		if (!drain)
 444			break;
 445
 446		spin_unlock_irq(q->queue_lock);
 447
 448		msleep(10);
 449
 450		spin_lock_irq(q->queue_lock);
 451	}
 452
 453	/*
 454	 * With queue marked dead, any woken up waiter will fail the
 455	 * allocation path, so the wakeup chaining is lost and we're
 456	 * left with hung waiters. We need to wake up those waiters.
 457	 */
 458	if (q->request_fn) {
 459		struct request_list *rl;
 460
 461		blk_queue_for_each_rl(rl, q)
 462			for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
 463				wake_up_all(&rl->wait[i]);
 464	}
 465}
 466
 467/**
 468 * blk_queue_bypass_start - enter queue bypass mode
 469 * @q: queue of interest
 470 *
 471 * In bypass mode, only the dispatch FIFO queue of @q is used.  This
 472 * function makes @q enter bypass mode and drains all requests which were
 473 * throttled or issued before.  On return, it's guaranteed that no request
 474 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
 475 * inside queue or RCU read lock.
 476 */
 477void blk_queue_bypass_start(struct request_queue *q)
 478{
 479	spin_lock_irq(q->queue_lock);
 480	q->bypass_depth++;
 481	queue_flag_set(QUEUE_FLAG_BYPASS, q);
 482	spin_unlock_irq(q->queue_lock);
 483
 484	/*
 485	 * Queues start drained.  Skip actual draining till init is
 486	 * complete.  This avoids lenghty delays during queue init which
 487	 * can happen many times during boot.
 488	 */
 489	if (blk_queue_init_done(q)) {
 490		spin_lock_irq(q->queue_lock);
 491		__blk_drain_queue(q, false);
 492		spin_unlock_irq(q->queue_lock);
 493
 494		/* ensure blk_queue_bypass() is %true inside RCU read lock */
 495		synchronize_rcu();
 496	}
 497}
 498EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
 499
 500/**
 501 * blk_queue_bypass_end - leave queue bypass mode
 502 * @q: queue of interest
 503 *
 504 * Leave bypass mode and restore the normal queueing behavior.
 505 */
 506void blk_queue_bypass_end(struct request_queue *q)
 507{
 508	spin_lock_irq(q->queue_lock);
 509	if (!--q->bypass_depth)
 510		queue_flag_clear(QUEUE_FLAG_BYPASS, q);
 511	WARN_ON_ONCE(q->bypass_depth < 0);
 512	spin_unlock_irq(q->queue_lock);
 513}
 514EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
 515
 516void blk_set_queue_dying(struct request_queue *q)
 517{
 518	queue_flag_set_unlocked(QUEUE_FLAG_DYING, q);
 519
 520	if (q->mq_ops)
 521		blk_mq_wake_waiters(q);
 522	else {
 523		struct request_list *rl;
 524
 525		blk_queue_for_each_rl(rl, q) {
 526			if (rl->rq_pool) {
 527				wake_up(&rl->wait[BLK_RW_SYNC]);
 528				wake_up(&rl->wait[BLK_RW_ASYNC]);
 529			}
 530		}
 531	}
 532}
 533EXPORT_SYMBOL_GPL(blk_set_queue_dying);
 534
 535/**
 536 * blk_cleanup_queue - shutdown a request queue
 537 * @q: request queue to shutdown
 538 *
 539 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
 540 * put it.  All future requests will be failed immediately with -ENODEV.
 
 
 541 */
 542void blk_cleanup_queue(struct request_queue *q)
 543{
 544	spinlock_t *lock = q->queue_lock;
 
 
 
 545
 546	/* mark @q DYING, no new request or merges will be allowed afterwards */
 547	mutex_lock(&q->sysfs_lock);
 548	blk_set_queue_dying(q);
 549	spin_lock_irq(lock);
 550
 551	/*
 552	 * A dying queue is permanently in bypass mode till released.  Note
 553	 * that, unlike blk_queue_bypass_start(), we aren't performing
 554	 * synchronize_rcu() after entering bypass mode to avoid the delay
 555	 * as some drivers create and destroy a lot of queues while
 556	 * probing.  This is still safe because blk_release_queue() will be
 557	 * called only after the queue refcnt drops to zero and nothing,
 558	 * RCU or not, would be traversing the queue by then.
 559	 */
 560	q->bypass_depth++;
 561	queue_flag_set(QUEUE_FLAG_BYPASS, q);
 562
 563	queue_flag_set(QUEUE_FLAG_NOMERGES, q);
 564	queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
 565	queue_flag_set(QUEUE_FLAG_DYING, q);
 566	spin_unlock_irq(lock);
 567	mutex_unlock(&q->sysfs_lock);
 568
 569	/*
 570	 * Drain all requests queued before DYING marking. Set DEAD flag to
 571	 * prevent that q->request_fn() gets invoked after draining finished.
 
 572	 */
 573	blk_freeze_queue(q);
 574	spin_lock_irq(lock);
 575	if (!q->mq_ops)
 576		__blk_drain_queue(q, true);
 577	queue_flag_set(QUEUE_FLAG_DEAD, q);
 578	spin_unlock_irq(lock);
 579
 580	/* for synchronous bio-based driver finish in-flight integrity i/o */
 581	blk_flush_integrity();
 582
 583	/* @q won't process any more request, flush async actions */
 584	del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
 585	blk_sync_queue(q);
 586
 587	if (q->mq_ops)
 588		blk_mq_free_queue(q);
 589	percpu_ref_exit(&q->q_usage_counter);
 590
 591	spin_lock_irq(lock);
 592	if (q->queue_lock != &q->__queue_lock)
 593		q->queue_lock = &q->__queue_lock;
 594	spin_unlock_irq(lock);
 
 
 
 
 
 
 
 
 595
 596	bdi_unregister(&q->backing_dev_info);
 597
 598	/* @q is and will stay empty, shutdown and put */
 599	blk_put_queue(q);
 600}
 601EXPORT_SYMBOL(blk_cleanup_queue);
 602
 603/* Allocate memory local to the request queue */
 604static void *alloc_request_struct(gfp_t gfp_mask, void *data)
 605{
 606	int nid = (int)(long)data;
 607	return kmem_cache_alloc_node(request_cachep, gfp_mask, nid);
 608}
 609
 610static void free_request_struct(void *element, void *unused)
 611{
 612	kmem_cache_free(request_cachep, element);
 613}
 614
 615int blk_init_rl(struct request_list *rl, struct request_queue *q,
 616		gfp_t gfp_mask)
 617{
 618	if (unlikely(rl->rq_pool))
 619		return 0;
 620
 621	rl->q = q;
 622	rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
 623	rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
 624	init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
 625	init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
 
 
 
 
 
 
 
 
 
 626
 627	rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, alloc_request_struct,
 628					  free_request_struct,
 629					  (void *)(long)q->node, gfp_mask,
 630					  q->node);
 631	if (!rl->rq_pool)
 632		return -ENOMEM;
 633
 634	return 0;
 635}
 636
 637void blk_exit_rl(struct request_list *rl)
 638{
 639	if (rl->rq_pool)
 640		mempool_destroy(rl->rq_pool);
 641}
 
 
 
 642
 643struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
 644{
 645	return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
 
 
 
 
 
 646}
 647EXPORT_SYMBOL(blk_alloc_queue);
 648
 649int blk_queue_enter(struct request_queue *q, bool nowait)
 650{
 651	while (true) {
 652		int ret;
 653
 654		if (percpu_ref_tryget_live(&q->q_usage_counter))
 655			return 0;
 656
 657		if (nowait)
 658			return -EBUSY;
 659
 660		ret = wait_event_interruptible(q->mq_freeze_wq,
 661				!atomic_read(&q->mq_freeze_depth) ||
 662				blk_queue_dying(q));
 663		if (blk_queue_dying(q))
 664			return -ENODEV;
 665		if (ret)
 666			return ret;
 667	}
 
 
 668}
 669
 670void blk_queue_exit(struct request_queue *q)
 671{
 672	percpu_ref_put(&q->q_usage_counter);
 673}
 674
 675static void blk_queue_usage_counter_release(struct percpu_ref *ref)
 676{
 677	struct request_queue *q =
 678		container_of(ref, struct request_queue, q_usage_counter);
 679
 680	wake_up_all(&q->mq_freeze_wq);
 681}
 682
 683static void blk_rq_timed_out_timer(unsigned long data)
 684{
 685	struct request_queue *q = (struct request_queue *)data;
 686
 687	kblockd_schedule_work(&q->timeout_work);
 688}
 689
 690struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
 
 
 
 
 691{
 692	struct request_queue *q;
 693	int err;
 694
 695	q = kmem_cache_alloc_node(blk_requestq_cachep,
 696				gfp_mask | __GFP_ZERO, node_id);
 697	if (!q)
 698		return NULL;
 699
 700	q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
 
 
 701	if (q->id < 0)
 702		goto fail_q;
 703
 704	q->bio_split = bioset_create(BIO_POOL_SIZE, 0);
 705	if (!q->bio_split)
 706		goto fail_id;
 707
 708	q->backing_dev_info.ra_pages =
 709			(VM_MAX_READAHEAD * 1024) / PAGE_SIZE;
 710	q->backing_dev_info.capabilities = BDI_CAP_CGROUP_WRITEBACK;
 711	q->backing_dev_info.name = "block";
 712	q->node = node_id;
 713
 714	err = bdi_init(&q->backing_dev_info);
 715	if (err)
 716		goto fail_split;
 717
 718	setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
 719		    laptop_mode_timer_fn, (unsigned long) q);
 720	setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
 721	INIT_LIST_HEAD(&q->queue_head);
 722	INIT_LIST_HEAD(&q->timeout_list);
 
 
 
 
 
 
 
 
 723	INIT_LIST_HEAD(&q->icq_list);
 724#ifdef CONFIG_BLK_CGROUP
 725	INIT_LIST_HEAD(&q->blkg_list);
 726#endif
 727	INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
 728
 729	kobject_init(&q->kobj, &blk_queue_ktype);
 730
 
 731	mutex_init(&q->sysfs_lock);
 732	spin_lock_init(&q->__queue_lock);
 733
 734	/*
 735	 * By default initialize queue_lock to internal lock and driver can
 736	 * override it later if need be.
 737	 */
 738	q->queue_lock = &q->__queue_lock;
 739
 740	/*
 741	 * A queue starts its life with bypass turned on to avoid
 742	 * unnecessary bypass on/off overhead and nasty surprises during
 743	 * init.  The initial bypass will be finished when the queue is
 744	 * registered by blk_register_queue().
 745	 */
 746	q->bypass_depth = 1;
 747	__set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
 748
 749	init_waitqueue_head(&q->mq_freeze_wq);
 
 750
 751	/*
 752	 * Init percpu_ref in atomic mode so that it's faster to shutdown.
 753	 * See blk_register_queue() for details.
 754	 */
 755	if (percpu_ref_init(&q->q_usage_counter,
 756				blk_queue_usage_counter_release,
 757				PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
 758		goto fail_bdi;
 759
 760	if (blkcg_init_queue(q))
 761		goto fail_ref;
 762
 
 
 
 
 763	return q;
 764
 765fail_ref:
 766	percpu_ref_exit(&q->q_usage_counter);
 767fail_bdi:
 768	bdi_destroy(&q->backing_dev_info);
 
 
 769fail_split:
 770	bioset_free(q->bio_split);
 771fail_id:
 772	ida_simple_remove(&blk_queue_ida, q->id);
 773fail_q:
 774	kmem_cache_free(blk_requestq_cachep, q);
 775	return NULL;
 776}
 777EXPORT_SYMBOL(blk_alloc_queue_node);
 778
 779/**
 780 * blk_init_queue  - prepare a request queue for use with a block device
 781 * @rfn:  The function to be called to process requests that have been
 782 *        placed on the queue.
 783 * @lock: Request queue spin lock
 784 *
 785 * Description:
 786 *    If a block device wishes to use the standard request handling procedures,
 787 *    which sorts requests and coalesces adjacent requests, then it must
 788 *    call blk_init_queue().  The function @rfn will be called when there
 789 *    are requests on the queue that need to be processed.  If the device
 790 *    supports plugging, then @rfn may not be called immediately when requests
 791 *    are available on the queue, but may be called at some time later instead.
 792 *    Plugged queues are generally unplugged when a buffer belonging to one
 793 *    of the requests on the queue is needed, or due to memory pressure.
 794 *
 795 *    @rfn is not required, or even expected, to remove all requests off the
 796 *    queue, but only as many as it can handle at a time.  If it does leave
 797 *    requests on the queue, it is responsible for arranging that the requests
 798 *    get dealt with eventually.
 799 *
 800 *    The queue spin lock must be held while manipulating the requests on the
 801 *    request queue; this lock will be taken also from interrupt context, so irq
 802 *    disabling is needed for it.
 803 *
 804 *    Function returns a pointer to the initialized request queue, or %NULL if
 805 *    it didn't succeed.
 806 *
 807 * Note:
 808 *    blk_init_queue() must be paired with a blk_cleanup_queue() call
 809 *    when the block device is deactivated (such as at module unload).
 810 **/
 811
 812struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
 813{
 814	return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
 815}
 816EXPORT_SYMBOL(blk_init_queue);
 817
 818struct request_queue *
 819blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
 820{
 821	struct request_queue *uninit_q, *q;
 822
 823	uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
 824	if (!uninit_q)
 825		return NULL;
 826
 827	q = blk_init_allocated_queue(uninit_q, rfn, lock);
 828	if (!q)
 829		blk_cleanup_queue(uninit_q);
 830
 831	return q;
 832}
 833EXPORT_SYMBOL(blk_init_queue_node);
 834
 835static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio);
 836
 837struct request_queue *
 838blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
 839			 spinlock_t *lock)
 840{
 841	if (!q)
 842		return NULL;
 843
 844	q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, 0);
 845	if (!q->fq)
 846		return NULL;
 847
 848	if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
 849		goto fail;
 850
 851	INIT_WORK(&q->timeout_work, blk_timeout_work);
 852	q->request_fn		= rfn;
 853	q->prep_rq_fn		= NULL;
 854	q->unprep_rq_fn		= NULL;
 855	q->queue_flags		|= QUEUE_FLAG_DEFAULT;
 856
 857	/* Override internal queue lock with supplied lock pointer */
 858	if (lock)
 859		q->queue_lock		= lock;
 860
 861	/*
 862	 * This also sets hw/phys segments, boundary and size
 863	 */
 864	blk_queue_make_request(q, blk_queue_bio);
 865
 866	q->sg_reserved_size = INT_MAX;
 867
 868	/* Protect q->elevator from elevator_change */
 869	mutex_lock(&q->sysfs_lock);
 870
 871	/* init elevator */
 872	if (elevator_init(q, NULL)) {
 873		mutex_unlock(&q->sysfs_lock);
 874		goto fail;
 875	}
 876
 877	mutex_unlock(&q->sysfs_lock);
 878
 879	return q;
 880
 881fail:
 882	blk_free_flush_queue(q->fq);
 883	return NULL;
 884}
 885EXPORT_SYMBOL(blk_init_allocated_queue);
 886
 887bool blk_get_queue(struct request_queue *q)
 888{
 889	if (likely(!blk_queue_dying(q))) {
 890		__blk_get_queue(q);
 891		return true;
 892	}
 893
 894	return false;
 895}
 896EXPORT_SYMBOL(blk_get_queue);
 897
 898static inline void blk_free_request(struct request_list *rl, struct request *rq)
 899{
 900	if (rq->cmd_flags & REQ_ELVPRIV) {
 901		elv_put_request(rl->q, rq);
 902		if (rq->elv.icq)
 903			put_io_context(rq->elv.icq->ioc);
 904	}
 905
 906	mempool_free(rq, rl->rq_pool);
 907}
 908
 909/*
 910 * ioc_batching returns true if the ioc is a valid batching request and
 911 * should be given priority access to a request.
 912 */
 913static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
 914{
 915	if (!ioc)
 916		return 0;
 917
 918	/*
 919	 * Make sure the process is able to allocate at least 1 request
 920	 * even if the batch times out, otherwise we could theoretically
 921	 * lose wakeups.
 922	 */
 923	return ioc->nr_batch_requests == q->nr_batching ||
 924		(ioc->nr_batch_requests > 0
 925		&& time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
 926}
 927
 928/*
 929 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
 930 * will cause the process to be a "batcher" on all queues in the system. This
 931 * is the behaviour we want though - once it gets a wakeup it should be given
 932 * a nice run.
 933 */
 934static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
 935{
 936	if (!ioc || ioc_batching(q, ioc))
 937		return;
 938
 939	ioc->nr_batch_requests = q->nr_batching;
 940	ioc->last_waited = jiffies;
 941}
 942
 943static void __freed_request(struct request_list *rl, int sync)
 944{
 945	struct request_queue *q = rl->q;
 946
 947	if (rl->count[sync] < queue_congestion_off_threshold(q))
 948		blk_clear_congested(rl, sync);
 949
 950	if (rl->count[sync] + 1 <= q->nr_requests) {
 951		if (waitqueue_active(&rl->wait[sync]))
 952			wake_up(&rl->wait[sync]);
 953
 954		blk_clear_rl_full(rl, sync);
 955	}
 956}
 957
 958/*
 959 * A request has just been released.  Account for it, update the full and
 960 * congestion status, wake up any waiters.   Called under q->queue_lock.
 961 */
 962static void freed_request(struct request_list *rl, unsigned int flags)
 963{
 964	struct request_queue *q = rl->q;
 965	int sync = rw_is_sync(flags);
 966
 967	q->nr_rqs[sync]--;
 968	rl->count[sync]--;
 969	if (flags & REQ_ELVPRIV)
 970		q->nr_rqs_elvpriv--;
 971
 972	__freed_request(rl, sync);
 973
 974	if (unlikely(rl->starved[sync ^ 1]))
 975		__freed_request(rl, sync ^ 1);
 976}
 977
 978int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
 979{
 980	struct request_list *rl;
 981	int on_thresh, off_thresh;
 982
 983	spin_lock_irq(q->queue_lock);
 984	q->nr_requests = nr;
 985	blk_queue_congestion_threshold(q);
 986	on_thresh = queue_congestion_on_threshold(q);
 987	off_thresh = queue_congestion_off_threshold(q);
 988
 989	blk_queue_for_each_rl(rl, q) {
 990		if (rl->count[BLK_RW_SYNC] >= on_thresh)
 991			blk_set_congested(rl, BLK_RW_SYNC);
 992		else if (rl->count[BLK_RW_SYNC] < off_thresh)
 993			blk_clear_congested(rl, BLK_RW_SYNC);
 994
 995		if (rl->count[BLK_RW_ASYNC] >= on_thresh)
 996			blk_set_congested(rl, BLK_RW_ASYNC);
 997		else if (rl->count[BLK_RW_ASYNC] < off_thresh)
 998			blk_clear_congested(rl, BLK_RW_ASYNC);
 999
1000		if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
1001			blk_set_rl_full(rl, BLK_RW_SYNC);
1002		} else {
1003			blk_clear_rl_full(rl, BLK_RW_SYNC);
1004			wake_up(&rl->wait[BLK_RW_SYNC]);
1005		}
1006
1007		if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
1008			blk_set_rl_full(rl, BLK_RW_ASYNC);
1009		} else {
1010			blk_clear_rl_full(rl, BLK_RW_ASYNC);
1011			wake_up(&rl->wait[BLK_RW_ASYNC]);
1012		}
1013	}
1014
1015	spin_unlock_irq(q->queue_lock);
1016	return 0;
1017}
1018
1019/*
1020 * Determine if elevator data should be initialized when allocating the
1021 * request associated with @bio.
1022 */
1023static bool blk_rq_should_init_elevator(struct bio *bio)
1024{
1025	if (!bio)
1026		return true;
1027
1028	/*
1029	 * Flush requests do not use the elevator so skip initialization.
1030	 * This allows a request to share the flush and elevator data.
1031	 */
1032	if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
1033		return false;
1034
1035	return true;
1036}
1037
1038/**
1039 * rq_ioc - determine io_context for request allocation
1040 * @bio: request being allocated is for this bio (can be %NULL)
1041 *
1042 * Determine io_context to use for request allocation for @bio.  May return
1043 * %NULL if %current->io_context doesn't exist.
1044 */
1045static struct io_context *rq_ioc(struct bio *bio)
 
1046{
1047#ifdef CONFIG_BLK_CGROUP
1048	if (bio && bio->bi_ioc)
1049		return bio->bi_ioc;
1050#endif
1051	return current->io_context;
1052}
1053
1054/**
1055 * __get_request - get a free request
1056 * @rl: request list to allocate from
1057 * @rw_flags: RW and SYNC flags
1058 * @bio: bio to allocate request for (can be %NULL)
1059 * @gfp_mask: allocation mask
1060 *
1061 * Get a free request from @q.  This function may fail under memory
1062 * pressure or if @q is dead.
1063 *
1064 * Must be called with @q->queue_lock held and,
1065 * Returns ERR_PTR on failure, with @q->queue_lock held.
1066 * Returns request pointer on success, with @q->queue_lock *not held*.
1067 */
1068static struct request *__get_request(struct request_list *rl, int rw_flags,
1069				     struct bio *bio, gfp_t gfp_mask)
1070{
1071	struct request_queue *q = rl->q;
1072	struct request *rq;
1073	struct elevator_type *et = q->elevator->type;
1074	struct io_context *ioc = rq_ioc(bio);
1075	struct io_cq *icq = NULL;
1076	const bool is_sync = rw_is_sync(rw_flags) != 0;
1077	int may_queue;
1078
1079	if (unlikely(blk_queue_dying(q)))
1080		return ERR_PTR(-ENODEV);
1081
1082	may_queue = elv_may_queue(q, rw_flags);
1083	if (may_queue == ELV_MQUEUE_NO)
1084		goto rq_starved;
1085
1086	if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
1087		if (rl->count[is_sync]+1 >= q->nr_requests) {
1088			/*
1089			 * The queue will fill after this allocation, so set
1090			 * it as full, and mark this process as "batching".
1091			 * This process will be allowed to complete a batch of
1092			 * requests, others will be blocked.
1093			 */
1094			if (!blk_rl_full(rl, is_sync)) {
1095				ioc_set_batching(q, ioc);
1096				blk_set_rl_full(rl, is_sync);
1097			} else {
1098				if (may_queue != ELV_MQUEUE_MUST
1099						&& !ioc_batching(q, ioc)) {
1100					/*
1101					 * The queue is full and the allocating
1102					 * process is not a "batcher", and not
1103					 * exempted by the IO scheduler
1104					 */
1105					return ERR_PTR(-ENOMEM);
1106				}
1107			}
1108		}
1109		blk_set_congested(rl, is_sync);
1110	}
1111
1112	/*
1113	 * Only allow batching queuers to allocate up to 50% over the defined
1114	 * limit of requests, otherwise we could have thousands of requests
1115	 * allocated with any setting of ->nr_requests
1116	 */
1117	if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
1118		return ERR_PTR(-ENOMEM);
1119
1120	q->nr_rqs[is_sync]++;
1121	rl->count[is_sync]++;
1122	rl->starved[is_sync] = 0;
1123
1124	/*
1125	 * Decide whether the new request will be managed by elevator.  If
1126	 * so, mark @rw_flags and increment elvpriv.  Non-zero elvpriv will
1127	 * prevent the current elevator from being destroyed until the new
1128	 * request is freed.  This guarantees icq's won't be destroyed and
1129	 * makes creating new ones safe.
1130	 *
1131	 * Also, lookup icq while holding queue_lock.  If it doesn't exist,
1132	 * it will be created after releasing queue_lock.
1133	 */
1134	if (blk_rq_should_init_elevator(bio) && !blk_queue_bypass(q)) {
1135		rw_flags |= REQ_ELVPRIV;
1136		q->nr_rqs_elvpriv++;
1137		if (et->icq_cache && ioc)
1138			icq = ioc_lookup_icq(ioc, q);
1139	}
1140
1141	if (blk_queue_io_stat(q))
1142		rw_flags |= REQ_IO_STAT;
1143	spin_unlock_irq(q->queue_lock);
1144
1145	/* allocate and init request */
1146	rq = mempool_alloc(rl->rq_pool, gfp_mask);
1147	if (!rq)
1148		goto fail_alloc;
1149
1150	blk_rq_init(q, rq);
1151	blk_rq_set_rl(rq, rl);
1152	rq->cmd_flags = rw_flags | REQ_ALLOCED;
1153
1154	/* init elvpriv */
1155	if (rw_flags & REQ_ELVPRIV) {
1156		if (unlikely(et->icq_cache && !icq)) {
1157			if (ioc)
1158				icq = ioc_create_icq(ioc, q, gfp_mask);
1159			if (!icq)
1160				goto fail_elvpriv;
1161		}
1162
1163		rq->elv.icq = icq;
1164		if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1165			goto fail_elvpriv;
1166
1167		/* @rq->elv.icq holds io_context until @rq is freed */
1168		if (icq)
1169			get_io_context(icq->ioc);
1170	}
1171out:
1172	/*
1173	 * ioc may be NULL here, and ioc_batching will be false. That's
1174	 * OK, if the queue is under the request limit then requests need
1175	 * not count toward the nr_batch_requests limit. There will always
1176	 * be some limit enforced by BLK_BATCH_TIME.
1177	 */
1178	if (ioc_batching(q, ioc))
1179		ioc->nr_batch_requests--;
1180
1181	trace_block_getrq(q, bio, rw_flags & 1);
1182	return rq;
1183
1184fail_elvpriv:
1185	/*
1186	 * elvpriv init failed.  ioc, icq and elvpriv aren't mempool backed
1187	 * and may fail indefinitely under memory pressure and thus
1188	 * shouldn't stall IO.  Treat this request as !elvpriv.  This will
1189	 * disturb iosched and blkcg but weird is bettern than dead.
1190	 */
1191	printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
1192			   __func__, dev_name(q->backing_dev_info.dev));
1193
1194	rq->cmd_flags &= ~REQ_ELVPRIV;
1195	rq->elv.icq = NULL;
1196
1197	spin_lock_irq(q->queue_lock);
1198	q->nr_rqs_elvpriv--;
1199	spin_unlock_irq(q->queue_lock);
1200	goto out;
1201
1202fail_alloc:
1203	/*
1204	 * Allocation failed presumably due to memory. Undo anything we
1205	 * might have messed up.
1206	 *
1207	 * Allocating task should really be put onto the front of the wait
1208	 * queue, but this is pretty rare.
1209	 */
1210	spin_lock_irq(q->queue_lock);
1211	freed_request(rl, rw_flags);
1212
1213	/*
1214	 * in the very unlikely event that allocation failed and no
1215	 * requests for this direction was pending, mark us starved so that
1216	 * freeing of a request in the other direction will notice
1217	 * us. another possible fix would be to split the rq mempool into
1218	 * READ and WRITE
1219	 */
1220rq_starved:
1221	if (unlikely(rl->count[is_sync] == 0))
1222		rl->starved[is_sync] = 1;
1223	return ERR_PTR(-ENOMEM);
1224}
1225
1226/**
1227 * get_request - get a free request
1228 * @q: request_queue to allocate request from
1229 * @rw_flags: RW and SYNC flags
1230 * @bio: bio to allocate request for (can be %NULL)
1231 * @gfp_mask: allocation mask
1232 *
1233 * Get a free request from @q.  If %__GFP_DIRECT_RECLAIM is set in @gfp_mask,
1234 * this function keeps retrying under memory pressure and fails iff @q is dead.
1235 *
1236 * Must be called with @q->queue_lock held and,
1237 * Returns ERR_PTR on failure, with @q->queue_lock held.
1238 * Returns request pointer on success, with @q->queue_lock *not held*.
1239 */
1240static struct request *get_request(struct request_queue *q, int rw_flags,
1241				   struct bio *bio, gfp_t gfp_mask)
1242{
1243	const bool is_sync = rw_is_sync(rw_flags) != 0;
1244	DEFINE_WAIT(wait);
1245	struct request_list *rl;
1246	struct request *rq;
1247
1248	rl = blk_get_rl(q, bio);	/* transferred to @rq on success */
1249retry:
1250	rq = __get_request(rl, rw_flags, bio, gfp_mask);
1251	if (!IS_ERR(rq))
1252		return rq;
1253
1254	if (!gfpflags_allow_blocking(gfp_mask) || unlikely(blk_queue_dying(q))) {
1255		blk_put_rl(rl);
1256		return rq;
1257	}
1258
1259	/* wait on @rl and retry */
1260	prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1261				  TASK_UNINTERRUPTIBLE);
1262
1263	trace_block_sleeprq(q, bio, rw_flags & 1);
1264
1265	spin_unlock_irq(q->queue_lock);
1266	io_schedule();
1267
1268	/*
1269	 * After sleeping, we become a "batching" process and will be able
1270	 * to allocate at least one request, and up to a big batch of them
1271	 * for a small period time.  See ioc_batching, ioc_set_batching
1272	 */
1273	ioc_set_batching(q, current->io_context);
1274
1275	spin_lock_irq(q->queue_lock);
1276	finish_wait(&rl->wait[is_sync], &wait);
1277
1278	goto retry;
1279}
1280
1281static struct request *blk_old_get_request(struct request_queue *q, int rw,
1282		gfp_t gfp_mask)
1283{
1284	struct request *rq;
1285
1286	BUG_ON(rw != READ && rw != WRITE);
1287
1288	/* create ioc upfront */
1289	create_io_context(gfp_mask, q->node);
1290
1291	spin_lock_irq(q->queue_lock);
1292	rq = get_request(q, rw, NULL, gfp_mask);
1293	if (IS_ERR(rq))
1294		spin_unlock_irq(q->queue_lock);
1295	/* q->queue_lock is unlocked at this point */
1296
1297	return rq;
1298}
1299
1300struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1301{
1302	if (q->mq_ops)
1303		return blk_mq_alloc_request(q, rw,
1304			(gfp_mask & __GFP_DIRECT_RECLAIM) ?
1305				0 : BLK_MQ_REQ_NOWAIT);
1306	else
1307		return blk_old_get_request(q, rw, gfp_mask);
1308}
1309EXPORT_SYMBOL(blk_get_request);
1310
1311/**
1312 * blk_make_request - given a bio, allocate a corresponding struct request.
1313 * @q: target request queue
1314 * @bio:  The bio describing the memory mappings that will be submitted for IO.
1315 *        It may be a chained-bio properly constructed by block/bio layer.
1316 * @gfp_mask: gfp flags to be used for memory allocation
1317 *
1318 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
1319 * type commands. Where the struct request needs to be farther initialized by
1320 * the caller. It is passed a &struct bio, which describes the memory info of
1321 * the I/O transfer.
1322 *
1323 * The caller of blk_make_request must make sure that bi_io_vec
1324 * are set to describe the memory buffers. That bio_data_dir() will return
1325 * the needed direction of the request. (And all bio's in the passed bio-chain
1326 * are properly set accordingly)
1327 *
1328 * If called under none-sleepable conditions, mapped bio buffers must not
1329 * need bouncing, by calling the appropriate masked or flagged allocator,
1330 * suitable for the target device. Otherwise the call to blk_queue_bounce will
1331 * BUG.
1332 *
1333 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
1334 * given to how you allocate bios. In particular, you cannot use
1335 * __GFP_DIRECT_RECLAIM for anything but the first bio in the chain. Otherwise
1336 * you risk waiting for IO completion of a bio that hasn't been submitted yet,
1337 * thus resulting in a deadlock. Alternatively bios should be allocated using
1338 * bio_kmalloc() instead of bio_alloc(), as that avoids the mempool deadlock.
1339 * If possible a big IO should be split into smaller parts when allocation
1340 * fails. Partial allocation should not be an error, or you risk a live-lock.
1341 */
1342struct request *blk_make_request(struct request_queue *q, struct bio *bio,
1343				 gfp_t gfp_mask)
1344{
1345	struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
1346
1347	if (IS_ERR(rq))
1348		return rq;
1349
1350	blk_rq_set_block_pc(rq);
1351
1352	for_each_bio(bio) {
1353		struct bio *bounce_bio = bio;
1354		int ret;
1355
1356		blk_queue_bounce(q, &bounce_bio);
1357		ret = blk_rq_append_bio(q, rq, bounce_bio);
1358		if (unlikely(ret)) {
1359			blk_put_request(rq);
1360			return ERR_PTR(ret);
1361		}
1362	}
1363
1364	return rq;
1365}
1366EXPORT_SYMBOL(blk_make_request);
1367
1368/**
1369 * blk_rq_set_block_pc - initialize a request to type BLOCK_PC
1370 * @rq:		request to be initialized
1371 *
1372 */
1373void blk_rq_set_block_pc(struct request *rq)
1374{
1375	rq->cmd_type = REQ_TYPE_BLOCK_PC;
1376	rq->__data_len = 0;
1377	rq->__sector = (sector_t) -1;
1378	rq->bio = rq->biotail = NULL;
1379	memset(rq->__cmd, 0, sizeof(rq->__cmd));
1380}
1381EXPORT_SYMBOL(blk_rq_set_block_pc);
1382
1383/**
1384 * blk_requeue_request - put a request back on queue
1385 * @q:		request queue where request should be inserted
1386 * @rq:		request to be inserted
1387 *
1388 * Description:
1389 *    Drivers often keep queueing requests until the hardware cannot accept
1390 *    more, when that condition happens we need to put the request back
1391 *    on the queue. Must be called with queue lock held.
1392 */
1393void blk_requeue_request(struct request_queue *q, struct request *rq)
1394{
1395	blk_delete_timer(rq);
1396	blk_clear_rq_complete(rq);
1397	trace_block_rq_requeue(q, rq);
1398
1399	if (rq->cmd_flags & REQ_QUEUED)
1400		blk_queue_end_tag(q, rq);
1401
1402	BUG_ON(blk_queued_rq(rq));
1403
1404	elv_requeue_request(q, rq);
1405}
1406EXPORT_SYMBOL(blk_requeue_request);
1407
1408static void add_acct_request(struct request_queue *q, struct request *rq,
1409			     int where)
1410{
1411	blk_account_io_start(rq, true);
1412	__elv_add_request(q, rq, where);
1413}
1414
1415static void part_round_stats_single(int cpu, struct hd_struct *part,
1416				    unsigned long now)
1417{
1418	int inflight;
1419
1420	if (now == part->stamp)
1421		return;
1422
1423	inflight = part_in_flight(part);
1424	if (inflight) {
1425		__part_stat_add(cpu, part, time_in_queue,
1426				inflight * (now - part->stamp));
1427		__part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1428	}
1429	part->stamp = now;
1430}
1431
1432/**
1433 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1434 * @cpu: cpu number for stats access
1435 * @part: target partition
1436 *
1437 * The average IO queue length and utilisation statistics are maintained
1438 * by observing the current state of the queue length and the amount of
1439 * time it has been in this state for.
1440 *
1441 * Normally, that accounting is done on IO completion, but that can result
1442 * in more than a second's worth of IO being accounted for within any one
1443 * second, leading to >100% utilisation.  To deal with that, we call this
1444 * function to do a round-off before returning the results when reading
1445 * /proc/diskstats.  This accounts immediately for all queue usage up to
1446 * the current jiffies and restarts the counters again.
1447 */
1448void part_round_stats(int cpu, struct hd_struct *part)
1449{
1450	unsigned long now = jiffies;
1451
1452	if (part->partno)
1453		part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1454	part_round_stats_single(cpu, part, now);
1455}
1456EXPORT_SYMBOL_GPL(part_round_stats);
1457
1458#ifdef CONFIG_PM
1459static void blk_pm_put_request(struct request *rq)
1460{
1461	if (rq->q->dev && !(rq->cmd_flags & REQ_PM) && !--rq->q->nr_pending)
1462		pm_runtime_mark_last_busy(rq->q->dev);
1463}
1464#else
1465static inline void blk_pm_put_request(struct request *rq) {}
1466#endif
1467
1468/*
1469 * queue lock must be held
1470 */
1471void __blk_put_request(struct request_queue *q, struct request *req)
1472{
1473	if (unlikely(!q))
1474		return;
1475
1476	if (q->mq_ops) {
1477		blk_mq_free_request(req);
1478		return;
1479	}
1480
1481	blk_pm_put_request(req);
1482
1483	elv_completed_request(q, req);
1484
1485	/* this is a bio leak */
1486	WARN_ON(req->bio != NULL);
1487
1488	/*
1489	 * Request may not have originated from ll_rw_blk. if not,
1490	 * it didn't come out of our reserved rq pools
1491	 */
1492	if (req->cmd_flags & REQ_ALLOCED) {
1493		unsigned int flags = req->cmd_flags;
1494		struct request_list *rl = blk_rq_rl(req);
1495
1496		BUG_ON(!list_empty(&req->queuelist));
1497		BUG_ON(ELV_ON_HASH(req));
1498
1499		blk_free_request(rl, req);
1500		freed_request(rl, flags);
1501		blk_put_rl(rl);
1502	}
1503}
1504EXPORT_SYMBOL_GPL(__blk_put_request);
1505
1506void blk_put_request(struct request *req)
1507{
1508	struct request_queue *q = req->q;
1509
1510	if (q->mq_ops)
1511		blk_mq_free_request(req);
1512	else {
1513		unsigned long flags;
1514
1515		spin_lock_irqsave(q->queue_lock, flags);
1516		__blk_put_request(q, req);
1517		spin_unlock_irqrestore(q->queue_lock, flags);
1518	}
1519}
1520EXPORT_SYMBOL(blk_put_request);
1521
1522/**
1523 * blk_add_request_payload - add a payload to a request
1524 * @rq: request to update
1525 * @page: page backing the payload
1526 * @len: length of the payload.
1527 *
1528 * This allows to later add a payload to an already submitted request by
1529 * a block driver.  The driver needs to take care of freeing the payload
1530 * itself.
1531 *
1532 * Note that this is a quite horrible hack and nothing but handling of
1533 * discard requests should ever use it.
1534 */
1535void blk_add_request_payload(struct request *rq, struct page *page,
1536		unsigned int len)
1537{
1538	struct bio *bio = rq->bio;
1539
1540	bio->bi_io_vec->bv_page = page;
1541	bio->bi_io_vec->bv_offset = 0;
1542	bio->bi_io_vec->bv_len = len;
1543
1544	bio->bi_iter.bi_size = len;
1545	bio->bi_vcnt = 1;
1546	bio->bi_phys_segments = 1;
1547
1548	rq->__data_len = rq->resid_len = len;
1549	rq->nr_phys_segments = 1;
 
1550}
1551EXPORT_SYMBOL_GPL(blk_add_request_payload);
1552
1553bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1554			    struct bio *bio)
1555{
1556	const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1557
1558	if (!ll_back_merge_fn(q, req, bio))
1559		return false;
1560
1561	trace_block_bio_backmerge(q, req, bio);
 
1562
1563	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1564		blk_rq_set_mixed_merge(req);
1565
1566	req->biotail->bi_next = bio;
1567	req->biotail = bio;
1568	req->__data_len += bio->bi_iter.bi_size;
1569	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1570
1571	blk_account_io_start(req, false);
 
 
1572	return true;
1573}
1574
1575bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1576			     struct bio *bio)
1577{
1578	const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1579
1580	if (!ll_front_merge_fn(q, req, bio))
1581		return false;
1582
1583	trace_block_bio_frontmerge(q, req, bio);
 
1584
1585	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1586		blk_rq_set_mixed_merge(req);
1587
1588	bio->bi_next = req->bio;
1589	req->bio = bio;
1590
1591	req->__sector = bio->bi_iter.bi_sector;
1592	req->__data_len += bio->bi_iter.bi_size;
1593	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1594
1595	blk_account_io_start(req, false);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1596	return true;
 
 
 
1597}
1598
1599/**
1600 * blk_attempt_plug_merge - try to merge with %current's plugged list
1601 * @q: request_queue new bio is being queued at
1602 * @bio: new bio being queued
1603 * @request_count: out parameter for number of traversed plugged requests
1604 * @same_queue_rq: pointer to &struct request that gets filled in when
1605 * another request associated with @q is found on the plug list
1606 * (optional, may be %NULL)
1607 *
1608 * Determine whether @bio being queued on @q can be merged with a request
1609 * on %current's plugged list.  Returns %true if merge was successful,
1610 * otherwise %false.
1611 *
1612 * Plugging coalesces IOs from the same issuer for the same purpose without
1613 * going through @q->queue_lock.  As such it's more of an issuing mechanism
1614 * than scheduling, and the request, while may have elvpriv data, is not
1615 * added on the elevator at this point.  In addition, we don't have
1616 * reliable access to the elevator outside queue lock.  Only check basic
1617 * merging parameters without querying the elevator.
1618 *
1619 * Caller must ensure !blk_queue_nomerges(q) beforehand.
1620 */
1621bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1622			    unsigned int *request_count,
1623			    struct request **same_queue_rq)
1624{
1625	struct blk_plug *plug;
1626	struct request *rq;
1627	bool ret = false;
1628	struct list_head *plug_list;
1629
1630	plug = current->plug;
1631	if (!plug)
1632		goto out;
1633	*request_count = 0;
1634
1635	if (q->mq_ops)
1636		plug_list = &plug->mq_list;
1637	else
1638		plug_list = &plug->list;
1639
1640	list_for_each_entry_reverse(rq, plug_list, queuelist) {
1641		int el_ret;
1642
1643		if (rq->q == q) {
1644			(*request_count)++;
1645			/*
1646			 * Only blk-mq multiple hardware queues case checks the
1647			 * rq in the same queue, there should be only one such
1648			 * rq in a queue
1649			 **/
1650			if (same_queue_rq)
1651				*same_queue_rq = rq;
1652		}
1653
1654		if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1655			continue;
1656
1657		el_ret = blk_try_merge(rq, bio);
1658		if (el_ret == ELEVATOR_BACK_MERGE) {
1659			ret = bio_attempt_back_merge(q, rq, bio);
1660			if (ret)
1661				break;
1662		} else if (el_ret == ELEVATOR_FRONT_MERGE) {
1663			ret = bio_attempt_front_merge(q, rq, bio);
1664			if (ret)
1665				break;
1666		}
1667	}
1668out:
1669	return ret;
1670}
1671
1672unsigned int blk_plug_queued_count(struct request_queue *q)
1673{
1674	struct blk_plug *plug;
1675	struct request *rq;
1676	struct list_head *plug_list;
1677	unsigned int ret = 0;
1678
1679	plug = current->plug;
1680	if (!plug)
1681		goto out;
1682
1683	if (q->mq_ops)
1684		plug_list = &plug->mq_list;
1685	else
1686		plug_list = &plug->list;
1687
1688	list_for_each_entry(rq, plug_list, queuelist) {
1689		if (rq->q == q)
1690			ret++;
1691	}
1692out:
1693	return ret;
1694}
1695
1696void init_request_from_bio(struct request *req, struct bio *bio)
1697{
1698	req->cmd_type = REQ_TYPE_FS;
1699
1700	req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1701	if (bio->bi_rw & REQ_RAHEAD)
1702		req->cmd_flags |= REQ_FAILFAST_MASK;
1703
1704	req->errors = 0;
1705	req->__sector = bio->bi_iter.bi_sector;
1706	req->ioprio = bio_prio(bio);
1707	blk_rq_bio_prep(req->q, req, bio);
1708}
1709
1710static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio)
1711{
1712	const bool sync = !!(bio->bi_rw & REQ_SYNC);
1713	struct blk_plug *plug;
1714	int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT;
1715	struct request *req;
1716	unsigned int request_count = 0;
1717
1718	/*
1719	 * low level driver can indicate that it wants pages above a
1720	 * certain limit bounced to low memory (ie for highmem, or even
1721	 * ISA dma in theory)
1722	 */
1723	blk_queue_bounce(q, &bio);
1724
1725	blk_queue_split(q, &bio, q->bio_split);
1726
1727	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1728		bio->bi_error = -EIO;
1729		bio_endio(bio);
1730		return BLK_QC_T_NONE;
1731	}
1732
1733	if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
1734		spin_lock_irq(q->queue_lock);
1735		where = ELEVATOR_INSERT_FLUSH;
1736		goto get_rq;
1737	}
1738
1739	/*
1740	 * Check if we can merge with the plugged list before grabbing
1741	 * any locks.
1742	 */
1743	if (!blk_queue_nomerges(q)) {
1744		if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
1745			return BLK_QC_T_NONE;
1746	} else
1747		request_count = blk_plug_queued_count(q);
1748
1749	spin_lock_irq(q->queue_lock);
1750
1751	el_ret = elv_merge(q, &req, bio);
1752	if (el_ret == ELEVATOR_BACK_MERGE) {
1753		if (bio_attempt_back_merge(q, req, bio)) {
1754			elv_bio_merged(q, req, bio);
1755			if (!attempt_back_merge(q, req))
1756				elv_merged_request(q, req, el_ret);
1757			goto out_unlock;
1758		}
1759	} else if (el_ret == ELEVATOR_FRONT_MERGE) {
1760		if (bio_attempt_front_merge(q, req, bio)) {
1761			elv_bio_merged(q, req, bio);
1762			if (!attempt_front_merge(q, req))
1763				elv_merged_request(q, req, el_ret);
1764			goto out_unlock;
1765		}
1766	}
1767
1768get_rq:
1769	/*
1770	 * This sync check and mask will be re-done in init_request_from_bio(),
1771	 * but we need to set it earlier to expose the sync flag to the
1772	 * rq allocator and io schedulers.
1773	 */
1774	rw_flags = bio_data_dir(bio);
1775	if (sync)
1776		rw_flags |= REQ_SYNC;
1777
1778	/*
1779	 * Grab a free request. This is might sleep but can not fail.
1780	 * Returns with the queue unlocked.
1781	 */
1782	req = get_request(q, rw_flags, bio, GFP_NOIO);
1783	if (IS_ERR(req)) {
1784		bio->bi_error = PTR_ERR(req);
1785		bio_endio(bio);
1786		goto out_unlock;
1787	}
1788
1789	/*
1790	 * After dropping the lock and possibly sleeping here, our request
1791	 * may now be mergeable after it had proven unmergeable (above).
1792	 * We don't worry about that case for efficiency. It won't happen
1793	 * often, and the elevators are able to handle it.
1794	 */
1795	init_request_from_bio(req, bio);
1796
1797	if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
1798		req->cpu = raw_smp_processor_id();
1799
1800	plug = current->plug;
1801	if (plug) {
1802		/*
1803		 * If this is the first request added after a plug, fire
1804		 * of a plug trace.
1805		 */
1806		if (!request_count)
1807			trace_block_plug(q);
1808		else {
1809			if (request_count >= BLK_MAX_REQUEST_COUNT) {
1810				blk_flush_plug_list(plug, false);
1811				trace_block_plug(q);
1812			}
1813		}
1814		list_add_tail(&req->queuelist, &plug->list);
1815		blk_account_io_start(req, true);
1816	} else {
1817		spin_lock_irq(q->queue_lock);
1818		add_acct_request(q, req, where);
1819		__blk_run_queue(q);
1820out_unlock:
1821		spin_unlock_irq(q->queue_lock);
1822	}
1823
1824	return BLK_QC_T_NONE;
1825}
1826
1827/*
1828 * If bio->bi_dev is a partition, remap the location
1829 */
1830static inline void blk_partition_remap(struct bio *bio)
1831{
1832	struct block_device *bdev = bio->bi_bdev;
1833
1834	if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1835		struct hd_struct *p = bdev->bd_part;
1836
1837		bio->bi_iter.bi_sector += p->start_sect;
1838		bio->bi_bdev = bdev->bd_contains;
1839
1840		trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1841				      bdev->bd_dev,
1842				      bio->bi_iter.bi_sector - p->start_sect);
1843	}
1844}
1845
1846static void handle_bad_sector(struct bio *bio)
1847{
1848	char b[BDEVNAME_SIZE];
1849
1850	printk(KERN_INFO "attempt to access beyond end of device\n");
1851	printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1852			bdevname(bio->bi_bdev, b),
1853			bio->bi_rw,
1854			(unsigned long long)bio_end_sector(bio),
1855			(long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1856}
1857
1858#ifdef CONFIG_FAIL_MAKE_REQUEST
1859
1860static DECLARE_FAULT_ATTR(fail_make_request);
1861
1862static int __init setup_fail_make_request(char *str)
1863{
1864	return setup_fault_attr(&fail_make_request, str);
1865}
1866__setup("fail_make_request=", setup_fail_make_request);
1867
1868static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
1869{
1870	return part->make_it_fail && should_fail(&fail_make_request, bytes);
1871}
1872
1873static int __init fail_make_request_debugfs(void)
1874{
1875	struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1876						NULL, &fail_make_request);
1877
1878	return PTR_ERR_OR_ZERO(dir);
1879}
1880
1881late_initcall(fail_make_request_debugfs);
1882
1883#else /* CONFIG_FAIL_MAKE_REQUEST */
1884
1885static inline bool should_fail_request(struct hd_struct *part,
1886					unsigned int bytes)
1887{
1888	return false;
1889}
1890
1891#endif /* CONFIG_FAIL_MAKE_REQUEST */
1892
1893/*
1894 * Check whether this bio extends beyond the end of the device.
1895 */
1896static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1897{
1898	sector_t maxsector;
1899
1900	if (!nr_sectors)
1901		return 0;
1902
1903	/* Test device or partition size, when known. */
1904	maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
1905	if (maxsector) {
1906		sector_t sector = bio->bi_iter.bi_sector;
1907
1908		if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1909			/*
1910			 * This may well happen - the kernel calls bread()
1911			 * without checking the size of the device, e.g., when
1912			 * mounting a device.
1913			 */
1914			handle_bad_sector(bio);
1915			return 1;
1916		}
1917	}
1918
 
 
 
 
 
 
 
1919	return 0;
1920}
 
1921
1922static noinline_for_stack bool
1923generic_make_request_checks(struct bio *bio)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1924{
1925	struct request_queue *q;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1926	int nr_sectors = bio_sectors(bio);
1927	int err = -EIO;
1928	char b[BDEVNAME_SIZE];
1929	struct hd_struct *part;
1930
1931	might_sleep();
 
 
1932
1933	if (bio_check_eod(bio, nr_sectors))
1934		goto end_io;
 
 
1935
1936	q = bdev_get_queue(bio->bi_bdev);
1937	if (unlikely(!q)) {
1938		printk(KERN_ERR
1939		       "generic_make_request: Trying to access "
1940			"nonexistent block-device %s (%Lu)\n",
1941			bdevname(bio->bi_bdev, b),
1942			(long long) bio->bi_iter.bi_sector);
1943		goto end_io;
1944	}
1945
1946	part = bio->bi_bdev->bd_part;
1947	if (should_fail_request(part, bio->bi_iter.bi_size) ||
1948	    should_fail_request(&part_to_disk(part)->part0,
1949				bio->bi_iter.bi_size))
1950		goto end_io;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1951
1952	/*
1953	 * If this device has partitions, remap block n
1954	 * of partition p to block n+start(p) of the disk.
1955	 */
1956	blk_partition_remap(bio);
 
1957
1958	if (bio_check_eod(bio, nr_sectors))
1959		goto end_io;
1960
 
 
 
 
 
 
 
 
 
 
1961	/*
1962	 * Filter flush bio's early so that make_request based
1963	 * drivers without flush support don't have to worry
1964	 * about them.
1965	 */
1966	if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1967		bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1968		if (!nr_sectors) {
1969			err = 0;
 
1970			goto end_io;
1971		}
1972	}
1973
1974	if ((bio->bi_rw & REQ_DISCARD) &&
1975	    (!blk_queue_discard(q) ||
1976	     ((bio->bi_rw & REQ_SECURE) && !blk_queue_secdiscard(q)))) {
1977		err = -EOPNOTSUPP;
1978		goto end_io;
1979	}
1980
1981	if (bio->bi_rw & REQ_WRITE_SAME && !bdev_write_same(bio->bi_bdev)) {
1982		err = -EOPNOTSUPP;
1983		goto end_io;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1984	}
1985
1986	/*
1987	 * Various block parts want %current->io_context and lazy ioc
1988	 * allocation ends up trading a lot of pain for a small amount of
1989	 * memory.  Just allocate it upfront.  This may fail and block
1990	 * layer knows how to live with it.
1991	 */
1992	create_io_context(GFP_ATOMIC, q->node);
 
1993
1994	if (!blkcg_bio_issue_check(q, bio))
 
1995		return false;
 
1996
1997	trace_block_bio_queue(q, bio);
 
 
 
 
 
 
 
 
 
1998	return true;
1999
 
 
2000end_io:
2001	bio->bi_error = err;
2002	bio_endio(bio);
2003	return false;
2004}
2005
2006/**
2007 * generic_make_request - hand a buffer to its device driver for I/O
2008 * @bio:  The bio describing the location in memory and on the device.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2009 *
2010 * generic_make_request() is used to make I/O requests of block
2011 * devices. It is passed a &struct bio, which describes the I/O that needs
2012 * to be done.
2013 *
2014 * generic_make_request() does not return any status.  The
2015 * success/failure status of the request, along with notification of
2016 * completion, is delivered asynchronously through the bio->bi_end_io
2017 * function described (one day) else where.
2018 *
2019 * The caller of generic_make_request must make sure that bi_io_vec
2020 * are set to describe the memory buffer, and that bi_dev and bi_sector are
2021 * set to describe the device address, and the
2022 * bi_end_io and optionally bi_private are set to describe how
2023 * completion notification should be signaled.
2024 *
2025 * generic_make_request and the drivers it calls may use bi_next if this
2026 * bio happens to be merged with someone else, and may resubmit the bio to
2027 * a lower device by calling into generic_make_request recursively, which
2028 * means the bio should NOT be touched after the call to ->make_request_fn.
2029 */
2030blk_qc_t generic_make_request(struct bio *bio)
2031{
2032	struct bio_list bio_list_on_stack;
2033	blk_qc_t ret = BLK_QC_T_NONE;
2034
2035	if (!generic_make_request_checks(bio))
2036		goto out;
2037
2038	/*
2039	 * We only want one ->make_request_fn to be active at a time, else
2040	 * stack usage with stacked devices could be a problem.  So use
2041	 * current->bio_list to keep a list of requests submited by a
2042	 * make_request_fn function.  current->bio_list is also used as a
2043	 * flag to say if generic_make_request is currently active in this
2044	 * task or not.  If it is NULL, then no make_request is active.  If
2045	 * it is non-NULL, then a make_request is active, and new requests
2046	 * should be added at the tail
2047	 */
2048	if (current->bio_list) {
2049		bio_list_add(current->bio_list, bio);
2050		goto out;
2051	}
2052
2053	/* following loop may be a bit non-obvious, and so deserves some
2054	 * explanation.
2055	 * Before entering the loop, bio->bi_next is NULL (as all callers
2056	 * ensure that) so we have a list with a single bio.
2057	 * We pretend that we have just taken it off a longer list, so
2058	 * we assign bio_list to a pointer to the bio_list_on_stack,
2059	 * thus initialising the bio_list of new bios to be
2060	 * added.  ->make_request() may indeed add some more bios
2061	 * through a recursive call to generic_make_request.  If it
2062	 * did, we find a non-NULL value in bio_list and re-enter the loop
2063	 * from the top.  In this case we really did just take the bio
2064	 * of the top of the list (no pretending) and so remove it from
2065	 * bio_list, and call into ->make_request() again.
2066	 */
2067	BUG_ON(bio->bi_next);
2068	bio_list_init(&bio_list_on_stack);
2069	current->bio_list = &bio_list_on_stack;
2070	do {
2071		struct request_queue *q = bdev_get_queue(bio->bi_bdev);
 
2072
2073		if (likely(blk_queue_enter(q, false) == 0)) {
2074			ret = q->make_request_fn(q, bio);
2075
2076			blk_queue_exit(q);
 
 
 
 
2077
2078			bio = bio_list_pop(current->bio_list);
2079		} else {
2080			struct bio *bio_next = bio_list_pop(current->bio_list);
2081
2082			bio_io_error(bio);
2083			bio = bio_next;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2084		}
2085	} while (bio);
2086	current->bio_list = NULL; /* deactivate */
2087
2088out:
 
 
 
2089	return ret;
2090}
2091EXPORT_SYMBOL(generic_make_request);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2092
2093/**
2094 * submit_bio - submit a bio to the block device layer for I/O
2095 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
2096 * @bio: The &struct bio which describes the I/O
2097 *
2098 * submit_bio() is very similar in purpose to generic_make_request(), and
2099 * uses that function to do most of the work. Both are fairly rough
2100 * interfaces; @bio must be presetup and ready for I/O.
2101 *
 
 
 
 
2102 */
2103blk_qc_t submit_bio(int rw, struct bio *bio)
2104{
2105	bio->bi_rw |= rw;
 
2106
2107	/*
2108	 * If it's a regular read/write or a barrier with data attached,
2109	 * go through the normal accounting stuff before submission.
2110	 */
2111	if (bio_has_data(bio)) {
2112		unsigned int count;
2113
2114		if (unlikely(rw & REQ_WRITE_SAME))
2115			count = bdev_logical_block_size(bio->bi_bdev) >> 9;
2116		else
2117			count = bio_sectors(bio);
2118
2119		if (rw & WRITE) {
2120			count_vm_events(PGPGOUT, count);
2121		} else {
2122			task_io_account_read(bio->bi_iter.bi_size);
2123			count_vm_events(PGPGIN, count);
2124		}
2125
2126		if (unlikely(block_dump)) {
2127			char b[BDEVNAME_SIZE];
2128			printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
2129			current->comm, task_pid_nr(current),
2130				(rw & WRITE) ? "WRITE" : "READ",
2131				(unsigned long long)bio->bi_iter.bi_sector,
2132				bdevname(bio->bi_bdev, b),
2133				count);
2134		}
2135	}
2136
2137	return generic_make_request(bio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2138}
2139EXPORT_SYMBOL(submit_bio);
2140
2141/**
2142 * blk_cloned_rq_check_limits - Helper function to check a cloned request
2143 *                              for new the queue limits
2144 * @q:  the queue
2145 * @rq: the request being checked
2146 *
2147 * Description:
2148 *    @rq may have been made based on weaker limitations of upper-level queues
2149 *    in request stacking drivers, and it may violate the limitation of @q.
2150 *    Since the block layer and the underlying device driver trust @rq
2151 *    after it is inserted to @q, it should be checked against @q before
2152 *    the insertion using this generic function.
2153 *
2154 *    Request stacking drivers like request-based dm may change the queue
2155 *    limits when retrying requests on other queues. Those requests need
2156 *    to be checked against the new queue limits again during dispatch.
2157 */
2158static int blk_cloned_rq_check_limits(struct request_queue *q,
2159				      struct request *rq)
2160{
2161	if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, rq->cmd_flags)) {
2162		printk(KERN_ERR "%s: over max size limit.\n", __func__);
 
 
2163		return -EIO;
2164	}
2165
2166	/*
2167	 * queue's settings related to segment counting like q->bounce_pfn
2168	 * may differ from that of other stacking queues.
2169	 * Recalculate it to check the request correctly on this queue's
2170	 * limitation.
2171	 */
2172	blk_recalc_rq_segments(rq);
2173	if (rq->nr_phys_segments > queue_max_segments(q)) {
2174		printk(KERN_ERR "%s: over max segments limit.\n", __func__);
 
2175		return -EIO;
2176	}
2177
2178	return 0;
2179}
2180
2181/**
2182 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2183 * @q:  the queue to submit the request
2184 * @rq: the request being queued
2185 */
2186int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
2187{
2188	unsigned long flags;
2189	int where = ELEVATOR_INSERT_BACK;
2190
2191	if (blk_cloned_rq_check_limits(q, rq))
2192		return -EIO;
2193
2194	if (rq->rq_disk &&
2195	    should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
2196		return -EIO;
2197
2198	if (q->mq_ops) {
2199		if (blk_queue_io_stat(q))
2200			blk_account_io_start(rq, true);
2201		blk_mq_insert_request(rq, false, true, false);
2202		return 0;
2203	}
2204
2205	spin_lock_irqsave(q->queue_lock, flags);
2206	if (unlikely(blk_queue_dying(q))) {
2207		spin_unlock_irqrestore(q->queue_lock, flags);
2208		return -ENODEV;
2209	}
2210
2211	/*
2212	 * Submitting request must be dequeued before calling this function
2213	 * because it will be linked to another request_queue
 
2214	 */
2215	BUG_ON(blk_queued_rq(rq));
2216
2217	if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA))
2218		where = ELEVATOR_INSERT_FLUSH;
2219
2220	add_acct_request(q, rq, where);
2221	if (where == ELEVATOR_INSERT_FLUSH)
2222		__blk_run_queue(q);
2223	spin_unlock_irqrestore(q->queue_lock, flags);
2224
2225	return 0;
2226}
2227EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2228
2229/**
2230 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2231 * @rq: request to examine
2232 *
2233 * Description:
2234 *     A request could be merge of IOs which require different failure
2235 *     handling.  This function determines the number of bytes which
2236 *     can be failed from the beginning of the request without
2237 *     crossing into area which need to be retried further.
2238 *
2239 * Return:
2240 *     The number of bytes to fail.
2241 *
2242 * Context:
2243 *     queue_lock must be held.
2244 */
2245unsigned int blk_rq_err_bytes(const struct request *rq)
2246{
2247	unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2248	unsigned int bytes = 0;
2249	struct bio *bio;
2250
2251	if (!(rq->cmd_flags & REQ_MIXED_MERGE))
2252		return blk_rq_bytes(rq);
2253
2254	/*
2255	 * Currently the only 'mixing' which can happen is between
2256	 * different fastfail types.  We can safely fail portions
2257	 * which have all the failfast bits that the first one has -
2258	 * the ones which are at least as eager to fail as the first
2259	 * one.
2260	 */
2261	for (bio = rq->bio; bio; bio = bio->bi_next) {
2262		if ((bio->bi_rw & ff) != ff)
2263			break;
2264		bytes += bio->bi_iter.bi_size;
2265	}
2266
2267	/* this could lead to infinite loop */
2268	BUG_ON(blk_rq_bytes(rq) && !bytes);
2269	return bytes;
2270}
2271EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2272
2273void blk_account_io_completion(struct request *req, unsigned int bytes)
2274{
2275	if (blk_do_io_stat(req)) {
2276		const int rw = rq_data_dir(req);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2277		struct hd_struct *part;
2278		int cpu;
2279
2280		cpu = part_stat_lock();
2281		part = req->part;
2282		part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2283		part_stat_unlock();
2284	}
2285}
2286
2287void blk_account_io_done(struct request *req)
2288{
2289	/*
2290	 * Account IO completion.  flush_rq isn't accounted as a
2291	 * normal IO on queueing nor completion.  Accounting the
2292	 * containing request is enough.
2293	 */
2294	if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
2295		unsigned long duration = jiffies - req->start_time;
2296		const int rw = rq_data_dir(req);
2297		struct hd_struct *part;
2298		int cpu;
2299
2300		cpu = part_stat_lock();
2301		part = req->part;
2302
2303		part_stat_inc(cpu, part, ios[rw]);
2304		part_stat_add(cpu, part, ticks[rw], duration);
2305		part_round_stats(cpu, part);
2306		part_dec_in_flight(part, rw);
2307
2308		hd_struct_put(part);
2309		part_stat_unlock();
2310	}
2311}
2312
2313#ifdef CONFIG_PM
2314/*
2315 * Don't process normal requests when queue is suspended
2316 * or in the process of suspending/resuming
2317 */
2318static struct request *blk_pm_peek_request(struct request_queue *q,
2319					   struct request *rq)
2320{
2321	if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
2322	    (q->rpm_status != RPM_ACTIVE && !(rq->cmd_flags & REQ_PM))))
2323		return NULL;
2324	else
2325		return rq;
2326}
2327#else
2328static inline struct request *blk_pm_peek_request(struct request_queue *q,
2329						  struct request *rq)
2330{
2331	return rq;
2332}
2333#endif
2334
2335void blk_account_io_start(struct request *rq, bool new_io)
2336{
2337	struct hd_struct *part;
2338	int rw = rq_data_dir(rq);
2339	int cpu;
2340
2341	if (!blk_do_io_stat(rq))
2342		return;
2343
2344	cpu = part_stat_lock();
2345
2346	if (!new_io) {
2347		part = rq->part;
2348		part_stat_inc(cpu, part, merges[rw]);
2349	} else {
2350		part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2351		if (!hd_struct_try_get(part)) {
2352			/*
2353			 * The partition is already being removed,
2354			 * the request will be accounted on the disk only
2355			 *
2356			 * We take a reference on disk->part0 although that
2357			 * partition will never be deleted, so we can treat
2358			 * it as any other partition.
2359			 */
2360			part = &rq->rq_disk->part0;
2361			hd_struct_get(part);
2362		}
2363		part_round_stats(cpu, part);
2364		part_inc_in_flight(part, rw);
2365		rq->part = part;
2366	}
2367
 
 
2368	part_stat_unlock();
2369}
2370
2371/**
2372 * blk_peek_request - peek at the top of a request queue
2373 * @q: request queue to peek at
2374 *
2375 * Description:
2376 *     Return the request at the top of @q.  The returned request
2377 *     should be started using blk_start_request() before LLD starts
2378 *     processing it.
2379 *
2380 * Return:
2381 *     Pointer to the request at the top of @q if available.  Null
2382 *     otherwise.
2383 *
2384 * Context:
2385 *     queue_lock must be held.
2386 */
2387struct request *blk_peek_request(struct request_queue *q)
2388{
2389	struct request *rq;
2390	int ret;
2391
2392	while ((rq = __elv_next_request(q)) != NULL) {
2393
2394		rq = blk_pm_peek_request(q, rq);
2395		if (!rq)
2396			break;
2397
2398		if (!(rq->cmd_flags & REQ_STARTED)) {
2399			/*
2400			 * This is the first time the device driver
2401			 * sees this request (possibly after
2402			 * requeueing).  Notify IO scheduler.
2403			 */
2404			if (rq->cmd_flags & REQ_SORTED)
2405				elv_activate_rq(q, rq);
2406
2407			/*
2408			 * just mark as started even if we don't start
2409			 * it, a request that has been delayed should
2410			 * not be passed by new incoming requests
2411			 */
2412			rq->cmd_flags |= REQ_STARTED;
2413			trace_block_rq_issue(q, rq);
2414		}
2415
2416		if (!q->boundary_rq || q->boundary_rq == rq) {
2417			q->end_sector = rq_end_sector(rq);
2418			q->boundary_rq = NULL;
2419		}
2420
2421		if (rq->cmd_flags & REQ_DONTPREP)
2422			break;
2423
2424		if (q->dma_drain_size && blk_rq_bytes(rq)) {
2425			/*
2426			 * make sure space for the drain appears we
2427			 * know we can do this because max_hw_segments
2428			 * has been adjusted to be one fewer than the
2429			 * device can handle
2430			 */
2431			rq->nr_phys_segments++;
2432		}
2433
2434		if (!q->prep_rq_fn)
2435			break;
2436
2437		ret = q->prep_rq_fn(q, rq);
2438		if (ret == BLKPREP_OK) {
2439			break;
2440		} else if (ret == BLKPREP_DEFER) {
2441			/*
2442			 * the request may have been (partially) prepped.
2443			 * we need to keep this request in the front to
2444			 * avoid resource deadlock.  REQ_STARTED will
2445			 * prevent other fs requests from passing this one.
2446			 */
2447			if (q->dma_drain_size && blk_rq_bytes(rq) &&
2448			    !(rq->cmd_flags & REQ_DONTPREP)) {
2449				/*
2450				 * remove the space for the drain we added
2451				 * so that we don't add it again
2452				 */
2453				--rq->nr_phys_segments;
2454			}
2455
2456			rq = NULL;
2457			break;
2458		} else if (ret == BLKPREP_KILL || ret == BLKPREP_INVALID) {
2459			int err = (ret == BLKPREP_INVALID) ? -EREMOTEIO : -EIO;
2460
2461			rq->cmd_flags |= REQ_QUIET;
2462			/*
2463			 * Mark this request as started so we don't trigger
2464			 * any debug logic in the end I/O path.
2465			 */
2466			blk_start_request(rq);
2467			__blk_end_request_all(rq, err);
2468		} else {
2469			printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2470			break;
2471		}
2472	}
2473
2474	return rq;
2475}
2476EXPORT_SYMBOL(blk_peek_request);
2477
2478void blk_dequeue_request(struct request *rq)
 
2479{
2480	struct request_queue *q = rq->q;
2481
2482	BUG_ON(list_empty(&rq->queuelist));
2483	BUG_ON(ELV_ON_HASH(rq));
2484
2485	list_del_init(&rq->queuelist);
2486
2487	/*
2488	 * the time frame between a request being removed from the lists
2489	 * and to it is freed is accounted as io that is in progress at
2490	 * the driver side.
2491	 */
2492	if (blk_account_rq(rq)) {
2493		q->in_flight[rq_is_sync(rq)]++;
2494		set_io_start_time_ns(rq);
2495	}
2496}
 
2497
2498/**
2499 * blk_start_request - start request processing on the driver
2500 * @req: request to dequeue
2501 *
2502 * Description:
2503 *     Dequeue @req and start timeout timer on it.  This hands off the
2504 *     request to the driver.
2505 *
2506 *     Block internal functions which don't want to start timer should
2507 *     call blk_dequeue_request().
2508 *
2509 * Context:
2510 *     queue_lock must be held.
2511 */
2512void blk_start_request(struct request *req)
2513{
2514	blk_dequeue_request(req);
2515
2516	/*
2517	 * We are now handing the request to the hardware, initialize
2518	 * resid_len to full count and add the timeout handler.
2519	 */
2520	req->resid_len = blk_rq_bytes(req);
2521	if (unlikely(blk_bidi_rq(req)))
2522		req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
2523
2524	BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
2525	blk_add_timer(req);
2526}
2527EXPORT_SYMBOL(blk_start_request);
2528
2529/**
2530 * blk_fetch_request - fetch a request from a request queue
2531 * @q: request queue to fetch a request from
2532 *
2533 * Description:
2534 *     Return the request at the top of @q.  The request is started on
2535 *     return and LLD can start processing it immediately.
2536 *
2537 * Return:
2538 *     Pointer to the request at the top of @q if available.  Null
2539 *     otherwise.
2540 *
2541 * Context:
2542 *     queue_lock must be held.
2543 */
2544struct request *blk_fetch_request(struct request_queue *q)
2545{
2546	struct request *rq;
2547
2548	rq = blk_peek_request(q);
2549	if (rq)
2550		blk_start_request(rq);
2551	return rq;
2552}
2553EXPORT_SYMBOL(blk_fetch_request);
2554
2555/**
2556 * blk_update_request - Special helper function for request stacking drivers
2557 * @req:      the request being processed
2558 * @error:    %0 for success, < %0 for error
2559 * @nr_bytes: number of bytes to complete @req
2560 *
2561 * Description:
2562 *     Ends I/O on a number of bytes attached to @req, but doesn't complete
2563 *     the request structure even if @req doesn't have leftover.
2564 *     If @req has leftover, sets it up for the next range of segments.
2565 *
2566 *     This special helper function is only for request stacking drivers
2567 *     (e.g. request-based dm) so that they can handle partial completion.
2568 *     Actual device drivers should use blk_end_request instead.
2569 *
2570 *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2571 *     %false return from this function.
2572 *
 
 
 
 
2573 * Return:
2574 *     %false - this request doesn't have any more data
2575 *     %true  - this request has more data
2576 **/
2577bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
 
2578{
2579	int total_bytes;
2580
2581	trace_block_rq_complete(req->q, req, nr_bytes);
2582
2583	if (!req->bio)
2584		return false;
2585
2586	/*
2587	 * For fs requests, rq is just carrier of independent bio's
2588	 * and each partial completion should be handled separately.
2589	 * Reset per-request error on each partial completion.
2590	 *
2591	 * TODO: tj: This is too subtle.  It would be better to let
2592	 * low level drivers do what they see fit.
2593	 */
2594	if (req->cmd_type == REQ_TYPE_FS)
2595		req->errors = 0;
2596
2597	if (error && req->cmd_type == REQ_TYPE_FS &&
2598	    !(req->cmd_flags & REQ_QUIET)) {
2599		char *error_type;
2600
2601		switch (error) {
2602		case -ENOLINK:
2603			error_type = "recoverable transport";
2604			break;
2605		case -EREMOTEIO:
2606			error_type = "critical target";
2607			break;
2608		case -EBADE:
2609			error_type = "critical nexus";
2610			break;
2611		case -ETIMEDOUT:
2612			error_type = "timeout";
2613			break;
2614		case -ENOSPC:
2615			error_type = "critical space allocation";
2616			break;
2617		case -ENODATA:
2618			error_type = "critical medium";
2619			break;
2620		case -EIO:
2621		default:
2622			error_type = "I/O";
2623			break;
2624		}
2625		printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
2626				   __func__, error_type, req->rq_disk ?
2627				   req->rq_disk->disk_name : "?",
2628				   (unsigned long long)blk_rq_pos(req));
2629
2630	}
2631
2632	blk_account_io_completion(req, nr_bytes);
2633
2634	total_bytes = 0;
2635	while (req->bio) {
2636		struct bio *bio = req->bio;
2637		unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
2638
2639		if (bio_bytes == bio->bi_iter.bi_size)
2640			req->bio = bio->bi_next;
2641
 
 
2642		req_bio_endio(req, bio, bio_bytes, error);
2643
2644		total_bytes += bio_bytes;
2645		nr_bytes -= bio_bytes;
2646
2647		if (!nr_bytes)
2648			break;
2649	}
2650
2651	/*
2652	 * completely done
2653	 */
2654	if (!req->bio) {
2655		/*
2656		 * Reset counters so that the request stacking driver
2657		 * can find how many bytes remain in the request
2658		 * later.
2659		 */
2660		req->__data_len = 0;
2661		return false;
2662	}
2663
2664	req->__data_len -= total_bytes;
2665
2666	/* update sector only for requests with clear definition of sector */
2667	if (req->cmd_type == REQ_TYPE_FS)
2668		req->__sector += total_bytes >> 9;
2669
2670	/* mixed attributes always follow the first bio */
2671	if (req->cmd_flags & REQ_MIXED_MERGE) {
2672		req->cmd_flags &= ~REQ_FAILFAST_MASK;
2673		req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2674	}
2675
2676	/*
2677	 * If total number of sectors is less than the first segment
2678	 * size, something has gone terribly wrong.
2679	 */
2680	if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2681		blk_dump_rq_flags(req, "request botched");
2682		req->__data_len = blk_rq_cur_bytes(req);
2683	}
 
2684
2685	/* recalculate the number of segments */
2686	blk_recalc_rq_segments(req);
 
2687
2688	return true;
2689}
2690EXPORT_SYMBOL_GPL(blk_update_request);
2691
2692static bool blk_update_bidi_request(struct request *rq, int error,
2693				    unsigned int nr_bytes,
2694				    unsigned int bidi_bytes)
2695{
2696	if (blk_update_request(rq, error, nr_bytes))
2697		return true;
2698
2699	/* Bidi request must be completed as a whole */
2700	if (unlikely(blk_bidi_rq(rq)) &&
2701	    blk_update_request(rq->next_rq, error, bidi_bytes))
2702		return true;
2703
2704	if (blk_queue_add_random(rq->q))
2705		add_disk_randomness(rq->rq_disk);
2706
2707	return false;
2708}
2709
2710/**
2711 * blk_unprep_request - unprepare a request
2712 * @req:	the request
2713 *
2714 * This function makes a request ready for complete resubmission (or
2715 * completion).  It happens only after all error handling is complete,
2716 * so represents the appropriate moment to deallocate any resources
2717 * that were allocated to the request in the prep_rq_fn.  The queue
2718 * lock is held when calling this.
2719 */
2720void blk_unprep_request(struct request *req)
2721{
2722	struct request_queue *q = req->q;
2723
2724	req->cmd_flags &= ~REQ_DONTPREP;
2725	if (q->unprep_rq_fn)
2726		q->unprep_rq_fn(q, req);
2727}
2728EXPORT_SYMBOL_GPL(blk_unprep_request);
2729
2730/*
2731 * queue lock must be held
2732 */
2733void blk_finish_request(struct request *req, int error)
2734{
2735	if (req->cmd_flags & REQ_QUEUED)
2736		blk_queue_end_tag(req->q, req);
2737
2738	BUG_ON(blk_queued_rq(req));
2739
2740	if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
2741		laptop_io_completion(&req->q->backing_dev_info);
2742
2743	blk_delete_timer(req);
2744
2745	if (req->cmd_flags & REQ_DONTPREP)
2746		blk_unprep_request(req);
2747
2748	blk_account_io_done(req);
2749
2750	if (req->end_io)
2751		req->end_io(req, error);
2752	else {
2753		if (blk_bidi_rq(req))
2754			__blk_put_request(req->next_rq->q, req->next_rq);
2755
2756		__blk_put_request(req->q, req);
2757	}
2758}
2759EXPORT_SYMBOL(blk_finish_request);
2760
2761/**
2762 * blk_end_bidi_request - Complete a bidi request
2763 * @rq:         the request to complete
2764 * @error:      %0 for success, < %0 for error
2765 * @nr_bytes:   number of bytes to complete @rq
2766 * @bidi_bytes: number of bytes to complete @rq->next_rq
2767 *
2768 * Description:
2769 *     Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2770 *     Drivers that supports bidi can safely call this member for any
2771 *     type of request, bidi or uni.  In the later case @bidi_bytes is
2772 *     just ignored.
2773 *
2774 * Return:
2775 *     %false - we are done with this request
2776 *     %true  - still buffers pending for this request
2777 **/
2778static bool blk_end_bidi_request(struct request *rq, int error,
2779				 unsigned int nr_bytes, unsigned int bidi_bytes)
2780{
2781	struct request_queue *q = rq->q;
2782	unsigned long flags;
2783
2784	if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2785		return true;
2786
2787	spin_lock_irqsave(q->queue_lock, flags);
2788	blk_finish_request(rq, error);
2789	spin_unlock_irqrestore(q->queue_lock, flags);
2790
2791	return false;
2792}
2793
2794/**
2795 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2796 * @rq:         the request to complete
2797 * @error:      %0 for success, < %0 for error
2798 * @nr_bytes:   number of bytes to complete @rq
2799 * @bidi_bytes: number of bytes to complete @rq->next_rq
2800 *
2801 * Description:
2802 *     Identical to blk_end_bidi_request() except that queue lock is
2803 *     assumed to be locked on entry and remains so on return.
2804 *
2805 * Return:
2806 *     %false - we are done with this request
2807 *     %true  - still buffers pending for this request
2808 **/
2809bool __blk_end_bidi_request(struct request *rq, int error,
2810				   unsigned int nr_bytes, unsigned int bidi_bytes)
2811{
2812	if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2813		return true;
2814
2815	blk_finish_request(rq, error);
2816
2817	return false;
2818}
2819
2820/**
2821 * blk_end_request - Helper function for drivers to complete the request.
2822 * @rq:       the request being processed
2823 * @error:    %0 for success, < %0 for error
2824 * @nr_bytes: number of bytes to complete
2825 *
2826 * Description:
2827 *     Ends I/O on a number of bytes attached to @rq.
2828 *     If @rq has leftover, sets it up for the next range of segments.
2829 *
2830 * Return:
2831 *     %false - we are done with this request
2832 *     %true  - still buffers pending for this request
2833 **/
2834bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2835{
2836	return blk_end_bidi_request(rq, error, nr_bytes, 0);
2837}
2838EXPORT_SYMBOL(blk_end_request);
2839
2840/**
2841 * blk_end_request_all - Helper function for drives to finish the request.
2842 * @rq: the request to finish
2843 * @error: %0 for success, < %0 for error
2844 *
2845 * Description:
2846 *     Completely finish @rq.
2847 */
2848void blk_end_request_all(struct request *rq, int error)
2849{
2850	bool pending;
2851	unsigned int bidi_bytes = 0;
2852
2853	if (unlikely(blk_bidi_rq(rq)))
2854		bidi_bytes = blk_rq_bytes(rq->next_rq);
2855
2856	pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2857	BUG_ON(pending);
2858}
2859EXPORT_SYMBOL(blk_end_request_all);
2860
2861/**
2862 * blk_end_request_cur - Helper function to finish the current request chunk.
2863 * @rq: the request to finish the current chunk for
2864 * @error: %0 for success, < %0 for error
2865 *
2866 * Description:
2867 *     Complete the current consecutively mapped chunk from @rq.
2868 *
2869 * Return:
2870 *     %false - we are done with this request
2871 *     %true  - still buffers pending for this request
2872 */
2873bool blk_end_request_cur(struct request *rq, int error)
2874{
2875	return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2876}
2877EXPORT_SYMBOL(blk_end_request_cur);
2878
2879/**
2880 * blk_end_request_err - Finish a request till the next failure boundary.
2881 * @rq: the request to finish till the next failure boundary for
2882 * @error: must be negative errno
2883 *
2884 * Description:
2885 *     Complete @rq till the next failure boundary.
2886 *
2887 * Return:
2888 *     %false - we are done with this request
2889 *     %true  - still buffers pending for this request
2890 */
2891bool blk_end_request_err(struct request *rq, int error)
2892{
2893	WARN_ON(error >= 0);
2894	return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2895}
2896EXPORT_SYMBOL_GPL(blk_end_request_err);
2897
2898/**
2899 * __blk_end_request - Helper function for drivers to complete the request.
2900 * @rq:       the request being processed
2901 * @error:    %0 for success, < %0 for error
2902 * @nr_bytes: number of bytes to complete
2903 *
2904 * Description:
2905 *     Must be called with queue lock held unlike blk_end_request().
2906 *
2907 * Return:
2908 *     %false - we are done with this request
2909 *     %true  - still buffers pending for this request
2910 **/
2911bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2912{
2913	return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2914}
2915EXPORT_SYMBOL(__blk_end_request);
2916
2917/**
2918 * __blk_end_request_all - Helper function for drives to finish the request.
2919 * @rq: the request to finish
2920 * @error: %0 for success, < %0 for error
2921 *
2922 * Description:
2923 *     Completely finish @rq.  Must be called with queue lock held.
2924 */
2925void __blk_end_request_all(struct request *rq, int error)
2926{
2927	bool pending;
2928	unsigned int bidi_bytes = 0;
2929
2930	if (unlikely(blk_bidi_rq(rq)))
2931		bidi_bytes = blk_rq_bytes(rq->next_rq);
2932
2933	pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2934	BUG_ON(pending);
2935}
2936EXPORT_SYMBOL(__blk_end_request_all);
2937
2938/**
2939 * __blk_end_request_cur - Helper function to finish the current request chunk.
2940 * @rq: the request to finish the current chunk for
2941 * @error: %0 for success, < %0 for error
2942 *
2943 * Description:
2944 *     Complete the current consecutively mapped chunk from @rq.  Must
2945 *     be called with queue lock held.
2946 *
2947 * Return:
2948 *     %false - we are done with this request
2949 *     %true  - still buffers pending for this request
2950 */
2951bool __blk_end_request_cur(struct request *rq, int error)
2952{
2953	return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2954}
2955EXPORT_SYMBOL(__blk_end_request_cur);
2956
2957/**
2958 * __blk_end_request_err - Finish a request till the next failure boundary.
2959 * @rq: the request to finish till the next failure boundary for
2960 * @error: must be negative errno
2961 *
2962 * Description:
2963 *     Complete @rq till the next failure boundary.  Must be called
2964 *     with queue lock held.
2965 *
2966 * Return:
2967 *     %false - we are done with this request
2968 *     %true  - still buffers pending for this request
2969 */
2970bool __blk_end_request_err(struct request *rq, int error)
2971{
2972	WARN_ON(error >= 0);
2973	return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2974}
2975EXPORT_SYMBOL_GPL(__blk_end_request_err);
2976
2977void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2978		     struct bio *bio)
2979{
2980	/* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
2981	rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
2982
2983	if (bio_has_data(bio))
2984		rq->nr_phys_segments = bio_phys_segments(q, bio);
2985
2986	rq->__data_len = bio->bi_iter.bi_size;
2987	rq->bio = rq->biotail = bio;
2988
2989	if (bio->bi_bdev)
2990		rq->rq_disk = bio->bi_bdev->bd_disk;
2991}
2992
2993#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2994/**
2995 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2996 * @rq: the request to be flushed
2997 *
2998 * Description:
2999 *     Flush all pages in @rq.
3000 */
3001void rq_flush_dcache_pages(struct request *rq)
3002{
3003	struct req_iterator iter;
3004	struct bio_vec bvec;
3005
3006	rq_for_each_segment(bvec, rq, iter)
3007		flush_dcache_page(bvec.bv_page);
3008}
3009EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
3010#endif
3011
3012/**
3013 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
3014 * @q : the queue of the device being checked
3015 *
3016 * Description:
3017 *    Check if underlying low-level drivers of a device are busy.
3018 *    If the drivers want to export their busy state, they must set own
3019 *    exporting function using blk_queue_lld_busy() first.
3020 *
3021 *    Basically, this function is used only by request stacking drivers
3022 *    to stop dispatching requests to underlying devices when underlying
3023 *    devices are busy.  This behavior helps more I/O merging on the queue
3024 *    of the request stacking driver and prevents I/O throughput regression
3025 *    on burst I/O load.
3026 *
3027 * Return:
3028 *    0 - Not busy (The request stacking driver should dispatch request)
3029 *    1 - Busy (The request stacking driver should stop dispatching request)
3030 */
3031int blk_lld_busy(struct request_queue *q)
3032{
3033	if (q->lld_busy_fn)
3034		return q->lld_busy_fn(q);
3035
3036	return 0;
3037}
3038EXPORT_SYMBOL_GPL(blk_lld_busy);
3039
3040/**
3041 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3042 * @rq: the clone request to be cleaned up
3043 *
3044 * Description:
3045 *     Free all bios in @rq for a cloned request.
3046 */
3047void blk_rq_unprep_clone(struct request *rq)
3048{
3049	struct bio *bio;
3050
3051	while ((bio = rq->bio) != NULL) {
3052		rq->bio = bio->bi_next;
3053
3054		bio_put(bio);
3055	}
3056}
3057EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3058
3059/*
3060 * Copy attributes of the original request to the clone request.
3061 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
3062 */
3063static void __blk_rq_prep_clone(struct request *dst, struct request *src)
3064{
3065	dst->cpu = src->cpu;
3066	dst->cmd_flags |= (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
3067	dst->cmd_type = src->cmd_type;
3068	dst->__sector = blk_rq_pos(src);
3069	dst->__data_len = blk_rq_bytes(src);
3070	dst->nr_phys_segments = src->nr_phys_segments;
3071	dst->ioprio = src->ioprio;
3072	dst->extra_len = src->extra_len;
3073}
3074
3075/**
3076 * blk_rq_prep_clone - Helper function to setup clone request
3077 * @rq: the request to be setup
3078 * @rq_src: original request to be cloned
3079 * @bs: bio_set that bios for clone are allocated from
3080 * @gfp_mask: memory allocation mask for bio
3081 * @bio_ctr: setup function to be called for each clone bio.
3082 *           Returns %0 for success, non %0 for failure.
3083 * @data: private data to be passed to @bio_ctr
3084 *
3085 * Description:
3086 *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3087 *     The actual data parts of @rq_src (e.g. ->cmd, ->sense)
3088 *     are not copied, and copying such parts is the caller's responsibility.
3089 *     Also, pages which the original bios are pointing to are not copied
3090 *     and the cloned bios just point same pages.
3091 *     So cloned bios must be completed before original bios, which means
3092 *     the caller must complete @rq before @rq_src.
3093 */
3094int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3095		      struct bio_set *bs, gfp_t gfp_mask,
3096		      int (*bio_ctr)(struct bio *, struct bio *, void *),
3097		      void *data)
3098{
3099	struct bio *bio, *bio_src;
3100
3101	if (!bs)
3102		bs = fs_bio_set;
3103
3104	__rq_for_each_bio(bio_src, rq_src) {
3105		bio = bio_clone_fast(bio_src, gfp_mask, bs);
3106		if (!bio)
3107			goto free_and_out;
3108
3109		if (bio_ctr && bio_ctr(bio, bio_src, data))
3110			goto free_and_out;
3111
3112		if (rq->bio) {
3113			rq->biotail->bi_next = bio;
3114			rq->biotail = bio;
3115		} else
3116			rq->bio = rq->biotail = bio;
3117	}
3118
3119	__blk_rq_prep_clone(rq, rq_src);
 
 
 
 
 
 
 
 
 
 
 
3120
3121	return 0;
3122
3123free_and_out:
3124	if (bio)
3125		bio_put(bio);
3126	blk_rq_unprep_clone(rq);
3127
3128	return -ENOMEM;
3129}
3130EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3131
3132int kblockd_schedule_work(struct work_struct *work)
3133{
3134	return queue_work(kblockd_workqueue, work);
3135}
3136EXPORT_SYMBOL(kblockd_schedule_work);
3137
3138int kblockd_schedule_delayed_work(struct delayed_work *dwork,
3139				  unsigned long delay)
3140{
3141	return queue_delayed_work(kblockd_workqueue, dwork, delay);
3142}
3143EXPORT_SYMBOL(kblockd_schedule_delayed_work);
3144
3145int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
3146				     unsigned long delay)
3147{
3148	return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3149}
3150EXPORT_SYMBOL(kblockd_schedule_delayed_work_on);
3151
3152/**
3153 * blk_start_plug - initialize blk_plug and track it inside the task_struct
3154 * @plug:	The &struct blk_plug that needs to be initialized
3155 *
3156 * Description:
 
 
 
 
 
 
 
 
 
3157 *   Tracking blk_plug inside the task_struct will help with auto-flushing the
3158 *   pending I/O should the task end up blocking between blk_start_plug() and
3159 *   blk_finish_plug(). This is important from a performance perspective, but
3160 *   also ensures that we don't deadlock. For instance, if the task is blocking
3161 *   for a memory allocation, memory reclaim could end up wanting to free a
3162 *   page belonging to that request that is currently residing in our private
3163 *   plug. By flushing the pending I/O when the process goes to sleep, we avoid
3164 *   this kind of deadlock.
3165 */
3166void blk_start_plug(struct blk_plug *plug)
3167{
3168	struct task_struct *tsk = current;
3169
3170	/*
3171	 * If this is a nested plug, don't actually assign it.
3172	 */
3173	if (tsk->plug)
3174		return;
3175
3176	INIT_LIST_HEAD(&plug->list);
3177	INIT_LIST_HEAD(&plug->mq_list);
3178	INIT_LIST_HEAD(&plug->cb_list);
 
 
 
 
3179	/*
3180	 * Store ordering should not be needed here, since a potential
3181	 * preempt will imply a full memory barrier
3182	 */
3183	tsk->plug = plug;
3184}
3185EXPORT_SYMBOL(blk_start_plug);
3186
3187static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3188{
3189	struct request *rqa = container_of(a, struct request, queuelist);
3190	struct request *rqb = container_of(b, struct request, queuelist);
3191
3192	return !(rqa->q < rqb->q ||
3193		(rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
3194}
3195
3196/*
3197 * If 'from_schedule' is true, then postpone the dispatch of requests
3198 * until a safe kblockd context. We due this to avoid accidental big
3199 * additional stack usage in driver dispatch, in places where the originally
3200 * plugger did not intend it.
3201 */
3202static void queue_unplugged(struct request_queue *q, unsigned int depth,
3203			    bool from_schedule)
3204	__releases(q->queue_lock)
3205{
3206	trace_block_unplug(q, depth, !from_schedule);
3207
3208	if (from_schedule)
3209		blk_run_queue_async(q);
3210	else
3211		__blk_run_queue(q);
3212	spin_unlock(q->queue_lock);
3213}
3214
3215static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
3216{
3217	LIST_HEAD(callbacks);
3218
3219	while (!list_empty(&plug->cb_list)) {
3220		list_splice_init(&plug->cb_list, &callbacks);
3221
3222		while (!list_empty(&callbacks)) {
3223			struct blk_plug_cb *cb = list_first_entry(&callbacks,
3224							  struct blk_plug_cb,
3225							  list);
3226			list_del(&cb->list);
3227			cb->callback(cb, from_schedule);
3228		}
3229	}
3230}
3231
3232struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3233				      int size)
3234{
3235	struct blk_plug *plug = current->plug;
3236	struct blk_plug_cb *cb;
3237
3238	if (!plug)
3239		return NULL;
3240
3241	list_for_each_entry(cb, &plug->cb_list, list)
3242		if (cb->callback == unplug && cb->data == data)
3243			return cb;
3244
3245	/* Not currently on the callback list */
3246	BUG_ON(size < sizeof(*cb));
3247	cb = kzalloc(size, GFP_ATOMIC);
3248	if (cb) {
3249		cb->data = data;
3250		cb->callback = unplug;
3251		list_add(&cb->list, &plug->cb_list);
3252	}
3253	return cb;
3254}
3255EXPORT_SYMBOL(blk_check_plugged);
3256
3257void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
3258{
3259	struct request_queue *q;
3260	unsigned long flags;
3261	struct request *rq;
3262	LIST_HEAD(list);
3263	unsigned int depth;
3264
3265	flush_plug_callbacks(plug, from_schedule);
3266
3267	if (!list_empty(&plug->mq_list))
3268		blk_mq_flush_plug_list(plug, from_schedule);
3269
3270	if (list_empty(&plug->list))
3271		return;
3272
3273	list_splice_init(&plug->list, &list);
3274
3275	list_sort(NULL, &list, plug_rq_cmp);
3276
3277	q = NULL;
3278	depth = 0;
3279
3280	/*
3281	 * Save and disable interrupts here, to avoid doing it for every
3282	 * queue lock we have to take.
3283	 */
3284	local_irq_save(flags);
3285	while (!list_empty(&list)) {
3286		rq = list_entry_rq(list.next);
3287		list_del_init(&rq->queuelist);
3288		BUG_ON(!rq->q);
3289		if (rq->q != q) {
3290			/*
3291			 * This drops the queue lock
3292			 */
3293			if (q)
3294				queue_unplugged(q, depth, from_schedule);
3295			q = rq->q;
3296			depth = 0;
3297			spin_lock(q->queue_lock);
3298		}
3299
3300		/*
3301		 * Short-circuit if @q is dead
3302		 */
3303		if (unlikely(blk_queue_dying(q))) {
3304			__blk_end_request_all(rq, -ENODEV);
3305			continue;
3306		}
3307
3308		/*
3309		 * rq is already accounted, so use raw insert
3310		 */
3311		if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA))
3312			__elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3313		else
3314			__elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
3315
3316		depth++;
3317	}
3318
3319	/*
3320	 * This drops the queue lock
3321	 */
3322	if (q)
3323		queue_unplugged(q, depth, from_schedule);
3324
3325	local_irq_restore(flags);
3326}
3327
 
 
 
 
 
 
 
 
 
 
3328void blk_finish_plug(struct blk_plug *plug)
3329{
3330	if (plug != current->plug)
3331		return;
3332	blk_flush_plug_list(plug, false);
3333
3334	current->plug = NULL;
3335}
3336EXPORT_SYMBOL(blk_finish_plug);
3337
3338bool blk_poll(struct request_queue *q, blk_qc_t cookie)
3339{
3340	struct blk_plug *plug;
3341	long state;
3342
3343	if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
3344	    !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3345		return false;
3346
3347	plug = current->plug;
3348	if (plug)
3349		blk_flush_plug_list(plug, false);
3350
3351	state = current->state;
3352	while (!need_resched()) {
3353		unsigned int queue_num = blk_qc_t_to_queue_num(cookie);
3354		struct blk_mq_hw_ctx *hctx = q->queue_hw_ctx[queue_num];
3355		int ret;
3356
3357		hctx->poll_invoked++;
3358
3359		ret = q->mq_ops->poll(hctx, blk_qc_t_to_tag(cookie));
3360		if (ret > 0) {
3361			hctx->poll_success++;
3362			set_current_state(TASK_RUNNING);
3363			return true;
3364		}
3365
3366		if (signal_pending_state(state, current))
3367			set_current_state(TASK_RUNNING);
3368
3369		if (current->state == TASK_RUNNING)
3370			return true;
3371		if (ret < 0)
3372			break;
3373		cpu_relax();
3374	}
3375
3376	return false;
3377}
3378
3379#ifdef CONFIG_PM
3380/**
3381 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3382 * @q: the queue of the device
3383 * @dev: the device the queue belongs to
3384 *
3385 * Description:
3386 *    Initialize runtime-PM-related fields for @q and start auto suspend for
3387 *    @dev. Drivers that want to take advantage of request-based runtime PM
3388 *    should call this function after @dev has been initialized, and its
3389 *    request queue @q has been allocated, and runtime PM for it can not happen
3390 *    yet(either due to disabled/forbidden or its usage_count > 0). In most
3391 *    cases, driver should call this function before any I/O has taken place.
3392 *
3393 *    This function takes care of setting up using auto suspend for the device,
3394 *    the autosuspend delay is set to -1 to make runtime suspend impossible
3395 *    until an updated value is either set by user or by driver. Drivers do
3396 *    not need to touch other autosuspend settings.
3397 *
3398 *    The block layer runtime PM is request based, so only works for drivers
3399 *    that use request as their IO unit instead of those directly use bio's.
3400 */
3401void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3402{
3403	q->dev = dev;
3404	q->rpm_status = RPM_ACTIVE;
3405	pm_runtime_set_autosuspend_delay(q->dev, -1);
3406	pm_runtime_use_autosuspend(q->dev);
3407}
3408EXPORT_SYMBOL(blk_pm_runtime_init);
3409
3410/**
3411 * blk_pre_runtime_suspend - Pre runtime suspend check
3412 * @q: the queue of the device
3413 *
3414 * Description:
3415 *    This function will check if runtime suspend is allowed for the device
3416 *    by examining if there are any requests pending in the queue. If there
3417 *    are requests pending, the device can not be runtime suspended; otherwise,
3418 *    the queue's status will be updated to SUSPENDING and the driver can
3419 *    proceed to suspend the device.
3420 *
3421 *    For the not allowed case, we mark last busy for the device so that
3422 *    runtime PM core will try to autosuspend it some time later.
3423 *
3424 *    This function should be called near the start of the device's
3425 *    runtime_suspend callback.
3426 *
3427 * Return:
3428 *    0		- OK to runtime suspend the device
3429 *    -EBUSY	- Device should not be runtime suspended
3430 */
3431int blk_pre_runtime_suspend(struct request_queue *q)
3432{
3433	int ret = 0;
3434
3435	if (!q->dev)
3436		return ret;
3437
3438	spin_lock_irq(q->queue_lock);
3439	if (q->nr_pending) {
3440		ret = -EBUSY;
3441		pm_runtime_mark_last_busy(q->dev);
3442	} else {
3443		q->rpm_status = RPM_SUSPENDING;
3444	}
3445	spin_unlock_irq(q->queue_lock);
3446	return ret;
3447}
3448EXPORT_SYMBOL(blk_pre_runtime_suspend);
3449
3450/**
3451 * blk_post_runtime_suspend - Post runtime suspend processing
3452 * @q: the queue of the device
3453 * @err: return value of the device's runtime_suspend function
3454 *
3455 * Description:
3456 *    Update the queue's runtime status according to the return value of the
3457 *    device's runtime suspend function and mark last busy for the device so
3458 *    that PM core will try to auto suspend the device at a later time.
3459 *
3460 *    This function should be called near the end of the device's
3461 *    runtime_suspend callback.
3462 */
3463void blk_post_runtime_suspend(struct request_queue *q, int err)
3464{
3465	if (!q->dev)
3466		return;
3467
3468	spin_lock_irq(q->queue_lock);
3469	if (!err) {
3470		q->rpm_status = RPM_SUSPENDED;
3471	} else {
3472		q->rpm_status = RPM_ACTIVE;
3473		pm_runtime_mark_last_busy(q->dev);
3474	}
3475	spin_unlock_irq(q->queue_lock);
3476}
3477EXPORT_SYMBOL(blk_post_runtime_suspend);
3478
3479/**
3480 * blk_pre_runtime_resume - Pre runtime resume processing
3481 * @q: the queue of the device
3482 *
3483 * Description:
3484 *    Update the queue's runtime status to RESUMING in preparation for the
3485 *    runtime resume of the device.
3486 *
3487 *    This function should be called near the start of the device's
3488 *    runtime_resume callback.
3489 */
3490void blk_pre_runtime_resume(struct request_queue *q)
3491{
3492	if (!q->dev)
3493		return;
3494
3495	spin_lock_irq(q->queue_lock);
3496	q->rpm_status = RPM_RESUMING;
3497	spin_unlock_irq(q->queue_lock);
3498}
3499EXPORT_SYMBOL(blk_pre_runtime_resume);
3500
3501/**
3502 * blk_post_runtime_resume - Post runtime resume processing
3503 * @q: the queue of the device
3504 * @err: return value of the device's runtime_resume function
3505 *
3506 * Description:
3507 *    Update the queue's runtime status according to the return value of the
3508 *    device's runtime_resume function. If it is successfully resumed, process
3509 *    the requests that are queued into the device's queue when it is resuming
3510 *    and then mark last busy and initiate autosuspend for it.
3511 *
3512 *    This function should be called near the end of the device's
3513 *    runtime_resume callback.
3514 */
3515void blk_post_runtime_resume(struct request_queue *q, int err)
3516{
3517	if (!q->dev)
3518		return;
3519
3520	spin_lock_irq(q->queue_lock);
3521	if (!err) {
3522		q->rpm_status = RPM_ACTIVE;
3523		__blk_run_queue(q);
3524		pm_runtime_mark_last_busy(q->dev);
3525		pm_request_autosuspend(q->dev);
3526	} else {
3527		q->rpm_status = RPM_SUSPENDED;
3528	}
3529	spin_unlock_irq(q->queue_lock);
3530}
3531EXPORT_SYMBOL(blk_post_runtime_resume);
3532
3533/**
3534 * blk_set_runtime_active - Force runtime status of the queue to be active
3535 * @q: the queue of the device
3536 *
3537 * If the device is left runtime suspended during system suspend the resume
3538 * hook typically resumes the device and corrects runtime status
3539 * accordingly. However, that does not affect the queue runtime PM status
3540 * which is still "suspended". This prevents processing requests from the
3541 * queue.
3542 *
3543 * This function can be used in driver's resume hook to correct queue
3544 * runtime PM status and re-enable peeking requests from the queue. It
3545 * should be called before first request is added to the queue.
3546 */
3547void blk_set_runtime_active(struct request_queue *q)
3548{
3549	spin_lock_irq(q->queue_lock);
3550	q->rpm_status = RPM_ACTIVE;
3551	pm_runtime_mark_last_busy(q->dev);
3552	pm_request_autosuspend(q->dev);
3553	spin_unlock_irq(q->queue_lock);
3554}
3555EXPORT_SYMBOL(blk_set_runtime_active);
3556#endif
3557
3558int __init blk_dev_init(void)
3559{
3560	BUILD_BUG_ON(__REQ_NR_BITS > 8 *
3561			FIELD_SIZEOF(struct request, cmd_flags));
 
 
 
3562
3563	/* used for unplugging and affects IO latency/throughput - HIGHPRI */
3564	kblockd_workqueue = alloc_workqueue("kblockd",
3565					    WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
3566	if (!kblockd_workqueue)
3567		panic("Failed to create kblockd\n");
3568
3569	request_cachep = kmem_cache_create("blkdev_requests",
3570			sizeof(struct request), 0, SLAB_PANIC, NULL);
3571
3572	blk_requestq_cachep = kmem_cache_create("request_queue",
3573			sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
 
 
3574
3575	return 0;
3576}
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 1991, 1992 Linus Torvalds
   4 * Copyright (C) 1994,      Karl Keyte: Added support for disk statistics
   5 * Elevator latency, (C) 2000  Andrea Arcangeli <andrea@suse.de> SuSE
   6 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
   7 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
   8 *	-  July2000
   9 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
  10 */
  11
  12/*
  13 * This handles all read/write requests to block devices
  14 */
  15#include <linux/kernel.h>
  16#include <linux/module.h>
  17#include <linux/backing-dev.h>
  18#include <linux/bio.h>
  19#include <linux/blkdev.h>
  20#include <linux/blk-mq.h>
  21#include <linux/highmem.h>
  22#include <linux/mm.h>
  23#include <linux/pagemap.h>
  24#include <linux/kernel_stat.h>
  25#include <linux/string.h>
  26#include <linux/init.h>
  27#include <linux/completion.h>
  28#include <linux/slab.h>
  29#include <linux/swap.h>
  30#include <linux/writeback.h>
  31#include <linux/task_io_accounting_ops.h>
  32#include <linux/fault-inject.h>
  33#include <linux/list_sort.h>
  34#include <linux/delay.h>
  35#include <linux/ratelimit.h>
  36#include <linux/pm_runtime.h>
  37#include <linux/blk-cgroup.h>
  38#include <linux/t10-pi.h>
  39#include <linux/debugfs.h>
  40#include <linux/bpf.h>
  41#include <linux/psi.h>
  42#include <linux/sched/sysctl.h>
  43#include <linux/blk-crypto.h>
  44
  45#define CREATE_TRACE_POINTS
  46#include <trace/events/block.h>
  47
  48#include "blk.h"
  49#include "blk-mq.h"
  50#include "blk-mq-sched.h"
  51#include "blk-pm.h"
  52#include "blk-rq-qos.h"
  53
  54struct dentry *blk_debugfs_root;
  55
  56EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
  57EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
  58EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
  59EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
  60EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
  61
  62DEFINE_IDA(blk_queue_ida);
  63
  64/*
 
 
 
 
 
  65 * For queue allocation
  66 */
  67struct kmem_cache *blk_requestq_cachep;
  68
  69/*
  70 * Controlling structure to kblockd
  71 */
  72static struct workqueue_struct *kblockd_workqueue;
  73
  74/**
  75 * blk_queue_flag_set - atomically set a queue flag
  76 * @flag: flag to be set
  77 * @q: request queue
  78 */
  79void blk_queue_flag_set(unsigned int flag, struct request_queue *q)
 
 
 
 
 
 
 
 
 
  80{
  81	set_bit(flag, &q->queue_flags);
 
 
 
 
 
 
  82}
  83EXPORT_SYMBOL(blk_queue_flag_set);
  84
  85/**
  86 * blk_queue_flag_clear - atomically clear a queue flag
  87 * @flag: flag to be cleared
  88 * @q: request queue
  89 */
  90void blk_queue_flag_clear(unsigned int flag, struct request_queue *q)
  91{
  92	clear_bit(flag, &q->queue_flags);
 
 
 
 
 
 
 
 
 
 
  93}
  94EXPORT_SYMBOL(blk_queue_flag_clear);
  95
  96/**
  97 * blk_queue_flag_test_and_set - atomically test and set a queue flag
  98 * @flag: flag to be set
  99 * @q: request queue
 100 *
 101 * Returns the previous value of @flag - 0 if the flag was not set and 1 if
 102 * the flag was already set.
 
 103 */
 104bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q)
 105{
 106	return test_and_set_bit(flag, &q->queue_flags);
 
 
 107}
 108EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set);
 109
 110void blk_rq_init(struct request_queue *q, struct request *rq)
 111{
 112	memset(rq, 0, sizeof(*rq));
 113
 114	INIT_LIST_HEAD(&rq->queuelist);
 
 
 115	rq->q = q;
 116	rq->__sector = (sector_t) -1;
 117	INIT_HLIST_NODE(&rq->hash);
 118	RB_CLEAR_NODE(&rq->rb_node);
 
 
 119	rq->tag = -1;
 120	rq->internal_tag = -1;
 121	rq->start_time_ns = ktime_get_ns();
 122	rq->part = NULL;
 123	refcount_set(&rq->ref, 1);
 124	blk_crypto_rq_set_defaults(rq);
 125}
 126EXPORT_SYMBOL(blk_rq_init);
 127
 128#define REQ_OP_NAME(name) [REQ_OP_##name] = #name
 129static const char *const blk_op_name[] = {
 130	REQ_OP_NAME(READ),
 131	REQ_OP_NAME(WRITE),
 132	REQ_OP_NAME(FLUSH),
 133	REQ_OP_NAME(DISCARD),
 134	REQ_OP_NAME(SECURE_ERASE),
 135	REQ_OP_NAME(ZONE_RESET),
 136	REQ_OP_NAME(ZONE_RESET_ALL),
 137	REQ_OP_NAME(ZONE_OPEN),
 138	REQ_OP_NAME(ZONE_CLOSE),
 139	REQ_OP_NAME(ZONE_FINISH),
 140	REQ_OP_NAME(ZONE_APPEND),
 141	REQ_OP_NAME(WRITE_SAME),
 142	REQ_OP_NAME(WRITE_ZEROES),
 143	REQ_OP_NAME(SCSI_IN),
 144	REQ_OP_NAME(SCSI_OUT),
 145	REQ_OP_NAME(DRV_IN),
 146	REQ_OP_NAME(DRV_OUT),
 147};
 148#undef REQ_OP_NAME
 149
 150/**
 151 * blk_op_str - Return string XXX in the REQ_OP_XXX.
 152 * @op: REQ_OP_XXX.
 153 *
 154 * Description: Centralize block layer function to convert REQ_OP_XXX into
 155 * string format. Useful in the debugging and tracing bio or request. For
 156 * invalid REQ_OP_XXX it returns string "UNKNOWN".
 157 */
 158inline const char *blk_op_str(unsigned int op)
 159{
 160	const char *op_str = "UNKNOWN";
 161
 162	if (op < ARRAY_SIZE(blk_op_name) && blk_op_name[op])
 163		op_str = blk_op_name[op];
 164
 165	return op_str;
 166}
 167EXPORT_SYMBOL_GPL(blk_op_str);
 168
 169static const struct {
 170	int		errno;
 171	const char	*name;
 172} blk_errors[] = {
 173	[BLK_STS_OK]		= { 0,		"" },
 174	[BLK_STS_NOTSUPP]	= { -EOPNOTSUPP, "operation not supported" },
 175	[BLK_STS_TIMEOUT]	= { -ETIMEDOUT,	"timeout" },
 176	[BLK_STS_NOSPC]		= { -ENOSPC,	"critical space allocation" },
 177	[BLK_STS_TRANSPORT]	= { -ENOLINK,	"recoverable transport" },
 178	[BLK_STS_TARGET]	= { -EREMOTEIO,	"critical target" },
 179	[BLK_STS_NEXUS]		= { -EBADE,	"critical nexus" },
 180	[BLK_STS_MEDIUM]	= { -ENODATA,	"critical medium" },
 181	[BLK_STS_PROTECTION]	= { -EILSEQ,	"protection" },
 182	[BLK_STS_RESOURCE]	= { -ENOMEM,	"kernel resource" },
 183	[BLK_STS_DEV_RESOURCE]	= { -EBUSY,	"device resource" },
 184	[BLK_STS_AGAIN]		= { -EAGAIN,	"nonblocking retry" },
 185
 186	/* device mapper special case, should not leak out: */
 187	[BLK_STS_DM_REQUEUE]	= { -EREMCHG, "dm internal retry" },
 188
 189	/* everything else not covered above: */
 190	[BLK_STS_IOERR]		= { -EIO,	"I/O" },
 191};
 192
 193blk_status_t errno_to_blk_status(int errno)
 194{
 195	int i;
 196
 197	for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
 198		if (blk_errors[i].errno == errno)
 199			return (__force blk_status_t)i;
 200	}
 201
 202	return BLK_STS_IOERR;
 203}
 204EXPORT_SYMBOL_GPL(errno_to_blk_status);
 205
 206int blk_status_to_errno(blk_status_t status)
 207{
 208	int idx = (__force int)status;
 209
 210	if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
 211		return -EIO;
 212	return blk_errors[idx].errno;
 213}
 214EXPORT_SYMBOL_GPL(blk_status_to_errno);
 215
 216static void print_req_error(struct request *req, blk_status_t status,
 217		const char *caller)
 218{
 219	int idx = (__force int)status;
 220
 221	if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
 222		return;
 223
 224	printk_ratelimited(KERN_ERR
 225		"%s: %s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
 226		"phys_seg %u prio class %u\n",
 227		caller, blk_errors[idx].name,
 228		req->rq_disk ? req->rq_disk->disk_name : "?",
 229		blk_rq_pos(req), req_op(req), blk_op_str(req_op(req)),
 230		req->cmd_flags & ~REQ_OP_MASK,
 231		req->nr_phys_segments,
 232		IOPRIO_PRIO_CLASS(req->ioprio));
 233}
 234
 235static void req_bio_endio(struct request *rq, struct bio *bio,
 236			  unsigned int nbytes, blk_status_t error)
 237{
 238	if (error)
 239		bio->bi_status = error;
 240
 241	if (unlikely(rq->rq_flags & RQF_QUIET))
 242		bio_set_flag(bio, BIO_QUIET);
 243
 244	bio_advance(bio, nbytes);
 245
 246	if (req_op(rq) == REQ_OP_ZONE_APPEND && error == BLK_STS_OK) {
 247		/*
 248		 * Partial zone append completions cannot be supported as the
 249		 * BIO fragments may end up not being written sequentially.
 250		 */
 251		if (bio->bi_iter.bi_size)
 252			bio->bi_status = BLK_STS_IOERR;
 253		else
 254			bio->bi_iter.bi_sector = rq->__sector;
 255	}
 256
 257	/* don't actually finish bio if it's part of flush sequence */
 258	if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
 259		bio_endio(bio);
 260}
 261
 262void blk_dump_rq_flags(struct request *rq, char *msg)
 263{
 264	printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
 265		rq->rq_disk ? rq->rq_disk->disk_name : "?",
 
 
 266		(unsigned long long) rq->cmd_flags);
 267
 268	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
 269	       (unsigned long long)blk_rq_pos(rq),
 270	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
 271	printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
 272	       rq->bio, rq->biotail, blk_rq_bytes(rq));
 
 
 
 
 
 
 
 273}
 274EXPORT_SYMBOL(blk_dump_rq_flags);
 275
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 276/**
 277 * blk_sync_queue - cancel any pending callbacks on a queue
 278 * @q: the queue
 279 *
 280 * Description:
 281 *     The block layer may perform asynchronous callback activity
 282 *     on a queue, such as calling the unplug function after a timeout.
 283 *     A block device may call blk_sync_queue to ensure that any
 284 *     such activity is cancelled, thus allowing it to release resources
 285 *     that the callbacks might use. The caller must already have made sure
 286 *     that its ->submit_bio will not re-add plugging prior to calling
 287 *     this function.
 288 *
 289 *     This function does not cancel any asynchronous activity arising
 290 *     out of elevator or throttling code. That would require elevator_exit()
 291 *     and blkcg_exit_queue() to be called with queue lock initialized.
 292 *
 293 */
 294void blk_sync_queue(struct request_queue *q)
 295{
 296	del_timer_sync(&q->timeout);
 297	cancel_work_sync(&q->timeout_work);
 
 
 
 
 
 
 
 
 
 
 
 298}
 299EXPORT_SYMBOL(blk_sync_queue);
 300
 301/**
 302 * blk_set_pm_only - increment pm_only counter
 303 * @q: request queue pointer
 
 
 
 
 
 
 
 304 */
 305void blk_set_pm_only(struct request_queue *q)
 306{
 307	atomic_inc(&q->pm_only);
 
 
 
 
 
 
 
 
 
 
 
 
 308}
 309EXPORT_SYMBOL_GPL(blk_set_pm_only);
 310
 311void blk_clear_pm_only(struct request_queue *q)
 
 
 
 
 
 
 
 
 312{
 313	int pm_only;
 
 314
 315	pm_only = atomic_dec_return(&q->pm_only);
 316	WARN_ON_ONCE(pm_only < 0);
 317	if (pm_only == 0)
 318		wake_up_all(&q->mq_freeze_wq);
 319}
 320EXPORT_SYMBOL_GPL(blk_clear_pm_only);
 321
 322/**
 323 * blk_put_queue - decrement the request_queue refcount
 324 * @q: the request_queue structure to decrement the refcount for
 325 *
 326 * Decrements the refcount of the request_queue kobject. When this reaches 0
 327 * we'll have blk_release_queue() called.
 
 
 
 
 
 
 
 
 
 
 
 
 328 *
 329 * Context: Any context, but the last reference must not be dropped from
 330 *          atomic context.
 
 331 */
 
 
 
 
 
 
 
 
 
 
 332void blk_put_queue(struct request_queue *q)
 333{
 334	kobject_put(&q->kobj);
 335}
 336EXPORT_SYMBOL(blk_put_queue);
 337
 338void blk_set_queue_dying(struct request_queue *q)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 339{
 340	blk_queue_flag_set(QUEUE_FLAG_DYING, q);
 
 
 
 341
 342	/*
 343	 * When queue DYING flag is set, we need to block new req
 344	 * entering queue, so we call blk_freeze_queue_start() to
 345	 * prevent I/O from crossing blk_queue_enter().
 346	 */
 347	blk_freeze_queue_start(q);
 
 
 
 348
 349	if (queue_is_mq(q))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 350		blk_mq_wake_waiters(q);
 
 
 351
 352	/* Make blk_queue_enter() reexamine the DYING flag. */
 353	wake_up_all(&q->mq_freeze_wq);
 
 
 
 
 
 354}
 355EXPORT_SYMBOL_GPL(blk_set_queue_dying);
 356
 357/**
 358 * blk_cleanup_queue - shutdown a request queue
 359 * @q: request queue to shutdown
 360 *
 361 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
 362 * put it.  All future requests will be failed immediately with -ENODEV.
 363 *
 364 * Context: can sleep
 365 */
 366void blk_cleanup_queue(struct request_queue *q)
 367{
 368	/* cannot be called from atomic context */
 369	might_sleep();
 370
 371	WARN_ON_ONCE(blk_queue_registered(q));
 372
 373	/* mark @q DYING, no new request or merges will be allowed afterwards */
 
 374	blk_set_queue_dying(q);
 
 375
 376	blk_queue_flag_set(QUEUE_FLAG_NOMERGES, q);
 377	blk_queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 378
 379	/*
 380	 * Drain all requests queued before DYING marking. Set DEAD flag to
 381	 * prevent that blk_mq_run_hw_queues() accesses the hardware queues
 382	 * after draining finished.
 383	 */
 384	blk_freeze_queue(q);
 385
 386	rq_qos_exit(q);
 387
 388	blk_queue_flag_set(QUEUE_FLAG_DEAD, q);
 
 389
 390	/* for synchronous bio-based driver finish in-flight integrity i/o */
 391	blk_flush_integrity();
 392
 393	/* @q won't process any more request, flush async actions */
 394	del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
 395	blk_sync_queue(q);
 396
 397	if (queue_is_mq(q))
 398		blk_mq_exit_queue(q);
 
 399
 400	/*
 401	 * In theory, request pool of sched_tags belongs to request queue.
 402	 * However, the current implementation requires tag_set for freeing
 403	 * requests, so free the pool now.
 404	 *
 405	 * Queue has become frozen, there can't be any in-queue requests, so
 406	 * it is safe to free requests now.
 407	 */
 408	mutex_lock(&q->sysfs_lock);
 409	if (q->elevator)
 410		blk_mq_sched_free_requests(q);
 411	mutex_unlock(&q->sysfs_lock);
 412
 413	percpu_ref_exit(&q->q_usage_counter);
 414
 415	/* @q is and will stay empty, shutdown and put */
 416	blk_put_queue(q);
 417}
 418EXPORT_SYMBOL(blk_cleanup_queue);
 419
 420/**
 421 * blk_queue_enter() - try to increase q->q_usage_counter
 422 * @q: request queue pointer
 423 * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PREEMPT
 424 */
 425int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
 
 
 426{
 427	const bool pm = flags & BLK_MQ_REQ_PREEMPT;
 
 428
 429	while (true) {
 430		bool success = false;
 
 
 
 431
 432		rcu_read_lock();
 433		if (percpu_ref_tryget_live(&q->q_usage_counter)) {
 434			/*
 435			 * The code that increments the pm_only counter is
 436			 * responsible for ensuring that that counter is
 437			 * globally visible before the queue is unfrozen.
 438			 */
 439			if (pm || !blk_queue_pm_only(q)) {
 440				success = true;
 441			} else {
 442				percpu_ref_put(&q->q_usage_counter);
 443			}
 444		}
 445		rcu_read_unlock();
 446
 447		if (success)
 448			return 0;
 
 
 
 
 449
 450		if (flags & BLK_MQ_REQ_NOWAIT)
 451			return -EBUSY;
 452
 453		/*
 454		 * read pair of barrier in blk_freeze_queue_start(),
 455		 * we need to order reading __PERCPU_REF_DEAD flag of
 456		 * .q_usage_counter and reading .mq_freeze_depth or
 457		 * queue dying flag, otherwise the following wait may
 458		 * never return if the two reads are reordered.
 459		 */
 460		smp_rmb();
 461
 462		wait_event(q->mq_freeze_wq,
 463			   (!q->mq_freeze_depth &&
 464			    (pm || (blk_pm_request_resume(q),
 465				    !blk_queue_pm_only(q)))) ||
 466			   blk_queue_dying(q));
 467		if (blk_queue_dying(q))
 468			return -ENODEV;
 469	}
 470}
 
 471
 472static inline int bio_queue_enter(struct bio *bio)
 473{
 474	struct request_queue *q = bio->bi_disk->queue;
 475	bool nowait = bio->bi_opf & REQ_NOWAIT;
 476	int ret;
 
 
 
 
 
 477
 478	ret = blk_queue_enter(q, nowait ? BLK_MQ_REQ_NOWAIT : 0);
 479	if (unlikely(ret)) {
 480		if (nowait && !blk_queue_dying(q))
 481			bio_wouldblock_error(bio);
 482		else
 483			bio_io_error(bio);
 
 484	}
 485
 486	return ret;
 487}
 488
 489void blk_queue_exit(struct request_queue *q)
 490{
 491	percpu_ref_put(&q->q_usage_counter);
 492}
 493
 494static void blk_queue_usage_counter_release(struct percpu_ref *ref)
 495{
 496	struct request_queue *q =
 497		container_of(ref, struct request_queue, q_usage_counter);
 498
 499	wake_up_all(&q->mq_freeze_wq);
 500}
 501
 502static void blk_rq_timed_out_timer(struct timer_list *t)
 503{
 504	struct request_queue *q = from_timer(q, t, timeout);
 505
 506	kblockd_schedule_work(&q->timeout_work);
 507}
 508
 509static void blk_timeout_work(struct work_struct *work)
 510{
 511}
 512
 513struct request_queue *blk_alloc_queue(int node_id)
 514{
 515	struct request_queue *q;
 516	int ret;
 517
 518	q = kmem_cache_alloc_node(blk_requestq_cachep,
 519				GFP_KERNEL | __GFP_ZERO, node_id);
 520	if (!q)
 521		return NULL;
 522
 523	q->last_merge = NULL;
 524
 525	q->id = ida_simple_get(&blk_queue_ida, 0, 0, GFP_KERNEL);
 526	if (q->id < 0)
 527		goto fail_q;
 528
 529	ret = bioset_init(&q->bio_split, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
 530	if (ret)
 531		goto fail_id;
 532
 533	q->backing_dev_info = bdi_alloc(node_id);
 534	if (!q->backing_dev_info)
 
 
 
 
 
 
 535		goto fail_split;
 536
 537	q->stats = blk_alloc_queue_stats();
 538	if (!q->stats)
 539		goto fail_stats;
 540
 541	q->backing_dev_info->ra_pages = VM_READAHEAD_PAGES;
 542	q->backing_dev_info->io_pages = VM_READAHEAD_PAGES;
 543	q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK;
 544	q->node = node_id;
 545
 546	timer_setup(&q->backing_dev_info->laptop_mode_wb_timer,
 547		    laptop_mode_timer_fn, 0);
 548	timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
 549	INIT_WORK(&q->timeout_work, blk_timeout_work);
 550	INIT_LIST_HEAD(&q->icq_list);
 551#ifdef CONFIG_BLK_CGROUP
 552	INIT_LIST_HEAD(&q->blkg_list);
 553#endif
 
 554
 555	kobject_init(&q->kobj, &blk_queue_ktype);
 556
 557	mutex_init(&q->debugfs_mutex);
 558	mutex_init(&q->sysfs_lock);
 559	mutex_init(&q->sysfs_dir_lock);
 560	spin_lock_init(&q->queue_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 561
 562	init_waitqueue_head(&q->mq_freeze_wq);
 563	mutex_init(&q->mq_freeze_lock);
 564
 565	/*
 566	 * Init percpu_ref in atomic mode so that it's faster to shutdown.
 567	 * See blk_register_queue() for details.
 568	 */
 569	if (percpu_ref_init(&q->q_usage_counter,
 570				blk_queue_usage_counter_release,
 571				PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
 572		goto fail_bdi;
 573
 574	if (blkcg_init_queue(q))
 575		goto fail_ref;
 576
 577	blk_queue_dma_alignment(q, 511);
 578	blk_set_default_limits(&q->limits);
 579	q->nr_requests = BLKDEV_MAX_RQ;
 580
 581	return q;
 582
 583fail_ref:
 584	percpu_ref_exit(&q->q_usage_counter);
 585fail_bdi:
 586	blk_free_queue_stats(q->stats);
 587fail_stats:
 588	bdi_put(q->backing_dev_info);
 589fail_split:
 590	bioset_exit(&q->bio_split);
 591fail_id:
 592	ida_simple_remove(&blk_queue_ida, q->id);
 593fail_q:
 594	kmem_cache_free(blk_requestq_cachep, q);
 595	return NULL;
 596}
 597EXPORT_SYMBOL(blk_alloc_queue);
 598
 599/**
 600 * blk_get_queue - increment the request_queue refcount
 601 * @q: the request_queue structure to increment the refcount for
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 602 *
 603 * Increment the refcount of the request_queue kobject.
 
 604 *
 605 * Context: Any context.
 606 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 607bool blk_get_queue(struct request_queue *q)
 608{
 609	if (likely(!blk_queue_dying(q))) {
 610		__blk_get_queue(q);
 611		return true;
 612	}
 613
 614	return false;
 615}
 616EXPORT_SYMBOL(blk_get_queue);
 617
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 618/**
 619 * blk_get_request - allocate a request
 620 * @q: request queue to allocate a request for
 621 * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC.
 622 * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT.
 
 623 */
 624struct request *blk_get_request(struct request_queue *q, unsigned int op,
 625				blk_mq_req_flags_t flags)
 626{
 627	struct request *req;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 628
 629	WARN_ON_ONCE(op & REQ_NOWAIT);
 630	WARN_ON_ONCE(flags & ~(BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_PREEMPT));
 631
 632	req = blk_mq_alloc_request(q, op, flags);
 633	if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn)
 634		q->mq_ops->initialize_rq_fn(req);
 
 
 635
 636	return req;
 
 
 
 
 
 
 
 
 
 
 637}
 638EXPORT_SYMBOL(blk_get_request);
 639
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 640void blk_put_request(struct request *req)
 641{
 642	blk_mq_free_request(req);
 
 
 
 
 
 
 
 
 
 
 643}
 644EXPORT_SYMBOL(blk_put_request);
 645
 646static void blk_account_io_merge_bio(struct request *req)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 647{
 648	if (!blk_do_io_stat(req))
 649		return;
 
 
 
 
 
 
 
 650
 651	part_stat_lock();
 652	part_stat_inc(req->part, merges[op_stat_group(req_op(req))]);
 653	part_stat_unlock();
 654}
 
 655
 656bool bio_attempt_back_merge(struct request *req, struct bio *bio,
 657		unsigned int nr_segs)
 658{
 659	const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
 660
 661	if (!ll_back_merge_fn(req, bio, nr_segs))
 662		return false;
 663
 664	trace_block_bio_backmerge(req->q, req, bio);
 665	rq_qos_merge(req->q, req, bio);
 666
 667	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
 668		blk_rq_set_mixed_merge(req);
 669
 670	req->biotail->bi_next = bio;
 671	req->biotail = bio;
 672	req->__data_len += bio->bi_iter.bi_size;
 
 673
 674	bio_crypt_free_ctx(bio);
 675
 676	blk_account_io_merge_bio(req);
 677	return true;
 678}
 679
 680bool bio_attempt_front_merge(struct request *req, struct bio *bio,
 681		unsigned int nr_segs)
 682{
 683	const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
 684
 685	if (!ll_front_merge_fn(req, bio, nr_segs))
 686		return false;
 687
 688	trace_block_bio_frontmerge(req->q, req, bio);
 689	rq_qos_merge(req->q, req, bio);
 690
 691	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
 692		blk_rq_set_mixed_merge(req);
 693
 694	bio->bi_next = req->bio;
 695	req->bio = bio;
 696
 697	req->__sector = bio->bi_iter.bi_sector;
 698	req->__data_len += bio->bi_iter.bi_size;
 
 699
 700	bio_crypt_do_front_merge(req, bio);
 701
 702	blk_account_io_merge_bio(req);
 703	return true;
 704}
 705
 706bool bio_attempt_discard_merge(struct request_queue *q, struct request *req,
 707		struct bio *bio)
 708{
 709	unsigned short segments = blk_rq_nr_discard_segments(req);
 710
 711	if (segments >= queue_max_discard_segments(q))
 712		goto no_merge;
 713	if (blk_rq_sectors(req) + bio_sectors(bio) >
 714	    blk_rq_get_max_sectors(req, blk_rq_pos(req)))
 715		goto no_merge;
 716
 717	rq_qos_merge(q, req, bio);
 718
 719	req->biotail->bi_next = bio;
 720	req->biotail = bio;
 721	req->__data_len += bio->bi_iter.bi_size;
 722	req->nr_phys_segments = segments + 1;
 723
 724	blk_account_io_merge_bio(req);
 725	return true;
 726no_merge:
 727	req_set_nomerge(q, req);
 728	return false;
 729}
 730
 731/**
 732 * blk_attempt_plug_merge - try to merge with %current's plugged list
 733 * @q: request_queue new bio is being queued at
 734 * @bio: new bio being queued
 735 * @nr_segs: number of segments in @bio
 736 * @same_queue_rq: pointer to &struct request that gets filled in when
 737 * another request associated with @q is found on the plug list
 738 * (optional, may be %NULL)
 739 *
 740 * Determine whether @bio being queued on @q can be merged with a request
 741 * on %current's plugged list.  Returns %true if merge was successful,
 742 * otherwise %false.
 743 *
 744 * Plugging coalesces IOs from the same issuer for the same purpose without
 745 * going through @q->queue_lock.  As such it's more of an issuing mechanism
 746 * than scheduling, and the request, while may have elvpriv data, is not
 747 * added on the elevator at this point.  In addition, we don't have
 748 * reliable access to the elevator outside queue lock.  Only check basic
 749 * merging parameters without querying the elevator.
 750 *
 751 * Caller must ensure !blk_queue_nomerges(q) beforehand.
 752 */
 753bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
 754		unsigned int nr_segs, struct request **same_queue_rq)
 
 755{
 756	struct blk_plug *plug;
 757	struct request *rq;
 
 758	struct list_head *plug_list;
 759
 760	plug = blk_mq_plug(q, bio);
 761	if (!plug)
 762		return false;
 
 763
 764	plug_list = &plug->mq_list;
 
 
 
 765
 766	list_for_each_entry_reverse(rq, plug_list, queuelist) {
 767		bool merged = false;
 768
 769		if (rq->q == q && same_queue_rq) {
 
 770			/*
 771			 * Only blk-mq multiple hardware queues case checks the
 772			 * rq in the same queue, there should be only one such
 773			 * rq in a queue
 774			 **/
 775			*same_queue_rq = rq;
 
 776		}
 777
 778		if (rq->q != q || !blk_rq_merge_ok(rq, bio))
 779			continue;
 780
 781		switch (blk_try_merge(rq, bio)) {
 782		case ELEVATOR_BACK_MERGE:
 783			merged = bio_attempt_back_merge(rq, bio, nr_segs);
 784			break;
 785		case ELEVATOR_FRONT_MERGE:
 786			merged = bio_attempt_front_merge(rq, bio, nr_segs);
 787			break;
 788		case ELEVATOR_DISCARD_MERGE:
 789			merged = bio_attempt_discard_merge(q, rq, bio);
 790			break;
 791		default:
 792			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 793		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 794
 795		if (merged)
 796			return true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 797	}
 798
 799	return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 800}
 801
 802static void handle_bad_sector(struct bio *bio, sector_t maxsector)
 803{
 804	char b[BDEVNAME_SIZE];
 805
 806	printk(KERN_INFO "attempt to access beyond end of device\n");
 807	printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n",
 808			bio_devname(bio, b), bio->bi_opf,
 
 809			(unsigned long long)bio_end_sector(bio),
 810			(long long)maxsector);
 811}
 812
 813#ifdef CONFIG_FAIL_MAKE_REQUEST
 814
 815static DECLARE_FAULT_ATTR(fail_make_request);
 816
 817static int __init setup_fail_make_request(char *str)
 818{
 819	return setup_fault_attr(&fail_make_request, str);
 820}
 821__setup("fail_make_request=", setup_fail_make_request);
 822
 823static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
 824{
 825	return part->make_it_fail && should_fail(&fail_make_request, bytes);
 826}
 827
 828static int __init fail_make_request_debugfs(void)
 829{
 830	struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
 831						NULL, &fail_make_request);
 832
 833	return PTR_ERR_OR_ZERO(dir);
 834}
 835
 836late_initcall(fail_make_request_debugfs);
 837
 838#else /* CONFIG_FAIL_MAKE_REQUEST */
 839
 840static inline bool should_fail_request(struct hd_struct *part,
 841					unsigned int bytes)
 842{
 843	return false;
 844}
 845
 846#endif /* CONFIG_FAIL_MAKE_REQUEST */
 847
 848static inline bool bio_check_ro(struct bio *bio, struct hd_struct *part)
 
 
 
 849{
 850	const int op = bio_op(bio);
 851
 852	if (part->policy && op_is_write(op)) {
 853		char b[BDEVNAME_SIZE];
 854
 855		if (op_is_flush(bio->bi_opf) && !bio_sectors(bio))
 856			return false;
 
 
 857
 858		WARN_ONCE(1,
 859		       "Trying to write to read-only block-device %s (partno %d)\n",
 860			bio_devname(bio, b), part->partno);
 861		/* Older lvm-tools actually trigger this */
 862		return false;
 
 
 
 
 863	}
 864
 865	return false;
 866}
 867
 868static noinline int should_fail_bio(struct bio *bio)
 869{
 870	if (should_fail_request(&bio->bi_disk->part0, bio->bi_iter.bi_size))
 871		return -EIO;
 872	return 0;
 873}
 874ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO);
 875
 876/*
 877 * Check whether this bio extends beyond the end of the device or partition.
 878 * This may well happen - the kernel calls bread() without checking the size of
 879 * the device, e.g., when mounting a file system.
 880 */
 881static inline int bio_check_eod(struct bio *bio, sector_t maxsector)
 882{
 883	unsigned int nr_sectors = bio_sectors(bio);
 884
 885	if (nr_sectors && maxsector &&
 886	    (nr_sectors > maxsector ||
 887	     bio->bi_iter.bi_sector > maxsector - nr_sectors)) {
 888		handle_bad_sector(bio, maxsector);
 889		return -EIO;
 890	}
 891	return 0;
 892}
 893
 894/*
 895 * Remap block n of partition p to block n+start(p) of the disk.
 896 */
 897static inline int blk_partition_remap(struct bio *bio)
 898{
 899	struct hd_struct *p;
 900	int ret = -EIO;
 901
 902	rcu_read_lock();
 903	p = __disk_get_part(bio->bi_disk, bio->bi_partno);
 904	if (unlikely(!p))
 905		goto out;
 906	if (unlikely(should_fail_request(p, bio->bi_iter.bi_size)))
 907		goto out;
 908	if (unlikely(bio_check_ro(bio, p)))
 909		goto out;
 910
 911	if (bio_sectors(bio)) {
 912		if (bio_check_eod(bio, part_nr_sects_read(p)))
 913			goto out;
 914		bio->bi_iter.bi_sector += p->start_sect;
 915		trace_block_bio_remap(bio->bi_disk->queue, bio, part_devt(p),
 916				      bio->bi_iter.bi_sector - p->start_sect);
 917	}
 918	bio->bi_partno = 0;
 919	ret = 0;
 920out:
 921	rcu_read_unlock();
 922	return ret;
 923}
 924
 925/*
 926 * Check write append to a zoned block device.
 927 */
 928static inline blk_status_t blk_check_zone_append(struct request_queue *q,
 929						 struct bio *bio)
 930{
 931	sector_t pos = bio->bi_iter.bi_sector;
 932	int nr_sectors = bio_sectors(bio);
 
 
 
 933
 934	/* Only applicable to zoned block devices */
 935	if (!blk_queue_is_zoned(q))
 936		return BLK_STS_NOTSUPP;
 937
 938	/* The bio sector must point to the start of a sequential zone */
 939	if (pos & (blk_queue_zone_sectors(q) - 1) ||
 940	    !blk_queue_zone_is_seq(q, pos))
 941		return BLK_STS_IOERR;
 942
 943	/*
 944	 * Not allowed to cross zone boundaries. Otherwise, the BIO will be
 945	 * split and could result in non-contiguous sectors being written in
 946	 * different zones.
 947	 */
 948	if (nr_sectors > q->limits.chunk_sectors)
 949		return BLK_STS_IOERR;
 
 
 950
 951	/* Make sure the BIO is small enough and will not get split */
 952	if (nr_sectors > q->limits.max_zone_append_sectors)
 953		return BLK_STS_IOERR;
 954
 955	bio->bi_opf |= REQ_NOMERGE;
 956
 957	return BLK_STS_OK;
 958}
 959
 960static noinline_for_stack bool submit_bio_checks(struct bio *bio)
 961{
 962	struct request_queue *q = bio->bi_disk->queue;
 963	blk_status_t status = BLK_STS_IOERR;
 964	struct blk_plug *plug;
 965
 966	might_sleep();
 967
 968	plug = blk_mq_plug(q, bio);
 969	if (plug && plug->nowait)
 970		bio->bi_opf |= REQ_NOWAIT;
 971
 972	/*
 973	 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
 974	 * if queue is not a request based queue.
 975	 */
 976	if ((bio->bi_opf & REQ_NOWAIT) && !queue_is_mq(q))
 977		goto not_supported;
 978
 979	if (should_fail_bio(bio))
 980		goto end_io;
 981
 982	if (bio->bi_partno) {
 983		if (unlikely(blk_partition_remap(bio)))
 984			goto end_io;
 985	} else {
 986		if (unlikely(bio_check_ro(bio, &bio->bi_disk->part0)))
 987			goto end_io;
 988		if (unlikely(bio_check_eod(bio, get_capacity(bio->bi_disk))))
 989			goto end_io;
 990	}
 991
 992	/*
 993	 * Filter flush bio's early so that bio based drivers without flush
 994	 * support don't have to worry about them.
 
 995	 */
 996	if (op_is_flush(bio->bi_opf) &&
 997	    !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
 998		bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
 999		if (!bio_sectors(bio)) {
1000			status = BLK_STS_OK;
1001			goto end_io;
1002		}
1003	}
1004
1005	if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
1006		bio->bi_opf &= ~REQ_HIPRI;
 
 
 
 
1007
1008	switch (bio_op(bio)) {
1009	case REQ_OP_DISCARD:
1010		if (!blk_queue_discard(q))
1011			goto not_supported;
1012		break;
1013	case REQ_OP_SECURE_ERASE:
1014		if (!blk_queue_secure_erase(q))
1015			goto not_supported;
1016		break;
1017	case REQ_OP_WRITE_SAME:
1018		if (!q->limits.max_write_same_sectors)
1019			goto not_supported;
1020		break;
1021	case REQ_OP_ZONE_APPEND:
1022		status = blk_check_zone_append(q, bio);
1023		if (status != BLK_STS_OK)
1024			goto end_io;
1025		break;
1026	case REQ_OP_ZONE_RESET:
1027	case REQ_OP_ZONE_OPEN:
1028	case REQ_OP_ZONE_CLOSE:
1029	case REQ_OP_ZONE_FINISH:
1030		if (!blk_queue_is_zoned(q))
1031			goto not_supported;
1032		break;
1033	case REQ_OP_ZONE_RESET_ALL:
1034		if (!blk_queue_is_zoned(q) || !blk_queue_zone_resetall(q))
1035			goto not_supported;
1036		break;
1037	case REQ_OP_WRITE_ZEROES:
1038		if (!q->limits.max_write_zeroes_sectors)
1039			goto not_supported;
1040		break;
1041	default:
1042		break;
1043	}
1044
1045	/*
1046	 * Various block parts want %current->io_context, so allocate it up
1047	 * front rather than dealing with lots of pain to allocate it only
1048	 * where needed. This may fail and the block layer knows how to live
1049	 * with it.
1050	 */
1051	if (unlikely(!current->io_context))
1052		create_task_io_context(current, GFP_ATOMIC, q->node);
1053
1054	if (blk_throtl_bio(bio)) {
1055		blkcg_bio_issue_init(bio);
1056		return false;
1057	}
1058
1059	blk_cgroup_bio_start(bio);
1060	blkcg_bio_issue_init(bio);
1061
1062	if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1063		trace_block_bio_queue(q, bio);
1064		/* Now that enqueuing has been traced, we need to trace
1065		 * completion as well.
1066		 */
1067		bio_set_flag(bio, BIO_TRACE_COMPLETION);
1068	}
1069	return true;
1070
1071not_supported:
1072	status = BLK_STS_NOTSUPP;
1073end_io:
1074	bio->bi_status = status;
1075	bio_endio(bio);
1076	return false;
1077}
1078
1079static blk_qc_t __submit_bio(struct bio *bio)
1080{
1081	struct gendisk *disk = bio->bi_disk;
1082	blk_qc_t ret = BLK_QC_T_NONE;
1083
1084	if (blk_crypto_bio_prep(&bio)) {
1085		if (!disk->fops->submit_bio)
1086			return blk_mq_submit_bio(bio);
1087		ret = disk->fops->submit_bio(bio);
1088	}
1089	blk_queue_exit(disk->queue);
1090	return ret;
1091}
1092
1093/*
1094 * The loop in this function may be a bit non-obvious, and so deserves some
1095 * explanation:
1096 *
1097 *  - Before entering the loop, bio->bi_next is NULL (as all callers ensure
1098 *    that), so we have a list with a single bio.
1099 *  - We pretend that we have just taken it off a longer list, so we assign
1100 *    bio_list to a pointer to the bio_list_on_stack, thus initialising the
1101 *    bio_list of new bios to be added.  ->submit_bio() may indeed add some more
1102 *    bios through a recursive call to submit_bio_noacct.  If it did, we find a
1103 *    non-NULL value in bio_list and re-enter the loop from the top.
1104 *  - In this case we really did just take the bio of the top of the list (no
1105 *    pretending) and so remove it from bio_list, and call into ->submit_bio()
1106 *    again.
1107 *
1108 * bio_list_on_stack[0] contains bios submitted by the current ->submit_bio.
1109 * bio_list_on_stack[1] contains bios that were submitted before the current
1110 *	->submit_bio_bio, but that haven't been processed yet.
 
 
 
 
 
1111 */
1112static blk_qc_t __submit_bio_noacct(struct bio *bio)
1113{
1114	struct bio_list bio_list_on_stack[2];
1115	blk_qc_t ret = BLK_QC_T_NONE;
1116
1117	BUG_ON(bio->bi_next);
 
1118
1119	bio_list_init(&bio_list_on_stack[0]);
1120	current->bio_list = bio_list_on_stack;
 
 
 
 
 
 
 
 
 
 
 
 
1121
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1122	do {
1123		struct request_queue *q = bio->bi_disk->queue;
1124		struct bio_list lower, same;
1125
1126		if (unlikely(bio_queue_enter(bio) != 0))
1127			continue;
1128
1129		/*
1130		 * Create a fresh bio_list for all subordinate requests.
1131		 */
1132		bio_list_on_stack[1] = bio_list_on_stack[0];
1133		bio_list_init(&bio_list_on_stack[0]);
1134
1135		ret = __submit_bio(bio);
 
 
1136
1137		/*
1138		 * Sort new bios into those for a lower level and those for the
1139		 * same level.
1140		 */
1141		bio_list_init(&lower);
1142		bio_list_init(&same);
1143		while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
1144			if (q == bio->bi_disk->queue)
1145				bio_list_add(&same, bio);
1146			else
1147				bio_list_add(&lower, bio);
1148
1149		/*
1150		 * Now assemble so we handle the lowest level first.
1151		 */
1152		bio_list_merge(&bio_list_on_stack[0], &lower);
1153		bio_list_merge(&bio_list_on_stack[0], &same);
1154		bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
1155	} while ((bio = bio_list_pop(&bio_list_on_stack[0])));
1156
1157	current->bio_list = NULL;
1158	return ret;
1159}
1160
1161static blk_qc_t __submit_bio_noacct_mq(struct bio *bio)
1162{
1163	struct bio_list bio_list[2] = { };
1164	blk_qc_t ret = BLK_QC_T_NONE;
1165
1166	current->bio_list = bio_list;
1167
1168	do {
1169		struct gendisk *disk = bio->bi_disk;
1170
1171		if (unlikely(bio_queue_enter(bio) != 0))
1172			continue;
1173
1174		if (!blk_crypto_bio_prep(&bio)) {
1175			blk_queue_exit(disk->queue);
1176			ret = BLK_QC_T_NONE;
1177			continue;
1178		}
 
 
1179
1180		ret = blk_mq_submit_bio(bio);
1181	} while ((bio = bio_list_pop(&bio_list[0])));
1182
1183	current->bio_list = NULL;
1184	return ret;
1185}
1186
1187/**
1188 * submit_bio_noacct - re-submit a bio to the block device layer for I/O
1189 * @bio:  The bio describing the location in memory and on the device.
1190 *
1191 * This is a version of submit_bio() that shall only be used for I/O that is
1192 * resubmitted to lower level drivers by stacking block drivers.  All file
1193 * systems and other upper level users of the block layer should use
1194 * submit_bio() instead.
1195 */
1196blk_qc_t submit_bio_noacct(struct bio *bio)
1197{
1198	if (!submit_bio_checks(bio))
1199		return BLK_QC_T_NONE;
1200
1201	/*
1202	 * We only want one ->submit_bio to be active at a time, else stack
1203	 * usage with stacked devices could be a problem.  Use current->bio_list
1204	 * to collect a list of requests submited by a ->submit_bio method while
1205	 * it is active, and then process them after it returned.
1206	 */
1207	if (current->bio_list) {
1208		bio_list_add(&current->bio_list[0], bio);
1209		return BLK_QC_T_NONE;
1210	}
1211
1212	if (!bio->bi_disk->fops->submit_bio)
1213		return __submit_bio_noacct_mq(bio);
1214	return __submit_bio_noacct(bio);
1215}
1216EXPORT_SYMBOL(submit_bio_noacct);
1217
1218/**
1219 * submit_bio - submit a bio to the block device layer for I/O
 
1220 * @bio: The &struct bio which describes the I/O
1221 *
1222 * submit_bio() is used to submit I/O requests to block devices.  It is passed a
1223 * fully set up &struct bio that describes the I/O that needs to be done.  The
1224 * bio will be send to the device described by the bi_disk and bi_partno fields.
1225 *
1226 * The success/failure status of the request, along with notification of
1227 * completion, is delivered asynchronously through the ->bi_end_io() callback
1228 * in @bio.  The bio must NOT be touched by thecaller until ->bi_end_io() has
1229 * been called.
1230 */
1231blk_qc_t submit_bio(struct bio *bio)
1232{
1233	if (blkcg_punt_bio_submit(bio))
1234		return BLK_QC_T_NONE;
1235
1236	/*
1237	 * If it's a regular read/write or a barrier with data attached,
1238	 * go through the normal accounting stuff before submission.
1239	 */
1240	if (bio_has_data(bio)) {
1241		unsigned int count;
1242
1243		if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
1244			count = queue_logical_block_size(bio->bi_disk->queue) >> 9;
1245		else
1246			count = bio_sectors(bio);
1247
1248		if (op_is_write(bio_op(bio))) {
1249			count_vm_events(PGPGOUT, count);
1250		} else {
1251			task_io_account_read(bio->bi_iter.bi_size);
1252			count_vm_events(PGPGIN, count);
1253		}
1254
1255		if (unlikely(block_dump)) {
1256			char b[BDEVNAME_SIZE];
1257			printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
1258			current->comm, task_pid_nr(current),
1259				op_is_write(bio_op(bio)) ? "WRITE" : "READ",
1260				(unsigned long long)bio->bi_iter.bi_sector,
1261				bio_devname(bio, b), count);
 
1262		}
1263	}
1264
1265	/*
1266	 * If we're reading data that is part of the userspace workingset, count
1267	 * submission time as memory stall.  When the device is congested, or
1268	 * the submitting cgroup IO-throttled, submission can be a significant
1269	 * part of overall IO time.
1270	 */
1271	if (unlikely(bio_op(bio) == REQ_OP_READ &&
1272	    bio_flagged(bio, BIO_WORKINGSET))) {
1273		unsigned long pflags;
1274		blk_qc_t ret;
1275
1276		psi_memstall_enter(&pflags);
1277		ret = submit_bio_noacct(bio);
1278		psi_memstall_leave(&pflags);
1279
1280		return ret;
1281	}
1282
1283	return submit_bio_noacct(bio);
1284}
1285EXPORT_SYMBOL(submit_bio);
1286
1287/**
1288 * blk_cloned_rq_check_limits - Helper function to check a cloned request
1289 *                              for the new queue limits
1290 * @q:  the queue
1291 * @rq: the request being checked
1292 *
1293 * Description:
1294 *    @rq may have been made based on weaker limitations of upper-level queues
1295 *    in request stacking drivers, and it may violate the limitation of @q.
1296 *    Since the block layer and the underlying device driver trust @rq
1297 *    after it is inserted to @q, it should be checked against @q before
1298 *    the insertion using this generic function.
1299 *
1300 *    Request stacking drivers like request-based dm may change the queue
1301 *    limits when retrying requests on other queues. Those requests need
1302 *    to be checked against the new queue limits again during dispatch.
1303 */
1304static int blk_cloned_rq_check_limits(struct request_queue *q,
1305				      struct request *rq)
1306{
1307	if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) {
1308		printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
1309			__func__, blk_rq_sectors(rq),
1310			blk_queue_get_max_sectors(q, req_op(rq)));
1311		return -EIO;
1312	}
1313
1314	/*
1315	 * queue's settings related to segment counting like q->bounce_pfn
1316	 * may differ from that of other stacking queues.
1317	 * Recalculate it to check the request correctly on this queue's
1318	 * limitation.
1319	 */
1320	rq->nr_phys_segments = blk_recalc_rq_segments(rq);
1321	if (rq->nr_phys_segments > queue_max_segments(q)) {
1322		printk(KERN_ERR "%s: over max segments limit. (%hu > %hu)\n",
1323			__func__, rq->nr_phys_segments, queue_max_segments(q));
1324		return -EIO;
1325	}
1326
1327	return 0;
1328}
1329
1330/**
1331 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1332 * @q:  the queue to submit the request
1333 * @rq: the request being queued
1334 */
1335blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1336{
 
 
 
1337	if (blk_cloned_rq_check_limits(q, rq))
1338		return BLK_STS_IOERR;
1339
1340	if (rq->rq_disk &&
1341	    should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
1342		return BLK_STS_IOERR;
1343
1344	if (blk_crypto_insert_cloned_request(rq))
1345		return BLK_STS_IOERR;
 
 
 
 
1346
1347	if (blk_queue_io_stat(q))
1348		blk_account_io_start(rq);
 
 
 
1349
1350	/*
1351	 * Since we have a scheduler attached on the top device,
1352	 * bypass a potential scheduler on the bottom device for
1353	 * insert.
1354	 */
1355	return blk_mq_request_issue_directly(rq, true);
 
 
 
 
 
 
 
 
 
 
1356}
1357EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1358
1359/**
1360 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1361 * @rq: request to examine
1362 *
1363 * Description:
1364 *     A request could be merge of IOs which require different failure
1365 *     handling.  This function determines the number of bytes which
1366 *     can be failed from the beginning of the request without
1367 *     crossing into area which need to be retried further.
1368 *
1369 * Return:
1370 *     The number of bytes to fail.
 
 
 
1371 */
1372unsigned int blk_rq_err_bytes(const struct request *rq)
1373{
1374	unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1375	unsigned int bytes = 0;
1376	struct bio *bio;
1377
1378	if (!(rq->rq_flags & RQF_MIXED_MERGE))
1379		return blk_rq_bytes(rq);
1380
1381	/*
1382	 * Currently the only 'mixing' which can happen is between
1383	 * different fastfail types.  We can safely fail portions
1384	 * which have all the failfast bits that the first one has -
1385	 * the ones which are at least as eager to fail as the first
1386	 * one.
1387	 */
1388	for (bio = rq->bio; bio; bio = bio->bi_next) {
1389		if ((bio->bi_opf & ff) != ff)
1390			break;
1391		bytes += bio->bi_iter.bi_size;
1392	}
1393
1394	/* this could lead to infinite loop */
1395	BUG_ON(blk_rq_bytes(rq) && !bytes);
1396	return bytes;
1397}
1398EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1399
1400static void update_io_ticks(struct hd_struct *part, unsigned long now, bool end)
1401{
1402	unsigned long stamp;
1403again:
1404	stamp = READ_ONCE(part->stamp);
1405	if (unlikely(stamp != now)) {
1406		if (likely(cmpxchg(&part->stamp, stamp, now) == stamp))
1407			__part_stat_add(part, io_ticks, end ? now - stamp : 1);
1408	}
1409	if (part->partno) {
1410		part = &part_to_disk(part)->part0;
1411		goto again;
1412	}
1413}
1414
1415static void blk_account_io_completion(struct request *req, unsigned int bytes)
1416{
1417	if (req->part && blk_do_io_stat(req)) {
1418		const int sgrp = op_stat_group(req_op(req));
1419		struct hd_struct *part;
 
1420
1421		part_stat_lock();
1422		part = req->part;
1423		part_stat_add(part, sectors[sgrp], bytes >> 9);
1424		part_stat_unlock();
1425	}
1426}
1427
1428void blk_account_io_done(struct request *req, u64 now)
1429{
1430	/*
1431	 * Account IO completion.  flush_rq isn't accounted as a
1432	 * normal IO on queueing nor completion.  Accounting the
1433	 * containing request is enough.
1434	 */
1435	if (req->part && blk_do_io_stat(req) &&
1436	    !(req->rq_flags & RQF_FLUSH_SEQ)) {
1437		const int sgrp = op_stat_group(req_op(req));
1438		struct hd_struct *part;
 
1439
1440		part_stat_lock();
1441		part = req->part;
1442
1443		update_io_ticks(part, jiffies, true);
1444		part_stat_inc(part, ios[sgrp]);
1445		part_stat_add(part, nsecs[sgrp], now - req->start_time_ns);
1446		part_stat_unlock();
1447
1448		hd_struct_put(part);
 
1449	}
1450}
1451
1452void blk_account_io_start(struct request *rq)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1453{
 
 
 
 
1454	if (!blk_do_io_stat(rq))
1455		return;
1456
1457	rq->part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1458
1459	part_stat_lock();
1460	update_io_ticks(rq->part, jiffies, false);
1461	part_stat_unlock();
1462}
1463
1464unsigned long disk_start_io_acct(struct gendisk *disk, unsigned int sectors,
1465		unsigned int op)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1466{
1467	struct hd_struct *part = &disk->part0;
1468	const int sgrp = op_stat_group(op);
1469	unsigned long now = READ_ONCE(jiffies);
1470
1471	part_stat_lock();
1472	update_io_ticks(part, now, false);
1473	part_stat_inc(part, ios[sgrp]);
1474	part_stat_add(part, sectors[sgrp], sectors);
1475	part_stat_local_inc(part, in_flight[op_is_write(op)]);
1476	part_stat_unlock();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1477
1478	return now;
1479}
1480EXPORT_SYMBOL(disk_start_io_acct);
1481
1482void disk_end_io_acct(struct gendisk *disk, unsigned int op,
1483		unsigned long start_time)
1484{
1485	struct hd_struct *part = &disk->part0;
1486	const int sgrp = op_stat_group(op);
1487	unsigned long now = READ_ONCE(jiffies);
1488	unsigned long duration = now - start_time;
1489
1490	part_stat_lock();
1491	update_io_ticks(part, now, true);
1492	part_stat_add(part, nsecs[sgrp], jiffies_to_nsecs(duration));
1493	part_stat_local_dec(part, in_flight[op_is_write(op)]);
1494	part_stat_unlock();
 
 
 
 
 
 
1495}
1496EXPORT_SYMBOL(disk_end_io_acct);
1497
1498/*
1499 * Steal bios from a request and add them to a bio list.
1500 * The request must not have been partially completed before.
 
 
 
 
 
 
 
 
 
 
1501 */
1502void blk_steal_bios(struct bio_list *list, struct request *rq)
1503{
1504	if (rq->bio) {
1505		if (list->tail)
1506			list->tail->bi_next = rq->bio;
1507		else
1508			list->head = rq->bio;
1509		list->tail = rq->biotail;
 
 
 
 
 
 
 
 
1510
1511		rq->bio = NULL;
1512		rq->biotail = NULL;
1513	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1514
1515	rq->__data_len = 0;
 
 
 
1516}
1517EXPORT_SYMBOL_GPL(blk_steal_bios);
1518
1519/**
1520 * blk_update_request - Special helper function for request stacking drivers
1521 * @req:      the request being processed
1522 * @error:    block status code
1523 * @nr_bytes: number of bytes to complete @req
1524 *
1525 * Description:
1526 *     Ends I/O on a number of bytes attached to @req, but doesn't complete
1527 *     the request structure even if @req doesn't have leftover.
1528 *     If @req has leftover, sets it up for the next range of segments.
1529 *
1530 *     This special helper function is only for request stacking drivers
1531 *     (e.g. request-based dm) so that they can handle partial completion.
1532 *     Actual device drivers should use blk_mq_end_request instead.
1533 *
1534 *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
1535 *     %false return from this function.
1536 *
1537 * Note:
1538 *	The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in both
1539 *	blk_rq_bytes() and in blk_update_request().
1540 *
1541 * Return:
1542 *     %false - this request doesn't have any more data
1543 *     %true  - this request has more data
1544 **/
1545bool blk_update_request(struct request *req, blk_status_t error,
1546		unsigned int nr_bytes)
1547{
1548	int total_bytes;
1549
1550	trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes);
1551
1552	if (!req->bio)
1553		return false;
1554
1555#ifdef CONFIG_BLK_DEV_INTEGRITY
1556	if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
1557	    error == BLK_STS_OK)
1558		req->q->integrity.profile->complete_fn(req, nr_bytes);
1559#endif
 
 
 
 
 
1560
1561	if (unlikely(error && !blk_rq_is_passthrough(req) &&
1562		     !(req->rq_flags & RQF_QUIET)))
1563		print_req_error(req, error, __func__);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1564
1565	blk_account_io_completion(req, nr_bytes);
1566
1567	total_bytes = 0;
1568	while (req->bio) {
1569		struct bio *bio = req->bio;
1570		unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
1571
1572		if (bio_bytes == bio->bi_iter.bi_size)
1573			req->bio = bio->bi_next;
1574
1575		/* Completion has already been traced */
1576		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1577		req_bio_endio(req, bio, bio_bytes, error);
1578
1579		total_bytes += bio_bytes;
1580		nr_bytes -= bio_bytes;
1581
1582		if (!nr_bytes)
1583			break;
1584	}
1585
1586	/*
1587	 * completely done
1588	 */
1589	if (!req->bio) {
1590		/*
1591		 * Reset counters so that the request stacking driver
1592		 * can find how many bytes remain in the request
1593		 * later.
1594		 */
1595		req->__data_len = 0;
1596		return false;
1597	}
1598
1599	req->__data_len -= total_bytes;
1600
1601	/* update sector only for requests with clear definition of sector */
1602	if (!blk_rq_is_passthrough(req))
1603		req->__sector += total_bytes >> 9;
1604
1605	/* mixed attributes always follow the first bio */
1606	if (req->rq_flags & RQF_MIXED_MERGE) {
1607		req->cmd_flags &= ~REQ_FAILFAST_MASK;
1608		req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
1609	}
1610
1611	if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
1612		/*
1613		 * If total number of sectors is less than the first segment
1614		 * size, something has gone terribly wrong.
1615		 */
1616		if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
1617			blk_dump_rq_flags(req, "request botched");
1618			req->__data_len = blk_rq_cur_bytes(req);
1619		}
1620
1621		/* recalculate the number of segments */
1622		req->nr_phys_segments = blk_recalc_rq_segments(req);
1623	}
1624
1625	return true;
1626}
1627EXPORT_SYMBOL_GPL(blk_update_request);
1628
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1629#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1630/**
1631 * rq_flush_dcache_pages - Helper function to flush all pages in a request
1632 * @rq: the request to be flushed
1633 *
1634 * Description:
1635 *     Flush all pages in @rq.
1636 */
1637void rq_flush_dcache_pages(struct request *rq)
1638{
1639	struct req_iterator iter;
1640	struct bio_vec bvec;
1641
1642	rq_for_each_segment(bvec, rq, iter)
1643		flush_dcache_page(bvec.bv_page);
1644}
1645EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
1646#endif
1647
1648/**
1649 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
1650 * @q : the queue of the device being checked
1651 *
1652 * Description:
1653 *    Check if underlying low-level drivers of a device are busy.
1654 *    If the drivers want to export their busy state, they must set own
1655 *    exporting function using blk_queue_lld_busy() first.
1656 *
1657 *    Basically, this function is used only by request stacking drivers
1658 *    to stop dispatching requests to underlying devices when underlying
1659 *    devices are busy.  This behavior helps more I/O merging on the queue
1660 *    of the request stacking driver and prevents I/O throughput regression
1661 *    on burst I/O load.
1662 *
1663 * Return:
1664 *    0 - Not busy (The request stacking driver should dispatch request)
1665 *    1 - Busy (The request stacking driver should stop dispatching request)
1666 */
1667int blk_lld_busy(struct request_queue *q)
1668{
1669	if (queue_is_mq(q) && q->mq_ops->busy)
1670		return q->mq_ops->busy(q);
1671
1672	return 0;
1673}
1674EXPORT_SYMBOL_GPL(blk_lld_busy);
1675
1676/**
1677 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
1678 * @rq: the clone request to be cleaned up
1679 *
1680 * Description:
1681 *     Free all bios in @rq for a cloned request.
1682 */
1683void blk_rq_unprep_clone(struct request *rq)
1684{
1685	struct bio *bio;
1686
1687	while ((bio = rq->bio) != NULL) {
1688		rq->bio = bio->bi_next;
1689
1690		bio_put(bio);
1691	}
1692}
1693EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
1694
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1695/**
1696 * blk_rq_prep_clone - Helper function to setup clone request
1697 * @rq: the request to be setup
1698 * @rq_src: original request to be cloned
1699 * @bs: bio_set that bios for clone are allocated from
1700 * @gfp_mask: memory allocation mask for bio
1701 * @bio_ctr: setup function to be called for each clone bio.
1702 *           Returns %0 for success, non %0 for failure.
1703 * @data: private data to be passed to @bio_ctr
1704 *
1705 * Description:
1706 *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
 
 
1707 *     Also, pages which the original bios are pointing to are not copied
1708 *     and the cloned bios just point same pages.
1709 *     So cloned bios must be completed before original bios, which means
1710 *     the caller must complete @rq before @rq_src.
1711 */
1712int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
1713		      struct bio_set *bs, gfp_t gfp_mask,
1714		      int (*bio_ctr)(struct bio *, struct bio *, void *),
1715		      void *data)
1716{
1717	struct bio *bio, *bio_src;
1718
1719	if (!bs)
1720		bs = &fs_bio_set;
1721
1722	__rq_for_each_bio(bio_src, rq_src) {
1723		bio = bio_clone_fast(bio_src, gfp_mask, bs);
1724		if (!bio)
1725			goto free_and_out;
1726
1727		if (bio_ctr && bio_ctr(bio, bio_src, data))
1728			goto free_and_out;
1729
1730		if (rq->bio) {
1731			rq->biotail->bi_next = bio;
1732			rq->biotail = bio;
1733		} else
1734			rq->bio = rq->biotail = bio;
1735	}
1736
1737	/* Copy attributes of the original request to the clone request. */
1738	rq->__sector = blk_rq_pos(rq_src);
1739	rq->__data_len = blk_rq_bytes(rq_src);
1740	if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
1741		rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
1742		rq->special_vec = rq_src->special_vec;
1743	}
1744	rq->nr_phys_segments = rq_src->nr_phys_segments;
1745	rq->ioprio = rq_src->ioprio;
1746
1747	if (rq->bio)
1748		blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask);
1749
1750	return 0;
1751
1752free_and_out:
1753	if (bio)
1754		bio_put(bio);
1755	blk_rq_unprep_clone(rq);
1756
1757	return -ENOMEM;
1758}
1759EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
1760
1761int kblockd_schedule_work(struct work_struct *work)
1762{
1763	return queue_work(kblockd_workqueue, work);
1764}
1765EXPORT_SYMBOL(kblockd_schedule_work);
1766
1767int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
1768				unsigned long delay)
1769{
1770	return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
1771}
1772EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
 
 
 
 
 
 
 
1773
1774/**
1775 * blk_start_plug - initialize blk_plug and track it inside the task_struct
1776 * @plug:	The &struct blk_plug that needs to be initialized
1777 *
1778 * Description:
1779 *   blk_start_plug() indicates to the block layer an intent by the caller
1780 *   to submit multiple I/O requests in a batch.  The block layer may use
1781 *   this hint to defer submitting I/Os from the caller until blk_finish_plug()
1782 *   is called.  However, the block layer may choose to submit requests
1783 *   before a call to blk_finish_plug() if the number of queued I/Os
1784 *   exceeds %BLK_MAX_REQUEST_COUNT, or if the size of the I/O is larger than
1785 *   %BLK_PLUG_FLUSH_SIZE.  The queued I/Os may also be submitted early if
1786 *   the task schedules (see below).
1787 *
1788 *   Tracking blk_plug inside the task_struct will help with auto-flushing the
1789 *   pending I/O should the task end up blocking between blk_start_plug() and
1790 *   blk_finish_plug(). This is important from a performance perspective, but
1791 *   also ensures that we don't deadlock. For instance, if the task is blocking
1792 *   for a memory allocation, memory reclaim could end up wanting to free a
1793 *   page belonging to that request that is currently residing in our private
1794 *   plug. By flushing the pending I/O when the process goes to sleep, we avoid
1795 *   this kind of deadlock.
1796 */
1797void blk_start_plug(struct blk_plug *plug)
1798{
1799	struct task_struct *tsk = current;
1800
1801	/*
1802	 * If this is a nested plug, don't actually assign it.
1803	 */
1804	if (tsk->plug)
1805		return;
1806
 
1807	INIT_LIST_HEAD(&plug->mq_list);
1808	INIT_LIST_HEAD(&plug->cb_list);
1809	plug->rq_count = 0;
1810	plug->multiple_queues = false;
1811	plug->nowait = false;
1812
1813	/*
1814	 * Store ordering should not be needed here, since a potential
1815	 * preempt will imply a full memory barrier
1816	 */
1817	tsk->plug = plug;
1818}
1819EXPORT_SYMBOL(blk_start_plug);
1820
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1821static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
1822{
1823	LIST_HEAD(callbacks);
1824
1825	while (!list_empty(&plug->cb_list)) {
1826		list_splice_init(&plug->cb_list, &callbacks);
1827
1828		while (!list_empty(&callbacks)) {
1829			struct blk_plug_cb *cb = list_first_entry(&callbacks,
1830							  struct blk_plug_cb,
1831							  list);
1832			list_del(&cb->list);
1833			cb->callback(cb, from_schedule);
1834		}
1835	}
1836}
1837
1838struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
1839				      int size)
1840{
1841	struct blk_plug *plug = current->plug;
1842	struct blk_plug_cb *cb;
1843
1844	if (!plug)
1845		return NULL;
1846
1847	list_for_each_entry(cb, &plug->cb_list, list)
1848		if (cb->callback == unplug && cb->data == data)
1849			return cb;
1850
1851	/* Not currently on the callback list */
1852	BUG_ON(size < sizeof(*cb));
1853	cb = kzalloc(size, GFP_ATOMIC);
1854	if (cb) {
1855		cb->data = data;
1856		cb->callback = unplug;
1857		list_add(&cb->list, &plug->cb_list);
1858	}
1859	return cb;
1860}
1861EXPORT_SYMBOL(blk_check_plugged);
1862
1863void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1864{
 
 
 
 
 
 
1865	flush_plug_callbacks(plug, from_schedule);
1866
1867	if (!list_empty(&plug->mq_list))
1868		blk_mq_flush_plug_list(plug, from_schedule);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1869}
1870
1871/**
1872 * blk_finish_plug - mark the end of a batch of submitted I/O
1873 * @plug:	The &struct blk_plug passed to blk_start_plug()
1874 *
1875 * Description:
1876 * Indicate that a batch of I/O submissions is complete.  This function
1877 * must be paired with an initial call to blk_start_plug().  The intent
1878 * is to allow the block layer to optimize I/O submission.  See the
1879 * documentation for blk_start_plug() for more information.
1880 */
1881void blk_finish_plug(struct blk_plug *plug)
1882{
1883	if (plug != current->plug)
1884		return;
1885	blk_flush_plug_list(plug, false);
1886
1887	current->plug = NULL;
1888}
1889EXPORT_SYMBOL(blk_finish_plug);
1890
1891void blk_io_schedule(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1892{
1893	/* Prevent hang_check timer from firing at us during very long I/O */
1894	unsigned long timeout = sysctl_hung_task_timeout_secs * HZ / 2;
 
 
 
 
 
 
1895
1896	if (timeout)
1897		io_schedule_timeout(timeout);
1898	else
1899		io_schedule();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1900}
1901EXPORT_SYMBOL_GPL(blk_io_schedule);
 
1902
1903int __init blk_dev_init(void)
1904{
1905	BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
1906	BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1907			sizeof_field(struct request, cmd_flags));
1908	BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1909			sizeof_field(struct bio, bi_opf));
1910
1911	/* used for unplugging and affects IO latency/throughput - HIGHPRI */
1912	kblockd_workqueue = alloc_workqueue("kblockd",
1913					    WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1914	if (!kblockd_workqueue)
1915		panic("Failed to create kblockd\n");
1916
 
 
 
1917	blk_requestq_cachep = kmem_cache_create("request_queue",
1918			sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1919
1920	blk_debugfs_root = debugfs_create_dir("block", NULL);
1921
1922	return 0;
1923}