Linux Audio

Check our new training course

Loading...
v4.6
   1/*
   2 * Copyright (C) 1991, 1992 Linus Torvalds
   3 * Copyright (C) 1994,      Karl Keyte: Added support for disk statistics
   4 * Elevator latency, (C) 2000  Andrea Arcangeli <andrea@suse.de> SuSE
   5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
   6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
   7 *	-  July2000
   8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
   9 */
  10
  11/*
  12 * This handles all read/write requests to block devices
  13 */
  14#include <linux/kernel.h>
  15#include <linux/module.h>
  16#include <linux/backing-dev.h>
  17#include <linux/bio.h>
  18#include <linux/blkdev.h>
  19#include <linux/blk-mq.h>
  20#include <linux/highmem.h>
  21#include <linux/mm.h>
  22#include <linux/kernel_stat.h>
  23#include <linux/string.h>
  24#include <linux/init.h>
  25#include <linux/completion.h>
  26#include <linux/slab.h>
  27#include <linux/swap.h>
  28#include <linux/writeback.h>
  29#include <linux/task_io_accounting_ops.h>
  30#include <linux/fault-inject.h>
  31#include <linux/list_sort.h>
  32#include <linux/delay.h>
  33#include <linux/ratelimit.h>
  34#include <linux/pm_runtime.h>
  35#include <linux/blk-cgroup.h>
  36
  37#define CREATE_TRACE_POINTS
  38#include <trace/events/block.h>
  39
  40#include "blk.h"
  41#include "blk-mq.h"
  42
  43EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
  44EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
  45EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
  46EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
  47EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
  48
  49DEFINE_IDA(blk_queue_ida);
  50
  51/*
  52 * For the allocated request tables
  53 */
  54struct kmem_cache *request_cachep;
  55
  56/*
  57 * For queue allocation
  58 */
  59struct kmem_cache *blk_requestq_cachep;
  60
  61/*
  62 * Controlling structure to kblockd
  63 */
  64static struct workqueue_struct *kblockd_workqueue;
  65
  66static void blk_clear_congested(struct request_list *rl, int sync)
  67{
  68#ifdef CONFIG_CGROUP_WRITEBACK
  69	clear_wb_congested(rl->blkg->wb_congested, sync);
  70#else
  71	/*
  72	 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't
  73	 * flip its congestion state for events on other blkcgs.
  74	 */
  75	if (rl == &rl->q->root_rl)
  76		clear_wb_congested(rl->q->backing_dev_info.wb.congested, sync);
  77#endif
  78}
  79
  80static void blk_set_congested(struct request_list *rl, int sync)
  81{
  82#ifdef CONFIG_CGROUP_WRITEBACK
  83	set_wb_congested(rl->blkg->wb_congested, sync);
  84#else
  85	/* see blk_clear_congested() */
  86	if (rl == &rl->q->root_rl)
  87		set_wb_congested(rl->q->backing_dev_info.wb.congested, sync);
  88#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  89}
  90
  91void blk_queue_congestion_threshold(struct request_queue *q)
  92{
  93	int nr;
  94
  95	nr = q->nr_requests - (q->nr_requests / 8) + 1;
  96	if (nr > q->nr_requests)
  97		nr = q->nr_requests;
  98	q->nr_congestion_on = nr;
  99
 100	nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
 101	if (nr < 1)
 102		nr = 1;
 103	q->nr_congestion_off = nr;
 104}
 105
 106/**
 107 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
 108 * @bdev:	device
 109 *
 110 * Locates the passed device's request queue and returns the address of its
 111 * backing_dev_info.  This function can only be called if @bdev is opened
 112 * and the return value is never NULL.
 
 113 */
 114struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
 115{
 
 116	struct request_queue *q = bdev_get_queue(bdev);
 117
 118	return &q->backing_dev_info;
 
 
 119}
 120EXPORT_SYMBOL(blk_get_backing_dev_info);
 121
 122void blk_rq_init(struct request_queue *q, struct request *rq)
 123{
 124	memset(rq, 0, sizeof(*rq));
 125
 126	INIT_LIST_HEAD(&rq->queuelist);
 127	INIT_LIST_HEAD(&rq->timeout_list);
 128	rq->cpu = -1;
 129	rq->q = q;
 130	rq->__sector = (sector_t) -1;
 131	INIT_HLIST_NODE(&rq->hash);
 132	RB_CLEAR_NODE(&rq->rb_node);
 133	rq->cmd = rq->__cmd;
 134	rq->cmd_len = BLK_MAX_CDB;
 135	rq->tag = -1;
 
 136	rq->start_time = jiffies;
 137	set_start_time_ns(rq);
 138	rq->part = NULL;
 139}
 140EXPORT_SYMBOL(blk_rq_init);
 141
 142static void req_bio_endio(struct request *rq, struct bio *bio,
 143			  unsigned int nbytes, int error)
 144{
 145	if (error)
 146		bio->bi_error = error;
 
 
 
 
 
 
 
 
 147
 148	if (unlikely(rq->cmd_flags & REQ_QUIET))
 149		bio_set_flag(bio, BIO_QUIET);
 
 
 
 150
 151	bio_advance(bio, nbytes);
 
 152
 153	/* don't actually finish bio if it's part of flush sequence */
 154	if (bio->bi_iter.bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
 155		bio_endio(bio);
 156}
 157
 158void blk_dump_rq_flags(struct request *rq, char *msg)
 159{
 160	int bit;
 161
 162	printk(KERN_INFO "%s: dev %s: type=%x, flags=%llx\n", msg,
 163		rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
 164		(unsigned long long) rq->cmd_flags);
 165
 166	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
 167	       (unsigned long long)blk_rq_pos(rq),
 168	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
 169	printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
 170	       rq->bio, rq->biotail, blk_rq_bytes(rq));
 171
 172	if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
 173		printk(KERN_INFO "  cdb: ");
 174		for (bit = 0; bit < BLK_MAX_CDB; bit++)
 175			printk("%02x ", rq->cmd[bit]);
 176		printk("\n");
 177	}
 178}
 179EXPORT_SYMBOL(blk_dump_rq_flags);
 180
 181static void blk_delay_work(struct work_struct *work)
 182{
 183	struct request_queue *q;
 184
 185	q = container_of(work, struct request_queue, delay_work.work);
 186	spin_lock_irq(q->queue_lock);
 187	__blk_run_queue(q);
 188	spin_unlock_irq(q->queue_lock);
 189}
 190
 191/**
 192 * blk_delay_queue - restart queueing after defined interval
 193 * @q:		The &struct request_queue in question
 194 * @msecs:	Delay in msecs
 195 *
 196 * Description:
 197 *   Sometimes queueing needs to be postponed for a little while, to allow
 198 *   resources to come back. This function will make sure that queueing is
 199 *   restarted around the specified time. Queue lock must be held.
 200 */
 201void blk_delay_queue(struct request_queue *q, unsigned long msecs)
 202{
 203	if (likely(!blk_queue_dead(q)))
 204		queue_delayed_work(kblockd_workqueue, &q->delay_work,
 205				   msecs_to_jiffies(msecs));
 206}
 207EXPORT_SYMBOL(blk_delay_queue);
 208
 209/**
 210 * blk_start_queue_async - asynchronously restart a previously stopped queue
 211 * @q:    The &struct request_queue in question
 212 *
 213 * Description:
 214 *   blk_start_queue_async() will clear the stop flag on the queue, and
 215 *   ensure that the request_fn for the queue is run from an async
 216 *   context.
 217 **/
 218void blk_start_queue_async(struct request_queue *q)
 219{
 220	queue_flag_clear(QUEUE_FLAG_STOPPED, q);
 221	blk_run_queue_async(q);
 222}
 223EXPORT_SYMBOL(blk_start_queue_async);
 224
 225/**
 226 * blk_start_queue - restart a previously stopped queue
 227 * @q:    The &struct request_queue in question
 228 *
 229 * Description:
 230 *   blk_start_queue() will clear the stop flag on the queue, and call
 231 *   the request_fn for the queue if it was in a stopped state when
 232 *   entered. Also see blk_stop_queue(). Queue lock must be held.
 233 **/
 234void blk_start_queue(struct request_queue *q)
 235{
 236	WARN_ON(!irqs_disabled());
 237
 238	queue_flag_clear(QUEUE_FLAG_STOPPED, q);
 239	__blk_run_queue(q);
 240}
 241EXPORT_SYMBOL(blk_start_queue);
 242
 243/**
 244 * blk_stop_queue - stop a queue
 245 * @q:    The &struct request_queue in question
 246 *
 247 * Description:
 248 *   The Linux block layer assumes that a block driver will consume all
 249 *   entries on the request queue when the request_fn strategy is called.
 250 *   Often this will not happen, because of hardware limitations (queue
 251 *   depth settings). If a device driver gets a 'queue full' response,
 252 *   or if it simply chooses not to queue more I/O at one point, it can
 253 *   call this function to prevent the request_fn from being called until
 254 *   the driver has signalled it's ready to go again. This happens by calling
 255 *   blk_start_queue() to restart queue operations. Queue lock must be held.
 256 **/
 257void blk_stop_queue(struct request_queue *q)
 258{
 259	cancel_delayed_work(&q->delay_work);
 260	queue_flag_set(QUEUE_FLAG_STOPPED, q);
 261}
 262EXPORT_SYMBOL(blk_stop_queue);
 263
 264/**
 265 * blk_sync_queue - cancel any pending callbacks on a queue
 266 * @q: the queue
 267 *
 268 * Description:
 269 *     The block layer may perform asynchronous callback activity
 270 *     on a queue, such as calling the unplug function after a timeout.
 271 *     A block device may call blk_sync_queue to ensure that any
 272 *     such activity is cancelled, thus allowing it to release resources
 273 *     that the callbacks might use. The caller must already have made sure
 274 *     that its ->make_request_fn will not re-add plugging prior to calling
 275 *     this function.
 276 *
 277 *     This function does not cancel any asynchronous activity arising
 278 *     out of elevator or throttling code. That would require elevator_exit()
 279 *     and blkcg_exit_queue() to be called with queue lock initialized.
 280 *
 281 */
 282void blk_sync_queue(struct request_queue *q)
 283{
 284	del_timer_sync(&q->timeout);
 285
 286	if (q->mq_ops) {
 287		struct blk_mq_hw_ctx *hctx;
 288		int i;
 289
 290		queue_for_each_hw_ctx(q, hctx, i) {
 291			cancel_delayed_work_sync(&hctx->run_work);
 292			cancel_delayed_work_sync(&hctx->delay_work);
 293		}
 294	} else {
 295		cancel_delayed_work_sync(&q->delay_work);
 296	}
 297}
 298EXPORT_SYMBOL(blk_sync_queue);
 299
 300/**
 301 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
 302 * @q:	The queue to run
 303 *
 304 * Description:
 305 *    Invoke request handling on a queue if there are any pending requests.
 306 *    May be used to restart request handling after a request has completed.
 307 *    This variant runs the queue whether or not the queue has been
 308 *    stopped. Must be called with the queue lock held and interrupts
 309 *    disabled. See also @blk_run_queue.
 310 */
 311inline void __blk_run_queue_uncond(struct request_queue *q)
 312{
 313	if (unlikely(blk_queue_dead(q)))
 314		return;
 315
 316	/*
 317	 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
 318	 * the queue lock internally. As a result multiple threads may be
 319	 * running such a request function concurrently. Keep track of the
 320	 * number of active request_fn invocations such that blk_drain_queue()
 321	 * can wait until all these request_fn calls have finished.
 322	 */
 323	q->request_fn_active++;
 324	q->request_fn(q);
 325	q->request_fn_active--;
 326}
 327EXPORT_SYMBOL_GPL(__blk_run_queue_uncond);
 328
 329/**
 330 * __blk_run_queue - run a single device queue
 331 * @q:	The queue to run
 332 *
 333 * Description:
 334 *    See @blk_run_queue. This variant must be called with the queue lock
 335 *    held and interrupts disabled.
 336 */
 337void __blk_run_queue(struct request_queue *q)
 338{
 339	if (unlikely(blk_queue_stopped(q)))
 340		return;
 341
 342	__blk_run_queue_uncond(q);
 343}
 344EXPORT_SYMBOL(__blk_run_queue);
 345
 346/**
 347 * blk_run_queue_async - run a single device queue in workqueue context
 348 * @q:	The queue to run
 349 *
 350 * Description:
 351 *    Tells kblockd to perform the equivalent of @blk_run_queue on behalf
 352 *    of us. The caller must hold the queue lock.
 353 */
 354void blk_run_queue_async(struct request_queue *q)
 355{
 356	if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
 357		mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
 
 
 358}
 359EXPORT_SYMBOL(blk_run_queue_async);
 360
 361/**
 362 * blk_run_queue - run a single device queue
 363 * @q: The queue to run
 364 *
 365 * Description:
 366 *    Invoke request handling on this queue, if it has pending work to do.
 367 *    May be used to restart queueing when a request has completed.
 368 */
 369void blk_run_queue(struct request_queue *q)
 370{
 371	unsigned long flags;
 372
 373	spin_lock_irqsave(q->queue_lock, flags);
 374	__blk_run_queue(q);
 375	spin_unlock_irqrestore(q->queue_lock, flags);
 376}
 377EXPORT_SYMBOL(blk_run_queue);
 378
 379void blk_put_queue(struct request_queue *q)
 380{
 381	kobject_put(&q->kobj);
 382}
 383EXPORT_SYMBOL(blk_put_queue);
 384
 385/**
 386 * __blk_drain_queue - drain requests from request_queue
 387 * @q: queue to drain
 388 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
 389 *
 390 * Drain requests from @q.  If @drain_all is set, all requests are drained.
 391 * If not, only ELVPRIV requests are drained.  The caller is responsible
 392 * for ensuring that no new requests which need to be drained are queued.
 393 */
 394static void __blk_drain_queue(struct request_queue *q, bool drain_all)
 395	__releases(q->queue_lock)
 396	__acquires(q->queue_lock)
 397{
 398	int i;
 399
 400	lockdep_assert_held(q->queue_lock);
 401
 402	while (true) {
 403		bool drain = false;
 404
 405		/*
 406		 * The caller might be trying to drain @q before its
 407		 * elevator is initialized.
 408		 */
 409		if (q->elevator)
 410			elv_drain_elevator(q);
 411
 412		blkcg_drain_queue(q);
 413
 414		/*
 415		 * This function might be called on a queue which failed
 416		 * driver init after queue creation or is not yet fully
 417		 * active yet.  Some drivers (e.g. fd and loop) get unhappy
 418		 * in such cases.  Kick queue iff dispatch queue has
 419		 * something on it and @q has request_fn set.
 420		 */
 421		if (!list_empty(&q->queue_head) && q->request_fn)
 422			__blk_run_queue(q);
 423
 424		drain |= q->nr_rqs_elvpriv;
 425		drain |= q->request_fn_active;
 426
 427		/*
 428		 * Unfortunately, requests are queued at and tracked from
 429		 * multiple places and there's no single counter which can
 430		 * be drained.  Check all the queues and counters.
 431		 */
 432		if (drain_all) {
 433			struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
 434			drain |= !list_empty(&q->queue_head);
 435			for (i = 0; i < 2; i++) {
 436				drain |= q->nr_rqs[i];
 437				drain |= q->in_flight[i];
 438				if (fq)
 439				    drain |= !list_empty(&fq->flush_queue[i]);
 440			}
 441		}
 442
 443		if (!drain)
 444			break;
 445
 446		spin_unlock_irq(q->queue_lock);
 447
 448		msleep(10);
 449
 450		spin_lock_irq(q->queue_lock);
 451	}
 452
 453	/*
 454	 * With queue marked dead, any woken up waiter will fail the
 455	 * allocation path, so the wakeup chaining is lost and we're
 456	 * left with hung waiters. We need to wake up those waiters.
 457	 */
 458	if (q->request_fn) {
 459		struct request_list *rl;
 460
 461		blk_queue_for_each_rl(rl, q)
 462			for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
 463				wake_up_all(&rl->wait[i]);
 464	}
 465}
 466
 467/**
 468 * blk_queue_bypass_start - enter queue bypass mode
 469 * @q: queue of interest
 470 *
 471 * In bypass mode, only the dispatch FIFO queue of @q is used.  This
 472 * function makes @q enter bypass mode and drains all requests which were
 473 * throttled or issued before.  On return, it's guaranteed that no request
 474 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
 475 * inside queue or RCU read lock.
 476 */
 477void blk_queue_bypass_start(struct request_queue *q)
 478{
 479	spin_lock_irq(q->queue_lock);
 480	q->bypass_depth++;
 481	queue_flag_set(QUEUE_FLAG_BYPASS, q);
 482	spin_unlock_irq(q->queue_lock);
 483
 484	/*
 485	 * Queues start drained.  Skip actual draining till init is
 486	 * complete.  This avoids lenghty delays during queue init which
 487	 * can happen many times during boot.
 488	 */
 489	if (blk_queue_init_done(q)) {
 490		spin_lock_irq(q->queue_lock);
 491		__blk_drain_queue(q, false);
 492		spin_unlock_irq(q->queue_lock);
 493
 494		/* ensure blk_queue_bypass() is %true inside RCU read lock */
 495		synchronize_rcu();
 496	}
 497}
 498EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
 499
 500/**
 501 * blk_queue_bypass_end - leave queue bypass mode
 502 * @q: queue of interest
 503 *
 504 * Leave bypass mode and restore the normal queueing behavior.
 505 */
 506void blk_queue_bypass_end(struct request_queue *q)
 507{
 508	spin_lock_irq(q->queue_lock);
 509	if (!--q->bypass_depth)
 510		queue_flag_clear(QUEUE_FLAG_BYPASS, q);
 511	WARN_ON_ONCE(q->bypass_depth < 0);
 512	spin_unlock_irq(q->queue_lock);
 513}
 514EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
 515
 516void blk_set_queue_dying(struct request_queue *q)
 517{
 518	queue_flag_set_unlocked(QUEUE_FLAG_DYING, q);
 519
 520	if (q->mq_ops)
 521		blk_mq_wake_waiters(q);
 522	else {
 523		struct request_list *rl;
 524
 525		blk_queue_for_each_rl(rl, q) {
 526			if (rl->rq_pool) {
 527				wake_up(&rl->wait[BLK_RW_SYNC]);
 528				wake_up(&rl->wait[BLK_RW_ASYNC]);
 529			}
 530		}
 531	}
 532}
 533EXPORT_SYMBOL_GPL(blk_set_queue_dying);
 534
 535/**
 536 * blk_cleanup_queue - shutdown a request queue
 537 * @q: request queue to shutdown
 538 *
 539 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
 540 * put it.  All future requests will be failed immediately with -ENODEV.
 541 */
 542void blk_cleanup_queue(struct request_queue *q)
 543{
 544	spinlock_t *lock = q->queue_lock;
 545
 546	/* mark @q DYING, no new request or merges will be allowed afterwards */
 547	mutex_lock(&q->sysfs_lock);
 548	blk_set_queue_dying(q);
 549	spin_lock_irq(lock);
 550
 551	/*
 552	 * A dying queue is permanently in bypass mode till released.  Note
 553	 * that, unlike blk_queue_bypass_start(), we aren't performing
 554	 * synchronize_rcu() after entering bypass mode to avoid the delay
 555	 * as some drivers create and destroy a lot of queues while
 556	 * probing.  This is still safe because blk_release_queue() will be
 557	 * called only after the queue refcnt drops to zero and nothing,
 558	 * RCU or not, would be traversing the queue by then.
 559	 */
 560	q->bypass_depth++;
 561	queue_flag_set(QUEUE_FLAG_BYPASS, q);
 562
 563	queue_flag_set(QUEUE_FLAG_NOMERGES, q);
 564	queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
 565	queue_flag_set(QUEUE_FLAG_DYING, q);
 566	spin_unlock_irq(lock);
 567	mutex_unlock(&q->sysfs_lock);
 568
 569	/*
 570	 * Drain all requests queued before DYING marking. Set DEAD flag to
 571	 * prevent that q->request_fn() gets invoked after draining finished.
 
 
 572	 */
 573	blk_freeze_queue(q);
 574	spin_lock_irq(lock);
 575	if (!q->mq_ops)
 576		__blk_drain_queue(q, true);
 577	queue_flag_set(QUEUE_FLAG_DEAD, q);
 578	spin_unlock_irq(lock);
 579
 580	/* for synchronous bio-based driver finish in-flight integrity i/o */
 581	blk_flush_integrity();
 582
 583	/* @q won't process any more request, flush async actions */
 584	del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
 585	blk_sync_queue(q);
 586
 587	if (q->mq_ops)
 588		blk_mq_free_queue(q);
 589	percpu_ref_exit(&q->q_usage_counter);
 
 590
 591	spin_lock_irq(lock);
 592	if (q->queue_lock != &q->__queue_lock)
 593		q->queue_lock = &q->__queue_lock;
 594	spin_unlock_irq(lock);
 595
 596	bdi_unregister(&q->backing_dev_info);
 597
 598	/* @q is and will stay empty, shutdown and put */
 599	blk_put_queue(q);
 600}
 601EXPORT_SYMBOL(blk_cleanup_queue);
 602
 603/* Allocate memory local to the request queue */
 604static void *alloc_request_struct(gfp_t gfp_mask, void *data)
 605{
 606	int nid = (int)(long)data;
 607	return kmem_cache_alloc_node(request_cachep, gfp_mask, nid);
 608}
 609
 610static void free_request_struct(void *element, void *unused)
 611{
 612	kmem_cache_free(request_cachep, element);
 613}
 614
 615int blk_init_rl(struct request_list *rl, struct request_queue *q,
 616		gfp_t gfp_mask)
 617{
 618	if (unlikely(rl->rq_pool))
 619		return 0;
 620
 621	rl->q = q;
 622	rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
 623	rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
 
 624	init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
 625	init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
 626
 627	rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, alloc_request_struct,
 628					  free_request_struct,
 629					  (void *)(long)q->node, gfp_mask,
 630					  q->node);
 631	if (!rl->rq_pool)
 632		return -ENOMEM;
 633
 634	return 0;
 635}
 636
 637void blk_exit_rl(struct request_list *rl)
 638{
 639	if (rl->rq_pool)
 640		mempool_destroy(rl->rq_pool);
 641}
 642
 643struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
 644{
 645	return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
 646}
 647EXPORT_SYMBOL(blk_alloc_queue);
 648
 649int blk_queue_enter(struct request_queue *q, bool nowait)
 650{
 651	while (true) {
 652		int ret;
 653
 654		if (percpu_ref_tryget_live(&q->q_usage_counter))
 655			return 0;
 656
 657		if (nowait)
 658			return -EBUSY;
 659
 660		ret = wait_event_interruptible(q->mq_freeze_wq,
 661				!atomic_read(&q->mq_freeze_depth) ||
 662				blk_queue_dying(q));
 663		if (blk_queue_dying(q))
 664			return -ENODEV;
 665		if (ret)
 666			return ret;
 667	}
 668}
 669
 670void blk_queue_exit(struct request_queue *q)
 671{
 672	percpu_ref_put(&q->q_usage_counter);
 673}
 674
 675static void blk_queue_usage_counter_release(struct percpu_ref *ref)
 676{
 677	struct request_queue *q =
 678		container_of(ref, struct request_queue, q_usage_counter);
 679
 680	wake_up_all(&q->mq_freeze_wq);
 681}
 682
 683static void blk_rq_timed_out_timer(unsigned long data)
 684{
 685	struct request_queue *q = (struct request_queue *)data;
 686
 687	kblockd_schedule_work(&q->timeout_work);
 688}
 689
 690struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
 691{
 692	struct request_queue *q;
 693	int err;
 694
 695	q = kmem_cache_alloc_node(blk_requestq_cachep,
 696				gfp_mask | __GFP_ZERO, node_id);
 697	if (!q)
 698		return NULL;
 699
 700	q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
 701	if (q->id < 0)
 702		goto fail_q;
 703
 704	q->bio_split = bioset_create(BIO_POOL_SIZE, 0);
 705	if (!q->bio_split)
 706		goto fail_id;
 707
 708	q->backing_dev_info.ra_pages =
 709			(VM_MAX_READAHEAD * 1024) / PAGE_SIZE;
 710	q->backing_dev_info.capabilities = BDI_CAP_CGROUP_WRITEBACK;
 
 711	q->backing_dev_info.name = "block";
 712	q->node = node_id;
 713
 714	err = bdi_init(&q->backing_dev_info);
 715	if (err)
 716		goto fail_split;
 
 
 
 
 
 
 
 717
 718	setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
 719		    laptop_mode_timer_fn, (unsigned long) q);
 720	setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
 721	INIT_LIST_HEAD(&q->queue_head);
 722	INIT_LIST_HEAD(&q->timeout_list);
 723	INIT_LIST_HEAD(&q->icq_list);
 724#ifdef CONFIG_BLK_CGROUP
 725	INIT_LIST_HEAD(&q->blkg_list);
 726#endif
 727	INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
 728
 729	kobject_init(&q->kobj, &blk_queue_ktype);
 730
 731	mutex_init(&q->sysfs_lock);
 732	spin_lock_init(&q->__queue_lock);
 733
 734	/*
 735	 * By default initialize queue_lock to internal lock and driver can
 736	 * override it later if need be.
 737	 */
 738	q->queue_lock = &q->__queue_lock;
 739
 740	/*
 741	 * A queue starts its life with bypass turned on to avoid
 742	 * unnecessary bypass on/off overhead and nasty surprises during
 743	 * init.  The initial bypass will be finished when the queue is
 744	 * registered by blk_register_queue().
 745	 */
 746	q->bypass_depth = 1;
 747	__set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
 748
 749	init_waitqueue_head(&q->mq_freeze_wq);
 750
 751	/*
 752	 * Init percpu_ref in atomic mode so that it's faster to shutdown.
 753	 * See blk_register_queue() for details.
 754	 */
 755	if (percpu_ref_init(&q->q_usage_counter,
 756				blk_queue_usage_counter_release,
 757				PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
 758		goto fail_bdi;
 759
 760	if (blkcg_init_queue(q))
 761		goto fail_ref;
 762
 763	return q;
 764
 765fail_ref:
 766	percpu_ref_exit(&q->q_usage_counter);
 767fail_bdi:
 768	bdi_destroy(&q->backing_dev_info);
 769fail_split:
 770	bioset_free(q->bio_split);
 771fail_id:
 772	ida_simple_remove(&blk_queue_ida, q->id);
 773fail_q:
 774	kmem_cache_free(blk_requestq_cachep, q);
 775	return NULL;
 776}
 777EXPORT_SYMBOL(blk_alloc_queue_node);
 778
 779/**
 780 * blk_init_queue  - prepare a request queue for use with a block device
 781 * @rfn:  The function to be called to process requests that have been
 782 *        placed on the queue.
 783 * @lock: Request queue spin lock
 784 *
 785 * Description:
 786 *    If a block device wishes to use the standard request handling procedures,
 787 *    which sorts requests and coalesces adjacent requests, then it must
 788 *    call blk_init_queue().  The function @rfn will be called when there
 789 *    are requests on the queue that need to be processed.  If the device
 790 *    supports plugging, then @rfn may not be called immediately when requests
 791 *    are available on the queue, but may be called at some time later instead.
 792 *    Plugged queues are generally unplugged when a buffer belonging to one
 793 *    of the requests on the queue is needed, or due to memory pressure.
 794 *
 795 *    @rfn is not required, or even expected, to remove all requests off the
 796 *    queue, but only as many as it can handle at a time.  If it does leave
 797 *    requests on the queue, it is responsible for arranging that the requests
 798 *    get dealt with eventually.
 799 *
 800 *    The queue spin lock must be held while manipulating the requests on the
 801 *    request queue; this lock will be taken also from interrupt context, so irq
 802 *    disabling is needed for it.
 803 *
 804 *    Function returns a pointer to the initialized request queue, or %NULL if
 805 *    it didn't succeed.
 806 *
 807 * Note:
 808 *    blk_init_queue() must be paired with a blk_cleanup_queue() call
 809 *    when the block device is deactivated (such as at module unload).
 810 **/
 811
 812struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
 813{
 814	return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
 815}
 816EXPORT_SYMBOL(blk_init_queue);
 817
 818struct request_queue *
 819blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
 820{
 821	struct request_queue *uninit_q, *q;
 822
 823	uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
 824	if (!uninit_q)
 825		return NULL;
 826
 827	q = blk_init_allocated_queue(uninit_q, rfn, lock);
 828	if (!q)
 829		blk_cleanup_queue(uninit_q);
 830
 831	return q;
 832}
 833EXPORT_SYMBOL(blk_init_queue_node);
 834
 835static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio);
 836
 837struct request_queue *
 838blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
 839			 spinlock_t *lock)
 840{
 
 
 
 
 
 
 
 
 841	if (!q)
 842		return NULL;
 843
 844	q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, 0);
 845	if (!q->fq)
 846		return NULL;
 847
 848	if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
 849		goto fail;
 850
 851	INIT_WORK(&q->timeout_work, blk_timeout_work);
 852	q->request_fn		= rfn;
 853	q->prep_rq_fn		= NULL;
 854	q->unprep_rq_fn		= NULL;
 855	q->queue_flags		|= QUEUE_FLAG_DEFAULT;
 856
 857	/* Override internal queue lock with supplied lock pointer */
 858	if (lock)
 859		q->queue_lock		= lock;
 860
 861	/*
 862	 * This also sets hw/phys segments, boundary and size
 863	 */
 864	blk_queue_make_request(q, blk_queue_bio);
 865
 866	q->sg_reserved_size = INT_MAX;
 867
 868	/* Protect q->elevator from elevator_change */
 869	mutex_lock(&q->sysfs_lock);
 870
 871	/* init elevator */
 872	if (elevator_init(q, NULL)) {
 873		mutex_unlock(&q->sysfs_lock);
 874		goto fail;
 875	}
 876
 877	mutex_unlock(&q->sysfs_lock);
 878
 879	return q;
 880
 881fail:
 882	blk_free_flush_queue(q->fq);
 883	return NULL;
 884}
 885EXPORT_SYMBOL(blk_init_allocated_queue);
 886
 887bool blk_get_queue(struct request_queue *q)
 888{
 889	if (likely(!blk_queue_dying(q))) {
 890		__blk_get_queue(q);
 891		return true;
 892	}
 893
 894	return false;
 895}
 896EXPORT_SYMBOL(blk_get_queue);
 897
 898static inline void blk_free_request(struct request_list *rl, struct request *rq)
 899{
 900	if (rq->cmd_flags & REQ_ELVPRIV) {
 901		elv_put_request(rl->q, rq);
 902		if (rq->elv.icq)
 903			put_io_context(rq->elv.icq->ioc);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 904	}
 905
 906	mempool_free(rq, rl->rq_pool);
 907}
 908
 909/*
 910 * ioc_batching returns true if the ioc is a valid batching request and
 911 * should be given priority access to a request.
 912 */
 913static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
 914{
 915	if (!ioc)
 916		return 0;
 917
 918	/*
 919	 * Make sure the process is able to allocate at least 1 request
 920	 * even if the batch times out, otherwise we could theoretically
 921	 * lose wakeups.
 922	 */
 923	return ioc->nr_batch_requests == q->nr_batching ||
 924		(ioc->nr_batch_requests > 0
 925		&& time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
 926}
 927
 928/*
 929 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
 930 * will cause the process to be a "batcher" on all queues in the system. This
 931 * is the behaviour we want though - once it gets a wakeup it should be given
 932 * a nice run.
 933 */
 934static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
 935{
 936	if (!ioc || ioc_batching(q, ioc))
 937		return;
 938
 939	ioc->nr_batch_requests = q->nr_batching;
 940	ioc->last_waited = jiffies;
 941}
 942
 943static void __freed_request(struct request_list *rl, int sync)
 944{
 945	struct request_queue *q = rl->q;
 946
 947	if (rl->count[sync] < queue_congestion_off_threshold(q))
 948		blk_clear_congested(rl, sync);
 949
 950	if (rl->count[sync] + 1 <= q->nr_requests) {
 951		if (waitqueue_active(&rl->wait[sync]))
 952			wake_up(&rl->wait[sync]);
 953
 954		blk_clear_rl_full(rl, sync);
 955	}
 956}
 957
 958/*
 959 * A request has just been released.  Account for it, update the full and
 960 * congestion status, wake up any waiters.   Called under q->queue_lock.
 961 */
 962static void freed_request(struct request_list *rl, unsigned int flags)
 963{
 964	struct request_queue *q = rl->q;
 965	int sync = rw_is_sync(flags);
 966
 967	q->nr_rqs[sync]--;
 968	rl->count[sync]--;
 969	if (flags & REQ_ELVPRIV)
 970		q->nr_rqs_elvpriv--;
 971
 972	__freed_request(rl, sync);
 973
 974	if (unlikely(rl->starved[sync ^ 1]))
 975		__freed_request(rl, sync ^ 1);
 976}
 977
 978int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
 979{
 980	struct request_list *rl;
 981	int on_thresh, off_thresh;
 982
 983	spin_lock_irq(q->queue_lock);
 984	q->nr_requests = nr;
 985	blk_queue_congestion_threshold(q);
 986	on_thresh = queue_congestion_on_threshold(q);
 987	off_thresh = queue_congestion_off_threshold(q);
 988
 989	blk_queue_for_each_rl(rl, q) {
 990		if (rl->count[BLK_RW_SYNC] >= on_thresh)
 991			blk_set_congested(rl, BLK_RW_SYNC);
 992		else if (rl->count[BLK_RW_SYNC] < off_thresh)
 993			blk_clear_congested(rl, BLK_RW_SYNC);
 994
 995		if (rl->count[BLK_RW_ASYNC] >= on_thresh)
 996			blk_set_congested(rl, BLK_RW_ASYNC);
 997		else if (rl->count[BLK_RW_ASYNC] < off_thresh)
 998			blk_clear_congested(rl, BLK_RW_ASYNC);
 999
1000		if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
1001			blk_set_rl_full(rl, BLK_RW_SYNC);
1002		} else {
1003			blk_clear_rl_full(rl, BLK_RW_SYNC);
1004			wake_up(&rl->wait[BLK_RW_SYNC]);
1005		}
1006
1007		if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
1008			blk_set_rl_full(rl, BLK_RW_ASYNC);
1009		} else {
1010			blk_clear_rl_full(rl, BLK_RW_ASYNC);
1011			wake_up(&rl->wait[BLK_RW_ASYNC]);
1012		}
1013	}
1014
1015	spin_unlock_irq(q->queue_lock);
1016	return 0;
1017}
1018
1019/*
1020 * Determine if elevator data should be initialized when allocating the
1021 * request associated with @bio.
1022 */
1023static bool blk_rq_should_init_elevator(struct bio *bio)
1024{
1025	if (!bio)
1026		return true;
1027
1028	/*
1029	 * Flush requests do not use the elevator so skip initialization.
1030	 * This allows a request to share the flush and elevator data.
1031	 */
1032	if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
1033		return false;
1034
1035	return true;
1036}
1037
1038/**
1039 * rq_ioc - determine io_context for request allocation
1040 * @bio: request being allocated is for this bio (can be %NULL)
1041 *
1042 * Determine io_context to use for request allocation for @bio.  May return
1043 * %NULL if %current->io_context doesn't exist.
1044 */
1045static struct io_context *rq_ioc(struct bio *bio)
1046{
1047#ifdef CONFIG_BLK_CGROUP
1048	if (bio && bio->bi_ioc)
1049		return bio->bi_ioc;
1050#endif
1051	return current->io_context;
1052}
1053
1054/**
1055 * __get_request - get a free request
1056 * @rl: request list to allocate from
1057 * @rw_flags: RW and SYNC flags
1058 * @bio: bio to allocate request for (can be %NULL)
1059 * @gfp_mask: allocation mask
1060 *
1061 * Get a free request from @q.  This function may fail under memory
1062 * pressure or if @q is dead.
1063 *
1064 * Must be called with @q->queue_lock held and,
1065 * Returns ERR_PTR on failure, with @q->queue_lock held.
1066 * Returns request pointer on success, with @q->queue_lock *not held*.
1067 */
1068static struct request *__get_request(struct request_list *rl, int rw_flags,
1069				     struct bio *bio, gfp_t gfp_mask)
1070{
1071	struct request_queue *q = rl->q;
1072	struct request *rq;
1073	struct elevator_type *et = q->elevator->type;
1074	struct io_context *ioc = rq_ioc(bio);
1075	struct io_cq *icq = NULL;
1076	const bool is_sync = rw_is_sync(rw_flags) != 0;
1077	int may_queue;
1078
1079	if (unlikely(blk_queue_dying(q)))
1080		return ERR_PTR(-ENODEV);
1081
1082	may_queue = elv_may_queue(q, rw_flags);
1083	if (may_queue == ELV_MQUEUE_NO)
1084		goto rq_starved;
1085
1086	if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
1087		if (rl->count[is_sync]+1 >= q->nr_requests) {
 
1088			/*
1089			 * The queue will fill after this allocation, so set
1090			 * it as full, and mark this process as "batching".
1091			 * This process will be allowed to complete a batch of
1092			 * requests, others will be blocked.
1093			 */
1094			if (!blk_rl_full(rl, is_sync)) {
1095				ioc_set_batching(q, ioc);
1096				blk_set_rl_full(rl, is_sync);
1097			} else {
1098				if (may_queue != ELV_MQUEUE_MUST
1099						&& !ioc_batching(q, ioc)) {
1100					/*
1101					 * The queue is full and the allocating
1102					 * process is not a "batcher", and not
1103					 * exempted by the IO scheduler
1104					 */
1105					return ERR_PTR(-ENOMEM);
1106				}
1107			}
1108		}
1109		blk_set_congested(rl, is_sync);
1110	}
1111
1112	/*
1113	 * Only allow batching queuers to allocate up to 50% over the defined
1114	 * limit of requests, otherwise we could have thousands of requests
1115	 * allocated with any setting of ->nr_requests
1116	 */
1117	if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
1118		return ERR_PTR(-ENOMEM);
1119
1120	q->nr_rqs[is_sync]++;
1121	rl->count[is_sync]++;
1122	rl->starved[is_sync] = 0;
1123
1124	/*
1125	 * Decide whether the new request will be managed by elevator.  If
1126	 * so, mark @rw_flags and increment elvpriv.  Non-zero elvpriv will
1127	 * prevent the current elevator from being destroyed until the new
1128	 * request is freed.  This guarantees icq's won't be destroyed and
1129	 * makes creating new ones safe.
1130	 *
1131	 * Also, lookup icq while holding queue_lock.  If it doesn't exist,
1132	 * it will be created after releasing queue_lock.
1133	 */
1134	if (blk_rq_should_init_elevator(bio) && !blk_queue_bypass(q)) {
1135		rw_flags |= REQ_ELVPRIV;
1136		q->nr_rqs_elvpriv++;
1137		if (et->icq_cache && ioc)
1138			icq = ioc_lookup_icq(ioc, q);
1139	}
1140
1141	if (blk_queue_io_stat(q))
1142		rw_flags |= REQ_IO_STAT;
1143	spin_unlock_irq(q->queue_lock);
1144
1145	/* allocate and init request */
1146	rq = mempool_alloc(rl->rq_pool, gfp_mask);
1147	if (!rq)
1148		goto fail_alloc;
 
 
 
 
 
 
 
1149
1150	blk_rq_init(q, rq);
1151	blk_rq_set_rl(rq, rl);
1152	rq->cmd_flags = rw_flags | REQ_ALLOCED;
 
 
 
 
 
 
 
1153
1154	/* init elvpriv */
1155	if (rw_flags & REQ_ELVPRIV) {
1156		if (unlikely(et->icq_cache && !icq)) {
1157			if (ioc)
1158				icq = ioc_create_icq(ioc, q, gfp_mask);
1159			if (!icq)
1160				goto fail_elvpriv;
1161		}
1162
1163		rq->elv.icq = icq;
1164		if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1165			goto fail_elvpriv;
1166
1167		/* @rq->elv.icq holds io_context until @rq is freed */
1168		if (icq)
1169			get_io_context(icq->ioc);
1170	}
1171out:
1172	/*
1173	 * ioc may be NULL here, and ioc_batching will be false. That's
1174	 * OK, if the queue is under the request limit then requests need
1175	 * not count toward the nr_batch_requests limit. There will always
1176	 * be some limit enforced by BLK_BATCH_TIME.
1177	 */
1178	if (ioc_batching(q, ioc))
1179		ioc->nr_batch_requests--;
1180
1181	trace_block_getrq(q, bio, rw_flags & 1);
 
1182	return rq;
1183
1184fail_elvpriv:
1185	/*
1186	 * elvpriv init failed.  ioc, icq and elvpriv aren't mempool backed
1187	 * and may fail indefinitely under memory pressure and thus
1188	 * shouldn't stall IO.  Treat this request as !elvpriv.  This will
1189	 * disturb iosched and blkcg but weird is bettern than dead.
1190	 */
1191	printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
1192			   __func__, dev_name(q->backing_dev_info.dev));
1193
1194	rq->cmd_flags &= ~REQ_ELVPRIV;
1195	rq->elv.icq = NULL;
1196
1197	spin_lock_irq(q->queue_lock);
1198	q->nr_rqs_elvpriv--;
1199	spin_unlock_irq(q->queue_lock);
1200	goto out;
1201
1202fail_alloc:
1203	/*
1204	 * Allocation failed presumably due to memory. Undo anything we
1205	 * might have messed up.
1206	 *
1207	 * Allocating task should really be put onto the front of the wait
1208	 * queue, but this is pretty rare.
1209	 */
1210	spin_lock_irq(q->queue_lock);
1211	freed_request(rl, rw_flags);
1212
1213	/*
1214	 * in the very unlikely event that allocation failed and no
1215	 * requests for this direction was pending, mark us starved so that
1216	 * freeing of a request in the other direction will notice
1217	 * us. another possible fix would be to split the rq mempool into
1218	 * READ and WRITE
1219	 */
1220rq_starved:
1221	if (unlikely(rl->count[is_sync] == 0))
1222		rl->starved[is_sync] = 1;
1223	return ERR_PTR(-ENOMEM);
1224}
1225
1226/**
1227 * get_request - get a free request
1228 * @q: request_queue to allocate request from
1229 * @rw_flags: RW and SYNC flags
1230 * @bio: bio to allocate request for (can be %NULL)
1231 * @gfp_mask: allocation mask
1232 *
1233 * Get a free request from @q.  If %__GFP_DIRECT_RECLAIM is set in @gfp_mask,
1234 * this function keeps retrying under memory pressure and fails iff @q is dead.
1235 *
1236 * Must be called with @q->queue_lock held and,
1237 * Returns ERR_PTR on failure, with @q->queue_lock held.
1238 * Returns request pointer on success, with @q->queue_lock *not held*.
1239 */
1240static struct request *get_request(struct request_queue *q, int rw_flags,
1241				   struct bio *bio, gfp_t gfp_mask)
1242{
1243	const bool is_sync = rw_is_sync(rw_flags) != 0;
1244	DEFINE_WAIT(wait);
1245	struct request_list *rl;
1246	struct request *rq;
1247
1248	rl = blk_get_rl(q, bio);	/* transferred to @rq on success */
1249retry:
1250	rq = __get_request(rl, rw_flags, bio, gfp_mask);
1251	if (!IS_ERR(rq))
1252		return rq;
1253
1254	if (!gfpflags_allow_blocking(gfp_mask) || unlikely(blk_queue_dying(q))) {
1255		blk_put_rl(rl);
1256		return rq;
1257	}
1258
1259	/* wait on @rl and retry */
1260	prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1261				  TASK_UNINTERRUPTIBLE);
1262
1263	trace_block_sleeprq(q, bio, rw_flags & 1);
 
1264
1265	spin_unlock_irq(q->queue_lock);
1266	io_schedule();
1267
1268	/*
1269	 * After sleeping, we become a "batching" process and will be able
1270	 * to allocate at least one request, and up to a big batch of them
1271	 * for a small period time.  See ioc_batching, ioc_set_batching
1272	 */
1273	ioc_set_batching(q, current->io_context);
1274
1275	spin_lock_irq(q->queue_lock);
1276	finish_wait(&rl->wait[is_sync], &wait);
 
 
 
 
 
 
1277
1278	goto retry;
 
 
 
 
 
 
1279}
1280
1281static struct request *blk_old_get_request(struct request_queue *q, int rw,
1282		gfp_t gfp_mask)
1283{
1284	struct request *rq;
1285
1286	BUG_ON(rw != READ && rw != WRITE);
 
1287
1288	/* create ioc upfront */
1289	create_io_context(gfp_mask, q->node);
1290
1291	spin_lock_irq(q->queue_lock);
1292	rq = get_request(q, rw, NULL, gfp_mask);
1293	if (IS_ERR(rq))
1294		spin_unlock_irq(q->queue_lock);
 
 
 
 
1295	/* q->queue_lock is unlocked at this point */
1296
1297	return rq;
1298}
1299
1300struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1301{
1302	if (q->mq_ops)
1303		return blk_mq_alloc_request(q, rw,
1304			(gfp_mask & __GFP_DIRECT_RECLAIM) ?
1305				0 : BLK_MQ_REQ_NOWAIT);
1306	else
1307		return blk_old_get_request(q, rw, gfp_mask);
1308}
1309EXPORT_SYMBOL(blk_get_request);
1310
1311/**
1312 * blk_make_request - given a bio, allocate a corresponding struct request.
1313 * @q: target request queue
1314 * @bio:  The bio describing the memory mappings that will be submitted for IO.
1315 *        It may be a chained-bio properly constructed by block/bio layer.
1316 * @gfp_mask: gfp flags to be used for memory allocation
1317 *
1318 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
1319 * type commands. Where the struct request needs to be farther initialized by
1320 * the caller. It is passed a &struct bio, which describes the memory info of
1321 * the I/O transfer.
1322 *
1323 * The caller of blk_make_request must make sure that bi_io_vec
1324 * are set to describe the memory buffers. That bio_data_dir() will return
1325 * the needed direction of the request. (And all bio's in the passed bio-chain
1326 * are properly set accordingly)
1327 *
1328 * If called under none-sleepable conditions, mapped bio buffers must not
1329 * need bouncing, by calling the appropriate masked or flagged allocator,
1330 * suitable for the target device. Otherwise the call to blk_queue_bounce will
1331 * BUG.
1332 *
1333 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
1334 * given to how you allocate bios. In particular, you cannot use
1335 * __GFP_DIRECT_RECLAIM for anything but the first bio in the chain. Otherwise
1336 * you risk waiting for IO completion of a bio that hasn't been submitted yet,
1337 * thus resulting in a deadlock. Alternatively bios should be allocated using
1338 * bio_kmalloc() instead of bio_alloc(), as that avoids the mempool deadlock.
1339 * If possible a big IO should be split into smaller parts when allocation
1340 * fails. Partial allocation should not be an error, or you risk a live-lock.
1341 */
1342struct request *blk_make_request(struct request_queue *q, struct bio *bio,
1343				 gfp_t gfp_mask)
1344{
1345	struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
1346
1347	if (IS_ERR(rq))
1348		return rq;
1349
1350	blk_rq_set_block_pc(rq);
1351
1352	for_each_bio(bio) {
1353		struct bio *bounce_bio = bio;
1354		int ret;
1355
1356		blk_queue_bounce(q, &bounce_bio);
1357		ret = blk_rq_append_bio(q, rq, bounce_bio);
1358		if (unlikely(ret)) {
1359			blk_put_request(rq);
1360			return ERR_PTR(ret);
1361		}
1362	}
1363
1364	return rq;
1365}
1366EXPORT_SYMBOL(blk_make_request);
1367
1368/**
1369 * blk_rq_set_block_pc - initialize a request to type BLOCK_PC
1370 * @rq:		request to be initialized
1371 *
1372 */
1373void blk_rq_set_block_pc(struct request *rq)
1374{
1375	rq->cmd_type = REQ_TYPE_BLOCK_PC;
1376	rq->__data_len = 0;
1377	rq->__sector = (sector_t) -1;
1378	rq->bio = rq->biotail = NULL;
1379	memset(rq->__cmd, 0, sizeof(rq->__cmd));
1380}
1381EXPORT_SYMBOL(blk_rq_set_block_pc);
1382
1383/**
1384 * blk_requeue_request - put a request back on queue
1385 * @q:		request queue where request should be inserted
1386 * @rq:		request to be inserted
1387 *
1388 * Description:
1389 *    Drivers often keep queueing requests until the hardware cannot accept
1390 *    more, when that condition happens we need to put the request back
1391 *    on the queue. Must be called with queue lock held.
1392 */
1393void blk_requeue_request(struct request_queue *q, struct request *rq)
1394{
1395	blk_delete_timer(rq);
1396	blk_clear_rq_complete(rq);
1397	trace_block_rq_requeue(q, rq);
1398
1399	if (rq->cmd_flags & REQ_QUEUED)
1400		blk_queue_end_tag(q, rq);
1401
1402	BUG_ON(blk_queued_rq(rq));
1403
1404	elv_requeue_request(q, rq);
1405}
1406EXPORT_SYMBOL(blk_requeue_request);
1407
1408static void add_acct_request(struct request_queue *q, struct request *rq,
1409			     int where)
1410{
1411	blk_account_io_start(rq, true);
1412	__elv_add_request(q, rq, where);
1413}
1414
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1415static void part_round_stats_single(int cpu, struct hd_struct *part,
1416				    unsigned long now)
1417{
1418	int inflight;
1419
1420	if (now == part->stamp)
1421		return;
1422
1423	inflight = part_in_flight(part);
1424	if (inflight) {
1425		__part_stat_add(cpu, part, time_in_queue,
1426				inflight * (now - part->stamp));
1427		__part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1428	}
1429	part->stamp = now;
1430}
1431
1432/**
1433 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1434 * @cpu: cpu number for stats access
1435 * @part: target partition
1436 *
1437 * The average IO queue length and utilisation statistics are maintained
1438 * by observing the current state of the queue length and the amount of
1439 * time it has been in this state for.
1440 *
1441 * Normally, that accounting is done on IO completion, but that can result
1442 * in more than a second's worth of IO being accounted for within any one
1443 * second, leading to >100% utilisation.  To deal with that, we call this
1444 * function to do a round-off before returning the results when reading
1445 * /proc/diskstats.  This accounts immediately for all queue usage up to
1446 * the current jiffies and restarts the counters again.
1447 */
1448void part_round_stats(int cpu, struct hd_struct *part)
1449{
1450	unsigned long now = jiffies;
1451
1452	if (part->partno)
1453		part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1454	part_round_stats_single(cpu, part, now);
1455}
1456EXPORT_SYMBOL_GPL(part_round_stats);
1457
1458#ifdef CONFIG_PM
1459static void blk_pm_put_request(struct request *rq)
1460{
1461	if (rq->q->dev && !(rq->cmd_flags & REQ_PM) && !--rq->q->nr_pending)
1462		pm_runtime_mark_last_busy(rq->q->dev);
1463}
1464#else
1465static inline void blk_pm_put_request(struct request *rq) {}
1466#endif
1467
1468/*
1469 * queue lock must be held
1470 */
1471void __blk_put_request(struct request_queue *q, struct request *req)
1472{
1473	if (unlikely(!q))
1474		return;
1475
1476	if (q->mq_ops) {
1477		blk_mq_free_request(req);
1478		return;
1479	}
1480
1481	blk_pm_put_request(req);
1482
1483	elv_completed_request(q, req);
1484
1485	/* this is a bio leak */
1486	WARN_ON(req->bio != NULL);
1487
1488	/*
1489	 * Request may not have originated from ll_rw_blk. if not,
1490	 * it didn't come out of our reserved rq pools
1491	 */
1492	if (req->cmd_flags & REQ_ALLOCED) {
1493		unsigned int flags = req->cmd_flags;
1494		struct request_list *rl = blk_rq_rl(req);
1495
1496		BUG_ON(!list_empty(&req->queuelist));
1497		BUG_ON(ELV_ON_HASH(req));
1498
1499		blk_free_request(rl, req);
1500		freed_request(rl, flags);
1501		blk_put_rl(rl);
1502	}
1503}
1504EXPORT_SYMBOL_GPL(__blk_put_request);
1505
1506void blk_put_request(struct request *req)
1507{
 
1508	struct request_queue *q = req->q;
1509
1510	if (q->mq_ops)
1511		blk_mq_free_request(req);
1512	else {
1513		unsigned long flags;
1514
1515		spin_lock_irqsave(q->queue_lock, flags);
1516		__blk_put_request(q, req);
1517		spin_unlock_irqrestore(q->queue_lock, flags);
1518	}
1519}
1520EXPORT_SYMBOL(blk_put_request);
1521
1522/**
1523 * blk_add_request_payload - add a payload to a request
1524 * @rq: request to update
1525 * @page: page backing the payload
1526 * @len: length of the payload.
1527 *
1528 * This allows to later add a payload to an already submitted request by
1529 * a block driver.  The driver needs to take care of freeing the payload
1530 * itself.
1531 *
1532 * Note that this is a quite horrible hack and nothing but handling of
1533 * discard requests should ever use it.
1534 */
1535void blk_add_request_payload(struct request *rq, struct page *page,
1536		unsigned int len)
1537{
1538	struct bio *bio = rq->bio;
1539
1540	bio->bi_io_vec->bv_page = page;
1541	bio->bi_io_vec->bv_offset = 0;
1542	bio->bi_io_vec->bv_len = len;
1543
1544	bio->bi_iter.bi_size = len;
1545	bio->bi_vcnt = 1;
1546	bio->bi_phys_segments = 1;
1547
1548	rq->__data_len = rq->resid_len = len;
1549	rq->nr_phys_segments = 1;
 
1550}
1551EXPORT_SYMBOL_GPL(blk_add_request_payload);
1552
1553bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1554			    struct bio *bio)
1555{
1556	const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1557
1558	if (!ll_back_merge_fn(q, req, bio))
1559		return false;
1560
1561	trace_block_bio_backmerge(q, req, bio);
1562
1563	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1564		blk_rq_set_mixed_merge(req);
1565
1566	req->biotail->bi_next = bio;
1567	req->biotail = bio;
1568	req->__data_len += bio->bi_iter.bi_size;
1569	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1570
1571	blk_account_io_start(req, false);
 
1572	return true;
1573}
1574
1575bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1576			     struct bio *bio)
1577{
1578	const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1579
1580	if (!ll_front_merge_fn(q, req, bio))
1581		return false;
1582
1583	trace_block_bio_frontmerge(q, req, bio);
1584
1585	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1586		blk_rq_set_mixed_merge(req);
1587
1588	bio->bi_next = req->bio;
1589	req->bio = bio;
1590
1591	req->__sector = bio->bi_iter.bi_sector;
1592	req->__data_len += bio->bi_iter.bi_size;
 
 
 
 
 
 
1593	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1594
1595	blk_account_io_start(req, false);
 
1596	return true;
1597}
1598
1599/**
1600 * blk_attempt_plug_merge - try to merge with %current's plugged list
1601 * @q: request_queue new bio is being queued at
1602 * @bio: new bio being queued
1603 * @request_count: out parameter for number of traversed plugged requests
1604 * @same_queue_rq: pointer to &struct request that gets filled in when
1605 * another request associated with @q is found on the plug list
1606 * (optional, may be %NULL)
1607 *
1608 * Determine whether @bio being queued on @q can be merged with a request
1609 * on %current's plugged list.  Returns %true if merge was successful,
1610 * otherwise %false.
1611 *
1612 * Plugging coalesces IOs from the same issuer for the same purpose without
1613 * going through @q->queue_lock.  As such it's more of an issuing mechanism
1614 * than scheduling, and the request, while may have elvpriv data, is not
1615 * added on the elevator at this point.  In addition, we don't have
1616 * reliable access to the elevator outside queue lock.  Only check basic
1617 * merging parameters without querying the elevator.
1618 *
1619 * Caller must ensure !blk_queue_nomerges(q) beforehand.
1620 */
1621bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1622			    unsigned int *request_count,
1623			    struct request **same_queue_rq)
1624{
1625	struct blk_plug *plug;
1626	struct request *rq;
1627	bool ret = false;
1628	struct list_head *plug_list;
1629
1630	plug = current->plug;
1631	if (!plug)
1632		goto out;
1633	*request_count = 0;
1634
1635	if (q->mq_ops)
1636		plug_list = &plug->mq_list;
1637	else
1638		plug_list = &plug->list;
1639
1640	list_for_each_entry_reverse(rq, plug_list, queuelist) {
1641		int el_ret;
1642
1643		if (rq->q == q) {
1644			(*request_count)++;
1645			/*
1646			 * Only blk-mq multiple hardware queues case checks the
1647			 * rq in the same queue, there should be only one such
1648			 * rq in a queue
1649			 **/
1650			if (same_queue_rq)
1651				*same_queue_rq = rq;
1652		}
1653
1654		if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1655			continue;
1656
1657		el_ret = blk_try_merge(rq, bio);
1658		if (el_ret == ELEVATOR_BACK_MERGE) {
1659			ret = bio_attempt_back_merge(q, rq, bio);
1660			if (ret)
1661				break;
1662		} else if (el_ret == ELEVATOR_FRONT_MERGE) {
1663			ret = bio_attempt_front_merge(q, rq, bio);
1664			if (ret)
1665				break;
1666		}
1667	}
1668out:
1669	return ret;
1670}
1671
1672unsigned int blk_plug_queued_count(struct request_queue *q)
1673{
1674	struct blk_plug *plug;
1675	struct request *rq;
1676	struct list_head *plug_list;
1677	unsigned int ret = 0;
1678
1679	plug = current->plug;
1680	if (!plug)
1681		goto out;
1682
1683	if (q->mq_ops)
1684		plug_list = &plug->mq_list;
1685	else
1686		plug_list = &plug->list;
1687
1688	list_for_each_entry(rq, plug_list, queuelist) {
1689		if (rq->q == q)
1690			ret++;
1691	}
1692out:
1693	return ret;
1694}
1695
1696void init_request_from_bio(struct request *req, struct bio *bio)
1697{
 
1698	req->cmd_type = REQ_TYPE_FS;
1699
1700	req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1701	if (bio->bi_rw & REQ_RAHEAD)
1702		req->cmd_flags |= REQ_FAILFAST_MASK;
1703
1704	req->errors = 0;
1705	req->__sector = bio->bi_iter.bi_sector;
1706	req->ioprio = bio_prio(bio);
1707	blk_rq_bio_prep(req->q, req, bio);
1708}
1709
1710static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio)
1711{
1712	const bool sync = !!(bio->bi_rw & REQ_SYNC);
1713	struct blk_plug *plug;
1714	int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT;
1715	struct request *req;
1716	unsigned int request_count = 0;
1717
1718	/*
1719	 * low level driver can indicate that it wants pages above a
1720	 * certain limit bounced to low memory (ie for highmem, or even
1721	 * ISA dma in theory)
1722	 */
1723	blk_queue_bounce(q, &bio);
1724
1725	blk_queue_split(q, &bio, q->bio_split);
1726
1727	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1728		bio->bi_error = -EIO;
1729		bio_endio(bio);
1730		return BLK_QC_T_NONE;
1731	}
1732
1733	if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
1734		spin_lock_irq(q->queue_lock);
1735		where = ELEVATOR_INSERT_FLUSH;
1736		goto get_rq;
1737	}
1738
1739	/*
1740	 * Check if we can merge with the plugged list before grabbing
1741	 * any locks.
1742	 */
1743	if (!blk_queue_nomerges(q)) {
1744		if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
1745			return BLK_QC_T_NONE;
1746	} else
1747		request_count = blk_plug_queued_count(q);
1748
1749	spin_lock_irq(q->queue_lock);
1750
1751	el_ret = elv_merge(q, &req, bio);
1752	if (el_ret == ELEVATOR_BACK_MERGE) {
1753		if (bio_attempt_back_merge(q, req, bio)) {
1754			elv_bio_merged(q, req, bio);
1755			if (!attempt_back_merge(q, req))
1756				elv_merged_request(q, req, el_ret);
1757			goto out_unlock;
1758		}
1759	} else if (el_ret == ELEVATOR_FRONT_MERGE) {
1760		if (bio_attempt_front_merge(q, req, bio)) {
1761			elv_bio_merged(q, req, bio);
1762			if (!attempt_front_merge(q, req))
1763				elv_merged_request(q, req, el_ret);
1764			goto out_unlock;
1765		}
1766	}
1767
1768get_rq:
1769	/*
1770	 * This sync check and mask will be re-done in init_request_from_bio(),
1771	 * but we need to set it earlier to expose the sync flag to the
1772	 * rq allocator and io schedulers.
1773	 */
1774	rw_flags = bio_data_dir(bio);
1775	if (sync)
1776		rw_flags |= REQ_SYNC;
1777
1778	/*
1779	 * Grab a free request. This is might sleep but can not fail.
1780	 * Returns with the queue unlocked.
1781	 */
1782	req = get_request(q, rw_flags, bio, GFP_NOIO);
1783	if (IS_ERR(req)) {
1784		bio->bi_error = PTR_ERR(req);
1785		bio_endio(bio);
1786		goto out_unlock;
1787	}
1788
1789	/*
1790	 * After dropping the lock and possibly sleeping here, our request
1791	 * may now be mergeable after it had proven unmergeable (above).
1792	 * We don't worry about that case for efficiency. It won't happen
1793	 * often, and the elevators are able to handle it.
1794	 */
1795	init_request_from_bio(req, bio);
1796
1797	if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
 
1798		req->cpu = raw_smp_processor_id();
1799
1800	plug = current->plug;
1801	if (plug) {
1802		/*
1803		 * If this is the first request added after a plug, fire
1804		 * of a plug trace.
 
 
1805		 */
1806		if (!request_count)
1807			trace_block_plug(q);
1808		else {
1809			if (request_count >= BLK_MAX_REQUEST_COUNT) {
1810				blk_flush_plug_list(plug, false);
1811				trace_block_plug(q);
1812			}
 
1813		}
 
 
1814		list_add_tail(&req->queuelist, &plug->list);
1815		blk_account_io_start(req, true);
1816	} else {
1817		spin_lock_irq(q->queue_lock);
1818		add_acct_request(q, req, where);
1819		__blk_run_queue(q);
1820out_unlock:
1821		spin_unlock_irq(q->queue_lock);
1822	}
1823
1824	return BLK_QC_T_NONE;
1825}
1826
1827/*
1828 * If bio->bi_dev is a partition, remap the location
1829 */
1830static inline void blk_partition_remap(struct bio *bio)
1831{
1832	struct block_device *bdev = bio->bi_bdev;
1833
1834	if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1835		struct hd_struct *p = bdev->bd_part;
1836
1837		bio->bi_iter.bi_sector += p->start_sect;
1838		bio->bi_bdev = bdev->bd_contains;
1839
1840		trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1841				      bdev->bd_dev,
1842				      bio->bi_iter.bi_sector - p->start_sect);
1843	}
1844}
1845
1846static void handle_bad_sector(struct bio *bio)
1847{
1848	char b[BDEVNAME_SIZE];
1849
1850	printk(KERN_INFO "attempt to access beyond end of device\n");
1851	printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1852			bdevname(bio->bi_bdev, b),
1853			bio->bi_rw,
1854			(unsigned long long)bio_end_sector(bio),
1855			(long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
 
 
1856}
1857
1858#ifdef CONFIG_FAIL_MAKE_REQUEST
1859
1860static DECLARE_FAULT_ATTR(fail_make_request);
1861
1862static int __init setup_fail_make_request(char *str)
1863{
1864	return setup_fault_attr(&fail_make_request, str);
1865}
1866__setup("fail_make_request=", setup_fail_make_request);
1867
1868static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
1869{
1870	return part->make_it_fail && should_fail(&fail_make_request, bytes);
1871}
1872
1873static int __init fail_make_request_debugfs(void)
1874{
1875	struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1876						NULL, &fail_make_request);
1877
1878	return PTR_ERR_OR_ZERO(dir);
1879}
1880
1881late_initcall(fail_make_request_debugfs);
1882
1883#else /* CONFIG_FAIL_MAKE_REQUEST */
1884
1885static inline bool should_fail_request(struct hd_struct *part,
1886					unsigned int bytes)
1887{
1888	return false;
1889}
1890
1891#endif /* CONFIG_FAIL_MAKE_REQUEST */
1892
1893/*
1894 * Check whether this bio extends beyond the end of the device.
1895 */
1896static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1897{
1898	sector_t maxsector;
1899
1900	if (!nr_sectors)
1901		return 0;
1902
1903	/* Test device or partition size, when known. */
1904	maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
1905	if (maxsector) {
1906		sector_t sector = bio->bi_iter.bi_sector;
1907
1908		if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1909			/*
1910			 * This may well happen - the kernel calls bread()
1911			 * without checking the size of the device, e.g., when
1912			 * mounting a device.
1913			 */
1914			handle_bad_sector(bio);
1915			return 1;
1916		}
1917	}
1918
1919	return 0;
1920}
1921
1922static noinline_for_stack bool
1923generic_make_request_checks(struct bio *bio)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1924{
1925	struct request_queue *q;
1926	int nr_sectors = bio_sectors(bio);
 
 
1927	int err = -EIO;
1928	char b[BDEVNAME_SIZE];
1929	struct hd_struct *part;
1930
1931	might_sleep();
1932
1933	if (bio_check_eod(bio, nr_sectors))
1934		goto end_io;
1935
1936	q = bdev_get_queue(bio->bi_bdev);
1937	if (unlikely(!q)) {
1938		printk(KERN_ERR
1939		       "generic_make_request: Trying to access "
1940			"nonexistent block-device %s (%Lu)\n",
1941			bdevname(bio->bi_bdev, b),
1942			(long long) bio->bi_iter.bi_sector);
1943		goto end_io;
1944	}
1945
1946	part = bio->bi_bdev->bd_part;
1947	if (should_fail_request(part, bio->bi_iter.bi_size) ||
1948	    should_fail_request(&part_to_disk(part)->part0,
1949				bio->bi_iter.bi_size))
1950		goto end_io;
1951
1952	/*
1953	 * If this device has partitions, remap block n
1954	 * of partition p to block n+start(p) of the disk.
 
 
 
 
1955	 */
1956	blk_partition_remap(bio);
 
 
 
 
1957
1958	if (bio_check_eod(bio, nr_sectors))
1959		goto end_io;
 
 
 
 
 
 
 
1960
1961	/*
1962	 * Filter flush bio's early so that make_request based
1963	 * drivers without flush support don't have to worry
1964	 * about them.
1965	 */
1966	if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1967		bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1968		if (!nr_sectors) {
1969			err = 0;
1970			goto end_io;
1971		}
1972	}
1973
1974	if ((bio->bi_rw & REQ_DISCARD) &&
1975	    (!blk_queue_discard(q) ||
1976	     ((bio->bi_rw & REQ_SECURE) && !blk_queue_secdiscard(q)))) {
1977		err = -EOPNOTSUPP;
1978		goto end_io;
1979	}
1980
1981	if (bio->bi_rw & REQ_WRITE_SAME && !bdev_write_same(bio->bi_bdev)) {
1982		err = -EOPNOTSUPP;
1983		goto end_io;
1984	}
 
1985
1986	/*
1987	 * Various block parts want %current->io_context and lazy ioc
1988	 * allocation ends up trading a lot of pain for a small amount of
1989	 * memory.  Just allocate it upfront.  This may fail and block
1990	 * layer knows how to live with it.
1991	 */
1992	create_io_context(GFP_ATOMIC, q->node);
1993
1994	if (!blkcg_bio_issue_check(q, bio))
1995		return false;
1996
1997	trace_block_bio_queue(q, bio);
1998	return true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1999
2000end_io:
2001	bio->bi_error = err;
2002	bio_endio(bio);
2003	return false;
2004}
2005
2006/**
2007 * generic_make_request - hand a buffer to its device driver for I/O
2008 * @bio:  The bio describing the location in memory and on the device.
2009 *
2010 * generic_make_request() is used to make I/O requests of block
2011 * devices. It is passed a &struct bio, which describes the I/O that needs
2012 * to be done.
2013 *
2014 * generic_make_request() does not return any status.  The
2015 * success/failure status of the request, along with notification of
2016 * completion, is delivered asynchronously through the bio->bi_end_io
2017 * function described (one day) else where.
2018 *
2019 * The caller of generic_make_request must make sure that bi_io_vec
2020 * are set to describe the memory buffer, and that bi_dev and bi_sector are
2021 * set to describe the device address, and the
2022 * bi_end_io and optionally bi_private are set to describe how
2023 * completion notification should be signaled.
2024 *
2025 * generic_make_request and the drivers it calls may use bi_next if this
2026 * bio happens to be merged with someone else, and may resubmit the bio to
2027 * a lower device by calling into generic_make_request recursively, which
2028 * means the bio should NOT be touched after the call to ->make_request_fn.
2029 */
2030blk_qc_t generic_make_request(struct bio *bio)
2031{
2032	struct bio_list bio_list_on_stack;
2033	blk_qc_t ret = BLK_QC_T_NONE;
2034
2035	if (!generic_make_request_checks(bio))
2036		goto out;
2037
2038	/*
2039	 * We only want one ->make_request_fn to be active at a time, else
2040	 * stack usage with stacked devices could be a problem.  So use
2041	 * current->bio_list to keep a list of requests submited by a
2042	 * make_request_fn function.  current->bio_list is also used as a
2043	 * flag to say if generic_make_request is currently active in this
2044	 * task or not.  If it is NULL, then no make_request is active.  If
2045	 * it is non-NULL, then a make_request is active, and new requests
2046	 * should be added at the tail
2047	 */
2048	if (current->bio_list) {
 
2049		bio_list_add(current->bio_list, bio);
2050		goto out;
2051	}
2052
2053	/* following loop may be a bit non-obvious, and so deserves some
2054	 * explanation.
2055	 * Before entering the loop, bio->bi_next is NULL (as all callers
2056	 * ensure that) so we have a list with a single bio.
2057	 * We pretend that we have just taken it off a longer list, so
2058	 * we assign bio_list to a pointer to the bio_list_on_stack,
2059	 * thus initialising the bio_list of new bios to be
2060	 * added.  ->make_request() may indeed add some more bios
2061	 * through a recursive call to generic_make_request.  If it
2062	 * did, we find a non-NULL value in bio_list and re-enter the loop
2063	 * from the top.  In this case we really did just take the bio
2064	 * of the top of the list (no pretending) and so remove it from
2065	 * bio_list, and call into ->make_request() again.
 
 
 
 
2066	 */
2067	BUG_ON(bio->bi_next);
2068	bio_list_init(&bio_list_on_stack);
2069	current->bio_list = &bio_list_on_stack;
2070	do {
2071		struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2072
2073		if (likely(blk_queue_enter(q, false) == 0)) {
2074			ret = q->make_request_fn(q, bio);
2075
2076			blk_queue_exit(q);
2077
2078			bio = bio_list_pop(current->bio_list);
2079		} else {
2080			struct bio *bio_next = bio_list_pop(current->bio_list);
2081
2082			bio_io_error(bio);
2083			bio = bio_next;
2084		}
2085	} while (bio);
2086	current->bio_list = NULL; /* deactivate */
2087
2088out:
2089	return ret;
2090}
2091EXPORT_SYMBOL(generic_make_request);
2092
2093/**
2094 * submit_bio - submit a bio to the block device layer for I/O
2095 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
2096 * @bio: The &struct bio which describes the I/O
2097 *
2098 * submit_bio() is very similar in purpose to generic_make_request(), and
2099 * uses that function to do most of the work. Both are fairly rough
2100 * interfaces; @bio must be presetup and ready for I/O.
2101 *
2102 */
2103blk_qc_t submit_bio(int rw, struct bio *bio)
2104{
 
 
2105	bio->bi_rw |= rw;
2106
2107	/*
2108	 * If it's a regular read/write or a barrier with data attached,
2109	 * go through the normal accounting stuff before submission.
2110	 */
2111	if (bio_has_data(bio)) {
2112		unsigned int count;
2113
2114		if (unlikely(rw & REQ_WRITE_SAME))
2115			count = bdev_logical_block_size(bio->bi_bdev) >> 9;
2116		else
2117			count = bio_sectors(bio);
2118
2119		if (rw & WRITE) {
2120			count_vm_events(PGPGOUT, count);
2121		} else {
2122			task_io_account_read(bio->bi_iter.bi_size);
2123			count_vm_events(PGPGIN, count);
2124		}
2125
2126		if (unlikely(block_dump)) {
2127			char b[BDEVNAME_SIZE];
2128			printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
2129			current->comm, task_pid_nr(current),
2130				(rw & WRITE) ? "WRITE" : "READ",
2131				(unsigned long long)bio->bi_iter.bi_sector,
2132				bdevname(bio->bi_bdev, b),
2133				count);
2134		}
2135	}
2136
2137	return generic_make_request(bio);
2138}
2139EXPORT_SYMBOL(submit_bio);
2140
2141/**
2142 * blk_cloned_rq_check_limits - Helper function to check a cloned request
2143 *                              for new the queue limits
2144 * @q:  the queue
2145 * @rq: the request being checked
2146 *
2147 * Description:
2148 *    @rq may have been made based on weaker limitations of upper-level queues
2149 *    in request stacking drivers, and it may violate the limitation of @q.
2150 *    Since the block layer and the underlying device driver trust @rq
2151 *    after it is inserted to @q, it should be checked against @q before
2152 *    the insertion using this generic function.
2153 *
 
 
2154 *    Request stacking drivers like request-based dm may change the queue
2155 *    limits when retrying requests on other queues. Those requests need
2156 *    to be checked against the new queue limits again during dispatch.
 
 
 
2157 */
2158static int blk_cloned_rq_check_limits(struct request_queue *q,
2159				      struct request *rq)
2160{
2161	if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, rq->cmd_flags)) {
 
 
 
 
2162		printk(KERN_ERR "%s: over max size limit.\n", __func__);
2163		return -EIO;
2164	}
2165
2166	/*
2167	 * queue's settings related to segment counting like q->bounce_pfn
2168	 * may differ from that of other stacking queues.
2169	 * Recalculate it to check the request correctly on this queue's
2170	 * limitation.
2171	 */
2172	blk_recalc_rq_segments(rq);
2173	if (rq->nr_phys_segments > queue_max_segments(q)) {
2174		printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2175		return -EIO;
2176	}
2177
2178	return 0;
2179}
 
2180
2181/**
2182 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2183 * @q:  the queue to submit the request
2184 * @rq: the request being queued
2185 */
2186int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
2187{
2188	unsigned long flags;
2189	int where = ELEVATOR_INSERT_BACK;
2190
2191	if (blk_cloned_rq_check_limits(q, rq))
2192		return -EIO;
2193
2194	if (rq->rq_disk &&
2195	    should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
2196		return -EIO;
2197
2198	if (q->mq_ops) {
2199		if (blk_queue_io_stat(q))
2200			blk_account_io_start(rq, true);
2201		blk_mq_insert_request(rq, false, true, false);
2202		return 0;
2203	}
2204
2205	spin_lock_irqsave(q->queue_lock, flags);
2206	if (unlikely(blk_queue_dying(q))) {
2207		spin_unlock_irqrestore(q->queue_lock, flags);
2208		return -ENODEV;
2209	}
2210
2211	/*
2212	 * Submitting request must be dequeued before calling this function
2213	 * because it will be linked to another request_queue
2214	 */
2215	BUG_ON(blk_queued_rq(rq));
2216
2217	if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA))
2218		where = ELEVATOR_INSERT_FLUSH;
2219
2220	add_acct_request(q, rq, where);
2221	if (where == ELEVATOR_INSERT_FLUSH)
2222		__blk_run_queue(q);
2223	spin_unlock_irqrestore(q->queue_lock, flags);
2224
2225	return 0;
2226}
2227EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2228
2229/**
2230 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2231 * @rq: request to examine
2232 *
2233 * Description:
2234 *     A request could be merge of IOs which require different failure
2235 *     handling.  This function determines the number of bytes which
2236 *     can be failed from the beginning of the request without
2237 *     crossing into area which need to be retried further.
2238 *
2239 * Return:
2240 *     The number of bytes to fail.
2241 *
2242 * Context:
2243 *     queue_lock must be held.
2244 */
2245unsigned int blk_rq_err_bytes(const struct request *rq)
2246{
2247	unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2248	unsigned int bytes = 0;
2249	struct bio *bio;
2250
2251	if (!(rq->cmd_flags & REQ_MIXED_MERGE))
2252		return blk_rq_bytes(rq);
2253
2254	/*
2255	 * Currently the only 'mixing' which can happen is between
2256	 * different fastfail types.  We can safely fail portions
2257	 * which have all the failfast bits that the first one has -
2258	 * the ones which are at least as eager to fail as the first
2259	 * one.
2260	 */
2261	for (bio = rq->bio; bio; bio = bio->bi_next) {
2262		if ((bio->bi_rw & ff) != ff)
2263			break;
2264		bytes += bio->bi_iter.bi_size;
2265	}
2266
2267	/* this could lead to infinite loop */
2268	BUG_ON(blk_rq_bytes(rq) && !bytes);
2269	return bytes;
2270}
2271EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2272
2273void blk_account_io_completion(struct request *req, unsigned int bytes)
2274{
2275	if (blk_do_io_stat(req)) {
2276		const int rw = rq_data_dir(req);
2277		struct hd_struct *part;
2278		int cpu;
2279
2280		cpu = part_stat_lock();
2281		part = req->part;
2282		part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2283		part_stat_unlock();
2284	}
2285}
2286
2287void blk_account_io_done(struct request *req)
2288{
2289	/*
2290	 * Account IO completion.  flush_rq isn't accounted as a
2291	 * normal IO on queueing nor completion.  Accounting the
2292	 * containing request is enough.
2293	 */
2294	if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
2295		unsigned long duration = jiffies - req->start_time;
2296		const int rw = rq_data_dir(req);
2297		struct hd_struct *part;
2298		int cpu;
2299
2300		cpu = part_stat_lock();
2301		part = req->part;
2302
2303		part_stat_inc(cpu, part, ios[rw]);
2304		part_stat_add(cpu, part, ticks[rw], duration);
2305		part_round_stats(cpu, part);
2306		part_dec_in_flight(part, rw);
2307
2308		hd_struct_put(part);
2309		part_stat_unlock();
2310	}
2311}
2312
2313#ifdef CONFIG_PM
2314/*
2315 * Don't process normal requests when queue is suspended
2316 * or in the process of suspending/resuming
2317 */
2318static struct request *blk_pm_peek_request(struct request_queue *q,
2319					   struct request *rq)
2320{
2321	if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
2322	    (q->rpm_status != RPM_ACTIVE && !(rq->cmd_flags & REQ_PM))))
2323		return NULL;
2324	else
2325		return rq;
2326}
2327#else
2328static inline struct request *blk_pm_peek_request(struct request_queue *q,
2329						  struct request *rq)
2330{
2331	return rq;
2332}
2333#endif
2334
2335void blk_account_io_start(struct request *rq, bool new_io)
2336{
2337	struct hd_struct *part;
2338	int rw = rq_data_dir(rq);
2339	int cpu;
2340
2341	if (!blk_do_io_stat(rq))
2342		return;
2343
2344	cpu = part_stat_lock();
2345
2346	if (!new_io) {
2347		part = rq->part;
2348		part_stat_inc(cpu, part, merges[rw]);
2349	} else {
2350		part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2351		if (!hd_struct_try_get(part)) {
2352			/*
2353			 * The partition is already being removed,
2354			 * the request will be accounted on the disk only
2355			 *
2356			 * We take a reference on disk->part0 although that
2357			 * partition will never be deleted, so we can treat
2358			 * it as any other partition.
2359			 */
2360			part = &rq->rq_disk->part0;
2361			hd_struct_get(part);
2362		}
2363		part_round_stats(cpu, part);
2364		part_inc_in_flight(part, rw);
2365		rq->part = part;
2366	}
2367
2368	part_stat_unlock();
2369}
2370
2371/**
2372 * blk_peek_request - peek at the top of a request queue
2373 * @q: request queue to peek at
2374 *
2375 * Description:
2376 *     Return the request at the top of @q.  The returned request
2377 *     should be started using blk_start_request() before LLD starts
2378 *     processing it.
2379 *
2380 * Return:
2381 *     Pointer to the request at the top of @q if available.  Null
2382 *     otherwise.
2383 *
2384 * Context:
2385 *     queue_lock must be held.
2386 */
2387struct request *blk_peek_request(struct request_queue *q)
2388{
2389	struct request *rq;
2390	int ret;
2391
2392	while ((rq = __elv_next_request(q)) != NULL) {
2393
2394		rq = blk_pm_peek_request(q, rq);
2395		if (!rq)
2396			break;
2397
2398		if (!(rq->cmd_flags & REQ_STARTED)) {
2399			/*
2400			 * This is the first time the device driver
2401			 * sees this request (possibly after
2402			 * requeueing).  Notify IO scheduler.
2403			 */
2404			if (rq->cmd_flags & REQ_SORTED)
2405				elv_activate_rq(q, rq);
2406
2407			/*
2408			 * just mark as started even if we don't start
2409			 * it, a request that has been delayed should
2410			 * not be passed by new incoming requests
2411			 */
2412			rq->cmd_flags |= REQ_STARTED;
2413			trace_block_rq_issue(q, rq);
2414		}
2415
2416		if (!q->boundary_rq || q->boundary_rq == rq) {
2417			q->end_sector = rq_end_sector(rq);
2418			q->boundary_rq = NULL;
2419		}
2420
2421		if (rq->cmd_flags & REQ_DONTPREP)
2422			break;
2423
2424		if (q->dma_drain_size && blk_rq_bytes(rq)) {
2425			/*
2426			 * make sure space for the drain appears we
2427			 * know we can do this because max_hw_segments
2428			 * has been adjusted to be one fewer than the
2429			 * device can handle
2430			 */
2431			rq->nr_phys_segments++;
2432		}
2433
2434		if (!q->prep_rq_fn)
2435			break;
2436
2437		ret = q->prep_rq_fn(q, rq);
2438		if (ret == BLKPREP_OK) {
2439			break;
2440		} else if (ret == BLKPREP_DEFER) {
2441			/*
2442			 * the request may have been (partially) prepped.
2443			 * we need to keep this request in the front to
2444			 * avoid resource deadlock.  REQ_STARTED will
2445			 * prevent other fs requests from passing this one.
2446			 */
2447			if (q->dma_drain_size && blk_rq_bytes(rq) &&
2448			    !(rq->cmd_flags & REQ_DONTPREP)) {
2449				/*
2450				 * remove the space for the drain we added
2451				 * so that we don't add it again
2452				 */
2453				--rq->nr_phys_segments;
2454			}
2455
2456			rq = NULL;
2457			break;
2458		} else if (ret == BLKPREP_KILL || ret == BLKPREP_INVALID) {
2459			int err = (ret == BLKPREP_INVALID) ? -EREMOTEIO : -EIO;
2460
2461			rq->cmd_flags |= REQ_QUIET;
2462			/*
2463			 * Mark this request as started so we don't trigger
2464			 * any debug logic in the end I/O path.
2465			 */
2466			blk_start_request(rq);
2467			__blk_end_request_all(rq, err);
2468		} else {
2469			printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2470			break;
2471		}
2472	}
2473
2474	return rq;
2475}
2476EXPORT_SYMBOL(blk_peek_request);
2477
2478void blk_dequeue_request(struct request *rq)
2479{
2480	struct request_queue *q = rq->q;
2481
2482	BUG_ON(list_empty(&rq->queuelist));
2483	BUG_ON(ELV_ON_HASH(rq));
2484
2485	list_del_init(&rq->queuelist);
2486
2487	/*
2488	 * the time frame between a request being removed from the lists
2489	 * and to it is freed is accounted as io that is in progress at
2490	 * the driver side.
2491	 */
2492	if (blk_account_rq(rq)) {
2493		q->in_flight[rq_is_sync(rq)]++;
2494		set_io_start_time_ns(rq);
2495	}
2496}
2497
2498/**
2499 * blk_start_request - start request processing on the driver
2500 * @req: request to dequeue
2501 *
2502 * Description:
2503 *     Dequeue @req and start timeout timer on it.  This hands off the
2504 *     request to the driver.
2505 *
2506 *     Block internal functions which don't want to start timer should
2507 *     call blk_dequeue_request().
2508 *
2509 * Context:
2510 *     queue_lock must be held.
2511 */
2512void blk_start_request(struct request *req)
2513{
2514	blk_dequeue_request(req);
2515
2516	/*
2517	 * We are now handing the request to the hardware, initialize
2518	 * resid_len to full count and add the timeout handler.
2519	 */
2520	req->resid_len = blk_rq_bytes(req);
2521	if (unlikely(blk_bidi_rq(req)))
2522		req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
2523
2524	BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
2525	blk_add_timer(req);
2526}
2527EXPORT_SYMBOL(blk_start_request);
2528
2529/**
2530 * blk_fetch_request - fetch a request from a request queue
2531 * @q: request queue to fetch a request from
2532 *
2533 * Description:
2534 *     Return the request at the top of @q.  The request is started on
2535 *     return and LLD can start processing it immediately.
2536 *
2537 * Return:
2538 *     Pointer to the request at the top of @q if available.  Null
2539 *     otherwise.
2540 *
2541 * Context:
2542 *     queue_lock must be held.
2543 */
2544struct request *blk_fetch_request(struct request_queue *q)
2545{
2546	struct request *rq;
2547
2548	rq = blk_peek_request(q);
2549	if (rq)
2550		blk_start_request(rq);
2551	return rq;
2552}
2553EXPORT_SYMBOL(blk_fetch_request);
2554
2555/**
2556 * blk_update_request - Special helper function for request stacking drivers
2557 * @req:      the request being processed
2558 * @error:    %0 for success, < %0 for error
2559 * @nr_bytes: number of bytes to complete @req
2560 *
2561 * Description:
2562 *     Ends I/O on a number of bytes attached to @req, but doesn't complete
2563 *     the request structure even if @req doesn't have leftover.
2564 *     If @req has leftover, sets it up for the next range of segments.
2565 *
2566 *     This special helper function is only for request stacking drivers
2567 *     (e.g. request-based dm) so that they can handle partial completion.
2568 *     Actual device drivers should use blk_end_request instead.
2569 *
2570 *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2571 *     %false return from this function.
2572 *
2573 * Return:
2574 *     %false - this request doesn't have any more data
2575 *     %true  - this request has more data
2576 **/
2577bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
2578{
2579	int total_bytes;
2580
2581	trace_block_rq_complete(req->q, req, nr_bytes);
2582
2583	if (!req->bio)
2584		return false;
2585
 
 
2586	/*
2587	 * For fs requests, rq is just carrier of independent bio's
2588	 * and each partial completion should be handled separately.
2589	 * Reset per-request error on each partial completion.
2590	 *
2591	 * TODO: tj: This is too subtle.  It would be better to let
2592	 * low level drivers do what they see fit.
2593	 */
2594	if (req->cmd_type == REQ_TYPE_FS)
2595		req->errors = 0;
2596
2597	if (error && req->cmd_type == REQ_TYPE_FS &&
2598	    !(req->cmd_flags & REQ_QUIET)) {
2599		char *error_type;
2600
2601		switch (error) {
2602		case -ENOLINK:
2603			error_type = "recoverable transport";
2604			break;
2605		case -EREMOTEIO:
2606			error_type = "critical target";
2607			break;
2608		case -EBADE:
2609			error_type = "critical nexus";
2610			break;
2611		case -ETIMEDOUT:
2612			error_type = "timeout";
2613			break;
2614		case -ENOSPC:
2615			error_type = "critical space allocation";
2616			break;
2617		case -ENODATA:
2618			error_type = "critical medium";
2619			break;
2620		case -EIO:
2621		default:
2622			error_type = "I/O";
2623			break;
2624		}
2625		printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
2626				   __func__, error_type, req->rq_disk ?
2627				   req->rq_disk->disk_name : "?",
2628				   (unsigned long long)blk_rq_pos(req));
2629
2630	}
2631
2632	blk_account_io_completion(req, nr_bytes);
2633
2634	total_bytes = 0;
2635	while (req->bio) {
2636		struct bio *bio = req->bio;
2637		unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
2638
2639		if (bio_bytes == bio->bi_iter.bi_size)
2640			req->bio = bio->bi_next;
 
 
 
 
 
 
2641
2642		req_bio_endio(req, bio, bio_bytes, error);
 
 
 
 
 
2643
2644		total_bytes += bio_bytes;
2645		nr_bytes -= bio_bytes;
2646
2647		if (!nr_bytes)
2648			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2649	}
2650
2651	/*
2652	 * completely done
2653	 */
2654	if (!req->bio) {
2655		/*
2656		 * Reset counters so that the request stacking driver
2657		 * can find how many bytes remain in the request
2658		 * later.
2659		 */
2660		req->__data_len = 0;
2661		return false;
2662	}
2663
 
 
 
 
 
 
 
 
 
 
2664	req->__data_len -= total_bytes;
 
2665
2666	/* update sector only for requests with clear definition of sector */
2667	if (req->cmd_type == REQ_TYPE_FS)
2668		req->__sector += total_bytes >> 9;
2669
2670	/* mixed attributes always follow the first bio */
2671	if (req->cmd_flags & REQ_MIXED_MERGE) {
2672		req->cmd_flags &= ~REQ_FAILFAST_MASK;
2673		req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2674	}
2675
2676	/*
2677	 * If total number of sectors is less than the first segment
2678	 * size, something has gone terribly wrong.
2679	 */
2680	if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2681		blk_dump_rq_flags(req, "request botched");
2682		req->__data_len = blk_rq_cur_bytes(req);
2683	}
2684
2685	/* recalculate the number of segments */
2686	blk_recalc_rq_segments(req);
2687
2688	return true;
2689}
2690EXPORT_SYMBOL_GPL(blk_update_request);
2691
2692static bool blk_update_bidi_request(struct request *rq, int error,
2693				    unsigned int nr_bytes,
2694				    unsigned int bidi_bytes)
2695{
2696	if (blk_update_request(rq, error, nr_bytes))
2697		return true;
2698
2699	/* Bidi request must be completed as a whole */
2700	if (unlikely(blk_bidi_rq(rq)) &&
2701	    blk_update_request(rq->next_rq, error, bidi_bytes))
2702		return true;
2703
2704	if (blk_queue_add_random(rq->q))
2705		add_disk_randomness(rq->rq_disk);
2706
2707	return false;
2708}
2709
2710/**
2711 * blk_unprep_request - unprepare a request
2712 * @req:	the request
2713 *
2714 * This function makes a request ready for complete resubmission (or
2715 * completion).  It happens only after all error handling is complete,
2716 * so represents the appropriate moment to deallocate any resources
2717 * that were allocated to the request in the prep_rq_fn.  The queue
2718 * lock is held when calling this.
2719 */
2720void blk_unprep_request(struct request *req)
2721{
2722	struct request_queue *q = req->q;
2723
2724	req->cmd_flags &= ~REQ_DONTPREP;
2725	if (q->unprep_rq_fn)
2726		q->unprep_rq_fn(q, req);
2727}
2728EXPORT_SYMBOL_GPL(blk_unprep_request);
2729
2730/*
2731 * queue lock must be held
2732 */
2733void blk_finish_request(struct request *req, int error)
2734{
2735	if (req->cmd_flags & REQ_QUEUED)
2736		blk_queue_end_tag(req->q, req);
2737
2738	BUG_ON(blk_queued_rq(req));
2739
2740	if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
2741		laptop_io_completion(&req->q->backing_dev_info);
2742
2743	blk_delete_timer(req);
2744
2745	if (req->cmd_flags & REQ_DONTPREP)
2746		blk_unprep_request(req);
2747
 
2748	blk_account_io_done(req);
2749
2750	if (req->end_io)
2751		req->end_io(req, error);
2752	else {
2753		if (blk_bidi_rq(req))
2754			__blk_put_request(req->next_rq->q, req->next_rq);
2755
2756		__blk_put_request(req->q, req);
2757	}
2758}
2759EXPORT_SYMBOL(blk_finish_request);
2760
2761/**
2762 * blk_end_bidi_request - Complete a bidi request
2763 * @rq:         the request to complete
2764 * @error:      %0 for success, < %0 for error
2765 * @nr_bytes:   number of bytes to complete @rq
2766 * @bidi_bytes: number of bytes to complete @rq->next_rq
2767 *
2768 * Description:
2769 *     Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2770 *     Drivers that supports bidi can safely call this member for any
2771 *     type of request, bidi or uni.  In the later case @bidi_bytes is
2772 *     just ignored.
2773 *
2774 * Return:
2775 *     %false - we are done with this request
2776 *     %true  - still buffers pending for this request
2777 **/
2778static bool blk_end_bidi_request(struct request *rq, int error,
2779				 unsigned int nr_bytes, unsigned int bidi_bytes)
2780{
2781	struct request_queue *q = rq->q;
2782	unsigned long flags;
2783
2784	if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2785		return true;
2786
2787	spin_lock_irqsave(q->queue_lock, flags);
2788	blk_finish_request(rq, error);
2789	spin_unlock_irqrestore(q->queue_lock, flags);
2790
2791	return false;
2792}
2793
2794/**
2795 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2796 * @rq:         the request to complete
2797 * @error:      %0 for success, < %0 for error
2798 * @nr_bytes:   number of bytes to complete @rq
2799 * @bidi_bytes: number of bytes to complete @rq->next_rq
2800 *
2801 * Description:
2802 *     Identical to blk_end_bidi_request() except that queue lock is
2803 *     assumed to be locked on entry and remains so on return.
2804 *
2805 * Return:
2806 *     %false - we are done with this request
2807 *     %true  - still buffers pending for this request
2808 **/
2809bool __blk_end_bidi_request(struct request *rq, int error,
2810				   unsigned int nr_bytes, unsigned int bidi_bytes)
2811{
2812	if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2813		return true;
2814
2815	blk_finish_request(rq, error);
2816
2817	return false;
2818}
2819
2820/**
2821 * blk_end_request - Helper function for drivers to complete the request.
2822 * @rq:       the request being processed
2823 * @error:    %0 for success, < %0 for error
2824 * @nr_bytes: number of bytes to complete
2825 *
2826 * Description:
2827 *     Ends I/O on a number of bytes attached to @rq.
2828 *     If @rq has leftover, sets it up for the next range of segments.
2829 *
2830 * Return:
2831 *     %false - we are done with this request
2832 *     %true  - still buffers pending for this request
2833 **/
2834bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2835{
2836	return blk_end_bidi_request(rq, error, nr_bytes, 0);
2837}
2838EXPORT_SYMBOL(blk_end_request);
2839
2840/**
2841 * blk_end_request_all - Helper function for drives to finish the request.
2842 * @rq: the request to finish
2843 * @error: %0 for success, < %0 for error
2844 *
2845 * Description:
2846 *     Completely finish @rq.
2847 */
2848void blk_end_request_all(struct request *rq, int error)
2849{
2850	bool pending;
2851	unsigned int bidi_bytes = 0;
2852
2853	if (unlikely(blk_bidi_rq(rq)))
2854		bidi_bytes = blk_rq_bytes(rq->next_rq);
2855
2856	pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2857	BUG_ON(pending);
2858}
2859EXPORT_SYMBOL(blk_end_request_all);
2860
2861/**
2862 * blk_end_request_cur - Helper function to finish the current request chunk.
2863 * @rq: the request to finish the current chunk for
2864 * @error: %0 for success, < %0 for error
2865 *
2866 * Description:
2867 *     Complete the current consecutively mapped chunk from @rq.
2868 *
2869 * Return:
2870 *     %false - we are done with this request
2871 *     %true  - still buffers pending for this request
2872 */
2873bool blk_end_request_cur(struct request *rq, int error)
2874{
2875	return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2876}
2877EXPORT_SYMBOL(blk_end_request_cur);
2878
2879/**
2880 * blk_end_request_err - Finish a request till the next failure boundary.
2881 * @rq: the request to finish till the next failure boundary for
2882 * @error: must be negative errno
2883 *
2884 * Description:
2885 *     Complete @rq till the next failure boundary.
2886 *
2887 * Return:
2888 *     %false - we are done with this request
2889 *     %true  - still buffers pending for this request
2890 */
2891bool blk_end_request_err(struct request *rq, int error)
2892{
2893	WARN_ON(error >= 0);
2894	return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2895}
2896EXPORT_SYMBOL_GPL(blk_end_request_err);
2897
2898/**
2899 * __blk_end_request - Helper function for drivers to complete the request.
2900 * @rq:       the request being processed
2901 * @error:    %0 for success, < %0 for error
2902 * @nr_bytes: number of bytes to complete
2903 *
2904 * Description:
2905 *     Must be called with queue lock held unlike blk_end_request().
2906 *
2907 * Return:
2908 *     %false - we are done with this request
2909 *     %true  - still buffers pending for this request
2910 **/
2911bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2912{
2913	return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2914}
2915EXPORT_SYMBOL(__blk_end_request);
2916
2917/**
2918 * __blk_end_request_all - Helper function for drives to finish the request.
2919 * @rq: the request to finish
2920 * @error: %0 for success, < %0 for error
2921 *
2922 * Description:
2923 *     Completely finish @rq.  Must be called with queue lock held.
2924 */
2925void __blk_end_request_all(struct request *rq, int error)
2926{
2927	bool pending;
2928	unsigned int bidi_bytes = 0;
2929
2930	if (unlikely(blk_bidi_rq(rq)))
2931		bidi_bytes = blk_rq_bytes(rq->next_rq);
2932
2933	pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2934	BUG_ON(pending);
2935}
2936EXPORT_SYMBOL(__blk_end_request_all);
2937
2938/**
2939 * __blk_end_request_cur - Helper function to finish the current request chunk.
2940 * @rq: the request to finish the current chunk for
2941 * @error: %0 for success, < %0 for error
2942 *
2943 * Description:
2944 *     Complete the current consecutively mapped chunk from @rq.  Must
2945 *     be called with queue lock held.
2946 *
2947 * Return:
2948 *     %false - we are done with this request
2949 *     %true  - still buffers pending for this request
2950 */
2951bool __blk_end_request_cur(struct request *rq, int error)
2952{
2953	return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2954}
2955EXPORT_SYMBOL(__blk_end_request_cur);
2956
2957/**
2958 * __blk_end_request_err - Finish a request till the next failure boundary.
2959 * @rq: the request to finish till the next failure boundary for
2960 * @error: must be negative errno
2961 *
2962 * Description:
2963 *     Complete @rq till the next failure boundary.  Must be called
2964 *     with queue lock held.
2965 *
2966 * Return:
2967 *     %false - we are done with this request
2968 *     %true  - still buffers pending for this request
2969 */
2970bool __blk_end_request_err(struct request *rq, int error)
2971{
2972	WARN_ON(error >= 0);
2973	return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2974}
2975EXPORT_SYMBOL_GPL(__blk_end_request_err);
2976
2977void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2978		     struct bio *bio)
2979{
2980	/* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
2981	rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
2982
2983	if (bio_has_data(bio))
2984		rq->nr_phys_segments = bio_phys_segments(q, bio);
2985
2986	rq->__data_len = bio->bi_iter.bi_size;
 
2987	rq->bio = rq->biotail = bio;
2988
2989	if (bio->bi_bdev)
2990		rq->rq_disk = bio->bi_bdev->bd_disk;
2991}
2992
2993#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2994/**
2995 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2996 * @rq: the request to be flushed
2997 *
2998 * Description:
2999 *     Flush all pages in @rq.
3000 */
3001void rq_flush_dcache_pages(struct request *rq)
3002{
3003	struct req_iterator iter;
3004	struct bio_vec bvec;
3005
3006	rq_for_each_segment(bvec, rq, iter)
3007		flush_dcache_page(bvec.bv_page);
3008}
3009EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
3010#endif
3011
3012/**
3013 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
3014 * @q : the queue of the device being checked
3015 *
3016 * Description:
3017 *    Check if underlying low-level drivers of a device are busy.
3018 *    If the drivers want to export their busy state, they must set own
3019 *    exporting function using blk_queue_lld_busy() first.
3020 *
3021 *    Basically, this function is used only by request stacking drivers
3022 *    to stop dispatching requests to underlying devices when underlying
3023 *    devices are busy.  This behavior helps more I/O merging on the queue
3024 *    of the request stacking driver and prevents I/O throughput regression
3025 *    on burst I/O load.
3026 *
3027 * Return:
3028 *    0 - Not busy (The request stacking driver should dispatch request)
3029 *    1 - Busy (The request stacking driver should stop dispatching request)
3030 */
3031int blk_lld_busy(struct request_queue *q)
3032{
3033	if (q->lld_busy_fn)
3034		return q->lld_busy_fn(q);
3035
3036	return 0;
3037}
3038EXPORT_SYMBOL_GPL(blk_lld_busy);
3039
3040/**
3041 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3042 * @rq: the clone request to be cleaned up
3043 *
3044 * Description:
3045 *     Free all bios in @rq for a cloned request.
3046 */
3047void blk_rq_unprep_clone(struct request *rq)
3048{
3049	struct bio *bio;
3050
3051	while ((bio = rq->bio) != NULL) {
3052		rq->bio = bio->bi_next;
3053
3054		bio_put(bio);
3055	}
3056}
3057EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3058
3059/*
3060 * Copy attributes of the original request to the clone request.
3061 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
3062 */
3063static void __blk_rq_prep_clone(struct request *dst, struct request *src)
3064{
3065	dst->cpu = src->cpu;
3066	dst->cmd_flags |= (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
3067	dst->cmd_type = src->cmd_type;
3068	dst->__sector = blk_rq_pos(src);
3069	dst->__data_len = blk_rq_bytes(src);
3070	dst->nr_phys_segments = src->nr_phys_segments;
3071	dst->ioprio = src->ioprio;
3072	dst->extra_len = src->extra_len;
3073}
3074
3075/**
3076 * blk_rq_prep_clone - Helper function to setup clone request
3077 * @rq: the request to be setup
3078 * @rq_src: original request to be cloned
3079 * @bs: bio_set that bios for clone are allocated from
3080 * @gfp_mask: memory allocation mask for bio
3081 * @bio_ctr: setup function to be called for each clone bio.
3082 *           Returns %0 for success, non %0 for failure.
3083 * @data: private data to be passed to @bio_ctr
3084 *
3085 * Description:
3086 *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3087 *     The actual data parts of @rq_src (e.g. ->cmd, ->sense)
3088 *     are not copied, and copying such parts is the caller's responsibility.
3089 *     Also, pages which the original bios are pointing to are not copied
3090 *     and the cloned bios just point same pages.
3091 *     So cloned bios must be completed before original bios, which means
3092 *     the caller must complete @rq before @rq_src.
3093 */
3094int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3095		      struct bio_set *bs, gfp_t gfp_mask,
3096		      int (*bio_ctr)(struct bio *, struct bio *, void *),
3097		      void *data)
3098{
3099	struct bio *bio, *bio_src;
3100
3101	if (!bs)
3102		bs = fs_bio_set;
3103
 
 
3104	__rq_for_each_bio(bio_src, rq_src) {
3105		bio = bio_clone_fast(bio_src, gfp_mask, bs);
3106		if (!bio)
3107			goto free_and_out;
3108
 
 
 
 
 
 
3109		if (bio_ctr && bio_ctr(bio, bio_src, data))
3110			goto free_and_out;
3111
3112		if (rq->bio) {
3113			rq->biotail->bi_next = bio;
3114			rq->biotail = bio;
3115		} else
3116			rq->bio = rq->biotail = bio;
3117	}
3118
3119	__blk_rq_prep_clone(rq, rq_src);
3120
3121	return 0;
3122
3123free_and_out:
3124	if (bio)
3125		bio_put(bio);
3126	blk_rq_unprep_clone(rq);
3127
3128	return -ENOMEM;
3129}
3130EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3131
3132int kblockd_schedule_work(struct work_struct *work)
3133{
3134	return queue_work(kblockd_workqueue, work);
3135}
3136EXPORT_SYMBOL(kblockd_schedule_work);
3137
3138int kblockd_schedule_delayed_work(struct delayed_work *dwork,
3139				  unsigned long delay)
3140{
3141	return queue_delayed_work(kblockd_workqueue, dwork, delay);
3142}
3143EXPORT_SYMBOL(kblockd_schedule_delayed_work);
3144
3145int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
3146				     unsigned long delay)
3147{
3148	return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3149}
3150EXPORT_SYMBOL(kblockd_schedule_delayed_work_on);
3151
3152/**
3153 * blk_start_plug - initialize blk_plug and track it inside the task_struct
3154 * @plug:	The &struct blk_plug that needs to be initialized
3155 *
3156 * Description:
3157 *   Tracking blk_plug inside the task_struct will help with auto-flushing the
3158 *   pending I/O should the task end up blocking between blk_start_plug() and
3159 *   blk_finish_plug(). This is important from a performance perspective, but
3160 *   also ensures that we don't deadlock. For instance, if the task is blocking
3161 *   for a memory allocation, memory reclaim could end up wanting to free a
3162 *   page belonging to that request that is currently residing in our private
3163 *   plug. By flushing the pending I/O when the process goes to sleep, we avoid
3164 *   this kind of deadlock.
3165 */
3166void blk_start_plug(struct blk_plug *plug)
3167{
3168	struct task_struct *tsk = current;
3169
3170	/*
3171	 * If this is a nested plug, don't actually assign it.
3172	 */
3173	if (tsk->plug)
3174		return;
3175
3176	INIT_LIST_HEAD(&plug->list);
3177	INIT_LIST_HEAD(&plug->mq_list);
3178	INIT_LIST_HEAD(&plug->cb_list);
 
 
3179	/*
3180	 * Store ordering should not be needed here, since a potential
3181	 * preempt will imply a full memory barrier
3182	 */
3183	tsk->plug = plug;
 
 
 
 
 
 
3184}
3185EXPORT_SYMBOL(blk_start_plug);
3186
3187static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3188{
3189	struct request *rqa = container_of(a, struct request, queuelist);
3190	struct request *rqb = container_of(b, struct request, queuelist);
3191
3192	return !(rqa->q < rqb->q ||
3193		(rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
3194}
3195
3196/*
3197 * If 'from_schedule' is true, then postpone the dispatch of requests
3198 * until a safe kblockd context. We due this to avoid accidental big
3199 * additional stack usage in driver dispatch, in places where the originally
3200 * plugger did not intend it.
3201 */
3202static void queue_unplugged(struct request_queue *q, unsigned int depth,
3203			    bool from_schedule)
3204	__releases(q->queue_lock)
3205{
3206	trace_block_unplug(q, depth, !from_schedule);
3207
3208	if (from_schedule)
 
 
 
 
 
 
3209		blk_run_queue_async(q);
3210	else
3211		__blk_run_queue(q);
3212	spin_unlock(q->queue_lock);
 
 
3213}
3214
3215static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
3216{
3217	LIST_HEAD(callbacks);
3218
3219	while (!list_empty(&plug->cb_list)) {
3220		list_splice_init(&plug->cb_list, &callbacks);
3221
3222		while (!list_empty(&callbacks)) {
3223			struct blk_plug_cb *cb = list_first_entry(&callbacks,
 
 
3224							  struct blk_plug_cb,
3225							  list);
3226			list_del(&cb->list);
3227			cb->callback(cb, from_schedule);
3228		}
3229	}
3230}
3231
3232struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3233				      int size)
3234{
3235	struct blk_plug *plug = current->plug;
3236	struct blk_plug_cb *cb;
3237
3238	if (!plug)
3239		return NULL;
3240
3241	list_for_each_entry(cb, &plug->cb_list, list)
3242		if (cb->callback == unplug && cb->data == data)
3243			return cb;
3244
3245	/* Not currently on the callback list */
3246	BUG_ON(size < sizeof(*cb));
3247	cb = kzalloc(size, GFP_ATOMIC);
3248	if (cb) {
3249		cb->data = data;
3250		cb->callback = unplug;
3251		list_add(&cb->list, &plug->cb_list);
3252	}
3253	return cb;
3254}
3255EXPORT_SYMBOL(blk_check_plugged);
3256
3257void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
3258{
3259	struct request_queue *q;
3260	unsigned long flags;
3261	struct request *rq;
3262	LIST_HEAD(list);
3263	unsigned int depth;
3264
3265	flush_plug_callbacks(plug, from_schedule);
3266
3267	if (!list_empty(&plug->mq_list))
3268		blk_mq_flush_plug_list(plug, from_schedule);
3269
 
3270	if (list_empty(&plug->list))
3271		return;
3272
3273	list_splice_init(&plug->list, &list);
3274
3275	list_sort(NULL, &list, plug_rq_cmp);
 
 
 
3276
3277	q = NULL;
3278	depth = 0;
3279
3280	/*
3281	 * Save and disable interrupts here, to avoid doing it for every
3282	 * queue lock we have to take.
3283	 */
3284	local_irq_save(flags);
3285	while (!list_empty(&list)) {
3286		rq = list_entry_rq(list.next);
3287		list_del_init(&rq->queuelist);
3288		BUG_ON(!rq->q);
3289		if (rq->q != q) {
3290			/*
3291			 * This drops the queue lock
3292			 */
3293			if (q)
3294				queue_unplugged(q, depth, from_schedule);
3295			q = rq->q;
3296			depth = 0;
3297			spin_lock(q->queue_lock);
3298		}
3299
3300		/*
3301		 * Short-circuit if @q is dead
3302		 */
3303		if (unlikely(blk_queue_dying(q))) {
3304			__blk_end_request_all(rq, -ENODEV);
3305			continue;
3306		}
3307
3308		/*
3309		 * rq is already accounted, so use raw insert
3310		 */
3311		if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA))
3312			__elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3313		else
3314			__elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
3315
3316		depth++;
3317	}
3318
3319	/*
3320	 * This drops the queue lock
3321	 */
3322	if (q)
3323		queue_unplugged(q, depth, from_schedule);
3324
3325	local_irq_restore(flags);
3326}
3327
3328void blk_finish_plug(struct blk_plug *plug)
3329{
3330	if (plug != current->plug)
3331		return;
3332	blk_flush_plug_list(plug, false);
3333
3334	current->plug = NULL;
 
3335}
3336EXPORT_SYMBOL(blk_finish_plug);
3337
3338bool blk_poll(struct request_queue *q, blk_qc_t cookie)
3339{
3340	struct blk_plug *plug;
3341	long state;
3342
3343	if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
3344	    !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3345		return false;
3346
3347	plug = current->plug;
3348	if (plug)
3349		blk_flush_plug_list(plug, false);
3350
3351	state = current->state;
3352	while (!need_resched()) {
3353		unsigned int queue_num = blk_qc_t_to_queue_num(cookie);
3354		struct blk_mq_hw_ctx *hctx = q->queue_hw_ctx[queue_num];
3355		int ret;
3356
3357		hctx->poll_invoked++;
3358
3359		ret = q->mq_ops->poll(hctx, blk_qc_t_to_tag(cookie));
3360		if (ret > 0) {
3361			hctx->poll_success++;
3362			set_current_state(TASK_RUNNING);
3363			return true;
3364		}
3365
3366		if (signal_pending_state(state, current))
3367			set_current_state(TASK_RUNNING);
3368
3369		if (current->state == TASK_RUNNING)
3370			return true;
3371		if (ret < 0)
3372			break;
3373		cpu_relax();
3374	}
3375
3376	return false;
3377}
3378
3379#ifdef CONFIG_PM
3380/**
3381 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3382 * @q: the queue of the device
3383 * @dev: the device the queue belongs to
3384 *
3385 * Description:
3386 *    Initialize runtime-PM-related fields for @q and start auto suspend for
3387 *    @dev. Drivers that want to take advantage of request-based runtime PM
3388 *    should call this function after @dev has been initialized, and its
3389 *    request queue @q has been allocated, and runtime PM for it can not happen
3390 *    yet(either due to disabled/forbidden or its usage_count > 0). In most
3391 *    cases, driver should call this function before any I/O has taken place.
3392 *
3393 *    This function takes care of setting up using auto suspend for the device,
3394 *    the autosuspend delay is set to -1 to make runtime suspend impossible
3395 *    until an updated value is either set by user or by driver. Drivers do
3396 *    not need to touch other autosuspend settings.
3397 *
3398 *    The block layer runtime PM is request based, so only works for drivers
3399 *    that use request as their IO unit instead of those directly use bio's.
3400 */
3401void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3402{
3403	q->dev = dev;
3404	q->rpm_status = RPM_ACTIVE;
3405	pm_runtime_set_autosuspend_delay(q->dev, -1);
3406	pm_runtime_use_autosuspend(q->dev);
3407}
3408EXPORT_SYMBOL(blk_pm_runtime_init);
3409
3410/**
3411 * blk_pre_runtime_suspend - Pre runtime suspend check
3412 * @q: the queue of the device
3413 *
3414 * Description:
3415 *    This function will check if runtime suspend is allowed for the device
3416 *    by examining if there are any requests pending in the queue. If there
3417 *    are requests pending, the device can not be runtime suspended; otherwise,
3418 *    the queue's status will be updated to SUSPENDING and the driver can
3419 *    proceed to suspend the device.
3420 *
3421 *    For the not allowed case, we mark last busy for the device so that
3422 *    runtime PM core will try to autosuspend it some time later.
3423 *
3424 *    This function should be called near the start of the device's
3425 *    runtime_suspend callback.
3426 *
3427 * Return:
3428 *    0		- OK to runtime suspend the device
3429 *    -EBUSY	- Device should not be runtime suspended
3430 */
3431int blk_pre_runtime_suspend(struct request_queue *q)
3432{
3433	int ret = 0;
3434
3435	if (!q->dev)
3436		return ret;
3437
3438	spin_lock_irq(q->queue_lock);
3439	if (q->nr_pending) {
3440		ret = -EBUSY;
3441		pm_runtime_mark_last_busy(q->dev);
3442	} else {
3443		q->rpm_status = RPM_SUSPENDING;
3444	}
3445	spin_unlock_irq(q->queue_lock);
3446	return ret;
3447}
3448EXPORT_SYMBOL(blk_pre_runtime_suspend);
3449
3450/**
3451 * blk_post_runtime_suspend - Post runtime suspend processing
3452 * @q: the queue of the device
3453 * @err: return value of the device's runtime_suspend function
3454 *
3455 * Description:
3456 *    Update the queue's runtime status according to the return value of the
3457 *    device's runtime suspend function and mark last busy for the device so
3458 *    that PM core will try to auto suspend the device at a later time.
3459 *
3460 *    This function should be called near the end of the device's
3461 *    runtime_suspend callback.
3462 */
3463void blk_post_runtime_suspend(struct request_queue *q, int err)
3464{
3465	if (!q->dev)
3466		return;
3467
3468	spin_lock_irq(q->queue_lock);
3469	if (!err) {
3470		q->rpm_status = RPM_SUSPENDED;
3471	} else {
3472		q->rpm_status = RPM_ACTIVE;
3473		pm_runtime_mark_last_busy(q->dev);
3474	}
3475	spin_unlock_irq(q->queue_lock);
3476}
3477EXPORT_SYMBOL(blk_post_runtime_suspend);
3478
3479/**
3480 * blk_pre_runtime_resume - Pre runtime resume processing
3481 * @q: the queue of the device
3482 *
3483 * Description:
3484 *    Update the queue's runtime status to RESUMING in preparation for the
3485 *    runtime resume of the device.
3486 *
3487 *    This function should be called near the start of the device's
3488 *    runtime_resume callback.
3489 */
3490void blk_pre_runtime_resume(struct request_queue *q)
3491{
3492	if (!q->dev)
3493		return;
3494
3495	spin_lock_irq(q->queue_lock);
3496	q->rpm_status = RPM_RESUMING;
3497	spin_unlock_irq(q->queue_lock);
3498}
3499EXPORT_SYMBOL(blk_pre_runtime_resume);
3500
3501/**
3502 * blk_post_runtime_resume - Post runtime resume processing
3503 * @q: the queue of the device
3504 * @err: return value of the device's runtime_resume function
3505 *
3506 * Description:
3507 *    Update the queue's runtime status according to the return value of the
3508 *    device's runtime_resume function. If it is successfully resumed, process
3509 *    the requests that are queued into the device's queue when it is resuming
3510 *    and then mark last busy and initiate autosuspend for it.
3511 *
3512 *    This function should be called near the end of the device's
3513 *    runtime_resume callback.
3514 */
3515void blk_post_runtime_resume(struct request_queue *q, int err)
3516{
3517	if (!q->dev)
3518		return;
3519
3520	spin_lock_irq(q->queue_lock);
3521	if (!err) {
3522		q->rpm_status = RPM_ACTIVE;
3523		__blk_run_queue(q);
3524		pm_runtime_mark_last_busy(q->dev);
3525		pm_request_autosuspend(q->dev);
3526	} else {
3527		q->rpm_status = RPM_SUSPENDED;
3528	}
3529	spin_unlock_irq(q->queue_lock);
3530}
3531EXPORT_SYMBOL(blk_post_runtime_resume);
3532
3533/**
3534 * blk_set_runtime_active - Force runtime status of the queue to be active
3535 * @q: the queue of the device
3536 *
3537 * If the device is left runtime suspended during system suspend the resume
3538 * hook typically resumes the device and corrects runtime status
3539 * accordingly. However, that does not affect the queue runtime PM status
3540 * which is still "suspended". This prevents processing requests from the
3541 * queue.
3542 *
3543 * This function can be used in driver's resume hook to correct queue
3544 * runtime PM status and re-enable peeking requests from the queue. It
3545 * should be called before first request is added to the queue.
3546 */
3547void blk_set_runtime_active(struct request_queue *q)
3548{
3549	spin_lock_irq(q->queue_lock);
3550	q->rpm_status = RPM_ACTIVE;
3551	pm_runtime_mark_last_busy(q->dev);
3552	pm_request_autosuspend(q->dev);
3553	spin_unlock_irq(q->queue_lock);
3554}
3555EXPORT_SYMBOL(blk_set_runtime_active);
3556#endif
3557
3558int __init blk_dev_init(void)
3559{
3560	BUILD_BUG_ON(__REQ_NR_BITS > 8 *
3561			FIELD_SIZEOF(struct request, cmd_flags));
3562
3563	/* used for unplugging and affects IO latency/throughput - HIGHPRI */
3564	kblockd_workqueue = alloc_workqueue("kblockd",
3565					    WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
3566	if (!kblockd_workqueue)
3567		panic("Failed to create kblockd\n");
3568
3569	request_cachep = kmem_cache_create("blkdev_requests",
3570			sizeof(struct request), 0, SLAB_PANIC, NULL);
3571
3572	blk_requestq_cachep = kmem_cache_create("request_queue",
3573			sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3574
3575	return 0;
3576}
v3.1
   1/*
   2 * Copyright (C) 1991, 1992 Linus Torvalds
   3 * Copyright (C) 1994,      Karl Keyte: Added support for disk statistics
   4 * Elevator latency, (C) 2000  Andrea Arcangeli <andrea@suse.de> SuSE
   5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
   6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
   7 *	-  July2000
   8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
   9 */
  10
  11/*
  12 * This handles all read/write requests to block devices
  13 */
  14#include <linux/kernel.h>
  15#include <linux/module.h>
  16#include <linux/backing-dev.h>
  17#include <linux/bio.h>
  18#include <linux/blkdev.h>
 
  19#include <linux/highmem.h>
  20#include <linux/mm.h>
  21#include <linux/kernel_stat.h>
  22#include <linux/string.h>
  23#include <linux/init.h>
  24#include <linux/completion.h>
  25#include <linux/slab.h>
  26#include <linux/swap.h>
  27#include <linux/writeback.h>
  28#include <linux/task_io_accounting_ops.h>
  29#include <linux/fault-inject.h>
  30#include <linux/list_sort.h>
 
 
 
 
  31
  32#define CREATE_TRACE_POINTS
  33#include <trace/events/block.h>
  34
  35#include "blk.h"
 
  36
  37EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
  38EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
  39EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
 
 
  40
  41static int __make_request(struct request_queue *q, struct bio *bio);
  42
  43/*
  44 * For the allocated request tables
  45 */
  46static struct kmem_cache *request_cachep;
  47
  48/*
  49 * For queue allocation
  50 */
  51struct kmem_cache *blk_requestq_cachep;
  52
  53/*
  54 * Controlling structure to kblockd
  55 */
  56static struct workqueue_struct *kblockd_workqueue;
  57
  58static void drive_stat_acct(struct request *rq, int new_io)
  59{
  60	struct hd_struct *part;
  61	int rw = rq_data_dir(rq);
  62	int cpu;
 
 
 
 
 
 
 
 
  63
  64	if (!blk_do_io_stat(rq))
  65		return;
  66
  67	cpu = part_stat_lock();
  68
  69	if (!new_io) {
  70		part = rq->part;
  71		part_stat_inc(cpu, part, merges[rw]);
  72	} else {
  73		part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
  74		if (!hd_struct_try_get(part)) {
  75			/*
  76			 * The partition is already being removed,
  77			 * the request will be accounted on the disk only
  78			 *
  79			 * We take a reference on disk->part0 although that
  80			 * partition will never be deleted, so we can treat
  81			 * it as any other partition.
  82			 */
  83			part = &rq->rq_disk->part0;
  84			hd_struct_get(part);
  85		}
  86		part_round_stats(cpu, part);
  87		part_inc_in_flight(part, rw);
  88		rq->part = part;
  89	}
  90
  91	part_stat_unlock();
  92}
  93
  94void blk_queue_congestion_threshold(struct request_queue *q)
  95{
  96	int nr;
  97
  98	nr = q->nr_requests - (q->nr_requests / 8) + 1;
  99	if (nr > q->nr_requests)
 100		nr = q->nr_requests;
 101	q->nr_congestion_on = nr;
 102
 103	nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
 104	if (nr < 1)
 105		nr = 1;
 106	q->nr_congestion_off = nr;
 107}
 108
 109/**
 110 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
 111 * @bdev:	device
 112 *
 113 * Locates the passed device's request queue and returns the address of its
 114 * backing_dev_info
 115 *
 116 * Will return NULL if the request queue cannot be located.
 117 */
 118struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
 119{
 120	struct backing_dev_info *ret = NULL;
 121	struct request_queue *q = bdev_get_queue(bdev);
 122
 123	if (q)
 124		ret = &q->backing_dev_info;
 125	return ret;
 126}
 127EXPORT_SYMBOL(blk_get_backing_dev_info);
 128
 129void blk_rq_init(struct request_queue *q, struct request *rq)
 130{
 131	memset(rq, 0, sizeof(*rq));
 132
 133	INIT_LIST_HEAD(&rq->queuelist);
 134	INIT_LIST_HEAD(&rq->timeout_list);
 135	rq->cpu = -1;
 136	rq->q = q;
 137	rq->__sector = (sector_t) -1;
 138	INIT_HLIST_NODE(&rq->hash);
 139	RB_CLEAR_NODE(&rq->rb_node);
 140	rq->cmd = rq->__cmd;
 141	rq->cmd_len = BLK_MAX_CDB;
 142	rq->tag = -1;
 143	rq->ref_count = 1;
 144	rq->start_time = jiffies;
 145	set_start_time_ns(rq);
 146	rq->part = NULL;
 147}
 148EXPORT_SYMBOL(blk_rq_init);
 149
 150static void req_bio_endio(struct request *rq, struct bio *bio,
 151			  unsigned int nbytes, int error)
 152{
 153	if (error)
 154		clear_bit(BIO_UPTODATE, &bio->bi_flags);
 155	else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
 156		error = -EIO;
 157
 158	if (unlikely(nbytes > bio->bi_size)) {
 159		printk(KERN_ERR "%s: want %u bytes done, %u left\n",
 160		       __func__, nbytes, bio->bi_size);
 161		nbytes = bio->bi_size;
 162	}
 163
 164	if (unlikely(rq->cmd_flags & REQ_QUIET))
 165		set_bit(BIO_QUIET, &bio->bi_flags);
 166
 167	bio->bi_size -= nbytes;
 168	bio->bi_sector += (nbytes >> 9);
 169
 170	if (bio_integrity(bio))
 171		bio_integrity_advance(bio, nbytes);
 172
 173	/* don't actually finish bio if it's part of flush sequence */
 174	if (bio->bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
 175		bio_endio(bio, error);
 176}
 177
 178void blk_dump_rq_flags(struct request *rq, char *msg)
 179{
 180	int bit;
 181
 182	printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
 183		rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
 184		rq->cmd_flags);
 185
 186	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
 187	       (unsigned long long)blk_rq_pos(rq),
 188	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
 189	printk(KERN_INFO "  bio %p, biotail %p, buffer %p, len %u\n",
 190	       rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq));
 191
 192	if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
 193		printk(KERN_INFO "  cdb: ");
 194		for (bit = 0; bit < BLK_MAX_CDB; bit++)
 195			printk("%02x ", rq->cmd[bit]);
 196		printk("\n");
 197	}
 198}
 199EXPORT_SYMBOL(blk_dump_rq_flags);
 200
 201static void blk_delay_work(struct work_struct *work)
 202{
 203	struct request_queue *q;
 204
 205	q = container_of(work, struct request_queue, delay_work.work);
 206	spin_lock_irq(q->queue_lock);
 207	__blk_run_queue(q);
 208	spin_unlock_irq(q->queue_lock);
 209}
 210
 211/**
 212 * blk_delay_queue - restart queueing after defined interval
 213 * @q:		The &struct request_queue in question
 214 * @msecs:	Delay in msecs
 215 *
 216 * Description:
 217 *   Sometimes queueing needs to be postponed for a little while, to allow
 218 *   resources to come back. This function will make sure that queueing is
 219 *   restarted around the specified time.
 220 */
 221void blk_delay_queue(struct request_queue *q, unsigned long msecs)
 222{
 223	queue_delayed_work(kblockd_workqueue, &q->delay_work,
 224				msecs_to_jiffies(msecs));
 
 225}
 226EXPORT_SYMBOL(blk_delay_queue);
 227
 228/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 229 * blk_start_queue - restart a previously stopped queue
 230 * @q:    The &struct request_queue in question
 231 *
 232 * Description:
 233 *   blk_start_queue() will clear the stop flag on the queue, and call
 234 *   the request_fn for the queue if it was in a stopped state when
 235 *   entered. Also see blk_stop_queue(). Queue lock must be held.
 236 **/
 237void blk_start_queue(struct request_queue *q)
 238{
 239	WARN_ON(!irqs_disabled());
 240
 241	queue_flag_clear(QUEUE_FLAG_STOPPED, q);
 242	__blk_run_queue(q);
 243}
 244EXPORT_SYMBOL(blk_start_queue);
 245
 246/**
 247 * blk_stop_queue - stop a queue
 248 * @q:    The &struct request_queue in question
 249 *
 250 * Description:
 251 *   The Linux block layer assumes that a block driver will consume all
 252 *   entries on the request queue when the request_fn strategy is called.
 253 *   Often this will not happen, because of hardware limitations (queue
 254 *   depth settings). If a device driver gets a 'queue full' response,
 255 *   or if it simply chooses not to queue more I/O at one point, it can
 256 *   call this function to prevent the request_fn from being called until
 257 *   the driver has signalled it's ready to go again. This happens by calling
 258 *   blk_start_queue() to restart queue operations. Queue lock must be held.
 259 **/
 260void blk_stop_queue(struct request_queue *q)
 261{
 262	__cancel_delayed_work(&q->delay_work);
 263	queue_flag_set(QUEUE_FLAG_STOPPED, q);
 264}
 265EXPORT_SYMBOL(blk_stop_queue);
 266
 267/**
 268 * blk_sync_queue - cancel any pending callbacks on a queue
 269 * @q: the queue
 270 *
 271 * Description:
 272 *     The block layer may perform asynchronous callback activity
 273 *     on a queue, such as calling the unplug function after a timeout.
 274 *     A block device may call blk_sync_queue to ensure that any
 275 *     such activity is cancelled, thus allowing it to release resources
 276 *     that the callbacks might use. The caller must already have made sure
 277 *     that its ->make_request_fn will not re-add plugging prior to calling
 278 *     this function.
 279 *
 280 *     This function does not cancel any asynchronous activity arising
 281 *     out of elevator or throttling code. That would require elevaotor_exit()
 282 *     and blk_throtl_exit() to be called with queue lock initialized.
 283 *
 284 */
 285void blk_sync_queue(struct request_queue *q)
 286{
 287	del_timer_sync(&q->timeout);
 288	cancel_delayed_work_sync(&q->delay_work);
 
 
 
 
 
 
 
 
 
 
 
 289}
 290EXPORT_SYMBOL(blk_sync_queue);
 291
 292/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 293 * __blk_run_queue - run a single device queue
 294 * @q:	The queue to run
 295 *
 296 * Description:
 297 *    See @blk_run_queue. This variant must be called with the queue lock
 298 *    held and interrupts disabled.
 299 */
 300void __blk_run_queue(struct request_queue *q)
 301{
 302	if (unlikely(blk_queue_stopped(q)))
 303		return;
 304
 305	q->request_fn(q);
 306}
 307EXPORT_SYMBOL(__blk_run_queue);
 308
 309/**
 310 * blk_run_queue_async - run a single device queue in workqueue context
 311 * @q:	The queue to run
 312 *
 313 * Description:
 314 *    Tells kblockd to perform the equivalent of @blk_run_queue on behalf
 315 *    of us.
 316 */
 317void blk_run_queue_async(struct request_queue *q)
 318{
 319	if (likely(!blk_queue_stopped(q))) {
 320		__cancel_delayed_work(&q->delay_work);
 321		queue_delayed_work(kblockd_workqueue, &q->delay_work, 0);
 322	}
 323}
 324EXPORT_SYMBOL(blk_run_queue_async);
 325
 326/**
 327 * blk_run_queue - run a single device queue
 328 * @q: The queue to run
 329 *
 330 * Description:
 331 *    Invoke request handling on this queue, if it has pending work to do.
 332 *    May be used to restart queueing when a request has completed.
 333 */
 334void blk_run_queue(struct request_queue *q)
 335{
 336	unsigned long flags;
 337
 338	spin_lock_irqsave(q->queue_lock, flags);
 339	__blk_run_queue(q);
 340	spin_unlock_irqrestore(q->queue_lock, flags);
 341}
 342EXPORT_SYMBOL(blk_run_queue);
 343
 344void blk_put_queue(struct request_queue *q)
 345{
 346	kobject_put(&q->kobj);
 347}
 348EXPORT_SYMBOL(blk_put_queue);
 349
 350/*
 351 * Note: If a driver supplied the queue lock, it is disconnected
 352 * by this function. The actual state of the lock doesn't matter
 353 * here as the request_queue isn't accessible after this point
 354 * (QUEUE_FLAG_DEAD is set) and no other requests will be queued.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 355 */
 356void blk_cleanup_queue(struct request_queue *q)
 357{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 358	/*
 359	 * We know we have process context here, so we can be a little
 360	 * cautious and ensure that pending block actions on this device
 361	 * are done before moving on. Going into this function, we should
 362	 * not have processes doing IO to this device.
 363	 */
 
 
 
 
 
 
 
 
 
 
 
 
 364	blk_sync_queue(q);
 365
 366	del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
 367	mutex_lock(&q->sysfs_lock);
 368	queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q);
 369	mutex_unlock(&q->sysfs_lock);
 370
 
 371	if (q->queue_lock != &q->__queue_lock)
 372		q->queue_lock = &q->__queue_lock;
 
 
 
 373
 
 374	blk_put_queue(q);
 375}
 376EXPORT_SYMBOL(blk_cleanup_queue);
 377
 378static int blk_init_free_list(struct request_queue *q)
 
 
 
 
 
 
 
 379{
 380	struct request_list *rl = &q->rq;
 
 381
 
 
 
 382	if (unlikely(rl->rq_pool))
 383		return 0;
 384
 
 385	rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
 386	rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
 387	rl->elvpriv = 0;
 388	init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
 389	init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
 390
 391	rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
 392				mempool_free_slab, request_cachep, q->node);
 393
 
 394	if (!rl->rq_pool)
 395		return -ENOMEM;
 396
 397	return 0;
 398}
 399
 
 
 
 
 
 
 400struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
 401{
 402	return blk_alloc_queue_node(gfp_mask, -1);
 403}
 404EXPORT_SYMBOL(blk_alloc_queue);
 405
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 406struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
 407{
 408	struct request_queue *q;
 409	int err;
 410
 411	q = kmem_cache_alloc_node(blk_requestq_cachep,
 412				gfp_mask | __GFP_ZERO, node_id);
 413	if (!q)
 414		return NULL;
 415
 
 
 
 
 
 
 
 
 416	q->backing_dev_info.ra_pages =
 417			(VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
 418	q->backing_dev_info.state = 0;
 419	q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
 420	q->backing_dev_info.name = "block";
 
 421
 422	err = bdi_init(&q->backing_dev_info);
 423	if (err) {
 424		kmem_cache_free(blk_requestq_cachep, q);
 425		return NULL;
 426	}
 427
 428	if (blk_throtl_init(q)) {
 429		kmem_cache_free(blk_requestq_cachep, q);
 430		return NULL;
 431	}
 432
 433	setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
 434		    laptop_mode_timer_fn, (unsigned long) q);
 435	setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
 
 436	INIT_LIST_HEAD(&q->timeout_list);
 437	INIT_LIST_HEAD(&q->flush_queue[0]);
 438	INIT_LIST_HEAD(&q->flush_queue[1]);
 439	INIT_LIST_HEAD(&q->flush_data_in_flight);
 
 440	INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
 441
 442	kobject_init(&q->kobj, &blk_queue_ktype);
 443
 444	mutex_init(&q->sysfs_lock);
 445	spin_lock_init(&q->__queue_lock);
 446
 447	/*
 448	 * By default initialize queue_lock to internal lock and driver can
 449	 * override it later if need be.
 450	 */
 451	q->queue_lock = &q->__queue_lock;
 452
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 453	return q;
 
 
 
 
 
 
 
 
 
 
 
 
 454}
 455EXPORT_SYMBOL(blk_alloc_queue_node);
 456
 457/**
 458 * blk_init_queue  - prepare a request queue for use with a block device
 459 * @rfn:  The function to be called to process requests that have been
 460 *        placed on the queue.
 461 * @lock: Request queue spin lock
 462 *
 463 * Description:
 464 *    If a block device wishes to use the standard request handling procedures,
 465 *    which sorts requests and coalesces adjacent requests, then it must
 466 *    call blk_init_queue().  The function @rfn will be called when there
 467 *    are requests on the queue that need to be processed.  If the device
 468 *    supports plugging, then @rfn may not be called immediately when requests
 469 *    are available on the queue, but may be called at some time later instead.
 470 *    Plugged queues are generally unplugged when a buffer belonging to one
 471 *    of the requests on the queue is needed, or due to memory pressure.
 472 *
 473 *    @rfn is not required, or even expected, to remove all requests off the
 474 *    queue, but only as many as it can handle at a time.  If it does leave
 475 *    requests on the queue, it is responsible for arranging that the requests
 476 *    get dealt with eventually.
 477 *
 478 *    The queue spin lock must be held while manipulating the requests on the
 479 *    request queue; this lock will be taken also from interrupt context, so irq
 480 *    disabling is needed for it.
 481 *
 482 *    Function returns a pointer to the initialized request queue, or %NULL if
 483 *    it didn't succeed.
 484 *
 485 * Note:
 486 *    blk_init_queue() must be paired with a blk_cleanup_queue() call
 487 *    when the block device is deactivated (such as at module unload).
 488 **/
 489
 490struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
 491{
 492	return blk_init_queue_node(rfn, lock, -1);
 493}
 494EXPORT_SYMBOL(blk_init_queue);
 495
 496struct request_queue *
 497blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
 498{
 499	struct request_queue *uninit_q, *q;
 500
 501	uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
 502	if (!uninit_q)
 503		return NULL;
 504
 505	q = blk_init_allocated_queue_node(uninit_q, rfn, lock, node_id);
 506	if (!q)
 507		blk_cleanup_queue(uninit_q);
 508
 509	return q;
 510}
 511EXPORT_SYMBOL(blk_init_queue_node);
 512
 
 
 513struct request_queue *
 514blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
 515			 spinlock_t *lock)
 516{
 517	return blk_init_allocated_queue_node(q, rfn, lock, -1);
 518}
 519EXPORT_SYMBOL(blk_init_allocated_queue);
 520
 521struct request_queue *
 522blk_init_allocated_queue_node(struct request_queue *q, request_fn_proc *rfn,
 523			      spinlock_t *lock, int node_id)
 524{
 525	if (!q)
 526		return NULL;
 527
 528	q->node = node_id;
 529	if (blk_init_free_list(q))
 530		return NULL;
 531
 
 
 
 
 532	q->request_fn		= rfn;
 533	q->prep_rq_fn		= NULL;
 534	q->unprep_rq_fn		= NULL;
 535	q->queue_flags		= QUEUE_FLAG_DEFAULT;
 536
 537	/* Override internal queue lock with supplied lock pointer */
 538	if (lock)
 539		q->queue_lock		= lock;
 540
 541	/*
 542	 * This also sets hw/phys segments, boundary and size
 543	 */
 544	blk_queue_make_request(q, __make_request);
 545
 546	q->sg_reserved_size = INT_MAX;
 547
 548	/*
 549	 * all done
 550	 */
 551	if (!elevator_init(q, NULL)) {
 552		blk_queue_congestion_threshold(q);
 553		return q;
 
 554	}
 555
 
 
 
 
 
 
 556	return NULL;
 557}
 558EXPORT_SYMBOL(blk_init_allocated_queue_node);
 559
 560int blk_get_queue(struct request_queue *q)
 561{
 562	if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
 563		kobject_get(&q->kobj);
 564		return 0;
 565	}
 566
 567	return 1;
 568}
 569EXPORT_SYMBOL(blk_get_queue);
 570
 571static inline void blk_free_request(struct request_queue *q, struct request *rq)
 572{
 573	if (rq->cmd_flags & REQ_ELVPRIV)
 574		elv_put_request(q, rq);
 575	mempool_free(rq, q->rq.rq_pool);
 576}
 577
 578static struct request *
 579blk_alloc_request(struct request_queue *q, int flags, int priv, gfp_t gfp_mask)
 580{
 581	struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
 582
 583	if (!rq)
 584		return NULL;
 585
 586	blk_rq_init(q, rq);
 587
 588	rq->cmd_flags = flags | REQ_ALLOCED;
 589
 590	if (priv) {
 591		if (unlikely(elv_set_request(q, rq, gfp_mask))) {
 592			mempool_free(rq, q->rq.rq_pool);
 593			return NULL;
 594		}
 595		rq->cmd_flags |= REQ_ELVPRIV;
 596	}
 597
 598	return rq;
 599}
 600
 601/*
 602 * ioc_batching returns true if the ioc is a valid batching request and
 603 * should be given priority access to a request.
 604 */
 605static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
 606{
 607	if (!ioc)
 608		return 0;
 609
 610	/*
 611	 * Make sure the process is able to allocate at least 1 request
 612	 * even if the batch times out, otherwise we could theoretically
 613	 * lose wakeups.
 614	 */
 615	return ioc->nr_batch_requests == q->nr_batching ||
 616		(ioc->nr_batch_requests > 0
 617		&& time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
 618}
 619
 620/*
 621 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
 622 * will cause the process to be a "batcher" on all queues in the system. This
 623 * is the behaviour we want though - once it gets a wakeup it should be given
 624 * a nice run.
 625 */
 626static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
 627{
 628	if (!ioc || ioc_batching(q, ioc))
 629		return;
 630
 631	ioc->nr_batch_requests = q->nr_batching;
 632	ioc->last_waited = jiffies;
 633}
 634
 635static void __freed_request(struct request_queue *q, int sync)
 636{
 637	struct request_list *rl = &q->rq;
 638
 639	if (rl->count[sync] < queue_congestion_off_threshold(q))
 640		blk_clear_queue_congested(q, sync);
 641
 642	if (rl->count[sync] + 1 <= q->nr_requests) {
 643		if (waitqueue_active(&rl->wait[sync]))
 644			wake_up(&rl->wait[sync]);
 645
 646		blk_clear_queue_full(q, sync);
 647	}
 648}
 649
 650/*
 651 * A request has just been released.  Account for it, update the full and
 652 * congestion status, wake up any waiters.   Called under q->queue_lock.
 653 */
 654static void freed_request(struct request_queue *q, int sync, int priv)
 655{
 656	struct request_list *rl = &q->rq;
 
 657
 
 658	rl->count[sync]--;
 659	if (priv)
 660		rl->elvpriv--;
 661
 662	__freed_request(q, sync);
 663
 664	if (unlikely(rl->starved[sync ^ 1]))
 665		__freed_request(q, sync ^ 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 666}
 667
 668/*
 669 * Determine if elevator data should be initialized when allocating the
 670 * request associated with @bio.
 671 */
 672static bool blk_rq_should_init_elevator(struct bio *bio)
 673{
 674	if (!bio)
 675		return true;
 676
 677	/*
 678	 * Flush requests do not use the elevator so skip initialization.
 679	 * This allows a request to share the flush and elevator data.
 680	 */
 681	if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
 682		return false;
 683
 684	return true;
 685}
 686
 687/*
 688 * Get a free request, queue_lock must be held.
 689 * Returns NULL on failure, with queue_lock held.
 690 * Returns !NULL on success, with queue_lock *not held*.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 691 */
 692static struct request *get_request(struct request_queue *q, int rw_flags,
 693				   struct bio *bio, gfp_t gfp_mask)
 694{
 695	struct request *rq = NULL;
 696	struct request_list *rl = &q->rq;
 697	struct io_context *ioc = NULL;
 
 
 698	const bool is_sync = rw_is_sync(rw_flags) != 0;
 699	int may_queue, priv = 0;
 
 
 
 700
 701	may_queue = elv_may_queue(q, rw_flags);
 702	if (may_queue == ELV_MQUEUE_NO)
 703		goto rq_starved;
 704
 705	if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
 706		if (rl->count[is_sync]+1 >= q->nr_requests) {
 707			ioc = current_io_context(GFP_ATOMIC, q->node);
 708			/*
 709			 * The queue will fill after this allocation, so set
 710			 * it as full, and mark this process as "batching".
 711			 * This process will be allowed to complete a batch of
 712			 * requests, others will be blocked.
 713			 */
 714			if (!blk_queue_full(q, is_sync)) {
 715				ioc_set_batching(q, ioc);
 716				blk_set_queue_full(q, is_sync);
 717			} else {
 718				if (may_queue != ELV_MQUEUE_MUST
 719						&& !ioc_batching(q, ioc)) {
 720					/*
 721					 * The queue is full and the allocating
 722					 * process is not a "batcher", and not
 723					 * exempted by the IO scheduler
 724					 */
 725					goto out;
 726				}
 727			}
 728		}
 729		blk_set_queue_congested(q, is_sync);
 730	}
 731
 732	/*
 733	 * Only allow batching queuers to allocate up to 50% over the defined
 734	 * limit of requests, otherwise we could have thousands of requests
 735	 * allocated with any setting of ->nr_requests
 736	 */
 737	if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
 738		goto out;
 739
 
 740	rl->count[is_sync]++;
 741	rl->starved[is_sync] = 0;
 742
 743	if (blk_rq_should_init_elevator(bio)) {
 744		priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
 745		if (priv)
 746			rl->elvpriv++;
 
 
 
 
 
 
 
 
 
 
 
 747	}
 748
 749	if (blk_queue_io_stat(q))
 750		rw_flags |= REQ_IO_STAT;
 751	spin_unlock_irq(q->queue_lock);
 752
 753	rq = blk_alloc_request(q, rw_flags, priv, gfp_mask);
 754	if (unlikely(!rq)) {
 755		/*
 756		 * Allocation failed presumably due to memory. Undo anything
 757		 * we might have messed up.
 758		 *
 759		 * Allocating task should really be put onto the front of the
 760		 * wait queue, but this is pretty rare.
 761		 */
 762		spin_lock_irq(q->queue_lock);
 763		freed_request(q, is_sync, priv);
 764
 765		/*
 766		 * in the very unlikely event that allocation failed and no
 767		 * requests for this direction was pending, mark us starved
 768		 * so that freeing of a request in the other direction will
 769		 * notice us. another possible fix would be to split the
 770		 * rq mempool into READ and WRITE
 771		 */
 772rq_starved:
 773		if (unlikely(rl->count[is_sync] == 0))
 774			rl->starved[is_sync] = 1;
 775
 776		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 777	}
 778
 779	/*
 780	 * ioc may be NULL here, and ioc_batching will be false. That's
 781	 * OK, if the queue is under the request limit then requests need
 782	 * not count toward the nr_batch_requests limit. There will always
 783	 * be some limit enforced by BLK_BATCH_TIME.
 784	 */
 785	if (ioc_batching(q, ioc))
 786		ioc->nr_batch_requests--;
 787
 788	trace_block_getrq(q, bio, rw_flags & 1);
 789out:
 790	return rq;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 791}
 792
 793/*
 794 * No available requests for this queue, wait for some requests to become
 795 * available.
 
 
 
 
 
 
 796 *
 797 * Called with q->queue_lock held, and returns with it unlocked.
 
 
 798 */
 799static struct request *get_request_wait(struct request_queue *q, int rw_flags,
 800					struct bio *bio)
 801{
 802	const bool is_sync = rw_is_sync(rw_flags) != 0;
 
 
 803	struct request *rq;
 804
 805	rq = get_request(q, rw_flags, bio, GFP_NOIO);
 806	while (!rq) {
 807		DEFINE_WAIT(wait);
 808		struct io_context *ioc;
 809		struct request_list *rl = &q->rq;
 
 
 
 
 
 
 
 
 
 810
 811		prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
 812				TASK_UNINTERRUPTIBLE);
 813
 814		trace_block_sleeprq(q, bio, rw_flags & 1);
 
 815
 816		spin_unlock_irq(q->queue_lock);
 817		io_schedule();
 
 
 
 
 818
 819		/*
 820		 * After sleeping, we become a "batching" process and
 821		 * will be able to allocate at least one request, and
 822		 * up to a big batch of them for a small period time.
 823		 * See ioc_batching, ioc_set_batching
 824		 */
 825		ioc = current_io_context(GFP_NOIO, q->node);
 826		ioc_set_batching(q, ioc);
 827
 828		spin_lock_irq(q->queue_lock);
 829		finish_wait(&rl->wait[is_sync], &wait);
 830
 831		rq = get_request(q, rw_flags, bio, GFP_NOIO);
 832	};
 833
 834	return rq;
 835}
 836
 837struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
 
 838{
 839	struct request *rq;
 840
 841	if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
 842		return NULL;
 843
 844	BUG_ON(rw != READ && rw != WRITE);
 
 845
 846	spin_lock_irq(q->queue_lock);
 847	if (gfp_mask & __GFP_WAIT) {
 848		rq = get_request_wait(q, rw, NULL);
 849	} else {
 850		rq = get_request(q, rw, NULL, gfp_mask);
 851		if (!rq)
 852			spin_unlock_irq(q->queue_lock);
 853	}
 854	/* q->queue_lock is unlocked at this point */
 855
 856	return rq;
 857}
 
 
 
 
 
 
 
 
 
 
 858EXPORT_SYMBOL(blk_get_request);
 859
 860/**
 861 * blk_make_request - given a bio, allocate a corresponding struct request.
 862 * @q: target request queue
 863 * @bio:  The bio describing the memory mappings that will be submitted for IO.
 864 *        It may be a chained-bio properly constructed by block/bio layer.
 865 * @gfp_mask: gfp flags to be used for memory allocation
 866 *
 867 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
 868 * type commands. Where the struct request needs to be farther initialized by
 869 * the caller. It is passed a &struct bio, which describes the memory info of
 870 * the I/O transfer.
 871 *
 872 * The caller of blk_make_request must make sure that bi_io_vec
 873 * are set to describe the memory buffers. That bio_data_dir() will return
 874 * the needed direction of the request. (And all bio's in the passed bio-chain
 875 * are properly set accordingly)
 876 *
 877 * If called under none-sleepable conditions, mapped bio buffers must not
 878 * need bouncing, by calling the appropriate masked or flagged allocator,
 879 * suitable for the target device. Otherwise the call to blk_queue_bounce will
 880 * BUG.
 881 *
 882 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
 883 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
 884 * anything but the first bio in the chain. Otherwise you risk waiting for IO
 885 * completion of a bio that hasn't been submitted yet, thus resulting in a
 886 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
 887 * of bio_alloc(), as that avoids the mempool deadlock.
 888 * If possible a big IO should be split into smaller parts when allocation
 889 * fails. Partial allocation should not be an error, or you risk a live-lock.
 890 */
 891struct request *blk_make_request(struct request_queue *q, struct bio *bio,
 892				 gfp_t gfp_mask)
 893{
 894	struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
 895
 896	if (unlikely(!rq))
 897		return ERR_PTR(-ENOMEM);
 
 
 898
 899	for_each_bio(bio) {
 900		struct bio *bounce_bio = bio;
 901		int ret;
 902
 903		blk_queue_bounce(q, &bounce_bio);
 904		ret = blk_rq_append_bio(q, rq, bounce_bio);
 905		if (unlikely(ret)) {
 906			blk_put_request(rq);
 907			return ERR_PTR(ret);
 908		}
 909	}
 910
 911	return rq;
 912}
 913EXPORT_SYMBOL(blk_make_request);
 914
 915/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 916 * blk_requeue_request - put a request back on queue
 917 * @q:		request queue where request should be inserted
 918 * @rq:		request to be inserted
 919 *
 920 * Description:
 921 *    Drivers often keep queueing requests until the hardware cannot accept
 922 *    more, when that condition happens we need to put the request back
 923 *    on the queue. Must be called with queue lock held.
 924 */
 925void blk_requeue_request(struct request_queue *q, struct request *rq)
 926{
 927	blk_delete_timer(rq);
 928	blk_clear_rq_complete(rq);
 929	trace_block_rq_requeue(q, rq);
 930
 931	if (blk_rq_tagged(rq))
 932		blk_queue_end_tag(q, rq);
 933
 934	BUG_ON(blk_queued_rq(rq));
 935
 936	elv_requeue_request(q, rq);
 937}
 938EXPORT_SYMBOL(blk_requeue_request);
 939
 940static void add_acct_request(struct request_queue *q, struct request *rq,
 941			     int where)
 942{
 943	drive_stat_acct(rq, 1);
 944	__elv_add_request(q, rq, where);
 945}
 946
 947/**
 948 * blk_insert_request - insert a special request into a request queue
 949 * @q:		request queue where request should be inserted
 950 * @rq:		request to be inserted
 951 * @at_head:	insert request at head or tail of queue
 952 * @data:	private data
 953 *
 954 * Description:
 955 *    Many block devices need to execute commands asynchronously, so they don't
 956 *    block the whole kernel from preemption during request execution.  This is
 957 *    accomplished normally by inserting aritficial requests tagged as
 958 *    REQ_TYPE_SPECIAL in to the corresponding request queue, and letting them
 959 *    be scheduled for actual execution by the request queue.
 960 *
 961 *    We have the option of inserting the head or the tail of the queue.
 962 *    Typically we use the tail for new ioctls and so forth.  We use the head
 963 *    of the queue for things like a QUEUE_FULL message from a device, or a
 964 *    host that is unable to accept a particular command.
 965 */
 966void blk_insert_request(struct request_queue *q, struct request *rq,
 967			int at_head, void *data)
 968{
 969	int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
 970	unsigned long flags;
 971
 972	/*
 973	 * tell I/O scheduler that this isn't a regular read/write (ie it
 974	 * must not attempt merges on this) and that it acts as a soft
 975	 * barrier
 976	 */
 977	rq->cmd_type = REQ_TYPE_SPECIAL;
 978
 979	rq->special = data;
 980
 981	spin_lock_irqsave(q->queue_lock, flags);
 982
 983	/*
 984	 * If command is tagged, release the tag
 985	 */
 986	if (blk_rq_tagged(rq))
 987		blk_queue_end_tag(q, rq);
 988
 989	add_acct_request(q, rq, where);
 990	__blk_run_queue(q);
 991	spin_unlock_irqrestore(q->queue_lock, flags);
 992}
 993EXPORT_SYMBOL(blk_insert_request);
 994
 995static void part_round_stats_single(int cpu, struct hd_struct *part,
 996				    unsigned long now)
 997{
 
 
 998	if (now == part->stamp)
 999		return;
1000
1001	if (part_in_flight(part)) {
 
1002		__part_stat_add(cpu, part, time_in_queue,
1003				part_in_flight(part) * (now - part->stamp));
1004		__part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1005	}
1006	part->stamp = now;
1007}
1008
1009/**
1010 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1011 * @cpu: cpu number for stats access
1012 * @part: target partition
1013 *
1014 * The average IO queue length and utilisation statistics are maintained
1015 * by observing the current state of the queue length and the amount of
1016 * time it has been in this state for.
1017 *
1018 * Normally, that accounting is done on IO completion, but that can result
1019 * in more than a second's worth of IO being accounted for within any one
1020 * second, leading to >100% utilisation.  To deal with that, we call this
1021 * function to do a round-off before returning the results when reading
1022 * /proc/diskstats.  This accounts immediately for all queue usage up to
1023 * the current jiffies and restarts the counters again.
1024 */
1025void part_round_stats(int cpu, struct hd_struct *part)
1026{
1027	unsigned long now = jiffies;
1028
1029	if (part->partno)
1030		part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1031	part_round_stats_single(cpu, part, now);
1032}
1033EXPORT_SYMBOL_GPL(part_round_stats);
1034
 
 
 
 
 
 
 
 
 
 
1035/*
1036 * queue lock must be held
1037 */
1038void __blk_put_request(struct request_queue *q, struct request *req)
1039{
1040	if (unlikely(!q))
1041		return;
1042	if (unlikely(--req->ref_count))
 
 
1043		return;
 
 
 
1044
1045	elv_completed_request(q, req);
1046
1047	/* this is a bio leak */
1048	WARN_ON(req->bio != NULL);
1049
1050	/*
1051	 * Request may not have originated from ll_rw_blk. if not,
1052	 * it didn't come out of our reserved rq pools
1053	 */
1054	if (req->cmd_flags & REQ_ALLOCED) {
1055		int is_sync = rq_is_sync(req) != 0;
1056		int priv = req->cmd_flags & REQ_ELVPRIV;
1057
1058		BUG_ON(!list_empty(&req->queuelist));
1059		BUG_ON(!hlist_unhashed(&req->hash));
1060
1061		blk_free_request(q, req);
1062		freed_request(q, is_sync, priv);
 
1063	}
1064}
1065EXPORT_SYMBOL_GPL(__blk_put_request);
1066
1067void blk_put_request(struct request *req)
1068{
1069	unsigned long flags;
1070	struct request_queue *q = req->q;
1071
1072	spin_lock_irqsave(q->queue_lock, flags);
1073	__blk_put_request(q, req);
1074	spin_unlock_irqrestore(q->queue_lock, flags);
 
 
 
 
 
 
1075}
1076EXPORT_SYMBOL(blk_put_request);
1077
1078/**
1079 * blk_add_request_payload - add a payload to a request
1080 * @rq: request to update
1081 * @page: page backing the payload
1082 * @len: length of the payload.
1083 *
1084 * This allows to later add a payload to an already submitted request by
1085 * a block driver.  The driver needs to take care of freeing the payload
1086 * itself.
1087 *
1088 * Note that this is a quite horrible hack and nothing but handling of
1089 * discard requests should ever use it.
1090 */
1091void blk_add_request_payload(struct request *rq, struct page *page,
1092		unsigned int len)
1093{
1094	struct bio *bio = rq->bio;
1095
1096	bio->bi_io_vec->bv_page = page;
1097	bio->bi_io_vec->bv_offset = 0;
1098	bio->bi_io_vec->bv_len = len;
1099
1100	bio->bi_size = len;
1101	bio->bi_vcnt = 1;
1102	bio->bi_phys_segments = 1;
1103
1104	rq->__data_len = rq->resid_len = len;
1105	rq->nr_phys_segments = 1;
1106	rq->buffer = bio_data(bio);
1107}
1108EXPORT_SYMBOL_GPL(blk_add_request_payload);
1109
1110static bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1111				   struct bio *bio)
1112{
1113	const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1114
1115	if (!ll_back_merge_fn(q, req, bio))
1116		return false;
1117
1118	trace_block_bio_backmerge(q, bio);
1119
1120	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1121		blk_rq_set_mixed_merge(req);
1122
1123	req->biotail->bi_next = bio;
1124	req->biotail = bio;
1125	req->__data_len += bio->bi_size;
1126	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1127
1128	drive_stat_acct(req, 0);
1129	elv_bio_merged(q, req, bio);
1130	return true;
1131}
1132
1133static bool bio_attempt_front_merge(struct request_queue *q,
1134				    struct request *req, struct bio *bio)
1135{
1136	const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1137
1138	if (!ll_front_merge_fn(q, req, bio))
1139		return false;
1140
1141	trace_block_bio_frontmerge(q, bio);
1142
1143	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1144		blk_rq_set_mixed_merge(req);
1145
1146	bio->bi_next = req->bio;
1147	req->bio = bio;
1148
1149	/*
1150	 * may not be valid. if the low level driver said
1151	 * it didn't need a bounce buffer then it better
1152	 * not touch req->buffer either...
1153	 */
1154	req->buffer = bio_data(bio);
1155	req->__sector = bio->bi_sector;
1156	req->__data_len += bio->bi_size;
1157	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1158
1159	drive_stat_acct(req, 0);
1160	elv_bio_merged(q, req, bio);
1161	return true;
1162}
1163
1164/*
1165 * Attempts to merge with the plugged list in the current process. Returns
1166 * true if merge was successful, otherwise false.
1167 */
1168static bool attempt_plug_merge(struct task_struct *tsk, struct request_queue *q,
1169			       struct bio *bio, unsigned int *request_count)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1170{
1171	struct blk_plug *plug;
1172	struct request *rq;
1173	bool ret = false;
 
1174
1175	plug = tsk->plug;
1176	if (!plug)
1177		goto out;
1178	*request_count = 0;
1179
1180	list_for_each_entry_reverse(rq, &plug->list, queuelist) {
 
 
 
 
 
1181		int el_ret;
1182
1183		(*request_count)++;
 
 
 
 
 
 
 
 
 
1184
1185		if (rq->q != q)
1186			continue;
1187
1188		el_ret = elv_try_merge(rq, bio);
1189		if (el_ret == ELEVATOR_BACK_MERGE) {
1190			ret = bio_attempt_back_merge(q, rq, bio);
1191			if (ret)
1192				break;
1193		} else if (el_ret == ELEVATOR_FRONT_MERGE) {
1194			ret = bio_attempt_front_merge(q, rq, bio);
1195			if (ret)
1196				break;
1197		}
1198	}
1199out:
1200	return ret;
1201}
1202
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1203void init_request_from_bio(struct request *req, struct bio *bio)
1204{
1205	req->cpu = bio->bi_comp_cpu;
1206	req->cmd_type = REQ_TYPE_FS;
1207
1208	req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1209	if (bio->bi_rw & REQ_RAHEAD)
1210		req->cmd_flags |= REQ_FAILFAST_MASK;
1211
1212	req->errors = 0;
1213	req->__sector = bio->bi_sector;
1214	req->ioprio = bio_prio(bio);
1215	blk_rq_bio_prep(req->q, req, bio);
1216}
1217
1218static int __make_request(struct request_queue *q, struct bio *bio)
1219{
1220	const bool sync = !!(bio->bi_rw & REQ_SYNC);
1221	struct blk_plug *plug;
1222	int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT;
1223	struct request *req;
1224	unsigned int request_count = 0;
1225
1226	/*
1227	 * low level driver can indicate that it wants pages above a
1228	 * certain limit bounced to low memory (ie for highmem, or even
1229	 * ISA dma in theory)
1230	 */
1231	blk_queue_bounce(q, &bio);
1232
 
 
 
 
 
 
 
 
1233	if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
1234		spin_lock_irq(q->queue_lock);
1235		where = ELEVATOR_INSERT_FLUSH;
1236		goto get_rq;
1237	}
1238
1239	/*
1240	 * Check if we can merge with the plugged list before grabbing
1241	 * any locks.
1242	 */
1243	if (attempt_plug_merge(current, q, bio, &request_count))
1244		goto out;
 
 
 
1245
1246	spin_lock_irq(q->queue_lock);
1247
1248	el_ret = elv_merge(q, &req, bio);
1249	if (el_ret == ELEVATOR_BACK_MERGE) {
1250		if (bio_attempt_back_merge(q, req, bio)) {
 
1251			if (!attempt_back_merge(q, req))
1252				elv_merged_request(q, req, el_ret);
1253			goto out_unlock;
1254		}
1255	} else if (el_ret == ELEVATOR_FRONT_MERGE) {
1256		if (bio_attempt_front_merge(q, req, bio)) {
 
1257			if (!attempt_front_merge(q, req))
1258				elv_merged_request(q, req, el_ret);
1259			goto out_unlock;
1260		}
1261	}
1262
1263get_rq:
1264	/*
1265	 * This sync check and mask will be re-done in init_request_from_bio(),
1266	 * but we need to set it earlier to expose the sync flag to the
1267	 * rq allocator and io schedulers.
1268	 */
1269	rw_flags = bio_data_dir(bio);
1270	if (sync)
1271		rw_flags |= REQ_SYNC;
1272
1273	/*
1274	 * Grab a free request. This is might sleep but can not fail.
1275	 * Returns with the queue unlocked.
1276	 */
1277	req = get_request_wait(q, rw_flags, bio);
 
 
 
 
 
1278
1279	/*
1280	 * After dropping the lock and possibly sleeping here, our request
1281	 * may now be mergeable after it had proven unmergeable (above).
1282	 * We don't worry about that case for efficiency. It won't happen
1283	 * often, and the elevators are able to handle it.
1284	 */
1285	init_request_from_bio(req, bio);
1286
1287	if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags) ||
1288	    bio_flagged(bio, BIO_CPU_AFFINE))
1289		req->cpu = raw_smp_processor_id();
1290
1291	plug = current->plug;
1292	if (plug) {
1293		/*
1294		 * If this is the first request added after a plug, fire
1295		 * of a plug trace. If others have been added before, check
1296		 * if we have multiple devices in this plug. If so, make a
1297		 * note to sort the list before dispatch.
1298		 */
1299		if (list_empty(&plug->list))
1300			trace_block_plug(q);
1301		else if (!plug->should_sort) {
1302			struct request *__rq;
1303
1304			__rq = list_entry_rq(plug->list.prev);
1305			if (__rq->q != q)
1306				plug->should_sort = 1;
1307		}
1308		if (request_count >= BLK_MAX_REQUEST_COUNT)
1309			blk_flush_plug_list(plug, false);
1310		list_add_tail(&req->queuelist, &plug->list);
1311		drive_stat_acct(req, 1);
1312	} else {
1313		spin_lock_irq(q->queue_lock);
1314		add_acct_request(q, req, where);
1315		__blk_run_queue(q);
1316out_unlock:
1317		spin_unlock_irq(q->queue_lock);
1318	}
1319out:
1320	return 0;
1321}
1322
1323/*
1324 * If bio->bi_dev is a partition, remap the location
1325 */
1326static inline void blk_partition_remap(struct bio *bio)
1327{
1328	struct block_device *bdev = bio->bi_bdev;
1329
1330	if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1331		struct hd_struct *p = bdev->bd_part;
1332
1333		bio->bi_sector += p->start_sect;
1334		bio->bi_bdev = bdev->bd_contains;
1335
1336		trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1337				      bdev->bd_dev,
1338				      bio->bi_sector - p->start_sect);
1339	}
1340}
1341
1342static void handle_bad_sector(struct bio *bio)
1343{
1344	char b[BDEVNAME_SIZE];
1345
1346	printk(KERN_INFO "attempt to access beyond end of device\n");
1347	printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1348			bdevname(bio->bi_bdev, b),
1349			bio->bi_rw,
1350			(unsigned long long)bio->bi_sector + bio_sectors(bio),
1351			(long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1352
1353	set_bit(BIO_EOF, &bio->bi_flags);
1354}
1355
1356#ifdef CONFIG_FAIL_MAKE_REQUEST
1357
1358static DECLARE_FAULT_ATTR(fail_make_request);
1359
1360static int __init setup_fail_make_request(char *str)
1361{
1362	return setup_fault_attr(&fail_make_request, str);
1363}
1364__setup("fail_make_request=", setup_fail_make_request);
1365
1366static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
1367{
1368	return part->make_it_fail && should_fail(&fail_make_request, bytes);
1369}
1370
1371static int __init fail_make_request_debugfs(void)
1372{
1373	struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1374						NULL, &fail_make_request);
1375
1376	return IS_ERR(dir) ? PTR_ERR(dir) : 0;
1377}
1378
1379late_initcall(fail_make_request_debugfs);
1380
1381#else /* CONFIG_FAIL_MAKE_REQUEST */
1382
1383static inline bool should_fail_request(struct hd_struct *part,
1384					unsigned int bytes)
1385{
1386	return false;
1387}
1388
1389#endif /* CONFIG_FAIL_MAKE_REQUEST */
1390
1391/*
1392 * Check whether this bio extends beyond the end of the device.
1393 */
1394static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1395{
1396	sector_t maxsector;
1397
1398	if (!nr_sectors)
1399		return 0;
1400
1401	/* Test device or partition size, when known. */
1402	maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
1403	if (maxsector) {
1404		sector_t sector = bio->bi_sector;
1405
1406		if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1407			/*
1408			 * This may well happen - the kernel calls bread()
1409			 * without checking the size of the device, e.g., when
1410			 * mounting a device.
1411			 */
1412			handle_bad_sector(bio);
1413			return 1;
1414		}
1415	}
1416
1417	return 0;
1418}
1419
1420/**
1421 * generic_make_request - hand a buffer to its device driver for I/O
1422 * @bio:  The bio describing the location in memory and on the device.
1423 *
1424 * generic_make_request() is used to make I/O requests of block
1425 * devices. It is passed a &struct bio, which describes the I/O that needs
1426 * to be done.
1427 *
1428 * generic_make_request() does not return any status.  The
1429 * success/failure status of the request, along with notification of
1430 * completion, is delivered asynchronously through the bio->bi_end_io
1431 * function described (one day) else where.
1432 *
1433 * The caller of generic_make_request must make sure that bi_io_vec
1434 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1435 * set to describe the device address, and the
1436 * bi_end_io and optionally bi_private are set to describe how
1437 * completion notification should be signaled.
1438 *
1439 * generic_make_request and the drivers it calls may use bi_next if this
1440 * bio happens to be merged with someone else, and may change bi_dev and
1441 * bi_sector for remaps as it sees fit.  So the values of these fields
1442 * should NOT be depended on after the call to generic_make_request.
1443 */
1444static inline void __generic_make_request(struct bio *bio)
1445{
1446	struct request_queue *q;
1447	sector_t old_sector;
1448	int ret, nr_sectors = bio_sectors(bio);
1449	dev_t old_dev;
1450	int err = -EIO;
 
 
1451
1452	might_sleep();
1453
1454	if (bio_check_eod(bio, nr_sectors))
1455		goto end_io;
1456
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1457	/*
1458	 * Resolve the mapping until finished. (drivers are
1459	 * still free to implement/resolve their own stacking
1460	 * by explicitly returning 0)
1461	 *
1462	 * NOTE: we don't repeat the blk_size check for each new device.
1463	 * Stacking drivers are expected to know what they are doing.
1464	 */
1465	old_sector = -1;
1466	old_dev = 0;
1467	do {
1468		char b[BDEVNAME_SIZE];
1469		struct hd_struct *part;
1470
1471		q = bdev_get_queue(bio->bi_bdev);
1472		if (unlikely(!q)) {
1473			printk(KERN_ERR
1474			       "generic_make_request: Trying to access "
1475				"nonexistent block-device %s (%Lu)\n",
1476				bdevname(bio->bi_bdev, b),
1477				(long long) bio->bi_sector);
1478			goto end_io;
1479		}
1480
1481		if (unlikely(!(bio->bi_rw & REQ_DISCARD) &&
1482			     nr_sectors > queue_max_hw_sectors(q))) {
1483			printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1484			       bdevname(bio->bi_bdev, b),
1485			       bio_sectors(bio),
1486			       queue_max_hw_sectors(q));
 
 
 
1487			goto end_io;
1488		}
 
1489
1490		if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
1491			goto end_io;
 
 
 
 
1492
1493		part = bio->bi_bdev->bd_part;
1494		if (should_fail_request(part, bio->bi_size) ||
1495		    should_fail_request(&part_to_disk(part)->part0,
1496					bio->bi_size))
1497			goto end_io;
1498
1499		/*
1500		 * If this device has partitions, remap block n
1501		 * of partition p to block n+start(p) of the disk.
1502		 */
1503		blk_partition_remap(bio);
 
 
1504
1505		if (bio_integrity_enabled(bio) && bio_integrity_prep(bio))
1506			goto end_io;
1507
1508		if (old_sector != -1)
1509			trace_block_bio_remap(q, bio, old_dev, old_sector);
1510
1511		old_sector = bio->bi_sector;
1512		old_dev = bio->bi_bdev->bd_dev;
1513
1514		if (bio_check_eod(bio, nr_sectors))
1515			goto end_io;
1516
1517		/*
1518		 * Filter flush bio's early so that make_request based
1519		 * drivers without flush support don't have to worry
1520		 * about them.
1521		 */
1522		if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1523			bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1524			if (!nr_sectors) {
1525				err = 0;
1526				goto end_io;
1527			}
1528		}
1529
1530		if ((bio->bi_rw & REQ_DISCARD) &&
1531		    (!blk_queue_discard(q) ||
1532		     ((bio->bi_rw & REQ_SECURE) &&
1533		      !blk_queue_secdiscard(q)))) {
1534			err = -EOPNOTSUPP;
1535			goto end_io;
1536		}
1537
1538		if (blk_throtl_bio(q, &bio))
1539			goto end_io;
1540
1541		/*
1542		 * If bio = NULL, bio has been throttled and will be submitted
1543		 * later.
1544		 */
1545		if (!bio)
1546			break;
1547
1548		trace_block_bio_queue(q, bio);
1549
1550		ret = q->make_request_fn(q, bio);
1551	} while (ret);
1552
1553	return;
1554
1555end_io:
1556	bio_endio(bio, err);
 
 
1557}
1558
1559/*
1560 * We only want one ->make_request_fn to be active at a time,
1561 * else stack usage with stacked devices could be a problem.
1562 * So use current->bio_list to keep a list of requests
1563 * submited by a make_request_fn function.
1564 * current->bio_list is also used as a flag to say if
1565 * generic_make_request is currently active in this task or not.
1566 * If it is NULL, then no make_request is active.  If it is non-NULL,
1567 * then a make_request is active, and new requests should be added
1568 * at the tail
 
 
 
 
 
 
 
 
 
 
 
 
 
1569 */
1570void generic_make_request(struct bio *bio)
1571{
1572	struct bio_list bio_list_on_stack;
 
1573
 
 
 
 
 
 
 
 
 
 
 
 
 
1574	if (current->bio_list) {
1575		/* make_request is active */
1576		bio_list_add(current->bio_list, bio);
1577		return;
1578	}
 
1579	/* following loop may be a bit non-obvious, and so deserves some
1580	 * explanation.
1581	 * Before entering the loop, bio->bi_next is NULL (as all callers
1582	 * ensure that) so we have a list with a single bio.
1583	 * We pretend that we have just taken it off a longer list, so
1584	 * we assign bio_list to a pointer to the bio_list_on_stack,
1585	 * thus initialising the bio_list of new bios to be
1586	 * added.  __generic_make_request may indeed add some more bios
1587	 * through a recursive call to generic_make_request.  If it
1588	 * did, we find a non-NULL value in bio_list and re-enter the loop
1589	 * from the top.  In this case we really did just take the bio
1590	 * of the top of the list (no pretending) and so remove it from
1591	 * bio_list, and call into __generic_make_request again.
1592	 *
1593	 * The loop was structured like this to make only one call to
1594	 * __generic_make_request (which is important as it is large and
1595	 * inlined) and to keep the structure simple.
1596	 */
1597	BUG_ON(bio->bi_next);
1598	bio_list_init(&bio_list_on_stack);
1599	current->bio_list = &bio_list_on_stack;
1600	do {
1601		__generic_make_request(bio);
1602		bio = bio_list_pop(current->bio_list);
 
 
 
 
 
 
 
 
 
 
 
 
1603	} while (bio);
1604	current->bio_list = NULL; /* deactivate */
 
 
 
1605}
1606EXPORT_SYMBOL(generic_make_request);
1607
1608/**
1609 * submit_bio - submit a bio to the block device layer for I/O
1610 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1611 * @bio: The &struct bio which describes the I/O
1612 *
1613 * submit_bio() is very similar in purpose to generic_make_request(), and
1614 * uses that function to do most of the work. Both are fairly rough
1615 * interfaces; @bio must be presetup and ready for I/O.
1616 *
1617 */
1618void submit_bio(int rw, struct bio *bio)
1619{
1620	int count = bio_sectors(bio);
1621
1622	bio->bi_rw |= rw;
1623
1624	/*
1625	 * If it's a regular read/write or a barrier with data attached,
1626	 * go through the normal accounting stuff before submission.
1627	 */
1628	if (bio_has_data(bio) && !(rw & REQ_DISCARD)) {
 
 
 
 
 
 
 
1629		if (rw & WRITE) {
1630			count_vm_events(PGPGOUT, count);
1631		} else {
1632			task_io_account_read(bio->bi_size);
1633			count_vm_events(PGPGIN, count);
1634		}
1635
1636		if (unlikely(block_dump)) {
1637			char b[BDEVNAME_SIZE];
1638			printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
1639			current->comm, task_pid_nr(current),
1640				(rw & WRITE) ? "WRITE" : "READ",
1641				(unsigned long long)bio->bi_sector,
1642				bdevname(bio->bi_bdev, b),
1643				count);
1644		}
1645	}
1646
1647	generic_make_request(bio);
1648}
1649EXPORT_SYMBOL(submit_bio);
1650
1651/**
1652 * blk_rq_check_limits - Helper function to check a request for the queue limit
 
1653 * @q:  the queue
1654 * @rq: the request being checked
1655 *
1656 * Description:
1657 *    @rq may have been made based on weaker limitations of upper-level queues
1658 *    in request stacking drivers, and it may violate the limitation of @q.
1659 *    Since the block layer and the underlying device driver trust @rq
1660 *    after it is inserted to @q, it should be checked against @q before
1661 *    the insertion using this generic function.
1662 *
1663 *    This function should also be useful for request stacking drivers
1664 *    in some cases below, so export this function.
1665 *    Request stacking drivers like request-based dm may change the queue
1666 *    limits while requests are in the queue (e.g. dm's table swapping).
1667 *    Such request stacking drivers should check those requests agaist
1668 *    the new queue limits again when they dispatch those requests,
1669 *    although such checkings are also done against the old queue limits
1670 *    when submitting requests.
1671 */
1672int blk_rq_check_limits(struct request_queue *q, struct request *rq)
 
1673{
1674	if (rq->cmd_flags & REQ_DISCARD)
1675		return 0;
1676
1677	if (blk_rq_sectors(rq) > queue_max_sectors(q) ||
1678	    blk_rq_bytes(rq) > queue_max_hw_sectors(q) << 9) {
1679		printk(KERN_ERR "%s: over max size limit.\n", __func__);
1680		return -EIO;
1681	}
1682
1683	/*
1684	 * queue's settings related to segment counting like q->bounce_pfn
1685	 * may differ from that of other stacking queues.
1686	 * Recalculate it to check the request correctly on this queue's
1687	 * limitation.
1688	 */
1689	blk_recalc_rq_segments(rq);
1690	if (rq->nr_phys_segments > queue_max_segments(q)) {
1691		printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1692		return -EIO;
1693	}
1694
1695	return 0;
1696}
1697EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1698
1699/**
1700 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1701 * @q:  the queue to submit the request
1702 * @rq: the request being queued
1703 */
1704int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1705{
1706	unsigned long flags;
1707	int where = ELEVATOR_INSERT_BACK;
1708
1709	if (blk_rq_check_limits(q, rq))
1710		return -EIO;
1711
1712	if (rq->rq_disk &&
1713	    should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
1714		return -EIO;
1715
 
 
 
 
 
 
 
1716	spin_lock_irqsave(q->queue_lock, flags);
 
 
 
 
1717
1718	/*
1719	 * Submitting request must be dequeued before calling this function
1720	 * because it will be linked to another request_queue
1721	 */
1722	BUG_ON(blk_queued_rq(rq));
1723
1724	if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA))
1725		where = ELEVATOR_INSERT_FLUSH;
1726
1727	add_acct_request(q, rq, where);
 
 
1728	spin_unlock_irqrestore(q->queue_lock, flags);
1729
1730	return 0;
1731}
1732EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1733
1734/**
1735 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1736 * @rq: request to examine
1737 *
1738 * Description:
1739 *     A request could be merge of IOs which require different failure
1740 *     handling.  This function determines the number of bytes which
1741 *     can be failed from the beginning of the request without
1742 *     crossing into area which need to be retried further.
1743 *
1744 * Return:
1745 *     The number of bytes to fail.
1746 *
1747 * Context:
1748 *     queue_lock must be held.
1749 */
1750unsigned int blk_rq_err_bytes(const struct request *rq)
1751{
1752	unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1753	unsigned int bytes = 0;
1754	struct bio *bio;
1755
1756	if (!(rq->cmd_flags & REQ_MIXED_MERGE))
1757		return blk_rq_bytes(rq);
1758
1759	/*
1760	 * Currently the only 'mixing' which can happen is between
1761	 * different fastfail types.  We can safely fail portions
1762	 * which have all the failfast bits that the first one has -
1763	 * the ones which are at least as eager to fail as the first
1764	 * one.
1765	 */
1766	for (bio = rq->bio; bio; bio = bio->bi_next) {
1767		if ((bio->bi_rw & ff) != ff)
1768			break;
1769		bytes += bio->bi_size;
1770	}
1771
1772	/* this could lead to infinite loop */
1773	BUG_ON(blk_rq_bytes(rq) && !bytes);
1774	return bytes;
1775}
1776EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1777
1778static void blk_account_io_completion(struct request *req, unsigned int bytes)
1779{
1780	if (blk_do_io_stat(req)) {
1781		const int rw = rq_data_dir(req);
1782		struct hd_struct *part;
1783		int cpu;
1784
1785		cpu = part_stat_lock();
1786		part = req->part;
1787		part_stat_add(cpu, part, sectors[rw], bytes >> 9);
1788		part_stat_unlock();
1789	}
1790}
1791
1792static void blk_account_io_done(struct request *req)
1793{
1794	/*
1795	 * Account IO completion.  flush_rq isn't accounted as a
1796	 * normal IO on queueing nor completion.  Accounting the
1797	 * containing request is enough.
1798	 */
1799	if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
1800		unsigned long duration = jiffies - req->start_time;
1801		const int rw = rq_data_dir(req);
1802		struct hd_struct *part;
1803		int cpu;
1804
1805		cpu = part_stat_lock();
1806		part = req->part;
1807
1808		part_stat_inc(cpu, part, ios[rw]);
1809		part_stat_add(cpu, part, ticks[rw], duration);
1810		part_round_stats(cpu, part);
1811		part_dec_in_flight(part, rw);
1812
1813		hd_struct_put(part);
1814		part_stat_unlock();
1815	}
1816}
1817
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1818/**
1819 * blk_peek_request - peek at the top of a request queue
1820 * @q: request queue to peek at
1821 *
1822 * Description:
1823 *     Return the request at the top of @q.  The returned request
1824 *     should be started using blk_start_request() before LLD starts
1825 *     processing it.
1826 *
1827 * Return:
1828 *     Pointer to the request at the top of @q if available.  Null
1829 *     otherwise.
1830 *
1831 * Context:
1832 *     queue_lock must be held.
1833 */
1834struct request *blk_peek_request(struct request_queue *q)
1835{
1836	struct request *rq;
1837	int ret;
1838
1839	while ((rq = __elv_next_request(q)) != NULL) {
 
 
 
 
 
1840		if (!(rq->cmd_flags & REQ_STARTED)) {
1841			/*
1842			 * This is the first time the device driver
1843			 * sees this request (possibly after
1844			 * requeueing).  Notify IO scheduler.
1845			 */
1846			if (rq->cmd_flags & REQ_SORTED)
1847				elv_activate_rq(q, rq);
1848
1849			/*
1850			 * just mark as started even if we don't start
1851			 * it, a request that has been delayed should
1852			 * not be passed by new incoming requests
1853			 */
1854			rq->cmd_flags |= REQ_STARTED;
1855			trace_block_rq_issue(q, rq);
1856		}
1857
1858		if (!q->boundary_rq || q->boundary_rq == rq) {
1859			q->end_sector = rq_end_sector(rq);
1860			q->boundary_rq = NULL;
1861		}
1862
1863		if (rq->cmd_flags & REQ_DONTPREP)
1864			break;
1865
1866		if (q->dma_drain_size && blk_rq_bytes(rq)) {
1867			/*
1868			 * make sure space for the drain appears we
1869			 * know we can do this because max_hw_segments
1870			 * has been adjusted to be one fewer than the
1871			 * device can handle
1872			 */
1873			rq->nr_phys_segments++;
1874		}
1875
1876		if (!q->prep_rq_fn)
1877			break;
1878
1879		ret = q->prep_rq_fn(q, rq);
1880		if (ret == BLKPREP_OK) {
1881			break;
1882		} else if (ret == BLKPREP_DEFER) {
1883			/*
1884			 * the request may have been (partially) prepped.
1885			 * we need to keep this request in the front to
1886			 * avoid resource deadlock.  REQ_STARTED will
1887			 * prevent other fs requests from passing this one.
1888			 */
1889			if (q->dma_drain_size && blk_rq_bytes(rq) &&
1890			    !(rq->cmd_flags & REQ_DONTPREP)) {
1891				/*
1892				 * remove the space for the drain we added
1893				 * so that we don't add it again
1894				 */
1895				--rq->nr_phys_segments;
1896			}
1897
1898			rq = NULL;
1899			break;
1900		} else if (ret == BLKPREP_KILL) {
 
 
1901			rq->cmd_flags |= REQ_QUIET;
1902			/*
1903			 * Mark this request as started so we don't trigger
1904			 * any debug logic in the end I/O path.
1905			 */
1906			blk_start_request(rq);
1907			__blk_end_request_all(rq, -EIO);
1908		} else {
1909			printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
1910			break;
1911		}
1912	}
1913
1914	return rq;
1915}
1916EXPORT_SYMBOL(blk_peek_request);
1917
1918void blk_dequeue_request(struct request *rq)
1919{
1920	struct request_queue *q = rq->q;
1921
1922	BUG_ON(list_empty(&rq->queuelist));
1923	BUG_ON(ELV_ON_HASH(rq));
1924
1925	list_del_init(&rq->queuelist);
1926
1927	/*
1928	 * the time frame between a request being removed from the lists
1929	 * and to it is freed is accounted as io that is in progress at
1930	 * the driver side.
1931	 */
1932	if (blk_account_rq(rq)) {
1933		q->in_flight[rq_is_sync(rq)]++;
1934		set_io_start_time_ns(rq);
1935	}
1936}
1937
1938/**
1939 * blk_start_request - start request processing on the driver
1940 * @req: request to dequeue
1941 *
1942 * Description:
1943 *     Dequeue @req and start timeout timer on it.  This hands off the
1944 *     request to the driver.
1945 *
1946 *     Block internal functions which don't want to start timer should
1947 *     call blk_dequeue_request().
1948 *
1949 * Context:
1950 *     queue_lock must be held.
1951 */
1952void blk_start_request(struct request *req)
1953{
1954	blk_dequeue_request(req);
1955
1956	/*
1957	 * We are now handing the request to the hardware, initialize
1958	 * resid_len to full count and add the timeout handler.
1959	 */
1960	req->resid_len = blk_rq_bytes(req);
1961	if (unlikely(blk_bidi_rq(req)))
1962		req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
1963
 
1964	blk_add_timer(req);
1965}
1966EXPORT_SYMBOL(blk_start_request);
1967
1968/**
1969 * blk_fetch_request - fetch a request from a request queue
1970 * @q: request queue to fetch a request from
1971 *
1972 * Description:
1973 *     Return the request at the top of @q.  The request is started on
1974 *     return and LLD can start processing it immediately.
1975 *
1976 * Return:
1977 *     Pointer to the request at the top of @q if available.  Null
1978 *     otherwise.
1979 *
1980 * Context:
1981 *     queue_lock must be held.
1982 */
1983struct request *blk_fetch_request(struct request_queue *q)
1984{
1985	struct request *rq;
1986
1987	rq = blk_peek_request(q);
1988	if (rq)
1989		blk_start_request(rq);
1990	return rq;
1991}
1992EXPORT_SYMBOL(blk_fetch_request);
1993
1994/**
1995 * blk_update_request - Special helper function for request stacking drivers
1996 * @req:      the request being processed
1997 * @error:    %0 for success, < %0 for error
1998 * @nr_bytes: number of bytes to complete @req
1999 *
2000 * Description:
2001 *     Ends I/O on a number of bytes attached to @req, but doesn't complete
2002 *     the request structure even if @req doesn't have leftover.
2003 *     If @req has leftover, sets it up for the next range of segments.
2004 *
2005 *     This special helper function is only for request stacking drivers
2006 *     (e.g. request-based dm) so that they can handle partial completion.
2007 *     Actual device drivers should use blk_end_request instead.
2008 *
2009 *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2010 *     %false return from this function.
2011 *
2012 * Return:
2013 *     %false - this request doesn't have any more data
2014 *     %true  - this request has more data
2015 **/
2016bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
2017{
2018	int total_bytes, bio_nbytes, next_idx = 0;
2019	struct bio *bio;
 
2020
2021	if (!req->bio)
2022		return false;
2023
2024	trace_block_rq_complete(req->q, req);
2025
2026	/*
2027	 * For fs requests, rq is just carrier of independent bio's
2028	 * and each partial completion should be handled separately.
2029	 * Reset per-request error on each partial completion.
2030	 *
2031	 * TODO: tj: This is too subtle.  It would be better to let
2032	 * low level drivers do what they see fit.
2033	 */
2034	if (req->cmd_type == REQ_TYPE_FS)
2035		req->errors = 0;
2036
2037	if (error && req->cmd_type == REQ_TYPE_FS &&
2038	    !(req->cmd_flags & REQ_QUIET)) {
2039		char *error_type;
2040
2041		switch (error) {
2042		case -ENOLINK:
2043			error_type = "recoverable transport";
2044			break;
2045		case -EREMOTEIO:
2046			error_type = "critical target";
2047			break;
2048		case -EBADE:
2049			error_type = "critical nexus";
2050			break;
 
 
 
 
 
 
 
 
 
2051		case -EIO:
2052		default:
2053			error_type = "I/O";
2054			break;
2055		}
2056		printk(KERN_ERR "end_request: %s error, dev %s, sector %llu\n",
2057		       error_type, req->rq_disk ? req->rq_disk->disk_name : "?",
2058		       (unsigned long long)blk_rq_pos(req));
 
 
2059	}
2060
2061	blk_account_io_completion(req, nr_bytes);
2062
2063	total_bytes = bio_nbytes = 0;
2064	while ((bio = req->bio) != NULL) {
2065		int nbytes;
 
2066
2067		if (nr_bytes >= bio->bi_size) {
2068			req->bio = bio->bi_next;
2069			nbytes = bio->bi_size;
2070			req_bio_endio(req, bio, nbytes, error);
2071			next_idx = 0;
2072			bio_nbytes = 0;
2073		} else {
2074			int idx = bio->bi_idx + next_idx;
2075
2076			if (unlikely(idx >= bio->bi_vcnt)) {
2077				blk_dump_rq_flags(req, "__end_that");
2078				printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n",
2079				       __func__, idx, bio->bi_vcnt);
2080				break;
2081			}
2082
2083			nbytes = bio_iovec_idx(bio, idx)->bv_len;
2084			BIO_BUG_ON(nbytes > bio->bi_size);
2085
2086			/*
2087			 * not a complete bvec done
2088			 */
2089			if (unlikely(nbytes > nr_bytes)) {
2090				bio_nbytes += nr_bytes;
2091				total_bytes += nr_bytes;
2092				break;
2093			}
2094
2095			/*
2096			 * advance to the next vector
2097			 */
2098			next_idx++;
2099			bio_nbytes += nbytes;
2100		}
2101
2102		total_bytes += nbytes;
2103		nr_bytes -= nbytes;
2104
2105		bio = req->bio;
2106		if (bio) {
2107			/*
2108			 * end more in this run, or just return 'not-done'
2109			 */
2110			if (unlikely(nr_bytes <= 0))
2111				break;
2112		}
2113	}
2114
2115	/*
2116	 * completely done
2117	 */
2118	if (!req->bio) {
2119		/*
2120		 * Reset counters so that the request stacking driver
2121		 * can find how many bytes remain in the request
2122		 * later.
2123		 */
2124		req->__data_len = 0;
2125		return false;
2126	}
2127
2128	/*
2129	 * if the request wasn't completed, update state
2130	 */
2131	if (bio_nbytes) {
2132		req_bio_endio(req, bio, bio_nbytes, error);
2133		bio->bi_idx += next_idx;
2134		bio_iovec(bio)->bv_offset += nr_bytes;
2135		bio_iovec(bio)->bv_len -= nr_bytes;
2136	}
2137
2138	req->__data_len -= total_bytes;
2139	req->buffer = bio_data(req->bio);
2140
2141	/* update sector only for requests with clear definition of sector */
2142	if (req->cmd_type == REQ_TYPE_FS || (req->cmd_flags & REQ_DISCARD))
2143		req->__sector += total_bytes >> 9;
2144
2145	/* mixed attributes always follow the first bio */
2146	if (req->cmd_flags & REQ_MIXED_MERGE) {
2147		req->cmd_flags &= ~REQ_FAILFAST_MASK;
2148		req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2149	}
2150
2151	/*
2152	 * If total number of sectors is less than the first segment
2153	 * size, something has gone terribly wrong.
2154	 */
2155	if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2156		blk_dump_rq_flags(req, "request botched");
2157		req->__data_len = blk_rq_cur_bytes(req);
2158	}
2159
2160	/* recalculate the number of segments */
2161	blk_recalc_rq_segments(req);
2162
2163	return true;
2164}
2165EXPORT_SYMBOL_GPL(blk_update_request);
2166
2167static bool blk_update_bidi_request(struct request *rq, int error,
2168				    unsigned int nr_bytes,
2169				    unsigned int bidi_bytes)
2170{
2171	if (blk_update_request(rq, error, nr_bytes))
2172		return true;
2173
2174	/* Bidi request must be completed as a whole */
2175	if (unlikely(blk_bidi_rq(rq)) &&
2176	    blk_update_request(rq->next_rq, error, bidi_bytes))
2177		return true;
2178
2179	if (blk_queue_add_random(rq->q))
2180		add_disk_randomness(rq->rq_disk);
2181
2182	return false;
2183}
2184
2185/**
2186 * blk_unprep_request - unprepare a request
2187 * @req:	the request
2188 *
2189 * This function makes a request ready for complete resubmission (or
2190 * completion).  It happens only after all error handling is complete,
2191 * so represents the appropriate moment to deallocate any resources
2192 * that were allocated to the request in the prep_rq_fn.  The queue
2193 * lock is held when calling this.
2194 */
2195void blk_unprep_request(struct request *req)
2196{
2197	struct request_queue *q = req->q;
2198
2199	req->cmd_flags &= ~REQ_DONTPREP;
2200	if (q->unprep_rq_fn)
2201		q->unprep_rq_fn(q, req);
2202}
2203EXPORT_SYMBOL_GPL(blk_unprep_request);
2204
2205/*
2206 * queue lock must be held
2207 */
2208static void blk_finish_request(struct request *req, int error)
2209{
2210	if (blk_rq_tagged(req))
2211		blk_queue_end_tag(req->q, req);
2212
2213	BUG_ON(blk_queued_rq(req));
2214
2215	if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
2216		laptop_io_completion(&req->q->backing_dev_info);
2217
2218	blk_delete_timer(req);
2219
2220	if (req->cmd_flags & REQ_DONTPREP)
2221		blk_unprep_request(req);
2222
2223
2224	blk_account_io_done(req);
2225
2226	if (req->end_io)
2227		req->end_io(req, error);
2228	else {
2229		if (blk_bidi_rq(req))
2230			__blk_put_request(req->next_rq->q, req->next_rq);
2231
2232		__blk_put_request(req->q, req);
2233	}
2234}
 
2235
2236/**
2237 * blk_end_bidi_request - Complete a bidi request
2238 * @rq:         the request to complete
2239 * @error:      %0 for success, < %0 for error
2240 * @nr_bytes:   number of bytes to complete @rq
2241 * @bidi_bytes: number of bytes to complete @rq->next_rq
2242 *
2243 * Description:
2244 *     Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2245 *     Drivers that supports bidi can safely call this member for any
2246 *     type of request, bidi or uni.  In the later case @bidi_bytes is
2247 *     just ignored.
2248 *
2249 * Return:
2250 *     %false - we are done with this request
2251 *     %true  - still buffers pending for this request
2252 **/
2253static bool blk_end_bidi_request(struct request *rq, int error,
2254				 unsigned int nr_bytes, unsigned int bidi_bytes)
2255{
2256	struct request_queue *q = rq->q;
2257	unsigned long flags;
2258
2259	if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2260		return true;
2261
2262	spin_lock_irqsave(q->queue_lock, flags);
2263	blk_finish_request(rq, error);
2264	spin_unlock_irqrestore(q->queue_lock, flags);
2265
2266	return false;
2267}
2268
2269/**
2270 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2271 * @rq:         the request to complete
2272 * @error:      %0 for success, < %0 for error
2273 * @nr_bytes:   number of bytes to complete @rq
2274 * @bidi_bytes: number of bytes to complete @rq->next_rq
2275 *
2276 * Description:
2277 *     Identical to blk_end_bidi_request() except that queue lock is
2278 *     assumed to be locked on entry and remains so on return.
2279 *
2280 * Return:
2281 *     %false - we are done with this request
2282 *     %true  - still buffers pending for this request
2283 **/
2284bool __blk_end_bidi_request(struct request *rq, int error,
2285				   unsigned int nr_bytes, unsigned int bidi_bytes)
2286{
2287	if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2288		return true;
2289
2290	blk_finish_request(rq, error);
2291
2292	return false;
2293}
2294
2295/**
2296 * blk_end_request - Helper function for drivers to complete the request.
2297 * @rq:       the request being processed
2298 * @error:    %0 for success, < %0 for error
2299 * @nr_bytes: number of bytes to complete
2300 *
2301 * Description:
2302 *     Ends I/O on a number of bytes attached to @rq.
2303 *     If @rq has leftover, sets it up for the next range of segments.
2304 *
2305 * Return:
2306 *     %false - we are done with this request
2307 *     %true  - still buffers pending for this request
2308 **/
2309bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2310{
2311	return blk_end_bidi_request(rq, error, nr_bytes, 0);
2312}
2313EXPORT_SYMBOL(blk_end_request);
2314
2315/**
2316 * blk_end_request_all - Helper function for drives to finish the request.
2317 * @rq: the request to finish
2318 * @error: %0 for success, < %0 for error
2319 *
2320 * Description:
2321 *     Completely finish @rq.
2322 */
2323void blk_end_request_all(struct request *rq, int error)
2324{
2325	bool pending;
2326	unsigned int bidi_bytes = 0;
2327
2328	if (unlikely(blk_bidi_rq(rq)))
2329		bidi_bytes = blk_rq_bytes(rq->next_rq);
2330
2331	pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2332	BUG_ON(pending);
2333}
2334EXPORT_SYMBOL(blk_end_request_all);
2335
2336/**
2337 * blk_end_request_cur - Helper function to finish the current request chunk.
2338 * @rq: the request to finish the current chunk for
2339 * @error: %0 for success, < %0 for error
2340 *
2341 * Description:
2342 *     Complete the current consecutively mapped chunk from @rq.
2343 *
2344 * Return:
2345 *     %false - we are done with this request
2346 *     %true  - still buffers pending for this request
2347 */
2348bool blk_end_request_cur(struct request *rq, int error)
2349{
2350	return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2351}
2352EXPORT_SYMBOL(blk_end_request_cur);
2353
2354/**
2355 * blk_end_request_err - Finish a request till the next failure boundary.
2356 * @rq: the request to finish till the next failure boundary for
2357 * @error: must be negative errno
2358 *
2359 * Description:
2360 *     Complete @rq till the next failure boundary.
2361 *
2362 * Return:
2363 *     %false - we are done with this request
2364 *     %true  - still buffers pending for this request
2365 */
2366bool blk_end_request_err(struct request *rq, int error)
2367{
2368	WARN_ON(error >= 0);
2369	return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2370}
2371EXPORT_SYMBOL_GPL(blk_end_request_err);
2372
2373/**
2374 * __blk_end_request - Helper function for drivers to complete the request.
2375 * @rq:       the request being processed
2376 * @error:    %0 for success, < %0 for error
2377 * @nr_bytes: number of bytes to complete
2378 *
2379 * Description:
2380 *     Must be called with queue lock held unlike blk_end_request().
2381 *
2382 * Return:
2383 *     %false - we are done with this request
2384 *     %true  - still buffers pending for this request
2385 **/
2386bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2387{
2388	return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2389}
2390EXPORT_SYMBOL(__blk_end_request);
2391
2392/**
2393 * __blk_end_request_all - Helper function for drives to finish the request.
2394 * @rq: the request to finish
2395 * @error: %0 for success, < %0 for error
2396 *
2397 * Description:
2398 *     Completely finish @rq.  Must be called with queue lock held.
2399 */
2400void __blk_end_request_all(struct request *rq, int error)
2401{
2402	bool pending;
2403	unsigned int bidi_bytes = 0;
2404
2405	if (unlikely(blk_bidi_rq(rq)))
2406		bidi_bytes = blk_rq_bytes(rq->next_rq);
2407
2408	pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2409	BUG_ON(pending);
2410}
2411EXPORT_SYMBOL(__blk_end_request_all);
2412
2413/**
2414 * __blk_end_request_cur - Helper function to finish the current request chunk.
2415 * @rq: the request to finish the current chunk for
2416 * @error: %0 for success, < %0 for error
2417 *
2418 * Description:
2419 *     Complete the current consecutively mapped chunk from @rq.  Must
2420 *     be called with queue lock held.
2421 *
2422 * Return:
2423 *     %false - we are done with this request
2424 *     %true  - still buffers pending for this request
2425 */
2426bool __blk_end_request_cur(struct request *rq, int error)
2427{
2428	return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2429}
2430EXPORT_SYMBOL(__blk_end_request_cur);
2431
2432/**
2433 * __blk_end_request_err - Finish a request till the next failure boundary.
2434 * @rq: the request to finish till the next failure boundary for
2435 * @error: must be negative errno
2436 *
2437 * Description:
2438 *     Complete @rq till the next failure boundary.  Must be called
2439 *     with queue lock held.
2440 *
2441 * Return:
2442 *     %false - we are done with this request
2443 *     %true  - still buffers pending for this request
2444 */
2445bool __blk_end_request_err(struct request *rq, int error)
2446{
2447	WARN_ON(error >= 0);
2448	return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2449}
2450EXPORT_SYMBOL_GPL(__blk_end_request_err);
2451
2452void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2453		     struct bio *bio)
2454{
2455	/* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
2456	rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
2457
2458	if (bio_has_data(bio)) {
2459		rq->nr_phys_segments = bio_phys_segments(q, bio);
2460		rq->buffer = bio_data(bio);
2461	}
2462	rq->__data_len = bio->bi_size;
2463	rq->bio = rq->biotail = bio;
2464
2465	if (bio->bi_bdev)
2466		rq->rq_disk = bio->bi_bdev->bd_disk;
2467}
2468
2469#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2470/**
2471 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2472 * @rq: the request to be flushed
2473 *
2474 * Description:
2475 *     Flush all pages in @rq.
2476 */
2477void rq_flush_dcache_pages(struct request *rq)
2478{
2479	struct req_iterator iter;
2480	struct bio_vec *bvec;
2481
2482	rq_for_each_segment(bvec, rq, iter)
2483		flush_dcache_page(bvec->bv_page);
2484}
2485EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2486#endif
2487
2488/**
2489 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2490 * @q : the queue of the device being checked
2491 *
2492 * Description:
2493 *    Check if underlying low-level drivers of a device are busy.
2494 *    If the drivers want to export their busy state, they must set own
2495 *    exporting function using blk_queue_lld_busy() first.
2496 *
2497 *    Basically, this function is used only by request stacking drivers
2498 *    to stop dispatching requests to underlying devices when underlying
2499 *    devices are busy.  This behavior helps more I/O merging on the queue
2500 *    of the request stacking driver and prevents I/O throughput regression
2501 *    on burst I/O load.
2502 *
2503 * Return:
2504 *    0 - Not busy (The request stacking driver should dispatch request)
2505 *    1 - Busy (The request stacking driver should stop dispatching request)
2506 */
2507int blk_lld_busy(struct request_queue *q)
2508{
2509	if (q->lld_busy_fn)
2510		return q->lld_busy_fn(q);
2511
2512	return 0;
2513}
2514EXPORT_SYMBOL_GPL(blk_lld_busy);
2515
2516/**
2517 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2518 * @rq: the clone request to be cleaned up
2519 *
2520 * Description:
2521 *     Free all bios in @rq for a cloned request.
2522 */
2523void blk_rq_unprep_clone(struct request *rq)
2524{
2525	struct bio *bio;
2526
2527	while ((bio = rq->bio) != NULL) {
2528		rq->bio = bio->bi_next;
2529
2530		bio_put(bio);
2531	}
2532}
2533EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2534
2535/*
2536 * Copy attributes of the original request to the clone request.
2537 * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied.
2538 */
2539static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2540{
2541	dst->cpu = src->cpu;
2542	dst->cmd_flags = (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
2543	dst->cmd_type = src->cmd_type;
2544	dst->__sector = blk_rq_pos(src);
2545	dst->__data_len = blk_rq_bytes(src);
2546	dst->nr_phys_segments = src->nr_phys_segments;
2547	dst->ioprio = src->ioprio;
2548	dst->extra_len = src->extra_len;
2549}
2550
2551/**
2552 * blk_rq_prep_clone - Helper function to setup clone request
2553 * @rq: the request to be setup
2554 * @rq_src: original request to be cloned
2555 * @bs: bio_set that bios for clone are allocated from
2556 * @gfp_mask: memory allocation mask for bio
2557 * @bio_ctr: setup function to be called for each clone bio.
2558 *           Returns %0 for success, non %0 for failure.
2559 * @data: private data to be passed to @bio_ctr
2560 *
2561 * Description:
2562 *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2563 *     The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense)
2564 *     are not copied, and copying such parts is the caller's responsibility.
2565 *     Also, pages which the original bios are pointing to are not copied
2566 *     and the cloned bios just point same pages.
2567 *     So cloned bios must be completed before original bios, which means
2568 *     the caller must complete @rq before @rq_src.
2569 */
2570int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2571		      struct bio_set *bs, gfp_t gfp_mask,
2572		      int (*bio_ctr)(struct bio *, struct bio *, void *),
2573		      void *data)
2574{
2575	struct bio *bio, *bio_src;
2576
2577	if (!bs)
2578		bs = fs_bio_set;
2579
2580	blk_rq_init(NULL, rq);
2581
2582	__rq_for_each_bio(bio_src, rq_src) {
2583		bio = bio_alloc_bioset(gfp_mask, bio_src->bi_max_vecs, bs);
2584		if (!bio)
2585			goto free_and_out;
2586
2587		__bio_clone(bio, bio_src);
2588
2589		if (bio_integrity(bio_src) &&
2590		    bio_integrity_clone(bio, bio_src, gfp_mask, bs))
2591			goto free_and_out;
2592
2593		if (bio_ctr && bio_ctr(bio, bio_src, data))
2594			goto free_and_out;
2595
2596		if (rq->bio) {
2597			rq->biotail->bi_next = bio;
2598			rq->biotail = bio;
2599		} else
2600			rq->bio = rq->biotail = bio;
2601	}
2602
2603	__blk_rq_prep_clone(rq, rq_src);
2604
2605	return 0;
2606
2607free_and_out:
2608	if (bio)
2609		bio_free(bio, bs);
2610	blk_rq_unprep_clone(rq);
2611
2612	return -ENOMEM;
2613}
2614EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2615
2616int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
2617{
2618	return queue_work(kblockd_workqueue, work);
2619}
2620EXPORT_SYMBOL(kblockd_schedule_work);
2621
2622int kblockd_schedule_delayed_work(struct request_queue *q,
2623			struct delayed_work *dwork, unsigned long delay)
2624{
2625	return queue_delayed_work(kblockd_workqueue, dwork, delay);
2626}
2627EXPORT_SYMBOL(kblockd_schedule_delayed_work);
2628
2629#define PLUG_MAGIC	0x91827364
 
 
 
 
 
2630
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2631void blk_start_plug(struct blk_plug *plug)
2632{
2633	struct task_struct *tsk = current;
2634
2635	plug->magic = PLUG_MAGIC;
 
 
 
 
 
2636	INIT_LIST_HEAD(&plug->list);
 
2637	INIT_LIST_HEAD(&plug->cb_list);
2638	plug->should_sort = 0;
2639
2640	/*
2641	 * If this is a nested plug, don't actually assign it. It will be
2642	 * flushed on its own.
2643	 */
2644	if (!tsk->plug) {
2645		/*
2646		 * Store ordering should not be needed here, since a potential
2647		 * preempt will imply a full memory barrier
2648		 */
2649		tsk->plug = plug;
2650	}
2651}
2652EXPORT_SYMBOL(blk_start_plug);
2653
2654static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
2655{
2656	struct request *rqa = container_of(a, struct request, queuelist);
2657	struct request *rqb = container_of(b, struct request, queuelist);
2658
2659	return !(rqa->q <= rqb->q);
 
2660}
2661
2662/*
2663 * If 'from_schedule' is true, then postpone the dispatch of requests
2664 * until a safe kblockd context. We due this to avoid accidental big
2665 * additional stack usage in driver dispatch, in places where the originally
2666 * plugger did not intend it.
2667 */
2668static void queue_unplugged(struct request_queue *q, unsigned int depth,
2669			    bool from_schedule)
2670	__releases(q->queue_lock)
2671{
2672	trace_block_unplug(q, depth, !from_schedule);
2673
2674	/*
2675	 * If we are punting this to kblockd, then we can safely drop
2676	 * the queue_lock before waking kblockd (which needs to take
2677	 * this lock).
2678	 */
2679	if (from_schedule) {
2680		spin_unlock(q->queue_lock);
2681		blk_run_queue_async(q);
2682	} else {
2683		__blk_run_queue(q);
2684		spin_unlock(q->queue_lock);
2685	}
2686
2687}
2688
2689static void flush_plug_callbacks(struct blk_plug *plug)
2690{
2691	LIST_HEAD(callbacks);
2692
2693	if (list_empty(&plug->cb_list))
2694		return;
2695
2696	list_splice_init(&plug->cb_list, &callbacks);
2697
2698	while (!list_empty(&callbacks)) {
2699		struct blk_plug_cb *cb = list_first_entry(&callbacks,
2700							  struct blk_plug_cb,
2701							  list);
2702		list_del(&cb->list);
2703		cb->callback(cb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2704	}
 
2705}
 
2706
2707void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2708{
2709	struct request_queue *q;
2710	unsigned long flags;
2711	struct request *rq;
2712	LIST_HEAD(list);
2713	unsigned int depth;
2714
2715	BUG_ON(plug->magic != PLUG_MAGIC);
 
 
 
2716
2717	flush_plug_callbacks(plug);
2718	if (list_empty(&plug->list))
2719		return;
2720
2721	list_splice_init(&plug->list, &list);
2722
2723	if (plug->should_sort) {
2724		list_sort(NULL, &list, plug_rq_cmp);
2725		plug->should_sort = 0;
2726	}
2727
2728	q = NULL;
2729	depth = 0;
2730
2731	/*
2732	 * Save and disable interrupts here, to avoid doing it for every
2733	 * queue lock we have to take.
2734	 */
2735	local_irq_save(flags);
2736	while (!list_empty(&list)) {
2737		rq = list_entry_rq(list.next);
2738		list_del_init(&rq->queuelist);
2739		BUG_ON(!rq->q);
2740		if (rq->q != q) {
2741			/*
2742			 * This drops the queue lock
2743			 */
2744			if (q)
2745				queue_unplugged(q, depth, from_schedule);
2746			q = rq->q;
2747			depth = 0;
2748			spin_lock(q->queue_lock);
2749		}
 
 
 
 
 
 
 
 
 
2750		/*
2751		 * rq is already accounted, so use raw insert
2752		 */
2753		if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA))
2754			__elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
2755		else
2756			__elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
2757
2758		depth++;
2759	}
2760
2761	/*
2762	 * This drops the queue lock
2763	 */
2764	if (q)
2765		queue_unplugged(q, depth, from_schedule);
2766
2767	local_irq_restore(flags);
2768}
2769
2770void blk_finish_plug(struct blk_plug *plug)
2771{
 
 
2772	blk_flush_plug_list(plug, false);
2773
2774	if (plug == current->plug)
2775		current->plug = NULL;
2776}
2777EXPORT_SYMBOL(blk_finish_plug);
2778
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2779int __init blk_dev_init(void)
2780{
2781	BUILD_BUG_ON(__REQ_NR_BITS > 8 *
2782			sizeof(((struct request *)0)->cmd_flags));
2783
2784	/* used for unplugging and affects IO latency/throughput - HIGHPRI */
2785	kblockd_workqueue = alloc_workqueue("kblockd",
2786					    WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
2787	if (!kblockd_workqueue)
2788		panic("Failed to create kblockd\n");
2789
2790	request_cachep = kmem_cache_create("blkdev_requests",
2791			sizeof(struct request), 0, SLAB_PANIC, NULL);
2792
2793	blk_requestq_cachep = kmem_cache_create("blkdev_queue",
2794			sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
2795
2796	return 0;
2797}